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Abstract

In this research project we endeavour to model a financial marketplace dom-

inated by a few interacting large institutional investors and draw conclusions

about the financial market dynamics that this interaction gives rise to. More

specifically, we study the problem of institutional investors, such as pension

funds and life assurance companies, which operate in an environment of uncer-

tain cash inflows and uncertain payouts with a minimum threshold.

Investment strategies are taken as model primitives and an artificial financial

market is populated by multiple investor types. Trading and investment deci-

sions take place in discrete time. There exist a certain predetermined number

of long-lived risky assets paying a random amount of dividends at each discrete

point in time, as well as a risk-free asset with a constant interest rate. The

risky assets generate random dividend intensities. Asset payoffs are aggregated

and paid to investors at the end of each time period. The general economy is

assumed to follow a hidden Markov model with two states, corresponding to

normal and recessionary regimes. The existence of a minimum consumption

constraint implies the possibility of bankruptcy. The effect of this occurrence

on market clearing is modelled explicitly.

We solve our model by means of numerical simulation. The size of the

wealth endowment of the different agents is monitored through time over a

large number of simulation runs. Our results suggest that both trend following

and value investing strategies can be selected by the market under different

circumstances. These two results lead to markedly different outcomes for the

economy, as the prevalence of the trend following style leads to destabilization of

the marketplace, volatility clustering and severe deflationary spirals. Dividend

yield and modified regime-switching CAPM strategies are never selected by the

market.

Key words: institutional investors; evolutionary finance; hidden Markov

models; artificial market; trend following; value investing;
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Chapter 1 Introduction

The credit crunch and the economic recession, that most countries have had

to grapple with in the last years, have been hotly debated topics, which have

been piquing everybody’s curiosity. This prolonged period of negative economic

growth, rising unemployment, and frequent bankruptcies has baffled profes-

sional economists and ordinary people alike. And while the attention of finan-

cial specialists has been focused on the more pressing global issues, like how

to avoid large-scale job losses, and how to prevent the economy from plunging

into an even deeper recession, there are also some extremely important issues

that have not been receiving the attention they deserve.

The research project outlined in this document addresses one of them -

the pensions crisis. The pensions crisis refers to the difficulties faced by some

institutional investors, such as pension funds and life insurance companies,

which unfortunately have also impacted a number of large companies directly

related to them. The effect of these occurrences has been felt by ordinary people

as well, particularly by those, who are due to retire in the near future.

The pensions crisis is a direct consequence of the global financial crisis.

With the worsening of economic conditions, investors and banks became more

cautious and nearly ceased lending to each other. Overall economic activity

slowed down, profit margins were squeezed and doing business became more

difficult. Faced with financial problems and encouraged by a wide-spread lack

of confidence, investors started gradually withdrawing from financial markets.

This naturally brought about a prolonged slump in equity prices. This in turn

negatively affected the funding levels of pension funds and insurance companies.

In the United Kingdom, the Financial Conduct Authority (FCA) regulates

funding levels and capital adequacy by means of the Individual Capital Ade-

quacy Standards (ICAS). Additional regulation is imposed by European Union

supervision in the form of the Solvency II standards, which are also in effect

within the jurisdiction of the United Kingdom.

The depreciation of equity prices impacted adversely all long-term investors,

who still had to meet some predetermined regular liabilities, stemming from

annuity contracts they had signed in previous years, regardless of the economic

2



situation. Pension funds saw their investments rapidly depreciating. By itself,

this would not have been such a severe problem, since a loss is only realized when

an investment is liquidated. Institutional investors, however, did post negative

results in the form of actuarial losses - accountants and actuaries regularly

review a pension plan’s investments and mark them to market to reflect more

accurately the current status of the institution’s funding balance. This measure

was adopted to help protect plan members by preventing the accrual of a large

mismatch between the present value of future pension liabilities and the value

of available assets.

Despite its good intentions, however, marking to market actually harmed

plan members, instead of protecting them. This is so because of certain account-

ing and regulatory requirements, which demand that a sponsoring company

should eliminate any deficits in its pension plan if the ratio between assets and

liabilities falls below a predetermined threshold, called the minimum funding

ratio. In the prevailing tough economic conditions, these firms had already been

facing serious financial problems, due to loss of clients, reduced profit margins,

and disruption of their working capital cycles. When the burden of extinguish-

ing pension plan deficits was added to this, some companies went bankrupt,

while others ceased all discretionary cash outflows, including the payment of

dividends.

This in turn fed back very negatively to pension funds and insurance com-

panies, since many of them were invested in these big corporations. When

current income in the form of dividends diminished, institutional investors had

no choice but to liquidate part of their investments, so as to be able to meet

their liabilities. Since such extreme conditions as prolonged periods of negative

growth affect all major players in the economy, they are a source of systematic

risk. This meant that a lot of large pension funds and insurance companies

were negatively impacted at the same time. The result of this has been a mass

sell-off of institutional asset holdings, which brought about a further decline in

asset values, thus reinforcing the vicious deflationary circle.

Based on all of the above, the main ambitions of our research project are

as follows. Firstly, to examine this two-way link between the investment and

risk management decisions of large institutional investors and the dynamics of

asset prices. Secondly, and perhaps more importantly, we also hope to be able

to recommend an optimal policy for asset allocation and risk management of

pension funds and insurance companies, such that it will be possible for an

institutional investor with periodic liabilities to avoid a situation, which forces

him to liquidate investments at unfavourable prices, and in the same time allows

him to retain enough exposure to the upside potential of being invested in risky

3



assets.

If these objectives are achieved, the contribution of this research project will

be two-fold. Firstly, it will provide important extensions to existing theoretical

literature dealing with intertemporal investment-consumption decisions, multi-

period portfolio choice and asset allocation, and evolutionary market selection.

Secondly, the obtained results from the theoretical models, that we implement,

can serve as a basis for subsequent empirical studies. Once the various model

parameters have been calibrated to fit past data, the theoretical relationships

that we find can then be used in practice by pension fund trustees and managers

to help them make better asset allocation and risk management decisions.

The rest of this document is structured as follows. Chapter 2 presents

existing literature from different research areas dealing with the problem of

multi-period optimal asset allocation with minimum consumption constraints.

Chapter 3 presents the theory behind, and all components of the model we

employ to study the above mentioned problem, as well as its practical imple-

mentation. Chapter 4 collects the results and analyzes them. Finally, chapter

5 summarizes our findings and concludes.
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2.1 Contractual Savings Institutional

Investors: General Background and

Regulatory Framework

We begin this section by providing some background information on institu-

tional investors, their idiosyncratic characteristics, as well as a brief guide to

the regulatory framework in which they operate.

The types of financial institutions, with which we will be dealing in this

paper, arose from the need for efficient fiduciary management, which is gen-

erally defined as a way of pooling funds to form sizable investment portfolios

and the organization of their investment management process (Nunen (2008)).

Even though initially every person in employment was responsible for managing

their own savings and investments, with the increasing complexity of capital

markets and transaction costs, it soon became clear that large specialized finan-

cial institutions that manage savings collectively on behalf of small investors

with specific risk, return and maturity objectives were needed. These entities

are collectively known as institutional investors (Davis & Steil (2004)). Pen-

sion funds, insurance companies, unit trusts, hedge funds and mutual funds are

all classified as institutional investors. What makes these entities attractive is

their ability to provide risk-pooling and diversification benefits to the individ-

ual retail investor, which would have been difficult to realize if they invested

in the market on their own. Other useful features of institutional investors in-

clude the provision of liquidity to capital markets, their expertise at efficiently

absorbing and analyzing relevant information, as well as their ability to match

the maturity profiles of assets and liabilities. Of course, being a large entity

allows institutional investors to achieve economies of scale in investing, enables

them to participate in large, indivisible investments, and reduce both transac-
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Section 2.1 Contractual Savings Institutional Investors: General Background and
Regulatory Framework

tion costs for execution, and the fixed costs entailed in gathering and analyzing

information.

From the perspective of financial intermediation, institutional investors are

not unlike other big financial institutions, such as banks for instance, in pro-

viding valuable functions for the economy. Davis (1996) mentions a number

of those functions, such as clearing and settling payments, pooling of funds,

transferring economic resources, managing uncertainty and controlling risk, use

of price information, as well as dealing with incentive problems. In an idealized

Arrow-Debreu world where markets are efficient and frictionless, and there are

no transaction costs, it is not trivial to justify the existence of financial inter-

mediaries. In terms of value creation in the real world, however, Davis (2000)

argues that market frictions such as asymmetric information, transaction costs

and credit rationing make a financial structure based on intermediation an in-

dispensable tool for achieving a Pareto-optimal allocation of resources. From

the aforementioned types of institutional investors we have chosen to limit our-

selves to the study of pension funds and insurance companies for reasons that

will be disclosed later in this document. In what follows we provide some fac-

tual information on these financial institutions, paying special attention to some

peculiarities in the way they operate.

2.1.1 Pension Funds

Davis (2000) defines pension funds as ”a form of institutional investor, which

collect, pool and invest funds contributed by sponsors and beneficiaries to pro-

vide for the future pension entitlements of beneficiaries”. The notion of saving

during one’s working life (the accumulation phase) to provide financially for

the period of retirement is a relatively recent one and came about due to im-

proved quality of life and longer life expectancy in some countries. The formal

beginning a social security system may be traced back to 1881 when Otto

von Bismarck enacted an arrangement for the provision of financial protection

against the income consequences of old age and ill health (Nunen (2008)). Pen-

sion funds are typically sponsored by employers, even though employees are also

expected to contribute, usually in the form of additional top-up contributions.

2.1.1.1 Funded vs. Unfunded Schemes

Pensions may be financed out of a reserve fund built up by accumulating con-

tributions during a person’s working life and investing them in earning assets.

This is known as accumulation of funds or a funded pension scheme (Blake

(2003)). Alternatively, the pensions of the retirees could be paid entirely out

of current contributions by both younger employees, who are still active in the
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labour market, and employers. In return for their contributions, employees re-

ceive the promise that their own pensions will be paid in the same manner by

the next generation of workers. This system of pension funding is known as

pay-as-you-go (PAYG). Historically, the economy of Anglo-Saxon countries has

been structured around well developed capital markets. People’s confidence in

such a market-based system has contributed to financial markets being seen

not only as a means of channelling resources to their most productive use, but

as a store of value as well. Traditionally, those countries have exhibited a pref-

erence towards funded schemes, while PAYG schemes have been popular in

bank-dominated and centrally-planned economies. The demographic trend of

ageing population, as well as the potential for increased efficiency, has caused

most occupational pension schemes today to move to funded plans. The accu-

mulated funds can be managed either in-house by the sponsoring company, or

outsourced to a specialized pension fund or insurance company.

2.1.1.2 Defined Benefit vs. Defined Contribution

While the principal objective of a funded plan is to accumulate enough assets

from contributions and investment income to ensure they are sufficient to meet

pension liabilities in the future, the actual mechanics of how this happens can

differ. There exist two main varieties of funded pension schemes - defined-

benefit (DB) and defined-contribution (DC) (Blake (2006)). The characteristics

of each have important implications for the investment objectives and incentives

of both parties - sponsoring companies and beneficiaries. In both schemes the

employer and beneficiaries make fund contributions to be invested in earning

assets. The value of the terminal accumulated wealth available to be paid out

as pensions depends on the investment performance of the assets, in which

the contributions are invested. In a defined contribution scheme the funds are

held in trust for the employee in a tax-deferred retirement savings account (e.g.

IRA accounts in the United States). Contributions are usually calculated as

a predetermined percentage of salary, which needs not necessarily be constant

over one’s career. Accrued investment income is usually tax-free for the period

during which the funds remain invested in the trust account and at retirement

the employee may opt to receive either a lump-sum payment or an annuity

(Bodie (1990)). The investment risk is entirely borne by the beneficiary - the

responsibility of the sponsoring company is exhausted with paying the agreed

contributions, and this is where the name of the scheme is derived from.

Conversely, in a defined-benefit scheme the beneficiary knows the minimum

amount he can expect to receive upon retirement. The latter is calculated based

on the employee’s history of service and salary. The minimum promised annuity
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is the employer’s liability and hence the name ”defined-benefit”. While there

also exist average salary schemes, the most popular defined-benefit plans have

been found out to be the final salary schemes, which are back loaded in the

sense that the present value of benefits earned each year is greater in the later

years of the plan. This is so owing to a number of actuarial assumptions used

to calculate pension liabilities for the sponsoring company. One of these is the

average rate of forecasted inflation, at which the employee’s salary is assumed

to grow annually and the other is the chosen discount rate to reflect the time

value of money (Blake (2006)).

There is a variety of opinions as to the true economic meaning of the word

”pension”. Some authors consider it as insurance on retirement income (e.g.

Bodie (1989)). Others view it in the light of an option on pension fund as-

sets (Blake (1998)). Even though these different connotations can change the

analytical framework for modeling pension problems, a pension essentially rep-

resents an entitlement to an annuity of payments in the future. Bodie (1990)

presents two kinds of annuities - fixed and variable, with the former being much

more popular in the pension fund and insurance industry. A DB plan, however,

should be viewed not just as an ordinary, fixed annuity, but rather as a variable

annuity with a fixed minimum (Bodie (1990)). The sponsoring company is free

to increase the amount to be paid out depending on its financial strength, the

increase in the living costs of retirees or the investment performance of plan

assets.

Curiously, the benefit from investment performance of the plan assets is ac-

tually asymmetric because the sponsoring company does not always appropriate

the full benefit of good fund performance. However, it is obligated to provide a

fixed floor and thus suffers to the full extent in the case of sub-par investment

results. The latter occurs mainly due to the accounting and regulatory frame-

work, in which pension funds operate, which postulates that the sponsoring

company recognize an unfunded liability on its balance sheet but forbids the

inclusion of any overfunding in the financial statements (e.g. FASB statement

87 in the US; International Financial Reporting Standards (IFRS) require a

reconciliation of the plan funded status, so that only the recognized portion

of actuarial gains or losses are included on the financial statements). Without

this asymmetry, Blake (2006) contends that a DB plan can be analyzed as a

DC plan, in which the sponsoring company holds a call option on the fund’s

assets while the beneficiaries hold a put option. Even with the reported asym-

metry, however, the sponsoring company usually has a considerable interest in

the upside potential, since under most jurisdictions employers are required to

eliminate any surpluses through contributions ”holidays”.
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The unique characteristics of DB and DC schemes impinge on the fund’s

investment behaviour. The main emphasis in a DC scheme is to achieve effi-

cient diversification and thus to maximize expected return for a given level of

risk, while the investment policy of DB schemes focuses on sound asset-liability

management and actively uses fixed income instruments matching the dura-

tion of the liabilities. In terms of investment style, most authors suggest three

main approaches to pension fund management: index tracking, active manage-

ment, and asset liability management (Blake (2006)). The chosen investment

approach has major implications for asset allocation. These will be discussed

below.

The majority of funded plans nowadays are of the defined-benefit type but

due to the recent difficulties that sponsoring companies have been facing with

their pension schemes, and the fact that defined-contribution schemes are much

more portable between jobs, there has been a substantial move worldwide to-

wards DC plans. Still, with the sizable amount of assets already accumulated in

DB schemes, they will continue to represent the greater percentage of funded

schemes for the foreseeable future. Additionally, through their much more

tangible impact on sponsoring companies, they have a much more noticeable

influence on economies. For these reasons we elect to focus on funded schemes

of the defined benefit type in the research project outlined below.

2.1.1.3 Regulation

Pension funds and other institutional investors face a number of risks, such as

longevity risk, inflation risk, investment risk, the risk of default of the sponsor-

ing company, and others. Following the recent precipitous fall in equity prices

worldwide and the implications this has had on institutional investors, we focus

exclusively on investment risk in the current project.

To adequately address all those risks, a substantial amount of regulatory

legislation is necessary. In the United Kingdom pension funds are mainly reg-

ulated by the Finance Act (1986 and subsequent revisions), the Pensions Act

(1995 and subsequent amendments), the Trustee Act (2000), the Social Secu-

rity Act (1990), and to an extent, the Myners’ Report ”Institutional Investment

in the United Kingdom” (2001). All these statutes, however, tend to be non-

prescriptive and fund trustees are granted considerable leeway in making and

implementing decisions, which they consider to be for the benefit of fund mem-

bers. This governance principle of acting rationally and in the best interest of

stakeholders was named ”the prudent investor rule” in the Trustee Act (2000).

One of the desired outcomes of the current research project is to aid trustees in

their decisions related to asset allocation and portfolio insurance by providing
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investment behaviour guidelines by means of a theoretical framework of stock

market dynamics with the presence of large institutional investors and price

impact.

In the United States, arguably the single most important piece of legisla-

tion concerning the operation of pension funds is the Employee Retirement and

Income Security Act (ERISA) from 1974, which created the Pension Benefit

Guaranty Corporation (PBGC). In 1978 the popular 401(k) plans were intro-

duced, which quickly gained popularity and became one of the main driving

forces behind the move towards defined-contribution schemes.

2.1.2 Insurance Companies

Insurance companies are an eclectic group of enterprises, whose common feature

is the provision of insurance and investment services to retail investors. Dorf-

man (2004) defines insurance as ”a financial arrangement that redistributes the

costs of unexpected losses”. The general idea is for a financial intermediary

to pool assets from many beneficiaries, just as in the case of pension funds.

These, however, are to be used to pay indemnities to any of the beneficiaries

who happen to suffer a loss while insured. In this way, instead of facing the

loss on their own, the claimant’s indemnity is paid out of the pool of funds

accumulated from insurance premiums. Correct contract pricing and analysis

of all potential risks are essential for any insurance company in order for it to

be able to realize consistent profits over time, regardless of the realized states

of nature.

Based on what constitutes an insurable event, insurance can be decomposed

in several branches: for example, fire insurance, business income coverage, ma-

rine insurance, casualty insurance, credit insurance, life insurance etc. (Dorf-

man (2004)). Since in this research project we are mainly interested in how

various investment and risk management decisions of institutional investors

impact the overall financial market dynamics, we concentrate exclusively on

the branch of life insurance for reasons that will become apparent below.

Life insurance, as the name suggests, is based on human life contingencies

and comes in two forms. If the insurable event is the risk of premature death

then the contract is known merely as life insurance. Under the arrangements of

such contracts, the immediate family of the beneficiary receive predetermined

lump-sum compensation in the event of the beneficiary’s untimely death. Con-

versely, in case the insurable event is extended lifetime, the contract is known as

an annuity. Under the arrangements of an annuity, the beneficiary is promised

a stream of regular payments until he dies. Insurance companies finance this

obligation by pooling premium income from many individuals and investing it
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in earning assets, just like a pension fund would do. Additional help in meeting

their obligations is provided by the law of large numbers: the premium income

from some of the beneficiaries who die too early to claim any benefits gets redis-

tributed to claiming beneficiaries. A detailed exposition of the various kinds of

available contracts, such as whole-life, universal life, variable life, or endowment

life insurance, is presented in Vaughan & Vaughan (2002).

In terms of regulation, the most important statutory documents for insur-

ance companies in the United States are the McCarran-Ferguson Act (Public

Law 15) and more recently the Gramm-Leach-Bliley Act (1999) (Graham & Xie

(2007)), while in the United Kingdom they are the Insurance Companies Act

(1982), and more generally the Financial Services Act (1986) and the Financial

Services and Markets Act (2000) (Hardwick & Guirguis (2007)).

The mechanics of annuity contracts are very similar to the arrangements

under most of the pension fund schemes discussed in the previous section. In

fact, the two forms of savings are complementary - individuals often choose

to have life insurance on top of their pension savings so as to eliminate their

longevity risk, i.e. exhausting their pension income in their lifetimes (for other

motivations to save in the form of life insurance see e.g. Dorfman (2004)). Col-

lectively, pension funds and life insurance companies are known as contractual

savings institutional investors due to the special contractual annuity guarantee

feature of their liabilities. The fixed minimum level of their obligations makes

them very interesting to analyze in the wake of the current financial crisis and

plummeting stock markets. While other institutional investors have long-term

investment horizon and are better positioned to survive the recent severe slump

in asset values and current income, pension funds in their mature stage and life

insurance companies have been seriously affected, so much so that this occur-

rence warrants further investigation.

2.2 Why Institutional Investors

The motivation for specifically focusing our analysis on institutional investors

is simple: their sheer size and the number of participating plan members makes

them important enough to have a significant influence on both the macro level

(economy, sponsoring corporations and financial markets) and the micro level

though the numerous ordinary employees who depend on them for their financial

well-being during old age.
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2.2.1 Institutional Investors, Capital Markets and Economic
Growth: Theory

Apart from their sheer size, institutional investors are important for the econ-

omy in other ways. On a more general level, Levine (2005) provides a com-

prehensive survey of the theoretical and empirical work that has been carried

out on the connection between the efficient functioning of the financial system

and economic growth. Despite the controversy of this issue, the general opinion

is that financial systems contribute to economic growth by lowering the cost

of researching potential investments; exerting corporate governance; trading,

diversifying and managing risk; mobilizing and pooling savings; conducting ex-

changes of goods and services; and mitigating the negative consequences that

random shocks can have on capital investment. As the most sizable partici-

pants in the financial system, institutional investors and banks clearly perform

a major share of these functions and thus contribute to economic growth.

In addition to contributing towards productivity and economic growth, it

has been suggested that institutional investors also promote the development of

capital markets and financial innovation. This argument, however, has sparked

considerable controversy over the causality of the relationship. Vittas (1998)

tries to find a middle ground, and essentially confirms the arguments in the

above paragraph, by arguing that while the promotion of pension funds and

insurance companies can help in the development of capital markets and should

be pursued, mutual funds are unlikely to be as successful in the environment of

an insufficiently mature financial system.

More narrowly, focusing solely on insurance, specifically in emerging mar-

kets, Skipper (1997) argues that insurance companies can contribute to a coun-

try’s economic development in at least seven ways: insurance promotes financial

stability and reduces anxiety; it can be a substitute for government security; it

facilitates trade and commerce; mobilizes national savings; enables risks to be

dealt with more efficiently; insurance companies have an economic interest in

assisting the insured curtail their losses; and they also foster a more efficient

allocation of a country’s capital.

2.2.2 Institutional Investors, Capital Markets and Economic
Growth: Empirical Evidence

On the empirical side, Harichandra and Thangavelu (2004) examine the impact

of institutional investors on stock market development and economic growth

using data from the OECD countries. The authors study the problem both

at the aggregated and disaggregated level, making use of dynamic panel VAR

estimation. The results suggest that institutional investors Granger cause the
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level of financial sector development and economic growth but this does not

hold true for banks. At the disaggregated level, an interesting finding is the

result that the development of institutional investors is actually Granger caused

by market capitalization, while institutional investors Granger cause liquidity

and turnover in financial markets.

Catalan et al. (2000) also provide international evidence supporting the

argument that there exists a robust causal relationship between contractual

savings institutional investors and stock market development, with Granger

causality running from institutions to markets. The authors find this effect to

be especially pronounced in countries lacking deeply developed capital markets.

In their framework, pension funds and insurance companies add value in terms

of improving market capitalization and volume of trades, as well as increasing

the pace of financial innovation.

The case for insurance companies alone is not significantly different. Webb

et al. (2002) analyze the conjoint effect of the banking system and insurance

companies on capital formation and output within the context of a neoclassical

Solow-Swan growth model. Using panel data for fifty-five countries over the

period 1980-1996, the instrumental variables estimation with three least squares

simultaneous equations finds that the activity of banks and insurance companies

promotes productivity, with the total effect of the two entities being greater

than the sum of their individual effects. Findings of similar positive effects of

insurance on economic growth and financial development, but this time using

data from developing countries, are presented in Outreville (1990).

Nonetheless, the empirical support for whether insurance companies benefit

the economy or not is not as unanimous as it may appear from the above para-

graph. In their cointegration analysis using real GDP and total real insurance

premiums data from nine OECD countries for the period 1961-1996, Ward &

Zurbruegg (2000) provide mixed evidence on the direction of causality in the

long-term relationship between insurance activity and growth. The authors

contend that the direction of causality must be determined by country-specific

factors and specific national circumstances, since they find that for some of

the countries, insurance activity Granger causes economic growth, while for the

rest, the opposite is true.

Later, however, their findings were refuted by Kugler & Ofoghi (2005) who

suggested that the results in Ward & Zurbruegg (2000) might have been bi-

ased by an aggregation problem, caused by their choice to use the total value

of written insurance premia as one of the variables in their model. Kugler &

Ofoghi (2005) study reports a positive long-run relationship between insurance

and growth using data from the UK. Moreover, in a more recent paper, Arena
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(2008) confirms the findings in Kugler & Ofoghi (2005) using a different econo-

metric methodology (generalized method of moments) with data from both

industrialized and developing countries. Arena’s (2008) work also provides an

important motivation to study financial and insurance markets within a unified

framework on a theoretical level.

The empirical pensions literature, albeit of smaller size, tends to be support-

ive of the economic significance of pension funds as well. Davis & Hu (2004)

examine the relationship between the size of pension fund assets and economic

growth within a modified Cobb-Douglas production function model and find

positive results for both OECD countries and emerging markets, with the ef-

fect once again being more pronounced in the developing countries. A different

approach is taken by Apilado (1972), who hypothesizes that if pension funds

do not divert savings from other traditional means of accomplishing intertem-

poral transfer of wealth, then they can contribute towards economic growth by

increasing the aggregate level of savings available for investment. If this is not

true, then the increasing size of pension funds may be a cause for concern, signi-

fying increasing rivalry among financial intermediaries for household deposits.

In his empirical study the author is able to confirm his initial hypothesis and

concludes that pension funds are capable of enhancing economic growth.

2.3 Price Impact of Institutional Investors

2.3.1 Factors Determining Institutional Price Impact

Initial research in this area sought to identify potential reasons, which caused

large institutional investors to have price impact. Chan & Lakonishok (1995)

examine all trades executed by thirty-seven large investment management firms

during the period 1986-1988 and study the price impact of the entire sequence

of trades. The three most important factors determining the magnitude of the

price impact turn out to be the capitalization of investment firms, relative size

of the sequence of trades, and the identity of the management firm behind the

trades. The significance of this study lies in the fact that it explicitly proposes

an explanation of what the reasons for institutional price impact may be, even

though the paper deals with sequences rather than individual trades. The

finding that assets under management and the size of trades are determining

factors is not surprising and it coincides with the common intuition shared in

the previous paragraph. The third factor, however, signals there might be more

to the story than merely size. Financial institutions have a reputation for being

sophisticated investors and their behaviour is often used as a signal by other

investors and actively emulated.
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2.3.1.1 Assets under Management and Size of Trades

There is further empirical and theoretical support for both of these factors

causing price impact. With regard to the argument of size, Gompers & Metrick

(2001) examine the institutional demand for securities with particular features

and how it influences the prices and returns of assets possessing these charac-

teristics. In particular, the authors use the small-firm premium as documented

by Banz (1981) as a motivation for the study and go on to hypothesize that the

reversal of this effect since 1980 can be explained by the differing investment

preferences of large institutional investors. Specifically, Gompers & Metrick

(2001) note that such investors generally invest in stocks that are larger, more

liquid and have had relatively lower returns in previous years (so called value

stocks). In their empirical study the authors use the equity holdings of all in-

stitutional investors with at least $100 million at their disposal for investment

purposes during the period 1980-1996. The results show that during the pe-

riod under study the examined institutions approximately doubled their market

share and by 1996 they controlled more than half of the equity market. With

this, they brought about a steady shift in demand away from growth stocks,

which impacted negatively on their price and returns, and in effect reversed the

small-size premium.

The study by Gompers & Metrick (2001) is of prime importance because

it unambiguously showed that institutional investors were capable of inducing

major market shifts through their behaviour, if they acted in a concerted man-

ner. This finding serves as a source of motivation for the endogenous way, in

which we specify the asset price formation in our theoretical model described

below.

2.3.1.2 Informational Content of Institutional Trades

In terms of the argument of information signalling, an important line of re-

search is the ”stealth trading” hypothesis. Chakravarty’s (2001) starting point

is precisely this theory, according to which informed investors (or those in pos-

session of inside information) will trade gradually with trades of a certain fixed

size. The trades should be neither large enough to prematurely release their

information content nor too small, since that would be inefficient in terms of

transaction costs. The hypothesis then states that one would expect to see

a disproportionately large price impact of these medium-sized trades relative

to their share of overall trading volume because of the information they will

bring to other market participants trying to imitate the behaviour of informed

investors.
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Chakravarty (2001) decides to test this hypothesis by examining whether

the medium-sized trades in his sample are initiated by institutional investors

or not. The empirical findings confirm that the medium-sized trades with the

most disproportional price impact were indeed initiated by institutions, which

are found out to be informed investors. This confirms the findings in previ-

ous papers, such as Walther (1997), Sias & Starks (1997), and Badrinath et

al. (1995), which claim that institutional investors may differ in their level of

sophistication in response to information, which makes them ”smart” or ”in-

formed” traders.

Like Gompers & Metrick (2001), the study by Chakravarty (2001) also has

important general implications. On one hand it confirms that the size of institu-

tions’ assets under management or trades is not the only factor that determines

their price impact. Indeed, large investors can move the market even with

medium-sized trades. On the other hand, this ability testifies to the fact that

institutional investors’ second means of influencing the market is through the

information content of their behaviour, which is not insignificant, especially in

times of crisis when investors lack confidence. While the first of our research

questions does not consider this mechanism of price impact, the informational

content of the behaviour of institutional investors, and how other agents in the

market learn from it and change strategies accordingly, is the focal point of our

second research question presented below.

2.3.2 Asymmetry of Price Impact

What is more, price impact turns out to be only half of the story. Chiyachan-

tana et al. (2004) find that the influence of institutional investors on asset

prices is actually asymmetric. In this paper the authors examine data from 37

countries on institutional trading in international stocks in two separate peri-

ods: 1997-1998 and 2000-2001. The reported results suggest that depending

on prevailing market conditions, block institutional trades can have different

effects. In bullish markets, such as the period 1997-1998, the price impact of

purchases is stronger than that of sales. Of particular interest to us is the find-

ing that this asymmetry is reversed in bearish markets, like for example the last

stock market crash of 2000-2002, which bears great resemblance to the current

market conditions.

These results empirically prove the theoretical hypotheses of an earlier paper

by Saar (2001), who presents a case that the trading strategies of institutions

create a difference between the informational content of buys and sells. In his

probabilistic model the author shows that the magnitude of the asymmetry is

determined to a great extent by the history of price performance - the longer
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the run-up in stock prices, the less the asymmetry. Recent price performance

is found out to have the greatest informational content.

2.3.3 Institutional Herding and Positive-Feedback Trading

Asymmetric price impact often compounds other undesirable features of the

behaviour of large investment entities. Lakonishok et al. (1992) use data per-

taining to the equity holding of 769 tax-exempt institutional investors in an

attempt to gain some insight on their potential effect on asset prices. Interest-

ingly, the authors observe two regularities in institutional investment behaviour

- herding and positive-feedback trading. The former refers to imitating other

investment managers by purchasing or selling the assets the latter have recently

traded. Positive-feedback trading is explained as buying past winners and sell-

ing past losers. The reason why these phenomena are important for our study is

because combining herding and positive-feedback trading with the price impact

literature has caused a number of authors to question if institutional investors

actually destabilize capital markets by acting in such a collective manner. Such

a possibility has been particularly realistic in recent times, in light of our dis-

cussion above concerning regulatory requirements that prompt pension funds

and life insurance companies to sell part of their assets to maintain a certain

asset-liability ratio, and how this might have reinforced the downward spiral in

asset values.

The academic literature on this issue tends to examine mostly develop-

ing countries, whose less capitalized financial markets tend to be more prone

to institutional influence. Aitken (1996) examines the trend of preference to-

wards emerging markets exhibited by institutional investors. This investor sen-

timent statistically explained the autocorrelation of returns in emerging capital

markets during the time, in which large investors were expanding their equity

holdings there. In the author’s view, this can be seen as a confirmation of

the hypothesis that sharp shifts in large investor sentiment are responsible for

bubble-like booms and busts, as well as asset price overshooting, like in the case

of the Asian crisis, for example.

Indeed, as OECD analysts Reisen & Williamson (1994) also note, with the

increasing degree of stock market integration, institutional investors are capa-

ble of influencing not only the financial markets in their own countries, but can

also start significant worldwide trends. Therefore, preserving macroeconomic

stability necessitates careful consideration of capital controls on cross-border

institutional investment. In the case of countries with more developed capital

markets, however, empirical studies tend to disprove the validity of the desta-

bilization hypothesis: Bohl & Brzeszczynski (2006), for instance, don’t find any
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empirical support using data from Poland.

2.3.4 Illiquidity

Apart from the size of institutional trades and the informational content of

their behaviour, the literature also mentions a third factor explaining why asset

prices change as a result of the investment activity of pension funds - illiquid

markets. Illiquidity has been shown to influence institutional price impact to

a much lesser extent (Sias et al. (2001)) and can be considered a subcategory

of the size-of-trades argument since in less liquid markets, characterized by

longer waiting times between consecutive trades, trades of any size can have an

impact due to slower price adjustment (Dufour & Engle 1999). Activity in such

markets is slow and since there are fewer investors actively analyzing them and

taking appropriate actions to eliminate arbitrage opportunities, any trade can

have more than a temporary mispricing effect on prices.

This form of price impact is not unique to institutional investors but since

during the pensions crisis of 2007-2008 borrowing, and hence liquidity, were

substantially restricted, this might have augmented the two main causes of

institutional price impact discussed above. Illiquidity is explicitly taken into

consideration in some of the available theoretical models on institutional in-

vestors (DeGiorgi (2008), Berry-Stolzle (2008), Vath et al. (2007)) but we elect

not to do so, since the focus of our research lies elsewhere and we are content

to merely account for price impact in our model specification without pursuing

further the various reasons for its occurrence.

2.4 Institutional Asset Allocation

Asset allocation is frequently defined as a systematic way of spreading one’s

financial resources across different assets in the hope of reducing overall risk

by diversifying one’s portfolio (Gibson 2008). In the case of pension funds and

insurance companies, asset allocation usually means splitting the assets to be

invested in shares or bonds, which are the most popular instruments among

institutions - the so called ”stock-bond mix” (Harrison & Sharpe 1983).

There are different kinds of asset allocation each having a specific invest-

ment focus and objective. For instance, strategic asset allocation pertains to

the general long-term investment policy; constant weighting asset allocation re-

quires continuous rebalancing of the portfolio as the market values of different

asset classes move; tactical asset allocation is a short-term deviation from the

strategic investment policy in order to exploit favourable market conditions by

temporarily tilting the portfolio towards a particular asset class.
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Apart from being an indispensable tool for risk reduction, in institutional

investing specifically, asset allocation is an important consideration because of

the reliance on benchmarks for the evaluation of investment performance. This

is so due to the fact that each asset class has a different exposure to the econ-

omy, which is the same for every party invested in this asset, while other factors

that have been proposed as determinants of portfolio returns, such as individ-

ual skills in market timing and security selection, tend to vary and are never

uniform across all market participants. Even though separating and measuring

the contribution of each source of portfolio returns to overall performance is

a controversial issue, a large number of academic studies show that generally

more than ninety percent of the differences in total returns achieved by institu-

tionally managed funds are accounted for by strategic asset allocation decisions

rather than market timing or security selection (e.g. Bogle (1994), Brinson et

al. (1995)).

Conventional investment wisdom postulates that asset allocation decisions

should be based on one’s investment horizon. Considering the case of a group

of long-term investors, similar in many respects to the case of pension funds

and life insurance companies, in which we are interested, Thaler & Williamson

(1994) pose the interesting question why should college and university endow-

ment funds not be 100 % invested in stocks? After all, as Bodie (1990) notes, it

is a well-established empirical fact that well-diversified portfolios of US stocks

have outperformed Treasury bills, bonds and inflation over holding periods

longer than twenty years for almost any starting date since 1930.

What is more, Thaler & Williamson (1994) also show that as the investment

horizon increases, the probability that stocks will outperform bonds approaches

unity. So why then not just be fully invested in equities and forget about tricky

asset allocation decisions? According to a number of theoretical papers, which

will be discussed in more detail below (e.g. Samuelson (1969), Merton (1969),

Merton (1971), Fischer (1983)), the statement that shares are less risky in the

long-run is a fallacy. Additionally, there is a potential for shortfalls in any one

particular period, and when the institution has to meet a periodic liability with

a fixed floor, these draw downs can prove calamitous.

Attempting to profit from the virtually uninterrupted sequence of very good

stock returns in every single year since 2002, pension fund managers have been

steadily increasing their stock market exposure. This strategy started to attract

a considerable number of critics (e.g. Ambachtsheer (1987)) ), stating that

it does not conform both to the prudent investor principle of fiduciary fund

management outlined above, and the regulatory framework. And indeed lately,

and perhaps a little belatedly, pension funds have been intensely substituting
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”safer” bond investments for their equity asset allocations on a scale rarely

observed. Is it possible, though, that this mass flight to safety might have been

to their own detriment? Is this an example of a ”too little, too late” reaction?

These are the sort of questions that we hope to be able to answer after the

completion of the proposed research project.

2.5 Existing Research on Optimal

Multiperiod Investment

So far, we have seen that pension funds and life insurance investment companies

have some interesting characteristics, which distinguish them from other long-

term institutional investors and puts them at a disadvantage when the economy

slows down. Usually, the sponsor of a defined-benefit plan is obligated to pay

some minimum level of benefits, regardless of the pension fund’s investment

performance. The fact that the liabilities of these investment entities have a

fixed minimum, which they have to meet in each time period, means that such

institutions are exposed to shortfall risk (Bodie (1991)) and cannot survive

falling asset values by simply holding on to their portfolios and waiting for

stock prices to pick up again.

The latter has been a cause of serious problems lately, since both pension

funds and insurance companies are dependent to a great extent on capital mar-

kets for their current income - the International Financial Services London

(2008) estimate that insurers, for example, have historically derived around

15-20% of their revenue from investments. The current downturn has signifi-

cantly reduced the income stream and forced contractual savings institutions

to liquidate part of their portfolios in order to meet the shortfall. Addition-

ally, the funds that were not impacted so badly, realized how bad the situation

was and decided to take pre-emptive action by moving to a more conservative

asset allocation, which was tantamount to initiating even more equity sales.

The literature confirms that such mass sales by large institutional investors can

destabilize financial markets by means of both the sheer size of trades and their

informational content, thus reinforcing the downward spiral of asset values.

So, the question then for pension funds is how to limit exposure to fluctu-

ating investment income, so that they still have a comfortable reserve to meet

their periodic payments? The answer seems simple - simply allocate all assets

to fixed-income securities matching the duration of liabilities. This approach,

however, will cause a fund to miss on the upside potential in good times and it

might even fail to generate enough returns to surpass inflation rates and reach

its investment target. Moreover, as Blake et al. (1999) note, the fact that
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fund management is a competitive industry, where managers are constantly

evaluated against benchmarks and competitors, creates a strong disincentive

against risking a large difference in relative performance. The solution, there-

fore, will be to find some optimum balance between risky, earning assets and

cash equivalents or bonds to provide a cushion against adverse market moves.

This objective drives the research project, and the three research questions de-

lineated below are our proposed modeling framework to assist in our attempt

to provide a solution to this problem.

Depending on one’s perspective, the issue above can be formulated either

as an insurance/risk management problem, an asset allocation problem, or an

intertemporal problem of optimum investment-consumption. The following sec-

tions survey the most important papers in the literature directly related to the

problem under study. These can be broadly classified under the headings of

log-optimum investment strategies, utility maximization, and other more recent

approaches, which either do not fall under any of these categories, or further

extend them.

2.5.1 Log-Optimum Investment

2.5.1.1 Maximizing the Geometric Mean

The first major contribution in the analysis of how an individual should opti-

mally invest over a long-term time horizon when he is faced with uncertainty

during each time period is provided in Kelly (1956). In this article the author

examines the problem of the optimal bet size if a person is repeatedly betting

on the outcome of an event transmitted over a noisy channel. The reason why

precisely the bet size is examined is because even in positive expected value

games a person can go bankrupt if he ends up overbetting. For example, con-

sider a situation where a gambler is playing a game of chance in which a fair

coin is tossed. The gambler decides to bet a dollar: he wins two dollars if the

result of the coin flip is heads or loses his stake otherwise. The objective is to

complete the game with as large an amount of terminal wealth as possible after

an arbitrary number of coin tosses.

Probabilistically this is a very profitable game since it has a positive ex-

pected value of fifty cents for every dollar wagered. Even in this situation,

however, the gambler is not guaranteed to profit. Since the expected value of

each bet is positive, by analogy with the single-flip case, a na?ve ”optimal”

strategy would be to bet one’s entire capital for each bet: since with a single

bet the game terminates after one coin flip, and since the game has a posi-

tive expected value, to reach the objective of a maximum terminal wealth, the
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player should participate in the game and venture all his available wealth.

This one-game strategy is sub-optimal in the long-run, however, since if the

gambler decides to risk all of his capital on any one particular flip, then there

is a 50% chance he will go bankrupt. As the number of bets gets large, the

probability of eventual bankruptcy approaches unity (Thorp (2006)). There-

fore, both maximum expected payoff and the game’s expected value are poor

criteria, on which to base successive decisions about risky events.

Conversely, and more importantly in light of our main question, if the gam-

bler (or investor) wishes to minimize the probability of bankruptcy, the ”opti-

mal” strategy is to risk no more than the minimum required bet size (which

would correspond to a pension fund having most or all of its assets in bonds

and cash equivalents). The problem with this, as mentioned above, is that the

hypothetical investor would also minimize their expected return with this ap-

proach. Therefore, a middle ground has to be established: for the gambler this

means that some fraction of his bankroll should be wagered at each bet; for

our pension funds - that there is some optimal asset allocation between risky

and riskless assets, which would minimize the chance of bankruptcy without

completely sacrificing returns.

Instead of expected value, the solution to this problem, proposed by Kelly

(1956), bases the decision on expected utility. The utility function of choice is

the logarithmic one. So, in essence the Kelly criterion seeks to maximize the

expected value of the logarithm of wealth, which in financial terms would mean

maximizing the rate of growth of one’s wealth: it is not the level of wealth or

expected payoff that is important - it is the rate at which wealth grows over time.

Since the Kelly criterion supposes that earnings are reinvested each period, it

is also known under names such as ”geometric mean maximizing strategy”,

alluding to the compounding of wealth that takes place during reinvestment.

Skipping most of the details, the expected value of the exponential rate of

wealth increase per period in n periods is given by:

g (f) = E

[
ln

(
Xn

X0

) 1
n

]
= qln (1 + bf) + (1− q) ln (1− f) ,

where Xn is the wealth accumulated by period n, q is the probability of winning,

b is the payout for each wagered unit in case of a win, and f is the proportion

of wealth to be bet each time. To maximize the expected value of this growth

coefficient, first-order conditions are used. Differentiating the above expression

with respect to and setting the derivative equal to zero yields:

f ∗ =
q (b + 1)− 1

b
.

23



Section 2.5 Existing Research on Optimal Multiperiod Investment

In other words, the optimal bet size is the difference between the probabili-

ties of winning and losing adjusted for the possibility of uneven wager payouts.

This proposed formula for the percentage of wealth one should bet (or invest)

in each period guarantees that wealth would grow at its quickest if the gambler

is playing a positive expected value game. Thorp (2006) proves mathematically

that an investor following the Kelly criterion in an infinite (or very long) series

of bets will outperform any other investor following a different strategy with

probability equal to one. By betting the fraction proposed above, the player is

at all times guaranteed that he will not be completely wiped out by a longer

losing streak. A very important feature of the Kelly criterion is that unlike

expected value, the order of winning and losing bets does not matter.

Kelly’s criterion is also favoured by Latané (1959) in his proposed structured

approach to decision making under uncertainty, which includes defining a goal,

a subgoal, and a criterion for choosing among strategies to reach the subgoal.

The author deals with a very similar problem of investment decision making

under uncertainty when the choice is repetitive and has cumulative effects. In

this case the goal is defined as the maximization of wealth at the end of many

periods. While the problem in this paper has no constraints concerning the

minimum required wealth in each period, the differentiation of two possible

subgoals is important in deciding which one is more appropriate to be adopted

in our context.

The two subgoals examined by Latané (1959) are utility maximization and

what he calls the P ′ subgoal, which is very similar to the Kelly criterion in

requiring the choice of a strategy, which will lead to as much or more wealth as

any other different strategy with a greater probability.

The author argues that while the proposed P ′ subgoal is less general, it is

more operational than the expected utility criterion, because of the difficulty

of constructing a payout matrix in terms of utiles, especially in the case of a

firm or a group of people - something which is well known to fund managers

who deal with a large group of diverse individuals. In this case, considering a

separate utility function for each plan beneficiary would be impractical unless

we restrict ourselves to a single representative rational agent - a topic which

has been hotly debated lately. That’s why, similar to Latané (1959), our only

assumption is that any economic agent prefers more wealth to less, and we let

the dynamics of wealth in the market be our guiding criterion. In other words,

as Browne (1997) puts it, survival in the marketplace and growth of wealth are

seen as intrinsic objective criteria that are independent of any specific utility

function.
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2.5.1.2 Fractional Kelly

The Kelly criterion has a number of good and bad properties, analyzed in

Ziemba (2005), but unfortunately it does not solve our problem, since it is

inappropriate for investors with less tolerance for short and intermediate term

risk. This is so because the Kelly criterion tells what the optimal asset allocation

over the long term is, but it does not eliminate the possibility of large drawdowns

when one is faced with a longer losing streak. Our pension fund can be assured

that it will not be completely wiped out, but it may still not be able to meet

its periodic payments.

One possibility is to invest less in risky assets than what the Kelly criterion

would suggest (a strategy known as ”fractional Kelly”) in an attempt to min-

imize the downside potential. Such strategies are examined in MacLean et al.

((1992), (2004)). The first of these examines how fractional Kelly strategies can

be applied with two different objectives in mind: maximum growth and max-

imum security. This is accomplished by formulating three growth measures

together with three corresponding security measures. The authors examine

these pairs of measures by constructing an efficient frontier and then deriving

from it a fractional Kelly path. Both curves exemplify the trade-off between

growth and security. The authors also show numerical implementations for a

number of gambling and investing situations.

An extension of this idea is presented in MacLean et al. (2004). The au-

thors present a similar framework of dynamic allocation between stocks, bonds

and cash equivalents. New measures are introduced - for example, for the secu-

rity measures the emphasis is on value at risk and controlling period-by-period

drawdown. Again a log-utility criterion is used, but this time two regions are

considered: a risky one and a safe one. The model is implemented via a nu-

merical simulation and the results suggest that, unsurprisingly, at low levels of

risk control the Kelly criterion is still optimal. As the risk requirements are in-

creased, the strategy turns more conservative with the corresponding reduction

in return. The somewhat surprising result is that fractional Kelly strategies are

generally not optimal at higher levels of risk control.

2.5.2 Utility Maximization

2.5.2.1 Multiperiod Portfolio Choice and Asset Allocation

The log-optimum approach presented above is not without its critics. Some of

the more mainstream authors, whose work can be classified under the current

heading (e.g. Samuelson (1969) and Samuelson (1971)), even classify it as a

”fallacy”. The common feature of the papers presented below is that they

25



Section 2.5 Existing Research on Optimal Multiperiod Investment

all consider the multiperiod investment problem in terms of utility and risk

aversion functions, which they usually solve by means of dynamic stochastic

programming, either in discrete or continuous time.

One of the two important papers that set the stage for this kind of analysis

was Mossin (1968), who extended the one-period portfolio choice problem, often

discussed in modern portfolio theory, to a multiperiod setting. The author’s

main critique to previous attempts at solving this problem is the focus on

portfolio rate of return, rather than on the absolute size of the portfolio. This

is an important consideration for large players in the market like pension funds.

The model framework for most of the papers in this thread of research is

the following. An investor is faced with an intertemporal investment problem:

this might be either how to optimally split wealth between investment and

consumption, or how to split it among different asset classes. The investor

makes a decision at the beginning of each period, but due to the uncertain

nature of stock returns he has to wait till the end of the period, when the

return on his portfolio materializes. He then has to make a decision for the next

period. The investor cannot make any intermediate changes to his portfolio

composition. The objective is to maximize the expected utility of wealth at

the end of the final period. Generally, two common risk aversion measures are

employed: absolute risk aversion and relative risk aversion.

In the simplest case outlined in Mossin (1968), there are only two assets -

a risky one paying a random rate of return of X units per each dollar invested

and a riskless asset with a certain rate of return of zero (a cash equivalent).

Subsequent papers extend this to the case where there is also a fixed income

instrument paying a known rate of return but this does not significantly alter

the results. For our research project we also start with a case similar to the

above, the only difference being that we use two different risky assets. The

overriding conclusion from this type of models is that the investor will hold a

positive amount of the risky asset if and only if its expected return is positive.

Mossin (1968) reconciles his analysis with previous work in the field and

derives a utility function consistent with the result that investment in the risky

asset is strictly proportional to wealth. Additionally, a utility function that

allows for myopic decisions is also presented. This author also provides a more

general model specification of the multiperiod investment problem, in which

consumption takes place only at the end of the final period when terminal

wealth is known.

This decision of separating investment and consumption choices is under-

standable in light of the existing analytical tools available to researchers in this

period, but is not very realistic since the two decisions are related. The author
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himself acknowledges this shortcoming. Other deficiencies include the fact that

the proposed model cannot be trivially extended if any statistical dependence

is present (e.g. serial correlation in returns), as well as the haphazard nature

of the solutions - one could think of and try different utility function specifica-

tions, which would materially affect the results. These shortcomings, combined

with the fact that utilities are unobservable in practice and are not suitable for

decision making when groups of individuals are involved, decrease the ability of

this class of models to provide a unequivocal answer as to what wealth splitting

strategy will ensure the survival of pension fund in turbulent times and how

this will impact on asset price dynamics.

This is so due to the characteristic feature of fixed periodic payout liabilities

of contractual savings institutions, which we treat as consumption (or outflows)

in our model. Generally, extant literature in this category deals either with the

question of how to optimally invest one’s wealth among two or more assets over

time disregarding consumption, or how to choose between investment (usually

in one asset only) and consumption in a multiperiod setting. As was demon-

strated above, introducing a consumption constraint in the asset allocation

problem is an important issue for the survival of pension funds and our main

contribution aims at marrying the asset allocation and consumption decisions

together in a unified framework.

2.5.2.2 Optimal Intertemporal Investment-Consumption Decision

Apart from Mossin’s (1968) early work on portfolio selection and asset allo-

cation, the other theme - optimal investment-consumption decisions in a mul-

tiperiod setting - has also been fairly well examined. Starting with Ando &

Modigliani (1957), the life cycle model of saving and consumption has become

a cornerstone paradigm in economic theory. It was subsequently extended and

generalized on numerous occasions - for example in Merton (1969) and Merton

(1971), as well as the overlapping generations model in Samuelson (1958) and

Diamond (1965).

The life cycle model concerns itself with the problem of an individual fac-

ing a decision as to how he should finance his consumption during the years

of retirement. The main motivation is to accumulate enough assets so as to

support habitual consumption in retirement. The model is also motivated by

the empirical observation that the consumption of a representative individ-

ual is usually much smoother through time than their income. This creates

a mismatch between assets and liabilities in the form of a minimum required

subsistence consumption level.

In the life cycle model, an individual’s life is divided in two periods: youth
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and retirement. If an individual does not reduce their consumption below the

income level during the working stage and accumulate some reserve assets, they

will experience a fall in living standards later. This modelling framework treats

consumption as a function of total wealth, which can be financed either out

of current income, or the sale of accumulated financial assets. The life cycle

approach readily accommodates the two-fund separation theorem by allowing

borrowing in one’s earlier years and lending in later years, thus separating fund-

ing decisions from the individual’s objective: maximizing the lifetime utility of

wealth.

Again, the approach here is similar to the one in Mossin (1968), but is closer

to our problem since it allows consumption in all periods and not just in the

final period. The individual’s life is partitioned in a large number of successive

periods, where the individual maximizes the discounted value of utility from

consumption in all periods, subject to an intertemporal budget constraint.

A crucial concept in the life cycle model framework is the intertemporal

substitution elasticity, also known as the rate of time preference, which measures

the individual’s preference for current consumption against future consumption.

In order for a solution to be derived, one must once again assume a specific

utility function. Early papers in this field tend to use a logarithmic function,

similar to Kelly (1956), but later papers extend the analysis to a broad class of

utility functions.

Despite the life cycle model’s reliance on utilities, and while it is generally

unconfirmed by empirical evidence (Blake (2006)), it still represents a useful

framework to use as a starting point for our problem. In the case of pension

funds and insurance companies, the choice to make is whether to invest the

greater portion of funds in risky assets in the hope of maximizing expected

return and market share, or to allocate some of them to more conservative

asset classes such as bonds or cash.

2.5.2.3 Critique to the Log-Optimum Investment Argument

The early work on log-optimum investment and the Kelly criterion, presented in

the section on log-optimum investment, was subsequently criticized by propo-

nents of the utility maximization approach (see e.g. Samuelson (1969), Samuel-

son (1971), Merton (1969), Merton & Samuelson (1973)). The main argument

is improper interpretation of the asymptotic properties of the Kelly criterion.

Samuelson (1971) argues that although the law of large numbers and the

central limit theorem, when applied to logarithms, can validate the asymptotic

property that a maximum-geometric-mean strategy will eventually maximize

terminal wealth and utility, this does not imply the interpretation that such a

28



Section 2.5 Existing Research on Optimal Multiperiod Investment

strategy is optimal for any finite number of periods, no matter how long, or

that it becomes asymptotically a good approximation. To confirm this state-

ment, the author provides an interesting counter-example - the case of a utility

function of the form:

U (X) =
Xy

y
, y 6= 0.

In fact the author’s analysis shows that for any utility function bounded

from above and finite at zero wealth, no uniform strategy can be optimal. The

non-uniform strategies, which are optimal in such a case, are less aggressive than

the Kelly criterion, in the sense that they would recommend a larger allocation

to risky assets at low wealths and a smaller risky allocation at high wealths.

Having exposed these caveats with regard to the log-optimum investment

approach, Samuelson (1969) and Merton (1969), show their own perspective on

the problem of intertemporal consumption-investment decisions. In two inde-

pendent, but related papers, the authors analyze the problem of optimal lifetime

portfolio selection in discrete and continuous time respectively. Of particular

interest is the concept of the so-called ”businessman risk”, according to which

conventional wisdom would recommend that when faced with an investment

decision regarding a risky asset, an individual with a shorter investment hori-

zon, such as a widow for instance, should avoid the asset. On the other hand,

however, the risky asset should be acceptable for a successful businessman, who

has a long-time horizon, and who can expect earnings in later stages of his life

to be large enough to offset any possible losses from this particular investment.

The main ambition of both of the aforementioned papers is to establish the

plausibility of claims that the averaging effect of a long time horizon, combined

with a higher expected value of future income, is enough to change the standard

mean-variance optimizing behaviour an individual would display in a single-

period setting, by causing them to exhibit a greater risk preference. In the

end, both Samuelson (1969) and Merton (1969) deny the ”businessman risk”

argument, by showing that under the assumption of isoelastic marginal utility,

a person with a long time horizon would have the same relative risk-tolerance as

an individual with a shorter investment span. Using this and other results, the

authors provide another justification for disagreeing with the Kelly criterion.

They argue that, in general, even when a certain investment rule almost surely

dominates other strategies in terms of their long-run growth rates, it is erroneous

to assume that it also automatically yields a higher expected utility.

The reason provided for this conclusion is that any decision rule of selecting

between two choices, on the basis of which has the greater probability of produc-

ing a higher result, does not possess the property of being transitive, which is
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a key property in the definition of a preference relation. Samuelson (1969) and

Merton (1969) also show that for the family of constant relative risk aversion

utility functions, the length of the investment horizon per se has no predictable

effect on the proportion to be allocated to risky assets. This result disproves

the widely-spread misconception that because stocks have outperformed both

bonds and inflation over the long run, and since pension funds are long-term

investors, it is best to have most, if not all, of the fund’s assets in equities.

The analysis started in 1969 was then further extended in Merton (1971) by

including more general utility function specifications and price behaviour as-

sumptions. These generalizations ultimately culminated in the creation of the

intertemporal capital asset pricing model (ICAPM), which unfortunately suffers

from the same shortcomings as its one-period predecessor (Merton & Samuelson

(1973)).

2.5.2.4 The Term Structure of Risk: Investment Horizon vs. Holding
Period

This distinction between the peculiarities of short versus long-term investing

over many periods became a popular theme after the introduction of the ICAPM

and many contributions followed. In an influential paper, Fischer (1983) starts

his analysis from the empirical observation that expected real returns on Trea-

sury bills are serially correlated and thus have different dynamics as compared

to stocks. The relative risk of these two asset classes is characterized not only

by the volatility of their returns, but also by the length of their holding period.

Stocks are of course much riskier than bonds when viewed over a short-term

horizon. But does this hold true for the long-run as well, bearing in mind

the serial correlation in returns? Fischer (1983) examines three questions to

help pension funds and other long-term institutional investors with their asset

allocation decisions: first, how does the term structure of risk arising from

differences in the dynamics of asset returns affect optimal long-term investment

behaviour; second, an empirical study on the dynamics of return on stocks and

bills in the United States; and third, given the statistical estimates derived in

the second part, how does the optimal portfolio for a long-term institutional

investor change with the length of the holding period?

In Fischer’s (1983) model the investor maximizes an intertemporal utility

function. Of particular interest to our problem is the distinction that the author

makes between the notions of ”investment horizon” and ”holding period”. The

former is closely related with the specific investment objective.

The papers discussed in the previous few paragraphs deal solely with the

effect of the length of the investor’s horizon on optimal portfolio composition.
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The first main question was whether the investor should strive to maximize the

expected growth rate of the value of the portfolio, as suggested by Kelly (1956).

The answer turned out to be no - for utility functions with constant absolute

or relative risk aversion, the investor’s portfolio decisions are dependent only

on wealth. The second question was will the lengthening of the horizon tend

to change the behaviour of investors and as this lengthening takes place will all

investors hold the same portfolio? Again the answer was no.

The investor’s holding period, on the other hand, is defined as ”the interval

of time between successive portfolio actions”. This is an important consider-

ation, since while pension funds are long-term investors, their holding period

might actually turn out to be short-term if rebalancing of the portfolio is needed

in order to meet the fixed periodic liability. Such rebalancing would leave insti-

tutional investors exposed to the short-term volatility of asset prices. Fischer’s

(1983) paper focuses precisely on this point and rightly so, because Goldman

(1979) shows that the composition of the optimal portfolio is not independent of

the holding period, even when utility functions have constant risk aversion. The

solution methodology is similar to Mossin (1968) and uses recursion relations.

The results suggest that the minimum variance portfolio moves toward or

away from stocks as the holding period lengthens, depending only on the sign of

the difference between serial correlations of returns in successive periods. Un-

like the results obtained for the investment horizon, the portfolio composition

in this model turns out to be highly sensitive to the length of the holding pe-

riod. Also, diversification benefits from combining stocks and bonds only occur

for utility functions with high risk aversion. A potential weakness of the study

is that having obtained these theoretical results, the author tries to empiri-

cally estimate a data generating process for the returns of bills and stocks, and

then uses the obtained parameters to calibrate a stochastic simulation. The

results of the latter, however, turn out to be somewhat at odds with his theo-

retical findings, suggesting that optimal portfolios change little as the length of

the holding period changes. Fischer (1983) explains this incongruity with the

high degree of uncertainty inherent in empirically estimating data generating

processes for stock and bond returns.

2.5.2.5 Portfolio Insurance

Both the log-optimum and the intertemporal utility maximizing approaches,

discussed in this and the previous sections, were later integrated in a much

more general and flexible framework - portfolio insurance. Black & Perold

(1992) in their seminal paper define a portfolio insurance strategy as ”any rule

that takes less risk at lower wealth levels and more risk at higher wealth levels”.
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Such strategies are suitable for investors who want to have downside protection

for their portfolios to insure against poor investment performance, while still

maintaining their upside potential.

It is easy to see that the Kelly criterion is a subset of the more general class

of portfolio insurance strategies. On the other hand, methodologically, the

best portfolio insurance strategy can be found by solving for the intertempo-

ral investment-consumption rules that maximize expected utility. As discussed

above, this was accomplished in papers such as Merton (1971) and Leland

(1980). The problem with these preceding papers is that their assumptions are

too limiting - for example, it is common practice to assume frictionless markets

and no borrowing restrictions. Introducing transaction costs and borrowing

constraints changes the problem to a great extent, since it induces path depen-

dency and other complications, which cannot be easily dealt with under such

limiting assumptions.

In an attempt to bring analytical work closer to decision making in actual

markets, Black & Perold (1992) dispense with the assumptions that were the

generally accepted norm in earlier papers. The authors do not solve for the

utility maximizing strategies, but rather take a stylized decision rule as a given

and examine its properties. The portfolio insurance rule used in this particu-

lar paper invests a constant multiple of the cushion in risky assets up to the

borrowing limit, with the cushion being the difference between current wealth

and a prespecified floor. It turns out that this borrowing-constrained rule is

utility maximizing as well, making the narrower intertemporal utility maximiz-

ing approach discussed above, a subset of this more general framework. In

addition to the borrowing constraint, in essence intertemporal consumption is

also constrained above the predetermined floor, which the authors refer to as

”subsistence level”.

The model specified in Black & Perold (1992) considers two assets: one is the

so-called ”safe” asset, and the other is a ”risky” asset. The safe asset need not

necessarily be a bond, but any instrument, whose income stream closely tracks

the fixed liability. The risky asset fluctuates in value more and has a higher

expected return. To achieve portfolio insurance, the investor trades actively,

frequently rebalancing his portfolio. The number of trades is proportional to

the number of prices reversals. This kind of rebalancing in times of reversals is

costly because it involves buying high and selling low - not unlike the situation

we are witnessing at the moment, with pension funds liquidating investments

at unfavourable prices to keep up with their liabilities. Black & Perold (1992)

refer to this occurrence as ”volatility cost”.

A larger multiple of available wealth invested in the risky asset means a
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larger market exposure, which leads to more frequent rebalancing trades in

order to protect the downside. The results obtained in Black & Perold (1992)

show that as the multiple goes to infinity, the constant proportion portfolio

insurance converges to a stop-loss strategy, whereby as long as wealth is above

the floor, the investor allocates everything up to the borrowing constraint to

the risky asset, and then switches completely to the safe asset once wealth falls

to the subsistence level. The authors also find that expected holding-period

return is not monotonic in the multiple - higher returns can be achieved through

ordinary constant proportion portfolio insurance strategies than through a stop-

loss strategy. This comes as a surprise, since the latter is actually the most

aggressive strategy in terms of risk exposure and one would have expected to

see a commensurately high holding-period return. As a by-product of their

analysis, Black & Perold (1992) find that the constant proportions strategy

examined in their paper is actually equivalent to a perpetual American call

option.

Unlike previous work, the model set-up in Black & Perold (1992) incorpo-

rates market frictions, such as transaction costs, borrowing constraints, and

a fixed consumption floor. This additional richness brings their model much

closer the problem we would like to analyze. Another strong point of the paper

directly applicable to our study is the ”reverse engineering” solution method-

ology, which first imposes a simple rule and then examines investment results

as it changes, without solving for it explicitly using utility maximization. Such

a maximization problem would be analytically intractable in this more flexible

case of fewer assumptions. The trading strategies used in the model are not

fixed and can easily accommodate dynamic asset allocation.

Modifications and extensions of certain aspects of the benchmark model

first discussed in Black & Perold (1992) are frequently encountered in academic

and professional journals in the field of financial economics. Dybvig (1995)

extends previous work by examining a new class of portfolio and consumption

strategies exhibiting ratcheting of consumption, as opposed to the constant

proportions strategy discussed in Black & Perold (1992). This approach is

motivated to an extent by the earlier work of Ingersoll (1992), who suggests that

in the lifetime consumption-investment framework, the assumption that lifetime

utility is additive may lead to an incorrect modelling of important dependencies

in utility, such as intertemporal risk aversion and habit formation.

The additional constraint introduced in this model is the requirement that

consumption can never fall - it remains constant most of the time and increases

proportionately as wealth achieves a new maximum. After that it can never

fall below this level, even if wealth diminishes. The justification for this con-
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sumption specification is an extreme version of habit-formation preferences - an

individual gets accustomed to a certain level of consumption and experiences

disutility in any consumption reductions. In fact, if consumption ever falls,

utility is defined to be minus infinity.

The solution to the model exhibits a trade-off between the desire to smooth

consumption against the desire to take advantage of expected profit opportuni-

ties in the stock market. This is a similar dilemma to the one faced by pension

funds and insurance companies. Also, as discussed above, while there is a

guaranteed minimum, ”consumption” or periodic outflows in the case of con-

tractual savings institutional investors are not fixed - the sponsoring company

may decide to pay out more or less depending on a variety of factors, includ-

ing investment performance of the plan portfolio, but it cannot go below the

guaranteed minimum. So, a specification with a variable (but not necessarily

ratcheting) consumption and a fixed floor seems appropriate for our problem.

Yet another consumption modification is provided in Browne (1997). The

author studies the optimal behaviour of an investor, who is forced to withdraw

funds (either to meet a liability or for consumption) continuously at a fixed

rate per unit of time. The assets used for modelling are again risky stocks,

whose dynamics follows a geometric Brownian motion, and riskless assets with

a constant rate of return. Withdrawals are continuous and take place regardless

of the wealth level, which means that there is a positive probability of ruin. The

region where this is true is called ”danger zone”; alternatively there is also a

complementary region, where ruin can be avoided altogether with certainty -

the ”safe region”.

Similar to MacLean et al. (1992), Browne (1997) focuses on survival and

growth separately. The survival objective is to maximize the probability that

the safe region is reached before bankruptcy. Once survival is ensured, attention

is then focused on growth, or what investment policy will allow the investor

to reach a prespecified goal as quickly as possible. The author finds that an

optimal survival policy does not exist for this problem, but is able to construct

a so-called ”ε-optimal” strategy, which is within ε of optimality. The results

pertaining to growth are similar to those in Black & Perold (1992).

2.5.3 Recent Contributions

A number of more recent papers explore problems related to pension funds or

insurance companies in similar contexts to ours. These cannot be conveniently

classified under one heading as the specifics of the problems analyzed, as well

as the modelling methodology, differ to a considerable extent.

Early analytical work on pension funds and other institutional investors
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includes Antoci (1995), who develops a theoretical model of asset price and in-

stitutional wealth dynamics. Stocks and bonds are the only asset classes consid-

ered and the main motivation of the model is to examine the degree, to which in-

stitutional investors can affect the stability of financial markets through herding

and positive feedback behaviour. Although optimal investment-consumption

decisions are not studied here, the paper’s modelling approach of how institu-

tional trading affects the dynamics of asset prices certainly has value for the

problem considered in our research project.

A model specification, which corresponds more closely to the issues we are

facing, is studied in Hainaut & Devolder (2007). The authors consider the

dividend policy and asset allocation decisions of pension funds under mortality

and financial risks. Similar to the approach adopted in previous papers, the

authors include three assets: a stock, cash and a bond. They then solve for the

policies that maximize the utility of dividends and terminal surplus under a

budget constraint by means of dynamic programming. In terms of utility func-

tion specifications, Hainaut & Devolder (2007) consider the cases of constant

relative and absolute risk aversion. Unlike some more stylized papers, addi-

tional details are included: interest rates are driven by Vasicek’s model, while

the mortality of plan members is modelled by a Poisson process. Asset prices

are exogenously modelled by a diffusion process, which means the possibility of

price impact cannot be easily accommodated.

This gap in Hainaut & Devolder (2007) is tackled by a number of papers

that focus specifically on liquidity risk and the closely related occurrence of

price impact. Vath et al. (2007) examine a model for portfolio choice with one

risk-free and one risky asset, subject to both liquidity risk and price impact.

The standard approach in mathematical finance, which specifies asset price

dynamics exogenously as a diffusion process, assumes perfect elasticity of traded

assets - economic agents act as price takers, so they buy or sell arbitrary asset

quantities without affecting their market price.

From the discussion above it is clear that large trades move the price of

underlying assets, so such a specification is not appropriate when modelling

the behaviour of institutional investors. Price impact and the accompanying

illiquidity are important consideration in the short-term and are modelled by the

authors. Vath et al. (2007) also recognise another deficiency in the standard

approach. This prompts them to build their model in discrete time, since

in reality investors face a number of restrictions, which do not allow them

to rebalance trading strategies continuously. The trader’s objective is once

again to maximize the expected utility of terminal wealth over a finite horizon,

subject to a solvency constraint. A solution is derived using an impulse control
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methodology.

Focusing more on liquidity risk for the case of insurance companies, Giorgi

(2008) examines the impact of both the success of investment strategies and of

liquidity shocks during unfavourable years on the wealth dynamics of insurance

companies. The author is concerned more with long-term survival of insur-

ance companies in cases where indemnities to be paid exceed collected premia,

rather than optimal asset allocation. Even so, the author proposes an interest-

ing modelling framework inspired by evolutionary reasoning, which provides a

direct link between the successful investment performance in terms of growth

of wealth and market share, and long-term survival. These are believed to be

strongly related and are thus analyzed conjointly within a unified framework.

This differs from the approach discussed above, which segregates the growth

aspect from survival, and chooses different metrics to examine the performance

of a certain strategy with respect to one or the other, but not both at the same

time.

Giorgi (2008) notes the difficulties, which we discussed above, in applying

the prudent investor rule in practice. He develops a no-bankruptcy condition for

the investment and risk management strategies of insurance companies, which

guarantees that in the presence of any type of competitor or trading strategy,

institutional investors following the proposed investment approach will be able

to face liquidity shocks almost surely.

The paper by Giorgi (2008) provides an interesting contribution over pre-

vious market selection literature (e.g. Blume & Easley (1992), Evstigneev et

al. (2002), Hens & Schenk-Hoppé (2005), Evstigneev et al (2006)) in showing

that when withdrawal (or ”consumption”) rates are non-proportional or nega-

tive, due to some additional constraint, such as liquidity shocks or in our case

- a guaranteed minimum floor regardless of the wealth level, then in addition

to the analysis of the performance of investment strategies, other factors need

to be considered as well. The author shows that if this is not achieved, even

a strategy with the maximal exponential growth rate can disappear from the

market in the event of an exogenous liquidity shock. Interestingly, the mini-

mum no-bankruptcy condition derived in Giorgi (2008) is more stringent than

most statutory solvency requirements - in fact, it is shown that an insurance

company that is content with simply satisfying regulatory constraints faces a

strictly positive probability of bankruptcy and will eventually vanish from the

market.

Giorgi (2008), however, is unable to provide a definitive answer with regard

to exactly which investment strategy is evolutionarily superior in the case of

liquidity shocks - the results suggest that given different assumptions for the
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dividend and liquidity shock processes, either there exists a unique evolutionary

stable strategy, or no such strategy exists. The latter case is interesting because

it shows a case when markets can remain evolutionarily unstable over a long

period, which means that there is no single superior strategy that is able to

increase its wealth faster and eventually drive its competitors out of the market.

The paper by Giorgi (2008) is important because it introduces the dimension

of risk to the long-term survival literature. In his model, uncertainty relates

mainly to the exogenous process generating the insurance claim. In our prob-

lem, investment success and survival are even more intimately related, since

for the case of pension funds, the fixed minimum is specified and known in

advance. The main risk comes from investment success and periods of asset

price depressions.

Because of price impact and the endogenous asset price mechanism that

we impose, however, the pension fund has a direct opportunity to influence

asset prices and market share in its favour, and that’s why good investment

performance and asset allocation become even more important for long term

survival. Thus, it can be stated that our main contribution lies in the addition

of the dimension of short-term dynamic asset allocation, and its significance to

long-term survival, to the market selection literature.

Other related pieces of work focusing on liquidity and the probability of ruin

for insurance companies are Berry-Stolzle (2008) and Azcue & Muler (2009).

The former considers the problem of optimal liquidation strategies and asset

allocation decisions for the case of property insurance companies. Investors in

Berry-Stolzle’s (2008) model deal with both liquid and illiquid assets, which is

somewhat similar to the problem considered in Giorgi (2008). The proposed

approach is based on cash flows, however, and the greater share of the analysis

is reserved for the question what the optimal selling strategies should be. Asset

allocation is considered only as an initial asset allocation decision, which, in

conjunction with an appropriate liquidation strategy, is found out to be capable

of minimizing the capital required to cover claims for a predetermined ruin

probability.

Similarly, minimizing the ruin probability for insurance companies in a

model with borrowing constraints is the primary objective in Azcue & Muler

(2009). The aim of the authors has some relevance to our problem, since they

are considering a dynamic choice of investment policy for the surplus of an in-

surance company, which will minimize the ruin probability. The optimal value

function is characterised as a solution to the Hamilton-Jacobi-Bellman equa-

tion, subject to a number of assumptions regarding the processes that drive the

surplus of the insurance company and the dynamics of the risky asset.
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A closely related paper that uses an almost identical model and solution

methodology is Bai & Guo (2008), who study a model, in which insurers can

once again invest in risky assets or buy proportional reinsurance. Two opti-

mization problems are studied separately: maximizing the expected exponen-

tial utility of terminal wealth, and minimizing the probability of ruin. The

solutions are derived from solving the corresponding Hamilton-Jacobi-Bellman

equations. The results validate our earlier conclusion that investment perfor-

mance and minimizing the probability of ruin are complementary objectives

and should be studied together. Moreover, in Bai and Guo’s (2008) solution,

they even turn out to be equivalent for some special parameter choices.

Optimal proportional reinsurance and investment policies, but this time in a

framework with transaction costs, are the main theme in Zhang et al. (2009) as

well. The innovations in this paper are that the surplus of the insurance com-

pany, which is to be invested in risky assets, follows a linear diffusion process,

and that the authors control for total risk by means of a conditional value-at-

risk (CVaR) measure. Again, maximizing the expected exponential utility of

terminal wealth is the main objective. The solution methodology is the same

as in Bai & Guo (2008).

A slightly more general case, which is more closely related to our problem,

and is not necessarily confined to the case of insurance companies, is presented

in Detemple & Rindisbacher (2008). The authors consider a dynamic asset

allocation problem in the presence of liabilities. Similarly to the above papers,

however, the solution approach uses expected utility. The main innovation

of the paper in this respect is the inclusion of a parameter the controls the

tolerance for ending up with a shortfall in the funding ratio at the terminal

date.

Unfortunately, the model specification in this specialized case does not con-

sider market dynamics and is not capable of trivially incorporating the two-

way link between asset allocation decisions and the resulting influence on as-

set prices. This nexus between investment strategies and market dynamics is

of prime importance for our study, since the asset values resulting from the

actively changing financial market dynamics feed into the fund’s investment

performance and have a direct influence on the success of the chosen asset allo-

cation policy. It might very well turn out that the price impact of institutional

investors and the concomitant change in asset price dynamics leads to the op-

timality of a different asset allocation strategy, and thus renders the solutions

derived in this paper invalid.

Several other loosely related papers exist in this field. The topic and focus

of these, however, gets progressively further away from the main questions that
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we hope to answer by undertaking the current research project (see e.g. Zhou

et al. (2008)).
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This chapter presents a stylized model of financial market dynamics. The

author’s point of departure is a general formulation of a simple financial mar-

ket, influenced by the literature on evolutionary finance. The presentation of

the basic model draws from expositions of evolutionary dynamics as laid out

in Evstigneev et al. (2002), Evstigneev, Hens & Schenk-Hoppé (2006), and

Evstigneev et al. (2008). Extensions of the general evolutionary finance model

to the case of incomplete markets, as well as in a continuous-time setting are

presented in Hens & Schenk-Hoppé (2005) and Palczewski & Schenk-Hoppé

(2010b) respectively. A broad survey of related results is available in Evstigneev

et al. (2009).

The aim of the aforementioned work is mainly to examine the results of

asymptotic market dynamics, as well as to draw conclusions on the optimality of

a certain class of long-term investment strategies and their related implications
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for asset pricing. Conversely, the main focus of this research is the comparison

and viability of various investment strategies viewed from the perspective of

an institutional investor with minimum guaranteed liabilities. This additional

constraint, coupled with the stochastic nature of asset payoffs, means that an

examination of asymptotic dynamics is not of particular interest in this context,

since the random asset payoff process will almost surely cause investors to not

be able to meet the guaranteed liability at some point in the long run.

Instead, we focus on a medium-term investment horizon and analyze the

outcome of the market dynamics numerically. To this end, we relax a number

of assumptions, frequently imposed in the literature on evolutionary finance in

order to facilitate the derivation of analytic results. Additionally, we also borrow

from the field of agent-based modeling in an attempt to capture the heterogene-

ity of investment strategies followed by institutional investors. Specifically, we

extend the literature on evolutionary finance by introducing a risk-free asset

that will enable an intertemporal transfer of wealth, explicitly modeling the

uncertainty in the economy by specifying two different asset payoff generating

processes, and focusing on a medium-term investment horizon. The assumption

of time-invariant investment strategies is also relaxed. Furthermore, the self-

financing property and the market clearing mechanism of the model presented

below allow an extension of the agent-based literature. In our proposed model,

investment strategies are no longer separated from consumption decisions and

wealth endowments. Combined with the additional consumption constraint of

minimum guaranteed liabilities, this means that it is possible for the agents

populating the model to enter periods of underfunding and even bankruptcy.

The problem of bankruptcy raises some interesting questions not studied in

detail in the agent-based literature thus far.

This chapter will first describe a general model of financial market dynamics.

Additional extensions to this basic case will then be proposed. These comprise

the inclusion of an additional consumption constraint in the form of a minimum

guaranteed liability, two alternative specifications of a dividend generating pro-

cess describing the uncertainty in the economy, as well as a discussion on the

different time-varying investment strategies to be used in the model. These

go beyond the simple fundamental and trend following strategies prevalent in

other agent-based models and require the estimation of fundamental values for

traded assets. To this end, agents attempt to estimate the unobserved states of

the industries, in which the companies to whom the risky assets belong operate.

This is accomplished by means of using observed realizations of the dividend

processes and applying Bayesian updating to the conditional regime probabil-

ities. Finally, details on the implementation of the model in the form of a
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computer program will be provided.

3.1 The Model

Our starting point is the formulation of a general model describing a stylized

financial market. We choose to adopt a simple setup frequently used in evolu-

tionary finance and mathematical economics.

Its continuous-time equivalent coincides with the description of the value dy-

namics of self-financing portfolios. This particular modeling approach is widely

used in the field of mathematical finance (see e.g. Björk (2009), Shreve (2004)).

The reasons for this choice are several. Firstly, there are very few assump-

tions made regarding investor behaviour. A descriptive view of investors’ ac-

tions is taken. The strategies that agents use are taken as model primitives and

are not obtained from the general equilibrium setting of utility maximization.

This leaves ample opportunity for the modeling of heterogeneous strategies cap-

turing the most popular styles of investment that institutional investors tend

to favour. Secondly, this approach relies heavily on the market interaction of

investors. Market clearing in each period is ensured by equating supply and

demand by means of an endogenous asset price formation mechanism. The lat-

ter allows the market impact of transactions to be implicitly considered for an

investor with an arbitrarily large wealth endowment and not just for the case of

a large trader. Price impact is an area of keen interest and intense research for

large institutional investors, and hence needs to be considered. Our approach

takes this into consideration but also exhibits a marked difference from other

models that feature market impact, such as e.g. Bank & Baum (2004) or He &

Mamaysky (2005), who use an explicit exogenous price impact function for the

large traders.

3.1.1 Base case

The basic model of wealth dynamics presented in this chapter will be formu-

lated in discrete-time. To achieve scalability with respect to time, we adopt

the approach in Palczewski & Schenk-Hoppé (2010a) and define a dividend

process in continuous time. The continuous-time specification of the dividend

generating process allows these periods to not necessarily have a uniform length

across time. The validity of such an approach, as well as its convergence to a

continuous-time limit, which is well known in mathematical finance, is corrob-

orated by existing literature (Palczewski and Schenk-Hoppé, 2010a). Such a

formulation enables agents to adopt a custom trading frequency corresponding

to their unique investment styles, regardless of the frequency and specification
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of any exogenous process providing them with information, on which they can

base their decisions.

Dividend payments are derived from continuous-time intensities. Integrat-

ing the latter between the discrete time points of the wealth dynamics can be

interpreted as an accumulation of dividends and payment of the sum at the

end of each period in the dynamics. Note that these time periods may be of

arbitrary length. In contrast to the aforementioned paper, however, the spe-

cific investment strategies studied in this research will be directly linked to the

evolution of wealth. Trading only takes place at the end of each period – a

procedure similar to the way institutional investors rebalance their portfolios

at fixed time intervals with reference to a desired benchmark. Thus, investment

strategies will also be formulated in discrete time.

Consider the following description of a financial market. Time is discreet

and proceeds sequentially through the set {t0, t1, t2, . . . }, with tn < tn+1. There

are K risky, long-lived assets (e.g. stocks), as well as a risk-free asset, which

returns an interest rate r. Without loss of generality, the net supply of each

risky asset can be set to one. The risk-free asset may be interpreted to be a

liquid government bond. The price of the risk-free asset is fixed to one, and

we will refer to it as a money market account. This instrument serves two

important functions in our model. Firstly, it provides a means of intertempo-

ral transfer of wealth. In previous evolutionary finance models, agents were

constrained to two possible actions – reinvestment of the received dividend

payments or their immediate consumption. This leaves no opportunity to ac-

cumulate a reserve without subjecting oneself to the risk of the stock market.

Thus, the second function of the risk-free asset is to provide a means for risk

management. Each of the K risky assets generate random dividend intensities

δ (t) = (δ1 (t) , . . . , δK (t)) , t ≥ 0, with δk (t) ≥ 0 for k = 1, . . . , K. The precise

specification of the intensities will be clarified later in this section. Since these

intensities are stochastic, they depend on a random event w ∈ Ω. Asset payoffs

are aggregated into lump-sum payments paid to shareholders at the end of each

time period. The total dividend paid by asset k at time tn+1 to the investors

who hold the asset over the period [ tn, tn+1 ) is denoted by Dk,tn+1 , where

Dk,tn+1 =

∫ tn+1

tn

δk (s) ds. (3.1)

These dividends are paid in terms of a perishable consumption good, whose

price is normalized to one. The prices of the risky assets are in fact relative

prices that are expressed in terms of the consumption good price. As discussed

above, since the available consumption in the present cannot be stored for the

future, the consumption good is not a substitute for money.

44



Section 3.1 The Model

The financial market is populated by I investor types with initial wealth

endowments V i
0 ≥ 0, i = 1, . . . , I. The total initial wealth in the market-

place, V̄0, is defined as the sum of the individual initial wealth endowments, i.e.

V̄0 =
∑I

i=1 V i
0 > 0. Each investor type is represented by a vector of proportions

λi
tn =

(
λi

1,tn , . . . , λi
K,tn

)
, n ≥ 0, 0 < λi

k,tn
≤ 1. For each asset, λi

k,tn
describes

investor i’s budget share invested in risky asset k at the beginning of the pe-

riod [ tn, tn+1 ). These proportions shall be hereafter referred to as investment

strategies. Investment strategies depend on information available up to time tn.

Investors rebalance their portfolios according to their strategy at discrete points

in time {t0, t1, . . . }. For the time being, trading strategies will be assumed to

be given and possibly random. The author’s choice of specific strategies and

the computational procedure used to obtain them will be disclosed below.

Apart from the risky asset class, agents also have the option of investing

in risk-free money market assets. The proportion of agent i’s wealth invested

in the money market at the beginning of the period [ tn, tn+1 ) is denoted by

λi
0,tn . Each investor consumes a certain proportion of their wealth in each time

period. This consumption takes place at the end of the period [ tn, tn+1 ) and

its amount is denoted by Ci
tn+1

. Consumption depends on information available

at time tn. In contrast to earlier work in evolutionary finance and agent-based

modeling, the model outlined in this document combines investment and con-

sumption decisions, each impinging on the other. Rather than providing a level

playing field for all agents by assuming a uniform consumption rate, as argued

in Palczewski & Schenk-Hoppé (2010b), investors will be penalized when an un-

derfunding situation occurs by being forced to meet the minimum guaranteed

liability regardless of their level of wealth. This leads to two different intensi-

ties at which agents consume depending on the size of their wealth endowment.

Thus, we relax the assumption of common consumption.

For the purposes of simplification, we impose two assumptions on the invest-

ment behaviour of economic agents: budget exhaustion and full diversification.

In each period all investors must use their available wealth in its entirety by

investing in risky assets, consuming and saving any excess by investing it in

the money market. Full diversification implies that agents have to split their

wealth in such a way as to ensure a strictly positive allocation to each of the

available risky assets, as well as to the money market. In other words, λi
k,tn

> 0

for all k = 1, . . . , K, and λi
0,tn > 0 for all investors. Combining the assump-

tions of full diversification and budget exhaustion means that the condition∑K
k=1 λi

k,tn
= 1− λi

0,tn must be satisfied at the beginning of each period.

Rather than describing the investors’ holdings of risky assets as proportions

of their total wealth, it is possible to write an alternative formulation of the
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agents’ asset allocation in terms of physical units – i.e. the number of shares

that they own. Denoting the wealth endowment of investor i at time tn by V i
tn ,

the investors’ portfolios Θi
k,tn

at the beginning of the period [ tn, tn+1 ) are given

by

Θi
k,tn =

λi
k,tn

V i
tn

Sk,tn

, k = 1, . . . , K. (3.2)

The market for each risky asset would be in equilibrium if the demand from all

investors equals supply. Since a positive net supply of one was assumed, this

means that the total number of shares of asset k owned by all investors must

be equal to one:
∑I

i=1 Θi
k,tn

= 1. Consequently, the market for asset k at time

tn clears if its price Sk,tn is set to

Sk,tn = 〈λk,tn , Vtn〉, (3.3)

where 〈x, y〉 =
∑I

i=1 xiyi denotes the scalar product. The advantages this

market clearing mechanism provides are significant. Instead of assuming that

all investors agree on the moments of the return distribution of each asset,

which is a standard assumption in the context of mean-variance optimization,

our proposed model relies merely on a short-term equilibrium, guaranteed by

market clearing at the current point in time. Equation (3.3) explicitly measures

the market impact of trades by the individual investors. The magnitude of the

price impact caused by each agent is determined by both the size of their wealth

endowment and their allocations to each risky asset. The asset price is simply

the aggregate investment in each risky asset.

Randomness in our proposed model is caused by two sources – the agents’

investment strategies and the variable dividend payments, which can be inter-

preted as a stochastic asset payoff process. This randomness serves as a driving

force for the evolution of wealth. This approach represents a departure from

the standard framework in mathematical finance, which specifies an exogenous

stochastic asset price process and subsequently determines investors’ portfolio

allocations.

Similarly, the money market account can be interpreted as another asset

with a constant price set to one. The notable difference here is that we impose

no explicit market clearing for the risk-free asset. Later it will be shown that a

condition that has to be satisfied by aggregate investor wealth provides logical

market clearing levels of demand and supply for the risk-free asset and the

consumption good.

Substituting for (3.3) in (3.2) shows that the portfolios can be rewritten as

Θi
k,tn =

λi
k,tn

V i
tn

〈λk,tn , Vtn〉
, k = 1, . . . , K. (3.4)
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The total value of investors’ positions in the two markets, which result from

the transactions they undertake in each of them during every time period, can

be schematically summarized as follows:

Money Market
tn tn+1

Initial Balance
λ

i
0,tn

V
i
tn

Rebalancing

−

K∑

k=1

Θi
k,tn

Sk,tn

Dividend Income
K∑

k=1

Θi
k,tn

Dk,tn+1

Consumption
−C

i
tn+1

Closing Balance
λ

i
0,tn

V
i
tn

(1 + r)

Stock Market
tn tn+1

Rebalancing
K∑

k=1

Θi
k,tn

Sk,tn

Initial Balance
K∑

k=1

Θi
k,tn

Sk,tn

Closing Balance
K∑

k=1

Θi
k,tn

Sk,tn+1

Investor i’s allocation to the money market account at the beginning of each pe-

riod is λi
0,tnV i

tn . Concurrently, investors also rebalance their risky asset holdings

in accordance with their investment strategy. A net purchase of the amount∑K
k=1 Θi

k,tn
Sk,tn of securities is financed with funds from the money market ac-

count – the investors’ insurance and wealth transfer mechanism. In the case of

a net sale of risky assets, the proceeds are added to the money market account.

At the end of the period, the funds initially invested in the money market will

have grown by the prevailing rate of interest in the market to λi
0,tnV i

tn (1 + r).

Investor i receives a total dividend payment from their investments amount-

ing to
∑K

k=1 Θi
k,tn

Dk,tn+1 and consumes Ci
tn+1

. Depending on the market price

Sk,tn+1 of risky asset k at time tn+1, the total value of an investor’s stock market

position at the end of the period is given by
∑K

k=1 Θi
k,tn

Sk,tn+1 .

Combining the value of the positions in both markets, the stochastic evo-

lution of investor i’s wealth between two consecutive points in time can be

expressed by the discrete-time dynamics:

V i
tn+1

=
K∑

k=1

λi
k,tn

V i
tn

〈λk,tn , Vtn〉
(
Sk,tn+1 + Dk,tn+1

)
+ λi

0,tnV i
tn (1 + r)− Ci

tn+1
.

Replacing the asset price Sk,tn+1 with its definition in equation (3.3) yields:

V i
tn+1

=
K∑

k=1

λi
k,tn

V i
tn

〈λk,tn , Vtn〉
(〈λk,tn+1 , Vtn+1〉+ Dk,tn+1

)
+ λi

0,tnV i
tn (1 + r) (3.5)

− Ci
tn+1

.
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In other words, since agents consume and invest in a self-financing way, changes

in the value of their wealth endowments can be attributed to either changes in

asset values, the dividend income they receive, the value of their accumulated

money market reserve, or their consumption. Alternatively, using vector nota-

tion:

Vtn+1 = Θ (Λtn , Vtn)
(
Λtn+1Vtn+1 + Dtn+1

)
+ Mtn+1 − C (Vtn), (3.6)

where the matrix of investment strategies Λtn ∈ RK×I is given by Λki = λi
k, and

the portfolios matrix Θ (Λtn , Vtn) ∈ RI×K is defined as Θik (Λ, V ) = ΛkiV
i

(ΛV )k
. Vec-

tor Mtn+1 ∈ RI×1 denotes the value of the money market position at time tn+1 for

each investor: Mi1,tn+1 = λi
0,tnV i

tn (1 + r). Vectors Vtn+1 =
(
V 1

tn+1
, . . . , V I

tn+1

)T
,

Dtn+1 =
(
D1,tn+1 , . . . , DK,tn+1

)T
and C (Vtn) =

(
C1

tn+1
, . . . , CI

tn+1

)T
contain in-

vestors’ total wealth, dividends received, and consumption respectively. For

given investment strategies λi
k,tn

with the desired properties, (3.6) defines the

dynamics for the vector of investors’ wealth endowments. The necessary and

sufficient conditions for this dynamical system to be well-defined will be given

below.

The order by which trading takes place can be summarised as follows. At the

beginning of each period tn an investor has a certain amount of wealth invested

in the money market account as well as a certain amount of wealth invested

in the risky asset. At time tn all investors make their decisions about what

portfolios they wish to hold for the next period. Depending on total demand

for the risky asset at time tn, market clearing will ensure that the market is

in equilibrium by setting a new price for risky asset k, denoted by Sk,tn . The

investors will then rebalance their portfolios transacting at that price. The

asset price will then remain unchanged until time tn+1 is reached. At that

point investors will make new asset allocation decisions and again set a new

market clearing price Sk,tn+1 . Rebalancing can then take place at that price.

From an accounting perspective, each period begins with portfolio rebalancing,

right after the asset price has been set, and continues until a new asset price is

set at the end of the period. After that a new period begins and rebalancing

takes place again.

Apart from the fact that all components of the proposed model are ob-

servable, and can thus be empirically estimated, the formulation of the wealth

dynamics above is also appealing from an economic point of view. The endoge-

nous price formation mechanism in (3.3) ensures market clearing for the risky

assets. The supply of the consumption good and the risk-free asset was left

potentially unlimited in the discussion above. The self-financing property of

the agents’ investment strategies, combined with the assumptions of complete

usage of investors’ budgets and full diversification, suggests that a natural up-
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per bound on the total supply of the consumption good and the risk-free asset

would be the total amount of disposable income available to the agents after

the desired investment in the risky assets has been completed. This feature of

the model is in agreement with Walras’ law from economics.

To see this, note that any solution to (3.6) possesses the following property

of aggregate investor wealth. Summation of (3.5) over i = 1, . . . , I gives:

I∑
i=1

V i
tn+1

=
I∑

i=1

K∑

k=1

λi
k,tn

V i
tn∑I

i=1 λi
k,tn

V i
tn

(
I∑

i=1

λi
k,tn+1

V i
tn+1

+ Dk,tn+1

)

+
I∑

i=1

λi
0,tnV i

tn −
I∑

i=1

Ci
tn+1

.

Noting that the first term outside of the brackets on the left-hand side corre-

sponds to the expression describing the investors’ portfolios in equation (4.15),

and using the property that
∑I

i=1 Θi
k,tn

= 1 (net supply of one), the above can

be rewritten as follows:

I∑
i=1

V i
tn+1

=
I∑

i=1

K∑

k=1

λi
k,tn+1

V i
tn+1

+
K∑

k=1

Dk,tn+1 +
I∑

i=1

λi
0,tnV i

tn

−
I∑

i=1

Ci
tn+1

.

Since
∑K

k=1 λi
k,tn

= 1− λi
0,tn , the above equation can be reformulated as:

I∑
i=1

V i
tn+1

=
I∑

i=1

(
1− λi

0,tn+1

)
V i

tn+1
+

K∑

k=1

Dk,tn+1 +
I∑

i=1

λi
0,tnV i

tn

−
I∑

i=1

Ci
tn+1

.

Simplifying the latter yields the final result:

I∑
i=1

λi
0,tn+1

V i
tn+1

−
I∑

i=1

λi
0,tnV i

tn =
K∑

k=1

Dk,tn+1 −
I∑

i=1

Ci
tn+1

. (3.7)

Equation (3.7) demonstrates the intertemporal wealth transfer and risk manage-

ment properties of the risk-free asset. Unlike the much more stringent relations

derived in Palczewski & Schenk-Hoppé (2010a) and Palczewski & Schenk-Hoppé

(2010b) [equations (7) and (5) respectively], which imply that the condition∑K
k=1 Dk,tn+1 =

∑I
i=1 Ci

tn+1
must be satisfied in each period, the inclusion of a

risk-free asset class allows greater flexibility. Consumption can now temporarily

exceed current income, as long as investors have accumulated enough funds in

their money market account. If investors wish to consume more than what is
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left from their total dividend income after they have invested in risky assets,

they would have to rely on the their reserves to cover the shortfall. That is,

λi
0,tn+1

V i
tn+1

< λi
0,tnV i

tn , or a negative change in the value of their savings.

Since short positions in either the risky assets or the risk-free asset are not

allowed, when an agent’s money market account contains insufficient funds to

meet the required consumption, the investor would be forced to liquidate a part

of their risky asset holdings in order to accommodate the excess consumption.

In essence, the lack of short positions in the risk-free asset is equivalent to

an inability to borrow. This addresses a common shortcoming in other agent-

based models, where agents usually make their investment decisions based on

expected utility maximization and are allowed to freely follow their investment

policies without any regard to the size of their wealth endowment or required

consumption. This situation is tantamount to letting investors have an infinite

line of credit. Clearly, this drawback must be addressed if the goal is to realis-

tically model the asset allocation challenges faced by pension funds and other

institutional investors with minimum required liabilities.

Equation (3.5) is an implicit description of the wealth dynamics of investor

i. Since the asset price at time tn+1 is specified in such a way as to ensure

market clearing for the risky assets during this period, it directly depends on

the wealth endowments of all agents during the period that we are trying to

solve for and V i
tn+1

appears on both sides of the equation. This intertemporal

problem can be overcome by using changes in wealth rather than the absolute

wealth value in the formulation of the dynamics.

We begin by noting that at the beginning of each time period at time tn,

right after dividends for the previous period have been paid and all neces-

sary consumption has taken place, the wealth of each investor can be repre-

sented as the sum of their stock market and money market positions: Vtn =

Θ (Λtn , Vtn) ΛtnVtn + Mtn , where Mtn ∈ RI denotes the vector of agents’ money

market investments at time tn: Mi,tn = λi
0,tnV i

tn .

Expressing the wealth dynamics (3.6) in terms of the change in wealth be-

tween the beginning and the end of the period [ tn, tn+1 ), we have:

Vtn+1 − Vtn = Θ (Λtn , Vtn)
[(

Λtn+1Vtn+1 − ΛtnVtn

)
+ Dtn+1

]

+
(
Mtn+1 −Mtn

)− C (Vtn) .

Multiplying out the brackets on the right-hand side gives:

Vtn+1 − Vtn = Θ (Λtn , Vtn) Λtn+1Vtn+1 −Θ (Λtn , Vtn) ΛtnVtn

+ Θ (Λtn , Vtn) Dtn+1 +
(
Mtn+1 −Mtn

)− C (Vtn) .
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Rearranging this, we have:

Vtn+1 −Θ (Λtn , Vtn) Λtn+1Vtn+1 − Vtn + [Θ (Λtn , Vtn) ΛtnVtn + Mtn ]

= Mtn+1 + Θ (Λtn , Vtn) Dtn+1 − C (Vtn) .

Using the fact that Vtn = Θ (Λtn , Vtn) ΛtnVtn +Mtn , the equation above is equiv-

alent to:

Vtn+1 −Θ (Λtn , Vtn) Λtn+1Vtn+1 − Vtn + Vtn

= Mtn+1 + Θ (Λtn , Vtn) Dtn+1 − C (Vtn) .

This leads to a semi-explicit form of the dynamics:

[
Id−Θ (Λtn , Vtn) Λtn+1

]
Vtn+1 = Mtn+1 + Θ (Λtn , Vtn) Dtn+1 − C (Vtn) , (3.8)

where Id denotes an I × I identity matrix.

Define the set of strictly positive investment proportions

Ξ =

{
Λ ∈ ( 0, 1 ]K×I :

K∑

k=1

λi
k = 1− λi

0,∀i
}

.

We now address the question of whether the dynamics (3.8) is well-defined.

Theorem 3.1.1 (Existence and Uniqueness of Solutions) Let Λtn ∈ Ξ for all

n ≥ 0.

(i) For every Vtn ∈ [ 0,∞ )I with
∑I

i=1 V i
tn > 0, there exists a unique Vtn+1 that

solves (3.8).

(ii) For every initial value V0 ∈ [ 0,∞ )I with
∑I

i=1 V i
0 > 0, and a realization of

the dividend-generating process δ (t), the discrete-time dynamics (3.8) generates

a sample path Vtn , n = 1, 2, . . ..

Theorem 3.1.1 is essentially a restatement of Theorem 1 in Palczewski & Schenk-

Hoppé (2010a). The difference is that the introduction of the risk free asset

allows the additional constraint on aggregate wealth
∑I

i=1 V i
tn = 1

c
for all n,

where c denotes the same fixed consumption proportion for all investors, to be

removed. The reasons for this are twofold. Firstly, as was demonstrated above,

condition (3.7) that aggregate wealth has to satisfy is still in agreement with

Walras’ law but allows greater consumption flexibility. Secondly, the consump-

tion process that will be used in our proposed model goes beyond a simple

constant proportion for all agents. The precise formulation will be discussed in

the following section. These two innovations to the basic evolutionary finance

model allow the removal of the aforementioned additional aggregate wealth con-

dition. The rest of the analysis, except for a few minor details regarding the
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investment strategies, is directly applicable to our case. The proof of Theorem

3.1.1 is given in the Appendix.

Theorem 3.1.1 ensures that the dynamics (3.6) can be written in explicit

form:

Vtn+1 =
[
Id−Θ (Λtn , Vtn) Λtn+1

]−1 (
Mtn+1 + Θ (Λtn , Vtn) Dtn+1 − C (Vtn)

)
.

(3.9)

This representation will be used in the numerical simulation of the investors’

evolution of wealth.

In this section we presented the basis of the stylized model of a financial

market that we will be using in our study. Although the standard evolutionary

model serves as a backbone of our formulation, we have also introduced a num-

ber of modifications that make our model different. These differences engender

some important implications. We now move on to a discussion of one of the

most important implications that result from our modifications to the general

evolutionary finance model.

3.1.2 Bankruptcy

A common theme in evolutionary finance models is the analysis of long-term

viability of investment strategies. Since this is the main avenue of examination,

consumption decisions are usually relegated to a simple constant proportion

of wealth that each investor consumes in each period. This does not allow the

wealth dynamics to be contaminated or dominated by consumption decisions, as

argued in Palczewski & Schenk-Hoppé (2010b), and allows for a precise analysis

of the impact of investment strategies on the wealth dynamics.

Furthermore, popular agent-based papers, such as Chiarella, Dieci & He

(2009), Hommes & Wagener (2009), and Chiarella, Dieci & He (2007), usu-

ally let the heterogeneity of investors to manifest itself in the form of different

expectations about return distributions and the way agents estimate different

market-related quantities. Investment decisions are either the outcome of ex-

pected utility maximization or simple heuristic behaviour like investing accord-

ing to fundamentals or trend following. When it comes to the implementation

of investment policies, agents are usually allowed to follow their investment pro-

gram perfectly. There are no situations, in which investors have to forgo part

of their intended investment in order to finance necessary consumption, or even

sell part of their asset holdings in order to accommodate a temporary budget

deficit. In essence, investors are allowed to borrow as much as they wish.

This kind of flexibility is rarely observed in reality. Virtually all kinds of

investors face some practical constraints with regard to liquidity, minimum con-
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sumption, and sudden losses of large portions of their wealth endowments. This

is particularly the case with large institutional investors, such as pension funds

and life assurance companies, which dominate financial markets. This cate-

gory of institutions have statutory obligations to pay out regular fixed annuity

claims to retirees and policy holders. Even if their wealth endowments are not

entirely depleted, an abrupt adverse movement in asset prices or periodic in-

come streams can seriously hurt these large players, even to a point where they

are unable to meet their liabilities and have to file for bankruptcy. Hence, it

makes sense to establish some minimal bounds on consumption in order to limit

the flexibility of economic agents and to bring these classes of models closer to

real-world financial practice.

The modification of consumption to include a minimum required level and

the introduction of bankruptcy are two of the main contributions of the current

research project. These relatively simple amendments bring about an important

problem that needs to be addressed. The existence of an arbitrary exogenous

minimum consumption level m implies that agents may consume with greater

intensity when their wealth endowments are not large enough and proportional

consumption turns out to be below the minimum required level. This marks

an important departure from existing literature focusing solely on proportional

consumption. Unlike previous work in evolutionary finance, in the context of

our model it is possible for the agents’ wealth endowments to become negative:

i.e. Vtn < 0. This fact has important implications for market clearing due to

the endogenous asset price specification.

It was shown above that the wealth endowment of each investor at any

point in time comes from two sources: their stock market investments and

their savings in the form of risk-free assets, i.e. Vtn = Θ (Λtn , Vtn) ΛtnVtn +

Mtn . Bankruptcy is defined as a situation, in which an investor’s total wealth

endowment is zero or less: V i
tn ≤ 0. Since the general model of financial market

dynamics that we formulated in the previous section is in discrete time, it is

possible for a situation to occur, whereby the wealth V i
tn of investor i at time

tn is positive, but the iteration of the dynamics from period tn to tn+1 brings

bankruptcy to agent i. Agent i’s wealth V i
tn+1

at time tn+1 will almost surely

turn out to be strictly negative, rather than precisely equal to zero, should a

bankruptcy occur in such a setting.

Recall that the portfolio of investor i at time tn+1 in terms of the number

of shares of risky asset k was given by (3.2) as:

Θi
k,tn+1

=
λi

k,tn+1
V i

tn+1

Sk,tn+1

, k = 1, . . . , K.

Similarly, since the risk-free asset has a constant price normalized to one, the
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amount of agent i’s investment in the money market is given by:

M i
tn+1

= λi
0,tn+1

V i
tn+1

.

Both of these relations depend directly on V i
tn+1

. The fact that V i
tn+1

is negative,

implies that as of time tn+1 when it is discovered that investor i is bankrupt, this

agent actually has short positions in the stock or money markets, or both. This

represents a serious problem for market clearing in our closed-form economy.

Since investor i is now bankrupt, she is unable to cover her short positions.

There would have been no way for other market participants to anticipate this,

as at the time of the transaction tn she was still solvent. Other agents find out

that the market conditions at time tn+1 turn out to be unfavourable for the

bankrupt agent and that some of the shares they hold are now worthless, since

in essence the bankrupt investor had inadvertently sold more shares than she

owns. Thus, investor i’s trading partners will have to write off some assets as

the aggregate wealth level in the economy declines.

Recall that asset prices in our model correspond to the aggregate amounts

invested in the respective securities. The implications of such a bankruptcy

scenario is that depending on the size of the outstanding short positions, the

asset price Sk,tn+1 might turn out to be zero or negative for some of the assets.

Clearly, since negative prices are an economic impossibility, this will invalidate

our market clearing mechanism, which relies on endogenous price formation.

This section outlines how such a situation will be resolved when it occurs and

explains the relative advantages and shortcomings of the possible alternatives

for handling this issue.

3.1.2.1 Removal of Investors Threatened by Bankruptcy

In order to avoid such a problematic situation, one possibility to handling

bankruptcy that we propose is as follows. In case a situation similar to the

one described above occurs, then the dynamics is temporarily stopped at time

tn+1, the bankrupt agent is removed from the market, and the dynamics is

taken back to time tn, where the remaining I − 1 agents repeat the calculation

of their portfolios based on their trading strategies, asset prices, and aggregate

level of wealth in the economy without the bankrupt investor i. Thus, a new

set of portfolios Θi
k,tn
∗ are obtained, which still depend on the old strategies

λi
k,tn

and wealth levels V i
tn , but also depend on a new set of asset prices Sk,tn∗.

The asset prices change due to the exogenous way in which they are specified.

After the removal of agent i, the sum inside the scalar product 〈λk,tn , Vtn〉 will

range from i = 1 to i = I − 1, which will lead to lower asset prices and will

change the agents’ portfolios.
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The intuition behind such a choice for handling bankruptcy is the inter-

vention of a regulatory agency. An argument could be made that such an

entity would observe the market and would remove all investors threatened by

bankruptcy. The criterion for deciding which investor is at risk can be for exam-

ple some capital adequacy ratio. Admittedly, the obvious weakness of such an

argument is that it implies that the regulatory body has perfect foresight and

can correctly forecast not just the wealth dynamics itself, but also all related

quantities, such as the stochastic dividend generating process for instance. This

is a rather strong assumption to make. Therefore, we now attempt to address

the question of whether it is possible to avoid short positions altogether by

finding the exact time when the wealth of the bankrupt investor will be exactly

equal to zero.

3.1.2.2 Locating the Exact Time of Bankruptcy

The main purpose of specifying rules about how bankruptcy should be handled,

such as the ones described in the previous section, was to avoid a situation, in

which the bankrupt investor has short positions in the stock or money markets

and is unable to cover them, thus preventing market clearing at time tn+1. In

order to avoid this disequilibrium, the bankruptcy procedure outlined above

essentially amounts to checking if any of the investors has a strictly negative

wealth at time tn+1 and if so, the step from tn to tn+1 is re-done without the

investor that would otherwise go bankrupt at time tn+1.

While this solves the main problem, investor i is removed from the market

while she still has a positive wealth endowment. Ideally, an investor would be

declared bankrupt and removed from the market when her wealth is exactly

equal to zero. Taking discrete steps makes it highly improbable for such a

situation to occur naturally and that is why we had to resort to artificially

removing the potentially bankrupt investor before her wealth becomes zero.

Such an approach can lead to, at best, a rough approximation to the desired

result. Furthermore, looking forward in time to check if an investor will go

bankrupt at time tn+1 and going back one step to remove her from the market

seems a bit unnatural and not very realistic. As discussed above, this would

imply perfect foresight on the part of the regulator.

To address these weaknesses, we propose an improvement over the simple

procedure described in the previous section. The basic idea is to check if any of

the investors has a negative wealth at time tn+1 and if so, search for the exact

moment in time between tn and tn+1 where bankruptcy occurs – i.e. locate the

point where wealth becomes equal to zero. Doing so will dispense with the need

to artificially remove the bankrupt investor from the market, since when investor
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i’s wealth equals zero, the size of her stock and money market investments is

also zero. In other words, having exhausted all her wealth, agent i will naturally

cease her trading activities. The intuitive idea is that, theoretically, one should

be able to search the entire interval between times tn and tn+1 using as fine a

discretization within the interval as necessary, so as to locate exactly the time

at which the bankrupt investor’s wealth endowment becomes equal to zero.

The implementation of the searching routine is a modification of the stan-

dard binomial search algorithm (see e.g. Kruse & Ryba (2000), ch. 7). If it is

established that the wealth of at least one investor is negative at time tn+1, the

binomial search algorithm calls for checking the midpoint tn + (tn+1−tn)
2

and ob-

serving the agents’ wealth values. If at least one investor has a negative wealth

endowment, then the exact point when her wealth becomes zero has occurred

prior to the midpoint. Searching continues by moving to the left of the mid-

point and checking all wealth values midway between times tn and tn + (tn+1−tn)
2

– i.e. at time tn + (tn+1−tn)
4

. Conversely, if all agents’ wealth endowments are

positive at time tn + (tn+1−tn)
2

, a bankruptcy has not yet occurred and searching

continues by moving to the right of the midpoint and checking wealth levels

midway between tn+ (tn+1−tn)
2

and tn+1 – i.e. at point tn+ 3(tn+1−tn)
4

. The binary

search algorithm continues in an analogous fashion, operating on intervals of

increasingly shorter lengths, until eventually the point at which the wealth of

the bankrupt investor exactly equals zero is determined.

Unfortunately, there are a number of complications that arise if this method

of handling bankruptcy is chosen. While there is sufficient evidence that such

an approach could be mathematically valid, this has not been formally proven

to date. Palczewski & Schenk-Hoppé (2010a) prove (Theorem 3, p. 920) that

discrete-time dynamics similar, but not identical to (3.9) with an arbitrary

length of the discrete time periods converge to a continuous-time limit. The in-

troduction of the minimum consumption constraint, however, changes the struc-

ture of the underlying discrete-time model and convergence to a continuous-time

limit is by no means guaranteed. We will not try to prove the continuous-time

convergence of the discrete-time dynamics in (3.9) in this research project for

two reasons. One is that even if we do so, there are other technical difficulties in

implementing this approach. These are discussed in the following paragraphs.

Additionally, even if we were able to resolve all these difficulties and prove

continuous-time convergence, we believe there is a better method of handling

bankruptcy that is more intuitive and requires considerably less computational

effort. This approach is discussed in section 3.1.2.3.

In this paragraph we show that the standard searching procedure suggested

above is not directly applicable to the problem we are facing, even if conver-
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gence to a continuous-time limit is ensured. The reason for this is that it can

provide potentially misleading results due the endogenous nature of asset price

formation. To see this, recall the wealth dynamics equation:

V i
tn+1

=
K∑

k=1

λi
k,tn

V i
tn

〈λk,tn , Vtn〉
(〈λk,tn+1 , Vtn+1〉+ Dk,tn+1

)
+ λi

0,tnV i
tn (1 + r)

− Ci
tn+1

.

Suppose there were some investor with a negative wealth endowment at time

tn+1. We start by going back to tn and taking only half a step to tn + (tn+1−tn)
2

.

For each investor i, i = 1 . . . I, a new wealth level V i

tn+
(tn+1−tn)

2

will be calculated.

In case there are no bankruptcies at this point, searching continues forward in

time and tests wealth levels at the point tn + 3(tn+1−tn)
4

. Notice that in the

wealth dynamics equation above, the term describing the investors’ portfolios

at time tn+ (tn+1−tn)
2

–
∑K

k=1

λi

k,tn+
(tn+1−tn)

2

V i

tn+
(tn+1−tn)

2

〈λ
k,tn+

(tn+1−tn)
2

,V
tn+

(tn+1−tn)
2

〉 – depends on the newly-

calculated wealth V i

tn+
(tn+1−tn)

2

. After this midway rebalancing of the investors’

portfolios, depending on the evolution of the dividend generating process and

on the prevailing market conditions during the interval [ tn + (tn+1−tn)
2

, tn +
3(tn+1−tn)

4
), there may or may not be any bankruptcies at time tn + 3(tn+1−tn)

4
,

irrespective of whether this was initially the exact point when the bankrupt

investor’s wealth reached zero. In other words, the rebalancing of investors’

portfolios at each intermediate point during the search process changes the

result of the search, because essentially, each additional step in the searching

process means a new iteration of the dynamics during which anything could

happen to the size of the wealth endowments depending on the stochastic asset

payoffs. This fact invalidates the basic premise of the binomial search algorithm

– it can no longer be claimed that if all wealth endowments are positive at time

tn + (tn+1−tn)
2

then the exact point of bankruptcy must be to the right of this

time point. Hence, no meaningful, sorting procedure can be implemented.

Since the introduction of any kind of dependence on the number of steps

taken during the search process will surely result in a biased search procedure,

the only way to avoid this undesirable effect is to alter the standard binomial

search algorithm. The modification that we propose is as follows. Similar to

the approach taken in the previous section, we start by checking if the wealth

endowment of any of the investors at time tn+1 is negative. If this is the case,

we try to find the exact point in the interval from tn to tn+1 when the bankrupt

investor’s wealth becomes equal to zero. This is done by going back to time

tn and taking half a step to tn + (tn+1−tn)
2

. Just as in the binary search, if

no bankruptcy has occurred, only the interval to the right of the midpoint is
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considered. Conversely, if the wealth of any of the investors is already negative,

then only the left half of the interval is searched. Unlike the standard approach,

however, every time an additional step needs to be taken in any direction, the

dynamics goes back to tn and only then is a step of the necessary size taken. For

example, if there happens to be no bankruptcy at time tn + (tn+1−tn)
2

, then we

go back to tn and using the asset prices, investment strategies and portfolios at

that point, we take a step forward to time tn + 3(tn+1−tn)
4

. Searching continues in

this way until the moment when the wealth of any of the investors is found to be

equal to zero. After that, portfolios are recalculated without the participation

of the bankrupt investor, whose wealth is now zero, and the rest of the step to

time tn+1 is taken.

The approach outlined above solves the inconsistency problem caused by the

standard binary search algorithm in the context of our model of market dynam-

ics. There are, however, a couple of technical issues that need to be addressed.

Firstly, note that the bankruptcy procedure outlined in this section is possible,

since we defined our dividend generating process in continuous time. The divi-

dend paid is therefore scalable with respect to time. Recall that the amount of

total dividends paid by asset k at the end of period [ tn, tn + (tn+1− tn)∆ ) was

defined to be the integral of the dividend intensity over the appropriate time

interval:

Dk,tn+(tn+1−tn)∆ =

∫ tn+(tn+1−tn)∆

tn

δk (s) ds.

Using discrete time steps, the amount of dividend paid at time tn +(tn+1−tn)∆

is Dk,tn+(tn+1−tn)∆ = δk,tn+(tn+1−tn)∆ (tn + (tn+1 − tn)∆− tn). This allows the

appropriate amount of dividends to be included in the equations governing the

wealth dynamics regardless of the size of the steps during the search routine.

In order to find the exact point of bankruptcy, we need the continuous time

properties of the dividend generating process. Locating the exact point of

bankruptcy, on the other hand, implies that there will be no outstanding short

positions that cannot be covered or removal of investors with positive wealth

endowments. Therefore, market clearing will be ensured.

The second issue regarding the feasibility of the search algorithm proposed

above concerns the definition of the agents’ investment strategies. Unlike divi-

dends, the investment strategies λi
k,tn

are defined in discrete time, since agents

only trade at discrete points in time. This is potentially a problem. In order to

take the step from tn to tn + (tn+1 − tn)∆, both λi
k,tn

and λi
k,tn+(tn+1−tn)∆ must

be known at time tn. This fact is of no cause for concern when the length of

∆ coincides with the trading times at which investors rebalance their portfo-

lios, but is problematic when ∆ < 1. Since only λi
k,tn

and λi
k,tn+1

are defined

58



Section 3.1 The Model

in the model, we have to do the same for the times when intermediate values

λi
k,tn+(tn+1−tn)∆, ∆ < 1 are required. The easiest way to do so is by means of a

simple linear interpolation:

λi
k,tn+(tn+1−tn)∆ =

tn+1 − tn + (tn+1 − tn)∆

tn+1 − tn
λi

k,tn+1
+

tn + (tn+1 − tn)∆− tn
tn+1 − tn

λi
k,tn .

(3.10)

This definition ensures that the budget shares always add up to the same num-

ber. It also guarantees that the intermediate values for the investment strate-

gies λi
k,tn+(tn+1−tn)∆ meet all necessary conditions satisfied by λi

k,tn
and λi

k,tn+1
,

which are required so as to ensure matrix invertibility when trying to solve the

equation governing the wealth dynamics.

One obvious disadvantage of the method for handling bankruptcies de-

scribed in this section is its considerably larger computational cost. Compared

to the simple removal of the investors threatened by bankruptcy, which only

requires going back to time tn once, the need to perform a search over the in-

termediate times in the interval [ tn, tn+1 ) significantly increases the necessary

processing time. It is natural to ask if such an increase in cost is warranted by

increases in the performance of the model in terms of producing significantly

different dynamics. While the approach in this section leads to definite im-

provements in accuracy when the length of the interval is relatively large, the

extent of its benefits are questionable for closer-spaced periods. In fact, for a

sufficiently small size of the time step, the two methods described above will

lead to similar results, thus removing the need for the additional computations

required by the searching algorithm.

3.1.2.3 Allocating the Aggregate Loss Resulting from Bankruptcy

The two methods for handling cases of bankruptcy described above have one

thing in common. They both avoid situations, in which the bankrupt investor

has any outstanding short positions in the stock or money markets at the time

insolvency is declared. This certainly improves tractability as the solvent in-

vestors do not have to personally bear the consequences of an investor going

bankrupt. Due to approximation errors, however, the first method described

above results in a decrease in aggregate wealth in the market, owing to the

premature removal of the would-be bankrupt investor, who still has a positive

wealth endowment at the time she ceases her trading activities.

Nevertheless, from a practitioner’s viewpoint, the two methods for handling

bankruptcy described above may seem highly idealized. In fact, it is not at all

uncommon for large investment entities to face insolvency in real-world finan-

cial practice. The financial crisis of 2007-2008 saw several large institutional
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investors and even investment banks file for bankruptcy. The consequences of

such failures are significant – in many cases regulators are too fearful of systemic

risk and must resort to costly bailouts. Regardless of whether the troubled fi-

nancial institution is saved or left to fail, its losses are quickly propagated

through the global financial system.

That is why in this section we present a third, more realistic alternative

for handling bankruptcy cases. Instead of trying to determine a point in time

where investor i’s wealth becomes zero, we consider only the ordinary discrete

time steps at which agents rebalance their portfolios. If the wealth endowment

of any of the investors is negative at time tn+1, then she is simply allowed to

go bankrupt. This is followed by a “bankruptcy procedure” in the legal sense

of the word, in which the insolvent agent’s wealth is set equal to zero and she

is removed from the market. Any outstanding short positions will bring a loss

to the other market participants who are in possession of shares of the risky

assets affected by the bankruptcy.

To see how this would all work out, consider the case when there are only

two investors in the market, trading with each other – i.e. I = 2. Assume

that the sum of their wealth endowments at time tn+1 is strictly positive. In

other words: V 1
tn+1

+ V 2
tn+1

> 0. This condition ensures there is at least one

solvent agent remaining, so that the dynamics can continue after settling any

bankruptcies. Suppose it has transpired at time tn+1 that the second investor

had gone bankrupt and her wealth is now negative: V 1
tn+1

> 0, V 2
tn+1

< 0.

At this point the dynamics is temporarily stopped and a bankruptcy proce-

dure is initiated. Firstly, the current values of the investors’ positions in both

the stock and the money markets are recorded before starting the procedure.

This will lead to positive values for the net positions of the solvent investor in

the stock and money markets respectively – M1
pre > 0 and Θ1

k,pre > 0. The sub-

scripts tn+1 have been suppressed to avoid overly cluttered notation. This will

be the case for the rest of this section. Similar records are made for the insolvent

investor. Her net position in the market for risky assets will be short, however,

because of the negative wealth: M2
pre = λi

0,preV
i
pre < 0 and Θ2

k,pre =
λi

k,preV i
pre

Sk,pre
< 0.

Next, the bankruptcy procedure is initiated: the wealth (and hence the

portfolio) of the insolvent investor is set to zero and she is removed from the

market. As the only remaining investor, agent 1 now holds all available assets

in the market. That is: Θ1
n+1 = (1, . . . , 1) and Θ2

n+1 = (0, . . . , 0). A simi-

lar approach is used for dealing with the situation in the money market. The

money market position of investor 2 is set to zero. The position of the remain-

ing investor is defined to be the sum of the money market positions of the two

investors before the bankruptcy procedure was initiated. Since the net position
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of investor 2 was negative and cannot be recouped, agent 1 suffers a loss equal

to the magnitude of the bankrupt investor’s short position. Expressed symbol-

ically, we have: M1
n+1 = M1

pre +M2
pre < M1

pre and M2
n+1 = 0. Notice that in this

case, the aggregate wealth in the market is decreased, but unlike the case with

the premature removal of the investors threatened by bankruptcy, this happens

through a direct loss to the solvent investors.

The above simple illustration with two agents can be easily extended to cases

with multiple investors. The difference is that now all the remaining agents will

hold all the available assets in the market –
∑I−1

i=1 Θi
k,n+1 = 1. Additionally, the

losses caused by the bankrupt investor’s short positions will be spread among

all solvent agents. Here an interesting question emerges: should the losses

be shared in proportion to the size of the wealth endowments or based on the

magnitude of investors’ positions in the affected assets. The intuition behind the

first possibility is that the size of an agent’s stock and money market positions

is directly proportional to their wealth. Therefore, an investor with a greater

exposure to the money market should bear a larger share of the losses, since

she would have engaged in transactions with the bankrupt agent with a greater

probability. This is so because the more shares an investor owns, the greater

the chance that at least some of these would be exposed to counterparty risk

with respect to the bankrupt agent. There is a limited supply of the risky asset,

so to amass a large holding of the asset, more shares would have been obtained

from the currently bankrupt investor, relative to an investor that holds just a

few shares of the risky asset.

The latter, however, is a flawed approach since disregarding the size of

the investors’ positions in the respective assets brings the risk of artificially

inducing short positions for some of the solvent investors if they have to bear

a disproportionately large share of the losses. Therefore, we opt to spread

the losses resulting from bankruptcy among the remaining solvent investors

on the basis of the magnitudes of their outstanding positions in the affected

risky assets. This ensures market clearing while safeguarding against artificially

induced short positions among the solvent agents. The merit of this approach

is best illustrated through an example.

Example 3.1.2 Let the model be populated by four investors and contain three

risky assets: I = 4, K = 3. Assume at time tn investor 4 has a positive money

market account balance, a positive wealth endowment and no short positions.

The dynamics (3.5), however, suggests that at time tn+1 her wealth will be

negative. Further, assume the agents’ positions as of time tn are as follows:
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Table 3.1: Bankruptcy Procedure - Illustration
Investor M i

pre Θi
1,pre Θi

2,pre Θi
3,pre

1 M1
pre 1.5 0.5 0

2 M2
pre 0.5 0.5 0

3 M3
pre 0 0 1

4 2 -1 0 0

Here, the money market positions M i
pre are before dividends and consumption

and that is why positive values for the bankrupt investor can be achieved. Let the

price of the asset affected by investor 4’s bankruptcy at time tn+1 be S1,tn+1 = 3.

Then, clearly investor 4 is bankrupt at time tn+1 as his total wealth endow-

ment will be equal to V 4
tn+1

= 2 − 3 < 0. If the losses caused by investor 4 are

distributed according to the size of the wealth endowments V i
tn+1

, then investor

3 would surely end up with an artificially produced short position in asset 1.

Depending on relative wealth, the same might be true for investor 2 as well. In-

stead we choose to distribute both the stock market and money market positions

of the bankrupt investor to the remaining solvent investors in proportion to the

size of their portfolios.

After the removal of investor 4 from the market, the net supply of asset

2 will be brought back to one by taking away
(

1.5
2

)
1 from the first investor’s

shareholdings and
(

0.5
2

)
1 from the second agent. Following this, investor 1 will

hold 75% of asset 1 and investor 2 will be in possession of 25% for a net supply

of one. It is important to note that the price of asset 2 remains unaffected by

the bankruptcy procedure and thus fully capture the negative effects of the short

sales.

Even though the procedure outlined above is the most logical and robust ap-

proach to dealing with bankruptcy, it is not without shortcomings. A problem

will occur of the size of the short positions exceeds the total value of the long

positions. Under these circumstances, there is nothing to prevent the asset price

from being negative. This is demonstrated in the following counterexample.

Counterexample 3.1.3 Let I = 4, K = 1 and assume investment strategies

and wealth endowments as given in the table below:

Table 3.2: Bankruptcy Procedure - Counterexample
Investor λi

1,tn V i
tn λi

1,tnV i
tn

1 0.9967 -0.01 -0.01
2 0.9967 -0.01 -0.01
3 0.5 0.0064 0.0032
4 0.5 0.0215 0.0108

S1,tn -0.006
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In this case the short positions of the first two investors dominate the whole

market and push the price to negative values. Since this is a very rare occur-

rence, we discard it as a market failure. In our numerical simulation in order

to safeguard against negative asset prices, if such a situation is observed, we

set the bankrupt investors’ wealth endowments to zero and recalculate the as-

set price using the investment strategies and wealths of the remaining solvent

investors only.

In addition to being more realistic, the bankruptcy procedure laid out in this

section also has the added benefit of being computationally the least demanding

of the three.

3.1.3 Summary

In this section we presented a general model of a stylized financial market. Risky

assets as well as a risk-free asset are traded at discrete points in time. We thus

formulate a discrete-time dynamics for the evolution of investor wealth. In the

limit as the length of the time periods approaches zero, the dynamics coincides

with a popular approach of modeling self-financing portfolios frequently used

in mathematical finance.

Despite the wealth dynamics being formulated in discrete time, dividend

payments were defined in terms of continuous intensities. This approach ensures

scalability and consistence of dynamics with time intervals of different length.

It also allows the exact time of bankruptcy to be located.

Each investor type was described by an arbitrary investment strategy based

on heterogeneous beliefs. Asset prices are obtained endogenously and implic-

itly reflect the price impact of all market participants. The consumption good

serves as a numeraire: all dividend payments payment are paid in terms of

the consumption good. One of the innovations of our model is to enable the

intertemporal transfer of consumption by allowing agents to postpone consump-

tion by investing in a risk-free asset whose price is also normalized to one. The

other main innovation over existing evolutionary and agent-based models is

the inclusion of a more general consumption process, which allows different in-

tensities of consumption. This more realistic approach introduces the risk of

bankruptcy. The notion of bankruptcy has some important connotations for

market clearing. Such a situation would entail short positions in the stock or

money markets, which the insolvent agent is not able to cover, leading to the

presence of more shares of an asset in the economy than the level of aggregate

wealth can support.
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The problem of bankruptcy is introduced in our model because of the mod-

ification of consumption, which guarantees a minimum level of outflows in each

time period regardless of the size of an agent’s wealth endowment. This can

accelerate the rate at which an investor loses her wealth, particularly during

times of decreasing dividend income.

We reviewed three possible solutions for addressing the situation, in which

at least one investor ends up with a non-positive wealth endowment. The first

one checks if an investor will be insolvent in the next time step and if so removes

him from the market ahead of the actual bankruptcy. The second alternative

refines this idea by searching for the exact point between the two endpoints of

the interval in time where the bankrupt investor’s wealth becomes equal to zero.

Once this point is found, the removal of the insolvent agent from the market

happens naturally and all markets clear without any additional intervention.

Finally, we discussed a more realistic situation, in which the bankrupt agent

is left to fail and the remaining solvent agents share the losses caused by her

short positions in proportion to the relative sizes of their asset holdings.

In the next sections we continue to extend the base case model by specify-

ing in more detail some of its components that were assumed arbitrary in the

previous section. We begin by defining the modified consumption process in

section 1.2. We present some relevant intuition as to why this adjustment to

simple proportional consumption is necessary in our case. We also mentioned

in the previous section that in contrast to the traditional mathematical finance

framework of specifying an exogenous stochastic asset price process, random-

ness in our model stems from two sources: the uncertain asset payoffs and the

interaction between investors.

Both of these were mentioned as general processes above. Consequently, in

the following sections we address them in more detail. Randomness in the asset

payoffs comes from uncertainty in the economy, in which companies operate.

This uncertainty makes their earnings risky. Since dividends are a function of

corporate earnings, the same applies to them as well. Section 1.3 describes two

similar ways of modeling this uncertainty in the economy, which contain all

necessary attributes of the business cycle.

The second source of randomness is the market interaction between in-

vestors. The reason why this occurs is the specification of a heterogeneous

group of economic agents, in which each investor category trades according to

its specific beliefs about the market. Each investor type is described fully by

the investment strategy it follows. In the agent-based literature these strategies

can be the result of either standard utility maximization or simple heuristic

strategies consistent with bounded rationality. Section 1.5 explains our pro-
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posed investment strategies that investors will follow in our stylized market.

These include the general classes of fundamentalists and chartists, as well as

additional, more complex investment types.

The latter reflect the fact that investors have multiple opportunities to learn

about the business cycle over time through their investment experience and will

adjust their behaviour accordingly. Therefore, we also need to describe the way

investors learn within the context of the model. Some of these more complex

strategies are fundamental in nature and rely on dividend yields. Others re-

flect the behaviour of a value investor who invests on the basis of perceived

deviations from fundamental values. Hence, before discussing the investment

strategies in detail, section 1.4 describes the Monte Carlo algorithm we use for

the computation of fundamental values.

3.2 Guaranteed Payment of Minimum

Liabilities

As discussed briefly in the previous section, the lack of a minimum consumption

threshold in existing agent-based models allows investors to freely follow their

desired trading strategy without regard to their success in the market or the

size of their wealth endowment. Consumption decisions are kept separate from

investment decisions. A similar situation exists in popular evolutionary finance

models, where the same proportion of wealth is consumed by all agents. The

argument that existing papers in these fields make is that in order to produce

results relating to the relative success of different trading strategies, investment

decisions must not be contaminated by the effects of consumption.

Indeed it can be seen in Palczewski & Schenk-Hoppé (2010b) that in their

stylized continuous-time model without a risk-free asset and with time-invariant

strategies, a lower consumption proportion directly translates to superior per-

formance as measured by the size of the agents’ wealth endowments. Within

the context of their model, assuming investor i has a lower consumption rate –

ci < cj – the following result follows:

dV i (t)

V i (t−)
− dV j (t)

V j (t−)
=

(−ci + cj
)
dt > 0.

That is, the instantaneous growth rate of the investor with a lower consumption

proportion strictly dominates the growth rate of the other investor’s wealth.

While the assumption of a uniform consumption proportion definitely aids

in the analysis of the relative performance of investment strategies, it is difficult

to justify it taking into consideration the substantial asset-liability constraints
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that large institutional investors face in practice. A fund which is able to

generate above-average risk adjusted returns may still be in a underfunded

position depending on how large its liabilities are. Therefore, in the case of

pension funds and other large institutional investors, it is the relative balance

between their assets, which are a function of their investment success, and

their liabilities that ultimately determines how viable they are. Hence, the

additional constraints imposed by the specific framework in which this group

of investors operates must also be directly included in the analysis of agent

interactions. Moreover, this does not contradict the main performance criterion

used in evolutionary finance: the size of the wealth endowment.

To this end, we specify a two-tier consumption process. The consumption

rate above a certain floor is the same proportion for all investors. As soon as

a predetermined minimum level is reached, however, consumption cannot fall

below this threshold. That is, investor i’s total consumption, which takes place

at the end of of the time interval [ tn, tn+1 ), is given by:

Ci
tn+1

= max{m, cV i
tn} (tn+1 − tn) , (3.11)

for some predetermined minimum level m and a constant c, with 0 < c < 1 for

all investors.

From the viewpoint of institutional investors, consumption defined in this

way can be interpreted as the regular payments made to retirees and policy

holders. These pay-outs constitute a fixed proportion c of the total capitaliza-

tion of the fund when it possesses sufficient assets, but cannot fall below the

minimum guaranteed payment m regardless of the amount of the fund’s wealth.

As was discussed above, consumption is financed out of the money market ac-

count and in the case of insufficient funds, the shortfall is covered by the sale of

securities from the institution’s long-term portfolio in the stock market. This

situation is known as underfunding.

When the minimum level is activated, investors begin to consume at a

greater intensity relative to the size of their wealth endowment. Unless a

favourable sequence of asset payoffs occurs, an investor consuming at this higher

rate will continue losing market share as he is forced to liquidate more of his

risky asset investments. This, in turn makes it increasingly more difficult for

her to recover, since she will be in possession of fewer assets capable of gener-

ating cash flows. This faster wealth erosion is the mechanism that allows the

possibility of bankruptcy.

Both the interconnectedness of consumption and investment decisions as

well as the endogenous asset price formation are features of our model that are

common in the existing literature in the established field of dynamic stochastic
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general equilibrium models. This class of models differs greatly from our work,

however, since investment-consumption decisions are the product of expected

utility maximization under the assumption of rational beliefs. Such an approach

has a long tradition in tackling optimal investment-consumption decisions and

asset allocation (see e.g. Merton (1971)), as well as asset-liability management

and numerous other applications (see Stokey et al. (1989)). A significant “blow”

to the assumption of full rationality underlying stochastic general equilibrium

models was illustrated in Blume & Easley (2006), who showed that the market

selection hypothesis fails in incomplete markets.

3.3 Specification of Uncertainty in the

Economy

Uncertainty in the economy stems from two sources: the business cycle and

random short-term fluctuations. Recessionary periods are followed by recov-

eries, leading to intense economic growth and slowing down again. In the

economic literature, especially in the field of general equilibrium models, this

uncertainty is said to be caused by random changes in the state of technology.

Since new technological breakthroughs are impossible to model precisely, usu-

ally the development of the state of technology is assumed to be governed by a

stochastic process. The production opportunities that will be available in the

future depend on the accessible technology and this causes the different phases

of economic growth.

Since company earnings, and hence asset payoffs, are a function of the state

of the economy, and more specifically by the state of the particular industry

that a company operates in, in our model this uncertainty in the economy is

incorporated in the exogenous process driving the amount of dividends paid by

each risky asset. As discussed above, this process evolves in continuous time

and is specified using a vector of intensities δ (t). The intensity represents infor-

mation that investors can use in order to formulate their investment strategies.

Actual trading and the payment of dividends, however, take place only at ar-

bitrary discrete points in time. The amount of total dividends paid by asset

k at the end of the period [ tn, tn+1 ) is obtained by integrating the dividend

intensity over this time period:

Dk,tn+1 =

∫ tn+1

tn

δk (s) ds. (3.12)

The magnitude of the dividend generated by the risky asset is dependent on

the evolution of the economy over time.
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A vast amount of literature exists concerning the modeling of the business

cycle. The most popular modeling approach is the use of regime-switching

models. There exists some disagreement as to the number of distinct regimes

of an economy within the setting of this class of models. However, in our work

for the purposes of simplicity we opt for a simple two-state model of the econ-

omy. We cover two broad possible states – periods of prosperity and moderate

economic growth, followed by periods of economic contraction and recession.

These regimes can also be applied to the particular industries in which com-

panies operate. Since the profitability of companies in different industries is

not perfectly correlated with the state of the general economy, applying this

two-regime modeling approach to each industry is a flexible way to allow the

study of the impact of potential diversification benefits to the behaviour of the

market dynamics in the context of minimum consumption guarantees.

Even in this simple two-regime case, a substantial amount of debate exists

in the literature with regard to the correct modeling of the two phases. Kim &

Nelson (1999) argue that the switches between recessions and prosperity tend

to be asymmetric, with recessions happening much more suddenly and having

a much more pronounced immediate effect. Considerable discussion is given as

to whether the shocks that bring about periods of recessions and prosperity are

temporary or permanent. Following the influential work by Hamilton (1989),

who views the switching of regimes as an autoregression, whose parameters are

produced by a discrete-time Markov process, Durland & McCurdy (1994) follow

a similar approach and find that the switches between the different states are

dependent on their duration.

Due to the prevalence of similar modeling approaches in the literature, we

follow a Markovian approach as well. The switches between the two states of

each industry are governed by a two-state continuous-time Markov process, with

exponentially distributed waiting times between switches. Each state is char-

acterized by its own mean dividend value µ (t). This variable can take on two

values, corresponding to the mean dividend values in each regime: the average

dividend in the prosperity regime of moderate economic growth is denoted by

µ (t), while the average for the recessionary regime is µ (t), where µ (t) > µ (t).

The recessionary regime is characterized by a lower mean-reverting value, as

companies cut back on discretionary cash outflows during economic contraction

when there is a lack of profitable production opportunities.

Existing literature is not unanimous about the distribution of the durations

of recessions and prosperity periods or their relative duration. The main debate

is whether the distribution of durations follows a power or an exponential law.

In their study, Ausloos et al. (2004) find evidence in favour of both. Thus,
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the question of the distribution of the durations of the different regimes of

the business cycle remains open. The authors, however, find that periods of

prosperity tend to last roughly six times longer than recessions.

Based on the above literature we choose to model the regimes of each indus-

try in the following way. The evolution of the variable µ (t) follows a continuous-

time Markov chain. The waiting times between the switches constitute an expo-

nentially distributed random variable. Since we are working with discrete time

periods, we need to implement a suitable approximation to the total number of

regime switches in the time span under study. A convenient way to accomplish

this is by comparing an exponentially distributed random variable to a value

drawn from a uniform distribution to see if a regime switch occurred during

each of the discrete time periods. This is a standard numerical approach for

conducting Bernoulli-type experiments. This procedure provides a reasonable

approximation to the number of regime switches, as with a sufficiently small

time step, the probability of having more than one switch in a period becomes

very small.

We note that for an exponentially distributed random variable X, the prob-

ability of the variable exceeding a certain value x is given by:

P (X > x) = 1− F (x) = 1− (
1− e−λx

)
= e−λx,

where λ is the intensity parameter and F (·) denotes the cumulative density

function of the exponential distribution. A switch would occur if in any one

period the uniformly distributed random variable exceeds the exponentially

distributed one. In other words, using the result above, the discrete-time ap-

proximation to the conditional probability of staying in the same regime (for

instance, prosperity) is given as:

P
(
µtn+1 = µ | µtn = µ

)
= e−λ(tn+1−tn). (3.13)

The conditional probability of a regime switch is then simply 1 − e−λ(tn+1−tn).

The average time the process spends in each regime is the first moment of the

exponential distribution – 1
λ
.

The literature discussed above suggests that recessions tend to exhibit a

much more pronounced rate of change in an economy’s growth. These periods,

however, usually do not last as long as prosperity periods. To account for

this finding, the waiting times for each state are drawn from two exponential

distributions with different rate parameters. The regime switches constitute the

unobservable part of the dividend intensity. Investors are given no information

about the state of each industry. In other words, the regime switching process

forms a hidden Markov model (see e.g. Elliott et al. (1995)).

69



Section 3.3 Specification of Uncertainty in the Economy

Using the regimes as a general framework, the second component of the div-

idend intensity deals with shorter-term random fluctuations within each state

caused by multiple, and often unobservable, factors of lesser significance. To

account for these noise factors, we model the asset’s state-dependent dividend

generating process by means of mean reverting stochastic differential equations,

in which the mean reverting values correspond to the average dividend values

in the two states of each industry. This approach is in agreement with existing

literature in the field. Two alternative formulations for the dividend generating

process are considered below.

3.3.1 Mean-Reverting Square Root Process

The mean-reverting square root process is also popular in the financial eco-

nomics literature as Cox-Ingersoll-Ross process (CIR). The first process that

we use to model the risky asset payoffs is precisely this mean-reverting square

root process, which we use to specify the evolution of dividend intensities over

time. The dividend intensity process, which was given as arbitrary in the pre-

vious section, is now given as follows:

dδk(t) = α (µk(t)− δk(t)) dt + β
√

δk(t)dW (t). (3.14)

In the above, α and β are strictly positive real-valued parameters, and W (t) is

a standard Wiener process. Unlike the regime switching process, which remains

hidden, investors know that dividends follow the process specified in equation

(3.14). The equations specifying the intensity are the observable part of the

dividend generating process.

The instantaneous change in dividend intensity is obtained as the sum of a

drift term and a square-root diffusion term. The drift α (µk(t)− δk(t)) measures

the speed of adjustment toward the equilibrium mean-reverting dividend value.

The diffusion term β
√

δk(t) ensures that dividends cannot become negative as

long as α and β are non-negative. It is a well-known fact (see Feller (1951),

p. 174, property (iii)) that the CIR process is strictly positive if the Feller

condition 2αµk(t) > β2 is satisfied.

We discretize equation (3.14) by using Milstein’s scheme (see e.g. Kloeden

& Platen (1999), section 10.3, p. 345). The discrete-time version of (3.14) then

becomes:

δk,tn+1 = δk,tn + α (µk,tn − δk,tn) (tn+1 − tn) + β
√

δk,tn

(
Wtn+1 −Wtn

)

+
1

4
β2

((
Wtn+1 −Wtn

)2 − (tn+1 − tn)
)

. (3.15)

Finally, the total dividend paid by asset k at the end of the period [ tn, tn+1 )
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is approximated by:

Dk,tn+1 = δk,tn+1 (tn+1 − tn) . (3.16)

It is evident from the (tn+1 − tn) terms in (3.13) and (3.16) that dividends

are scalable with respect to time. As noticed in the previous section, this is

an important property that safeguards the model against discrepancies in the

amount of dividends paid caused by changing lengths of the time periods.

3.3.2 Geometric Ornstein-Uhlenbeck Process

Another widely used modeling approach in describing the stochastic evolution

of the unlevered equity value as well as the valuation of investment projects

over time is the geometric Ornstein-Uhlenbeck process (OU) (see e.g. (Dixit &

Pindyck 1994)).

Our second formulation of the dividend generating process uses a geometric

Ornstein-Uhlenbeck process to model the random evolution of the dividend

intensities:

dδk(t) = α (µk(t)− δk(t)) δk(t)dt + βδk(t)dW (t). (3.17)

In the context of this mean-reverting formulation, the future dividend values are

lognormally distributed with a linearly growing variance. Again, we use Mil-

stein’s scheme (Kloeden & Platen 1999) to obtain the corresponding discrete-

time version. In the case of the geometric Ornstein-Uhlenbeck process, the

discrete-time approximation to (3.17) is:

δk,tn+1 = δk,tn + α (µk,tn − δk,tn) δk,tn (tn+1 − tn) + βδk,tn

(
Wtn+1 −Wtn

)

+
1

2
β2δk,tn

((
Wtn+1 −Wtn

)2 − (tn+1 − tn)
)

. (3.18)

Both the approximation and the original process possess an interesting prop-

erty that is readily seen from the above. For a starting dividend value of zero,

this dividend generating process remains at zero in all subsequent periods –

i.e. zero is a fixed point. This fact has some important implications for the

calculation of the risky asset’s fundamental value. These will be discussed in

more detail when we present the algorithm for the computation of fundamental

values.

3.4 Fundamental Values

This section discusses in more detail the calculation of fundamental values

within the context of our model. Fundamental values here will be understood

as the perceived intrinsic value of a risky asset, based on the expected dis-

counted stream of future cash flows to the investor that it will generate. While
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interesting in its own right, the computation for fundamental values is strictly

necessary in our modeling framework, since the investment strategies used by

agents depend heavily on fundamental value estimates and perceived discrep-

ancies between asset prices and fundamental values.

Because our dividend generating process was specified in terms of both an

observable and an unobservable component, the algorithm for the calculation

of fundamental values consists of two steps. Firstly, a number of fundamental

values are computed for each risky asset. The precise quantity depends on the

number of regimes of each industry. These calculations represent the funda-

mental value an investor would assign to the asset if he knew with certainty the

current regime of each industry. As discussed above, the regime switches are

governed by a Markov process but the states of each industry remain hidden.

This is the first source of uncertainty for any investor attempting to calculate

a fundamental value estimate.

The second source of uncertainty are the random fluctuations around the

mean-reverting dividend values. To cope with this, a Monte Carlo algorithm

is implemented. This involves the calculation of fundamental values for each

element of a vector of starting dividends. Since our model deals with two gen-

eral regimes – prosperity and recession – each risky asset will have two vectors

of fundamental values corresponding to the asset’s fundamental value if the

regimes were know with certainty. Each element in the vectors corresponds to

a different starting dividend value. In the case of two existing regimes in each

industry, the true fundamental value for each asset will be between the two

values calculated under full knowledge about the regimes. Thus, in this special

case, the fundamental values under certainty can be interpreted as boundaries

for the true fundamental value. The precise location of the true fundamental

values between the boundaries depends on the estimated conditional probabil-

ities of each regime. This brings us to the second stage of fundamental value

calculation.

The second stage in the calculation of fundamental values is the filtering of

the state process based on the observations of the dividend realizations. This is

implemented by means of Bayesian updating. As a result, at each point in time

investors calculate the conditional probability of being in the two states of each

industry based on the observations of the dividend process. Once this is done,

the final step is to calculate the true estimated fundamental values by applying

the probabilities to the relevant fundamental value under certainty to come up

with an estimated true fundamental value that lies somewhere in between the

two limits calculated during the first stage, assuming there are only two regimes

in each industry.
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3.4.1 Fundamental Values under Certainty

In order to calculate the fundamental value points under full information about

the regimes, we use the discounted-cashflows methodology. Since dividends

are generated by a random process, a Monte Carlo valuation framework is

implemented. Additionally, we also have two regimes, which determine the

average dividend values. These regimes, however, remain unobservable to the

agents, who can only see the value of the dividend but are given no information

about the underlying economic state.

Therefore, each agent can use the available dividend information and assign

a value for the risky asset equal to the sum of discounted cashflows, but these

calculated values can only represent fundamental values under full information

about the industries’ regimes. As discussed above, in the case of two regimes,

these calculated values will form an upper and a lower boundary for the funda-

mental value under uncertainty about the regimes. This is so because there is

a vital piece of information missing – investors have perfect knowledge of the

dividend generating process, but no information about the current state of each

industry. That is to say, given perfect information about the economic cycle,

each investor would agree that only one of those two computed boundaries is

the true fundamental value because each agent knows which state each indus-

try is currently in and what state can be expected in the near future. So, for

instance in the case of a prosperous economy, the upper boundary will be the

true fundamental value, whereas in the case of recession, this will be the lower

boundary.

However, in reality investors rarely agree on what to expect from the econ-

omy in the future and it is not uncommon for different analysts to come up with

significantly different fundamental value estimates. Consequently, each agent

in our model will have to estimate the probability of being in each regime and

then apply these to the two calculated fundamental values under certainty in

order to compute a perceived fundamental value for each risky asset, which will

be somewhere in between the two boundaries that represent the fundamental

values on condition that agents know the underlying regime with certainty.

For each state we compute a vector of fundamental values under certainty

by taking expectations of the sum of discounted cashflows. In the most general

case, for an arbitrary starting point in time t and a starting dividend δ0, the

fundamental value is given by:

FB (t, δ, µ) = Et

[ ∞∑
n,tn≥t

Dtne−r(tn−t)

]
, (3.19)

µ (0) = µ ∈ {µ, µ}; δ0 = δ.
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Since, however, investors receive aggregate dividend payments and rebalance

their portfolios based on their trading strategy at discrete points in time {tn},
a situation where a fundamental value has to be estimated for some interme-

diate point between two successive dividend payment dates never occurs. The

calculation of a fundamental value for a specific starting dividend δ0 then re-

duces to the following:

FB (δ, µ) = E

[ ∞∑
n=1

Dtne−rtn

]
, (3.20)

µ (0) = µ ∈ {µ, µ}; δ0 = δ.

The dependence of fundamental values on δ and µ can be better explained

via a discussion of the algorithm used in their calculation. At each point in the

simulation, the dividend generating process can take on values in a continuous

range. The fundamental value is concerned with expected future dividends.

Therefore, we discretize the range of possible starting dividend values, generate

many dividend realizations from that point on and calculate expectations of

these values, appropriately discounted. Therefore, at each time point tn the

fundamental value depends on the starting dividend value, which was observed.

The dependence on µ is implicit since in order to generate dividend intensities

we need to know the parameter µ. The latter is never observable, so we generate

two fundamental value boundaries under the assumption that µ = µ and µ = µ.

In the above formulas, FB denotes a fundamental value under certainty for

a particular starting dividend value. The starting dividend values can be ar-

bitrary. A fundamental value under certainty for each starting dividend value

is computed by simulating a large number of dividend realizations, discounting

them and taking expectations with respect to the number of generated realiza-

tions. This is repeated for a range of starting dividend values for each of the

regimes. After the vector of fundamental points has been generated, a smooth

curve is fitted through them to form a fundamental value curve under certainty

for each state. The choice of the fitted function as well as some of the difficulties

involved in such a choice are outlined in the section on the implementation.

After fitting a curve through the fundamental values under certainty for

each regime, the fundamental boundaries are given in the form of continuous

functions. This is why, for simplicity, in the implementation of the algorithm

the arbitrary starting dividend values are chosen to be the positive integers up

to some large enough cut-off point. “Large enough” in this context depends on

the parameters of the dividend generating process. For each set of parameters

there will be a value, which will have a negligibly small probability of being

reached or exceeded by the dividend realizations. This will then be used as a
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cut-off point for the starting dividends.

The reason why continuous functions are needed, rather than simply a vector

of fundamental values under certainty, is because the dividend observations have

a continuous state space. At any point in time the dividend value obtained by

the stochastic differential equations can be any positive real number. To obtain

a fundamental value at this point, the investor will take this positive real number

as a starting value and discount future dividend values. Since the Monte Carlo

algorithm described above tends to be quite computationally intensive, we do it

only once and store the fundamental value functions under certainty. As these

are continuous functions of the starting dividends, there is no problem for an

investor to pick the current dividend value as a starting dividend and see what

fundamental boundary point corresponds to it. Doing this for both regimes and

applying the relevant conditional probabilities, the estimated true fundamental

value for each risky asset is obtained.

3.4.2 Bayesian Updating and Regime Probabilities

Since each state of every industry is characterized by a unique mean-reverting

dividend value, the lack of knowledge regarding the current regime is an obstacle

for investors when attempting to assign a fundamental value to the risky asset.

Past observations of dividend values, however, can be used to estimate the

process governing the regime switches. As discussed above, the regime switching

process in our formulation of the states of each industry forms a hidden Markov

model. Many excellent texts exist that deal with this topic. In the following

we choose to follow mainly the exposition in Elliott et al. (1995) and the

related text Aggoun & Elliott (2004) because of their comprehensiveness and

generality. The proofs of all secondary results are reproduced in the Appendix

for the purpose of easier reference.

The term hidden Markov model is synonymous with the term partially ob-

served stochastic dynamical system model. The simplest representative of this

class of models is a model with both states and observations in a discrete set

and in discrete time. The results, however, can be easily generalized to situa-

tions where the observations take values in a continuous set or where both the

states and measurements take values in continuous sets. The latter case gives

rise to the famous Kalman filter (see e.g. Jazwinski (1970), Fraser (2009)).

Modern treatments of the subject prefer to use reference probability meth-

ods over the semimartingale methods popular in the past. This entails a pro-

cedure in which the original estimation and control problem is reformulated by

means of a probability measure change so that Fubini-type methods for iden-

tically and independently distributed random variables can be applied. The
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results are then translated back in terms of the original measure by means of a

reverse measure change. The benefits of such an approach lie in its simplicity

and generality.

Our problem consists of a two-state Markov chain, which is observed in noise

in the form of many random fluctuations around the average dividend values in

each state of the industry. The information that is revealed to the investors is

of the form of the stochastic differential equations which specify how dividends

are generated. The task is then to estimate conditional probabilities for the

states of the signal based on the noisy dividend observations. We will first

consider the case where both the states and the observations take values in a

discrete set. The results are then generalized to the case of observations in a

continuous set, which is of direct interest for our problem.

3.4.2.1 Discrete States and Discrete Observations

All processes are defined initially on a probability space (Ω, Σ, P ). Consider

a system whose state is described by a finite-state, homogenous Markov chain

{Xk}, k ∈ N in discrete time. The initial state X0 is assumed given or its

distribution known. Suppose the state space of Xk has N elements. Then the

state space can be represented without loss of generality as the set

SX = {e1, . . . , eN} , (3.21)

where ei are standard basis vectors in RN in which the ith element of ei is one

while all the others are zero. To see this, consider a process {Mk} having an

arbitrary finite set as its state space: SM = {s1, . . . , sN}. One can use indicator

functions φk (si) of the form φk (si) = 0 if i 6= k and φk (sk) = 1 to transform

{Mk} into {Xk} by writing Xk = (φ1(Mk), . . . , φN(Mk)), so that at any time k

only one component of Xk is one and the others are zero.

Denote by Σ0
k = σ {X0, . . . , Xk} the σ − algebra generated by X0, . . . , Xk,

and write
{
Σk

}
for the complete filtration generated by the Σ0

k. Since the signal

process follows a Markov chain, we can use the Markov property

P (Xk+1 = ej|Σk) = P (Xk+1 = ej|Xk) .

Denote the matrix of transitional probabilities as follows:

aji = P (Xk+1 = ej|Xk = ei) , A = (aji) ∈ RN×N . (3.22)

Note that since at each time k the realizations of Xk are vectors of in-

dicator functions showing which state the system is currently in, the Xk are
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in fact simple random variables. For such random variables, expectations are

interchangeable with probabilities:

E [〈XK , ei〉] =
N∑

j=1

〈ej, ei〉P (Xk = ej) = P (Xk = ei) . (3.23)

Using this property,

E [Xk+1|Σk] = E [Xk+1|Xk] = AXk. (3.24)

In other words, AXk is the predictable part of the signal process. Using Doob’s

decomposition theorem (see Doob (1953)), we can give the following semi-

martingale representation of the Markov chain {Xk}:

Xk+1 = AXk + Vk+1, (3.25)

where Vk+1 := Xk+1 − AXk is a zero-mean martingale increment. To see this

note that E [AXk|Xk] = AXk. Then:

E [Vk+1|Σk] = E [Xk+1 − AXk|Xk] = AXk − AXk = 0. (3.26)

Equation (3.25) is known as the state equation.

As noted, the signal process X is not observed directly. Let c (·, ·) be a

function taking values in a finite range. Then, agents actually observe the

process

Yk+1 = c (Xk, wk+1) , k ∈ N, (3.27)

where the terms wk are a sequence of i.i.d random variables, independent of Vk.

Denote by {Ξk} the σ− algebra generated by X0, . . . , Xk and Y0, . . . , Yk, while

{Υk} will denote the complete σ − algebra generated by Y0, . . . , Yk. Further,

suppose the range of c (·, ·) consists of M points. Then, similar to the discussion

above, we can represent the state space of Yk with a set of standard basis vectors:

SY = {f1, . . . , fM} , fj = (0, . . . , 1, . . . , 0)′ ∈ RM , (3.28)

where the unit element is the jth element.

Equation (3.27) and the fact that Vk and wk are mutually independent

implies

P (Yk+1 = fj|X0, . . . , Xk, Y0, . . . , Yk) = P (Yk+1 = fj|Xk) .

Denote the matrix of conditional probabilities C as follows:

cji = P (Yk+1 = fj|Xk = ei) , C = (cji) ∈ RM×N . (3.29)
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Since these are conditional probabilities, the column sums must add up to one:∑M
j=1 cji = 1 and cji ≥ 0, 1 ≤ j ≤ M, 1 ≤ i ≤ N .

Using this notation, as was the case with the signal process, we have:

E [Yk+1|Xk] = CXk. (3.30)

Denoting by Wk+1 := Yk+1−CXk the zero-mean (P, Ξ) martingale increments,

we can represent the observation process as a semimartingale as well:

Yk+1 = CXk + Wk+1. (3.31)

The fact that Wk+1 has a zero mean is verified in exactly the same way as

above. We first note the conditional expectation E [CXk|Xk] = CXk and then

we have

E [Wk+1|Ξk] = E [Yk+1 − CXk|Xk] = CXk − CXk = 0.

Since wk and Vk are mutually independent, Wk and Vk are also independent.

Equation (3.31) is commonly referred to as an observation equation.

We introduce the following notation in order to avoid unnecessary clutter.

Denote the ith element of Yk by Y i
k := 〈Yk, fi〉 so that Yk =

(
Y 1

k , . . . , Y M
k

)′
, k ∈

N. At each time k exactly one element is equal to one, with the others be-

ing zero. That is,
∑M

i=1 Y i
k = 1. Further, denote the conditional expectation

of the ith element of the vector of observations by ci
k+1 := E

[
Y i

k+1|Ξk

]
=∑N

j=1 cij〈ej, Xk〉 and

ck+1 =
(
c1
k+1, . . . , c

M
k+1

)′
= E [Yk+1|Ξk] = CXk. (3.32)

Without loss of generality assume that ci
k > 0, 1 ≤ i ≤ M,k ∈ N. Since these

are conditional probabilities, we also have
∑M

i=1 ci
k = 1, k ∈ N.

The following result (see Elliott et al., 1995) will be useful in subsequent

calculations.

Lemma 3.4.1 (Second Moment of Vk) Let diag(z) denote the diagonal matrix

with vector z on its diagonal. Then:

Vk+1V
′
k+1 = diag (AXk) + diag (Vk+1)− A diag (Xk) A′

− AXkV
′
k+1 − Vk+1 (AXk)

′ (3.33)

and

〈Vk+1〉 := E
[
Vk+1V

′
k+1|Σk

]

= E
[
Vk+1V

′
k+1|Xk

]

= diag (AXk)− A diag (Xk) A′. (3.34)
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Similarly, it can be shown that

〈Wk+1〉 := E
[
Wk+1W

′
k+1|Ξk

]
= diag (CXk)− C diag (Xk) C ′.

To summarize, the state space signal model for a Markov chain hidden in

noise and taking only discrete values under the probability measure P can be

represented as follows:

Xk+1 = AXk + Vk+1,

Yk+1 = CXk + Wk+1, k ∈ N, (3.35)

where Xk ∈ SX , Yk ∈ SY , A and C are matrices of transition probabilities

defined in equations (3.22) and (3.29) satisfying the following conditions:

N∑
j=1

aji = 1, aji ≥ 0, (3.36)

M∑
j=1

cji = 1, cji ≥ 0. (3.37)

Vk and Wk are mutually independent martingale increments satisfying:

E [Vk+1|Σk] = 0, E [Wk+1|Ξk] = 0,

〈Vk+1〉 := E
[
Vk+1V

′
k+1|Xk

]
= diag (AXk)− A diag (Xk) A′,

〈Wk+1〉 := E
[
Wk+1W

′
k+1|Xk

]
= diag (CXk)− C diag (Xk) C ′.

3.4.2.2 Change of Measure

As discussed in the introduction to this section, the modern approach to han-

dling filtering problems involves the use of reference probability methods. This

entails constructing a new probability measure P , under which the entire obser-

vation process {Yk} , k ∈ N will be a sequence of identically and independently

distributed random variables. In other words, the dependence on the signal

process will be eliminated and it will no longer be possible to represent the

observation process as a semimartingale. Rather, the observation process will

be simply a sequence of i.i.d random variables. This will greatly simplify the

analysis and once the optimal filter under these circumstances is derived, the

results will simply be translated back to the original probability measure P .

Keeping the notation from the previous section, assume without loss of

generality that ci
l > 0, 1 ≤ i ≤ M, l ∈ N. Define the values

λl =
M∏
i=1

(
M−1

ci
l

)Y i
l

, (3.38)
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and

Λk =
k∏

l=1

λl. (3.39)

An additional advantage to taking the sets of standard basis vectors SX =

{e1, . . . , eN} and SY = {f1, . . . , fM} as the state spaces of {Xk} and {Xk}
respectively is the fact that any real function f (X) can be expressed as a linear

functional f (X) = 〈f, X〉, where 〈f, ei〉 = f (ei) = fi and f = (f1, . . . , fN).

Thus, if we denote X i = 〈X, ei〉, we have:

f (X) =
N∑

i=1

f (ei) X i =
N∑

i=1

fiX
i. (3.40)

Also note that since Y i
l = 1 for only one i and Y i

l = 0 otherwise, the definition

of λl in (3.38) means that it is simply the product of M−1 unity terms and one

non-unity term. Using this fact together with the property shown in equation

(3.40) allows λl to be represented as λl = λl (Yl) =
∑M

i=1

Y i
l

Mci
l
.

Next, we show that λk, as defined in equation (3.38), meets the necessary

conditions to serve as the basis of the new probability measure that we want

to construct (see e.g. Shreve (2004), p.210 or Aggoun & Elliott (2004), p.

136). More specifically, in order to ensure that the sequence {Λk} is a (P, Ξk)

martingale, we need the following result:

Lemma 3.4.2 (Conditional Expectation of λk) Let λk be defined as in equation

(3.38). Then:

E [λk+1|Ξk] = 1. (3.41)

Now that it has been proven that λk as defined in equation (3.38) satisfies

the above condition, we can construct a new probability measure P as follows:

dP

dP

∣∣∣∣
Ξk

= Λk, (3.42)

where Λk is defined as in equation (3.39) and the notation dP
dP

∣∣∣
Ξk

denotes the

restriction of the Radon-Nikodym derivative dP
dP

to the σ − algebra Ξk. The

existence of P is guaranteed by Kolmogorov’s Extension Theorem (see e.g. Ash

& Doléans-Dade (2000), p. 118). In other words, for any Ξk-measurable random

variable φ:

E [φ] =

∫
φdP =

∫
φ

dP

dP
=

∫
φΛkdP = E [Λkφ] ,

where E and E are expectations under P and P respectively.
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When dealing with filtering problems using the reference probability method,

one of the most important available tools is the conditional form of Bayes’ The-

orem. This result allows conditional expectations under two different measures

to be related. In our case, we would like to find a relation between the expec-

tations E and E. This relation is in the following form.

Theorem 3.4.3 (Conditional Bayes Theorem) Let (Ω, Σ, P ) be a probability

space and Ξ ⊂ Σ be a sub-σ-algebra. Further, let P be another probability mea-

sure that is absolutely continuous with respect to P and has a Radon-Nikodym

derivative
dP

dP
= Λ.

Then, if φ is any integrable Σ-measurable random variable, we have:

E [φ|Ξ] =
E [Λφ|Ξ]

E [Λ|Ξ]
.

Because of the importance of this result, the proof is fully reproduced in the

Appendix.

The above result holds for sequences of random variables as well. A sequence

of random variables {φk} is said to be Ξ-adapted if φk is Ξk-measurable for

every k. Then, applying theorem (3.4.3) to the probability measures P and

P defined in equation (3.42), we have the following version of the conditional

Bayes theorem given in (3.4.3):

Lemma 3.4.4 (Conditional Bayes Theorem for Sequences of Random Vari-

ables) If {φk} is a Ξ-adapted integrable sequence of random variables, then:

E [φk|Υk] =
E [Λkφk|Υk]

E [Λk|Υk]
.

We can now turn our attention back to the definition of the new probability

measure P and verify that the main goal we set out to achieve in the beginning

of this section has been attained. More specifically, the observation process

{Yk} has been transformed from a semimartingale under P into a sequence

of independent and identically distributed random variables under P . The

following lemma summarizes this result.

Lemma 3.4.5 (Observation Process under P ) Under the probability measure

P defined in (3.42), the observation process {Yk}, k ∈ N, is a sequence of

independent and identically distributed random variables each having a uniform

distribution that assigns probability 1
M

to each point fi, 1 ≤ i ≤ M , in its range

space.
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As with most of the previous results, the proof is given in the Appendix.

Note, however, that even though P transformed {Yk} into a sequence of

independent and identically distributed random variables, the signal process

{Xk} remains a Markov chain with transition matrix A under P . To see this,

note that using lemmas (1.4.2) and (1.4.4) we have:

E [Xk+1|Ξk] =
E [Λk+1Xk+1|Ξk]

E [Λk+1|Ξk]

= E [λk+1Xk+1|Ξk] = AXk.

Having transformed the observation process {Yk} by means of constructing

a new probability measure P and having verified its new properties, the final

step in the optimal estimation process when using the reference probability

method is to translate results back to the original probability measure P by

means of a reverse measure change. This is the main subject of the section to

follow.

3.4.2.3 Reverse Measure Change

The desired outcome in this section is to start with the probability measure P

defined in the previous section, such that:

1. the process {Xk} is a finite-state Markov chain with transition matrix A

and

2. the process {Yk}, k ∈ N, is a sequence of independent and identically

distributed random variables with

P
(
Y j

k+1 = 1|Ξk

)
= P

(
Y j

k+1 = 1
)

=
1

M
,

and to then translate all result back to the original measure P , under which

the observation process {Yk} is a semimartingale.

Let C = (cji) , 1 ≤ j ≤ M, 1 ≤ i ≤ N be a matrix such that cji ≥ 0

and
∑M

j=1 cji = 1. In this section we construct a probability measure P , such

that under P the hidden Markov model described in equation (3.35) still holds

and E [Yk+1|Ξk] = CXk. As in the previous section, denote the conditional

expectation of the observation process by:

ck+1 = E [Yk+1|Ξk] = CXk,

with element i being equal to ci
k+1 = 〈ck+1, fi〉 = 〈CXk, fi〉, so that:

M∑
i=1

ci
k+1 = 1. (3.43)

82



Section 3.4 Fundamental Values

The construction of P from P is inverse to that of P from P , which was

illustrated in the previous section. Define:

λl =
M∏
i=1

(
Mci

l

)Y i
l , l ∈ N, (3.44)

and

Λk =
k∏

l=1

λl. (3.45)

Note that unlike in the previous section, since we no longer divide by ci
k in the

construction of P , we do not need to impose the additional requirement that

ci
k must be strictly positive.

As with the construction of P in the previous chapter, we again need to

make sure that the λk meet the necessary conditional expectation conditions

in order to serve as building blocks for the Radon-Nikodym derivative that will

be defined below. The result is analogous to what has already been proved for

λk.

Lemma 3.4.6 (Conditional Expectation of λk) With ci
k and λk defined as in

equations (3.43) and (3.44) respectively, we have the following result:

E
[
λk+1|Ξk

]
= 1. (3.46)

The proof follows closely the proof of lemma (1.4.2).

Similar to the way that P was specified in the previous section, we define

the new probability measure P by setting the restriction of the Radon-Nikodym

derivative dP
dP

to the σ-algebra Ξk equal to Λk:

dP

dP

∣∣∣∣
Ξk

= Λk, (3.47)

where Λk is defined as in equation (3.45). As was the case with P , the existence

of P is guaranteed by Kolmogorov’s Extension Theorem (Ash & Doléans-Dade

(2000)).

The last issue that needs to be tackled is to verify that the new probability

measure P indeed transforms the sequence of independent and identically dis-

tributed random variables {Yk} back into a semimartingale with a predictable

part CXk. The following lemma formalizes this result.

Lemma 3.4.7 (Observation Process under P ) Under the probability measure

P , as defined in equation (3.47),

E [Yk+1|Ξk] = CXk.
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The proof is similar to that of lemma (1.4.5) and is provided in the Appendix.

We have now demonstrated the relationship between conditional expecta-

tions under two different probability measures, formalized by the conditional

Bayes theorem (3.4.3), as well as the construction of the two specific probability

measures necessary in order to solve the filtering problem using the reference

probability method. The next section uses these building blocks in order to

compute unnormalized estimates and ultimately, conditional probabilities for

the state of the signal process.

3.4.2.4 Unnormalized Estimates and Conditional Probabilities

We are now in a position to calculate unnormalized estimates of the conditional

probabilities of the signal states for the case of discrete time signal processes

with discrete states and discrete observations. The same notation as in the pre-

vious chapters will be used. Namely, we denote by Υk the complete σ-algebra

generated by observations of Y1, . . . , Yk and by Ξk the complete σ-algebra gen-

erated by observing X0, X1, . . . , Xk and Y1, . . . , Yk. We assume there exists a

probability measure P such that, under P , Xk+1 = AXk + Vk+1, where Vk is

a zero-mean
(
P, Ξk

)
martingale increment: i.e. E [Vk+1|Ξk] = 0. Furthermore,

under P , the observation process is assumed to be a sequence of independent

and identically distributed random variables, each distributed uniformly over

the M elements in its range space: i.e. P
(
Y j

k = 1
)

= 1
M

. Each Yk is also

assumed mutually independent of the corresponding Vk.

In the previous sections it was already shown that E [Vk+1|Ξk] = 0. Equation

(3.26) stated this under P , however, as we noted in the section on the change of

measure, under P the properties of {Xk} are preserved. Therefore, any result

for {Xk} under P applies to P as well. However, more can be said about the

conditional expectation of Vk.

Since Vk and Yk are mutually independent, and since conditioning on both

Ξk and Υk+1 brings more information than conditioning on Υk+1 only (Υk+1 ⊂
Ξk ∪Υk+1), using the double expectations property we can observe that:

E [Vk+1|Υk+1] = E
[
E [Vk+1|Ξk, Υk+1] |Υk+1

]

= E
[
E [Vk+1|Ξk] |Υk+1

]
= 0. (3.48)

Based on these assumptions, the probability measure P is defined as in

equation (3.47). Since it is the conditional probability of the signal states

under P the we are ultimately interested in, we would also need the conditional

Bayes theorem for sequences of random variables. Using lemma (1.4.4), for any
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Ξ-adapted sequence of random variables {φk}, we have:

E [φk|Υk] =
E

[
Λkφk|Υk

]

E
[
Λk|Υk

] (3.49)

The quantity E
[
Λkφk|Υk

]
in the numerator is what we referred to as the unnor-

malized conditional expectation of the random variable φk based on information

about the observation process {Yk}.
The reason for the above terminology may not be immediately obvious.

In order to simplify notation, define qk (er) , 1 ≤ r ≤ N, k ∈ N to be the

unnormalized conditional probability of the signal being in state r at time k

given the history of observations up until and including time k. That is:

E
[
Λk〈Xk, er〉|Υk

]
= qk (er) .

Since
∑N

i=1〈Xk, ei〉 = 1, we have:

N∑
i=1

qk (ei) = E

[
Λk

N∑
i=1

〈Xk, ei〉
∣∣∣∣∣ Υk

]
= E

[
Λk|Υk

]
.

In other words, the denominator in equation (3.49) normalizes each qk (er) by

dividing it by the sum over all possible states of the signal Xk.

Therefore, using the above fact and the result in equation (3.49), we obtain

the normalized conditional probability of the signal Xk being in state r at time

k as:

pk (er) = E [〈Xk, er〉|Υk]

=
qk (er)∑N
j=1 qk (ej)

.

Although this is a conceptually correct formulation of the quantity we are

interested in, the representation given above is not specific enough to be im-

plemented straight away. For computational purposes, it would be preferable

to obtain a recursive relationship, which would allow qk to be computed from

qk−1. Defining cj (Yk) = M
∏M

i=1 c
Y i

k
ij , and writing any N -dimensional vector

v as v(·) = (v1, . . . , vN)′, the desired recursive expression for the vector of un-

normalized conditional expectations qk is formalized in the following theorem.

Theorem 3.4.8 (Recursive Filter) For k ∈ N and 1 ≤ r ≤ N , the recursive

filter for the unnormalized estimates of the states of the signal process {Xk} is

given by:

qk+1 = A diag (qk) c(·) (Yk+1) , (3.50)
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where A is a matrix of transition probabilities, diag (qk) is a diagonal matrix

with a main diagonal qk, and c(·) (Yk+1) is a vector of probabilities of observing

the realized value of the observation process {Yk+1} on condition that the signal

was in a particular state at time k.

As usual, the proof is provided in the Appendix.

Note that theorem (3.4.8) gives a recursive expression for the unnormalized

estimates of the signal states in the form of a vector. For each state of the

signal process, the corresponding element of this vector is given by:

qk+1 (er) = E
[
Λk+1〈Xk+1, er〉|Υk+1

]

=
N∑

j=1

qk (ej) arjM
M∏
i=1

c
Y i

k+1

ij .

The intuition behind the above equation is that the unnormalized estimate

for the conditional probability of the signal process being in state r at time k+1

is given by the sum over all possible states of the unnormalized estimate for the

previous period k, multiplied by the transitional probability of moving from

each state to state r, multiplied by the probability of observing the realized

value Y i
k+1 on condition that the signal process in the previous period Xk was

in each of its possible states j. Also notice that the recursive relation (3.50) is

linear in q.

3.4.2.5 A General Unnormalized Recursive Filter

The recursive filter for the unnormalized estimates of the signal states given

in equation (3.50) above was the solution to the particular estimation problem

we were facing – namely, the estimation of conditional probabilities for the

two states of each industry in our model based on observations of the dividend

realizations and knowledge of the underlying dividend generating process. It is

possible to reformulate this recursive expression so that it is capable of handling

much more general signal processes than our particular task required. In this

section we briefly outline the derivation of a general unnormalized recursive

filter. We also show that the expression obtained in equation 3.50 is a special

case of this more general result.

We will continue to work under the probability measure P , such that:

Xk+1 = AXk + Vk+1, (3.51)

and the observation process {Yk} is a sequence of independent and identically

distributed random variables, each with a uniform distribution over the M

elements of its range space f1, . . . , fM . In order to reach the goal of greater
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generality, it would be helpful to introduce the following new notation. Let

{Hk}, k ∈ N be any integrable sequence of random variables. We shall write:

γk (Hk) = E
[
ΛkHk|Υk.

]
(3.52)

The process H can be both scalar- or vector-valued.

An application of lemma (1.4.4) to the random variable Hk yields:

E [Hk|Υk] =
E

[
ΛkHk|Υk

]

E
[
Λk|Υk

] =
γk (Hk)

γk (1)
. (3.53)

Therefore, γk (Hk) can be interpreted as the unnormalized conditional expec-

tation of Hk given the information set Υk. Again we shall assume that initial

values for the recursions are either given or their distribution is known.

Without loss of generality assume {Hk}, k ∈ N is an integrable scalar

sequence of random variables. Write ∆Hk+1 = Hk+1 − Hk, i.e. Hk+1 =

Hk + ∆Hk+1. Then we have the following representation:

γk+1 (Hk+1) = E
[
Λk+1Hk|Υk+1

]
+ E

[
Λk+1∆Hk+1|Υk+1

]
.

Concentrating on the first term on the right-hand side of the equation and using

properties (3.23) and (3.40), we have:

E
[
Λk+1Hk|Υk+1

]
= E

[
ΛkHkλk+1|Υk+1

]

= E

[
ΛkHkM

M∏
i=1

(〈CXk, fi〉)Y i
k+1

∣∣∣∣∣ Υk+1

]

=
N∑

j=1

E
[
ΛkHk〈Xk, ej〉|Υk

]
M

M∏
i=1

c
Y i

k+1

ij

=
N∑

j=1

cj (Yk+1) 〈γk (HkXk) , ej〉.

The second equality above comes from a simple substitution using the definition

of λk+1 as shown in equation (3.44). The third equality follows from a number

of facts similar to those used in the proof of theorem (3.4.8). Firstly, ΛkHk is

replaced by
∑N

j=1 ΛkHk〈Xk, ej〉. This is merely another representation of the

same quantity since
∑N

j=1〈Xk, ej〉 = 1. Changing the order of the summation

and the expectation operators is allowed by Fubini’s theorem. Secondly, since

{Yk} are i.i.d. random variables under P , conditioning on Υk+1 instead of

Υk does not bring any new useful information and therefore the conditional

distribution in the third equality remains the same using any of these two

conditioning sets.
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Furthermore, using property (3.23) the expectation E
[
M

∏M
i=1 (〈CXk, fi〉)Y i

k+1

]

is the same as the probability P
[
M

∏M
i=1 (〈CXk, fi〉)Y i

k+1

]
. However, instead

of multiplying the transitional probability matrix C times vector Xk and then

taking its i-th element, the transitional probabilities from each state j to state

i are summed across all possible states N of Xk. In other words, the condi-

tional probability of the observation process
∏M

i=1 (〈CXk, fi〉)Y i
k+1 is written as

the sum of the probabilities of observing the realized value of Yk+1 on condition

that Xk was in each of its possible N states. The last equality follows from

using the definitions of cj (Yk+1) and γ (·) introduced in theorem (3.4.8) and

equation (3.52) respectively.

Note that unlike in theorem (3.4.8), where qk+1 (er) = E
[
Λk+1〈Xk+1, er〉|Υk+1

]

denoted the conditional expectation of an element of Xk+1, in equation (3.52)

Hk is a general scalar- or vector-valued random variable. This brings about

a problem when trying to find a recursive formulation for γk+1 (Hk+1). A dif-

ficulty arises because the estimate for γk+1 (Hk+1) introduces a new term –

γk (HkXk) – which includes the additional random variable Xk, so the expres-

sion for γk+1 (Hk+1) is no longer recursive in H only.

As mentioned in Elliott et al. (1995), this can be overcome by taking ad-

vantage of the structure of Xk+1. By noting that Xk+1 is a vector whose every

element but one is zero with the remaining element being equal to one, and

concentrating on the recursive representation of γk+1 (Hk+1Xk+1) instead of

γk+1 (Hk+1), it can be shown by an argument similar to the one above that the

recursive representation of γk+1 (Hk+1Xk+1) introduces the term γk

(
HkXkX

′
k

)
.

Writing this in terms of standard basis vectors, we have
∑N

i=1〈γk (HkXk) , ei〉eie
′
i.

It is evident from this representation that the estimate for γk+1 (Hk+1Xk+1) can

be recursively expressed in terms γk (HkXk).

In order to eliminate the additional Xk+1, we make the following observation.

Denote by 1 the vector whose every element is one: (1, 1, . . . , 1)
′ ∈ RN . Then

〈Xk, 1〉 =
∑N

i=1〈Xk, ei〉 = 1. This means that we can represent γk (Hk) by:

〈γk (HkXk) , 1〉 = γk (Hk〈Xk, 1〉) = γk (Hk) . (3.54)

In other words, the unnormalized estimate γk (Hk) is obtained by summing all

the elements of γk (HkXk). In this way, by providing a recursive representation

of γk+1 (Hk+1Xk+1) and then summing both sides over all its elements, the

problem of the appearance of the additional Xk terms can be circumvented.

Turning our attention to the denominator in equation (3.53), we can sub-

stitute Hk = 1 in equation (3.54) to obtain:

γk (1) = 〈γk (Xk) , 1〉 = E
[
Λk |Υk

]
=

N∑
i=1

qk (ei)

88



Section 3.4 Fundamental Values

using the notation in the previous section. Thus, the normalizing term γk (1) in

equation (3.53) can be obtained by simply summing all the elements of γk (Xk),

which is the same as the normalizing factor introduced in the previous section.

We wrap up this section by further specifying the general process H, while

still retaining greater generality than the special case shown in the previous

section. Using the same time index k ≥ 1, assume Hk is a scalar-valued process

of the form:

Hk+1 =
k+1∑

l=1

(αl + 〈βl, Vl〉+ 〈δl, Yl〉)

= Hk + αk+1 + 〈βk+1, Vk+1〉+ 〈δk+1, Yk+1〉, (3.55)

where Vl = Xl −AXl−1 and αl, βl, δl are Ξ-predictable processes of appropriate

dimensions, i.e. αl, βl, δl are Ξl−1-measurable, αl is scalar, βl is N -dimensional,

and δl is M -dimensional. We simplify our notation in the following theorem by

writing for any Ξ-adapted process φk, k ∈ N:

γm,k (φm) = E
[
ΛkφmXk |Υk

]
. (3.56)

Theorem 3.4.9 (General Recursive Filter) For 1 ≤ j ≤ M write cj = Cej =

(c1j, . . . , cMj)
′
for the jth column of C = (cij) and aj = Aej = (a1j, . . . , aNj)

′

for the jth column of A = (aij). Then, the following result holds:

γk+1,k+1 (Hk+1) =
N∑

j=1

cj (Yk+1) {〈γk,k (Hk) + γk+1,k (αk+1 + 〈βk+1, Yk+1〉) , ej〉aj

+
[
diag (aj)− aja

′
j

]
E

[〈ΛkXk, ej〉βk+1 |Υk+1

]}
. (3.57)

A proof following Elliott et al. (1995) is provided in the Appendix.

The estimator of the state which was derived in equation (3.50) is simply a

special case of the representation in equation (3.57). To see this, take Hk+1 =

H0 = 1, αl = 0, βl = 0, and δl = 0. Applying theorem (3.4.9) we obtain the

unnormalized recursive filter in equation (3.50) for qk = (qk (e1) , . . . , qk (eN))

in vector form:

γk+1,k+1 = qk+1 =
N∑

j=1

cj (Yk+1) 〈qk, ej〉aj. (3.58)

The normalized conditional probability of the state is then:

pk = qk〈qk, 1〉−1. (3.59)
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3.4.2.6 Discrete States and Continuous-Range Observations

Although quite general in nature, the results in the previous section can only

be applied under a very restricted set of circumstances. Namely, we considered

problems, in which both the hidden signal process and the observation process

could take values in a discrete set. In practical applications this proves quite

restrictive. For instance, our specification of the observed dividend process

in equation (3.14) used a mean-reverting square root process, while in equa-

tion (3.17) this was accomplished by means of a geometric Ornstein-Uhlenbeck

process.

The common feature of these two dividend specifications is the modeling

of the uncertainty in the economy by means of the Wiener process W (t). Its

independent and normally distributed increments imply that at any point in

time the process can take an uncountably infinite number of values. Conse-

quently, the model with a discrete observation space presented in the previous

sections cannot be used to solve the problem of estimating conditional proba-

bilities of the two states of each industry on the basis of the observed dividend

realizations, when the dividend processes are specified as in equations (3.14)

and (3.17).

These deficiencies can be remedied by using a model with discrete states

but continuous-range observations. A popular way to do this is to consider a

discrete-time, finite-state Markov chain, which is observed through a real- or

vector-valued function subjected to noise (see Elliott et al., (1995)). For our

particular problem, considering Gaussian noise is sufficient, however, consider-

ing observations with ”colored noise”, i.e. noise terms that are correlated across

time, is also possible.

The structure of the following sections follows the sequence laid out by the

presentation of the model with discrete observations. The main analytical tool

is again a discrete time version of Girsanov’s theorem and change of measure.

In a similar fashion to the discrete observations case, a new probability measure

P will be constructed, however, in this case the components of the observation

process will be N (0, 1) i.i.d. random variables under P . Generally, the exten-

sion of the results in the discrete observations case to a setting with continuous

observations is relatively straightforward. Most of the results will have equiva-

lents in continuous observations. Some modifications will be necessary in order

to accommodate the different specification of the observation process. In the

presentation below, we continue following Elliott et al. ((1995)).
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3.4.2.7 Specification of the State and Observation Processes

As before, all processes are defined on a complete probability space (Ω, Σ, P ).

The index parameter k takes values in N. Denote by {Xk, k ∈ N} the finite-state

Markov chain representing the signal process. Using the same correspondence

between a general state space and a set of unit vectors, we represent the state

space of X by the set of unit vectors:

SX = {e1, e2, . . . , eN} , ei = (0, . . . , 0, 1, 0, . . . , 0)′ ∈ RN .

The initial state X0 is assumed given or its distribution known. Similarly to

the previous sections, X is assumed to be a homogeneous Markov chain:

P (Xk+1 = ej|Σk) = P (Xk+1 = ej|Xk) .

Assume X is not observed directly, but rather through an observation pro-

cess {yk, k ∈ N}. Also, in order to simplify calculations, let y be scalar-valued.

Under P , the state space equations of the discrete state, continuous observation

hidden Markov model are as follows:

Xk+1 = AXk + Vk+1,

yk+1 = c (Xk) + σ (Xk) wk+1. (3.60)

In the above, assume y is a real-valued process. {wk} is a sequence of zero mean,

unit variance normally distributed N (0, 1) i.i.d. random variables. Because

Xk ∈ SX is an N-dimensional vector, the functions c (·) and σ (·) are determined

by corresponding vectors c = (c1, c2, . . . , cN)′ and σ = (σ1, σ2, . . . , σN)′ in RN .

Since we designated y to be a scalar, what we mean by the notation c (Xk) and

σ (Xk) is 〈c,Xk〉 and 〈σ,Xk〉 respectively, where 〈 , 〉 denotes the inner product

in RN .

It is assumed σi 6= 0, so without loss of generality we can assume σi > 0,

1 ≤ i ≤ N . As in the previous sections, we shall denote by {Σk} , k ∈ N the

complete filtration generated by X. Likewise, {Υk} , k ∈ N shall denote the

complete filtration generated by y and {Ξk} , k ∈ N – the complete filtration

generated by both X and y.

3.4.2.8 Conditional Expectations from First Principles

In this section we take a brief excursion and try to solve the problem we have

directly by deriving the conditional distribution of Xk given Υk from first prin-

ciples only, without resorting to the reference probability method. While this

turns out to be possible, it will become evident why the reference probability

method is still computationally and methodologically superior.
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First note that since wk, k ∈ N are N (0, 1) i.i.d. random variables, wk is

independent of Ξk and hence of Υk ⊂ Ξk.

For any t ∈ R we have the conditional distribution:

P (yk+1 ≤ t |Υk ) =
N∑

i=1

P (σiwk+1 ≤ t− ci) P (Xk = ei |Υk ) .

We introduce the following notation: denote the conditional expectation of the

signal process by X̂k = E [Xk |Υk ] and write φi (x) = (2πσi)
− 1

2 exp
(
−x2

2σ2
i

)
for

the N (0, σi) density. Then, the above conditional distribution can be rewritten

as follows:

P (yk+1 ≤ t |Υk ) =
N∑

i=1

〈X̂k, ei〉
∫ t−ci

−∞
φi (x) dx.

This follows from the fact that Xk is a simple random variable and hence prob-

abilities and expectations are interchangeable. The probability of Xk being in

state j, therefore, is the same as the j-th element of the conditional expecta-

tion of Xk (see property (3.23)). Since the probability at the left tail of the

distribution at −∞ is zero, the conditional density of yk+1 given Υk is:

N∑
j=1

〈X̂k, ej〉φj (t− cj) .

Also, the joint distribution of the signal and observation processes is given

by:

P (Xk = ei, yk+1 ≤ t |Υk ) = P (Xk = ei |Υk ) P (σiwk+1 ≤ t− ci)

= 〈X̂k, ei〉
∫ t−ci

−∞
φi (x) dx.

Then, a straightforward application of Bayes’ rule yields:

E [〈Xk, ei〉 |Υk+1 ] = P (Xk = ei |yk+1, Υk )

=
〈X̂k, ei〉φi (yk+1 − ci)∑N

j=1〈X̂k, ej〉φj (yk+1 − cj)
. (3.61)

Note that we now have φj (yk+1 − cj) instead of φj (t− cj) because we know

that the observation yk+1 has occurred. The numerator is then simply the

joint probability of the signal process being in state i and obtaining a value

for the observation process at least as large as the quantity we have observed –

yk+1. Unlike the case with discrete observations, here we cannot simply use the

probability that the observation process is exactly equal to yk+1 since yk+1 ∈ R
and hence the probability of it being exactly equal to any one value is zero.

Equation (3.61) above expressed the conditional probability of the signal

process being in one of its possible states i, or equivalently, the conditional
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expectation of a single element of the vector Xk. Therefore, it is not difficult

to obtain the conditional probability of the entire vector Xk by multiplying the

above expression by all the unit vectors corresponding to each of the states of

Xk and summing them:

E [Xk |Υk+1 ] =
N∑

i=1

E [〈Xk, ei〉 |Υk+1 ] ei

=

∑N
i=1〈X̂k, ei〉φi (yk+1 − ci) ei∑N
j=1〈X̂k, ej〉φj (yk+1 − cj)

. (3.62)

Finally, we can express this conditional expectation as a recursive filter for

X̂k as is demonstrated in the following theorem:

Theorem 3.4.10 (Recursive Filter for X̂k)

X̂k+1 = E [Xk+1 |Υk+1 ] =

∑N
i=1〈X̂k, ei〉φi (yk+1 − ci) Aei∑N

j=1〈X̂k, ej〉φj (yk+1 − cj)
. (3.63)

A short proof is provided in the Appendix. From this representation, it can

be seen right away what the main problem with this approach is. Equation

(3.63) clearly indicates that the recursive relation for X̂k+1 is not linear in X̂k.

Therefore, in order to derive a linear recursive filter, in the following sections

we utilize the reference probability approach in a similar way to the method

that was shown in the discrete observations case.

3.4.2.9 Change of Measure for Continuous-Range Observations

Let w (·) be a real random variable with density φ (w), and let c and σ be known

constants. Write y (·) = c + σw (·) for the observation process.

The general idea is the same as in the discrete observations case – a new

probability measure P is introduced, such that under P , not the noise term

w (·), but the whole observation process y (·) has density φ. This is accomplished

by introducing a density λ, such that dP
dP

= λ. In other words:

P (y ≤ t) =

∫ t

−∞
φ (y) dy (3.64)

=

∫

Ω

Iy≤t dP

=

∫

Ω

Iy≤tλ dP

=

∫ +∞

−∞
Iw≤ t−c

σ
λ (w) φ (w) dw

=

∫ t

−∞
λ (w) φ (w)

dy

σ
. (3.65)
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The last equality holds since y (·) = c+σw (·) and hence dy
dw

= σ, so the change

of the limits of integration is valid. Therefore, using equations (3.64) and (3.65),

φ (y) and λ (w) φ(w)
σ

are equivalent, and therefore it must be that:

λ (w) =
σφ (y)

φ (w)
.

As was discussed in the section on the specification of the model with

continuous-range observations, on the probability space (Ω, Σ, P ), the obser-

vation process {yk} , k ∈ N has the form yk+1 = 〈c,Xk〉 + 〈σ,Xk〉wk+1, with

wk ∼ N (0, 1) and independent. Denote the N (0, 1) density by φ (·). Then, the

density used to specify the probability measure P becomes:

λl =
〈σ,Xl〉φ (yl)

φ (wl)
, l ∈ N, (3.66)

Λ0 = 1,

and

Λk =
k∏

l=1

λl, k ≥ 1.

Here l and k refer to time indices. The numerator in equation (3.66) is a scalar.

At each time l it will correspond to the element of Xl which is equal to one.

As we did in the section on the discrete observations case, we define the new

probability measure P by setting the restriction of the Radon-Nikodym deriva-

tive to Ξk equal to Λk:
dP
dP

∣∣∣
Ξk

= Λk. Again, the existence of P is guaranteed by

Kolmogorov’s Extension Theorem.

The following lemma confirms that P is specified in a way, which is consis-

tent with the motivation for its introduction.

Lemma 3.4.11 (Distribution of yk under P ) Under P the observation process

{yk} is a sequence of N (0, 1) i.i.d. random variables.

As usual, the proof is to be found in the Appendix.

Similarly to what we did in the section on change of measure for the discrete

observations case, the last thing that needs to be checked is that the new prob-

ability measure P , specified above, changes the distribution of the observations

yk only, while preserving the distribution of the underlying signal process Xk.

This is formalized in the following lemma:

Lemma 3.4.12 (Distribution of Xk under P ) Under both probability measures

P and P , the signal process X is a Markov process, with a transition matrix A

and initial distribution p0.
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A proof is provided in the Appendix. Albeit longer, it follows the same logic

as its discrete observations equivalent. Note that we did not provide a separate

lemma for the above result in the section dealing with discrete observations.

This was because the result followed as a natural consequence of previously

proven theorems. In this section, we did not provide separate theorems for all

those ancillary results. Rather, they will be included in the proof of lemma

(3.4.12).

Having defined the specification of the new probability measure P , and hav-

ing established its properties, the next step, when using the reference probability

method, is the translation of results back to the original probability measure

P . This procedure bears many similarities with the discrete observations case

discussed above, and hence the discussion on the reverse change of measure

presented below will be relatively brief, focusing mainly on the important dis-

tinctions between the two cases.

3.4.2.10 Reverse Change of Measure for Continuous-Range
Observations

Having shown how the filtering task we are interested in can be greatly sim-

plified by introducing the new probability measure P , and thus making the

distribution of the observation process {yk} much more analytically tractable,

we proceed by going back to the original probability measure, under which

yk = 〈c,Xk〉 + 〈σ,Xk〉wk, where wk ∼ N (0, 1) and are also i.i.d. random

variables.

To this end, suppose we start with a probability measure P on (Ω, Σ), such

that under P the following statements are true:

1. {Xk} , k ∈ N, is a Markov chain with a matrix of transition probabilities

A, such that Xk+1 = AXk + Vk+1, where E [Vk+1 |Σk ] = 0, and

2. {yk} , k ∈ N, is a sequence of N (0, 1) i.i.d. random variables (in particular,

independent of Xk).

In the previous section, it was shown that such a probability measure exists,

and its construction starting from P was discussed in detail. We now wish to

do the opposite and specify how a probability measure P can be constructed,

starting from P , such that under P the underlying signal process will retain its

distribution, but the observation process will be translated back to its original

definition. That is, under P , we wish to have:

wk+1 :=
yk+1 − 〈c,Xk〉

〈σ,Xk〉 , k ∈ N,
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where {wk} is a sequence of N (0, 1) i.i.d. random variables. This defini-

tion is equivalent to the original formulation of the observation process with

continuous-range observations: yk+1 = 〈c,Xk〉+ 〈σ,Xk〉wk+1.

In order to construct P from P we introduce the inverses of λl and Λk:

λl = λ−1
l =

φ (wl)

〈σ,Xl−1〉φ (yl)
, l ∈ N,

= Λ0 = 1,

and

Λk =
k∏

l=1

λl, k ≥ 1.

Define P by setting the restriction of the Radon-Nikodym derivative to Ξk

equal to Λk, i.e. dP
dP

∣∣
Ξk

= Λk. Obviously, with this specification, in order for

the construction of P using a product of the factors λl to be well-defined, the

restriction 〈σ,Xl−1〉 6= 0 needs to hold.

As was mentioned in the discrete observations case, it is standard to make

the assumption that the observation process has nonsingular noise, which en-

sures that the above formulation of P is well-defined. Furthermore, this assump-

tion is appropriate not only from a technical perspective but from a modeling

viewpoint as well.

To see this, note that if the components of the function c (·) are all different

and 〈σ,Xk〉 is indeed equal to zero, then observing yk+1 = cr, for example,

implies with certainty that Xk = er. That is, one only needs to wait for one

time period before learning the state of the signal process in the immediate

past with certainty, which contradicts the concept of a hidden Markov model

(i.e. the underlying signal process is unobservable).

As we did in the preceding sections, we now prove several properties of

the probability measure P in order to make sure that its specification above

correctly changes the distribution of the observation process. Unlike results

in the previous sections, Elliott et al. (1995) do not provide any details on

the results that will follow in this section. In the statement and proofs of the

theorems below, we have borrowed ideas from the example of a measure change

for linear systems presented in Aggoun & Elliott (2004) with some adjustments.

First, we combine into one theorem some important properties for Λk and

λk under P :

Lemma 3.4.13 (Properties of Λk and λk under P ) The process
{
Λk

}
, k ∈ N,

is a P -martingale with respect to the filtration {Ξk}.

See the Appendix for a proof.
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Then, we make sure P changes the distribution of the observation process

appropriately:

Lemma 3.4.14 (Distribution of wk under P ) Under the probability measure

P , the {wk} , k ∈ N, is a sequence of N (0, 1) i.i.d. random variables.

The proof follows in the Appendix.

In the remainder of the sections on Bayesian estimation, for greater sim-

plicity, we shall work under P and shall then translate the estimation results

back to P . As was discussed above, the main tenet of the reference probabil-

ity method is to suppose that all processes are initially defined on an “ideal”

probability space
(
Ω, Σ, P

)
. In the section dealing with the change of measure,

it was shown that such a probability measure exists, and its construction and

properties were discussed at length.

Then, in the section on the reverse change of measure, we discussed how

to construct the probability measure P , starting from P , such that under P

the observed real-world model dynamics, as summarized in equation (3.60), will

hold. This allows the estimation problem to be solved under the idealized prob-

ability measure P , taking full advantage of the independence of the observation

process under P , and then the results are translated back to the real-world

measure P by means of the conditional Bayes theorem (3.4.3) or a version of

it.

In the following two sections, we follow the structure of our discussion of

the discrete observations case: firstly, we give formulae for the calculation of

unnormalized state estimates, and then we normalize them in order to obtain

the conditional probabilities of the signal process being in a particular state,

given a realization of the observation process. We also extend our analysis to

include a general formula for the unnormalized recursive filter for a sequence of

arbitrary adapted random variables.

3.4.2.11 Unnormalized Estimates and Conditional Probabilities:
Continuous-Observations Case

In order to estimate the state of the signal process, given a realization of the

observation process and an assumed model of the dynamics of the state and

observation processes, we wish to evaluate the expectation E [Xk |Υk ]. Since

the signal process Xk is a simple random variable, we shall use the terms “ex-

pectation” and “probability” interchangeably. This, however, will not be true

in the subsequent section.

From a version of the conditional Bayes theorem, we have:

E [Xk |Υk ] =
E

[
ΛkXk |Υk

]

E
[
Λk |Υk

] . (3.67)
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Denote the vector of unnormalized conditional probabilities of the signal process

being in each of its possible states at time k, given the history of observations

up until and including time k, by:

qk := E
[
ΛkXk |Υk

] ∈ Rn. (3.68)

Also, define the following quantities:

ψj (yk+1) :=
φ

(
yk+1−〈c,ej〉
〈σ,ej〉

)

〈σ, ej〉φ (yk+1)
, (3.69)

B (yk+1) :=




ψ1 (yk+1)
. . .

ψN (yk+1)


 , (3.70)

Γ0,k := B (yk) AB (yk−1) AB (yk−2) . . . AB (y1) . (3.71)

Note that the definition of ψj (yk+1) above is very similar to the definition of

λk+1 given above. The only difference is that instead of relying on the state of

the signal process Xk to choose a component of c (·) and σ (·) respectively, each

ψj (yk+1) explicitly chooses the j-th element of these vectors. These ψj (yk+1) are

then arranged along the main diagonal of the N ×N diagonal matrix B (yk+1).

Finally, Γ0,k defines the recursive relation that can be used in order to obtain

the conditional probability of the signal process at time k starting from the

prior q0.

Using this notation, the following result can be derived:

Lemma 3.4.15 (Recursive Filter - Continuous-Range Observations) The vec-

tor of unnormalized conditional state probabilities at time k + 1, qk+1, can be

computed from the conditional state probabilities at time k, qk, using the recur-

sion:

qk+1 = B (yk+1) Aqk (3.72)

= Γ0,kq0.

The proof is provided in the Appendix.

It is straightforward to find an expression for the conditional probability

that the signal process is in a specific state simply by computing the result from

the matrix and vector multiplications in equation (3.72). Denote by qk (ej) :=

E
[
Λk〈Xk, ej〉 |Υk

]
the conditional probability of the signal process being in

state j at time k. Then, qk+1 (ej) is the jth element of vector qk+1. A short

calculation shows that the conditional probability of the signal process being

in state i at time k + 1 is given by:

qk+1 (ei) =
N∑

j=1

ψi (yk+1) aijqk (ej) . (3.73)
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Intuitively, this result is equivalent to the formula we obtained for the model

with discrete-range observations. To see this, consider the interpretation of each

of the terms in equation (3.73). Under the probability measure P , the noise

terms {wk} are a sequence of N (0, 1) i.i.d. random variables. Since we denoted

the standard normal density by φ (·), the term φ (wk) gives the probability of

occurrence of the noise term wk. Conversely, under P , the observation process

{yk} is a sequence of N (0, 1) i.i.d. random variables, and φ (yk) gives the

probability of occurrence of the observation process value under P .

Consequently, what the quantity ψj (yk+1) =
φ

(
yk+1−〈c,ej〉

〈σ,ej〉

)

〈σ,ej〉φ(yk+1)
really represents

is the probability of occurrence of the value of the observation process yk at

time k under the real-world probability measure P . The other two terms in

equation (3.73) have the same interpretation as before. That is, equation (3.73)

computes the probability of the signal process being in state i at time k + 1

by taking the conditional probability of the signal process being in each one of

its states j at time k, multiplying this by the transition probability from each

of the states j to state i, further multiplying this product by the probability

of observing the realized value of the observation process at time k + 1, and

finally summing these products over each of the N possible states of the signal

process. The similarities between the unnormalized state estimates for the two

cases – discrete-range and continuous-range observations – is summarized in

the tables below.

Table 3.3: Unnormalized State Estimates: Discrete-Range Observations
Vector Form qk+1 = A diag (qk) c(·) (Yk+1)

Scalar Form qk+1 (er) =
∑N

j=1 qk (ej) arjM
∏M

i=1 c
Y i

k+1

ij

Table 3.4: Unnormalized State Estimates: Continuous-Range Observations
Vector Form qk+1 = B (yk+1) Aqk

Scalar Form qk+1 (ei) =
∑N

j=1 ψi (yk+1) aijqk (ej)

Once the unnormalized state estimates are computed, then it is trivial to obtain

the conditional probabilities of the signal process being in any of its possible

states. This is achieved by merely normalizing the unnormalized estimates by

dividing them by E
[
Λk |Υk

]
. This is indeed a normalization since, as in the

discrete observations case, we have:

N∑
i=1

qk (ei) = E

[
Λk

N∑
i=1

〈Xk, ei〉 |Υk

]
= 〈qk, 1〉 = E

[
Λk |Υk

]
,
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since
∑N

i=1〈Xk, ei〉 = 1. In the above, as in the previous sections, the notation 1

denotes a vector, whose elements are all one: (1, 1, . . . , 1)′ ∈ RN . As before, we

now present a generalized version of the unnormalized state estimate formula

and show that equation (3.72) is a special case of this more general result.

3.4.2.12 A General Unnormalized Recursive Filter:
Continuous-Observations Case

In this section we extend the analysis above and consider the conditional ex-

pectations of arbitrary random variables, specified in a much more flexible way.

We will keep most of the notation from the equivalent section, which considered

this problem within the context of discrete-range observations.

Let {Hk} , k ∈ N, be any sequence of adapted, for example to the filtration

{Ξk}, random variables. We shall write:

γk (Hk) = E
[
ΛkHk |Υk

]
. (3.74)

That is, γk (Hk) is the unnormalized conditional expectation of the random

variable Hk given Υk. Note, that unlike the previous section, here we cannot

consider γk (Hk) to be a conditional probability.

Using the conditional Bayes theorem for sequences of random variables in

lemma (1.4.4), we can write:

Ĥk := E [Hk |Υk ] =
E

[
ΛkHk |Υk

]

E
[
Λk |Υk

] =
γk (Hk)

γk (1)
. (3.75)

Again, we shall assume that the initial distribution for H is given: γ0 (H0) =

E [H0]. This will provide the initial value for the recursions.

In order to simplify calculations, we shall assume that {Hk} , k ∈ N, is a

sequence of scalar random variables. Therefore, we can write the first differences

of the random variables as:

∆Hk+1 = Hk+1 −Hk, Hk+1 = Hk + ∆Hk+1,

and therefore:

γk+1 (Hk+1) = E
[
Λk+1Hk |Υk

]
+ E

[
Λk+1∆Hk+1 |Υk+1

]
.

Consider the first term on the right-hand side:

E
[
Λk+1Hk |Υk

]
= E

[
ΛkHkλk+1 |Υk+1

]

= E


ΛkHk

φ
(

yk+1−〈c,Xk〉
〈σ,Xk〉

)

〈σ,Xk〉φ (yk+1)
|Υk+1


 . (3.76)
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In order to avoid cumbersome notation, write:

Γ(·) (yk) :=
φ

(
yk−c(·)

σ(·)

)
e(·)

σ(·)φ (yk)
.

We have already encountered the fact that
∑N

i=1〈Xk, ei〉 = 1 on multiple oc-

casions. Also, note that the yn, 1 ≤ n ≤ k + 1, are known, since we are

conditioning on Υk+1, and this includes all observations of the process {yk} up

until and including time k + 1. Consequently:

E
[
Λk+1Hk |Υk+1

]
=

N∑
i=1

E
[
ΛkHk〈Xk, Γ

i (yk+1)〉 |Υk+1

]

=
N∑

i=1

〈γk (HkXk) , Γi (yk+1)〉.

The first equality is just an equivalent representation of the quantity in equation

(3.76): Γi (yk+1) is a vector of dimension N , whose elements are all zero apart

from the ith element, which is equal to
φ
(

yk+1−〈c,Xk〉
〈σ,Xk〉

)

〈σ,Xk〉φ(yk+1)
. On the other hand, Xk

has the same structure: all of its elements apart from one are zero. The only

nonzero element is equal to one. So, the inner product will evaluate to zero in

all states but the one that Xk is in. The second equality simply uses the fact

that the only source of uncertainty in the first equality is Xk and applies the

definition of γk (·) inside the inner product operator.

Obviously, this approach to the estimation of the unnormalized conditional

expectation of Hk+1 brings about the same problem that was established in the

discrete observations case. That is, the estimate for the quantity γk+1 (Hk+1)

involves the term γk (HkXk), rather than γk (Hk), which means that it is not

possible to formulate a recursive relationship for the estimation of γk+1 (Hk+1)

using this approach.

An alternative approach, which circumvents this technical difficulty, is to ex-

amine the recursion for the quantity γk+1 (Hk+1Xk+1) instead. By an argument

similar to the above, it can be shown that the estimate for the unnormalized

conditional expectation γk+1 (Hk+1Xk+1) introduces the term:

γk

(
HkXkX

′
k

)
=

N∑
i=1

〈γk (HkXk) , ei〉eie
′
i.

That is, the estimate for γk+1 (Hk+1Xk+1) can be formulated as a recursive

relation and expressed in terms of γk (HkXk), together with other terms.

However, since the initial objective was to find a recursive formulation for the

unnormalized conditional expectation γk+1 (Hk+1), and not for γk+1 (Hk+1Xk+1),
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a procedure for the elimination of the additional Xk+1 must be introduced. It

is not difficult to accomplish this by taking advantage of the structure of Xk+1.

We proceed in the same way as in the discrete observations case. Denote by 1

the vector with each of its elements being equal to one: 1 := (1, 1, . . . , 1)′ ∈ RN .

This allows us to represent the sum of the elements of Xk+1 by
∑N

i=1〈Xk+1, ei〉 =

〈Xk+1, 1〉 = 1. Consequently we can write:

〈γk+1 (Hk+1Xk+1) , 1〉 = γk+1 (〈Hk+1Xk+1, 1〉)
= γk+1 (Hk+1〈Xk+1, 1〉) = γk+1 (Hk+1) . (3.77)

In other words, once the unnormalized conditional expectation γk+1 (Hk+1Xk+1)

is computed, the estimate γk+1 (Hk+1) is obtained by summing the elements of

γk+1 (Hk+1Xk+1).

Next, consider the denominator in equation (3.75). The methodology shown

in equation (3.77) can be used in order to evaluate the quantity E
[
Λk |Υk

]
as

well. To this end, by taking Hk = 1 in equation (3.77), we obtain:

γk (1) = γk (〈Xk, 1〉) = 〈γk (Xk) , 1〉
= E

[
Λk |Υk

]
.

That is, even in the case when we are considering the conditional expectation

of an arbitrary random variable Hk, the normalizing factor to be applied to the

unnormalized conditional expectation γk (Hk) is still the sum of the elements

of the unnormalized conditional expectation γk (Xk), which was the subject of

the discussion in the previous section.

We finalize the discussion in this section by formulating a more specific,

though general, specification of the process {Hk} and deriving a recursive rep-

resentation of its conditional expectation. The same terminology and notation

as in previous sections will be used: i.e. a process {φk} will be called predictable

with respect to the filtration Ξk if φk is measurable with respect to Ξk−1 at each

time point k. The following theorem gives a concrete specification of the process

{Hk} and derives a recursive formula for its conditional expectation.

Theorem 3.4.16 (General Recursive Filter - Continuous-Range Observations)

Let {Hk} be a scalar Ξ-adapted process of the form:

Hk+1 = Hk + αk+1 + 〈βk+1, Vk+1〉+ δk+1f (yk+1) , k ≥ 1,

where H0 is Σ0-measurable. Here, Vk+1 = Xk+1 − AXk, f (·) is an arbitrary

scalar-valued function, and α, β, δ are Ξ-predictable processes of appropriate

dimensions; i.e. α and δ are scalar-valued, while β is an N-dimensional vector
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process. Then, we have the following recursive relation:

γk+1 (Hk+1Xk+1) := γk+1,k+1 (Hk+1)

=
N∑

i=1

{〈γk (HkXk) , Γi (yk+1)〉ai (3.78)

+ γk

(
αk+1〈Xk, Γ

i (yk+1)〉
)
ai

+ γk

(
δk+1〈Xk, Γ

i (yk+1)〉
)
f (yk+1) ai

+
(
diag (ai)− aia

′
i

)
γk

(
βk+1〈Xk, Γ

i (yk+1)〉
)}

,

where ai = Aei.

As discussed above, the final step in obtaining γk+1 (Hk+1) from equation (3.78)

is to sum all elements of γk+1 (Hk+1Xk+1). This unnormalized estimate is then

divided by the sum of the components of γk+1 (Xk+1) in order to obtain the con-

ditional expectation of the random variable Hk+1: E [Hk+1 |Υk+1 ] = γk+1(Hk+1)

γk+1(1)
.

A brief examination suffices to see that equation (3.78) gives the same result

as theorem (3.4.9), with the only exception that the probabilities of observing

the realizations of the observation process are different. That is, Γi (yk+1) is

substituted in equation (3.78) for cj (Yk+1) ej in equation (3.57). The proof of

theorem (3.4.16) also proceeds in exactly the same way as the proof of theorem

(3.4.9) and is therefore omitted. Furthermore, taking Hk = H0 = 1 and αk+1 =

0, βk+1 = 0, and δk+1 = 0 in theorem (3.4.16) yields the special case result

discussed in lemma (3.4.15) in the previous section.

Having discussed the relevant theoretical background to the problem of re-

cursive state estimation in hidden Markov models, we now proceed to the appli-

cation of the result in lemma (3.4.15) to the problem of estimating conditional

probabilities of the states of each industry from observations of the dividend

process realizations. We pay attention to some technical difficulties in applying

equation (3.72) within the context of our model. Furthermore, we also provide

a short comparison of two alternative Bayesian updating algorithms and their

computational characteristics.

3.4.2.13 Comparison of Two Bayesian Updating Algorithms and
Calculation of Fundamental Values

Apart from the theory on state estimation presented above, the classic works

on estimation and control of hidden Markov models discuss a number of ad-

ditional estimation problems. For instance, Elliott et al. (1995) also demon-

strate derivations for smoothed state estimates, estimators for the number of

state transitions, for the amount of time spent in a particular state, as well as

estimators for the observation process. The expectation maximization (EM)
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parameter reestimation procedure is also presented for the cases, in which the

model parameters are not given a priori, but have to be estimated as well.

Our task, however, is much narrower and conceptually simpler. Firstly, note

that according to the assumptions of our model, at time tn investors can only

observe dividend realizations up until and including time tn. Since the rest

of the dividend realizations until terminal time T are unknown, a derivation

of smoothed state estimates is not possible. Furthermore, we assume that in-

vestors know the specification of the dividend generating processes, as well as

the model parameters, and only have to estimate the probability of being in

each of the states of the industry given dividend data. Therefore, EM parame-

ter reestimation is unnecessary within the context of our model, and we devote

this section solely to a discussion on the application of the theoretical results,

presented in the sections above, to the estimation of regime probabilities for

the industry, conditional on realizations of the dividend process. Albeit theo-

retically straightforward, one may encounter certain technical difficulties with

this task.

As in the theoretical sections above, let us begin with the specification of

the state and observation processes in our model. This was done in the section

on specifying the uncertainty in the economy, so the formulations we need will

be reiterated here.

The state process in our model describes the evolution of the two states of

each industry over time. It conforms to the theoretical description provided

in the set of equations (3.60): Xk+1 = AXk + Vk+1. That is, the evolution of

the state of each industry from time k to k + 1 can be described in terms of

a probability distribution plus an unbiased error term. Since we modeled the

time between regime switches as an exponentially distributed random variable,

the probability distribution, specified by the matrix of transition probabilities

A, has the following form:

A =

[
e−λ(tn+1−tn) 1− e−λ(tn+1−tn)

1− e−λ(tn+1−tn) e−λ(tn+1−tn)

]
,

where:

P
(
µtn+1 = µ |µtn = µ

)
= e−λ(tn+1−tn)

P
(
µtn+1 = µ

∣∣µtn = µ
)

= e−λ(tn+1−tn)

P
(
µtn+1 = µ

∣∣µtn = µ
)

= 1− e−λ(tn+1−tn)

P
(
µtn+1 = µ |µtn = µ

)
= 1− e−λ(tn+1−tn),

and where λ and λ are two different intensity parameters that model the fact

that the economy generally spends differing amounts of time in its two regimes.
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Next, in order to specify the observation process, we need discretized ver-

sions of the stochastic differential equations that describe the dividend generat-

ing processes. These were provided in the section on specifying the uncertainty

in the economy. We used a mean-reverting square root process and a geometric

Ornstein-Uhlenbeck process in order to model the evolution of the dividend

intensity over time, as well as Milstein’s scheme in order to discretize these pro-

cesses. Thus, the discretized version of the mean-reverting square root process

that we obtained was:

δk,tn+1 = δk,tn + α (µk,tn − δk,tn) (tn+1 − tn) + β
√

δk,tn

(
Wtn+1 −Wtn

)

+
1

4
β2

((
Wtn+1 −Wtn

)2 − (tn+1 − tn)
)

, (3.79)

and the discretized version of the geometric Ornstein-Uhlenbeck was:

δk,tn+1 = δk,tn + α (µk,tn − δk,tn) δk,tn (tn+1 − tn) + βδk,tn

(
Wtn+1 −Wtn

)

+
1

2
β2δk,tn

((
Wtn+1 −Wtn

)2 − (tn+1 − tn)
)

. (3.80)

Although we considered a very general and flexible hidden Markov model in

the theoretical sections above, it quickly becomes evident that the theoretical

results derived there are not immediately applicable to our model. This is so,

because even though we discussed a general specification of the state process

in terms of the sequence of arbitrary random variables {Hk}, the theoretical

sources had little to offer in terms of generality of the observation process.

Thus, the formulation of the discretized dividend processes in equations (3.79)

and (3.80) clearly do not conform to the assumed theoretical specification in

equation (3.60). In both of these discretizations, the observation process has

the form of both an autoregressive process and a hidden Markov model. Fur-

thermore, the last terms on the right clearly do not conform to the theoretical

assumption of unbiased and independent, normally distributed error terms.

A quick way to circumvent this problem is to consider the Euler-Maruyama

method for discretization of stochastic differential equations (see e.g. Kloeden

& Platen (1999)) instead. This will only include the first two terms on the right-

hand side in equations (3.79) and (3.80), which will bring the specification of the

discretized dividend process closer to the structure of the observation process

assumed in the theoretical sources. Furthermore, we can focus on the dividend

intensity increment δk,tn+1 − δk,tn instead of the dividend intensity in the next

time period. This leads to:

δk,tn+1 − δk,tn = α (µk,tn − δk,tn) (tn+1 − tn) + β
√

δk,tn

(
Wtn+1 −Wtn

)
(3.81)

for the mean-reverting square root process, and to:

δk,tn+1 − δk,tn = α (µk,tn − δk,tn) δk,tn (tn+1 − tn) + βδk,tn

(
Wtn+1 −Wtn

)
(3.82)
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for the geometric Ornstein-Uhlenbeck process.

Equations (3.81) and (3.82) now conform to the structure of the observa-

tion process defined in equation (3.60): in both equations, the first term on

the right-hand side is indeed a scalar-valued function of the the state pro-

cess {µk,tn}, while the second term is independent and identically normally

distributed with mean 0. Depending on the process, the variance of the unbi-

ased error term is either β2δk,tn (tn+1 − tn) for the mean-reverting square root

process, or β2δ2
k,tn

(tn+1 − tn) for the geometric Ornstein-Uhlenbeck process.

That is, the terms wk+1 and σ (Xk) in equation (3.60) correspond to the terms

Wtn+1 −Wtn and β
√

δk,tn or βδk,tn in equations (3.81) and (3.82) respectively.

Note that in this case the diffusion term σ (Xk) is a constant parameter rather

than a function of the state process.

Having specified the matrix of transition probabilities and shown that the

discretized dividend process conforms to the theoretical structure of the ob-

servation process, the last necessary ingredient for the application of equation

(3.72) are the probabilities of observing a certain realization of the dividend

process. Using equations (3.81) and (3.82), we can write:

δk,tn+1 − δk,tn ∼ N
(
α (µk,tn − δk,tn) (tn+1 − tn) , β2δk,tn (tn+1 − tn)

)
(3.83)

for the distribution of the dividend intensity increments when using the mean-

reverting square root process, and:

δk,tn+1 − δk,tn ∼ N
(
α (µk,tn − δk,tn) δk,tn (tn+1 − tn) , β2δ2

k,tn (tn+1 − tn)
)

(3.84)

for the geometric Ornstein-Uhlenbeck process. In other words, the increments

of the dividend intensities are normally distributed with the mean being equal

to the drift term and the variance equal to the square of the diffusion term in

the corresponding stochastic differential equations, which describe the evolution

of the dividend intensity over time.

Assume we are working with the mean-reverting square root process. Using

equation (3.83), the probability of observing a dividend intensity increment at

least as large as the one that is realized at time tn+1, on condition that the

industry is in state µ, is:

1

β
√

2πδk,tn (tn+1 − tn)
exp

(
−

(
δk,tn+1 − δk,tn − α (µ− δk,tn) (tn+1 − tn)

)2

2β2δk,tn (tn+1 − tn)

)
.

Some authors (see e.g. Fraser (2009), Rabiner (1989)) refer to such conditional

probabilities as “emission probabilities”.

We now proceed to the application of equation (3.72) within the context of

our model. Denote by p̃µ,tn+1 the unnormalized conditional probability of being
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in state µ at time tn+1 given the history of dividends up until and including time

tn+1. Similarly, denote by p̃µ,tn+1 the unnormalized conditional probability of

being in state µ at time tn+1. Some sources refer to these quantities as “forward

probabilities”, stressing their role in the so called forward algorithm used in

implementing hidden Markov models. Having obtained the two unnormalized

probabilities above, the normalized conditional probability of being in state µ

at time tn+1 is given by:

ptn+1 =
p̃µ,tn+1

p̃µ,tn+1 + p̃µ,tn+1

. (3.85)

Since we only have two states in each industry, it is sufficient to give only the

probability of one of the regimes.

Using the notation above, and assuming we are working with the mean-

reverting square root process, we can write the recursive expressions for the

unnormalized conditional probabilities p̃ as follows:

p̃µ,tn+1 =
1

β
√

2πδk,tn (tn+1 − tn)
exp

(
−

(
δk,tn+1 − δk,tn − α (µ− δk,tn) (tn+1 − tn)

)2

2β2δk,tn (tn+1 − tn)

)

×
(
ptne−λ(tn+1−tn)

)

+
1

β
√

2πδk,tn (tn+1 − tn)
exp

(
−

(
δk,tn+1 − δk,tn − α

(
µ− δk,tn

)
(tn+1 − tn)

)2

2β2δk,tn (tn+1 − tn)

)

× (
(1− ptn)

(
1− e−λ(tn+1−tn)

))
, (3.86)

and

p̃µ,tn+1 =
1

β
√

2πδk,tn (tn+1 − tn)
exp

(
−

(
δk,tn+1 − δk,tn − α (µ− δk,tn) (tn+1 − tn)

)2

2β2δk,tn (tn+1 − tn)

)

×
(
ptn

(
1− e−λ(tn+1−tn)

))

+
1

β
√

2πδk,tn (tn+1 − tn)
exp

(
−

(
δk,tn+1 − δk,tn − α

(
µ− δk,tn

)
(tn+1 − tn)

)2

2β2δk,tn (tn+1 − tn)

)

× (
(1− ptn) e−λ(tn+1−tn)

)
. (3.87)

Equivalently, if we are working with the geometric Ornstein-Uhlenbeck process,

the only change will be in the emission probabilities, in accordance with the
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distribution of the dividend intensity increments as shown in equation (3.84):

p̃µ,tn+1 =
1

βδk,tn

√
2π (tn+1 − tn)

exp

(
−

(
δk,tn+1 − δk,tn − α (µ− δk,tn) δk,tn (tn+1 − tn)

)2

2β2δ2
k,tn

(tn+1 − tn)

)

×
(
ptne−λ(tn+1−tn)

)

+
1

βδk,tn

√
2π (tn+1 − tn)

exp

(
−

(
δk,tn+1 − δk,tn − α

(
µ− δk,tn

)
δk,tn (tn+1 − tn)

)2

2β2δ2
k,tn

(tn+1 − tn)

)

× (
(1− ptn)

(
1− e−λ(tn+1−tn)

))
, (3.88)

and respectively

p̃µ,tn+1 =
1

βδk,tn

√
2π (tn+1 − tn)

exp

(
−

(
δk,tn+1 − δk,tn − α (µ− δk,tn) δk,tn (tn+1 − tn)

)2

2β2δ2
k,tn

(tn+1 − tn)

)

×
(
ptn

(
1− e−λ(tn+1−tn)

))

+
1

βδk,tn

√
2π (tn+1 − tn)

exp

(
−

(
δk,tn+1 − δk,tn − α

(
µ− δk,tn

)
δk,tn (tn+1 − tn)

)2

2β2δ2
k,tn

(tn+1 − tn)

)

× (
(1− ptn) e−λ(tn+1−tn)

)
. (3.89)

These results agree with the approach taken in other theoretical sources, such

as, for example, Fraser (2009) and Baum & Petrie (1966). In some sources

the above recursive formulation of the unnormalized conditional probabilities is

referred to as the “forward algorithm”: the first stage of the forward-backward

algorithm, which yields smoothed estimates for the conditional state probabil-

ities.

It is also important to note another potential shortcoming of this approach

to state estimation. Lack of generality with respect to the specification of the

observation process is not the only reason that might cause the estimation

approach in equations (3.86) through (3.89) to fail. Generally, the estimation

methodology laid out above is valid only under the assumption that regime

probabilities are Markovian. In our case this is true, due to the fact that we

use the exponential distribution in order to model the probabilities of regime

switches, and this distribution is memoryless. Sometimes, however, the business

cycle is modeled by means of a deterministic wave-like function. This introduces

additional dependence in the state process: for instance, for a certain value of

the state function, one needs to know if this value comes before the apex of

the business cycle or after the stage of decline has started. In such cases, the

algorithm for the estimation of conditional state probabilities presented above

will be inappropriate.

The above specification of the unnormalized conditional probabilities con-

forms well to the theoretical framework laid out in the previous sections. How-
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ever, the driving force behind the exact formulation of these unnormalized

conditional probabilities is the method chosen for the discretization of the div-

idend stochastic differential equations, since different discretizations will yield

different specifications of the observation process, and will therefore affect the

expressions for the emission probabilities.

Unfortunately, the specific processes we have chosen in order to model the

uncertainty in the economy make it difficult to rigorously justify the above

statement. Assume we are working with the mean-reverting square root process:

dδk(t) = α (µk(t)− δk(t)) dt + β
√

δk(t)dW (t). (3.90)

In general, no explicit closed form solution of the above stochastic differ-

ential equation exists (Higham & Mao (2005)). Indeed, we can try to rewrite

equation (3.90) in a more general form, which would allow the application of

standard analytical techniques for solving stochastic differential equations (see

e.g. Øksendal (2002), chapter 12). Rewrite (3.90) as:

dδk (t) = c (t, δk (t)) δk (t) dt + σ (t, δk (t)) δk (t) dW (t) ,

where

c (t, δk (t)) =
α (µk (t)− δk (t))

δk (t)

and

σ (δk (t)) =
β√
δk (t)

.

We can then proceed with the standard argument for solving stochastic differ-

ential equations of this form:

dδk (t)

δk (t)
= c (t, δk (t)) dt + σ (δk (t)) dW (t)

∫ t

0

dδk (s)

δk (s)
=

∫ t

0

c (s, δk (s)) ds +

∫ t

0

σ (δk (s)) dW (s) .

Let g (t, x) ∈ C2 ([ 0,∞ )× R). That is, g (·, ·) is a twice continuously differen-

tiable function, whose domain for the time index are the nonnegative reals.

Take g (t, x) = ln (x). Then an application of Itô’s lemma (Itô (1951))

yields:

d (ln (δk (t))) =
dδk (t)

δk (t)
− 1

2δ2
k (t)

σ2 (δk (t)) δ2
k (t) dt =

dδk (t)

δk (t)
− 1

2
σ2 (δk (t)) dt

dδk (t)

δk (t)
= d (ln (δk (t))) +

1

2
σ2 (δk (t)) dt.

Integrating both sides and substituting for
∫ t

0
dδk(s)
δk(s)

yields:

∫ t

0

c (s, δk (s)) ds +

∫ t

0

σ (δk (s)) dW (s) = ln

(
δk (t)

δk (0)

)
+

1

2

∫ t

0

σ2 (δk (s)) ds
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δk (t) = δk (0) exp

(∫ t

0

σ (δk (s)) dW (s) +

∫ t

0

(
c (s, δk (s))− 1

2
σ2 (δk (s))

)
ds

)
.

This agrees with the solution of a general Itô process in equation (12.3.32)

in Øksendal (2002). We now proceed to discretize the last equation above. The

stochastic integral will be taken in the Itô sense:

δk,tN = δk,t0exp

(
N−1∑
j=0

σ
(
δk,tj

) (
Wtj+1

−Wtj

)

+
N−1∑
j=0

[
c
(
tj, δk,tj

)− 1

2
σ2

(
δtj

)]
(tj+1 − tj)

)
.

For the stochastic term in the discretization above, the choice of a function value

in each interval of the partition is significant, since, depending on whether we

calculate the stochastic integral in the sense of Itô or Stratonovich, we will

obtain a different value. It is a well-known fact, however, that this is not true

for the Riemann integral: regardless of which function value we choose in each

interval of the partition, the upper and lower Riemann sums will converge to

the same value (see e.g. Higham (2001)). Hence, we might just as well write

c
(
tj+1, δk,tj

)
instead of c

(
tj, δk,tj

)
.

From the above discretization, we can concentrate on a single time step

only:

δk,tn+1 = δk,tnexp
(
σ (δk,tn)

(
Wtn+1 −Wtn

)

+

[
c (tn+1, δk, tn)− 1

2
σ2 (tn, δk,tn)

]
(tn+1 − tn)

)
.

Substituting for the values of the functions c (t, δk (t)) and σ (δk (t)), we obtain:

δk,tn+1 = δk,tnexp

(
β√
δk,tn

(
Wtn+1 −Wtn

)

+

[
α

(
µk,tn+1 − δk,tn

)

δk,tn

− 1

2

β2

δk,tn

]
(tn+1 − tn)

)
.

Since this is not an explicit solution, the dependence on δk,tn makes it diffi-

cult to establish the probability density of the dividend intensity increment. It

is obvious, however, that the increment is certainly not normally distributed.

Standard texts on mathematical finance provide a closed-form expression for

the conditional density of the mean-reverting square root process. For instance,

Kwok (2008) gives the probability density for the value of the process (3.90) at

terminal time T , conditional on its value at the current time t as:

p̂ (δk (T ) ; δk (t)) = ce−u−v
(v

u

) q
2
Iq

(
2 (uv)

1
2

)
,
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where

c =
2α

β2 [1− e−α(T−t)]
, u = cδk (t) e−α(T−t), v = cδk (t) , q =

2αµk (t)

β2
− 1,

and Iq denotes the modified Bessel function of the first kind of order q. Obvi-

ously, this would drastically affect the emission probabilities of δk (t) and would

therefore significantly change the recursive Bayesian updating formulae (3.86)

through (3.89).

Even though such a rigorous mathematical approach cannot be used in

order to justify a different discretization of equation (3.90), we can use some of

the intuition gained in the process and present a computational argument. In

equation (3.81), we used the Euler-Maruyama scheme for numerical simulation

of stochastic differential equations in order to solve (3.90). This solution was

of the form:

δk,tn+1 − δk,tn = α

∫ tn+1

tn

(µk (s)− δk (s)) ds +

∫ tn+1

tn

β
√

δk (s)dW (s)

≈ α (µk,tn − δk,tn) (tn+1 − tn) + β
√

δk,tn

(
Wtn+1 −Wtn

)
.

We can use our discussion on the properties of the Riemann integral above to

rewrite the above equation as:

δk,tn+1 − δk,tn = α
(
µk,tn+1 − δk,tn

)
(tn+1 − tn) + β

√
δk,tn

(
Wtn+1 −Wtn

)
. (3.91)

Another way to justify this discretization is to approximate the process

(3.90) on the interval t ∈ [tn, tn+1] by:

dδ̂k (t) = α
(
µk,tn+1 − δ̂k (t)

)
dt + β

√
δ̂k (t)dW (t) , (3.92)

where instead of treating the regime switching process as a function of time,

we make it a constant and set it equal to the value of the function at the right

interval boundary. For a small enough length of the time interval [tn, tn+1], the

approximation (3.92) will converge to the dividend intensity stochastic differen-

tial equation (3.90). This is so, because we model the amount of time between

regime switches as an exponentially distributed random variable. Therefore,

as dt → 0, the probability of a regime switch occurring during this time step

also tends to zero. In the discussion above, “small enough” means a time inter-

val of a size sufficiently small to allow the solution obtained through an Euler

discretization to converge to the solution of (3.90). We then discretize equa-

tion (3.92) using Euler-Maruyama’s scheme and obtain the same result as in

equation (3.91).

If the discretization in equation (3.91) is applied, it will change the expres-

sion for the distribution of the dividend intensity increments, and hence the
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formulae for the emission probabilities. Therefore, the recursive Bayesian up-

dating formulae (3.86) through (3.89) will also change. If the discretization in

equation (3.91) is used, the recursive expressions for the unnormalized condi-

tional probabilities p̃ become:

p̃µ,tn+1 =
1

β
√

2πδk,tn (tn+1 − tn)
exp

(
−

(
δk,tn+1 − δk,tn − α (µ− δk,tn) (tn+1 − tn)

)2

2β2δk,tn (tn+1 − tn)

)

×
(
ptne−λ(tn+1−tn) + (1− ptn)

(
1− e−λ(tn+1−tn)

))
, (3.93)

and

p̃µ,tn+1 =
1

β
√

2πδk,tn (tn+1 − tn)
exp

(
−

(
δk,tn+1 − δk,tn − α

(
µ− δk,tn

)
(tn+1 − tn)

)2

2β2δk,tn (tn+1 − tn)

)

×
(
ptn

(
1− e−λ(tn+1−tn)

)
+ (1− ptn) e−λ(tn+1−tn)

)
. (3.94)

Similarly, if we are working with the geometric Ornstein-Uhlenbeck process, the

only difference in the expressions for the unnormalized conditional probabilities

will be the different emission probabilities:

p̃µ,tn+1 =
1

β
√

2πδk,tn (tn+1 − tn)
exp

(
−

(
δk,tn+1 − δk,tn − α (µ− δk,tn) δk,tn (tn+1 − tn)

)2

2β2δ2
k,tn

(tn+1 − tn)

)

×
(
ptne−λ(tn+1−tn) + (1− ptn)

(
1− e−λ(tn+1−tn)

))
, (3.95)

and respectively

p̃µ,tn+1 =
1

β
√

2πδk,tn (tn+1 − tn)
exp

(
−

(
δk,tn+1 − δk,tn − α

(
µ− δk,tn

)
δk,tn (tn+1 − tn)

)2

2β2δ2
k,tn

(tn+1 − tn)

)

×
(
ptn

(
1− e−λ(tn+1−tn)

)
+ (1− ptn) e−λ(tn+1−tn)

)
. (3.96)

This representation of the unnormalized conditional probabilities differs some-

what in its interpretation. In equations (3.86) through (3.89), the discretiza-

tion used µk,tn , and consequently, starting from time tn, we had to consider the

emission probabilities for each of the possible two states at time tn+1. With a

discretization that uses µk,tn+1 instead, we only need to consider the emission

probability for the regime, for which we are trying to estimate a conditional

probability. The term in brackets then specifies the two different states at time

tn, from which the state process could have evolved to the corresponding regime

at time tn+1.

The motivation for using the above discretization is that equations (3.93)

through (3.96) look much more compact than their counterparts (3.86) through

(3.89). Furthermore, they seem more computationally efficient, since the expo-

nential function needs to be called only once. In order to check this initial intu-

ition, two sets of comparative simulations of the alternative recursive Bayesian
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updating specifications were performed with the same set of parameters. These

are given in the table below.

Table 3.5: Comparison of Bayesian Updating Algorithms: Parameters
Time Step Length 0.01

Investment Horizon in Years 10
Dividend Generating Process Geometric Ornstein-Uhlenbeck

Number of Assets 1
µ 0.2
µ 1.25

Starting Dividend Value 1.25
Discount Rate 0.1

The two simulations were performed with 100 and 1000 sample runs respec-

tively. Apart from the two different recursive formulae for the unnormalized

conditional probabilities, all other variables were kept identical in both cases.

That is, a specific scenario for the evolution of the regimes was given in both

cases. Furthermore, in both sets of simulations, once generated, the Brownian

increments were saved and used for both estimation approaches. This proce-

dure ensures that the results are not contaminated by the effects of randomness

and allows to compare the output from the two estimation procedures, given

identical input. The simulations with 100 and 1000 sample runs were performed

with different seeds for the random number generator, so as to rule out biases

in the results, that may have been introduced by a realization of a particular

sequence of Brownian increments.

Figure (3.1) presents the means of the two Bayesian estimators at each time

point over 100 simulation runs, as well as the actual regimes. A detail worth

noting, is that in order to increase the accuracy of the Bayesian estimators in

the initial stages of the sample runs, we extend the simulation time horizon by

200 time steps in the very beginning. This allows the Bayesian estimators to

run for a sufficient amount of time, so as to effectively “learn” the current state

and eliminate any biases introduced by a potential situation, in which the priors

are too far away from the actual regime. The motivation for this procedure will

become evident in the section on the implementation of the model.

We refer to the set of equations (3.86) through (3.89) as “theoretical Bayesian

estimators”, while the set of equations (3.93) through (3.96) will be referred to

as “approximate Bayesian estimators”.

The graphs of the Bayesian estimators show only the conditional probability

of being in the µ regime. The difference between the two means is barely no-

ticeable at this scale. Generally, however, the approximate Bayesian estimators
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Figure 3.1: Comparison of Bayesian Estimators: 100 Simulation Runs

tend to underestimate the conditional probability of being in state µ when the

state process is in µ, and overestimate this conditional probability when the

state process is in µ.

Figure (3.1) appears to support our statement that equations (3.93) through

(3.96) are a reasonable approximation for the recursive Bayesian estimators

(3.86) through (3.89). In order to further quantify this statement, we implement

a t-test for differences in means of two samples. Figure (3.2) plots the standard

error for the combined observations as a function of time. The standard error

is calculated in the standard way:

σ̂ (t) =

√
σ2

t (t)

Nt

+
σ2

a (t)

Na

,

where σ2
t (t) and σ2

a (t) denote the variances of the samples generated by the

theoretical and approximate Bayesian estimators respectively, while Nt and Na

denote the number of observations in the corresponding samples.

The t-statistic is then given by:

t̂ (t) =
µt (t)− µa (t)

σ̂ (t)
,

where µt (t) and µa (t) denote the means of the two samples. Figure (3.3) gives

the absolute value of the t-statistic as a function of time. The combined group

of observations has 198 degrees of freedom, and therefore the critical t-value

for a two-tailed test at the 5% significance level is 1.96. Since the maximum

absolute value of the t-statistic is around 0.9, the differences in the means of

the two samples are not statistically significant at any point in time.

114



Section 3.4 Fundamental Values

0 200 400 600 800 1000
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Time

S
ta

nd
ar

d 
E

rr
or

Figure 3.2: Standard Error: 100 Simulation Runs
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Figure 3.3: t-statistic: 100 Simulation Runs

Similarly, the next three figures present the same quantities for the simula-

tions with 1000 sample runs. Compared to figure (3.1), in figure (3.4), averaging

over more sample paths yields significantly smoother means of the conditional

probabilities of being in state µ. The difference between the two means re-

mains very small. Due to the large number of sample runs, however, in this

case the standard errors are significantly lower. This leads to noticeably higher

t-statistic values. Note that now there is a part of the t-statistic function, which

exceeds the 1.96 critical value, and in this portion of the graph the differences

between the two means are statistically significant. That is to say, if a researcher
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Figure 3.4: Comparison of Bayesian Estimators: 1000 Simulation Runs
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Figure 3.5: Standard Error: 1000 Simulation Runs

were to examine the data generated by the two Bayesian updating algorithms

without knowing what produced the samples, it would take a sample size as

large as 1000 observations in both groups before they would start perceiving

the differences as statistically significant. It would take a drastic increase in

sample size in order to obtain statistically significant differences at every point

in time. In other words, we know that there are systematic differences between

the two Bayesian estimators, but even using a time interval length of 0.01, these

differences are so small that it would take very large sample sizes in order to

quantify them as significant. The results from this comparison provide objec-

tive support in favour of the statement that equations (3.93) through (3.96) do
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Figure 3.6: t-statistic: 1000 Simulation Runs

indeed converge to the recursive Bayesian estimators (3.86) through (3.89) as

the length of the time intervals in the discretization decreases.

Recall that the main motivation behind the introduction of the approximate

Bayesian estimators was to increase computational efficiency. Therefore, apart

from numerically verifying the argument that the two sets of Bayesian estima-

tors are equivalent, the other important objective of the above comparison is to

examine if the approximate Bayesian estimators do indeed contribute towards

a decrease in computational effort. Table (3.6) below summarizes the execution

times for the two sets of simulations.

Table 3.6: Comparison of Bayesian Updating Algorithms: Execution Times
Bayesian Updating Algorithm 100 Runs 1000 Runs

Theoretical 6.432 seconds 59.057 seconds
Approximate 4.295 seconds 58.888 seconds

These differences are well within the normal bounds of variation in execution

time even for the same algorithm. That is, the approximate Bayesian estimator

does not materially affect the execution time of the simulations.

This can be explained by the fact that, even though the approximate Bayesian

estimator requires a single call to the exponential function, the formulae in

equations (3.93) through (3.96) are used for the calculation of the unnormal-

ized conditional probabilities. In order to calculate the normalized conditional

probabilities, both p̃µ, tn+1 and p̃µ, tn+1 need to be calculated, and since the

emission probabilities in these two cases are different, the exponential function
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needs to be called twice regardless. Consequently, since there is no signifi-

cant gain in efficiency by using the approximate Bayesian estimators, we shall

use exclusively equations (3.86) through (3.89) for the purposes of calculating

recursive unnormalized conditional probabilities.

The estimation of conditional state probabilities demonstrated above is nec-

essary in order to estimate fundamental values for each asset in the market.

Recall equation (3.20). There, we specified how fundamental values under cer-

tainty are to be computed. Certainty in the context of our model refers to

information about the underlying state of each industry. Full information is

interpreted as certainty, while partial information is interpreted as uncertainty.

There are two possible states, but as discussed in the previous sections, they

remain unobserved and must be estimated from observable economic data. Now

that we have provided a means to estimate conditional state probabilities, we

can give an expression for fundamental values under uncertainty as well.

Denote by FBtn the fundamental value of an asset under certainty at time

tn, corresponding to the µ state of the industry, and by FBtn the fundamental

value under certainty, corresponding to the µ regime. Then, the fundamental

value of risky asset k at time tn under uncertainty is given by:

FVk,tn = ptnFBk,tn + (1− ptn) FBk,tn , (3.97)

where ptn is the normalized conditional probability of being in state µ given in

equation (3.85).

3.4.2.14 Summary

In this section, we considered in detail the issue of estimating fundamental

values for the risky assets in the economy. To this end, we began by specifying

expressions for the fundamental values under the assumption of full information

about the state of each industry. These were obtained by applying Monte Carlo

techniques to the standard discounted dividends methodology. In a situation

like ours, where there are only two possible regimes, these fundamental values

under certainty can be interpreted as boundaries for the estimated fundamental

values under the assumption of partial information about the state process.

That is, depending on the estimated probabilities of being in each of the two

regimes, the estimated fundamental value under uncertainty will be somewhere

between the two boundaries set by the fundamental values under certainty.

We then proceeded to give a review of the relevant theory of state estimation

in hidden Markov models. In order to illustrate the relevant concepts and

techniques, we started with a simplified example with discrete-range states and

observations. The primary methodology used in solving the estimation problem
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was the reference probability method, which was implemented by means of

a change of measure and the conditional Bayes theorem. The results from

these sections were subsequently extended to the case of particular interest

for our purposes: discrete-range states and continuous-state observations. No

major difference in results or their interpretation was observed in the case of

continuous-range observations.

We concluded this section with a discussion on several issues arising from

the practical application of the presented state estimation algorithms. Two

alternative Bayesian estimators were presented and justified. A simulation ex-

periment was carried out with the objectives of verifying the equivalence of

the two algorithms and comparing their computational complexity. While it

was shown that the two algorithms produce equivalent results for all practical

purposes, it was decided to adopt the theoretical formulation for a Bayesian

estimator, since no significant gains in computational efficiency were observed

when using the approximate version. Finally, an expression for the estimation

of fundamental values under uncertainty was provided. Fundamental values are

a vital ingredient for the specification of investor behaviour within our model.

We now proceed to discuss in more detail how agents make their investment

decision in out stylized model of financial market dynamics.

3.5 Investment Strategies

In this section we discuss in more detail another important building block of our

model: how agents make investment decisions. We depart from the assumption

of homogeneous beliefs imposed in the framework of mean-variance optimiza-

tion, and instead allow the various agents populating the economy to pursue

behaviour consistent with their own unique expectations. In other words, each

type of investor is fully characterized by their unique preferences, which lead

to specific behaviour in the market. Since the agents’ investment decisions are

not obtained as the solution of a utility maximization problem, but are taken

as model primitives, we need to carefully specify the different types of invest-

ment behaviour, as well as the assumptions and motivation behind each such

formulation.

To this end, we use the literature on boundedly rational heterogeneous

agents as a starting point. We take the most widespread investment strate-

gies as a basis, and extend the analysis by considering several new types of

behaviour, which are well suited to modeling investment within the framework

of institutional constraints.

Generally, there exist two wide strands of research regarding the specifi-
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cation of investment behaviour in the agent-based literature. One approach,

encountered for example in Palmer et al. (1994), Palmer et al. (1999), and

Ehrentreich (2008), takes a very unrestricted, evolutionary perspective on in-

vestment behaviour and allows agent behaviour to evolve freely by means of se-

lection and mutation. The other approach, prevalent in works such as Chiarella

et al. (2007), Chiarella et al. (2009), Lux (2009), Hommes & Wagener (2009),

and Gaunersdorfer (2000), is to classify investment behaviour in several groups

and examine the market dynamics and stylized facts generated by them, the

switching of investors between the groups, as well as steady states or limit cy-

cles in investment behaviour. The specific problem we are examining in this

piece of research merits a slight departure from this approach.

In order to examine the robustness of different types of investment behaviour

in an institutional framework with minimum guaranteed liabilities and macroe-

conomic shocks, we also classify investment strategies into different groups, but

do not allow switching between them. In this way, we achieve wealth-driven

selection of the most robust strategies, since the unsuccessful ones will be driven

out of the market. We specify four broad groups of investment behaviour. In

later chapters we also examine the robustness of our results by comparing them

to two popular benchmark strategies. We keep to the types of a fundamentalist

and a trend follower (chartist), prevalent in the agent-based literature, but also

add two investment strategies based on dividend yields. The extension to the

model discussed in chapter five, adds the strategies of näıve diversification and

myopic mean-variance optimization as benchmarks. All investment strategies

explain how agents make their decisions to invest in risky assets. The exis-

tence of a risk-free asset in our model adds another dimension to investment

behaviour. Investments in the risk-free asset are not specified by means of

an explicit strategy, but follow as a consequence of the assumptions of bud-

get exhaustion and full diversification, once the agents have decided on their

allocations to the risky assets.

We begin by discussing the two dividend yield strategies. The motivation

behind specifying such types of investment behaviour is that fundamental infor-

mation, such as dividend yields, price-earnings ratios, and return on equity, are

frequently used by institutional investors in order to evaluate their potential in-

vestments. Furthermore, the regulatory framework in many countries requires

institutional investors to invest only in mature, investment-grade companies,

which tend to pay relatively stable dividends, and hence there is no real danger

that a strategy specified in terms of dividends fails to be well-defined because

of a dividend policy that does not pay out at least a portion of the company’s

earnings as dividends.
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The first investor type we specify in our model will be referred to as “näıve

dividend yield investor”. This agent invests in the risky assets by simply cal-

culating a dividend yield, subject to an appropriate normalization. Denote the

portion of the näıve dividend yield investor’s wealth to be invested in risky asset

k at time tn by λND
k,tn

. Then, λND
k,tn

will be given by:

λND
k,tn =

δk,tn (tn−tn−1)

Sk,tn−1∑K
k=1

δk,tn (tn−tn−1)

Sk,tn−1
+ r (tn − tn−1)

, (3.98)

where δk,tn denotes the dividend intensity paid by asset k between times tn−1 and

tn, whereas Sk,tn−1 is the market price of asset k at time tn−1. The investment

strategy λND
k,tn

is calculated at time tn, just before the new share price is set

that will clear the market. Recall that the order by which trading takes place

begins with formulating investment decisions, setting a market clearing price,

and then transacting at that price to rebalance the portfolio.

In practice it would be possible to formulate a dividend yield investment

decision at time tn−1 as companies usually announce their dividends a reason-

able amount of time before they pay them. However, within the confines of our

simulation study the dividend generating processes that we use do not allow

the investor to know the tn dividend values until the process actually reaches

this point in time. Also note, that the normalizing factor in equation (3.98)

includes the term r (tn − tn−1). This term ensures that the assumption of full

diversification will not be violated: i.e. the allocation to asset k will never con-

stitute the investor’s entire wealth endowment. Therefore, there will always be

enough funds available to invest in the risk-free asset as well. Both the dividend

intensity and the interest rate on risk-free investment are scaled according to

the length of the time periods.

Using the same notation as before, denote the allocation of the näıve div-

idend yield investor to the risk-free asset at time tn by λND
0,tn . Then, by the

assumption of budget exhaustion, we have:

λND
0,tn = 1−

K∑

k=1

λND
k,tn =

r (tn − tn−1)∑K
k=1

δk,tn (tn−tn−1)

Sk,tn−1
+ r (tn − tn−1)

. (3.99)

The näıve dividend yield strategy tends to be quite volatile, tracking closely

the volatility of the dividends. In times of recession it naturally protects the

investor by decreasing their allocation to the risky assets as dividends decline,

however, this is somewhat offset by the asset prices, which also tend to decline

during this stage of the business cycle. Since the decline in dividends during

recessions happens rapidly, but it takes a certain amount of time for investors
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to reduce their allocations to the risky assets, and thus depress their prices, the

protective benefits of the näıve dividend yield strategy are felt most strongly

during the initial stages of recessions.

In order to examine the question of whether there are any benefits of being

a more sophisticated and informed investor, we also provide a more complex

version of the simple dividend yield strategy above. This is our second dividend

yield strategy, which shall be referred to as “sophisticated dividend yield” strat-

egy. This investment approach tries to eliminate some of the noise, inherent in

using market data, by estimating an expected average dividend yield.

Denote by λSD
k,tn

the proportion of the sophisticated dividend yield investor’s

wealth to be invested in risky asset k at time tn. We specify λSD
k,tn

as follows:

λSD
k,tn =

µ̂k,tn (tn−tn−1)

Sk,tn−1∑K
k=1

µ̂k,tn (tn−tn−1)

Sk,tn−1
+ r (tn − tn−1)

, (3.100)

where µ̂k,tn is the estimated expected dividend: µ̂k,tn = ptnµk + (1− ptn) µ
k
.

Equation (3.100) is normalized in the same way as (3.98) in order not to violate

our assumption of full diversification.

The allocation of the sophisticated dividend yield investor to the risk-free

asset is given in the same way as above:

λSD
0,tn = 1−

K∑

k=1

λSD
k,tn =

r (tn − tn−1)∑K
k=1

µ̂k,tn (tn−tn−1)

Sk,tn−1
+ r (tn − tn−1)

. (3.101)

Compared to the näıve dividend yield strategy, the sophisticated dividend yield

strategy is less volatile and less affected by market data. This brings more

stability in the investment behaviour and helps to reduce transaction costs, but

a potential weakness of this strategy is that it is somewhat slower to respond

to changing market conditions. Of course, if the regime estimation is good

enough, these changing market conditions will have already been forecast with

a reasonable degree of accuracy.

Next, we discuss the popular strategies of a fundamentalist and a trend fol-

lower. The agent-based literature provides a variety of different specifications

for this type of investment behaviour. For instance, Lux (2009) uses the hyper-

bolic tangent function tanh in order to model the switching of agents between

the groups of pessimists and optimists, which affects their investment behaviour.

The same function is used by Gaunersdorfer (2000) and Chiarella et al. (2009)

in order to model switching between the strategies of a fundamentalist and a

trend follower.

This formulation, of course, is a byproduct of the specific discrete choice

probabilities that these authors use. Namely, social interactions are modeled

122



Section 3.5 Investment Strategies

by means of a multinomial logit model, also known as Gibbs’ probabilities,

of the form: e
βUh,t−1∑H

h=1 e
βUh,t−1

(see Hommes & Wagener (2009)). Even though we

do not have this type of switching between strategies in our model, we would

still like to model the fundamentalist and trend follower strategies in terms of

switching between the risky assets and the risk-free asset. Therefore, we use a

similar formulation. However, as was discussed above, additional complexity is

added by the presence of the risk-free asset. As a consequence, the calculation

of the investment strategies of the fundamentalist and the trend follower will

be specified as a four-stage process.

We will give the investment strategy of the fundamentalist first:

• Step 1:

λ̂F
k,tn =

π −
(

π
2

+ arctan
(
αF

(
Sk,t

n−1−TF
− FVk,t

n−1−TF

)))

π
. (3.102)

This step calculates an unnormalized value for the allocation of the fundamen-

talist to risky asset k. The inverse tangent function is used instead of the hyper-

bolic tangent. The term αF is a scaling factor, which determines the strength of

the fundamentalist’s reaction to perceived over- or under-valuation of the corre-

sponding asset. When the asset is perceived to be fairly valued, the fundamen-

talist will divide their money equally between the risky and the risk-free asset.

When there is a perceived under-valuation (i.e. Sk,t
n−1−TF

< FVk,t
n−1−TF

), the

fundamentalist will increase their allocation to the risky asset and vice versa.

This behaviour is depicted in figure (3.7). In the above formulation T F refers

to the length of the lookback period that the agent uses in decision-making.

For the fundamentalist it is usually set equal to zero, as this strategy relies on

detecting misvaluations in the present, without the need to refer back to past

price history.

The formulation outlined in equation (3.102) would have been sufficient of

we had to model a single asset and there was no assumption of full diversi-

fication. In the case of multiple assets, however, additional normalization is

required. This is shown in the steps below:

• Step 2:

ˆ̂
λF

k,tn =
λ̂F

k,tn∑K
k=1 λ̂F

k,tn

. (3.103)

Equation (3.103) is the first step in dealing with multiple assets. Once the

normalized preliminary allocations
ˆ̂
λF

k,tn
have been calculated, the next step is

to use these normalized preliminary allocations in order to examine the degree

of over- or under-valuation of the whole portfolio of risky assets, on condition
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Figure 3.7: Investment Strategy based on Fundamental Value: Illustration

that the investor allocates their wealth according to
ˆ̂
λF

k,tn
. This is necessary in

order to calculate an allocation to the risk-free asset. The logic here is the same

as the one shown in figure (3.7), but in this case the fundamentalist switches

between a portfolio of risky assets and the risk-free asset, in accordance to the

misvaluation of the whole portfolio, instead of a single risky asset:

• Step 3:

λF
0,tn = 1−

π −
(

π
2

+ arctan

(
αF

(∑K
k=1

ˆ̂
λF

k,tn
V F

tn−1

Sk,tn−1

(
Sk,t

n−1−TF
− FVk,t

n−1−TF

))))

π
.

(3.104)

The logic of equation (3.104) is similar to the well-known two fund separa-

tion theorem. The degree of misvaluation of the whole portfolio of risky assets

determines the allocation to the risk-free asset. After making an allocation to

the risk-free asset, the fundamentalist has the rest of his funds available to in-

vest in risky assets. This is done according to how over- or under-valued each

of the risky assets is estimated to be. That is, the preliminary risky allocations
ˆ̂
λF

k,tn
are weighted by the amount of funds available for risky investments. In

other words, the fundamentalist’s allocation to risky asset k at time tn is given

by:

• Step 4:

λF
k,tn =

(
1− λF

0,tn

) ˆ̂
λF

k,tn . (3.105)

An alternative specification, satisfying all requirements for the investment

behaviour of a fundamentalist, may also be provided by substituting the func-
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tion (αx)2

β+(αx)2
for the inverse tangent function arctan and appropriately scaling

it. Then, the equivalent to equation (3.102), for example, would be given by:

λ̂F
k,tn =

2−

1 + sgn

(
Sk,t

n−1−TF
− FVk,t

n−1−TF

) (
α

(
Sk,t

n−1−TF
−FVk,t

n−1−TF

))2

β+

(
α

(
Sk,t

n−1−TF
−FVk,t

n−1−TF

))2




2
,

(3.106)

where, α and β are scaling parameters and

sgn (x) =




−1, x < 0
0, x = 0
1, x > 0

The investment behaviour of the fundamentalist according to equation (3.106)

is illustrated in figure (3.8). This specification results in behaviour, which
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Figure 3.8: Alternative Fundamental Investment Strategy: Illustration

is quite similar to the one in equation (3.102). Since there are no specific

advantages in using formulation (3.106) instead of (3.102), we will use the

specification in equation (3.102) in order to model the investment behaviour

of the fundamentalist, since it is smoother and slightly more responsive in the

interval where the risky asset is fairly valued.

The fundamental investment strategy tends to be the most stable of the four.

This is, of course, conditional on the sensitivity parameter α, but generally this

strategy is the least affected by market fluctuations, since both fundamental

values and prices are aggregate quantities, and hence change at a slower pace

than dividends or the conditional probabilities of the regimes of each industry.

Additionally, the fundamentalist has the greatest impact on market efficiency,

since his trading behaviour naturally forces prices to converge to fundamental

values.

125



Section 3.5 Investment Strategies

The other strategy that we borrow from the agent-based literature is that

of a trend follower, or a chartist as it is sometimes referred to. This strategy is

a proxy for short-term speculative behaviour, which is driven purely by asset

price momentum, and is the complete opposite of the fundamental investment

strategy, in the sense that it reinforces movement of the asset price in one direc-

tion for a significant amount of time and contributes to the formation of asset

price bubbles. When the market is dominated by this type of behaviour, this is

usually interpreted as the primary explanation for some stylized facts, such as

the fat tails of returns distributions and volatility clustering. Unlike the funda-

mentalist strategy discussed above, trend following usually has a destabilizing

effect on financial markets and contributes towards inefficiencies, quantified in

terms of deviations from fundamental values.

We specify the behaviour of a trend follower by means of a similar four

stage procedure as above, with an additional consideration. Any kind of trend

following requires a certain minimum amount of price history to be available.

This requirement is obviously not satisfied in the initial stages of a simulation.

Therefore, whenever there is no sufficient price history available, a trend follower

will behave as a fundamentalist. Once the required minimum amount of price

history has been reached, then the chartist will switch to trend following. In

other words, the equivalent to equation (3.102) in the case of a trend follower

is given by:

• Step 1:

λ̂TF
k,tn =





π−
(

π
2
+arctan

(
αF

(
Sk,t

n−1−TF
−FVk,t

n−1−TF

)))

π
, tn−1 < T TF

π
2
+arctan

(
αTF

(
ln

(
Sk,tn−1

Sk,t
n−1−TTF

)))

π
, tn−1 ≥ T TF ,

(3.107)

where T TF denotes the length of the past price history period that the trend

follower uses in his decision-making, and αTF is a scaling parameter, which

determines how sensitive the trend follower is to price momentum over the in-

dicated time period T TF . Note that the fundamentalist and trend follower have

different sensitivity parameters. This is so because of the different behaviour

that is expected from these two groups of investors, as well as the different size

of the arguments to the arctan function. While fairly large deviations of the

price from fundamental value may occur, the return over the last T TF periods

– ln

(
Sk,tn−1

Sk,t
n−1−TTF

)
– rarely reaches such large values. Therefore, the trend fol-

lower needs to react in a much stronger fashion to smaller arctan argument
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values. The trend follower strategy is also very sensitive to the choice of a

lookback period T TF . A graphical illustration of the investment behaviour of

the trend follower is provided in figure (3.9).
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Figure 3.9: Trend Following Investment Strategy: Illustration

The preliminary normalized risky asset allocations for the trend follower are

specified in the same way as for the fundamentalist:

• Step 2:

ˆ̂
λTF

k,tn =
λ̂TF

k,tn∑K
k=1 λ̂TF

k,tn

. (3.108)

Once these preliminary normalized allocations have been computed, they

can be used in order to compute the trend follower’s investment in the risk-free

asset in a way, similar to step 3 in the procedure for the calculation of the

investment strategies of the fundamentalist. As before, implementing a trend

following strategy is conditional on there being a sufficient amount of price

history.

• Step 3:

λTF
0,tn = 1

−





π−
(

π
2
+arctan

(
αF

(
∑K

k=1

ˆ̂
λF

k,tn
V F

tn−1
Sk,tn−1

(
Sk,t

n−1−TF
−FVk,t

n−1−TF

))))

π

π
2
+arctan

(
αTF

(
∑K

k=1

ˆ̂
λTF

k,tn
V TF

tn−1
Sk,tn−1

ln

(
Sk,tn−1

Sk,t
n−1−TTF

)))

π
, tn−1 ≥ T TF .

(3.109)

While the second expression in equation (3.109) technically satisfies the require-

ment for full diversification, it is not so easy to justify it theoretically as was
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the case with the fundamentalist, where such a normalization was intuitively

motivated with the help of the two fund separation theorem.

Once the investment in the risk-free asset has been computed, the prelimi-

nary normalized allocations
ˆ̂
λTF

k,tn
are weighted by the amount of funds available

for risky investment in order to obtain the trend follower’s allocations to the

risky assets:

• Step 4:

λTF
k,tn =

(
1− λTF

0,tn

) ˆ̂
λTF

k,tn . (3.110)

The trend following strategy reacts to changing market conditions the quickest

when compared to the other three strategies discussed above. Most of the time

the trend following strategy decreases market efficiency, not only because it

pushes prices away from fundamental values, but also because it contributes a

great deal of noise to the market. Nonetheless, in situations when such over-

reactions to changing market condition are warranted, this type of investment

behaviour may result in sizeable rewards for the investor.

In this section we presented an important building block for our agent-based

model of financial market dynamics. Namely, the four main types investment

behaviour were described and a discussion was provided, which explained in

detail how each group of agents makes their investment decisions. The types of

investment behaviour we have selected are a mix between the two most popular

trading strategies in the agent-based literature, as well as strategies based on

fundamental market information, such as dividend yields, which are popular

among regulated institutional investors.

In the latter group, we discussed the strategies of a näıve and sophisticated

dividend yield investors. The former invests simply on the basis of dividend

yields, subject to appropriate normalization. The benefits of this strategy,

besides being simple to formulate and execute, are that it provides short-term

protection against adverse market movements. This is because recessionary

periods manifest themselves in the form of decreased dividends much quicker

than deflation of asset prices, and this leads to reduced allocations to risky

assets in the beginning of recessionary periods.

Sophisticated dividend yield investors, on the other hand, are not as quick

to react to signs of recessionary periods, such as declining dividend income,

but attempt to estimate conditional probabilities of a particular industry being

in recession. The conditional probabilities of both regimes are then used to

estimate average dividend yields, on the basis of which investment decisions are

taken. Compared to the näıve dividend yield strategy, this group of investors are

capable of learning about the states of each industry and their asset allocations
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tend not to be as volatile, owing to the smoother estimated average dividend

yields.

The second group of investment behaviour we have selected are the well-

known agent types of a fundamentalist and a trend-follower. These trading

strategies are characterised by switching between risky and risk-free assets based

either on perceived misvaluation or price momentum. The fundamentalist type

increase their allocation to risky assets when they estimate the asset price to be

less than an asset’s fundamental value and vice versa. This type of behaviour is

usually quite stable and contributes to the existence of efficient markets, since

when fundamentalists dominate the market, asset prices converge to fundamen-

tal values through the investment activities of the fundamentalists. Conversely,

trend followers invest on the basis of asset price momentum, which, if sus-

tained, leads to a divergence between prices and fundamental values, as well as

the formation of asset price bubbles.

The collection of investment strategies outlined in this section are concep-

tually simple. Agents make their decisions based on a set of rules, which can

be either technical or fundamental in nature. Since investment strategies are

considered model primitives and there is an almost infinite number of possible

types of investment behaviour, we make no attempt to generalise and prescribe

a single strategy, which is optimal under all circumstances. Rather, we try to

explain which features of the different types of investment behaviour are se-

lected by the market under varying scenarios, particularly during recessionary

periods and asset price deflation.

In subsequent chapters we will compare the results from our model with

equivalent results for other popular types of investment behaviour, such as the

Kelly rule, which has been proven to be a superior long-term strategy in the

absence of minimum consumption constraints (Thorp (2006)). We also extend

the model by including two more popular types of investment behaviour to act

as a benchmark. Namely, we include the strategies of näıve diversification and

mean-variance optimisation. We discuss some difficulties in the practical imple-

mentation of these strategies within the framework of our model’s assumptions

and investigate whether the inclusion of these additional types of investment

behaviour makes a difference to our initial market selection results. We wrap

up the current chapter with a short discussion concerning the software imple-

mentation of our simulation model.
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3.6 Implementation

In this section we present an overview of the model implementation in the C++

programming language. The full program code is provided in the accompanying

CD to this thesis.

The implementation consists of several separate building blocks and sup-

ports both object-orientation and generic design. The building blocks are as

follows: a header file containing the implementation of necessary classes, a

header file containing both the definition and the implementation of the main

functionality of the program, an interface file for communicating with the user

and obtaining model parameters, a file containing the implementation of ran-

dom number generating functions for the uniform, standard normal and expo-

nential distributions, as well as a separate file containing ancillary functionality

such as error checking. We have also used the ALGLIB open source library of

functions (Bochkanov 2012) for some of the common mathematical operations

like spline interpolation and solving systems of simultaneous linear equations.

We now proceed to discuss each of the above in more detail.

3.6.1 Classes

The first building block of our implementation is the creation of the necessary

classes to support object-orientation. This is done in a separate header file.

For our purposes only a single class turned out to be sufficient. We defined and

implemented a dynamic array class for the purposes of easier manipulation of

two-dimensional arrays.

This class was implemented as a template wrapper around vectors from the

corresponding class from the standard template library (STL). Thus, each row

is created using an STL vector, whose every element contains another STL

vector to represent the second dimension of the array. Appropriate overloading

was also implemented so as to allow for easy individual element access and for

other necessary member functions, such as vector length, for instance. The

class is operational with both constant and non-constant objects.

3.6.2 Core Functionality

The core functionality of the simulation software was implemented in a sepa-

rate header file containing six major functions, as well as a number of ancillary

functions, each designed to handle a specific simulation task. Both the declara-

tion and the definition of these functions were implemented in the same header

file because of the generic programming capabilities provided by the template

functionality of C++. The transfer of inputs and outputs between the different
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functions, whenever necessary, is accomplished by means of STL vectors con-

taining instances of the dynamic array class discussed above. In the following

subsections we proceed to quickly outline the most important features of each

of the major functions necessary for the simulation.

3.6.2.1 Regime Switching Function

The task of the regime switching function is to simulate the mean-reverting

dividend levels for each state of an industry. This is accomplished by taking in

user inputs about the desired mean-reverting dividend values and discretizing

time into smaller time-steps.

As discussed in the previous sections, we model the waiting times between

regime switches by means of an exponential distribution. During each time

step, a test for a regime switch is performed by generating a uniformly dis-

tributed random variable and checking if it is greater than e−λdt, where dt is

the size of the time step in the discretization and λ is the parameter of the ex-

ponential distribution. The latter changes according to the particular regime,

so that recessions last for a shorter duration than normal economic conditions

as discussed above. The desired mean-reverting values in each regime are then

stored and, if need be, passed to other functions, such as the dividend function

discussed below. The above functionality is implemented in the C++ function

“jumps” presented in the accompanying CD.

3.6.2.2 Dividend Function

Having generated the mean-reverting values for the corresponding regimes of an

industry in the previously discussed function, the dividend function simulates

one of the two dividend generating processes given in equations (3.15) and

(3.18). The choice of the particular process to be used is left to the user.

The same discretization of time as in the regime switching function is used,

although because of considerations that will become evident in the next chap-

ter, the investment horizon determined by the user is slightly extended with

an arbitrary number of additional time steps, so that the simulated dividend

process exceeds the user-defined investment horizon.

The dividend function is related to two additional ancillary functions, whose

purpose is to enhance user control over the simulation process. Firstly, the

user is given the capability to directly control the evolution of the regimes

of an industry by explicitly setting the time of the regime switches. This is

accomplished by a separate function and deployed by a user-defined dummy

variable. If a specific scenario for the regime switches is not needed, then the
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regime switching function is called and regime switches are generated according

to the relevant probability laws.

Secondly, the user is also given control over the randomness in the dividend

generating processes. This is achieved by giving the user the options to save and

later load specific realizations of the Brownian increments used in the dividend

function. Thus, the impact of changes in the regimes of an industry can be

analyzed and the conclusions reached in this way will not be influenced by the

short-term random dividend fluctuations. If the user specifies that the saved

Brownian increments are to be loaded and used, then new Brownian increments

are not generated during the execution of this function. If, however, a file

containing the necessary Brownian increments is not found in the corresponding

directory, then the user input is overridden and new random fluctuations will

be generated.

Depending on the user choice, one of the discrete versions of the dividend

generating processes (3.15) or (3.18) is then simulated and stored, ready to

be passed on to another function that may need dividend realizations as an

input. The functionality described above is implemented in the function called

“milstein” in the C++ code below.

3.6.2.3 Fundamental Values Under Certainty

Since our model requires the estimation of fundamental values, we begin by

designing a function for the calculation of fundamental values under certainty.

Certainty in this context refers to certainty about which regime an industry is

in. This is by far the most computationally intensive task in our model. If we

treat fundamental values under certainty as a function of dividends, then the

calculation of just a single point in the fundamental value curve under certainty

requires a Monte Carlo simulation with a large sample size. We have therefore

dedicated a separate function to handle this complex task.

To begin the fundamental value calculation, the user is given the option

to specify a range of starting values for the dividend generating processes in

equations (3.15) and (3.18). The fundamental value curves under certainty for

each risky asset that will be obtained as the output of this routine will be

functions of these starting dividend values – one curve for the recession regime

and another one for normal economic conditions.

Depending on the parameters for the main wealth dynamics simulation that

one uses, it is possible to reduce the run time of this routine by selecting an

appropriate range of dividend values, such that it covers, with some probability,

the range of dividend values that might occur when equations (3.15) and (3.18)

are simulated, but is not excessively broad.
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Specifically, the lower boundary for the range should always be zero, since

dividends can never go below this value, whereas the upper boundary can be

determined by running the dividend function multiple times with the particular

starting dividend parameters that the user wishes to use and determining a

value, which is unlikely to be surpassed in magnitude by the different dividend

realizations. While this value needs to be large enough to cover all possible

dividend scenarios, it must not be excessively high, as this will lead to a lot

of wasted computing time. To give some perspective on the possible range of

values in this step, for the case of two risky assets with starting dividend values

D1
0 = 1.25 and D2

0 = 1.75 an upper boundary of 20 proves to be more than

sufficient.

Once the range for the starting dividend values has been obtained, the num-

ber of points in the fundamental value curves under certainty that are actually

calculated by means of Monte Carlo simulations is determined by another user-

defined parameter. One option is to merely space these points linearly across

the starting dividend values by dividing the range of starting dividends by the

desired number of fundamental value points. While nearly any number of points

will work well for the mean-reverting square root process in equation (3.15), this

is not so for the case of the geometric Ornstein-Uhlenbeck process (3.18).

This phenomenon occurs because of two main reasons. Firstly, the gen-

eral shape of the fundamental value curves under certainty is determined by

the specific dividend generating process in use. If the mean-reverting square

root process (3.15) is used, then the fundamental value curve under certainty is

simply a linear function of the starting dividend values. Whenever the geomet-

ric Ornstein-Uhlenbeck process (3.18) is used to simulate dividend realizations,

however, the fundamental value curve under certainty will be a strictly increas-

ing, concave function of the starting dividend values.

Secondly, in order to keep computing time at a manageable level, we obtain

only a limited number of points in the fundamental value curves and then

extrapolate the rest by fitting a function through them. A modeler has two

main choices in this respect – one can either opt for a simpler, more analytically

tractable function, while sacrificing some accuracy, or a more complex function

can be used, which does go through all of the fundamental value points, but is

not as easy to manipulate. In our case, we have made the decision to use the

latter alternative. The gaps between the fundamental value points were filled

by means of spline interpolation because of their flexibility and high R2.

Unless simple linear splines are used, any other form of splines that requires

the calculation of derivatives might cause some problems with the fundamental

value curve under certainty when the geometric Ornstein-Uhlenbeck process is

133



Section 3.6 Implementation

used, if the spacing of the fundamental value points is not carefully determined.

This is because the fundamental value curve under certainty associated with this

dividend generating process has two distinct parts – a steeper and a flatter part.

The transition between the two may sometimes cause a certain inconsistency

when splines are used to extrapolate between points in this region of the curve.

Because of the changing slopes in this region, if the fundamental value points

are spaced too wide apart, fitting a spline through them might cause a viola-

tion of the monotonicity of the fundamental value curve under uncertainty.

This outcome will be graphically illustrated in the subsequent chapter and is

highly undesirable since it violates the well-established economic principle that

fundamental values must be increasing functions of dividends.

The situation in the previous paragraph may be averted by spacing the

fundamental value points closer to each other and using simple linear splines

to connect them. A significant drawback of this approach is that in order for

a smooth fundamental value curve under certainty to be obtained, one would

need to use very close spacing between the individual points. Therefore, if

these fundamental value points are linearly spaced across the range of starting

dividend values, then this would entail the calculation of a large number of

them, which would significantly extend the necessary computing time.

Another alternative is to space the fundamental value points not linearly

across the range of starting dividends, but logarithmically. In this way the

fundamental value points in the initial steeper part of the curve will be situ-

ated closer to each other, which will take care of the monotonicity problem in

the transition region, but in the same time they will be spaced further away

from each other in the flatter region of the curve, where closer spacing is not

required. This would provide an optimal tradeoff between computational effort

and accuracy.

Once the number of fundamental value points and their spacing has been

determined, arrays with appropriate dimensions are set up so as to hold various

results and the dividend function is called multiple times for each regime of an

industry, with each call returning batches of 1000 realizations for each risky as-

set. Then, for each realization the sum of the discounted dividends is calculated

and stored. Finally, each fundamental value point under certainty is obtained

by taking the sample mean of the sum of the discounted dividend realizations.

In order to check the quality of the Monte Carlo simulations and to gauge if

the sample size is sufficient, confidence intervals around each fundamental value

point are also calculated.

The next step in the calculation of the fundamental value curves under cer-

tainty is to fill in the blank spaces between the calculated fundamental points.
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We do this by means of an Akima spline interpolation and utilize ALGLIB’s

(Bochkanov (2012)) functionality in order to implement it. Since the resulting

fitted function is not a real analytic function, such as the exponential func-

tion for instance, we store the entire output of this step. The ALGLIB library

provides routines for the calculation of spline interpolation and stores the out-

put internally as a special structure. We extended ALGLIB’s functionality by

amending some of its classes in order to allow writing the structure containing

the outputs from the spline interpolation routines to a file. In this way we

store the fundamental values under certainty for each of the risky assets under

both regimes of an industry and using both dividend generating processes in

equations (3.15) and (3.18).

The reason why we would like to store the outputs from this function to a

file is the fact that due to the computational complexity of this routine and the

large amount sample runs needed for each asset and for each dividend gener-

ating process, it can take over twenty-four hours of computing time to obtain

the outputs from this function. Therefore, it is not practical to run this routine

every time one needs to run the main wealth dynamics simulation that will be

discussed below. By running this function only once and storing all the outputs,

they can easily be read in and used multiple times for the calculation of fun-

damental values under uncertainty, and hence for the calculation of investment

strategies in the main wealth dynamics simulation with almost no additional

computational effort.

In order to make the outputs from this function relevant to a wide variety

of possible scenarios, we run it four times with different discount factors – 5%,

10%, 15%, and 20% – to represent four different scenarios for the levels of the

interest rates in the economy that may be applicable when performing the main

wealth dynamics simulation. So, in total, for the case of two risky assets, two

dividend generating processes, two regimes in each industry, and four different

levels of interest rates, the output from this routine is a collection of thirty-two

different files, each containing the fundamental value curves under certainty for

each of the risky assets in the corresponding regimes of the industry. These

files are stored in an appropriate directory and are only loaded as they become

necessary for some of the functions that follow, without the need to run this

computationally demanding function again. The functionality discussed above

is implemented in the function named “funBounds” in the C++ code presented

in the accompanying CD.
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3.6.2.4 Regime Estimation and Fundamental Values Under Uncertainty

The fundamental value function under certainty discussed in the previous sub-

section is only the first step in appropriately estimating a fundamental value

for each of the risky assets. Generally, agents lack explicit information regard-

ing the regime that a particular industry is in at each point in time. The

regime switches form a hidden Markov model, as was discussed in the previous

sections, and additional uncertainty is contributed by the short-term random

oscillations in the dividend realizations. Investors within the context of our

model are aware of the functional form of the dividend generating processes

and know the mean-reverting dividend values for each regime, but do not know

which regime of the industry is currently operational, so they need to be able to

compute probabilities of being in each of the regimes of an industry conditioned

on the observed dividend realizations, as well as to be able to learn and update

these probabilities as new dividend realizations become available.

This probability estimation and learning process is handled by a separate

regime estimation function. The prior for the starting probabilities of being in

each of the regimes is set to the expected value of an exponentially distributed

random variable. In order to avoid any bias in the beginning periods of the

regime estimation procedure, the starting regime for the dividend generating

processes is picked randomly. Then, the dividend function is called in order

to generate a dividend realization with the desired parameters starting from

the randomly picked regime. The estimation of regime probabilities and their

subsequent revisions is implemented in the form of the set of equations (3.86)

through (3.89) or (3.93) through (3.96). Since it was previously established that

there were no significant economies in computational effort resulting from using

the set of equations (3.93) through (3.96), the formulation in equations (3.86)

through (3.89) is used for the purposes of regime estimation and updating.

Once both the fundamental values under certainty and the conditional prob-

abilities of each regime have been calculated, another function estimates the fun-

damental values under conditions of uncertainty about the underlying regime

of each industry.

This procedure is conceptually quite simple: first it calls the regime esti-

mation function in order to obtain the conditional regime probabilities, then,

depending on the desired dividend generating process and discount rate, it

loads the appropriate fundamental values under certainty from the collection

of stored files already containing this information. Finally it estimates the fun-

damental values under uncertainty by applying the probability of being each

regime to the corresponding fundamental value under certainty. The estimation
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of fundamental values is then complete and the output is ready to be used by

the main wealth dynamics simulation. The implementation of the functionality

described in this subsection can be found in functions “hmm” and “funValues”

presented in the accompanying CD.

3.6.2.5 Wealth Dynamics Function

The main functionality necessary for the implementation of our model of finan-

cial market dynamics is the simulation of the evolution of the investors’ wealth

endowments given by equation (3.9). This is handled by the wealth dynamics

function. It uses all the outputs from the previously described functions in some

form, either directly or indirectly. It also implements the remaining building

blocks of the model.

Time is again discretized in the same way as in the previous functions. At

the beginning of each time step, a test for bankruptcies is performed. If it

successful and there are at least two solvent investors remaining, the simulation

continues. If a bankruptcy has been detected then the bankruptcy procedure

discussed in the previous sections is implemented in order to handle any out-

standing short positions.

Next, the consumption for the time period is determined. Depending on

the size of the wealth endowment of each agent, consumption can be either

proportional to wealth or the fixed threshold m. Since the inclusion of this

additional constraint is one of the main contributions of our model, the outcome

of this is carefully scrutinized and saved in a separate file. In this way, the

behaviour of the wealth dynamics can be analyzed during two distinct periods

– times when proportional consumption is used and times when the minimum

threshold m must be used.

Since investment decisions in the context of our model take place at dis-

crete points in time, and since asset allocations are decided in advance at the

beginning of each time period, at the end of the time periods there is sufficient

information in order to determine the prices of the risky assets. As was dis-

cussed in the previous sections, this happens endogenously. The price of the

risk-free asset is taken as the numeraire. Once the investment proportions and

the asset prices have been determined, the amount of shares held by each of

the investors can be calculated.

The penultimate step in the wealth dynamics function is the computation

of the investment proportions for the next time period. This happens by means

of implementing equations (3.98) through (3.110). Since the determination of

some of the investment strategies requires multiple intermediate calculations,

the latter are broken down into separate ancillary functions, each designed to
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handle a specific step in the calculation process. This helps to locate early un-

intended investment behaviour and to signal potential problems with either the

design of the trading strategies or the model parameters used in the simulation.

As will be discussed in the next chapter, the parameters specifying the initial

investment proportions at time t0 are particularly difficult to set and devia-

tions from their optimal values may sometimes cause the agents populating our

model to exhibit undesirable investment behaviour.

Finally, once the allocations to all risky assets have been established, the

budget constraint for each investor determines their allocations to the risk-free

asset. With this, all the necessary components for the calculation of the wealth

dynamics have been determined. After arranging them in the appropriate vector

and matrix forms, the set of equations implied by (3.9) is solved. To this end,

we use ALGLIB’s functionality for the solution of systems of equations and

avoid explicitly calculating the inverse matrix in (3.9).

The above sequence of steps is then repeated. The wealth dynamics simula-

tion terminates in only two cases: either the end of the user-defined investment

horizon has been reached, or a single solvent investor remains. In the latter case,

the surviving investor type has accumulated all the wealth in the marketplace

and has the full capacity to set asset prices. If the consumption parameters have

been reasonably picked, so that consumption is not drastically higher than the

income accruing to the investor, then the single survivor will never go bankrupt.

This is a rather trivial situation and since no interesting analysis is possible at

this point, the wealth dynamics simulation is discontinued.

Having outlined the structure of the core functionality of the simulation pro-

gram, and having stressed some of the more important points, we now proceed

with a discussion relating to some of the supporting functionality necessary for

the proper implementation of the simulation program.

3.6.3 Pseudo-Random Number Generation

Pseudo-random number generation is an important part of the wealth dynamics

simulation. Uncertainty is inherent in financial markets and the ability to

simulate it efficiently is a vital prerequisite for making adequate investment

decisions.

Our implementation of pseudo-random numbers follows closely the work by

Marsaglia & Tsang (2000). Their ziggurat method was chosen because of its

excellent efficiency, high-quality random numbers, and its ease of implementa-

tion. In the following paragraphs we provide a short description of the method

and its implementation.

Usually, generating pseudo-random numbers from different distributions en-
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tails randomly picking points in the plain and accepting them if they fall within

the probability density function of the required distribution. Otherwise, the

point is rejected and a new randomly selected point is generated. The draw-

back of such an acceptance-rejection procedure is that it sacrifices efficiency.

A lot of computational effort is wasted on rejected points, so the run time of

such procedures can be significant. The ziggurat method is a special way of

designing the acceptance-rejection procedure for classes of distributions with

decreasing densities.

The two main strong points of the ziggurat algorithm are that firstly, it is

very efficient in the sense that very few points will be rejected, which drastically

speeds up random number generation, and secondly, in the vast majority of

cases, the decision whether to reject or accept a point is very fast and simple,

since it does not require the calculation of the probability density function of

the desired distribution.

Both of these advantages are achieved by covering the decreasing density

by a collection of simple structures, such as rectangles with the same area. An

illustration with 7 covering rectangles and an unbounded base is presented in

figure (3.10).

Figure 3.10: The Ziggurat Method: Illustration

Generally, in the practical implementation of this method the covering will

be much finer. Usually, the preferred number of covering rectangles will be

greatest number that can be stored in 8 bits of memory – 256 – or half of that

for symmetrical distributions.

Using this covering, for all rectangles apart from the top one, as well as for

the unbounded base, it is really easy to check if a randomly generated point

falls within the bounds of the density function. If the x-coordinate of the point

lies to the left of the rightmost x-coordinate of the rectangle on top of it, then it

should certainly be accepted as it lies within the boundaries of the probability

density function. This happens in the vast majority of cases. The only cases

when additional, more computationally intensive checks would be required is if
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the random point ends up in the top rectangle, in some of the lower rectangles

but to the right of the rightmost x-coordinate of the rectangle immediately on

top, or in some part of the infinite tail of the distribution to the right of the

rightmost x-coordinate of the lowest rectangle.

Out of these three scenarios, the generation of a random point from the tail

of the distribution is the most serious problem. It has, however, been solved in

multiple academic sources, such as for example Marsaglia (1964), who provides

a method for generating random points from the tail of the standard normal

distribution.

The method outlined in Marsaglia & Tsang (2000) for doing this is as follows.

Denote by r the rightmost x-coordinate of the lowest rectangle. Then keep

generating random variables x = −ln(U1)
r

and y = −ln (U2), where U1 and U2

are two independent uniformly distributed random variables, until the condition

2y > x2 is satisfied. Whenever this happens, the random point in the plan will

lie within the density function in the tail of the distribution. Then, return r+x,

which will conform to the probability density function up to a constant.

The procedure described above consists of two distinct parts and is a restate-

ment of the older results available in Marsaglia (1964). The intuition behind

this procedure is perhaps best understood within the context of generating a

random variate from the tail of a simpler distribution, for instance the expo-

nential. A logical way to accomplish this would be to generate a uniformly

distributed random variable along the y-axis and scale it in such a way, that

it lies between 0 and the probability density value corresponding to the right-

most coordinate of the lowest covering rectangle r. Then, wherever this point

happens to lie on the y-axis, one can easily obtain a random variate from the

tail of the desired distribution by simply inverting the probability density func-

tion in order to find the x-coordinate corresponding to the randomly generated

point on the y-axis. Figure (3.11) illustrates this concept graphically. For the

purposes of this illustration, an r value of 3 is chosen and the random point

on the y-axis happens to be equal to 0.02. The exponential probability density

function is then inverted in order to find the corresponding x-coordinate.

Using this method, it is easy to obtain a closed-form expression for gen-

erating random variates from the tail of the exponential distribution: simply

scale the uniform random variable U by e−r and set it equal to the exponential

density of the x-coordinate: e−x = e−rU . Solving for x yields: x = r − ln (U).

The resulting variable x will be random and will be exponentially distributed.

The same principle can be used for generating a random variate from the

tail of a normal distribution. For a family of normal distributions with proba-

bility density functions ce−
x2

2 , where c is a standardizing constant, we can use
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Figure 3.11: Generating a Point from the Tail of the Exponential Distribution

the same method as above: e−
x2

2 = e−
r2

2 U1. Solving for x gives the required

normally distributed random variable, conditioned on x being greater than r:

x =
√

r2 − 2ln (U1), (3.111)

where U1 is a uniformly distributed random variable. This result is the same

as the second equation in formula 1 in Marsaglia (1964).

The first equation in this formula is the second part of the procedure for

generating random variates from the tail of the normal distribution – the

acceptance-rejection procedure. Unlike some of the other methods for gen-

erating normal variates, this is not a test on magnitude to see if a random

point in the plain falls within the probability density curve, but is a condition

which measures how likely it is to generate a point that will be in the tail of

the distribution, given the rightmost x-coordinate r. The condition that needs

to be satisfied in order for this test to be accepted is:

U2 <
r√

r2 − 2ln (U1)
, (3.112)

where U2 is another uniformly distributed random variable, independent from

U1.

What equation (3.112) accomplishes is that it takes the x-values that equa-

tion (3.111) generates and by dividing r by them it produces a value in the range

between zero and one. This value is then compared to a uniformly distributed
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random variable. The right-hand side of equation (3.112) also takes account

of the distribution of the x-values conditional on the value of r. Whenever,

r is large, the greatest probability concentration of x values will be close to

it, with the probability of even larger values falling towards zero very quickly.

This results in a much steeper distribution with the majority of its probability

concentrated around 1, making the condition in equation (3.112) more likely

to be true. Alternatively, for smaller values of r, the probability distribution

of the right-hand side of equation (3.112) is sloping more gently and has more

of its probability further away from one, making the condition less likely to be

true. This is graphically illustrated in figure (3.12). The two graphs show the
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Figure 3.12: Conditional Distribution of r Divided by Normal Tail Variates

distribution of the right-hand side of equation (3.112), conditional on the value

of r. The two distributions are for values r = 3 and r = 10 respectively.

Depending on the value of r, this acceptance-rejection procedure can be

highly efficient. Marsaglia (1964) estimates that for r = 3 the probability

of the event in equation (3.112) is 88%. Usually, the r values for a normal

distribution are higher than 3. If 256 covering rectangles are used (255 actual

rectangles plus the unbounded base), the rightmost x-coordinate is r ≈ 3.65,

and if the number of covering rectangles is 128, then r ≈ 3.44. This leads to

an even higher efficiency for the acceptance-rejection procedure, which almost

always successfully passes the first trial.

In fact, finding appropriate values for the rightmost x-coordinates of all

rectangles, not just the lowest one, is an important task in itself. These x-

coordinates must be chosen so that the common area of the rectangles is the

same as the area of the unbounded base. This is no easy task and even being

given a value for the area of the rectangles does not allow finding a closed-form

expression for their x-coordinates. Instead a recursive computational trial and
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error procedure can be used to determine the rightmost x-coordinates of each

rectangle. If 255 covering rectangles are used, this method can be summarized

as follows: keep trying values for r = x255 until the processes

v = rf (r) +

∫ ∞

r

f (x) dx; v = xi [f (xi−1)− f (xi)] , i = 254, . . . , 1,

yield a value for the rightmost x-coordinate of the top rectangle x1, such that

x1 (f (0)− f (x1)) = v. In the equations above, v denotes the common area of

the rectangles and the unbounded base. and f (·) denotes a probability density

function.

After performing these calculations, Marsaglia and Tsay (2000) report that

for the nonstandardized normal density f (x) = e−
x2

2 and 255 covering rectan-

gles, the appropriate rightmost x-coordinate is r ≈ 3.65. This gives a common

area v ≈ 0.0049. Since the total area under the density curve is:
∫ ∞

−∞
e−

x2

2 dx =
√

2π,

then it turns out that the proportion of time when we will be able to accept a

generated random point in the plain on the basis that it lies to the left of the

rightmost x-coordinate of the rectangle on top of it is:
√

2π

2× 256
÷ 0.0049 = 99.33%.

This quantifies the efficiency of the ziggurat algorithm since the acceptance-

rejection decision is straightforward almost always and more complicated fall

back algorithms are necessary for only a tiny fraction of all situations.

Another factor, which contributes to the efficiency of the ziggurat algorithm

is the fact that not only is the acceptance-rejection decision very time-efficient

most of the time, but also it can be made by generating only a single random

number rather than two. This is accomplished by floating a random 32-bit

unsigned integer in order to produce a uniformly distributed random variable

as a part of the algorithm itself, which allows the random integer to be re-used

for two different purposes.

This is accomplished by means of a separate initialization phase in the

implementation of the pseudo-random number generators. This initialization

function is run only once in the beginning of a simulation, and produces two

tables of values. Subsequently, multiple random numbers can be generated very

quickly by taking values from these two tables whenever necessary. The tables

are obtained in the following way: for each of the rectangles 1 < i < 255 set a

32-bit unsigned integer ki = 232
(

xi−1

xi

)
, and for the second table, set wi = xi

232 .

For the special case when i = 0, set k and w values for the unbounded base:
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k0

[
232rf(r)

v

]
and w0 = v

232f(r)
. Whenever a number is multiplied by one of the k

values it is scaled up, and conversely it is scaled down when multiplied by one

of the w values.

In the rare cases when the acceptance-rejection procedure fails, there are

only two alternatives to consider: either the generated number falls to the right

of the rightmost x-coordinate of the rectangle immediately on top of it, or it

is in the tail of the distribution. If it is the former, then an additional test is

performed to check if the generated value falls under the distribution density.

This requires the generation of one more uniformly distributed random variable.

In situations when the latter occurs, then a value from the tail of the distribution

is returned. As discussed above, this entails the generation of at least two more

independent uniformly distributed random variables and the taking of natural

logarithms. By definition, whenever the top rectangle is selected, it falls in the

first category of cases and is handled in the same manner.

The implementation of the ziggurat method for generating random variables

from a required distribution can be summarized using the following sequence

of steps:

1. Generate a random 32-bit unsigned integer j and take its 8 least significant

bits. Denote this index by i. This number will determine which covering

rectangle is selected. The generation of the random integer is implemented

by means of a three-shift shift-register generator. Given a seed, usually

provided by the system clock, it performs three sets of bitwise operations

on it in order to produce a pseudo-random integer. Firstly, it shifts the

number by 13 bits to the left, performs a bitwise exclusive or operation and

saves the result. This is repeated twice more, first moving the number 17

bits to the right, then moving it again 5 bits to the left. Random numbers

produced in this way will have a period of 232 − 1.

2. Scale the random integer down, so that it can be compared to the x-

coordinate of the rectangle immediately on top of it: x = jwi. Then

compare and see if it falls to the left or to the right of it. The table with

the k values can be used for this. If j < ki, then the acceptance-rejection

procedure is successful and x will be a random variate from the desired

distribution. Using the k and w tables and by using the last 8 bits of

the random integer, it is first used in order to select a rectangle and then

reused to compare the x-coordinates.

3. If the acceptance-rejection procedure fails, i.e. if j ≮ ki, a separate func-

tion is called to handle these unusual situations. Again, two alternatives

are possible:
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(a) If i = 0, then the unbounded base has been selected and the random

number is to the right of the rightmost x-coordinate of the lowest

rectangle r. In such a case, simply return a random variate from the

tail of the desired distribution using the method outlined above.

(b) If i 6= 0, then we are either in some of the rectangles but to the

right of the x-coordinate of the rectangle immediately on top, or

in the top rectangle. We handle these cases in the same manner

by generating another uniformly distributed random variable U . If

[f (xi−1)− f (xi)] U < f (x) − f (xi−1), then the generated x lies

below the density of required distribution and can be returned. If

the above condition is not satisfied, this value of x is discarded and

we go back to step 1. This sequence of steps is repeated until a value

for x is finally returned.

Apart from pseudo-random number generation our implementation of the

simulation model includes a number of ancillary utility functions. These are

used mainly for early error detection and prevention. They are also useful in

warning the user about undesirable program behaviour and potentially inap-

propriate parameter values. Error checking and prevention of mistakes during

the input of parameters by the user is also implemented in order to avoid taking

in parameter values of a type different than the required one.

In this section we gave an overview of the implementation of our simula-

tion model and stressed some of its important points, as well as some of the

problems that may arise and choices that have been made. The main building

blocks of the implementation are the definition of classes for the convenient

storage and manipulation of inputs and outputs, a set of procedures for the

efficient generation of pseudo-random numbers, and a number of functions im-

plementing the core program functionality. The latter include functions that

handle the simulation of the regime switching process, the dividend generating

processes, estimation of conditional regime probabilities, as well as the calcu-

lation of fundamental values under certainty and uncertainty. The outputs of

all these functions are then used during the implementation of the main wealth

dynamics simulation. With this section we wrap up the model chapter and

move on to the analysis of the simulation results.
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In this chapter we provide an overview of some of the outputs from the

simulation model discussed in the previous chapter. While the results of our

agent-based model of market dynamics are not normative, in the sense that

no explicit optimal asset allocation strategy in the context of fixed minimum

payout liabilities can be prescribed on the basis of our results, we do attempt

to isolate some features of investment behaviour that provide a better chance

of survival for large institutional investors during recessionary periods of as-

set price deflation and negative stock market returns. Consequently, much

of our analysis will be focused on times of negative economic climate. Even

so, any type of behaviour that is successful during recessionary periods must

not severely compromise an institutional investor’s performance during nor-

mal economic conditions, since the latter predominate in the long run. Hence,

non-recessionary periods will not be completely discarded either.

The outline of this chapter will concentrate mostly on the results that follow

from the innovations in our model. Namely, the inclusion of a minimum con-

sumption constraint, which creates the possibility of bankruptcy, the inclusion
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of a simplified two-regime business cycle, as well as the investor’s ability to

learn about the regimes of an industry and to base their investment behaviour

on their ability to estimate fundamental values,

The main ambition behind the model presented above is to explore the

results of enriching a particular class of evolutionary finance models by adding

more realistic constraints. Our desire with this exploration is to use it in order

to understand how the additional parameters and constraints interplay with

the basic financial market dynamics of previous evolutionary finance models.

Namely, the model can be used to examine the following questions:

• The connection between strategy aggressiveness and investor performance.

Strategy aggressiveness here refers to two aspects of investor behaviour.

Firstly, it may refer to an investor’s propensity to aggressively move in

and out of positions by frequently and significantly adjusting one’s asset

holdings. Secondly, strategy aggressiveness may also refer to exposure to

market risk, measured by the average relative proportion of risky assets

in an investor’s portfolio. The effect of both of these interpretations on

investment performance can be analyzed.

• The link between the number of available assets and the volatility of assets

in the market. It can be investigated whether an increased number of risky

investment opportunities has an impact on the frequency of switching

between them, thus contributing to market volatility.

• The conditional probabilities of bankruptcies. There is scope for investi-

gating how likely it is for a certain investor type to survive during difficult

economic conditions when at least one bankruptcy has occurred. Addi-

tionally, the conditional probability of bankruptcies exclusively for the

recessionary regime of each industry can be considered.

• The ranking of investment strategies and the probabilities of the different

investment styles to outperform the others. An important question to

consider is how the dominance of a certain investment style can have

important implications for market efficiency or the formation of asset

price bubbles.

• The first passage time until the minimum consumption constraint is ac-

tivated. This is of particular importance if conditioned on the industry

being in the recessionary regime since it will give a rough estimate of the

amount of time investors have until they start paying the minimal guaran-

tee after the industry has moved in recession. This estimate may help in
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the investors’ risk management activities by allowing them to make con-

tingency arrangements before the expected large increase in proportional

payouts.

• The expected time to bankruptcy. This metric will be a measure of how

long it takes on average for any of the investors to reach insolvency. This

scenario is important because a bankruptcy of one of the investors always

destabilizes the market at least temporarily, and brings both additional

risks and opportunities for the survivors.

• The impact of the minimum consumption constraint on the market dy-

namics. The sensitivity of the model’s results to changes in the additional

constraint can be investigated, with regard to not just the performance

of each individual investor type but the financial market as a whole.

• The impact of the riskiness in the business cycle. Another interesting

question that can be investigated is how different features of the business

cycle affect investor behaviour and the market dynamics. For instance,

an important measure of the inherent riskiness of the business cycle is the

severity of recessions – i.e. the difference between income levels during

normal and recessionary periods. The more pronounced this gap is, the

greater the risk and the greater the potential impact that the additional

consumption constraint may have.

We now proceed to provide an illustration of the different components of

our model during a single simulation run in order to give a visual perspective

of how each of them fits together to create the market dynamics. This is

followed by a discussion concerning the choice of appropriate parameters and

some difficulties that might be encountered in the process. These turn out

to be of crucial importance in addressing most of the questions posed above.

We show some deficiencies of the model that make it quite difficult to provide

aggregate quantitative data about the model’s behaviour or to draw conclusions

about sensitivities to certain parameters. We wrap up this section by providing

ideas of useful benchmark strategies that are incorporated into the model for

the purposes of benchmarking it against popular investment strategies used

financial research.

4.1 Illustration of a Sample Run

In this section we present a sample run of all components of our simulation

model for three of the most common scenarios for the evolution of the investors’
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wealth endowments. The purpose of this section is to provide a graphical in-

sight into the workings of the model. In this way we can begin to form a theory

of optimal asset allocation under minimum consumption constraints. General-

ization of the results presented in this section, as well as the validation of any

theory, can be carried out by means of generating many sample runs while per-

turbing some of the model parameters and examining the statistical properties

of the outputs.

The parameters for the sample run illustrations are presented in table (4.1)

below. In table (4.1), dt refers to the size of the time step, nbsim denotes the

number of simulation runs performed, T is the investment horizon measured in

years, DGP and MRSR signify that the mean-reverting square root process

was used in order to generate the dividend realizations, nAssets denotes the

number of risky assets in the economy, µk are the mean-reverting dividend

values in the recessionary regime for each of the risky assets, Dk
0 specify the

starting dividend values for both risky assets, r is the interest rate and c is

the consumption proportion, nInv denotes the number of different investor

types in the simulation, each with an initial wealth endowment V i
0 and initial

asset allocations to risky asset k denoted by λi
k,0. The minimum consumption

constraint in absolute terms is denoted by m. For the time being we provide no

discussion about how these parameters were picked, or about various problems

that might arise in this respect. No explicit scenarios for the regime switches

were used in these simulation runs.

4.1.1 Favourable Economic Conditions

We begin by considering a case when economic conditions remain favourable

for the duration of the simulation and none of the investors faces insolvency.

Firstly, in figure (4.1) we provide a sample realization of the dividend pro-

cesses for the two risky assets, together with the evolution of the regime switch-

ing process.

During this realization, dividends remain mostly in the normal regime and

only occasionally dip into short-lived recessions. It is not until the end of the

investment horizon that a more pronounced recession begins to take place. This

will no doubt affect investor performance but it is not enough to induce any

bankruptcies within the predetermined investment horizon.

Based on these dividend observations investors will try to estimate the con-

ditional probabilities of being in each state of an industry. The output of this

process is illustrated in figure (4.2). The Bayesian updating of regime probabil-
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Figure 4.1: A Dividend Realization: Mean-Reverting Square Root Process;
Normal Conditions
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Figure 4.2: Estimation of Regime Probabilities; Normal Conditions
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Table 4.1: Simulation parameters for the sample runs.
Parameter Value

dt 0.01
nbsim 30

T 10
DGP MRSR

nAssets 2
µ1 0.2
µ2 0.7
D1

0 1.25
D2

0 1.75
r 0.1
c 0.33

nInv 4
V 1

0 3
V 2

0 3
V 3

0 3
V 4

0 3
λ1

1,0 0.43
λ1

2,0 0.46
λ2

1,0 0.43
λ2

2,0 0.46
λ3

1,0 0.36
λ3

2,0 0.38
λ4

1,0 0.36
λ4

2,0 0.38
m 0.55

ities results in accurate and responsive estimation of the true regime switching

process.

Having estimated the conditional probabilities of both regimes, the investors

are in a position to calculate their perceived fundamental values for the two risky

assets in the economy. This is illustrated in figure (4.3).

Investors who trade on the basis of deviations from fundamental values

can then make their investment decisions and implement their asset allocation

policy. The asset allocation process for one of the risky assets is demonstrated

in figure (4.4).

The fairly large volatility in the investment actions of the trend follower

during the initial stages stems from the fact that he lacks the necessary historical

price information to implement a genuine trend following policy during the

initial predetermined lookback window.

Once enough price history becomes observable and trend following behaviour

begins to emerge, energetic portfolio rebalancing takes place. The latter im-

pacts asset prices as well and contributes to some of the short-term volatility
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Figure 4.3: Estimation of Fundamental Values; Normal Conditions

in asset prices. The latter, though, is much less pronounced, since the active

trading behaviour exhibited by the trend follower is somewhat offset by the

relatively more stable asset allocation policies of the other three investor types.

The investors’ actions in the marketplace contribute to the asset price for-

mation through the endogenous mechanism described in the previous chapter.

The resulting realization of the prices of the two risky assets is shown in figure

(4.5).

Once prices are also calculated, the investors’ asset allocation policies can

be translated to relative asset holdings by each agent as opposed to the amount

of wealth allocated to a particular risky asset. The investors’ holdings of one

of the risky assets measured in terms of the net number of shares owned are

shown in figure (4.6).

Despite the relatively stable investment policy of the trend follower towards

the middle of the simulation run, the eventual decrease in this agent’s wealth

endowment leads to decreased market power, measured by an investor’s ability

to have a large impact on the asset price formation. This results in decreased

asset holdings even though the propensity to invest in risky assets, as measured

by the investment proportions illustrated in figure (4.4), remains largely un-

changed, save for the short-term fluctuations. This interesting phenomenon is

caused by the endogenous structure of the asset price formation in our model,

which ensures a transfer of wealth from less successful investment styles to more

successful ones.
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Figure 4.4: Asset Allocation to Risky Asset 1; Normal Conditions
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Figure 4.5: Asset Price Dynamics; Normal Conditions
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Figure 4.6: Asset Holdings of Risky Asset 1; Normal Conditions

The loss of wealth by the trend follower means that the opinions of the other

investment types carry more weight and their actions speak louder. Thus, even

though the asset allocation policy of the trend follower remains either stable or

slightly decreasing, increasing asset prices during this period of the simulation

mean that the other agents are amassing more of the wealth of the market under

their control at the expense of the trend follower by means of the acquisition of

more shares of the risky assets. That is why it is usually more helpful to analyze

asset holdings rather than investment proportions, since the former clearly show

which investment style is increasing its holdings of risky assets and which agent

is selling risky assets.

This approach to modeling market interactions of investment strategies al-

lows the market itself to determine the optimality of a certain type of behaviour

by putting more resources under the control of successful investors. In other

words, optimality is measured by an investor’s bottom line rather than the

maximization of an arbitrarily chosen utility function. While a utility function

might depend on a lot of assumptions about economic behaviour, such as risk

aversion for example, letting the market itself decide what the best course of

action is implies only the assumption that investors prefer more to less.

The process of wealth transfer discussed above is made even more pro-

nounced with the inclusion of the minimum consumption constraint. When

the latter is active, the increase in wealth under the management of success-

ful investment styles is much faster, as is the concomitant loss of wealth by
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Figure 4.7: Asset Allocation to the Risk-Free Asset; Normal Conditions

poorly performing investment styles. In the extreme case of bankruptcy, all the

resources of the insolvent agents are appropriated by the survivors.

The relative cautiousness of the trend following investment style and its

aversion to exposure to market risk are confirmed by the fairly high allocation

to the risk-free asset in the portfolio of this asset management approach. This is

illustrated in figure (4.7). Apart from the unstable period of time, during which

the switch between the fundamental and trend following strategies occurs, most

of the time the trend follower allocated around 50% of all available resources

to the risk-free asset during this particular simulation run.

Since during long periods when the industry is functioning normally there

shouldn’t be any need for the majority of the investors to quickly liquidate

parts of their portfolios under conditions of a “fire sale”, there should be no

expectation that the majority of the agents will face enough sustained pressure

to force them to consume at the level of the minimum consumption constraint

m. This expectation is confirmed in figure (4.8), where the minimum consump-

tion constraint is activated only for the trend follower towards the end of the

simulation run, owing to the prolonged poor investment performance of this

investment style, which decreased the trend follower’s wealth endowment to a

point, where consuming at rate c was no longer sufficient in order to meet the

minimum consumption constraint.

The fact that most of the time consumption is proportional to the size of

each agent’s wealth endowment leads to the conclusion that the general shape
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Figure 4.8: Consumption in Absolute Terms; Normal Conditions

of the evolution of the investors’ wealth endowments should follow a trajectory

similar to that of figure (4.8). This is confirmed in figure (4.9), which illustrates

the evolution of the investors’ wealth endowments.

While normal economic conditions tend to dominate most of the time, there

are situations when prolonged recessionary periods may set in as well. This

makes a significant impact on the results achieved by each investment style and

has important implications on strategy optimality during severe recessions.

In the following two subsections we present two cases of prolonged recessions.

These have very different outcomes in terms of the survivability of the different

investment styles, as well as different implications for the economy as a whole.

Both rational and irrational behaviour can lead to favourable investment results

but at the expense of two largely different scenarios for the financial market.

In the following subsection we present a case of investor irrationality leading to

a serious economic collapse and complete market failure.

4.1.2 Recession

4.1.2.1 Flight to Safety

In this section we present the first frequently encountered scenario that may

occur when investors are faced with a prolonged and severe recession. Figure

(4.10) shows the dividend realizations in this case and it is immediately obvious

that unlike the previous section, where investors only had to deal with the
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Figure 4.9: Evolution of Wealth Endowments; Normal Conditions

consequences of two mild, short-lived recessions, here they must cope with a

sustained slowdown of economic activity.

Once again, investors pick the regime shift quite accurately but they tend

to be less certain in their probability estimation, while dividends have spent

a prolonged period of time in the recessionary regime. Figure (4.11) clearly

illustrates the large oscillations in estimated conditional probabilities whenever

dividends make even a slight positive move while in a recession. These small,

short-term fluctuations in the dividend process appear much more meaningful

to investors in this new context of chronically low dividend income.

The sharp decline in dividends and the relatively higher uncertainty about

the prevailing regime in the industry naturally carry over to the estimation of

fundamental values, which preserve the shape of the dividend realization, as

well as the greater uncertainty during the recessionary regime, although not to

such a great extent as the conditional probability estimation. The calculated

fundamental values for this simulation run are illustrated in figure (4.12).

As before, the fundamental values and the conditional regime probabilities

are then used by the investor types that need them in order to implement their

asset allocation policies. These are illustrated in figure (4.13). There are a

couple of important distinctions in the the agents’ investment behaviour during

this scenario as opposed to figure (4.4).

Firstly, in keeping with the discussion in the previous paragraphs, after the

sharp decline in dividend income, investors begin to engage in trading activities
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Figure 4.10: A Dividend Realization: Mean-Reverting Square Root Process;
Recessionary Scenario 1
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Figure 4.11: Estimation of Regime Probabilities; Recessionary Scenario 1
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Figure 4.12: Estimation of Fundamental Values; Recessionary Scenario 1

much more vigorously and at a greater scale. This is illustrated by the large

volatility in trading strategies after time period 400, when the recessionary

regime becomes active. This increase in uncertainty and anxiety demonstrated

by agents is entirely in line with many empirical artifacts of modern financial

markets, such as for example the negative correlation between option implied

volatilities, measured by the VIX, and stock market movements. The outputs

of our model, are therefore capable of closely replicating the reality of financial

markets.

Another important feature is the change in investor behaviour when all

agents populating the model reach the stage where they have to consume at the

minimum consumption constraint m. As will become evident in the following

paragraphs, this occurs around time period 600. The investment activities of

some agents change around this time as well. While the trend following style

has been mostly moving out of the risky assets and into the risk-free asset, this

decline in risky asset allocations is not so pronounced before time period 600

and is quite volatile. Once all investors are consuming at level m their wealth

endowments are drained at a higher rate than before and they must scramble

to sell part of their portfolios under conditions of a ”fire sale” to meet these

greater demands. This results in a steep asset price devaluation, which in turn

causes the trend follower to stay out of the market for risky assets. The trend

following investment strategy begins to decrease its allocations to risky assets

at a greater rate and with far less volatility. This process continues to accelerate
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Figure 4.13: Asset Allocation to Risky Asset 1; Recessionary Scenario 1

until the very end of the simulation run.

The complete opposite behaviour is observed on the part of the fundamen-

talist. This investment style, which remains quite stable for the first part of the

simulation run, begins to smoothly increase its allocations to the risky assets

as the recession takes full effect around time period 400 and asset prices begin

to decrease. This is interpreted as undervaluation by the fundamental trading

style and it starts taking advantage of it. Similarly to the trend following style,

the fundamentalist’s trading decisions begin to increasingly favour one side of

the market, but conversely to the trend follower, the fundamentalist seeks to

rapidly increase the share of available resources allocated to the risky assets.

This is especially pronounced around time period 600, when the switch to con-

sumption at the minimum level m causes asset price deflation to occur at a

faster rate, thus further encouraging the fundamentalist to invest more in risky

assets.

The investment strategies of the two dividend yield investors remains largely

unchanged. Both strategies become more volatile during the recessionary pe-

riod, the sophisticated dividend yield style much more so, owing to the greater

uncertainty about the prevailing regime of the industry. Apart from that, how-

ever, no significant change in policy is observed when the recessionary period

becomes active and when all investors start consuming at level m. If anything

their allocations to the risky assets are slightly increased since dividends have

reached their recessionary mean-reverting level and are relatively stable at it,
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Figure 4.14: Asset Price Dynamics; Recessionary Scenario 1

while asset price deflation continues as all investors consume at the higher per-

centage m.

This severe drop in asset prices is illustrated in figure (4.14). The deval-

uation in asset prices was caused by two main components. The first is the

obvious large decrease in dividend income during the recessionary period. The

decreased size of investors’ wealth endowments is translated by the endogenous

price setting mechanism to a prolonged asset price devaluation. This cause

accounts for the majority of the observed decrease in asset prices.

Perhaps more importantly, however, is the second component, which be-

comes active around time period 600 – the time when all investors are forced

to consume at level m. This causes asset prices to decrease at an even higher

rate. The latter eventually causes a deflationary spiral and this process contin-

ues accelerating until the end of the simulation run. The implications of the

minimum consumption constraint are particularly well illustrated by the second

risky asset during the final stages of the simulation, when its price drops down

towards zero almost vertically with very little volatility.

Even though in the discussion above we stressed the fact that if the set of

parameters is appropriately chosen, at least a single agent is always guaranteed

to survive, usually we will not continue a simulation run until the end of the

predetermined investment horizon in the event that there is a single survivor.

The first reason for this is that after a single investment styles has gathered

all resources in the market and consumption is guaranteed to never surpass
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Figure 4.15: Asset Holdings of Risky Asset 1; Recessionary Scenario 1

dividend and interest income, the only situation that can occur in the future is

for the wealth of the single survivor to continue growing without bounds. This

is hardly interesting from an analytical point of view.

The second reason is purely technical and occurs during simulation runs

when only the trend follower remains solvent. Because of the nature of this in-

vestment strategy, prices will eventually reach zero during prolonged recession-

ary periods, such as the one illustrated in this subsection. When this happens,

it will be no longer possible to implement the trend following strategy since this

would imply division by zero. Therefore, simulation runs with a single survivor

will be discontinued once the asset prices reach zero, which would correspond to

a complete market breakdown, or when the wealth of the single survivor grows

very large and becomes a multiple of this agent’s initial wealth endowment.

The mechanism, through which the transfer of wealth from poorly perform-

ing agents to the survivors takes place can be further explained by considering

the number of shares of each risky asset held by each of the investor types

throughout the simulation. The investor portfolios are shown in figure (4.15).

The dynamics of the portfolios shown in figure (4.15) reveals an important

feature of the wealth transfer mechanism – it is not a gradual process. The

transfer of resources towards the trend following strategy happens instanta-

neously following the bankruptcy of the three other investor types, even though

this trading style slowly begins to amass a greater number of shares when the

recession becomes active around time period 400. However, when all investors
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begin consuming at the minimum level m, the relative asset holdings of the

trend follower actually decrease slowly. This is caused by the fact that by this

time, the trend following strategy has almost completely shifted its asset alloca-

tion to the risk-free asset. Therefore, even though asset prices are declining, it

is not enough to allow accumulation of risky assets with such a low percentage

of wealth invested in them. This complements the fact that throughout the

simulation the wealth endowment of the trend follower stays below the others,

so this investment style has less market power in the asset price formation.

In fact, it is exactly this feature of the trend follower’s behaviour that allows

this strategy to survive and accumulate all the wealth in the market. Had

the trend follower started accumulating larger numbers of shares gradually, he

would have been increasingly exposed to market risk and would have ended

up just like the other three investor types. Instead, the mechanism of wealth

accumulation during periods of severe recessions is to move to safe investments

and bide one’s time until their competitors have disappeared from the market

and then acquire their resources at deeply discounted values. In essence, a

”phase transition” occurs, which completely changes the level of success in the

market.

This scenario is not unlike the tumultuous events of late 2007/2008, when

the global credit crisis took effect in a very short amount of time. In the

context of our model, the collapse of the real estate market had the same effect

as a sharp decline in dividend income. At the same time, the liabilities that

the banks had on their balance sheets did not decrease, so some institutional

investors entered a phase where their liabilities represented a larger relative

share of their income. Faced with the inability to raise new capital, many of

them had to file for bankruptcy and were acquired by competitors, who had not

enjoyed their level of success during the previous period of favourable economic

conditions.

It must be stressed, however, that even though trend following behaviour

was successful in this case, it is irrational, in the sense that it allocates resources

contrary to deviations from intrinsic value. Furthermore, such behaviour could

very well leave an investor in a bad position, should the industry recover, since

trend following emphasizes safe investments during any recessionary period.

Figure (4.16) illustrates this.

The lower odds of success for the trend follower during favourable economic

conditions is confirmed by figures (4.17) and (4.18), showing the evolution of

consumption and the wealth trajectories. It is interesting to note that the

size of the wealth endowment of the trend follower remains less than that of

other investor types throughout the entire simulation run, save for the phase
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Figure 4.16: Asset Allocation to the Risk-Free Asset; Recessionary Scenario 1

transition in the end, when the three other agents face bankruptcy.

In figure (4.18), the evolution of the wealth dynamics is terminated once

prices have reached zero and stayed there for long enough not to allow the

calculation of investment proportions according to the trend following style.

This, however, is not a concern since by this time, the trend following strategy

has all of its resources invested in the risk-free asset and with asset prices being

zero, its wealth endowment will simply continue increasing deterministically

according the prevailing risk-free interest rate.

In essence, while trend following behaviour proves to be very efficient in

safeguarding an investor’s funds during periods of severe recession it should not

be considered optimal under all circumstances. In fact, the following sections

will clearly demonstrate that during periods of favourable economic conditions,

the trend following asset management style faces the highest conditional proba-

bility of default. It also runs a serious risk of underperforming the other investor

types during such market conditions, since by definition it starts participating

in trends relatively late, rather than looking for hidden value and positioning

itself for expected future favourable movements in asset values.

Trend following achieves personal security at the expense of great damage

for the economy as a whole. This trading style has traditionally been associated

with herding behaviour in financial markets, either exhibiting itself in the form

of asset price bubbles or in the form of major stock market crashes caused by

widespread panic. The dominance of this type of investment behaviour is also
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Figure 4.17: Consumption in Absolute Terms; Recessionary Scenario 1
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Figure 4.18: Evolution of Wealth Endowments; Recessionary Scenario 1
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responsible for the lack of market efficiency, since asset prices will continue to

be pushed further away from fundamental values if the main market power lies

with the trend followers. The case when this type of behaviour predominates

during conditions of already severe recessions is of particular concern, since it

underlines the fragility of modern financial systems. The phase transition that

occurred within the context of our model could just as well be a sudden bank

run or a stock market crash in the real economy.

In addition to this, it is not always guaranteed that the trend following

investment style will outperform the others even during periods of severe re-

cession. As already noted, the trend following strategy will move almost com-

pletely out of the risky assets during periods of steep asset price devaluation and

will therefore have very little market exposure. The transfer of wealth to this

investment style happens only after the other agents have faced bankruptcy.

Consequently, if some of the other investment styles manages to survive until

the end of the recessionary phase, it will be positioned much more favorably for

the upcoming economic recovery. This will be the main point illustrated in the

following subsection.

4.1.2.2 The Dominance of Value Investing

In this subsection we present the second of the two frequently occurring scenar-

ios that might unfold whenever investors are faced with a prolonged recession.

The difference in this case is that the industry ultimately manages to recover

before the naive and sophisticated dividend yield investors, as well as the fun-

damentalist, face bankruptcy.

Since the trend following strategy does not smoothly increase its exposure

to risky assets during the period of time when all investors start consuming

at the minimum consumption level m, the phase transition described in the

previous section does not occur. Instead, the economy manages to bounce back

just in time to give investors with high risky asset allocations better chances

of survival. This is, however, detrimental to the success of the trend following

investment style, which is not positioned favorably in order to take advantage

of the economic recovery.

The outcome of these recessionary scenarios is significantly different to that

shown in the previous subsection. Investor types which increase their allocations

the most during the recessionary asset price deflation phase stand to gain the

most from the economic recovery and ultimately remain as the sole survivor in

the market.

The evolution of economic conditions is illustrated in figures (4.19) and

(4.20). This pattern of scenarios is similar to the previous one in the sense
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Figure 4.19: A dividend realization under the conditions of a prolonged reces-
sion and subsequent recovery. Simulates equation (1.15) with mean-reverting
parameters for the recessionary and favourable regimes α = 1.5, α = 1.2 re-
spectively, and a volatility parameter β = 0.2.
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Figure 4.20: Estimation of Regime Probabilities; Recessionary Scenario 2
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Figure 4.21: Estimation of Fundamental Values; Recessionary Scenario 2

that there is usually a prolonged recession which lasts long enough to activate

the minimum consumption constraint. However, unlike the previous pattern,

the economy manages to improve just before the fundamentalist is forced into

bankruptcy. This makes a profound difference in the outcome when compared

to the previous scenario. Because the trend follower does not gradually amass

market wealth in the periods when his strategy is the most appropriate, the im-

provement in the economy leaves him very badly positioned for the forthcoming

upswing in asset values.

Conversely, the fundamentalist, who has been acquiring cheap assets dur-

ing the recessionary period, is in an excellent position to take advantage of

improved market conditions. The common theme between the last two scenar-

ios is that during recessionary periods it is never optimal to invest according

to fundamental data (e.g. dividend yields). Whenever the trend follower is

dominant, large inefficiencies and asset price bubbles can occur. On the other

hand, the prevalence of the fundamentalist ensures prices are pushed back to-

wards fundamental values and market efficiency is restored. This is illustrated

in figures (4.21) through (4.26).

4.2 Challenges and Model Weaknesses

In the preceding sections gave graphical illustrations of the three most frequently-

occurring scenarios within our model. We analyzed those qualitatively and were
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Figure 4.22: Asset Allocation to Risky Asset 1; Recessionary Scenario 2
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Figure 4.23: Asset Price Dynamics; Recessionary Scenario 2
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Figure 4.24: Asset Holdings of Risky Asset 1; Recessionary Scenario 2
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Figure 4.25: Consumption in Absolute Terms; Recessionary Scenario 2
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Figure 4.26: Evolution of Wealth Endowments; Recessionary Scenario 2

able to draw some conclusions about the desirability of each investment style

under different market conditions. Unfortunately, however, the conclusions we

obtained turned out to be fairly commonsense and easy to discern, even without

the need for an agent-based or evolutionary finance model. This leaves a lot to

be desired by the model.

Unfortunately, to address the ambitious list of interesting questions for po-

tential investigation that we listed above has proven very difficult within the

context of our model on account of a number of reasons. Some of these can be

listed as follows:

• Dependence on initial conditions.

• Very strong dependence on parameter values.

• Difficulties in picking parameter values.

• Large number of parameters.

• Difficulties in model calibration to real-world data.

• The presence of unexpected feedback loops, cause by the model’s endoge-

nous price setting mechanism.

To provide a graphical illustration of the challenges we have faced, consider

the following specific dividend scenario in figure (4.27) that we have picked on

purpose.

171



Section 4.2 Challenges and Model Weaknesses

0 200 400 600 800 1000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

D
iv

id
en

d
 V

al
u

es

Dividends

 

 

Asset 1
Asset 2
Regimes

Figure 4.27: A Problematic Dividend Realization

At first sight there appears to be nothing spectacular about this scenario

- an initial shock to the economy followed by a long period of prosperity. If,

however, the parameters to the model are not picked exactly right, such long

periods of prosperity, for example, can cause the system to become numerically

unstable. In this example, we have picked the consumption parameter to be

slightly less than what it needs to be in order to produce stable results. Because

of the long, uninterrupted period of prosperity, agents are accumulating more

and more wealth and through the endogenous price-setting mechanism, this

gets passed on to asset prices and the wealth dynamic itself. Because investors

take their investment decisions on the bases of asset prices and the size of their

wealth endowments, such a case leads to progressively larger fluctuations in the

agents’ investment strategies, which in turn cause prices to fluctuate even more

and so on. The dynamics gets locked in this cycle and gets progressively more

destabilised. This is illustrated in figures (4.28) and (4.29).

Although we were able to explain this particular feedback loop, there is

usually no way of controlling them by adjusting for them in advance, since

during multiple simulations with random sample paths any such destabilising

scenario may occur at any time. Additionally, note that the destabilisation of

the system does not occur smoothly overtime. Rather, a sharp phase transition

occurs, which makes this weakness even more difficult to control.

Apart from these unexpected feedback loops, the choice of parameters itself

is often a challenge. In the sample runs above, we have specifically picked
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Figure 4.28: Destabilised Asset Price
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Figure 4.29: Destabilised Investment Strategies
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parameters that keep the system stable for the required scenarios, however

this was accomplished after a long process of trial and error. Bearing in mind

the difficulties in picking parameters that are ”just right”, it becomes evident

why it is very difficult to examine the sensitivity of the simulation results to

changes in some of the parameters, like the consumption proportion or the

minimum consumption constraint. Each such small perturbation destabilises

the dynamics to an extent that comparison of results becomes a challenge.

Despite these difficulties, in the next section we propose an extension to

the model by including two more investment strategies. This is done with

the purpose of observing how popular investment approaches in finance, such

as mean-variance optimisation, would behave within the context of the model.

Nevertheless, one needs to bear in mind that all the above-mentioned difficulties

with the model are also inherited by this model extension and even compounded

by it, due to the larger number of parameters that need to be picked.

4.3 Benchmark Strategies

The results presented in the previous chapter were derived from an evolution-

ary finance model populated by four arbitrary types of investors. Even though

we did our best in selecting what we believe are the most representative trad-

ing strategies in terms of the specific asset allocation problem we are facing,

we admit that there are many more potential investment strategies that could

also be included in the model. Therefore, it is not our objective to prescribe

a single, ubiquitous investment approach to institutional investing under min-

imum consumption constraints, but rather to draw general conclusions as to

what features of the different types of investment behaviour are selected by the

market dynamics under different economic scenarios. More specifically, we were

most concerned with the question “what type of investment behaviour mini-

mizes the risk of bankruptcy during recessionary periods, while still retaining

good investment performance under normal economic conditions”?

In order to examine the robustness of our general conclusions, in this section

we add two more investment strategies to the model. The two new types of

investment behaviour that we introduce are näıve diversification and mean-

variance optimisation. These have been largely used in the finance literature as

a benchmark for the comparison of results.

The addition of two new investor types requires a new adjustment of the

model parameters, particularly the consumption proportion and the minimum

guaranteed liability. This undoubtedly changes the outcome of the simulation

experiments. However, the primary reason for the inclusion of the two bench-

174



Section 4.3 Benchmark Strategies

mark strategies is to examine whether our general conclusions about the weak

and strong points of different investment types still hold or the presence of these

new investor types brings a qualitative change in the simulation results.

In the remainder of this chapter we first define the two new trading strate-

gies and discuss some of the difficulties that may be encountered during their

implementation within the context of our agent-based model.

4.3.1 Definition of Benchmark Strategies

4.3.1.1 Näıve Diversification

The first of the newly introduced investment types is a simple näıve diversifica-

tion strategy, which requires that an investor split their wealth equally among

all available assets, the risk-free asset included:

λN
k =

1

Na

, (4.1)

where Na denotes the total number of available investment opportunities, in-

cluding the risk-free asset. The näıve diversification strategy remains constant

over time, and investors adopting such an approach would only rebalance their

portfolios because of changes in asset prices and the size of their wealth endow-

ments.

4.3.1.2 Mean-Variance Optimisation

The second benchmark strategy we will be using is a myopic mean-variance

optimisation strategy. There are a number of ways to implement such an in-

vestment approach, however, unlike in classical finance, where quadratic utility

is usually used, we will follow the agent-based and heterogeneous beliefs litera-

ture in specifying the investment strategy of a myopic mean-variance optimizer.

Unfortunately, the implementation of a mean-variance optimisation strategy

in the agent-based literature is usually very restrictive. The norm is to provide

demand functions for just a single risky asset. Since we would like to have a

more general framework, capable of handling multiple risky assets, we propose

the following approach to the implementation of mean-variance optimisation:

• Step 1: Treat the entire portfolio of all risky assets as a single risky asset

and decide on the allocation between the risky portfolio and the risk-free

asset. The criterion that will guide this choice is the maximization of the

expected utility of consumption.

• Step 2: Once the proportion investable in risky assets is obtained, we

solve for the proportions to be allocated to each risky asset based on the
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optimisation of the mean-variance criterion. As discussed previously, the

possibility for the occurrence of insolvency and the structure of our pro-

posed method for handling bankruptcy situations rule out short positions.

Therefore, we proceed to solve the mean-variance optimisation problem

by means of a quadratic programming algorithm.

4.3.1.3 Utility Maximization

Focusing our attention on the first step, in existing research on heterogeneous

trading strategies, the starting point for specifying the behaviour of a mean-

variance optimizer is usually the assumption of the constant absolute risk aver-

sion (CARA) class of utility functions. A popular representative of the former

is the negative exponential utility function of the following form:

U (C) = 1− exp (−γC) , γ > 0,

where U (·) denotes the utility function and C stands for consumption (see e.g.

Ehrentreich (2008), Hommes & Wagener (2009), Anufriev & Dindo (2010)).

Such a formulation for U (C) satisfies the usual requirements for a utility func-

tion. Namely, it is increasing and concave, since:

U ′ (C) = γexp (−γC) > 0, U ′′ (C) = −γ2exp (−γC) < 0.

In the expressions above γ denotes the Arrow-Pratt index of absolute risk aver-

sion:

γ = −U ′′ (C)

U ′ (C)
.

Since consumption amounts are closely related to the uncertain returns

an investor obtains from their portfolio in each time period, a frequently en-

countered assumption is that consumption follows a normal distribution; i.e.

C ∼ N (µ, σ2). Under this assumption, the expected utility of consumption is

given by:

E [U (C)] =
1

σ
√

2π

∫ ∞

∞
−exp−

(
γC +

(C − µ)2

2σ2

)
dC.

Noting that

γC +
(C − µ)2

2σ2
=

(C − µ + γσ2)
2

2σ2
+ γ

(
µ− γσ2

2

)
,

the above expectation reduces to

E [U (C)] = −exp−
(

γ

(
µ− γσ2

2

))
. (4.2)
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In order to derive the desired asset allocations, the mean-variance optimizer

maximizes expected utility. Since the exponential function is monotonic and

strictly increasing, it is evident from the above equation that maximizing µ− γσ2

2

will suffice. In other words, the mean-variance optimizer makes investment

decisions by maximizing the mean-variance utility of next period’s consumption,

which in turn depends on the expected return of the portfolio as well as its

dispersion. These two inputs characterize any efficient portfolio, however, and

therefore the optimal portfolio choice for each investor is uniquely determined

by their risk preferences, quantified by the risk-aversion coefficient γ.

Next period’s consumption comes from the total return for that period from

risky and risk-free assets. Therefore, maximizing (4.2) is equivalent to maxi-

mizing

Etn

[
λMV

p,tn

((
Dp,tn+1

Sp,tn

)
+

(
Sp,tn+1

Sp,tn

− 1

))
+

(
1− λMV

p,tn

)
r

]

− γ

2
V artn

[
λMV

p,tn

((
Dp,tn+1

Sp,tn

)
+

(
Sp,tn+1

Sp,tn

− 1

))]
, (4.3)

where Etn denotes the expectation at time tn, λMV
p,tn denotes the investment

proportion of the mean-variance optimizer allocated to the risky portfolio at

time tn, and Dp,tn+1 and Sp,tn denote the combined dividend and asset price of

the entire risky portfolio at times tn+1 and tn respectively. As in the discussion

above, γ denotes the risk aversion coefficient and V artn refers to the variance

of the risky portfolio calculated at time tn.

After using standard results about the properties of the lognormal distribu-

tion and substituting for the components of portfolio return in equation (4.2)

from (4.3), an application of first order conditions yields the mean-variance

optimal investment proportion, which maximizes expected utility:

λMV ∗
p,tn =

Etn

[
Dp,tn+1

Sp,tn
+

(
Sp,tn+1

Sp,tn
− 1

)
− r

]

γσ2
p

, (4.4)

where σ2
p denotes the variance of the risky portfolio at time tn.

4.3.2 Quadratic Programming

With this allocation between the risky portfolio and the risk-free asset in mind,

the next step is to obtain the investment proportions to each of the risky assets.

Had there been no restrictions on investment behaviour, i.e. short sales allowed,

this would have been a simple task. If short sales were allowed, then the results

obtained in Merton (1972) would have been directly applicable to the problem

at hand. However, because of the additional constraint of no short sales, we
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need to impose the requirement that investment proportions are nonnegative

and solve the problem using a constrained optimisation formulation. Since the

objective function to be optimised includes quadratic terms in the form of the

risky assets’ variances, we can use a wide variety of analytic and computational

tools in order to solve a quadratic program of the form:

min
λ

λT
tnΣλtn , (4.5)

subject to

µT λtn = Etn

[
Dp,tn+1

Sp,tn

+

(
Sp,tn+1

Sp,tn

− 1

)]
, (4.6)

1T λtn = λMV ∗
p,tn , (4.7)

λtn ≥ 0. (4.8)

In the above set of equations, λtn is the vector of investment proportions to

each risky asset at time tn, Σ is the variance-covariance matrix of returns, µ

is a vector of expected returns, and 1 denotes the vector, whose every element

is 1. The quadratic program above requires the minimization of portfolio vari-

ance under the constraints that the risky portfolio’s expected return should be

equal to the expected return of the market portfolio, and that the investment

proportions are nonnegative and sum up to the total amount available for risky

investments. In keeping with the two fund separation theorem from classical

finance, the quadratic program in equation (4.5) essentially attempts to find

the point of tangency between the capital market line and the efficient portfolio

frontier.

The quadratic program in equations (4.5) through (4.6) can be written more

succinctly by dispensing with the two-step process outlined above and attempt-

ing to maximize the expected utility of consumption straight away, subject to

the appropriate constraints. The quadratic program then becomes:

max
λ

µT λtn −
γ

2
λT

tnΣλtn , (4.9)

subject to

1− 1T λtn ≥ 0, (4.10)

λtn ≥ 0. (4.11)

We will adopt this more direct approach in our implementation of the mean-

variance optimisation strategy.

There exist a rich variety of approaches to solving the quadratic program

(4.9). One of the earliest approaches, which forms a basis for more modern
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methods is based on the modification of the quadratic program to a linear pro-

gram by using slack variables and applying the Karush-Kuhn-Tucker conditions

(Kuhn & Tucker (1951)). The resulting linear program is then solved by means

of the well-known simplex method (Wolfe (1959)). More modern and robust

approaches also exist – Goldfarb and Idnani (1983), for instance, propose a dual

method for solving strictly convex quadratic programs.

The main advantage of this approach is the fact that the minimum of the

unconstrained objective function is used as a starting point. This is very con-

venient for problems where an initial primal feasible point is not easy to find.

Such an approach helps to avoid having to find a solution for the phase I prob-

lem of the quadratic program. However, since for the mean-variance optimal

portfolio problem, having one’s entire wealth endowment invested in a single

risky asset is always feasible, we could simply use this as an obvious starting

point. Consequently, we choose to solve the quadratic program in equation

(4.9) by means of the conceptually simpler primal active constraint set method

(see e.g. Fletcher (2000), p. 240).

The basic premise of the active set method is to start with an initial feasible

point and an active set of constraints. Progression to better feasible points

is achieved by moving in the direction which optimizes the objective function

and dropping constraints which are no longer active. If during the movement

in a particular direction a constraint is encountered, then it enters the active

set. Overall, the logic of the primal active set method resembles that of the

simplex method, except that movement is not always between the vertices of

the simplex.

The set of steps needed in order to implement the active set method can be

summarised as follows:

1. Start at a feasible point λ0 and an initial active set of constraints.

2. Calculate the optimum values for the variables λ∗EQP and the Lagrangians

ν∗EQP of the corresponding equality constrained program defined by the

current active set. Popular approaches for doing this are either the null

space/QR method or KKT method (Karush-Kuhn-Tucker conditions).

There are two possible outcomes of this step:

• λ∗EQP is feasible. Move to λ∗EQP and check Lagrange multipliers. If

all ν∗EQP > 0, then the solution is optimal, stop. Otherwise, remove

a constraint with ν∗EQP < 0 from the active set of constraints.

• λ∗EQP is infeasible. Move as far as possible along the line segment

between λ0 and λ∗EQP while staying feasible. Add to the active set
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the first encountered constraint that prevents further progress.

3. To find an initial feasible point and active set, solve the Phase I problem

(not really necessary in the case of portfolio choice).

4. To avoid degeneracy, use Bland’s anticycling rules.

The actual implementation of the above algorithm can be described by the

following pseudocode:

1. Let λ = λ0, S = S0.

2. Let λ∗EQP and ν∗EQP solve the EQP in (3).

3. If λ∗EQP ∈ F ,

If ν∗EQP ≥ 0,

stop: optimal.

Else,

remove from S a constraint with a negative ν∗EQP entry.

Set λ = λ∗EQP .

Go to (2).

Else

Let tmax solve

max t

subject to

λ + t
(
λ∗EQP − λ

)
.

Set λ = λ + tmax

(
λ∗EQP − λ

)
.

Add to S one constraint that is binding at λ and that is violated by

λ∗EQP .

Go to (2).

The full C++ implementation of the quadratic program in equation (4.9) is

available in the accompanying CD.

4.3.3 Additional Challenges

It is evident both from (4.4) and (4.9) that the selection of a mean-variance

optimal strategy depends on two market parameters – expected returns and

variances. While the estimation of variances from historical data is a widely-

accepted methodology in finance, the estimation of expected returns on the

basis of past price history is more problematic due to the non-stationarity of

financial time series. As an example, using the arithmetic mean of historical
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returns does not provide a sensible indication of the true expected return for a

risky asset in cases where this mean is negative, since this clearly contradicts

the level of expected return one might expect based on the asset’s riskiness.

While in practice one solution to this problem is to estimate the expected

return on a risky asset based on theoretical model, such as for example the

capital asset pricing model, this is somewhat difficult to implement within the

framework of our model since there is no proxy for the market portfolio. Other

more subjective approaches, such as for instance the Black-Litterman model

are also impractical since agents have no way of forming their own subjective

expectations.

Since a more in-depth discussion about the estimation of expected returns

is beyond the scope of this piece of research, we provide to ideas about possible

solutions to this issue. The most obvious one is to follow the standard procedure

in other agent-based papers, such as for instance Anufriev & Dindo (2010), and

estimate next period’s expected returns as the arithmetic mean of past returns

over the course of some predetermined lookback period of length L:

µk
tn =

1

L

L∑
τ=1

[
Dk

tn+1−τ

Sk
tn−τ

+

(
Sk

tn+1−τ

Sk
tn−τ

− 1

)]
. (4.12)

In the absence of numerous risky assets and a proxy for the market portfolio,

this choice is not as unreasonable as it might appear initially. When there are

only two or three risky assets in the economy, whose dividend processes are

determined by equations (1.14) or (1.16), they will be impacted by the same

regime switches and will therefore be correlated. An application of the CAPM

would then yield similar results to these in equation (4.12) as both the dividend

processes and asset prices will be relatively strongly correlated.

The other choice is inspired by a different class of models that attempt to for-

mulate an optimal investment policy by using a regime-switching mean-variance

optimisation strategy. Such models, as presented in e.g. Ang & Bekaert (2002)

use a dynamic optimisation procedure and capture the different regimes of the

economy by observing correlation breakdowns in returns to suggest recessionary

regimes.

While the model presented in Ang & Bekaert (2002) has other objectives

in mind, we draw inspiration from it and try to incorporate learning about the

regimes of the economy within the mean-variance optimisation strategy. To

accomplish this we use the Bayesian updating conditional probabilities results.

The expected return can be decomposed into an expected dividend yield com-

ponent and an expected capital gains part. For the expected capital gains we

continue to use historical data as shown in equation (4.12). For the expected
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dividend yield component, though, we can use the conditional probabilities of

being in each regime to weight the mean reverting dividend levels in each regime

in order to form an expectation of the future dividend yield. In other words,

we can use:

Etn

(
Dp,tn+1

Sp,tn

)
=

Pupµ + (1− Pup) µ

Sp,tn

. (4.13)

This formulation, however, doesn’t produce a significant difference in the dy-

namics since one of the strategies presented above - the sophisticated dividend

yield investor - already uses a similar characterisation.

With regard to the variances of returns, the most sensible and straightfor-

ward choice for the context of our model is to use historical volatilities:

σk2

tn =
1

L− 1

L∑
τ=1

([
Dk

tn+1−τ

Sk
tn−τ

+

(
Sk

tn+1−τ

Sk
tn−τ

− 1

)]
− µk

tn

)2

. (4.14)

The last interesting point worth mentioning about the implementation of

a mean-variance optimisation strategy within the context of our model is that

while both quadratic programs (4.5) and (4.9) consider the no short sales con-

straint, this requirement is actually too weak. Recall that theorem (1.1.1)

demands investment proportions to be not simply nonnegative but strictly pos-

itive. If this condition is violated, then invertibility cannot be guaranteed and

therefore we cannot write an explicit solution to the wealth dynamics. Hence,

the requirement of full diversification, i.e. λk
tn > 0 for all k and n, is of vital

importance. Since the set of constraints related to the quadratic program (4.9)

are too weak to guarantee this, we take further action to ensure that investment

proportions are strictly positive.

In the rare cases when the allocation to some of the risky assets turns out

to be exactly zero, we artificially increase it by making it arbitrarily small (e.g.

1% of the investor’s total wealth endowment) and simultaneously decrease the

proportions allocated to the other risky assets by equal amounts, so that the

budget constraint
∑K

k=0 λk
tn = 1 is not violated. While the resulting portfolio

will not be, strictly speaking, mean-variance optimal, it will not deviate by

much. However, at the same time it will ensure that the full diversification

assumption is not violated and the wealth dynamics can be solved.

In this section we described some extensions to the basic model discussed in

the previous two chapters. We introduced two new popular investment strate-

gies to act as a benchmark for comparison purposes – näıve diversification

and mean-variance optimisation. While the former presents no additional chal-

lenges, the implementation of the latter gives rise to some technical difficulties

caused by the structure of our basic model.
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Section 4.3 Benchmark Strategies

In the end, neither of these benchmark strategies changes materially the

qualitative conclusions about the surviving strategies in the three most fre-

quently encountered scenarios discussed above. The inclusion of these strate-

gies, however, introduces additional parameters that need to be set with some

degree of precision and thus increases the potential for destabilisation of the

system. With this in mind, we conclude that any marginal benefits of including

these two benchmanr strategies is not significant when juxtaposed against the

potential for additional destabilisation of the system.
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Chapter 5 Conclusion

In this thesis we presented an evolutionary finance model of institutional invest-

ment policies with minimum consumption constraints. Our methodology was

heavily influenced by recent advances in the fields of evolutionary finance and

agent-based modelling. The basis of our approach was to address the problem

of optimal asset allocation with minimum consumption constraints from the

perspective of market selection of investment strategies.

To this end we specified an artificial financial market populated by a number

of agents following predetermined strategies. These strategies were specified as

model primitives and were not obtained by an analytical procedure, such as

utility maximisation. We let the market evolve and select the most successful

strategy. Success within the context of our model was measured by the size of

an agent’s wealth endowment.

The model extended previous work in evolutionary finance by introducing

an explicit minimum consumption threshold, which opened the possibility for

bankruptcy. We investigated a number of ways to handle this occurrence, as

well as its potential consequences for the market dynamics.

We solved the proposed market dynamics by means of numerical simula-

tions. Qualitative analysis of the results illustrated three main scenarios that

typically occur within our specification of the model. The most typical pat-

tern of scenarios were those characterised by favourable economic conditions.

Under these scenarios, few bankruptcies were observed. Investment styles that

remain invested in risky assets for longer periods of time tend to outperform

more erratic strategies, such as trend-following. Cases of market instability,

excess volatility and deflationary spirals were rare in those scenarios.

The remaining two scenarios both featured pronounced and long-lasting

recessionary periods. In the scenarios that featured severe and prolonged re-

cessions with little recovery, the trend-following strategy emerged preferable.

Fire sale conditions were particularly observable when all investors started con-

suming at the minimum threshold level. An interesting feature was that the

trend-following strategy did not outperform the others gradually, but by means

of a sharp phase transition. A large amount of instability, uncertainty and
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severe deflationary spirals were observed during these scenarios.

The third group of scenarios that emerged also features recessionary periods,

which however, although severe, managed to recover just before the fundamen-

talist investor type was forced into bankruptcy. Because of the stabilising effect

on the market that fundamentalist investment strategies have, this group of

scenarios was characterised by healthy and efficient markets, where deflation-

ary spirals are unlikely and where an asset’s price eventually reverts back to its

fundamental value. An interesting observation was that under no scenario were

dividend yield or mean-variance optimising strategies selected by the market.

We proposed the model specification in this thesis with the ultimate objec-

tive of gaining deeper insight into some of the most widely-spread asset-liability

problems that pension funds and insurance companies face. However, we dis-

covered that our model formulation suffers from a number of deficiencies, which

can hinder the accomplishment of this goal. Ultimately, a new and much leaner

model specification will be necessary in order to be able to calibrate it to real-

world data and draw useful investment policy implications for large institutional

investors.
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Chapter 6 Appendix

6.1 Proof of Theorem 3.1.1

In this section we give a proof to Theorem 3.1.1. The outline of the proof follows

closely the analysis in Palczewski & Schenk-Hoppé (2010a), Appendix E, with

a few minor modifications. Since we are interested in proving the existence and

uniqueness of the solution of a discrete-time dynamics, we will not discuss the

parts of the proof relevant for the reduced-dimension dynamics as well as its

continuous counterpart.

Proof Recall the semi-explicit form of the dynamics:

[
Id−Θ (Λtn , Vtn) Λtn+1

]
Vtn+1 = Mtn+1 + Θ (Λtn , Vtn) Dtn+1 − C (Vtn) , (6.1)

where Id denotes an I × I identity matrix. Let A =
[
Id−Θ (Λtn , Vtn) Λtn+1

]
.

A necessary and sufficient condition for the dynamics (6.1) to be well-defined

is if matrix A ∈ RI×I is invertible. The proof of A’s invertibility proceeds as

follows.

Firstly, we note that all column sums of Λtn+1 ∈ RK×I are strictly less than

one due to the assumption of fully diversified strategies:
∑K

k=1 Λtn+1,ki < 1.

Secondly, since the risky assets have a net positive supply of one and the market

for the risky assets clears, all column sums of Θ (Λtn , Vtn) are equal to one:∑I
i=1 Θ (Λtn , Vtn)ik = 1.

Bearing in mind the two facts mentioned above, it turns out that matrix A

has a column-dominant diagonal. Each diagonal entry strictly dominates the

sum of absolute values of the remaining entries in the corresponding column:

Aii >
I∑

j=1,j 6=i

|Aji|, i = 1, . . . , I. (6.2)

This claim is easy to verify. The elements of matrix A are given by:

1i=j −
K∑

k=1

Θ (Λtn , Vtn)ik Λtn+1,ki.
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Section 6.2 Proof of Lemma 3.4.1

All off-diagonal entries are non-positive and the diagonal entries are non-negative.

The condition in equation (6.2) can be restated as:

1−
K∑

k=1

Θ (Λtn , Vtn)ik Λtn+1,ki >

I∑

j=1,j 6=i

K∑

k=1

Θ (Λtn , Vtn)ik Λtn+1,ki

1 >
I∑

j=1,j 6=i

K∑

k=1

Θ (Λtn , Vtn)ik Λtn+1,ki +
K∑

k=1

Θ (Λtn , Vtn)ik Λtn+1,ki

I∑
i=1

K∑

k=1

Λtn+1,kiΘ (Λtn , Vtn)ik < 1.

The inequality is proved by taking advantage of the properties of the sums of

portfolios and investment strategies shown above, namely:

K∑

k=1

I∑
i=1

Λtn+1,kiΘ (Λtn , Vtn)ik =
I∑

i=1

(
K∑

k=1

Λtn+1,ki

)
Θ (Λtn , Vtn)ik (6.3)

<
I∑

i=1

Θ (Λtn , Vtn)ik = 1.

The result in equation (6.3) proves the result in equation (6.2). The latter

proves that matrix A is invertible and A−1 maps the non-negative orthant to

itself (see Murata (1977), p. 24, Theorem 23).

6.2 Proof of Lemma 3.4.1

Proof From Equation (3.25) we have:

Xk+1X
′
k+1 = AXk (AXk)

′ + AXkV
′
k+1 + Vk+1 (AXk)

′ + Vk+1V
′
k+1.

However, Xk+1 is a vector with only one element equal to 1. Multiplying this

vector by its transpose gives a N ×N matrix of zeros with only one entry equal

to one. Or in other words, a diagonal matrix with Xk+1 on its main diagonal:

Xk+1X
′
k+1 = diag (Xk+1) = diag (AXk) + diag (Vk+1) .

The result follows.

The proof follows from the fact that all terms on the RHS involving Vk+1

are zero-mean martingale increments, as was already proven. Therefore, taking

expectations and conditioning on Xk, only the first and the third term remain

non-zero:

〈Vk+1〉 = E
[
Vk+1V

′
k+1|Xk

]
= diag (AXk)− A diag (Xk) A′.
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Section 6.3 Proof of Lemma 3.4.2

6.3 Proof of Lemma 3.4.2

Proof Representing λk in terms of a sum rather than a product and using the

definition of ci
k+1 yields:

E [λk+1|Ξk] = E

[
M∏
i=1

(
1

Mci
k+1

)Y i
k+1

|
∣∣∣∣∣ Xik

]

= E

[
M∑
i=1

1

Mci
k+1

Y i
k+1|

∣∣∣∣∣ Xik

]

=
1

M

M∑
i=1

1

ci
k+1

P
(
Y i

k+1 = 1|Ξk

)

=
1

M

M∑
i=1

1

ci
k+1

ci
k+1 = 1.

In getting from row two to row three we used a special case of Fubini’s theo-

rem (see e.g. Ash & Doléans-Dade, 2000, p.108) we can interchange expecta-

tions and summations. The summation corresponds to the counting measure,

whereas the expectation E [·] is taken under the original probability measure

P .

6.4 Proof of Theorem 3.4.3

Proof Let B be any set in Ξ. It must be shown that:

∫

B

E [φ|Ξ] dP =

∫

B

E [Λφ|Ξ]

E [Λ|Ξ]
dP .

Define:

ψ

{
E[Λφ|Ξ]
E[Λ|Ξ]

if E [Λ|Ξ] > 0,

0 otherwise.

In other words, we have to show that for any set A in Ξ:
∫

A

E [φ|Ξ] dP =

∫

A

ψdP .

Write:

G = {w : E [Λ|Ξ] = 0} ,

so that G ⊂ Ξ. Then:
∫

G

E [Λ|Ξ] dP = 0 =

∫

G

ΛdP,

since by the law of iterated expectations, conditional expectations with respect

to a sub-σ-algebra are random variables on the whole probability space. Also,
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Section 6.4 Proof of Theorem 3.4.3

by the definition of Λ, Λ ≥ 0 almost surely. Thus, we have two possibilities:

either P (G) = 0, or the restriction of Λ to G is 0 almost surely. But by

hypothesis, P is absolutely continuous with respect to P , which means that

P (G) = 0 whenever P (G) = 0. So, in either case, Λ = 0 almost surely on G.

Since Λ ≥ 0 by definition, denote the complement of set G as:

Gc = {w : E [Λ|Ξ] > 0} .

For an arbitrary set A, suppose A ∈ Ξ. Then A can be represented as A = B∪C,

where B = A ∩Gc and C = A ∩G. Then:∫

A

E [φ|Ξ] dP =

∫

A

φdP =

∫

A

φΛdP

=

∫

B

φΛdP +

∫

C

φΛdP, (6.4)

where the first equality comes from the fact that conditional expectations with

respect to a sub-σ-algebra are random variables with respect to the entire σ-

algebra. Since Λ = 0 almost surely on C ⊂ G:
∫

C

φΛdP = 0 =

∫

C

ψdP , (6.5)

by the definition of ψ.

Concentrating on the set B, we have:
∫

B

ψdP =

∫

B

E [Λφ|Ξ]

E [Λ|Ξ]
dP

= E

[
IB

E [Λφ|Ξ]

E [Λ|Ξ]

]

= E

[
IBΛ

E [Λφ|Ξ]

E [Λ|Ξ]

]

= E

[
E

[
IBΛ

E [Λφ|Ξ]

E [Λ|Ξ]

∣∣∣∣ Ξ

]]

= E

[
IBE [Λ|Ξ]

E [Λφ|Ξ]

E [Λ|Ξ]

]

= E [IBE [Λφ|Ξ]]

= E [IBΛφ] ,

where the fifth equality follows from the fact that the indicator function IB and

the ratio E[Λφ|Ξ]
E[Λ|Ξ]

are constants and can be taken out of the expectation operator.

That is: ∫

B

ΛφdP =

∫

B

ψdP . (6.6)

Using the result in equation (6.4) and adding equations (6.5) and (6.6), we

have: ∫

C

ΛφdP +

∫

B

ΛφdP =

∫

A

ΛφdP

189



Section 6.5 Proof of Lemma 3.4.5

=

∫

A

E [φ|Ξ] dP =

∫

A

ψdP ,

and the result follows.

6.5 Proof of Lemma 3.4.5

Proof

P
(
Y j

k+1 = 1|Ξk

)
= E [〈Yk+1, fj〉|Ξk]

=
E [Λk+1〈Yk+1, fj〉|Ξk]

E [Λk+1|Ξk]

=
ΛkE [λk+1〈Yk+1, fj〉|Ξk]

ΛkE [λk+1|Ξk]

= E [λk+1〈Yk+1, fj〉|Ξk]

= E

[
M∏
i=1

(
1

Mci
k+1

)Y i
k+1

〈Yk+1, fj〉
∣∣∣∣∣ Ξk

]

= E

[
M∑
i=1

(
1

Mci
k+1

)
Y i

k+1Y
j
k+1

∣∣∣∣∣ Ξk

]

=
1

Mcj
k+1

E
[
Y j

k+1|Ξk

]

=
1

Mcj
k+1

cj
k+1 =

1

M
= P

(
Y j

k+1 = 1
)
.

This is a quantity independent of Ξk, which is the required result. The first

equality follows from property (1.21), the second one follows from lemma (1.4.4).

The third equality uses the fact that Λk is Ξk-measurable and is therefore

a constant. The fourth equality follows from lemma (1.4.2). The next two

equalities use property (1.38) and the two different representations of λk+1. The

seventh equality uses the fact that since only one element of Y i
k+1 is one, while all

the others are zero, the sum
∑M

i=1 Y i
k+1 equals one and the term corresponding

to the element which is one – 1

Mcj
k+1

– is a constant when conditioned on Ξk.

The last equality follows from the definition of cj
k+1 in equation (1.30).
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Section 6.6 Proof of Lemma 3.4.6

6.6 Proof of Lemma 3.4.6

Proof Using properties (1.21) and (1.38), and following the proof of lemma

(1.4.2), we have:

E
[
λk+1|Ξk

]
= E

[
M∏
i=1

(
Mci

k+1

)Y i
k+1

∣∣∣∣∣ Ξk

]

= E

[
M∑
i=1

(
Mci

k+1

)
Y i

k+1

∣∣∣∣∣ Ξk

]

= M

M∑
i=1

ci
k+1P

(
Y i

k+1 = 1|Ξk

)

= M
M∑
i=1

ci
k+1

M
=

M∑
i=1

ci
k+1 = 1.

The first two equalities show different representations of λk+1 and follow from

property (1.38). The third equality comes from the equivalence of expectations

and probabilities for simple random variables demonstrated in property (1.21).

The last equality follows from the definition of ci
k+1 and the fact that under P ,

{Yk} are a sequence of i.i.d random variables, each with a uniform distribution

over the M elements of its range space.

6.7 Proof of Lemma 3.4.7

Proof The proof proceeds in a way similar to the proof of lemma (1.4.5). Using

lemmas (1.4.4) and (1.4.6), as well as properties (1.21) and (1.38), we have:

P
(
Y j

k+1 = 1|Ξk

)
= E [〈Yk+1, fj〉|Ξk]

=
E

[
Λk+1〈Yk+1, fj〉|Ξk

]

E
[
Λk+1|Ξk

]

=
ΛkE

[
λk+1〈Yk+1, fj〉|Ξk

]

ΛkE
[
λk+1|Ξk

]

= E
[
λk+1〈Yk+1, fj〉|Ξk

]

= E

[
M∏
i=1

(
Mci

k+1

)Y i
k+1 〈Yk+1, fj〉

∣∣∣∣∣ Ξk

]

= E

[
M∑
i=1

(
Mci

k+1

)
Y i

k+1Y
j
k+1

∣∣∣∣∣ Ξk

]

= Mcj
k+1E

[
Y j

k+1|Ξk

]

= Mcj
k+1P

(
Y j

k+1 = 1|Ξk

)

=
Mcj

k+1

M
= cj

k+1.
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Section 6.8 Proof of Theorem 3.4.8

The only two notable differences from the proof of lemma (1.4.5) are that the

fourth equality now follows from lemma (1.4.6) instead of lemma (1.4.2) and

that the last equality follows from the fact that under P , {Yk} is a sequence of

i.i.d. random variables, each distributed uniformly over the M elements of its

range space.

6.8 Proof of Theorem 3.4.8

Proof The proof of theorem (1.4.8), as most of the proofs above, uses properties

(1.21) and (1.38). Additionally, it relies on the independence assumptions under

P , the mutual independence of Vk+1 and Wk+1 under P , as well as the fact that∑N
j=1〈Xk, ej〉 = 1. Starting from the definition of qk+1 (er), we have:

qk+1 (er) = E
[
Λk+1〈Xk+1, er〉|Υk+1

]

= E

[
〈AXk + Vk+1, er〉Λk

M∏
i=1

(
Mci

k+1

)Y i
k+1

∣∣∣∣∣ Υk+1

]

= ME

[
〈AXk, er〉Λk

M∏
i=1

(〈CXk, fi〉)Y i
k+1

∣∣∣∣∣ Υk+1

]

= M
N∑

j=1

E
[〈Xk, ej〉arjΛk|Υk+1

] M∏
i=1

c
Y i

k+1

ij

= M
N∑

j=1

E
[〈Xk, ej〉arjΛk|Υk

] M∏
i=1

c
Y i

k+1

ij

= M
N∑

j=1

qk (ej) arj

M∏
i=1

c
Y i

k+1

ij .

The second equality above follows from the definitions of Xk+1 and Λk+1. The

third equality uses result (1.46), which states that Vk+1 is a zero-mean martin-

gale increment when conditioned on Υk+1.

The fourth equality follows from an algebraic manipulation. Instead of

multiplying the element of Xk+1 that corresponds to state r by Λk, we take

each state of Xk, multiply it by the transition probability of moving to state

r in the next period, and sum them over all possible states of Xk. The same

representation is used for the conditional probability of the observation process∏M
i=1 (〈CXk, fi〉)Y i

k+1 – the conditional probability of the observation process is

written as the sum of the probabilities of observing the realized value of Yk+1

on condition that Xk was in each of its possible N states. Note that in this

step of the proof property (1.21) was used in order to exchange expectations

and probabilities. Furthermore, changing the order of the expectation and the

summation is allowed under Fubini’s theorem.
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Section 6.9 Proof of Theorem 3.4.9

The fifth equality is a simple application of the fact that under P , {Yk} are

i.i.d. random variables and therefore conditioning on Υk instead of Υk+1 will

not change the conditional distribution in the fourth equality.

The last equality is obtained using the definition of qk (ej) and the result

follows from using the notation introduced just prior to theorem (1.4.8).

6.9 Proof of Theorem 3.4.9

Proof The proof of this theorem relies mostly on Lemma (1.4.1) and prop-

erties (1.21) and (1.38), as well as the assumption of independence under the

probability measure P .

γk+1,k+1 (Hk+1)

= E
[
Xk+1Hk+1Λk+1 |Υk+1

]

= E
[
(AXk + Vk+1) (Hk + αk+1 + 〈βk+1, Vk+1〉+ 〈δk+1, Yk+1〉) Λkλk+1 |Υk+1

]

= E
[
((Hk + αk+1 + 〈δk+1, Yk+1〉) AXk + 〈Vk+1〉βk+1) Λkλk+1 |Υk+1

]

=
N∑

j=1

cj (Yk+1) E
[
((Hk + αk+1 + 〈δk+1, Yk+1〉) aj + 〈Vk+1〉βk+1) Λk〈Xk, ej〉 |Υk+1

]
.

Again, since Y are i.i.d. random variables under the probability measure P ,

conditioning on Υk+1 gives the same result as conditioning on Υk. Using Lemma

(1.4.1) and substituting for the newly-introduced notation yields the required

result.

In the above proof, the first equality simply uses the definition of γk+1,k+1 (Hk+1).

The second equality follows from substituting for the values of Xk+1, Hk+1 and

Λk+1. The third equality follows from the fact that Vk+1 is a zero-mean mar-

tingale increment when conditioned on Σk as well as from Lemma (1.4.1). As

was the case in Lemma (1.4.1), we have:

E
[
VkV

′
k |Υk

]
= E

[
E

[
VkV

′
k |X0, X1, . . . , Xk, Υk

]
|Υk

]

= E [〈Vk〉 |Υk ] .

The last equality follows from properties (1.21) and (1.38), as well as Fubini’s

theorem, which allows the exchange of the summation and expectation opera-

tors.

6.10 Proof of Theorem 3.4.10

Proof Similarly to the model with discrete observations, Vk+1 is a zero-mean

Σk-martingale increment, i.e. E [Vk+1 |Σk ] = 0. Also, note that since the wk are
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Section 6.11 Proof of Lemma 3.4.11

N (0, 1) i.i.d. random variables, they do not bring any new information when

added to a conditioning set. Therefore:

E [Vk+1 |Ξk, wk+1 ] = E [Vk+1 |Σk ] = 0.

Consequently, we can write :

E [Vk+1 |Υk+1 ] = E [E [Vk+1 |Ξk, wk+1 ] |Υk+1 ] = 0

and

X̂k+1 = E [Xk+1 |Υk+1 ] = E [AXk + Vk+1 |Υk+1 ]

= AE [Xk |Υk+1 ] . (6.7)

Substituting equation (1.60) for E [Xk |Υk+1 ] yields the final result.

6.11 Proof of Lemma 3.4.11

Proof First note, that P (yk+1 ≤ t |Ξk ) = E
[
Iyk+1≤t |Ξk

]
. Using the condi-

tional Bayes theorem (see Lemma (1.4.4)), this is:

=
E

[
Λk+1Iyk+1≤t |Ξk

]

E [Λk+1 |Ξk ]

=
Λk

Λk

E
[
λk+1Iyk+1≤t |Ξk

]

E [λk+1 |Ξk ]
.

Recall that under P , wk+1 = yk+1−〈c,Xk〉
〈σ,Xk〉 . Now, consider the denominator:

E [λk+1 |Ξk ] = E [E [λk+1 |Ξk, Xk+1 ] |Ξk ]

=

∫ ∞

−∞

〈σ,Xk+1〉φ (yk+1)

φ (wk+1)
φ (wk+1)

1

〈σ,Xk+1〉dyk+1

=

∫ ∞

−∞
φ (yk+1) dyk+1 = 1.

In the second equality above, note that the appropriate density to be used when

taking the conditional expectation of λk+1 is the density of wk+1, since λk+1 is

ultimately a function of wk+1, as yk+1 is itself a function of wk+1. Integrating

the entire standard normal density yields one.

So, we need to check only the numerator:

P (yk+1 ≤ t |Ξk ) = E
[
λk+1Iyk+1≤t |Ξk

]

=

∫ ∞

−∞

〈σ,Xk+1〉φ (yk+1)

φ (wk+1)
Iyk+1≤tφ (wk+1)

1

〈σ,Xk+1〉dyk+1

=

∫ t

−∞
φ (yk+1) dyk+1 = P (yk+1 ≤ t) ,

which is the desired result.
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6.12 Proof of Lemma 3.4.12

Proof In order to prove lemma (1.4.12), it must be shown that under both

P and P , X has the Markov property and has both a matrix of transition

probabilities A and an initial distribution p0. Consider the initial distribution

under the two probability measures first. The equality of the initial distributions

of X under both probability measures follows as a direct consequence of a

version of the conditional Bayes theorem:

E [X0] =
E

[
Λ−1

0 X0 |{Ω, ∅}]

E
[
Λ−1

0 |{Ω, ∅}]

=
E [X0]

E [1]

= E [X0] = p0.

To complete the proof, we need to consider the relation between the ex-

pectations E [〈Xk, ej〉 |Ξk−1 ] and E [〈Xk, ej〉 |Ξk−1 ], as well as their values. The

general idea for doing this is the same as in the discrete observations case. First,

we will apply a version of the conditional Bayes theorem and prove that the

denominator is equal to one. Then, we will evaluate the numerator.

E [〈Xk, ej〉 |Ξk−1 ] =
E

[
Λ−1

k 〈Xk, ej〉 |Ξk−1

]

E
[
Λ−1

k |Ξk−1

]

=
Λ−1

k−1E
[
λ−1

k 〈Xk, ej〉 |Ξk−1

]

Λ−1
k−1E

[
λ−1

k |Ξk−1

]

=
E

[
λ−1

k 〈Xk, ej〉 |Ξk−1

]

E
[
λ−1

k |Ξk−1

] . (6.8)

Now, examine the denominator in equation (6.8). Using the “tower” property

of conditional expectations and substituting for wk, we can rewrite it as:

E
[
λ−1

k |Ξk−1

]
= E


φ

(
yk−〈c,Xk〉
〈σ,Xk〉

)

φ (yk) 〈σ,Xk〉 |Ξk−1




= E


E


φ

(
yk−〈c,Xk〉
〈σ,Xk〉

)

φ (yk) 〈σ,Xk〉 |Xk, Ξk−1


 |Ξk−1


 . (6.9)

Consider the inner expectation in equation (6.9). It can be evaluated by inte-

grating with respect to yk:

E


φ

(
yk−〈c,Xk〉
〈σ,Xk〉

)

φ (yk) 〈σ,Xk〉 |Xk, Ξk−1


 =

1

〈σ,Xk〉
∫

R

φ
(

ξ−〈c,Xk〉
〈σ,Xk〉

)

φ (ξ)
φ (ξ) dξ

=
1

〈σ,Xk〉
∫

R
φ

(
ξ − 〈c,Xk〉
〈σ,Xk〉

)
dξ.
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We make the substitution ϕ = ξ−〈c,Xk〉
〈σ,Xk〉 . Then, dξ = 〈σ,Xk〉dϕ, and the integral

above becomes:

=
1

〈σ,Xk〉
∫

R
φ (ϕ) 〈σ,Xk〉dϕ

= 1,

since φ (·) is the standard normal density.

Therefore, we are only interested in the numerator in equation (6.8):

E [〈Xk, ej〉 |Ξk−1 ] = E
[
λ−1

k 〈Xk, ej〉 |Ξk−1

]
. (6.10)

Conditioning twice in the same way as we did above, it becomes evident that:

E
[
λ−1

k 〈Xk, ej〉 |Xk, Ξk−1

]
=

〈Xk, ej〉
〈σ,Xk〉

∫

R
φ (ϕ) 〈σ,Xk〉dϕ

= 〈Xk, ej〉. (6.11)

Therefore, we have the following relation between conditional expectations un-

der the two probability measures:

E [〈Xk, ej〉 |Ξk−1 ] = E
[
λ−1

k 〈Xk, ej〉 |Ξk−1

]
= E [〈Xk, ej〉 |Ξk−1 ] (6.12)

= E [〈Xk, ej〉 |Xk−1 ]

= 〈AXk−1, ej〉.

6.13 Proof of Lemma 3.4.13

Proof First, note that Λk is Ξk-measurable. Therefore, we can write:

E
[
Λk+1 |Ξk

]
= ΛkE

[
λk+1 |Ξk

]
.

Consequently, it is enough to show that E
[
λk+1 |Ξk

]
= 1. This is almost

immediately obvious when we substitute for λk+1 and integrate with respect to

yk+1:

E
[
λk+1 |Ξk

]
= E


φ

(
yk+1−〈c,Xk〉
〈σ,Xk〉

)

〈σ,Xk〉φ (yk+1)
|Ξk




=

∫

R

φ
(

ξ−〈c,Xk〉
〈σ,Xk〉

)

〈σ,Xk〉φ (ξ)
φ (ξ) dξ.

As in the proof above, we make the change of variables ϕ = ξ−〈c,Xk〉
〈σ,Xk〉 , so the

variable of integration changes according to dξ = 〈σ,Xk〉dϕ, and we obtain:

∫

R

φ
(

ξ−〈c,Xk〉
〈σ,Xk〉

)

〈σ,Xk〉φ (ξ)
φ (ξ) dξ =

∫

R
φ (ϕ) dϕ = 1.

The result follows.
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6.14 Proof of Lemma 3.4.14

Proof Let f (·) : R → R be an integrable, Ξk-measurable function. Then, by

a version of the conditional Bayes theorem, we have:

E [f (wk+1) |Ξk ] =
E

[
Λk+1f (wk+1) |Ξk

]

E
[
Λk+1 |Ξk

]

= E
[
λk+1f (wk+1) |Ξk

]
,

where the last equality comes from the fact that E
[
λk+1 |Ξk

]
= 1, which was

proven above. Therefore, substituting for wk+1 and λk+1, we obtain:

E [f (wk+1) |Ξk ] = E
[
λk+1f (wk+1) |Ξk

]

= E


φ

(
yk+1−〈c,Xk〉
〈σ,Xk〉

)

〈σ,Xk〉φ (yk+1)
f

(
yk+1 − 〈c,Xk〉

〈σ,Xk〉
)
|Ξk


 .

Since the {yk} are independent and identically distributed under P , the sub-

scripts become irrelevant. We evaluate the above expectation by integrating

with respect to y and making the change of variables ϕ = ξ−〈c,Xk〉
〈σ,Xk〉 , which im-

plies that the variable of integration changes according to dξ = 〈σ,Xk〉dϕ.

Thus, we obtain:

∫

R

φ
(

ξ−〈c,Xk〉
〈σ,Xk〉

)

〈σ,Xk〉φ (ξ)
f

(
ξ − 〈c,Xk〉
〈σ,Xk〉

)
φ (ξ) dξ =

∫

R
φ (ϕ) f (ϕ) dϕ,

which completes the proof.

6.15 Proof of Lemma 3.4.15

Proof The proof follows directly from the definitions of qk+1 and λk+1:

qk+1 = E
[
Λk+1Xk+1 |Υk+1

]

= E


Λk

φ
(

yk+1−〈c,Xk〉
〈σ,Xk〉

)

〈σ,Xk〉φ (yk+1)
Xk+1 |Υk+1




=
N∑

j=1

E
[
Λk〈Xk+1, ej〉 |Υk

]
ψj (yk+1) ej

=
N∑

j=1

〈Aqk, ej〉ψj (yk+1) ej

= B (yk+1) Aqk.

Perhaps the only remark worth noting in the above proof is that the third equal-

ity follows from the fact, that under the probability measure P , the observation
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process {yk} is a sequence of i.i.d. random variables. Hence, when taking con-

ditional expectations, conditioning on Υk and Υk+1 will yield the same result,

since knowing the value of yk+1 does not bring any useful additional information

about the future.
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