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Abstract

Colloquial Arabic (CA) is the set of spoken variants of modern Arabic that exist in the
form of regional dialects and are considered generally to be mother-tongues in those re-
gions. CA has limited textual resource because it exists only as a spoken language and
without a standardised written form. Normally the modern standard Arabic (MSA) writ-
ing convention is employed that has limitations in phonetically representing CA. Without
phonetic dictionaries the pronunciation of CA words is ambiguous, and can only be ob-
tained through word and/or sentence context. Moreover, CA inherits the MSA complex
word structure where words can be created from attaching affixes to a word.

In automatic speech recognition (ASR), commonly used approaches to model acoustic,
pronunciation and word variability are language independent. However, one can observe
significant differences in performance between English and CA, with the latter yielding up
to three times higher error rates.

This thesis investigates the main issues for the under-performance of CA ASR sys-
tems. The work focuses on two directions: first, the impact of limited lexical coverage, and
insufficient training data for written CA on language modelling is investigated; second,
obtaining better models for the acoustics and pronunciations by learning to transfer be-
tween written and spoken forms. Several original contributions result from each direction.
Using data-driven classes from decomposed text are shown to reduce out-of-vocabulary
rate. A novel colloquialisation system to import additional data is introduced; automatic
diacritisation to restore the missing short vowels was found to yield good performance; and
a new acoustic set for describing CA was defined. Using the proposed methods improved
the ASR performance in terms of word error rate in a CA conversational telephone speech
ASR task.
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1.1 Varieties of Arabic

Arabic is the official language for 22 countries with around 300 million native speakers.
It has two main variants: standard and colloquial Arabic. Classical Arabic (CLA) has
been codified by the Qur’an, the Islamic Holy book, and pre-Islamic poetry. A modernised
version of CLA that retained its syntax but developed its vocabulary is known as Mod-
ern standard Arabic (MSA). MSA is taught in schools and used for formal written and
oral communication and discussions such as lectures, public speeches, news, magazines
and books. Learning MSA facilitates access to written media in the language system.
In contrast to the written language, which has maintained its morphology and syntax
throughout the years, varieties of modern Arabic have appeared in the spoken language
as regional dialects that are significantly distinct from MSA phonologically, syntactically
and morphologically. These dialects, collectively known as colloquial Arabic (CA), are
defined as the mother-tongues for individuals in any Arabic country. CA is also referred
to interchangeably as dialectical Arabic and conversational Arabic because it only exists
in dialects and is used mainly for conversations.

CA introduced new phones to the Arabic phonetic system and some of the MSA phones
are not used in some of the CA variants. The MSA phonetic system has 28 consonants,
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1.1. Varieties of Arabic

يرفرف علم التححاد

قرأت في علم الأحياء

Union's                is waving

I read in                of livings

Diacritised 
form

Part of 
speech

English 
translation

للم عع verb knew

للم عع verb instructed 

علم عع noun flag

لعلم noun science

Figure 1.1: Choosing a diacritised form for the undiacritised word ”علم“ according to the
given context.

three vowels and two diphthongs. Duration is a phonemic in Arabic generally, conse-
quently, the phonemic inventory is expanded to include short and long variants of each
phone. Arabic is written using two elements: letters, also known as graphemes, and dia-
critics. In MSA, most graphemes have a one-to-one mapping to a phone. Diacritics are
small strokes that are added to the top or bottom of a grapheme to lengthen its duration
or attach a short vowel to it. An Arabic sentence, written using graphemes and diacritics,
provides the best possible representation for its phonetic realisation. Despite the signifi-
cance of diacritics in describing the phonetic realisation, the use of diacritics is optional
and they are actually rarely added. Consequently, an undiacritised word is ambiguous.
Every grapheme can be diacritised using one of the six combinations of diacritics; however,
not all possible diacritisations are valid. A conventional Arabic dictionary provides a list
of valid diacritisations for each Arabic stem, without phonetic transcriptions as in an En-
glish dictionary. Each diacritised form carries its own meaning and the choice for a certain
diacritised form is based on its surrounding context. Figure 1.1 illustrates an example of
choosing a diacritised form for the Arabic word ”علم“ according to the context. In the top
sentence, الاتحاد“ علم ”يرفرف (Union’s flag is waving), the chosen diacritisation is the one
suitable to fit in the context of the sentence.

CA increases the level of ambiguity by introducing additional phones. Because CA is a
spoken language, it does not have a standardised writing system. No standard graphemes
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1. Introduction

are assigned for these new phones. Arabic writers improvise the spelling of a given CA
word inconsistently. Writers are usually influenced by their knowledge of MSA, which
makes them substitute a spoken CA word with its original MSA form even if the latter
does not describe the spoken word phonetically.

Arabic in general has a complex word structure. An Arabic word can be created by
applying one or more modification processes to an abstract root. These processes are
known as morphological processes. Inflection, a morphological process, concatenates some
linguistic particles, such as pronouns, to a verb or a noun. As a consequence, an Arabic
word can be equivalent to a full sentence. For example, the word ”علمته“ is equivalent to
the English sentence (I taught him). This property of Arabic allows freedom in the word
order since each word almost encapsulates a self-sufficient meaning.

1.2 Colloquial Arabic automatic speech recognition

Automatic speech recognition (ASR) aims to convert an acoustic speech signal into written
form. To achieve state-of-the-art performance, ASR systems require transcribed speech
corpora, pronunciation dictionaries and a large volume of textual data to model the large
variability in the acoustics, pronunciations and word sequences respectively. Collecting or
constructing these resources is a costly task where linguistic expertise is necessary.

Over the past 50 years, ASR performance has improved steadily. Figure 1.2 shows an
overview of the recognition performance of ASR in the NIST benchmark tests. For example,
English systems for transcribing conversational speech achieved 14% word error rate in the
NIST 2009 evaluation. In contrast, Egyptian CA systems in the NIST 2003 evaluation and
Levantine CA systems in the NIST 2004 evaluation have significantly poorer performance
with 37.5% and 46.5% word error rates respectively, three times worse performance than
English systems. Reviewing more recent state-of-the-art ASR systems designed for CA, the
performance range has not significantly changed. For instance, the recognition performance
for Iraqi CA ASR systems achieved 32.1% WER (Afify et al., 2006) and Levantine CA ASR
achieved 39.7% WER (Soltau et al., 2011).

The main reason for favouring MSA over CA in developing ASR systems is that MSA
is shared by all native Arabic speakers and accepted as the formal Arabic language. As
two CAs can widely differ from each other, speakers from these dialects use MSA to
communicate. Hence, most language processing technology has targeted MSA instead of
CA to access more users. Automatic speech recognition for Arabic, in particular for MSA,
has been studied for two decades and, as for English, has improved steadily.
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1.3. Motivations and problem definition

Figure 1.2: NIST STT benchmark test history 1988-2009. CA ASR performance is
marked with green circles and MSA ASR performance is marked with light blue squares.

Conversational English ASR performance is marked with orange and red markers.
(NIST, 2009)1.

1.3 Motivations and problem definition

MSA is only accessible for literate and educated members of the Arab society and only can
be learned in schools. However, CA is accessible for all Arab society as their own mother-
tongue where they learn it in their homes. An educated native Arabic speaker can switch
between the two variants according to the situation. For example, news anchors use MSA
for broadcasting the news on air and then switch to CA when speaking to their colleagues
off the air. For written communication, MSA has been used traditionally for all written
correspondence whilst CA has remained only a spoken language without a standard writing
system. This is starting to change with the emergence of social media, which provide an
informal environment for communication. Arabic participants begin to write as they speak
and consequently, more CA words have started to be used in the digital media. Without
a standard writing convention, native Arabic writers improvise their own spelling which is
mainly derived from MSA writing conventions.

With the increased demand of native Arabic speakers for accessing information using
their own mother-tongue, more technologies emerge to facilitate using CA. As outlined
above, ASR systems for CA suffer from a significant under-performance in comparison to

1Copyright 2009 by NIST. Reprinted with permission.
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1. Introduction

both conversational English and MSA ASR systems. Such highlighted difference suggests
the existence of underlying modelling issues so different approaches must be considered.
Several potential sources for the poor performance in CA can be identified in the following.

Due to the rich morphology of Arabic, words are created from concatenating or inflect-
ing, small particles at the beginning or at the end of a given word. These particles may
represent pronouns and prepositions. For example, the inflected word from adding the
particle ”الـ“ (the) at the beginning of the word ”علم“ is (flag) is ”العلم“ (the flag). Further
inflection can be applied to create the word ”بالعلم“ (by/with the flag). Language models
depend on counting word occurrences in a context to be able to estimate word probabilities
in that context. This estimation is made for a selected word list which usually part of the
seen vocabulary in the training corpus. If the two words: ”علم“ (flag) and ”العلم“ (the flag)
occur in the same context, they will be counted separately even though they are essentially
referring to the same word. As a consequence, more training samples are required in order
to obtain reliable word probabilities for each inflected word. In an English case, including
(flag) would be sufficient to cover the three sentences: (flag), (the flag) and (with the flag),
whilst in the Arabic case, all three inflected words must be included in the chosen word
list to have the same lexical coverage. Otherwise, these inflected words not included in
the word list cannot be recognised. If a word is not included in the chosen word list, it is
referred to as an out-of-vocabulary (OOV) word. The percentage of the total occurrence
of OOVs in a given text is known as the OOV rate. It is expected for languages with
rich inflectional morphology, such as Arabic, to have high OOV rates. For instance, a
60K lexicon has an OOV rate of less than 1% for North American English broadcast news
(Rosenfield, 1995); however, for a similar task in rich morphological languages such as
Finish this rate reached 15% for a 69K lexicon (Hirsimäki et al., 2006), 10% for Estonian
with a 60K lexicon (Hirsimäki et al., 2006), 9.3% for Turkish with 50K lexicon (Arısoy
et al., 2008) and 5.4% for MSA with 64K lexicon (Vergyri et al., 2008).

There is a large discrepancy between the written and spoken forms in MSA in gen-
eral and in CA in particular. This is due to the omission of diacritics, which describe a
large proportion of the phonetic realisation. English has an even larger difference between
the written and spoken form; however, this is resolved by phonetic dictionaries. Phonetic
dictionaries map the written form, in letters, with its spoken form, in phones. For exam-
ple, the word “phone” is mapped to /foʊn/. Such dictionaries do not exist for Arabic.
As aforementioned, a conventional Arabic dictionary provides a list of valid diacritisation
variants for a given word without an explicit phonetic transcription. This implicitly shows
an assumption that a fully diacritised variant is equivalent to a phonetic transcription. For
a collection of symbols to be defined as a phoneset, i.e. a phonetic description alphabet,
they must be phonetically separable. Choosing Arabic graphemes as the phonetic units
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will not provide the desired phonetic separation because there exist multiple graphemes as-
sociated with the same phone. Moreover, CA has introduced additional phones which were
associated inconsistently with some of the existing graphemes, hence, multiple phones are
associated with the same grapheme. This invalidates the assumption about the optimality
of diacritised form as a phonetic transcription.

1.4 Research objectives

Motivated by the above discussion, the work in this thesis is divided in to two directions:
first, investigating linguistic issues (Objectives 1 and 2); second, narrowing the gap between
the written and the spoken forms of CA (Objectives 3 a nd 4). The following objectives were
chosen to address each of the identified issues. For each objective, a definition statement
along with related research questions are presented.

Objective 1: Investigate word decomposition in colloquial Arabic language
modelling

Arabic is a morphologically rich language so the rate of vocabulary growth increases as
the amount of training data increases. This is reflected in high out-of-vocabulary (OOV)
rate, and therefore a worse recognition performance. It has been reported that using
morphological decomposition of words can limit vocabulary growth. For instance, the
three inflected words: ”علم“ (flag), ”العلم“ (the flag) and ”بالعلم“ (by/with the flag) are
decomposed as follows:

”علم“ (flag) ”علم“

”العلم“ (the flag)
decomposed into−−−−−−−−−−→ علم“ ”الـ+

”بالعلم“ (by/with the flag) علم“ الـ+ ”بـ+

Here, the word ”علم“ would have more reliable probability estimates. However, there has
been limited work on this approach due to the lack of appropriate tools for morphologically
analysing a CA sentence. To counter this, the first objective of this thesis is to investigate
whether word decomposition can be effective in reducing the OOV rate and perplexity for
an CA language model.

Objective 2: Investigate the use of MSA resources for CA language modelling

Increasing the amount of training data improves language models and their prediction
ability. As discussed earlier, with the existence of inflected words, more training samples
are necessary to obtain reliable word estimates and better prediction ability. Since CA is
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1. Introduction

only a spoken language, the lack of training data becomes a core obstacle to implementing
language models with reliable word probabilities. However, there exists a considerable
amount of textual resources in MSA that may be of some use. The second objective of
this thesis is to investigate methods that use the available MSA textual resources to train
a CA language model.

Objective 3: Narrow the gap between the spoken and written forms of CA

Most Arabic resources are written in undiacritised form where short vowels are not marked.
A reader can infer these vowels and disambiguate words from their context. Although the
diacritised form of a CA word might not equivalent to its phonetic transcription, with no
doubt it describes a spoken CA word better than the undiacritised form. Therefore, re-
trieving these diacritics can be considered as a first step toward narrowing the gap between
the spoken word and its common written form. All the available automatic diacritisation
tools either rely on the local context or require a morphological analysis preprocessing
stage, and almost all of them are designed for MSA. The third objective of this thesis is to
develop an automatic diacritisation technique for colloquial Arabic using a longer context
and without any prior linguistic preprocessing. This is taken further with an investigation
of whether the inclusion of the phonological profile, such as the associated phone classes,
and paralinguistic information, e.g. a speaker’s gender and dialect, can be used as auxiliary
information to improve diacritisation accuracy.

Objective 4: Find an appropriate acoustic inventory for CA

CA introduces several new phonemes to the Arabic acoustic inventory in addition to new
mappings between the graphemic and phonemic systems. This creates a high level of
ambiguity in generation of a pronunciation dictionary, which for Arabic is customarily
derived directly from the fully diacritised written form. Thus there is a need to define a
wider acoustic inventory. The fourth objective is to redefine the Arabic acoustic inventory
to accommodate these new colloquial mappings, and to investigate if this new inventory has
a clear mapping to the graphemic form where it can be learned in grapheme-to-phoneme
techniques to generate new pronunciations to be used in speech recognition tasks.

1.5 Thesis overview

This thesis can be grouped into four parts, that are displayed in Figure 1.3. Here, each
chapter is represented by a block and the dependencies between chapters are represented
by arrows. Chapters are theoretically grouped with dashed lines. At first, background
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Ch8. Conclusions and future work

Figure 1.3: Thesis structure. Each chapter is represented by a block and the
dependencies between chapters are represented by arrows. Chapters are grouped in parts

within dashed lines.

is provided about the Arabic language (Chapter 2) and the tasks this thesis is concerned
with (Chapter 3). The background from Chapters 2 and 3 is necessary for the two main
contribution areas achieved in this thesis: language modelling (Chapters 4 and 5) and
acoustic modelling (Chapters 6 and 7) for colloquial Arabic ASR. Chapter 8 presents
conclusions and suggestions for future work. The following gives detail of the contents of
each chapter.

Chapter 2 provides background information about the Arabic language and its vari-
ants. It gives a thorough comparison of CA to its standard counterpart phonologically,
orthographically and morphologically. It also identifies the challenges that the language
properties pose for developing an ASR system. Chapter 3 provides a concise introduction
to the fundamentals of ASR along with an overview of the recent advancements and state-
of-the-art technologies in developing an automatic speech recognition for CA. It identifies
and summarises the current gaps in this area.

8



1. Introduction

Chapter 4 discusses related research that employs word decomposition, especially for
inflectional and morphologically rich languages such as Arabic, Turkish and German. As
this chapter covers the intended work for Objective 1, the three methods of word decom-
position are explained and discussed in terms of applying them to CA text.

The majority of the work in Chapter 5 is directed towards Objective 2 of this thesis.
The chapter starts with a critical discussion of techniques for importing standard Arabic
resources to build colloquial Arabic language models. Then, three different techniques are
proposed and applied on word-level and morph-level.

As Chapters 4 and 5 focus on language modelling issues and pursue the first two
objectives of the thesis, Chapter 6 and 7 shift the focus to the acoustic and pronunciation
modelling issues in CA. Normally in written text, diacritics are optionally added because
they can be inferred from the word and the context, thus a considerable part of the acoustic
information is not written. Chapter 6 investigates retrieving the omitted diacritics from
the textual data of CA, a task which derives from Objective 3 of the thesis. Two automatic
diacritisation schemes that incorporate context information are proposed and empirically
evaluated on a conversational telephone speech (CTS) ASR task. The context information
considered for these tools is not only derived from the textual level but also from higher
levels such as the extralinguistic level. As a fully diacritised form is retrieved, Chapter 7
concentrates on Objective 4 and discusses the issues of using graphemic units in acoustic
modelling and addresses each of them to reduce the resulting ambiguity in the acoustic
model. As a result, two acoustic inventories are introduced along with derivation algorithms
for each inventory. The proposed derivation procedures are analysed and the resulting
inventories are empirically evaluated in CTS ASR tasks.

Finally, the thesis is concluded in Chapter 8, which also summarises the main contri-
butions of this thesis and suggests directions for future research.
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Arabic language: standard vs.
colloquial

Contents
2.1 Varieties of Arabic . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Arabic phonology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Arabic orthography . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Arabic graphemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Diacritics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Punctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4 Arabic transliteration . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Relation between Arabic phonemes and graphemes . . . . . . . 21

2.5 Arabic morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Derivational morphology . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Inflectional morphology . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.3 Difference between MSA and CA morphology . . . . . . . . . . . . 28

2.6 Arabic syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Challenges in developing colloquial Arabic ASR . . . . . . . . . 31

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Arabic is the most popular living Semitic language and is the official language for 22
countries with around 300 million native speakers. In addition, Classical Arabic (which
is one of the Arabic variants) is the liturgical language for Islam where it is learnt by
1.6 billion Muslims around the world. A variant similar to classical Arabic, known as
Modern Standard Arabic (MSA), is used primarily in education and formal media and
correspondence but does not exist as a native language. Arabic has changed with the
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2.1. Varieties of Arabic

Figure 2.1: The language status at the beginning of Islamic conquests (Holes, 2004)1.

exposure to other languages over the years, resulting in new variants of Arabic, namely
dialects or colloquial Arabic (CA). In contrast to MSA which is taught at schools in both
written and spoken forms, CA is used exclusively in informal daily conversations, is not
written and is learnt at home as the native tongue.

This chapter gives a phonetic, orthographic and morphological overview of the Arabic
language and its dialects. In addition, it outlines the main challenges to developing an
ASR system for the language.

2.1 Varieties of Arabic

With the emergence of Islam in the fifth century, classical Arabic (CLA) was centralized
in the Arabian Peninsula, and was codified by the Qur’an, the Islamic Holy book, and
pre- Islamic poetry. The association with Islam made Arabic the official and religious
language of Islam as it spread from the Arabian Peninsula to cover western Asia to North
Africa and the south of Europe. At the beginning of the seventh century, Islamic conquests
carried Arabic natives to the conquered territories and Arabic was used as the main means
of communication between local residents and the incomers, who are usually Islamic officials
(Holes, 2004). Figure 2.1 locates the boundaries of languages at the beginning of the Islamic
conquests. Arabic in those regions went through number of developments in the following
period until the twelfth century. Fearing the loss of the ability to understand Qur’an

1Copyright 2004 by Georgetown University Press. From Holes (2004). Reprinted with permission.
www.press.georgetown.edu.
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2. Arabic language: standard vs. colloquial

Table 2.1: Summary of differences between the high (H) and low (L) variants of the
Arabic language in a diglossic speech community as discussed by Ferguson (1959).

Aspect H variant (MSA) L variant (CA)
Function Formal. Informal.
Prestige Prestigious and beautiful. Corrupted and not real.
Literary heritage Highly esteemed with long his-

tory.
Less appreciated literature such
as political cartoons.

Acquisition Formal education. At home as a mother tongue.
Standardization Orthography is well estab-

lished.
No settled orthography.

Established norm for linguistic
resources.

No norm for linguistic re-
sources.

Very limited variation in pro-
nunciation.

Wide variation in pronuncia-
tion.

Stability Stable. Changing.
Grammar Complex grammatical struc-

ture.
Simplified grammatical struc-
ture.

Lexicon Technical terms and learned ex-
pressions.

Popular expressions.

Phonology Considered as the basic phono-
logical system.

Evolving.

in Arabic, elite and cultured people, such as Al-Khalil (Al-Farahidi, 1980) and Sibawayh
(Sibawayh, 1983), codified norms and rules from their way of speaking to retain the Arabic
language (Ibn Khaldoun, 2001).

Until the nineteenth century, the original Arabic became exclusively written and was
used only by the elite, literate society. Then, Arab countries were colonized by non-Arabic
civilizations for more than fifty years, influencing the Arabic lexis and stylistics and re-
sulting in the modernized version of the CLA known as Modern Standard Arabic (MSA)
(Hawkins, 1983; Watson, 2002). Today, MSA is taught in schools and used for most of
the written media, such as newspaper, magazines and books. Also, it is used in formal
oral communication and discussions, such as in lectures, public speeches, broadcast news
and most of talk shows. While the written language has maintained its morphology and
syntax throughout the years, varieties of modern Arabic have developed along side it, ap-
pearing in the spoken language as regional dialects which are significantly distinct from
MSA phonologically, syntactically and morphologically. Ferguson (1959) was the first to
refer to this sociolinguistic phenomenon as diglossia and distinguished it from a situation
where two dialects co-exist within a single speech community. In diglossic speech com-
munities, there are two varieties of a language where each has its functionally exclusive
domains: a highly valued variant, referred to as H, that is learnt at schools and is not
used for daily conversations, and a low variant, referred to as L, that is used in informal
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2.1. Varieties of Arabic

Figure 2.2: Map of the Arabic dialects as mentioned in Alghamdi (2000) and Watson
(2002); The continuous spectrum of dialect variations does not take into account national

borders.

conversations. According to Ferguson, H dialect is believed by its speakers to be the real
language while L dialect is a corrupted form of the language. Table 2.1 summarises other
differences between H and L varieties in Arabic.

There are about thirty different Arabic dialects (Lewis, 2009) which can be classified
geographically, socially or phonologically. Linguists, such as Alghamdi (2000) and Watson
(2002), have categorized those geographically into two major groups: Mashriqi (Eastern)
and Maghribi (Western) Arabic. The former includes roughly all the dialects to the east of
Sudan and Chad to the border of Oman; the latter includes all the dialects to the west of
that line as far as Morocco. Additionally, these groups can be divided into six dialectical
families based on their origins and characteristics: Magrebi, Egyptian, Levantine, Iraqi,
Gulf and Yemeni (Maisel and Shoup, 2009). The approximate geographical spread of these
dialects is shown in Figure 2.2. As stated by Watson (2002):

“Dialects of Arabic form a roughly continuous spectrum of variation, with the
dialects spoken in the eastern and western extremes of the Arab speaking world
being mutually unintelligible.”

Considering the aforementioned development of the dialects, Holes (2004) observed
that socioeconomic lifestyle has a cross-cutting effect over the geographical distribution of
phonological systems, especially in the Bedouin dialects. Bedouin dialects show a greater
degree of similarity, in terms of their phonology and morphology, over geographical spread
of the Arab world. Bedouin people reside far from the cities where interaction with other
foreigners is limited. Holes accounted for the similarity across Bedouin dialects by the
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2. Arabic language: standard vs. colloquial

slow effect of external influences, as compared with those who live in the cities, though
this similarity was not observed among urban groups across national borders. For exam-
ple, a Libyan and Saudi Bedouin dialects are more similar each other than their urban
counterparts.

2.2 Arabic phonology

In general, by comparing the number of consonants against the number of vowels, Arabic
language has a rich consonantal system compared with its limited range of vowels with
twenty-eight consonants in total and only three vowels. Dialects add yet more flexibility
to the vowelic system and limit some of its consonantal inventory.

This section summarizes the phonological similarities and differences between MSA and
its colloquial varieties.

Consonants: there are twenty-eight distinct consonantal sounds. A set of the prominent
acoustic sounds in Arabic are those articulated in the velar and postvelar regions of
the vocal tract, heard in /k/, /q/, /ɣ/, /x/, /ħ/, /ʕ/, /ʔ/, and /h/2. Another evident
feature of Arabic phonology is the emphatic consonant, articulated by retracting the
tongue root. These are the emphatic alveolar plosives /tˁ/ and /dˁ/, the emphatic
alveolar fricative /sˁ/ and the emphatic dental fricative /ðˁ/. All Arabic consonants
are illustrated in Figure 2.3.

As a part of spoken dialect development, additional phonemes appeared in some
dialects, such as /g/, /v/, /tʃ/ and /p/, and some of the existing MSA phonemes
disappeared or have become rarely used. For example, the uvular plosive /q/ in
MSA is replaced by the glottal stop /ʔ/ in Levantine and Egyptian dialects, while
it was raised to the velar plosive /g/ in Gulf and Yemeni or /k/ in Jordanian and
Palestinian and softened in Sudanese to the velar fricative /ɣ/. Another example
is the retraction of the articulation location from the dental, as in /θ/ and /ð/, to
alveolar location, to be /s/ and /z/ respectively. More of these different realizations
are summarized in Table A.1 in Appendix A.

Vowels: there are three vowels, which are the open-low front unrounded vowel, /a/, the
close-high back rounded vowel, /u/, and the close-high front unrounded vowel, /i/.

These vowels shift slightly to neighbouring vowels in CA and create allophones. Two
2Phonetic sounds are represented using IPA symbols (IPA, 1999) between two slashes (/).
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2. Arabic language: standard vs. colloquial

Figure 2.4: Arabic vowels shown in an IPA vowels chart (IPA, 1999); vowels in grey
appear in CA only. Adapted from Alghamdi (2000) and Watson (2002).

phones are considered allophones if they are perceived as a single phoneme. Gen-
erally, the open-low front unrounded vowels /a/ may retract to the open-low back
unrounded vowel /ɑ/ when it occurs with emphatic consonants while it may raise
to the open-mid vowel /æ/ when it occurs with labial consonants. In contrast, both
close vowels, /i/ and /u/, are lowered to the close-mid vowels /e/ and /o/, respec-
tively, especially for loanwords such as /ʃokola:ta/ (chocolate). Some western Arabic
dialects today merge two vowels together, either /i/ and /u/ or /a/ and /u/ into
/ə/(Watson, 2002). Eastern Arabic dialects offer a more flexible vowel system than
MSA. Figure 2.4 locates the Arabic vowels on the IPA schematic vowels chart (IPA,
1999) and shows in grey the vowels that are used in dialects but not in MSA.

Diphthongs: two diphthongs exist in MSA, which are: /aw/ and /aj/, but they are less
frequently used in dialects and might be replaced with other vowels such as /o/
and /e/ respectively (Watson, 2002). For instance, the Arabic word for “sword”
is pronounced as /sajf/ in MSA but as /se:f/ in CA, and the word for “turn” is
pronounced as /dawr/ in MSA but as /do:r/ in CA.

Duration is phonemic in Arabic by which a phone is pronounced for an audibly longer
time, usually twice the length of a normal phone (Alghamdi, 2000). Consequently, the
basic Arabic phonemeic inventory is composed of 64 phonemes made of short and long
phones. Longer consonants are called geminated consonants. For example, for the word
/darasa/ (he studied), if the first vowel /a/ is pronounced longer, i.e. /da:rasa/, it means
(he studied together with), whereas the word /dar:asa/ with a geminated /r/ means (he
taught). Generally, phonetic duration is retained in most Arabic dialects except for dialects
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2.3. Arabic orthography

that replace some short vowels with /ə/. In such dialects, long vowels become shorter while
keeping their vowelic quality (Holes, 2004).

2.3 Arabic orthography

In this section, a brief overview of how words and sentences are written in the Arabic
language will be given. The Arabic phonemic inventory is represented through script that
is written from right to left using graphemes, or letters, along with diacritics above and
below those letters. Letters are connected together horizontally from right to left to form
words. The words follow each other and are separated by a blank or a white space to
constitute a sentence.

2.3.1 Arabic graphemes

There are thirty-six different graphemes in the Arabic writing system, where each one of
them alters its shape according to its position in the word, whether it is in an initial,
middle, final or isolated position. The main goal for having these different shapes is to
connect those letters together into one continuous unit that forms a word. However, not
all letters can be connected from both sides. Figure 2.5 lists all different shapes for each
Arabic graphemes along with their names. Some graphemes have restrictions on which
position in a word they are allowed to appear at, shown as symbol “_” in Figure 2.5,
for instance (ؤ) and (ئ) cannot begin a word while (ة) and (ى) can only appear as word
endings.

2.3.2 Diacritics

The Arabic writing system uses eight diacritics to represent phonetic phenomena. Some
of these diacritics are phonemic and some are morphemic and syntactic, i.e. they identify
the word case or state but not the meaning. Three of these diacritics are used to represent
the short vowels that can be written above the letter (/a/ and /u/) or below it (/i/) and
another three diacritics mark nominal indefiniteness in MSA, known as nunation, which
adds /n/ to the attached short vowel. There exists a special diacritic that is written above
a consonant to represent its geminated version where it can be combined with any of the
previous diacritics as shown in Figure 2.6. Finally, there is also a diacritic for marking the
absence of vowels.
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2. Arabic language: standard vs. colloquial

Lunar graphemesLunar graphemesLunar graphemesLunar graphemesLunar graphemesLunar graphemesLunar graphemes Solar graphemesSolar graphemesSolar graphemesSolar graphemesSolar graphemesSolar graphemesSolar graphemes

Buckwalter NameName Final Medial Initial Isolated Buckwalter NameName Final Medial Initial Isolated

|

alif ألف

ـآ ـآ آ آ t taa تاء ـت ـتـ تـ ت

> alif ألف ـأ ـأ أ أ v thaa ثاء ـث ـثـ ثـ ث

<

alif ألف

ــــ ــــ إ إ d dal دال ـد ـد د د

ʻ

hamza همزة

ء ء ء ء * thal ذال ـذ ـذ ذ ذ

& hamza همزة ـؤ ـؤ ــــ ؤ r raa راء ـر ـر ر ر

}

hamza همزة

ـئ ـئـ ــــ ئ z zain زين ـز ـز ز ز

b baa باء ـب ـبـ بـ ب s seen Kس ـس ـسـ سـ س

j jeem جيم ـج ـجـ جـ ج $ shen Kش ـش ـشـ شـ ش

H haa حاء ـح ـحـ حـ ح S sad صاد ـص ـصـ صـ ص

x khaa خاء ـخ ـخـ خـ خ D dhad ضاد ـض ـضـ ضـ ض

E ayn Kع ـع ـعـ عـ ع T taa طاء ـط ـطـ طـ ط

g ghayn Kغ ـغ ـغـ غـ غ Z thaa ظاء ـظ ـظـ ظـ ظ

f faa فاء ـف ـفـ فـ ف l lam ~م ـل ـلـ لـ ل

q quaf قاف ـق ـقـ قـ ق n noon نون ـن ـنـ ـن ن

k kaf كاف ـك ـكـ كـ ك

m meem ميم ـم ـمـ مـ م

h haa هاء ـه ـهـ هـ ه

p taa 
marbwta

تاء 
مربوطة

ـة ــــ ــــ ة

Glides and long vowels graphemesGlides and long vowels graphemesGlides and long vowels graphemesGlides and long vowels graphemesGlides and long vowels graphemesGlides and long vowels graphemesGlides and long vowels graphemes

Buckwalter NameName Final Medial Initial Isolated

A alif ألف ـا ـا ا ا

Y alif 
maqswra

ألف 
مقصــورة ـى ــــ ــــ ى

w waw  واو ـو ـو و و

Figure 2.5: Writing system for the Arabic language. Graphemes are grouped into three
sections: Lunar, Solar and Glides and long vowel graphemes. All possible shapes a

grapheme can take according to its position within a word are shown along with its name
written in Arabic script and Roman letters. The symbol “_” is shown when a grapheme

is not allowed at a certain position within a given word. Buckwlater transliteration
equivalent is shown for each grapheme.
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DiacriticsDiacriticsDiacriticsDiacriticsDiacriticsDiacriticsDiacriticsDiacritics

NameName Isolated
Without 

gemination or 
nunation

Gemination Nunation Gemination 
and Nunation

sukwn سكون

script ْ بْ بّ
sukwn سكون

IPA / b / / b: /
sukwn سكون

Buckwalter o bo b~

fatha فتحة

script َ بَ ب- بـاً بًّا
fatha فتحة

IPA / a / / ba / / b:a / / ban / / b:an /
fatha فتحة

Buckwalter a ba b~a baF b~aF

kasra كسرة

script ِ بِ ب7 بٍ ب9
kasra كسرة

IPA / i / / bi / / b:i / / bin / / b:in /
kasra كسرة

Buckwalter i bi b~i biK b~iK

dama ضمة

script ُ بُ ب= بٌ ب?
dama ضمة

IPA / u / / bu / / b:u / / bun / / b:un /
dama ضمة

Buckwalter u bu b~u buN b~uN

Figure 2.6: Arabic diacritics. The name written in Arabic and Roman scripts is shown
for each diacritic, along with its pronunciation using IPA symbols and transliteration
using Buckwlater scheme. The first column shows a diacritic on its own without being

associated with any grapheme while the rest of the columns associate diacritics with the
grapheme “b”. The second column shows diacritics without gemination or nunation

phenomena. Nunation usually comes at the end of the word and it can be combined with
gemination and/or short vowel diacritics as well. The vowel-less diacritic sukwn can be

omitted in fully diacritised writing.
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2.3.3 Punctuations

Punctuation is a recent development in Arabic text and it is not used systematically yet.
Today, most writers use punctuation marks in a non-standard way and some even write
without using them (Van Mol, 2003). However, lack of punctuation does not lead to
misunderstanding because word order in Arabic is linked to information organization and
the context which can extend to sentences rather than the immediate context of a word
(Holes, 2004).

2.3.4 Arabic transliteration

Roman-based alphabets can be encoded by computers today using ASCII encoding but
non-Roman languages use a wider set known as Unicode (The Unicode Consortium, 2011).
Owing to the difficulty of dealing with Unicode symbols in natural language processing
tools, researchers carefully substitute these symbols with more suitable letters that preserve
the orthographic features. This substitution is known generally as transliteration. If the
chosen character set was formed from a roman-based system, the process is known as
romanization.

A number of romanization standards are established to transliterate Arabic script,
such as Qalam (Heddaya, 1985), ArabTeX (Lagally, 1992), etc. One of the most popular
schemes was created by Tim Buckwalter (2002; 2004a). His is a case-sensitive scheme that
maps each Unicode character in the Arabic alphabet and the diacritics to a unique single
ASCII- based Roman character. The corresponding character is illustrated in Figures 2.5
and 2.6 for graphemes and diacritics respectively.

2.4 Relation between Arabic phonemes and graphemes

In linguistics, the relationship between the phonetic and orthographic systems in a language
is described through its orthographic depth (Coulmas, 1996). A language is considered
orthographically shallow if there is a simple grapheme-to- phoneme rule where a letter has
only one sound. On the other hand, a language where a letter has more than one sound
and more complicated grapheme-to- phoneme mappings is considered to be orthographically
deeper.

In Arabic, most letters have a one-to-one relationship with their corresponding phonemes,
as is shown in Figure 2.7. However, there are some cases of multiple phonemes being
represented by the same grapheme, known as homographemes, and some cases where mul-
tiple graphemes are mapped to the same phoneme, known as homophonemes, while some
graphemes become completely silent in certain conditions.
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Figure 2.7: Grapheme-to-phoneme mapping in the Arabic language. Each grapheme and
diacritic is shown in Arabic script (left) and Buckwalter transliteration (right) while
phoneme are written in IPA. Mappings introduced by CA are shown in dashed lines.
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Arabic homographemes (multiple phonemes mapped to one grapheme):

• Arabic letter “waw” ( و ): represents the labiovelar central approximate /w/ and the
long version of the rounded close back vowel /u:/.

• Arabic letter “yaa” ( ي ): represents the voiced palatal approximate /j/ and the long
version of the unrounded close front vowel /i:/.

• Arabic letter “lam” ( ل ): represents the alveolar lateral approximate /l/ except in
the word الله “Allah” and its derivatives when it is pronounced as /ɫ/.

• Arabic letter “taa marbuwtah” ( ة ): a morphophonemic character that is used as
a feminine marker, always comes as a word final and can be followed by a diacritic
only. In MSA, it is pronounced as /t/ or, when it is at the end of the sentence, /h/.

Arabic homophonemes (one phoneme mapped to multiple graphemes):

• The glottal stop /ʔ/:

– Arabic letter “hamza ala alif” ( أ ): represents the glottal stop /ʔ/ followed by
the short vowel /a/. In addition, it is used to represent the glottal stop /ʔ/
followed by the short vowel /u/ when it is the word initial.

– Arabic letter “hamza taht alif” ( إ ): represents the glottal stop /ʔ/ followed by
the short vowel /i/.

– Arabic letter “hamza ala nabira” ( ئ ): represents the glottal sound /yʔ/ and
is used only in the middle or final position.

– Arabic letter “hamza ala waw” ( ؤ ): represents the glottal stop /ʔ/ followed by
the short vowel /u/ when it is in the middle or final position.

• The long vowel /a/:

– Arabic letter “alif” ( ا ): represents the long version of the unrounded open front
/a/.

– Arabic letter “alif maqsowra” ( ى ): a derivation letter that is pronounced as
the long version of the vowel /a/ and always comes as a word final.

Conditions of silent graphemes:

• Arabic letter “taa marbuwta” ( ة ): in dialectical Arabic it is either pronounced as
/h/ or silent, whether it appears at the end of a sentence or not, and sometimes as
/a:/.

23
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Table 2.2: Different diacritised forms for the undiacritised word ,”درس“ Buckwlater
transliteration enclosed within ( ), where each diacritisation specifies different meaning

for the word.

Undiacritised Diacritised Part of speech English translation

درس (drs) دَرساً (darsAF)
دَرسٍ (darsK) noun lesson
دَرسٌ (darsN)
دَرَسَ (darasa) active past verb he learned
دَرَّسَ (dar∼asa) he taught
دُرِسَ (durisa) passive past verb has been learned
دُرِّسَ (dur∼isa) has been taught

• Arabic letter “alif” ( ا ): in case of plural verbs ending with /u:/, this letter is
written orthographically only and without any phonetic value. Sometimes it refers
to the glottal stop /ʔ/, which is pronounced if the word is preceded by a pause, such
as the beginning of the sentence; otherwise it is silent.

• Arabic letter “lam” ( ل ): it will be silent if it is used in the definite article “Al” ( الـ )
and followed by a dental ( /θ/, /ð/ and /ðˁ/ ), alveolar ( /t/, /tˁ/, /d/, /dˁ/, /z/, /s/
and /sˁ/) or post-alveolar ( /l/ ) except /dʒ/. These letters are called “solar letters”
and the rest are called “lunar letters”, i.e. (/ʔ/, /b/, /dʒ/, /ħ/, /x/, /ɣ/, /ʕ/, /f/,
/q/, /k/, /m/, /h/, /w/ and /y/), by which the letter lam is metaphorically depicted
as a star that cannot be observed, in this case not pronounced, in the presence of the
sun, whereas it can be seen, thus heard, in the presence of the moon.

Optional addition of diacritics: Although diacritics hold short vowel information,
diacritisation is optional and used (if at all) only in ambiguous conditions when the reader
cannot infer them from the context. For example, an undiacritised Arabic word ”درس“
can be written in seven diacritised forms, each diacritised form holds a different meaning
as shown in Table 2.2. Not all diacritisations are valid, which can be obtained from a
conventional Arabic dictionary. A diacritised form is chosen according to a given context
because only one or a limited set of diacritisation variants is applicable in a certain context.
For example if the word ”درس“ appears within a context, such as درس“ ”هذا where the
word “ ”هذا means (this is), disambiguates diacritisation variants to only one option ”دَرسٌ“
because at this context only a noun is expected. By analogy, the two English sentences “this
is their home” and “there is no vowels here” can be written in undiacritised/unvowelised
form by removing all short vowels as “ths s thr hom” and “thr s no vwls her”. The context
allows disambiguating “thr” as “their” in the first sentence and as “there” in the second.
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2. Arabic language: standard vs. colloquial

Table 2.3: An example of several pronunciations of the Arabic word ”يقول“ (he is saying)
in CAs which is also written in different undiacritised forms as it is pronounced: MSA,

Gulf (GCA), Levantine (LCA), Iraqi (ICA), Egyptian (ECA) and Magharbi (MCA). The
third column shows the orthographic forms used by transcribers: left form is how is it
commonly written by retrieving to MSA undiacritised form and right form is another

written form describes how it is pronounced.

Dialect Phonetic transcription Orthographic forms (Buckwalter)
MSA /yaqu:l/ يقول (yqwl)
GCA /yugu:l/ يقول (yqwl)
LCA /yʔo:l/ يقول (yqwl) يئول (y}wl)
ICA /yugul/ يقول (yqwl)
ECA /yuʔo:l/ يقول (yqwl) يئول (y}wl)
MCA /yqul/ يقول (yqwl) يقل (yql)

As a result of the optional use of diacritics, there are three orthographic systems: fully
vowelised/diacritised, partially vowelised and unvowelised. For the first, all letters and
diacritics are shown in the text. Together, they give precise information about the word
pronunciation, displaying a shallow orthographic depth. In contrast, the latter two schemes
lack all the short vowel information and other phonetic phenomena, such as gemination
and nunation, making them orthographically deeper systems.

Using a fully vowelised writing system is almost always restricted to writing religious
text and children’s reading materials, unlike almost all other written materials which use
the semi-vowelised and unvowelised systems.

The appearance of dialectical Arabic in written material is limited to certain situations
where using dialects is part of the conveyed message, such as in newspaper cartoons,
local poetry, plays and local media scripts. In these situations, words are spelled out
phonetically regardless of how they are spelled originally in MSA, using unvowelized or
semi-vowelized schemes (Holes, 2004). In some instances, people are beginning to use non-
Arabic graphemes, which are borrowed originally from Urdu or Persian script, to represent
a dialectal word with less ambiguity (Maisel and Shoup, 2009). This diversity in writing
dialectical Arabic leads to the existence of multiple orthographic forms for a single word,
despite the fact that some of these forms do not match the spoken word phonetically.
Table 2.3 illustrates the word ”يقول“ (he says) and its multiple written forms according
to the dialectical variations. It is noticeable in the example that even if the original MSA
orthographic form does not match the dialectical pronunciation it is still considered one of
its forms.
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2.5 Arabic morphology

Arabic morphology concerns with the word structure by resolving two issues: first, how
words are created; second, how they interact with the syntax. Theories that govern the first
issues belong to derivational morphology and those governing the second issue are under
inflectional morphology. By analogy, derivational morphology in English can analyses
how words such as “unreal”, “realness” and “realistic” are derived from the word “real”.
Inflectional morphology in English describes different rules for grammatical agreement in
gender, time or number such as appending an “s” to present verbs. In Arabic, the line
between derivational and inflectional morphology is not as clear as in English. Moreover,
the boundary between inflectional morphology and syntax is not as clear as in English.

Generally, Arabic stems are created from morphological derivation. Afterwords, these
stems are modified, using morphological inflection, if necessary to be used within a sentence.

2.5.1 Derivational morphology

All words in Arabic are derived from a semantic abstraction known as a root. It can be
composed of two to five disconnected phonemes; only consonants and long vowels are al-
lowed. These phonemes are known as radicals. A root is called a triliteral, a quadriliteral
or a quinqueliteral if it has three, four or five radicals, respectively. The most common
form of a root is constituted of three radicals which are denoted as C1C2C3 (Ali, 1756).
In the “Lisan Al-Arab” (Manzur, 1883), an Arabic dictionary, there are 6535 triliterals,
2548 quadriliteral and 187 quinqueliterals, summing in 9273 roots. Semantically related
words can be derived from a root that relates to its concept by augmenting vowels and
additional consonants into the root based on well-defined patterns. Two levels of mor-
phological augmentation (or derivation) can be applied on a given root. First, creating
an augmented root, not a word yet, by lengthening the middle consonant or inserting a
vowel between root consonants, which is known as morphosemantic derivation. Second,
obtaining a word by further applying a well-defined templates on the root (augmented or
not) to derive verbs from verbal templates, or nouns from nominal templates. This process
is known as morphosyntactic derivation. Both morphological derivations (morphosemantic
and morphosyntactic) are used to apply semantic modifications to the abstract concept of
the root.

In general, morphosemantic derivation can be applied by augmenting one, two or three
phonemes to a triliteral but only one phoneme to a quadriliteral. The derivation rules
and template change according to the whether all radicals are consonants and the position
of the vowel in the root if it exists. For example, Table 2.4 lists all the patterns used
this derivation from the consonantal triliteral “Elm” (learn concept) except for the pattern
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2. Arabic language: standard vs. colloquial

Table 2.4: Morphosemantic patterns that can be on triliterals. The third column shows
the semantic modification obtained when applying these patterns along with some

examples in the fourth column and its English translation on the sematics in the fifth
column. All examples used the triliteral “Elm”, where C1=E, C2=l and C3=m except

Pattern IX where the triliteral “Hmr”, where C1=H, C2=m and C3=r was used.

Number Pattern Meaning Example English translation
I C1C2C3 stative Elm know
II C1C2C2C3 intensive/causative El~m teach
III C1v:C2C3 make an effort to achieve EAlm explore
IV ʔC1C2C3 causative >Elm inform/mark
V tC1C2C2C3 causative/reflective of II tEl~m become learned
VI tC1v:C2C3 causative/reflective of III tEAlm become explorer
VII nC1C2C3 passive nElm be informed/marked
VIII C1tC2C3 similar to V and VII Etlm be marked
IX C1C2C3C3 become to this state* Hmr~ become red
X stC1C2C3 benefactive stElm get information

Table 2.5: Examples of six patterns for augmented root with one phoneme (Pattern II) to
define nouns and verbs. All patterned applied on the augmented root “El~m”, where

C1=E, C2=l and C3=m.

Pattern Description Example English translation
muC1aC2C2iC3 Actor noun muEal~im teacher
muC1aC2C2aC3 Patient noun muEal~am student (being taught)

taC1C2iC3ap Noun indicating an
action happened once taElimap instruction

C1aC2C2aC3
Active verb - Past
perfect Eal~am taught

yuC1aC2C2iC3
Active verb - Present
imperfect yuEal~im he is teaching

C1aC2C2iC3
Imperative verb to
masculine subject Eal~im teach!
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2.5. Arabic morphology

“IX” which is derived from the triliteral “Hmr” (redden concept), because this patten can
only be applied on words that imply physical appearance such as colours or shapes. As
shown, each pattern modifies the semantic of the root, which is shown in the corresponding
English translation. For instance, “Pattern I” does not augment any additional phonemes
to the root so its meaning does not change from the abstract learning concept, but using
“Pattern IV” changes the concept from know to deliver the knowledge, i.e. teach. The
resulting roots from this process have not being defined as noun or verbs yet; they are still
abstract meaning.

Using morphosyntactic derivation, the resulting root becomes either a verb or a noun.
There are more 20 patterns for each augmented root that can create different tense and
voice of verbs and nouns with different functionality such as actor, instrument, place and
time, etc. For example, Table 2.5 shows six patterns to create three verbs and three nouns
defined for “Pattern II”-augmented consonantal triliterals. These patterns create words by
inserting additional consonants along with short and long vowels between the augmented
radicals. For example, the noun “muEal~im” (teacher) is created from the augmented root
“El~m” (teaching concept) by replacing radicals in the actor pattern “muC1aC2C2iC3”;
where C1=E, C2=l and C3=m.

2.5.2 Inflectional morphology

Most of the created words from morphological derivation are singular and masculine, unless
the pattern stated otherwise. Gender, number, person and, in some cases time of the word
can be modified by attaching prefixes and suffixes to the derived word. This process is
known as inflectional morphology. Number in Arabic can be either singular, dual or plural
and gender is ether feminine or masculine. Person can be either the speaking person
(first), the spoken to (second) or the spoken about (third). First person is genderless and
cannot be dual. For the others, each person can be either feminine or masculine and either
singular, dual or plural. for instance, by attaching “p” to the end of a noun it refers to the
feminine version of the noun such as “muEal~imp” (female teacher). Another example is
by attaching “wA” to the end of an imperative verb to modify its number and gender to
be masculine plural such as “Eal~imwA” (teach!-subject is masculine plural).

2.5.3 Difference between MSA and CA morphology

CA inherited the morphological structure of MSA with some modification towards sim-
plifying the overall morphology. Such modification is restructuring the morphosemantic
Pattern I and reducing the overall number of morphosyntactic patterns (Holes, 2004). In
addition, more affixes are introduced for inflectional morphology and some of affixes in the
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Table 2.6: Verb prefixes in both MSA and their alternatives in LCA, which specify the
verb number, person and gender. Some of these prefixes require specific suffixes; optional

affixes are surrounded by round brackets. The grey-shaded cells indicate the
non-existence of the conditions. X should be replaced by a modified root.

Number
Person Gender Singular Plural Dual

MSA LCA MSA LCA MSA LCA
first - ʔX (b)aX nX (b)niX

second masculine tX (b)tiX tXu:(na) (b)tiXu tXa:(ni)
feminine tXi:(na) (b)tiXi tXna (b)tiXu tXa:(ni)

third masculine yX (b)yiX yXu:(na) (b)yiXu yXa:(ni)
feminine tX (b)tiX yXna (b)yiXu tXa:(ni)

Table 2.7: Verb suffixes in MSA and their alternatives in LCA which specify the verb
number, person and gender. The grey-shaded cells indicate the non-existence of the

conditions. X should be replaced by a modified root.

Number
Person Gender Singular Plural Dual

MSA LCA MSA LCA MSA LCA
first - Xtu Xt Xna: Xna

second masculine Xta Xt Xtum Xtu Xtuma
feminine Xti Xti Xtunna Xtu Xtuma

third masculine Xa X Xu: Xu Xu:
feminine Xat Xit Xna Xu Xata:

MSA are rarely used or abandoned (Holes, 2004), such as the dual number. Tables 2.6
and 2.7 compare verb prefixes and suffixes in MSA and the Levantine colloquial Arabic
(LCA) variant. More flexibility emerges in the usage of gender affixes such as using one
set of affixes for both plural feminine and plural masculine (Watson, 2002).

2.6 Arabic syntax

The word order in a sentence is described through the syntax of the language; however, the
relationship between the sequence of the words (syntax) and the internal structure of each
word (morphology) can be more complicated in Arabic (Holes, 2004). Generally, Arabic
words can be classified into three categories (Abdur-Rasheed, 2008):

Noun: a word that describes a concept, a thing or a person. Based on its morphology, a
noun could be classified by its number, gender, definition and case. Nouns includes
participles, adverbs, circumstantial accusative, pronouns, relatives, interrogatives,
and demonstratives.
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Verb: a word that describes an action. Also, it can be classified by its number, gender and
person. The verb class can be divided further by tense (past, present and future),
mood (perfect, imperfect and imperative) and voice (active and passive).

Particle: a word that signifies meaning only in conjunction with other words, which could
be verbs or nouns, or phrases. Particles are classified according to the following word,
which could be a noun or verb and includes prepositions, conjunctions, interrogative
particles, exceptions, and interjections, also a word or an affix added to a verb or a
noun. A combination of a particle and a noun is called a prepositional phrase.

Words can be arranged in different orders to compose a sentence. The location of a
word in the sentence determines its case, which is further indicated by the ending vowel i.e.
case-ending. There are three main cases in Arabic: nominative, genitive and accusative.
An Arabic sentence generally takes one of the following two forms:

Nominal sentence: The simplest structure is composed of the nominative subject, which
could be a definite noun, proper noun or pronoun, and the predicate, which could be
an indefinite noun, proper noun or adjective that agrees with the subject in number
and gender. Moreover, the predicate could be a prepositional phrase. For instance,
“ha*aA muEal~imunA” (This [is] our teacher) which composed of a demonstrative
pronoun and noun phrase. It should be notice that “[is]” in the English translation
is implied and there is no verb in the sentence.

Verbal sentence: Typically, an Arabic verbal sentence has a verb-subject-object struc-
ture. However, if the object is a pronoun suffix, the structure will be verb-object-
subject. The verb can be intransitive, transitive and ditransitive and agrees with
the subject in person and gender. For example, “yatEal~am” ([He] is learning) is a
complete verbal sentence because the subject is incorporated within the verb as part
of its inflection even if it was not explicitly mentioned. A subject can be explicitly
specified as in “yatEal~am Ahmad” (Ahmad is learning).

More complicated structures can be composed using a hierarchy of nominal and verbal
sentences. The basic word order for verbal sentences is verb-subject-object (VSO); however,
this order might change to be in SVO or even VOS. For example,“yatEal~am Ahmad
Al~ugap” (Ahmad is learning the language) is literally written (is learning Ahmad the
language) in VSO and it can be written as “Ahmad yatEal~am All~ugap” (Ahmad is
learning the language) in SVO order. The order VOS is usually used when verbs are
inflected with object-pronoun, such as in “yatEal~amuhu Ahmad” (Ahmad is learning it),
where the object-pronoun “-uhu” is attached at the end of the verb and preceded the
subject in order, that is (is learning it Ahmad) literally.

30



2. Arabic language: standard vs. colloquial

2.7 Challenges in developing colloquial Arabic ASR

Arabic language poses significant challenges in developing automatic speech recognition
(ASR ) systems. These challenges include the complex morphology, especially the inflec-
tional morphology, the absence of short vowel representation from the textual form, and
the dependency of the case-ending on the syntax (Farghaly and Shaalan, 2009).

In addition to these challenges for developing an ASR system for MSA, more difficulties
are introduced by the colloquial variants. First, very limited textual CA data exists in
comparison to the volume of MSA text available. These textual resources were the outcome
of the previous effort in developing linguistic tools for CA, such as that of (Maamouri et al.,
2007) and (Appen, 2007) in Levantine CA. Another recent resource for written CA is found
in social media, such as chats and forums, where informal environment for their users. Since
CA is a spoken language, not written, no standard convention is universally utilised for
transcribing these dialects (Watson, 2002; Holes, 2004). Consequently, native speakers are
usually improvise the spelling of colloquial words, which is influenced by their knowledge of
MSA. That makes those writers substitute a spoken word with its original MSA form, even
if the latter does not describe the spoken word phonetically (Holes, 2004; Maisel and Shoup,
2009). Second, if annotators or users rely on the MSA undiacritised orthographic system
which lacks some important phonemic information such as short vowels and gemination.
Finally, CA has inherited the complex morphological form of MSA. Moreover, additional
affixes are introduced informally and locally, which increases cross-dialectical differences.

2.8 Summary

In this chapter, the Arabic language was reviewed. A comparison between MSA and
CA were made in terms of their phonology, orthography, morphology and syntax. A
summary of the challenges posed by the nature of the language was listed, which will
further discussed in details in the course of this work. Nevertheless, significant effort has
been made to develop state-of-the-art ASR systems. A review of this work is presented in
the next chapter.
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Automatic speech recognition (ASR) tries to replicate a part of human speech commu-
nication. As such technology, ASR is a task to which many different sciences contribute, in
particular acoustics, linguistics, psychology, engineering, computer science, statistics and
mathematics. The purpose of this chapter is to provide a sufficient background on the
fundamentals of ASR, and to summarise previous work in CA ASR to date.

This chapter is organised as follows: Section 3.1 provides a concise introduction to the
main components of ASR, along with the evaluation metrics for measuring of recognition
performance. Section 3.2 summarises the techniques and outcomes of state-of-the-art CA
ASR systems. Related work in modelling CA language and acoustics is discussed in Section
3.3 and Section 3.4, respectively. The chapter is concluded in Section 3.5.
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3.1 Brief introduction to ASR

ASR is the process of choosing the sequence of words or phonemes that best match a given
acoustic waveform. Any given choice is based on a criterion that accounts for acoustic and
linguistic similarity between the written and the spoken forms. The scope of this chapter
concentrates on statistical HMM-based ASR and related recent advances in the field of
colloquial Arabic speech recognition. Information about other approaches for developing
ASR systems in general is out of the scope of this thesis and will not be covered in this
survey.

A speech signal can be represented using numeric vectors after applying front-end
processing. These vectors are called acoustic feature vectors or frames. A statistical ASR
system will recognise a sequence of 𝑇 acoustic feature vectors 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑇 ) to be
the most probable sequence of 𝑛 words �̂� = (𝑤1, 𝑤2, … , 𝑤𝑛) given the acoustics 𝑋 and a
set of parameters Θ = {Θ𝑎, Θ𝑙}. The most probable sequence, �̂� , is given by:

�̂� = arg max
𝑊

𝑃(𝑊|𝑋, Θ)

= arg max
𝑊

𝑝(𝑋|𝑊, Θ𝑎)𝑃 (𝑊|Θ𝑙)
𝑝(𝑋|Θ)

= arg max
𝑊

𝑝(𝑋|𝑊, Θ𝑎)𝑃 (𝑊|Θ𝑙) (3.1)

In Equation 3.1, the likelihood 𝑝(𝑋|𝑊, Θ𝑎) is estimated by the acoustic model (AM),
where Θ𝑎 are the parameters, while 𝑃(𝑊|Θ𝑙), which is independent of acoustic informa-
tion, is the language model (LM), where Θ𝑙 are its parameters (Jelinek, 1976). Before a
system is able to perform any recognition task, the system parameters Θ must be learnt
from a set of labelled training data. The main components of a standard ASR system are
illustrated in Figure 3.1. The rest of this section briefly describes each of these components
along with the evaluation metrics for the system performance.

3.1.1 Feature extraction

In solving a pattern recognition problem for a speech utterance only useful information
should be considered. This information compromises a set of feature vectors, 𝑋. This
process is called feature extraction, also known as a front-end component. Given the
assumption that speech is stationary over a short period of time, short-term feature vectors
are extracted using a sliding window, typically of 25 milliseconds long. As a result, a series
of overlapping frames over the speech waveform is extracted. Most common techniques
to extract these features are: cepstral-based, such as Mel frequency cepstral coefficients
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Figure 3.1: An overview of the main components in a standard ASR system. Adapted
from Ney (1990)

(MFCC) (Davis and Mermelstein, 1980) and linear prediction based, such as perceptual
linear prediction (PLP) (Hermansky, 1989).

3.1.2 Acoustic model and lexicon

The acoustic model represents the relationship between the extracted feature vectors and
the word sequence. It finds the likelihood 𝑝(𝑋|𝑊, Θ𝑎), in Equation 3.1, where 𝑋 is a
sequence of feature vectors, and 𝑊 is a sequence of words. This likelihood is derived from
feeding the model with these acoustic features along with the actual textual transcriptions.
As a result, for each time frame in 𝑋, a vector of likelihoods that this frame is generated
by each possible word in 𝑊 .

Increasing the amount of training samples improves the reliability of the estimates for
each class or word that can be found in 𝑊 . However, collecting transcribed speech data
is expensive. Therefore, speech recognition systems use sub-word units classes as acoustic
models since it is more likely for a sub-word unit to be observed in the data than a full
word. If the sub-word level is used, a lexicon, also known as a pronunciation dictionary,
is required to map a word to its corresponding sequence of sub-words. These sub-word
units are usually context-dependent phones. In general, the chosen unit to be be used for
acoustic modelling will be referred to as an acoustic unit.

Most state-of-the-art systems use hidden Markov models (HMM) (Baker, 1975; Jelinek,
1976) to capture the variability in the speech represented in the acoustic signal. Figure 3.2
shows an example of a left-to-right HMM model. Each state is associated with weighted
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Figure 3.2: An HMM model that contains 3 emitting states and entry and exit
non-emitting states. The transition between these states is strictly left-to-right. The
produced sequence of states corresponding to the given sequence of observations is

hidden.

mixtures of multivariate Gaussian distributions. A left-to-right HMM model containing 𝑁
emitting states is described with the following elements:

• Transition probabilities, 𝐴 = [𝑎𝑖𝑗]; 𝑖, 𝑗 ∈ {1, 2, ..., 𝑁}, describe the probability of
transiting from state 𝑖 to state 𝑗, i.e. 𝑃(𝑠𝑗|𝑠𝑖) = 𝑎𝑖𝑗.

• Observation probability distribution, 𝑃 (𝑥𝑡|𝑠𝑖). This is commonly described using a
mixture of multivariate Gaussian distribution for each state 𝑖:

𝑏𝑖(𝑥𝑡) = 𝑃(𝑥𝑡|𝑠𝑖)

=
𝑀
∑

𝑚=1

𝑐𝑖,𝑚
(2𝜋)(0.5𝐷)|Σ𝑖,𝑚|0.5 exp [−0.5(𝑜𝑡 − 𝜇⊤

𝑖,𝑚)Σ−
𝑖,𝑚1(𝑜𝑡, 𝜇𝑖,𝑚)]

(3.2)

HMM is considered to have a strong performance in the ASR systems and they can
be trained using some well-known algorithms, such as those of Viterbi (Forney, 1973) and
Baum-Welch (Baum et al., 1970).

As the number of the mixtures in 𝑏𝑖 increases, the number of parameters to be esti-
mated increases. These parameters are estimated for each state independently on a subset
of the acoustic features which were aligned with that state. Hence, a large amount of
training data is required for reliable estimation. To counter this, state-tying is employed
where two related states are tied together if they share the same Gaussians. The relation
between states can be defined by the means of binary decision trees which are built based
on answering a set of context-based binary questions (Young and Woodland, 1994). An
example of these questions: “Is the previous phone a vowel?”. Each of these questions
separate all acoustic units into two sets, along with the amount of the available training
data. The choice and order of these questions is based on the amount of the training data
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left in each set and on the achieved likelihood improvement.
Recently, artificial neural networks (ANN) approaches, such as a multi-layer perceptron

(MLP), recurrent neural network (RNN) and deep neural network (DNN), are combined
with HMM models in architectures which can be either tandem (Hermansky et al., 2000;
Weninger et al., 2011; Hinton et al., 2012) or hybrid (Bourlard and Morgan, 1993; Parveen
and Green, 2002; Dahl et al., 2012). In hybrid architectures, statistics computed from
HMMs are combined with the phoneme posterior probabilities generated from the output
layer in the ANN. HMM parameters are optimised jointly with ANN parameters. In
tandem architectures, HMM-GMMs are trained on top features generated from a relatively
narrow intermediate layer within the ANN, known as a bottleneck layer.

3.1.3 Language model

The prior probability of the word sequence 𝑊 , 𝑃(𝑊|Θ𝑙) in Equation 3.1 represents the
language syntax and semantics. As shown by its expression, it is independent of the acoustic
observations. Thus, its parameters Θ𝑙, can be estimated from large textual information
sources such as newspapers, journals and web content. For a given sentence, 𝑊 , containing
𝐾 words, the joint probability for the word sequence 𝑊 is given as a product of conditional
probabilities:

𝑃(𝑤1, 𝑤2, ..., 𝑤𝐾) = 𝑃 (𝑤1)𝑃 (𝑤2|𝑤1)𝑃 (𝑤3|𝑤1, 𝑤2)...𝑃 (𝑤𝐾|𝑤1, ..., 𝑤𝐾−1)

=
𝐾
∏
𝑖=1

𝑃(𝑤𝑖|𝑤1, ..., 𝑤𝑖−1) (3.3)

The most common type of language model used for speech recognition tasks is the
𝑛-gram LM (Bahl et al., 1983) which is based on the assumption that the probability of
a word 𝑤𝑖 depends on only the 𝑛 − 1 preceding words. Thus, the joint probability in
Equation 3.3 becomes:

𝑃(𝑤1, 𝑤2, ..., 𝑤𝐾) =
𝐾
∏
𝑖=1

𝑃(𝑤𝑖|𝑤1, ..., 𝑤𝑖−1)

≈
𝐾
∏
𝑖=1

𝑃(𝑤𝑖|𝑤𝑖−𝑛+1, ..., 𝑤𝑖−1) (3.4)

An 𝑛-gram is a sequence of 𝑛 words and 𝑛 is known as the order or depth of the LM.
A trigram, bigram and unigram LMs are referred to LM of orders 3, 2 and 1 respectively.

The model parameters are estimated from counting the occurrences of word sequences
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in a large volume of text. This is known as the maximum likelihood estimate, which is
given by:

𝑃(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2) = Count(𝑤𝑖, 𝑤𝑖−1, 𝑤𝑖−2)
Count(𝑤𝑖−1, 𝑤𝑖−2) (3.5)

However, some of the word sequences cannot be found in the training text, which makes
their probabilities unknown and will be assigned zero probability. This presents a problem
for an ASR because a word sequence with zero probability indicates that it would never be
recognised. This has been addressed by smoothing methods such as discounting and back
off (Jelinek, 1997). For example, modified Kneser-Ney smoothing (Chen and Goodman,
1996) applies several discount parameters where it gives greater significance to low-order
LM only if the count of high-order 𝑛-gram is small. The smoothed word estimates for a
given word, 𝑤𝑖, given its history is computed as:

𝑃KN(𝑤𝑖|ℎ) = max(Count(ℎ, 𝑤𝑖) − 𝐷, 0)
∑𝑤′ Count(ℎ𝑤′) + 𝛼(ℎ) 𝑃KN(𝑤|ℎ′) (3.6)

where ℎ is the sequence of 𝑛 − 1 words preceding 𝑤𝑖 and ℎ′ is the sequence of 𝑛 − 2 words
preceding 𝑤𝑖. 𝐷 is the discount coefficient and its depending on the observed counts and
𝛼 is a normalisation constant to be applied for a lower order LM.

In practice, a background LM estimated on a large amount of general training data
is adapted with another LM estimated from a smaller in-domain training data. Linear
interpolation (Jelinek, 1980) can be employed for such adaptation. In this approach, a word
probability given its history, 𝑃(𝑤𝑖|ℎ), is given as a weighted average of the probabilities
computed by each LM. Formally:

𝑃(𝑤𝑖|ℎ) = (1 − 𝜆) 𝑃back(𝑤𝑖|ℎ) + 𝜆 𝑃indomain(𝑤𝑖|ℎ) (3.7)

where 𝑃back(𝑤𝑖|ℎ) and 𝑃indomain(𝑤𝑖|ℎ) are the assigned probabilities by the background
LM and in-domain LM, respectively. 𝜆 is the interpolation weight, where 0 ≤ 𝜆 ≤ 1, and
it is chosen based on tuning the LM performance over a held-out in-domain development
set.

3.1.4 Search algorithm

In order to solve the problem stated in Equation 3.1, the search component, also called
the decoder, combines different knowledge resources (i.e. acoustic, pronunciation and lan-
guage models) to find the most likely word sequence �̂� (hypothesis transcription) given an
acoustic observation sequence, 𝑋, in time-synchronous manner. Decoding can be efficiently
undertaken using dynamic programming (Bellman, 1957) and Viterbi approximation (For-
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ney, 1973) by expanding words, phonemes and HMM states and accumulating scores from
different components to find the path with the highest likelihood. When the end of the
acoustic observation sequence is reached, the path with the highest likelihood is traced
back, yielding the best hypothesis transcription (1-best output). Due to the huge search
space, pruning methods, e.g. beam pruning (Lowerre, 1976), are employed to discard
unlikely branches and reduce the computational cost.

The previously described strategy is known as a single-pass decoding. However, some
models and adaptation techniques cannot be applied directly to the original search space
because of computational complexity. In such cases, decoding is performed in a multiple-
pass fashion. In the first pass, decoding is used to generate multiple best hypotheses,
instead of only one, using simple models. These hypotheses can be stored in the form
of lattices or N-best list. A lattice is a directed acyclic graph representation and N-best
list is a ranked list of the top N hypotheses. In the following pass(es), more complex
and advanced models can be used to recompute the knowledge resources scores in a much
smaller search space and subsequently generates the 1-best hypothesis transcription. This
strategy is referred to as multi-pass decoding (Schwartz and Austin, 1991; Aubert and Ney,
1995; Richardson et al., 1995) or lattice/N-best list re-scoring in oppose to the formerly
described single-pass decoding.

3.1.5 System evaluation

The resulting 1-best hypothesis transcription is compared to a reference transcription to
evaluate the recognition performance. Word error rate (WER) is commonly used as metric
for such evaluation. WER represents the minimum number of edit operations to transform
the hypothesis into its reference transcription, and is computed as:

WER = 𝑆 + 𝐷 + 𝐼
𝑁 × 100 (3.8)

where 𝑆 is the number of substitutions, 𝐷 is the number of deletions, 𝐼 is the number of
insertions and 𝑁 is the total number of words in the reference.

Other metrics that depend on the unit used to transcribe the reference are phoneme
error rate (PER) and grapheme error rate (GER). PER (or GER) is computed by com-
paring the acoustic (or graphemic) units of the hypothesis transcriptions against those in
the reference transcription using an equivalent same formula to Equation 3.8.

Language models can be evaluated independently from a full ASR system by computing
perplexities on testing data (Bahl et al., 1977). Perplexity (ppl) is an information-theoretic
metric that is the inverse of the geometric average probability assigned to each word in a
testing dataset by the model. It can be interpreted as word average branching factor, that
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can be computed as follows.

𝑝𝑝𝑙 = (
𝑁
∏
𝑖=1

𝑃(𝑤𝑖|𝑤1𝑤2 … 𝑤𝑖−1)) 1
𝑁 ,

≃ (
𝑁
∏
𝑖=1

𝑃(𝑤𝑖|𝑤𝑖−𝑛 … 𝑤𝑖−1)) 1
𝑁 ,

= exp(− 1
𝑁

𝑁
∑
𝑖=1

log(𝑃 (𝑤𝑖|𝑤𝑖−𝑛 … 𝑤𝑖−1))), (3.9)

where 𝑁 is the number of words in the testing dataset. Lower values indicate better
prediction ability of the model. Perplexity can be viewed as a measurement of how close
a given model is to the true model presented by the testing dataset. It also estimates the
complexity of a given language (Brown et al., 1992). In order to compare different language
models, perplexities must be computed on the same testing data, using language models
which are estimated over the same vocabulary list.

3.2 State-of-the-art CA ASR systems

The first work in transcribing Arabic dialects was reported in a CallHome task within
1996/97 NIST benchmark evaluations framework. After that, more data was provided
for the NIST evaluations (2003 and 2004); mainly in Egyptian and Levantine dialects.
More data, especially in Iraqi dialect, was provided as resources for two main research
programs: the Global Autonomous Language Exploitation (GALE) program (Olive et al.,
2011) and the Spoken Language Communication and Translation System for Tactical use
(TRANSTAC) program. GALE is a DARPA program to develop and apply computer
software technologies to extract useful information from huge volumes of speech and text
carried out between 2006 and 2009. TRANSTAC is a similar program which aimed to
help an average US soldier to communicate with a person who cannot speak English, using
a portable bidirectional translator. Unfortunately, these valuable resources are generally
unavailable for public research, hence several researchers without access to such resources
had defined their internal test sets. Table 3.1 listed the specifications of test sets used in
the recent systems for CA ASR.

Most of these systems use a combination of ASR technologies to achieve the best
recognition performance. Table 3.2 and Table 3.3 summarise these systems. The test set
that is used for the evaluation is listed in the second column while the features used are
listed in the third column and the combination of multiple features is denoted by a + sign.
The notation for the forth column is in the format of APP:MODEL{DATA}+ADAPT,
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Table 3.1: Description of test sets mentioned in the literature for colloquial Arabic ASR
task. CTS: Conversational telephone speech, BC: Broadcast conversation, DI: Dialect

identification.

Testset Description Task Dialect Size

eval’97 NIST RT-03
Evaluation CTS ECA 1.0 h

eval’03 NIST RT-03
Evaluation CTS ECA 1.0 h

ulm’10 ULM university
recording Read speech ECA 385 utts

google11eg Google voice search
test set Voice search ECA 12.4 h

eval’04 NIST RT-04
Evaluation CTS LCA 1.5 h

galebclev
GALE broadcast
conversation selected
by DI

BC LCA 4.0 h

ibm’06 IBM S2S translation Role-play speech ICA 1.5 h
ibm’07 IBM S2S translation Role-play speech ICA

transtac’n08 TRANSTAC S2S
translation (Nov’08) Role-play speech ICA

transtac’j09 TRANSTAC S2S
translation (Jun’09) Role-play speech ICA 16.0 h
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where APP is the training approach used, such as maximum likelihood (ML), MODEL
is either undiacritised grapheme (G), diacritised grapheme (D) or phoneme (P), {DATA}
corresponds to the training data’s dialect and +ADAPT is the adaptation used in the
process, such as maximum likelihood linear regression (MLLR). The language model used
is described in the fifth column and finally the reported WER is shown in the last column.
It should be noted that both the system structure and decoding procedure, which are
usually complex and composed of multiple components or passes, are not described in
these tables.

The main tasks performed by these systems can be categorised into five classes as shown
in Table 3.1, which are conversational telephone speech (CTS), broadcast conversation
(BC), role-play speech, voice search and read speech. CTS is informal spontaneous speech
which was taking place over a telephone channel between two speakers while BC can be
between more than one participant and was in a more formal settings, hence, a large
proportion of BC speech found to be spoken in MSA. For obtaining a role-play speech,
participants were asked to act a certain role in a very specific scenario but without a scripted
speech. Google’s voice search speech is a recitation for a collection of common search
queries but using conversational speech which is similar to read speech while participants
were provided with scripted CA speech to read.

Generally, performance for a CTS ASR task is worse than that obtained for other
speaking styles, such as voice search or read utterances. This can be accounted the addi-
tional challenges which posed by the conversational speech, such as disfluencies and high
variability. Using adaptation techniques, such as maximum likelihood linear regression
(MLLR) and speaker adaptive training (SAT), reduce the WER in most ASR systems. In
the following sections, some of the systems mentioned in Table 3.2 and Table 3.3 are dis-
cussed in details either in terms of their language models (Section 3.3) or acoustic models
(Section 3.4) or both.

3.3 Colloquial Arabic language modelling

The rich and complex morphology of the Arabic language, outlined previously in Section
2.5, causes a massive increase in lexicon size (Kirchhoff et al., 2003). As a result, the
rate of unseen words in the training data, the out-of-vocabulary (OOV) rate, increases
dramatically, thus reducing the reliability of the seen data against the unseen.

Many studies have addressed the vocabulary problem by using morphological and syn-
tactic information with or instead of words. A word is decomposed into its morphological
units, or morphemes, and each morpheme is assigned a part-of-speech (POS) tag. Ta-
ble 3.4 lists an example of such analysis. Kirchhoff et al. (2003; 2006) suggested using
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Table 3.2: Comparison of state-of-the-art ECA ASR systems performance.
Features:[perceptual linear predictive (PLP), Mel frequency cepstral coefficients (MFCC),
[heteroscedastic] linear discriminant analysis ([H]LDA), vocal tract length normalisation
(VTLN), maximum likelihood linear transformation (MLLT)]; Acoustic modelling:[APP:
maximum likelihood (ML), minimum phone frame error (MPFE); MODEL: grapheme

(G), diacritised grapheme (D); DATA: modern standard Arabic (MSA); ADAPT:
maximum likelihood linear regression (MLLR), conditional MLLR (CMLLR), speaker
adaptive training (SAT), maximum a posteriori (MAP)]; Pronunciation probabilities

(PP); Language modelling:[factored language model (FLM); word-based (word);
Gaussian mixture (GMLM); Tied-mixture (TMLM)]

Publication Task Features Acoustic Modelling Language WER
APP:MODEL{DATA} Modelling

+ADAPT
Kirchhoff et al. (2006) eval’97 MFCC MMI: D{ECA} FLM word 56.6

+MLLR{ECA}
Creutz et al. (2007a) +HLDA +SAT 3-gram word 58.2

3-gram morph 59.9
Kirchhoff and Vergyri (2004) eval’03 MFCC ML: D{ECA} 2-gram word 42.7

+MAP{ECA}
+MLLR{ECA}

ML: D{ECA,MSA} 43.0
+MAP{ECA}
+MLLR{ECA}

ML: D{ECA} 3-gram word 42.7
+MAP{ECA}
+MLLR{ECA}

+CMLLR{ECA}
ML: D{ECA,MSA} 42.6

+MAP{ECA}
+MLLR{ECA}
+CMLLR{ECA}

Vergyri and Kirchhoff (2004) MFCC ML: D{ECA} 3-gram diac 42.7
+VTLN words {ECA}

3-gram diac 42.2
words {ECA+MSA}

Elmahdy et al. (2010) ulm’10 — ML: D{ECA} 2-gram word 35.1
ML: D{MSA} 48.4
ML: D{MSA} 29.1

+MLLR{ECA}
+MAP{ECA}

ML: G{ECA} 42.2
ML: G{MSA} 64.8
ML: G{MSA} 36.1

+MLLR{ECA}
+MAP{ECA}

Biadsy et al. (2012) google11eg PLP+LDA BMMI:P{ECA} 5-gram word 24.6
+CMLLR{ECA} 5-gram diac word 29.3
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Table 3.3: Comparison of state-of-the-art LCA and ICA ASR systems performance.
Features:[perceptual linear predictive (PLP), Mel frequency cepstral coefficients (MFCC),
[heteroscedastic] linear discriminant analysis ([H]LDA), vocal tract length normalisation
(VTLN), maximum likelihood linear transformation (MLLT)]; Acoustic modelling:[APP:
maximum likelihood (ML), minimum phone frame error (MPFE); MODEL: grapheme

(G), diacritised grapheme (D); DATA: modern standard Arabic (MSA); ADAPT:
maximum likelihood linear regression (MLLR), conditional MLLR (CMLLR), speaker
adaptive training (SAT), maximum a posteriori (MAP)]; Pronunciation probabilities

(PP); Language modelling:[factored language model (FLM); word-based (word);
Gaussian mixture (GMLM); Tied-mixture (TMLM)]

Publication Task Features Acoustic Modelling Language WER
APP:MODEL{DATA} Modelling

+ADAPT
Vergyri et al. (2005) eval’04 PLP+MFCC MPFE: G{LCA} FLM word 46.9

+HLDA +SAT +adaptation
+VTLN MPFE: G{LCA} 46.5

+SAT +adaptation
+autoVowel

Stolcke et al. (2006) MFCC MPFE: G{LCA} FLM word 47.3
+HLDA

MPFE: G{LCA} 46.9
+genericVowel

MPFE: G{LCA} 46.5
+autoVowel

Soltau et al. (2011) galebclev PLP+LDA ML: G{MSA} 4-gram word 39.7
+VTLN +BMLLR{LCA}

+fBMLLR{LCA}
ML: P{MSA} 40.8

+BMLLR{LCA}
+fBMLLR{LCA}

Afify et al. (2006) ibm’06 MFCC+LDA MPE:G{ICA} 3-gram word 36.3
+MLLT 3-gram morph 32.1

Afify et al. (2007) GMLM word 33.1
Sarikaya et al. (2009) ibm’07 MPFE:G{ICA} 3-gram word 32.9

+fMLLR{ICA} TMLM word 32.5
Tsakalidis et al. (2009) transtac’j07 PLP ML:G{ICA} 3-gram word 39.7

ML:D-M{ICA} 33.8
ML:D-M{ICA} + 2gPP 33.4
ML:D-B{ICA} 41.5
ML:D-B{ICA} + 2gPP 40.8

Al-Haj et al. (2009) transtac’n08 MFCC+LDA D-M{ICA} 3-gram word 35.7
D-M{ICA} + PP 34.8
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morphological and word-level information in the text interchangeably in a multi-stream
model, namely a factored language model (FLM) (Bilmes and Kirchhoff, 2003). In the
FLM, a word is viewed as a vector of 𝑘 factors, where a single factor could be any of the
word characteristics such as its stem or morphological class. The strength of FLM is when
it backs off to other factors in case a word n-gram sequence is not found in the training
data. In their experiment, morphemes were derived from a manually-annotated lexicon for
Egyptian colloquial Arabic (ECA) by Kilany et al. (2002), and the word sequence estimates
were used to re-score word-based lattices. FLMs outperformed a standard word-based LM
slightly in an ECA recognition task by 0.7% absolute. However, less improvement was
observed in the absence of true morphological information. Vergyri et al. (2005) used
Buckwalter Arabic morphological analyser (BAMA) (Buckwalter, 2002; 2004a) to gener-
ate morphological profiles for Levantine colloquial Arabic (LCA) data. If a word could
not be analysed by BAMA, an automatic analyser was used. That yielded 0.1% absolute
reduction in WER for an LCA recognition tasks. As shown in Table 3.4, the meaning of an
isolated Arabic undiacritised word is uncertain and is only disambiguated through diacrit-
ics. This motivated some researchers to include diacritics in language modelling, whether
at the word-level (Vergyri and Kirchhoff, 2004) or morpheme-level (El-Desoky et al., 2009).
The objective was to reduce word ambiguity and ultimately improve LM perplexity. The
gain in CA ASR performance was less than that reported in MSA experiments, due to the
limited data available where diacritisation breaks down a word probability into multiple
weaker diacritised word estimations.

The improvement in MSA recognition performance was more prominent when the de-
composition process was restricted by defining the set of affixes to be decomposed and
excluding frequent words in the vocabulary from decomposition (Xiang et al., 2006; Lamel
et al., 2008; Nguyen et al., 2009; El-Desoky et al., 2009; Diehl et al., 2009b; Kuo et al.,
2010; El-Desoky et al., 2010), especially for medium size vocabulary (fewer than 64 words)
(Choueiter et al., 2006). The WER reduction ranges between 1.9-13.3% and correlates
with the quality of the morphological analysis incorporated in the LM training. These
outcomes and the inability of MSA morphological analysers to produce precise informa-
tion for CA utterances led to the use of lightly supervised approaches for morphological
decomposition (rather than relying on MSA tools). For example, Afify et al. (2006) imple-
mented a morpheme-based language model for Iraqi collquial Arabic (ICA). Here, words
were decomposed by applying blind segmentation over predefined affixes. The resulting
word was then tested against a minimum stem length and other linguistic constraints.
Performance was increased significantly by 4.3% absolute in the ICA recognition task. In
addition, they found that adding contextual information by interpolating their model with
a word-based language model improved the ASR performance by an additional 1% abso-
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Table 3.4: An example of a morphological profile of the word .”وسيدرسونها“

undiacritised diacritised /
translation morphes tags translation

wa+ conjunction and

sa+ verb prefix
(future) will

wasayadrusuwnahA ya+ verb prefix
(imperfect) –

(and they will learn it) drusu verb FormI
imperfect active learn

+wna
Pronoun
indicative 3rd
person

they

masculine plural

+hA Pronoun direct
object 3rd person it

wsydrswnhA feminine singular
wa+ conjunction and

sa+ verb prefix
(future) will

wasayudar~isuwnahaA yu+ verb prefix
(imperfect) –

(and they will teach
it) dar~isu verb FormII

imperfect active teach

+wna
Pronoun
indicative 3rd
person

they

masculine plural

+hA Pronoun direct
object 3rd person it

feminine singular
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lute. In contrast, Creutz et al. (2007b) decomposed the words in the training data using a
language-independent unsupervised statistical toolkit, Morfessor (Creutz and Lagus, 2005),
which split words into segments with less linguistic sense, known as morphs, based on a
minimum description length (MDL) criterion and classified these segments into prefixes,
stems and suffixes using maximum a posteriori (MAP) estimation. Using a morph-based
LM, estimated from ECA decomposed data, did not yield any improvement in recognition
performance in comparison to word-based LM. The authors accounted for this by stating
that the inflectional morphology of ECA cannot be captured by Morfessor.

A different approach was devised by Sarikaya et al. (2009). The authors deployed a
maximum entropy (MaxEnt) based language model (Rosenfeld, 1996) with morphological
and lexical features, as first proposed in previous work (Afify et al., 2007). Their work
did not reduce the WER significantly. However, when their LM was interpolated with a
standard trigram LM, WER improved significantly, by 1% absolute.

Limited efforts have been reported in terms of using MSA resources to train colloquial
Arabic LM, whether by adding MSA text to the training corpus (Kirchhoff et al., 2002b),
or by searching for parallel colloquial Arabic text in the MSA corpus (Chiang et al., 2005).
In these studies, either no WER reduction was reported, or there was a small improvement.

3.4 Colloquial Arabic acoustic and pronunciation modelling

One of the important design decisions for ASR is choosing the speech units that each
HMM will represent. Two models are commonly used for acoustic modelling: phoneme-
based models and grapheme-based models. In the former, each model represents only one
phoneme; therefore, a lexicon that maps an orthographic word, or baseform, to its fully
phonetic description is required. Conversely, the grapheme-based models are based on the
orthographic presentation of the data. Each model represents a letter that may be realised
with multiple phones depending on the mapping between a grapheme to phoneme in the
language.

Generally, Arabic transcriptions lack short vowels and gemination information. Many
studies of Arabic speech recognition have used grapheme-based modelling such as those
of Afify et al. (2006), Choueiter et al. (2006) and Billa et al. (2002). When undiacritised
graphemic representation is employed, each grapheme can represent up to eight phone-
mic values: the phoneme associated with that letter alone; the geminated version of the
phoneme; the phoneme followed by each of the three short vowels; and the geminated
phoneme followed by each of the three short vowels. Figure 3.3 shows the phonetic values
of the grapheme .”ب“
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Figure 3.3: An example of modelling an Arabic letter ”ب“ as a grapheme model and all
phonetic values that should be modeled within.

Kirchhoff et al. (2003) found that using a more detailed graphemic representation
through explicit inclusion of diacritics outperformed systems using undiacritised graphemes
as acoustic models in ECA ASR tasks. Manually fully diacritised transcriptions reduced
the WER by 6.6% relative, on the NIST 1996 Arabic evaluation set. Similarly Afify et al.
(2005) showed that modelling short vowels explicitly improved recognition performance
in an MSA broadcast news ASR task, even if the recogniser outcomes did not include
diacritics. These findings correspond to the fact that the Arabic language has a shallow re-
lationship between the fully diacritised orthographic form and its corresponding phonemic
representation. However, short vowels are optionally added and generally omitted from
the written form. Thus, predicting these missing vowels is crucial when modelling them in
the pronunciation.

As mentioned in Section 2.5, most of the words in MSA are results of applying a
derivational morphological process. In this process, a vowelic template is applied to a root,
for instance, the word “yadrusu” (he is studying) is obtained from applying the template
“yaC1C2uC3u” over the root “d r s” (learning concept) and the word “yudrasu” (it is learnt)
from applying the template “yuC1C2aC3u” over the same root. Since these templates are
well-defined in the language, the vowelised form can be derived from its morphological
components and templates. For instance, there are five phonemic vowelised forms for the
word “ydrs”, e.g. “yadrusu” and “yudrasu”; however, if the word was suffixed with a “h”
to be “ydrsh”, there is only two possible vowelised forms which can be further reduced
to one vowelised form when the surrounding context is considered. Therefore, most of
the state-of-the-art systems use a morphological analyser, such as BAMA. BAMA uses a
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context-free rule-based approach with the support of an extensive dictionary of stems and
affixes in MSA. BAMA has been the basic building block for subsequent tools, such as the
morphological analysis and disambiguation for Arabic (MADA) tool (Habash and Rambow,
2005). MADA disambiguates word candidates derived from BAMA using support vector
machine classifiers for individual morphological features which are pre-trained on fully
annotated MSA data, and which incorporates likelihood scores based on context.

However, these morphological analysis tools are able to handle only MSA words, but not
names, dialectical or foreign words, which are considered to be out-of-vocabulary words.
In these cases, pronunciation can be generated either manually or automatically, where
the latter can use knowledge-based or data-driven techniques. Since manual diacritising is
an expensive task, Vergyri and Kirchhoff (2004) tried to automatically diacritise Egyptian
colloquial Arabic training text. The authors employed BAMA to generate all the possible
diacritised forms with the aim of constructing a pronunciation network. This network
was then scored using a statistical tagger, that was trained on sequences of morphological
tags derived from MSA text. An acoustic model was then trained on the automatically
diacritised text, and achieved modest but significant improvements in the ASR task in com-
parison to a grapheme-based model trained on undiacritised text. The authors accounted
for this modest improvement by the inclusion of more vowelised variants of the words,
which increased the search space during decoding. Al-Haj et al. (2009) overcame this
issue by including weighted pronunciation probabilities in computing the word sequence
probability. First, they used a CART-based statistical letter-to-sound model trained on
a manual fully diacritised Iraqi dictionary. Then, multiple pronunciations were derived
from the augmented dictionary and their probabilities were estimated based on the raw
frequency in the training data after using forced alignment. This approach reduced WER
in the ICA ASR task in comparison to a standard unweighted diacritised grapheme-based
system, by 7.5% relative.

Since Arabic readers rely on context for choosing the appropriate pronunciation, Tsaka-
lidis et al. (2009) incorporated contextual information using a pronunciation model. The
pronunciation model mapped the acoustic models’ sequences to their corresponding words,
and was more effective if the word had more than one pronunciation. A bigram pronunci-
ation model was used and smoothed with context-independent pronunciation probabilities
to overcome data sparsity. The vowelised pronunciation dictionary contains 57,000 words
with an average of 4.8 pronunciations per word. BAMA was used to generate all possible
vowelisation variants for 89.5% of the words with the rest of the words being derived from
a manually vowelised dictionary. Their approach reduced WER in phoneme-based Iraqi
Arabic by 0.7% absolute. However, they expected it to outperform a standard grapheme-
based system in the presence of more training resources, since their results were worse by
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1.1% absolute.
Owing to the enormous difference between MSA and CA, they can be considered as

totally different languages. Based on this idea, Kirchhoff and Vergyri (2005) proposed a
cross-lingual acoustic model. In their approach, they used pooled MSA and ECA resources
as training data which led to a modest improvement in recognition performance by 3%
relative. However, Elmahdy et al. (2010) accounted this minor improvement to the use
of an ECA corpus that was small in relation to the MSA data, which made the model
biased toward the latter, their study used a combination of MLLR and MAP adaptation
by which a 10.2% relative reduction in WER of grapheme-based ASR in ECA ASR task
was observed.

3.5 Summary

This chapter provides an introduction to the fundamentals of ASR systems along with
an overview of the current state-of-the-art CA ASR systems and discussed in further de-
tails some of these systems’ novel technologies in language, acoustic and pronunciation
modellings.

As word decomposition improved the LM perplexity, no proper comparison has been
carried out between different methods of word decomposition, language model quality and
recognition performance in the CA ASR task. Moreover, in all previously cited work,
there was no reported attempt to pre-process the MSA volume text before using it as an
additional source in language model training for colloquial Arabic ASR.

Most of the aforementioned work in predicting the missing short vowels for a given
Arabic word relies on the morphological analysis of the word, mostly by using BAMA, or
adding some local contextual information in the prediction process. In addition, there have
been very few attempts to address the actual mapping between the graphemic represen-
tation and its associated phonemic realisation in MSA generally and in colloquial Arabic
specifically.

This thesis investigates some of these issues and research gaps within modelling for CA
ASR. This work starts with an investigation on the linguistic issues which is followed by
an investigation and a thorough discussion of the acoustic and pronunciation issues.
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Chapter 4

Sub-lexical unit language
modelling in colloquial Arabic
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As discussed previously in Chapter 2, Arabic is a morphologically rich language where
a word is generated by applying a combination of morphological processes. New words
in Arabic can be easily created either by applying a template to a root (derivation), or
by concatenating articles and prepositions to a word without changing the original word
(agglutination) or by concatenating pronouns and applying changes to the original word
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(inflection). As a result, the number of unique words in a given amount of text (vocabu-
lary size) for Arabic is significantly higher than in other languages that lack such a rich
morphology, such as English. For all languages, as the amount of a given text increases,
so does the vocabulary size at a certain rate (known as vocabulary growth rate). This rate
is considerably larger for languages with rich morphology.

Developing an ASR for morphologically rich languages should address two main issues
which are raised by the nature of the language. First, the chosen vocabulary will have a
limited coverage of the data, considering the aforementioned vocabulary growth, because
modern ASR systems allow a dictionary with a limited vocabulary size (even when vocab-
ulary size is large). As a consequence, high out-of-vocabulary (OOV) rates are observed
for such languages. Second, due to the high number of inflected and agglutinated words in
Arabic, the average frequency of a word in a given text is lower. For example, the sentence
“mdrsy wmdrs Sdyqty hw nfs Almdrs” (my teacherm

1 and my friendf ’s teacherm is the
same teacherm) has three inflected and agglutinated words sharing the same stem (stem is
underlined): “mdrsy” (my teacherm), “wmdrs” (and teacherm), “Almdrs” (the teacherm)
are considered as three different words instead of three occurrences of what in English
translation would be the same word. This causes estimated probabilities in the language
model to be unreliable and generates high perplexities.

It has been reported in the literature that using word decomposition based on mor-
phological analysis limits vocabulary growth and increases the average frequency for word
particles which, in its turn, improves language model probability estimates. Since CA mor-
phological structure is inherited from MSA, many researchers analysed CA words using
MSA-based morphological analysis. In the absence of CA-based morphological analysers,
word decomposition can be performed based on other non-linguistic measures. This chap-
ter provides a detailed investigation of word decomposition in CA and its impact on the
OOV rates and overall perplexities.

This chapter is organised as follows: Section 4.1 discusses the literature on using word
decomposition in language modelling frameworks for morphologically rich languages in gen-
eral, and CA in particular. This is followed by an overview of the investigation framework,
which can be divided into two parts: First, word decomposition (Section 4.2) to be applied
in CA text data; second, estimating language models probabilities based on the resulting
decomposed text (Section 4.3). As an attempt to address the data sparsity issue, classes
can be derived from the resulting sub-lexical units to be used as additional information in
the prediction task (Section 4.4). Empirical results of this investigation are presented and
discussed in Section 4.5. Finally, conclusions are drawn and the chapter is summarised in

1The subscript indicates gender of a word, i.e. teacherm is a male teacher while teacherf is a female
teacher.
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Section 4.6.

4.1 Related research

As discussed previously in Section 2.5, Arabic has a complex morphological system. A
word can be composed of several sub-lexical units where each holds a morphological and
syntactic meaning. Morphological analysis is the process of parsing a given word into its
morphemes, identifying the part-of-speech (POS) for each morpheme and establishing the
relationships between morphemes. For example, Table 4.1 lists the morphological analysis
for the Arabic word “drshm” (their lesson / he studied them / he taught them / teach
them) which can be decomposed into two sub-lexical units. These sub-lexical units are
called morphemes because they are extracted based on morphological analysis; otherwise,
they are called morphs2. As shown in Table 4.1, the outcome of the morphological analysis
depends on the chosen diacritisation of the word. Because of that, Arabic morphological
analysers find the legitimate diacritisation variants for the given word as part of the analysis
process. Such morphological complexity appears in other languages to different degrees,
such as Turkish, Czech, German, Finnish, Korean and Japanese.

In the literature discussed below, morphological analysis in language modelling has been
employed using two different strategies. In the first strategy, morphological analysers were
used for word decomposition solely by using the resulting morphemes as training material
to estimate a morpheme-based LM. For the second strategy, the resulting morphological
tags from the morphological analysis task were used as auxiliary information or additional
input stream for training more complex language models. Frequently, the resulting LMs
(morpheme-based LMs or complex LMs) were used in a multi-pass recognition framework
to re-score an N-best list or lattices initially generated with a weaker LM (as discussed in
Section 3.1.4).

Geutner (1995) was the first to use morphological analysis in order to decrease the OOV
rate for a German ASR system. Using rule-based morphological decomposition, the author
accomplished a relative reduction of 28% in vocabulary size but with a relative degradation
of 1% in WER. Geutner pointed out that the short morphemes that were acoustically
similar were the source of this degradation. Rather than decomposing all words within
the vocabulary, Berton et al. (1996) used a more selective approach and included only
infrequent words in the decomposition (those with fewer than 15 occurrences in the training
data). This yielded less than 1% relative WER improvement in a German recognition task.
Other attempts of using morpheme-based LMs and removing short morphemes by merging

2A morph is a lexical realisation of a sub-word unit while morpheme is the minimum morphologically
meaningful sub-word unit.
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Table 4.1: An example of a morphological profile of the undiacritised word “drshm” for
each valid diacritised variant (diacritics are underlined). Resulting morphemes are shown
in third column. Morphological tags for each morpheme are shown in the fourth column

along with the English translation in the fifth column.

undiacritised diacritised/translation morphemes tags translation
darsahum darsa singular noun lesson

(their lesson) +hum
possessive pronoun
3rd person
masculine plural

their

darsihum darsi singular noun lesson

(their lesson) +hum
possessive pronoun
3rd person
masculine plural

their

darsuhum darsu singular noun lesson

drshm (their lesson) +hum
possessive pronoun
3rd person
masculine plural

their

darasahum darasa
verb FormI perfect
active masculine
singular

he studied

(he studied them) +hum
direct pronoun
object 3rd person
masculine plural

them

dar~isahum dar~isa
verb FormII
imperative
masculine singular

teach

(teach them) +hum
direct pronoun
object 3rd person
masculine plural

them

dar~asahum dar~asa
verb FormII perfect
active masculine
singular

he taught

(he taught them) +hum
direct pronoun
object 3rd person
masculine plural

them
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them based on perplexity improvement followed in Korean (Kiecza et al., 1999; Kwon,
2000), German (Adda-Decker and Adda, 2000; Larson et al., 2000), Turkish (Carki et al.,
2000), Japanese (Kawahara et al., 2000), Czech (Byrne et al., 2000; Ircing et al., 2001)
and Finnish (Kneissler and Klakow, 2001). Similar outcomes were observed: significant
reduction in OOV rate but with limited improvement in recognition performance.

Regardless of the earlier work on Arabic morphological analysers, Beesley (1996), it was
some time until attempts started to emerge that use morphological analysis and decomposi-
tion in Arabic ASR (both MSA and CA). This was due to the complexity of the task and the
extensive development time needed to implement the earlier proposed algorithms (Darwish,
2002). In the meantime, other approaches were adopted for morphological decomposition
where minimal linguistic knowledge (or supervision) is needed. Several researchers built
morpheme-based LMs where words were segmented into (prefix)-stem-(suffix) sequences
by restricting segmentation to a pre-defined affixes list. Such decomposition is referred to
as semi-supervised morphological decomposition. Choueiter et al. (2006) used a morpheme
generator for decomposition, based on an algorithm proposed earlier by Lee et al. (2003).
They used a weighted finite state transducer (WFST) accepter to reject illegal sequences of
morphemes. Their method yieldied a 0.7% relative reduction in WER for large vocabulary
(more than 64k words) and 7.5% relative reduction in WER for medium vocabulary (fewer
than 64k words) of an MSA broadcast news ASR task. Additional constraints were intro-
duced in morphological decomposition by Xiang et al. (2006). Decomposition is applied
only for infrequent words as long as the resulting stems from the morphological analysis
were at least two letters in length and existed in a given dictionary. Using such con-
straints reduced the OOV rate by 29% relative and showed a 3.7% relative improvement
in recognition performance of an MSA broadcast news ASR task.

With the introduction of BAMA (Buckwalter, 2002; 2004b) and its subsequent devel-
opment MADA (Habash and Rambow, 2005), more work was performed in the CA LM.
BAMA uses a context-free rule-based analysis with an aid of a morphological lexicon of
MSA stems and affixes. Initially, BAMA segments a word greedily into three components:
prefix, stem and suffix with prefix and suffix are possible to be null and stem with at least
one letter long. For each segmentation, a lookup in the morphological tables of stems
and affixes is performed and only a segmentation with all its components are existed in
the lexicons is passed. Finally, a segmentation is considered a possible analysis only if
its morphological tag sequence is allowed based on BAMA’s compatibility tables. The
outcome of BAMA is a list of all possible analyses for a given word. As an extension
to BAMA, MADA uses trained SVMs to choose one candidate analysis result according
to the context. Several studies used BAMA and MADA morphological analysis for word
decomposition while controlling segmentation by adding constraints to the process. Afify
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et al. (2006) applied the constraints defined by Xiang et al. (2006) along with a verification
constraint using BAMA to morphologically decompose ICA transcriptions. The authors
obtained a 66% relative reduction in OOV rate and a 8.7-10% relative reduction in WER
for an ICA recognition task. Similarly, Lamel et al. (2008) and El-Desoky et al. (2009)
applied the same strategy on an MSA broadcast news task with large vocabulary size (of
200k words) and gained 1.9% and 3% relative reduction in WER respectively using dif-
ferent sets of training data. MADA normalises the resulting morphemes to their original
forms. For example, “Sdyqty” (my friendf) becomes “Sdyqp +y” instead of “Sdyqt +y”.
In the latter, direct merging is straight forward to map sequence of morphemes back to
sequence of words without any need for post-processing. Diehl et al. (2009a) proposed an
SMT-based method to back-map morphemes to words. In an MSA broadcast news ASR
task, they achieved at least 5.8% relative WER improvement using their mapping method,
compared to less than 2% relative WER without. Other resources have been used apart
from BAMA and MADA, such as Sakhr morphological analyser. That was used by Nguyen
et al. (2009) for word decomposition along with a rule-based segmentation with an affixes
set, achieving a 6.9% relative reduction in WER in an MSA broadcast news ASR task.

Besides word decomposition, morphological analysis was used as an additional input
stream within more complex language modelling frameworks. Ghaoui et al. (2005) derived
classes from morphological tagging in order to train a class LM (Brown et al., 1992).
In their work, morphological analysis using a rule-based algorithm and predefined set of
affixes achieved a relative reduction of 1.6% in the perplexity of MSA newswire data3

over a standard trigram word-based LM. Kirchhoff et al. (2006) built a morpheme-based
LM for ECA using a combination of stream LMs and class LMs to obtain almost 2%
relative improvement on an ECA recognition task. In stream and class LMs, input streams
are treated independently without any interaction during backing off to a lower order 𝑛-
gram. In contrast, factored LMs (FLMs) use a more complex back off strategy, known
as generalised parallel backoff (Bilmes and Kirchhoff, 2003), where the model backs off to
another stream if that has a better estimate. Using FLMs with morphological information
gave a significant reduction in WER on MSA broadcast news and conversations recognition
tasks of up to 4% WER relative (El-Desoky et al., 2010; 2012), and up to 2% WER relative
on ECA and LCA CTS recognition tasks (Kirchhoff et al., 2003; Vergyri and Kirchhoff,
2004; Vergyri et al., 2005; Kirchhoff et al., 2006). Kuo et al. (2009; 2010) compared different
levels of expert-provided morphological and syntactic information that could be included
in building a neural network LM. A 1.1% relative reduction in WER of an MSA broadcast
news was achieved when only POS information was incorporated within the model. A
further improvement of up to a 5.5% relative WER reduction was obtained when syntactic

3Newswire is a digital form of newspaper which usually delivered over the Internet.
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information was included as well.
Sarikaya et al. (2007) used an alternative approach based on a continuous representation

of the words using a joint morphological-lexical LM which was based on maximum entropy
(ME) modelling. This gave the freedom to include more information such as morphological
and syntactic as well as number and gender into the modelling process. The information
was provided by means of a lexicon that was prepared by a language expert. Their method
achieved a 9.3% relative reduction in WER on an ICA recognition task. Within the same
modelling concept, El-Desoky et al. (2013) used feed-forward deep neural network LMs to
achieve a relative improvement of 6.5% in an ECA recognition task. Again, morphological
and syntactic information was provided by means of expert-prepared lexicons.

In the absence of any linguistic-based resources, Creutz et al. (2007b) estimated a
LM based on training samples decomposed using non-linguistic metrics. They employed
Morfessor (Creutz and Lagus, 2005). Based on their method, recognition performance on
an ECA recognition task was degraded by a 4.2% relative compared to word-based LMs.
The authors ascribed this degradation to the complex morphology of ECA which was not
captured by Morfessor. Their results cannot be compared with the work discussed above
because they used only single-pass recognition while all the studies discussed above used
their LMs in multi-pass decoding approach.

Table 4.2 summarises related work in Arabic ASR with morpheme-based LMs. As
can be seen, a reduction in WER relates to the quality of the morphological analysis
technique used. A larger improvement is observed when morphological analysis is provided
by language experts (including BAMA and MADA which include an internal lexicon)
compared to when rule-based approaches are used.

4.1.1 Motivations

As discussed in Section 3.1.4, decoders solve the search problem in Equation 3.1 by ex-
panding words, phonemes and HMM states, and by accumulating scores from acoustic and
language models to find the path with the highest likelihood. This implies that the process
of expansion is made on a closed set of words, i.e. a limited vocabulary. Therefore, the
selected vocabulary should provide the best coverage possible for the targeted domain. For
morphologically rich languages such as CA, a large vocabulary list is required to get the
desired coverage due to the inflection and agglutination processes. Using large vocabularies
requires more training data, which is a key issue for CA at the time being.

As discussed previously, word decomposition limits the impact of vocabulary growth.
For example, Figure 4.1 shows that by a simple decomposing of the definitive Al in MSA
and LCA text, a significant relative reduction in vocabulary size (20% for MSA and 11%
for LCA) is obtained for both Arabic variants. As shown in Table 4.2, successfully applied
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Figure 4.1: Vocabulary growth for two variants of Arabic when no decomposition is
applied in comparison to when the definitive Al is decomposed.

word decomposition for CA was best observed when using morphological lexicons or a
combination of rule-based segmentation and MSA-based morphological analysers (such as
BAMA or Sakhr’s). However, few unsuccessful attempts were reported in the literature
that used word decomposition without any linguistic knowledge.

Therefore, a thorough investigation of word decomposition in CA in the absence of
expert-based lexicons is presented in the following sections, where different levels of lin-
guistic knowledge are incorporated. Linguistic knowledge ranges from extensive manual
morphological analysis to no linguistic knowledge.

4.2 Word decomposition

Word decomposition methods can be grouped into two main approaches based on the
amount of linguistic knowledge involved. In this context, linguistic knowledge is equiva-
lent to supervision level. For the first approach, word decomposition is performed based
on linguistic knowledge, either by using a full morphological analysis for the segmentation
(Section 4.2.1), or by predefining a set of affixes along with a rule-based segmentation algo-
rithm (Section 4.2.2). In second approach, no linguistic information is employed. Instead
it relies completely on an information-theoretic approach (Section 4.2.3). Resulting word
particles are called morphemes in the former and morphs in the latter.

To facilitate re-composing the word from its components, prefixes are appended by a
‘+’ symbol and suffixes are preceded by a ‘+’, whereas no symbols are attached to stems.
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For example, the word “drshm” is decomposed to two morphemes “drs +hm” and the
word “wsydrswnhA” is decomposed to six morphemes “w+ s+ y+ drs +wn +hA”. It
has been reported in many previous studies, such as of Geutner (1995), that having short
morphemes reduces recognition accuracy due to the increase of acoustic similarity between
them and their weak context modelling. Such artefacts can be limited by decomposing to
longer morphemes. Therefore, a sequence of prefixes or suffixes can be merged into one
prefix or suffix, for example, “w+ s+ y+ drs +wn +hA” has three prefixes and two suffixes
which can each be merged into three morphemes (one prefix, one stem and one suffix) to
be “wsy+ drs +wnhA”.

4.2.1 Supervised decomposition

A full morphological profile (i.e. the output of a morphological analyser) should be pro-
vided for a given text in order to be used in the decomposition process. This profile is either
derived from a morphological lexicon prepared by a language expert, or by an automatic
analyser along with a seeding lexicon. Although using expert-made lexicons provided a
morphological profile with the highest quality, it is expensive to develop and to expand for
adoption of new words. Therefore, using an automatic analyser with a seeding lexicon is
preferable, for cost and flexibility. However, because the morphological lexicons are mainly
written by experts, they might be with a limited coverage where not all encountered words
can be analysed. BAMA (Buckwalter, 2002; 2004b) is one of the most common morpho-
logical analysers for MSA. It is based on a rule-based algorithm with three morphological
lexicons for stems, suffixes and prefixes. BAMA generates multiple analyses for a given
word, especially if it is an undiacritised word.

The resulting decomposition is consistent and independent of the data volume, i.e. the
same decomposition is generated for a given list of diacritised vocabulary, regardless of the
amount of provided text. If no diacritisation is provided, multiple analyses are generated.
An algorithm or a statistical model can be used to disambiguate which decomposition
is chosen according to the provided context. MADA (Habash and Rambow, 2005) uses
several SVM classifiers to rank a list of analyses list produced by BAMA according to the
provided context. If a word cannot be analysed, e.g. loanwords or colloquial words, the
word remains without any decomposition. Otherwise a word is replaced by a sequence of
three components: prefixes, stem and suffixes.

4.2.2 Semi-supervised decomposition

As stated at the beginning of this chapter, CA words cannot be processed using MSA-
based tools because of the introduction of new stems and affixes that are not part of MSA.
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For example, the word “yqwlwA” (they are saying) exists in MSA and can be successfully
analysed and decomposed using BAMA and MADA to “y+ qwl +wA”. However, when this
word is preceded by a colloquial prefix, such as “b+” as in “byqwlwA” (they are saying) or
“H+” as in “HyqwlwA” (they will say), it becomes illegible as an MSA word and cannot
be processed. Another case that cannot be processed by these tools is a colloquial stem
with MSA affixes such as the word “$AfwA” (they saw). This is the word “$Af” (he saw)
inflected with an MSA suffix “+wA” (they), but since the stem does not belong to MSA,
it cannot be analysed.

For that, another approach is adopted for CA, especially in the absence of a morpho-
logical lexicon. Instead one predefines a set of affixes and uses a rule-based segmentation
algorithm. Since the segmentation is done automatically and the only linguistic knowledge
is the affix set, it is known as semi-supervised decomposition or blind segmentation (Afify
et al., 2006).

Given that a word can contain more than one prefix and one suffix, the set of affixes
to be defined must contain all possible combinations of prefixes and suffixes. For example,
the following set is defined for decomposing LCA text:

Prefixes: Al+, hAl+, w+, wAl+, whAl+, b+, bAl+, bhAl+, wb+, wbAl+, wbhAl+, f+,
fAl+, fhAl+, wf+, wfAl+, wfhAl+, $+, $Al+, $hAl+, w$+, w$Al+, w$hAl+, l+,
ll+, lhAl+, wl+, wll+, EAl+, EhAl+, wEAl+, wEhAl+, kAl+, wkAl+.

Suffixes: +wA, +p, +whA, +whn, +whm, +wkm, +h, +wh, +hA, +hn, +hm, +y, +yp,
+yn, +nA, +ny, +t, +At, +yAt, +yAthA, +tm, +yAthn, +yAthm, +k, +kn, +km.

Based on the reported literature (discussed in Section 4.1), very short morphemes
(stems and affixes) should be avoided as much as possible. Moreover, the most frequent
words should be kept intact for their positive impact on recognition performance.

4.2.3 Unsupervised decomposition

The problem of learning the orthographic structure from raw textual data with minimal
supervision and intervention is known as unsupervised learning of morphology. This prob-
lem has been addressed in the last two decades with several strategies which have been
described thoroughly in a recent survey by Hammarström and Borin (2011). One group of
methods use criteria on the frequency of occurrences, for sub-lexical strings in order to find
the boundaries between morphemes, similar to criteria used in data compression. Many
authors of these methods employed the minimum description length (MDL) algorithm,
e.g. Goldsmith (2001), Creutz and Lagus (2005) and Xanthos et al. (2006). MDL is an
algorithm that seeks the smallest possible set of morphs to represent a given corpus with
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the minimum coding length. Each morph in the given corpus is replaced with a positive
numerical binary pointer. Frequent morphs are assigned shorter pointers, i.e. pointers
have fewer bits, in order to minimise the overall length. Pointer length is computed as the
negative binary logarithm of a morph likelihood within the corpus. These methods are
mostly language-independent, but corpus dependent; i.e. the resulting set of morphs for
the same language might change when they are extracted from two different corpora.

Morfessor is an open-source toolkit (Creutz and Lagus, 2005; Virpioja et al., 2013),
which has been developed as three variants: Baseline, Categories-ML and Categories-
MAP. Whilst Morfessor Baseline is a context-independent implementation of an MDL-
based method, Categories-ML and Categories-MAP extend that to incorporate the context
in redefining the morph list. Morfessor Categories-ML finds the optimal segmentation via
maximum likelihood (ML) re-estimation. Morfessor Categories-MAP uses a maximum-a-
posteriori (MAP) model with hierarchical structure for the vocabulary list to label each
morph to be either a prefix, stem or suffix tag.

4.3 Sub-lexical unit LMs for CA

A model similar to word-based 𝑛-gram LM (see Section 3.1.3) is estimated from a decom-
posed corpus using one of the previous methods discussed in Section 4.2 to obtain either
morpheme- or morph-based LMs.

Perplexity is used as a metric to measure the quality of an LM on a given test set.
A comparison between LMs in terms of their computed perplexities on a given test set
is meaningful only when these LMs share the same vocabulary. Morph-based LMs and
word-based LMs differ in their linguistic units. The former uses sub-lexical units and the
latter uses non-decomposed words as units. Their performance can be compared using an
approximation for character-level based on the unit-level4 perplexity. Given the unit-level
perplexity 𝑝𝑝𝑙 (stated in Equation 3.9), this approximation can be computed as follows:

𝑝𝑝𝑙𝑐 = (𝑝𝑝𝑙) 𝑁
𝑀

= ⎛⎜
⎝

(
𝑁
∏
𝑖=1

𝑃(𝑤𝑖|𝑤𝑖−𝑛...𝑤𝑖−1))
− 1

𝑁
⎞⎟
⎠

− 𝑁
𝑀

= exp (−𝑁
𝑀

−1
𝑁

𝑁
∑
𝑖=1

log 𝑃 (𝑤𝑖|𝑤𝑖−𝑛...𝑤𝑖−1)) (4.1)

where 𝑁 is the size of the corpus in words or morphs including sentence boundaries, and
4Word, morph or morpheme
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𝑀 is the size of the corpus in characters, including word and sentence boundaries.
Beside perplexity, OOV rate is used to measure the coverage of the lexicon on a given

test set. Again, OOV rate can be normalised by the average number of morphs per word
in the corpus. Formally:

%OOVnorm = %OOV × testsizemorphs
testsizewords

(4.2)

where %OOV is the OOV rate in terms of morphs while testsizemorphs and testsizewords
are the size of the test set in terms of morphs and words respectively.

4.4 Incorporating sub-lexical unit classes

For under-resourced CA data sparsity, i.e. insufficient number of training samples, is an
evident problem. Words that share a POS or a morphological feature, such as names
and direct masculine pronouns, are expected to appear in a similar context. As a result
of grouping similar words into clusters, a smaller number of classes is produced which
reduces the effect of data sparsity. Consequently, the generalisation of language models is
improved, allowing to accommodate unseen context and histories.

Several methods have been proposed to map words onto classes which can be either
linguistic-based or data-driven. Linguistic-based methods use POS and morphological
tags resulting from a syntactic parser or morphological analyser. Data-driven methods
use greedy algorithms to group words into classes in order to minimise a given objective
function computed from the training set. An example is probabilistic latent semantic
analysis (Deng and Khudanpur, 2003). Some data-driven word-to-class mappings have
been devised,for instance by using mutual information between successive words (Brown
et al., 1992) or by using separate clustering for each word position (Emami and Jelinek,
2005).

In this section, two methods are described in order to incorporate morph or morpheme
classes into language modelling without any linguistic-based class assignment. The first
method is the class LM (Brown et al., 1992) which clusters words (Section 4.4.1). The
second method uses Random Forest LMs (Xu and Jelinek, 2004) which groups histories
instead of individual words (Section 4.4.2).

4.4.1 Class LM

The main idea in Class language model (CLM) is to cluster similar words into classes where
all members of the same class are treated equally. Brown et al. (1992) proposed CLM which
is an 𝑛-gram LM estimated over a sequence of classes where the word transition probability
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is composed of a class transition probability and a word emission probability, formally:

𝑃CLM(𝑤𝑖|𝑤𝑖−𝑛...𝑤𝑖−1) = 𝑃 (𝑐𝑤𝑖
|𝑐𝑤𝑖−𝑛+1

...𝑐𝑤𝑖−1
)𝑃 (𝑤𝑖|𝑐𝑤𝑖

) (4.3)

where 𝑐𝑤 is the class of word 𝑤 and 𝑃(𝑐𝑤𝑖
|𝑐𝑤𝑖−𝑛

...𝑐𝑤𝑖−1
) is the class transition probability.

𝑃(𝑤𝑖|𝑐𝑤𝑖
) is the word emission probability, which can be computed using:

𝑃(𝑤𝑖|𝑐𝑤𝑖
) = Count(𝑤𝑖)

∑𝑤∈𝑐𝑤𝑖
Count(𝑤) (4.4)

Count(𝑤) is the number of occurrences of the word 𝑤 in the training corpus.
Word classes can be extracted efficiently using an agglomerative hierarchical clustering

algorithm (Brown et al., 1992). This yields a binary tree with its internal nodes representing
classes and its leaves representing words. Brown et al.’s word clustering algorithm uses a
series of merges to optimise the perplexity over a given development set. It initialises with
each word representing a class, then greedily finds the two classes where merging them
achieves the best perplexity improvement. The merged classes are then represented by one
class, and the search and merging process is recursively repeated until the desired number
of classes is reached. Another variant, also introduced by Brown et al. (1992), assigns
the most frequent words to their own classes to obtain the desired number of classes,
then greedily adds words to each class to optimise perplexity on a development set. Both
variants result in a hard word-to-class mapping where each word can belong to only one
class.

Using CLMs generalises language model to unseen context in the training at the expense
of weaker word predictive ability. Therefore, these models are linearly interpolated with
word LMs in order to improve prediction performance.

4.4.2 Random Forest LM

For 𝑛-gram LM, a word 𝑤𝑖 is predicted by its history, that is the sequence 𝑤𝑖−𝑛+1...𝑤𝑖−1.
The building block for Random Forest LMs is a decision tree LM (DTLM). A DTLM (Bahl
et al., 1989) uses a decision tree to group all observed histories into classes as the tree leaves.
All histories within a class share the same distribution over predicted words. Starting from
the root, each leaf (the equivalence class of histories) is reached by answering a series of
questions about words in a specific position in the history, such as “is the word at position
𝑖 − 2 = $w?”. Figure 4.2 illustrates how a set of histories are clustered according to a given
question, where the sets at the leaves will have smaller set of training data than at their
parent nodes, as it shows in the counts. Word transition probabilities are computed using
interpolated Kneser-Ney smoothing (discussed in Section 3.1.3) as follows:
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Trigrams: xyx, xzx, yzy, yyy, xwy, ywz
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Figure 4.2: Clustering of histories in DTLMs. H denotes the observed histories in the
training set, and C is the counts of words that follow the histories within a node.
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𝑃DTLM(𝑤𝑖|𝑤𝑖−𝑛+1...𝑤𝑖−1) = 𝑃DTLM (𝑤𝑖|ΦDT(𝑤𝑖−𝑛+1...𝑤𝑖−1))

≅ max(Count(𝑤𝑖, ΦDT(𝑤𝑖−𝑛+1...𝑤𝑖−1)) − 𝐷, 0)
Count(ΦDT(𝑤𝑖−𝑛+1...𝑤𝑖−1))

+ 𝜆(ΦDT(𝑤𝑖−𝑛+1...𝑤𝑖−1))𝑃KN(𝑤𝑖|𝑤𝑖−𝑛+2...𝑤𝑖−1),
(4.5)

where ΦDT(𝑤𝑖−𝑛+1...𝑤𝑖−1) maps the input history to a class using the tree DT and
Count(𝑤𝑖, ΦDT(𝑤𝑖−𝑛+1...𝑤𝑖−1)) is the number of occurrences of word 𝑤𝑖 following the
given history in the class of histories. 𝐷 is a constant discount factor and 𝑃KN is the
Kneser-Nay back-off probability distribution (as in Equation 3.6). During the construc-
tion of a decision tree, the set of questions is automatically defined based on the training
samples contained in a node; however, a node is split based on the improvement in the
training data likelihood and the amount of training data within each new node. Then,
these history classes are recursively refined while the tree grows. Each leaf can be split by
asking questions about word identities at a specific position in observed histories until a
stopping criterion is satisfied.

Random Forest LMs (RFLM) (Xu and Jelinek, 2004) are constructed by the use of a
collection of 𝑀 randomised DTLMs. The word probabilities are estimated by averaging
the individual randomised DTLMs:

𝑃RFLM(𝑤𝑖|𝑤𝑖−𝑛+1...𝑤𝑖−1) = 1
𝑀

𝑀
∑
𝑗=1

𝑃DTLM(𝑤𝑖|ΦDT𝑗
(𝑤𝑖−𝑛+1...𝑤𝑖−1)) (4.6)

𝑃DTLM(𝑤𝑖|𝑤𝑖−𝑛+1...𝑤𝑖−1) describes the probability computed from Equation 4.5 using
𝑀 decision trees. Each tree is constructed by randomising its initialisation and its growing
question set (e.g the order of positions to ask about in the history).

4.5 Experiments

Several experiments were conducted to compare the impact of different levels of supervision
within word decomposition in CA data (Section 4.5.1) and to empirically evaluate the
performance of the estimated morpheme- and morph-based LMs from the decomposed
data (Section 4.5.2). Finally, the impact of incorporating sub-lexical unit classes on sub-
lexical unit language modelling using class-based (Section 4.5.3) and random forest (Section
4.5.4) was evaluated.
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Table 4.3: Training and testing set characteristics.

Sentences Words Vocabulary size
AppenLCA 57488 377944 31695
FisherLCA 375588 1528342 67195

total 433076 1906286 81636
testLCA 12051 53644 8762

In these experiments, two training sets from LCA were employed, FisherLCA and Ap-
penLCA (more details in Appendix B), which are collections of telephone conversations in
Levantine Arabic (LCA) transcribed to word-level. The two test sets from the same cor-
pora were merged into one test set (testLCA). All sets were preprocessed, and all diacritics
were removed, and the different graphemes of alif were mapped onto one grapheme “A”.
Moreover, all disfluency markers were removed, and all backchannel tags were mapped
onto one tag instead. Table 4.3 summarises the characteristics of these three sets.

A vocabulary of 41688 words (referred to as vocablist) was chosen by keeping all non-
singletons from AppenLCA and FisherLCA training sets. This has an OOV rate of 2.5%
on the testLCA. As a baseline, word-based 𝑛-gram LMs of order 3 were estimated from
each training set independently, and then linearly interpolated. The perplexities of word-
Appen and word-Fisher LMs were 756 and 250 respectively. The linearly interpolated LM,
word-int, gave a lower perplexity of 214.

4.5.1 Resulting morphemes and decomposed data

Four segmentation methods were employed for decomposing training and test sets in ad-
dition to the vocablist: supervised segmentation using MADA (mada); semi-supervised
segmentation using a rule-based algorithm along with a predefined affix set (blind); and two
unsupervised segmentations using Morfessor-Baseline (morfbase) and Morfessor-Categories-
MAP (morfcamap). Two segmentations were performed based on each method. For the
first, all observed words in both training sets, namely 81636 words, were included in the
decomposition (fv). The most frequent 5000 words were excluded from the decomposition
process in the second segmentation (sv). However, in both segmentations, words with
fewer than five occurrences were excluded to avoid noisy and inconsistent results.

An increase in the training size was expected when using word decomposition because
each word was decomposed into multiple units. In addition, a decrease in the number of
unique units (i.e. vocabulary size) was expected because the morphological inflection and
agglutination effect was reduced. The degree of change in the vocabulary size and training
text depended on the chosen decomposition method. Figure 4.3 summarises the changes
in the vocabulary size in AppenLCA, FisherLCA and testLCA and in the size of vocablist
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Figure 4.3: Relative difference in vocabulary size after applying different word
decomposition approaches on training and testing sets and the vocabulary list. Each

segmentation is shown in the format of (A-B), where A is the decomposition method and
B is the included vocabulary.

when applying the aforementioned decompositions. Each segmentation is denoted by the
format of A-B where A is the decomposition method (mada, blind, morfbase or morfcmap)
and B is the included vocabulary in the decomposition (fv and sv). For example, mada-fv
represents using MADA and the complete vocabulary was included in the decomposition
process. Figure 4.4 shows the changes in the text size for the training and testing sets.

Almost a third of the overall vocabulary, representing 11.1% of the training data text,
was left unprocessed using MADA because no MSA matches were found for the unpro-
cessed words. When the full vocabulary was decomposed (mada-fv), an average decrease
of 36.1% in the overall vocabulary size was obtained, whereas 34.9% increase in the train-
ing data volume was observed. Such a difference was not obtained when the 5000 most
frequent words were excluded from the decomposition (mada-sv), giving a modest average
vocabulary reduction of 8.3% and an increase in the overall training volume of 3.9%.

A rule-based algorithm was applied on the full vocabulary list after defining a set of
affixes, as listed in Section 4.2.2. Because this affix set was defined based on knowledge of
LCA, more words were decomposed, especially when full vocabulary was used (blind-fv).
This gave an average reduction of 59.4% and an average increase in the text volume of
50.8%. Excluding the most frequent words from the decomposition (blind-sv) decreased
this difference to get a 13.6% decrease in the vocabulary size and 7.9% average increase in
training volume.

Two segmentation models were trained using Morfessor-Baseline on the pool of training
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Figure 4.4: Relative difference in the total number of words after applying different word
decomposition approaches on training and testing sets. Each segmentation is shown in the
format of (A-B), where A is the decomposition method and B is the included vocabulary.

data. The first model was trained using the full vocabulary (morfbase-fv), and subsequently
used in decomposing both training sets. The vocabulary size reduced significantly by
78.5%, and the overall training volume increased by 49.0%. Again, the 5000 most frequent
words were excluded from the vocabulary (morfbase-sv) to reduce the vocabulary size by
82.5% and increased the training volume by 18.6%.

Similarly, two further segmentation models were trained using Morfessor-Categories-
MAP with full vocabulary (morfcmap-fv) and shortened vocabulary (morfcmap-sv) to get
an average vocabulary reduction of 56.2% and 6.2% respectively and an average increase
in the training volume of 28.6% and 1.8% respectively.

In general when decomposing all observed vocabulary, the unsupervised methods morf-
base and morfcmap performed more decomposition than any supervised methods; conse-
quently, they generated the smallest vocabulary lists. Because morfcmap relies primarily
on frequency of words for decomposition, excluding the most frequent words has a signif-
icant impact and reduces the number of morphs generated compared to considering all
vocabulary. For the knowledge-based methods, mada and blind, there was a similar differ-
ence between considering all vocabulary and excluding the most frequent words, indicating
a stability in the decomposition as discussed before. However, using a rule-based algo-
rithm with a tailored affix set for CA generates more morphemes than the MSA-based tool
(MADA).

Each decomposition method generated a different number of morphs of various sizes,
Table 4.4 compares the characteristics of the morphs resulting from each method described
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Table 4.4: Characteristics of the resulting morphs when applying various word
decomposition approaches. morph/w denotes to the average number of morphs per word.
Weighted morph/w is the average number of morphs per word computed from the overall
decomposed text, i.e. weighted by frequency. char/morph is the average morph length in

characters.

fv sv
weighted
morph/w morph/w char/morph weighted

morph/w morph/w char/morph

mada 1.4 1.6 6.2 1.0 1.6 6.2
blind 1.5 2.1 5.2 1.1 2.0 5.2

morfbase 1.5 2.0 5.4 1.2 2.5 5.6
morfcmap 1.3 1.8 5.6 1.0 1.3 6.3

above. Overall, the average number of morphs per word is lower when it is weighted by
word frequency in the training data. This is more evident when the most frequent words are
excluded from decomposition, as shown in sv side in Table 4.4. The rule-based algorithm
(blind) generated the shortest morphs among all decomposition methods, which explained
its high average of morphs per word.

4.5.2 Perplexity and OOV rate of morph-based LMs

As a baseline, two word-based 3-gram LMs with modified Kneser-Ney discounting were
trained, using the SRILM toolkit (Stolcke, 2002), based on the described vocablist from
the FisherLCA and the AppenLCA training sets. Then the two word-based LMs were
linearly interpolated to obtain a word-level perplexity of 240 computed on the testLCA
with bigrams and 214 with trigram LM.

Similarly, an interpolated morph-based LM was estimated when the decomposed voca-
blist based on one of the methods described above in Section 4.5.1 was used on its corre-
sponding decomposed training sets. Then the perplexity of the resulting LM is computed
from a variant of testLCA that was decomposed using the same decomposition method
used for the vocablist and the training sets.

In order to compare the OOV rate of morph-based LMs and the word-based LM baseline
(2.5%), all OOV rates were normalised using Equation 4.2. Table 4.5 lists all morph-level
OOV rates and their corresponding normalised OOV rates along with the relative reduction
obtained compared to the word-based LM OOV rate. Apart from the morfcmap method,
similar normalised OOV rates were achieved regardless of excluding the most frequent
word during the decomposition (sv) or not (fv). A large difference in normalised OOV
rates between sv and fv settings for the morfcmap method was observed. The highest nor-
malised OOV rate was obtained when using text decomposed by MADA. The normalised
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Table 4.5: Relative reduction in normalised OOV rate for morph-based LMs compared to
the baseline word-based LM (=2.5%). Models were estimated from decomposed text

using different decomposition setting for each model.

LM norm
vocab method OOV% OOV% Red%

fv mada 1.2 1.6 -37.2
blind 0.6 1.0 -61.2

morfbase 0.1 0.1 -97.0
morfcmap 0.6 0.7 -70.6

sv mada 1.5 1.6 -37.1
blind 0.8 1.0 -61.6

morfbase 0.0 0.0 -100.0
morfcmap 2.1 2.1 -14.6

OOV rate reduced as the amount of linguistic knowledge involved in the decomposition
process reduced until it reached 0.0 OOV rate for morph-LMs estimated from completely
unsupervised decomposed text.

Table 4.6 lists the morph-level perplexities based on using morph-based LMs of order
2 to 7. Comparing each column within the same row shows that the perplexity decreases
with adding more context depth; however, this improvement becomes less obvious beyond
order 4, especially when the applied decomposition excluded the most frequent words (sv).
For instance, the perplexity gain for the mada-fv morph-based LM by increasing the order
from 2 to 3 was 30% relative, and from 3 to 4 was 5% relative. However, perplexity
improved by only 10% and 1.5% relative respectively for the mada-sv morph-based LM.
Less than a 1% relative reduction was observed beyond using quadgrams for the mada-fv
morph-based LM and beyond trigrams for the mada-sv morph-based LM. This relates to
the average weighted number of morphs per word in Table 4.4 where a higher perplexities
improvement is expected if the average weighted number of morphs per word is more than
1, as is the case for mada-sv, in contrast to mada-fv.

As discussed in Section 4.3, due to the difference in the linguistic units with different
decomposition methods used for each LM, the perplexities shown in Table 4.6 are not
comparable across decomposition methods. Hence, a normalised character-level perplexity
is computed instead, as described in Equation 4.1. Figure 4.5 shows the corresponding
character-level perplexities for all morph-based LMs in Table 4.6. As shown in the figure,
the previous observation, that perplexity improves with the increase of context depth,
holds true. Moreover, all morph-based LMs with full vocabulary decomposition (fv), apart
from morfbase, have lower perplexity than word-based LMs by an average of 3% relative,
where the latter has a character-level perplexity of 3.4 for trigram word-based LM and
3.5 for bigram word-based LM. In this case, the normalised character-level perplexity was
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Table 4.6: Morph-based perplexity of morph-based LMs of order 2 to 7. Models were
estimated from decomposed text using different decomposition setting for each model.

LM order of morph-based LM
vocab method 2 3 4 5 6 7

fv mada 113.1 85.7 80.3 79.1 78.8 78.7
blind 78.9 57.9 53.0 51.9 51.6 51.5

morfbase 94.9 63.3 57.2 55.9 55.5 55.3
morfcmap 111.7 84.7 79.8 78.7 78.4 78.4

sv mada 217.6 194.3 191.4 191.0 191.0 191.0
blind 200.7 176.8 173.8 173.5 173.5 173.5

morfbase 180.7 150.6 146.8 146.1 146.0 146.0
morfcmap 228.9 206.4 203.6 203.2 203.2 203.2

related to the amount of constraints restricting the decomposition process. For instance,
the highest perplexity was obtained from employing a completely unsupervised approach
(morfbase). However, the perplexity was improved by adding more constraints, such as
statistical constraints as in morfcmap or linguistic constraints as mada. Morph-based LMs
trained on text without the decomposition of the most frequent words performed slightly
worse than word-based LM.

4.5.3 Class-based morph-based LM

For each of the decomposed training sets, word classes were extracted using Brown et al.’s
clustering algorithm. To choose the best performing number of classes in terms of per-
plexity, several bigram CLMs were trained with different numbers of classes, ranging from
50 to 1500. Figure 4.6 visualises the perplexity changing on the character-level to allow
comparison across different decomposition methods. Perplexity improved as the number
of classes increased for CLMs based on different decomposition methods. This improve-
ment is considerable when increasing the number of classes from 50 to 500 classes. Beyond
that point the improvement is less. CLMs based on blind-fv, mada-fv and mada-sv have
an equivalent performance while CLMs based on morfcmap-fv perform slightly worse that
them. None of these CLMs outperformed morph-based LMs (shown in Figure 4.5), even
if they were interpolated with a corresponding morph-based trigram or quadram LM with
the exception of morpfbase-fv and blind-sv. Figure 4.7 shows the character-level perplexity
when interpolating CLMs with a corresponding morph-based quadram LM across differ-
ent decomposition methods. Each decomposition methods is represented by two lines:
a line with a yellow background that shows the morph-based LM performance without
any interpolation and a line without any background where it shows the morph-based
LM interpolated with its corresponding bigram CLM when using optimised interpolation
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Figure 4.5: Character-level perplexity (y-axis) of morph-based LMs of order 2 to 7
(x-axis). Models were estimated from decomposed text using several decomposition

methods (marker style) with either full vocabulary (solid line), or exclusion of the most
frequent words from decomposition (dashed line). The perplexity from the word-based

LM is represented by a solid line without markers.
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Figure 4.6: Character-level perplexity (y-axis) of bigram CLMs using different number of
classes (x-axis). Models were estimated on decomposed training data using several
decomposition methods (marker shape) with either full vocabulary (solid line) or

excluding the most frequent words from decomposition (dashed line).

weights. Most of the interpolated CLM show the best performance when using 600-750
classes. Interpolating sv morph-based LMs with the corresponding CLMs marginally out-
performed morph-based LMs by at least 0.8% relative; however, this was not the case for
fv morph-based LMs although the latter still outperforming word-based LM.

4.5.4 Random forest morph-based LM

Using the same data sets, morph-based RFLMs were trained on decomposed training
data. 100 DTs were generated from AppenLCA and 200 DTs from FisherLCA. Then the
resulting RFLMs were linearly interpolated by optimising the morph-level perplexity on
testLCA. Unlike CLMs, all estimated RFLMs outperformed their morph-based standard
LM counterparts by at least 3.5% relative reduction in perplexity, as it is shown in Figure
4.8. In comparison to the word-based LM, the improvement is higher for RFLMs where
the most frequent words were not decomposed (sv), where it ranges between 6.7% to
12.4% relative. The existence of these frequent words without decomposition helps in
generating more diverse sequences of histories, especially in local context as in trigrams
and quadgrams, which in turn improves the resulting DTs. The best performance was
achieved by morfcmap-sv where perplexity was lower than that of the the word-based LM
by 12.4% relative.

In order to investigate whether the number of the DTs is related to the quality of
an RFLM, several morph-based RFLMs based on morfcmap-sv were estimated (since it
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Figure 4.9: Character-level perplexity (y-axis) of trigram morph-based RFLMs estimated
from (a) FisherLCA and (b) AppendLCA individually using several numbers of decision

trees (x-axis).

gave the best performance so far). Figure 4.9 shows the effect on the character-level
perplexity with a change in the number of DTs from 20 to 400, for two sets of RFLMs: one
was estimated on AppenLCA and the other on FisherLCA. The change in character-level
perplexity beyond using 100 DTs is insignificant, especially when the training set is large
enough. In other words, the number of DTs makes little difference as long as it is equal or
more than 100 trees.

4.6 Summary and conclusion

Arabic is a morphologically rich language with a high vocabulary growth rate. It has been
shown that the vocabulary growth rate can be reduced by 30% with a simple morphological
constraint such as decomposing the definitive “Al” using a rule-based algorithm. In line
with Objective 1 of this thesis, more sophisticated word decomposition methods were
investigated in this chapter with various degrees of linguistic knowledge involved in the
segmentation process.

Without the existence of fully linguistic-based CA resources, such as manually gener-
ated morphological lexicons and analysers, the MSA tool, MADA, is considered the next
best option. On the other extreme, two purely statistical and language-independent vari-
ants of Morfessor were included in this investigation where no linguistic knowledge was
provided. Between these two extremes, a rule-based segmentation algorithm with a set of
affixes to be decomposed was defined in order to address a specific dialect of CA. Gener-
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ally, word decomposition limited the vocabulary growth and reduced the vocabulary size
by different degrees depending on the decomposition method used, and whether parts of
the vocabulary were excluded from the decomposition process. Regardless of the chosen
method, word decomposition reached its best potential in reducing the vocabulary size
when all observed vocabulary was included in the decomposition process.

Morph-based LMs, which are standard 𝑛-gram LMs estimated from decomposed text,
with all vocabulary included in decomposition, outperformed word-based LMs that were
estimated on unsegmented training data by an average of 3% relative character-level per-
plexity. As the level of CA-related linguistic constraints increased in the decomposition
method, the performance improved in terms of character-level perplexities. For instance,
a morph-based LM estimated from decomposed text using rule-based decomposition with
manually defined CA affixes outperformed all its counterparts, followed by using MADA
and then using Morfessor with MAP constraints, whereas completely unsupervised Mor-
fessor without any constraints did not yield any improvements over word-based LM.

For all morph-based LMs, considerable reduction in OOV rates was observed. OOV
rates decreased with the increase of linguistic knowledge or statistical constraints involved
in the decomposition process. For example, normalised OOV rates were 37% for morph-
based LMs estimated on decomposed text using MADA. This reduced to 0.0% for morph-
based LMs estimated from completely unsupervised decomposed text.

As an attempt at addressing data sparseness in CA language modelling, classes were
incorporated in the development of language models but at the morph-level instead of
word-level. Two strategies were followed. In the first strategy, morphs were clustered into
classes using Brown et al.’s word clustering algorithm along with its proposed class LM.
In the second strategy, instead of clustering the morphs themselves, their histories were
clustered using random fields LMs. CLMs resulting from the former strategy did not yield
any improvement over their counterparts (standard morph-based LMs), unlike the RFLMs
resulting from the second strategy where all of them achieved better performance than
standard morph-based LMs and word-based LMs. The average improvement in character-
level perplexity from RFLMs was 8% over word-based LM.

Unlike any of the previous studies, this work provided a detailed comparison of the use
of sub-lexical unit LMs using several word decomposition methods. These methods ranged
from linguistic-based, as in MADA, to completely unsupervised, as in Morfessor Baseline.

Based on these promising results, morph-based standard LMs and RFLMs, can be
employed in a CA ASR within a multi-pass decoding where lattice or 𝑁 -best list are
rescored using these sub-lexical unit LMs.
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It was established in Section 2.7 that most of the challenges posed to the development
of CA NLP tools in general and language modelling in particular can be summarised in
two main issues: First, the high out-of-vocabulary (OOV) rate which results from the
rich morphological nature of Arabic in general; second, insufficient amount of textual
training data, also known as data sparsity, because CA is a spoken language with very
limited written resources. The only available resources that is also accessible to public
research were collected from previous research effort in CA linguistic tools such as a set of
transcribed telephone conversations, which sums into less than 2.5 million words. Chapter
4 addressed the limited lexical coverage in CA and the use of sub-lexical units in order to
limit vocabulary growth and consequently reduce the out-of-vocabulary (OOV) rate. This
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chapter focuses on the data sparsity issue and explores how rich-resourced MSA can be
exploited for use in CA LMs, namely Objective 2 of this thesis.

Section 5.1 starts with a discussion of reported attempts to use existing MSA textual
data for development of a language model for CA. This is followed by a description of
two strategies to exploit existing MSA textual resources for training CA LMs. The first
strategy (Section 5.2) narrows the gap between MSA and CA through “colloquialisation”,
i.e. the rendering of MSA text as CA, within a statistical machine translation framework
in order to generate more CA textual data. The second strategy (Section 5.3) casts MSA
and CA as two different domains rather than two different dialects and tries to increase the
context coverage by using paraphrastic language models. Both strategies are empirically
evaluated in Section 5.4, using perplexity as evaluation metric. Finally, conclusions are
drawn and the chapter is summarised in Section 5.5.

5.1 Related research

Aided by the existence of a large volume of MSA resources, several studies explored their
use to enrich CA data for developing natural language processing tools. Much work ex-
plored using MSA data either directly, by finding a mapping between CA and MSA, or by
parsing CA and MSA and using the syntactic and morphological level instead of or with
the lexical level.

Pooling transcribed CA text with MSA data directly, such as Egyptian CA (ECA) with
MSA (Kirchhoff et al., 2003) and Qatari CA (Elmahdy et al., 2013), yielded an insignificant
(if any) reduction in the perplexity. Similar outcomes were observed when Kirchhoff et al.
(2003) interpolated two LMs, one estimated from a small ECA training set and the other
estimated from MSA data, with optimised weights even when the chosen MSA data were
selected to be conversational in nature.

Alternatively, other studies attempted to transform CA into MSA in the context of
statistical machine translation (SMT) due to the absence of CA-English parallel corpora.
Motivated by the rich MSA-English machine translation resources, many researchers trans-
formed CA-to-MSA (known as CA or dialect normalisation) in order to be able to use
existing MSA resources (Bakr et al., 2008; Sawaf, 2010; Salloum and Habash, 2011; 2013;
Aminian et al., 2014). For instance, Bakr et al. (2008) employed a hybrid normalisation
approach to normalise ECA, which applied a combination of mapping rules and a statis-
tical tokenising and tagging model trained on an ECA morphological lexicon. Another
hybrid normalisation approach was proposed by Sawaf (2010). His normalisation method
transferred CA words to MSA based on character- and morpheme-level mapping rules. Af-
terwords, an SMT system was used to translate from MSA to English. While Sawaf (2010)
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normalised both affixes and stems to MSA vocabulary, Salloum and Habash (2011) only
applied mapping rules on the affixes but also used morphological analysis information and
dictionaries in addition to language models and allowed multiple morphological analyses
in the form of lattices to be translated by an SMT system to English.

With the emergence of social media, more written CA can be observed where users
use their own mother-tongue, namely CA, in conversational responses. Al-Sabbagh and
Girju (2010) harvested the web for ECA and MSA lexicons while the COLABA project
(Diab et al., 2010) constructed similar resources from web logs. Based on their experience,
Elfardy and Diab (2012) composed a set of guidelines for constructing such resources with
the aid of automatic dialect identifiers.

5.1.1 Motivation

As mentioned in Chapter 2, CA and MSA are considered two variants of the same language
where each has its own functionally exclusive domain. CA is used primarily in informal
daily conversations while MSA is used as the formal correspondence variant. Native Ara-
bic speakers can easily switch between the two variants according to the situation and
consequently can swap an utterance from one variant to the other. Transferring a given
MSA utterance to a CA utterance is known as colloquialisation of MSA while the reverse
process is called normalisation of CA.

Because MSA and CA are functionality exclusive, they could be considered two different
domains or topics, such as politics and medical topics in English. The majority of the
vocabulary is shared in addition to domain-specific vocabulary and syntax. Given this
new analogy, rather than translating between two dialects, the main task of exploiting
MSA resources for CA language modelling can be cast as closing the gap on the lexical
level between two domains. Machine translation (Section 5.2) and lexical paraphrasing
(Section 5.3) approaches can be employed in the colloquialisation process of MSA textual
data.

5.2 Colloquialising MSA resources using SMT framework

As aforementioned, CA normalisation proved to be beneficial in machine translation tasks.
In these tasks, MSA was used as a so called pivoting language: Normalising CA-to-MSA
was performed first, which is then followed by standard MSA-to-English translation task.
This approach allows using the rich resources of a MSA to train state-of-the-art SMT
system.

Where a large volume of MSA textual resources exists, colloquialisation allows generat-
ing more matching data for CA language modelling by rendering existing MSA sentences
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Figure 5.1: A statistical machine translation (SMT) framework for colloquialising MSA
text to CA text.

into CA. Because colloquialisation is the transferring of a sentence from a source variant
to a target variant, statistical machine translation (SMT) approaches can be employed for
this purpose where MSA is considered as a source language and a CA dialect is the target
language. In order to train an SMT model, a parallel corpus is required where each sen-
tence is written in MSA along with its corresponding CA sentence which can be collected
using manual annotation.

Statistical machine translation is based on and it tried to finds the most probable
sentence in the target language, in this case in CA, given a sentence in the source language,
in MSA. This problem can be defined using Bayes rule as follows:

̂𝑐 = arg max
𝑐

𝑃(𝑐|𝑚)

= arg max
𝑐

𝑃 (𝑐)𝑃 (𝑚|𝑐)
𝑃 (𝑚)

= arg max
𝑐

𝑃(𝑐)𝑃 (𝑚|𝑐), (5.1)

where ̂𝑐 is the most probable colloquial sentence, 𝑃(𝑐) is the language model of the CA and
𝑃(𝑠|𝑐) is the translation model from a MSA sentence 𝑚 to a CA sentence 𝑐 and the whole
process is known as decoding. Figure 5.1 illustrates a general SMT framework. As it shown,
an SMT system is composed mainly of two main components. First component is the
language model, 𝑃(𝑐), that assigns higher probability to sentences with better grammatical
structure or word order. In order to estimate these probabilities, the LM parameters need
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to be estimated using sentences from the target language, i.e. CA, and it is the same LM
used in the ASR (Section 3.1.3). The second component is the translation model, 𝑃(𝑚|𝑐),
that assigns higher probability to CA sentences, 𝑐, which have a similar meaning as the
MSA sentence, 𝑚. The parameters of a translation model requires a collection of parallel
text, where each training sample is a pair of a sentence in the source language and its
corresponding translation in the target language. Because there might be more than one
valid word order, the translation model 𝑃(𝑚|𝑐) is computed over all possible alignments
as follows:

𝑃(𝑚|𝑐) = ∑
𝑎

𝑃(𝑎, 𝑚|𝑐), (5.2)

where 𝑎 represents an alignment between words in the source-target pair, and it is a hidden
variable.

An SMT system is widely evaluated using the BiLingual Evaluation Understudy (BLEU)
score (Papineni et al., 2002). An automatically translated text is considered better if it
is close to a professional translator’s outcome. Based on this idea, the BLEU score is
computed from counting the number of 𝑛-grams between the translation hypothesis and
one or more translation references with considering the variation in terms of word choice
and ordering. Papineni et al. (2002) achieved this by using the modified 𝑛-grams precision.
The modified 𝑛-gram precision, 𝑝𝑛 , is calculated for each length 𝑛 of 𝑛-grams, 𝑤𝑛, by
summing over all matches for every translation hypothesis, 𝑆, in the whole corpora, 𝒞;
formally:

𝑝𝑛 =
∑𝑆∈𝒞 ∑𝑤𝑛∈𝑆 Countmatched(𝑤𝑛)

∑𝑆∈𝒞 ∑𝑤𝑛∈𝑆 Count(𝑤𝑛) , (5.3)

where Countmatched(𝑤𝑛) counts all the matched 𝑛-grams of length 𝑛 between the hypoth-
esis and some reference while Count(𝑤𝑛) counts all 𝑛-grams of length 𝑛 in the hypothesis
𝑆. A translation hypothesis that is shorter than the reference sentences will have a higher
precision score than those longer hypotheses. In order to compensate for having very short
translation hypotheses, a brevity penalty, BP, is computed over the whole corpus, which
is computed as follows:

BP =
⎧{
⎨{⎩

1 if |𝒞| > 𝑟
𝑒1−𝑟/|𝒞| if |𝒞| ≤ 𝑟

, (5.4)

where |𝒞| is the length of the hypothesis corpus and 𝑟 is the length of the closest reference
sentences to the hypotheses. Then BLEU score is computed as follows:
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Table 5.1: Example of normalising the colloquial sentence “mrp kwys” into five valid
MSA equivalents.

CA sentence MSA equivalence
mrp kwys jyd jdA

(very good) mmtAz jdA
Hsn jdA
Tyb jdA
Hlw jdA

BLEU = BP exp (
𝑁

∑
𝑛=1

𝜆𝑛 log 𝑝𝑛) , (5.5)

where 𝜆𝑛 is a positive weights for each 𝑝𝑛 such that ∑𝑁
𝑛=1 𝜆𝑛 = 1 and it is commonly

assigned to equal weights. BLEU ranges between 0 to 1 with higher scores indicating better
translation hypotheses.

Unlike MSA, CA lacks standard conventions for writing colloquial words. Therefore,
native Arabic writers usually improvise the spelling of such words and this leads to noisy
and unreliable colloquialised MSA sentences. Hence, for creating a parallel CA-MSA cor-
pus, colloquialisation of MSA data is replaced by normalisation of CA data for the consis-
tency of annotation conventions. Normalisation of CA requires sentences in CA which can
be drawn from any of the existing small CA speech transcriptions corpora (provided by
LDC). A subset of these transcriptions can be selected to avoid repetitions and to insure
more lexical coverage. Since CA and MSA share almost two thirds of their vocabulary
(Habash and Rambow, 2006), only sentences including at least one non-MSA word are
included in the chosen set. Usually, sentences in CTS corpora are short in length (between
4-6 words per sentence on average) and in undiacritised form. This imposes a challenge for
the annotator to choose the corresponding MSA match that serves the intended meaning.
Therefore, for an annotator to transfer a CA sentence, at least one preceding sentence and
one subsequent sentence are presented as well to provide some semantic context. Because
there might be more than one valid normalisation for a single CA sentence, more than
one normalisation can be allowed to gain a much richer mapping between CA and MSA.
For instance, the colloquial word “mrp kwys” (very good) can be rendered into five MSA
sentences, as shown in Table 5.1.

Lately, crowdsourcing platforms, such as Amazon’s Mechanical Turk (AMTurk), are
used for collecting and annotating resources for computational linguistics (Sorokin and
Forsyth, 2008; Kittur et al., 2008; Snow et al., 2008; Novotney and Callison-Burch, 2010;
Paolacci et al., 2010; Kumar et al., 2014). Zaidan and Callison-Burch (2011) and Sabou
et al. (2014) provided general guidelines for best practice in using such platforms in order
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to obtain high quality NLP resources. Crowdsourcing allows annotation tasks to be dis-
tributed among several non-professional annotators by splitting them into smaller tasks,
known as mircotasks or human intelligent tasks (HIT). An example of such microtask is
annotating one or two sentences. A sentence can be annotated more than once by several
annotators for the purpose of improving quality and consistency of the outcomes (Zaidan
and Callison-Burch, 2011).

Unfortunately AMTurk is restricted for use by USA residents only; therefore, the Up-
work platform was employed instead. Upwork, previously known as oDesk, is an interna-
tional work platform to connect freelancers and work contractors together. Unlike AMTurk,
Upwork does not scale easily to large numbers of annotators because each of them needs an
individual contract before enrolling and performing any task. Nevertheless, the experience
level of hired annotators is much higher in Upwork than in AMTurk. Moreover, the cost of
performing the normalisation of CA using Upwork remains considerably lower than hiring
professionals.

Several quality measures were used. First, enrolled annotators had to be native speakers
of the presented CA dialect. Second, following the guidelines of Zaidan and Callison-Burch
(2011), several control sentences for which their corresponding MSA pairs are known were
presented to the annotators - at least three control sentences out of a total ten sentences
were included in each job. An additional quality control procedure was to provide the
source CA sentence and all its normalised variants resulting from a previous normalisation
task so that any invalid normalisation variants would be rejected. If none of the normal-
isation variants survived, that CA sentence was flagged and returned to be normalised
again.

The crowdsourced parallel corpus resulting from the normalisation and validation tasks
was then used to train a colloquialisation system. The SMT model of that system was
estimated from parallel text where MSA, i.e. normalised CA, was the source language and
CA was the target language. Using the SMT framework, additional CA data for training 𝑛-
gram LMs was generated by decoding MSA text via the estimated colloquialisation model.

5.3 The use of paraphrastic language modelling

Instead of considering CA and MSA as two different languages, one can treat them as
two different domains instead as politics and medicine domains. CA is used in the con-
versational and informal domain while MSA is used in the formal domain where syntactic
structure and some of the vocabulary differ across these domains. However, since both do-
mains use the same language, some of the vocabulary and context are still shared across.

Such structure can be captured using Paraphrastic Language Models (ParaLMs), which
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were proposed by Liu et al. (2012; 2014). In their model, multiple paraphrase variants were
generated from a statistical model for each training sentence. Following the distributional
theory (Harris, 1954), two sentences are considered paraphrase variants to each others if
they appear in the same context, i.e. share the left and right context. Then, the ParaLM
probabilities are estimated by maximising the marginal probability over all paraphrase
variants. Formally, for a word sequence, 𝒲, of length 𝐿𝒲 words, which has a set of
paraphrase variants {𝒲′}, the log probability of predicting the next word in the sequence
is:

ℱ(𝒲) = ln ( ∑
𝜓,𝜓′,𝒲′

𝑃(𝒲|𝜓)𝑃 (𝜓|𝜓′)𝑃 (𝜓|𝒲′)𝑃PLM(𝒲′)) (5.6)

where 𝜓 is a phrase sequence, 𝑃(𝜓|𝒲′) is a word to phrase segmentation model, which
allows generating a single-word or multiword phrases from a single word, 𝑃(𝜓|𝜓′) =
∏𝑖 𝑃(𝑣𝑖|𝑣′

𝑖) is a phrase to phrase paraphrase model to compute the probability of a phrase
sequence. Here, 𝜓′ =< 𝑣′

1, 𝑣′
2, ..., 𝑣′

𝐾 > is a set of paraphrastic variants of the phrases
𝜓 =< 𝑣1, 𝑣2, ..., 𝑣𝐾 >, 𝑃(𝒲|𝜓) is a phrase to word segmentation model which converts
a phrase 𝜓 to a word sequence 𝒲, and 𝑃PLM(𝒲′) is the paraphrastic LM probability to
be estimated. Liu et al. (2012) showed that sufficient statistics for an ML estimation of
𝑃PLM(𝒲′) can be accumulated along each paraphrase word sequence 𝒲′ and weighted
by its posterior probability. In other words, the statistics, namely 𝑛-gram counts, that is
required for predicting a word 𝑤 following the history ℎ can be computed as follows:

Count(ℎ, 𝑤) = ∑
𝒲′

𝑃(𝒲′|𝒲)Count𝒲′(ℎ, 𝑤) (5.7)

where Count𝒲′(ℎ, 𝑤) is the count of the sequence < ℎ, 𝑤 > within the paraphrase 𝒲′.

It is necessary to estimate the paraphrase model, 𝑃(𝜓|𝜓′), prior to Equation 5.6 which
requires a large number of paraphrase variant pairs. These pairs are extracted statistically
based on distributional similarity (Harris, 1954). Co-occurrence counts of two phrases of
lengths ranging from 𝑙min to 𝑙max that share the same left and right context of specific
length (𝑙cxt) are used to estimate the phrase paraphrase model. Based on these counts the
paraphrase probabilities can be estimated as follows:

𝑃(𝑣′|𝑣) = Count(𝑣 → 𝑣′)
∑�̄� Count(𝑣 → ̄𝑣) (5.8)

Count(𝑣 → 𝑣′) is the number of occurrences where the phrase 𝑣 shared the same left and
right context of length 𝑙cxt with the phrase 𝑣′. Count(𝑣 → ̄𝑣) is the number of occurrences
where the phrase 𝑣 shared the same left and right context of length 𝑙cxt with any other
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Table 5.2: Example of paraphrase variants along with their paraphrase probabilities. A
colloquial word is marked by a subscript which indicates all dialects the word belongs to.

Paraphrase
From, 𝑣 To, 𝑣′ English translation 𝑃(𝑣′|𝑣)
tZlwA bxyr xyr good / alright 0.065
(be safe) tslmy stay safe / thank you 0.033

mwfq be blessed / good luck 0.033
bAltwfyq with blessing / good luck 0.033
bttwfqLCA wish you blessing / good luck 0.033
ExyrLCA,GCA with safe / see you later 0.020
bnfrHLCA,GCA lk we are happy for you 0.020
btqDyLCA,GCA rHlp mwfqp have a safe journey 0.020
ttnjHyLCA you will success 0.020
yrbHwkLCA they will let you win 0.020
Allh yHfZk may Allah protect you 0.020
btZlwALCA sAlmyn stay healthy 0.020
klh xyr all is good 0.020
tstEmlyh bAlhnA enjoy it with happiness 0.020

phrase that is not itself. As shown in Equation 5.8, the paraphrase probabilities, 𝑃(𝑣|𝑣′),
are directed which allow the type of paraphrasing to be controlled by discarding out-
of-domain target phrases 𝑣′ from the paraphrase pairs prior to estimating paraphrasing
probabilities. Table 5.2 lists some examples of paraphrase variants extracted from multi-
dialect data for the phrase “tZlwA bxyr” (be safe), which is commonly used in CA as
farewell wishes to end a conversation. Its many variants have a similar function even if
exact translations are different.

Paraphrases are generated in the form of lattices where a word lattice 𝒯𝒲′ is created
from each training sample 𝒲. For efficiency, Liu et al. (2012) suggested employing a
weighted finite transducer (WFST) (Mohri, 1997) framework where all the components in
Equation 5.6 are represented as follows:

𝒯𝒲′ = det (𝜋𝒲′ (𝒯𝒲∶𝒲 ∘ 𝒯𝒲∶𝜓 ∘ 𝒯𝜓∶𝜓′ ∘ 𝒯𝜓′∶𝒲′)) (5.9)

∘, 𝜋 and det are WFST composition, projection and determinisation operators. 𝒯𝒲∶𝒲 is
the original word sequence transducer, 𝒯𝒲∶𝜓 is the word to phrase segmentation trans-
ducer, 𝒯𝜓∶𝜓′ is the phrase to phrase paraphrase transducer and 𝒯𝜓′∶𝒲′ is the phrase to
word transducer which is the inverse of 𝒯𝒲∶𝜓. Only phrases that exist in the extracted
paraphrase variant set are produced and accepted by 𝒯𝒲∶𝜓 and 𝒯𝜓∶𝒲 respectively.
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5.4 Experiments

In this section, the usefulness of MSA textual resources in the development of a CA LM
using either a SMT-based colloquialisation system or a paraphrastic LM is evaluated in
terms of word perplexity computed over a testing set. Two LCA corpora were used in most
of these experiments, namely FisherLCA and AppenLCA training sets, which have been
used in Section 4.5. The testing sets from both corpora are merged into one testing set
testLCA. As for MSA resources, two training sets were used: NW10 and BC, where the
former is a newswire corpus based on a Lebanese newspaper while the latter is based on
broadcast conversation data collected under the GALE project. All these sets are described
in Appendix B.

5.4.1 Colloquialising MSA resources

Using the Upwork platform, 47 native LCA speakers were enrolled to normalise a subset
from the LCA corpora, in addition to the testLCA set. The subset consisted of 18726
sentences with 77848 words drawn from FisherLCA and 11409 sentences with 77194 words
drawn from AppenLCA. From this subset, 2000 sentences were randomly selected, rendered
into MSA and kept in a control sentence pool. In addition to the control sentence pool,
two sentence pools were prepared: a normalisation sentence pool and a validation sentence
pool. Apart from those sentences in the control sentence pool, all sentences were initially
assigned to the normalisation sentence pool.

Two tasks were prepared to be performed by the annotators. The first task was a
normalisation task where an annotator was provided with a set of ten sentences in LCA to
be rendered into MSA; three sentences were drawn from the control sentence pool while
the rest were drawn from the normalisation sentence pool. For the second task, which was
a validation task, an annotator was provided with a set of three LCA sentences along with
their normalised variants and asked to reject invalid normalised variants. Sentences for
the validation task were drawn from the validation sentence pool. Only sentences which
were normalised by three annotators with different normalised variants were included. For
a given validation sentence, if all normalised variants were rejected by an annotator, that
LCA sentence was returned to the normalisation sentence pool.

In the normalisation task, annotators were asked to render each colloquial word into
its MSA equivalent using an undiacritised form such that one LCA word can be rendered
to a phrase of more than one word in MSA and vice versa. For instance,:

• the single-word CA phrase “ETfwltk” (on your childhood) is normalised to a multi-
word MSA phrase “ElY Tfwltk”, and
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MSA text

Colloquialised MSA

Decoding
CA LM

Colloquialisation model

CA text

MSA-CA pairs

The crowd

Colloquialised MSA LM + Interpolated LM

Figure 5.2: Schematic diagram for developing a language model based on colloquialised
MSA text. The “+” sign indicate a linear interpolation between two LMs.

• the multi-word CA phrase “E$An hm” (because of them) is normalised to a single-
word MSA phrase “l>nhm”.

In addition, annotators were not encouraged to reorder the normalised phrase unless it
was completely unacceptable in MSA, which is rare given the syntactic flexibility of MSA.
Further details of the guidelines summary which was given to the annotators can be seen
in Appendix C.

As a result, a parallel corpus of LCA-MSA data, which is a set of pairs of LCA sentences
along with its normalised variants, was created. A translation model was estimated as a
colloquialisation model based on the crowdsourced parallel corpus using an SMT frame-
work, based on the Moses toolkit (Koehn et al., 2007). The source language was MSA
(i.e. normalised variant) and the target language was LCA. The colloquialisation model
obtained a BLEU score of 0.994 on testLCA.

After estimating the colloquialisation model, the MSA resources (NW10 and BC) were
colloquialised with the model and the Moses decoder. The resulting colloquialised MSA
corpora were used to estimate a new trigram LM for each corpus. Figure 5.2 illustrates
the development process for the colloquialised MSA-based LM.

The first three columns in Table 5.3a show the perplexity results on testLCA with
one of the three LMs estimated on all LCA data, BC and NW10. Although BC is an
MSA resource, its perplexity is equivalent to almost one tenth of that of NW10. This is
mainly because the style of the BC dataset is conversational while NW10 is intended for
written media and thus has a much richer context than that of BC. Consequently, the
BC LM was assigned a higher interpolation weight than the NW10 LM when they were
linearly interpolated with the LCA LM. The interpolated LM gave a relative perplexity
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Table 5.3: Perplexity and relative difference in perplexity compared with the LCA
trigram LM with interpolated LM with different combinations of LM components

estimated on (a) MSA resources or (b) colloquialised MSA resources. If the interpolation
weight is 1.0 that means there is no interpolation with any other component.

(a) LM components were estimated on MSA resources

LM
component Interpolation weights

LCA 1.0 0.955 0.962 0.947
BC 1.0 0.005 0.028

NW10 1.0 0.038 0.026
Perplexity 213.3 2066.8 19474.4 209.2 206.9 206.0

%diff 0.0 +869.0 +9030.1 -1.9 -3.0 -3.4

(b) LM components were estimated on colloquialised MSA resources

LM
component Interpolation weights

LCA 1.0 0.932 0.933 0.915
BC 1.0 0.068 0.033

NW10 1.0 0.067 0.052
Perplexity 213.3 1452.6 6304.7 206.5 200.4 199.5

%diff 0.0 +581.0 +2855.8 -3.2 -6.1 -6.5

Table 5.4: Relative difference in the number of 𝑛-grams (of order 1 to 3) between LMs
estimated from MSA resources (baseline) and LMs estimated from colloquialised MSA

resources.

Corpus unigrams bigrams trigrams
BC 0.0 +1.7% +3.6%

NW10 0.0 +6.1% +4.9%

improvement of 1.9% and 3.0% respectively and 3.4% when both were included in the
interpolation to reach a perplexity of only 206.

LMs estimated from colloquialised MSA resources showed a considerable reduction in
the perplexity, especially for the NW10 dataset, as shown in Table 5.3b. In comparison to
the perplexity computed from BC and NW10 (shown in Table 5.3a), a relative reduction
of 30% and 68% respectively was obtained with colloquialised corpora instead of equivalent
MSA data. Moreover, the obtained reduction in the perplexity resulting from interpolating
the LCA LM and LMs estimated from colloquialised MSA resources was twice that of an
interpolation with LMs estimated from MSA resources directly.

In order to further investigate the source of improvement in the LMs based on collo-
quialised MSA, a comparison between the number of 𝑛-grams counted in each model was
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performed. Table 5.4 lists the relative difference in the number of 𝑛-grams of order 1 to 3
found in LMs estimated from MSA text and LMs estimated from colloquialised MSA text.
As shown in the table, the number of both bigrams and trigrams were increased by at
least 1.7% and 3.6% respectively depending on the size of the colloquialised dataset. This
empirically proved that automatically colloquialised MSA text can be used as an additional
resource for developing CA LMs.

5.4.2 Cross-dialect paraphrase variants

In order to evaluate the usefulness of out-of-domain resources for inducing paraphrase
variants to phrases occurring in LCA data, two additional training sets were used: GCA
and ICA (both are described in Appendix B). Both LCA training sets, FisherLCA and
AppenLCA, were merged into the LCA training set to be used in the paraphrase variants
induction as well as MSA training sets, NW10 and BC into the MSA set. All words which
are exclusive to CA sets, namely do not exist in MSA set, are considered colloquial words
and were marked with the dialect they belong to. A colloquial word can be assigned to
more than one CA dialect, for instance the colloquial word “Ally” (who), which appears in
all CA sets but not MSA, was marked with L, G and I for LCA, GCA and ICA respectively
to be “GILAlly”. The chosen characters used for marking colloquial words, {L, G, I}, are
not part of the Buckwlater transliteration set, and hence allow a straightforward retrieval
of the original words. If all words in a phrase exist in the MSA set, i.e. the phrase does
not have any colloquial words, it was considered to be an MSA phrase; however that does
not mean it was extracted from the MSA data set.

Paraphrase variants were extracted from all training sets. Each variant pair shared left
and right contexts of up to 3 words, i.e. 𝑙cxt = 3. These variants could range between
1 and 4 words in length, i.e. 𝑙min = 1 and 𝑙min = 4. Based on these settings, a window
of minimum length of 5 words, 𝑙cxt + 𝑙min + 𝑙cxt, and maximum length of 10 words,
𝑙cxt + 𝑙max + 𝑙cxt, was shifted over each training sentence to extract potential phrases.
Table 5.5a lists the number of paraphrase variants extracted from each training set along
with the distribution of the resulting variants among the included dialects. A paraphrase
variant belongs to a certain dialect if there exists at least one word from that dialect in the
phrase. For example, phrases from GCA (i.e. contains at least one colloquial word marked
with G) between one to four words length was sharing their left and right contexts with
32090 other phrases from all four corpora. Of those 32090 phrases, 21.3% contain words
only exist in the GCA set, 9.7% contain words only existing in the ICA set, 22.7% contain
words only existing in the LCA set and 70.4% contain words existing in the MSA set.
Words can belong to more than one dialect, and therefore extracted paraphrase variants
can also be assigned to multiple dialects. Because of the overlap between the dialects, the
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dialect percentages in each row in Table 5.5a do not sum to 100%. As shown in Table 5.5a,
the majority of extracted paraphrase variants, 94.1% out of 797146, do not contain any
colloquial words.

Conversational data sets included tags that correspond to non-lexical backchannel re-
sponses, such as “AhA”. These non-lexical backchannel responses were produced by lis-
teners as vocalised cues that the speaker still had their attention. Sometimes transcribers
may mistakenly assign these tags to hesitation events which are considered to be speech
disfluency. For that, paraphrastic extraction can be performed but all potential disfluency
tags are not considered in the phrase extraction. However, they will still remain in the
resulting variant set. For instance, the two phrases “lAzm nkwn mE” (we must be with)
and “mvlA nqEd mE” (such as we are sitting with) cannot be extracted as paraphrase
variants because they do not share left and right contexts in the following example when
the word “AhA” is considered:

left context right context
bs AnA wAnt AhA lAzm nkwn mE AhA bEDnA AlbED </s>
bs AhA AnA wAnt mvlA nqEd mE bEDnA AlbED AhA </s>

However, when all occurrences of the word “AhA” are discarded from the surrounding
context, the two phrases are considered to be paraphrase variants, as they are supposed to
be:

left context right context
bs AnA wAnt lAzm nkwn mE bEDnA AlbED </s>
bs AnA wAnt mvlA nqEd mE bEDnA AlbED </s>

Table 5.5b shows the distribution of paraphrase variants by dialect when all potential
disfluency tags are discarded. Although the results shown are similar to those of Table
5.5a, more than 2% of the extracted paraphrase variants differ after discarding backchannel
and disfluency tags.

Since the main objective is to reduce the data sparsity problem by generating more
matching data, only paraphrase variants targeting the desired dialect are kept. Tables
5.5c and 5.5d shows the distribution by dialect of paraphrase variants extracted from
different source dialect but only targeting LCA dialect, when considering disfluency tags
or discarding them in the extraction process respectively. In comparison to paraphrase
variants extracted previously without targeting a specific dialect (Tables 5.5a and 5.5b),
only 4.6% of the paraphrase variants were kept. Of that, 70% were paraphrased from
phrases without colloquial words.

As described above, phrases of length between 5 to 10 words were extracted for their
context (3 words on the left and 3 words on the right) to be compared against each
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Table 5.5: Number of paraphrase variants, |{𝑣′}|, induced from multiple corpora of
different dialects, with different combinations of excluding disfluencies or not and

paraphrasing to certain dialects only or not. Variants can have variable length between
(𝑙min=1) to (𝑙max=4) shared a left and right context of (𝑙cxt=3) words. Also, the

distribution of paraphrase variants by dialect.

(a) Including disfluencies and allowing paraphrasing to any CA dialect.

From, 𝑣 GCA% ICA% LCA% MSA% |{𝑣′}| % of Total
GCA 21.3 9.7 22.7 70.4 32,090 4.1
ICA 22.4 12.3 23.6 69.7 13,895 1.7
LCA 20.1 9.0 23.5 70.3 36,368 4.6
MSA 3.0 1.3 3.4 94.1 750,390 94.1
Any 4.0 1.7 4.6 94.1 797,146 100.0

(b) Excluding disfluencies and allowing paraphrasing to any CA dialect.

From, 𝑣 GCA% ICA% LCA% MSA% |{𝑣′}| % of Total
GCA 21.4 9.7 22.8 70.3 31,978 4.0
ICA 22.5 12.3 23.6 69.7 13,853 1.7
LCA 20.2 9.0 23.5 70.3 36,182 4.6
MSA 3.0 1.3 3.4 95.6 748,419 94.2
Total 4.0 1.7 4.6 94.2 794,962 100.0

(c) Including disfluencies and allowing paraphrasing to LCA dialect only.

From, 𝑣 GCA% ICA% LCA% MSA% |{𝑣′}| % of Total
GCA 66.8 35.8 100.0 0.0 7,296 20.1
ICA 70.2 44.5 100.0 0.0 3,274 9.0
LCA 61.6 32.7 100.0 0.0 8,562 23.5
MSA 62.6 31.9 100.0 0.0 25,565 70.3
Total 87.9 38.1 100.0 0.0 36,368 100.0

(d) Excluding disfluencies and allowing paraphrasing to LCA dialect only.

From, 𝑣 GCA% ICA% LCA% MSA% |{𝑣′}| % of Total
GCA 66.8 35.8 100.0 0.0 7,289 20.1
ICA 70.1 44.4 100.0 0.0 3,271 9.0
LCA 61.8 32.8 100.0 0.0 8,518 23.5
MSA 62.6 31.9 100.0 0.0 25,423 70.3
Any 62.5 32.1 100.0 0.0 36,182 100.0
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other. Sentences drawn from spontaneous conversations tend to be shorter than those
in broadcast news conversations or newswire data. For instance the average number of
words for the LCA, ICA and GCA is between 4 to 6 words per sentence. The average is
much higher in MSA sets at between 11 to 15 words per sentence. Therefore, Liu et al.
(2014) suggested to use a shorter context for extracting more paraphrase variants whilst
warning of reduced paraphrastic quality of these variants. Following their suggestion,
similar paraphrase variant extractions to those shown in Tables 5.5 were performed, but
with a shorter context (𝑙cxt = 2). These variants ranged between one to fours words
in length. The number and dialect distribution of the resulting paraphrase variants are
shown in Tables 5.6. When no specific dialect was targeted, the number of paraphrase
variants extracted with shorter context increased by the factor of 2 compared to before.
However, when targeting the LCA dialect, the number of the extracted variants with a
shorter context was 30-fold more. Nevertheless, the dialect distribution of paraphrase
variants remained similar across different context depths.

5.4.3 ParaLM using cross-dialect paraphrase variants

A subset was selected from the resulting paraphrase variants described in Section 5.4.2,
where the paraphrase variants extraction was based on a longer left and right context of
three words and excluding any potential disfluency tags. Only paraphrase variants that did
not include any OOV words were kept to be used in the estimated paraphrase model using
the Equation 5.8. Using a WFST-based tool implemented as part of the OpenFST library
(Allauzen et al., 2007), a paraphrastic lattice was generated for each training sentence as
described in Equation 5.9. Over all generated paraphrase variants, 𝑛-gram counts weighted
by their posterior probabilities were accumulated, as described in Equation 5.7. Then the
resulting statistics was normalised by removing all counts less than 0.001, and then the
rest were rounded to the nearest integer after adding 1 to all counts. The final counts were
then used to train a 𝑛-gram LM.

Based on this approach, two sets of ParaLMs were estimated individually from the
previously introduced colloquial data sets (LCA, GCA and ICA) and MSA data sets (BC
and NW10). One set only allowed paraphrasing to LCA dialect while the other did not
enforce any restrictions. These will be referred to as ParaLM.3-1-4.exH.2L and ParaLM.3-
1-4.exH respectively.

As a baseline LM, a standard word-based trigram LM was chosen for each data source
individually. Table 5.7 compares the perplexities on testLCA from all estimated LMs
(standard and ParaLM). As shown in the table, using any out-of-domain data source,
namely non-LCA, gave high perplexity. Perplexities ranged between 1519 and 2318 when
data sources had a similar speaking style (i.e. conversational style) but a different dialect,
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Table 5.6: Number of paraphrase variants, |{𝑣′}|, induced from multiple corpora of
different dialects, with different combinations of excluding disfluencies or not and

paraphrasing to certain dialects only or not. Variants can have variable length between
(𝑙min=1) to (𝑙max=4) shared a left and right context of (𝑙cxt=2) words. Also, the

distribution of paraphrase variants by dialect.

(a) Including disfluencies and allowing paraphrasing to any CA dialect.

From, 𝑣 GCA% ICA% LCA% MSA% |{𝑣′}| % of Total
GCA 20.9 15.6 24.4 72.4 594,810 3.8
ICA 23.4 19.1 26.3 70.4 397,901 2.6
LCA 13.2 9.5 20.3 78.0 1,097,074 7.1
MSA 3.0 2.0 6.0 93.6 14,304,204 92.3
Any 3.8 2.6 7.1 92.4 15,489,216 100.0

(b) Excluding disfluencies and allowing paraphrasing to any CA dialect.

From, 𝑣 GCA% ICA% LCA% MSA% |{𝑣′}| % of Total
GCA 24.5 18.5 26.8 69.4 495,329 4.1
ICA 26.3 21.6 28.2 68.0 348,040 2.9
LCA 20.2 14.9 25.2 71.8 657,382 5.5
MSA 3.1 2.1 4.2 95.2 11,211,685 93.8
Any 4.1 2.9 5.5 93.8 11,957,828 100.0

(c) Including disfluencies and allowing paraphrasing to LCA dialect only.

From, 𝑣 GCA% ICA% LCA% MSA% |{𝑣′}| % of Total
GCA 74.8 59.7 100.0 0.0 144,843 13.2
ICA 79.3 67.4 100.0 0.0 104,512 9.5
LCA 58.0 44.1 100.0 0.0 222,146 20.2
MSA 44.4 30.3 100.0 0.0 855,321 78.0
Any 47.7 33.6 100.0 0.0 1,097,074 100.0

(d) Excluding disfluencies and allowing paraphrasing to LCA dialect only.

From, 𝑣 GCA% ICA% LCA% MSA% |{𝑣′}| % of Total
GCA 79.5 64.2 100.0 0.0 132,507 20.2
ICA 82.9 71.0 100.0 0.0 98,235 14.9
LCA 70.3 55.4 100.0 0.0 165,604 25.2
MSA 61.8 45.7 100.0 0.0 472,011 71.8
Any 64.4 48.5 100.0 0.0 657,382 100.0
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Table 5.7: Perplexity of trigram standard LMs (3g LM) and ParaLMs estimated from CA
(LCA, GCA and ICA) and MSA (BC and NW10) corpora. ParaLM.3-1-4.exH used

paraphrase variants of length one to four words sharing left and right context of three
words excluding disfluency tags. ParaLMs.3-1-4.exH.2L is similar to ParaLMs.3-1-4.exH
but only targeting the LCA dialect. Relative difference in perplexity of ParaLM (%diff) is
computed for each row by considering the perplexity of the 3g LM in that row as baseline.

3g LM 3g ParaLM.3-1-4.exH 3g ParaLM.3-1-4.exH.2L
Corpus Size (words) Perplexity Perplexity %diff Perplexity %diff

LCA 1,906,286 213.3 774.9 +263.9 353.9 +65.9
BC 1,433,932 2,066.8 2,652.9 +28.4 2,666.0 +30.0

NW10 15,779,447 18,824.9 11,721.4 -37.7 13,587.1 -27.8
GCA 344,383 1,518.7 1,545.8 +1.8 1,846.4 +21.6
ICA 167,263 2,318.3 2,000.2 -13.7 2,680.7 +15.6

Table 5.8: Perplexity of interpolating a standard trigram LM (wLCA) with a 3g
ParaLM.3-1-4.exH. Each column represents an interpolation combination where an empty
cell indicates that the ParaLM was not included in the interpolation. If the interpolation
weight is 1.0 that means there is no interpolation with any other component. The bottom

two rows show the perplexity and relative difference from the perplexity of the first
column.

LM Interpolation weights
wLCA 1.000 0.981 0.971 0.976 0.959 0.968 0.975 0.956 0.943
pLCA 0.018 0.012 0.011 0.008
pBC 0.029 0.016 0.013
pNW10 0.024 0.014 0.012
pGCA 0.032 0.021 0.015
pICA 0.025 0.013 0.009
Perplexity 213.3 212.4 210.2 209.7 208.7 211.3 212.0 210.6 207.8
%diff 0.00 -0.44 -1.46 -1.69 -2.14 -0.92 -0.63 -1.28 -2.56

and reached up to 18825 when data sources differed in style (i.e. written style) and di-
alect as well (MSA). Using the ParaLM did not help to improve the perplexity for the
conversational-based LMs whereas it showed an improvement of at least 28% relative for
the written-based LM.

An improvement in perplexity can be observed when ParaLMs were interpolated with
a standard LM. Table 5.8 compares the perplexity on testLCA of the models from inter-
polating the standard trigram LM (wLCA) and a combination of ParaLMs with different
weights estimated using ParaLM.3-1-4.exH configurations. In comparison to no interpo-
lation (𝜆𝑖 = 1), a relative improvement in the perplexity of different degrees was observed.
When training ParaLM without any restrictions on the targeted dialect, interpolating with
any MSA-based ParaLM (pBC or pNW10) achieved the lowest perplexity among interpo-
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Table 5.9: Perplexity of interpolating a standard trigram LM (wLCA) with a 3g
ParaLM.3-1-4.exH.2L. Each column represents an interpolation combination where an

empty cell indicates that the ParaLM was not included in the interpolation. If the
interpolation weight is 1.0 that means there is no interpolation with any other

component. The bottom two rows show the perplexity and relative difference from the
perplexity of the first column.

LM Interpolations weights
wLCA 1.0 0.981 0.967 0.972 0.928 0.969 0.978 0.931 0.924
pLCA 0.018 0.041 0.046 0.031
pBC 0.033 0.014 0.013
pNW10 0.028 0.017 0.016
pGCA 0.031 0.017 0.012
pICA 0.022 0.007 0.005
Perplexity 213.3 212.4 210.0 209.1 207.9 211.6 212.2 210.7 207.3
%diff 0.00 -0.44 -1.55 -1.98 -2.52 -0.80 -0.53 -1.21 -2.82

Table 5.10: Relative difference in the number of 𝑛-grams found across several ParaLMs
when paraphrase variants targeting LCA and when no specific dialect is targeted. All

these ParaLMs were estimated using the same vocabulary list.

%diff when use LCA-targeted ParaLM
ParaLM unigrams bigrams trigrams
pLCA 0% -47.2% +79.4%
pBC 0% -50.2% +74.6%

pNW10 0% -51.6% +48.7%
pGCA 0% -34.1% +38.1%
pICA 0% -32.9% +32.5%

lating with single ParaLM with a relative improvement of 1.5% to 1.7% while interpolating
with any colloquial ParaLM obtained between 0.4% to 0.9% relative reduction in perplex-
ity. Interpolating both MSA-based ParaLMs achieved 2.14% improvement while interpo-
lating all colloquial-based ParaLM obtained 1.3% relative reduction. The best result was
achieved when all ParaLMs were interpolated with 2.6% relative perplexity reduction to
reach a perplexity of 208.

When using LCA-targeted ParaLMs, further perplexity improvements were observed.
Table 5.9 shows several combinations of LCA-targeted ParaLMs to be interpolated with
standard word-based trigram LM (wLCA). The improvement was exclusive to MSA-based
ParaLMs, between 1.6% and 2.0% relative individually and 2.5% relative when interpo-
lating both BC and NW10. Colloquial-based ParaLMs did not yield any improvement.
However, interpolating all ParaLMs achieved the best improvement with 2.8% relative.
Although the paraphrase model for LCA-targeted ParaLMs was estimated from a small
fraction of the overall extracted paraphrase variants, namely 5% as shown in Tables 5.6b
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and 5.6d, they outperformed ParaLMs estimated from paraphrase variants without any
restrictions on the targeted dialect. As shown previously in Table 5.5a, LCA paraphrase
variants represents only 4.6% of all extracted variants. Because of that, LCA paraphrase
variants had very low paraphrastic probability estimates (computed from Equation 5.8) as
the majority of these variants are non-LCA. Consequently, paraphrase variants with very
low paraphrastic weighted counts (less than 0.001 when computed from Equation 5.7) are
considered infrequent and were discarded before training the language model. However,
the majority of these counts were not filtered out when restricting paraphrase variants
to target only LCA. Table 5.10 shows the relative difference between the number of 𝑛-
grams of order 1 to 3 found in ParaLMs estimated using the same vocabulary list. As
shown in the table, the number of trigrams generally increases by at least 33% for non-
LCA colloquial ParaLMs and reached almost 80% for the LCA ParaLM. The exclusion of
non-LCA-targeted paraphrase variants, which constituted 70% of all extracted paraphrase
variants, affected the number of bigrams in the estimated ParaLMs because CA dialects
mostly share low order 𝑛-grams with MSA, but not higher 𝑛-grams.

5.5 Summary and conclusion

MSA textual data have been used in previous studies in developing CA LMs using two
main approaches: First, pooling CA text with MSA data to be used in estimating a CA
LMs; second, an LM was estimated on each Arabic variant individually and then both LMs
are linearly interpolated with optimised weights. Both approaches reduced perplexity only
insignificantly. None of the approaches perform any kind of processing on the MSA data
prior to using it in LM training.

As aforementioned in Section 3.1.5, perplexity can be interpreted as a measure on the
average of the number of equally most probable words that can follow any given word
in the language. Therefore, lower perplexity indicates better language models, in other
words, less confused models. The main objective of this chapter was to investigate the
exploitation of the large volume of existing MSA textual data for developing CA LMs, and
to address the CA data sparsity issue in order to improve the overall perplexity of the
language model, namely Objective 2 of this thesis. Two strategies were introduced to serve
this purpose.

In the first strategy, MSA was colloquialised into CA using a colloquialisation model
within an SMT framework. MSA was cast as a source language and CA as a target
language. Such transforming from MSA to CA has not been employed before for language
modelling purposes and only the reverse direction has been explored for machine translation
purposes. As a translation model,the colloquialisation model had to be estimated using a
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5. Exploiting standard Arabic data for colloquial Arabic language modelling

parallel corpus. For the consistency of MSA annotating convention, a parallel corpus was
created by normalising a subset of a CTS transcription data set using a crowdsourcing
platform. Following the suggested quality assurance guidelines in the literature, every CA
sentence was normalised by more than one annotator, followed by a validation task in case
of the existence of conflicts in the normalisation. Estimated from the resulting parallel
corpus, the colloquialisation model was used with an SMT decoder to colloquialise (i.e.
translate) MSA resources into CA. The colloquialised MSA data was then used to estimate
standard trigram LMs. These outperformed LMs estimated from the MSA data with a
perplexity reduction up to 68% relative. Moreover, the perplexity reduction obtained from
interpolating these colloquialised MSA LMs was twice that obtained from interpolating
MSA LMs to reach 6.5% relative in comparison to the baseline CA LM.

Rather than casting MSA and CA as two different dialects, the second strategy con-
sidered them as two different domains. Each domain uses a different syntactic structure,
which was captured by ParaLMs. First, paraphrase pairs were extracted from different
corpora of different dialects including MSA. For conversational speech, it was shown that
excluding disfluency words (such as hesitation and backchannel markers) can improve the
quality of the induced paraphrase pairs. A relative perplexity reduction of between 1.5%
and 1.7% was obtained when using ParaLMs estimated from MSA resources which was
outperformed by ParaLMs targeting specific CA dialects to reach a 2% relative perplexity
reduction. Further improvement was achieved when interpolating ParaLMs with standard
LMs, giving a 2.8% relative reduction.

Comparing the two strategies, language models which were developed based on collo-
quialised MSA performed better than those based on ParaLM. This can be accounted to
the filtering process in the developing ParaLM which does not exist in the colloquialisation
process and consequently the latter yielded more training samples.

In contrast to previous studies, using the proposed methods in this work allows the use
of MSA textual resources to reduce the data sparsity issue and improves the performance
of an estimated LM on a CA test set in terms of perplexity.
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Chapter 6

Explicit modelling of short vowels
in colloquial Arabic ASR
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Chapter 4 and Chapter 5 pursued objectives related to language modelling while this
chapter concentrates on the automatic generation of the missing diacritics, and pursues
Objective 3 of this thesis.

In order to train acoustic models for ASR, speech segments along with their transcrip-
tion are employed. The provided transcription must use the same units which are targeted
to be modelled, such as words or phonemes, if the training is intended for word-based or
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Table 6.1: An example of several diacritised forms for the Arabic word “drs” written in
Buckwalter transliteration. The provided diacritisations exclude the last vowel because it

is syntactically decided in MSA and essentially absent in CA.

Undiacritised
form

Diacritised
form

Phonetic
transcription Meaning Part-of-speech

drs dars /dars/ lesson indefinite noun
daras /daras/ he studied active perfect verb
dar~as /dar:as/ he taught active perfect verb
duris /duris/ has been studied passive perfect verb
dur~is /dur:is/ has been taught passive perfect verb
dar~is /dar:is/ teach imperative verb

phoneme-based acoustic models respectively. If transcriptions are not written using the
same units used for acoustic models, a pronunciation dictionary is required to map between
the written form and the acoustic model form. The Arabic language has no pronunciation
dictionary because a fully diacritised Arabic text encodes most of the phonetic values ex-
plicitly. However, one of the main issues in acoustic modelling of Arabic is the absence
of diacritics, especially those representing short vowels, from written form. Most training
resources are undiacritised and given that diacritics constitute around 30% of written units
overall, this means that one third of the spoken sounds are not represented.

For the English language, a standard dictionary provides a phonetic transcription of a
given word, unlike an Arabic dictionary which only provides acceptable diacritised variants
for a given word where the appropriate variant is chosen depending on the context. These
diacritised variants are widely considered to be phonetic transcriptions. Pronunciation is
dependent on the diacritised form of a given word, and thus it is crucial to restore these
missing vowels for an ASR task, especially for acoustic and pronunciation modelling. One
way to restore missing vowels is by including all possible vowelised versions of a word in a
dictionary as options; however, this will expand the pronunciation variations exponentially
with the number of consonants, where not all diacritised forms are legitimate. For instance,
the Arabic word “drs”1 might have at least six acceptable diacritised forms, shown in
Table 6.1, which define its exact meaning and pronunciation. However, in an extreme
case, a 3-consonant word could have up to 64 diacritised variations2. In addition to their
significance in pronunciation modelling, these diacritics proved to be of use within other
natural language processing (NLP) tasks, such as morphological disambiguation (Habash
and Rambow, 2005), information retrieval (Hammo et al., 2008) and machine translation

1All Arabic words are written in Buckwlater Arabic transliteration scheme (Buckwalter, 2002; 2004a).
2 The number of diacritised variants is computed through permuting the seven vowel-related diacritics

(a,i,u,∼a,∼i,∼u,vowel-less) in two possible positions (excluding the last vowel since it is syntactically decided
in MSA and almost essentially absent in CA, as discussed previously in Section 2.6).
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6. Explicit modelling of short vowels in colloquial Arabic ASR

(Diab et al., 2007).
This chapter is organised as follows. Section 6.1 describes previously proposed meth-

ods to restore missing short vowels in Arabic generally and CA specifically. Motivated
by the Arabic consonantal and vowelic (CV) skeleton, a short vowel insertion model is
introduced to represent a generic vowel model in Section 6.2 as an exploration of unsuper-
vised short vowel modelling. This is followed by an investigation of two proposed methods
for restoring short vowels in CA automatically. The first method casts the problem as a
grapheme-to-phoneme conversion (Section 6.3). Speaker-related information is introduced
as an additional stream of information to aid diacritics prediction in Section 6.4. A sec-
ond novel approach is proposed in Section 6.5 to capture longer spans of context and to
incorporate more auxiliary information to support the prediction process using a condi-
tional random field (CRF) model. These methods were experimentally tested and their
results are reported in Section 6.6, along with a comparison to an MSA disambiguation
tool, MADA. Finally, conclusions are given in Section 6.7.

6.1 Related research

Recovering missing diacritics (short vowels, gemination and nunation) before acoustic
model training has proved to be beneficial in several studies in Arabic ASR during the
last decade. If recovery concentrates on retrieving short vowels only, the process is known
as vowelisation or vowel restoration, otherwise it is known as diacritisation or diacritic
restoration. Unfortunately, this distinction is not always clear within these studies as vow-
elisation and diacritisation are used interchangeability in the literature. Gemination has
been neglected in most diacritisations for acoustic modelling purposes because it only rep-
resents a longer duration (which is implicitly modelled) for the associated phoneme without
adding any different phoneme, unlike short vowel diacritics and nunations where they in-
dicate the existence of a hidden acoustic value from the associated consonant. Moreover,
most of the studies discussed below provide their results exclusive and inclusive of the last
diacritic. This last diacritic indicates the case of the word and usually is decided syntacti-
cally. Since CA lost the case-ending vowel during its evolution, only results excluding the
case-ending diacritic are discussed below.

Diacritisation can be either manual or automatic. Manual diacritisation is provided
by language natives and theoretically should be considered to be accurate. Since fully
diacritising Arabic text is a very uncommon and unnatural process, it is expensive in terms
of time and labour. In addition, it is prone to errors especially for CA and loanwords where
there are no clear standards agreed upon. Hence, the need for automatic diacritisation
emerged. Automatic diacritisation has been investigated using several approaches: rule-,
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morphologically-, example- and statistically-based methods. Rule-based methods have not
been pursued in the recent studies because of their difficulties to transfer to other dialects
and the expense of maintenance, so the focus on the other approaches has increased.

The literature discussed below has formulated the diacritisation problem as other NLP
or machine learning problems, such as tagging, sequence labelling or machine translation
(MT) tasks where the graphemic representation was considered as input in the process
either on its own or incorporated with additional information such as morphological or
syntactic analysis. In the literature, diacritisation was processed in three different modes:
character, word and hybrid or hierarchical mode. The latter is merging character and
word modes together. For the character-based mode, each character (consonant or long
vowel) is considered as an input unit, whereas in word mode a whole undiacritised word is
considered as an input unit. A hybrid mode combines the two, mostly starting with one
mode and transfering to the other based on a certain condition.

One of the first attempts in diacritising MSA text used a rule-based diacritiser (El-
Sadany and Hashish, 1988) with syntactic rules in order to diacritise a given stem. In their
subsequent work, prefixes and suffixes used a fixed diacritised form (El-Sadany and Hashish,
1989). El-Imam (2004) provided grapheme-to-phoneme and phoneme-to-phone rules in the
context of speech synthesis. In addition to the requirement of linguistic expertise to develop
these rules, they are difficult to maintain and alter to cope with new dialects.

In contrast, Gal (2002) proposed a statistical approach using a bigram HMM where
unvowelised words are the observations and vowelised words are the hidden states of the
model. This model was tested using a fully diacritised Quran text and achieved 14% diacri-
tised word error rate (DWER)3. This approach was successfully applied by Elshafei et al.
(2006) on news and articles in MSA and with a wider context, up to quad-gram, in their
subsequent work (Alghamdi and Muzaffar, 2007). Nelken and Shieber (2005) employed
Gal’s approach in a weighted finite state transducers (WFST) framework in diacritising a
broadcast news Penn Arabic Treebank corpus (Maamouri et al., 2004). Their system was
composed of multi-level diacritisers (word, morpheme and character) and yielded a DWER
of 18.0% and DER of 5.5%. Recently, Hifny (2012a; 2012b; 2013) scored word sequences
using an 𝑛-gram LM, which was trained on diacritised text, and built a word lattice from
the generated sequences. Smoothing techniques such as Katz and modified Kneser-Ney
were applied for the unseen sequences, then dynamic programming (DP) was used to find
the most likely sequence in the lattice. This approach was tested on 1.9 million words
using a LM trained on 5.25 million words (all harvested from the Internet) and yielded a

3Diacritised word error rate (DWER) is the percentage of words among a given test set which have at
least one incorrectly predicted diacritic, while diacritic error rate (DER) is the percentage of predicting a
diacritic incorrectly.
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best performance of 3.4% DWER when using quad-gram LM and absolute discounting.

A hierarchical example-based approach was adopted by Emam and Fischer (2004) where
a sentence is processed in a top-down manner to search for a matching sentence in a
diacritised lexicon. If a sentence was not found, the search backed off to look for individual
words. If a word was not found in the lexicon, a character-based n-gram model was used
to diacritise each word. In similar fashion, Ananthakrishnan et al. (2005) included both
an undiacritised word and all the diacritised candidates (retrieved from BAMA) in LM
training. In the case of unseen words, the system backed off to a character-based LM
which was trained on a fully diacritised text. Another hybrid system was developed by
Rashwan et al. (2009; 2011) where a dictionary was used to find a diacritised form of a
given undiacritised word and build a lattice of all possible variations of a given sentence.
This was then disambiguated using a language model and A* lattice search to infer the
most likely diacritised sequence. If a word was not found in the dictionary, a morphological
analyser was employed to factorise a given word to its components (prefix, stem and suffix)
and use them directly in the lattice before disambiguation.

Conversely, Zitouni et al. (2006) formulated Arabic diacritisation as a sequence labelling
problem and proposed a maximum entropy (MaxEnt) framework solution. The model
features were generated based on morphological and syntactical analysis and were used
as contextual information in estimating the probability of a diacritic of a character, given
the context. Habash and Rambow (2007) trained multiple support vector machines (SVM)
taggers on richer morphological information to choose the best diacritised form from a set of
candidates generated by a language model. Their method, known as MADA, outperformed
that of Zitouni et al. by 30.4% relative on DWER and 12% relative on DER. In a similar
multi-stage procedure, Shaalan et al. (2009) combined a lexicon search with a bigram
estimation and an SVM classifier. The features for the SVM classifier were generated
from automatic segmentation, chunk parsing and POS tagging. Shaalan et al. used a
unique subset of the Penn Arabic Treebank. Therefore, it is not possible to compare their
results with the work cited above. Like Zitouni et al. (2006), Schlippe et al. (2008) cast
the diacritisation problem as one of sequence labelling. In their work, they employed a
conditional random field (CRF) model to predict a sequence of diacritics based on the
conditional probability of the sequence of consonants given a sequence of contextual and
global features. Those features included POS tags and full words. Their system achieved
between 9.4-8.4% DWER and 2.2-1.9% DER on the Penn Arabic Treebank corpus where
prediction accuracy improved as the amount of context considered was increased.

Within the same work, Schlippe et al. (2008) compared their CRF-based system results
with another approach that considered diacritisation as a statistical machine translation
(SMT) problem, where the undiacritised text was considered as a source language and the
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diacritised text as a target language. Their system involved translating monotonically on
the word level, i.e. an undiacritised word to a diacritised word, or on character level, i.e. a
consonant to a pair of consonant and diacritic. The SMT-based diacritiser outperformed
their CRF-based method with a 21% relative improvement on DWER and a 15% relative
improvement on DER. Hattab and Hussain (2012) combined an SMT-based diacritiser with
an additional diacritiser that employed morphological and syntactical analysis information
in the process when training the system on CLA. As would be expected, their results
showed that testing on CLA words (matching the same training domain) outperformed
testing on MSA words, derived from news and magazines, showing 60% relative DER
improvement.

Most of these approaches were devised utilising the existence of proper resources such
as annotated data, dictionaries and morphological analysers. However, when the same
problem is presented in the absence of such resources, as in diacritising CA text, limited
improvement on the diacritisation performance, if any, has been achieved. The first auto-
matic diacritiser for CA was developed by Kirchhoff et al. (2003) where diacritisation rules
were derived from paralleled ECA transcription in an example-based approach, achieving a
16.6% DWER. Vergyri and Kirchhoff (2004); Kirchhoff and Vergyri (2004) interpreted the
diacritisation task as an unsupervised tagging problem. A trigram tagger was trained on
morphological tags provided by BAMA on MSA broadcast news transcriptions. Then, a
word network was constructed of all possible diacritised forms, again provided by BAMA,
by which the scores produced by the tagger serve as transition weights. To obtain a dia-
critised transcription, acoustic information was incorporated by applying forced alignment
using the word network and acoustic models trained on a diacritised ECA CallHome cor-
pus. Using the word network without tagging weights achieved a significant improvement
over sole acoustic alignment, with a DWER of 27.3% being reported for ECA. In Vergyri
et al. (2005) a quad-gram character-based tagger was trained on a carefully selected and
manually diacritised small subset of an LCA corpus, and was used to predict the missing
diacritic. On a held-out set the DWER was 30%.

Instead of identifying the exact identity of a vowel, Lamel et al. (2007) suggested using
generic vowels (GV) instead of true short vowels, for example the fully diacritised form of
the word “drs” would be “d@r@s@” where the symbol @ denotes a GV model. To represent
the condition of vowel absence, all possible permutations were generated from the inclusion
of GV models at all positions to having no vowels at all. For example, {d@r@s@, d@r@s,
d@rs@, dr@s@, d@rs, drs@, dr@s, drs} are all the possible diacritised variants for the
word “drs” which were used as pronunciation variants in Lamel et al.’s work and obtained
slightly worse performance that using true vowels models by 5.3% relative WER.
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Table 6.2: An example of applying three different morphological templates to the
consonantal Arabic root [d r s] shown in the first row, the second row shows the applied
templates while the derived words and their meaning are shown in the third and fourth

rows and their CV-skeleton equivalences in the last row.

Root 𝐶1𝐶2𝐶3 = d r s
Pattern 𝐶1a𝐶2a𝐶3 𝐶1A𝐶2i𝐶3 ma𝐶1𝐶2a𝐶3ap
Word daras dAris madrasap

Meaning in English learned/studied learner/student school
CV-skeleton CVCVC CVCVC CVCCVCVC

6.1.1 Motivations

The simplicity in Lamel et al.’s generic vowel is compelling since it does not require addi-
tional linguistic resources such as diacritisers or pronunciation dictionaries. As the authors
accounted this marginally lower recognition performance to the multiple pronunciation
variants in the dictionary, a modified version of their generic vowel model is proposed and
discussed in Section 6.2 by which only one pronunciation is generated for each undiacritised
entry.

As aforementioned, diacritisation methods can be grouped into character-based, word-
based or hybrid/hierarchical-based which merge character and word modes together. In
most cases, diacritisation is started on a word level, while in case of data sparsity diacriti-
sation is performed on character level. Based on this observation, it would be preferable
to employ character-based diacritisers for CA due to its inconsistencies and limited avail-
able training resources. Using acoustic information in diacritisation significantly improves
prediction performance (Vergyri and Kirchhoff, 2004; Kirchhoff and Vergyri, 2004). Given
that most of the consonantal graphemes have a one-to-one relation to their phoneme, some
of the acoustic properties can be represented through the phonological place-voice-manner
(PVM) information and can be used as auxiliary information for the diacritisation process.
In addition, none of the cited work incorporates any extralinguistic information in the di-
acritisation process, especially speaker-related characteristics, such as gender and dialect.
The use of these last two characteristics is further investigated in Section 6.5 and compared
with a G2P-based method (discussed in Section 6.3) empirically in Section 6.6.

6.2 Generic short vowel (GV) model

As previously discussed in Chapter 2, Arabic words are generally derived from a consonan-
tal root by applying vowelic templates. Table 6.2 lists three examples for such a process
and it shows, on the last row, that almost every consonant is followed by a vowel regardless
of the vowel identity and duration (except the last consonant which is controlled by the
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Table 6.3: Percentage of different arrangement of a consonant (C) and a vowel (V) in
four different Arabic dialects: Gulf (GCA), Iraqi (ICA), Levantine (LCA) and standard

Arabic (MSA). CV is a consonant followed by a vowel, VC is a vowel followed by a
consonant, VV is two successive vowels and CC is two successive consonants.

Dialect CV VC CC VV
LCA 27.91 49.14 22.63 0.32
ICA 28.24 49.05 22.35 0.36
GCA 27.85 48.69 22.98 0.48
MSA 33.19 44.56 21.66 0.60

Average 29.30 47.86 22.41 0.44

case-ending in MSA and is mostly vowel-less in CA). To support this observation empir-
ically, Table 6.3 compares the number of subsequent consonant and vowel permutations
derived from telephone conversation transcriptions of at least 20 hours in four different
Arabic dialects (GCA, ICA, LCA and MSA). As it shows, the overall average of different
combination of consonant (C) and vowel (V), i.e. (CV%+VC%), is 78%. In other words,
more than three-quarters of the fully diacritised Arabic text has a consonant followed by
a vowel or vice versa. Motivated by this observation, a generic vowel can be inserted
after each consonant within a given word to capture some of the vowelic essence in the
language regardless of its real identity. However, there are some cases where a consonant
is vowel-less, an average of around 22% (see Table 6.3), such as in the word “madrasap”
shown in the last column of Table 6.2. To overcome this, this generic model should allow
the possibility of being neglected, either explicitly by not including the model or implicitly
within the model itself. The former solution had been explored by Lamel et al. (2007),
where multiple pronunciation variants were generated by removing one generic vowel at a
time. However, empirical results showed that using a single pronunciation is preferable in
ASR lexicons (Hain, 2002), so implicit omission should be employed. Figure 6.1 illustrates
the suggested HMM topology for this generic vowel model where a direct transition exists
from the non-emitting start state to the non-emitting exit state. Another distinction be-
tween this and Lamel et al. (2007)’s work is that the GV model was initially trained on a
small amount of diacritised data, then was used in unsupervised training on undiacritised
data. Conversely, no prior training is performed for the GV model in this thesis for the
acoustic mismatch between the manually diacritised and the undiacritised data sets where
the former contains high level of background noise.

6.2.1 Results and discussion

Two sets of acoustic models are trained based on the standard recipe described in Appendix
B, using the AppenLCA corpus. The first set, diac, used true vowel models whereas the
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6. Explicit modelling of short vowels in colloquial Arabic ASR

Figure 6.1: Generic vowel model (GV) topology. A standard 3-state HMM with a skip
from the start non-emitting state to end non-emitting state to model the absence of the

short vowels.

Table 6.4: Pronunciation entries for the words in the utterance “$w >xbArk” (How are
you?) when using GV model, gv, or ture vowels, diac.

Baseform Pronunciation
gv acoustic set diac acoustic set

$w sh @ w sh u w
>xbArk ea @ x @ b @ A @ r @ k ea a x b a A r a k

0.0k

3.5k

3.0k

2.5k

1.0k

0.5k

2.0k

1.5k

4.0k

Sp
ec
tr
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Figure 6.2: Spectrogram and phoneme labelling for the utternace “$w >xbArk” using
two acoustic model sets: diac, containing graphemes and true vowels, and gv, containing
graphemes and a generic vowel model (denoted with @). Some occurances of @ have a

zero duration (colored in grey) and some are longer than the expected length for a short
vowel. The sp model is a word boundary indicator that does not hold any acoustic value

i.e. has a zero duration.
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second set, gv, used only a GV model to represent all short vowels. The pronunciation
dictionary for gv is generated in a straightforward manner where a GV model, denoted as @,
is inserted between every two graphemes within a given word. The pronunciation dictionary
used for diac includes only the seen diacritisation variants in the training data which were
manually generated by the corpus collectors. As a result, only one pronunciation variant is
generated per word for gv opposed to 1.26 pronunciations per word when true vowels are
used. Table 6.4 lists pronunciations for the undiacritised utterance “$w >xbArk” (How
are you?) when GV model or true vowels are used:

Here, the pronunciation dictionaries are used for both training and decoding. Using
forced alignment on the word-level with these pronunciation dictionaries, a comparison
between the phoneme segmentation using gv and diac is closely examined. Figure 6.2
visualises the spectrogram of the utterance “$w >xbArk” from the AppenLCA test set
along with two tracks of labelling. The first labelling track is based on the phoneme
segmentation using diac, containing all graphemes and true short vowels, and the second is
based on gv, containing all grapheme and a GV model (denoted as @ symbol) to represent
all short vowels. Some of the @ models have been skipped, marked with grey shade in the
figure, indicating that no short vowel is required at this specific position. By comparing the
two tracks in the figure, the following is model-level alignment (all models with a duration
of zero are excluded):

diac sil sh u w ea a x b a A r a k sil
gv sil sh w ea x b @ A r @ k sil

It can be seen that the sequences [u w] and [ea a] in the diac labelling track are replaced
by [w] and [ea]4 in gv labelling track. Because GV model represents three different vowelic
values ([a],[i] and [u]), it has more general probability distribution than that of another
model which is always assigned to one of the three vowels. An example is the model “w”
which has two phonemic values ([u:] and [w]) so if a frame is actually a [u] phoneme, the
model “w” is more representative than a GV model. This explains the reason for skipping
a GV model at these locations. Another observation that seems to contradict the previous
remark is that in the sequence [@ A] more frames are assigned to the GV model than to
the long vowel A (see Figure 6.2). This is due to the fact that the proportion of short
vowel [a] is more than 50% of all diacritics and around 17% among all graphemes in the
AppenLCA training corpus. This distribution under the GV model can be more biased
toward the vowel [a], as opposed to [i] and [u]. However, when the GV model appears
between two consonantal graphemes and there is an actual hidden vowel in between, the

4Although in the actual alignment it is represented by [@ w] and [ea @] but the GV models, @, have a
duration of zero which means they have not been used.
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GV model is not skipped and always captures the vowelic frames, as in the sequence [r a
k] and [r @ k].

A unit count of the aligned test set using gv shows that 22.2% of the presented GV
models are skipped during the alignment, representing either the absence of vowels in these
locations or that they were either preceded or followed by a much stronger and specialised
vowel model. This percentage is very close to the actual percentage of the consonants
sequence (CC) shown in Table 6.2. That indicates that the GV model has captured the
vowelic essence by which when it is not available, the GV model is skipped and it is
reflecting the actual behaviour statistically.

A fundamental trade-off between the simplicity of using GV in pronunciation generation
and the richness of the local acoustic context was observed. Such that the systematic
insertion of a GV model after every grapheme normalises the immediate context (around
the model) and makes it less informative (all grapheme are surrounded by GV models)
in comparison to using true vowels instead. Therefore, longer context should be included,
such as quadphones and quintphones, to obtain informative context from a given phoneme
sequence. Unfortunately, modelling such context requires more data and longer utterances
which are not available for CA training data.

The resulting ambiguity can be solved by predicting the identity of each vowel, i.e.
diacritisation or vowelisation, rather than using a generic model which is used merely as a
vowelic place holder. In the following section automatic diacritisation is explored in order
to design a better phonetic representation for acoustic and pronunciation modelling.

6.3 Grapheme-to-phoneme (G2P) based diacritisation

Automatic diacritisation had been explored mostly as a preprocessing step for a written
sentence in the context of text-to-speech (TTS), such as that of Gal (2002), Nelken and
Shieber (2005) and Habash and Rambow (2007). However, as discussed above, there have
been some attempts in using diacritisation as a pronunciation generation method using pro-
nunciation rules (Afify et al., 2006). Statistical joint-sequence modelling was successfully
employed in grapheme-to-phoneme (G2P) conversion but limited research using statistical
joint-sequence modelling for diacritisation has been reported.

In this section, G2P-based diacritisation is introduced using joint-sequence modelling,
where the concept is introduced first as it is used in G2P conversion tasks (Section 6.3.1).
This is followed by a description on how it can be adopted to solve the diacritisation
problem (Section 6.3.2). Finally, a discussion based on diacritisation results is presented
in Section 6.3.3.
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6.3.1 G2P conversion

Grapheme-to-phoneme is the task of finding the most likely pronunciation, a sequence of
phonemes 𝐝 = {𝑑1𝑑2...𝑑𝑛 ∶ 𝑑𝑖 ∈ 𝐷}, for a word, given its written form, a sequence of
graphemes 𝐠 = {𝑔1𝑔2...𝑔𝑚 ∶ 𝑔𝑗 ∈ 𝐺}, where 𝐷 and 𝐺 are phoneme and grapheme sets
respectively. This problem can expressed formally as:

𝐝 = arg max
𝐝′∈𝐷

𝑃(𝐠, 𝐝′) (6.1)

Many machine learning techniques have been exploited to design G2P converters, such
as neural networks (Sejnowski and Rosenberg, 1988), decision trees (Dietterich and Bakiri,
1995), classification and regression tree (CART) (Breiman et al., 1984) and generalized
decision trees (Vazirnezhad et al., 2005). All these techniques predict a phoneme by con-
sidering a grapheme along with some contextual information, which can be the surrounding
graphemes and/or phonological structures. Other techniques, such as hidden Markov mod-
els (HMMs) (Taylor, 2005), considered the previously predicted phonemes as an additional
input stream in order to predict the current phoneme. Another approach, known as pro-
nunciation by analogy (Dedina and Nusbaum, 1991; Yvon, 1996), generates pronunciation
for an unseen word by computing similarities or distances, such as Levenshtein distance,
between the given word and words, or parts thereof, in an existing dictionary. Pronun-
ciation fragments are then concatenated together into a new pronunciation. Most of the
state-of-the-art G2P converters use a joint-sequence modelling approach (Deligne et al.,
1995; Bisani and Ney, 2002; Chen et al., 2003) which pairs sequences of graphemes with
sequences of phonemes and aligns them together.

In joint-sequence modelling, the G2P problem is solved in two main stages. First,
training samples (pairs of grapheme sequences and phoneme sequences) are aligned or
co-segemented where both grapheme and phoneme sequences are segmented into equal
number of segments. For example, the alignment for the English pair (speech,/spi:tʃ/) is
as follows:

speech
=

s p ee ch
spi:tʃ s p i: tʃ

,

where the pairs (s,/s/), (p,/p/), (ee,/i:/) and (ch,/tʃ/) are known variously as joint-
multigrams (Deligne et al., 1995), grapheme-to-phoneme correspondences (Galescu and
Allen, 2001), graphonemes (Vozila et al., 2003) or graphones (Bisani and Ney, 2002). In
each graphone, a sequence of one or more graphemes, is joined with a sequence of one
or more phonemes and sometimes one of the sequences would be empty. There might
be more than one co-segmentation/alignment for a given pair of grapheme and phoneme
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sequences. Therefore, the joint probability 𝑃(𝐠, 𝐝) is computed by summing all different
co-segmentations:

𝑃(𝐠, 𝐝) = ∑
𝐪∈𝑆(𝐠,𝐝)

𝑃(𝐪) (6.2)

where 𝐪 is a graphone sequence using a certain co-segmentation and 𝑆(𝐠, 𝐝) is the set
of all possible co-segmentations of 𝐠 and 𝐝. Then graphone sequences form the new
domain of symbols which are learnt using 𝑛-gram methods, such as maximum likelihood
(ML) expectation-maximisation (EM) training (Deligne et al., 1995). So for a sequence of
graphones, 𝐪:

𝑃(𝐪) =
𝑁
∏
𝑖=1

𝑃(𝑞𝑖|𝑞𝑖−1, 𝑞𝑖−2, ..., 𝑞1)

=
𝑁
∏
𝑖=1

𝑃(𝑞𝑖|𝑞𝑖−𝑛+1, 𝑞𝑖+2, ..., 𝑞𝑖 − 1) (6.3)

where 𝑛 is the depth of the history to be considered in the prediction process and 𝑁 is the
length of 𝐪.

6.3.2 Diacritisation using G2P converter

By analogy, the diacritisation problem can be formulated as a G2P conversion problem
where the targeted diacritised word is the phoneme sequence, 𝐝, and the given undiacritised
word is considered as grapheme sequence, 𝐠. The set of Arabic diacritised graphemes, 𝐷,
contains all graphemes and diacritic symbols whereas diacritics are excluded in the Arabic
undiacritised grapheme set, 𝐺. For example, the Arabic pair (HDrtk,HaDratak) would
have the following graphone sequence:

HDrtk
=

H D r t k
HaDratak Ha D ra ta k

,

where each grapheme in the undiacritised sequence is aligned with either a sequence of
grapheme and diacritic or a grapheme only to indicate the absence of diacritics in the
diacritised grapheme sequence.

6.3.3 Results and discussion

In order to evaluate the prediction performance of G2P-based diacritiser, the AppenLCA
test set was used. It consists of 8491 tokens with 2302 unique words. Since the G2P-based
diacritiser considers a word list and not a set of sentences, diacritisation errors are weighted
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6.3. Grapheme-to-phoneme (G2P) based diacritisation

Table 6.5: G2P model training resource statistics, showing the total number of words and
diacritised variants; and the percentage of diacritics observed among the total number of

graphemes in each source.

Source Vocabulary Diacritised variants %Diacritics
a i u F K N

AppenLCA 30347 40480 17.3 11.1 4.2 0.0 0.0 0.0
BAMA 48707 68920 15.9 9.3 4.6 0.0 0.0 0.0
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Figure 6.3: Diacritisation error rates (y-axis) using G2P convertion among different
𝑛-gram lengths (x-axis). w-DER and w-DWER are weighted diacritic errors (dotted line)
and weighted diacritised word errors (solid line), respectively. g2pLCA is trained on LCA

samples (blue) and g2pMSA is trained on MSA samples (orange).

by the word frequency to reflect how much of the test set would be incorrectly diacritised.
These are weighted DWER (w-DWER) and weighted DER (w-DER). w-DWER and w-
DER are variants of DWER and DER respectively where the errors are weighted by the
word frequency within the test set.

Two different G2P converters were trained, using the Sequintur G2P toolkit (Bisani
and Ney, 2008), which is based on the joint-sequence modelling discussed above. The first
G2P converter was trained on training samples derived from AppenLCA with an average
of 1.33 diacritised variants per word. Since some diacritised resources for MSA data exist,
another G2P converter was trained on samples derived from BAMA, which provided all
possible diacritised variants for more than 48×103 MSA stem words, giving an average of
1.41 diacritised variants per word. Table 6.5 shows the distribution of diacritics within each
resource along with the exact number of diacritised forms and their undiacritised words.

Figure 6.3 summarises the results of diacritising the word list of the AppenLCA test
set, weighted by word frequency. In the figure, the 𝑛-gram depth is shown on the x-axis,

114



6. Explicit modelling of short vowels in colloquial Arabic ASR

with the error rate on the y-axis. Generally, adding more context increased prediction
accuracy, especially when using lower 𝑛-gram G2P models. Although both diacritisers
have similar performance when using unigram G2P, the gain obtained from adding more
context differs enormously. While moving from unigram G2P to 5-gram G2P improved the
performance of g2pLCA by a 84% relative w-DER and a 78% w-DWER, it only improved
the accuracy of g2pMSA by a 15% relative w-DER and 20% w-DWER. This confirms that
MSA diacritisation patterns differ from their CA counterparts and this difference becomes
more evident in wider context.

While g2pMSA performance stabilised and did not improved beyond a context of length
four, g2pLCA continuously improved with increased context. The lack of improvement in
higher order g2pMSA was most likely caused by the nature of training samples which are
derived from the BAMA diacritised stems list, where words tend to be shorter (without
being concatenated to any affixes). Hence the model backs off to lower order due to data
sparsity. Therefore, one would expect to observe a change in the performance when longer
words are included in the training data.

To measure the impact of the training set size, the AppenLCA training set is divided
randomly into 10 disjoint subsets where all diacritisation variants of the same word are
within the same subset, and where each subset resembles the diacritic distribution of the
whole set. Ten G2P models are trained based on accumulated training subsets, i.e. the first
G2P model is trained on one set, the second is trained on two sets and so on. To reduce the
effect of irregularities in the training subsets, the experiment was repeated with different
arrangements of subsets inclusion, and the two sets of results were averaged. As illustrated
in Figure 6.4, increasing the training samples from 8×103 to 80×103 does not improve
the overall performance on either weighted metric, w-DWER or w-DER, an indication of
consistency in the G2P performance (Schlippe et al., 2012).

The promising performance of which method proved that the local mapping between
an undiacritised word and its diacritisation variants can be learnt.

6.4 Extralinguistic information and diacritisation

Context does not only imply the graphemeic sequence but also other high-level information.
A Local mapping is learnt using context within a word, but not across neighbouring words;
therefore, it does not guarantee accurate diacritisation when moving from one word to the
next one. The global context and characteristics are derived from a complete sentence and
are usually used by native Arabic speakers to disambiguate different diacritised forms.

Sociophonetic studies showed that extralinguistic factors might have a significant im-
pact on production and perception of the vowels; e.g. Al-Wer (2002) and Abudalbuh
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Figure 6.4: G2P-based diacritisation performance trained on LCA words, with different
orders (n=1, 3, 6 and 9), and different training set sizes (x-axis). Performance is

measured in (a) w-DER and (b) w-DWER.

(2010). Extralinguistic factors are the remaining speech qualities when communicative
(verbal and emotional) information is removed from the signal. Extralinguistic informa-
tion includes speaker gender, dialect and age. For example, when the speaker dialect is
known, it would be possible to predict the pronunciation of a word, which is reflected by
the chosen diacritisation, thus reducing the number of possible pronunciation variants and
the overall ambiguity during the process. For instance the Arabic word “Enb” (grapes) is
pronounced by an Iraqi speaker as /ʕanab/, which is reflected in the diacritisation variant
“Eanab”. A Levantine speaker would pronounce it as /ʕinab/ which is written as “Einab”.

Most of the high-quality corpora provide such demographic information about the
speaker participating in their corpus; however, the overall objective of autodiacritisation
is to predict diacritics with limited resources or with features that can be generated au-
tomatically. Many studies showed successful gender and dialect detection (with average
accuracy more than 85%) (Parris and Carey, 1996; Biadsy et al., 2009b) but with less
success in age detection (Schuller et al., 2013). It is possible to generate such information
automatically as well.

6.5 Conditional random field (CRF) based diacritisation

High-level information such as extralinguistic information about the speaker’s gender and
dialect, or even some articulation information about how certain phonemes are pronounced,
could be useful in predicting the current vowel (i.e. appropriate diacritic). Unfortunately
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such wide context and multiple dependencies cannot be captured efficiently using HMMs;
therefore, other models are explored, such as conditional random fields (discussed in the
next section), to incorporate wide context and additional features.

Conditional random fields are probabilistic graphical models introduced by Lafferty
et al. (2001) which model the conditional distributions, 𝑃(𝒴|𝒳), between two sets of ran-
dom variables where 𝒳 is a set of input random variables and 𝒴 is a set output random
variables. CRFs are a special case of Markov random fields (MRF). This section gives a
brief introduction to graphical models which are designed for sequence labelling, with a
focus on three well-known examples: hidden Markov models (HMMs), maximum entropy
Markov models (MEMMs) and conditional random fields (CRFs).

6.5.1 Directed and undirected graphical models

Graphical models (Pearl, 1988) are probabilistic models that can efficiently model the joint
probability distributions, or multiple dependencies, between random variables. As their
name indicates, graphical models are represented by means of a graph. A graph is a visual
representation that is composed of nodes and edges, where each node represents a random
variable and an edge denotes a statistical dependency between the two nodes at its end.
Graphical models decompose the joint probability distribution between given variables
into a product of smaller probability distributions which are independent of each other.
This process of decomposing a joint probability distribution into independent subgraphs is
known as factorisation. Graphical models can be either directed or undirected which differ
in their graphical structure and inference methods.

Directed graphical models, also known as Bayesian networks, are described using a
directed graph 𝒢 = (𝒳, ℰ), where 𝒳 = {𝑋1, ..., 𝑋𝑁} are the graph vertices or nodes,
𝑁 is the total number of nodes in the graph and ℰ = {(𝑋𝑖, 𝑋𝑗) ∶ 𝑋𝑖, 𝑋𝑗 ∈ 𝒳; 𝑖 ≠ 𝑗}.
Each node, 𝑋𝑖 ∈ 𝒳, represents a random variable and each edge, (𝑋𝑖, 𝑋𝑗) ∈ ℰ; 𝑖 ≠ 𝑗,
denotes a dependency between the two random variables 𝑋𝑖 and 𝑋𝑗. The joint probability
distribution of a directed graphical model is described as:

𝑃 (𝑥1, ..., 𝑥𝑛) =
𝑁
∏
𝑖=1

𝑃(𝑥𝑖|𝒫𝑖) (6.4)

where 𝑥𝑖 is the value taken by the random variable 𝑋𝑖 and 𝒫𝑖 denotes all values taken
by the parent nodes5 of the node representing the variable 𝑋𝑖. An example of a Bayesian
network of five variables is shown in Figure 6.5a. Using Equation 6.4, the joint probability
of the graph in Figure 6.5a is computed as:

5A parent node is the source of a directed edge.
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(a) Directed graph, aka. Bayesian
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(b) Undirected graph, aka. Markov
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Figure 6.5: Examples of directed and undirected graphical models

𝑃(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑃(𝑥1|𝒫1)𝑃 (𝑥2|𝒫2)𝑃 (𝑥3|𝒫3)𝑃 (𝑥4|𝒫4)𝑃 (𝑥5|𝒫5)
= 𝑃(𝑥1)𝑃 (𝑥2|𝑥1)𝑃 (𝑥3|𝑥1, 𝑥2, 𝑥4)𝑃 (𝑥4|𝑥1, 𝑥2)𝑃 (𝑥5|𝑥2).(6.5)

In other words, Equation 6.5 simplifies, or factorises, finding the joint probability dis-
tribution 𝑃(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) into a product of five smaller conditional probability distri-
butions: 𝑃(𝑥1), 𝑃(𝑥2|𝑥1), 𝑃(𝑥3|𝑥1, 𝑥2, 𝑥4), 𝑃(𝑥4|𝑥1, 𝑥2) and 𝑃(𝑥5|𝑥2).

In a similar notion, undirected graphical models, also known as Markov random fields
(MRFs) or simply Markov networks, are described using an undirected graph, 𝒢 = (𝒳, ℰ),
where 𝒳 = {𝑋1, ..., 𝑋𝑁} are the graph vertices or nodes and ℰ = {(𝑋𝑖, 𝑋𝑗) ∶ 𝑋𝑖, 𝑋𝑗 ∈
𝒳; 𝑖 ≠ 𝑗}. Each node, 𝑋𝑖 ∈ 𝒳, represents a random variable and each edge, (𝑋𝑖, 𝑋𝑗) ∈
ℰ; 𝑖 ≠ 𝑗, denotes a relation between the two random variables 𝑋𝑖 and 𝑋𝑗. All nodes
connected directly to a given random variable, 𝑋𝑖, are its neighbours, denoted as 𝒩𝑖. A
fully connected set of variables, 𝑋𝑐 ⊆ 𝒳, are known as a clique and 𝒞 represents a set of
all cliques in a graph 𝒢. For example, the graph in Figure 6.5b has five cliques of size 1,
{𝑋1}, {𝑋2}, {𝑋3}, {𝑋4} and {𝑋5}, seven cliques of size 2, {𝑋1, 𝑋2}, {𝑋1, 𝑋3}, {𝑋1, 𝑋4},
{𝑋2, 𝑋3}, {𝑋2, 𝑋4}, {𝑋2, 𝑋5} and {𝑋3, 𝑋4}, four cliques of size 3, {𝑋1, 𝑋2, 𝑋3}, {𝑋2, 𝑋3, 𝑋4},
{𝑋1, 𝑋2, 𝑋4} and {𝑋1, 𝑋3, 𝑋4}, and only one clique of size 4, {𝑋1, 𝑋2, 𝑋3, 𝑋4}. This
last clique is the maximum clique in the graph, representing the largest subset of nodes
that are fully connected with every other node in the subset, whereas a maximal clique is a
clique that cannot be extended to a larger clique such as {𝑋2, 𝑋5} and {𝑋1, 𝑋2, 𝑋3, 𝑋4}.
The joint probability distribution described by MRFs is decomposed into factorised local
conditional distributions as follows:

𝑃(𝑥1, ..., 𝑥𝑛) = 1
𝑍 ∏

𝑐∈𝒞
𝜓𝑋𝑐

(𝐱𝑐), (6.6)
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where 𝐱𝑐 are values of a clique 𝑐, 𝜓𝑋𝑐
is a positive real-value of potential function which is

concerned with only a subset of the random variables, 𝑋𝑐, and 𝑍 is a normalising partition
factor to ensure the validity of the probability distribution, i.e. ∑𝑋𝑖

𝑃(𝑋𝑖) = 1, then:

𝑍 = ∑
𝑋𝑖∈𝒳

∏
𝑐∈𝒞

𝜓𝑋𝑐
(𝐱𝑐). (6.7)

The potential function, 𝜓 , in Equation 6.6 can be expressed as an exponential instead:

𝜓𝑋𝑐
= exp 𝜙𝑋𝑐

(𝐱𝐜). (6.8)

Then, Equation 6.6 can be rewritten by substituting the potential function by its
definition in Equation 6.8 and rearranging the equation to have the exponential of sums
instead of product of exponentials as follows:

𝑃(𝑥1, ..., 𝑥𝑛) = 1
𝑍 ∏

𝑐∈𝒞
exp 𝜙𝑋𝑐

(𝐱𝑐)

= 1
𝑍 exp ∑

𝑐∈𝒞
𝜙𝑋𝑐

(𝐱𝑐) (6.9)

In other words, it is possible to define the probability encoded within MRFs by local
functions which are concerned with only smaller subsets of the random variables by which
the probability is factorised over the graph 𝒢.

MRFs satisfy the Markovean property by which a random variable, 𝑋𝑖, is conditionally
independent from all other variables in the graph given its neighbours, 𝒩𝑖, thus:

𝑃(𝑥𝑖|𝑥𝑗, 𝑖 ≠ 𝑗) = 𝑃(𝑥𝑖|𝑥𝒩𝑖
), (6.10)

where 𝑥𝑗 are values of the random variables 𝑋𝑗 ∈ 𝒳 and 𝑗 ≠ 𝑖. In this sense, a random
variable’s neighbours are referred to as its Markov blanket. It is sufficient to define po-
tential functions for a set of all maximal cliques in the graph to represent the probability
distribution described by a given graph. For example, 𝒞 = {{𝑋2, 𝑋5}, {𝑋1, 𝑋2, 𝑋3, 𝑋4}}
for the graph in Figure 6.5b.

The factorised probability distribution, described above, can be represented graphically
by using a factor graph (Kschischang et al., 2001), 𝒢 = (𝒱, ℱ, ℰ), as illustrated in Figure
6.6a and Figure 6.6b, where 𝒱 and ℰ are, as previously defined, the random variables
and their dependencies respectively whereas the new set ℱ represents factor functions.
Unlike an undirected graph of MRFs where factorisation is implicitly modelled via cliques,
a factor graph introduces factor function nodes to denote factorisation explicitly. As shown
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Figure 6.6: Two possible factorisations for the graph shown in Figure 6.5b

in Figure 6.6a , the factor functions encode all possible cliques while the factor functions
of Figure 6.6b only encode maximal cliques.

Using a graphical modelling framework as discussed, it is possible to model the prob-
ability of complex dependencies within a set of random variables. In sequential classi-
fication tasks, the random variables set, 𝒳, is divided into two disjoint subsets: input
variables, 𝒪, and output variables, 𝒮 where each output variable is associated with a label
𝑙 ∈ 𝐿 = 𝑙1, 𝑙2, ..., 𝑙𝑄. It is necessary to predict the labelling values assigned to an output
sequence, 𝐬 = 𝑠1, 𝑠2, ..., 𝑠𝑇 , given the observations of input variables, 𝐨 = 𝑜1, 𝑜2, ..., 𝑜𝑇
where 𝑇 is the sequence length of both input and output sequences.

Graphical models can be either generative or discriminative depending on the type
of probability distribution to be described. In a generative model, modelling the joint
distribution, 𝑃(𝐨, 𝐬), is required whereas discriminative models only model the conditional
distribution 𝑃(𝐬|𝐨) which is similar to the decoding task. Considering the input and output
variables disjoint sets, Equation 6.10 can be written as follows:

𝑃(𝐬𝑖|𝐨, 𝐬𝑗, 𝑖 ≠ 𝑗) = 𝑃(𝐬𝑖|𝐨, 𝐬𝒩𝑖
), (6.11)

Conditional random fields (CRFs) are discriminative undirected graphical models and
were proposed by Lafferty et al. (2001) to solve the sequence labelling problem. Like
any undirected graphical model, its structure can be arbitrary; however, only one specific
structure is considered here where sequences of input and output variables are in parallel,
known as linear chain CRFs (illustrated in Figure 6.7c). In this case, only dependencies
between all the input sequence, 𝐨, and at most two adjacent output labels, 𝑠𝑡−1 and 𝑠𝑡

6, are

6where 𝑡 indicates current variable
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6. Explicit modelling of short vowels in colloquial Arabic ASR

considered. It is known as first-order Markov linear-chain CRFs7. Log-potential functions
of CRFs, 𝜙𝑡, are defined in terms of edges and vertices:

𝜙𝑡 = ∑
𝑖,𝑒∈𝑐

𝜆𝑖𝑓𝑖(𝑒, 𝐬𝐞, 𝐨, 𝑡) + ∑
𝑗,𝑣∈𝑐

𝜇𝑗𝑔𝑗(𝑣, 𝐬𝐯, 𝐨, 𝑡)), (6.12)

where 𝑓 is a transition feature function which is applied on the edges within a given clique,
𝑐, whereas 𝑔 is a state feature function that is applied on the nodes within the same clique
𝑐, while 𝜆 and 𝜇 are the weights of 𝑓 and 𝑔, respectively. The possibility of using a whole
input sequence in the prediction process allows the capture of a long span of variations
and dynamics within that sequence. With linear chain CRFs (illustrated in Figure 6.7c),
two cliques are defined for each current output variable: two successive output variables,
{𝑠𝑡−1,𝑠𝑡}, and the current state with all the input sequence, {𝑠𝑡, 𝐨}. Thus, using linear
chain CRFs, Equation 6.12 is written as follows:

𝜙𝑡 = ∑
𝑖

𝜆𝑖𝑓𝑖(𝑠𝑡−1, 𝑠𝑡) + ∑
𝑗

𝜇𝑗𝑔𝑗(𝐨, 𝑠𝑡)). (6.13)

Decoding finds the best sequence of output variables, ̂𝐬, given the observations, 𝐨:

̂𝐬 = arg max
𝐬

𝑃(𝐬|𝐨) = arg max
𝐬

exp
𝑇

∑
𝑡=1

𝜙𝑡, (6.14)

which can be performed using a dynamic programming algorithm, i.e. Viterbi algorithm.
Estimation of the parameters 𝜆𝑖 and 𝜇𝑗 in Equation 6.13 is performed by searching for
the best set of weights {𝝀, 𝝁} to maximise the regularised log-likelihood function, ℒ, of a
given set of 𝑁 observation and output sequences:

ℒ =
𝑁

∑
𝑘=1

log (𝑃 (𝐬𝑘|𝐨𝑘)) − ∑
𝑖

𝜆2
𝑖

2𝜎2 − ∑
𝑗

𝜇2
𝑗

2𝜎2 (6.15)

where 𝜎 are regularisation parameters. Equation 6.15 is a convex function, thus it can
be maximised using iterative numerical optimisation methods such as conjugate gradi-
ents (Hestenes and Stiefel, 1952) or limited memory quasi-Newton procedures (L-BFGS)
(Nocedal, 1980).

CRFs differ from Hidden Markov models in graphical structure and estimation pro-
cedure significantly. HMMs are generative directed graphical models which describe the
joint probability over state sequences and output sequence. Their graphical structure is
depicted in Figure 6.7a where each state, 𝑠𝑖, can be connected with two adjacent states,

7Higher 𝑘𝑡ℎ-order CRFs can be modelled where the dependencies between the input sequence 𝐱 and
𝑘 + 1 output labels are considered.
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(c) Linear-chain CRFs as an undirected factor graph.

Figure 6.7: Graphical structure of three examples of first-order Markov graphical models
for sequence labelling tasks: hidden Markov models (HMMs), maximum entropy Markov

models (MEMMs) and linear-chain conditional random fields (CRFs). Each node
represents a random variable while edges denote a probablistic dependency between the

connected nodes. In each model, the top layer of nodes represents the output labels while
the bottom layer (coloured in gray) represents the observed input data.
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𝑠𝑖−1 and 𝑠𝑖+1, and an output, 𝑜𝑖, by which the current state is conditionally independent
of the graph by its previous state while the current output is conditionally independent
of the graph by the current state. HMM parameters, 𝜃, are estimated using maximum
likelihood estimation (ML) where the estimated parameters, ̂𝜃, are found by:

̂𝜃 = arg max
𝜃

𝑝𝜃(𝐱, 𝐲), (6.16)

in other words, it is necessary to enumerate over all observation sequences to find the
maximum likelihood. Therefore, using a long span of dependencies or multiple features
is intractable, while in CRFs it is possible to model such dependencies since it does not
attempt to generate the input sequence but only the conditional probability of the output
labels given the input sequence.

In contrast to HMMs, and similar to CRFs, maximum entropy Markov models (MEMMs)
describe the conditional probability of the output sequence given an input sequence.
MEMMs are discriminative directed graphical models where each state is an exponen-
tial model that takes the whole input sequence and outputs a distribution over the next
state. While CRF is a single exponential model for the joint distribution for a whole out-
put sequence given an input sequence, MEMMs use an exponential model, at each state,
for the conditional probabilities of the next state given the current state. Therefore, a
system prefers paths with fewer competing transition, so it gives that path a higher proba-
bility than a path with more competing transitions regardless of the observed input. This
problem is known as a labelling bias problem. Owing to the global normalisation (by the
partition function 𝑍 in Equation 6.6), there are no constraints over the sum of the outgoing
mass from a certain state to the next.

6.5.2 Diacritisation using CRFs

On the one hand, using HMMs can be used to find the best state sequence, given the input
sequence, but modelling rich features and long dependencies into the inference process
might be intractable. On the other hand, MEMMs can incorporate rich and long term
features but, due to the labelling bias problem discussed above, they might not find the
best sequence, given the input sequence. CRFs addressed the labelling bias problem by
global normalisation. They model the conditional probabilities of the output given the
input sequence rather than modelling the joint probability distribution between the two
sequences. Hence, it is possible to design different level of features that can interact with
each other without the Markovian assumption of their independence.

Using linear chain CRFs, the diacritisation problem can be formulated as follows: let 𝑆
be a finite set of output variables or states where each state is associated with a diacritic
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6.5. Conditional random field (CRF) based diacritisation

𝑑 ∈ {𝑑1, 𝑑2, ...𝑑𝐷} and a given sequence of graphemes 𝐜 = 𝑐1, 𝑐2, 𝑐3, ..., 𝑐𝑛. Using Equation
6.14, the objective is to find the best sequence of states, ̂𝐬, that maximises the conditional
likelihood:

̂𝐬 = arg max
𝐬

𝑃(𝐬|𝐜), (6.17)

where the state sequence probability estimate is given by:

𝑃(𝐬|𝐜) = 1
𝑍 exp

𝑇
∑
𝑡=1

∑
𝑖

𝜆𝑖𝑔𝑖(𝑠𝑡−1, 𝑠𝑡) + ∑
𝑗

𝜇𝑗𝑓𝑗(𝑠𝑡, 𝐜), (6.18)

where 𝑓𝑖 and 𝑔𝑗 are binary state and transition feature functions respectively, 𝜆𝑖 and 𝜇𝑗
are their corresponding weights. 𝑓𝑖 and 𝑔𝑗 are defined as follows:

𝑓𝑖(𝑠𝑡, 𝐜) =
⎧{
⎨{⎩

1 𝑖𝑓 𝛿(𝐜, 𝑡) = 1 𝑎𝑛𝑑 𝑠𝑡 = 𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6.19)

𝑔𝑗(𝑠𝑡−1, 𝑠𝑡) =
⎧{
⎨{⎩

1 𝑖𝑓 𝑠𝑡 = 𝑑 𝑎𝑛𝑑 𝑠𝑡−1 = 𝑑′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6.20)

where 𝛿(𝐜, 𝑡) in Equation 6.19 is a logical function that indicates whether or not the obser-
vation in location 𝑡 holds a certain property, and 𝑠𝑡 = 𝑑 in Equation 6.19 and Equation 6.20
means that diacritic 𝑑 is associated with the state 𝑠𝑡. For example, 𝛿(𝐜, 𝑡) ∶ [𝑐𝑡 == "𝑥"]
asks whether the observation at index 𝑡, 𝑐𝑡, equals the value "𝑥". The weights are the
model parameters as described above; which are estimated by maximising the likelihood
function with respect to the training data. The decoding process is performed using the
Vitirbi algorithm as aforementioned.

Diacritics do not depend only on the sequence of graphemes (Vergyri and Kirchhoff,
2004), other characteristics can contribute to prediction (discussed in Section 6.4). The
majority of these properties are to be found in the wider context, and some are even
speaker dependent. In this thesis, properties employed are categorised into two groups:
lexical-level and speaker-level properties.

Lexical-level properties include the grapheme sequence (𝐜), including a symbol for word
boundaries, as well as a combination of articulation place, manner and voicing (PVM) along
with some graphemeic grouping (𝐩) such as whether the grapheme is assimilated if it is
preceded by the definitive “Al”, i.e. solar, or not, i.e. lunar. Although PVM properties de-
fine phonological characteristics, they are considered as lexical properties because most of
the graphemes, especially consonants8, have a one-to-one mapping with their correspond-

8With some exceptions which are to be further discussed in Chapter 7.
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ing phoneme. In case a grapheme is associated with more than one phoneme, such as the
grapheme “p” (which can pronounced as /h/, /t/ and /a/), the PVM of the phoneme with
higher frequency is assigned to the grapheme. A final attribute, denoted as group, is added
to indicate if a grapheme belongs to a certain homographemic group. A homographemic
group is a set of graphemes that are either share the same phoneme with or are commonly
misspelled with each other. For instance, the grapheme “Y” (pronounced as /a:/) is com-
monly misspelled as the grapheme “y” (pronounced as /i:/ or /j/) in printed media. Table
6.6 lists the values of 𝐩 property assigned to each Arabic grapheme.

Speaker-level properties are the speaker’s dialect (𝑑) and gender (𝑔) which are derived
either from the corpus demographic information or by means of automatic dialect and
gender identification.

In the sequence labelling process, the diacritiser outputs one of six diacritics (all possible
diacritics except gemination since it does not expose a hidden acoustic value as aforemen-
tioned) in addition to a no-diacritic label for each grapheme, i.e. 𝑑 ∈ {𝑎, 𝑢, 𝑖, 𝐹 , 𝐾, 𝑁, 𝑜}.
A full list of possible values for each property when considering diacritising an LCA text
is listed in Table 6.7 while Table 6.8 demonstrates the use of these properties to describe
the phrase “masaA Alxayr” (good evening). It should be noted that within a segment,
properties 𝐜 and 𝐩 are more dynamic and change in the short term, while properties 𝐝 and
𝐠 are mostly static for the whole segment.

6.5.3 Results and discussion

It has been shown that speaker dialect, regardless of gender, has an impact on pronunci-
ation. So it would be expected that incorporating the dialect attribute in addition to the
textual sequence would have a significant impact on the diacritisation performance. To
evaluate this, a set of experiments is conducted with different combinations of properties
in the diacritisation process. Here, a CRF-based diacritiser with second-order Markov de-
pendencies is designed as described above, using a modified version of the FlexCRF toolkit
(Phan, 2005). The AppenLCA development set is used as training materials for the dia-
critiser whereas the AppenLCA test set is used for evaluation. For both sets, the corpus
collectors have provided demographic information about the speakers such as gender and
dialect. Figure 6.8a illustrates the distributions of these demographic characteristics for
each set. This allows extracting the speaker-level properties described above for each ut-
terance to be used as training samples in addition to the lexical-level properties described
in Table 6.6. A feature is counted if there is at least one occurrence in the training samples,
i.e. the cut-off threshold for features was set to 1. Feature functions weights, 𝜆𝑖 and 𝜇𝑖,
are estimated using the limited memory quasi-Newton optimisation algorithm (L-BFGS).

Following the evaluation in the literature, performance is obtained on the AppenLCA
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Table 6.6: Lexical-level properties for each Arabic grapheme. Place-voicing-manner
attributes are assigned to a grapheme based on its most frequent associated phoneme.

Lam indicates whether the lam in the definitive “Al” is assimilated (solar) or not (lunar)
if it is followed by a grapheme. Group indicates whether a grapheme shares its

pronunciation with another or whether they are substituted by mistake. The final
grapheme “sp” or “-” indicates word boundaries with no acoustic value.

Grapheme Manner Place Voicing Lam Group
> stop glottal voiced lunar alif
< stop glottal voiced lunar alif
| vowel lowback voiced lunar alif
e stop glottal voiced lunar none
& stop glottal voiced lunar waw
} stop glottal voiced lunar yaa
A vowel lowback voiced lunar alif
Y vowel lowback voiced lunar yaa
b stop bilabial voiced lunar none
t stop alveolar unvoiced solar none
v fricative dental unvoiced solar none
j fricative postalveolar voiced lunar none
H fricative pharyngeal unvoiced lunar none
x fricative velar unvoiced lunar none
d stop alveolar voiced solar none
* fricative dental voiced solar none
r liquid alveolar voiced solar none
z fricative alveolar voiced solar none
s fricative alveolar unvoiced solar none
$ fricative postalveolar unvoiced solar none
S fricative alveolar unvoiced solar none
D stop alveolar voiced solar none
T stop alveolar unvoiced solar none
Z fricative dental voiced solar none
E fricative pharyngeal voiced lunar none
g stop velar voiced lunar none
f fricative labiodental unvoiced lunar none
q stop uvular unvoiced lunar none
k stop velar unvoiced lunar none
l liquid alveolar voiced solar none
m nasal bilabial voiced solar none
n nasal alveolar voiced solar none
h fricative glottal unvoiced lunar taa
w liquid labialvelar voiced lunar waw
y liquid palatal voiced lunar yaa
p fricative glottal unvoiced lunar taa
G fricative velar voiced lunar none

sp / - none none none none boundary
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Table 6.7: Values for each property extracted from the training text for CRF diacritiser
training. lam describes whether the /𝑙/ in article “Al” is pronounced, i.e. lunar lam,

when followed by the grapheme or not, i.e. solar lam. group describes extra properties by
certain graphemes such as different shapes of alif.

property values
grapheme 39 grapheme + sp (word delim.)

phonetic classes

place alveolar, bilabial, dental, glottal, labial velar,
labiodental, lowback, palatal, pharyngeal,
post-alveolar, uvular, velar, none

manner fricative, liquid, nasal, stop, vowel , none
voicing voiced, unvoiced, none
lam solar, lunar, none
group alif, yaa, taa, boundary, none

speaker dialect syrian, lebanese, jordanian, palestinian
speaker gender male, female

Table 6.8: An example of properties corresponding to the sentence “masaA Alxayr” used
in diacritisation.

phonetic classes (p) speaker speaker

di
ac

rit
ic

grapheme
(c)

place manner voicing lam group dialect
(d)

gender
(g)

m bilabial nasal voiced lunar none syrian female a
s alveolar fricative unvoiced solar none syrian female a
A lowback vowel voiced lunar alif syrian female o
sp none none none none boundary syrian female o
a lowback vowel voiced lunar alif syrian female o
l alveolar liquid voiced solar none syrian female o
x velar fricative unvoiced lunar none syrian female a
y palatal liquid voiced lunar yaa syrian female o
r alveolar liquid voiced solar none syrian female o
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Figure 6.8: Statistical details about the AppenLCA development and test sets.
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test set using two metrics: the diacritics error rate (DER) and the diacritisation word
error rate (DWER). Table 6.9 shows the results for these experiments. For each combina-
tion, the number of features, 𝛿(𝐜, 𝑡), is shown. This indicates the number of parameters
(weights) to be estimated. Among each property, the set of PVM features has the highest
number of features because it is a multi-stream attribute with high number of possible
assignments9, whereas the other attributes are single-stream. When the number of dif-
ferent features increases, the number of weights to be estimated increases, thus, leading
to insufficient training samples for the estimation. This explains the degradation in the
prediction performance when using all the attributes (𝐜𝐩𝐝𝐠) in the prediction process,
yielding the highest DER of 11.3%. Both chosen extralinguistic attributes improved the
local prediction (DER) but behave totally differently on the global level (DWER). On one
hand, the speaker’s gender (𝐠) seems the least informative attribute to be combined with
the grapheme sequence (𝐜) among all the three attributes. This is to be expected since
it only has two values (female and male) and it is a static attribute that does not change
during the whole segment, i.e. it only divides the training sets into two subsets, which
does not contribute to long-span prediction to get the highest DWER of 76.9%. On the
other hand, speaker’s dialect (𝐝) achieved the lowest DER and DWER of 8.8% and 23.3%
respectively. This means that using speakers’ dialects along with the grapheme identity
factorises the overall graphemes and diacritics distribution into more homogeneous smaller
distributions which is translated into more accurate prediction. The DER per diacritic
correlates with the proportion of the diacritic within the training set (shown in Figure
6.8b) by which the lowest DER obtained is for the vowel-less mark while the highest DER
is for the nunation diacritic (“F”) which constitutes 0.003% of the overall diacritics in the
training set.

The amount of training data needed for training of CRFs is of crucial importance as
fully diacritised transcriptions are expensive to generate. The above experiments give a
clear indication that the dialect itself is a strong indicator and thus ideally transcripts for
each dialect are required. Thus a second experiment was conducted to look at the impact
of the amount of training data on diacritisation performance. Figure 6.9 illustrates the
DWER as a function of training set size when combining grapheme (𝐜), dialect (𝐝) and
PVM and other phonological attributes (𝐩) in the diacritisation. The baseline performance
for a training set of 110k words (this corresponds to approximately 8 hours of speech), that
generates 23.4k of logical functions, is a DWER of 28.5% and a DER of 11.2%. The gain
in performance with approximately 4 times the amount of data is significant, but the
slow non-uniform decrease suggests that either modest or very large quantities of data are

9PVM attribute has five input streams (place, manner, voicing, lam and group) the total number of
permutations is 3510 (= 5 × 3 × 3 × 6 × 13).
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6.5. Conditional random field (CRF) based diacritisation

Table 6.9: Diacritisation performance and features counts, 𝛿(𝐜, 𝑡), when using different
combination of properities in training CRF-based diacritisers. Properities included are

the grapheme sequence (𝐜), PVM and other phonolgical attributes (𝐩), speaker’s dialect
(𝐝) and gender (𝐠).

Proprieties Count of DWER DER
𝐜 𝐩 𝐝 𝐠 𝛿(𝐜, 𝑡) Average o a i u F
x 19811 27.2 10.4 3.6 14.1 20.1 28.8 56.3
x x 20065 76.9 9.0 3.1 13.7 21.4 31.8 59.4
x x 20287 23.3 8.8 3.2 12.1 17.5 19.4 28.1
x x 28876 27.4 10.5 4.1 13.5 20.7 27.5 53.1
x x x 28986 28.2 10.8 4.2 14.4 20.2 29.0 65.6
x x x x 29240 29.1 11.3 3.9 12.7 20.0 26.2 43.8
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6. Explicit modelling of short vowels in colloquial Arabic ASR

Table 6.10: ASR recognition performance and number of generated pronunciations per
word using undiacritised graphemes (graph), manually diacritised graphemes (mandiac),

generic vowels (gv) and CRF-based autodiacritised graphemes (crfdiac).

AM Pronunciations/word WER Substitutions Deletions Insertions
graph 1 71.4 48.5 20.2 2.7

mandiac 1.3 70.8 48.9 19.8 2.1
gv 1 74.1 51.1 20.1 2.9

crfdiac 1.1 70.6 48.0 20.6 1.9

Table 6.11: Percentage of data available for each sub-dialect from AppenLCA training set
and the corresponding DER, DWER and WER when automatically and manually
diacritising is employed. LCA sub-dialects are Syrian (SYR), Palestinian (PAL),

Jordanian (JOR) and Lebanese (LEB).

Sub-dialect % of training crfdiac mandiac
DER DWER WER WER

SYR 35.1 10.3 27.6 73.6 73.1
PAL 24.6 10.2 27.1 66.2 66.0
JOR 15.2 10.8 29.3 65.2 64.5
LEB 25.0 11.7 29.6 79.2 82.2

Average 10.7 29.8 70.6 70.8

needed for training.
These results are similar to those yielded by the 4-gram character-based of Vergyri

et al. (2005) on an LCA data and achieved a DWER of 30% and a DER of 7% on a 6K-
word test set. The authors chose their training words, consisting of 40K words, carefully
to reach the best vocabulary coverage. Apart from the system configured to use only the
grapheme sequence (c) and the speaker’s gender (g), the proposed system achieved a better
performance in terms of DWER using a training set with half the size, 20.5K words, of
the one employed in Vergyri et al. (2005)’s work on a test set that is larger by 30%, 8K
words. Moreover, by increasing the size of the training data, further improvement can be
achieved.

6.6 CTS ASR Experiments

The impact of modelling diacritics explicitly after restoration using each of the methods
described in Section 6.2 to 6.5 is measured in this section. The task used for this evaluation
is LCA conversational telephone speech recognition. Appendix B describes the system
used for the evaluation. The AppenLCA training and test sets were used which are both
described in Appendix B.

As a baseline, an undiacriticised recognition dictionary was generated by splitting the
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6.6. CTS ASR Experiments

undiacritised word into its graphemes, and then each grapheme is replaced by its corre-
sponding model name. This dictionary was used for training the undiacritised graphemic
acoustic model set (graph). Using the manual diacritisation provided by the corpus collec-
tors, a dictionary is generated where only seen diacritisation variants are provided to be
used for training manually diacritised graphemic acoustic model set (mandiac). Using each
of the investigated diacritisation methods (see Section 6.2 to 6.5), two additional acoustic
model sets are trained: generic vowel (gv), and CRF-based diacritisation (crfdiac).

Table 6.10 compares the WER results by each acoustic model set. A modest gain, 0.8%
WER relative, from using manual diacritics can be observed over the grapheme system
baseline. Based on matched pair sentence segment word error (MAPSSWE) test, this
improvement proved to be statistically significant with 𝑝 < 0.001, and it agrees with the
previous studies which compared between diacritised and undiacritised graphemic acoustic
units. This gain can be even improved by using the CRF-based diacritisation system,
reaching 1.1% WER relative compared to the system using graph. This can be due to
the fewer number of pronunciations generated by the automatic CRF-based diacritisation
system where the average is shown in the second column of Table 6.10. This observation
is consistent with Hain (2002)’s findings in reducing the number of pronunciation variants
in a dictionary improves ASR performance.

Although no pronunciation variants were used, employing a generic vowel does not
contribute to the overall recognition performance due to the model’s limitations discussed
previously in Section 6.2.

crfdiac is trained using automatically diacritised transcriptions from the AppenLCA
training set using a CRF-based diacritiser which was trained using the AppenLCA devel-
opment set. By comparing the automatically diacritised transcriptions of the AppenLCA
training set against its manually diacritised transcriptions, 29.8% of DWER with 10.7%
DER is found. Table 6.11 gives a breakdown of DWER and DER among dialects and the
corresponding WER. The source of improvement in the crfdiac over mandiac lies in the
Lebanese subset of the data (LEB). Nevertheless, diacritisation performance is the poorest
at this subset, ASR outperformed mandiac by 3.6% WER relative. A possible explanation
is that the transcribers of this subsets diacritised some part of it incorrectly but these errors
did not occur in the automatically diacritised data, hence did not match the incorrectly la-
belled references. As a consequence, higher diacritisation errors were observed. However,
the automatically diacritised data matched the acoustic better than incorrectly-labelled
transcription, and consequently, ASR performance improved. Apart from this subset, this
difference does not show any statistical significance based on MAPSSWE. This is a strong
indication of the consistency of the proposed CRF-based diacritisation system over manual
diacritisation.
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6. Explicit modelling of short vowels in colloquial Arabic ASR

6.7 Summary and conclusion

Arabic transcriptions lack short vowels and gemination information while a formal Arabic
dictionary does not provide pronunciations but only diacritisation variants and a variant is
chosen according to the given context. Since hidden diacritics holds one third of the acous-
tic information, it is crucial for acoustic modelling purposes to retrieve those diacritics.
After discussing previously introduced diacritisation methods along with their limitations,
three diacritics restoration methods have been introduced for automatically diacritisation
of CA using transcriptions only and evaluated in the context of diacritisation performance
and speech recognition performance.

Inserting generic vowel with a skip after every grapheme weakens the context and tri-
phones become less informative. As a consequence, the recognition performance degraded
in a CTS ASR task.

Two original CA automatic diacritisation systems were proposed. First diacritisation
system was implemented based on a grapheme-to-phoneme (G2P) framework. It requires a
small amount of diacritised seeding data (5000 diacritised CA words) to achieve a consistent
and highly accurate performance. G2P framework has not been employed for diacritisation
purposes of either MSA and CA in previous studies. For the second diacritisation system,
CRF models were employed to incorporate long-span features in the prediction process.

It was found that contextual and extralinguistic information can improve diacritisation
by a significant margin; However, in practice data sparsity remains and issue and limits
the number of features that can be included. In accordance it was shown that an increase
in the amount of training data for diacritisation could lead to the better diacritisation
performance. Speaker-dependent information has not been used in previous studies for
vowelisation or diacritisation of both MSA and CA.

ASR results suggest that training of acoustic models on automatically diacritised im-
proves the recognition performance, reaching 1.1% WER relative which shows to be statisti-
cally significant with 𝑝 < 0.001 using MAPSSWE. Although improvements were observed,
the issue of high confusability due to large numbers of pronunciations per word remains.
Generally, there was no indication of any statistical significance between acoustic models
trained on automatic and manual diacritised transcriptions. However, a case was shown
in which automatic diacritisation recover some of the manual diacritisation errors which
improved the recognition performance by 3.2% WER relative.
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Redefining the Arabic Acoustic
Inventory
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In an ASR system, pronunciation is modelled by mapping words into sequences of
acoustic units by the means of a dictionary. Recognition performance for a particular
language depends largely on the choice of acoustic units and the accuracy of the dictionary.
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Figure 7.1: Vocabulary growth in different variants of Arabic in comparsion to English.

For instance, Killer et al. (2003) found that using phoneme-based units outperformed
grapheme-based units for English and Spanish by 33% and 8% relative in terms of WER,
respectively. Each unit in the set of acoustic units in an ASR describes the acoustically
minimum distinguishable unit required for classification. These units are used to describe
the pronunciation of a word in a language and are interchangeably referred to as subword
units, acoustic inventory, acoustic model set or acoustic unit set or simply acoustic units
and acoustic models in the literature and through the course of this chapter.

In English language ASR systems, dictionaries are typically manually designed and
created by experts, with phones taken as acoustic units. However, such phonetic dictio-
naries are not available for CA for several reasons, and therefore many studies on Arabic
speech recognition have used undiacritised grapheme-based units, such as that of Afify
et al. (2006), Choueiter et al. (2006) and Billa et al. (2002). First, Arabic is a morphologi-
cally rich language where a word is generated by applying a combination of morphological
processes where new words can be easily created either by applying a template to a root
(derivation), or by concatenating articles and prepositions to a word without changing
the original word (agglutination), or by concatenating pronouns and applying changes
to the original word (inflection). As a result, the number of unique words in a given
amount of text (vocabulary size) for Arabic generally becomes significantly greater than
it in other languages which lack such rich morphology, such as English. For all languages,
as the amount of the given text increases, the vocabulary size increases with a certain rate
(known as vocabulary growth rate). This rate is considerably larger for languages with
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7. Redefining the Arabic Acoustic Inventory

rich morphology, such as Arabic, than for other languages with a simpler morphological
system, such as English. Figure 7.1 shows the average growth of the vocabulary size for
two Arabic variants in comparison to English. The vocabulary growth rate has a strong
positive relationship with the amount of text in MSA. The rate is considerably smaller
for LCA, which is expected as LCA is an exclusively conversational variant, unlike MSA,
which is a high variant as discussed previously in Chapter 2. Second, the lack of diacritics
in the Arabic text generally makes predicting the pronunciation for a given word ambigu-
ous and these diacritics can only be disambiguated through the context. Moreover, CA
introduces additional phonemes without adding new graphemes. Because CA has no writ-
ing conventions, writers improvise the spelling by assigning these CA phonemes to existing
graphemes inconsistently, hence, more pronunciation variants are included for a CA word.
As an example of such variety of pronunciations for one word is the undiacritised word
“b>qwl” (I will say or I am saying), which has been transcribed in CA with 26 diacritised
variants1.

Extending the acoustic model set to include diacritics improves the recognition per-
formance significantly, for both MSA and CA ASR (Kirchhoff et al., 2002a; Gales et al.,
2007; Diehl et al., 2008; Soltau et al., 2009). In Chapter 6, several methods were investi-
gated for restoring missing diacritics from a given CA undiacritised text, and these were
successfully employed for improving CA ASR performance. Although the representation
of a written utterance is brought closer to its actual acoustic realisation by retrieving the
unwritten diacritics, there are still other discrepancies between the written form of Arabic
and its spoken form, that have not been addressed previously, such as homographemes
and silent graphemes (Section 2.4). While these issues exist in MSA generally, it becomes
more prominent in CA due to the introduction of new phonemes without introducing new
graphemes. Consequently, existing graphemes are associated with the new phonemes which
resulted in an increasing number of multi-phoneme graphemes. This chapter fulfils Ob-
jective 4 of this thesis by investigating the derivation of the most suitable acoustic model
set for CA ASR that overcomes these issues in the absence of a conventional pronuncia-
tion dictionary. It also seeks a mapping between the newly introduced inventory and the
graphemic representation to be used for generating pronunciations for unseen vocabulary.

This chapter is organized as follows: First, the conventional types of acoustic unit inven-
tories for Arabic are introduced in Section 7.1, along with the previous work in the existing
literature on choosing acoustic units for ASR. The unresolved issues, homographemes and
silent graphemes, in using diacritised graphemes for acoustic modelling are addressed in
Section 7.2 where context-dependent solutions are introduced, and in Section 7.3 where the

126 diacritised variants were collected across three dialects in the Appen corpora (Gulf, Iraqi and Lev-
antine CA).
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acoustic model space is restructured. The impact of using the new inventory is evaluated
in phone and speech recognition tasks, as described in Section 7.4. Finally, conclusions are
drawn in Section 7.5.

7.1 Related research

Acoustic units are the smallest representation of sound in an ASR system. Phones are
the most commonly used units in ASR. If a phone definition is not available for a given
language due to lack of a pronunciation dictionary, graphemes are used. Graphemes are
another representation derived from the textual reference. Arabic speech recognition has
been extensively researched in the last decade. The chosen acoustic units for most of
previous studies were graphemic-based due to the lack of phonetic dictionaries for Arabic.

Generally, diacritised graphemes have been considered to be equivalent to the phonetic
transcription of a given utterance. Thus, these symbols were used as acoustic units. In
most of the previous studies, silent and ambiguous graphemes were treated as pronunciation
modelling problems. For instance, the assimilation of the definitive lam, if it is followed by
one of the solar letters, was addressed by generating alternative pronunciations. Another
example is in handling the ambiguous pronunciation of the glottal stop when it appears at
the beginning of a word. Glottal stop, known as hamza, is represented by four graphemes.
The chosen grapheme is disambiguated by using knowledge-based tools such as BAMA
(Buckwalter, 2002; 2004a) and MADA (Habash et al., 2007), or simply by normalising all
its possible occurrences into one grapheme instead.

Taking a contrary approach, two studies have mapped the graphemic form to conven-
tional phonemes using phonological rules. Ali et al. (2008) adopted a purely phonological
approach by using phonetic rules to extend the acoustic inventory and to use these rules to
generate a pronunciation dictionary. Their new acoustic inventory extended to 46 phones
with 12 vowels (three short, three long, three emphatic and three pharyngeal), two diph-
thongs and 31 consonants. A similar approach was employed by Biadsy et al. (2009a) but
they limited their inventory extension to the diphthongs only; however, they used morpho-
logical information in order to disambiguate silent and ambiguous graphemes. In contrast,
Ali et al. did not address the latter grapheme category in their work.

7.1.1 Motivation

It was empirically shown in Chapter 6, which is also aligned with other previous stud-
ies such as Kirchhoff et al. (2002a); Gales et al. (2007); Diehl et al. (2008); Soltau et al.
(2009), that increasing the detail of the acoustic inventory to include diacritics improves
recognition performance significantly for both MSA and CA ASR. Figure 7.2 lists three

138



7. Redefining the Arabic Acoustic Inventory

men   a: niʃ  o: farijʃ       a jit ablʔ       u:

yitqabluwAmin $aAni Al     $uwfariyap

yt            q         bl          w     Am n $     A              n Al     $           w                  f              r               y       p

Diacritised graphemes

Undiacritised graphemes

Phonemes

homographemehomophonemesilent grapheme

Figure 7.2: Graphemic representation (undiacritised and diacritised) and their mappings
to phonemes of an LCA sentence “mn $An Al$wfryp ytqblwA” (for the drivers to be
accepted). If no mappings between grapheme and phoneme, it is a silent grapheme.

Issues in diacritised graphemes are shown by markers under graphemes with these issues.

representations for an example of an LCA sentence “mn $An Al$wfryp ytqblwA” (for the
drivers to be accepted). The top and bottom representations are graphemic with the mid-
dle sequence showing the phonetic transcription written in IPA. A mapping between the
units in the graphemic representations and their corresponding phonemic units are shown.
For instance, “m” in undiacritised grapheme sequence is mapped to two phonemes /me/
while “m” in the diacritised grapheme sequence is only mapped to one phoneme /m/.
Mostly, each grapheme can be mapped to more than one phoneme in undiacritised form
but not in the diacritised form. More one-to-one mappings between the chosen acous-
tic units and phonemes can guarantee a better separation, hence better classification and
recognition. That explains the reason for the recognition improvement when using dia-
critised graphemes for acoustic modelling over undiacritised graphemes, for example, the
number of one-to-one mappings between phonemes and graphemes in Figure 7.2 67%2 of
the diacritised graphemes are having a one-to-one mapping to a phoneme but only 45% of
the undiacritised graphemes are with one-to-one mappings. For a given language, an opti-
mal acoustic unit set should have a one-to-one mapping between the units and phonemes
in that language for every unit in the set. Adding diacritics narrows the gap between
the written form and its phonetic realisation. However, there are still some acoustic phe-
nomena which are not represented by the fully diacritised written form, namely silent
graphemes, homophonemes and homographemes. These issues are presented by markers
underneath diacritised graphemes in Figure 7.2, for instance, the phoneme /o:/ is mapped
to a sequence of more than one diacritised graphemes “uw” and “A” grapheme at the last
word is silent. Moreover, considering the mapping from letter to sound in Arabic and the

2There are 20 out of 30 diacritised graphemes with one-to-one mappings to a phoneme but only 9 out
of 20 in undiacritised grapheme sequence.
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context-dependent conditions (discussed in Section 2.4), even diacritised graphemes can-
not be considered an optimal acoustic inventory for ASR tasks due to the existence of the
following issues:

A. Homophonemes: several graphemes which are sharing the same phoneme, such as
“Y” and “A” both pronounced as /a:/, while the hamza (glottal stop /ʔ/) can be
represented by six different graphemes (<,>,|,},&,’,A).

B. Silent grapheme: a grapheme that can be mapped to either a phoneme or silence.

C. Context-dependent homographeme: a grapheme represents more than one phoneme
and can be disambiguated by the context, such as “w” as /u:/ or /w/, and “y” as
/i:/ or /j/.

D. Context-independent homographeme: a grapheme represents more than one phoneme
and cannot be disambiguated by the context, such as “q” which can be pronounced
as /q/, /k/, /ʔ/ and /g/.

One of the issues of diacritised graphemic-based acoustic models mentioned above (issue
A) can be easily resolved by nominating only one grapheme to be associated with a certain
phoneme. However, the other issues are more complicated and need to be addressed either
by introducing new models to map the most frequent graphemes onto the newly introduced
models depending on the context, or by introducing a rule-based approach to decide the
chosen phoneme for the homographemes.

7.2 Development of the new Arabic acoustic inventory

When examining diacritised graphemes, the closest representation available to the pho-
netic transcription in written form, one can observe subtle differences between written
and spoken forms. Some graphemes are mapped to the same phoneme (homophoneme) or
vice versa where one grapheme can be pronounced as several phonemes (homographeme)
and some can be even silent. These differences are problematic for both acoustic and
pronunciation modelling.

On one hand, one of the objectives of acoustic modelling is to design the acoustic units
within a language where they are separable for classification. Then, these units are used to
describe word pronunciations in the system. Homophonemes in the diacritised graphemes
model the same phoneme using several graphemic units instead of only one unit. On
the other hand, in terms of predicting pronunciation from the graphemeic representation,
homophonemes are not problematic if there exists only one mapping from a grapheme to
the shared phoneme.
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Unlike homophonemes, homographemes are ambiguous because they might be assigned
to several phonemes which must be disambiguated in order to reach to the closest repre-
sentation of the actual acoustic value in the speech signal. Fortunately, some of these
ambiguous graphemes can be disambiguated based on the context but some are not. Fig-
ure 7.3 visualises the mappings between these problematic graphemes (homophonemes and
homographemes) and their assigned phonemes. Three columns of nodes are shown, with
phonemes in the middle linked with their nominated graphemes in the right column. The
problematic graphemes are listed in the left column. A nominated grapheme is a grapheme
used to represent a phoneme when it is out of context. For example, the phoneme /z/ on
its own in English is associated with the grapheme “z” even when the phoneme can be
associated with other graphemes in certain context such as “s” and “x”.

Figure 7.3 shows those graphemes which are mapped to the same phoneme (e.g. “Y”
and “A” both pronounced as /a:/) and vice versa (e.g. “q” as /ʔ/, /k/, /q/ and /g/) and
those which can even be silent (e.g. “l”). Moreover, there exist phonemes which are shared
by several homographeme sets. For example, /ʔ/ is mapped to three different sets {A},
{<, >, }, ’, &, |} and {q}. Some of the graphemes associated with multiple phonemes
are context-dependent. This means the assigned phoneme can be decided based on the
surrounding context and therefore is predictable, for instance “l” is assimilated if it is
followed by a solar letter, and for other graphemes it cannot be predicted.

There are three categories of graphemes:

• Unique homophoneme: a grapheme that is assigned to only one phoneme. This
phoneme is mapped to one or more other graphemes.

• Non-silent multi-phoneme grapheme: a grapheme that is assigned to several phonemes
but never becomes silent. Some of these mappings are context-dependent by which the
phoneme can be chosen based on the context (text or acoustic) while other mappings
are context-independent.

• Silent multi-phoneme grapheme: a grapheme which is assigned to one or more phonemes
and can become silent.

Given the issues discussed above, using diacritised graphemic representation as acoustic
models resulted in one third3 of acoustic units with ambiguous phoneme assignments. Fig-
ure 7.4 shows the average frequency distribution of each unit in the diacritised graphemes
in four Arabic dialects. It also illustrates that the 13 ambiguous graphemes represent 32%
of the data, while more than one fifth of the units represents less than 3%. Moreover,
the frequency distribution of the grapheme set is skewed towards one or two vowels, for

313 is one third of the 39 total units in the diacritised grapheme set.
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instance, an average of nearly 20% of the graphemes seen across different dialects is “a”.
Theoretically, resolving these issues increases the separability between the units, conse-
quently this should lead to a better recognition performance in general as it has been
previously discussed when using diacritised graphemes over undiacritised graphemes in
acoustic modelling in Chapter 6.

Each of these issues will be addressed in this section, except for the context-independent
multi-phoneme graphemes, which will be discussed in Section 7.3.

7.2.1 Infrequent unique homophonemes

A homophoneme is a grapheme that shares a phoneme with another grapheme, i.e. there
are multiple mappings associating a given phoneme with more than one grapheme. For
example, “Y” and “A” are homophonemes (shown in Figure 7.3) because both are associ-
ated with the same phoneme /a:/. If one of these homophonemes has no other mappings
to any other phoneme, then this grapheme will be referred to as a unique homophoneme
because it has a unique mapping to a phoneme. For example, for the homophonemes “Y”
and “A”, “Y” is only mapped to the phoneme /a:/ but no other phonemes, hence, it is
a unique homophoneme while “A” is not a unique not a unique homophoneme because it
is also has two additional mappings to /ʔ/ and silence. Some of these homophonemes are
less frequent than others which share the same phoneme. For instance, the glottal stop /ʔ/
is represented by six unique homophonemes, which are {“A”, “<”, “>”, “}”, “&”, “‖”},
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with some of these homophonemes are less frequent that the others (average frequency
distribution is illustrated in Figure 7.4). In such cases, mapping all these homophonemes
to one model improves the probabilistic distribution representing that particular phoneme.

Taking the mappings in Figure 7.3, the frequency distribution of each grapheme in
Figure 7.4 and the phonological knowledge driven from Ali et al. (2008) and Biadsy et al.
(2009a), the following rules were devised to map each unique homophoneme set onto one
model. Each rule is written in the format: 𝐿→𝑅, where 𝐿 is left side graphemic sequence
which will be replaced by the right side phonemic sequence, 𝑅. The symbol + indicates
whether 𝐿 and 𝑅 are composed of more than one unit, for instance 𝑎+𝑏→𝑐 corresponds
to replacing the sequence of graphemes 𝑎 and 𝑏 with the phoneme 𝑐. Finally, possible
alternatives are grouped between square brackets, for example, [𝑎, 𝑏]→𝑐 represents replac-
ing any occurrences of 𝑎 or 𝑏 with the phoneme 𝑐. Each of the following rules maps
several graphemes to one dedicated unit that represents the associated phoneme to these
graphemes.

Hamza rule
[>, <, }, &] → 𝑒,

Madda rule
| → 𝑒 + 𝑎𝑎,

Nunation rule
𝐹 → 𝑎 + 𝑛,
𝐾 → 𝑖 + 𝑛,
𝑁 → 𝑢 + 𝑛,

where 𝑒 represents the glottal stop /ʔ/, 𝑎𝑎 is the long vowel /a:/, 𝑛 is the nasal phoneme
/n/ and a, u, i are the short vowels.

7.2.2 Context-dependent non-silent multi-phoneme graphemes

If a grapheme is assigned to several alternative phonemes and its acoustic realisation can
be disambiguated by the context but never becomes silent, it is called a context-dependent
non-silent multi-phoneme grapheme. There are two such graphemes: “w”, which represents
the glide /aw/ or long vowel /u:/ and “y” which represents the glide /ay/ or long vowel
/i:/, where their pronunciation can be chosen based on the surrounding diacritics4.

Arabic vowels are presented using either graphemes or diacritics, indicating long or
short duration respectively. Having a sequence of a grapheme and a diacritic where both

4This derivation requires a diacritised grapheme sequence as an input. If no diacritics are available,
automatic diacritisation is employed, as discussed in Chapter 6.

144



7. Redefining the Arabic Acoustic Inventory

represents the same vowel is an indication that the pronounced sequence is a long vowel.
For example, if the diacritic “u” (/u/) followed or preceded “w” (/u:/) as in “$uw” (what),
the sequence is merged into a long vowel to be pronounced as (/u:/). However, if the
vowel represented by the diacritic differs from the vowel represented by the grapheme,
the sequence is pronounced as a diphthong or a glide. For instance, if the grapheme “w”
is preceded “a” (/a/), then it is pronounced as the glide /aw/. Otherwise, if there are
no diacritics around, this grapheme cannot be disambiguated. These conditions can be
translated into the following rules:

w and y as diphthongs
[𝑎, 𝑖] + 𝑤 → 𝑎𝑤 + 𝑤,
[𝑎, 𝑢] + 𝑦 → 𝑎𝑦 + 𝑦,
𝑤 + [𝑎, 𝑖] → 𝑎𝑤 + [𝑎, 𝑖],
𝑦 + [𝑎, 𝑢] → 𝑎𝑦 + [𝑎, 𝑢],

w and y as long vowels
𝑢 + 𝑤 → 𝑢𝑤,
𝑖 + 𝑦 → 𝑖𝑦,

If there are no diacritics, w and y are ambiguous
𝑤 → 𝑤𝑎,
𝑦 → 𝑦𝑎,

where 𝑎𝑤 and 𝑎𝑦 are the diphthongs /aw/ and /ay/ respectively while 𝑢𝑤 and 𝑖𝑦 are the
long vowels /u:/ and /i:/ and 𝑤𝑎 and 𝑦𝑎 mark the cases where the graphemes cannot be
acoustically disambiguated from the written form.

In order to disambiguate 𝑤𝑎 and 𝑦𝑎, acoustic information can be employed. This can
be achieved by force-aligning these graphemes to a model representing either a long vowel
or a glide. Such process requires an initial training for the long vowel models (𝑢𝑤 and 𝑖𝑦)
and the glide models (𝑎𝑤 and 𝑎𝑦). These models are then used as pronunciation variants
for any given word including one of these ambiguous units.

7.2.3 Context-dependent silent multi-phoneme graphemes

As aforementioned, some Arabic graphemes can be silent in certain conditions. Falling
in this category are the definitive “Al” graphemes, “A” and “l”, where both can be silent
and assimilated in certain conditions. In addition, if the grapheme “A” is followed by a
diacritic, it indicates that it is a hamza wasl (i.e. skippable or silent hamza); otherwise it
is pronounced as a long vowel /a:/. These conditions can be formulated into the following
rules:
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Solar and lunar letters
𝐴+𝑙+[𝑡, 𝑣, 𝑑, ∗, 𝑟, 𝑧, 𝑠, $, 𝑆, 𝐷, 𝑇 , 𝑍, 𝑙, 𝑛] → 𝐴+𝑙0 +[𝑡, 𝑣, 𝑑, ∗, 𝑟, 𝑧, 𝑠, $, 𝑆, 𝐷, 𝑇 , 𝑍, 𝑙, 𝑛],

A in Al
𝐴 + 𝑙 → 𝑎0 + 𝑙,

Hamza wasl
𝐴 + [𝑎, 𝑖, 𝑢, 𝑙] → 𝑎0 + [𝑎, 𝑖, 𝑢, 𝑙]

Waw aljamaa
𝑤 + 𝐴 → 𝑤 + 𝑎0

Alif as a vowel
𝐴+! [𝑎, 𝑢, 𝑖] → 𝑎𝑎+! [𝑎, 𝑢, 𝑖]

𝑙0 and 𝑎0 are skippable variants of the models 𝑙 and 𝑎 while 𝑎𝑎 is the long vowel /a:/
and the symbol ! [𝑥] means any grapheme other than 𝑥. A skippable model is a model by
which there is an option not be used in the pronunciation, i.e. to be skipped. For example,
the word “Aqr>” (read) can be pronounced as /ʔqraʔ/ and /qraʔ/ where the first phone
can be skipped, hence, the corresponding pronunciation after applying these rules would
be “𝑎0 q r a e”.

Another grapheme which can be included in this category is the grapheme “p”, known
as taa marbouta, which can be pronounced as /h/ when it is followed by a pause, as /t/
when it is either connected to the next word or followed by a nunation or it can be silent.
Thus the rules are:

Taa marbouta and nunation
𝑝 + [𝐾, 𝑁, 𝐹 ] → 𝑡 + [𝐾, 𝑁, 𝐹 ],

Otherwise
𝑝 → 𝑝𝑎𝑜,

where 𝑝𝑎0 is an ambiguous model, representing the sounds as /t/ or /h/, or no sound.
The models 𝑎0, 𝑙0 and 𝑝𝑎0 can be disambiguated using acoustic contextual information

via forced alignment. However, in order to initialise these models properly, a one-state path
is added in their topology (as illustrated in Figure 7.5) to represent an almost absence of
the model in the acoustic signal. The reason for using a one-state path instead of a skip is
completely for practical reasons. Because it is possible to have a sequence of two or more
skippable graphemes, this will create an unnecessary expansion during the alignment in
Viterbi decoding. Using this topology reduces the ambiguity from generating pronunciation
variants for all the possible permutations, especially where a word can contain more than
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Figure 7.5: HMM topology for skippable acoustic units.

one potentially silent model. By using these initial models in the forced alignment, the
final phonetic sequence can be obtained.

7.2.4 Acoustic inventory derivation procedure summary

The rules in Sections 7.2.1 to 7.2.3 were formulated to either map several graphemes to one
phoneme or disambiguate a chosen phoneme based on the context which can be derived
from the grapheme sequence or from acoustic values via forced alignment. There is an
interdependency between these rules, for instance, the nunation rule (𝐹 → 𝑎+𝑛, 𝐾 → 𝑖+𝑛
and 𝑁 → 𝑢 + 𝑛) cannot be applied before using the nunation symbols to disambiguate the
“p” in (𝑝 + [𝐾, 𝑁, 𝐹 ] → 𝑡 + [𝐾, 𝑁, 𝐹 ]), so these heuristics must be applied in a certain
sequence.

The overall derivation procedure of the new acoustic inventory is extracted from trans-
forming transcriptions in diacritised grapheme by applying a sequence of phonological rules.
This procedure can be summarised in the following steps:

1. Diacritise the given transcription if it is in undiacritised form using one of the methods
described in Chapter 6.

2. Generate initial pronunciations by applying the heuristic rules discussed in the pre-
vious sections in the following sequence where skippable and ambiguous units are
employed.

2.1. Hamza rule: [>, <, }, &] → 𝑒
2.2. Madda rule: | → 𝑒 + 𝑎𝑎
2.3. Al rule: 𝐴 + 𝑙 → 𝑎0 + 𝑙
2.4. Solar and lunar letters: 𝑙 + Solar → 𝑙0 + Solar
2.5. Hamza wasl: 𝐴 + [𝑎, 𝑖, 𝑢] → 𝑎0 + [𝑎, 𝑖, 𝑢]
2.6. Waw aljamaa: 𝑤 + 𝐴 → 𝑤 + 𝑎0

2.7. Alif as long vowel: 𝐴+! [𝑎, 𝑢, 𝑖, 𝑙] → 𝑎𝑎+! [𝑎, 𝑢, 𝑖, 𝑙]
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2.8. w and y rules:

2.8.1. As diphthongs by precedent: [𝑎, 𝑖] + 𝑤 → 𝑎𝑤 + 𝑤, [𝑎, 𝑢] + 𝑦 → 𝑎𝑦 + 𝑦
2.8.2. As diphthongs by subsequent: 𝑤+[𝑎, 𝑖] → 𝑎𝑤+[𝑎, 𝑖], 𝑦 +[𝑎, 𝑢] → 𝑎𝑦 +[𝑎, 𝑢]
2.8.3. As long vowels: 𝑢 + 𝑤 → 𝑢𝑤, 𝑖 + 𝑦 → 𝑖𝑦
2.8.4. Otherwise: 𝑤 → 𝑤𝑎, 𝑦 → 𝑦𝑎

2.9. Taa marbouta rules:

2.9.1. With nunation: 𝑝 + [𝐾, 𝑁, 𝐹 ] → 𝑡 + [𝐾, 𝑁, 𝐹 ]
2.9.2. Otherwise: 𝑝 → 𝑝𝑎𝑜

2.10. Nunation rules: 𝐹 → 𝑎 + 𝑛, 𝐾 → 𝑖 + 𝑛, 𝑁 → 𝑢 + 𝑛
2.11. Sequence of repeated units must be substituted by only one unit.

3. Train initial models using the initial pronunciations where only skippable units use
the topology with a skip illustrated in Figure 7.5.

4. Generate a disambiguation dictionary where each word with an ambiguous model
will have pronunciation variants as follows:

𝑎0 ∈ {𝑎0, aa, e}
𝑙0 ∈ {𝑙0, l}

𝑝𝑎𝑜 ∈ {𝑝𝑎𝑜, t, h, a}
𝑤𝑎 ∈ {w, uw}
𝑦𝑎 ∈ {y, iy}

5. Use forced alignment with the initial models on the disambiguation dictionary.

6. Remove all skippable units from the pronunciation when the path including the skip
state is chosen.

7. Replace all ambiguous units with the chosen units from the resulted alignment.

8. Final acoustic inventory is extracted from units used in the aligned transcription.

In addition to the new acoustic inventory, two other training resources can be extracted.
These are a pronunciation dictionary which can be derived from the aligned transcription
and aligned training transcriptions with the new acoustic inventory.

7.2.5 Results and discussion

Several experiments to assess the proposed acoustic inventory were conducted. The pro-
posed acoustic inventory can be used with different CA dialects. At first, the derivation
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Table 7.1: The percentage of words affected by applying the phonological rules to derive
a new acoustic inventory in LCA training set in the vocabulary list (%vocab) and

weighted by word frequency in the training data (%data). 𝑒 is a glottal stop. 𝑋0 are
skippable models (disambiguated by skip topology) while 𝑋𝑎 are ambiguous models

(disambiguated by pronunciation variants). Solar ∈ {𝑣, ∗, 𝑍, 𝑡, 𝑇 , 𝑑, 𝐷, 𝑧, 𝑠, 𝑆},
Nunation ∈ {𝐾, 𝑁, 𝐹} and 𝑉short ∈ {𝑎, 𝑢, 𝑖}.

Rule description %vocab. %data
1. hamza rule [{,&,<,>] → 𝑒 12.8 13.8
2. madda rule | → 𝑒+𝑎𝑎 0.8 0.7
3. solar lam rule 𝑙+Solar → 𝑙0+Solar 3.7 1.8
4. Al rule 𝐴+𝑙 → 𝑎0+𝑙 17.0 12.6
5. hamza wasl 𝐴+𝑉short → 𝑎0 + 𝑉short 7.7 5.9
6. waw aljamaa 𝑤 + 𝐴 → 𝑤 + 𝑎0 3.9 4.1
7. alif as long vowel 𝐴+![𝑉short, 𝑙] → 𝑎0 + ![𝑉short, 𝑙] 37.1 13.5
8. waw and yaa rules:

1. glides by precedent [𝑎 + 𝑖]+𝑤 → 𝑎𝑤+𝑤 6.2 4.4
[𝑎 + 𝑢]+𝑦 → 𝑎𝑦+𝑦 7.2 9.0

2. glides by subsequent 𝑤+𝑉short → 𝑎𝑤+𝑉short 14.3 8.9
𝑦+𝑉short → 𝑒𝑦+𝑉short 10.9 9.1

3. long vowels 𝑢+𝑤 → 𝑢𝑤 11.7 8.7
𝑖+𝑦 → 𝑖𝑦 26.4 22.5

4. otherwise 𝑤 → 𝑤𝑎 3.5 1.3
𝑦 → 𝑦𝑎 1.8 1.3

9. taa marbouta rules:
1. with nunation 𝑝+Nunation → 𝑡+Nunation 0.0 0.0
2. otherwise 𝑝 → 𝑝𝑎0 12.3 6.8

10. nunation rule
𝐾→ 𝑖+𝑛 0.0 0.0
𝑁→ 𝑢+𝑛 0.0 0.0
𝐹→ 𝑎+𝑛 0.3 0.5

11. repeated units replaced by one unit

of this inventory was analysed through the chosen pronunciation in the forced alignment
and the change in the final acoustic set frequency distribution. Then, the captured phono-
tactics from the sequence of the proposed acoustic units were compared across four Arabic
dialects to assess the sensitivity of the proposed set to the dialect’s phonotactics. Finally,
acoustic confusability was assessed across the dialects using forced alignment and phone
recognition tasks by analysing the impact of incorporating the context of the dialect from
the phonotactic language model in these tasks. The phonotactic analysis and acoustic
confusability experiments were replicated in English for five North American dialects to
obtain control results, to further aid the analysis of the observed behaviour in the Arabic
experiments.
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Table 7.2: Skippable and ambiguous units and their proportions within the initial
training set.

Models 𝑎0 𝑙0 𝑝𝑎0 𝑤𝑎 𝑦𝑎

Pronunciations

e l t w y
aa 𝑙0 h uw iy
𝑎0 a

𝑝𝑎0
% of data 2.0 0.5 1.2 1.1 1.6

Analysis of the derivation procedure

In order to assess the derived heuristics, a small-scale phone-level experiment was con-
ducted using a subset of the AppenLCA training set. A dialect and gender balanced data
set containing 10 hours of speech was constructed. As an evaluation set, 10% of the se-
lected subset was randomly selected on a single-side level instead of two-side level for better
speaker coverage, while ensuring speaker-set separation between training and test sets.

Rules were applied in sequence as discussed in Section 7.2.4. For each rule, the words for
which a rule applied were counted and weighted by the word frequency in the training set
to provide an indication of its significance. The higher the percentage, the more significant
a rule can be considered to be. Table 7.1 illustrates the sequence of applying the derivation
rules along with the percentage of the affected words in the selected training set. Long
vowel derivation rules (rule number 7 and 8.3 in Table 7.1) were the most frequent rules to
be applied, followed by rules that resolved different shapes of alif and hamza (rule number
1, 2, 4 and 5) while the nunations (rule number 10) are the most infrequent due to their
rare usage in CA.

As a result, a new pronunciation dictionary was generated, with set of 43 units, where
three of these units are skippable and two are ambiguous units. An initial set of models was
trained based on these resulting pronunciation transcriptions where the skippable models
used the topology illustrated in Figure 7.5, while the rest of the models used a standard
left-to-right 3-state HMM topology. The main purpose of this set is to validate the re-
sulting pronunciations in the forced alignment process (Step 5 in the derivation procedure)
where skips are identified and ambiguous models are resolved. For this, an alignment
dictionary was generated where for each word containing any ambiguous model, pronun-
ciation variants were generated using the pronunciations allowed for that model (listed in
Table 7.2). For example, the resulting pronunciation for the diacritised word “diktawr” (a
doctor) is {d i k t aw 𝑤𝑎 r} which will have the following pronunciation variants given the
available alternatives for the model 𝑤𝑎 in Table 7.2:
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Table 7.3: Forced-alignment results for the distributions of skippable and ambiguous
models. 𝑋0 represents skippable models while 𝑋𝑎 represents ambigious models.

unit % of data aligned model % of unit

𝑎0 2.02

𝑎0 (skip path) 64.69
𝑎0 (non-skip path) 22.71
𝑒 8.13
𝑎𝑎 (long vowel) 4.48

𝑝0 1.19

𝑝0 (skip path) 55.47
𝑝0 (non-skip path) 15.34
𝑡 14.94
ℎ 11.47
𝑎 (short vowel) 2.77

𝑙0 0.46
𝑙0 (skip path) 50.38
𝑙0 (non-skip path) 32.72
𝑙 16.90

𝑦𝑎 1.60 𝑖𝑦 (long vowel) 71.50
𝑦 (glide) 28.5̇0

𝑤𝑎 1.05 𝑢𝑤 (long vowel) 63.82
𝑤 (glide) 36.18

diktawr : d i k t aw w r
diktawr : d i k t aw uw r

All permutations are listed as pronunciation variants if a word has more than one
ambiguous or skippable model. Hence, the number of pronunciation variants increases
exponentially with the number of ambiguous models within the initial pronunciation. In
the current analysis, this resulted in a pronunciation dictionary with an average of 2.6
pronunciations per word. The initial models are then used to disambiguate the pronunci-
ation of the ambiguous and skippable models using forced alignment. Table 7.3 shows the
distribution of chosen pronunciations for each ambiguous and skippable model based on
the alignment results. More than two thirds of the ambiguous 𝑤𝑎 and 𝑦𝑎 are aligned as
long vowels. At least 50% of the skippable models tend to be aligned using the skip path
within the model. This skip was modelled with a one-state path, i.e. at the expense of one
frame. This waste of frames can be an issue when there is a high frequency of skips and
should be avoided by removing the occurrences of these models when this state is chosen.

As a result, new pronunciations were generated where all skippable models were re-
moved when they were aligned using the path containing the skip state. Ambiguous
models were replaced by the chosen unit during the forced alignment. This resulted in
41 units which were retrained using a standard left-to-right HMM with 3 states, i.e. no
special topology for skippable models was used.
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Figure 7.6: Frequency of the new acoustic units. Phonetic classes are labelled on the top
x-axis while models belong to each class is shown on the bottom x-axis between enclosed

between the dashed vertical lines.

The final acoustic model set is composed of nine vowel models as opposed to seven
in the diacritised grapheme set, including two ambiguous models; seven liquid phoneme
models as opposed to six models, including three ambiguous; and two potentially silent
models in diacritised grapheme set, eight stop phoneme models as opposed to 13 models
in diacritised grapheme set. The number of fricative and nasal phoneme models remains
the same. Figure 7.6 illustrates the frequency distribution of the new acoustic set on
the training data from AppenLCA. In comparison to the diacritised grapheme distribution
(shown in Figure 7.4), the new acoustic set introduces new models mostly for the vowel and
liquid phonetic classes towards which the distribution of diacritised graphemes was skewed.
Also, it merges the models in the stop phonetic classes where most of these models are
infrequent. This reduces the skewness of the original grapheme distribution and makes it
more balanced.

Sensitivity to the dialect’s phonotactics

As aforementioned dialects differ in their phonology and lexicon. Thus, it is interesting
how phonotactics change across different CA dialects. In a contrastive experiment, the
behaviour of the proposed acoustic set and transcriptions are compared with an experiment
in English conversational speech. Similar training and testing sets were chosen from three
additional Arabic dialects, Gulf (GCA), Iraqi (ICA) and MSA, and from five Northern
American English dialects, Canadian (CAN), midland (MID), northern (NTH), southern
(STH) and western (WST) (details can be found in Appendix B).
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Table 7.4: Perplexity across Arabic dialects for phonotactic language models (PLM) of
orders (n value) 2, 3, 4 and 5 grams in (a), (b), (c) and (d) respectively.

(a) 𝑛=2

test sets
PLM GCA ICA LCA MSA
GCA 14.7 15.3 16.7 16.7
ICA 15.7 14.7 17.6 17.6
LCA 21.8 21.1 14.0 21.4
MSA 25.6 27.2 26.7 12.4

(b) 𝑛=3

test sets
PLM GCA ICA LCA MSA
GCA 10.6 12.2 13.1 16.5
ICA 12.6 10.5 15.1 18.1
LCA 16.4 17.1 9.6 20.6
MSA 68.0 71.6 67.6 6.3

(c) 𝑛=4

test sets
PLM GCA ICA LCA MSA
GCA 8.6 10.5 11.4 16.1
ICA 11.0 8.4 14.0 18.7
LCA 14.4 15.4 7.1 20.5
MSA 149.4 162.0 146.3 2.7

(d) 𝑛=5

test sets
PLM GCA ICA LCA MSA
GCA 7.9 10.0 11.0 16.1
ICA 10.5 7.8 13.8 18.8
LCA 14.2 15.6 6.1 20.3
MSA 181.3 194.1 173.0 1.8

For each Arabic dialect, an acoustic set was derived and trained using the proposed
process as described for LCA dialect, while a standard training recipe was used for the
English sets, where a conventional pronunciation dictionary was employed. Model-level
transcriptions were obtained by force-aligning the word-level transcription with its corre-
sponding acoustic set. These model-level transcriptions were used as training materials for
estimating a phonotatctic language model (PLM). Estimating an PLM uses a similar ap-
proach to building an 𝑛-gram statistical language model. Instead of using word sequences
as training samples, acoustic unit sequence for each utterance were employed. Using the
SRILM toolkit (Stolcke, 2002), standard 5-gram PLMs were estimated, with Witten-Bell
smoothing applied. For language models, only perplexity was used to describe the uncer-
tainty within the models. Table 7.4 compares the perplexities of language models which
were estimated using the four Arabic dialects and computed on the model-level transcrip-
tion of test sets with orders of 2, 3, 4 and 5. Evidently, the phonotactics of CA differ from
those of MSA, which is evident in the perplexities when applying on any CA PLM on the
MSA test set. For instance, when using a trigram PLM (Table 7.4b) trained on ICA, the
estimated perplexity on any of the CA test sets ranged between 10.5-15.1 as opposed to
18.1 when the perplexity was estimated on the MSA test set. This difference increased
considerably when estimating the perplexity using an MSA PLM on a CA test set, which
ranged between 67.6-71.6 as opposed to 6.3 on the MSA test set. Generally, the perplexity
decreases as the PLM order increases, for example, By increasing the order from 2- (Table
7.4a) to 5-gram (Table 7.4d), the perplexity computed using a GCA PLM on a LCA test
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Figure 7.7: Perplexity (y-axis) across English dialects for phonotactic language models of
order 2 to 5 grams (x-axis). Average perplexities is shown in solid line while the enclosed

area above and below indicating the range of the computed perplexities.

set decreased from 16.7 to 11.0. This lowest perplexity was obtained by applying a PLM
on a test set with a matching dialect. Results are shown as the diagonal in the Tables 7.4.
From the trend of these perplexities, it can be concluded that Gulf and Iraqi dialects are
closer to each other than to the remaining Arabic dialects since they yielded the lowest
perplexity in cross-dialect tests, in contrast to other dialects. Conversely, this diversity in
perplexity cross-test seen in Arabic is not observed on the North American English dialects.
Figure 7.7 shows the average perplexity computed across dialects with the minimum and
maximum values found in these tests.

If two language models predict similar sequences or generate similar perplexities, it
can be considered that they were estimated from related languages. Similarly, if two
phonotactic language models generate similar perplexities, the languages used for their
estimation should be considered related as well. Therefore, in an attempt to quantify
the relationship between the phonotactics of different dialects, the correlation between
perplexities on a test set was compared by unit. For a given test set, the perplexity was
computed for each unit in the given transcription using a phonotactic language model. In
an acoustic set of size 𝑁 , the perplexity is computed for each unit, 𝑎𝑖 and 𝑖 ∈ |{1, ..., 𝑁},
on a test set using an PLMA of order 𝑛, formally:

𝑈𝑛𝑖𝑡𝑃𝑃𝐿PPLA
(𝑎𝑖) = − 1

𝑀
𝑀
∑

𝑚=1
log 𝑃PPLA

(𝑎𝑖|ℎ𝑛−1) (7.1)
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7. Redefining the Arabic Acoustic Inventory

where 𝑀 is the number of occurrences of the unit 𝑎𝑖 in the test set and ℎ𝑛−1 is the a
sequence of 𝑛 − 1 units preceding 𝑢𝑖. Computing this perplexity for each unit 𝑎𝑖 in the
acoustic set, using Equation 7.1, a vector is constructed as follows:

𝑢𝑝𝑝𝑙𝐴 = [𝑈𝑛𝑖𝑡𝑃 𝑃𝐿PPLA
(𝑎𝑖)] 1 ≤ 𝑖 ≤ 𝑁, (7.2)

Two vectors of perplexities for the same acoustic set are constructed: 𝑢𝑝𝑝𝑙𝐴 and 𝑢𝑝𝑝𝑙𝐵.
𝑢𝑝𝑝𝑙𝐴 is computed with PLMA and 𝑢𝑝𝑝𝑙𝐵 is computed using PLMB. Both PLMs are of
the same order 𝑛. Then correlation between the perplexities of these units is computed as
follows:

Correlation(PLMA, PLMB) = Cov(𝑢𝑝𝑝𝑙𝐴, 𝑢𝑝𝑝𝑙𝐵)
√Cov(𝑢𝑝𝑝𝑙𝐴, 𝑢𝑝𝑝𝑙𝐴) ∗ Cov(𝑢𝑝𝑝𝑙𝐵, 𝑢𝑝𝑝𝑙𝐵)

(7.3)

where Cov(𝑢𝑝𝑝𝑙𝐴, 𝑢𝑝𝑝𝑙𝐵) is the covariance between the two vectors: 𝑢𝑝𝑝𝑙𝐴 and 𝑢𝑝𝑝𝑙𝐵. It
is defined as:

Covariance(𝑢𝑝𝑝𝑙𝐴, 𝑢𝑝𝑝𝑙𝐵) = 1
𝑁 − 1

𝑁
∑
𝑖=1

(𝑢𝑝𝑝𝑙(𝑖)
𝐴 − 𝜇𝐴) ∗ (𝑢𝑝𝑝𝑙(𝑖)

𝐵 − 𝜇𝐵) (7.4)

where 𝑁 is the size of the acoustic unit set. 𝜇𝐴 and 𝜇𝐵 are the mean of the the unit
perplexity vectors 𝑢𝑝𝑝𝑙𝐴 and 𝑢𝑝𝑝𝑙𝐵, respectively. 𝑢𝑝𝑝𝑙(𝑖)

𝐴 and 𝑢𝑝𝑝𝑙(𝑖)
𝐵 are the perplexity of

the unit 𝑢𝑖 using PPLA and PPLB, respectively.

Figure 7.8 depicts these correlations for Arabic and English dialects using GCA and
CAN test sets respectively. For brevity, only perplexity produced from bigram and quad-
gram PLMs are shown. Generally in both languages, a stronger correlation is observed
between bigram sequences than between quadgram sequences, suggesting that the dialects
tend to be more distinguishable on wider context rather than a local context. For Arabic
phonotactic correlation, shown in Figure 7.8a, it was obvious that there were two bands
of correlations: one between CA dialects and MSA and the other among the CA dialects
themselves. It can be seen that the correlation between dialects and MSA was weak, as
low as -0.5 for bigram PLMs and it can reach -0.1 for quadgram PLMs, especially for the
vowels, H, $ and h which occur more often in CA (as exclusive affixes which do not ex-
ist in MSA). On the other band, dialects showed stronger correlation between each other
which reached 0.2 for bigram PLM and 0.4 for quadgram PLM. This drastic difference in
correlation between all four Arabic dialects generally was not observed in English at all.
All English dialects behaved in the same manner toward the test set and generated similar
perplexities regardless of the dialect used in the acoustic set.
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7. Redefining the Arabic Acoustic Inventory

Acoustic confusablility across dialects

To assess the impact of using these models and the acoustic confusablility observed across
different dialects in the model set, a test set was force-aligned on the model-level where
a given unit can be assigned to any unit within the acoustic set without any restrictions,
i.e. regardless of the context. In this experiment, referred to as unconstrained forced
alignment, the number of units to be recognised is known for each test utterance along
with the existence of silence units 5. Two metrics were employed: unit error rate and
frame error rate. Unit error rate (UER) is the edit distance between the reference and the
aligned sequence; however, only substitution errors are considered in the unconstrained
force-alignment test because the number of the units per test utterance does not change
with any insertions or additions. Frame error rate (FER) is the percentage of misclassified
frames in the test set.

As Table 7.5 shows, the cross-test results for Arabic dialects, the best performance
achieved is when the dialect of an acoustic set matches that of the test set. Such a
preference for matching the acoustic set and the test set was not observed in the English
cross-tests overall. The performance of aligning the MSA acoustic set to the MSA test
set significantly outperformed the other tests by an average of 25% UER and 30% FER
absolute, possibly due to the nature of the data, as it was recorded in a controlled and quiet
environment. This differs from CA sets which were drawn from CTS conversation without
any control over the recording environment or channels. Moreover, the mapping between
phonemes and graphemes in MSA is more stable and simpler than CA, as discussed earlier
in Section 2.4. The similarity between GCA and ICA based on their PLM perplexities
observed above is confirmed by the UER and FER scores obtained from aligning the GCA
test set using the ICA acoustic set and vice versa.

One of the important distinctions between the unconstrained force-alignment test and
the context-free phone recognition test is that the number of units to be recognised in each
utterance is known in the former, along with the existence of silence units. Without any
constraints on the number of units in the utterance, insertion and deletion errors occur. The
unknown location of silence models causes the recognition performance to be dependent on
the quality of the silence model within the acoustic set. The lower quality of silence model,
the more deletion errors occur (because most of the frames will be incorrectly assigned to
the silence model) while more insertions occur with better silence models. Such a case
can be clearly observed when the MSA acoustic set was used, due to the higher quality
of the audio recordings, where UER exceeded 100% due to insertions. However, FER

5Such information is not known in a context-free phone recognition task where no context information
was used.
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7.2. Development of the new Arabic acoustic inventory

Table 7.5: Unit error rate (UER) and frame error rate (FER) for various test settings
across Arabic dialects using the proposed phonetic acoustic inventory.

(a) Unconstrained forced-alignment

AM
Test sets

GCA ICA LCA MSA
UER FER UER FER UER FER UER FER

GCA 78.2 54.2 81.8 58.1 81.4 61.0 86.4 66.8
ICA 80.6 59.0 79.1 49.7 82.3 61.5 83.9 59.3
LCA 82.0 62.5 83.4 61.2 79.3 55.0 84.6 63.0
MSA 91.0 77.3 90.3 73.5 90.0 75.7 53.7 24.2

(b) Context-free phone recognition

AM
Test sets

GCA ICA LCA MSA
UER FER UER FER UER FER UER FER

GCA 81.9 57.8 63.2 60.2 63.5 63.2 74.0 69.6
ICA 84.3 62.2 75.7 52.5 80.1 63.8 94.8 63.4
LCA 91.5 65.6 86.5 63.5 78.1 57.8 105.1 66.8
MSA 96.0 77.5 89.3 73.8 90.3 75.8 38.6 26.5

(c) Phone recognition with bigram PLM

AM & PLM
GCA ICA LCA MSA

UER FER UER FER UER FER UER FER
Test sets

GCA 61.7 54.6 62.8 57.9 63.3 61.8 74.2 65.1
ICA 61.6 57.2 56.7 47.4 61.4 60.2 67.4 56.8
LCA 64.0 61.3 63.2 60.3 57.3 52.7 68.0 59.5
MSA 73.4 76.3 70.5 72.5 70.1 73.9 26.0 21.0
AM PLM & Test set
GCA 61.7 54.6 60.2 55.6 60.2 58.3 68.5 59.6
ICA 62.9 58.8 56.7 47.4 60.4 59.1 63.4 53.2
LCA 64.8 62.2 61.8 59.2 57.3 52.7 63.8 55.0
MSA 74.4 78.6 67.1 70.9 67.3 72.5 26.0 21.0
PLM AM & Test set
GCA 61.7 54.6 59.0 49.2 59.3 54.7 28.8 24.1
ICA 59.9 52.9 56.7 47.4 57.6 53.1 27.5 22.5
LCA 59.9 53.0 57.3 48.0 57.3 52.7 27.4 22.4
MSA 60.9 54.5 58.5 49.3 58.6 54.2 26.0 21.0
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Table 7.6: Unit error rate (UER) and frame error rate (FER) for various test settings
across English dialects using a phonetic acoustic inventory.

(a) Unconstrained forced-alignment

AM
Test sets

CAN MID NTH STH WST
UER FER UER FER UER FER UER FER UER FER

CAN 88.0 66.1 84.2 61.3 86.5 61.4 90.6 71.4 85.6 61.9
MID 86.9 65.3 83.6 60.4 86.1 61.0 89.2 70.7 83.9 59.3
NTH 87.0 64.8 83.5 59.6 89.1 70.0 89.8 71.3 84.9 60.1
STH 87.4 66.0 83.8 60.5 86.0 61.9 85.2 59.6 84.9 59.8
WST 87.5 65.5 84.6 61.3 86.1 61.2 89.7 71.3 84.6 59.4

(b) Context-free decoding

AM
Test sets

CAN MID NTH STH WST
UER FER UER FER UER FER UER FER UER FER

CAN 96.1 65.1 107.3 66.0 102.6 65.6 101.3 70.4 102.8 63.5
MID 96.1 65.0 100.4 65.1 97.6 65.3 94.6 68.4 95.3 60.3
NTH 97.6 65.5 100.3 64.4 94.7 63.6 96.8 70.7 91.4 61.5
STH 95.5 66.0 98.7 64.8 97.0 66.8 98.2 68.6 91.8 59.7
WST 102.0 65.7 107.0 66.6 97.7 65.9 99.6 70.7 91.8 60.2

(c) Phone recognition with bigram PLM

AM & PLM
CAN MID NTH STH WST

UER FER UER FER UER FER UER FER UER FER
Test sets

CAN 71.9 55.8 66.3 58.0 70.7 56.5 74.2 62.7 65.5 54.0
MID 72.4 54.5 67.3 60.3 70.4 58.5 73.3 60.5 65.2 51.2
NTH 72.0 55.0 66.4 55.8 69.4 56.4 73.5 62.8 64.7 52.8
STH 72.9 56.7 67.8 57.2 71.5 59.8 73.1 58.7 65.2 51.3
WST 71.8 55.4 67.3 57.5 69.8 58.7 72.7 62.2 63.9 51.5
AM PLM & Test set
CAN 71.9 55.8 66.3 58.1 70.7 56.5 74.1 62.2 65.4 54.0
MID 72.4 54.4 67.3 60.3 70.3 58.3 73.3 60.3 65.3 51.5
NTH 71.9 54.7 66.2 55.9 69.4 56.4 73.4 62.9 64.8 52.9
STH 72.9 57.1 67.8 57.1 71.5 59.9 73.1 58.7 65.3 51.3
WST 71.7 55.3 67.3 57.5 69.7 58.9 72.8 62.4 63.9 51.5
PLM AM & Test set
CAN 71.9 55.8 67.2 59.9 69.2 56.3 73.1 58.7 63.9 51.6
MID 71.9 55.5 67.3 60.3 69.4 56.3 73.1 58.7 63.9 51.4
NTH 71.9 55.3 67.2 60.3 69.4 56.4 73.1 58.8 63.8 51.5
STH 71.9 55.3 67.3 60.2 69.4 56.7 73.1 58.7 63.9 51.6
WST 71.9 55.8 67.3 60.2 69.4 56.9 73.1 58.9 63.9 51.5
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always degrades by 0.1-5.1% absolute in context-free phone recognition in comparison to
unconstrained force-alignment for both languages. In this test, the best performance was
obtained in terms of FER when the dialect of the acoustic set matched the dialect of the
test set as in the unconstrained force-alignment test. This was not the case if the UER
metric was used where using GCA acoustic set seems to be preferred by all other CA
dialects.

Considering a local context as small as two units (as in bigram PLM) improves the
performance for phone recognition significantly in terms of UER and FER, as expected .
UER improved by at least 12.6% absolute and FER by at least 3.2% absolute for the Arabic
and English dialects. For any combinations of resources (Acoustic models, PLM, test set),
four different cases were tested:

• The dialect of acoustic models and the dialect of PLM must be matched.

• The dialect of acoustic models and the dialect of test set must be matched.

• The dialect of PLM and the dialect of test set must be matched.

• The dialect of all resources must be matched.

Overall, using a matching acoustic set and PLM to a test set had the best performance
for Arabic dialects (the last case). Using this case as a baseline, using PLM matched to the
test set was not as effective as using a matching acoustic set in CA, where UER degrades
by 1.2-7.7% absolute in the former case and only by 0.3-2.8% absolute in the latter. Again,
such a preference toward matching dialects between resources was not observed in English
dialects.

In order to incorporate context information in the unconstrained force-alignment test,
a lattice was generated for each test set using an acoustic set, where only bigram context
were considered in order to restrict the lattice size. Afterwards, the lattice was re-scored
using PLMs with different orders. As in the phone recognition task with bigram PLM,
the same four combinations of resources were tested. In addition, the scores obtained from
PLM are scaled using grammar scaling factor to evaluate the impact of increasing the
reliance on the phonotactic of a certain dialect on the recognition performance.

Figure 7.9 visualises UER plots for each setting on each test set for both languages.
Each plot represents a test set where each line shows the UER for a test setting combi-
nation of acoustic set and PLM order that progresses over an increasing grammar scaling
factor for the PLM scores. Generally, higher order PLMs have a positive impact on recog-
nition performance as long as it did not suffer from data sparsity, as in 5-g PLMs. This
observation is consistent in all English test sets, but not always true for Arabic dialects
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where the improvement, if any, was marginal. This confirms the conclusion from the phone
recognition task that changing the PLM has less effect on the recognition performance than
changing the acoustic set.

7.3 Context-independent multi-phoneme graphemes and re-
structuring the acoustic inventory

In the previous section, only issues that can be resolved via contextual information derived
from either graphemic representation or from acoustic information were investigated. How-
ever, another issue that arises for CA are homophone words, where several words differ in
their written form but share the same pronunciation, which stems from the new phonemic
mapping between consonants. For example, the phoneme /g/ maps to both graphemes
“q” and “j”, leading to homophone words such as “qryt” (I read) and “jryt” (I ran) which
are both pronounced as /gri:t/. This is only a problem in CA as these examples are
not homophone words in MSA. This ambiguity in the mapping is not context-dependent,
so the chosen phoneme cannot be identified from the surrounding context. Moreover,
these mappings are inconsistent within a dialect and sometimes even for the speakers
themselves. Therefore, these graphemes will be referred to as context-independent multi-
phoneme graphemes.

To visualise how such cases can be problematic for acoustic modelling, three context-
dependent models were chosen from the trained acoustic set used in the Section 7.2: s,
th (pronounced as /𝜃/) and iy. These three models do not share any of their states with
each other but they have similar context in terms of phonetic classes, i.e. on the left they
have a glide and on the right silence. Figures 7.10 and 7.11 compare the PLP features
and their first derivatives (in the first 26 dimensions) represented by these three models.
Due to the difficulty in visualising a multivariate Gaussian6, each dimension was plotted
individually with a separate Gaussian for each state. As shown in the figure, distributions
that belong to models th and s are closer to each other than those belonging to model
iy, and almost identical in several dimensions. As it has been shown in Figure 7.3, th
and s, representing the nominated graphemes “v” and “s”, share the phoneme /s/ in an
inconsistent manner. It is not possible to predict which phoneme should be chosen from
the context. The similarity between the models s and th shows that these two models can
actually represent the same phoneme /s/.

To resolve this ambiguity and reduce the number of models competing over the same
acoustic value, these two models should be represented by one model. Hypothetically,
all triphones representing the three phonemes /iy/, /s/ and /th/ can be plotted in some

6which in this case would have 39 dimensions: 13 PLP features and their first and second derivatives.
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Figure 7.10: Comparison of the PLP features (first 13 dimensions) represented by three
acoustic models: iy (vertical blue), th (horizontal orange) and s (diagonal gray). Each

model has 32 Gaussian mixtures. The models s and th are closer to each other than to iy.
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Figure 7.11: Comparison of the first derivatives of the PLP features represented by three
acoustic models: iy (vertical blue), th (horizontal orange) and s (diagonal gray). Each

model has 32 Gaussian mixtures. The models s and th are closer to each other than to iy.
The scale of the x-axis is different from that of Figure 7.10 .
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Figure 7.12: A hypothetical illustration of all triphones of the three models /s/, /th/ and
/iy/ in Figure 7.10 and Figure 7.11 in some model similarity space. (left) current

situation of the three models; (right) optimum model separation.

similarity space where the smaller a distance between two data points (or triphones),
the similar these units are. Figure 7.12 illustrates this hypothetical plot and shows the
optimum model space where similar units are grouped together. In order to reveal which
models are representing the same phoneme, the model space can be organised based on
some distance metric. Based on the (dis)similarity metric, similar models can be clustered
together and substituted by a single model. Hartmann et al. (2013) proposed a strategy
to discover acoustic units and create a pronunciation dictionary from an initial grapheme-
based ASR system automatically. In their method, a similarity matrix was constructed
from context-dependent grapheme units. Then spectral-based clustering was used to group
similar units into clusters. These clusters represent the discovered units. Then, translation
rules from a grapheme sequence to a discovered unit sequence were obtained using an SMT-
based approach. Not all translation rules were kept. Each rule was evaluated based on
average log-likelihood during force-alignment after applying that rule on the pronunciation
dictionary. Only rules that improved the average log-likelihood were kept and used for
pronunciation generation.

In the following sections, a modified version of Hartmann et al. (2013)’s strategy is
proposed for restructuring the model space into less acoustically confused units whilst
retaining phonemic separation. Starting from the context-dependent acoustic models, de-
rived in Section 7.2, a dissimilarity matrix is computed (Section 7.3.1). After that, a
hierarchical agglomerative (bottom-up) clustering is applied (Section 7.3.2) to generate
hierarchical decomposition for the original context-dependent acoustic models where the
extraction of the new units (represented by clusters) takes place. Each unit is substituted
by its assigned cluster name in the training transcription by which all different pronunci-
ation variants can be obtained for each word (Section 7.3.3), then finally a G2P model is
trained based on these new variants (Section 7.3.6).
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7.3.1 HMM similarity

An HMM, ℎ, is defined by three parameters:

• the initial state distribution, 𝜆;

• the state transition probability matrix, 𝐀 = [𝑎𝑖,𝑗] where 𝑎𝑖,𝑗 is the transition prob-
ability from state 𝑖 to state 𝑗, s.t. ∑𝑗 𝑎𝑖,𝑗 = 1;

• the output emission probability distribution for each state, 𝐵 = [𝑏𝑖(𝑜𝑡)] where 𝑏𝑖(𝑜𝑡)
is the probability of an observation 𝑜𝑡 being generated by the state 𝑖.

To compute the similarity between two HMMs, ℎ and ℎ′ with 𝐼 and 𝐽 states respec-
tively, two components must be considered: the similarity between the output distributions
within the states and the similarity in the transition between these states. Hartmann et al.
(2013) formulated this as follows:

HMMsim(ℎ, ℎ′) =
𝐼−1
∑
𝑖=2

𝐽−1
∑
𝑗=2

𝛼𝑖𝑗 Similarity(ℎ𝑖, ℎ′
𝑗) (7.5)

where ℎ𝑖 and ℎ′
𝑗 are the 𝑖th and 𝑗th states within ℎ and ℎ′ respectively, starting from the

first to the last emitting states. 𝛼𝑖𝑗 approximates the probability of simultaneously being
in states 𝑖 and 𝑗 of the two HMMs ℎ and ℎ′ respectively. Similarity(ℎ𝑖, ℎ′

𝑗) computes the
similarity between output probability distributions within the states ℎ𝑖 and ℎ′

𝑗. This can
be expressed for example in terms of their divergence, 𝐷(ℎ𝑖||ℎ′

𝑗), as one of the following
expressions:

Similarity(ℎ𝑖, ℎ′
𝑗) = (𝐷(ℎ𝑖||ℎ′

𝑗) + 1)−1, (7.6)

Similarity(ℎ𝑖, ℎ′
𝑗) = exp(−𝑘 𝐷(ℎ𝑖||ℎ′

𝑗)), (7.7)

Similarity(ℎ𝑖, ℎ′
𝑗) = exp(−𝐷(ℎ𝑖||ℎ′

𝑗)2

𝑘2 ), (7.8)

where 𝑘 in Equations 7.7 and 7.8 is a constant scaling parameter. 𝐷(ℎ𝑖||ℎ′
𝑗) can be one

of the Kullback-Leibler divergence (KLD) variants, such as Sahraeian and Yoon (2011),
or any other divergence which can be computed (or approximated) between the Gaussian
mixtures models.
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Divergence between output probability distributions

Following Hartmann et al. (2013), the Cauchy-Schwarz divergence (CSD) was chosen since
it has a closed-form solution and has been shown to perform comparably to the KLD
(Kampa et al., 2011), while the latter cannot be computed analytically for GMMs. The
CSD between two GMMs is defined as follows:

CSD(𝑝||𝑞) = − log ∫ 𝑝(𝑥)𝑞(𝑥)𝑑𝑥
√∫ 𝑝(𝑥)2𝑑𝑥 ∫ 𝑞(𝑥)2𝑑𝑥

,

= − log ∫ 𝑝(𝑥)𝑞(𝑥)𝑑𝑥 + 0.5 log ∫ 𝑝(𝑥)2𝑑𝑥 + 0.5 log ∫ 𝑞(𝑥)2𝑑𝑥, (7.9)

where 𝑝(𝑥) and 𝑞(𝑥) are GMM distributions with different parameters for each:

𝑝(𝑥) =
𝑀
∑

𝑚=1
𝜋𝑚 𝒩(𝑥; 𝜇𝑚, Λ−1

𝑚 ) (7.10)

and

𝑞(𝑥) =
𝐾

∑
𝑘=1

𝜏𝑘 𝒩(𝑥; 𝜈𝑘, Ω−1
𝑘 ) (7.11)

and 𝒩 is a multivariate Gaussian distribution of dimension 𝐷 which is given by:

𝒩(𝑥; 𝜇𝑚, Λ−1
𝑚 ) = |Λ𝑚|0.5

(2𝜋)0.5𝐷 exp (−0.5(𝑥 − 𝜇𝑚)⊤Λ𝑚(𝑥 − 𝜇𝑖)) ∶ 𝑥 ∈ ℜ𝐷 (7.12)

The product of two Gaussian distributions is also Gaussian (derivation is provided in
Appendix D):

𝑝(𝑥)𝑞(𝑥) = 𝒩(𝑥; 𝜇, Λ)𝒩(𝑥; 𝜈, Ω)
= 𝒩(𝜇; 𝜈, Λ + Ω)𝒩(𝑥; 𝜉, Φ) (7.13)

where Φ = (Λ−1 + Ω−1) and 𝜉 = Φ(Λ−1𝜇 + Ω−1𝜈). Hence, the integral of two Gaussian
distributions in Equation 7.9 can be computed as:
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∫ 𝑝(𝑥)𝑞(𝑥)𝑑𝑥 = ∫ 𝒩(𝑥; 𝜇, Λ)𝒩(𝑥; 𝜈, Ω)𝑑𝑥 (7.14)

= ∫ 𝒩(𝜇; 𝜈, Λ + Ω)𝒩(𝑥; 𝜉, Φ)𝑑𝑥 (7.15)

= 𝒩(𝜇; 𝜈, Λ + Ω) ∫ 𝒩(𝑥; 𝜉, Φ)𝑑𝑥 (7.16)

= 𝒩(𝜇; 𝜈, Λ + Ω) (7.17)

Equation 7.15 replaces the product of two Gaussian distributions in Equation 7.14 using
the definition in Equation 7.13. Since the term 𝒩(𝜇; 𝜈, Λ+Ω) is independent of 𝑥, Equation
7.16 takes it outside the integral operation. The original distributions represent probability
distributions, so ∫ 𝑝(𝑥)𝑑𝑥 = 1; hence Equation 7.17. Using this definition, in Equation
7.17, the closed-form expression of CSD(𝑝||𝑞) (Equation 7.9) independently of 𝑥 is as follows
(Kampa et al., 2011) :

CSD(𝑝||𝑞) = − log (
𝑀
∑

𝑚=1

𝐾
∑
𝑘=1

𝜋𝑚𝜏𝑘𝑧𝑚𝑘)

+ 0.5 log(
𝑀
∑

𝑚=1

𝜋2
𝑚|Λ𝑚|0.5

(2𝜋)0.5𝐷 ) + 2
𝑀
∑

𝑚=1
∑

𝑚′<𝑚
𝜋𝑚𝜋𝑚′𝑧𝑚𝑚′

+ 0.5 log(
𝐾

∑
𝑘=1

𝜏2
𝑘 |Ω𝑘|0.5

(2𝜋)0.5𝐷 ) + 2
𝐾

∑
𝑘=1

∑
𝑘′<𝑘

𝜏𝑘𝜏𝑘′𝑧𝑘𝑘′ (7.18)

where:

𝑧𝑚𝑘 = 𝒩(𝜇𝑚; 𝜈𝑘, (Λ−1
𝑚 + Ω−1

𝑘 )) (7.19)

𝑧𝑚𝑚′ = 𝒩(𝜇𝑚; 𝜇𝑚′ , (Λ−1
𝑚 + Λ−1

𝑚′)) (7.20)

𝑧𝑘𝑘′ = 𝒩(𝜈𝑘; 𝜈𝑘′ , (Ω−1
𝑘 + Ω−1

𝑘′ )) (7.21)

State occupancy distribution

One of the properties of Markov chains is that they are ergodic (Norris, 1998) by which the
knowledge of the initial distribution, 𝜆, fades over the time until it disappears at the end to
reach a distribution known as stationary distribution. This distribution defines the state
occupancy within the system over the time. However, ASR employs left-to-right HMMs,
which each has an entry and an exit non-emitting states, so it is not infinite; therefore, it
does not have a stationary distribution.

To approximate this distribution, Hartmann et al. (2013) suggested computing an oc-
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cupancy matrix (denoted as 𝛼𝑖𝑗 in Equation 7.5) over a sequence of 𝑁 steps. 𝛼𝑖𝑗 approx-
imates the probability of simultaneously being in a pair of states 𝑖 and 𝑗 from the two
HMMs ℎ and ℎ′ respectively. In order to compute 𝛼𝑖𝑗, the probability of being at state
𝑠 at time 𝑡 must be computed for each HMM. As time passes, i.e. 𝑡 gets larger, the prob-
ability becomes smaller until it reaches zero because it is going toward exiting the state
and the HMM eventually. Figure 7.13 illustrates this behaviour in a left-to-right HMM
where the probability of the first emitting state to be occupied is high at the early steps in
the sequence while it is zero for the other states, as the time passes, the probability of the
first state to be occupied decreases as the probability to occupy the next state increases
until the probability of occupying any of the states tends to be zero for greater values of 𝑡.
Formally, the probability of being at state 𝑖 in HMM ℎ at time 𝑡,𝑃ℎ(𝑠𝑡 = 𝑖), is computed
as follows:

𝑃ℎ(𝑠𝑡 = 𝑖) = 𝑃ℎ(𝑠𝑡−1 = 𝑖) ∗ 𝑎𝑖,𝑖 + 𝑃ℎ(𝑠𝑡−1 = 𝑖 − 1) ∗ 𝑎𝑖−1,𝑖 (7.22)

where the first term, 𝑃ℎ(𝑠𝑡−1 = 𝑖)∗𝑎𝑖,𝑖, accumulates the probability of staying in the state
(self-loop) while the second term, 𝑃ℎ(𝑠𝑡−1 = 𝑖 − 1) ∗ 𝑎𝑖−1,𝑖, accumulates the probability of
arriving at the state 𝑖 from all previous states. This computation always starts from the
first state, i.e. 𝑃ℎ(𝑠0 = 0) = 1.

Since the event of being at state 𝑖 of ℎ at time 𝑡 is independent of the event of being
at state 𝑗 of ℎ′ at the same time 𝑡, the probability of these two events occurring together
is the product of the probabilities of each event individually. So 𝛼𝑖𝑗 can be expressed as:

𝛼𝑖𝑗 =
∑𝑡 𝑃ℎ(𝑠𝑡 = 𝑖)𝑃ℎ′(𝑠𝑡 = 𝑗)

max (∑𝑚 ∑𝑡 𝑃ℎ(𝑠𝑡 = 𝑚), ∑𝑛 ∑𝑡 𝑃ℎ′(𝑠𝑡 = 𝑛))
(7.23)

where ∑𝑚 ∑𝑡 𝑃ℎ(𝑠𝑡 = 𝑚) is the accumulated probability of being at any state 𝑚 in the
HMM ℎ over the time 𝑡. The denominator is the maximum of this accumulation between
the two HMMs ℎ and ℎ′ and it acts as a normalisation factor to approximate the computed
quantity into the desired probability where 0 ≤ 𝛼𝑖𝑗 ≤ 1.

Similarity matrix

Using Equation 7.5, a similarity matrix can be composed for a given set of HMMs where
each element in the matrix represents the similarity between two HMMs. As a similarity
metric, it satisfies the following conditions (proofs are shown in Appendix D):

• Symmetry: HMMsim(𝑥, 𝑦) = HMMsim(𝑦, 𝑥)

• Non-negativity: HMMsim(𝑥, 𝑦) ≥ 0

• Triangle inequality: HMMsim(𝑥, 𝑧) ≤ HMMsim(𝑥, 𝑦) + HMMsim(𝑦, 𝑧)
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Figure 7.13: An example of state occupancy probabilities for each state in a 3-state
left-to-right HMM. State[0] is the entry non-emitting state, which it is occupied only

when 𝑡 = 0. State[4] is the exit non-emitting state.

But not:

• Identity: HMMsim(𝑥, 𝑥) = 1

In order to satisfy the identity condition, each row in the similarity matrix is nor-
malised by the value of HMMsim(𝑥, 𝑥) of that row. To ensure the symmetry condition is
satisfied, the resulting matrix should be symmetrised by the average of HMMsim(𝑥, 𝑦) and
HMMsim(𝑦, 𝑥) as follows:

HMMsim(𝑥, 𝑦) = HMMsim(𝑦, 𝑥) = HMMsim(𝑥, 𝑦) + HMMsim(𝑦, 𝑥)
2

7.3.2 Agglomerative hierarchical clustering

A hierarchical clustering splits a given set of objects into clusters recursively by either a top-
down (divisive) or bottom-up (agglomerative) fashion. In divisive hierarchical clustering,
all objects are grouped into one cluster initially, then the cluster is divided based on the
(dis)similarity metric into sub-clusters recursively until there is only one object per cluster.
In contrast, agglomerative hierarchical clustering is initialised by assigning each object to its
own cluster, then these clusters are merged based on the (dis)similarity metric recursively
until there is only one cluster containing all objects. Both methods generate a hierarchical
structure, known as a dendrogram, which is a tree-like representation where all objects are
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leaves at the bottom and the inner nodes represent clusters while the similarity between
two objects (or clusters) is proportional to the height of the first inner node joining them
where all leaves are setting at the zero-level.

There are several hierarchical clustering algorithms, based on how the similarity be-
tween formed clusters is computed. Typical methods are single, complete and average
linkage. If there are two clusters 𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑛} and 𝐵 = {𝑏1, 𝑏2, ...𝑏𝑚} where
𝑎1, ..., 𝑎𝑛 and 𝑏1, ..., 𝑏𝑚 are member objects of these clusters respectively, single linkage
considers the distance between 𝐴 and 𝐵 to be equal to the shortest distance between any
pair (𝑎𝑖, 𝑏𝑗) of their members (Sneath et al., 1973), whereas complete linkage considers the
longest distance between any pair (𝑎𝑖, 𝑏𝑗) to be equal to the distance between the clusters
𝐴 and 𝐵 (King, 1967). Average linkage considers the distance between any two clusters
to be equal to the average distance from any member of one cluster to any member of
the other (Ward Jr, 1963; Murtagh, 1983). Clusters based on single linkage suffer from
chaining by which two clusters are merged if at least two points from each clusters are
close to each other. Therefore, single linkage is not robust to noisy data. In contrast,
clusters based on complete linkage are compact but they suffer from crowding where they
are not far enough apart. Average linkage balances between single and complete linkage
where its clusters are relatively far apart and compact. However, all these linkage methods
are sensitive to noise, outliers and subsets of different size and densities. The distribution
of context-dependent HMMs in a given set of transcriptions is not uniform and depends
on the frequency of occurrences of these models in the data. Consequently, the overall
frequency distributions of a given data has several densities with different sizes, according
to their frequency in the data. Therefore, these linkage methods should be avoided.

The graph degree linkage method (Zhang et al., 2012) overcomes these problems. It
is based on graph theory by which a weighted directed adjacency graph is built based on
the (dis)similarity matrix. Using this graph, the similarity is computed between clusters
based on the product of so called indegree and outdegree in the graph. Indegree of a node
from a cluster measures the density near the node, while outdegree of a node to a cluster
measures the similarity between a node and a cluster with respect to its 𝐾-neighbours.
This algorithm outperforms other linkage methods in image clustering and object matching
tasks, even handling manifold structure in high-dimensional space (Zhang et al., 2012).

To obtain the desired number of clusters, the dendrogram is cut at a fixed height
where the number of internal nodes on the level directly below the cut height is equal
to the number of desired clusters, with each internal node constituting a cluster. Figure
7.14 illustrates an example for a dendrogram from which different numbers of clusters
can be obtained. In the example, the hierarchical structure for a set of eight objects
{𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 , 𝐺} is generated based on a (dis)similarity metric where the most similar
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Figure 7.14: An example of a dendrogram and choice of clusters using the fixed height
cut method. Different cut-off points define the number of obtained clusters which are the

number of first internal nodes encountered below the cutt-off point.

nodes are connected together by an internal node. For example, (𝐴,𝐷) are clustered
together as well as (𝐵,𝐸) and (𝐶,𝐺), then the latter two clusters are grouped together and
so on. The closer the internal nodes are to the baseline, the more similar the clusters, i.e.
(𝐴,𝐷) are more similar to each other than (𝐵,𝐸).

By defining a cut-off point, the number of clusters obtained is the number of first
internal nodes below the cut-off point. Figure 7.14 shows several cut-off points along with
the obtained number of clusters, e.g. three clusters for a cut-off point of 0.5. This method
for extracting clusters is known as fixed height cut method because the cut-off is made
uniformly at a certain level.

For the purpose of clustering context-dependent HMMs, the main objective is to de-
crease the ambiguity and the possibility of creating homophone words. This means that
phonemic sounds should not be merged even if they are similar to each other acoustically. If
the clustering method generates clusters that violate such constraint, an alternative strat-
egy to fixed height cut should be employed for defining the cut-off points in the dendeogram
while retaining the desired number of clusters.

7.3.3 Restructuring the CA acoustic inventory

Using the proposed method to cluster a context-dependent acoustic model set, the model
space hierarchical structure can be revealed and the models can be grouped based on the
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similarity between the models into 𝑋 clusters, while phonemic segregation is retained.
Each cluster then represents a new model. These 𝑋 models are used to substitute all
the context-dependent models in the training transcription to be used to train the new
clustered model set, cX, where 𝑋 is the number of clusters obtained. After that, the newly
transformed transcriptions are used to train context-independent cX models and state-tied
context-dependent cX models by applying Expectation-Maximisation (EM) algorithm.

7.3.4 State tying for the restructured models

Generally, context-dependent acoustic models encode the impact of neighbouring phon-
emes on the acoustic realisation of a given phoneme, known as coarticulation. Each
context-dependent HMM models the centre phoneme in a sequence of three (triphone)
or five phonemes (quentphone). Modelling all possible contexts results in a large number
of models and thus parameters which are not all observed in the training data. To counter
this, clustering is used to tie these parameters together. All states within the same cluster
are tied, thus reducing the total number of parameters to allow more robust estimation.
This clustering is customarily based on the context’s phonetic classes using some form of
parameter tying scheme such as phonetic decision trees (Odell and Woodland, 1994). A
phonetic decision tree (Breiman et al., 1984) is a binary tree which splits the HMM states
by recursively answering a logical question about the immediate phonemic context. An
example of such questions is “Is a nasal on the left of the current phoneme?”. These ques-
tions are generated either manually, based on linguistic knowledge of the mapping between
the acoustic units and their phonetic class (Young and Woodland, 1994), or automatically,
based on a bottom-up clustering of context-independent HMM model states (Beulen and
Ney, 1998).

In order to generate such questions for tying the parameters of cX model set, either
the mapping between each unit and a phonetic class should be established or states should
be clustered in an agglomerative fashion. Before restructuring the model space into the cX
model set based on the HMM similarity, each unit in the phn acoustic set is mapped to a
phonetic class. However, after extracting the new models from the hierarchical structure of
the original model space, this mapping is no longer clear which dismisses the first strategy
in generating the state-tying questions. Therefore, the latter strategy is taken and an
automatic process is introduced based on the CSD (discussed in Section 7.3.1) between the
states of the cX model set.

Similar to the method of Beulen and Ney (1998), an agglomerative clustering can be
applied on the states of context-independent cX model set. Beside the dissimilarity matrix
between the states, which can be computed based on CSD, the position of the state can
also be used. This means that, for example, only the first states in HMMs are considered
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Algorithm 7.1 Generate 𝐾 questions based on dissimilarity matrix 𝐷 and state position
information

1: procedure GenerateQuestions(𝐷, 𝐻, 𝐾)
2: 𝑁 ← 𝐾 ▷ 𝑁 number of clusters extracted by graph degree linkage hierarchical

clustering
3: PreviousCount ← 0
4: Update ← 𝑁/2
5: 𝑄 ← {} ▷ 𝑄 set of question clusters
6: while |𝑄| ≠ 𝐾 & Update/2 ≠ 0 do ▷ |𝑄| number of questions extracted so far
7: 𝐴 ← GDLHC(𝐷, 𝑁) ▷ Use graph degree linkage hierarchical clustering
8: 𝑄 ← ClusterByStatePosition(𝐴, 𝐻)
9: ▷ Further split found clusters based on state position 𝐻

10: if |𝑄| > 𝐾 then
11: if PreviousCount ≤ 0 then
12: Update ← Update/2
13: 𝑁 ← 𝑁 − Update
14: PreviousCount ← 1
15: else
16: if PreviousCount ≥ 0 then
17: Update ← Update/2
18: 𝑁 ← 𝑁 + Update
19: PreviousCount ← −1
20: return 𝑄

for clustering together and only second states are clustered together and so on. In order
to consider both features, states dissimilarity and position, in generating the questions set,
the clustering process can be performed in two steps. At first, a hierarchical structure is
generated for these states based on a dissimilarity matrix, based on CSD. This is followed
by further splitting of each cluster into sub-clusters based on the position of the states in a
given HMM. The number of resulting clusters is equivalent to the number of questions to be
generated. All units belonging to a cluster represent affirmative answers to the questions.
For example, if the models {m1, m32, m40} belong to the cluster clst1, then the answer
to the questions “Is a clst1 model in to the right?” will be YES if and only if the model
on the right is either m1, m32 or m40; otherwise, the answer will be NO. These steps are
summarised in iterative algorithm shown in Algorithm 7.1 to extract 𝐾 questions using
state position information 𝐻 and state dissimilarity matrix 𝐷.

In a phonetic decision tree (Breiman et al., 1984), the question at each node is chosen
to improve the likelihood of the clustered states while there is sufficient7 amount of training
data for robust estimation. Therefore, having a large pool of questions to choose the most
effective questions to build the decision tree is preferable. By using the method described

7By defining threshold to indicate a minimum accepted amount of training data.
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above for generating the questions, the maximum number of questions is the total number
of units because each unit belongs to only one cluster. To extend the number of generated
questions, soft clustering can be employed, where a unit can be assigned to one or more
clusters. Alternatively, clustering the states of the context-dependent cX model set is
used instead of the states of the context-independent cX model set. As a result, a unit
is associated with every cluster (or question) if it is the centre phone for a model in that
cluster. For example, for a given three context-independent models, {q, e, w}, the following
clusters were extracted:

clst1 = { q, e }
clst2 = { w }

This means the questions for each context-independent model is:

q : clst1
e : clst1
w : clst2

Here, each model is having only one question assigned to it. However, when considering
the subset of context-dependent models {w-e+q, w-e+w, w-q+e, w-q+w, q-e+w, q-w+e},
the following clusters were extracted:

clst1 = { w-e+w, w-q+e, w-q+w }
clst2 = { w-e+q, q-e+w, q-w+e }

By considering only the centre phone, the following clustering will be assigned instead after
removing all repeated units:

clst1 = { e, q }
clst2 = { e, w }

As a results, more questions can be assigned to the same model which can be considered
as soft clustering, such that:

q : clst1
e : clst1, clst2
w : clst2

7.3.5 Results and discussion

This section describes several experiments that were conducted to assess the cX acoustic
set. First, several cX with different number of clusters are compared in terms of their phone
recognition performance and quantity of learning within the models. Second, an analysis
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of the change in the assignment of the original acoustic set and the new cX clusters is pre-
sented. Third, several state-tying question generation strategies are compared, in terms of
their performance in a phone recognition task using an undiacritised grapheme acoustic set.

Hierarchical structure and number of clusters
Using the acoustic models as described in Section 7.2.5, an HMM similarity matrix was

computed on the context-dependent level. Based on that similarity matrix, hierarchical
clustering using graph degree linkage was performed where four cluster sets are extracted
from the hierarchical structure using fixed height cut. These sets are c41, c60, c80 and
c100 containing 41, 60, 80 and 100 units respectively. Transcriptions are transformed from
phn to cX by substituting each context-dependent phn model with its corresponding cX
unit. If two or more consecutive context-dependent phn units belonged to the same cluster,
only one instance of the corresponding cX unit are used to substitute these phn units. As
a results, the total number of units in the training transcriptions after transforming them
from phn acoustic models to their equivalent cX acoustic models decreased in relation to
the chosen number of clusters; such that it decreased by 5.4% relative when c41 is chosen
whereas this ratio decreased to be less than 0.06% for c60 units. This suggests that a
smaller number of clusters will merge more adjacent sounds and model longer durations
while a greater number of clusters will have more separations than merges as shown in
Figures 7.15 and 7.16 which illustrate the assignment of phonemes in the phn acoustic set
to the extracted clusters. In these figures, the darker an assignment is, the more triphones,
were clustered together with the same centre phone as the corresponding phoneme. For
example, all triphones with centre phoneme “m” are clustered into two clusters: {m4, m5}
when 41 clusters were used (Figure 7.15a), with more triphones in the cluster m4. But
when 80 clusters were used, it was clustered into three clusters: {m15, m64, m65} (Figure
7.16), with more triphones in the cluster m15.

These four cX model sets were evaluated in a phone recognition task, with a bigram
PLM. Results in terms of UER cannot be compared across systems due to the difference in
the number of units across these four sets. Instead, two metrics based on information theory
are employed, in addition to UER: the normalised information transfer (NIT) factor and
entropy-modulated accuracy (EMA) (Valverde-Albacete and Peláez-Moreno, 2014). These
are intended to quantify how much a system learnt during the training. EMA and NIT
are computed to evaluate a system of input set 𝑥 and output set 𝑦 as follows:

EMA = 2−𝐻𝑥|𝑦 (7.24)

NIT = 2𝑀𝐼𝑥𝑦−log2(𝑘), (7.25)
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Figure 7.15: Assignment of units in the phn acoustic set to the cX acoustic set when
using a different number of clusters: (a) 41 clusters, (b) 60 clusters. The darker a cell,

the more triphones occupy it
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where 𝑘 is the number of number of classes, and 𝐻𝑥|𝑦 and 𝑀𝐼𝑥𝑦 are the conditional entropy
and the expected mutual information respectively. These which are computed as follows:

𝐻𝑥|𝑦 = 𝐻𝑥 − 𝑀𝐼𝑥𝑦 (7.26)

𝑀𝐼𝑥𝑦 = 𝐻𝑥 + 𝐻𝑦 − 𝐻𝑥𝑦 (7.27)

where 𝐻𝑥, 𝐻𝑦 and 𝐻𝑥𝑦 are the input entropy, output entropy and the joint entropy.
Generally the entropy is computed as:

𝐻 = − ∑
𝑖

𝑃 (𝑖) log2 𝑃 (𝑖), (7.28)

where 𝑃 (𝑖) is the probability distribution of the unit 𝑖, which can be computed from a
confusion matrix as follows:

𝑃 (𝑖,𝑗)
𝑥𝑦 = 𝑐𝑖𝑗

∑𝑘 ∑𝑙 𝑐𝑘𝑙
(7.29)

𝑃 (𝑖)
𝑥 =

∑𝑗 𝑐𝑖𝑗

∑𝑘 ∑𝑙 𝑐𝑘𝑙
(7.30)

𝑃 (𝑖)
𝑦 =

∑𝑗 𝑐𝑗𝑖

∑𝑘 ∑𝑙 𝑐𝑘𝑙
(7.31)

where 𝑃 (𝑖,𝑗)
𝑥𝑦 is the joint probability which is computed from the number of times that unit

𝑖 was recognised as unit 𝑗, this amount is 𝑐𝑖𝑗. 𝑃 (𝑖)
𝑥 is the input probability for the unit 𝑖

and 𝑃 (𝑖)
𝑦 is the output probability for the symbol 𝑖. The term ∑𝑘 ∑𝑙 𝑐𝑘𝑙 represents the

total number of units in the test set.
Table 7.7 compares the performance when using these sets. There are two types of con-

fusability observed in ASR systems: acoustic confusability is observed when two models
compete over the frame assignment, while the pronunciation confusability is when more
than one words share the same pronunciation in the dictionary. Since the current eval-
uation was a phone recognition task, only the former could be observed. It is apparent
that increasing the number of clusters improves the performance and the learning pro-
cess until the performance started to degrade as the number of clusters increased. The
increased number of substitutions suggests that the degradation might be because these
clusters are not far enough apart to be acoustically distinguishable. However, there is also
a high substitution rate found in the acoustic set with the lowest number of clusters, c41,
by comparing the assignment between the clusters (shown in Figure 7.15), there is more
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Table 7.7: Results for phone recognition task using bigram PLM on AppenLCA testing
set across several acoustic sets.

AM #units NIT EMA UER FER

graphemic
graph 33 0.0853 0.1605 56.6 46.5
crfdiac 36 0.0687 0.1621 54.3 49.9

mandiac 36 0.0736 0.1676 53.3 48.0
derived phn 41 0.0740 0.1765 52.5 48.3

restructured

c41 41 0.0575 0.1331 57.3 52.7
c60 60 0.0546 0.1007 59.1 56.0
c80 80 0.0494 0.0862 61.2 56.9
c100 100 0.0412 0.0760 61.7 59.2

merging of phonemes in c41 than in c60. For example, the phonemes {m, dh, D, d, b,
e} where merged in one clusters in c41 but the same set was clustered into four clusters
instead in c60 as {m}, {dh, d}, {D, b} and {e}. Such merging was due to the smaller
number of clusters. Based on the number of units to be recognised, mandiac with crfdiac
and phn with c41 are comparable in terms of their UER while the rest of acoustic sets
are not due to the difference in the number of units. Phone recognition using the phn
set outperformed using c41 which is caused from merging some acoustically similar but
phonemic units into one which increased the number of substitutions.

Generating state-tying questions

In order to assess whether the proposed method for generating questions is beneficial,
the undiacritised grapheme acoustic set was chosen for this experiment. This was tested in
a phone recognition task with bigram PLM where the UER is employed as an evaluation
metric.

The state-tying questions were generated using four methods. Two of the question
generation methods are based on some information either from prior knowledge about
the mapping between the units and their phonetic classes, or derived from the similarity
between the states using the hierarchical clustering. The other two methods do not depend
on any knowledge but the identity of the units themselves.

For the phonetic classes method, each grapheme is represented by one nominated
phoneme (even if the grapheme is a multi-phoneme) based on the phonological knowl-
edge. The questions are related to the phonetic class of that nominated phoneme. For
example, the grapheme “v” has the phoneme /𝜃/ as its nominated phoneme and the cho-
sen questions are phonological questions about the phoneme /𝜃/. Such a question can be
“is Unvoiced-Fricative on the left?” When assuming that such assignment to a phonetic
class is not clear or unavailable, the grapheme itself is considered as a question, hence, the
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Table 7.8: Comparison of different strategies in generating state-tying decision trees for
undiacritised grapheme acoustic models in terms of UER and the relative difference (%

difference) to the basline UER.

Questions UER % differenceStrategy Count
identity 34 58.42 baseline
phonetic classes 59 56.59 -3.1

random

50 57.99 -0.7
100 58.29 -0.2
200 58.05 -0.6
500 58.40 0.0

1000 58.39 -0.1
5000 58.57 0.3

hierarchical clustering 59 57.98 -0.7

identity based questions. For example, “is v on the left?” . In addition, to the proposed
method in generating question through finding the hierarchical clustering and extracting
questions based on the similarity between the states. random generation of questions is
also tested.

Table 7.8 shows the UER when tying the states of undiacritised graphemes into 1000
shared states and the same clustering configurations8. The number of questions would
differ according to the generation method; however the actual number of questions will be
doubled because a question will be combined with the immediate context. For example, in
the identity question of grapheme “H”, there will be two questions: “Is H on the right?”
and “Is H on the left?”.

As expected, providing knowledge about mapping between acoustic units (in this case
undiacriticsed graphemes) and the phonetic classes shows the best phone recognition re-
sults. Interestingly, generating random questions provided some improvement at generat-
ing 50 questions which suggested that increasing the number of questions would enhance
the performance; however, no further improvement was gained. In addition, the same ex-
periments were replicated for the random question generation, but as the method implies,
the occurrence of performance gain was random as well, unlike the hierarchical clustering
method which always provides the same set of questions. The number of questions used in
hierarchical clustering was set to be equal to the number of questions based on phonetic
classes; however, from the observation of the similarity matrix (shown in Figure 7.17),
increasing the number of questions will result in better clustering. This makes using hi-
erarchical clustering for generating state-tying questions a valid alternative in the absence

8Clustering configurations here are tree-branching (TB) and removing outliers (RO) which are set to
500 and 1000 respectively.
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of the phonological knowledge, even when the number of clusters as small as 59.

7.3.6 Pronunciation generation

As stated in Section 7.3.3, the original mapping between the units and their phonetic
classes is not clear after extracting the cX acoustic sets from the hierarchical structure
of the phn acoustic set. Consequently, the relationship between the word and its found
pronunciation in phn units, which was based on the defined heuristics in Section 7.2, no
longer exists. Therefore, the grapheme-to-phoneme (G2P) mapping should be learned in
order to generate pronunciations for unseen words in the acoustic training set.

G2P conversion has been discussed previously in Section 6.3, but in the context of
diacritisation. Here, G2P conversion is used for its main purpose. As training materials
for the G2P model, pronunciations were extracted from the cX transcriptions where each
training sample is a pair of a word in a graphemic form and its pronunciation using cX
units.

Since the transcription transformation from phn units to cX units was made based on
context-dependent units, a baseform might have several pronunciations where they only
differ in the initial and last units based on the context. For example, the word “$w”
(what) is pronounced as “sh uw” using the phn acoustic models and represented as “XX-
sh+uw sh-uw+YY” using context-dependent phn units where XX and YY can be any units
from the phn acoustic set; however, all the models representing XX-sh+uw are clustered
together in the c60 acoustic set, within a cluster number 38, unlike those of sh-uw+YY
where they are divided into two clusters, cluster number 50 and 60. Consequently, the
single pronunciation “sh uw” will be transformed into two pronunciations using the c60
acoustic set: “m38 m50” and “m38 m60”9. This increases the number of pronunciations
per word in the extracted dictionary considerably, and increasing as the number of clusters
increases. As a consequence, the ambiguity in the G2P conversion model increases and
degrades its performance.

Two methods can be used in order to reduce the number of pronunciations extracted
per word. First, an alignment after (at least) one round of acoustic model re-estimation
will reduce the number of pronunciations found. Alternatively, pronunciation probabilities,
computed based on the frequency within the training data, can be used as a filtering method
by which pronunciations having probabilities which are lower than a chosen threshold are
removed from the dictionary.

9A model in cX acoustic set is named using the cluster number preceded by the letter “m”.
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Figure 7.18: Symbol error rate (y-axis) for G2P converters based on dictionaries in cX
models when using different depth of context (x-axis) without any pronunciation

reduction strategies such as filtering or force-alignment. Two dictionaries where used for
each system: words in undiacritised form Baseu (solid line) or in diacritised form Based

(dashed line).

7.3.6.1 Results and discussion

In order to assess the found mapping between the written form and the cX-based pro-
nunciations, training materials were extracted from the 9-hour AppenLCA training set
previously chosen (detailed in Appendix B). The chosen numbers of clusters to be tested
were 41 and 60.

As training material, pronunciations were extracted from aligning transformed tran-
scriptions in the cX acoustic set with the associated word-level transcriptions. All word
fragments and disfluency markers were excluded from the transcriptions beforehand. Two
dictionaries were created from extracted pronunciations based on the written form for the
word entries that either included diacritics, Based, or exclude them, Baseu. The number
of pronunciations per word is relative to the number of clusters, as discussed previously.
Thus, when using c60 acoustic units, the average of pronunciations per word for Based and
Baseu are 1.3 and 1.7 respectively, and 1.3 and 1.5 when using c41 acoustic set. A held
out set of randomly chosen 5% of the original word list in Based and Baseu was chosen
from all resulted dictionaries for evaluation.

Based on each dictionary, nine G2P converters were trained with context ranges from
unigram to 9-gram using the Sequintur G2P toolkit (Bisani and Ney, 2008) with similar
settings as used previously in Section 6.3.3. Figure 7.18 shows the the performance of
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Figure 7.19: Pronunciations per word (y-axis) for Baseu dictionaries in both c41 (solid
line) and 60 (dashed line) acoustic units as the pronunciation probability threshold

increased (x-axis).

Table 7.9: The relative reduction in the number of pronunctions (Reduction%) and the
pronunciations per word (Prons/word) when applying pronunciation reduction strategies.

c41 c60
Prons/word Prons/word

Reduction% Baseu Based Reduction% Baseu Based
before filtering baseline 1.5 1.3 baseline 1.7 1.3
force-aligned -4.2% 1.5 1.2 -4.1% 1.6 1.2
filtered (0.35<pp) -11.3% 1.4 1.1 -12.0% 1.4 1.1
filtered (best pp) -17.2% 1.3 1 -18.0% 1.3 1

these G2P converters in terms of symbol error rate (SER). SER is the Levenshtein distance
divided by the number of phonemes in the reference pronunciation. Generally, performance
improved as the context depth increased up to 5-gram where no further improvement was
prominent. It was evident that using words in diacritised form in the training dictionary,
(Based), resulted in a better G2P models, especially when the number of clusters increased.
There was an average of 40.8% relative SER improvement in the c41 acoustic set over G2P
models trained the using dictionaries with undiacriticsed words, Baseu. This improvement
reached an average of 58.5% relative SER in the c60 acoustic set. When using more clusters
in the acoustic set, the G2P performance degrades for the undiarcritised dictionary, Baseu,
by an average of 26.7% relative SER. Such a difference was not observed in Based owning
to the fact that most of the additional clusters were in the vowel units (as shown in Figure
7.15) where these vowels are not represented in undiacritised words and consequently the
mapping between the two representations becomes more ambiguous.

To evaluate which of the pronunciation reduction strategies is the most effective, the av-
erage number of pronunciations per word of the resulting dictionaries are compared. First,
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diacritised word based transcriptions was force-aligned using the c41 and c60 acoustic sets
and their corresponding dictionaries. The resulting dictionaries only kept pronunciations
used in the force-alignment, and pronunciations probabilities were computed based on the
frequency in the aligned transcriptions. The force-alignment strategy on its own reduced
the average number of pronunciations per word by a 0.1 absolute for both cX acoustic sets
using Based dictionaries (as shown in Table 7.9). Further reduction was obtained when
setting a threshold on the pronunciation probabilities (as shown in Figure 7.19). This
decreased the average number of pronunciations per word until it reached a slight increase
in the average number of pronunciations per word beyond the pronunciation probability of
0.35, which was then chosen as a cut-off point. Additional dictionaries were extracted by
including only the most frequent pronunciation for each diacritised word within the train-
ing data, i.e. with the highest pronunciation probability. Table 7.9 summarises the average
number of pronunciations per word for different dictionaries using several pronunciation
reduction strategies.

Based on these new dictionaries, another set of G2P converters were trained. By con-
sidering the previously trained G2P converters as baseline systems, Figure 7.20 illustrates
the relative difference in SER for each system. The observed increase in SER might be due
to the reduction in training examples (relative reduction in dictionaries is shown in Table
7.9), especially when converting diacritised words (Based). However, the SER improved
with adding more context generally.

7.4 CTS ASR Experiments

The main objective of this chapter is to redefine the acoustic inventory for CA to improve
the recognition performance for ASR tasks. In order to evaluate the impact of the proposed
acoustic sets on recognition performance, an LCA CTS ASR task based on AppenLCA
corpus was performed where the system configuration and resources were the same as
those used previously for evaluation in Section 6.6.

For all systems in the following experiments, the same language model was employed
where the recognition hypothesis is in undiacritised form. Based on each acoustic set, a
recognition dictionary was implemented as described previously.

For completeness, undiacritised graphemes (graph) results are also included in this
section. Table 7.10 compares the performance in terms of WER across systems. An
absolute improvement of 1.1-1.0% in recognition performance was observed when using
the phn acoustic set over diacritised graphemes, with fewer deletion errors compared to
using either of the graphemeic-based acoustic sets. In both cases, this improvement shows
to be statistically significant with 𝑝 < 0.001 using MAPSSWE. However, using the c41
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Figure 7.20: The change in the G2P performance (y-axis) using different depth of
context, i.e. model order, (x-axis) when training on filtered dictionaries, either by

removing pronunciations with a probability lower than 0.35 (square markers) or by just
selecting the pronunciation with highest probability (round markers). Pronunciation

probabilities are computed based on frequency in the training transcriptions. Filtering
the dictionary before training with a pronunciation probability, computed based on the

frequency in the training transcriptions, cut-off at 0.35 or by select one best
pronunciation for the training dictionary. Baseline systems are presented in Figure 7.18.
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Table 7.10: Recognition performance for CTS ASR experiments using the AppenLCA
corpus using different sets of acoustic sets: Graphemic sets: undiacritised graphemes
(graph) and diacritised graphemes, manually diacritised (mandiac) and automatically
diacritised (crfdiac), phonemic set (phn) and acoustically clustered sets (c41 and c60).

AM WER Substitutions Deletions Insertions
graph 71.4 48.5 20.0 2.7
crfdiac 70.2 47.4 20.9 1.9

mandiac 70.3 48.4 18.4 3.5
phn 69.2 52.0 13.6 3.6
c41 75.0 58.2 14.2 2.6
c60 70.0 54.0 12.7 3.4

models resulted in higher WER due to increase of substitution errors. This confirms that
using a small number of clusters resulted in merging acoustically similar but phonemically
different units. Increasing the number of clusters in c60 acoustic set slightly outperformed
the diacritised graphemes set by 0.3-0.2% absolute WER, which shows to be statistically
significant with 𝑝 < 0.001 using MAPSSWE.

No pronunciation reduction was applied during the training of the G2P converters of
the cX acoustic sets in the listed results in Table 7.10. As described in Section 7.3.6, the
resulting dictionaries for cX systems suffer from high numbers of average pronunciations
per word which were dealt with by using force-alignment and cut-off pronunciation prob-
abilities based on the frequency within the training data. Consequently, two additional
dictionaries were generated for each set, for both training and testing where their baseform
entries were the undiacritised representations. Tables 7.11a and 7.11b show recognition
performance when using different combinations of these dictionaries for the c41 and c60
acoustic sets respectively. Generally, the best performance for both acoustic sets was
accomplished when using both training and recognition dictionaries that were generated
from a G2P converter that was trained using a dictionary that only kept the pronunciation
with the highest frequency in the training transcriptions. The absolute reduction was 0.1%
WER for the c41 acoustic set, while it reached 0.6% absolute WER for the c60 acoustic
set, where the latter outperformed the baseline diacritised grapheme system by 0.8-0.9%
absolute WER. Again, for both cX acoustic sets, the worst performance was obtained
when training dictionaries were generated using G2P converters trained on unreduced dic-
tionaries while the recognition dictionaries were generated using G2P converters trained
on dictionaries that only kept the most frequent pronunciations.

A more realistic evaluation scenario is when no diacritisation is provided such that all
derivation procedures for the new acoustic set will be based on automatically diacritised
transcriptions as a starting point. To evaluate such a scenario, a system based on undi-
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Table 7.11: Recognition performance in WER for CTS ASR experiments using
AppenLCA with several combination of training and testing dictionaries using either (a)

the c41 or (b) the c60 acoustic sets. Dictionaries can be either unreducted (all) or
reduced in terms of number of pronunciations by removing all pronunciations where their

pronunciation probabilities are less than 0.35 (filtered-0.35) or by only including the
pronunciation with the highest pronunciation probability (filtered-best).

(a) c41.
XXXXXXXXXXXTraining

Testing all filtered-0.35 filtered-best

all 75.0 75.9 76.3
filtered-0.35 75.3 75.6 75.8
filtered-best 75.6 75.5 74.9

(b) c60
XXXXXXXXXXXTraining

Testing all filtered-0.35 filtered-best

all 70.0 70.7 71.0
filtered-0.35 69.9 70.1 70.0
filtered-best 69.4 69.7 69.4

Table 7.12: Recognition performance for CTS ASR experiments using the FisherLCA
corpus with different acoustic sets: Graphemic sets: undiacritised graphemes (graph)
automatically diacritised graphemes (crfdiac), phonemic set (phn) and acoustically

clustered sets (c41, c60, c80 and c100).

AM WER Substitutions Deletions Insertions
graph 60.4 45.0 11.3 4.1
crfdiac 60.1 44.9 11.2 4.0
phn 60.3 44.0 13.4 2.9
c41 62.4 46.2 12.8 3.4
c60 61.9 45.4 13.5 3.0
c80 62.5 45.8 13.8 3.0
c100 63.1 45.8 14.4 2.9
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acritised resource (FisherLCA, described in Appendix B), was trained. Table 7.12 lists
the evaluation results. A marginal degradation in the performance was observed when
deriving the phn from an automatically diacritised transcription of 0.2% WER absolute.
This was resulted from the strong reliance of the derivation procedure for the phn acoustic
set on the existed diacritisation. Again, as restructuring the context-dependent phn model
space into the cX accompanied by dictionaries generated from a G2P model trained on all
extacted pronunciations did not yield any improvement but the observed degradation ra-
tion (of 3.5% WER relative) was smaller than that observed previously in the AppenLCA
system (of 8.4% WER relative). That may be caused by the nature of the data sets since
AppenLCA set contains more acoustic noise than FisherLCA, consequently, the computed
HMM similarity will be based on better estimated models. Recognition performance was
improved from increasing the number of cluster for the cX acoustic set to be 60 instead of
41; however, a further increase of number of clusters resulted in a steady degradation in
the recognition performance which could be caused by the lack of training examples.

7.5 Summary and conclusion

This chapter addressed questions raised by Objective 4 of this thesis by investigating
the possibility of defining a wider acoustic set than diacritised graphemes and defined
mapping between the derived acoustic sets and the original written form to generalise the
pronunciation generation process.

Using diacritised graphemes as acoustic units was not acoustically representative for
CA in ASR tasks for several reasons. These include several infrequent acoustic units
sharing the same phonetic realisation while some units have multiple distinctive phonetic
realisation where the chosen value can be decided based on the context. For some of these
multi-phoneme units, context does not contribute to choosing the acoustic value. Each
of these issues was addressed through the course of this chapter. Two acoustic sets were
proposed: phn and cX.

The phn acoustic set was the result of applying a sequence of phonological rules followed
by disambiguating context-dependent multi-phoneme units using the acoustic context by
means of force-alignment. Potentially silent graphemes were modelled using an HMM
with a special topology that contains a skip, prior to the force-alignment process. This
acoustic set contained 42 units and showed a more balanced frequency distributions on the
training data, in comparison to the skewed frequency distribution observed for diacritised
graphemes.

Second, context-independent multi-phoneme units were addressed by restructuring
the context-dependent phn model space. Based on the computed similarity between the
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context-dependent units, a hierarchical structure was constructed for the phn model space
using graph degree linkage hierarchical clustering. A cX acoustic set can be extracted
from the resulting hierarchical structure that contains X units where X corresponds to the
number of extracted clusters. It was found that using lower numbers of clusters resulted in
the merging of phonemic units into one, which increased the number of homophone words
and consequently increased the number of substitution errors. Using larger numbers of
clusters can lead to under-trained units due to the lack of examples in the training set.
Therefore, the number of clusters must be optimised.

For both proposed acoustic sets, a mapping was found from diacritised graphemes,
whether the diacritisation was manual or automatic. The mapping to the phn acoustic
set was by applying phonological rules owing to the less ambiguous relationship between
each grapheme and its corresponding acoustic unit. In the cX acoustic unit case, such
direct mappings did not exist; therefore, a G2P conversion method using joint-sequence
statistical modelling was employed which showed consistent results with high accuracy up
to 96% when the source was in diacritised form, and up to 94% when source baseform was
undiacritised. This accuracy dropped as the chosen number of clusters increases.

The empirical results of an LCA CTS ASR task showed that using the phn acoustic set
outperformed diacritised graphemes by at least 1% absolute WER when the derivation was
based on manually diacritistion. This improvement was found to be statistically significant
with 𝑝 < 0.001 based on MAPSSWE. Using cX with a small number of clusters degraded
the recognition performance due to the increase in substitution errors which indicates
that some of the clustered units merge phonemic units and increase the possibility of
homophone words whereas using larger number of clusters shows statistically significant
improved performance (𝑝 < 0.001) over diacritised graphemes but did not outperform a
system using phn acoustic set. The performance was slightly reduced if the derivation of
the proposed acoustic inventories was based on noisy diacritisation.

These results confirmed that using the proposed phn acoustic set or cX (with higher
number of clusters) is acoustically closer to the acoustic realisation than diacritised graphemes,
hence, systems using them obtained better recognition performance in ASR tasks. More
optimisation methods are required for extracting cX acoustic set from the hierarchical
structure in order to obtain further improvement.
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The main goal of this research was to investigate and highlight the main issues for the
observed under-performance of CA ASR systems compared to MSA when using conven-
tional ASR modelling technologies. It has to be emphasised that all issues discussed in
this work in implementing an ASR system for CA do exist for MSA as well. However,
the impact of these on the performance of an MSA system was not as prominent as was
observed with CA. This is mainly because of the rich resources in MSA compared to CA
and other linguistic and differences between the two variants.
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This chapter summarises the main contributions of this thesis and emphasises the
significance of them in relation to the existing research. Finally, it outlines some suggestions
for future work on this area.

8.1 Scientific contributions

To fully understand the challenges posed by the Arabic language itself, a detailed compar-
ison of CA and MSA in terms of their phonetic, orthographic, morphological and syntactic
structures was presented in Chapter 2. This was followed by a discussion of the existing
studies in developing ASR systems for CA in Chapter 3, highlighting the main issues. In
order to address these issues, the work of this thesis was focused in two main directions:
first, investigating the limited lexical coverage and data sparsity in written CA and its
implication on language modelling (which was addressed in Chapters 4 and 5); and sec-
ond, narrowing the gap between the written and spoken forms of CA in the absence of
conventional phonetic dictionaries to obtain better models for the acoustics and pronunci-
ations (addressed in Chapters 6 and 7). This work contributed with the following original
findings and outcomes as a result of the aforementioned directions of investigation:

8.1.1 Decomposing CA and sub-lexical unit CA LMs

In general, Arabic is a morphologically rich language with a high vocabulary growth rate.
Consequently, a selected list of vocabulary would have limited lexical coverage on a given
text, hence, high OOV rates are observed. Several approaches were investigated in or-
der to decompose a full word into its sub-lexical units: supervised, semi-supervised and
unsupervised decomposition methods. It was shown that:

• Word decomposition limited the vocabulary growth in CA, and reduced the vocab-
ulary size by different degrees depending on the decomposition method used, and
whether parts of the vocabulary were excluded from the decomposition process.

• Regardless of the chosen decomposition method, word decomposition reached its best
potential in reducing the vocabulary size when the whole set of observed vocabulary
was included in the decomposition process.

• A considerable reduction in OOV rates was observed in general such that OOV rates
decreased with an increase of linguistic knowledge or statistical constraints involved
in the decomposition process.

• Generally, morph-based LMs outperformed word-based LMs in CA, by an average
of 3% relative improvement in character-level perplexity, regardless of the decompo-
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sition method employed. As the level of CA-related linguistic constraints increased
in the decomposition method, the performance improved in terms of character-level
perplexities.

8.1.2 Inducing data-driven classes from decomposed data in CA LM de-
velopment

In order to overcome the data sparsity issue in CA, data-driven clustering on the sub-
lexical level was incorporated in the development of language models. Two approaches
were employed: For the first approach, classes were induced from the decomposed CA
data using Brown et al.’s word clustering algorithm and then used to estimate class LMs
(CLMs) (Brown et al., 1992). For the second approach, word histories were clustered in a
randomised decision tree model and then used to estimate random forest LMs (RFLMs)
(Xu and Jelinek, 2004). It was shown that:

• CA morph-based CLMs did not yield any improvement over standard morph-based
LMs or word-based LMs.

• CA morph-based RFLMs outperformed the standard morph-based LMs, with an
average improvement in character-level perplexity from RFLMs of 8% relative over
word-based LMs.

8.1.3 Colloquialising MSA to be used in CA LM development

The transfer of CA properties to MSA, i.e. normalisation of CA, has been investigated in
the context of machine translation. The transfer of MSA properties to CA, i.e. colloqui-
alisation of MSA, was mostly explored as an issue of acoustic modelling, by using either
pooling or adaptation approaches. However, work in this thesis can be considered as a
first attempt in colloquialisaing MSA in order to generate additional CA data by using
existing MSA resources. A colloquialisation system was developed based on an SMT ap-
proach, where MSA was cast as a source language and CA as a target language. The main
outcomes and findings were as follows:

• An annotated resource, a MSA-LCA parallel corpus, was created as requirement for
training the colloquialisation system. Selected LCA sentences were normalised to
MSA and validated using a crowdsourcing framework. The corpus contains 30135
pairs of LCA and its normalised variant(s), with an average of 1.3 MSA variants per
LCA sentence and an average of 1.2 LCA variants per MSA sentence.
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• A novel colloquialisation model was estimated from the parallel MSA-LCA corpus,
using an SMT framework. Afterwards, several MSA resources were colloquialised
into CA using the colloquialisation model and an SMT decoder.

• Considerable perplexity reduction was achieved with LMs estimated from colloqui-
alised MSA, 68% relative, as compared to LMs estimated from MSA resources.

• The perplexity reduction obtained from interpolating CA LM with a colloquialised
MSA LM was twice that of interpolating with any MSA LMs.

8.1.4 Using cross-dialect paraphrastic LMs

Paraphrastic LMs (ParaLMs) (Liu et al., 2012) have been used to capture cross-domain
lexical and syntactic structures. Rather than casting MSA and CA as two different di-
alects, they can be considered as two different domains for the same language; for example
politics and medicine domains. Each domain uses a different syntactic structure, which
was captured by ParaLMs. It was shown that:

• Excluding disfluency words (such as hesitation and backchannel markers) can improve
the quality of the induced paraphrase pairs for text using conversational style.

• Using a dialect-targeted ParaLM outperformed general ParaLMs. For instance, a
relative perplexity reduction of between 1.5% and 1.7% was obtained when using
ParaLMs estimated from MSA resources but this was outperformed by dialect-
targeted ParaLMs, reaching a 2% relative perplexity reduction. Further improve-
ment was achieved when interpolating ParaLMs with standard LMs, giving a 2.8%
relative reduction.

8.1.5 Development of CA automatic diacritisation systems

In general, Arabic transcriptions lack short vowels and gemination information which are
represented by diacritics. Unlike an English dictionary, a standard Arabic dictionary does
not provide pronunciations but only diacritisation variants. A variant is chosen according
to the given context. Since diacritics hold one third of the acoustic information, it is crucial
for acoustic modelling to retrieve those diacritics. Two novel CA automatic diacritisation
systems were implemented in this work:

• A diacritiser based on a grapheme-to-phoneme (G2P) framework was implemented.
It requires a small amount of diacritised seeding data (5000 diacritised CA words) to
achieve a consistent and highly accurate performance.
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• A CRF-based diacritiser allowed the incorporation of contextual and extralinguistic
information in the prediction process.

In addition, it was shown that:

• The incorporation of extralinguistic information, such as speaker’s dialect and gender,
improved diacritisation performance by a significant margin, reaching 14% relative
DWER and 15% relative DER, compared to depending on the grapheme only.

• Using phonological information as a multi-stream feature, place-voicing-manner prop-
erties, slightly degraded the diacritisation performance owing to insufficient training
samples resulting from increasing the number of parameters to estimated.

• Using automatically diacritised transcriptions as training samples was equivalent
to, and sometimes better than, manually transcribed transcriptions for diacritised
grapheme acoustic models.

• Whether diacritisation was performed automatically or manually, acoustic models
trained using diacritised graphemes outperformed those using undiacritised graphemes,
which was found to be statistically significant (𝑝 < 0.001) based on MAPSSWE.

8.1.6 Identifying pronunciation modelling issues in CA

In this work, it was empirically shown that using diacritised graphemes as acoustic units
was not acoustically representative for CA ASR tasks, for several reasons. These include
the existence of infrequent acoustic units sharing the same phoneme. In addition, some
units have multiple distinctive phonemes and the chosen phoneme can be decided based
on the context. For some of these multi-phoneme units, context does not contribute to the
choice of the acoustic realisation.

8.1.7 Derivation of CA phonetic transcription

It was found that diacritised graphemes are not the optimal acoustic units and should
not be considered equivalent to phonemes. This work proposed a derivation procedure
to obtain phonetic transcriptions from diacritised graphemes along with more suitable
acoustic units. The new acoustic set is denoted as phn. The main outcomes and findings
were as follows:

• A derivation process to obtain a pronunciation dictionary along with new acous-
tic units was implemented from fully diacritised transcriptions. This process based
on applying a sequence of phonological rules and disambiguating context-dependent
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multi-phoneme units by using the acoustic context through the means of forced align-
ment.

• The new acoustic set consists of 42 units and shows a more balanced frequency
distribution in the training data than diacritised graphemes.

• It was empirically shown that using the new acoustic set outperformed diacritised
graphemes by at least 1% absolute WER in an LCA CTS ASR task, which was found
to be statistically significant with 𝑝 < 0.001 using MAPSSWE.

8.1.8 Derivation of new CA acoustic units

Another issue in using diacritised graphemes was that of context-independent multi-phoneme
units. This was addressed by restructuring the context-dependent phn model space. It was
denoted as cX where X was the number of units in that set. The main contributions were
as follows:

• A framework was implemented for building a hierarchical structure of the context-
dependent model space based on Hartmann et al. (2013)’s HMM similarity metric,
using graph degree linkage hierarchical clustering (Zhang et al., 2012). From the
resulting hierarchical structure, a cX acoustic set was extracted where X corresponds
to the number of extracted clusters.

• A framework was implemented for generating a set of questions to be used in building
state-tying decision trees for the cX acoustic models. This framework employed graph
degree linkage hierarchical clustering to construct the state hierarchical structure
based on the Cauchy-Schwarz divergence (Kampa et al., 2011) between GMMs.

• Pronunciations were generated using a G2P framework and different configurations
for training the conversion model were examined. It was shown that using diacri-
tised baseforms in the training improved accuracy. In addition, the G2P conversion
performance dropped as the number of the units in the cX increased.

• It was found that using lower numbers of clusters resulted in the merging of phonemic
units into one unit which increased the number of homophone words and consequently
increased the number of substitution errors, whereas using larger numbers of clusters
might lead to under-trained units due to the lack of examples in the training set.

• It was shown that a CTS ASR using cX models outperformed those using diacritised
graphemes marginally but was found to be statistically significant with 𝑝 < 0.001
but not those using phn models.

198



8. Conclusions and future work

8.2 List of publications

Some of the findings contributed by this work have been published or to be submitted as
international conference and journal papers and technical reports.

• S. Al-Shareef and T. Hain (2011). An Investigation in Speech Recognition for Col-
loquial Arabic. In Proc. Interspeech’11

• S. Al-Shareef and T. Hain (2012). CRF-based Diacritisation of Colloquial Arabic for
Automatic Speech Recognition. In Proc. Interspeech’12

• S. Al-Shareef and T. Hain (2012). Conditional Random Fields Based Diacritisation
of Colloquial Arabic. In Proc. the 6th Saudi International Conference (SIC)

• S. Al-Shareef (2013). Conversational Arabic Automatic Speech Recognition: Litera-
ture Review. Technical report

• S. Al-Shareef and T. Hain (to be submitted in 2015). Towards a Universal Acoustic
Inventory for Colloquial Arabic ASR. Speech Communication.

• S. Al-Shareef and T. Hain (to be submitted in September 2015). Colloquialising
Modern Standard Arabic Text for Improved Speech Recognition. ICASSP 2016.
This paper shows than using the colloquialised MSA resources did not just improved
the language model quality (in terms of perplexity) but also in recognition perfor-
mance in CTS LCA ASR task with a significant 5.4% WER relative improvement
over using MSA resources directly.

8.3 Relation to other research work

The work presented in this thesis focused on addressing issues in the following compo-
nents of CA ASR systems: language model, acoustic and pronunciation model. Several
studies have been performed on one component or another using different approaches and
mostly designed for MSA originally. In this section, a summary is presented of how the
aforementioned outcomes and findings relate to these studies.

Two main issues in language modelling have been addressed. These are the limited
lexical coverage and data sparsity of written CA. Limited lexical coverage in written CA
is caused by the complex morphology of the language. The proposed methods addressing
this issue were evaluated in terms of perplexity and OOV rate reductions. Character-level
perplexity and normalised OOV rate were employed when comparing the performance of
two LMs where they used different linguistic unit, such as word in opposed to morpheme.
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Because of the different linguistic unit used, few studies reported such evaluation and used
WER instead which have not been used in this thesis. Unlike any of the previous studies,
this work provided a detailed comparison of the use of sub-lexical unit LMs using several
word decomposition methods. These methods ranged from linguistic-based, as in MADA,
to completely unsupervised, as in Morfessor Baseline.

MSA textual data have been used in previous studies to address the data sparsity
issue of CA, using two main approaches: First, pooling CA text with MSA data to be
used in estimating a CA LMs (Kirchhoff et al., 2003; Elmahdy et al., 2013); second, an
LM was estimated on each Arabic variant individually and then both LMs are linearly
interpolated with optimised weights (Kirchhoff et al., 2003; Nguyen et al., 2009). Both
approaches reduced perplexity only insignificantly. None of the approaches perform any
kind of processing on the MSA data prior using it in LM training. In contrast to previous
studies, the proposed methods in this work allows the use of MSA textual resources to
reduce the data sparsity issue and improve the performance of an LM on a CA test set,
reaching perplexity by 68% relative compared to an MSA LM and 7% relative compared
to an interpolated LM of MSA and CA.

In this thesis, issues in acoustic and pronunciation modelling have been addressed.
These issues include diacritics omitted from written CA and the fact that a fully dia-
critised form of CA does not represent its phonetic realisation. The first issue has been
already addressed by several studies. Vergyri et al. (2005) built a system that uses POS
information. Their method achieved 30% DWER absolute. Both diacritisation systems
implemented in this work outperformed Vergyri et al.’s system, reaching 16-23% DWER
absolute, with a smaller training set. These results may not be comparable due to the
difference in the employed test set. However, the achieved improvement in terms of WER,
of 1-1.5% relative, is similar. This recognition improvement also agreed with other studies
that used manually diacritised graphemes, instead of undiacritised graphemes as acoustic
units (Kirchhoff et al., 2002a; Gales et al., 2007; Diehl et al., 2008; Soltau et al., 2009).

CRF-based diacritisation has been proposed previously by Schlippe et al. (2008). Their
work differ from the proposed system in this work in terms of the chosen features in
the prediction process. Since the task was diacritising MSA, Schlippe et al. used POS
tags which were derived from an expert-made resource. However, the proposed system
did not rely on any linguistic resources. Instead, extralinguistic information was used.
This included speaker’s dialect and gender, both of which can be derived using automatic
approaches. Speaker-dependent information has not been used in previous studies for
vowelisation or diacritisation of both MSA and CA.

Two new acoustic sets were introduced in this work: one is derived from applying
phonological rules and forced-alignment; the other is derived from extracting clusters from
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8. Conclusions and future work

the hierarchical structure of context-dependent models. The obtained recognition improve-
ment from the first acoustic set was 3% WER relative in an LCA CTS ASR task. Biadsy
et al. (2009a) had also achieved 4% relative WER improvement on MSA recognition task.
Their approach differ from the proposed method here in two aspects: first, phonological
rules were applied on MADA-based diacritised transcriptions; second, morphological in-
formation were used to disambiguate silent and ambiguous graphemes instead of using
forced-alignment.

The second proposed acoustic set followed a similar approach proposed by Hartmann
et al. (2013) for acoustic unit discovery. In their work, spectral-based clustering was used
on a similarity matrix derived from context-dependent grapheme units. Spectral-based
clustering generated acoustically separated clusters when applied to CA. The generated
clusters merged many phonemic units into one unit. As a consequence, many homophone
words appeared and increased the amount of substitutions in the recognition output. Us-
ing hierarchical agglomerative clustering based on graph degree linkage distinguish this
work from Hartmann et al. (2013)’s. The generated clusters merged acoustically similar
context-dependent units while retaining phonemic separation between these units. A fur-
ther distinction lies in the set of questions chosen for creating state-tying decision tree to
be used for the context-dependent units of these models. These questions were generated
based on the computed similarity between the states instead of using just the identity
questions.

8.4 Future work

In this thesis, two directions of work were investigated to address the under-performance
issues in CA ASRs. During the course of these investigations, several research directions
remained unexplored and might serve as potential starting points for future work.

8.4.1 Comparison between MSA and CA using the proposed techniques

As it was established through the course of this work, MSA and CA differ in acoustics,
pronunciations. Such acoustic differences are hidden in the undiacritised form of writing.
Therefore, some of the presented findings above might be valid for the MSA as well.

8.4.2 Optimising the un-decomposed word in morph-based LMs

Although the best OOV rate reduction was obtained when including all observed vo-
cabulary in the word decomposition process, the character-level perplexity was increased
compared to excluding the most frequent words from the decomposition. The number of
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8.5. Summary

excluded words was chosen based on a reported experiment in MSA (El-Desoky et al.,
2010). Because such a choice is highly dependent on the corpus and language used, it
would be preferable to find an automatic optimisation method for this selection.

8.4.3 Adaptive acoustic set extraction

In this work, the hierarchical structure context-dependent acoustic model space based on
HMM similarity was extracted using graph degree linkage hierarchical clustering. From
this structure a finite set of X clusters was extracted. Each cluster represents a set of
acoustically similar acoustic models based on the computed distance between their HMMs.
The empirical results showed that increasing the number of extracted clusters, i.e. X, was
not beneficial. The extraction of these clusters from the dendrogram was performed using
a fixed height cut method. The objective of fixed height cut extraction is to retrieve X
clusters with the best separation between them. Such clusters may not be the best choice
for acoustic modelling because two clusters might be acoustically close to each other but
they are phonemic and must remain separate. Therefore, an alternative strategy to fixed
height cut should be employed for defining the cut-off points in the dendeogram while
retaining the desired number of clusters. In addition, finding the most suitable X can be
automatically optimised.

Such technique will allow creating an acoustic set that fits a certain dialect or language
using some initial pronunciation based on acoustic units from a different language as long
as they provide some phonetic separation.

8.5 Summary

This thesis addressed the under-performance issues in CA ASR systems by undertaking
a thorough investigation in two directions. The first direction focused on the limited
lexical coverage and insufficient training samples of written CA. As a result of addressing
these issues, methods in language modelling of CA were proposed. The second direction
investigated narrowing the gap between written and spoken CA in the absence of phonetic
dictionaries. Several original contributions resulted from each direction which improved
the system by at least 3% WER relative. Finally, some suggestions for further research in
this topic were presented.
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Appendix A

MSA and CA phonemes

Table A.1: MSA consonants and their pronunciation in CA

Class MSA MSA CA Notes
grapheme phoneme phoneme

Bilabial م m m
ب b b

p Used for load words between educated
members

Labio dental ف f f
v Used for loan words between educated

members
Dental ث θ θ In nomadic dialects in the Arabian

Peninsula, Tunisia, Palestine, Syria,
and Mesopotamia.

t In some Morocco dialects
s In Egypt, the large cities of Syria and

Lebanon and many neighbouring ar-
eas.

f In southern Anatolian Siirt.
ذ ð ð In nomadic dialects in the Arabian

Peninsula, Tunisia, Palestine, Syria,
and Mesopotamia.

z In Egypt, the large cities of Syria and
Lebanon and many neighbouring ar-
eas.

Continued on next page
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Class MSA MSA CA Notes
grapheme phoneme phoneme

ظ ðˁ ðˁ In nomadic dialects in the Arabian
Peninsula, Tunisia, Palestine, Syria,
and Mesopotamia.

dˁ In Egypt, the large cities of Syria and
Lebanon and many neighbouring ar-
eas.

z In Egypt, the large cities of Syria and
Lebanon and many neighbouring ar-
eas.

Alveolar ت t t
د d d
ط tˁ tˁ
ض dˁ dˁ
ن n n In some modern dialects such as

Lebanese
ɾ Some of Egyptian words

س s s
ʃ Few dialects spoken in the Morocco,

in Farafra and Central Bahariyya spo-
ken in the oases of the western desert
of Egypt

ش ʃ ʃ
ز z z

ʒ Few dialects spoken in the Morocco,
in Farafra and Central Bahariyya spo-
ken in the oases of the western desert
of Egypt

ص sˁ sˁ
s in Sudan and in some dialects spo-

ken in the western mountain range of
northern Yemen

ل l l
لّ ɫ Exclusively in Allah ”God” and its

derivatives
Continued on next page
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A. MSA and CA phonemes

Class MSA MSA CA Notes
grapheme phoneme phoneme

ج ʤ ʤ In Bedouin dialects, in many rural
Syrian, Jordanian, Palestinian, and
Mesopotamian dialects, in the central
region of northern Yemen and many
parts of the Arabian Peninsula

g In Egyptian and Yamani dialects
j In the Syrian desert, Khuzistan,

Hadramawt, Dhofar, and the Gulf di-
alects

ʒ In many areas of the Levant, espe-
cially the major cities of Beirut, Dam-
ascus, and Jerusalem and in the ma-
jority of Maghribi dialects

Palatal ج j j
i Between consonants

Velar ك k k
tʃ in some Gulf dialects

غ ʁ ʁ
خ χ χ

Uvular ق q q in many Syrian and North African
dia lects, in the North Mesopotamian.

g in the west and south of the Arabian
Peninsula.

ʔ in the large cities around the Mediter-
ranean, Cairo, Jerusalem, Damascus,
and Beirut. [but certain religious
and Standard Arabic words are pro-
nounced with q]

ʒ in some Gulf dialects
k in some dialects in Iraq and Palestine.
ʁ in Sudanese

Pharyngeal ح ħ ħ

h In Nigerian and Chadian
ع ʕ ʕ

Continued on next page
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Class MSA MSA CA Notes
grapheme phoneme phoneme

ʔ In Nigerian and Chadian
Glottal ء ʔ ʔ Some Arabian Peninsula dialects

vowel replaced by compensatory lengthen-
ing of the vowel in pre consonantal po-
sition

glide between two vowels of differing qual-
ity the glottal stop is usually replaced
by a glide.

-
هـ h h

Glide و w w
u Between consonants
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Appendix B

Resouces and experimental
paradigms
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B.1 Resources

In this thesis there were three sets of experiments: CTS experiments, phone recognition
and language modelling experiments.

B.1.1 CTS ASR experiments

Two sets from LCA were included: AppenLCA (Appen, 2006e; 2007) and FisherLCA
(Maamouri et al., 2006; 2007). These sets were distributed by the Linguistic Data Consor-
tium (LDC). They represent conversations by native speakers talking with their friends and
families, and unrelated people about topics suggested by the corpus collectors. AppenLCA
was collected by Appen and FisherLCA was collected by Fisher. All speech segments have
been preprocessed where all segments with speaker changes, foreign speakers or overlapped
speech were excluded.
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B.1. Resources

Table B.1: Data specifications for CTS ASR experiments.

(a) Speech data

FisherLCA AppenLCA Total
Data set hours hours hours
trainLCA 143.3 41.2 184.5
testLCA 5.1 0.8 5.9

(b) Textual data

FisherLCA AppenLCA Total
Data set sentences words sentences words sentences words
trainLCA 18,726 77,848 11,409 77,194 30,135 155,042
testLCA 10,121 52,253 1,224 9,294 11345 50,202

AppenLCA defined a training and testing sets but not FisherLCA. Hence, around 5
hours of FisherLCA were chosen as a test set. To maintain homogeneous and balanced
recording conditions, FisherLCA test set was constructed by the random selection of con-
versation sides from the FisherLCA with the objective to have good coverage of all sub-
dialects and speakers. A selection on a side-level instead of conversation-level was preferred
for better speaker coverage, while allowing speaker set separation between training and test
sets.

The orthographic transcripts were generated by LDC in a semi-diacritised form using
standard MSA scripts. All diacritics were discarded for consistency. All transcriptions
were normalised by mapping different backchannel tags into one tag and the same was
applied for hesitation tags.

A master LCA sets were constructed from merging FisherLCA and AppenLCA training
sets and test sets, obtaining trainLCA and testLCA, respectively. Table B.1 shows the
characteristics of these sets and Table B.2 shows the gender and sub-dialect distributions
within the whole trainLCA and testLCA.

B.1.2 Phone recognition experiments

A dialect and gender balanced 30 hours of speech was constructed from three dialectical
corpora: Gulf (Appen, 2006a;b) , Iraqi (Appen, 2006c;d) and Levantine CA collected by
Appen. As AppenLCA, these sets represent conversations by native speakers talking with
their friends and families, and unrelated people about topics suggested by the corpus
collectors. Similar preprocessing were performed on these sets to AppenLCA. A test set
was constructed by the random side-level selection of 10% from the conversation sides of
each data set. The Arabic orthographic transcripts were provided by Appen in a fully-
diacritised form using standard MSA scripts and Buckwalter transliteration.
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B. Resouces and experimental paradigms

Table B.2: Amount of data (hours) for dialect and gender on training set “trainLCA”
and test set “testLCA”. Lev: general Levantine dialect, UNK: unknown dialect, which

could be non-Levantine.

trainLCA testLCA
Gender Gender

dialect size m f unk size m f
SYR 2.84 0.92 1.86 0.07 1.32 0.46 0.86
PAL 19.30 13.28 6.02 0 1.26 0.75 0.52
JOR 29.49 17.30 10.24 1.95 1.32 0.67 0.66
LEB 91.69 58.17 33.52 0 1.20 0.60 0.60
Lev 23.54 11.49 12 0.05 0 0 0

UNK 4.09 0 0 4.09 0 0 0
Total 170.96 101.16 63.63 6.17 5.10 2.46 2.64

Finally, a 10-hour modern standard Arabic (MSA) data set was included from the
down-sampled WestPoint corpus (LaRocca and Chouairi, 2002). The transcripts were
provided by the corpora distributor in a fully-diacritised form.

A similar approach for defining the Arabic set was adopted for defining its English
counterpart. 50 hours of North American English telephone conversations were drawn
randomly from a pool of Fisher corpora (Cieri et al., 2004a;b), which exhibited similar
condition to the selected Arabic corpora. The selected English data set was divided into
5 dialects based on the speaker information: Canadian (CAN), midland (MID), northern
(NTH), southern (STH) and western (WST) dialects. Phone-level transcriptions were gen-
erated through forced-alignment using a pronunciation dictionary which is mostly written
by human experts. This data will be used for the contrastive experiments in English.

Figure B.1 shows the frequency of different acoustic units in the transcriptions.

B.1.3 Language modelling experiments

For these experiments, two Arabic variants were included: CA and MSA. CA data were
based on the transcriptions of the corpora mentioned previously: AppenLCA, FisherLCA,
ICA and GCA. But without any segment exclusion. All these transcriptions were provided
in undiacritised form and were normalised by removing all word fragments and hesitations
from the transcriptions. All backchannel tags were mapped into one tag instead.

In addition, two textual MSA resources were included: NW10 and BC. NW10 refer An-
Nahar subset of the Arabic Gigaword corpus that is a newswire resource for a Lebanese
newspaper. BC is collection of transcriptions from Arabic broadcast news shows which
were collected under GALE project. Both were distributed by LDC.

Table B.3 lists some basic statistics for each of these sets.
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Figure B.1: Graphemic units average frequency distribution across 9-hour sets from
different dialect in English and Arabic.

Table B.3: Data specifications for language modelling experiments.

trainLCA GCA ICA BC NW10
sentences 433076 54921 24148 89816 1477544

words 1906286 344383 167263 1433932 15779447
average word/sentence 4.4 6.3 6.9 16.0 10.7

unique words 81636 29862 17976 102629 424922
average word length 5.8 5.5 5.4 6.07795 6.7
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B. Resouces and experimental paradigms

B.2 Experimental paradigm

B.2.1 Phone recognition system configuration

Throughout this thesis, all phone recognition experiments shared an identical front-end
and training framework, which employed HTK (Young et al., 2006). The audio data
was segmented using the time boundaries provided by the corpora transcriptions. A 13
dimensional perceptual linear prediction coefficients (PLP) features, in addition to their
first and second derivatives, were extracted every 10ms using a 25ms Hamming window.
Cepestral mean subtraction and variance normalisation are applied to each segment during
training and testing. Gender independent models are trained using a standard mix-up
maximum likelihood regime with left and right context tri-units. Left-to-right HMMs with
three emitting states were used and clustered at the state level using a binary decision
tree with phonologically motivated graphemic questions (Odell and Woodland, 1994) to
gradually obtain output distributions with 32 mixture components for each state with 900
clustered states. None of the advanced acoustic modelling techniques, such as adaptation
and discriminative features, were employed.

Evaluation was performed through three tasks. First assessment was a context-free
phone recognition task in which the number of recognized units is not controlled, where
insertion and deletion errors can occur. Secondly, to assess the inter-class confusion with
the unit sets, forced-alignment was used on unit-level, where each reference grapheme
model can be forced-aligned to any grapheme. Finally, a more constrained experiment was
performed to assess the intraclass confusion, where a reference grapheme model can be
force-aligned with graphemes belonging to the same class of the reference grapheme. In
the latter two experiments, the number of recognized units per utterance is controlled to
the reference.

Unit-level references with time boundaries were generated by force aligning the reference
units using the corresponding units. Four error rates were considered in the assessment
for these tasks: unit error rate, frame error rate, class error rate and class frame error
rate. In the class-based metrics, units in hypothesis and references were mapped onto
their corresponding phonetic class before computing their error rate. Class-based error
rates are more flexible by which errors are counted only if the incorrectly assigned unit
does not belong to the same phonetic class as the reference unit.

B.2.2 CTS ASR system configuration

The systems used for tasks under this category have a similar front-end as those described
in Section B.2. Due to the higher amount of data than that described in the unit recognition
tasks, after a gradual increase of Gaussian mixture components models contained 16-
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B.2. Experimental paradigm

mixture components for each state with 2400 clustered states when training on AppenLCA
with 3800 clustered states when training on FisherLCA.

For each training set, a language model was constructed using SRILM toolkit (Stolcke,
2002) based on the vocabulary of 41.69k words. Both language models are standard 3-
gram model that are trained using modified Kneser-Ney discounting and backoff. An
interpolated language model estimated from these two language models were used in all
speech recognition experiments.
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The use of crowdsourcing in
standardising LCA
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االفصحى�إإلى��االشامیية�االعرربیية�منن�االحررفیية�االتررجمة

برركاتھه�وو�الله�ررحمة�وو�علیيكمم�االسلامم

���االمھهمة�ھھھهذذهه�في�معاوونتنا�في�االثمیينن�ووقتكمم�على�مقددما�جمیيعا�شكرركممن

منكمم؟�بالضبطط�االمططلووبب�ما����حسنن

االفصحى�االعرربیية�إإلى�االشامیية�باللھهجة�االعرربیية�منن�االتحوویيلل�باختصارر

�مثالل
بالبیيتت�میينن�مع�إإنتت�بسألكك�أأنا�ھھھهیيكك�االعائلة�مع�إإنتت�لأ�االتحوویيلل�قبلل�

بالبیيتت�منن�مع�أأنتت�أأسألكك�أأنا�لذذلكك�االعائلة�مع�أأنتت�لا�االتحوویيلل�بعدد�

�آآخرر�مثالل
�یيعنن��مثالل�أأعططیيني�یيعني�عططفوولتكك�علیيكك�أأثررتت�كیيفف�بسس�أأھھھها�جدد�لأ�االتحوویيلل�قبلل�

��یيعنن��مثالل�أأعططیيني�یيعني�ططفوولتكك�على�علیيكك�ثررتتأأ�كیيفف�لكنن�أأھھھها�جدد�لا��االتحوویيلل�بعدد�

���تحوویيلھه�سیيتمم�ما
�وو�االأررددنیية�وو�االلبنانیية�تشملل�االتي�وو��االشامیية�االلھهجاتت�منن�بمجمووعة�لا�أأوو�معررفة�بیينھهمم�ھھھهناكك�تكوونن�قدد�أأشخاصص�بیينن�ھھھهاتفیية�محاددثاتت
�مووضووعع�في�معیينة�لمددةة�االتحددثث�علیيھهمم�أأنن�وو�ما�مسابقة�في�للاشتررااكك�ھھھهي�االمكالمة�ھھھهذذهه�أأنن�لأغلبھهمم�قیيلل�قدد�وو����االسوورریية�وو�االفلسططیينیية

�ثمم��مآرربھها�في�أأحیيانا�وواالتشكیيكك��االمسابقة�عنن�االتساؤؤلل�ثمم�بالتعاررفف�تبددأأ�االمحاددثاتت�أأغلبب�أأنن�فستجدد����للأخررىى�محاددثة�منن�یيختلفف��محدددد
�ستجددوونن�وو���ططررااففلأاا�كلل�یيسسل�وو���االحوواارر�منن�ووااحدد�ططررفف�غالبا�ھھھهوو�ستجددوونھه�ما…��االمططررووحح�االمووضووعع�في�االحوواارر�خلقق�محاوولة
�أأھھھها���إإیيھه����مثلل��یيجاببلإاا�وو�االتأكیيدد�وو�االمقاططعة�منن�االكثیيرر
���مسبقا�االمحوولة�االكلماتت�بعضض�ووجوودد�تستغرربب�لا�لذذلكك���آآلي�بشكلل�االنصص�على�االتحوویيلل�تططبیيقق�تمم�قدد�أأنھه�ملاحظظة�االررجاء

�…�للتحوویيلل�االمتبعة�االقوواانیينن
�لا�االحررفیية�االتررجمة�ھھھهوو�االمططلووبب�أأنن�أأيي����مفھهوومة�غیيرر�االناتجة�االجملة�كانتت�لوو�حتى�تررتیيبھها�إإعاددةة�ددوونن�االكلماتت�تحوویيلل��

بالمعنى
�� جملة�إإلى�كلمة�منن�االتحوویيلل�یيكوونن�أأنن�االممكنن�منن

ططفوولتكك�على���عططفوولتكك���مثالل�◦
�� كلمة�إإلى�جملة�منن�االتحوویيلل�یيكوونن�أأنن�االممكنن�منن

نھهمملأ���ھھھهمم�عشانن��مثالل�◦

�� تتغیيرر�فلا���االأجنبیية�االكلماتت�وو�االمصططلحاتت�وو�ماكننلأاا�وو�شخاصصلأاا�اءكأسم�بالفصحى�مررااددفف�للكلمة�یيكوونن�لا�قدد
�االحصوولل�فالھهددفف���االمعنى�لاتمامم�االحاجة�حالل�في�إإلا���للتحوویيلل�ووااحددةة�مررااددفة�ااختیيارر�وو��االمررااددفاتت�في�االتنوویيع�عددمم�االررجاء��

���للشامیية�االمررااددفة�وو�بالفصحى�االكلماتت�منن�ممكنن�عدددد�أأقلل�على
مثالل�لكلمة�بسس��إإلیيكك�وو����مووضعھها�حسبب�االفصحى�ھهاتررجمت�تتغیيرر�االكلماتت�بعضض��

نذذھھھهبب�أأنن�یيجبب�لكنن���نررووحح�لاززمم�بسس��◦
�فقطط�أأوولادد�خمسس�عندديي��بسس�وولادد�خمسس�عندديي�◦
االتشكیيلل�ااستخدداامم�عددمم�أأررجوو��
�� تغیيیيررھھھها�إإلى�ددااعي�فلا����االفصحى�إإلى�تنتمي�ذذااتھها�بحدد�االكلمة�كانتت�إإذذاا

Figure C.1: Instructions for the annotators (first page)
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�االتططبیيقق
على�نظظامم�االوویينددووزز������������االمفكررةةبررنامج��باستخدداامم�ھھھهي�االملفف�في�للكتابة�ططرریيقة�أأفضلل��
�االملفاتت�لمحتووىى�مثالل��

�أأھھھها�صارر�قددیيھه�أأھھھها�كیيفف�����������������������������������
�أأیيووهه�����������������������������������

�وو�محاددثة�أأيي�منن��االددررااسة�في�االسططرر�ھھھهوویية�یيمثلل�أأنھه�حیيثث���االانجلیيززیية�باللغة�االمكتووبب�وو�سططرر�كلل�منن�االأوولل�االجززء�تغیيرر�عددمم�االررجاء
�����إإلخ�لھهجتھه�وو�االمتحددثث�ھھھهوویية

�� �االیيمیينن�جھهة�في������وو�������ززرريي�على�بالضغطط�تصحیيح�یيمكنكك�����االیيمیينن�إإلى�االیيسارر�منن��معكووسساالمحتووىى�كانن�حالل�في
االمفاتیيح�لووحة�منن

كالأتي��في�ملفف�منفصلل�االررجاء�كتابة�جمیيع�االكلماتت�االتي�تمم�تحوویيلھها�للفصحى�مع�مررااددفھها��
میينن���منن
وولادد���أأوولادد
بسس���فقطط
بسس���لكنن

عططفوولتكك���على�ططفوولتكك
عشانن�ھھھهمم���لأنھهمم

ستمم�تسلیيمھه�ام
ملفف�االمحاددثاتت�االمحوولل�إإلى�االفصحى�
ملفف�االمررااددفاتت�

��ملاحظظة
�أأنن�یيصددفف�قدد�لكنن�وو���مكاننلإاا�قددرر�آآلي�بشكلل�ااززاالتھها�حاوولتت�فقدد����نابیية�أألفاظظ�وو�كلماتت�االمحاددثاتت�بعضض�في�صاددفتت�ااذذاا�مسبقا�ااعتذذرر
���سھهوواا�بعضا�یيسقطط

��ددعووااتي�خالصص�وو�شكرريي�جززیيلل�لكمم�وو
االشرریيفف�ساررةة����محبتكمم

�������������������������

Figure C.2: Instructions for the annotators (second page)
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Appendix D

Derivation of the intergal of a
product of two Gaussian
distributions

A Gaussian distribution 𝒩(𝜇, 𝜎2) is defined as:

𝒩(𝜇, 𝜎2) = 1
𝜎

√
2𝜋

𝑒− (𝑥−𝜇)2
2𝜎2 ) (D.1)

An integral for a product of two Gaussian distributions 𝒩(𝜇1, 𝜎2
1) and 𝒩(𝜇2, 𝜎2

2), can
be computed as:

∫ 𝒩(𝜇1, 𝜎2
1) . 𝒩(𝜇2, 𝜎2

2) = ∫ 1
𝜎1

√
2𝜋

𝑒− (𝑥−𝜇1)2
2𝜎2

1 . 1
𝜎2

√
2𝜋

𝑒− (𝑥−𝜇2)2
2𝜎2

2

= ∫ 1
2𝜋𝜎1𝜎2

𝑒−[( 1
2𝜎2

1
𝑥2− 𝜇1

𝜎12 𝑥+ 𝜇2
1

2𝜎2
1

)+( 1
2𝜎2

2
𝑥2− 𝜇2

𝜎22 𝑥+ 𝜇2
2

2𝜎2
2

)]

= ∫ 1
2𝜋𝜎1𝜎2

𝑒−[( 1
2𝜎2

1
+ 1

2𝜎2
2

)𝑥2−( 𝜇1
𝜎12 + 𝜇2

𝜎22 )𝑥+( 𝜇2
1

2𝜎2
1

+ 𝜇2
2

2𝜎2
2

)]

(D.2)

Assume that exponential in Equation D.2 is written as a quadratic form as follows:

( 1
2𝜎2

1
+ 1

2𝜎2
2

)𝑥2 − ( 𝜇1
𝜎12 + 𝜇2

𝜎22 )𝑥 + ( 𝜇2
1

2𝜎2
1

+ 𝜇2
2

2𝜎2
2

) = 𝐴(𝑥 − 𝐵)2 + 𝐶 (D.3)
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Since the integral of an arbitrary Gaussian function [] is:

∫
∞

−∞
𝑒−𝐴(𝑥−𝐵)2𝑑𝑥 = √ 𝜋

𝐴 (D.4)

then Equation D.2 is rewritten as:

∫ 1
2𝜋𝜎1𝜎2

𝑒−[( 1
2𝜎2

1
+ 1

2𝜎2
2

)𝑥2−( 𝜇1
𝜎12 + 𝜇2

𝜎22 )𝑥+( 𝜇2
1

2𝜎2
1

+ 𝜇2
2

2𝜎2
2

)] = ∫ 1
2𝜋𝜎1𝜎2

𝑒−[𝐴(𝑥−𝐵)2+𝐶]

= 1
2𝜋𝜎1𝜎2

∫ 𝑒−[𝐴(𝑥−𝐵)2+𝐶]

= 1
2𝜋𝜎1𝜎2

∫ 𝑒−𝐴(𝑥−𝐵)2−𝐶

= 1
2𝜋𝜎1𝜎2

𝑒−𝐶 √ 𝜋
𝐴 (D.5)

To find the 𝐴 and 𝐶, from Equation D.3:

( 1
2𝜎2

1
+ 1

2𝜎2
2

)𝑥2 − (𝜇1
𝜎2

1
+ 𝜇2

𝜎2
2

)𝑥 + ( 𝜇2
1

2𝜎2
1

+ 𝜇2
2

2𝜎2
2

) = 𝐴(𝑥 − 𝐵)2 + 𝐶

= 𝐴𝑥2 − 2𝐴𝐵𝑥 + 𝐴𝐵2 + 𝐶
(D.6)

then:

𝐴 = 1
2𝜎2

1
+ 1

2𝜎2
2

(D.7)

2𝐴𝐵 = 𝜇1
𝜎2

1
+ 𝜇2

𝜎2
2

(D.8)

𝐴𝐵2 + 𝐶 = 𝜇2
1

2𝜎2
1

+ 𝜇2
2

2𝜎2
2

(D.9)

By substituting the 𝐴 from Equation D.7 into Equation D.8, then solve the resulting
equation to get 𝐵:
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D. Derivation of the intergal of a product of two Gaussian distributions

2( 1
2𝜎2

1
+ 1

2𝜎2
2

) 𝐵 = 𝜇1
𝜎2

1
+ 𝜇2

𝜎2
2

2 1
2 (𝜎2

2 + 𝜎2
1

𝜎2
1𝜎2

2
) 𝐵 = 𝜇1𝜎2

2 + 𝜇2𝜎2
1

𝜎2
1𝜎2

2

𝐵 = 𝜇1𝜎2
2 + 𝜇2𝜎2

1
𝜎2

2 + 𝜎2
1

(D.10)

By substituting the 𝐴 from Equation D.7 and 𝐵 from Equation into Equation D.9,
then solve the resulting equation to get 𝐶:

𝐴𝐵2 + 𝐶 = 𝜇2
1

2𝜎2
1

+ 𝜇2
2

2𝜎2
2

( 1
2𝜎2

1
+ 1

2𝜎2
2

) (𝜇1𝜎2
2 + 𝜇2𝜎2

1
𝜎2

2 + 𝜎2
1

)
2

+ 𝐶 = 1
2 (𝜇2

1𝜎2
2 + 𝜇2

2𝜎2
1

𝜎2
1𝜎2

2
)

1
2 (𝜎2

2 + 𝜎2
1

𝜎2
1𝜎2

2
) ((𝜇1𝜎2

2 + 𝜇2𝜎2
1)2

(𝜎2
2 + 𝜎2

1)2 ) + 𝐶 = 1
2 (𝜇2

1𝜎2
2 + 𝜇2

2𝜎2
1

𝜎2
1𝜎2

2
)

(𝜇1𝜎2
2 + 𝜇2𝜎2

1)2

2𝜎2
1𝜎2

2(𝜎2
2 + 𝜎2

1) + 𝐶 = 𝜇2
1𝜎2

2 + 𝜇2
2𝜎2

1
2𝜎2

1𝜎2
2

𝐶 = 𝜇2
1𝜎2

2 + 𝜇2
2𝜎2

1
2𝜎2

1𝜎2
2

− (𝜇1𝜎2
2 + 𝜇2𝜎2

1)2

2𝜎2
1𝜎2

2(𝜎2
2 + 𝜎2

1)

𝐶 = 1
2𝜎2

1𝜎2
2

(𝜇2
1𝜎2

2 + 𝜇2
2𝜎2

1 − (𝜇1𝜎2
2 + 𝜇2𝜎2

1)2

𝜎2
2 + 𝜎2

1
)

𝐶 = 1
2𝜎2

1𝜎2
2

(𝜇2
1𝜎4

2 + 𝜇2
1𝜎2

2𝜎2
1 + 𝜇2

2𝜎2
1𝜎2

2 + 𝜇2
2𝜎4

1 − 𝜇2
1𝜎4

2 − 2𝜇1𝜇2𝜎2
1𝜎2

2 − 𝜇2
2𝜎4

1
𝜎2

2 + 𝜎2
1

)

= 1
2𝜎2

1𝜎2
2

(𝜇2
1𝜎2

2𝜎2
1 + 𝜇2

2𝜎2
1𝜎2

2 − 2𝜇1𝜇2𝜎2
1𝜎2

2
𝜎2

2 + 𝜎2
1

)

= 1
2𝜎2

1𝜎2
2

(𝜎2
1𝜎2

2(𝜇2
1 + 𝜇2

2 − 2𝜇1𝜇2)
𝜎2

2 + 𝜎2
1

)

= (𝜇1 − 𝜇2)2

2(𝜎2
2 + 𝜎2

1) (D.11)

By substituting 𝐴 and 𝐶 from Equations D.7 and D.11 respectively in Equation D.5:
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1
2𝜋𝜎1𝜎2

𝑒−𝐶 √ 𝜋
𝐴 = 1

2𝜋𝜎1𝜎2
𝑒− (𝜇1−𝜇2)2

2(𝜎2
2+𝜎2

1)
√

𝜋
1
2 (𝜎2

2+𝜎2
1

𝜎2
1𝜎2

2
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= 1
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2(𝜎2

2+𝜎2
1) √ 2𝜋𝜎2

1𝜎2
2

𝜎2
2 + 𝜎2

1

= 1
2𝜋𝜎1𝜎2

𝑒− (𝜇1−𝜇2)2
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2+𝜎2
1) 𝜎1𝜎2
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= 1
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2) (D.12)
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