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Abstract
Orthogonal polynomials arise in many areas of mathematics and have been the subject

of interest by many mathematicians. In recent years this interest has often arisen from

outside the orthogonal polynomial community after their connection with integrable

systems was found. This thesis is concerned with the different ways these connections

can occur. We approach the problem from both perspectives, by looking for integrable

structures in orthogonal polynomials and by using an integrable structure to relate

different classes of orthogonal polynomials.

In Chapter 2, we focus on certain classes of semi-classical orthogonal polynomials. For

the classical orthogonal polynomials, the recurrence relations and differential equations

are well known and easy to calculate explicitly using an orthogonality relation or

generating function. However with semi-classical orthogonal polynomials, the recurrence

coefficients can no longer be expressed in an explicit form, but instead obeys systems

of non-linear difference equations. These systems are derived by deriving compatibility

relations between the recurrence relation and the differential equation. The compatibility

problem can be approached in two ways; the first is the direct approach using the

orthogonality relation, while the second introduces the Laguerre method, which derives

a differential system for semi-classical orthogonal polynomials. We consider some semi-

classical Hermite and Laguerre weights using the Laguerre method, before applying both

methods to a semi-classical Jacobi weight. While some of the systems derived will have

been seen before, most of them (at least not to our knowledge) have not been acquired

from this approach.

Chapter 3 considers a singular integral transform that is related to the Gel’fand-Levitan

equation, which provides the inverse part of the inverse scattering method (a solution

method of integrable systems). These singular integral transforms constitute a dressing

method between elementary (bare) solutions of an integrable system to more complicated

solutions of the same system. In the context of this thesis we are interested in adapting
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this method to the case of polynomial solutions and study dressing transforms between

different families of polynomials, in particular between certain classical orthogonal

polynomials and their semi-classical deformations.

In chapter 4, a new class of orthogonal polynomials are considered from a formal

approach: a family of two-variable orthogonal polynomials related through an elliptic

curve. The formal approach means we are interested in those relations that can be derived,

without specifying a weight function. Thus, we are mainly concerned with recursive

structures, particularly on their explicit derivation so that a series of elliptic polynomials

can be constructed. Using generalized Sylvester identities, recurrence relations are

derived and we consider the consistency of their coefficients and the compatibility

between the two relations. Although the chapter focuses on the structure of the recurrence

relations, some applications are also presented.
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Chapter 1

Introduction

As the title suggests, this thesis is concerned with the connection between orthogonal

polynomials and discrete integrable systems. The focus will be from the orthogonal

polynomials point of view, looking at the kind of integrable systems that occur after

studying the underlying structure of orthogonal polynomials. Because I will be using

this approach, most of the introductory material in this first chapter will be concerned

with some of the general theory of orthogonal polynomials and introduce the best known

families and classes of orthogonal polynomials. By comparison, discrete integrable

systems will be introduced when they first arise in Chapter 2. This secondary introduction,

will give a brief look at some of the key equations and systems studied in discrete

integrable systems as well as an introduction into the Painlevé equations.

In the literature, there have been many connections found between certain classes of

orthogonal polynomials and discrete integrable systems and our focus lies in two specific

areas. They are the study of semi-classical orthogonal polynomials and the introduction

of a new formal class of two-variable orthogonal polynomials defined through an elliptic

curve. Although two very different approaches to orthogonal polynomials it is the focus

on the recursive properties of both these classes that yields the connections to discrete

integrability. At this point in the thesis I will not endeavor to give a comprehensive
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description of the terminology since this will be provided later in the chapter.

The motivation for this research is that recursive structures, particularly the recurrence

coefficients have been found to have many connections with integrable systems. By

considering recurrence coefficients defined through an elliptic curve, we gain further

insight into the connections between elliptic functions and discrete integrable systems

as well as with orthogonal polynomials.

The subject of orthogonal polynomials finds its origins in the 18th century, thanks to the

works of Legendre, Laplace and Lagrange. While these three brilliant mathematicians are

best remembered for their work in elliptic functions, the theory of differential equations

and mathematical astronomy, they also developed the first examples of orthogonal

polynomials, before any general theory existed. The development of the general

theory of orthogonal polynomials began in the 19th century after investigations into

Stieltjes continued fractions [155, 156] by Chebyshev [36]. Other important results

found independent of the general theory were given by Gauss, Abel, Jacobi, Hermite

and Laguerre, of whom the latter three gave their name to what became the classical

orthogonal polynomials.

The classical orthogonal polynomials (referred to as the very classical polynomials in

modern literature) were the first families of orthogonal polynomials to be established

and are important because they were discovered to possess many more properties

than other orthogonal polynomial systems of the time. Orthogonal polynomials have

since been found to have connections with trigonometric, hypergeometric, Bessel

and elliptic functions; they have significance in helping to solve certain problems in

quantum mechanics and mathematical statistics; and are related to important problems of

interpolation and mechanical quadrature. One example of their breadth of interest, is the

bibliography [149] up to 1940, which consists of 1952 papers by 643 authors. Their use

in the solution and application of other mathematical problems, has led to our continued

interest in the theory to this day.
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Up until the late 20th century, there were only a few authorative texts on the subject of

orthogonal polynomials. These included the book [159] by Szegö (1939) on orthogonal

polynomials, that covered most of the general theory along with all the standard formulae

for the three very classical orthogonal polynomials. The monograph [66] by G. Freud

(1971) also gave a detailed view of the classical orthogonal polynomials in the context

of asymptotics. The text [41] by Chihara (1978) was meant to introduce those unfamiliar

with orthogonal polynomials to the subject, by focusing on the elementary theory and

aiming at a less advanced audience. The focus was often on recurrence relations using the

justification that “a great deal can be developed only using elementary tools”. Recently

though, there has been a renewed interest in orthogonal polynomials, especially since the

connection with integrable systems has been found. Amongst these I mention the books

by B. Simon [150, 151] (2004), which has developed the general theory from [159] to

become authorative texts on orthogonal polynomials on the unit circle, and the monograph

[84] (2005), which approaches orthogonal polynomials from the viewpoint of special

functions.

Since the days when the classical theory was established we have since seen a split in the

field, into multiple strands. Of these, the main strands and their key contributors are

• special functions, includes the work of Ismail [84] and Carlitz. Their interests lie in

the connections that different special functions have with orthogonal polynomials,

such as elliptic functions.

• Freud and asymptotics, the work of van Assche [165] and Nevai [122]. Their work

often involves the work begun by Géza Freud in asymptotics and Freud weights.

• formal orthogonal polynomials, which is based in a French school of numerical

analysis. A class of formal orthogonal polynomials is one where the weight

function is not defined. As such the focus is on recursive structures. The main

contributors include Draux [50], who first coined the term formal orthogonal
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polynomials; Brezinski [27], who often approaches formal orthogonal polynomials

using determinant structures and Maroni [111, 112, 113, 114], who has been

involved with formal semi-classical orthogonal polynomials.

The theory of formal orthogonal polynomials plays a central role in modern numerical

analysis, in particular in connection with the theory of Padé approximants, with the QD-

algorithm and in the development of convergence acceleration algorithms, cf. [25, 27, 50].

Recently it was pointed out in [139] that also these matters are intimately connected to

integrable discrete systems. The famous ε-algorithm of Wynn [170], specified by the

partial difference equation (1.0.1),

(ε
(m)
n+1 − ε

(m+1)
n−1 )(ε(m+1)

n − ε(m)
n ) = 1, (1.0.1)

turns out to be identical to a well-known exactly integrable lattice system related to the

Korteweg-de Vries (KdV) equation (a soliton system defined on the space-time lattice).

This allows us to interpret the numerical algorithm as a symplectic dynamical system

with extremely rich behaviour from the point of view of analytical solutions. Similarly,

the famous “missing identity of Frobenius” [171] (found by Wynn in 1966) in the theory

of Padé approximants,

1

rm+1,n − rm,n

+
1

rm−1,n − rm,n

=
1

rm,n+1 − rm,n

+
1

rm,n−1 − rm,n

can be regarded as an exactly solvable lattice system closely related to discretisations of

the KdV equation and intimately connected to the Toda lattice.

In recent years there has also been more interest in establishing a solid connection

between the theory of matrix models and orthogonal polynomials, and the theory of

discrete integrable systems. The manifestations of this connection is manifold: nonlinear

integrable systems, in particular equations of Painlevé type, arise as the governing

equations for the partition functions of matrix models and the hierarchies of soliton

type equations sit on the background of the main algebraic structures for these models.
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Furthermore, the Riemann-Hilbert approach, which has already found its key role in the

construction of analytic solutions of integrable PDEs and ODEs, has recently become a

powerful new tool in studying the asymptotic properties of orthogonal polynomials [48].

1.1 Basic Properties of Orthogonal Polynomials

This introductory chapter will give a brief account on the standard theory of orthogonal

polynomials, focusing on the construction of a recurrence relation using determinants.

We then describe hypergeometric functions and some of its associated relations. Most

“classical” orthogonal polynomials can be written as terminating hypergeometric series

and during the twentieth century people have been working on a classification of all

such hypergeometric orthogonal polynomial and their characterizations. Of the classical

orthogonal polynomials, we state some of the standard formulae of the very classical

orthogonal polynomials (those named after Jacobi, Laguerre and Hermite [166]) and then

consider several other classes of orthogonal polynomials, including the discrete, multi-

variable and q-orthogonal polynomials. We emphasize the specific relations of the very

classical orthogonal polynomial families, since they will be used in greater detail in later

chapters of the thesis. Moving into the applications of orthogonal polynomials, we will

demonstrate how quantum mechanics and matrix models use the theory of orthogonal

polynomials to aid in the solution of some of their problems, which in turn shows the

broader world which orthogonal polynomials exists in.

1.1.1 System of Orthogonal Functions

With a specific interval (a, b) (on the real line R) and a fixed weight function, we can

define an inner product for a pair of functions [16]. An inner product may be defined by
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a Stieltjes integral

〈φ1, φ2〉 =

∫ b

a

φ1(x)φ2(x)dµ(x) (1.1.1a)

where µ(x) is a non-decreasing function. If µ(x) is absolutely continuous then (1.1.1a)

reduces to

〈φ1, φ2〉 =

∫ b

a

φ1(x)φ2(x)w(x)dx (1.1.1b)

where the integral is assumed to exist in Lebesgue’s sense [159]. However if µ(x) is

a jump function that is constant except for jumps of the magnitude wi at x = xi, then

(1.1.1a) reduces to

〈φ1, φ2〉 =
∑

i

wiφ1(xi)φ2(xi), (1.1.1c)

the definition for functions of a discrete variable.

Two functions are said to be orthogonal to one another if their inner product is zero,

hence a family of functions forms an orthogonal system on an interval (a, b) with a

weight function w(x) if for any two distinct members of the family 〈φ1, φ2〉 = 0.

An orthogonal system can be written as a sequence of functions {φn}∞n=0 and the

corresponding orthogonal property can be expressed as 〈φn, φm〉 = 0 for n 6= m.

Assuming that {φn} doesn’t contain any null function, then 〈φn, φn〉 is positive for all n

and consequently the functions of any finite subset of an orthogonal system are linearly

independent. Then the functions {φn} form an orthonormal system if

〈φn, φm〉 =





0 if n 6= m

1 if n = m
. (1.1.2)

Although individually these functions are unimportant, collectively this property of

orthogonality with a given weight, is a decisive property that fixes the functions uniquely.
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1.1.2 Single-Variable Orthogonal Polynomials

Moving from general orthogonal functions to polynomials, we consider a single variable

polynomial Pn(x)

Pn(x) =
n∑

j=0

an,jx
j = an,nxn + an,n−1x

n−1 + . . . + an,1x + an,0, (1.1.3)

and for convenience we will deal monic polynomials of order n (an,n = 1) with

some given coefficients an,0, an,1, . . . , an,n. What makes these rather simple functions

interesting is their orthogonality property, by which they form a family of orthogonal

functions i.e. a family of polynomials organized according to their degree and within

the family, due to the orthogonality to each other. Formally we define an orthogonal

polynomial sequence {Pn(x)}∞n=0 [41], with respect to a moment functional L provided

for all non-negative integers m and n,

• Pn(x) is a polynomial of degree n,

• L[Pn(x)Pm(x)] = 〈Pn, Pm〉 = 0 for m 6= n,

where

L[Pn(x)] =

∫
w(x)Pn(x)dx. (1.1.4)

In many cases the inner product 〈Pn, Pm〉 can be expressed explicitly in terms of an

integral with a certain measure, which leads to

〈Pn(x), Pm(x)〉 =

∫ b

a

Pn(x)Pm(x)w(x)dx = hnδnm, (1.1.5)

where the Kronecker delta δnm =





0 when n 6= m

1 when n = m
.

This applies for the case of a non-zero continuous weight function w, which is non-

negative, is integrable on an interval [a, b] and where hn 6= 0. In such a case we have
∫ b

a

w(x)dx > 0
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and L[P 2
n(x)] = 〈Pn, Pn〉 6= 0.

We use this particular case, because this will be most used in subsequent chapters.

Whenever we have such a family of polynomials, with a given weight function w(x)

and interval [a, b] a large number of properties follow for the polynomials in the family,

such as a recurrence relation.

1.1.3 Recursive Structure

The orthogonality condition (1.1.5) implies the existence of a three point recurrence

relation, which can be seen by considering the inner product relation:

〈xPn, Pm〉 = 〈Pn, xPm〉, (1.1.6)

and an expression for xPn(x):

xPn = Pn+1 +
n∑

j=0

a
(n)
j Pj (1.1.7)

(a consequence of xPn being a polynomial). Using these two expressions it is possible to

acquire a general from of a recurrence relation for orthogonal polynomials. We begin by

expanding the left side of (1.1.6) using (1.1.7)

〈Pn+1 +
n∑

j=0

a
(n)
j Pj, Pm〉 =

n∑
j=0

a
(n)
j hmδjm for m ≤ n,

= a(n)
m (1.1.8)

then consider expanding the right side of (1.1.6) using (1.1.7)

〈Pn, Pm+1 +
m∑

j=0

a
(m)
j Pj〉 = 0 for m ≤ n− 2. (1.1.9)

By comparing these two expressions we can conclude that a
(n)
m = 0 for m < n − 1 and

thus we have only three terms in the recurrence relation (1.1.7). We refer to this relation

as the monic recurrence relation, since it gives rise to monic polynomials.

xPn = Pn+1 + SnPn + RnPn−1 (1.1.10)
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where

a(n)
n = Sn , a

(n)
n−1 = Rn

We can evaluate the values of Sn and Rn by considering certain inner products [41]. To

derive Sn, we consider 〈Pn, Pn+1〉 and expand with the recurrence relation to get

〈Pn, Pn+1〉 = 〈Pn, xPn〉 − Sn〈Pn, Pn〉 −Rn〈Pn, Pn−1〉,
⇒ 0 = 〈xPn, Pn〉 − Sn〈Pn, Pn〉,
⇒ Sn =

〈xPn, Pn〉
〈Pn, Pn〉 . (1.1.11)

To derive Rn, we consider 〈xn−1, Pn+1〉 and expand with the recurrence relation to get

〈xn−1, Pn+1〉 = 〈xn, Pn〉 − Sn〈xn−1, Pn〉 −Rn〈xn−1, Pn−1〉,
⇒ 0 = 〈xn, Pn〉 −Rn〈xn−1, Pn−1〉,

⇒ Rn =
〈xn, Pn〉

〈xn−1, Pn−1〉 =
hn

hn−1

(1.1.12)

since 〈Pn, Pn〉 = hn and we take R0 = h0 setting h−1 = 1 [41].

1.1.4 Determinant Representation of Orthogonal Polynomials

While the orthogonality condition can be used to prove the existence of a recurrence

relation, the previous method does not give us explicit expressions for the recurrence

coefficients derived in terms of moments. So using the orthogonality we construct a

determinant representation for the polynomials Pn(x), which can then be used to derive

an explicit form for the recurrence relation. This method is well known and can be found

in [16].

A weight function w(x) on an interval a, b determines a system of orthogonal polynomials

Pn uniquely, apart from a constant factor in each polynomial, cn. These numbers are the

moments of the weight function,

cn =

∫ b

a

w(x)xndx (1.1.13a)
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with the following scalar product representation

cm+n = 〈xn, xm〉. (1.1.13b)

Proposition

With this definition for the moments, we can construct the determinant representation

Pn(x).

Pn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 . . . cj . . . cn

c1 . . . cj+1 . . . cn+1

... . . . ... . . . ...

cn−1 . . . cj+n−1 . . . c2n−1

1 . . . xj . . . xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∆n−1

(1.1.14)

Proof

A sequence of linearly independent functions can be orthogonalized with respect to the

inner product 〈Pn, Pm〉 by the formation of suitable linear combinations. This leads to the

following triangular structure:

P0(x) = 1

P1(x) = α10P0(x) + x

...
...

Pn(x) = αn0P0(x) + αn1P1(x) + . . . + αn,n−1Pn−1(x) + xn

Now the inner product of the polynomial Pn(x) (1.1.3) with xm (after rearrangement) can

be found for values of m = 0, 1, . . . , n− 1 and for m = n:

〈xm, Pn〉 = a0cm + a1cm+1 + . . . + an−1cm+n−1 + ancm+n = 0 unless n = m

〈xn, Pn〉 = a0cn + a1cn+1 + . . . + an−1c2n−1 + anc2n = hn
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where the only contributor is 〈Pn, Pn〉 = hn and this is due to the orthogonality between

polynomials. Then these equations can be written in a matrix form



c0 . . . cn

c1 . . . cn+1

... . . . ...

cn . . . c2n







a0

a1

...

an




=




0

0
...

hn




an = 1, (1.1.15)

which can be solved by using Cramer’s rule.

Lemma 1.1.1 - Cramer’s Rule Given the expression Ax = b, where A = (a1, . . . , an) is

an n × n matrix and x and b are n-component column vectors. Then the elements of xi

can be represented as

xi =
|a1, . . . ,

i↓
b, . . . , an|

det(A)
(1.1.16)

and where det(A) 6= 0.

That is we replace the ith column with the right side of (1.1.15) and then divide it by itself.

This equation is multiplied by xj and summed over n to give Pn(x)

n∑
j=0

xjaj = hn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 . . . cj . . . cn

c1 . . . cj+1 . . . cn+1

... . . . ... . . . ...

cn−1 . . . cj+n−1 . . . c2n−1

1 . . . xj . . . xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∆n

= Pn(x), (1.1.17)

with the Hankel determinant ∆n:

∆n =

∣∣∣∣∣∣∣∣∣

c0 . . . cn

... . . . ...

cn . . . c2n

∣∣∣∣∣∣∣∣∣
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and where a necessary and sufficient condition is ∆n 6= 0 [41]. 2

If this determinant is expanded in terms of the Hankels, the first term xn in the polynomial

Pn is

Pn(x) = xnhn
∆n−1

∆n

+ . . . , (1.1.18)

and since we assume this polynomial is monic:

hn =
∆n

∆n−1

, (1.1.19)

where we supplement this equation by imposing ∆−1 = 1 when n = 0.

1.1.5 A Recurrence Relation from Hankel Determinants

Returning to the general form of a recurrence relation along with (1.1.14) (which is altered

through the inclusion of an upper index), allows the creation of a recurrence relation

(1.1.10), with Sn and Rn defined in terms of Hankel determinants. Thus the family of

adjacent polynomials is introduced:

P (m)
n (x) ≡ 1

∆
(m)
n−1

∣∣∣∣∣∣∣∣∣∣∣∣

cm . . . . . . cn+m

...
...

cn+m−1 c2n+m−1

1 . . . . . . xn

∣∣∣∣∣∣∣∣∣∣∣∣

(1.1.20a)

with the corresponding Hankel determinant:

∆(m)
n (x) ≡

∣∣∣∣∣∣∣∣∣∣∣∣

cm . . . . . . cn+m

...
...

...
...

cn+m . . . . . . c2n+m

∣∣∣∣∣∣∣∣∣∣∣∣

(1.1.20b)

(where we assume ∆
(m)
n (x) 6= 0). From this, it is possible to acquire a pair of relations by

using two different forms of the corresponding two row/column Sylvester1 determinant
1this identity has many different names including the Jacobi identity, Lewis Carroll’s identity and the

window-pane identity, however we will refer to it as the Sylvester identity throughout the thesis
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identity [23, 119, 137], which we apply onto the polynomial P
(m)
n (x). Although in this

chapter we only make use of the two row/column Sylvester Identity, we will consider a

more generalized form (where we extend the removal of two rows and columns to m rows

and columns) in Chapter 4 and a derivation is presented in Appendix B.
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
(1.1.21)

We use two different forms of the Sylvester identity and applying them to Pn(x) leads to
∣∣∣∣∣∣∣∣

P
(m)
n

∣∣∣∣∣∣∣∣
⇒ P (m)

n (x) = xP
(m+1)
n−1 (x)− ∆

(m+1)
n−1 ∆

(m)
n−2

∆
(m+1)
n−2 ∆

(m)
n−1

P
(m)
n−1(x), (1.1.22a)

∣∣∣∣∣∣∣∣
P

(m)
n

∣∣∣∣∣∣∣∣
⇒ P (m)

n (x) = xP
(m+2)
n−1 (x)− ∆

(m+1)
n−1 ∆

(m+1)
n−2

∆
(m)
n−1∆

(m+2)
n−2

P
(m+1)
n−1 (x),

(1.1.22b)

which can also be expressed in the following form:

P
(m)
n+1 = xP (m+1)

n − V (m)
n P (m)

n (1.1.23a)

P
(m)
n+1 = xP (m+2)

n −W (m)
n P (m+1)

n , (1.1.23b)

with

V (m)
n =

∆
(m+1)
n ∆

(m)
n−1

∆
(m+1)
n−1 ∆

(m)
n

, W (m)
n =

∆
(m+1)
n ∆

(m+1)
n−1

∆
(m)
n ∆

(m+2)
n−1

.

These two equations can be combined to leave an equation in terms of P
(m+1)
n :

P
(m)
n+1 = P

(m+1)
n+1 + V (m+1)

n P (m+1)
n −W (m)

n P (m+1)
n , (1.1.24)

which in turn can be eliminated to give an equation just in terms of P :

xP
(m)
n+1 = (P

(m)
n+2 + V

(m)
n+1P

(m)
n+1) + (V (m+1)

n −W (m)
n )(P

(m)
n+1 + V (m)

n P (m)
n )

xP (m)
n = P

(m)
n+1 + (V (m)

n + V
(m+1)
n−1 −W (m)

n )P (m)
n + (V

(m+1)
n−1 −W

(m)
n−1)V

(m)
n−1P

(m)
n−1.
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This final equation gives the recurrence relation and since all the Pn have the same order

of m, we can omit this in the final relation

xPn = Pn+1 + SnPn + RnPn−1. (1.1.25)

The coefficients Sn and Rn can be further simplified to the following:

Sn =
∆

(m+1)
n ∆

(m)
n−1

∆
(m)
n ∆

(m+1)
n−1

+
∆

(m+1)
n−2 ∆

(m)
n

∆
(m+1)
n−1 ∆

(m)
n−1

=
h

(m+1)
n

h
(m)
n

+
h

(m)
n

h
(m+1)
n−1

, (1.1.26a)

Rn =
∆

(m)
n ∆

(m)
n−2

∆
(m)
n−1∆

(m)
n−1

=
h

(m)
n

h
(m)
n−1

, (1.1.26b)

(where we have suppressed the m-dependence in the symbols Rn and Sn). We achieve

this simplification by making use of a bilinear relation that exists between the Hankel

determinants ∆n. We find this relation by applying the Sylvester identity to ∆n:
∣∣∣∣∣∣∣∣

∆
(m)
n

∣∣∣∣∣∣∣∣
⇒ ∆(m)

n ∆
(m+2)
n−2 = ∆

(m+2)
n−1 ∆

(m)
n−1 −∆

(m+1)
n−1 ∆

(m+1)
n−1 . (1.1.27)

By incorporating (1.1.27) with the Hankel forms of (V
(m)
n + V

(m+1)
n−1 − W

(m)
n ) and

(V
(m+1)
n−1 −W

(m)
n−1)V

(m)
n−1 , gives rise to the simplified forms of Rn and Sn.

We compare this relation with a special case (one with no parameters) of the discrete-time

Toda equation [81]

τ
(m−1)
n−1 τ

(m+1)
n+1 − τ

(m−1)
n+1 τ

(m+1)
n−1 + τ (m)

n τ (m)
n = 0 (1.1.28)

and it is clear to see that they are very similar with regards to their shifts. This pattern

of shifts (which the Toda equation satisfies) demonstrates a bilinear Hirota form and as

such is an example of a discrete integrable system. This simple case illustrates how the

shadows of integrability already appear in the underlying structure of the standard theory

of orthogonal polynomials. We explore this connection in the subsequent chapters of the

thesis. While the similarities between the two equations are clear to see, it is also possible
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to transform one into the other, thus we introduce the simple transformation of τ
(m)
n = τ̃m

N ,

where N = n + m:

τ̃
(m−1)
N−2 τ̃

(m+1)
N+2 − τ̃

(m−1)
N τ̃

(m+1)
N + τ̃

(m)
N τ̃

(m)
N = 0. (1.1.29)

We can then let τ̃m
N = ∆−m

N/2 and after a simple transformation, this gives the same result as

(1.1.27). Any terminology mentioned here will be introduced in greater detail in Chapter

2, together with references to the relevant literature.

Further equations can be found from Hankel determinants using similar Sylvester

identities, which lead to bilinear relations of a similar form to the above.

While this derivation is not widely used in the literature, examples of it can be found

in [11]. This method demonstrates one way to derive an explicit form of a recurrence

relation in terms of Hankel identities. In Chapter 4, this example will be extended by

using a generalized version of the Sylvester identity applied to a determinant constructed

for polynomials in two variables.

1.1.6 The Christoffel-Darboux Identity

The Christoffel-Darboux identity [44, 46] can be seen as a direct consequence of the

recurrence relation, although it is possible to derive it independently of the recurrence

relation by using a similar method to the above [29].

The Christoffel-Darboux identity is found using the monic recurrence relation (1.1.25)

and a corresponding monic recurrence relation in terms of y

yPn(y) = Pn+1(y) + SnPn(y) + RnPn−1(y).
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We multiply the former by Pn(y) and the latter by Pn(x) and take the difference

xPn(x)Pn(y) = (Pn+1(x) + SnPn(x) + RnPn−1(x))Pn(y)

yPn(y)Pn(x) = (Pn+1(y) + SnPn(y) + RnPn−1(y))Pn(x)

⇒ (x− y)Pn(x)Pn(y) = Pn+1(x)Pn(y)− Pn+1(y)Pn(x)

+Rn(Pn−1(x)Pn(y)− Pn−1(y)Pn(x)) (1.1.30)

Eliminating Rn by using Rn = hn

hn−1
(1.1.26b), (1.1.30) can be rewritten as

(x− y)
Pn(x)Pn(y)

hn

=
1

hn

(Pn+1(x)Pn(y)− Pn+1(y)Pn(x))

− 1

hn−1

(Pn−1(y)Pn(x)− Pn−1(x)Pn(y))

and we apply a discrete integration to give a sum.

⇒
n∑

j=0

(x− y)
Pj(x)Pj(y)

hj

=
1

hn

(Pn+1(x)Pn(y)− Pn+1(y)Pn(x))

⇒
n∑

j=0

Pj(x)Pj(y)

hj

=
(Pn+1(x)Pn(y)− Pn+1(y)Pn(x))

hn(x− y)
(1.1.31)

This identity has many uses in the theory of orthogonal polynomials, particularly when

eliminating a sum from an equation, which has particular use in continuous integral

equations. There is also a confluent form of (1.1.31), which can be obtained by taking

the limit y → x and applying l’Hôpital rule to get

n∑
j=0

P 2
j (x)

hj

=
(P ′

n+1(x)Pn(x)− Pn+1(x)P ′
n(x))

hn

(1.1.32)

where P ′
n(x) = d

dx
Pn(x). A consequence of this is that

(P ′
n+1(x)Pn(x)− Pn+1(x)P ′

n(x)) > 0 for all x (1.1.33)

and this has particular use in exploring the zeros of orthogonal polynomials [41],

specifically that the zeros of Pn(x) and Pn+1(x) separate each other. To prove this we
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denote the zeros of Pn(x) in increasing order by x1n < x2n < · · · < xnn. Given the fact

that xk,n+1 is a zero of Pn+1(x) and using (1.1.33) we get

Pn(xk,n+1)P
′
n+1(xk,n+1) > 0. (1.1.34)

The simplicity of zeros implies that P ′
n+1(xk,n+1) and P ′

n+1(xk+1,n+1) have different signs.

It follows that Pn(xk,n+1) and Pn(xk+1,n+1) have different signs. By the continuity of Pn

we know it has a zero between xk,n+1 and xk+1,n+1 for k = 1, 2, . . . , n and the result

follows.

1.2 The Hypergeometric Series and

Associated Special Functions

It is possible to express almost all elementary functions of mathematics as hypergeometric

functions or ratios of hypergeometric functions and truncations of hypergeometric

functions lead to orthogonal polynomials [9]. First though, we introduce two special

functions, namely the Gamma and the Beta functions Γ(x) and B(x, y) respectively.

1.2.1 The Gamma and Beta Functions

The Gamma function extends the factorial function n! to complex numbers and can be

defined as

Γ(x) = lim
n→∞

n!nx

(x)n+1

(1.2.1a)

Γ(x) =

∫ ∞

0

tx−1e−tdt (1.2.1b)

(where if the real part of the complex number x is positive, the integral converges

absolutely) and we introduce the notation of the Pochhammer symbol or rising factorial
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(x)n

(x)n = x(x + 1)(x + 2) . . . (x + n− 2)(x + n− 1) =
Γ(x + n)

Γ(x)
. (1.2.2)

Also by using integration by parts we find the difference equation

Γ(x + 1) = xΓ(x) (1.2.3)

and we define the Beta function (also referred to as the Euler integral of the first kind) as

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt. (1.2.4)

The two special functions are related through the expression

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
. (1.2.5)

An alternate way to introduce the Gamma function is as the infinite product

Γ(x) =
e−γx

x

∞∏
n=1

(
1 +

x

n

)−1

e
x
n (1.2.6)

where γ is Euler’s constant

γ = lim
n→∞

(
1 +

1

2
+

1

3
+ . . . +

1

n
− log n

)
(1.2.7)

and takes an approximate value of 0.57722. This product is valid for all complex numbers

x, which are not negative integers or zero. Their connection to hypergeometric functions,

occurs in its integral representation, first defined by Euler.

1.2.2 The Hypergeometric Function

We say a series
∑

cn is hypergeometric if the ratio cn+1

cn
is a rational function of n. Thus,

factorizing polynomials in n, we obtain

cn+1

cn

=
(n + a1)(n + a2) . . . (n + ap)

(n + b1)(n + b2) . . . (n + bq)(n + 1)
. (1.2.8a)
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This relation leads to

∞∑
n=0

cnxn =
∞∑

n=0

(a1)n . . . (ap)n

(b1)n . . . (bq)n

xn

n!
= pFq


 a1, . . . , ap

b1, . . . , bq

; x


 (1.2.8b)

where pFq is commonly referred to as the hypergeometric series. The series pFq is

absolutely convergent for all x if p ≤ q and for |x| < 1 if p = q + 1. It diverges for

all x 6= 0 if p > q + 1 and the series does not terminate. Thus we define hypergeometric

functions 2F1(a, b; c; x) as

2F1(a, b; c; x) =2 F1


 a, b

c
; x


 =

∞∑
n=0

(a)n(b)n

(c)n

xn

n!
, (1.2.9)

which is convergent for |x| < 1. Most elementary functions are special cases of

hypergeometric series, for example

sin x = x 0F1


 −

3
2

;
−x2

4


 , cos x = 0F1


 −

1
2

;
−x2

4




ex = 0F0


 −
−

; x




(where - represents a blank space) and hypergeometric functions can have different

representations including the Euler integral representation (which makes use of the

Gamma and Beta functions)

2F1


 a, b

c
; x


 =

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− xt)−adt, (1.2.10)

and summation theorems such as the Chu-Vandermonde Sum.

2F1


 −n, b

c
; 1


 =

(c− b)n

(c)n

(1.2.11)

While the methods to derive these two equations are straightforward, they are also long

so I will not include them. A full derivation can be found in [9], where they are used to

simplify equations including the Jacobi orthogonality relation (which is detailed later).
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Hypergeometric functions also generalize many special functions, including the Bessel

functions, the Gamma function, the error function, the elliptic integrals and the orthogonal

polynomials. Equation (1.2.11) in particular is used when proving the orthogonality of

the Jacobi polynomials. This is in part because hypergeometric functions are solutions

of the hypergeometric differential equation, which is a (Fuchsian) second-order ordinary

differential equation, with three regular singular points.

x(1− x)
d2w

dx2
+ (c− (a + b + 1)x)

dw

dx
− abw = 0 (1.2.12)

The theory of Fuchsian differential equations is a very broad theory, but is not one that

we deal with in this thesis.

1.2.3 The Heun and Lamé equations

Going beyond the hypergeometric differential equation (in terms of complexity) is the

Heun equation [145, 152], which has Lamé [169] as a special case. As we have

mentioned, an alternative definition of hypergeometric functions would be to define it

as a solution of a Fuchsian differential equation with at most three regular singularities,

0, 1,∞. Heun functions, are defined as special solutions of a generic linear second order

Fuchsian differential equation with four regular singularities, 0, 1, a,∞, where a is the

additional singularity. Then we present the Heun equation as

d2w

dx2
+

(
γ

x
+

δ

x− 1
+

ε

x− a

)
dw

dx
+

αβx− q

x(x− 1)(x− a)
w = 0 (1.2.13a)

where

α + β − γ − δ − ε + 1 = 0. (1.2.13b)

Of these seven parameters, α, β, γ, δ, ε are referred to as the exponent parameters (since

they determine the exponents at the four singularities), a is the singularity parameter and

q is the accessory parameter. Many important subclasses are found choosing specific

values of these parameters. Heun’s equation was originally constructed as a deliberate
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generalization of the hypergeometric equation, so unsurprisingly there are three ways in

which the former reduces to the latter [145], e.g.

x(x− 1)(x− a)y′′(x) + [γ(x− 1)(x− a) + δx(x− a) + εx(x− 1)]y′(x)

+(αβx− q)y(x) = 0

and set a = 1, q = αβ

then a factor (x− 1) can be taken out, leaving

x(1− x)
d2y

dx2
+ (c− (a + b + 1)x)

dy

dx
− aby = 0

the hypergeometric equation (1.2.12). The Heun equation has many uses in mathematics,

but for this work we are primarily interested in its connections with orthogonal

polynomials. One such class is known as the Stieltjes-Carlitz polynomials, which will

be mentioned in Chapter 4.

One particular case of the Heun’s general (non-confluent), which has seen a lot of

attention in recent years [108], is the case where γ = δ = ε = 1
2
. The equation then

becomes the Lamé equation

y′′(x) +
1

2

(
1

x
+

1

x− 1
+

1

x− a

)
y′(x)

+
ah− ν(ν + 1)x

4x(x− 1)(x− a)
y = 0 (1.2.14)

of which there are several forms, but here we just consider the Jacobi and Weierstrass

forms.

[− d2

dα2
+ l(l + 1)k sn2(α|k)]Ψ = EΨ (1.2.15a)

{
d2

du2
− [l(l + 1)℘(u; g2, g3) + B]

}
Ψ = 0 (1.2.15b)

The Weierstrass form may be further rearranged to the elliptic-curve algebraic form
{(

y
d

dx

)2

− [l(l + 1)x + B]

}
Ψ = 0 (1.2.16a)
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where

B = −E +
1

3
l(l + 1)(m + 1). (1.2.16b)

Both of the forms (1.2.15a,1.2.15b) that are introduced here make use of elliptic functions:

in the Jacobi form there is the Jacobi sine function and in the Weierstrass there is the

℘ function. The solutions of the Lamé equation are the Lamé polynomials, which

are polynomials in the Jacobi elliptic functions sn(α|m), cn(α|m) and dn(α|m) (See

appendix A).

1.3 The ‘very’ Classical Orthogonal Polynomials

In the modern theory the following are referred to as the very classical orthogonal

polynomials [166],

1. Hermite polynomials

2. (generalised) Laguerre polynomials

3. Jacobi or hypergeometric polynomials

(of which, these are all characterized by their different weight functions and integration

intervals), where it is important to highlight the distinction between these and other

orthogonal polynomials. But where does that distinction lie?

The classical orthogonal polynomials can be defined [16, 41] as those orthogonal

polynomials satisfying the properties:

1. {P ′
n(x)} is a system of orthogonal polynomials;

2. Pn(x) satisfies a differential equation of the form A(x)y′′ + B(x)y′ + λny = 0,

where A(x) and B(x) are independent of n and λn is independent of x;
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3. there is a generalized Rodrigues’ Formula

Pn(x) =
1

Knw(x)

dn

dxn
(w(x)Xn)

where Kn is a constant and X is a polynomial in x, whose coefficients are

independent of n.

Conversely any of these three properties characterizes the classical orthogonal

polynomials in the sense that any system of orthogonal polynomials which has one of

these properties can be reduced to a classical system. For (1) this has been proved by

Hahn [78] and Krall [97]; for (2) by Bochner [22] (in this case there are some trivial

exceptions); and for (3) by Tricomi [161].

However in recent times there have been a number of families that satisfy these conditions,

but are not called classical. Thus we refer to those mentioned above as the very classical

orthogonal polynomials.

Looking more closely at the properties that these families have, it can be shown that

they all have a generating function, a recursion and differential relation (which can be

combined to give a second order ODE) and a Rodrigues’ formula. These equations are

easier to derive for the Hermite and Legendre polynomials and more difficult for the other

families with the Jacobi polynomials providing large equations, which although solvable,

require some mathematical tricks and techniques. Families of orthogonal polynomials

have a lot of beautiful mathematical structure behind them, which make them into

interesting objects to study.

The generating function for the family Hermite can be used to calculate the other three

properties, ie. the recurrence and differential relations and the Rodrigues’ formula, and is

also useful in proving the orthogonality of the family. To emphasis this point the Hermite

family will be defined through the use of its generating function. However it is not the

generating function alone that shares this property, since the Rodrigues’ formula can also

be used to define the recursion and differential relations, and prove the orthogonality.



Chapter 1. Introduction 24

1.3.1 The Hermite Polynomials

Hermite polynomials are orthogonal polynomials associated with the interval (−∞,∞)

and the exponential weight function w(x) = e−x2 . The Hermite polynomials, denoted as

Hn(x), can be represented as

Hn(x) = (2x)n
2F0


 −n/2,−(n− 1)/2

−
;− 1

x2


 (1.3.1)

and satisfy the orthogonality relation
∫ ∞

−∞
Hn(x)Hm(x)e−x2

dx = 2nn!
√

π δn,m (1.3.2)

The Hermite polynomials have the generating function:

S(x, t) = e2tx−t2 =
∞∑

n=0

tn

n!
Hn(x), (1.3.3)

which are functions of x as well as an additional ”dummy” variable t. One method of

deriving (1.3.2) is to integrating the left and right sides of (1.3.3). The generating function

(1.3.3) also allows the calculation of the recurrence relation

Hn+1 = 2xHn − 2nHn−1 n = 0, 1, 2, . . . (1.3.4)

and the differential relation

H ′
n = 2nHn−1 n = 1, 2, . . . , (1.3.5)

where H ′
0 = 0. The recurrence relation (1.3.4) and the differential relation (1.3.5) can be

combined to give a second-order differential equation, the Hermite equation:

H ′′
n − 2xH ′

n + 2nHn. (1.3.6)

Also n differentiations of the generating function, leads to Rodrigues’ formula,

Hn(x) = ex2

(
− ∂

∂x

)n

e−x2

(1.3.7)



Chapter 1. Introduction 25

which can also be written in the form of the recurrence relation:

Hn+1(x) = ex2

(
− ∂

∂x

)
e−x2

Hn(x).

Hermite polynomials can also be expressed by a truncating hypergeometric series,

Hn(x) = (2x)n
2F0


 −n

2
,−n−1

2

−
;− 1

x2


 (1.3.8)

where the truncation occurs, because of the negative n in the expression.

1.3.2 The (associated) Laguerre Polynomials

The (associated) Laguerre polynomials are orthogonal with respect to the weight function

w(x) = xαe−x, on the interval (0,∞) . They have the explicit representation

Lα
n(x) =

(α + 1)n)

n! 1
F1


 −n

α + 1
; x


 (1.3.9)

and satisfy the orthogonality relation
∫ ∞

0

Lα
n(x)Lα

m(x)xαe−xdx =
Γ(α + n + 1)

n!
δn,m, α > −1 (1.3.10)

(which is expressed in terms of the Gamma function). The (associated) Laguerre

Polynomials also have the generating function:
∞∑

n=0

Lα
n(x)tn = (1− x)−α−1e−xt/(1−t) (1.3.11)

which is a function of x and the “dummy” variable t. The three term recurrence relation

can be expressed as

(n + 1)Lα
n+1(x)− (x− α− 2n− 1)Lα

n(x) + (n + α)Lα
n−1(x) = 0, (1.3.12)

where for n = 0, L−1 = 0 and a differential relation

x
dLα

n(x)

dx
= nLα

n(x)− (n + α)Lα
n−1(x). (1.3.13)
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Like the Hermite equation, we derive the (associated) Laguerre equation from (1.3.12)

and (1.3.13)

x
d2Lα

n(x)

dx2
+ (α + 1− x)

dLα
n(x)

dx
+ nLα

n(x) = 0 , for n ≥ 0. (1.3.14)

(associated) Laguerre polynomials can be expressed by the truncating hypergeometric

series

Lα
n(x) =

(α + 1)n

n!
1F1


 −n

α + 1
; x


 , (1.3.15)

where the truncation occurs, because of the negative n in the expression.

1.3.3 The Jacobi Polynomials

Jacobi polynomials, also known as hypergeometric polynomials, occur in the study of

rotation groups and in the solution to the equations of motion of the symmetric top. They

are associated with the interval (−1, 1) and the weight function

w(x) = (1− x)α(1 + x)β.

For certain values of α and β, the Jacobi polynomials reduce to other orthogonal

polynomials including Legendre (for α = β = 0) and Gegenbauer (for α = β = λ− 1
2
).

The hypergeometric representation of the Jacobi polynomials P
(α,β)
n (x), is

P (α,β)
n (x) =

(α + 1)n

n!
2F1


 −n, n + α + β + 1

α + 1
;
1− x

2


 (1.3.16)

and satisfy the orthogonality relation

∫ 1

−1

P (α,β)
n (x)P (α,β)

m (x)(1− x)α(1 + x)βdx

=
2α+β+1Γ(n + α + 1)Γ(n + β + 1)

(2n + α + β + 1)Γ(n + α + β + 1)n!
δnm. (1.3.17)
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The Jacobi polynomials also have a generating function:

∞∑
n=0

P (α,β)
n (x)zn = 2α+βR−1(1− z + R)−α(1 + z + R)−β (1.3.18)

where R = (1− 2xz + z2)
1
2

which is a function of x as well as of an additional “dummy” variable z. These relations

make use of both the hypergeometric function and the Gamma function.

Using the generating function (1.3.18), allows us to calculate the the recurrence relation

2(n + 1)(n + α + β + 1)(2n + α + β)P
(α,β)
n+1 (x)

= (2n + α + β + 1)[(2n + α + β)(2n + α + β + 2)x + α2 − β2]P (α,β)
n (x)

−2(n + α)(n + β)(2n + α + β + 2)P
(α,β)
n−1 (x) (1.3.19)

and a differential relation

(2n + α + β)(1− x2)
d

dx
P (α,β)

n (x) = n[(α− β)− (2n + α + β)x]P (α,β)
n (x)

2(n + α)(n + β)P
(α,β)
n−1 (x) (1.3.20)

with P−1 = 0 and P ′
0 = 0. The recurrence relation (1.3.19) and the differential relation

(1.3.5) can be combined to give a second-order differential equation:

(1−x2)
d2

dx2
P (α,β)

n (x)+[β−α−(α+β+2)x]
d

dx
P (α,β)

n (x)+n(n+α+β+1)P (α,β)
n (x) = 0.

(1.3.21)

and n differentiations of the generating function, leads to Rodrigues’ formula.

2nn!P (α,β)
n (x) = (−1)n(1− x)−α(1 + x)−β

(
− ∂

∂x

)n

[(1− x)α+n(1 + x)β+n]. (1.3.22)

All these results can be proved by making use of the hypergeometric function and an

explicit derivation can be found in [84].
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1.4 Further Classes of Orthogonal Polynomials

Having described the standard theory and given examples of the classical orthogonal

polynomials, we now give a brief description of other classes of orthogonal polynomials,

which are the subject of current research.

1. The discrete orthogonal polynomials, include the Hahn and Meixner [135]

polynomials and are orthogonal with respect to a discrete measure. Both these

classes of polynomials are expressed in a hypergeometric form and have the usual

set of relations, common to the very classical orthogonal polynomials except their

orthogonality relation has the discrete form (1.1.1c) and they satisfy a second order

difference equation in the variable x.

2. Multi-variable orthogonal polynomials, usually consist either of extending the

univariate case to the multivariate case or of a class orthogonal polynomials defined

in terms of multiple variables [57]. For examples we can consider the multiple

Hermite polynomials as an extension from the univariate case and the Jack and

MacDonald [104] polynomials as orthogonal polynomials in n variables.

Recently greater interest has been paid to specific numbers of variables such as the

book by Suetin [157], who takes a detailed look into orthogonal polynomials in two

variables. Importantly we stress the difference between this study and the study of

bi-orthogonality. The study of two-variable orthogonal polynomials will be looked

at in greater detail in Chapter 4.

3. Bi-orthogonal Polynomials consist of two families of orthogonal polynomials {Pn}
and {Qn} related by a weight function and defined through a biorthogonal relation

such as ∫
Pn(x)Qm(x)w(x)dx = hnδn,m. (1.4.1)
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The study of this research finds its origins with Hermite and Appell, who looked

into it while also considering two variable orthogonal polynomials.

4. Multiple orthogonal polynomials are polynomials of one variable which satisfy

orthogonality conditions with respect to p different measures µ1, µ2, . . . , µp.

Multiple orthogonal polynomials [12] are intimately related to Hermite-Padé

approximants [136] and often they are also called Hermite-Padé polynomials.

Typically there are two types of multiple orthogonal polynomial. For type I let

w1, w2, . . . , wp be p weights on the real line and let ~n = n1, . . . , np be a multi-index

consisting of non-negative integers. If A1, . . . , Ap are polynomials and

Q(x) =

p∑
j=1

Aj(x)wj(x), deg Aj ≤ nj − 1, (1.4.2a)

such that ∫
Q(x)xjdx = 0 for j = 1, . . . , |~n| − 2 (1.4.2b)

(where |~n| =
∑p

j=1 nj), then the Aj are called multiple orthogonal polynomials of

type I and Q is the linear form built out of the multiple orthogonal polynomials of

type I.

For type II, let w1, w2, . . . , wq be q weights on the real line and let ~m = m1, . . . , mq

be a multi-index of length q. If P is a polynomial of degree |~m| such that
∫

P (x)xjwj(x)dx = 0 for j = 0, . . . , mk − 1 and k = 1, . . . , q, (1.4.2c)

then P is called a multiple orthogonal polynomial of type II. Although it usually

type I or type II that are studied, there has recently been a generalization of the

two [45]. There are also the classical multiple orthogonal polynomials (including

multiple Hermite and multiple Jacobi), which have been studied extensively by van

Assche [166].

5. The q-orthogonal polynomials
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With the advent of quantum groups, q-orthogonal polynomials are objects of

special interest in both mathematics and physics. For instance, the q-deformed

harmonic oscillator provides a group-theoretic setting for the q-Hermite and the

q-Laguerre polynomials. The q-orthogonal polynomials involve the use of an

additional parameter q in their original formulas, so the easiest way to describe

them is by considering the hypergeometric series and its q-analogue [71]. Since all

known orthogonal polynomials (in a single variable) can be expressed in terms of a

hypergeometric series, this seems the best approach. The modern definition of the

q-hypergeometric function is

rφs


 a1, . . . , ar

b1, . . . , bs

; q, x


 =

∞∑
n=0

(a1; q)n . . . (ar; q)n

(b1; q)n . . . (bs; q)n

xn

(q; q)n

[(−1)nq
1
2
n(n−1)]1+s−r

(1.4.3)

where (a; q)n is the q-Pochhammer symbol defined by

(a; q)n = (1− a)(1− aq)(1− aq2)...(1− aqn−1), (1.4.4a)

(a; q)0 = 1. (1.4.4b)

We also state the special case r = s+1, since this is the form most commonly used

for orthogonal polynomials.

s+1φs


 a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣∣
q; x


 =

∞∑
n=0

(a1; q)n . . . (ar; q)n

(b1; q)n . . . (bs; q)n

xn

(q; q)n

(1.4.5)

We can then consider the q-orthogonal polynomials in terms of the Askey-Wilson

classification. This classification (of which a comprehensive report is found in

[92]), provides a list of all the hypergeometric polynomials and their q-analogues

(both continuous and discrete). The scheme is referred to as the Askey-Wilson

scheme, since these are the polynomials that rank at the top of the q-hypergeometric

list and are defined as

anWn(x; a, b, c, d|q)
(ab, ac, ad; q)n

=4 φ3


 q−n, abcdqn−1, aeiθ, ae−iθ

ab, ac, ad

∣∣∣∣∣∣
q; q


 , x = cos θ.

(1.4.6)
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1.5 Applications of Orthogonal Polynomials

The connection of orthogonal polynomials with other branches of mathematics is truly

impressive. Without even trying to be complete, we mention continued fractions,

operator theory (Jacobi operators), moment problems, analytic functions (Bieberbachs

conjecture), interpolation, Pade approximation, quadrature, approximation theory,

numerical analysis, electrostatics, statistical quantum mechanics, special functions,

number theory (irrationality and transcendence), graph theory (matching numbers),

combinatorics, random matrices, stochastic processes (birth and death processes;

prediction theory), data sorting and compression, Radon transform and computer

tomography.

The main areas from the point of view of physics, are quantum mechanics and matrix

models, to which we will now give a brief introduction to.

1.5.1 Quantum Mechanics

In quantum mechanics [147] one studies the Hamiltonian of a system, which is the

operator that defines the model under certain assumptions (canonical commutation

relations, choice of Hilbert space, etc.) and the operator represents the observable

of energy. The stationary Schrödinger equation is an eigenvalue problem for the

Hamiltonian; the corresponding eigenvalues are the allowed energy values. The

eigenfunctions which are the solutions of the eigenvalue problem correspond to the energy

states of the system (each eigenvalue has at least one state of the system) and these are

often solved in terms of special functions. Many classes of orthogonal polynomials arise

in this context.

As an example, we look at the Hamiltonian for the one-dimensional quantum harmonic

oscillator. This a model of key importance, since it represents the first basic step in
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studying the quantum mechanics of systems of vibrating particles. It is defined by the

Hamiltonian

Ĥ =
1

2m
p̂2 +

1

2
mω2x̂2 (1.5.1)

which in turn prescribes the eigenvalue problem

ĤΦ = EΦ (1.5.2)

(a stationary Schrödinger equation with eigenvalue E), which has the explicit form

− ~
2

2m

d2Φ

dx2
+

1

2
mω2x2Φ = EΦ. (1.5.3)

This differential equation can be simplified by making the change of variables x = ξ
√

~
mω

and using the substitution

Φ(ξ) = e−
1
2
ξ2

H(ξ) (1.5.4)

(where H(ξ) should not be confused with the Hamiltonian), leading to the differential

equation (1.5.3)

H ′′ − 2ξH ′ +
(

2E

~ω
− 1

)
H = 0 (1.5.5)

the Hermite equation (1.3.6). This second order differential equation, for special values

E = ~ω(n + 1
2
), n ∈ N has polynomial solutions which are the Hermite polynomials.

These are the physically relevant solutions leading to the spectrum and eigenstates of the

quantum model. Although this is the simplest model to describe, the structure of the

solutions as in (1.5.4), a ground state times a polynomial, which is common to many

systems in quantum mechanics.

Other families of orthogonal polynomials occur from solving other models in quantum

mechanics. A more complex model is the hydrogen atom, which is solved by separating

the problem into 3 parts, as in polar coordinates there is one radial variable and two

angular variables; by separation of variables the former (radial part) is solved with

Laguerre polynomials and the latter (spherical harmonics) are solved with Legendre

polynomials and exponentials.



Chapter 1. Introduction 33

1.5.2 Random Matrix Models

Random matrix models [115] arise from, and have important applications to, number

theory, probability, combinatorics, representation theory, quantum mechanics, solid state

physics, quantum field theory, quantum gravity, and many other areas of physics and

mathematics, but here we are interested in their connection with orthogonal polynomials.

The theory first began in the 1960’s with Dyson [51, 52, 53] and then with Metha [54, 55]

and is described in detail in their series of papers on “Statistical Theory of the Energy

Levels of Complex Systems”. Then at the end of the 1980s, interest was renewed in matrix

models after the connection with quantum gravity and string theory was discovered [24,

74]. One approach to this theory was presented by Bilal [19], from which the connection

with orthogonal polynomials is now explained. This class of orthogonal polynomials is

different from what we have already seen and is referred to as semi-classical orthogonal

polynomials, an area which will be covered in more detail in the next chapter.

The main tool of use in the theory is the partition function, (a notion taken from statistical

mechanics) and is defined as

Z =

∫
[dA]e−β(tr V (A)), (1.5.6)

where the integration can be defined over all N ×N antisymmetric matrices A and

tr V (A) =

N
2∑

j=1

V (xj) , V (x) =
1

2
x2 +

m∑
n=2

g2nx
2n (1.5.7)

where the xj are the eigenvalues. The eigenvalues of an antisymmetric matrix always

come in pairs ±λi and the trace of such a matrix will always be zero. Thus we consider

the even elements and the trace sums to N
2

.

From this it is clear that e−β(tr V (A)) depends only on the eigenvalues and it can be shown

that the measure dA factorizes into an integration over the eigenvalues and an integration

over the parameters of the diagonalizing matrix U . This is shown by example, by taking
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lower order values of N , say at N = 2 and N = 4,

N = 2 ⇒ [dA] = da = dx1 (1.5.8a)

N = 4 ⇒ [dA]N=4 = (x2
2 − x2

1)
2dx1dx2dΩ1dΩ2 (1.5.8b)

which allows us to extrapolate an alternate form for Z. Thus the partition function Z can

be expressed as

Z =

∫ 


N
2∏

i=1

dxie
−β(tr V (xi))




N
2∏

i>j=1

(x2
i − x2

j)
2. (1.5.9)

Initially the use of orthogonal polynomials as a solution is not obvious, until the van der

Monde determinant is introduced, which can be expressed as

∆(x2
i ) =

N
2∏

i>j=1

(x2
i − x2

j)
2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1

x2
1 · · · x2

N
2

x4
1 · · · x4

N
2

· · · · · ·
xN−2

1 · · · xN−2
N
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (1.5.10)

The van der Monde determinant can then be manipulated so that its contents can be

expressed as polynomials. First though, it is necessary to introduce the polynomials Pn,

which are orthogonal with respect to the weight

dµ = dxe−βV (x) (1.5.11)

and as before the Pn have the following standard form and orthogonality condition.

Pn(x) = anx
n + an−1x

n−1 + . . . + a0,

∫
Pn(x)Pm(x)dµ(x) = hnδnm (1.5.12)

Since V (x) is defined as an even function, the Pn is an even polynomial in x, if n is even

and an odd polynomial in x, if n is odd. So we redefine Pn

Pn(x) = xn +

[n
2
]∑

k=1

c
(n)
n−2kx

n−2k, (1.5.13)
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where [n
2
] denotes the integer part of n

2
.

The van der Monde determinant is now manipulated, with the aim of re-expressing it in

terms of polynomials instead of powers of x. By making use of (1.5.13)

n = 0 ⇒ 1 = P0

n = 2 ⇒ x2
1 + c

(2)
0 = P2(x1)

n = 4 ⇒ x4
1 + c

(4)
0 x2

1 + c
(2)
0 = P4(x1)

...

it is possible to rewrite (1.5.10) as

∆(x2
i ) = det[p2(j−1)(xi)]i,j=1,..., N

2
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P0 · · · P0

P2(x1) · · · P2(xN
2
)

P4(x1) · · · P4(xN
2
)

· · · · · ·
PN−2(x1) · · · PN−2(xN

2
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (1.5.14)

Referring back to the partition function for an antisymmetric matrix (1.5.9), we have

Z =

∫ N
2∏

i=1

dµ(xi)(det[P2(j−1)(xi)]i,j=1,..., N
2
)2

=

(
N

2

)
!

N
2∏

i=1

h2(j−1) (1.5.15)

a result of the orthogonality (1.5.12) of P2(j−1). If we had considered the Hermitian

case the partition function Z would have had the form Z = (N)!
∏N

i=1 hj−1. In order to

compute Z we need to compute h (in Chapter 2 this is a problem that arises in Painlevé

equations), and it is this understanding which concerns physicists in the study of matrix

models.
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1.6 Organization of the Thesis

The opening chapter has introduced and derived some of the standard ingredients found

in formal orthogonal polynomials: a recurrence relation, determinant expressions and

the Christoffel-Darboux formula. The focus has been on these relations since they will

have further involvement later on in the thesis (Chapter 4), particularly the determinant

expression and the recurrence relation, which see extensive use. These general relations

have been backed up with some of the main relations from the important very classical

orthogonal polynomials. These will provide a good comparison with the relations derived

in Chapter 2, which is concerned with their semi-classical counterparts.

The second chapter is concerned with semi-classical orthogonal polynomials, with

particular relevance to any connections with discrete integrable systems. So the chapter

begins with some history and examples of what is meant by an integrable system, before

providing an illustration of a semi-classical orthogonal polynomial that has some well

established connections with discrete integrable systems. Thus we use the simple case of

semi-classical Hermite polynomials, which also demonstrates one method of calculating

the compatibility between a differential equation and a recurrence relation. The resulting

equations lead to the derivation of a discrete Painlevé equation, a discrete PI. The

methods for deriving other discrete integrable systems are also introduced. Then we

introduce our own approach to the Laguerre method, which derives a differential system

for semi-classical orthogonal polynomials. This system is compatible with a recurrence

relation (expressed in a matrix form) and leads to a a pair of compatibility relations. On

completion of the derivation of this method, we can consider its application to specific

deformed weights of semi-classical orthogonal polynomials. So we begin with the

deformed weights of Hermite and Laguerre polynomials, before considering the more

complex case of the deformed Jacobi weight. As a comparison for the benefits of this

method for the Jacobi weight (both in deriving a differential equation and compatibility
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relations), the consistency relations are also derived by only using the orthogonality

relation.

While the second chapter is concerned with the integrable systems structures coming from

orthogonal polynomials, the third chapter is concerned with orthogonal polynomials

coming from integrable systems. Thus our interest moves into the domain of singular

integral transforms, specifically one analogous to the Gel’fand-Levitan integral equation.

The chapter is essentially separated into two sections where the first is concerned with

the presentation of a general singular integral transform and the second is concerned

with applying the said singular integral transform to some examples. Thus, we begin by

approaching the problem from a general point of view, considering the dressing method

between two n × n matrices Φ0
k and Φ1

k, present some key notation and introducing an

associated Lax-type linear equation. Through this association we derive a discrete Lax

equation, that is written in terms of an integral expression, which is explored further by

applying a differential and difference operator to it. This leads to the application of the

singular integral transform, where our first example uses the matrix representation of the

recurrence relation (derived in Chapter 2) to derive singular integral transforms between

the recurrence coefficients of a general class of classical orthogonal polynomials and the

recurrence coefficients of semi-classical orthogonal polynomials. We also consider the

differential system derived in Chapter 2. As the second application we consider a singular

integral transform for the lattice Gel’fand-Dikii N × N matrix hierarchy, which for the

case of N = 2 reduces to the Lax representation of the KdV equation. We present a vector

reduction of the general N×N case and show how the singular integral transform satisfies

the discrete Lax equation (derived in the first section). We then use the vector reduction

for the KdV case (N = 2) and derive a singular integral transform for the KdV equation.

Given the existence of a gauge transformation that relates KdV to a Volterra linear

problem (which incidentally satisfies the recurrence relation for orthogonal polynomials),

we present a singular integral transform for a class of orthogonal polynomials related to

the KdV transform and present results for a specific example.
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The fourth chapter considers formal orthogonal polynomials, where we define a new

class of orthogonal polynomials: two-variable orthogonal polynomials whose variables

are related through the equation of an elliptic curve in Weierstrass form. Our interest lies

in the formal structure and most of the chapter is concerned with recursive structures.

Since we are dealing with two-variable orthogonal polynomials, there exists a recurrence

relation for the x variable and the y variable. We can state these recurrence relations by

using inner products of 〈xPk, Pl〉 and 〈yPk, Pl〉 (such as with (1.1.6)), where Pk is an

orthogonal polynomial in two variables and x and y are of different order. We can then

present compatibility relations between these recurrence relations and give consistency

conditions between the recurrence coefficients of the x-recurrence relation and the y-

recurrence relation. Further, by using an analogue of the determinant form from Chapter

1 (1.1.14) and applying the generalized Sylvester identity (B.4) to it, we can derive

an explicit x-recurrence relation, where the coefficients consist of Hankel determinants

c.f. (1.1.26b, 1.1.26a). Applications of recurrence relations, such as the generation of

a sequence of polynomials and the derivation of Christoffel-Darboux relations are also

presented and we end the chapter with some speculations concerning the non-formal case

(where an explicit weight function is given).
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Chapter 2

Semi-Classical Orthogonal Polynomials

As we have seen in Section 1.3, classical orthogonal polynomials are governed by a set of

conditions, which lead to a number of explicitly defined equations and relations; they have

a fixed weight function, generating function, recurrence relation, differential equation, etc.

On the other hand, semi-classical orthogonal polynomials occur when the conditions are

less restrictive ie. when some of the properties are relaxed. This results in less equations

than found in the classical case and these equations cannot be explicitly derived, instead

their coefficients contain transcendental functions.

In 1929, Bochner [22] gave a characterization of the classical orthogonal polynomials

Hermite, Laguerre or Jacobi type. If {Pn} is a sequence of classical orthogonal

polynomials, then Pn(x) is a solution of the second-order differential equation

φ(z)
d2y

dz2
+ ψ(z)

dy

dz
= λny (2.0.1)

where φ(z) and ψ(z) are fixed polynomials of degree≤ 2 and ≤ 1 respectively, and λn

is a real number depending on the degree of the polynomial solution. As a consequence

of this the weights of classical orthogonal polynomials satisfy a first order differential

equation called the Pearson differential equation

d

dz
(φ(z)w(z)) = ψ(z)w(z) , (2.0.2)
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when the degrees of φ and ψ satisfy deg φ ≤ 2 and deg ψ = 1 . However when the

deg φ > 2 and\or deg ψ > 1 then the weight function produces a class of semi-classical

orthogonal polynomials. Thus by extension, this equation also implies that the weight

functions of the semi-classical orthogonal polynomials are different from their classical

counterparts. We write the Pearson equation in the following form [79, 80]

1

w(z)

dw(z)

dz
=

ψ − φ′

φ
=

V (z)

W (z)
, (2.0.3)

where equation (2.0.3) expresses the logarithmic derivative of the weight function w(z)

as a ratio of the polynomials V (z) and W (z). In this case the weight function satisfies

classical orthogonal polynomials if deg V ≤ 1 and deg W ≤ 2 and semi-classical arise

for deg W > 2 and\or deg V > 1. For instance the weight functions for Hermite

polynomials, Laguerre polynomials, and Jacobi polynomials are the classical weights for

W of degree zero, one and two, respectively. As an example we look at the weight

function of Hermite w(z) = e−z2 , then the Pearson differential equation is

ez2

(−2z)e−z2

= −2z (2.0.4a)

a polynomial of order 1 (V has order 1 and W has order 0). Therefore this weight satisfies

classical orthogonal polynomials. Alternatively, if we consider the altered weight function

w(z) = e−z2−z4 , then from the Pearson equation we have

ez2+z4

(−2z − 4z3)e−z2−z4

= −2z − 4z3 (2.0.4b)

a polynomial of order 3, therefore this is a semi-classical orthogonal polynomial.

Although this weight function is not the Hermite weight function it is very similar in form

therefore we call orthogonal polynomials satisfying it, semi-classical Hermite orthogonal

polynomials. In particular when considering general exponential weights, we are

reminded of Freud weights [65], although they have the form wρ(x) = |x|ρ exp(−|x|m).

The very classical orthogonal polynomials and all the other classes that occur in the

Askey-Wilson scheme, have been the subject of great interest and have therefore been
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explored in detail. By comparison, semi-classical orthogonal polynomials have had less

attention and are therefore less developed. One of the key consequences of moving from

classical to semi-classical is that you lose the explicit nature of the relations, but you do

gain more connections. This allows us to take the study of orthogonal polynomials in new

directions.

The beginnings of semi-classical orthogonal polynomials are unclear, but the derivation

of a differential relation for a general class of orthogonal polynomials by Shohat in 1939

[42, 148], provides a starting point for classes of semi-classical orthogonal polynomials

to be formed. Since that time, semi-classical orthogonal polynomials have found use with

matrix models (1.5.11) and recently there has been the emergence of integrable systems.

This is a very broad area of mathematics, that has found connections in many areas of pure

and applied mathematics and also in mathematical physics, biology and engineering.

In this chapter we will begin with an introduction to some discrete integrable systems

as well as the origin of the Painlevé equations. This introduction will be complemented

by the semi-classical Hermite orthogonal polynomials, which will demonstrate the types

of rich connections found between semi-classical orthogonal polynomials and discrete

integrable systems, by using the orthogonality relation. Following this is a section

on the Laguerre method [100], which will provide an alternate way (compared to

using the orthogonality relation) of approaching semi-classical orthogonal polynomials,

by introducing a general theory that results in a matricial differential system. Then

introducing a Lax pair between the differential system and a recurrence relation leads

to a Lax equation, from which compatibility relations are derived. This will lead to

our work into applying the Laguerre method to specific semi-classical weights, focusing

on the discrete relations found from the compatibility relations and their connections to

discrete integrable systems. While semi-classical weights from Hermite and Laguerre

will be considered, our main effort will be with the semi-classical Jacobi weight

and compatibility relations will be derived from both the Laguerre method and the
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orthogonality relation approach.

2.1 Painlevé equations and Integrable Systems

The modern theory of integrable systems finds its origins in 1965, after a study by

Gardner, Greene, Kruskal and Miura [69, 70] into the Korteweg-de Vries equation [95]

∂tu = ∂3
xu + 6u∂xu, (2.1.1)

which is a mathematical model of waves on shallow water surfaces. Their study showed

that the KdV can be exactly solved by (what is now called) the inverse scattering method.

This method is only applicable to a certain class of equations, that we now refer to as

soliton equations or exactly integrable equations.

Since then, there has been increased interest in the study of the KdV equation and

other systems deemed to be integrable, but providing a proper definition of what

is meant by integrability has not proven to be straightforward. Integrable systems

can be mappings, ordinary differential equations (ODEs), partial differential equations

(PDEs), ordinary difference equations (O∆Es), partial difference equations (P∆Es) and

differential-difference equations (D∆E’s); hence they cover most types of equations. This

makes it a little difficult to give a general definition of an integrable system. What we can

say is that there are a number of characteristics which describe an integrable system,

although the contributors to this subject have different perspectives on how they should

be defined. The characteristics include the existence of a rich solution structure; admitting

exact solutions and solution methods like the inverse scattering method [3, 4]; there exist

hierarchies of compatible equations; and there are associated linear systems including Lax

pairs [102]. Lax pairs (which can exist for both discrete and continuous systems), involve

expressing an equation in terms of matrices, that satisfy a compatibility condition. We

can consider three types of Lax equation covering the differential, differential-difference
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and difference types equations. For a differential system a Lax pair would be of the form

Lφ = λφ (2.1.2)
dφ

dt
= Aφ (2.1.3)

where L and A are differential operators and satisfy the compatibility condition

dL

dt
= [A,L] = AL− LA. (2.1.4)

In a difference system we can consider the system of two 2× 2 matrix equations

φn+1,m = Lnmφnm , φn,m+1 = Mnmφnm (2.1.5a)

which is satisfied by the consistency relation

Ln,m+1Mn,m = Mn+1,mLn,m (2.1.5b)

and for a differential-difference system we consider differential and recurrence structures

∂xψn = Mnψn,

ψn+1 = Lnψn, (2.1.6)

whose compatibility leads to the semi-discrete Lax equation

∂xLn = Mn+1Ln − LnMn. (2.1.7)

2.1.1 Discrete Integrable Systems

The study of integrable systems is usually separated into the continuous and the discrete

equations, of which we are interested in the latter. Discrete integrable systems usually

consist of two types of equations; P∆Es, which are viewed on the two-dimensional space-

time lattice and D∆Es, which are discrete in space but continuous in time.
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We can consider a class of P∆Es on the lattice (which are called quadrilateral P∆Es), to

have the form

f(u, ũ, û, ˆ̃u, p, q) = 0 (2.1.8a)

where we adopt the canonical notation of vertices surrounding an elementary plaquette

on a regular lattice:

u = unm , ũ = un+1,m

û = un,m+1 , ˆ̃u = un+1,m+1 (2.1.8b)

Here we see that a˜represents a shift forward (if raised) or backward (if lowered) on the

horizontal line and aˆrepresents a shift up (if raised) or down (if lowered) on the vertical

line.
û

u˜ u ũ

ˆ
u

Apart from the independent discrete variables n,m (on which unm depends), there are

the lattice parameters p, q which we associate with these independent variables. If n,m

denote the direction which u moves on the lattice, then p, q denote the width of the grid.

By letting the parameters p, q be variable rather than fixed we can define a whole

parameter-family of equations, however we must attach each parameter to a specific

discrete variable such as p associated with n and q with m. This allows us to place

the P∆E in a multi-dimensional lattice with multiple independent variables, though for

practical reasons it is easiest to deal with the three-dimensional lattice. Then we have a

shift¯in another direction, which leads to eight points on a cube. The interesting property

is that there is consistency around the cube ie. the value of ˆ̄̃u can be achieved in three
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separate ways

u → ū → ˜̄u → ˆ̄̃u, (2.1.9)

u → ũ → ˆ̃u → ˆ̄̃u, (2.1.10)

u → û → ˆ̄u → ˆ̄̃u. (2.1.11)

This property is the main hallmark of the integrability of a quadrilateral P∆E [21, 132].

Another consequence of this condition being satisfied is it gives rise to the existence of a

Lax pair (2.1.5a), [133]. As an example consider the lattice potential KdV

(p− q + û− ũ)(p + q + u− ˆ̃u) = p2 − q2 (2.1.12)

which satisfies the consistency around the cube property and has the following matricial

Lax pair:

(p− k)φn+1,m = Ln,mφn,m , (q − k)φn,m+1 = Mn,mφn,m, (2.1.13)

where the matrices L and M are given by

Ln,m =


 p− un+1,m 1

k2 − p2 + (p− un+1,m)(p + un,m) p + un,m


 , (2.1.14a)

Mn,m =


 q − un,m+1 1

k2 − q2 + (q − un,m+1)(q + un,m) q + un,m


 . (2.1.14b)

From the lattice potential KdV equation, we can derive the lattice KdV [81]

Q̂− Q̃ =
a

Q
− a

ˆ̃Q
, (2.1.15)

for Q = (p + q + u − ˆ̃u), a = p2 − q2 . However, this equation does not satisfy

the consistency around the cube in the strict sense because of the choice of the variable

Q, since it has lost its covariance with respect to the interchange of lattice directions.

Nevertheless it has a Lax representation of the form

ˆ̃ψ = Qψ̂ + λψ, (2.1.16a)

ψ̃ = ψ̂ +
a

Q
ψ, (2.1.16b)
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where λ is the spectral parameter (where this form is first written in [134] as far as we

are aware). The discrete-time Toda equation is an example of an integrable P∆E on a five

point stencil, that is related to the above KdV systems and is given by

(p− q)2

˜̂
τ ˆ̃τ − (p + q)2

ˆ
τ̃
˜
τ̂ + 4pqτ 2 = 0. (2.1.17)

It provides an example of a bilinear equation of Hirota type [81], of which we saw a

parameter less example (1.1.28) in Chapter 1.

The D∆Es are also defined on the lattice as well as being differential with respect to the

variable time t. Thus they have aspects common to continuous as well as discrete systems.

Examples of D∆Es equations include the Volterra system [90]

∂tun = un(un+1 − un−1), (2.1.18)

and the Toda lattice system [160],

∂2
t yn = eyn+1−yn − eyn−yn−1 . (2.1.19)

Like integrable systems that are fully continuous, the Volterra system and the Toda lattice

system both possess Lax representations and an infinite number of commuting flows,

where the family of these flows form a hierarchy of equations.

One interesting fact about the structure of the KdV equation and other soliton equations,

is that they all admit a substitution that will bring the equation into a bilinear form [82]

(a fact first discovered by Hirota). Then in the 1980s Jimbo, Kashiwara, Date and Miwa

[47, 88] discovered that there is a close connection between the Hirota forms and the

underlying algebraic structure (in terms of infinite dimensional Lie algebras) of soliton

systems. This is an intriguing connection, which has led to a great deal of study in this

area.



Chapter 2. Semi-Classical Orthogonal Polynomials 47

2.1.2 Painlevé Equations

Another important class of nonlinear differential equation (that arose to have connections

with integrable systems) are the Painlevé equations. Following the work of Picard [83]

in classifying first-order ordinary differential equations, Painlevé studied second order

ordinary differential equations of the form

d2y

dx2
= F (y′, y, x) (2.1.20a)

where F is analytic in x and rational in y and y′. Painlevé found 50 types whose

only movable singularities are poles, where a movable singularity of an equation is one

whose location is dependent on the constants of integration involved in its solution. This

characteristic is known as the Painlevé property. Out of this list there were six equations

emerging, which were called the Painlevé transcendents (they cannot be integrated in

terms of any of the known classical functions [169]). The remaining 44 can be integrated

in terms of classical transcendents, quadratures, or are directly related to one of the other

six Painlevé transcendents.

Five of the Painlevé list were discovered by Painlevé and his students, but the sixth

transcendent was found by R. Fuchs (1905) and contains the other five as limiting cases.

Hence the sixth Painlevé transcendent is one of the most important nonlinear differential

equations for defining new transcendental functions.

d2y

dx2
=

1

2

(
1

y
+

1

y − 1
+

1

y − x

)(
dy

dx

)2

−
(

1

x
+

1

x− 1
+

1

y − x

)
dy

dx

+
y(y − 1)(y − x)

x2(x− 1)2

(
α +

βx

y2
+

γ(x− 1)

(y − 1)2
+

δx(x− 1)

(y − x)2

)
(2.1.20b)

These transcendental equations occur in many areas of mathematics and physics, hence

the great interest in their study.

As an example we can consider a Painlevé equation as a de-autonomization of elliptic

functions specifically PI, that is
d2y

dx2
= 6y2 + x. (2.1.20c)
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If the x on the right side of the equation is replaced with a constant, then we are left

with the second order differential equation for the Weierstrass elliptic function ℘(x) (see

(A.7)).

The search for discrete analogues of these transcendents, has been an outstanding problem

for many years and only recently has there been any progress made in this direction.

Discretizations of the Painlevé equations have been the result of a variety of methods

including orthogonal polynomials [60, 105]. A discrete analogue of PI will be given later

in this chapter (2.1.20c).

Many, if not all integrable systems possess symmetry reductions to one or more of

the Painlevé equations. It follows that the Painlevé equations themselves are each one

dimensional integrable systems.

2.2 Semi-Classical Hermite Polynomials

The Hermite orthogonal polynomials provide the simplest case to demonstrate the types

of connections that can be found between semi-classical orthogonal polynomials and

discrete integrable systems. We obtain semi-classical Hermite polynomials through a

deformation of the classical Hermite weight function (since most classical orthogonal

polynomials are defined through the weight function and integration interval via the

orthogonality relation).

The Hermite weight function is dependent only on a single variable x, w(x) = e−x2 .

However, this can be changed by allowing x2 to be expressed as V (x). Thus we have

w(x) = e−V (x), where

V (x) =
a

2
x2 +

b

4
x4 +

c

6
x6 + . . . (2.2.1)

where a, b, c, . . . are positive parameters. This is an increasing function, which is now also

dependent on the parameters as well as x. Like before, when we provided the example of a
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semi-classical Hermite weight, the Pearson equation (2.0.2) implies that a weight function

of the form e−V (x) will lead to semi-classical orthogonal polynomials. Even weights

(such as this), have been studied in great detail, beginning with Laguerre [101] and Freud

[107]. Recently these results and their connections to discrete Painlevé equations have

been further explored by Magnus [106] and van Assche [167].

2.2.1 Discrete Integrable Systems from Recurrence Coefficients

We use the recurrence relation (1.1.25) defined in chapter 1, except here we can take

Sn = 0, a consequence of the weight function being even. Thus we redefine the monic

recurrence relation

xPn = Pn+1 + RnPn−1. (2.2.2)

The orthogonality relation is defined as:
∫ ∞

−∞
Pn(x)Pm(x)e−V (x)dx = 〈Pn, Pm〉 = hnδnm (2.2.3)

where V (x) = a
2
x2 + b

4
x4 + c

6
x6 + . . . and Pn(x) is a monic Hermite polynomial. Since

every polynomial can express itself in terms of lower order polynomials, consider P ′
n =

∑n−1
j=0 αnjPj where P ′

n = dPn

dx
. Now consider

∫ ∞

−∞
P ′

nPme−V (x)dx = [PnPme−V (x)]∞−∞ −
∫ ∞

−∞
Pn(Pme−V (x))′dx,

where [PnPme−V (x)]
∣∣∞
−∞ = 0, where the boundary terms vanish since V (x) only consists

of even powers of x and hence will dominate the limit as x → ±∞. Now expanding the

remainder gives:
∫ ∞

−∞
P ′

nPme−V (x)dx = −
∫ ∞

−∞
PnP ′

me−V (x)dx +

∫ ∞

−∞
PnPmV ′(x)e−V (x)dx,

which can in turn be expressed as an inner product:

〈P ′
n, Pm〉 = −〈Pn, P

′
m〉+ 〈Pn, (V

′Pm)〉, (2.2.4)
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so for m ≤ n− 1

〈P ′
n, Pm〉 = 0 + 〈Pn, V

′Pm〉 = 〈(V ′Pn), Pm〉 by symmetry.

Of course this relation in its current form is of little use as a differential equation, so

we introduce the recurrence relation xP n = (LP )n [106], where L is the semi-infinite

matrix

L =




0 1

R1 0 1

R2 0 1
. . . . . . . . .




(2.2.5)

and P is the (semi-infinite) column vector of P0, P1, P2, . . . , Pn, . . . . Thus we can re-

express the recurrence relation as

xP n = P n+1 + RnP n−1 = (LP )n (2.2.6)

where we can think of L = Σ + RΣT with the Σ shift operators represented by ΣP n =

P n+1 and ΣT P n = P n−1:

(ΣP )n =




0 1

0 1

0 1
. . . . . .







P0

P1

...

Pn

...




=




P1

P2

...

Pn+1

...




(2.2.7a)

(ΣT P )n =




0 0

1 0 0

1 0 0
. . . . . . . . .







P0

P1

...

Pn

...




=




P−1

P0

...

Pn−1

...




(2.2.7b)

(where we set P−1 = 0).
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Now for any general polynomial F (x) one has

(F (L)P )n = F (x)Pn, (2.2.8)

in particular

(V ′(L)P )n = V ′Pn. (2.2.9)

It follows from (2.2.4) that P ′
n − V ′Pn = P ′

n − (V ′(L)P )n is orthogonal to

P0, P1, . . . , Pn−1, thus it is a linear combination of Pj with j ≥ n. This can be expressed

as the differential equation

P ′
n = ((V ′(L))−P )n. (2.2.10)

The (V ′(L))− refers to the lower order shifts (in L), since a differential of P would only

yield lower order terms eg. (L)− = RΣt.

As an example, we choose the weight function

w(x) = e−( 1
2
ax2+ 1

4
bx4), (2.2.11)

where we have the value V (x) = 1
2
ax2 + 1

4
bx4 (where a and b are parameters). Inserting

this into the differential equation (2.2.10) and setting x = L implies

P ′
n = ((V ′(L))−P )n , (V ′(L))− = a(L)− + b(L3)−, (2.2.12)

where (L)− and (L3)− only involve terms which contain Σt. Therefore only polynomials

of degree m, where m ≤ n − 1, are considered. In order to determine dP
dx

=

((V ′(L))−P )n(x), the terms (L)− and (L3)− must first be established and for notational

purposes R will represent Rn−1 and R will represent Rn+1. For example, we would be

reorder the term ΣtRΣtP as

R PΣtΣt = Rn−1Pn−2. (2.2.13)

Since the value of (L)− has already been stated, we only require the (L3)− term:

L3 = (Σ2 + R + R + RRΣt2)(Σ + RΣt)

= Σ3 + RΣ + RΣ + RRΣt2Σ + Σ2RΣt + RRΣt + RRΣt + RRΣt2RΣt

⇒ (L3)− = RRΣt + RRΣt + RRΣt + RR RΣt3 (2.2.14)
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and thus the two terms give us a differential equation of the form:

P ′
n = (aRΣtP + bRRΣtP + bRRΣtP + bRRΣtP + bRR RΣt3P )n.

This equation can now be transformed to an equation in terms of Pn using dP
dx

=

(V ′(L))−Pn.

P ′
n = AnPn−1 + BnPn−3 (2.2.15)

and hence the values of An and Bn:

An = (a + b(Rn+1 + Rn + Rn−1))Rn, Bn = bRnRn−1Rn−2. (2.2.16)

Now since we consider a monic polynomial Pn =
∑n

j=0 anjx
j (with coefficients

an,0, an,1, . . . , an,n and ann = 1), then we also have that P ′
n = nxn−1 + . . ., therefore

An = n and hence

(a + b(Rn+1 + Rn + Rn−1))Rn = n (2.2.17)

which is a discrete Painlevé first equation PI [142, 143]. This was first found by Shohat

[148], then later rediscovered by Freud [66], as a consequence of the Laguerre-Freud

equations (which are similar in content to (2.2.10)), although historically it was Laguerre

who has been the first who introduced a method to obtain nonlinear recursion for the

coefficients of a L matrix associated with some semi-classical weights of orthogonal

polynomials.

It is also possible to derive the Volterra and Toda equations (along with their hierarchies),

from semi-classical Hermite-type weights. These equation result from differentiating

the recurrence relation coefficients with respect to the parameters introduced in the new

weight function. If we had let V (x) to be of a higher order V (x) =
∑∞

j=1 ajx
2j then

differentiating Rn with respect to the parameter a1, leads to the Volterra system

∂a1Rn = −1

2
Rn(Rn+1 −Rn−1) (2.2.18a)

Further differentiations with respect to the other parameters a2, a3, a4, . . . leads to the

corresponding hierarchy of Volterra equations. If we were to consider the case when
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V (x) =
∑∞

j=1 tjx
j , we are now dealing with both odd and even powers of x so the

recurrence relation would now be cast as (1.1.25) with both Sn, Rn 6= 0. It is still possible

to acquire differentiations of Rn with respect to the parameters tj of which t1 leads to the

(modified) Toda equation

∂t1(∂t1(ln Rn)) = (Rn−1 −Rn)− (Rn −Rn+1) (2.2.18b)

and t2, t3, t4, . . . gives the corresponding hierarchy of equations. These systems along

with the Painlevé equations describe an intimate connection between the semi-classical

Hermite polynomials and integrable systems.

2.3 The Laguerre Method

We now consider a general approach to semi-classical orthogonal polynomials, by making

use of the Laguerre method [100]. This method derives a pair of first order differential

equations, after the reduction of continued fractions. Since then this method has been

used in conjunction with semi-classical orthogonal polynomials [105], by associating the

semi-classical weight function w(x) of the polynomials with a Pearson equation (2.0.3).

While our aim and approach is different, the Laguerre method has been used to find

connections with integrable systems, including continuous Painlevé equations, recently.

Magnus [105], found a continuous Painlevé equation of the sixth kind from the recurrence

coefficients of a semi-classical Jacobi polynomial and Forrester and Witte [62, 63], found

a Painlevé equation of the fifth kind, also using the Laguerre method, but extended over a

bi-orthogonal framework.

This work will use the same semi-classical Jacobi weight that Magnus used, with the

exception being that while he was interested on deriving continuous equations our interest

lies in the discrete.
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2.3.1 The Basic Principles

Initially we begin by introducing the generating function of moments (a Cauchy-like

integral representation of a formal series), analytic outside a set S made of contours and

arcs

f(z) =

∫

S

w(x)

z − x
dx (2.3.1)

and the weight function w(x), which satisfies a differential equation (2.0.3)

W (z)
dw(z)

dz
= V (z)w(z).

where W (z) and V (z) are polynomials. This differential equation is an analogue to

the Pearson equation, since semi-classical orthogonal polynomials are orthogonal with

respect to it. We then introduce the formal semi-classical orthogonal polynomials Pn(z),

n = 0, . . . ,∞ which are orthogonal with respect to some weight function w(x) on a

support S (2.2.3) ∫

S

PnPmw(x)dx = 〈Pn, Pm〉,

and a recurrence relation

Pn+1 = (x− Sn)Pn + RnPn−1. (2.3.2)

Multiplying Pn(z) with f(z), gives the integral:

f(z)Pn(z) =

∫

S

dx
Pn(z)

z − x
w(x)

=

∫

S

dx

(
Pn(z)− Pn(x)

z − x
w(x) +

Pn(x)

z − x
w(x)

)

from which we can separate the integrals and define as:
∫

S

Pn(z)− Pn(x)

z − x
w(x)dx = P

(1)
n−1(z), (2.3.3a)

∫

S

Pn(x)

z − x
w(x)dx = εn(z), (2.3.3b)

or:

f(z)Pn(z) = P
(1)
n−1(z) + εn(z), (2.3.4)
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where P
(1)
n (z) is an associated polynomial to Pn(z) of degree n − 1, but εn(z) is not a

polynomial. However they both satisfy the recurrence relation (1.1.25).

Now Pn(z) satisfies a first order linear differential equation [18]

W (z)∂zf(z) = V (z)f(z) + U(z) (2.3.5)

which we solve using f(z) (2.3.1), to get expressions for V and U (which are polynomials

in x).

W (z)(∂zf(z)) = −
∫

S

W (z)w(x)
(z − x)2

dx = −
∫

S

d

dx

(
1

z − x
W (z)w(x)

)
dx +

∫

S

W (z)
z − x

∂xw(x)

=
∫

S

W (z)
W (x)

V (x)
1

z − x
w(x)dx

= V (z)f(z) + W (z)
∫

S

(
V (x)
W (x)

− V (z)
W (z)

)
w(x)
z − x

dx

On the first line we assume that W (z)w(x) → 0 at the end points of S and the second

term reduces using (2.0.3), then this leaves an expression for U(z).

U(z) = W (z)

∫

S

(
V (x)

W (x)
− V (z)

W (z)

)
w(x)

z − x
dx

Another piece of information are the following relations between Pn, P
(1)
n and εn

PnP
(1)
n−2 − Pn−1P

(1)
n−1 = −hn−1 (2.3.6a)

Pn−1εn − Pnεn−1 = −hn−1 (2.3.6b)

The first of these two equations (2.3.6a), is found using the integral representation of P
(1)
n ,

(2.3.3a):

(PnP
(1)
n−2 − Pn−1P

(1)
n−1)(z) =

∫

S

Pn−1(z)Pn(x)− Pn−1(x)Pn(z)

z − x
w(x)dx (2.3.7)

which by Christoffel-Darboux (1.1.31) gives us a sum.

(PnP
(1)
n−2 − Pn−1P

(1)
n−1)(z) = −hn−1

n−1∑
j=0

∫

S

Pj(z)Pj(x)

hj

w(x)dx

= −hn−1

n−1∑
j=0

Pj(z)
h0

hj

δj,0

= −hn−1 (2.3.8)
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The second equation (2.3.6b), merely involves rearranging PnP
(1)
n−2 − Pn−1P

(1)
n−1 using

(2.3.4).

2.3.2 Explicit Derivation of Pn(z) and εn(z)

The coefficients of the monic polynomial Pn(z) can be expressed in terms of the

coefficients of the recurrence relation (2.3.2) and introduce a monic polynomial Pn(z) =

zn +pn,n−1z
n−1 +pn,n−2z

n−2 + . . . into both sides of the expression. Then comparing the

lead coefficients, we find:

pn+1,n − pn,n−1 = −Sn (2.3.9a)

pn+1,n−1 − pn,n−2 = −Snpn,n−1 −Rn (2.3.9b)

from which (2.3.9a) is solved by integrating up and since P1(z) = z−S0, then p10 = −S0:

pn,n−1 = −
n−1∑
j=0

Sj. (2.3.10)

Moving on to (2.3.9b), we integrate to get:

pn,n−2 = −
n−1∑
j=2

(Sjpj,j−1 + Rj) + p20 (2.3.11)

and since

P2(z) = (z − S1)P1 −R1P0 = (z − S1)(z − S0)P0 −R1P0

then we have an expression for pn,n−2:

pn,n−2 =
n−1∑
j=2

j−1∑

k=0

SjSk −
n−1∑
j=2

Rj + S1S0 −R1

=
n−1∑
j=1

j−1∑

k=0

SjSk −
n−1∑
j=1

Rj (2.3.12)
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and thus:

Pn(z) = zn −
(

n−1∑
j=0

Sj

)
zn−1 +

n−1∑
j=1

(
j−1∑

k=0

SjSk −Rj

)
+ · · · . (2.3.13)

Now the function εn(z) also satisfies the same recurrence relation,

zεn = εn+1 + Snεn + Rnεn−1 n ≥ 1 (2.3.14)

where this is found by integrating the recurrence relation in Pn over z − x with respect to

w(x) and using (2.3.3b).

∫

S

xPn

z − x
dw(x) =

∫

S

Pn+1 + SnPn + RnPn−1

z − x
dw(x)

⇒ zεn(z)− hnδn0 = εn+1(z) + Snεn(z) + Rnεn−1(z)

However this is not a polynomial, as can be seen from the expansion of (2.3.3b):

εn(z) = hn

(
1

zn+1
+

en,n+2

zn+2
+

en,n+3

zn+3
+ · · ·

)

so again we substitute this into both sides of the recurrence relation (2.3.14) and upon

comparing the lead coefficients we find:

hnen,n+2 = hnSn + hnen−1,n+1 (2.3.15a)

hnen,n+3 = hn+1 + hnSnen,n+2 + hnen−1,n+2 (2.3.15b)

The first relation (2.3.15a) contains a total difference of en,n+2, but has the problem of

introducing an integration constant. By solving the difference equation we get:

en,n+2 =
n∑

j=1

Sj + e02 (2.3.16)
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and the integration problem is solved by using εn(z) for n = 0 and using (1.1.25) to

eliminate powers of x:

ε0(z) =

∫

S

dx
P0(x)

z − x
w(x) =

∫

S

dxP0(x)

(
1

z
+

x

z2
+

x2

z3
+ · · ·

)
w(x),

=
h0

z
+

1

z2

∫

S

dxP0(x)(P1(x) + S0P0(x))w(x)

+
1

z3

∫

S

dxw(x)P0(x)(P2(x) + (S1 + S0)P1(x) + (R1 + S2
0)P0(x)) + · · · ,

= h0

(
1

z
+

S0

z2
+

R1 + S2
0

z3
+ · · ·

)
. (2.3.17)

From this expression we can see that e02 = S0, so we have

en,n+2 =
n∑

j=0

Sj. (2.3.18)

Moving on to (2.3.15b) we have a difference equation and after using what we have

learned above an answer is easily forthcoming.

en,n+3 =
n∑

j=1

(Sjej,j+2 + Rj+1) + e03

=
n∑

j=1

(
j∑

i=0

SjSi + Rj+1

)
+ R1 + S2

0

=
n∑

j=0

(
Rj+1 +

j∑
i=0

SjSi

)
(2.3.19)

We now have the necessary components to construct the first few terms of the εn(z)

expansion.

εn(z) = hn

(
1

zn+1
+

(
n∑

j=0

Sj

)
1

zn+2
+

n∑
j=0

(
Rj+1 +

j∑
i=0

SjSi

)
1

zn+3
+ · · ·

)

(2.3.20)

Having established the full derivations of εn and P
(1)
n , we can now make use of them by

using Laguerre’s method.
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2.3.3 The Fundamental Linear System for

Semi-Classical Orthogonal Polynomials

We start with the expression for fPn (2.3.4), differentiate it and multiply by W , so that we

can then make use of the first order linear differential equation (2.3.5) (with the exception,

that for this case we will consider the x variable to be dominant).

Wf∂xPn + (V f + U)Pn = W (∂xP
(1)
n−1 + ∂xεn)

W∂xPn(P
(1)
n−1 + εn) + V Pn(P

(1)
n−1 + εn) + UP 2

n = W (∂xP
(1)
n−1 + ∂xεn)Pn

(2.3.21)

We then go about separating the polynomial expression P
(1)
n−1 and εn so we get the

following expression:

Θn = W (∂xP
(1)
n−1Pn − ∂xPnP

(1)
n−1)− UP 2

n − V PnP
(1)
n−1 (2.3.22a)

= W (∂xPnεn − ∂xεnPn) + V Pnεn , (2.3.22b)

which is a polynomial bounded by a constant.

We try the same method again except this time we use fPn−1, which is again differentiated

and multiplied by W . This will lead to a second object, which will be called Ωn.

∂xfPn−1 + f∂xPn−1 = ∂xP
(1)
n−2 + ∂xεn−1

V Pn−1(P
(1)
n−1 + εn) + UPnPn−1 + W∂xPn−1(P

(1)
n−1 + εn) = W (∂xP

(1)
n−2 + ∂xεn−1)Pn

(2.3.23)

Again we separate the polynomial expression P
(1)
n−1 and εn to get:

Ωn = W (Pn∂xP
(1)
n−2 − P

(1)
n−1∂xPn−1)− V Pn−1P

(1)
n−1 − UPnPn−1 (2.3.24a)

= W (εn∂xPn−1 − Pn∂xεn−1) + V εnPn−1 (2.3.24b)
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Since the recurrence relation (1.1.25) can be expressed in a matrix form

ψn+1(x) =


 x− Sn −Rn

1 0


 ψn(x), where ψn(x) =


 Pn(x)

Pn−1(x)


 (2.3.25)

we collect the important relations we have derived so far and put them in a matrix form

so that our intended differential system can be written as one expression. We begin with

the two expressions (2.3.22a) and (2.3.24a), written in matrix form:

 Pn−1 −P

(1)
n−2

Pn −P
(1)
n−1





 W∂xP

(1)
n−1

W∂xPn(x)


 =


 Ωn + V Pn−1P

(1)
n−1 + UPnPn−1

Θn + V PnP
(1)
n−1 + UP 2

n


 ,

(2.3.26a)

which can easily be solved making use of (2.3.6a) to give:

 W∂xP

(1)
n−1

W∂xPn(x)


 =

1

hn−1


 P

(1)
n−1 −P

(1)
n−2

Pn −Pn−1





 Ωn + V Pn−1P

(1)
n−1 + UPnPn−1

Θn + V PnP
(1)
n−1 + UP 2

n


 ,

(2.3.26b)

so that we have an expression for W∂xPn:

W∂xPn =
1

hn−1

(ΩnPn −ΘnPn−1) (2.3.27a)

and W∂xP
(1)
n−1:

W∂xP
(1)
n−1 = (ΩnP

(1)
n−1 −ΘnP

(1)
n−2 + V hn−1P

(1)
n−1 + Uhn−1Pn) (2.3.27b)

We now look for a second differential relation in Pn, so we take (2.3.27a) with a reduced

index in conjunction with the recurrence relation (1.1.25), which leads to

W (∂xPn−1) =
1

hn−2

(
Ωn−1Pn−1 − Θn−1

Rn−1

((x− Sn−1)Pn−1 − Pn)

)
. (2.3.28)

However we have no expression to remove the x from the equation, so we consider the

problematic part of the expression:

(x− Sn)Θn = (x− Sn) (W (εn∂x(Pn)− ∂x(εn)Pn) + V εnPn) , (2.3.29)
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which we expand using (1.1.25) and the differential of (2.3.6b)

∂xPn−1εn + ∂xεnPn−1 − ∂xPnεn−1 − ∂xεn−1Pn = 0,

to get:

(x− Sn)Θn = W (−∂xεn(Pn+1 + RnPn−1) + ∂xPn(εn+1 +′ //Rnεn−1))

+V Pn(εn+1 + Rnεn−1)

= Ωn+1 + Rn(−W (∂xεn−1Pn − ∂xPn−1εn) + V hn−1 + V εnPn−1)

= Ωn+1 + RnΩn + V hn (2.3.30)

This allows us to remove x from (2.3.28) to give a second differential equation.

W∂xPn−1 =
1

hn−1

(Θn−1Pn − ΩnPn−1)− V Pn−1 (2.3.31)

We now have a differential system

W∂x


 Pn(x)

Pn−1(x)


 =

1

hn−1


 Ωn(x) −Θn(x)

Θn−1(x) −(Ωn(x) + V (x)hn−1)





 Pn(x)

Pn−1(x)


 ,

(2.3.32)

which can also be written in terms of ψ, where ψ =


 Pn(x)

Pn−1(x)


. Thus if we give

the recurrence and differential equations in a semi-discrete Lax representation (2.1.6) we

have

ψn+1(x) = Ln(x)ψn(x)

∂xψn(x) = Mn(x)ψn(x)

where

Ln =


 x− Sn −Rn

1 0


 , Mn =

1

Whn−1


 Ωn(x) −Θn(x)

Θn−1(x) −(Ωn(x) + V (x)hn−1)



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2.3.4 Compatibility Relations

We now use the differential system (2.3.32) with the matrix form of the recurrence relation

(2.3.25) in order to create a compatibility relation so that relations between Ωn and Θn

can be derived. Thus we consider the compatibility between the semi-discrete Lax pair

∂xψn+1 = ∂x(Lnψn) = Mn+1ψn+1,

= (∂xLn)(x)ψn(x) + Ln(x)Mn(x)ψn(x) = Mn+1Ln(x)ψn(x),

(2.3.34)

which leads to the semi-discrete Lax equation (2.1.7)

∂xLn = Mn+1Ln − LnMn.

So we begin by differentiating the new form of the recurrence relation (2.3.25)

∂xψn+1(x) = ∂x


 x− Sn −Rn

1 0


 ψn(x) +


 x− Sn −Rn

1 0


 ∂xψn(x)

=
1

Whn−1


 x− Sn −Rn

1 0





 Ωn(x) −Θn(x)

Θn−1(x) −(Ωn(x) + V (x)hn−1)


 ψn(x)

+


 1 0

0 0


 ψn(x) (2.3.35)

and equating this with the differential of (2.3.32)

∂xψn+1(x) =
1

Whn


 Ωn+1(x) −Θn+1(x)

Θn(x) −(Ωn+1(x) + V (x)hn)





 x− Sn −Rn

1 0


 ψn(x),

(2.3.36)

we can identity two distinct relations.

(x− Sn)

(
Ωn+1

hn

− Ωn

hn−1

)
= Rn+1

Θn+1

hn+1

−Rn
Θn−1

hn−1

+ W (2.3.37)

(x− Sn)
Θn

hn

=
Ωn+1

hn

+
Ωn

hn−1

+ V (2.3.38)
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2.4 Applying the Laguerre Method

This method can be demonstrated by using the semi-classical Hermite and Laguerre

families of orthogonal polynomials. The Pearson equation will provide the values of

V (x),W (x) and by substituting the expressions for Pn (2.3.13) and εn (2.3.20) into Ωn

(2.3.24b) and Θn (2.3.22b), we have all the necessary components.

Θn = W (x)hn

{[
1

xn+1
+

(
n∑

j=0

Sj

)
1

xn+2
+ · · ·

]

×
[
nxn−1 −

(
n−1∑
j=0

Sj

)
(n− 1)xn−2 + · · ·

]

+

[
n + 1

xn+2
+

(
n∑

j=0

Sj

)
n + 2

xn+3
+ · · ·

]
×

[
xn −

(
n−1∑
j=0

Sj

)
xn−1 + · · ·

]}

+V (x)

×hn

[
1

xn+1
+

(
n∑

j=0

Sj

)
1

xn+2
+ · · ·

]
×

[
xn −

(
n−1∑
j=0

Sj

)
xn−1 + · · ·

]

(2.4.1)

Ωn = W (x)

{
hn

[
1

xn+1
+

(
n∑

j=0

Sj

)
1

xn+2
+

n∑
j=0

(
Rj+1 +

j∑

k=0

SjSk

)
1

xn+3
+ · · ·

]

×
[
(n− 1)xn−2 − (n− 2)

(
n−2∑
j=0

Sj

)
xn−3 + (n− 3)

n−2∑
j=1

(
j−1∑

k=0

SjSk −Rj

)
xn−4 + · · ·

]

+ hn−1

[
xn −

(
n−1∑
j=0

Sj

)
xn−1 +

n−1∑
j=1

(
j−1∑

k=0

SjSk −Rj

)
xn−2 + · · ·

]

×
[

n

xn+1
+

(
n−1∑
j=0

Sj

)
(n + 1)

xn+2
+

n−1∑
j=0

(
Rj+1 +

j∑

k=0

SjSk

)
(n + 2)

xn+3
+ · · ·

]}

+V (x)

×hn

[
1

xn+1
+

(
n∑

j=0

Sj

)
1

xn+2
+

n∑
j=0

(
Rj+1 +

j∑

k=0

SjSk

)
1

xn+3
+ · · ·

]

×
[
xn−1 −

(
n−2∑
j=0

Sj

)
xn−2 +

n−2∑
j=1

(
j−1∑

k=0

SjSk −Rj

)
xn−3 + · · ·

]
, (2.4.2)
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Once a specific weight is chosen, then the recurrence coefficients will be different for

each case considered.

2.4.1 Semi-Classical Hermite Polynomials

From the orthogonality relation (1.3.2) we can see that the classical weight of the Hermite

polynomials is w(x) = e−x2 . Any deformations of this weight, to the semi-classical case,

will involve altering the degree of the polynomial in the exponential. As an example

that this method works we use the the even semi-classical Hermite weight (2.2.11) from

before and show that it yields discrete PI. Then we consider an odd semi-classical Hermite

weight.

Semi-Classical Hermite Weight: h0(x) = e−
a
2
x2− b

4
x4

We choose the semi-classical Hermite weight e−
a
2
x2− b

4
x4

with a, b > 0 and where the

support S is an arc from (−∞→∞), then from the Pearson equation (2.0.2) we have

V (x) = −(ax + bx3) , W (x) = 1. (2.4.3)

When we substitute V (x),W (x) into the relations above and then make use of the

consistency relations, we must be reminded that a weight function of this form satisfies a

simplified recurrence relation, specifically one where Sn = 0. As a result these relations

are greatly reduced in size. We find that Θn and Ωn have the following forms respectively

Θn

hn

= −(bx2 + (Rn+1 + Rn)b + a) ,
Ωn

hn−1

= −bRnx. (2.4.4)

Upon substitution into (2.3.37) all the relations are trivial and in (2.3.38), there is only

one non-trivial equation

(Rn+1(Rn+2 + Rn+1)−Rn(Rn + Rn−1)) b + a(Rn+1 −Rn) = 1 (2.4.5)
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which is clearly a pure difference equation after inserting the term RnRn+1. Then after

integrating up we are left with

Rn(b(Rn+1 + Rn + Rn−1) + a) = n + c (2.4.6)

(where c is a an integration constant), which is a discrete form of Painlevé I, d-PI, of

which a similar example was derived earlier (2.2.17) using the same weight function.

The difference between the two relations (2.2.17, 2.4.6) is the inclusion of an integration

constant in (2.4.6).

Semi-Classical Hermite Weight: h1(x) = e−a1x−a2
2

x2−a3
3

x3

Now we try a weight that does makes use of the recurrence coefficient Sn. So we consider

the semi-classical Hermite weight e−a1x−a2
2

x2−a3
3

x3
with a1, a2, a3 > 0 and where the

support S is an arc from (−∞→∞), then from the Pearson equation we have

V (x) = −(a1 + a2x + a3x
2) , W (x) = 1. (2.4.7)

From these values of V (x),W (x) we have the following forms for Θn and Ωn respectively

Θn

hn

= −(a3x + a2 + Sna3) ,
Ωn

hn−1

= −a3Rn. (2.4.8)

Then in the consistency relations we have two non-trivial equations

Rn+1(a3(Sn+1 + Sn + a2))−Rn(a3(Sn + Sn−1) + a2) = 1 (2.4.9a)

Sn(a2 + Sna3) = −a3(Rn+1 + Rn)− a1 (2.4.9b)

of which the first is a pure difference equation and implies that

Rn =
n

a3(Sn + Sn−1) + a2

+ c1 (2.4.10)

(where c1 is a constant) hence we have

S2
na3 + Sna2 + a1 = −a3

(
n + 1

a3(Sn+1 + Sn) + a2

+
n

a3(Sn + Sn−1) + a2

+ 2c1

)
.

(2.4.11)
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which is alternate expression for discrete PI [64]. Exponential weights of this type (odd

weights), are not usually considered since most are interested in Freud weights, which are

all even.

Both of these examples have yielded different forms of discrete PI, however now we try

semi-classical Laguerre, whose weight function combines the exponential part of Hermite

with the linear part of Jacobi.

2.4.2 Semi-Classical Laguerre Polynomials

From the orthogonality relation (1.3.10) we can see that the classical weight of the

Laguerre is w(x) = xαe−x. Our choice of deformations for this weight, involve altering

the order of the polynomial in the exponential and/or multiplying the weight by another

x. So we consider all three cases.

Semi-Classical Laguerre Weight: l0(x) = (x− t)αe−(a1x+
a2
2

x2)

We first consider a deformation in the exponential part of the weight function, the semi-

classical weight w(x) = (x− t)αe−(a1x+
a2
2

x2) with α, a1, a2 > 0 and where the support S

is an arc from (t →∞). Then from the Pearson equation, we have

V (x) = α− (a1 + a2x)(x− t) , W (x) = x− t. (2.4.12)

From these values of V (x),W (x) we have the following forms for Θn and Ωn respectively

Θn

hn

= −(a2x + a1 + a2(Sn − t)) ,
Ωn

hn−1

= (n− a2Rn). (2.4.13)

Then in the consistency relations we have two non-trivial equations

a2(Rn+1 + Rn) = −Sn(a2Sn + (a1 − a2t)) + (2n + 1 + a1t + α), (2.4.14a)

Rn+1(a2(Sn+1 + Sn) + (a1 − a2t))−Rn(a2(Sn + Sn−1)− (a1 − a2t)) = Sn − t.

(2.4.14b)
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Although the second equation could be integrated to give a sum for Sj (since it is a pure

difference equation), it serves no practical purpose. However we can consider this to be a

nonlinear system in terms of the recurrence coefficients Rn and Sn, which we find to be

analogues to the Laguerre-Freud equations acquired in [18]. As was mentioned earlier,

the Laguerre-Freud equations arise through the differential equation of semi-classical

orthogonal polynomials. They are usually studied for Freud weights |x|ρe−|x|2m , where

the case of ρ = 0 are also the semi-classical Hermite polynomials.

Due to the ordering of these two equations, it is possible to generate the sequence of

Rn, Sn after allowing for the introduction of certain initial conditions. We begin by setting

S−1 = 0 and also make the consideration that h−1 = 1 and P0 = 1. Then using the inner

product expressions for Rn (1.1.11) and Sn (1.1.12) we have the transcendental functions:

R0 = h0 = 〈P0, P0〉 =

∫ ∞

t

(x− t)αe−(a1x+
a2
2

x2)dx (2.4.15a)

S0 =
〈xP0, P0〉
〈P0, P0〉 =

∫∞
t

x(x− t)αe−(a1x+
a2
2

x2)dx∫∞
t

(x− t)αe−(a1x+
a2
2

x2)dx
(2.4.15b)

Using these initial conditions we can initially generate R1 from (2.4.14a) and S1 from

(2.4.14b), then generate the rest iteratively.

Semi-Classical Laguerre Weight: l1(x) = xα(t− x)βe−x

Alternatively we can consider a deformation of the non-exponential part of the weight,

thus we pose the weight function xα(t − x)βe−x with α, β > 0 and where the support S

joins the points 0, t and ∞ in some way, such as an arc from 0 → ∞. From the Pearson

equation we have

V (x) = x2 − x(t + α + β) + αt,

W (x) = x(t− x).
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From these values of V (x),W (x) we have the following forms for Θn and Ωn respectively

Θn

hn

= x + Sn − (2n + 1 + t + ar + β)

Ωn

hn−1

= −
(

nx +
n−1∑
j=0

Sj −Rn − nt

)
.

Then in the consistency relations we have two non-trivial equations

Sn(Sn − t)−Rn+1(Sn+1 + Sn) + Rn(Sn + Sn−1)

= −Rn+1(2n + 3 + t + α + β) + Rn(2n− 1 + t + α + β), (2.4.17a)

2
n−1∑
j=0

Sj − S2
n + Sn(2n + 2 + t + α + β) = Rn+1 + Rn + (2n + 1 + α)t.

(2.4.17b)

The sum in the second equation can be eliminated by subtracting (2.4.17)n−(2.4.17)n−1,

which leaves us with

S2
n−1−S2

n+Sn(2n+2+t+α+β)−Sn−1(2n−2+t+α+β) = Rn+1−Rn−1+2t. (2.4.18)

Again we are left with a non-linear system, which can iteratively generate a sequence of

Rn, Sn (after the input of specific initial conditions R−1 = S−1 = 0, h−1 = 1, P0 = 1),

R0 = 〈P0, P0〉 =

∫ ∞

0

xα(t− x)βe−xdx,

S0 =
〈xP0, P0〉
〈P0, P0〉 =

∫∞
0

xα+1(t− x)βe−xdx∫∞
0

xα(t− x)βe−xdx
.

Semi-Classical Laguerre Weight: l2(x) = xα(t− x)βe−(a1x+
a2
2

x2)

Finally we can deform both parts of the weight and have a weight function of the form

l2(x) = xα(t − x)βe−(a1x+
a2
2

x2) with α, β, a1, a2 > 0 and where the support S joins the

points 0, t and ∞ in some way, such as an arc from 0 → ∞. Then from the Pearson

equation, we have

V (x) = α− (a1 + a2x + a3x
2)(x− t), (2.4.19a)

W (x) = x− t. (2.4.19b)
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From these values of V (x),W (x) we have the following forms for Θn and Ωn respectively

Θn

hn

= a2x
2 + (a1 + a2(Sn − t))x + a1(Sn − t)− a2tSn − (2n + 1 + α + β)

+a2

(
Rn+1 + Rn +

n∑
j=0

j∑

k=0

SjSk +
n−1∑
j=1

j−1∑

k=0

SjSk −
(

n∑
j=0

Sj

)(
n−1∑
j=0

Sj

))

(2.4.20a)

Ωn

hn−1

= (a2Rn − n)x + Rn(a2(Sn − t + Sn−1) + a1) + nt−
n−1∑
j=0

Sj. (2.4.20b)

In order to group the two double sums
∑n−1

j=0

∑j
k=0 SjSk and

∑n−1
j=1

∑j−1
k=0 SjSk together

into a single double sum, it is necessary to introduce an extra term:

n−1∑
j=0

j∑

k=0

SjSk +

(
n−1∑
j=1

j−1∑

k=0

SjSk +
n−1∑
j=0

S2
j

)
= 2

n−1∑
j=0

j∑

k=0

SjSk,

which can be further reduced by subtracting the squared sum
(∑n−1

j=0 Sj

)(∑n−1
j=0 Sj

)

2
n−1∑
j=0

j∑
i=0

SjSi −
(

n−1∑
j=0

Sj

)(
n−1∑
i=0

Si

)
=

n−1∑
j=0

S2
j . (2.4.21)

This allows (2.4.20a) to be written in the following way:

Θn

hn

= a2x
2 + (a1 + a2(Sn − t))x + a1(Sn − t) + a2(Rn+1 + Rn + Sn(Sn − t))

−(2n + 1 + α + β). (2.4.22)

Then from the consistency relations we have the non-trivial equations

Rn+1(a1 + a2(Sn+1 + 2Sn − t)) + Rn(a1 + a2(2Sn + Sn−1 − t)) + (2n + 1 + αt)

= 2
n−1∑
j=0

Sj − Sna1(Sn − t)− a2S
2
n(Sn − t) + Sn(2n + 2 + α + β), (2.4.23a)

Rn+1(a1(Sn+1 + Sn − t) + a2(Rn+2 + Rn + S2
n+1 + S2

n + Sn+1Sn

−t(Sn+1 + Sn))− (2n + 3 + α + β))

−Rn(a1(Sn + Sn−1 − t) + a2(Rn+1 + Rn−1 + S2
n + S2

n−1 + SnSn−1

−t(Sn + Sn−1))− (2n + 1 + α + β))

= Sn(Sn − t) + 2Rn. (2.4.23b)
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This non-linear system is more complicated than the previous systems, since the first

equation is first order in Rn and second order in Sn, while the second is third order in Rn

and second order in Sn. Consequently it is not possible to iteratively generate the sequence

of Rn, Sn, unless we lower the order of the higher order equation and introduce further

initial conditions including R−2 = S−2 = 0. An alternative approach is to integrate the

second equation (since it is a pure difference equation) and then lower the order of the

resulting equation

Rn(a1(Sn + Sn−1 − t) + a2(Rn+1 + Rn−1 + S2
n + S2

n−1 + SnSn−1

−t(Sn + Sn−1))− (2n + 3 + α + β))

=
n−1∑
j=0

S2
j − t

n−1∑
j=0

Sj + 2
n−1∑
j=0

Rj. (2.4.24)

Then we can iteratively generate the sequence of Rn, Sn, using the same initial conditions

(from the previous weights).

From the weights that have been used, a semi-classical Hermite weight leads directly to

discrete Painlevé equations, while a semi-classical Laguerre weight leads to a system of

two equations in terms of the two recurrence coefficients. These systems consist of one

relation first order in Rn and second order Sn, and another relation first order Sn and

second order Rn, that can generate a sequence of Rn, Sn after suitable initial conditions

are applied. Unsurprisingly a more complex weight leads to a more complex system of

relations. All these systems would be of interest if they were investigated further such as

looking into the possibility of express them in terms of a single recurrence coefficient and

taking continuum limits to work out their corresponding continuous cases.



Chapter 2. Semi-Classical Orthogonal Polynomials 71

2.5 The Orthogonality Relation Approach

to Semi-Classical Jacobi Polynomials

Here we introduce, the semi-classical Jacobi polynomials, which will be approached using

two different methods. First we will look at the derivation of a differential equation

using the orthogonality relation for semi-classical orthogonal polynomials. This approach

is very similar to the approach used for the semi-classical Hermite polynomials. We

are interested in the compatibility between this relation and the recurrence relation,

particularly what relations can be derived. The advantages of this theory are that one

does not require any prior knowledge, since you are just working with the orthogonality

relation, however it does take a long time to calculate the necessary information. Also

with this approach there is always the possibility that information is lost. The second way

involves the Laguerre method just derived, this is much more accurate method, but takes

a lot longer to set up. However, knowledge of this method allows for the quick and easy

derivation of compatibility relations between the differential system and the recurrence

relation. The matrix method allows more information to be calculated.

Of all the classical families, the Jacobi polynomials are some of the most interesting, not

least because they are a general case of some of the other classical families, most notably

Legendre and Gegenbauer families. They consist of an integration interval of (-1,1) and a

weight function of w(x) = (1− x)α(1 + x)β so that

〈Pn, Pm〉 =

∫ 1

−1

Pn(x)Pm(x)w(x)dx = 0 for all n 6= m. (2.5.1)

Our choice of deformation to the semi-classical case, consists of rewriting the weight

function as w(x) = (1−x)αxβ(t−x)γ , where a second variable t has been included with

addition of another parameter γ. Using the Pearson equation we can demonstrate whether

the weight functions satisfy classical or semi-classical orthogonal polynomials. First we
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consider the Jacobi weight function w(x) = (1− x)α(1 + x)β , from which we have

(−α(1− x)α−1(1 + x)β + β(1− x)α(1 + x)β−1)

(1− x)α(1 + x)β
=
−x(α + β)− α + β

(1− x2)
. (2.5.2a)

The numerator has deg = 1 and the denominator has deg = 2, therefore the weight is

classical. Now we consider w(x) = (1− x)αxβ(t− x)γ , from which we have

(−α(1− x)α−1xβ(t− x)γ + β(1− x)αxβ−1(t− x)γ − γ(1− x)αxβ(t− x)γ)

(1− x)αxβ(t− x)γ

=
x2(α + β + γ)− x(αt + β(t + 1) + γ) + βt

(1− x)x(t− x)
. (2.5.2b)

In this case the numerator has deg = 2 and the denominator has deg = 3,ie.

V (x) = x2(α + β + γ)− x(αt + β(t + 1) + γ) + βt (2.5.3a)

W (x) = (1− x)x(t− x) (2.5.3b)

therefore the weight is semi-classical.

Since there are now two variables it is possible to derive two differential equations in

terms of t and x:

(t− x)∂tPn = cnnPn + cn,n−1Pn−1 (2.5.4a)

where ∂t is simply defined as ∂
∂t

and

(1−x)x(t−x)∂xPn = nPn+2+an,n+1Pn+1+annPn+an,n−1Pn−1+an,n−2Pn−2. (2.5.4b)

These two equations and (2.3.2)

xPn = Pn+1 + SnPn + RnPn−1

are the primary equations involved in the deformed Jacobi. The form of both these

equations can be proven and their coefficients defined explicitly.
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2.5.1 The t-Differential Equation

Although the focus is on the compatibility between the x-differential equation an the

recurrence relation, we also have a t-differential equation for this particular weight

function, so we also consider its corresponding compatibility with the recurrence relation.

Although the relations will not be discrete, they may provide interesting relations none

the less. We take the general form for the t-differential equation as

(t− x)∂tPn =
n∑

j=0

cnjPj. (2.5.5)

Then differentiate the orthogonality relation (2.5.1) with respect to t

∂t〈(t− x)Pn, Pm〉 = 〈(t− x)∂tPn, Pm〉+ 〈(t− x)Pn, ∂tPm〉
+(γ + 1)〈Pn, Pm〉 (2.5.6)

and substitute in the value (2.5.5) to give a relation,

n∑
j=0

cnjhmδjm +
m∑

j=0

cmjhnδjn + (γ + 1)hnδnm

=
d

dt
(thnδnm − hm(δn+1,m + Snδnm + Rnδn−1,m)) (2.5.7)

which must be satisfied for all values of m. We begin with m = n + 1, since that is the

value of the highest order polynomial and reduce the order until no more relations are

found

m = n + 1 ⇒ hncn+1,n = − d

dt
hn+1, (2.5.8a)

m = n ⇒ 2cnnhn + (γ + 1)hn =
d

dt
((t− Sn)hn), (2.5.8b)

m = n− 1 ⇒ cn,n−1hn−1 = − d

dt
(Rnhn−1), (2.5.8c)

m = n− 2 ⇒ cn,n−2 = 0.

For m ≤ n − 2 we have no more relations and since the relations for m = n + 1 and

m = n − 1 are identical, we only have two relations or two coefficients. Thus, we can
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explicitly define the t-differential equation (2.5.4a) as

(t− x)∂tPn = cnnPn + cn,n−1Pn−1 (2.5.9)

where we have the coefficients

cnn =
1

2

(
1

hn

d

dt
[(t− Sn)hn]− (γ + 1)

)
, (2.5.10a)

cn,n−1 = − 1

hn−1

d

dt
hn. (2.5.10b)

2.5.2 Compatibility Between the Recurrence Relation

and the t-Differential Equation

Since the compatibility relations (2.3.38,2.3.37) are generated by a differential system

with respect to x, they cannot be used for calculating the compatibility between the t-

differential equation (2.5.4a) and recurrence relation (2.3.2) and so a different approach

must be used. Thus consider (t − x)∂t(xPn), which we can expand using the recurrence

or the t-differential equations respectively.

(t− x)∂t(xPn) =

[
∂tPn+1 +

(
d

dt
Sn

)
Pn + Sn∂tPn +

(
d

dt
Rn

)
Pn + Rn∂tPn−1

]
(t− x)

= cnnPn+1 + (cnnSn + cn,n−1)Pn + (cnnRn + cn,n−1Sn−1)Pn−1

+cn,n−1Rn−1Pn−2

The left side of this relation can be further expanded by making use of the (2.5.4a) again,

so that we have

(t− x)∂t(xPn) =

(
cn+1,n+1 − d

dt
Sn

)
Pn+1 +

(
cn+1,n + cnnSn + (t− Sn)

d

dt
Sn − d

dt
Rn

)
Pn

+

(
cn,n−1Sn + cn−1,n−1Rn + (t− Sn−1)

d

dt
Rn −Rn

d

dt
Sn

)
Pn−1

+

(
cn−1,n−2Rn −Rn−1

d

dt
Rn

)
Pn−2
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then we can compare the coefficients of Pn. We begin the comparison with substituting

the values of cnn and cnn−1 into the relations, after which we notice that the coefficients

of Pn+1 and Pn−1 give the same result and the coefficient of Pn−2 is trivial. Thus we have

only two non-trivial relations

d

dt
Sn+1 +

d

dt
Sn = (t− Sn+1)

1

hn+1

dhn+1

dt
− (t− Sn)

1

hn

dhn

dt
, (2.5.11a)

(t− Sn)
1

hn

d

dt
Sn =

1

h2
n

dhn+1

dt
− 1

h2
n−1

dhn−1

dt
. (2.5.11b)

These two relations consist of many differentiations of two separate variables, the

recurrence coefficients and it would be interesting to see if they can be expressed as one

differential in terms of the other variable. So to eliminate the ∂tSn we take (2.5.11b),

rearrange it and substitute it into (2.5.11a) (after reducing the order of (2.5.11a) by one).

Rn+1

hn+1(t− Sn)

dhn+1

dt
− Rn

hn−1(t− Sn)

dhn−1

dt

+
Rn

hn(t− Sn−1)

dhn

dt
− Rn−1

hn−2(t− Sn−1)

dhn−2

dt
=

dhn

dt

(t− Sn)

hn

− dhn−1

dt

(t− Sn−1)

hn−1

Now we are left with differentiations of hn, but of different order. In order for the relation

to have the same order of hn, we make use of the fact that Rn = hn

hn−1
,

1

hn−1

dhn−1

dt
=

1

hn

dhn

dt
− 1

Rn

dRn

dt
(2.5.12)

which in turn brings in differentials of Rn with respect to t.

1

hn

dhn

dt

(
Rn+1 −Rn

t− Sn

− (t− Sn) +
Rn −Rn−1

t− Sn−1

− (t− Sn−1)

)

+
1

t− Sn

dRn+1

dt
+

1

Rn

dRn

dt

(
Rn

t− Sn

+
Rn−1

t− Sn−1

− (t− Sn−1)

)
+

1

t− Sn−1

dRn−1

dt
= 0

(2.5.13)

This is a differential closed-form system in terms of both hn and Sn.
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2.5.3 The x-Differential Equation

The previous method considered the compatibility between a 2 point differential system

and a recurrence relation. Here we will consider the compatibility between a 5 point

differential relation and recurrence relation.

We begin by considering the general form of the x-differential relation, (1 − x)x(t −
x)∂xPn, which when expanded would look something like:

(1− x)x(t− x)∂xPn = nPn+2 +
n+1∑
j=0

anjPj (2.5.14)

where the leading coefficient is obviously n. We look to orthogonality relations to confirm

the rest of the relation:

〈(1− x)x(t− x)∂xPn, Pm〉 =

∫
(∂xPn)Pm(1− x)α+1xβ+1(t− x)γ+1dx

= −〈Pn, (1− x)x(t− x)∂xPm〉+

∫
PnPm[(α + 1)x(t− x)

−(β + 1)(1− x)(t− x) + (γ + 1)(1− x)x]w(x)dx

(2.5.15)

From here it is possible to substitute (2.5.14) into (2.5.15) to give:

nδn+2,mhm +
n+1∑
j=0

anjδjmhm = −mδm+2,nhn −
m+1∑
j=0

amjδjnhn − (β + 1)tδnmhm

−hm(α + β + γ + 3)(δn+2,m + (Sn+1 + Sn)δn+1,m

+(Rn+1 + S2
n + Rn)δnm + Rn(Sn + Sn−1)δn−1,m

+RnRn−1δn−2,m)

+hm((α + 1)t + (β + 1)(t + 1) + (γ + 1))

×(δn+1,m + Snδnm + Rnδn−1,m) (2.5.16)

Using this equation it is possible to derive a series of relations and determine the shape

of the x-differential relation by substituting in values of m. Beginning with m = n + 2,
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the value of the highest order polynomial and decreasing the value of m, one finds that

after m = n− 2, there are no more relations to be found. This is of the form stated at the

beginning (2.5.4b), with the following unique relations giving the coefficients.

an,n−2 = −(α + β + γ + n + 1)RnRn−1 (2.5.17a)

an,n+1 +
an+1,n

Rn+1

= −(α + β + γ + 3)(Sn+1 + Sn) + (α + β + 2)t + (β + γ + 2)

(2.5.17b)

2ann = −(β + 1)t− (α + β + γ + 3)(Rn+1 + Rn + S2
n)

+((α + β + 2)t + (β + γ + 2))Sn (2.5.17c)

It is easy to see, however, that while ann−2 and ann can be explicitly defined, there is

no such result for ann+1 and ann−1. Thus, by using this approach we are able to show

that there is a finite number of terms in the x-differential equation, but not give an explicit

formula of the coefficients. We can now consider the compatibility between the recurrence

relation and differential equation, to see if further information can be acquired.

2.5.4 Compatibility Between the Recurrence Relation

and the x-Differential Equation

Consider using the x-differential relation with the recurrence relation and the following

relation is achieved:

x(1− x)(t− x)∂x(xPn) = x(1− x)(t− x)(∂xPn+1 + Sn∂xPn + Rn∂xPn−1),

(2.5.18)
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which can then be expanded by substituting in (2.5.4b):

x(1− x)(t− x)Pn + x(nPn+2 + ann+1Pn+1 + annPn + ann−1Pn−1 + ann−2Pn−2)

= (n + 1)Pn+3 + an+1n+2Pn+2 + an+1n+1Pn+1 + an+1nPn + an+1n−1Pn−1

+Sn(nPn+2 + ann+1Pn+1 + annPn + ann−1Pn−1 + ann−2Pn−2)

+Rn ((n− 1)Pn+1 + an−1nPn + an−1n−1Pn−1 + an−1n−2Pn−2 + an−1n−3Pn−3)

then order-by-order, in powers of x, we get the following set of relations for the

coefficients by substituting in (2.5.4b) (and extended versions), which lead to the

following series of relations:

Rnan−1,n−3 = RnRn−1Rn−2 + an,n−2Rn−2 (2.5.19a)

an+1,n+2 − an,n+1 = Sn + Sn+1 + Sn+2 − (1 + t) + n(Sn+2 − Sn), (2.5.19b)

an+1,n+1 − ann = Rn + Rn+1 + Rn+2 + S2
n+1 + SnSn+1 + S2

n + t− (n− 1)Rn

+nRn+2 + an,n+1(Sn+1 − Sn)− (1 + t)(Sn+1 + Sn),

(2.5.19c)

an+1,n − an,n−1 = Rn+1Sn+1 + RnSn−1 + Sn(Sn − 1)(Sn − t)

+Rnan−1,n −Rn+1an,n+1 +2Sn(Rn+1 + Rn)− (1 + t)(Rn+1 + Rn), (2.5.19d)

an+1,n−1 − an,n−2 = Rn(Rn+1 + Rn + Rn−1) + tRn − (1 + t)Rn(Sn + Sn−1)

−(ann − an−1,n−1) +Rn(S2
n + Snn−1 + S2

n−1) + an,n−1(Sn−1 − Sn)

(2.5.19e)

an−1,n−2Rn − an,n−1Rn−1 = (Sn−2 − Sn)an,n−2 + RnRn−1(Sn + Sn−1 + Sn−2)

−(t + 1)RnRn−1, (2.5.19f)

which can be solved by two methods. The first, the method of substitution, defines

the coefficients very specifically, defining them in terms of the parameters α, β, γ, but

produces no new information. The second method involves arranging the equations
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to give a total difference and then integrating up. The resulting equations contain

integration coefficients, which on comparison with (2.5.17a) and (2.5.17c) must contain

the parameters α, β, γ.

2.5.5 Difference equations for Rn and Sn

From these equations, five are used to give explicit derivations of the coefficients, leaving

one equation to play around with. Of the former equations the easiest to calculate are

described as follows:

The solution of (2.5.19a) comes from moving the an,n−2, an−1,n−3 to one side, dividing

by RnRn−1Rn−2 and integrating up

an,n−2 = (−n + b−2)RnRn−1, (2.5.20)

where the value b−2 represents the integration constant, for the coefficient of an,n−2.

The solution of (2.5.19b) involves similar manipulation, except the term nSn+1 is included

to give a pure difference equation

(an+1,n+2 − (n + 1)Sn+2 − nSn+1)− (an,n+1 − nSn+1 − (n− 1)Sn) = Sn+1 − (1 + t),

which can then be integrated to give:

an,n+1 =
n∑

j=0

Sj − (1 + t)(n + 1) + nSn+1 + (n− 1)Sn + b1 (2.5.21)

where the value b1 represents the integration constant. The remaining two equations

involve the use of an,n−2 and an,n+1 to give their solutions.

The solution of (2.5.19f) involves the substitution of (2.5.20), then dividing by RnRn−1

and introducing the term (n− b−2)Sn−1 gives another pure difference equation
(

an,n−1

Rn

+ (n + 1− b−2)Sn + (n− b−2)Sn−1

)

−
(

an−1,n−2

Rn−1

+ (n− b−2)Sn−1 + (n− 1− b−2)Sn−2

)
= (t + 1)− Sn−1,
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which integrates to give:

an,n−1

Rn

= −
n−1∑
j=0

Sj + (1 + t)n− (n + 1− b−2)Sn − (n− b−2)Sn−1 + b−1 (2.5.22)

with b−1 the integration constant.

The final coefficient is the most difficult to find and involves using equations (2.5.19c) and

(2.5.19e). Noting that increasing the index by one in (2.5.19e) gives the same difference

of ann as in (2.5.19c) allows two combinations, from which one will eliminate ann and

the other will keep ann. Thus (2.5.19c)n − (2.5.19e)n+1 → a pure difference in anand

(2.5.19c)n + (2.5.19e)n+1 → an disappearing

an+1,n+1 − ann = Rn −Rn+2 + S2
n − S2

n+1 +
b−2

2
(Rn+2 −Rn + S2

n+1 − S2
n),

+
1

2
(b1 − b−1)(Sn+1 − Sn)

which after some inclusions can be integrated to give:

ann = (Rn+1 + Rn + S2
n)(

b−2

2
− 1) +

1

2
(b1 − b−1)Sn + b0 (2.5.23)

with b0 the integration constant.

A parameterization of the coefficients is given by the following set

b−2 = −(α + β + γ + 1) (2.5.24a)

b1 − b−1 = ((α + β + 2)t + (β + γ + 2)) (2.5.24b)

b0 = −1

2
(β + 1)t (2.5.24c)

but we only acquire this result by comparing the two solution sets. While we can state

b0, b−2, we have a certain amount of freedom with regards to the value of b1, b−1.

This of course leaves two equations remaining (2.5.19d) and (2.5.19c)n + (2.5.19e)n+1.

We now have all the necessary ingredients for (2.5.19d) so substituting in and cancelling
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gives us:

2Rn+1

(
n∑

j=0

Sj − (1 + t)(2n + 3) + Sn+1(2n + 3− b−2)− b−1

)

−2Rn

(
n−1∑
j=0

Sj − (1 + t)(2n− 1) + Sn−1(2n− 3− b−2) + b1

)

= −Sn (Rn+1(2n + 2− b−2)−Rn(2n− 2− b−2) + (Sn − 1)(Sn − t)) .

(2.5.25a)

Moving onto the second, we find:

Sn

(
2

n−1∑
j=0

Sj − (1 + t)2n + (2n− b−2)Sn + (b1 − b−1)

)

−Sn+1

(
n−1∑
j=0

Sj − (1 + t)(2n + 4) + (2n + 4− b−2)Sn+1 + (b1 − b−1)

)

= (2n + 4− b−2)Rn+2 + 2Rn+1 − (2n− 2− b−2)Rn + 2t. (2.5.25b)

Thus we have a pair of relations resulting from the consistency between the differential

and recursion relations. This method, while correct, is not as powerful compared with

the method earlier established. We now have two paths of exploration, the first requires

re-expressing the five point differential relation as a two-point differential relation and

then comparing the coefficients with Ωn and Θn or we calculate Ωn and Θn using their

respective formulas (2.3.24b) and (2.3.22b).

2.6 The Laguerre Method Approach

to Semi-Classical Jacobi Polynomials

The use of the Laguerre method has already been demonstrated with semi-classical

Hermite and Laguerre so now consider the more complex case of Jacobi.
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2.6.1 Explicit Derivation of Vn, Θn and Ωn

By using the Pearson equation (2.0.2), we were able to derive the polynomials V (2.5.3a)

and W (2.5.3b) respectively.

V (x) =
(
(α + β + γ)x2 − (αt + β(t + 1) + γ)x + βt

)

W (x) = (1− x)x(t− x)

Given that we can express both Ωn and Θn in terms of Pn and εn, (2.3.22b) and (2.3.24b),

it is possible to derive explicit forms for Ωn and Θn by using the explicit derivations of

Pn (2.3.13) and εn (2.3.20) using simple substitution and then looking for powers of x.

Pn(x) = xn −
(

n−1∑
j=0

Sj

)
xn−1 +

n−1∑
j=1

(
j−1∑

k=0

SjSk −Rj

)
xn−2 + · · · ,

εn(x) = hn

(
1

xn+1
+

(
n∑

j=0

Sj

)
1

xn+2
+

n∑
j=0

(
Rj+1 +

j∑

k=0

SjSk

)
1

xn+3
+ · · ·

)
.

Beginning with the expression for Θn,

Θn = W (εn(x)∂xPn(x)− Pn(x)∂xεn(x)) + V εn(x)Pn(x)

and expanding:

Θn = (1− x)x(t− x)hn

{[
1

xn+1
+

(
n∑

j=0

Sj

)
1

xn+2
+ · · ·

]

×
[
nxn−1 −

(
n−1∑
j=0

Sj

)
(n− 1)xn−2 + · · ·

]

+

[
n + 1

xn+2
+

(
n∑

j=0

Sj

)
n + 2

xn+3
+ · · ·

]
×

[
xn −

(
n−1∑
j=0

Sj

)
xn−1 + · · ·

]}

+((α + β + γ)x2 − (αt + β(t + 1) + γ)x + βt)

×hn

[
1

xn+1
+

(
n∑

j=0

Sj

)
1

xn+2
+ · · ·

]
×

[
xn −

(
n−1∑
j=0

Sj

)
xn−1 + · · ·

]
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which after expanding and cancelling terms reduces to an equation of the form:

Θn = Θ(1)
n x + Θ(0)

n (2.6.1)

where we have:

Θ(1)
n = hn(2n + 1 + α + β + γ) (2.6.2a)

Θ(0)
n = hn

(
2

n−1∑
j=0

Sj − (1 + t)(2n + 1) + (2n + 2 + α + β + γ)Sn

−(αt + β(t + 1) + γ)) (2.6.2b)

Continuing with Ωn,

Ω = W (x)(εn(x)∂xPn−1(x)− Pn(x)∂xεn−1(x)) + V (x)εn(x)Pn−1(x)

and expanding:

Ωn = (1− x)x(t− x)

{
hn

[
1

xn+1
+

(
n∑

j=0

Sj

)
1

xn+2
+

n∑
j=0

(
Rj+1 +

j∑

k=0

SjSk

)
1

xn+3
+ · · ·

]

×
[
(n− 1)xn−2 − (n− 2)

(
n−2∑
j=0

Sj

)
xn−3 + (n− 3)

n−2∑
j=1

(
j−1∑

k=0

SjSk −Rj

)
xn−4 + · · ·

]

+ hn−1

[
xn −

(
n−1∑
j=0

Sj

)
xn−1 +

n−1∑
j=1

(
j−1∑

k=0

SjSk −Rj

)
xn−2 + · · ·

]

×
[

n

xn+1
+

(
n−1∑
j=0

Sj

)
(n + 1)

xn+2
+

n−1∑
j=0

(
Rj+1 +

j∑

k=0

SjSk

)
(n + 2)

xn+3
+ · · ·

]}

+
(
(α + β + γ)x2 − (αt + β(t + 1) + γ)x + βt

)

×hn

[
1

xn+1
+

(
n∑

j=0

Sj

)
1

xn+2
+

n∑
j=0

(
Rj+1 +

j∑

k=0

SjSk

)
1

xn+3
+ · · ·

]

×
[
xn−1 −

(
n−2∑
j=0

Sj

)
xn−2 +

n−2∑
j=1

(
j−1∑

k=0

SjSk −Rj

)
xn−3 + · · ·

]
,

which after expanding and cancelling terms reduces to an equation of the form:

Ωn = Ω(2)
n x2 + Ω(1)

n x + Ω(0)
n , (2.6.3)
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where we have

Ω(2)
n = nhn−1, (2.6.4a)

Ω(1)
n =

(
n−1∑
j=0

Sj − (1 + t)n

)
hn−1, (2.6.4b)

Ω(0)
n = (n− 1 + α + β + γ)hn + hn−1

(
nt− (1 + t)

n−1∑
j=0

Sj − (n + 1)
n−1∑
j=0

Sj

n−1∑
j=0

Sj

+ n

n−1∑
j=1

(
j−1∑

k=0

SjSk −Rj

)
+ (n + 2)

n−1∑
j=0

(
Rj+1 +

j∑

k=0

SjSk

))
. (2.6.4c)

Ω
(0)
n can be simplified further by making use of (2.4.21) to remove the relations involving

double sums.

2(n + 1)
n−1∑
j=0

j∑

k=0

SjSk − (n + 1)

(
n−1∑
j=0

Sj

)(
n−1∑

k=0

Sk

)
− n

n−1∑
j=0

S2
j =

n−1∑
j=0

S2
j

Then (2.6.4c) can be expressed as

Ω(0)
n =

(
(2n + 1 + α + β + γ)Rn + 2

n−1∑
j=1

Rj + tn +
n−1∑
j=0

S2
j − (1 + t)

n−1∑
j=0

Sj

)

(2.6.5)

2.6.2 Solving the Compatibility Relations Explicitly

With the combined expressions for Θn (2.6.1), Ωn (2.6.3) and V (x) (2.5.3a) it is possible

to solve equations (2.3.38) and (2.3.37). Thus we begin (2.3.38), since its the smaller of

the two equations and expand in powers of x.

(x− Sn)
Θn

hn

=
Ωn+1

hn

+
Ωn

hn−1

+ V
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The first two expressions, that is the coefficients of x2 and x, which leaves the following

relation:

−Sn2
n−1∑
j=0

Sj + (1 + t)(2n + 2)Sn − (2n + 3 + α + β + γ)S2
n + Sn(αt + β(t + 1) + γ)

= (2n + 3 + α + β + γ)Rn+1 + (2n− 1 + α + β + γ)Rn + 4
n∑

j=1

Rj + t(2n + 1 + β)

+2
n−1∑
j=0

S2
j − 2(1 + t)

n−1∑
j=0

Sj,

(2.6.6)

which doesn’t simplify any further. However, the expression can be reduced by

considering the difference between itself with a raised index ie. (2.6.6)n+1 − (2.6.6)n,

which removes
∑n−1

j=1 Rj and
∑n−1

j=0 S2
j .

−Sn+1

(
2

n∑
j=0

Sj − (1 + t)(2n + 4) + (2n + 5 + α + β + γ)Sn+1 − (αt + β(t + 1) + γ)

)

+Sn

(
2

n∑
j=0

Sj − (1 + t)2n + (2n− 1 + α + β + γ)Sn − (αt + β(t + 1) + γ)

)

= (2n + 5 + α + β + γ)Rn+2 + 2Rn+1 − (2n− 1 + α + β + γ)Rn + 2t (2.6.7)

If we compare this equation with (2.5.25b), we find them to have the same order S and

R, which if we were interested in the value of the integration constants would allow us

to speculate. So this equation can be derived using both ways, but the expression (2.6.6)

cannot. Moving onto (2.3.37), we find that the only non-trivial term is the coefficient of

x0,

(x− Sn)

(
Ωn+1

hn

− Ωn

hn−1

)
= Rn+1

Θn+1

hn+1

−Rn
Θn−1

hn−1

+ W
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which leads to an equation of a similar form to (2.6.7):

−Sn

(
(2n + 3 + α + β + γ)Rn+1 − (2n− 1 + α + β + γ)Rn + t + S2

n − (1 + t)Sn

)
=

Rn+1

(
2

n∑
j=0

Sj − (1 + t)(2n + 3) + (2n + 4 + α + β + γ)Sn+1 − (αt + β(t + 1) + γ)

)

−Rn

(
2

n−1∑
j=0

Sj − (1 + t)(2n− 1) + (2n− 2 + α + β + γ)Sn−1 − (αt + β(t + 1) + γ)

)

(2.6.8)

This approach has produced a a coupled system of nonlinear difference equations, similar

in content to (2.5.25b) and (2.5.25a), but there is also the relation (2.6.6) (showing

what could be described as an earlier form), and unlike the previous method (which

has the unknown integration constants), this method leads to explicit derivations from

the compatibility relations. While (2.6.6) clearly contains more information it also less

manageable since it contains sums of Rj , Sj and S2
j , so we focus our attention on (2.6.7).

With the exception of
∑n−1

j=0 Sj , (2.6.7) is a first order relation in Sn and second order in

Rn, while (2.6.8) is a first order relation in Rn and second order in Sn. This is exactly

the same situation as the semi-classical Laguerre weights, thus an introduction of initial

values allows us to generate the sequence of Rn, Sn. From (1.1.26b) and (1.1.26a) we

can take R−1 = S−1 = 0, (using the definitions of the Hankel determinants)and we also

make the consideration that h−1 = 1 and P0 = 1. Then we consider the value of R0, S0

using the inner product expressions for Rn (1.1.11) and Sn (1.1.12), thus we have the

transcendental functions:

R0 = h0 = 〈P0, P0〉 =

∫ 1

−1

(1− x)αxβ(t− x)γdx (2.6.9a)

S0 =
〈xP0, P0〉
〈P0, P0〉 =

∫ 1

−1
(1− x)αxβ+1(t− x)γdx

∫ 1

−1
(1− x)αxβ(t− x)γdx

(2.6.9b)

Using these initial conditions we can initially generate R1 from (2.4.14a) and S1 from

(2.4.14b), then generate the rest iteratively.

While it is possible to express the two difference equations as a single equation, using the
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current information we cannot eliminate one recurrence coefficient in favor of the another.

Thus we leave the expression in this form.

2.7 Summary

This chapter highlights the connections between semi-classical orthogonal polynomials

and discrete integrable systems. Semi-classical orthogonal polynomials are obtained

by deforming the weight function of the classical orthogonal polynomials and given

any weight function we can determine whether the weight is classical or not by using

the Pearson equation (2.0.2). Thus, we started with a well known example (Section

2.2.1) which considered the compatibility between the differential equation (2.2.10) and

the recurrence relation (2.2.2) for a class of semi-classical Hermite polynomials. The

compatibility led to the derivation of a discrete PI (2.2.17). We also described the

methodology from which further discrete integrable systems can be derived.

For a more precise way of calculating the compatibility between a differential equation

and a recurrence relation we introduced the Laguerre method, which generates a

differential system (2.3.32) for a general class of semi-classical orthogonal polynomials.

From the point of view of integrable systems this differential system can be seen as a

semi-discrete Lax equation (2.1.7) of which the compatibility with the recurrence relation

(2.3.25) leads to a pair of non-linear relations, which can be seen as Laguerre-Freud

equations (2.3.37, 2.3.38). As a simple example to demonstrate this method, we used

the same semi-classical Hermite weight from before, which again led to a discrete PI.

While even exponential weights are often studied (since they satisfy Freud weights), odd

exponential weights are not so we introduced an alternate semi-classical Hermite weight,

which we found satisfied an alternate discrete PI (2.4.11). Following this three Laguerre
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weights were considered,

l0(x) = (x− t)αe−(a1x+
a2
2

x2) (2.7.10a)

l1(x) = xα(t− x)βe−x (2.7.10b)

l2(x) = xα(t− x)βe−(a1x+
a2
2

x2) (2.7.10c)

where each weight leads to a well defined non-linear closed system (2.4.14a, 2.4.14b),

(2.4.17) and (2.4.23) respectively (Laguerre-Freud equations) for Rn, Sn, after the

introduction of some initial conditions. We consider these systems to be new discrete

Painlevé-type equations, where they are new in the sense that we have not already come

across these systems in the literature. One interesting problem to consider in the future

would be to specify which continuous Painlevé equations these systems correspond to; a

problem that could be approached by looking at their continuum limits.

Of the very classical orthogonal polynomials, the Jacobi polynomials are the richest, since

they have a number of special cases and Hermite and Laguerre are limiting cases of Jacobi.

Thus we approached the compatibility problem using two separate methods: the direct

method (which is covered in Section 2.5) and the Laguerre method (which is covered

in Section 2.6). Then we compared the results of both approaches. The first approach

calculated the compatibility between the recurrence relation and differential equation

directly by using substitutions. Of the resulting six equations, four led to the explicit

derivation of the coefficients in the differential equation and the remaining two led to

two coupled nonlinear difference equations (2.5.25a, 2.5.25b) (of Freud Laguerre type),

for the recurrence coefficients Rn, Sn. Using a Jacobi weight with the Laguerre method

leads to two nonlinear relations, similar in content to the results found using the Laguerre

weights, with the exception that these relations were of a higher order. At first glance, of

the two relations found through the Laguerre method (2.6.6) and (2.6.8) only one relation

was the same as the direct approach. However after taking a difference, equation (2.6.6)

was reduced to (2.6.7), thus showing that ultimately both relations (2.5.25a, 2.5.25b) can

also be derived using the Laguerre method.
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Chapter 3

Singular Integral Transforms and

Orthogonal Polynomials

Connections between orthogonal polynomials and integrable systems, have usually been

found by studying the structure of orthogonal polynomials, often finding relations

between the recurrence coefficients. However this is not always the case. There have been

attempts to find more subtle connections, for instance between orthogonal polynomials

and the inverse scattering method (a key characteristic of an integrable system).

The inverse scattering method involved three separate steps; a direct transform, a time

evolution of scattering data and an inverse transform. The Gel’fand-Levitan equation [72]

is the important inversion transform and is defined

K(x, y) + F (x, y) +

∫ x

0

K(x, t)F (x, t)dt = 0, (3.0.1)

where K(x, y)is an unknown d×d matrix valued function and F (x, y) is a known function

of two variables which is constructed on the basis of the scattering data.

We note that the Gel’fand-Levitan equation is a linear integral equation in configuration

space (the space of the spatial x variable of the system). As an alternative approach to

the inverse problem, rather than in configuration space, one works in spectral space (i.e.,
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the complex space of the spectral parameter) using singular integral transforms based

on Cauchy’s integral theorem [1, 172]. The latter approach, which could be considered

as a nonlinear Fourier transform method, is relevant to the Riemann-Hilbert problem

formulation of integrable systems theory [173].

The main contributor to the research connecting orthogonal polynomials and the inverse

scattering method has been Case, whose work in scattering theory began in 1972 after

collaborating with Kac on deriving a discrete version of the inverse scattering transform

[32]. This work was followed by papers [33, 34] concerning the close parallels between

the theory of a class of orthogonal polynomials and scattering theory. This work was

often based in a general setting, with the connection between the two coming from an

intermediary object. One particular paper from 1978 [35], found that the three topics

orthogonal polynomials, inverse scattering and linear estimation could all be described by

the same equation, which was coined the generalized Gel’fand-Levitan equation. Case

describes the classical approach (from this paper) as considering a polynomial Pn(λ) of

order n which satisfies the following orthogonality relation:
∫

Pn(λ)Pm(λ)dρ(λ) = δ(n,m).

We also consider P 0
i (λ) which is any linearly independent polynomial of degree i (where

i = 0, 1, 2, . . . , n, . . .) and where

Pn(λ) =
n∑

m=0

K(n,m)P 0
m(λ). (3.0.2)

Since Pn(λ) is orthogonal to all Pr(λ) for r ≤ n − 1, it is orthogonal to all polynomials

of degree less than n− 1. Thus we integrate both sides to get the following expression:
∫

Pn(λ)P 0
r (λ)dρ(λ) =

n∑
m=0

K(n,m)

∫
P 0

m(λ)P 0
r (λ)dρ(λ)

= 0, r ≤ n− 1.

Then if we define µ(m, r) and κ(n,m) as

µ(m, r) =

∫
P 0

m(λ)P 0
r (λ)dρ(λ) , κ(n,m) =

K(n,m)

K(n, n)



Chapter 3. Singular Integral Transforms and Orthogonal Polynomials 91

we obtain

n−1∑
m=0

κ(n,m)µ(m, r) = −µ(n, r). (3.0.3)

Case considers this equation to be a discrete version of the Gel’fand-Levitan equation and

for convenience Case also states the generalized version:

n−1∑
m=0

κ(n,m)µ(m, r) = −µ(n, r), 0 ≤ r ≤ n− 1. (3.0.4)

Thus the connections Case found between orthogonal polynomials and inverse scattering

came through this intermediary equation, the generalized Gel’fand-Levitan equation

(GGLE). He then shows how this equation can be derived from both the inverse scattering

method and linear estimation.

While we are also interested in the connections between orthogonal polynomials and

the inverse scattering method we are not interested in the GGLE and it’s connections.

Thus using these ideas of Case as inspiration, we set up a framework using formal

singular integral transforms, to make the connection between integrable systems and

orthogonal polynomials. One aim is to understand the transition from classical orthogonal

polynomials to semi-classical orthogonal polynomials. in terms of a dressing method. We

will begin by reviewing the general framework of singular integral transforms for linear

problems associated with integrable hierarchies [124]. Then we will specify to the case

of 2× 2 matrix Lax systems of the type that arise from the Laguerre method in chapter 2.

The special case of recurrence relations with even weights is closely related to the KdV-

Volterra system. In order to derive the relevant integral transforms, we first consider the

more general N ×N matrix case leading to the Gel’fand-Dikii hierarchy, which reduces

to the KdV case for N = 2.
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3.1 Matrix Singular Integral Transforms

In this section we will study a very general but formal setup of integral transforms, which

preserve linear systems associated with integrable equations. We begin by considering a

transformation Φ0 → Φ1 from a given N ×N matrix Φ0 to a new Φ1, which are functions

of a spectral parameter k ε C. Rather than writing Φ(k) we prefer to write Φk for the

matrix function, highlighting the dependence on the argument k as a suffix in order to

make clearly visible which functions Φ depend on which argument. The transformation

Φ0 → Φ1 is defined through a singular integral equation of the form

Φ0
k +

∫

C10

Φ1
l dΛ10(l)

(Φ0
l )
−1Φ0

k

k − l
= Φ1

k (3.1.5)

which is a generalization of an integral transform proposed in [146], c.f [124]. In (3.1.5)

dΛ10(l) denotes an N × N matrix measure with components dΛij(l), i, j = 1, . . . , N

each component of which is associated with a contour Cij in the complex l-plane over

which the integration is performed (this is symbolically indicated by the “matrix contour”

C10 = (Cij)). The inverse of the integral transform (3.1.5) is

(Φ1
k)
−1 +

∫

C10

(Φ1
k)
−1Φ1

l

k − l
dΛ10(l)(Φ0

l )
−1 = (Φ0

k)
−1. (3.1.6)

We now introduce the kernel Glk, which will aid us in more advanced calculations, by

simplifying the equation.

Glk =
(Φl)

−1Φk

l − k
(3.1.7)

In order to have a equation in terms of Glk only, we expand (3.1.5) and (3.1.6)

(Φ1
k′)

−1Φ1
k =

(
(Φ0

k′)
−1 −

∫

C10

G1
k′ldΛ10(l)(Φ0

l )
−1

)

×
(

Φ0
k −

∫

C10

Φ1
l dΛ10(l)G0

lk

)
, (3.1.8)

which in turn leads to:

G1
k′k(k

′− k) = G0
k′k(k

′− k)−
∫

C10

G1
k′ldΛ10(l)G0

lk(l− k)−
∫

C10

G1
k′l(k

′− l)dΛ10(l)G0
lk.
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dividing by (k′ − k) the two integrals reduce to a single integral, that can be rewritten as

G1
k′k = G0

k′k −
∫

C10

G1
k′ldΛ10(l)G0

lk (3.1.9)

which is an integral transform for the kernel.

3.1.1 Composition Formulae

We now consider compositions of subsequent transformations of the form (3.1.5) with

different integration measures dΛ10 and dΛ21, each associated with their respective matrix

contours C10 and C21. Thus we obtain the following dressing chain, of subsequent matrix

functions

Φ0
k

Λ10−→ Φ1
k

Λ21−→ Φ2
k. (3.1.10)

We consider an integral transform between Φ1
k and Φ2

k :

Φ1
k −

∫

C21

Φ2
l dΛ21(l)G1

lk = Φ2
k. (3.1.11)

defined in terms of Glk (3.1.7). This can be expanded using (3.1.9) to give an equation

in terms of the new function and the original function only, removing the intermediary

function.

Φ2
k = Φ0

k −
∫

C10

Φ1
l′dΛ10(l′)G0

l′k −
∫

C21

Φ2
l dΛ21(l)

(
G0

lk −
∫

C10

G1
ll′dΛ10(l′)G0

l′k

)

= Φ0
k −

∫

C10

(
Φ2

l′ +

∫

C21

Φ2
l dΛ21(l)G1

ll′

)
dΛ10(l′)G0

l′k

−
∫

C21

Φ2
l dΛ21(l)

(
G0

lk −
∫

C10

G1
ll′dΛ10(l′)G0

l′k

)
(3.1.12)

Since we treat this mechanism as a formal structure we assume that the integrals can be

interchanged and then the double integrals will cancel, leaving:

Φ0
k −

∫

C10

Φ2
l′dΛ10(l′)G0

l′k −
∫

C21

Φ2
l dΛ21(l)G0

lk = Φ2
k. (3.1.13)
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We conclude from above that in the transformation from Φ0 → Φ2 there is no longer a

dependency on the intermediary matrix Φ1 and hence the transformation from Φ0 → Φ2

remains of the same form as its constitutive steps but with a combined integration of

the form
∫

C21 dΛ21(l) +
∫

C10 dΛ10(l). This exhibits the group theoretical structure of

the integral transforms. In particular as a corollary, a formula for the inverse integral

transform is obtained by setting

∫

C21

dΛ21(l) +

∫

C10

dΛ10(l) = 0

which then implies that Φ2
k = Φ0

k. Thus, the inverse integral transform Φ1 → Φ0 is

obtained by setting ∫

C01

dΛ01(l) = −
∫

C10

dΛ10(l). (3.1.14)

3.1.2 Transformation Properties for Lax Forms

We use the standard definition for a linear integral transform

Φ0
k +

∫

C10

Φ1
l dΛ10(l)

(Φ0
l )
−1Φ0

k

k − l
= Φ1

k (3.1.15)

and impose a linear dependence of Φk on k

Φ̃k = (kJ + Q)Φk = L(k)Φk, (3.1.16)

where J and Q are N × N matrices, J a constant diagonal matrix, Q a matrix potential

(under suitable boundary conditions on the real line) and the tilde represents a discrete

shift in some arbitrary variable. Then (3.1.16) is preserved under the integral equation

(3.1.15) provided that the matrix J is invariant (J1 = J0) under transformations. This

means that if we impose (3.1.16) on the reference state Φ0
k with a potential Q0, then Φ1

k

also obeys (3.1.16) with a new potential Q1 related to the old one Q0. To show this we
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begin with Φ̃k = L(k)Φk and its inverse (Φk)
−1 = (Φ̃k)

−1L(k) and consider (Φl)
−1Φk:

(Φl)
−1Φk = (Φ̃l)

−1L(l)Φk

= (Φ̃l)
−1(L(l)− L(k))Φk + (Φ̃l)

−1Φ̃k

= (Φ̃l)
−1Φ̃k − (k − l)(Φ̃l)

−1JΦk

consider (3.1.15) with an index increased by one and substitute the above into the integral:

Φ̃0
k +

∫

C10

Φ̃1
l dΛ10(l)

(k − l)(Φ̃0
l )
−1JΦ0

k + (Φ0
l )
−1Φ0

k

k − l
= Φ̃1

k. (3.1.17)

where we assume that dΛ10(l) = dΛ̃10(l). This can be expanded using (3.1.16):

(kJ + Q0)Φ0
k +

∫

C10

Φ̃1
l dΛ10(l)(Φ̃0

l )
−1JΦ0

k +

∫

C10

(lJ + Q1)Φ1
l dΛ10(l)

(Φ0
l )
−1Φ0

k

k − l

= (kJ + Q1)Φ1
k

and then include a correction term (to reduce the equation).

(kJ + Q0)Φ0
k +

∫

C10

Φ̃1
l dΛ10(l)(Φ̃0

l )
−1JΦ0

k +

∫

C10

(kJ + Q1)Φ1
l dΛ10(l)

(Φ0
l )
−1Φ0

k

k − l

− J

∫

C10

k − l

k − l
Φ1

l dΛ10(l)(Φ0
l )
−1Φ0

k

= (kJ + Q1)Φ1
k

Using (3.1.15), terms can be collected to reduce to a single term (kJ + Q1)Φ0
k, then the

expression becomes:

Q0Φ0
k +

∫

C10

Φ̃1
l dΛ10(l)(Φ̃0

l )
−1JΦ0

k − J

∫

C10

Φ1
l dΛ10(l)(Φ0

l )
−1Φ0

k = Q1Φ0
k. (3.1.18)

For symmetrical purposes we define the following

H1 −H0 =

∫

C10

Φ1
l dΛ10(l)(Φ0

l )
−1 (3.1.19)

so that the relation reduces to:

Q1 −Q0 = (H̃1 − H̃0)J − J(H1 −H0). (3.1.20)
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and thus

Q = H̃J − JH + invariant (3.1.21)

where the invariant is any kind of object that doesn’t change under the dressing transform.

Clearly the potential H obeys a compatibility equation and we consider Φ̃k = (kJ+Q)Φk

to be a Lax representation where we would have the Lax pair between φ̃ = (kJ + Q)φ

and φ̂ = (kJ + R)φ.

We have found an integral expression for the Q, the leading term in the linear expression.

However this term consists of the newly defined H1 −H0, which we investigate further,

specifically for how it reacts under a differential or difference operator.

3.1.3 Squared Eigenfunction Expansions

Although we have an expression for H1−H0, (3.1.19), it has a mixed integrand consisting

of the new function Φ1 and the original function Φ0, thus, we require both expressions to

determine its value. When we apply an arbitrary differential operator (δ) or an arbitrary

difference operator (∆) (in terms of some yet unspecified additional variable on which Φ

and H may depend) to H1 − H0, the result can be expressed in terms of the action of

these operators on the Φ0 only.

If we consider (3.1.5) expressed in terms of Gkl

Φ0
k = Φ1

k +

∫

C10

Φ1
l dΛ10(l)G0

lk (3.1.22)

and compare it with

Φ1
k = Φ0

k −
∫

C10

Φ0
l dΛ10(l)G1

lk (3.1.23)

(where the 0 and 1 are interchanged and
∫

C01 dΛ01 = − ∫
C10 dΛ10 (3.1.14)), this leads to

a new inverse equation:

(Φ1
k)
−1 +

∫

C10

G0
kldΛ10(l)(Φ1

l )
−1 = (Φ0

k)
−1. (3.1.24)

This information allows us to expand (3.1.19).
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(a) The Continuous Case

The only assumption we need on δ is the Leibniz rule for differentiation i.e.,

δ(AB) = (δA)B + A(δB) (3.1.25)

where A and B are matrix functions on which δ acts by differentiation. In agreement with

the previous section, taking (3.1.14) it is possible to express H1 − H0 in two separate

forms, its original and inverted form (which are expressed in terms of k, the spectral

parameter of the transforms).

H1 −H0 =

∫

C10

Φ1
kdΛ10(k)(Φ0

k)
−1 =

∫

C10

Φ0
kdΛ10(k)(Φ1

k)
−1 (3.1.26)

We begin with substituting (3.1.24) into (3.1.19) and apply the differential operator δ:

δ(H1 −H0) =

∫

C10

(δΦ1
k)dΛ10(k)(Φ1

k)
−1 +

∫

C10

Φ1
kdΛ10(k)δ(Φ1

k)
−1

+

∫

C10

∫

C10

(
(δΦ1

k)dΛ10(k)G0
kldΛ10(l)(Φ1

l )
−1

+ Φ1
kdΛ10(k)(δG0

kl)dΛ10(l)(Φ1
l )
−1 + Φ1

kdΛ10(k)G0
kldΛ10(l)δ(Φ1

l )
−1

)

(3.1.27)

then (3.1.24) helps reduce the first and third term, while (3.1.22) helps reduce the second

and fifth term so that we have :

δ(H1 −H0) =

∫

C10

(δΦ1
k)dΛ10(k)(Φ0

k)
−1 +

∫

C10

Φ0
kdΛ10(k)δ(Φ1

k)
−1

+

∫

C10

∫

C10

Φ1
kdΛ10(k)(δG0

kl)dΛ10(l)(Φ1
l )
−1 (3.1.28)

and using the differential of (3.1.26) allows us to bring in δ(H1 − H0) for the first two

terms.

δ(H1 −H0) = δ(H1 −H0)−
∫

C10

Φ1
kdΛ10(k)δ(Φ0

k)
−1

+δ(H1 −H0)−
∫

C10

(δΦ0
k)dΛ10(k)(Φ1

k)
−1

+

∫

C10

∫

C10

Φ1
kdΛ10(k)(δG0

kl)dΛ10(l)(Φ1
l )
−1 (3.1.29)
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All that remains now is for the last term to be dealt with where the main problem is Gkl,

so we reexpress Gkl in terms of its components and then apply the delta to them.

δG0
kl = δ

(
(Φ0

k)
−1Φ0

l

k − l

)
= (δΦ0

k)
−1Φ0

k

(Φ0
k)
−1Φ0

l

k − 1
+

(Φ0
k)
−1Φ0

l

k − 1
(Φ0

l )
−1δΦ0

l

= (δΦ0
k)
−1Φ0

kG
0
kl + G0

kl(Φ
0
l )
−1δΦ0

l (3.1.30)

If we replace this in the previous expression, then the last term now can now be expressed:

∫

C10

∫

C10

Φ1
k dΛ10(k)

(
(δΦ0

k)
−1Φ0

kG
0
kl + G0

kl(Φ
0
l )
−1δΦ0

l

)
dΛ10(l)(Φ1

l )
−1 (3.1.31)

then by using (3.1.24) and (3.1.22) we can eliminate the double integrals:

δ(H1 −H0) = δ(H1 −H0)−
∫

C10

Φ1
kdΛ10(k)δ(Φ0

k)
−1

+δ(H1 −H0)−
∫

C10

(δΦ0
k)dΛ10(k)(Φ1

k)
−1

+

∫

C10

Φ1
kdΛ10(k)δ(Φ0

k)
−1Φ0

k

(
(Φ0

k)
−1 − (Φ1

k)
−1

)

+

∫

C10

(Φ0
l − Φ1

l )(Φ
0
l )
−1δΦ0

l dΛ10(l)(Φ1
l )
−1 (3.1.32)

and this can be simplified to:

δ(H1 −H0) =

∫

C10

Φ1
kdΛ10(k)δ(Φ0

k)
−1Φ0

k(Φ
1
k)
−1

+

∫

C10

Φ1
l (Φ

0
l )
−1δΦ0

l dΛ10(l)(Φ1
l )
−1.

or

δ(H1 −H0) =

∫

C10

Φ1
k[(Φ

0
k)
−1(δΦ0

k), dΛ10(k)](Φ1
k)
−1 (3.1.33)

In the integral the only differentiations are of Φ0
k, which are located in the middle of both

the integrals. If we consider these middle terms (the dΛ10(k) and Φ0
k) to be an extended

interpolating measure, then the differential of H1 − H0 is dependent on Φ1
k. This is

the matrix analogue of the squared matrix expansions (sometimes referred to as trace

formulae), which have arisen in the inverse scattering method cf. eg. [49].
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(b) The Discrete Case

Now we have considered the simpler continuous case we move onto the discrete case

where we use a difference operator ∆ instead of differential operator δ, and where ∆A =

Ã−A. The discrete Leibniz rule for the difference of two arbitrary functions of a variable

x can therefore be given as

∆(AB) = A∆(B) + ∆(A)B̃ (3.1.34a)

= Ã∆(B) + ∆(A)B. (3.1.34b)

Working again from the equation involving H1 −H0 (3.1.19),

H1 −H0 =

∫

C10

Φ1
kdΛ10(k)(Φ0

k)
−1

we apply the difference operator ∆ to get:

∆(H1 −H0) =

∫

C10

(∆Φ1
k)dΛ10(k)(Φ1

k)
−1 +

∫

C10

Φ̃1
kdΛ10(k)∆[(Φ1

k)
−1]

+

∫

C10

∫

C10

(
(∆Φ1

k)dΛ10(k)G0
kldΛ10(l)(Φ1

l )
−1

+ Φ̃1
kdΛ10(k)(∆G0

kl)dΛ10(l)(Φ1
l )
−1 + Φ̃1

kdΛ10(k)G̃0
kldΛ10(l)∆(Φ1

l )
−1

)

(3.1.35)

and using the same equations as before (3.1.22) and (3.1.24) we reduce the equation to

∆(H1 −H0) =

∫

C10

(∆Φ1
k)dΛ10(k)(Φ0

k)
−1 +

∫

C10

Φ̃0
kdΛ10(k)∆[(Φ1

k)
−1]

+

∫

C10

∫

C10

Φ̃1
kdΛ10(k)(∆G0

kl)dΛ10(l)(Φ1
l )
−1 (3.1.36)

then using (3.1.26) just leaves us with the problematic ∆Glk.

∆(H1 −H0) = ∆(H1 −H0)−
∫

C10

Φ̃1
kdΛ10(k)∆[(Φ0

k)
−1]

= +∆(H1 −H0)−
∫

C10

(∆Φ0
k)dΛ10(k)(Φ1

k)
−1

+

∫

C10

∫

C10

Φ̃1
kdΛ10(k)(∆G0

kl)dΛ10(l)(Φ1
l )
−1 (3.1.37)
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Being mindful of the shift caused by the application of the ∆

∆G0
kl = ∆

(Φ0
k)
−1Φ0

l

k − l
= ∆[(Φ0

k)
−1]Φ0

k

(Φ0
k)
−1Φ0

l

k − l
+

(Φ̃0
k)
−1Φ̃0

l

k − l
(Φ̃0

l )
−1∆Φ0

l

= ∆[(Φ0
k)
−1]Φ0

kG
0
kl + G̃0

kl(Φ̃
0
l )
−1∆Φ0

l (3.1.38)

then putting all the pieces together:

∆(H1 −H0) = ∆(H1 −H0)−
∫

C10

Φ̃1
kdΛ10(k)∆[(Φ0

k)
−1]

+∆(H1 −H0)−
∫

C10

(∆Φ0
k)dΛ10(k)(Φ1

k)
−1

+

∫

C10

Φ̃1
kdΛ10(k)∆[(Φ0

k)
−1]Φ0

k

(
(Φ0

k)
−1 − (Φ1

k)
−1

)

+

∫

C10

(Φ̃0
l − Φ̃1

l )(Φ̃
0
l )
−1∆[Φ0

l ]dΛ10(l)(Φ1
l )
−1 (3.1.39)

and after cancelling leaves us with:

∆(H1 −H0) =

∫

C10

Φ̃1
kdΛ10(k)∆[(Φ0

k)
−1]Φ0

k(Φ
1
k)
−1

+

∫

C10

Φ̃1
l (Φ̃

0
l )
−1∆[Φ0

l ]dΛ10(l)(Φ1
l )
−1. (3.1.40)

or

∆(H1 −H0) =

∫

C10

Φ̃1
k[dΛ10(k), (Φ̃0

k)
−1Φ0

k](Φ
1
k)
−1 (3.1.41)

Again we see that the difference operator only acts on Φ0
k, so if we consider the middle

terms as an extended interpolating measure, then the difference of H1 −H0 is dependent

on Φ1
k.

We mention these expressions because of the role they play in determining orthogonality

conditions for eigenfunctions of linear problems.

3.2 Applications of the Singular Integral Transform

In order to see the applications of the singular integral transform, we present two possible

approaches. The first is a direct use of this transform for a specific Φ, while the
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second considers a singular integral transform related to another system of equations:

the Gel’fand-Dikii hierarchy .

3.2.1 Integral Transforms and 2× 2 Matrix Recurrence Relation

In chapter 2, we looked at a differential system (2.3.32) consisting of Pn(x). This system

was equally valid for εn(x) as well, although it was not necessary to consider it, since we

were only interested in Pn(x). Thus, we consider a general polynomial system, where Φ

is a 2× 2 matrix consisting of consisting of a polynomial Pn and a Laurent expansion εn.

Φn(x) =


 Pn(x) εn(x)

Pn−1(x) εn−1(x)


 . (3.2.1)

In comparison with Φk, the x variable in Φn(x) replaces the spectral parameter k, hence

the tilde, which was an arbitrary shift for Φk now becomes a shift in the discrete variable

n. Initially our interest lies with the 2 × 2 matrix interpolating measure Λ and whether

any relations can be derived between the individual components. This will allow us

some freedom when considering initial conditions for this example. While we treat

the polynomial route as a possible route to follow, we don’t pretend to have made great

progress in this direction.

We use the specific Lax acquired from the Laguerre method (2.3.25), the recurrence

relation,

Φn+1 =


 x− Sn −Rn

1 0


 Φn

= (xσ+ + Qn)Φn (3.2.2)

where

σ+ =


 1 0

0 0


 Qn =


 −Sn −Rn

1 0


 . (3.2.3)
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Upon comparison with the linear relation Φk+1 = (kJ + Q)Φk, we now have a specific

value for J,Q and thus an expression for Q (3.1.20) in terms of H1 − H0, an integral

transform. Through the use of this example we expect transforms to exist for the

recurrence coefficients Rn and Sn.

Since we are already looking at the consistency between the transforms and the recurrence

relation we introduce (3.2.1) into (3.1.19),

H1 −H0 =

∫
Φ1

n(x)dΛ10(x)(Φ0
n(x))−1

which leads to the following expression,

H1 −H0 = −
∫ 

 P 1
n ε1

n

P 1
n−1 ε1

n−1





 dΛ11 dΛ12

dΛ21 dΛ22





 ε0

n−1 −ε0
n

−P 0
n−1 P 0

n


 1

h0
n−1

=


 a1

n − a0
n b1

n − b0
n

c1
n − c0

n d1
n − d0

n




(where we omit the (x) for convenience) and with

Hn =


 an bn

cn dn


 . (3.2.4)

Making further use of this form of Hn, we consider (3.1.20) simplified:

Qn =


 1 0

0 0





 an bn

cn dn


−


 an+1 bn+1

cn+1 dn+1





 1 0

0 0


 + invariant

=


 an − an+1 bn

−cn+1 0


 + invariant

=


 −Sn −Rn

1 0


 (3.2.5)

Of these relations, the easiest to deal with are the corresponding integrals for cn and

dn. Unfortunately we learn nothing about the composition of dn from Q, so can say
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nothing about d1
n − d0

n. Since cn+1 = −1, we can take c1 − c0 = 0 and then evaluate the

corresponding integral. Through the use of (3.1.26), we can derive two equations for cn:
∫ (

P 1
n−1(dΛ11ε

0
n−1 − dΛ12P

0
n−1) + ε1

n−1(dΛ21ε
0
n−1 − dΛ22P

0
n−1)

)
= 0

∫ (
P 0

n−1(dΛ11ε
1
n−1 − dΛ12P

1
n−1) + ε0

n−1(dΛ21ε
1
n−1 − dΛ22P

1
n−1)

)
= 0

and taking the difference between the two leaves:
∫ (

P 1
n−1ε

0
n−1(dΛ11 + dΛ22)− ε1

n−1P
0
n−1(dΛ22 + dΛ11)

)
= 0

⇒
∫

(P 1
n−1ε

0
n−1 − ε1

n−1P
0
n−1)(dΛ11 + dΛ22) = 0. (3.2.6)

From this integral it would be fair to assume that

dΛ11 + dΛ22 = 0. (3.2.7)

This relation gives us a dependency between dΛ11 and dΛ22, so we now take a look at

the remaining relations to determine if any further dependency can be derived. So we

consider the relation formed from bn,

b1
n − b0

n = − 1

h0
n−1

∫ (
P 1

n(dΛ12P
0
n − dΛ11ε

0
n) + ε1

n(dΛ22P
0
n − dΛ21ε

0
n)

)

where this can be reduced using (3.2.7) and the fact that bn = −Rn

R1
n −R0

n = − 1

h0
n−1

∫ (
dΛ11(P

1
nε0

n + P 0
nε1

n) + dΛ21ε
1
nε0

n − dΛ12P
1
nP 0

n

)
. (3.2.8)

This is an integral transform for the recurrence coefficient Rn, we can also consider the

inverse of this expression by using (3.1.26), but we learn nothing new, so we consider two

relations for a1
n − a0

n instead.

a1
n − a0

n = − 1

h0
n−1

∫ (
P 1

n(dΛ11ε
0
n−1 − dΛ12P

0
n−1) + ε1

n(dΛ21ε
0
n−1 − dΛ22P

0
n−1)

)

(3.2.9a)

a1
n − a0

n = − 1

h1
n−1

∫ (
P 0

n(dΛ11ε
1
n−1 − dΛ12P

1
n−1) + ε0

n(dΛ21ε
1
n−1 − dΛ22P

1
n−1)

)

(3.2.9b)
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Taking the difference between these two equations leaves:

0 =

∫
1

h0
n−1h

1
n−1

(
dΛ11(h

1
n−1P

1
nε0

n−1 − h0
n−1P

0
nε1

n−1)− dΛ22(h
1
n−1P

0
n−1ε

1
n − h0

n−1P
1
n−1ε

0
n)

)

−
∫

1

h0
n−1h

1
n−1

(
dΛ12(h

1
n−1P

1
nP 0

n−1 − h0
n−1P

1
n−1P

0
n) + dΛ21(h

1
n−1ε

1
nε0

n−1 − h0
n−1ε

0
nε

1
n−1)

)

(3.2.10)

from which further reductions cannot be made. However we know that Sn = an+1 − an

so by taking S1
n − S0

n = (an+1 − an)1 − (an+1 − an)0 and consider (3.2.9a), we have the

following expression for Sn:

S1
n − S0

n = − 1

h0
n

∫ (
P 1

n+1(dΛ11ε
0
n − dΛ12P

0
n) + ε1

n+1(dΛ21ε
0
n − dΛ22P

0
n)

)

+
1

h0
n−1

∫ (
ε0
n−1(dΛ11P

1
n + dΛ21ε

1
n)− P 0

n−1(dΛ12P
1
n − dΛ22ε

1
n)

)

an integral transform for Sn. We try to reduce the relation further by rearranging the

second term so that we can introduce the recurrence relation (1.1.25) (which is satisfied

by both Pn−1 and εn−1), and including (3.2.7), leads to

S1
n − S0

n = − 1

h0
n

∫ (
dΛ11(P

1
n+1ε

0
n + P 0

nε1
n+1)− dΛ12P

1
n+1P

0
n + dΛ21ε

1
n+1ε

0
n

)

+
1

h0
n

∫
(x− S0

n)
(
dΛ11(P

1
nε0

n + P 0
nε1

n)− dΛ12P
1
nP 0

n + dΛ21ε
1
nε

0
n

)

− 1

h0
n

∫ (
dΛ11(P

1
nε0

n+1 + P 0
n+1ε

1
n)− dΛ12P

1
nP 0

n+1 + dΛ21ε
0
nε1

n+1

)
.

(3.2.11)

This can simplify by bringing in (3.2.8) and the inverse property of (3.2.9)

S1
nR0

n − S0
nR

1
n =

1

h0
n−1

∫
x

(
dΛ11(P

1
nε0

n + P 0
nε1

n) + dΛ21ε
1
nε

0
n − dΛ12P

1
nP 0

n

)

−
(

h1
n + h0

n

h1
nh

0
n−1

) ∫ (
dΛ11(P

1
nε0

n+1 + P 0
n+1ε

1
n)− dΛ12P

1
nP 0

n+1 + dΛ21ε
0
nε1

n+1

)

(3.2.12)
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Although we have have acquired an integral transform for both Rn and Sn and derived

a relation between two of the interpolating measures dΛ11 and dΛ22, we still don’t have

enough information. Especially since we know nothing about how the dΛ12 and dΛ21 are

related. So to continue this problem we would also have to consider the differential Lax

from Chapter 2 (2.3.32).

The differential Lax equation consisted of the following form

∂xΦn(x) =
1

Whn−1


 Ωn(x) −Θn(x)

Θn−1(x) −(Ωn(x) + V (x)hn−1)


 Φn(x) ,

where Φn(x) =


 Pn(x) εn(x)

Pn−1(x) εn(x)


 (3.2.13)

and by comparison with Φ̃k = (kJ + Q)Φk, we can take

∂xΦn(x) =


− V

W


 0 0

0 1


 +

1

Whn−1


 Ωn(x) −Θn(x)

Θn−1(x) −Ωn(x)





 Φn(x),

(3.2.14)

where V
W

is a polynomial in x. While it is not necessary to state specifics for the recurrence

relation (since all single-variable polynomials satisfy a three term recurrence relation),

this is not the case for the differential equation. It is necessary to state a weight so that the

values of V, W, Ω and Θ can be determined.

3.2.2 The Singular Integral Transform of the

Lattice Gel’fand-Dikii Hierarchy

We will consider a particular class of N × N matrix problems associated with singular

integral transforms of a specific type. In the case N = 2, this reduces to a singular integral

transform associated with the lattice KdV case, which in turn is connected to the Volterra

lattice. It is this latter example that we will associate with some special case of orthogonal
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polynomials, but first we will treat the general N×N case of this specific reduction, which

is associated with so-called lattice Gel’fand-Dikii hierarchy of equations [126]. Thus, we

present the Gel’fand-Dikii matrix Lk, where

Lk =




p− ũ00 1 ∅
−ũ10 p 1

... . . . . . .

−ũN−2,0 ∅ p 1

kN + T ωN−2u0,N−2 ωu0,1 p + u00




(3.2.15)

and T = ωN−1u0,N−1 − ũN−1,0. This matrix together with the linear equation

Φ̃kDk = LkΦk (3.2.16)

where Dk = diag(p + ωk, p + ω2k, . . . , p + ωNk)

(where ω = e
2πi
N an N th root of unity) forms part of a Lax representation for a coupled

set of lattice equations exhibited in [126]. If we consider the determinant of this Lax, we

have

det(Φ̃k) det(Dk) = det(Lk) det(Φk)

det(Φ̃k)(p
N + eπi(N−1)kN) = (pN − (−k)N) det(Φk) (3.2.17)

which implies that det(Φk) is a constant.

The singular integral transform for this equation is

Φ0
k +

∫

C10

Φ1
l dΛ10(l)

(Φ0
l )
−1Φ0

k

kN − lN
= Φ1

k (3.2.18)

and we want to write this equation in a more explicit form, in terms of the column vectors

of the matrix Φk, where Φk = (φk1
, . . . , φkN

), in which the vectors φkj
(kj = ωj−1k),

form a set of N independent vector solutions of (3.2.16).

From (3.2.17) we can without loss of generality set det(Φk) = 1, in which case we can

express the entries of the matrix (Φ0
l )
−1 as N ×N determinants consisting of the column
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vectors φli
(i = 1, . . . , N ), as follows

((Φ0
l )
−1)ij =

∣∣∣ φ0
l1

· · · i↓
ej · · · φ0

lN

∣∣∣ (3.2.19)

where the ith column of the determinant is replaced with ej and the transpose of the unit

vector ej is eT
j = (0, . . . , 0, 1, 0, . . . , 0). The matrix product of (Φ0

l )
−1Φ0

k using Cramer’s

rule can then be expressed as

((Φ0
l )
−1Φ0

k)ij =

∣∣∣∣ φ0
l1

· · ·
i↓

φ0
kj

· · · φ0
lN

∣∣∣∣ (3.2.20)

replacing the ith column with Φ0
k. Then our scalar integral transform becomes

(φ1
k1

, . . . , φ1
kN

).j = (φ0
k1

, . . . , φ0
kN

).j

+
N∑

p,q=1

∫

Cp,q

(φ1
l1
, . . . , φ1

lN
).p(dΛp,q)

∣∣∣∣ φ0
l1

· · ·
q↓

φ0
kj

· · · φ0
lN

∣∣∣∣
kN − lN

(3.2.21)

where the φ0
kj

is the qth column in the determinant and Cpq denotes the contour of

integration associated with the measure dΛpq. We first consider only the column φk (i.e.

set j = 1) which gives a formula from which all the other j values can be derived as well.

Identifying kj = ωj−1k

φ1
ωj−1k = φ0

ωj−1k +
N∑

p,q=1

∫

Cp,q

φ1
ωp−1ldΛpq(l)

∣∣∣∣ φ0
l · · ·

q↓
φ0

ωj−1k · · · φ0
ωN−1l

∣∣∣∣
kN − lN

(3.2.22)

we can without loss of generality write this as an integral equation for φk. We make the

change l → ω1−pl so that we can reevaluate the sum over p, by a single object

φ1
k = φ0

k +
N∑

q=1

∫

Cq

φ1
l dλq(l)

∣∣∣∣ φ0
l · · ·

q↓
φ0

ωj−1k · · · φ0
ωN−1l

∣∣∣∣
kN − lN

(3.2.23)

where dλq represents a sum over p of the dΛp,q.
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By applying the Lax form to the vector reduction of the integral transform and writing the

Lax matrix as Lk = pI + ΣkN + Q (where I is the unit matrix, Σ is the matrix with 1 on

the upper semi-diagonal and kN in the (N, 1) entry, and where Q is the matrix containing

only a first column and a last row), we can identify that

Q.1 = h̃N − EN,1h1, (3.2.24)

(i.e. the first column of the matrix Q) where EN,1 is the matrix with the only nonzero

entry being the (N, 1) entry, which is equal to 1 and with

Q·i = −EN,1hi for i = 2, ..., N (3.2.25)

where hi is the ith vector of h. Here hi (i = 1, ..., N) denote a collection of N, N -

component vectors (with components (hi)j) which transform as:

(h1
i )j − (h0

i )j =
N∑

q=1

∫

Cq

dλq(l)ρl,q(φ
1
l )j|φ0

l , . . . ,
q↓
ei, . . . , φ

0
ωN−1l| (3.2.26)

in which the vector ei enters at the qth place in the determinant. The factors ρl,q are

represented by

ρl,q =
(p + ωl)n

(p + ωql)n
, (3.2.27)

and arise from the diagonal matrix Dk after separating the n-dependent factor from the

measure dλq(l). While (3.2.24) and (3.2.25) are not difficult to prove, it is notationally

technical, so we leave the general case and now we consider a specific example.

3.2.3 A KdV Integral Transform

When we consider the Gel’fand-Dikii matrix for N = 2 we have the KdV equation. Thus

from (3.2.21) for N = 2 we can consider the following singular integral transform for the

lattice KdV

φ1
k = φ0

k +

∫

C

(φ1
l , φ

1
−l)


 dΛ11(l) dΛ12(l)

dΛ21(l) dΛ22(l)







∣∣φ0
k φ0

−l

∣∣
∣∣φ0

l φ0
k

∣∣




k2 − l2
, (3.2.28)
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where C denotes a matrix contour, each entry of which goes with the corresponding entry

of the matrix measure. We have also chosen one column with k → −k and the numerator

of the fraction is a column vector consisting of two determinants. We can expand this

expression to the following

φ1
k = φ0

k +

∫

C11

φ1
l dΛ11(l)

∣∣φ0
k φ0

−l

∣∣
k2 − l2

+

∫

C12

φ1
l dΛ12(l)

∣∣φ0
l φ0

k

∣∣
k2 − l2

+

∫

−C21

φ1
l dΛ21(−l)

∣∣φ0
k φ0

l

∣∣
k2 − l2

+

∫

−C22

φ1
l dΛ22(−l)

∣∣φ0
−l φ0

k

∣∣
k2 − l2

(3.2.29)

where we have let l → −l in the last two terms so that the Φl all have the same order.

This has the consequence that the sign of the contour changes for these two cases.

Now, from the KdV’s Lax representation (2.1.13) we may consider the following 2 × 2

matrix

Φ̃kDk =


(k2 − p2)


 0 0

1 0


 +


 1

p + u




(
p− ũ 1

)

 Φk (3.2.30)

where we have introduced a specific Φ and the normalization Dk,

Φk =


 uk1 u−k1

uk2 u−k2


 , Dk =


 p− k 0

0 p + k


 (3.2.31)

If we take the determinant of both sides, then like the general case we find that the

determinant of Φk is a constant. The introduction of the normalization means that when

we consider the shifted singular integral transform (3.2.18) with Dk and let (3.2.30) be

written as Φ̃kDk = ((k2 − p2)J + Q)Φk then following the same path as Section 3.1.3,

we have

Φ̃1
kDk = Φ̃0

kDk +

∫

C10

Φ̃1
l DlD

−1
l dΛ̃10(l)

(Φ̃0
l )
−1Φ̃0

kDk

k2 − l2

⇒ ((k2 − p2)J + Q1)Φ1
k = ((k2 − p2)J + Q0)Φ0

k +

∫

C10

(
Φ̃1

l dΛ̃
10(l)(Φ̃0

l )
−1

)
JΦ0

k

+

∫

C10

((l2 − p2)J + Q1)Φ1
l D

−1
l dΛ̃10(l)Dl

(Φ0
l )
−1Φ0

k

k2 − l2

(3.2.32)
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this has the consequence that

dΛ̃(l) = DldΛ(l)D−1
l

⇒ dΛ(l) = Dn
l dΛ0(l)D−n

l (3.2.33)

and the rest of the derivation would lead to (3.1.20).

Returning to (3.2.29) we can re-express this equation, by grouping the determinants

together and introducing a normalization factor, thus:

φ1
k = φ0

k +

∫

Γ1

φ1
l (dΛ

0
11(l)− dΛ0

22(−l))

∣∣φ0
k φ0

−l

∣∣
k2 − l2

+

∫

Γ2

φ1
l

(
p− l

p + l

)n

(dΛ0
12(l)− dΛ0

21(−l))

∣∣φ0
l φ0

k

∣∣
k2 − l2

. (3.2.34)

Looking at the explicit derivation of the determinant allows us to express (3.2.34) in terms

of the KdV function u, so given that (p− k)ũk1 = (p− ũ)uk1 + uk2 and

∣∣∣∣∣∣
ul1 uk1

(p− l)ũl1 − (p− ũ)ul1 (p− k)ũk1 − (p− ũ)uk1

∣∣∣∣∣∣
= (p− k)ũk1ul1− (p− l)ũl1uk1

then we have the following singular integral transform for u

u1
k1 = u0

k1 +

∫

Γ1

u1
l1dλ1(l)

(p− k)ũ0
k1u

0
−l1 − (p + l)ũ0

−l1u
0
k1

k2 − l2

+

∫

Γ2

u1
l1dλ2(l)

(
p− l

p + l

)n
(p− k)ũ0

k1u
0
l1 − (p− l)ũ0

l1u
0
k1

k2 − l2
. (3.2.35)

While the integral transform for the KdV is an important result and useful in providing

further connections between the KdV and inverse scattering, there is no obvious

connection to orthogonal polynomials here, except that the KdV can be reduced to a linear

problem for Volterra, which satisfies the recurrence relation for orthogonal polynomials.

Thus, we consider a singular integral transform for orthogonal polynomials by reducing

KdV to Volterra.
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3.3 An Integral Transform for Hermite Polynomials

When we consider semi-classical and classical orthogonal polynomials, they are looked

at as two separate classes of orthogonal polynomials, where their only connections lie

in the family name and consequently have similar weight functions. However using this

approach it should be possible to relate a classical orthogonal polynomial with a semi-

classical orthogonal polynomial (of the same family), by using a transform integral. While

the possibility of a transform existing for relating a classical orthogonal polynomial to a

semi-classical polynomial of the same family seems possible, that does not seem likely

for orthogonal polynomials of different families. Thus we consider the problem of what

kind of interpolating measure would allow a semi-classical Hermite polynomial to be

transformed into a classical Hermite polynomial and vice-versa?

In this instance we consider the classical orthogonal polynomials P 0
n and the semi-

classical orthogonal polynomials P 1
n , where no bi-orthogonality exists between them. The

classical Hermite polynomials have an even weight function, hence they have a recurrence

relation of the form:

xPn(x) = Pn+1(x) + RnPn−1(x), Rn =
hn

hn−1

. (3.3.1)

and a differential relation defined as:

∂xPn(x) = 2aRnPn−1(x). (3.3.2)

We are interested in the dressing transform between this classical case and the next semi-

classical case where the weight function is still even (so that the structure of the recurrence

relation is preserved).

3.3.1 Reduction to the Volterra Equation

Having considered the integral transform for the KdV, we will now consider the integral

transform for Volterra, but first we must consider the gauge transformation that leads to
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the eigenvalue problem for the Volterra equation.

Although we have an eigenfunction uk1 from the KdV, it isn’t the eigenfunction we require

for this transformation. Thus we introduce another eigenfunction uk(a) for an arbitrary

parameter a (not necessarily p) which is related with uk1 via a set of relations (where the

framework arises from [134, 123, 141])

(p− k)ũk(a) = (p− a)uk(a) + Ṽ (a)uk1 (3.3.3a)

(p + k)u˜k(a) = (p + a)uk(a)− V˜ (a)uk1 (3.3.3b)

and this simplifies if either a = p or a = −p. So we rewrite the equations for a = −p

(p− k)ũk(−p) = 2puk(−p) + Ṽ (−p)uk1, (3.3.4a)

(p + k)u˜k(−p) = −V˜ (−p)uk1, (3.3.4b)

and then eliminate uk1 by substitution

(p− k)ũk(−p) = 2puk(−p)− Ṽ (−p)

V˜ (−p)
(p + k)u˜k(−p). (3.3.5)

Then, we make the substitution uk(−p) =
(

p+k
p−k

)n
2
ψ and we get:

ψ̃ =
2p√

(p2 − k2)
ψ − Ṽ (−p)

V˜ (−p)
ψ
˜
, (3.3.6)

the linear problem (recurrence relation) for the polynomials. Upon comparison with the

recurrence relation for Hermite orthogonal polynomials we would have

R =
Ṽ (−p)

V˜ (−p)
, x =

2p√
(p2 − k2)

. (3.3.7)

By using this transformation it is possible to transform (3.2.35) into a singular integral

transform for Volterra and from Volterra to orthogonal polynomials. Thus, we present the

following singular integral transform for polynomials Pn

P 1
n(x) +

∫

C

dµ(y)P 1
n(y)

W 0
n(x, y)

x2 − y2
= P 0

n(x) (3.3.8)
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where

W 0
n(x, y) =

1

h0
n−1

(yP 0
n(x)P 0

n−1(y)− xP 0
n(y)P 0

n−1(x)), (3.3.9a)

=
1

h0
n−2

(P 0
n(x)P 0

n−2(y)− P 0
n(y)P 0

n−2(x)). (3.3.9b)

and the term dµ(y) is the transform measure and W 0
n(x, y) has the form of a discrete

Wronskian (a Casorati determinant). The second of these two expressions has just used

(3.3.1) to eliminate the x and y.

The relation (3.3.8) is an analogue of (3.2.35), where we assume that one of the integrals

does not contribute namely the one consisting of u−l. We take a chance with the omission

of one of the integrals, since the form of (3.3.8) is now comparable with the original linear

integral transform (3.1.5) presented in Section 3.1. Hence we can consider this to be one

possible choice, which we now investigate.

3.3.2 Recurrence Relations

The form of the recurrence relation for the semi-classical Hermite polynomials is the

same as the classical Hermite polynomials, the only difference between the two is

the polynomials generated and the recurrence coefficient. As such for this transform,

we are only interested in how the recurrence coefficient R1
n from a new class of

polynomials is related to the original recurrence coefficient R0
n, with particular interest

in the interpolating measure (which governs the transform).

Since we are interested in bringing the recurrence relation (3.3.1) into (3.3.8) we multiply

it by x:

xP 1
n(x) +

∫

C

dµ(y)yP 1
n(y)

x

y

W 0
n(x, y)

x2 − y2
= xP 0

n(x), (3.3.10)

then we need to find an expression for x
y
W 0

n(x, y). This requires the following
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manipulation of (3.3.9a):

x

y
W 0

n(x, y) =
1

h0
n−1

(
xP 0

n(x)P 0
n−1(y)− yP 0

n(y)P 0
n−1(x)−

(
x2

y
− y

)
P 0

n(y)P 0
n−1(x)

)

=
1

h0
n

[xP 0
n(x)(yP 0

n(y)− P 0
n+1(y))− yP 0

n(y)(xP 0
n(x)− P 0

n+1(x))]

−x2 − y2

h0
n−1y

P 0
n(y)P 0

n−1(x)

= W 0
n+1(x, y)− x2 − y2

y

P 0
n(y)P 0

n−1(x)

h0
n−1

(3.3.11)

Alternatively if we consider the expansion of y
x
W 0

n(x, y) instead (x ↔ y and Wn(x, y) =

−Wn(y, x)), we would get the following equation:

y

x
W 0

n(x, y) = W 0
n+1(x, y) +

y2 − x2

x

P 0
n(x)P 0

n−1(y)

h0
n−1

,

which can be rearranged to give another expression for x
y
W 0

n(x, y).

x

y
W 0

n(x, y) = W 0
n−1(x, y) +

x2 − y2

y

P 0
n−1(x)P 0

n−2(y)

h0
n−2

= W 0
n−1(x, y) +

x2 − y2

y

P 0
n−1(x)(yP 0

n−1(y)− P 0
n(y))

h0
n−1

. (3.3.12)

We can then expand (3.3.10) using the recurrence relation (3.3.1):

P 1
n+1(x) + R1

nP 1
n−1(x) +

∫

C

dµ(y)(P 1
n+1(y) + R1

nP
1
n−1(y))

x

y

W 0
n(x, y)

x2 − y2

= P 0
n+1(x) + R0

nP
0
n−1(x)

and then introduce the two forms of x
y
W 0

n(x, y), (3.3.11) and (3.3.12),

P 1
n+1(x) + R1

nP
1
n−1(x) +

∫

C

dµ(y)P 1
n+1(y)

W 0
n+1(x, y)−

(
x2−y2

y

P 0
n(y)P 0

n−1(x)

h0
n−1

)

x2 − y2

+

∫

C

dµ(y)R1
nP 1

n−1(y)
W 0

n−1(x, y) +
(

x2−y2

y

P 0
n−1(x)(yP 0

n−1(y)−P 0
n(y))

h0
n−1

)

x2 − y2

= P 0
n+1(x) + R0

nP 0
n−1(x)
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from which we can expand and cancel terms. For instance the terms W 0
n+1 and W 0

n−1

cancel since they fit (3.3.8) with other terms and thus we have:

R1
nP 0

n−1(x)−
∫

C

dµ(y)P 1
n+1(y)

(
x2−y2

y

P 0
n(y)P 0

n−1(x)

h0
n−1

)

x2 − y2
(3.3.13)

+

∫

C

dµ(y)R1
nP

1
n−1(y)

(
x2−y2

y

P 0
n−1(x)(yP 0

n−1(y)−P 0
n(y))

h0
n−1

)

x2 − y2
= R0

nP
0
n−1(x)

then cancelling x2 − y2 in the quotient terms and taking everything as a common factor

of P 0
n−1(x) leads to:

R1
n −R0

n =
1

h0
n−1

(∫

C

dµ(y)
1

y
P 1

n+1(y)P 0
n(y)

−
∫

C

dµ(y)R1
nP

1
n−1(y)

1

y
(yP 0

n−1(y)− P 0
n(y))

)
(3.3.14)

then recombining terms of R1
n and R0

n (on the left and right sides), and simplifying the

right side leads to:

R1
n

(
1 +

1

h0
n−1

∫

C

dµ(y)P 1
n−1(y)P 0

n−1(y)

)

= R0
n

(
1 +

1

h0
n

∫

C

dµ(y)P 1
n(y)P 0

n(y)

)
, (3.3.15)

so that we are simply left with:

R1
n

R0
n

=

(
1 + 1

h0
n

∫
C

dµ(y)P 1
n(y)P 0

n(y)
)

(
1 + 1

h0
n−1

∫
C

dµ(y)P 1
n−1(y)P 0

n−1(y)
) . (3.3.16)

This can then be integrated to give

h1
n

h0
n

=

(
1 +

1

h0
n

∫

C

dµ(y)P 1
n(y)P 0

n(y)

)
c (3.3.17)

where c = 1 is an integration constant (since we take h−1 = 1). This gives us a simple

transform for hn. ∫

C

dµ(y)P 1
n(y)P 0

n(y) = h1
n − h0

n (3.3.18)
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From this equation it can be shown that there is a realization of the integration over the

interpolating measure dµ(y), which we take to have the form
∫

C

dµ(y) =

∫

C1

w1
n(y)dy −

∫

C0

w0
n(y)dy, (3.3.19)

where w1
n(y) is the weight of semi-classical orthogonal polynomials. If we were to

consider the case where the contour is the same for both weights, then we can set

C1 = C0. There might be other choices for the interpolating measure, but we do not

consider those other choices at this time.

3.3.3 A Differential Relation for a General Weight Function

When considering the integral transform for the differential equation, we note that the

classical and semi-classical weights yield different equations, a consequence of the latter

weight bringing in additional terms. As we have already mentioned (in Section 2.2.1), the

size of the weight will then determine the number of terms to include in the differential

equation. However for this particular case we will consider differential equations, whose

solutions are not necessarily polynomials. Since the integral transform preserves the

similarity constraint of the differential equation, we can view the compatibility of the

recurrence relation and differential equation as a Lax pair, and hence an integrable systems

problem. After considering a general setting, differential equations with polynomial

solutions could also be looked at. Thus we present the following general expressions

for a differential equation and it’s transposed counterpart (since we can use the recurrence

relation to reduce the size of any differential equation),

x
d

dx
P 0

n(x) = A0
n(x)P 0

n(x) + B0
n(x)P 0

n−1(x), (3.3.20a)

x
d

dx
P 1

n(x) = A1
n(x)P 1

n(x) + B1
n(x)P 1

n−1(x), (3.3.20b)

where the coefficients A0, A1 are even polynomials in x and the coefficients B0, B1 are

odd polynomials in x
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Since we are interested in a differential transform we consider x∂x of (3.3.8):

x∂xP
1
n(x) +

∫
dµ(y)P 1

n(y)(x∂x + ∂yy)

(
W 0

n(x, y)

x2 − y2

)
= x∂xP

0
n(x)

−
∫

dµ(y)P 1
n(y)∂yy

(
W 0

n(x, y)

x2 − y2

)

where we assume that the derivative with respect to x can be brought into the integral.

The second integral is a correction term and can be solved through separation by parts:

x∂xP
1
n(x) +

∫
dµ(y)P 1

n(y)(x∂x + ∂yy)

(
W 0

n(x, y)

x2 − y2

)
= x∂xP

0
n(x)

+

∫
dµ(y)y(∂yP

1
n(y) + ∂y(ln w10(y)))

(
W 0

n(x, y)

x2 − y2

)
, (3.3.21)

where we have introduced dµ(y) = w10(y)dy to allow for the differential of dµ(y) and

we assume that W 0
n(x, y) disappears at the boundary. We would expect any extra terms to

appear through the interpolation measure dµ(y).

If we consider the derivative of the integral (3.3.21), we find that (x∂x +∂yy)W 0
n(x,y)

x2−y2 must

be calculated, thus we let

(x∂x + ∂yy)

(
W 0

n(x, y)

x2 − y2

)
=

(x∂x + y∂y)W
0
n(x, y)

x2 − y2
− W 0

n(x, y)

x2 − y2
, (3.3.22)

which can be computed using the explicit form of W 0
n(x, y) (3.3.9a) and the recurrence

relation (3.3.1):

(x∂x + ∂yy)

(
W 0

n(x, y)

x2 − y2

)
=

1

h0
n−1

[
(yB0

n(x)− xB0
n(y))P 0

n−1(x)P 0
n−1(y)

+
1

R0
n−1

(xB0
n−1(x)− yB0

n−1(y))P 0
n(x)P 0

n(y)

+

(
A0

n−1(y) + A0
n(y) +

y

R0
n−1

B0
n−1(y)

)
hn−1W

0
n(x, y)

x2 − y2

+
A0

n(x)− A0
n(y)

x2 − y2
xP 0

n(y)P 0
n−1(x)

+
A0

n(y)− A0
n(y)

x2 − y2
yP 0

n(x)P 0
n−1(y)

+
1

R0
n−1

yB0
n−1(y)− xB0

n−1(x)

x2 − y2
xP 0

n(y)P 0
n−1(x)

]
(3.3.23)
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We now insert (3.3.23) into the differential equation (3.3.21) and we choose to order it as:

(
x

d

dx
P 1

n(x)− A1
nP

1
n(x) + B1

nP
1
n−1(x)

)

+

∫
dµ(y)

(
x

d

dx
P 1

n(y)− A1P 1
n(y) + B1

nP
1
n−1(y)

)
W 0

n(x, y)

x2 − y2

+

∫
dµ(y)

[
A0

n−1(y) + A0
n(y) +

y

R0
n−1

B0
n−1(y) + y∂y(ln w10(y))

]
P 1

n(y)
W 0

n(x, y)

x2 − y2

=

(
x

d

dx
P 0

n(x)− A1
nP

0
n(x) + B1

nP
0
n−1(x)

)

− 1

h0
n−1

(∫
dµ(y)P 1

n(y)P 0
n−1(y)

yB0
n(x)− xB0

n(y)

x2 − y2

)
P 0

n−1(x)

− 1

h0
n−1

(∫
dµ(y)P 1

n(y)P 0
n(y)

1

R0
n−1

xB0
n−1(x)− yB0

n−1(y)

x2 − y2

)
P 0

n(x)

+
1

h0
n−1

(∫
dµ(y)P 1

n(y)P 0
n(y)

A0
n−1(x)− A0

n−1(y)

x2 − y2

)
xP 0

n−1(x)

− 1

h0
n−1

(∫
dµ(y)P 1

n(y)P 0
n−1(y)y

A0
n(x)− A0

n(y)

x2 − y2

)
P 0

n(x)

+
1

h0
n−1

(∫
dµ(y)P 1

n(y)P 0
n(y)

1

R0
n−1

xB0
n−1(x)− yB0

n−1(y)

x2 − y2

)
xP 0

n−1(x)

+
1

h0
n−1

(∫
dµ(y)P 1

n(y)P 0
n−1(y)y

A1
n(x)− A1

n(y)

x2 − y2

)
P 0

n(x)

− 1

h0
n−1

(∫
dµ(y)P 1

n(y)P 0
n(y)

A1
n(x)− A1

n(y)

x2 − y2

)
xP 0

n−1(x)

+
1

h0
n−1

(∫
dµ(y)P 1

n−1(y)P 0
n−1(y)

xB1
n(x)− yB1

n(y)

x2 − y2

)
P 0

n(x)

− 1

h0
n−1

(∫
dµ(y)P 1

n−1(y)P 0
n(y)

1

y

xB1
n(x)− yB1

n(y)

x2 − y2

)
xP 0

n−1(x)

− 1

h0
n−2

B1
n(x)

(∫
dµ(y)

1

y
P 1

n−1(y)P 0
n−2(y)

)
P 0

n−1(x) (3.3.24)

so that the right side is in terms of Pn, Pn−1. This equation gives a general form for

an integral transform between two different differential equations, from which we can

determine the integration transform weight w10. First of all though, we consider the third

integral on the left side of (3.3.24), since it is this integral that contains the unknown

integral transform weight w10. If we set the term contained by the brackets equal to zero,
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then we can calculate w10 in terms of the coefficients of a differential equation

A0
n−1(y) + A0

n(y) +
y

R0
n−1

B0
n−1(y) + y∂y(ln w10(y)) = 0. (3.3.25)

Immediately we are confronted by the fact that w10 only depends on coefficients

associated with the initial differential equation A0
n, B

0
n, where we would expect it to also

have some dependency on A1
n, B1

n. However we will try some examples by choosing

specific values of A0
n, B

0
n.

We begin with the standard differential equation for Hermite orthogonal polynomials

(3.3.2),

x∂xPn(x) = 2aRnxPn−1(x)

which has the corresponding coefficients An = 0, Bn = 2axRn. Substituting these values

into (3.3.25) leads to

w10(y) = e−ay2

, (3.3.26)

the classical weight for Hermite orthogonal polynomials. Alternatively, if we consider

our deformed differential equation from Chapter 2 as our starting differential equation

(2.2.15)

x∂xPn(x) = −x2bRnPn(x) + (x3b + x(a + b(Rn+1 + Rn)))RnPn−1(x), (3.3.27)

then from (3.3.25) we have

w10(y) = e−(ay2+by4), (3.3.28)

a deformed Hermite weight for semi-classical polynomials. It is interesting to see that

both times this relation has yielded the weight function for its corresponding differential

equation. However, since (3.3.25) has a log function and the Volterra reduction is

synonymous with the Hermite polynomials, I expect (3.3.25) is only applicable for

deformed Hermite polynomials rather than a general class.

In order to learn more about the relationship between the coefficients of our source

differential equation P 0 and our transformed differential equation P 1, we substitute some
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general values of An, Bn into (3.3.24). Since An(x) are even polynomials and Bn(x) are

odd polynomials we consider the following general polynomials:

An(x) = an + bnx
2 , Bn(x) = cnx + dnx

3, (3.3.29)

then we can rewrite (3.3.24) as

(A1
n(x)− A0

n(x))P 0
n(x) + (B1

n(x)−B0
n(x))P 0

n−1(x)

= − 1

h0
n−1

(∫
dµ(y)yP 1

n(y)P 0
n−1(y)

)
d0

nxP 0
n−1(x)

+
1

h0
n−1

(∫
dµ(y)P 1

n(y)P 0
n(y)

)
b0
n−1xP 0

n−1(x)

− 1

h0
n−1

(∫
dµ(y)P 1

n(y)P 0
n−1(y)y

)
b0
nP 0

n(x)

− 1

h0
n−1

(∫
dµ(y)P 1

n(y)P 0
n(y)

)
c0
n−1R

0
n−1P

0
n−2(x)

+
1

h0
n−1

(∫
dµ(y)P 1

n(y)P 0
n(y)(x2 + y2)

)
d0

n−1P
0
n−2(x)

+
1

h0
n−1

(∫
dµ(y)P 1

n(y)P 0
n−1(y)y

)
b1
nP 0

n(x)

− 1

h0
n−1

(∫
dµ(y)P 1

n(y)P 0
n(y)

)
b1
nxP 0

n−1(x)

+
1

h0
n−1

(∫
dµ(y)P 1

n−1(y)P 0
n−1(y)

)
c1
nP

0
n(x)

+
1

h0
n−1

(∫
dµ(y)P 1

n−1(y)P 0
n−1(y)(x2 + y2)

)
d1

nP 0
n(x)

− 1

h0
n−1

(∫
dµ(y)

1

y
P 1

n−1(y)P 0
n(y)

)
c1
nxP 0

n−1(x)

− 1

h0
n−1

(∫
dµ(y)

1

y
P 1

n−1(y)P 0
n(y)(x2 + y2)

)
d1

nxP 0
n−1(x)

− 1

h0
n−2

(c1
nx + d1

nx
3)

(∫
dµ(y)

1

y
P 1

n−1(y)P 0
n−2(y)

)
P 0

n−1(x). (3.3.30)
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This equation can be further expanded by using expansions of the recurrence relation

xPn = Pn+1 + RnPn−1

x2Pn = Pn+2 + (Rn+1 + Rn)Pn + RnRn−1Pn−2

x3Pn = Pn+3 + (Rn+2 + Rn+1 + Rn)Pn+1 + (Rn+1 + Rn + Rn−1)RnPn−1

+RnRn−1Rn−2Pn−3

which leads to the following identities between the coefficients:

b1
n − b0

n + d1
n − d0

n = 0 (3.3.31a)

a1
n − a0

n + (b1
n − b0

n)(R0
n+1 + R0

n) + c1
n − c0

n + (d1
n − d0

n)(R0
n+1 + R0

n + R0
n−1)

=
1

h0
n−1

(h1
n − h0

n)(b0
n−1 − b0

n + d0
n−1 − d0

n)

+
1

h0
n−2

∫
dµ(y)P 1

n(y)P 0
n−2(y)(b1

n − b0
n + d1

n − d0
n)

+
1

h0
n−2

[
(h1

n−2 − h0
n−2)R

1
n−1 − (h1

n−1 − h0
n−1)

]
d1

n

=
1

h0
n−1

(h1
n − h0

n)(b0
n−1 − b0

n + d0
n−1 − d0

n)− (R1
n−1 −R0

n−1)d
1
n

(3.3.31b)

(b1
n − b0

n)R0
nR

0
n−1 + (c1

n − c0
n)Rn−1 + (d1

n − d0
n)Rn(R0

n+1 + R0
n + R0

n−1)

=
1

h0
n−1

(R0
n−1 + R0

n−2)((h
1
n − h0

n)d0
n−1 − (h1

n−1 − h0
n−1)d

1
nR

0
n−1)

− 1

h0
n−1

(h1
n−1 − h0

n−1)(R
1
nR

0
n−1d

0
n −R1

nR0
nd

0
n−1 + R0

nR
0
n−1d

1
n)

+
1

h0
n−1

(h1
n+1 − h0

n+1)d
0
n−1 +

1

h0
n−2

(h1
n − h0

n)(b1
n − b0

n−1)

− 1

h0
n−2

(h1
n − h0

n)c0
n−1 −

1

h0
n−2

(h1
n−1 − h0

n−1)c
1
n

+(h1
n−1 − h0

n−1)R
0
nd1

n − (h1
n−1 − h0

n−1)d
1
n(R0

n + R0
n−1 + R0

n−2)

+
1

h0
n−1

∫
dµ(y)P 1

n+1(y)P 0
n−1(y)(R0

nd
0
n−1 −R0

n−1d
0
n)

+
1

h0
n−1

∫
dµ(y)P 1

n−1(y)P 0
n+1(y)(R1

nd
0
n−1 −R0

n−1d
1
n) (3.3.31c)
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(d1
n − d0

n) =
1

R0
n−1h

0
n−1

(h1
n − h0

n)d0
n−1 −

1

h0
n−1

(h1
n−1 − h0

n−1)d
1
n

⇒ R0
nd

0
n−1 −R0

n−1d
0
n = (R1

nd0
n−1 −R0

n−1d
1
n)

h1
n−1

h0
n−1

(3.3.31d)

from the functions Pn+2, Pn, Pn−2, Pn−4 respectively. The second identity (3.3.31b) is

reduced using the first identity (3.3.31a) and it would appear that the third identity

(3.3.31c) can be reduced using the fourth identity (3.3.31d), although we have been

unable to find out how. From these identities we can then derive the coefficients of the

transformed differential equation in terms of the source coefficients.

It is not clear if the interpolating measure w1 − w0 (as mentioned below (3.3.17)) is

an appropriate choice in this section and whether it leads to a closed-form system from

the integral transform. One possible route to follow would be to derive the squared

eigenfunction expressions in the reduction from the formulae derived in Section (3.1.4)

to the scalar case and see if this leads to expressions where the required orthogonality can

be seen to emerge.

3.4 Summary

We looked at a singular integral transform that is related to the Gel’fand-Levitan equation

the all important inversion formula in the inverse scattering transform.

The first section was concerned with the presentation of the singular integral transform.

The singular integral transform consists of a dressing method from a function Φ0 to a

corresponding function Φ1 by using an interpolating measure dΛ. We introduced the idea

of composition formulae, which removed the dependence of intermediary functions and

by associating the transform with a lax type relation, we derived a discrete Lax equation

Q1 = H̃1J − JH1
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where the potential H satisfied the compatibility condition. Although H1 − H0 had a

mixed integration (Φ0, Φ1), when differential and difference operators were applied to

it we could write the results in terms of the new function Φ1, while the operators only

acted on the original function Φ0. This provided a framework for future investigation into

determining the orthogonality conditions for the eigenfunctions of linear problems.

The second sections deals with two applications of singular integral transform, where

both seemingly different approaches had the same objective in mind: to relate classical

to semi-classical orthogonal polynomials. For the first application, we used the singular

integral transform (3.1.5) and chose a 2 × 2 matrix value for Φ. Using this with the Lax

matrices from the recurrence relation (2.3.25) and differential equation (2.3.32) derived

in Chapter 2, we derived singular integral transforms for the recurrence coefficients

and looked for relations between the interpolating measures dΛij for i, j = 1, 2. The

possibility of exploring the differential Lax was introduced, however we were unable to

deal with a general differential relation, but this case can certainly be investigated for

specific cases. In the second application, we first consider the singular integral transform

for the lattice Gel’fand-Dikii N × N matrix hierarchy, which we write in more explicit

form by performing a scalar reduction, that reexpresses the integral transform in terms

of column vectors of the function Φk. We find that this vector reduction also satisfies

the Q1 = H̃1J − JH1 Lax equation from earlier and we present the explicit form for the

column vectors (h1
i )j−(h0

i )j . This reevaluation allows us to present the integral transform

in a simplified form that is easier to calculate, which we demonstrate by using the KdV

(N = 2) as an example. The resulting equation is thus, the scalar integral transform for

the KdV equation.

We also mention the existence of a gauge transformation that relates the KdV function

u to the Volterra linear problem, which satisfies the recurrence relation for a class of

orthogonal polynomials. Thus, we choose a form for the scalar reduction of a singular

integral transform for orthogonal polynomials, which we use with the recurrence relation
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and differential equation of an even weighted orthogonal polynomial (such as Hermite).

Like the case when dealing with the standard singular integral transform we found a

relation between a new recurrence coefficient R1 and the old recurrence coefficient R0

in terms of a very simple integral. When considering the singular integral transform for

a differential equation we present two general differential equations (whose solutions are

not necessarily polynomials) of differing order and derive a method for calculating the

transformed coefficients A1
n, B

1
n in terms of the original coefficients A0

n, B
0
n. Included

in this methodology is formula which determines the corresponding weight function for

a deformed Hermite differential equation and examples of this are given. Whether this

formula is a natural result of the equation or fortuitous luck, further investigation would

still be required.
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Chapter 4

Formal Elliptic Polynomials

In the formal approach to orthogonal polynomials the notions of bi-orthogonality,

adjacency, vector orthogonalities and vector Padé approximants (see the exposition in

Chapter 1), are studied in certain areas of numerical analysis. In this context the issue

of formal orthogonal polynomials associated with an algebraic curve, has arisen in the

literature cf [28]. However, it seems that topologically nontrivial curves have so far not

been explicitly studied in detail. This chapter focuses on the latter problem, in particular

the construction of formal orthogonal polynomials associated with an elliptic curve. We

are motivated by possible connections with integrable systems, which already (as in

Chapter 1, (1.1.27)) appear in standard orthogonal polynomials. Although the main thrust

of this chapter is to focus on formal aspects, at the end of the chapter we will develop

some ideas on extending the formal results to the case where we have explicit weights.

It is important to point out that the notion of “elliptic orthogonal polynomials” has already

surfaced in various forms in the literature. Akhiezer’s generalization of the Chebyshev

polynomials, cf. [6] and also [40, 154, 168], is one way to introduce polynomials

associated with an elliptic curve. In the work of Carlitz [31], continued by Ismail and

Valent [85], [86], another construction of orthogonal polynomials related to elliptic curves

is created.
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Carlitz constructed orthogonal polynomials after studying four continued fractions

derived by Stieltjes [156] and his research focused on recurrences implied by these

continued fractions. He found that certain elliptic function formulas could be utilized to

derive relations among the polynomials and that they occur in the multiplication formulas

of the Jacobi elliptic function. Thus his approach was to look at orthogonal polynomials

and then found that elliptic functions could be used to connect them together.

The Stieltjes-Carlitz polynomials also have connections with the Heun differential

equation, specifically the generating functions, which give a finite set of exact solutions of

Heun’s differential equation. It was Valent [164] who found that the associated Stieltjes-

Carlitz polynomials, lead to a new differential equation which he called associated Heun.

Our approach to elliptic polynomials is different, because we are using two-variable

orthogonal polynomials, where the two variables are related through an elliptic curve,

and as a consequence the polynomials are equivalent to algebraic functions in one of the

variables.

4.1 Polynomials in two Variables,

Orthogonal over an Algebraic Curve

4.1.1 Two Variable Orthogonal Polynomials

Historically, orthogonal polynomials in two or more variables, is an area less studied than

the univariate case. In recent times we have seen plenty of studies of the multivariate case,

although their main definitions and simplest properties were dealt with in the latter part

of the 19th century. Among the first to study them were Hermite and Appell [10], who

considered biorthogonal systems in two variables and Orlov (1881) [138], who looked at

an analogue of the Rodrigues formula for two variable orthogonal polynomials. Bateman
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and Erdélyi [17] did a detailed survey, which covered many of these results including a

paper by Jackson [87] in 1938 on the simplest properties of two variables orthogonal over

a domain with arbitrary weight. Other papers worthy of note include the one by Krall and

Sheffer [98], which considered some linear partial differential operators of the second

order for which orthogonal polynomials in two variables are solutions and Engelis [58]

who derived similar results but from a different approach.

The book by Suetin [157], provides a comprehensive overview of 2 variable orthogonal

polynomials, compared with the more general text by Dunkl and Xu, on orthogonal

polynomials in several variables [57]. It covers a great deal of the history surrounding

the subject, including the aforementioned material as well as some results by Tom

Koornwinder, who has obtained a considerable number of results for new systems of

orthogonal polynomials in two variables [93, 94]. The majority of the research done

on two-variable orthogonal polynomials is limited to the open domain, where the book of

Suetin [157] is a good example of this. While our own research is not on the open domain,

these works are presented to provide context of how our own work fits in.

Most of [157] deals with orthogonal polynomials in two variables over a open domain in

the x, y-plane, where a set of monomials is constructed consisting of products of a pair of

independent variables x and y. and the ordering usually consists of the following form:

1, x, y, x2, xy, y2, x3, x2y, xy2, y3, . . . , xn, xn−1y, . . . , yn, . . . . (4.1.1)

However there is also a chapter dealing with orthogonal polynomials over an algebraic

curve ([157], Chapter 7), although this only focuses on such trivial curves as a linear

curve y = ax + b or unit circle x2 + y2 = 1. For the line y = ax + b,

the list of monomials is reduced to the set {xn} and for the unit circle we have

1, x, y, x2, xy, x3, . . . , xn, xn−1y, . . ., although x and y have equal ordering.

In contrast to this treatment ([157], Chapter 7), we will consider an x and y that do not

have the same degree, because we will consider a non-trivial elliptic curve. By using the
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Weierstrass gap sequence [14] we are provided with a natural ordering for the monomials

associated with this elliptic curve. In principle we could consider curves of a higher genus

and use the Weierstrass gap sequence in the construction that follows, but we are not going

to venture into that direction and restrict ourselves to genus 1 in this chapter.

We model our construction on the case of the Weierstrass elliptic curve (an elliptic curve

in Weierstrass form), and details of the corresponding Weierstrass elliptic functions can

be found in Appendix A.

4.2 Polynomials Orthogonal over an Elliptic Curve

As a starting point for our construction we start from the Weierstrass elliptic curve:

y2 = 4x3 − g2x− g3 , (4.2.1)

and develop a sequence of elementary monomials associated with this curve:

e0 = 1 , e2 = x , e3 = y , e4 = x2 , e5 = xy , e6 = x3 , · · ·

or, in general:

e0(x, y) = 1 , e2k(x, y) = xk , e2k+1(x, y) = xk−1y , k = 1, 2, . . .

From the Weierstrass gap sequence theorem we can read off the genus of the underlying

curve as g = 1 as a consequence of the omission of one order (namely order 1) in the

corresponding sequence of weights of the monomials. Obviously, the monomials ek are

subject to the algebraic relations:

ek · el = ek+l , k, l not both odd

e2k+1 · e2l+1 = 4e2(k+l+1) − g2e2(k+l−1) − g3e2(k+l−2) .

the latter relations being a consequence of the algebraic curve (4.2.1).
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We use the sequence {ek , k = 0, 2, 3 . . . } as our basis of monomials for the expansion

of polynomials in the two variables x,y related through the algebraic equation (4.2.1),

thus taking the form:

Pk(x, y) =
k∑

j=0

p
(k)
j ej(x, y) , (4.2.2)

and we will call them monic if the leading coefficient p
(k)
k = 1.

4.2.1 Recursive Structures

From the point of view of formal orthogonal polynomials the key relations to be

considered are the recurrence relations, which can be derived irrespective of a choice of

the weight function. By considering the monomial sequence of two variables, we expect

there to be two recurrence relations for the x and y respectively. From a basic perspective

we can learn the form of the relations.

We consider the case for k even and k odd respectively.

P2n = e2n + p
(2n)
2n−1e2n−1 + p

(2n)
2n−2e2n−2 + p

(2n)
2n−3e2n−3 + p

(2n)
2n−4e2n−4 + . . .

= xn + p
(2n)
2n−1x

n−2y + p
(2n)
2n−2x

n−1 + p
(2n)
2n−3x

n−3y + p
(2n)
2n−4x

n−2 + . . .

(4.2.3a)

P2n+1 = e2n+1 + p
(2n+1)
2n e2n + p

(2n+1)
2n−1 e2n−1 + p

(2n+1)
2n−2 e2n−2 + p

(2n+1)
2n−3 e2n−3 + . . .

= xn−1y + p
(2n+1)
2n xn + p

(2n+1)
2n−1 xn−2y + p

(2n+1)
2n−2 xn−1 + p

(2n+1)
2n−3 xn−3y + . . .

(4.2.3b)

We multiply these polynomials by x and y, to show how the order of the polynomials
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changes.

xP2n = xn+1 + . . . , xP2n+1 = xny + . . .

yP2n = xny + p
(2n)
2n−1x

n−2y2 + p
(2n−2)
2n−2 xn−1y + p

(2n)
2n−3x

n−3y2 + p
(2n)
2n−4x

n−2y + . . .

yP2n+1 = xn−1y2 + p
(2n+1)
2n xny + p

(2n+1)
2n−1 xn−2y2 + p

(2n+1)
2n−2 xn−1y + p

(2n+1)
2n−3 xn−3y2 + . . .

(4.2.4)

The x does not present a problem, since this is merely absorbed into the equation, but the

y2 requires the substitution of the curve y2 = 4x3 − g2x− g3.

yP2n = xny + 4p
(2n)
2n−1x

n+1 + p
(2n)
2n−2x

n−1y + 4p
(2n)
2n−3x

n + p
(2n)
2n−4x

n−2y + . . .

yP2n+1 = 4xn+2 + p
(2n+1)
2n xny + 4p

(2n+1)
2n−1 xn+1 + p

(2n+1)
2n−2 xn−1y + (4− g2)p

(2n+1)
2n−3 xn + . . .

(4.2.5)

At this point we learn nothing about the p
(j)
k , however we do learn that for odd yPk the

leading coefficient is 4.

Next, we assume the existence of an inner product 〈, 〉 on the space V spanned by the

monomials ek, such that

〈xP, Q〉 = 〈P, xQ〉 , 〈yP, Q〉 = 〈P, yQ〉 ,

for any two elements P, Q ∈ V. Since x has order 2, e2 = x and y has order 3, e3 = y,

we have

xPk = Pk+2 + X
(1)
k Pk+1 + X

(0)
k Pk + X

(−1)
k Pk−1 + X

(−2)
k Pk−2, (4.2.6a)

yPk = 4εkPk+3 + Y
(2)
k Pk+2 + Y

(1)
k Pk+1 + Y

(0)
k Pk + Y

(−1)
k Pk−1

+Y
(−2)
k Pk−2 + Y

(−3)
k Pk−3 (4.2.6b)

where

εk =





1 , k odd ,

0 , k even .
(4.2.7)

The inclusion of the 4 for k odd is straightforward, since the leading term in the expansion

was a 4. For k even, the 4 will be included in the Yk coefficients.
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4.2.2 Moments and the Determinant Form

In the spirit of the formal approach to orthogonal polynomials, cf. e.g. [25, 26], we

assume that the bilinear form 〈, 〉 derives from a linear functional L and consequently we

can define the associated moments (as in Chapter 1, (1.1.13a)) by

ck = L(ek) . (4.2.8)

Under the assumption of orthogonality the standard Gram-Schmidt orthogonalisation,

through the use of Cramer’s rule (1.1.14), leads to the following expression for the

polynomials:

Pk(x, y) =
1

∆k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈e0, e0〉 〈e0, e2〉 · · · · · · 〈e0, ek〉
〈e2, e0〉 〈e2, e2〉 · · · · · · 〈e2, ek〉

...
...

...
...

...
...

〈ek−1, e0〉 〈ek−1, e2〉 · · · · · · 〈ek−1, ek〉
e0 e2 · · · · · · ek

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (4.2.9a)

in which we have the elliptic Hankel determinants:

∆k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈e0, e0〉 〈e0, e2〉 · · · · · · 〈e0, ek〉
〈e2, e0〉 〈e2, e2〉 · · · · · · 〈e2, ek〉

...
...

...
...

...
...

〈ek, e0〉 〈ek, e2〉 · · · · · · 〈ek, ek〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4.2.9b)

4.3 Recurrence relations

We shall now derive a closed set of recurrence relations for the elliptic orthogonal

polynomials introduced in the previous section starting from the determinantal form
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(4.2.9a). To do that we will need a number of determinantal identities that have been

derived using a generalized form of the Sylvester identity, and are introduced in Appendix

B. There are also a series of Hankel identities that have been derived using different

variations of the standard Sylvester identity.

To perform the derivations in an elegant way, we find it convenient to introduce a slightly

generalized form for the polynomials.

4.3.1 Extended Polynomials

For convenience we introduced adjacent orthogonal polynomials (1.1.20a) in Chapter

1, which aided in the derivation of a recurrence relation for single variable orthogonal

polynomials. Using a similar approach (for this case), we introduce the following adjacent

2-variable polynomials associated with the curve (4.2.1):

P
(l)
k (x, y) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el, e0〉 〈el, e2〉 · · · · · · 〈el, ek〉
〈el+1, e0〉 〈el+1, e2〉 · · · · · · 〈el+1, ek〉

...
...

...
...

...
...

〈el+k−2, e0〉 〈el+k−2, e2〉 · · · · · · 〈el+k−2, ek〉
e0 e2 · · · · · · ek

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/
∆

(l)
k−1 , l 6= 0, 1 ,

(4.3.1a)

together with the corresponding Hankel determinant:

∆
(l)
k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el, e0〉 〈el, e2〉 · · · · · · 〈el, ek〉
〈el+1, e0〉 〈el+1, e2〉 · · · · · · 〈el+1, ek〉

...
...

...
...

...
...

〈el+k−1, e0〉 〈el+k−1, e2〉 · · · · · · 〈el+k−1, ek〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, l 6= 0, 1 ,

(4.3.1b)
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and for l = 0:

P
(0)
k (x, y) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈e0, e0〉 〈e0, e2〉 · · · · · · 〈e0, ek〉
〈e2, e0〉 〈e2, e2〉 · · · · · · 〈e2, ek〉

...
...

...
...

...
...

〈ek−1, e0〉 〈ek−1, e2〉 · · · · · · 〈ek−1, ek〉
e0 e2 · · · · · · ek

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/
∆

(0)
k−1 , (4.3.1c)

with

∆
(0)
k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈e0, e0〉 〈e0, e2〉 · · · · · · 〈e0, ek〉
〈e2, e0〉 〈e2, e2〉 · · · · · · 〈e2, ek〉

...
...

...
...

...
...

〈ek, e0〉 〈ek, e2〉 · · · · · · 〈ek, ek〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4.3.1d)

Remark: We note that the shift by one step in the ordered sequence of monomials:

e0, e2, e3, . . . , el, . . . can be realised through a shift operator ·̂, which shifts the series by

one step:

e0 , e2 , e3 , . . . Ã ê0 = e2 , ê2 = e3 , ê3 = e4 , . . .

or in other words:

êl =





el+2 , l = 0

el+1 , l 6= 0
.
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In addition to the polynomials (4.3.1a) we also need to introduce the polynomials:

Q
(l)
k (x, y) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el, e0〉 〈el, e2〉 · · · · · · 〈el, ek〉
〈el+2, e0〉 〈el+2, e2〉 · · · · · · 〈el+2, ek〉

...
...

...
...

...
...

〈el+k−1, e0〉 〈el+k−1, e2〉 · · · · · · 〈el+k−1, ek〉
e0 e2 · · · · · · ek

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/
Θ

(l)
k−1 , l 6= 1

(4.3.2a)

together with the corresponding Hankel determinant:

Θ
(l)
k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el, e0〉 〈el, e2〉 · · · · · · 〈el, ek〉
〈el+2, e0〉 〈el+2, e2〉 · · · · · · 〈el+2, ek〉

...
...

...
...

...
...

〈el+k, e0〉 〈el+k, e2〉 · · · · · · 〈el+k, ek〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, l 6= 1 (4.3.2b)

noting that

Q
(0)
k = P

(0)
k , Θ

(0)
k = ∆

(0)
k .

Remark: We note that for l 6= 0, 1 the polynomials P
(l)
k do not form an orthogonal

family, but rather a biorthogonal one. In fact, from the determinantal definition (4.3.1a)

we immediately observe that

〈el, P
(l)
k 〉 = 〈el+1, P

(l)
k 〉 = · · · = 〈el+k−2, P

(l)
k 〉 = 0 , 〈el+k−1, P

(l)
k 〉 =

∆
(l)
k

∆
(l)
k−1

,

whereas

〈el−1, P
(l)
k 〉 = (−1)k−1 ∆

(l−1)
k

∆
(l)
k−1

.
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4.3.2 The xP
(l)
k Recurrence Relation

The aim now is to use the determinantal identities of a Sylvester type (Appendix B) to

derive a recurrence relation in a similar way as in Chapter 1 (1.1.25). The first step is to

acquire a recurrence relation in which the variable x is extracted from the determinant as

a common factor, in order to get a relation of the form (4.2.6). Thus of the monomials in

the last row, we need to remove e0 = 1 and e3 = y. So we implement a 3-row/column

Sylvester identity (B.7) from Appendix B on the matrix for P
(l)
k . For this case it is

necessary to fix the columns so that e0 and e3 are removed from the determinant and the

position of the row removal is dependent on restricting the introduction of new objects.

Hence we apply the following the cutting of three rows and columns according to the

diagram:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

leads to the following recurrence relation:

P
(l)
k = xP

(l+3)
k−2 − ∆

(l)
k−2∆

(l+3)
k−2

∆
(l)
k−1∆

(l+3)
k−3

P
(l)
k−1 +

∆
(l+1)
k−2 ∆

(l+2)
k−2

∆
(l)
k−1∆

(l+3)
k−3

P
(l+1)
k−1 , l 6= 0, 1 , (4.3.3a)

whereas for l = 0 we have:

P
(0)
k = xP

(4)
k−2 −

∆
(0)
k−2∆

(4)
k−2

∆
(0)
k−1∆

(4)
k−3

P
(0)
k−1 +

∆
(2)
k−2Θ

(2)
k−2

∆
(0)
k−1∆

(4)
k−3

P
(2)
k−1 , (4.3.3b)

whilst obviously, since P
(1)
k is not defined, there is no relation for l = 1. Applying the

same cutting of rows and columns and implementing the same Sylvester identity but now
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on the matrix for Q
(l)
k we obtain a different relation, namely:

Q
(l)
k = xP

(l+4)
k−2 − Θ

(l)
k−2∆

(l+4)
k−2

Θ
(l)
k−1∆

(l+4)
k−3

Q
(l)
k−1 +

Θ
(l+2)
k−2 ∆

(l+2)
k−2

Θ
(l)
k−1∆

(l+4)
k−3

P
(l+2)
k−1 , l 6= 0, 1 . (4.3.3c)

Furthermore, implementing a different cutting of rows and columns on the matrix for P
(l)
k

according to:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

and again applying the 3-row/column Sylvester identity in that situation, we obtain:

P
(l)
k = xQ

(l+2)
k−2 − ∆

(l)
k−2Θ

(l+2)
k−2

∆
(l)
k−1Θ

(l+2)
k−3

P
(l)
k−1 +

Θ
(l)
k−2∆

(l+2)
k−2

∆
(l)
k−1Θ

(l+2)
k−3

Q
(l)
k−1 , l 6= 0, 1 . (4.3.3d)

Finally, implementing a third way of cutting of rows and columns on the matrix for P
(l)
k

according to:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

and again applying the 3-row/columm Sylvester identity in that situation, we obtain:

P
(l)
k = xP

(l+4)
k−2 − Θ

(l)
k−2∆

(l+3)
k−2

∆
(l)
k−1∆

(l+4)
k−3

Q
(l)
k−1 +

∆
(l+1)
k−2 Θ

(l+2)
k−2

∆
(l)
k−1∆

(l+4)
k−3

P
(l+1)
k−1 , l 6= 0, 1 . (4.3.3e)

The relations (4.3.3) form the lowest-order set of relations between two types of objects,

the P
(l)
k and the Q

(l)
k , leading to a recursive structure on the polynomials. At this point we

do not have enough information to remove the Q
(l)
k , but this will be dealt with later.
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Although we have a series of relations of an xP
(l)
k form we require an additional relation

to eliminate the need for an upper index in the P
(l)
k , thereby obtaining a closed-form

recurrence relation (namely one in which the super-index l remains fixed). So we

introduce the intermediate quantity:

T
(l)
k−1(x, y) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el, e2〉 〈el, e3〉 · · · · · · 〈el, ek〉
〈el+1, e2〉 〈el+1, e3〉 · · · · · · 〈el+1, ek〉

...
...

...
...

...
...

〈el+k−3, e2〉 〈el+k−3, e3〉 · · · · · · 〈el+k−3, ek〉
e2 e3 · · · · · · ek

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/
Π

(l)
k−2 ,

(4.3.4a)

together with its corresponding Hankel determinant:

Π
(l)
k−1 ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el, e2〉 〈el, e3〉 · · · · · · 〈el, ek〉
〈el+1, e2〉 〈el+1, e3〉 · · · · · · 〈el+1, ek〉

...
...

...
...

...
...

〈el+k−2, e2〉 〈el+k−2, e3〉 · · · · · · 〈el+k−2, ek〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4.3.4b)

Using the usual Sylvester identity we can now derive the following two equations

∣∣∣∣∣∣∣∣
P

(l)
k

∣∣∣∣∣∣∣∣
⇒ P

(l)
k = T

(l+1)
k−1 − ∆

(l+1)
k−2 Π

(l)
k−1

∆
(l)
k−1Π

(l+1)
k−2

P
(l+1)
k−1 , (4.3.5a)

∣∣∣∣∣∣∣∣
P

(l)
k

∣∣∣∣∣∣∣∣
⇒ P

(l)
k = T

(l)
k−1 −

∆
(l)
k−2Π

(l)
k−1

∆
(l)
k−1Π

(l)
k−2

P
(l)
k−1 , (4.3.5b)
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which by eliminating the T
(l)
k polynomials, collecting like terms

P
(1)
k = P

(l+1)
k +

∆
(l+1)
k−2 Π

(l+1)
k−1

∆
(l+1)
k−1 Π

(l+1)
k−2

P
(l+1)
k−1 − ∆

(l+1)
k−2 Π

(l)
k−1

∆
(l)
k−1Π

(l+1)
k−2

P
(l+1)
k−1

= P
(l+1)
k +

∆
(l+1)
k−2

Π
(l+1)
k−2 ∆

(l+1)
k−1 ∆

(l)
k−1

(∆
(l)
k−1Π

(l+1)
k−1 −∆

(l+1)
k−1 Π

(l)
k−1)P

(l+1)
k−1 (4.3.6)

and using the Hankel determinant identity (B.9a)

∆
(l)
k Π

(l+1)
k−2 = ∆

(l)
k−1Π

(l+1)
k−1 −∆

(l+1)
k−1 Π

(l)
k−1

leads to:

P
(l)
k = P

(l+1)
k +

∆
(l)
k ∆

(l+1)
k−2

∆
(l)
k−1∆

(l+1)
k−1

P
(l+1)
k−1 , (4.3.7a)

or simply

P
(l)
k = P

(l+1)
k + A

(l)
k P

(l+1)
k−1 . (4.3.7b)

The existence of this linear relation is very helpful, since it allows us to reduce the order

of (4.3.3a) and hence is an important relation in the derivation of the xP
(l)
k . Although

it required the introduction of a new object T
(l)
k and corresponding Hankel determinant

Π
(l)
k , neither of them have appeared in the end result. So now we combine the two

equations (4.3.3a) and (4.3.7a), so that we obtain closed-form recurrence relation for the

polynomials P
(l)
k .

We now express (4.3.3a) in the following form:

P
(l)
k+2 = xP

(l+3)
k −B

(l)
k P

(l)
k+1 + C

(l)
k P

(l+1)
k+1 (4.3.8)

where

A
(l)
k =

∆
(l)
k ∆

(l+1)
k−2

∆
(l)
k−1∆

(l+1)
k−1

, B
(l)
k =

∆
(l)
k ∆

(l+3)
k

∆
(l)
k+1∆

(l+3)
k−1

, C
(l)
k =

∆
(l+1)
k ∆

(l+2)
k

∆
(l)
k+1∆

(l+3)
k−1

(4.3.9)

The combination occurs by increasing the super-index of (4.3.7a) by 2, multiplying it by

x, then substituting in (4.3.3a).

xP
(l+2)
k = P

(l)
k+2+B

(l)
k P

(l)
k+1−C

(l)
k P

(l+1)
k+1 +A

(l+2)
k (P

(l)
k+1+B

(l)
k−1P

(l)
k −C

(l)
k−1P

(l+1)
k ) (4.3.10)
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This expression
(
xP

(l+2)
k

)
, can be substituted into (4.3.7a) with a super-index increase of

1, leading to
(
xP

(l+1)
k

)
, which is substituted into (4.3.7a).

xP
(l)
k = P

(l)
k+2 + B

(l)
k P

(l)
k+1 − C

(l)
k P

(l+1)
k+1 + A

(l+2)
k

(
P

(l)
k+1 + B

(l)
k−1P

(l)
k − C

(l)
k−1P

(l+1)
k

)

+A
(l+1)
k

(
P

(l)
k+1 + B

(l)
k−1P

(l)
k − C

(l)
k−1P

(l+1)
k + A

(l+2)
k−1

(
P

(l)
k + B

(l)
k−2P

(l)
k−1 − C

(l)
k−2P

(l+1)
k−1

))

+A
(l)
k

{
P

(l)
k+1 + B

(l)
k−1P

(l)
k − C

(l)
k−1P

(l+1)
k + A

(l+2)
k−1

(
P

(l)
k + B

(l)
k−2P

(l)
k−1 − C

(l)
k−2P

(l+1)
k−1

)

+A
(l+1)
k−1

[
P

(l)
k + B

(l)
k−2P

(l)
k−1 − C

(l)
k−2P

(l+1)
k−1

+A
(l+2)
k−2

(
P

(l)
k−1 + B

(l)
k−3P

(l)
k−2 − C

(l)
k−3P

(l+1)
k−2

)]}

We can then collect those polynomials of the same order of k (and upper index l) and

rearrange any remaining term with an upper index of (l+1), so that they all have the same

order, k − 1. To achieve this, (4.3.7a) is used, which also introduces some more terms of

order l, so that the remaining terms are of the form P
(l+1)
k−1 .

xP
(l)
k = P

(l)
k+2 +

(
B

(l)
k + A

(l+2)
k + A

(l+1)
k + A

(l)
k − C

(l)
k

)
P

(l)
k+1

+
{

C
(l)
k A

(l)
k+1 +

(
A

(l+2)
k + A

(l+1)
k + A

(l+1)
k

)(
B

(l)
k−1 − C

(l)
k−1

)

+A
(l+2)
k−1 A

(l+1)
k + A

(l+2)
k−1 A

(l)
k + A

(l+1)
k−1 A

(l)
k

}
P

(l)
k

+
{(

A
(l+2)
k−1 A

(l+1)
k + A

(l+2)
k−1 A

(l)
k + A

(l+1)
k−1 A

(l)
k

)
B

(l)
k−2

+A
(l)
k A

(l+1)
k−1 A

(l+2)
k−2

(
1− C

(l)
k−3

A
(l)
k−1

)}
P

(l)
k−1

+A
(l)
k A

(l+1)
k−1 A

(l+2)
k−2 B

(l)
k−3P

(l)
k−2

−
{(

A
(l+2)
k−1 A

(l+1)
k + A

(l+2)
k−1 A

(l)
k + A

(l+1)
k−1 A

(l)
k

)
C

(l)
k−2 −

A
(l)
k A

(l+1)
k−1 A

(l+2)
k−2 C

(l)
k−3

A
(l)
k−1

+
[
C

(l)
k A

(l)
k+1 − C

(l)
k−1

(
A

(l+2)
k + A

(l+1)
k + A

(l)
k

)]
A

(l)
k

}
P

(l+1)
k−1 (4.3.11)

We note that (4.3.11) contains polynomials all with upper index l, with the exception

of the latter term which contains P
(l+1)
k−1 . Amazingly the coefficient of this term by a

miraculous cancellation vanishes altogether. In fact, expressing (4.3.9) in terms of the



Chapter 4. Formal Elliptic Polynomials 140

Hankel determinants, the coefficient of P
(l+1)
k−1 in (4.3.11) takes the form

(
∆

(l+1)
k ∆

(l+2)
k−2

∆
(l+1)
k−1 ∆

(l+2)
k−1

∆
(l+2)
k−1 ∆

(l+3)
k−3

∆
(l+2)
k−2 ∆

(l+3)
k−2

+
∆

(l)
k ∆

(l+1)
k−2

∆
(l)
k−1∆

(l+1)
k−1

∆
(l+2)
k−1 ∆

(l+3)
k−3

∆
(l+2)
k−2 ∆

(l+3)
k−2

+
∆

(l)
k ∆

(l+1)
k−2

∆
(l)
k−1∆

(l+1)
k−1

∆
(l+1)
k−1 ∆

(l+2)
k−3

∆
(l+1)
k−2 ∆

(l+2)
k−2

)
∆

(l+1)
k−2 ∆

(l+2)
k−2

∆
(l)
k−1∆

(l+3)
k−3

− ∆
(l)
k ∆

(l+1)
k−2

∆
(l)
k−1∆

(l+1)
k−1

∆
(l+1)
k−1 ∆

(l+2)
k−3

∆
(l+1)
k−2 ∆

(l+2)
k−2

∆
(l+2)
k−2 ∆

(l+3)
k−4

∆
(l+2)
k−3 ∆

(l+3)
k−3

∆
(l+1)
k−3 ∆

(l+2)
k−3

∆
(l)
k−2∆

(l+3)
k−4

∆
(l)
k−2∆

(l+1)
k−2

∆
(l)
k−1∆

(l+1)
k−3

+
∆

(l)
k ∆

(l+1)
k−2

∆
(l)
k−1∆

(l+1)
k−1

[
∆

(l+1)
k ∆

(l+2)
k

∆
(l)
k+1∆

(l+3)
k−1

∆
(l)
k+1∆

(l+1)
k−1

∆
(l)
k ∆

(l+1)
k

− ∆
(l+1)
k−1 ∆

(l+2)
k−1

∆
(l)
k ∆

(l+3)
k−2

(
∆

(l+2)
k ∆

(l+3)
k−2

∆
(l+2)
k−1 ∆

(l+3)
k−1

+
∆

(l+1)
k ∆

(l+2)
k−2

∆
(l+1)
k−1 ∆

(l+2)
k−1

+
∆

(l)
k ∆

(l+1)
k−2

∆
(l)
k−1∆

(l+1)
k−1

)]

which can be simplified to the following:

∆
(l+1)
k ∆

(l+2)
k−2 ∆

(l+1)
k−2

∆
(l)
k−1∆

(l+1)
k−1 ∆

(l+3)
k−2

+
∆

(l)
k ∆

(l+1)
k−2 ∆

(l+2)
k−1 ∆

(l+1)
k−2

∆
(l)
k−1∆

(l+1)
k−1 ∆

(l+3)
k−2 ∆

(l)
k−1

+
∆

(l)
k ∆

(l+2)
k−3 ∆

(l+1)
k−2

∆
(l)
k−1∆

(l)
k−1∆

(l+3)
k−3

− ∆
(l)
k ∆

(l+2)
k−3 ∆

(l+1)
k−2

∆
(l)
k−1∆

(l)
k−1∆

(l+3)
k−3

+
∆

(l+1)
k−2 ∆

(l+2)
k

∆
(l)
k−1∆

(l+3)
k−1

− ∆
(l+1)
k−2 ∆

(l+2)
k

∆
(l)
k−1∆

(l+3)
k−1

− ∆
(l+2)
k−2 ∆

(l+1)
k ∆

(l+1)
k−2

∆
(l)
k−1∆

(l+3)
k−2 ∆

(l+1)
k−1

− ∆
(l+1)
k−2 ∆

(l+2)
k−1 ∆

(l)
k ∆

(l+1)
k−2

∆
(l)
k−1∆

(l+3)
k−2 ∆

(l)
k−1∆

(l+1)
k−1

= 0,

where the first and seventh, second and eighth, third and fourth, and fifth and sixth terms

cancel. Thus the relation takes the form of a five-point recurrence relation, namely

xP
(l)
k = P

(l)
k+2 + X

(1)
k P

(l)
k+1 + X

(0)
k P

(l)
k + X

(−1)
k P

(l)
k−1 + X

(−2)
k P

(l)
k−2 . (4.3.12)

where l 6= 0, 1 and in which the coefficients X
(j)
k are given by:

X
(1)
k = A

(l+2)
k + A

(l+1)
k + A

(l)
k + B

(l)
k − C

(l)
k , (4.3.13a)

X
(0)
k =

(
A

(l+2)
k + A

(l+1)
k + A

(l)
k

)(
B

(l)
k−1 − C

(l)
k−1

)
+ C

(l)
k A

(l)
k+1

+A
(l+2)
k−1 A

(l+1)
k + A

(l+2)
k−1 A

(l)
k + A

(l+1)
k−1 A

(l)
k , (4.3.13b)

X
(−1)
k =

(
A

(l+2)
k−1 A

(l+1)
k + A

(l+2)
k−1 A

(l)
k + A

(l+1)
k−1 A

(l)
k

)
B

(l)
k−2 + A

(l+2)
k−2 A

(l+1)
k−1 A

(l)
k

(
1− C

(l)
k−3

A
(l)
k−1

)
,

(4.3.13c)

X
(−2)
k = A

(l+2)
k−2 A

(l+1)
k−1 A

(l)
k B

(l)
k−3 =

∆
(l)
k ∆

(l)
k−3

∆
(l)
k−1∆

(l)
k−2

, (4.3.13d)
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where

A
(l)
k =

∆
(l)
k ∆

(l+1)
k−2

∆
(l)
k−1∆

(l+1)
k−1

, B
(l)
k =

∆
(l)
k ∆

(l+3)
k

∆
(l)
k+1∆

(l+3)
k−1

, C
(l)
k =

∆
(l+1)
k ∆

(l+2)
k

∆
(l)
k+1∆

(l+3)
k−1

or expressed fully are given by:

X
(1)
k =

∆
(l+2)
k ∆

(l+3)
k−2

∆
(l+2)
k−1 ∆

(l+3)
k−1

+
∆

(l+1)
k ∆

(l+2)
k−2

∆
(l+1)
k−1 ∆

(l+2)
k−1

+
∆

(l)
k ∆

(l+1)
k−2

∆
(l)
k−1∆

(l+1)
k−1

+
∆

(l)
k ∆

(l+3)
k

∆
(l)
k+1∆

(l+3)
k−1

− ∆
(l+1)
k ∆

(l+2)
k

∆
(l)
k+1∆

(l+3)
k−1

,

X
(0)
k =

(
∆

(l+2)
k ∆

(l+3)
k−2

∆
(l+2)
k−1 ∆

(l+3)
k−1

+
∆

(l+1)
k ∆

(l+2)
k−2

∆
(l+1)
k−1 ∆

(l+2)
k−1

+
∆

(l)
k ∆

(l+1)
k−2

∆
(l)
k−1∆

(l+1)
k−1

)(
∆

(l)
k−1∆

(l+3)
k−1

∆
(l)
k ∆

(l+3)
k−2

− ∆
(l+1)
k−1 ∆

(l+2)
k−1

∆
(l)
k ∆

(l+3)
k−2

)

+
∆

(l+1)
k ∆

(l+2)
k

∆
(l)
k+1∆

(l+3)
k−1

∆
(l+1)
k ∆

(l+2)
k−2

∆
(l+1)
k−1 ∆

(l+2)
k−1

+
∆

(l+3)
k−3 ∆

(l+1)
k

∆
(l+3)
k−2 ∆

(l+1)
k−1

+
∆

(l+2)
k−1 ∆

(l+3)
k−3

∆
(l+2)
k−2 ∆

(l+3)
k−2

∆
(l)
k ∆

(l+1)
k−2

∆
(l)
k−1∆

(l+1)
k−1

+
∆

(l+2)
k−3 ∆

(l)
k

∆
(l+2)
k−2 ∆

(l)
k−1

,

X
(−1)
k =

(
∆

(l+3)
k−3 ∆

(l+1)
k

∆
(l+3)
k−2 ∆

(l+1)
k−1

+
∆

(l+2)
k−1 ∆

(l+3)
k−3

∆
(l+2)
k−2 ∆

(l+3)
k−2

∆
(l)
k ∆

(l+1)
k−2

∆
(l)
k−1∆

(l+1)
k−1

+
∆

(l+2)
k−3 ∆

(l)
k

∆
(l+2)
k−2 ∆

(l)
k−1

)
∆

(l)
k−2∆

(l+3)
k−2

∆
(l)
k−1∆

(l+3)
k−3

+
∆

(l+3)
k−4 ∆

(l+1)
k−1 ∆

(l)
k

∆
(l+3)
k−3 ∆

(l)
k−1∆

(l+1)
k−1

(
1− ∆

(l+2)
k−3 ∆

(l+1)
k−3

∆
(l+3)
k−4 ∆

(l)
k−1

)
,

X
(−2)
k =

∆
(l)
k ∆

(l)
k−3

∆
(l)
k−1∆

(l)
k−2

.

Thus, we have obtained a five point recurrence relation for Pk in terms of the lower index

k, with explicit coefficient in terms of the Hankel determinants. It is interesting to see that

the last recurrence coefficient X
(−2)
k = hk

hk−2
, especially when Rk = hk

hk−1
in a standard

recurrence relation (1.1.25).

4.3.3 The xQ
(l)
k Recurrence Relation

A similar relation to (4.3.12) can be derived for Q
(l)
k (4.3.2a) as well. This can be most

easily achieved by first deriving a relation between Q and P (namely by employing a

2-row/column Sylvester identity on Q
(l)
k directly), then make use of the xQ recurrence
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relation (4.3.3d). First though, we introduce the following Hankel determinant:

Γ
(l)
k−1 ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el, e2〉 〈el, e3〉 · · · · · · 〈el, ek〉
〈el+2, e2〉 〈el+2, e3〉 · · · · · · 〈el+2, ek〉

...
...

...
...

...
...

〈el+k−1, e2〉 〈el+k−1, e3〉 · · · · · · 〈el+k−1, ek〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (4.3.14a)

then we obtain the relation
∣∣∣∣∣∣∣∣

Q
(l)
k

∣∣∣∣∣∣∣∣
⇒ Q

(l)
k = T

(l+2)
k−1 − ∆

(l+2)
k−2 Γ

(l)
k−1

Θ
(l)
k−1Π

(l+2)
k−2

P
(l+2)
k−1 , (4.3.14b)

which after eliminating the T
(l)
k (using (4.3.5a) together with the Hankel determinant

identity (B.9c)), leads to

Q
(l)
k = P

(l+1)
k +

∆
(l)
k ∆

(l+2)
k−2

Θ
(l)
k−1∆

(l+1)
k−1

P
(l+2)
k−1

= P
(l+1)
k + D

(l)
k P

(l+2)
k−1 , D

(l)
k =

∆
(l)
k ∆

(l+2)
k−2

Θ
(l)
k−1∆

(l+1)
k−1

. (4.3.14c)

While Q
(l)
k can be expressed in terms of P

(l)
k , it is also possible to express P

(l)
k in terms of

Q
(l)
k . By introducing the polynomials S

(l)
k−1 and the following sylvester identities on P

(l)
k

and Q
(l)
k :

S
(l)
k−1(x, y) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el, e2〉 〈el, e3〉 · · · · · · 〈el, ek〉
〈el+2, e2〉 〈el+2, e3〉 · · · · · · 〈el+2, ek〉

...
...

...
...

...
...

〈el+k−2, e2〉 〈el+k−2, e3〉 · · · · · · 〈el+k−2, ek〉
e2 e3 · · · · · · ek

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/
Γ

(l)
k−2 ,

(4.3.15a)
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we subsequently obtain the relations:∣∣∣∣∣∣∣∣
Q

(l)
k

∣∣∣∣∣∣∣∣
⇒ Q

(l)
k = S

(l)
k−1 −

Γ
(l)
k−1Θ

(l)
k−2

Γ
(l)
k−2Θ

(l)
k−1

Q
(l)
k−1 , (4.3.15b)

∣∣∣∣∣∣∣∣
P

(l)
k

∣∣∣∣∣∣∣∣
⇒ P

(l)
k = S

(l)
k−1 −

Π
(l)
k−1Θ

(l)
k−2

Γ
(l)
k−2∆

(l)
k−1

Q
(l)
k−1 , (4.3.15c)

which after elimination of S
(l)
k−1 and making use of the Hankel determinant identity (B.9d)

leaves:

Q
(l)
k = P

(l)
k − ∆

(l)
k Θ

(l)
k−2

∆
(l)
k−1Θ

(l)
k−1

Q
(l)
k−1

= P
(l)
k −W

(l)
k Q

(l)
k−1, W

(l)
k =

∆
(l)
k Θ

(l)
k−2

∆
(l)
k−1Θ

(l)
k−1

. (4.3.15d)

These linear equations involving Q and P provide all the necessary components to derive

an xQ recurrence relation. We start with (4.3.3d), the xQ relation established earlier and

write it as

xQ
(l+2)
k = P

(l)
k+2 + U

(l)
k P

(l)
k+1 − V

(l)
k Q

(l)
k+1 (4.3.16)

where

U
(l)
k =

∆
(l)
k Θ

(l+2)
k

∆
(l)
k+1Θ

(l+2)
k−1

, V
(l)
k =

Θ
(l)
k ∆

(l+2)
k

∆
(l)
k+1Θ

(l+2)
k−1

then use (4.3.14c) to eliminate the Q and (4.3.7a) P
(l)
k = P

(l+1)
k + A

(l)
k P

(l+1)
k−1 to get the P

of the same order as xQ.

xQ
(l+2)
k = P

(l+1)
k+2 + A

(l)
k+2P

(l+1)
k+1 + U

(l)
k (P

(l+1)
k+1 + A

(l)
k+1P

(l+1)
k )− V

(l)
k (P

(l+1)
k+1 + D

(l)
k+1P

(l+2)
k )

= P
(l+2)
k+2 + A

(l+1)
k+2 P

(l+2)
k+1 + (A

(l)
k+2 + U

(l)
k − V

(l)
k )(P

(l+2)
k+1 + A

(l+1)
k+1 P

(l+2)
k )

+U
(l)
k A

(l)
k+1(P

(l+2)
k + A

(l+1)
k P

(l+2)
k−1 )− V

(l)
k D

(l)
k+1P

(l+2)
k

Now the order of the relation can just be reduced by 2 and by using (4.3.15d) all the P

can be re-expressed as Q and we obtain the five-point recurrence relation for Q
(l)
k , namely

xQ
(l)
k = Q

(l)
k+2 + X̄

(1)
k Q

(l)
k+1 + X̄

(0)
k Q

(l)
k + X̄

(−1)
k Q

(l)
k−1 + X̄

(−2)
k Q

(l)
k−2 , (4.3.17)
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in which the coefficients X̄
(j)
k are given by:

X̄
(1)
k = A

(l−1)
k+2 + A

(l−2)
k+2 + U

(l−2)
k − V

(l−2)
k + W

(l)
k+2 , (4.3.18a)

X̄
(0)
k = W

(l)
k+1

(
A

(l−1)
k+2 + A

(l−2)
k+2 + U

(l−2)
k − V

(l−2)
k

)
+

(
A

(l−2)
k+2 + U

(l−2)
k − V

(l−2)
k

)
A

(l−1)
k+1 + U

(l−2)
k A

(l−2)
k+1 − V

(l−2)
k D

(l−2)
k+1 (4.3.18b)

X̄
(−1)
k = W

(l)
k

(
(A

(l−2)
k+2 + U

(l−2)
k − V

(l−2)
k )A

(l−1)
k+1 + U

(l−2)
k A

(l−2)
k+1 − V

(l−2)
k D

(l−2)
k+1

)

+U
(l−2)
k A

(l−2)
k+1 A

(l−1)
k (4.3.18c)

X̄
(−2)
k = U

(l−2)
k A

(l−2)
k+1 A

(l−1)
k W

(l)
k−1 =

Θ
(l)
k Θ

(l)
k−3

∆
(l)
k−1Θ

(l)
k−2

. (4.3.18d)

which can be expressed explicitly in terms of their respective Hankel determinants

X̄
(1)
k =

1

∆
(l−2)
k+1 ∆

(l−1)
k+1 Θ

(l)
k−2

(
∆

(l−1)
k Θ

(l)
k−2∆

(l)
k−1 + ∆

(l−2)
k ∆

(l−1)
k+1 Θ

(l)
k −Θ

(l−2)
k ∆

(l−1)
k+1 ∆

(l)
k

)

+
1

∆
(l−1)
k+1 ∆

(l)
k+1Θ

(l)
k+1

(
∆

(l−1)
k+2 ∆

(l)
k Θ

(l)
k+1 + ∆

(l)
k+2∆

(l−1)
k+1 Θ

(l)
k

)
(4.3.19a)

X̄
(0)
k =

∆
(l−2)
k+2

∆
(l−2)
k+1 ∆

(l)
k

(
∆

(l−1)
k Θ

(l)
k−1∆

(l)
k+1

∆
(l−1)
k+1 Θ

(l)
k

+
∆

(l)
k−1∆

(l−1)
k+1

∆
(l−1)
k

)
+

∆
(l−1)
k+2 Θ

(l)
k−1

∆
(l−1)
k+1 Θ

(l)
k

+
∆

(l)
k+1

Θ
(l)
k ∆

(l)
k ∆

(l−2)
k+1

(
∆

(l−2)
k Θ

(l)
k −∆

(l)
k Θ

(l−2)
k

)
− ∆

(l)
k ∆

(l)
k−1

∆
(l−1)
k Θ

(l)
k−1

+
∆

(l−1)
k+1 ∆

(l)
k−1

∆
(l−1)
k ∆

(l)
k ∆

(l−2)
k+1 Θ

(l)
k−1

(
∆

(l−2)
k Θ

(l)
k −∆

(l)
k Θ

(l−2)
k

)
+

Θ
(l)
k ∆

(l−1)
k−1

∆
(l−1)
k Θ

(l)
k−1

(4.3.19b)

X̄
(−1)
k =

Θ
(l)
k Θ

(l)
k−2

Θ
(l)
k−1Θ

(l)
k−1

(
∆

(l−1)
k ∆

(l−2)
k+1

∆
(l−1)
k+1 ∆

(l−2)
k

+
∆

(l)
k ∆

(l)
k−2

∆
(l)
k−1∆

(l)
k−1

)
− Θ

(l)
k−2

Θ
(l)
k−1

(
∆

(l−2)
k+2

∆
(l−2)
k+1

− ∆
(l)
k ∆

(l)
k

∆
(l)
k−1∆

(l−1)
k

)

+
∆

(l)
k

Θ
(l)
k−1∆

(l−1)
k

(
Θ

(l)
k ∆

(l−1)
k−1

∆
(l)
k−1

− ∆
(l−1)
k+1 Θ

(l−2)
k

∆
(l−2)
k+1

)
(4.3.19c)

X̄
(−2)
k =

Θ
(l)
k Θ

(l)
k−3

∆
(l)
k−1Θ

(l)
k−2

(4.3.19d)

This time we have obtained a five point recurrence relation for Qk in terms of the lower

order k and where the upper index l remains fixed. The coefficients consist of both the ∆

and Θ Hankel determinants, and have been described above.
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4.3.4 Bilinear Identities for Hankel Determinants

We have seen that all of the key relations have involved P
(l)
k and Q

(l)
k . Thus by extension

they also involve ∆
(l)
k and Θ

(l)
k , so it is important to find any relations between them. First

we derive a three term bilinear relation, which can be constructed in two separate ways.

The first way involves combining three other three-term Hankel determinant relations,

thus from (B.9c) and (B.10a) we obtain the following relation:

∆
(l+1)
k−1 (Θ

(l)
k−1Π

(l+2)
k−1 −Θ

(l)
k Π

(l+2)
k−2 ) = ∆

(l+2)
k−1 (Θ

(l)
k−1Π

(l+1)
k−1 −∆

(l)
k Π

(l+2)
k−2 ) (4.3.20)

which is expanded (in the third term) using (B.9a).

∆
(l+1)
k−1 (Θ

(l)
k−1Π

(l+2)
k−1 −Θ

(l)
k Π

(l+2)
k−2 ) = Θ

(l)
k−1(∆

(l+1)
k−1 Π

(l+2)
k−1 −∆

(l+1)
k Π

(l+2)
k−2 )−∆

(l+2)
k−1 ∆

(l)
k Π

(l+2)
k−2

After we have cancelled the necessary terms, we are left with the following relation.

∆
(l)
k ∆

(l+2)
k−1 = Θ

(l)
k ∆

(l+1)
k−1 −Θ

(l)
k−1∆

(l+1)
k (4.3.21)

The second way involves using an inner product of (4.3.14c) with el+k and the inner

products:

〈Q(l)
k , el+k〉 =

Θ
(l)
k

Θ
(l)
k−1

, (4.3.22a)

〈P (l)
k , el+k−1〉 =

∆
(l)
k

∆
(l)
k−1

, (4.3.22b)

then we get the same relation (after reducing).

Θ
(l)
k

Θ
(l)
k−1

=
∆

(l+1)
k

∆
(l+1)
k−1

+
∆

(l)
k ∆

(l+2)
k−2

Θ
(l)
k−1∆

(l+1)
k−1

∆
(l+2)
k−1

∆
(l+2)
k−2

(4.3.23)

We find another relation by using the 3 row/column sylvester identity,
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
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from which we derive a four-term bilinear relation involving only the Hankel determinants

∆
(l)
k and Θ

(l)
k .

∆
(l)
k ∆

(l+4)
k−3 = ∆

(l)
k−1∆

(l+4)
k−2 −Θ

(l)
k−1∆

(l+3)
k−2 + ∆

(l+1)
k−1 Θ

(l+2)
k−2 (4.3.24)

It is also possible to derive this relation from the inner product 〈(4.3.3e), el+k−1〉. Then

(4.3.24) and (4.3.21), provide a coupled system for the Hankel determinants ∆ and Θ.

We can rewrite these Hankel determinants in order to eliminate the Θ
(l)
k . Thus we have

∆
(l)
k ∆

(l+2)
k−1

∆
(l+1)
k ∆

(l+1)
k−1

=
Θ

(l)
k

∆
(l+1)
k

− Θ
(l)
k−1

∆
(l+1)
k−1

(4.3.25a)

∆
(l)
k ∆

(l+4)
k−3

∆
(l+1)
k−1 ∆

(l+3)
k−2

− ∆
(l)
k−1∆

(l+4)
k−2

∆
(l+1)
k−1 ∆

(l+3)
k−2

=
Θ

(l+2)
k−2

∆
(l+3)
k−2

− Θ
(l)
k−1

∆
(l+1)
k−1

(4.3.25b)

which can be expressed in a simpler way by

A
(l)
k = Γ

(l)
k − Γ

(l)
k−1,

B
(l)
k = Γ

(l+2)
k−2 − Γ

(l)
k−1,

where Γ
(l)
k =

Θ
(l)
k

∆
(l+1)
k

. From these two expressions we have

B
(l)
k+3 + A

(l)
k+2 + A

(l)
k+1 = Γ

(l+2)
k+1 − Γ

(l)
k

A
(l+2)
k+1 + B

(l)
k+2 + A

(l)
k+1 = Γ

(l+2)
k+1 − Γ

(l)
k

hence

∆
(l)
k+3∆

(l+4)
k ∆

(l+1)
k+1 −∆

(l)
k+2∆

(l+4)
k+1 ∆

(l+1)
k+1 + ∆

(l)
k+2∆

(l+2)
k+1 ∆

(l+3)
k+1

∆
(l+1)
k+1 ∆

(l+3)
k+1 ∆

(l+1)
k+2

=
∆

(l+2)
k+1 ∆

(l+4)
k ∆

(l+1)
k+1 + ∆

(l)
k+2∆

(l+4)
k−1 ∆

(l+3)
k+1 −∆

(l)
k+1∆

(l+4)
k ∆

(l+3)
k+1

∆
(l+3)
k ∆

(l+1)
k+1 ∆

(l+3)
k+1

. (4.3.26)

Having seen that we can acquire Hankel determinant relations using inner products we

introduce another Hankel determinant Σl
k, which like the Θk has a row removed, except
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this row is near the bottom.

Σ
(l)
k−1 ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el, e0〉 〈el, e2〉 · · · · · · 〈el, ek−1〉
〈el+1, e0〉 〈el+1, e2〉 · · · · · · 〈el+1, ek−1〉

...
...

...

〈el+k−3, e0〉 〈el+k−3, e2〉 · · · · · · 〈el+k−3, ek−1〉
〈el+k−1, e0〉 〈el+k−1, e2〉 · · · · · · 〈el+k−1, ek−1〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, l 6= 0, 1

(4.3.27)

Thus we have the following bilinear relations in terms of Σ
(l)
k and ∆

(l)
k . From the inner

product 〈(4.3.7a), el+k〉, we have

∆
(l+1)
k ∆

(l)
k−1 = Σ

(l)
k ∆

(l+1)
k−1 −∆

(l)
k Σ

(l+1)
k−1 (4.3.28a)

with

〈P (l)
k , el+k〉 =

Σ
(l)
k

∆
(l)
k−1

,

and using 〈(4.3.3a), el+k−1〉, we have

∆
(l)
k ∆

(l+3)
k−3 = Σ

(l+3)
k−2 ∆

(l)
k−1 −∆

(l+3)
k−2 Σ

(l)
k−1 + ∆

(l+2)
k−2 ∆

(l+1)
k−1 . (4.3.28b)

So in a similar way as before arrange the Σ so we have

∆
(l+1)
k ∆

(l)
k−1

∆
(l)
k ∆

(l+1)
k−1

=
Σ

(l)
k

∆
(l)
k

− Σ
(l+1)
k−1

∆
(l+1)
k−1

(4.3.29a)

∆
(l)
k ∆

(l+3)
k−3 −∆

(l+2)
k−2 ∆

(l+1)
k−1

∆
(l)
k−1∆

(l+3)
k−2

=
Σ

(l+3)
k−2

∆
(l+3)
k−2

− Σ
(l)
k−1

∆
(l)
k−1

(4.3.29b)

then eliminate the Σ from the two relations to get

∆
(l+3)
k ∆

(l+1)
k+1 ∆

(l+4)
k−2 −∆

(l+3)
k−1 ∆

(l+3)
k ∆

(l+2)
k + ∆

(l+4)
k ∆

(l+3)
k−1 ∆

(l+1)
k

∆
(l+4)
k−1 ∆

(l+1)
k ∆

(l+3)
k

=
∆

(l)
k+2∆

(l+3)
k−1 ∆

(l+1)
k −∆

(l+2)
k ∆

(l+1)
k+1 ∆

(l+1)
k + ∆

(l+1)
k+1 ∆

(l)
k ∆

(l+3)
k

∆
(l)
k+1∆

(l+3)
k ∆

(l+1)
k

. (4.3.30)
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If we rearrange the grouping of (4.3.26) and (4.3.30) respectively, we can see that they

give the same result:

∆
(l)
k+1

(
∆

(l+4)
k ∆

(l+1)
k ∆

(l+3)
k−1 −∆

(l+2)
k ∆

(l+3)
k ∆

(l+3)
k−1 + ∆

(l+4)
k−2 ∆

(l+3)
k ∆

(l+1)
k+1

)

= ∆
(l+4)
k−1

(
∆

(l)
k+2∆

(l+1)
k ∆

(l+3)
k−1 −∆

(l+2)
k ∆

(l+1)
k ∆

(l+1)
k+1 + ∆

(l)
k ∆

(l+3)
k ∆

(l+1)
k+1

)

(4.3.31)

((4.3.30) has an index of one less than (4.3.26)). This consistency between the two

relations has yielded a single relation for ∆
(l)
k .

4.3.5 The yP̄
(l+3)
k -Recurrence Relation

Having obtained the main five-point recurrence relations (4.3.12) and (4.3.17) for the

orthogonal polynomials describing their dependence on the variable x, we still need an

additional recurrence relation describing the dependence on the variable y. From the

orthogonality we expect the y-recurrence relation to be a seven-point relation in view of

the increase in the order of the monomials through the multiplication with y. Furthermore,

it will be this relation that will crucially incorporate the dependence on the Weierstrass

curve.

In order to derive these y-relations we need to introduce the following intermediate

polynomials:

P̄
(l+3)
k (x, y) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el · e3, e0〉 〈el · e3, e2〉 · · · · · · 〈el · e3, ek〉
〈el+1 · e3, e0〉 〈el+1 · e3, e2〉 · · · · · · 〈el+1 · e3, ek〉

...
...

...
...

...
...

〈el+k−2 · e3, e0〉 〈el+k−2 · e3, e2〉 · · · · · · 〈el+k−2 · e3, ek〉
e0 e2 · · · · · · ek

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/
∆̄

(l+3)
k−1 ,

(4.3.32a)
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together with the corresponding Hankel determinant:

∆̄
(l+3)
k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el · e3, e0〉 〈el · e3, e2〉 · · · · · · 〈el · e3, ek〉
〈el+1 · e3, e0〉 〈el+1 · e3, e2〉 · · · · · · 〈el+1 · e3, ek〉

...
...

...
...

...
...

〈el+k−1 · e3, e0〉 〈el+k−1 · e3, e2〉 · · · · · · 〈el+k−1 · e3, ek〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(4.3.32b)

The reason for this new determinant is because of the curve and corresponding

monomials. Unlike the x, which appears in every monomial (with the exception of the

first couple of terms), the y only appears in the odd monomials.

e0 = 1 , e2 = x , e3 = y , e4 = x2 , e5 = xy , e6 = x3 ,

e7 = x2y , e8 = x4 , e9 = x3y , e10 = x5 , · · ·

Thus it is necessary to use the curve to bring y into the even monomials as well. However,

a consequence of this is that we are no longer dealing with the original determinant since

we have two possible values depending on whether l is odd or even.

el =





el−3y l odd l ≥ 3

1
4
(el−3y + g2el−4 + g3el−6) l even l ≥ 6

Remark: We note that the polynomials P̄
(l)
k are orthogonal w.r.t. the functional

L̄(·) = L(e3·) , with the corresponding Hankel determinants ∆̄
(l)
k being defined

accordingly . Similarly we could define associated polynomials Q̄
(l)
k and its associated

Hankel determinants Θ̄
(l)
k by replacing in the definitions (4.3.2a), (4.3.2b) respectively the

brackets associated with the functional L by those associated with L̄. All the relations

(4.3.3), together with (4.3.24) that we have derived between the P ’s and the Q’s, as well

as the subsequent relations (4.3.3c)-(4.3.3e), hold equally well between the P̄ ’s and Q̄’s

by replacing everywhere the objects without the bar by those with bars.
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In terms of these objects we can now formulate the following recurrence relation which

we obtain from the 4-row/column Sylvester identity:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

and apply it to (4.3.1a) P
(l)
k (except with the curve brought in).

(
1
4

)[ k
2
]−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el, e0〉 〈el, e2〉 〈ely, e0〉 〈el, e4〉 〈ely, e2〉 · · · 〈ely, ek−3〉
〈el+1, e0〉 〈el+1, e2〉 〈el+1y, e0〉 〈el+1, e4〉 〈el+1y, e2〉 · · · 〈el+1y, ek−3〉
〈el+2, e0〉 〈el+2, e2〉 〈el+2y, e0〉 〈el+2, e4〉 〈el+2y, e2〉 · · · 〈el+2y, ek−3〉

...
...

...
...

〈el+k−2, e0〉 〈el+k−2, e2〉 〈el+k−2y, e0〉 〈el+k−2,e4〉 〈el+k−2y, e2〉 · · · 〈el,ek〉
e0 e2 ye0 e4 ye2 · · · yek−3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

For this case,
(

1
4

)[ k
2
]−2 only appears when (k

2
−2) ε Z. Then we get the following relation

(which introduces the P̄ ):

P
(l)
k ∆

(l)
k−1∆̄

(l+5)
k−4 =

(
1

4

)[ k
2
]−2

4[ k−5
2

]∆
(l)
k−1yP̄

(l+5)
k−3 ∆̄

(l+5)
k−4

−
(

1

4

)[ k
2
]−2

∆̄
(l+5)
k−3 4[ k−5

2
]P

(l)
k−1∆

(l)
k−1

+

(
1

4

)[ k
2
]−2

4[ k−5
2

]Q
(l)
k−1Θ

(l)
k−2∆̄

(l+4)
k−3

−
(

1

4

)[ k
2
]−2

Θ̄
(l+3)
k−3 4[ k−5

2
]P

(l+1)
k−1 ∆

(l+1)
k−2 (4.3.33)

and we reintroduce the 4 when the determinant retains its normal form P
(l)
k , Q

(l)
k . This
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relation can be reduced by making use of the fact that

(
1

4

)[ k
2
]−2

4[ k−5
2

] = 4[ k−1
2

]−[ k
2
] =





1 , k odd ,

1
4

, k even ,
(4.3.34)

and we are left with

4εkP
(l)
k = yP̄

(l+5)
k−3 − ∆

(l)
k−2∆̄

(l+5)
k−3

∆
(l)
k−1∆̄

(l+5)
k−4

P
(l)
k−1

+
Θ

(l)
k−2∆̄

(l+4)
k−3

∆
(l)
k−1∆̄

(l+5)
k−4

Q
(l)
k−1 −

∆
(l+1)
k−2 Θ̄

(l+3)
k−3

∆
(l)
k−1∆̄

(l+5)
k−4

P
(l+1)
k−1 , (4.3.35)

where

εk =





0 , k odd ,

1 , k even .

Like before it is possible to get a bilinear relation by taking the inner product of this

relation with el+k−1, 〈(4.3.35), el+k−1〉,

4εk∆
(l)
k ∆̄

(l+5)
k−4 = Σ̄

(l+5)
k−3 ∆

(l)
k−1 −∆

(l+5)
k−3 Σ

(l)
k−1 + ∆̄

(l+4)
k−3 Θ

(l)
k−1 − Θ̄

(l+3)
k−3 ∆

(l+1)
k−1 . (4.3.36)

Using (4.3.14c), it is possible to eliminate Qk−1 from the relation in order to acquire a yP̄

relation, dependent on P and P̄ only.

4εkP
(l)
k = yP̄

(l+5)
k−3 − ∆

(l)
k−2∆̄

(l+5)
k−3

∆
(l)
k−1∆̄

(l+5)
k−4

P
(l)
k−1

+
Θ

(l)
k−2∆̄

(l+4)
k−3

∆
(l)
k−1∆̄

(l+5)
k−4

(
P

(l+1)
k−1 +

∆
(l)
k−1∆

(l+2)
k−3

Θ
(l)
k−2∆

(l+1)
k−2

P
(l+2)
k−2

)
− ∆

(l+1)
k−2 Θ̄

(l+3)
k−3

∆
(l)
k−1∆̄

(l+5)
k−4

P
(l+1)
k−1

(4.3.37)

Then through this relation a closed-form of the P̄
(l+3)
k (one in which the superindex l

remains fixed) can be derived, using the same method which helped derive the xP relation.

Consider (4.3.7a), except applied to a P̄
(l+3)
k instead of a P

(l)
k , leads to the relation:

P̄
(l+3)
k = P̄

(l+4)
k +

∆̄
(l+3)
k ∆̄

(l+4)
k−2

∆̄
(l+3)
k−1 ∆̄

(l+4)
k−1

P̄
(l+4)
k−1 . (4.3.38)
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Combining the two equations (4.3.35) and (4.3.38) gives way to a four-point recurrence

relation, where the coefficient of P
(l+1)
n−1 reduces again to zero.

yP̄
(l+3)
k = 4εkP

(l)
k+3 + y

(2)
k P

(l)
k+2 + y

(1)
k P

(l)
k+1 + y

(0)
k P

(l)
k (4.3.39)

The explicit forms of the coefficients y
(j)
k are given by:

y
(2)
k = 4εk

(
H

(l)
k + H

(l+1)
k

)
+ D

(l)
k − E

(l)
k (4.3.40a)

y
(1)
k = 4εkH

(l+1)
k−1 H

(l)
k + D

(l)
k−1

(
H

(l)
k + H

(l+1)
k

)
− E

(l)
k−1

(
H

(l+1)
k + H

(l)
k

)
−G

(l)
k + A

(l)
k+2E

(l)
k

(4.3.40b)

y
(0)
k = H

(l)
k H

(l+1)
k−1 D

(l)
k−2 (4.3.40c)

and in which:

H
(l)
k =

∆̄
(l+3)
k ∆̄

(l+4)
k−2

∆̄
(l+3)
k−1 ∆̄

(l+4)
k−1

, D
(l)
k =

∆
(l)
k−2∆̄

(l+5)
k−3

∆
(l)
k−1∆̄

(l+5)
k−4

, G
(l)
k =

∆
(l+2)
k−3 ∆̄

(l+4)
k−3

∆
(l+1)
k−2 ∆̄

(l+5)
k−4

E
(l)
k =

(Θ
(l)
k−2∆̄

(l+4)
k−3 − Θ̄

(l+3)
k−3 ∆

(l+1)
k−2 )

∆
(l)
k−1∆̄

(l+5)
k−4

.

While this relation no-longer has the monic form, the inclusion of the 4 isn’t a great

surprise, given that the curve itself is not monic in nature. In principal the transformation

from P → P̄ , just brings an extra y into the determinants, but unlike the x, it is not

absorbed into inner product and instead provides us with a choice for the value of ely.

One approach to solving this problem would be to derive a linear relation that relates P̄k

and Pk in a similar way to (4.3.7a), however if this relation does exist we have not been

able to find it using current techniques. Such a relation would have provided one way

of eliminating P̄
(l+3)
k from (4.3.39). As a plan for the future, we could bar this entire

equation, which would bar all the normal P
(l)
k , but have the knock-on effect of adding an

additional bar to P̄
(l)
k . Now the problem is to consider the transformation ¯̄P → P , which

may require additional determinant identities to break this new structure down.

This equation can also be acquired using similar techniques, except applied to the quantity
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R
(l)
k :

R
(l)
k (x, y) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el, e0〉 〈el, e2〉 · · · · · · 〈el, ek〉
〈el+1, e0〉 〈el+1, e2〉 · · · · · · 〈el+1, ek〉

...
...

...

〈el+k−3, e0〉 〈el+k−3, e2〉 · · · · · · 〈el+k−3, ek〉
〈el+k−1, e0〉 〈el+k−1, e2〉 · · · · · · 〈el+k−1, ek〉

e0 e2 · · · · · · ek

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/
Σ

(l)
k−1 , l 6= 0, 1

(4.3.41a)

with corresponding Hankel determinant Σ
(l)
k (4.3.27), which is the P

(l)
k with the row

before the penultimate row removed. Then using two row/column identities similar

to before with intermediate quantities (identities with the first column removed), it is

possible to acquire relations between R
(l)
k and P

(l)
k , of which the most useful is:

R
(l)
k = P

(l)
k − ∆

(l)
k−2∆

(l)
k

Σ
(l)
k−1∆

(l)
k−1

P
(l)
k−1, (4.3.41b)

This equation is useful because it removes R
(l)
k from a 4 row/column identity on P

(l)
k .

While the R
(l)
k provides an alternate approach (from the point of view of analysis), to the

P̄
(l)
k problem it is not as useful as Q

(l)
k , since Q

(l)
k is valid for l = 0.

4.4 Compatibility, Consistency and Elliptic Polynomials

We begin this section with looking at the compatibility between the two recurrence

relations (4.2.6). Since (4.2.6a) and (4.2.6b) are connected through the elliptic curve

(4.2.1), the coefficients in the corresponding difference operators are not independent, but

are related through the curve.

We begin this chapter by stating the consistency relations for the recurrence coefficients

Xk, Yk, which we can describe using inner product relations and can be expressed in terms

of hk.
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4.4.1 Consistency in x

The consistency relations involving the Xk are:

〈xPk+2, Pk〉 = 〈Pk+2, xPk〉 ⇒ X
(−2)
k+2 hk = hk+2

⇒ X
(−2)
k =

hk

hk−2

(4.4.1a)

〈xPk+1, Pk〉 = 〈Pk+1, xPk〉 ⇒ X
(−1)
k+1 hk = X

(1)
k hk+1

⇒ X
(−1)
k

X
(1)
k−1

=
hk

hk−1

(4.4.1b)

where the first (4.4.1a), can be seen in (4.3.13d) and requires no reduction.

X
(−2)
k =

∆
(l)
k ∆

(l)
k−3

∆
(l)
k−1∆

(l)
k−2

4.4.2 Consistency in y

Now the relations involving the Yk:

〈yPk+3, Pk〉 = 〈Pk+3, yPk〉 ⇒ Y
(−3)
k+3 hk = hk+3

⇒ Y
(−3)
k = 4εk

hk

hk−3

(4.4.2a)

〈yPk+2, Pk〉 = 〈Pk+2, yPk〉 ⇒ Y
(−2)
k+2 hk = Y

(2)
k hk+2

⇒ Y
(−2)
k

Y
(2)
k−2

=
hk

hk−2

(4.4.2b)

〈yPk+1, Pk〉 = 〈Pk+1, yPk〉 ⇒ Y
(−1)
k+1 hk = Y

(1)
k hk+1

⇒ Y
(−1)
k

Y
(1)
k−1

=
hk

hk−1

(4.4.2c)

where

εk =





1 , k odd ,

0 , k even .

While we cannot explore the consistency of these relations using explicit derivations of

the y recurrence coefficients, we can use them in compatibility relations.
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4.4.3 Compatibility Relations

As we have seen in (4.2.6b), the leading monomials in the full expansion of yPk

have different values depending on whether k is odd or even. This distinction is very

important, especially when considering the question of compatibility. Here we consider

the compatibility between the curve and Pk, (y2)Pk = (4x3−g2x−g3)Pk for the separate

cases of odd and even.

P2n = xn + p
(2n−1)
2n xn−2y + p

(2n−2)
2n xn−1 + p

(2n−3)
2n xn−3y + p

(2n−4)
2n xn−2 + . . .

P2n+1 = xn−1y + p
(2n)
2n+1x

n + p
(2n−1)
2n+1 xn−2y + p

(2n−2)
2n+1 xn−1 + p

(2n−3)
2n+1 xn−3y + . . .

Multiplying (4.2.3a) and (4.2.3b) by x3 and y2,

x3P2n = xn+3 + . . . , x3P2n+1 = xn+2y + . . .

y2P2n = xny2 + p
(2n)
2n−1x

n−2y3 + p
(2n)
2n−2x

n−1y2 + p
(2n)
2n−3x

n−3y3 + p
(2n)
2n−4x

n−2y2 + . . .

y2P2n+1 = xn−1y3 + p
(2n+1)
2n xny2 + p

(2n+1)
2n−1 xn−2y3 + p

(2n+1)
2n−2 xn−1y2 + p

(2n+1)
2n−3 xn−3y3 + . . .

which for the yPk, reduces to

y2P2n = 4xn+3 + 4p
(2n)
2n−1x

n+1y + 4p
(2n)
2n−2x

n+2 + 4p
(2n)
2n−3x

ny + (4− g2)p
(2n)
2n−4x

n+1 + . . .

y2P2n+1 = 4xn+2y + 4p
(2n+1)
2n xn+3 + 4p

(2n+1)
2n−1 xn+1y + 4p

(2n+1)
2n−2 xn+2 + 4p

(2n+1)
2n−3 xny + . . .

(4.4.3)

gives an indication of the shape of the two cases, where now a factor of 4 appears in the

leading term for both. Thus we consider the inner product relation

〈y2Pk, Pk〉 = 〈(4x3 − g2x− g3)Pk, Pk〉
= 〈4x3Pk, Pk〉 − 〈g2xPk, Pk〉 − 〈g3Pk, Pk〉 (4.4.4)

which provide relations between the two sets of coefficients of the two recurrence

relations (Appendix D). Of these 13 relations, we see that the first and last terms are

either given or derived using the consistency relations for x and y.
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Having established the formal structure of the elliptic polynomials (through the recurrence

relations), we can now consider how the recurrence relations can be applied. The main

uses are deriving the two-variable elliptic polynomials, but we also include a derivation

of the elliptic Christoffel-Darboux formula.

4.4.4 Elliptic Polynomials

In order to construct the elliptic polynomials it is necessary to use both of the recurrence

relations, along with a few initial conditions. The x and y recurrence relations (4.2.6) are

defined as

xPk = Pk+2 + X
(1)
k Pk+1 + X

(0)
k Pk + X

(−1)
k Pk−1 + X

(−2)
k Pk−2,

yPk = 4εkPk+3 + Y
(2)
k Pk+2 + Y

(1)
k Pk+1 + Y

(0)
k Pk + Y

(−1)
k Pk−1 + Y

(−2)
k Pk−2 + Y

(−3)
k Pk−3,

and we consider the initial conditions

P0 = 1 , P−1 = P−2 = P−3 = 0. (4.4.5)

While these are the main initial conditions it is also necessary to make a certain allowance.

Now since P1 does not exist, we must let any coefficient that would normally be coupled

with P1 take the value of 0. Moving on to the construction of the polynomials, consider

the first four polynomials (which are fully derived in (E)):

P(0) = 1 (4.4.6a)

P(2) = x−X
(0)
0 (4.4.6b)

P(3) = y − Y
(2)
0 x + (X

(0)
0 Y

(2)
0 − Y

(0)
0 ) (4.4.6c)

P(4) = x2 −X
(1)
2 y + (X

(1)
2 Y

(2)
0 −X

(0)
2 −X

(0)
0 )x−

(
X

(1)
2 (X

(0)
0 Y

(2)
0 − Y

(0)
0 )

−(X
(0)
2 X

(0)
0 + X

(−2)
2 )

)
(4.4.6d)

For values of higher order k we have multiple equations since its is possible to create P5

in two different ways, either through yP2 or xP3. Here we provide what we consider to
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the main form for P5, P6 and P7 where their alternate forms and governing relations are

located in Appendix (E).

P5 = xy − Y
(2)
2 x2 +

(
Y

(2)
2 X

(1)
2 − Y

(1)
2 −X

(0)
0

)
y

−
(
Y

(2)
2 (X

(1)
2 Y

(2)
0 −X

(0)
2 −X

(0)
0 )− Y

(1)
2 Y

(2)
0 + Y

(0)
2

)
x

+
(
Y

(2)
2

(
X

(1)
2 (X

(0)
0 Y

(2)
0 − Y

(0)
0 )− (X

(0)
0 X

(0)
2 −X

(−2)
2 )

)

−Y
(1)
2 (X

(0)
0 Y

(2)
0 − Y

(0)
0 ) + Y

(0)
2 X

(0)
0 − Y

(−2)
2

)
(4.4.7a)

4P6 = y2 − (Y
(2)
3 + Y

(2)
0 )xy + (Y

(2)
3 Y

(2)
2 − Y

(1)
3 )x2

−
(
Y

(2)
3 (Y

(2)
2 X

(1)
2 − Y

(1)
2 −X

(0)
0 )− Y

(1)
3 X

(1)
2 + Y

(0)
3 − (X

(0)
0 Y

(2)
0 − Y

(0)
0 )

)
y

+
(
Y

(2)
3 (Y

(2)
2 (Y

(2)
0 X

(1)
2 −X

(0)
2 −X

(0)
0 )− Y

(1)
2 Y

(2)
0 + Y

(0)
2 )

−Y
(1)
3 (Y

(2)
0 X

(1)
2 −X

(0)
2 −X

(0)
0 ) + Y

(0)
3 Y

(2)
0 − Y

(−1)
3

)
x

−
(
Y

(2)
3

(
Y

(2)
2 (X

(1)
2 (X

(0)
0 Y

(2)
0 − Y

(0)
0 )− (X

(0)
2 X

(0)
0 −X

(−2)
2 ))− Y

(1)
2 (X

(0)
0 Y

(2)
0 − Y

(0)
0 )

+Y
(0)
2 X

(0)
0 − Y

(−2)
2

)
− Y

(1)
3

(
X

(1)
2 (X

(0)
0 Y

(2)
0 − Y

(0)
0 )− (X

(0)
2 X

(0)
0 −X

(−2)
2 )

)

+Y
(0)
3 (X

(0)
0 Y

(2)
0 − Y

(0)
0 )− Y

(−1)
3 X

(−0)
0 + Y

(−3)
3

)
(4.4.7b)

4.5 Elliptic Christoffel-Darboux Identities

In a similar way as in (1), identities can be constructed of a Christoffel-Darboux form

for both the x and y. Since these polynomials are already in two variables , we use the ′

notation, where the ′ in this case refers to the alternate variables (x′, y′).
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4.5.1 The x Elliptic Christoffel-Darboux Identity

Using the form of the x-recurrence relation and take differences:

(xPn = Pn+2 + X(1)Pn+1 + X(0)Pn + X(−1)Pn−1 + X(−2)Pn−2)P
′
n

− (x′P ′
n = P ′

n+2 + X(1)P ′
n+1 + X(0)P ′

n + X(−1)P ′
n−1 + X(−2)P ′

n−2)Pn

(where P ′ is a polynomial P (x′, y′) dependent on the variables x′ and y′) to leave us with

the following relation:

(x− x′)PnP
′
n = Pn+2P

′
n − PnP

′
n+2 −X(1)

n (Pn+1P
′
n − PnP

′
n+1)

+X(−1)
n (Pn−1P

′
n − PnP ′

n−1) + X(−2)
n (Pn−2P

′
n − PnP ′

n−2) .

We now make use of the consistency relations (4.4.1b), (4.4.1a) to reduce this relation

(x− x′)
PnP

′
n

hn

=
1

hn

(Pn+2P
′
n − PnP

′
n+2)−

1

hn−2

(PnP
′
n−2 − Pn−2P

′
n)

+
1

hn+1

X
(−1)
n+1 (Pn+1P

′
n − PnP

′
n+1)−

1

hn

X(−1)
n (PnP

′
n−1 − Pn−1P

′
n)

and integrate to give the sum:

n∑
j=0

Pj(x, y)Pj(x
′, y′)

hj

=
1

(x− x′)

(
1

hn

(Pn+2(x, y)Pn(x′, y′)− Pn(x, y)Pn+2(x
′, y′))

+
1

hn−1

(Pn+1(x, y)Pn−1(x
′, y′)− Pn−1(x, y)Pn+1(x

′, y′))

+
1

hn+1

X
(−1)
n+1 (Pn+1(x, y)Pn(x′, y′)− Pn(x, y)Pn+1(x

′, y′))
)

(4.5.1)
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4.5.2 The y Elliptic Christoffel-Darboux Identity

Considering the difference of the y recurrence relation, it is easy to see that:

(y − y′)PnP
′
n = (Pn+3P

′
n − PnP

′
n+3) + Y (2)

n (Pn+2P
′
n − PnP

′
n+2)

+Y (1)(Pn+1P
′
n − PnP

′
n+1) + Y (−1)

n (Pn−1P
′
n − PnP

′
n−1)

+Y (−2)
n (Pn−2P

′
n − PnP ′

n−2) + Y (−3)
n (Pn−3P

′
n − PnP ′

n−3)

and pairing terms together, making use of the consistency relations and rearranging.

(y − y′)
PnP ′

n

hn

=
1

hn

(Pn+3P
′
n − PnP

′
n+3)−

1

hn−3

(PnP ′
n−3 − Pn−3P

′
n)

+
Y

(−2)
n+2

hn+2

(Pn+2P
′
n − PnP ′

n+2)−
Y

(−2)
n

hn

(PnP
′
n−2 − Pn−2P

′
n)

+
Y

(−1)
n+1

hn+1

(Pn+1P
′
n − PnP ′

n+1)−
Y

(−1)
n

hn

(PnP
′
n−1 − Pn−1P

′
n)

All that remains is to integrate up and we are left with the following relation:

n∑

k=0

Pk(x, y)Pk(x
′, y′)

hk

=
1

(y − y′)

(
1

hn

(Pn+3(x, y)Pn(x′, y′)− Pn(x, y)Pn+3(x
′, y′))

+
1

hn−1

(Pn+2(x, y)Pn−1(x
′, y′)− Pn−1(x, y)Pn+2(x

′, y′))

+
1

hn−2

(Pn+1(x, y)Pn−2(x
′, y′)− Pn−2(x, y)Pn+1(x

′, y′))

+
Y

(−2)
n+2

hn+2

(Pn+2(x, y)Pn(x′, y′)− Pn(x, y)Pn+2(x
′, y′))

+
Y

(−2)
n+1

hn+1

(Pn+1(x, y)Pn−1(x
′, y′)− Pn−1(x, y)Pn+1(x

′, y′))

+
Y

(−1)
n+1

hn+1

(Pn+1(x, y)Pn(x′, y′)− Pn(x, y)Pn+1(x
′, y′))

)

(4.5.2)
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As we explained in Chapter 1, the Christoffel-Darboux relations are very useful in the

study of formal orthogonal polynomials, particularly when exploring the zeros. We

could develop these relations further, with the study of zeros of the Weierstrass elliptic

polynomials in mind. As a further extension, they would also be useful in the construction

of an analogue to the Laguerre method for the creation of a differential system for

the semi-classical case of two variable orthogonal polynomials related through a curve.

However in this instance, we would be moving from formal to non-formal polynomials

and bring in the introduction of a weight function and corresponding integration interval.

4.6 Further Outlook

In this section we present a possible extension from the formal case into the non-formal

case, where we consider the existence of a weight functional. The introduction of a weight

function opens the door to the development of differential equations and the class of semi-

classical orthogonal polynomials. While we do introduce some possible avenues of study,

this is only a tentative look, so we do not go into any great detail.

We highlight an expression, which evokes a realization of the basic functional L in terms

of an integral. Thus we assume that this functional takes the form:

L(P ) =

∫
dµ(κ)P (℘(κ), ℘′(κ)) , P ∈ V ,

which is some defining integral and measure dµ(y) in terms of the uniformising variable

κ on the curve (4.2.1), i.e. (x, y) = (℘(κ), ℘′(κ)). Then we can derive the following
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integral representation for the elliptic polynomials:

Pk(x, y) =
γkγk−1

(k − 1)!∆k−1

∫
dµ1

∫
dµ2 · · ·

∫
dµk−1

×

∣∣∣∣∣∣∣∣∣∣∣∣

1 ℘1 · · · ℘
(k−3)
1

1 ℘2 · · · ℘
(k−3)
2

...
...

...

1 ℘k−1 · · · ℘
(k−3)
k−1

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ℘1 ℘′1 · · · ℘
(k−2)
1

1 ℘2 ℘′2 · · · ℘
(k−2)
2

...
...

...
...

1 ℘k−1 ℘′k−1 · · · ℘
(k−2)
k−1

1 ℘ ℘′ · · · ℘(k−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.6.1a)

in which we have abbreviated
∫

dµj =
∫

dµ(κj) , ℘
(i)
j = di℘(κj)/dκi

j , ℘(i) =

di℘(κ)/dκi and where γk denotes a inconsequential numerical factor (depending on k).

Using the so-called Frobenius-Stickelberger formula (A.14), [67],
∣∣∣∣∣∣∣∣∣∣∣∣

1 ℘(κ0) ℘′(κ0) · · · ℘(n−1)(κ0)

1 ℘(κ1) ℘′(κ1) · · · ℘(n−1)(κ1)
...

...
...

...

1 ℘(κn) ℘′(κn) · · · ℘(n−1)(κn)

∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)
1
2
n(n−1)1!2! · · ·n!

σ(κ0 + κ1 + · · ·+ κn)
∏

i<j σ(κi − κj)

σn+1(κ0) · · ·σn+1(κn)
,

we can, thus, derive the following formula for the elliptic polynomials:

Pk(x, y) = (−1)k−1[1!2! · · · (k − 2)!]2
γkγk−1

(k − 1)!∆k−1

×
∫

dµ1 · · ·
∫

dµk−1
σ2(κ1 + · · ·+ κk−1)

σ2k−2(κ1) · · · σ2k−2(κk−1)

[
k−1∏

i<j=1

σ2(κi − κj)

]

× Φκ(κ1 + · · ·+ κk−1)
k−1∏
j=1

Φ−κ(κj)

(4.6.1b)

where Φn(x) = σ(κ+x)
σ(κ)σ(x)

.
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4.6.1 An Elliptic Weight Function

Having established a formal structure for the elliptic polynomials (that deals mainly with

recurrence relations), we now consider a possible informal approach in how to continue

the study of these polynomials. The first thing required would be a weight function, which

cannot be derived, only guessed at. However this does not mean a random choice, merely

careful consideration of what would be an appropriate choice. Upon establishing this we

can derive some of the other formulae associated with orthogonal polynomials, including

a differential relation.

Given the connection, between Stieltjes-Carlitz polynomials and the Heun equation, we

look for inspiration for a weight function by looking at Heun. In the introduction, we

defined the Heun differential equation

d2w

dx2
+

(
γ

x
+

δ

x− 1
+

ε

x− a

)
dw

dx
+

αβx− q

x(x− 1)(x− a)
w = 0 (4.6.2a)

where

α + β − γ − δ − ε + 1 = 0,

a Fuchsian equation with four regular singularities at 0, 1, a and ∞. In [153], exact

solutions of a special case of Heun’s equation

d2y

dz2
+

1

2

(
1− 2m1

z
+

1− 2m2

z − 1
+

1− 2m3

z − a

)
dy

dz
+

N(N − 2m0 − 1)z + λ

4z(z − 1)(z − a)
y = 0

(4.6.2b)

where

N = m0 + m1 + m2 + m3,

m0,m1,m2,m3 ∈ Z, λ, z ∈ C. (4.6.2c)

(mi a non negative integer) are studied and it is shown that they are functions of the

following form:

Y1,2(m0, m1,m2,m3;λ; z) =
√

Ψg,N (λ, z) exp

(
± iυ(λ)

2

∫
zm1(z − 1)m2(z − a)m3dz

Ψg,N (λ,N)
√

z(z − 1)(z − a)

)
,

(4.6.2d)



Chapter 4. Formal Elliptic Polynomials 163

where Ψg,N is is some polynomial of degree N in z and of degree g in λ, i2 = −1 and

υ2 =

2g+1∏
j=1

(λ− λj) , λj = λ(Ej) (4.6.3)

where Ej are the gap edges of the finite-gap elliptic potential u(x). Inspired by this result,

we propose the following elliptic weight:

w(x, y) =
1

y
(x− e1)

ν1(x− e2)
ν2(x− e3)

ν3 (4.6.4a)

with y2 = 4x3 − g2x− g3

= 4(x− e1)(x− e2)(x− e3) (4.6.4b)

with integrations between the branch points of the elliptic equation ei (for instance e1 and

e2).

In the paper by Fernandez (et al.) [59] they mention orthogonal polynomials in two

variables associated with a moment functional u satisfying the two-variable analogue of

the Pearson differential equation. However, while we have two variable polynomials, they

are related through a curve, so we would expect the Weierstrass elliptic polynomials to

satisfy a different analogue of the two-variable Pearson differential equation. We could,

however, use this example as a starting point to derive our own analogue of the Pearson

equation for two variable orthogonal polynomials related through an algebraic curve.

4.6.2 Differential Equations

As should be expected by the dual nature of these elliptic orthogonal polynomials, a pair

of differential equations associated with the elliptic curve can be derived, covering both

the odd P2n+1 and even P2n cases. Examples of the derivation of a differential equation

for another example of elliptic orthogonal polynomials can be found in [144].

At this stage we do not focus on a completed form for the differential relations except to

derive their leading terms. We begin by considering P2n and P2n+1, which are even and
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odd respectively for n ≥ 1.

P2n = xn + a2n−1x
n−2y + a2n−2x

n−1 + a2n−3x
n−3y + . . . (4.6.5a)

P2n+1 = xn−1y + b2nx
n + b2n−1x

n−2y + b2n−2x
n−1 + . . . (4.6.5b)

Since both P2n and P2n+1 depend on both x and y, it is necessary to construct a differential

relation which will allow for partial differentiation. Thus we begin with

d

dx
P2n =

(
∂

∂x
+

dy

dx

∂

∂y

)
P2n ⇒ y

d

dx
= y

∂

∂x
+

(
6x2 − g2

2

) ∂

∂y
(4.6.6)

where

2y
dy

dx
=

d

dx
y2 = 12x2 − g2.

Thus we have the ingredients to begin our derivation

y
d

dx
P2n =

(
y

∂

∂x
+

(
6x2 − g2

2

) ∂

∂y

) (
xn + a2n−1x

n−2y + a2n−2x
n−1 + . . .

)

= nxn−1y + a2n−1(n− 2)xn−3y2 + a2n−2(n− 1)xn−2y +
(
6x2 − g2

2

)
a2n−1x

n−2 + . . .

= nxn−1y + . . . (4.6.7)

where we get the leading term, followed by lower order terms, hence

y
d

dx
P2n = nP2n+1 + . . . (4.6.8)

As with the even case we have

y
d

dx
P2n+1 =

(
y

∂

∂x
+

(
6x2 − g2

2

) ∂

∂y

) (
xn−1y + b2nxn + b2n−1x

n−2y + . . .
)

= (n− 1)xn−2y2 +
(
6x2 − g2

2

)
xn−1 + b2nnxn−1y + b2n−1(n− 2)xn−3y2 + . . .

= (n− 1)4xn+1 + 6xn+1 + . . . (4.6.9a)

where we have introduced the curve y2 = 4x3 − g2x− g3 and this implies that

y
d

dx
P2n+1 = 2(2n + 1)P2n+2 + . . . (4.6.10)
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4.7 Summary

This chapter was concerned with a new class of orthogonal polynomials associated with

the Weierstrass elliptic curve, where the focus was on the formal structure. These

polynomials were expressed in a determinantal form, similar to that found in Chapter

1 (1.1.14), except that the last row consisted of a sequence of monomials dependent

on x and y (4.3.1a). Then a generalized version of the well known Sylvester Identity

(B.4) was applied to (4.3.1a) with the purpose of deriving explicit forms (in terms of

Hankel determinants) for the two recursive structures, that would be required to establish

a two-variable polynomial structure. For the case of the x recurrence relation, this

approach was straightforward since only two terms in the sequence of monomials were

not dependent on x. So a 3 row/column Sylvester identity (B.7) was used to take x out of

the determinant as a common factor to gain a recurrence type relation in terms of x, P
(l)
k

and the corresponding Hankel determinant ∆
(l)
k . When this relation was coupled with a

linear relation in P
(l)
k (4.3.7a), a closed form x recurrence relation was derived, where the

coefficients were defined in terms of the Hankel determinants. An x recurrence relation

was also derived for the Q
(l)
k polynomials, which were similar in structure to the P

(l)
k

except for the omission of a row, which was intended to deal with the problem of the

monomial e1 which does not exist (a consequence of the elliptic curve).

This was followed by a section on the Hankel determinants, with particular attention paid

to the interaction between the ∆
(l)
k and Θ

(l)
k Hankel determinants. Numerous bilinear

relations were derived, of which some had particular use with reducing relations and

others were interesting for their distinctly Hirota type bilinear form.

We then considered the y recurrence relation, which was a problem, because in the

monomials y only occurred in every other term. Using the relationship between the

y and the x from the curve counteracted this problem, except with the consequence

of a new determinantal structure being introduced P̄
(l)
k . After applying a 4 row/colum
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Sylvester determinant identity to (4.3.1a), a y could be removed as a common factor and

a y recurrence-type relation was derived in terms of P̄
(l)
k and P

(l)
k (4.3.39). By altering

the linear relation (4.3.7a) so that it satisfied P̄
(l)
k , allowed it to be combined with (4.3.39)

to create a four term closed-form semi-y recurrence relation. Essentially this gives a

complete recurrence relation for P̄
(l)
k , but an incomplete recurrence relation for P

(l)
k .

Then the issue of consistency and compatibility was considered. We gave a series of

inner product relations that connected the recurrence coefficients for both Xk and Yk and

for the Xk case, we were able to derive further relations between the ∆k’s that satisfied

the consistency between the recurrence coefficients X−1
k and X1

k . A full derivation

of the compatibility between the x-recurrence relation (4.2.6a) and the y-recurrence

relation (4.2.6b) was presented in Appendix D, which provides relations between the

recurrence coefficients Xk and Yk respectively. These relations can be reduced by using

the corresponding consistency relations.

Having dealt with the derivation, compatibility and consistency of the recurrence relations

and corresponding recurrence coefficients we ended the formal part of the chapter with

a look at the applications of the recurrence relations. These included the generation of a

sequence of elliptic polynomials (where the full derivation was given in Appendix (E))

and the construction of a pair of Christoffel-Darboux relations. Both these sections are

important consequences of the recurrence relations and will provide useful tools in the

further research of these formal orthogonal polynomials.

The last part of the chapter considers the extension beyond the case of formal orthogonal

polynomials to the case where we are dealing with a weight function and corresponding

integration interval. A few possible avenues for exploration were established, which we

hope to pursue in the future.
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Chapter 5

Conclusions and Speculations

Orthogonal polynomials and discrete integrable systems have been the topics of interest

in this thesis, where we have been especially interested in connections between the two.

Our opening chapter begins with an introduction to the basic theory of orthogonal

polynomials, including the a derivation of the general recurrence relation for orthogonal

polynomials using determinants. This derivation is important for two reasons; it is

the method used in Chapter 4 to derive explicit recurrence relations (for two variable

orthogonal polynomials) and it produces a bilinear relation (1.1.27) that represents an

early connection (but not the only one) with integrable systems.

∆(m)
n ∆

(m+2)
n−2 = ∆

(m+2)
n−1 ∆

(m)
n−1 −∆

(m+1)
n−1 ∆

(m+1)
n−1

Orthogonal polynomials are just one type of special function, so we highlight some others

including the Hypergeometric function and the Heun (and Lamé) function, which have

connections to orthogonal polynomials. Heun and Lamé have polynomial solutions (for

special values of the eigenvalue) and the hypergeometric series reduces to orthogonal

polynomials for special values of the parameters. We also introduce two examples of

applications of orthogonal polynomials (quantum mechanics, random matrix models),

because these also lead to connections to integrable systems.
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Chapter 2 is about exploring the connection between semi-classical orthogonal

polynomials (which in comparison with the classical orthogonal polynomials, we can

no longer express the coefficients of the recurrence in explicit form, but where we still

have differential relations and in addition to the recurrence relation which are “order-

independent”) on the one hand and certain integrable systems (in particular discrete

Painlevé equations) on the other hand. Many results already exist in the literature

(motivated by connections on Random Matrix Models and going back to Freud [65])

but some novel cases have been treated in this chapter.

Our approach to finding these connections is through the Laguerre method (Section 2.3)

and the corresponding compatibility relations (of Laguerre-Freud type) (2.3.37),(2.3.38),

which are governed by the Pearson equation (2.0.2). Depending on the choice of weight

function w, the Pearson equation will produce a polynomial for V and W , which in turn

controls the outcome of Ω (2.4.2) and Θ (2.4.1) (the key entries in the differential structure

governing the semi-classical orthogonal polynomials). For example, if the weight is an

exponential, then W = 1 and the expansions of Ω and Θ are greatly simplified. From

the two exponential weights that we use, in both instances it is possible to reduce the

compatibility relation(s) to a discrete Painlevé equation, d-PI.

S2
na3 + Sna2 + a1 = −a3

(
n + 1

a3(Sn+1 + Sn) + a2

+
n

a3(Sn + Sn−1) + a2

)

By comparison weights such as the semi-classical Laguerre and the Jacobi (Sections

2.4.2 and 2.6.1) have much more involved expansions, as such their corresponding

compatibility relations are more complex. In all four cases we are able to derive

two coupled non-linear difference equations for the recurrence coefficients Rn and Sn,

where the remaining relations were trivial. For instance the Laguerre weight l0 =

(x− t)αe−(a1x+
a2
2

x2) produces the closed-form system

a2(Rn+1 + Rn) = −Sn(a2Sn + (a1 − a2t)) + (2n + 1 + a1t + α),

Rn+1(a2(Sn+1 + Sn) + (a1 − a2t))−Rn(a2(Sn + Sn−1)− (a1 − a2t)) = Sn − t.
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With the exception of the systems (2.4.6,2.4.11) derived using deformed Hermite weights,

all the other coupled non-linear difference equations are examples of new discrete

Painlevé type systems that have not yet appeared in the literature (as far as we are

aware). Use of this method for other semi-classical weight functions, may yield further

systems. It is interesting to note, that even when the number of relations produced by the

compatibility relations for four different weights differed, they always only yielded two

closed-form non-trivial relations. Of course the orthogonal polynomials connection gives

special solutions of the difference systems related to particular initial value problems.

In many cases in the literature [167], the Freud-Laguerre equations can be reduced to a

single second order nonlinear difference equation, but that is not always the case. For

the cases we have investigated we have obtained Freud-Laguerre systems in the form of

coupled difference equation. It is not always obvious or even easy to establish whether

these systems can be further reduced.

In Chapter 3 the emphasis has been reversed: rather than starting with orthogonal

polynomials, we start with structures underlying integrable systems, namely (singular)

linear integral transforms that preserve the structure of certain linear difference equations,

arising in Lax pairs for integrable systems. Such integral transforms amount to dressing

transformations (from known solutions (indicated by upper label 0) to new solutions

(upper index 1) of the “dressed” system, and the measures are interpolating measures

between these solutions) and are related to integral equations arising in the inverse

scattering transform. There has been some research done in this direction by Case

[33, 34, 35] (who has established a formulation of orthogonal polynomial theory in terms

of inverse scattering), but his approach has been in configuration space, whereas our

perspective is from the spectral space.

Then there are two ways this is applied to the situation of orthogonal polynomials: first,

adapting it to the 2 × 2 systems arising in the Laguerre method, and second the scalar

reduction (applicable to the even weight case), with as a diversion, the construction via
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the lattice Gel’fand-Dikii hierarchy. The first approach is done in a speculative manner,

considering the 2×2 recurrence relation, and while we derive integral transforms between

the recurrence coefficients, an explicit form for a polynomial integral transform eludes us.

The second approach produces a vector reduction of an integral transform associated with

the Gel’fand-Dikii hierarchy.

φ1
k = φ0

k +
N∑

q=1

∫

Cq

φ1
l dλq(l)

∣∣∣∣ φ0
l · · ·

q↓
φ0

ωj−1k · · · φ0
ωN−1l

∣∣∣∣
kN − lN

This result for the N × N case, along with the specific N = 2 case (which represents

KdV)

u1
k1 = u0

k1 +

∫

Γ1

u1
l1dλ1(l)

(p− k)ũ0
k1u

0
−l1 − (p + l)ũ0

−l1u
0
k1

k2 − l2

+

∫

Γ2

u1
l1dλ2(l)

(
p− l

p + l

)n
(p− k)ũ0

k1u
0
l1 − (p− l)ũ0

l1u
0
k1

k2 − l2
.

provides an alternate singular integral transform that can be rewritten (after a gauge

transform) to give an integral transform for a class of orthogonal polynomials with an

even weight (such as the Hermite polynomials). We present a possible transform, which

produces a suitable transform for the recurrence coefficients, from which an interpolating

measure could be deduced. In addition, the differential part of the linear problem is

considered where the focus is on differential equations which may or may not have

polynomial solutions. We derive a method that gives the coefficients of a transformed

differential equation in terms of the original (source) differential equation. Whether this

method also works for polynomial solutions is one area of further study in this topic.

One of the questions that arises is whether the dressing approach allows one to make

“dressing transforms” which will effectively lead from classical orthogonal polynomials

to their semiclassical (deformed) counterparts through integral transforms involving so-

called “interpolating measures”.

The remainder of the thesis deals with generalizations of orthogonal polynomials to the

elliptic case. The term “elliptic polynomials” has already appeared in the literature
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in connection with the Carlitz and Lamé polynomials, whereas in Chapter 4 a novel

class of formal orthogonal polynomials is introduced, which are 2-variable orthogonal

polynomials over an elliptic curve. So, these are really algebraic functions in terms of one

variable and different from the other type of elliptic polynomials.

The chapter’s main focus is on establishing the recursive structures inherent in any class

of orthogonal polynomials and thus, we are mainly interested in a formal construction

(no weight function). In Chapter 1 we demonstrated that the recurrence relations for

x (4.2.6a) and y (4.2.6b) are easy to derive implicitly (Section 1.1.3), but much more

difficult to derive explicitly (Section 1.1.5).

xPk = Pk+2 + X
(1)
k Pk+1 + X

(0)
k Pk + X

(−1)
k Pk−1 + X

(−2)
k Pk−2,

yPk = 4εkPk+3 + Y
(2)
k Pk+2 + Y

(1)
k Pk+1 + Y

(0)
k Pk + Y

(−1)
k Pk−1

+Y
(−2)
k Pk−2 + Y

(−3)
k Pk−3

In principle we could have a system of commuting difference operators over an algebraic

curve with xP = ΞP , yP = ΥP where Ξ and Υ are the difference operators

associated with these recurrence relations. The compatibilities follow from [Ξ, Υ] = 0

(commutativity) and the relation on the curve y2 = 4x3 − g2x − g3. This, conjecturally,

is a system connected to a discrete version of the Krichever-Novikov system ([99]).

We introduce the generalized Sylvester Identity (B.4) in Appendix B, which can remove

m rows and columns rather than the conventional 2 rows and columns. The use of this

with the two variable polynomial determinant representation (4.3.1a) leads to the explicit

derivation of an xPk and xQk recurrence relation, where the coefficients are defined

in terms of the Hankel determinants ∆ and Θ. We are able to derive many bilinear

relations between the Hankel determinants and these are of particular use in simplifying

expressions, although only one expression was found for the ∆ (which we are able to
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derive in two separate ways)

∆
(l)
k+1

(
∆

(l+4)
k ∆

(l+1)
k ∆

(l+3)
k−1 −∆

(l+2)
k ∆

(l+3)
k ∆

(l+3)
k−1 + ∆

(l+4)
k−2 ∆

(l+3)
k ∆

(l+1)
k+1

)

= ∆
(l+4)
k−1

(
∆

(l)
k+2∆

(l+1)
k ∆

(l+3)
k−1 −∆

(l+2)
k ∆

(l+1)
k ∆

(l+1)
k+1 + ∆

(l)
k ∆

(l+3)
k ∆

(l+1)
k+1

)

and we can compare, with the Toda-type equation from Chapter 1 (1.1.27).

While the generalized Sylvester identity leads to the derivation of an explicit form for

the xPk-recurrence relation, it produced a new object when trying a similar approach for

the yPk-recurrence relation. Thus, we derive a yP̄k relation instead. We expect from

this relation that we can derive the recurrence y-relation in explicit form. An alternative

approach is to work out the equations for the coefficients Y from the condition of the

curve (Appendix D) and this can only be really done when we move forward to the case

of non-formal elliptic orthogonal polynomials defined through specific weight functions.

This is the subject of future research.

When considering extensions beyond the recurrence relations (4.2.6), we can consider

the further study of the formal structure, which includes the generation of a sequence

of the “Weierstrass elliptic polynomials”(Section 4.4) and the derivation of a pair of

Christoffel-Darboux relations (for x and y) (Section 4.5). We can also consider a non-

formal structure where we specify weight functions to obtain differential relations and we

conjecture discrete Painlevé type equations associated with these structures, but that that

is still somewhat speculative.
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Appendices

A Elliptic Functions

An elliptic function is a function defined on the complex plane which is periodic in two

directions and thus can be compared with the trigonometric functions (which have a

single period only). Elliptic functions arise as inverses of elliptic integrals in the study

of geometric problems such as the arc length of the ellipse and mechanical problems such

as the dynamics of the mathematical pendulum.

In most treatments elliptic functions are defined as doubly periodic meromorphic

functions on the complex plane C. According to a theorem of Jacobi a function of one

complex variable can have at most two independent primitive periods Ω1 and Ω2 such that
Ω1

Ω2
is not real.

Throughout the development of the theory of elliptic functions, modern authors mostly

follow Karl Weierstrass, since the notations of the Weierstrass’s elliptic ℘-function are

convenient, and any elliptic function can be expressed in terms of these. The elliptic

functions introduced by Carl Jacobi, and the auxiliary theta functions (not doubly-

periodic), are more complicated but important for the general theory. The main difference

between these two theories is that the Weierstrass functions have high-order poles located

at the corners of the periodic lattice, whereas the Jacobi functions have simple poles. The

development of the Weierstrass theory is easier to present and understand, having fewer
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complications.

Weierstrass Elliptic Functions

While there are three Weierstrass functions ℘(z), ζ(z) and σ(z), this appendix focuses on

the ℘(z) function, which along with its derivative satisfies the Weierstrass elliptic curve.

We can state ℘(z), by expressing it in terms of its half-periods (ω1 and ω2) or its elliptic

invariants (g2 and g3). Thus, ℘(z) is defined by

℘(z) =
1

z2
+

∞∑

(m,n)6=(0,0)

(
1

(z − 2mω1 − 2nω2)2
− 1

(2mω1 + 2nω2)2

)
, (A.1)

where the terms in the double sum giving a zero denominator are omitted.

The differential equation satisfied by ℘(z) arises by expanding the function f(z) = ℘(z)−
z−2 about the origin, but since f(0) = 0 and the function is even, f ′(0) = f (3)(0) = 0

( df
dz

= f ′(z)) and we have

f(z) = ℘(z)− z−2 =
1

2!
f ′′(0)z2 +

1

4!
f (4)(0)z4 + . . . (A.2)

Since f(z) is the sum in (A.1), we simply differentiate it the required amount of times,

set z = 0 and substitute it back into (A.2),

℘(z)− z−2 = 3
∑

Ω−4
mnz2 + 5

∑
Ω−6

mnz
4 + O(z6) (A.3)

where Ωmn = 2mω1 + 2nω2. We now define the elliptic invariants g2 and g3 by

g2 = 60
∑

Ω−4
mn (A.4a)

g3 = 140
∑

Ω−6
mn (A.4b)

then ℘(z) and ℘′(z) can be written as

℘(z) = z−2 +
1

20
g2z

2 +
1

28
g3z

4 + O(z6),

℘′(z) = −2z−3 +
1

10
g2z +

1

7
g3z

3 + O(z5),
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the two equations can be equated by cubing the first and squaring the last

℘3(z) = z−6 +
3

20
g2z

−2 +
3

28
g3 + O(z2), (A.5a)

(℘′)2(z) = 4z−6 − 2

5
g2z

−2 − 4

7
g3 + O(z2), (A.5b)

to leave

(℘′)2(z)− 4℘3(z) + g2z
−2 + g3 = O(z2).

But the Weierstrass elliptic function is analytic at the origin and therefore at all points

congruent to the origin. There are no other places where a singularity can occur, so

this function is an elliptic function with no singularities. By Liouville’s elliptic function

theorem, it is therefore a constant. Thus when z → 0, O(z2) → 0 leaving

(℘′)2(z) = 4℘3(z)− g2℘(z)− g3 = 0. (A.6)

This first order differential equation can also be differentiated again to give a second order

differential equation.

℘′′(z) = 6℘2(z)− g2

2
(A.7)

With (℘′, ℘) = (y, x), the differential equation becomes the Weierstrass cubic equation

for an elliptic curve, with the branch points e1, e2, e3, where ei = ℘(ωi)

y2 = 4x3 − g2x− g3 = 4(x− e1)(x− e2)(x− e3) (A.8)

where

g2 = −4(e1e2 + e2e3 + e3e1), (A.9a)

g3 = 4e1e2e3. (A.9b)

The Weierstrass ℘ function also satisfies a number of identities, some of which include the

other elliptic functions ζ(z), σ(z) and one which involves a determinant. We can relate

these other Weierstrass functions using some simple relations

℘(z) = −dζ(z)

dz
, ζ(z) =

1

σ(z)

dσ(z)

dz
(A.10)
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and some more involved formulae

ζ(x + y)− ζ(x)− ζ(y) =
1

2

℘′(x)− ℘′(y)

℘(x)− ℘(y)
(A.11)

℘(y)− ℘(x) =
σ(x− y)σ(x + y)

σ2(x)σ2(y)
. (A.12)

℘(x) + ℘(y) + ℘(x + y) =
1

4

(
℘′(x)− ℘′(y)

℘(x)− ℘(y)

)2

(A.13)

An elliptic determinantal identity is the Frobenius-Stickelburger formula [67] which can

be defined as
∣∣∣∣∣∣∣∣∣∣∣∣

1 ℘(κ0) ℘′(κ0) · · · ℘(n−1)(κ0)

1 ℘(κ1) ℘′(κ1) · · · ℘(n−1)(κ1)
...

...
...

...

1 ℘(κn) ℘′(κn) · · · ℘(n−1)(κn)

∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)
1
2
n(n−1)1!2! · · ·n!

σ(κ0 + κ1 + · · ·+ κn)
∏

i<j σ(κi − κj)

σn+1(κ0) · · · σn+1(κn)
. (A.14)

Jacobi Elliptic Functions

The Jacobian elliptic functions correspond to an arrow drawn from one corner of a

rectangle to another, where the corners of the rectangle are labelled s, c, d and n. The

twelve Jacobian elliptic functions are then pq, where each of p and q is one of the four

letters. The most commonly used of these twelve are denoted by cn(u, k), dn(u, k), and

sn(u, k), where k is known as the elliptic modulus and u is an incomplete elliptic integral

of the first kind. The easiest way to understand Jacobi elliptic functions is as inverses of

u

u = F (φ, k) =

∫ φ

0

dθ√
1− k2 sin2 θ

, (A.15)

where 0 < k2 < 1, so we consider

φ = F−1(u, k) = am (u, k) (A.16)
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where am (u, k) = am (u) is the Jacobi amplitude. Then it follows that we have the

following list of Jacobi elliptic functions

sin(φ) = sin(am (u, k)) = sn (u), (A.17a)

cos(φ) = cos(am (u, k)) = cn (u), (A.17b)√
1− k2 sin2 φ =

√
1− k2 sin2(am (u, k)) = dn (u). (A.17c)

where

sn2(x) + cn2(x) = 1 , k2sn2(x) + dn2(x) = 1 (A.18)

There are also some important addition and differentiation identities involving Jacobian

elliptic functions. Thus, we have the addition formula for the Jacobi sn(x) function

sn(x + y) =
sn(x)cn(y)dn(y) + sn(y)cn(x)dn(x)

1− k2sn2(x)sn2(y)
(A.19)

the Jacobi cn(x) function

cn(x + y) =
cn(x)cn(y)− dn(x)dn(y)sn(x)sn(y)

1− k2sn2(x)sn2(y)
(A.20)

and the Jacobi dn (x) function

dn(x + y) =
dn(x)dn(y)− k2cn(x)cn(y)sn(x)sn(y)

1− k2sn2(x)sn2(y)
. (A.21)

The differentiation formula are

sn′(x) = cn(x)dn(x) , cn′(x) = −sn(x)dn(x) , dn′(x) = −k2cn(x)dn(x). (A.22)

B Some Determinant Identities

In the establishment of the recursive structure of orthogonal polynomials we need a

number of identities, which we derive using the Sylvester Identity. So we present a proof

of the Sylvester identity, which was first presented by Kowalewski [96], Bareiss [15] and

Malaschonok [109, 110] and these seven proofs are presented together in [7].
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We consider an (n + m)× (n + m) matrix R with elements rij and determinant |R|, also

written det(R). Then we partition R and factor by block triangularization such that

R =


 A B

C D


 =


 A 0

C 1


 .


 1 A−1B

0 D − CA−1B


 (B.1)

where A is a nonsingular square matrix of order n, then

|R| = |A|.|D − CA−1B|. (B.2)

If we multiply both sides by |A|m−1, this becomes

|A|m−1|R| = ||A|(D − CA−1B)|

because the determinant on the right side of (B.2) is of order m. We can reduce this

equation further to

|A|m−1|R| = ||A|D − CÃB|, (B.3)

since A−1 = Ã
|A| (where Ã represents the adjugate matrix of the inverse matrix A−1), and

the determinant of A is assumed to be 6= 0. Specifying some entries in (B.1), taking A to

be an n× n block and D to be an m×m block, we have the formula:

(det(A))m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A | b1 . . . bm

− + − − −
ct
1 |
... | D

ct
m |

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= detm×m

{
detn×n(A)Dij − (ct

i Ã bj)
}

i,j=1,··· ,m

(B.4)

in which the full matrix is supplemented with m n-component column vectors bi and m

n-component row-vectors ct
i. If we consider the case m = 2 ie. the removal of two rows
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and columns, then we get then determinant identity

(det(A))

∣∣∣∣∣∣∣∣∣∣∣∣

A | b1 b2

− + − −
ct
1 | d11 d12

ct
2 | d21 d22

∣∣∣∣∣∣∣∣∣∣∣∣

= det2×2



(det(A))


 d11 d12

d21 d22


−


 ct

1Ãb1 ct
1Ãb2

ct
2Ãb1 ct

2Ãb2








= [det(A)d11 − ct
1Ãb1] [det(A)d22 − ct

2Ãb2]

−[det(A)d21 − ct
2Ãb1] [det(A)d12 − ct

1Ãb2],

which can be symbolically written as:
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
(B.5)

(where the red lines denote rows and columns omitted from the original determinant). It

is then necessary to reorder the position of the row and column to tailor the identity to our

requirements. In the case of the derivation of a general recurrence relation for orthogonal

polynomials we choose the following alignment:
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
,

(B.6)

where both the penultimate row and column, have both been shifted n − 1 places. Since

they are both shifted the same distance, it is not necessary to change the sign of the

determinant.

While (B.6) is the key identity by which the recurrence structure for ordinary one-variable

orthogonal polynomials is obtained, for the elliptic two-variable orthogonal polynomials

we need (in addition to (B.6)), determinantal identities involving the simultaneous

removal of more than two rows and columns. Thus, the main identities used from the
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general formula (B.4) will be the cases m = 3 and m = 4, leading to the different

recurrence relations for (4.3.1a) and (4.3.2a).
In the case m = 3 we obtain from (B.4) the following 3-row/column Sylvester type
identity:

(det(A))
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A | b1 b2 b3

− + − −
ct
1 | d11 d12 d13

ct
2 | d21 d22 d23

ct
3 | d31 d32 d33

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= det3×3





(det(A))




d11 d12 d13

d21 d22 d23

d31 d32 d33


−




ct
1Ãb1 ct

1Ãb2 ct
1Ãb3

ct
2Ãb1 ct

2Ãb2 ct
2Ãb3

ct
3Ãb1 ct

3Ãb2 ct
3Ãb3








=

∣∣∣∣∣∣
A b1

ct
1 d11

∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣∣∣

A | b2 b3

− + − −
ct
2 | d22 d23

ct
3 | d32 d33

∣∣∣∣∣∣∣∣∣∣∣

(det(A))

−
∣∣∣∣∣∣

A b1

ct
2 d21

∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣∣∣

A | b2 b3

− + − −
ct
1 | d12 d13

ct
3 | d32 d33

∣∣∣∣∣∣∣∣∣∣∣

(det(A))

+

∣∣∣∣∣∣
A b1

ct
3 d31

∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣∣∣

A | b2 b3

− + − −
ct
1 | d12 d13

ct
2 | d22 d23

∣∣∣∣∣∣∣∣∣∣∣

(det(A))

which can be expressed graphically as:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (B.7)

In a similar way the 4-row/column Sylvester identity is obtained:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(B.8)



Appendices 181

Hankel Identities

∣∣∣∣∣∣∣∣
∆

(l)
k

∣∣∣∣∣∣∣∣
⇒ ∆

(l)
k Π

(l+1)
k−2 = ∆

(l)
k−1Π

(l+1)
k−1 −∆

(l+1)
k−1 Π

(l)
k−1 (B.9a)

∣∣∣∣∣∣∣∣
Π

(l)
k

∣∣∣∣∣∣∣∣
⇒ Π

(l)
k ∆

(l+3)
k−2 = Π

(l)
k−1∆

(l+3)
k−1 − Π

(l+1)
k−1 ∆

(l+2)
k−1 (B.9b)

∣∣∣∣∣∣∣∣
∆

(l)
k

∣∣∣∣∣∣∣∣
⇒ ∆

(l)
k Π

(l+2)
k−2 = Θ

(l)
k−1Π

(l+1)
k−1 −∆

(l+1)
k−1 Γ

(l)
k−1 (B.9c)

∣∣∣∣∣∣∣∣
∆

(l)
k

∣∣∣∣∣∣∣∣
⇒ ∆

(l)
k Γ

(l)
k−2 = ∆

(l)
k−1Γ

(l)
k−1 −Θ

(l)
k−1Π

(l)
k−1 (B.9d)

∣∣∣∣∣∣∣∣
Θ

(l)
k

∣∣∣∣∣∣∣∣
⇒ Θ

(l)
k Π

(l+2)
k−2 = Θ

(l)
k−1Π

(l+2)
k−1 −∆

(l+2)
k−1 Γ

(l)
k−1 (B.10a)

∣∣∣∣∣∣∣∣
Γ

(l)
k

∣∣∣∣∣∣∣∣
⇒ Γ

(l)
k ∆

(l+4)
k−2 = ∆

(l+4)
k−1 Γ

(l)
k−1 −Θ

(l+2)
k−1 Π

(l+1)
k−1 (B.10b)

∣∣∣∣∣∣∣∣
Π

(l)
k

∣∣∣∣∣∣∣∣
⇒ Π

(l)
k Θ

(l+2)
k−2 = Θ

(l+2)
k−1 Π

(l)
k−1 − Γ

(l)
k−1∆

(l+2)
k−1 (B.10c)

∣∣∣∣∣∣∣∣
Π

(l)
k

∣∣∣∣∣∣∣∣
⇒ Π

(l)
k ∆

(l+4)
k−2 = ∆

(l+3)
k−1 Γ

(l)
k−1 −Θ

(l+2)
k−1 Π

(l+1)
k−1 (B.10d)
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C Adjacent Orthogonal 2-Polynomials

Here we present an alternative description of the extended polynomials, which, albeit less

convenient for the derivation of the recurrence structure developed in section 3, are in a

sense more natural since they remain orthogonal at each level indicated by the index l.

Noting that the adjacent family of functionals given by the inner product:

Ll(·) = 〈el, ·〉

generates in a natural way a set of moments, it is immediate that the family of two-variable

polynomials associated with the curve (4.2.1) given by

R
(l)
k (x, y) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el · e0, e0〉 〈el · e0, e2〉 · · · · · · 〈el · e0, ek〉
〈el · e2, e0〉 〈el · e2, e2〉 · · · · · · 〈el · e2, ek〉

...
...

...
...

...
...

〈el · ek−1, e0〉 〈el · ek−1, e2〉 · · · · · · 〈el · ek−1, ek〉
e0 e2 · · · · · · ek

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/
E

(l)
k−1 ,

(C.1)

together with the corresponding Hankel determinant:

E
(l)
k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el · e0, e0〉 〈el · e0, e2〉 · · · · · · 〈el · e0, ek〉
〈el · e2, e0〉 〈el · e2, e2〉 · · · · · · 〈el · e2, ek〉

...
...

...
...

...
...

〈el · ek, e0〉 〈el · ek, e2〉 · · · · · · 〈el · ek, ek〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (C.2)

for each fixed l, (l 6= 0, 1), forms an orthogonal family of polynomials relative to the inner

product 〈·, ·〉l = 〈el·, ·〉 .

To compare the notation provided by (C.1) and (C.2) with the one of section 3, we note
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that

R
(l)
k =





Q
(l)
k for l even

Q̄
(l)
k for l odd

, E
(l)
k =





Θ
(l)
k for l even

Θ̄
(l)
k for l odd

In order to manipulate this ordered sequence of monomials: e0, e2, e3, . . . , el, . . . in a

convenient way we introduce a shift operator ·̂, which shifts the series by one step:

e0 , e2 , e3 , . . . ê0 = e2 , ê2 = e3 , ê3 = e4 , . . .

thus:

êl =





el+2 , l = 0

el+1 , l 6= 0
. (C.3)

Furthermore, we need to introduce:

Q
(l)
k (x, y) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el · e2, e0〉 〈el · e2, e2〉 · · · · · · 〈el · e2, ek〉
〈el · e3, e0〉 〈el · e3, e2〉 · · · · · · 〈el · e3, ek〉

...
...

...
...

...
...

〈el · ek, e0〉 〈el · ek, e2〉 · · · · · · 〈el · ek, ek〉
e0 e2 · · · · · · ek

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/
Θ

(l)
k−1 , (C.4)

together with its corresponding Hankel determinant:

Θ
(l)
k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈el · e2, e0〉 〈el · e2, e2〉 · · · · · · 〈el · e2, ek〉
〈el · e3, e0〉 〈el · e3, e2〉 · · · · · · 〈el · e3, ek〉

...
...

...
...

...
...

〈el · ek+1, e0〉 〈el · ek+1, e2〉 · · · · · · 〈el · ek+1, ek〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (C.5)

The following generalized Sylvester identity:leads to the recurrence relation:

P
(l)
k = xQ

(l+2)
k−2 − ∆

(l)
k−2Θ

(l+2)
k−2

∆
(l)
k−1Θ

(l+2)
k−3

P
(l)
k−1 +

∆
(l+2)
k−2 Θ

(l)
k−2

∆
(l)
k−1Θ

(l+2)
k−3

Q
(l)
k−1 (C.6)
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D Elliptic Polynomial Compatibility

We consider the consistency between the x and y of the Weierstrass elliptic curve y2 =

4x3 − g2x − g3. The expansion of x and y involves the substitution of the recursion

relations (4.2.6), however the expansion of y also makes use of (4.4.3), where the curve

comes into play. We have two expressions for the y recursion relation

yP2n = P2n+3 + Y
(2)
2n P2n+2 + Y

(1)
2n P2n+1 + Y

(0)
2n P2n + Y

(−1)
2n P2n−1

+Y
(−2)
2n P2n−2 + Y

(−3)
2n P2n−3 (D.1a)

yP2n+1 = 4P2n+4 + Y
(2)
2n+1P2n+3 + Y

(1)
2n+1P2n+2 + Y

(0)
2n+1P2n+1 + Y

(−1)
2n+1P2n

+Y
(−2)
2n+1P2n−1 + Y

(−3)
2n+1P2n−2 (D.1b)

and so must consider both cases separately. Although there is a single expression for the

x recursion relation we can express it for k odd or even. First consider y2Pk for k even,

y2P2n = 4P2n+6 +
(
Y

(2)
2n+3 + Y

(2)
2n

)
P2n+5 +

(
Y

(1)
2n+3 + 4Y

(1)
2n + Y

(2)
2n Y

(2)
2n+2

)
P2n+4

+
(
Y

(2)
2n Y

(1)
2n+2 + Y

(1)
2n Y

(2)
2n+1 + Y

(0)
2n+3 + Y

(0)
2n

)
P2n+3 +

(
Y

(−1)
2n+3

+4Y
(−1)
2n + Y

(2)
2n Y

(0)
2n+2 + Y

(0)
2n Y

(2)
2n + Y

(1)
2n Y

(1)
2n+1

)
P2n+2 +

(
Y

(−2)
2n

+Y
(1)
2n Y

(0)
2n+1 + Y

(−2)
2n+3 + Y

(−1)
2n Y

(2)
2n−1 + Y

(0)
2n Y

(1)
2n + Y

(2)
2n Y

(−1)
2n+2

)
P2n+1 +

(
(Y (0)

2n )2

+4Y
(−3)
2n + Y

(−3)
2n+3 + Y

(−1)
2n Y

(1)
2n−1 + Y

(−2)
2n Y

(2)
2n−2 + Y

(2)
2n Y

(−2)
2n+2 + Y

(1)
2n Y

(−1)
2n+1

)
P2n

+
(
Y

(2)
2n Y

(−3)
2n+2 + Y

(−3)
2n Y

(2)
2n−3 + Y

(0)
2n Y

(−1)
2n + Y

(−2)
2n Y

(1)
2n−2 + Y

(−1)
2n Y

(0)
2n−1

+Y
(1)
2n Y

(−2)
2n+1

)
P2n−1 +

(
Y

(−1)
2n Y

(−1)
2n−1 + Y

(−3)
2n Y

(1)
2n−3 + Y

(−2)
2n Y

(0)
2n−2 + Y

(0)
2n Y

(−2)
2n

+Y
(1)
2n Y

(−3)
2n+1

)
P2n−2 +

(
Y

(−1)
2n Y

(−2)
2n−1 + Y

(0)
2n Y

(−3)
2n + Y

(−2)
2n Y

(−1)
2n−2

+Y
(−3)
2n Y

(0)
2n−3

)
P2n−3 +

(
Y

(−1)
2n Y

(−3)
2n−1 + Y

(−2)
2n Y

(−2)
2n−2 + Y

(−3)
2n Y

(−1)
2n−3

)
P2n−4

+
(
Y

(−2)
2n Y

(−3)
2n−2 + Y

(−3)
2n Y

(−2)
2n−3

)
P2n−5 + Y

(−3)
2n Y

(−3)
2n−3P2n−6 (D.2)
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and the longer expression containing Xk

(4x3 − g2x− g3)P2n

= 4P2n+6 + 4
(
X

(1)
2n+4 + X

(1)
2n+2 + X

(1)
2n

)
P2n+5

+ 4
(
X

(1)
2n+3

(
X

(1)
2n + X

(1)
2n+2

)
+ X

(1)
2n X

(1)
2n+1 + X

(0)
2n+4 + X

(0)
2n+2 + X

(0)
2n

)
P2n+4

+ 4
(
X

(0)
2n+3

(
X

(1)
2n + X

(1)
2n+2

)
+ X

(0)
2n+1X

(1)
2n + X

(1)
2n+2

(
X

(0)
2n + X

(0)
2n+2

)
+ X

(1)
2n X

(0)
2n + X

(1)
2n X

(1)
2n+1X

(1)
2n+2

+X
(−1)
2n+4 + X

(−1)
2n+2 + X

(−1)
2n

)
P2n+3 + 4

(
X

(−1)
2n+3

(
X

(1)
2n+2 + X

(1)
2n

)
+ X

(−1)
2n+1X

(1)
2n

+X
(1)
2n+1

(
X

(−1)
2n + X

(−1)
2n+2

)
+ X

(1)
2n−1X

(−1)
2n + (X(0)

2n )2 + X
(0)
2n X

(0)
2n+2 + (X(0)

2n+2)
2 − 1

4
g2

+X
(1)
2n X

(1)
2n+1

(
X

(0)
2n+2 + X

(0)
2n+1 + X

(0)
2n

)
+ X

(−2)
2n+4 + X

(−2)
2n+2 + X

(−2)
2n

)
P2n+2

+ 4
(
X

(−2)
2n+3

(
X

(1)
2n + X

(1)
2n+2

)
+ X

(−2)
2n+1X

(1)
2n + X

(1)
2n

(
X

(−2)
2n + X

(−2)
2n+2

)
+ X

(1)
2n−2X

(−2)
2n

+X
(1)
2n

(
(X(0)

2n )2 + X
(0)
2n X

(0)
2n+1 + (X(0)

2n+1)
2 − 1

4
g2

)
+ X

(−1)
2n+2

(
X

(0)
2n+2 + X

(0)
2n+1 + X

(0)
2n

)

+X
(−1)
2n

(
X

(0)
2n+1 + X

(0)
2n + X

(0)
2n−1

)
+ (X(1)

2n )2X(−1)
2n+1 + X

(1)
2n X

(1)
2n+1X

(−1)
2n+2 + X

(−1)
2n X

(1)
2n−1X

(1)
2n

)
P2n+1

+ 4
(
2X

(0)
2n X

(1)
2n X

(−1)
2n+1 + X

(1)
2n X

(0)
2n+1X

(−1)
2n+1 + X

(−1)
2n X

(−1)
2n+1 + X

(0)
2n+2X

(−2)
2n+2

+X
(1)
2n X

(1)
2n+1X

(−2)
2n+2 + X

(−1)
2n X

(−1)
2n−1 + 2X

(0)
2n X

(−2)
2n + X

(−1)
2n X

(0)
2n−1X

(1)
2n−1

+X
(−2)
2n X

(0)
2n−2 + X

(−2)
2n X

(1)
2n−2X

(1)
2n−1 −

1
4
g3 + X

(0)
2n

(
(X(0)

2n )2 − 1
4
g2

)

+2X
(0)
2n X

(−2)
2n+2 + X

(−1)
2n+2X

(−1)
2n+1 + 2X

(−1)
2n X

(1)
2n−1X

(0)
2n + X

(1)
2n X

(−2)
2n+1X

(1)
2n−1

)
P2n

+ 4
(
X

(−2)
2n+2X

(−1)
2n + (X(0)

2n )2X(−1)
2n + X

(0)
2n X

(1)
2n X

(−2)
2n+1 + X

(−1)
2n X

(−2)
2n+1

+(X(−1)
2n )2X(1)

2n−1 + X
(0)
2n X

(−1)
2n X

(0)
2n−1 + X

(1)
2n X

(−1)
2n+1X

(−1)
2n + X

(−2)
2n X

(1)
2n−2X

(0)
2n−1

+X
(−2)
2n X

(−1)
2n + X

(1)
2n X

(0)
2n+1X

(−2)
2n+1 + X

(−1)
2n X

(−2)
2n−1 + X

(0)
2n X

(−2)
2n X

(1)
2n−2

+X
(−2)
2n X

(−1)
2n−2 −

1
4
g2X

(−1)
2n + X

(1)
2n X

(−2)
2n+1X

(0)
2n−1 + X

(−1)
2n (X(0)

2n−1)
2

+X
(−2)
2n X

(0)
2n−2X

(1)
2n−2 + X

(−1)
2n+2X

(−2)
2n+1 + X

(−1)
2n X

(−1)
2n−1X

(1)
2n−2

)
P2n−1

+ 4
(

X
(−2)
2n (X(0)

2n−2)
2 − 1

4
g2X

(−2)
2n + X

(−1)
2n X

(1)
2n−1X

(−2)
2n + X

(1)
2n X

(−1)
2n+1X

(−2)
2n

+X
(−2)
2n+2X

(−2)
2n + (X(0)

2n )2X(−2)
2n + X

(−2)
2n X

(1)
2n−2X

(−1)
2n−1 + X

(−2)
2n X

(−2)
2n−2

+X
(−2)
2n X

(−1)
2n−2X

(1)
2n−3 + X

(−1)
2n X

(−2)
2n−1X

(1)
2n−3 + X

(0)
2n X

(−2)
2n X

(0)
2n−2

+X
(−1)
2n X

(0)
2n−1X

(−1)
2n−1 + X

(−1)
2n X

(−1)
2n−1X

(0)
2n−2 + X

(1)
2n X

(−2)
2n+1X

(−1)
2n−1

+X
(0)
2n X

(−1)
2n X

(−1)
2n−1 + (X(−2)

2n )2
)

P2n−2

+ 4
(
X

(0)
2n−3

(
X

(−1)
2n X

(−2)
2n−1 + X

(−2)
2n X

(−1)
2n−2

)
+ X

(0)
2n X

(−1)
2n X

(−2)
2n−1 + X

(−2)
2n X

(1)
2n−2X

(−2)
2n−1

+X
(−2)
2n X

(−2)
2n−2X

(1)
2n−4 + X

(−1)
2n X

(−1)
2n−1X

(−1)
2n−2 + X

(0)
2n X

(−2)
2n X

(−1)
2n−2 + X

(−1)
2n X

(0)
2n−1X

(−2)
2n−1

+X
(−2)
2n X

(0)
2n−2X

(−1)
2n−2 + X

(1)
2n X

(−2)
2n+1X

(−2)
2n−1

)
P2n−3

+ 4
(
X

(−1)
2n−3

(
X

(−1)
2n X

(−2)
2n−1 + X

(−2)
2n X

(−1)
2n−2

)
+ X

(−1)
2n X

(−1)
2n−1X

(−2)
2n−2

+X
(−2)
2n X

(−2)
2n−2

(
X

(0)
2n + X

(0)
2n−2 + X

(0)
2n−4

))
P2n−4 + 4

(
X

(−2)
2n−3

(
X

(−1)
2n X

(−2)
2n−1 + X

(−2)
2n X

(−1)
2n−2

)

+X
(−2)
2n X

(−2)
2n−2X

(−1)
2n−4

)
P2n−5 + 4X

(−2)
2n X

(−2)
2n−2X

(−2)
2n−4P2n−6 (D.3)
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Thus as a simple comparison we see that the first term for both the xPk and yPk is 4 and

the last term is

4X
(−2)
2n X

(−2)
2n−2X

(−2)
2n−4 = 4

h2n

h2n−2

h2n−2

h2n−4

h2n−4

h2n−6

= 4
h2n

h2n−6

,

Y
(−3)
2n Y

(−3)
2n−3 =

h2n

h2n−3

4
h2n−3

h2n−6

= 4
h2n

h2n−6

, (D.4)

where we make use of (4.4.1a) and (4.4.2a).

X
(−2)
k =

hk

hk−2

, Y
(−3)
k =

hk

hk−3

Then we can consider the remaining 11 relations.

This equation also contains a great deal of symmetry in it, since we can rewrite the lower

order coefficients as the higher order coefficients. So we consider the coefficient of Pk−5

for k even

(
Y

(−2)
2n Y

(−3)
2n−2 + Y

(−3)
2n Y

(−2)
2n−3

)

= 4
(
X

(−2)
2n−3

(
X

(−1)
2n X

(−2)
2n−1 + X

(−2)
2n X

(−1)
2n−2

)
+ X

(−2)
2n X

(−2)
2n−2X

(−1)
2n−4

)
(D.5)

and then substitute in (4.4.1a) and (4.4.2a)
(

Y
(−2)
2n

h2n−2

h2n−5

+
h2n

h2n−3

Y
(−2)
2n−3

)

= 4

(
h2n−3

h2n−5

(
X

(−1)
2n

h2n−1

h2n−3

+
h2n

h2n−2

X
(−1)
2n−2

)
+

h2n

h2n−4

X
(−1)
2n−4

)

and after a bit of rearranging we find that it is equivalent to the coefficient of P2n+5.
(

Y
(−2)
2n

h2n−2

h2n

+
h2n−5

h2n−3

Y
(−2)
2n−3

)

= 4

(
h2n−3

h2n

(
X

(−1)
2n

h2n−1

h2n−3

+
h2n

h2n−2

X
(−1)
2n−2

)
+

h2n

h2n−4

X
(−1)
2n−4

)

then substitute back in for h2n

(
Y

(2)
2n−2 + Y

(2)
2n−5

)
= 4

(
X

(1)
2n−1 + X

(1)
2n−3 + X

(1)
2n−5

)
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We try substituting relations into one another in order to discover more about the

interactivity between Xk and Yk. The best approach is to start at the bottom and work

the way up, primarily because the terms X
(−2)
k and Y

(−3)
k appear in the lower relations

and they can be expressed in terms of known functions.

Now we consider y2Pk for k odd,

y2P2n+1 = 4P2n+7 +
(
4Y

(2)
2n+4 + 4Y

(2)
2n+1

)
P2n+6 +

(
4Y

(1)
2n+4 + Y

(1)
2n+1 + Y

(2)
2n+1Y

(2)
2n+3

)
P2n+5

+
(
Y

(2)
2n+1Y

(1)
2n+3 + Y

(1)
2n+1Y

(2)
2n+2 + 4Y

(0)
2n+4 + 4Y

(0)
2n+1

)
P2n+4 +

(
4Y

(−1)
2n+4

+Y
(−1)
2n+1 + Y

(2)
2n+1Y

(0)
2n+3 + Y

(0)
2n+1Y

(2)
2n+1 + Y

(1)
2n+1Y

(1)
2n+2

)
P2n+3 +

(
4Y

(−2)
2n+1

+Y
(1)
2n+1Y

(0)
2n+2 + 4Y

(−2)
2n+4 + Y

(−1)
2n+1Y

(2)
2n + Y

(0)
2n+1Y

(1)
2n+1 + Y

(2)
2n+1Y

(−1)
2n+3

)
P2n+2

+
(
(Y (0)

2n+1)
2 + Y

(−3)
2n+1 + 4Y

(−3)
2n+4 + Y

(−1)
2n+1Y

(1)
2n + Y

(−2)
2n+1Y

(2)
2n−1 + Y

(2)
2n+1Y

(−2)
2n+1

+Y
(1)
2n+1Y

(−1)
2n+2

)
P2n+1 +

(
Y

(2)
2n+1Y

(−3)
2n+3 + Y

(−3)
2n+1Y

(2)
2n−2 + Y

(0)
2n+1Y

(−1)
2n+1

+Y
(−2)
2n+1Y

(1)
2n−1 + Y

(−1)
2n+1Y

(0)
2n + Y

(1)
2n+1Y

(−2)
2n+2

)
P2n

+
(
Y

(−1)
2n+1Y

(−1)
2n + Y

(−3)
2n+1Y

(1)
2n−2 + Y

(−2)
2n+1Y

(0)
2n−1 + Y

(0)
2n+1Y

(−2)
2n+1 + Y

(1)
2n+1Y

(−3)
2n+2

)
P2n−1

+
(
Y

(−1)
2n+1Y

(−2)
2n + Y

(0)
2n+1Y

(−3)
2n+1 + Y

(−2)
2n+1Y

(−1)
2n−1 + Y

(−3)
2n+1Y

(0)
2n−2

)
P2n−2

+
(
Y

(−1)
2n+1Y

(−3)
2n + Y

(−2)
2n+1Y

(−2)
2n−1 + Y

(−3)
2n+1Y

(−1)
2n−2

)
P2n−3

+
(
Y

(−2)
2n+1Y

(−3)
2n−1 + Y

(−3)
2n+1Y

(−2)
2n−2

)
P2n−4 + Y

(−3)
2n+1Y

(−3)
2n−2P2n−5 (D.6)

and the longer expression containing Xk

(4x3 − g2x− g3)P2n

= 4P2n+7 + 4
(
X

(1)
2n+5 + X

(1)
2n+3 + X

(1)
2n+1

)
P2n+6 + 4

(
X

(1)
2n+4

(
X

(1)
2n+1 + X

(1)
2n+3

)

+X
(1)
2n+1X

(1)
2n+2 + X

(0)
2n+5 + X

(0)
2n+3 + X

(0)
2n+1

)
P2n+5 + 4

(
X

(0)
2n+4

(
X

(1)
2n+1 + X

(1)
2n+3

)

+X
(0)
2n+2X

(1)
2n+1 + X

(1)
2n+3

(
X

(0)
2n+1 + X

(0)
2n+3

)
+ X

(1)
2n+1X

(0)
2n+1 + X

(1)
2n+1X

(1)
2n+2X

(1)
2n+3

+X
(−1)
2n+5 + X

(−1)
2n+3 + X

(−1)
2n+1

)
P2n+4 + 4

(
X

(−1)
2n+4

(
X

(1)
2n+3 + X

(1)
2n+1

)
+ X

(−1)
2n+2X

(1)
2n+1

+X
(1)
2n+2

(
X

(−1)
2n+1 + X

(−1)
2n+3

)
+ X

(1)
2n X

(−1)
2n+1 + (X(0)

2n+1)
2 + X

(0)
2n+1X

(0)
2n+3 + (X(0)

2n+3)
2 − 1

4
g2

+X
(1)
2n+1X

(1)
2n+2

(
X

(0)
2n+3 + X

(0)
2n+2 + X

(0)
2n+1

)
+ X

(−2)
2n+5 + X

(−2)
2n+3 + X

(−2)
2n+1

)
P2n+3
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+ 4
(
X

(−2)
2n+4

(
X

(1)
2n+1 + X

(1)
2n+3

)
+ X

(−2)
2n+2X

(1)
2n+1 + X

(1)
2n+1

(
X

(−2)
2n+1 + X

(−2)
2n+3

)
+ X

(1)
2n−1X

(−2)
2n+1

+X
(1)
2n+1

(
(X(0)

2n+1)
2 + X

(0)
2n+1X

(0)
2n+2 + (X(0)

2n+2)
2 − 1

4
g2

)
+ X

(−1)
2n+3

(
X

(0)
2n+3 + X

(0)
2n+2 + X

(0)
2n+1

)

+X
(−1)
2n+1

(
X

(0)
2n+2 + X

(0)
2n+1 + X

(0)
2n

)
+ (X(1)

2n+1)
2X

(−1)
2n+2 + X

(1)
2n+1X

(1)
2n+2X

(−1)
2n+3 + X

(−1)
2n+1X

(1)
2n X

(1)
2n+1

)
P2n+2

+ 4
(
2X

(0)
2n+1X

(1)
2n+1X

(−1)
2n+2 + X

(1)
2n+1X

(0)
2n+2X

(−1)
2n+2 + X

(−1)
2n+1X

(−1)
2n+2 + X

(0)
2n+3X

(−2)
2n+3

+X
(1)
2n+1X

(1)
2n+2X

(−2)
2n+3 + X

(−1)
2n+1X

(−1)
2n + 2X

(0)
2n+1X

(−2)
2n+1 + X

(−1)
2n+1X

(0)
2n X

(1)
2n

+X
(−2)
2n+1X

(0)
2n−1 + X

(−2)
2n+1X

(1)
2n−1X

(1)
2n − 1

4
g3 + X

(0)
2n+1

(
(X(0)

2n+1)
2 − 1

4
g2

)

+2X
(0)
2n+1X

(−2)
2n+3 + X

(−1)
2n+3X

(−1)
2n+2 + 2X

(−1)
2n+1X

(1)
2n X

(0)
2n+1 + X

(1)
2n+1X

(−2)
2n+2X

(1)
2n

)
P2n+1

+ 4
(
X

(−2)
2n+3X

(−1)
2n+1 + (X(0)

2n+1)
2X

(−1)
2n+1 + X

(0)
2n+1X

(1)
2n+1X

(−2)
2n+2 + X

(−1)
2n+1X

(−2)
2n+2

+(X(−1)
2n+1)

2X
(1)
2n + X

(0)
2n+1X

(−1)
2n+1X

(0)
2n + X

(1)
2n+1X

(−1)
2n+2X

(−1)
2n+1 + X

(−2)
2n+1X

(1)
2n−1X

(0)
2n

+X
(−2)
2n+1X

(−1)
2n+1 + X

(1)
2n+1X

(0)
2n+2X

(−2)
2n+2 + X

(−1)
2n+1X

(−2)
2n + X

(0)
2n+1X

(−2)
2n+1X

(1)
2n−1

+X
(−2)
2n+1X

(−1)
2n−1 −

1
4
g2X

(−1)
2n+1 + X

(1)
2n+1X

(−2)
2n+2X

(0)
2n + X

(−1)
2n+1(X

(0)
2n )2

+X
(−2)
2n+1X

(0)
2n−1X

(1)
2n−1 + X

(−1)
2n+3X

(−2)
2n+2 + X

(−1)
2n+1X

(−1)
2n X

(1)
2n−1

)
P2n

+ 4
(

X
(−2)
2n+1(X

(0)
2n−1)

2 − 1
4
g2X

(−2)
2n+1 + X

(−1)
2n+1X

(1)
2n X

(−2)
2n+1 + X

(1)
2n+1X

(−1)
2n+2X

(−2)
2n+1

+X
(−2)
2n+3X

(−2)
2n+1 + (X(0)

2n+1)
2X

(−2)
2n+1 + X

(−2)
2n+1X

(1)
2n−1X

(−1)
2n + X

(−2)
2n+1X

(−2)
2n−1

+X
(−2)
2n+1X

(−1)
2n−1X

(1)
2n−2 + X

(−1)
2n+1X

(−2)
2n X

(1)
2n−2 + X

(0)
2n+1X

(−2)
2n+1X

(0)
2n−1

+X
(−1)
2n+1X

(0)
2n X

(−1)
2n + X

(−1)
2n+1X

(−1)
2n X

(0)
2n−1 + X

(1)
2n+1X

(−2)
2n+2X

(−1)
2n

+X
(0)
2n+1X

(−1)
2n+1X

(−1)
2n + (X(−2)

2n+1)
2
)

P2n−1

+ 4
(
X

(0)
2n−2

(
X

(−1)
2n+1X

(−2)
2n + X

(−2)
2n+1X

(−1)
2n−1

)
+ X

(0)
2n+1X

(−1)
2n+1X

(−2)
2n + X

(−2)
2n+1X

(1)
2n−1X

(−2)
2n

+X
(−2)
2n+1X

(−2)
2n−1X

(1)
2n−3 + X

(−1)
2n+1X

(−1)
2n X

(−1)
2n−1 + X

(0)
2n+1X

(−2)
2n+1X

(−1)
2n−1 + X

(−1)
2n+1X

(0)
2n X

(−2)
2n

+X
(−2)
2n+1X

(0)
2n−1X

(−1)
2n−1 + X

(1)
2n+1X

(−2)
2n+2X

(−2)
2n

)
P2n−2

+ 4
(
X

(−1)
2n−2

(
X

(−1)
2n+1X

(−2)
2n + X

(−2)
2n+1X

(−1)
2n−1

)
+ X

(−1)
2n+1X

(−1)
2n X

(−2)
2n−1

+X
(−2)
2n+1X

(−2)
2n−1

(
X

(0)
2n+1 + X

(0)
2n−1 + X

(0)
2n−3

))
P2n−3 + 4

(
X

(−2)
2n−2

(
X

(−1)
2n+1X

(−2)
2n + X

(−2)
2n+1X

(−1)
2n−1

)

+X
(−2)
2n+1X

(−2)
2n−1X

(−1)
2n−3

)
P2n−4 + 4X

(−2)
2n+1X

(−2)
2n−1X

(−2)
2n−3P2n−5 (D.7)

Again we consider the first and last terms of both sides of the relation, where the former
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is 4 and the latter is

4X
(−2)
2n+1X

(−2)
2n−1X

(−2)
2n−3 = 4

h2n+1

h2n−5

,

Y
(−3)
2n+1Y

(−3)
2n−2 = 4

h2n+1

h2n−2

h2n−2

h2n−5

= 4
h2n+1

h2n−5

.

So at the very least the initial and final terms are identical for k odd or even.

E Elliptic Polynomials

The following list of equations are the elliptic polynomials, where we assume that P(1)

does not exist (since e1 does not exist). To create a list of polynomials we require both

recursion relations (4.2.6) since for lower order polynomials we require one or the other

xPk = Pk+2 + X
(1)
k Pk+1 + X

(0)
k Pk + X

(−1)
k Pk−1 + X

(−2)
k Pk−2,

yPk = 4εkPk+3 + Y
(2)
k Pk+2 + Y

(1)
k Pk+1 + Y

(0)
k Pk + Y

(−1)
k Pk−1

+Y
(−2)
k Pk−2 + Y

(−3)
k Pk−3,

and where

εk =





1 , k odd ,

0 , k even .

Beginning with establishing some initial conditions,

P0 = 1 , P−1 = P−2 = P−3 = 0 (E.1)

we then move on to constructing the polynomials. Now since P1 does not exist, we must

make the allowance that any coefficient that would normally be coupled with P1 takes

the value of 0. Thus the first two polynomials P(2) and P(3), which are formed by taking

k = 0 in xPk and yPk

P2 = x−X
(0)
0 (E.2)

P3 = y − Y
(2)
0 x + (X

(0)
0 Y

(2)
0 − Y

(0)
0 ) (E.3)
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exist when X
(1)
0 = 0 and Y

(1)
0 = 0 For k = 2, we gain P(4) from the xPk relation

P4 = x2 −X
(1)
2 y + (X

(1)
2 Y

(2)
0 −X

(0)
2 −X

(0)
0 )x−

(
X

(1)
2 (X

(0)
0 Y

(2)
0 − Y

(0)
0 )

−(X
(0)
2 X

(0)
0 + X

(−2)
2 )

)
(E.4)

and X
(−1)
2 = 0. After this point there will be more than one approach to derive a

polynomial, since for values of higher order k we have multiple equations. To illustrate

this, first consider P5 which can be constructed in two separate ways, either through yP2

or xP3. Thus we have yP2 from k = 2 and xP3 from k = 3 respectively

P5 = xy − Y
(2)
2 x2 +

(
Y

(2)
2 X

(1)
2 − Y

(1)
2 −X

(0)
0

)
y

−
(
Y

(2)
2 (X

(1)
2 Y

(2)
0 −X

(0)
2 −X

(0)
0 )− Y

(1)
2 Y

(2)
0 + Y

(0)
2

)
x

+
(
Y

(2)
2

(
X

(1)
2 (X

(0)
0 Y

(2)
0 − Y

(0)
0 )− (X

(0)
0 X

(0)
2 −X

(−2)
2 )

)

−Y
(1)
2 (X

(0)
0 Y

(2)
0 − Y

(0)
0 ) + Y

(0)
2 X

(0)
0 − Y

(−2)
2

)
(E.5a)

P5 = xy −
(
X

(1)
3 + Y

(2)
0

)
x2 +

(
X

(1)
3 X

(1)
2 −X

(0)
3

)
y

−
(
X

(1)
3 (Y

(2)
0 X

(1)
2 −X

(0)
2 −X

(0)
0 )− Y

(2)
0 (X

(0)
3 + X

(0)
0 ) + X

(−1)
3 + Y

(0)
0

)
x

+
(
X

(1)
3

(
X

(1)
2 (X

(0)
0 Y

(2)
0 − Y

(0)
0 )− (X

(0)
0 X

(0)
2 −X

(−2)
2 )

)

−X
(0)
3 (X

(0)
0 Y

(2)
0 − Y

(0)
0 ) + X

(−1)
3 X

(0)
0

)
(E.5b)

and where Y
(−1)
2 = 0 and X

(−2)
3 = 0 respectively. Despite the differences we have here,

both these relations are equal, which is proved by the consistency between the x and y
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relations. This leads to a whole new set of relations between the coefficients Xk and Yk

Y
(2)
2 = X

(1)
3 + Y

(2)
0 , (E.6a)

Y
(2)
2 X

(1)
2 − Y

(1)
2 −X

(0)
0 = X

(1)
3 X

(1)
2 −X

(0)
3 , (E.6b)

Y
(2)
2 (X

(1)
2 Y

(2)
0 −X

(0)
2 −X

(0)
0 )− Y

(1)
2 Y

(2)
0 + Y

(0)
2 =

X
(1)
3 (Y

(2)
0 X

(1)
2 −X

(0)
2 −X

(0)
0 )− Y

(2)
0 (X

(0)
3 + X

(0)
0 ) + X

(−1)
3 + Y

(0)
0 , (E.6c)

(
Y

(2)
2

(
X

(1)
2 (X

(0)
0 Y

(2)
0 − Y

(0)
0 )− (X

(0)
0 X

(0)
2 −X

(−2)
2 )

)

−Y
(1)
2 (X

(0)
0 Y

(2)
0 − Y

(0)
0 ) + Y

(0)
2 X

(0)
0 − Y

(−2)
2

)
=

(
X

(1)
3

(
X

(1)
2 (X

(0)
0 Y

(2)
0 − Y

(0)
0 )− (X

(0)
0 X

(0)
2 −X

(−2)
2 )

)

−X
(0)
3 (X

(0)
0 Y

(2)
0 − Y

(0)
0 ) + X

(−1)
3 X

(0)
0

)
. (E.6d)

The smaller relations can reduce the larger relations

(E.7)

and with the aid of these we can consider a single relation for P5. For reasons of simplicity

I will use the derivation from yP2.

Next we consider P6, which raises a further issue, since we have reached a level where

the curve has a direct involvement.

For P6 we use yP3 with the yP2 value of P5,

4P6 = y2 − (Y (2)
3 + Y

(2)
0 )xy + (Y (2)

3 Y
(2)
2 − Y

(1)
3 )x2

−
(
Y

(2)
3 (Y (2)

2 X
(1)
2 − Y

(1)
2 −X

(0)
0 )− Y

(1)
3 X

(1)
2 + Y

(0)
3 − (X(0)

0 Y
(2)
0 − Y

(0)
0 )

)
y

+
(
Y

(2)
3 (Y (2)

2 (Y (2)
0 X

(1)
2 −X

(0)
2 −X

(0)
0 )− Y

(1)
2 Y

(2)
0 + Y

(0)
2 )

−Y
(1)
3 (Y (2)

0 X
(1)
2 −X

(0)
2 −X

(0)
0 ) + Y

(0)
3 Y

(2)
0 − Y

(−1)
3

)
x

−
(
Y

(2)
3

(
Y

(2)
2 (X(1)

2 (X(0)
0 Y

(2)
0 − Y

(0)
0 )− (X(0)

2 X
(0)
0 −X

(−2)
2 ))− Y

(1)
2 (X(0)

0 Y
(2)
0 − Y

(0)
0 )

+Y
(0)
2 X

(0)
0 − Y

(−2)
2

)
− Y

(1)
3

(
X

(1)
2 (X(0)

0 Y
(2)
0 − Y

(0)
0 )− (X(0)

2 X
(0)
0 −X

(−2)
2 )

)

+Y
(0)
3 (X(0)

0 Y
(2)
0 − Y

(0)
0 )− Y

(−1)
3 X

(−0)
0 + Y

(−3)
3

)
(E.8a)
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and similarly for xP4 with yP2

P6 = x3 − (X(1)
4 + X

(1)
2 )xy +

(
X

(1)
4 Y

(2)
2 −X

(0)
4 + (X(1)

2 Y
(2)
2 −X

(0)
2 −X

(0)
0 )

)
x2

−
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X

(1)
4 (Y (2)

2 X
(1)
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(0)
0 )−X
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4 X
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4

)
y
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X
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(
Y

(2)
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0 X
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(0)
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(0)
0 )− Y

(1)
2 Y

(2)
0 + Y

(0)
2

)

−X
(0)
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0 X
(1)
2 −X

(0)
2 −X

(0)
0 ) + X

(−1)
4 Y

(2)
0 + X

(−2)
4

−X
(1)
2 (X(0)

0 Y
(2)
0 − Y

(0)
0 ) + (X(0)

2 X
(0)
0 −X

(−2)
2 )

)
x

−
(
X

(1)
4

(
Y

(2)
2 (X(1)

2 (X(0)
0 Y

(2)
0 − Y

(0)
0 )− (X(0)

2 X
(0)
0 −X

(−2)
2 ))− Y

(1)
2 (X(0)

0 Y
(2)
0 − Y

(0)
0 )

+Y
(0)
2 X

(0)
0 − Y

(−2)
2

)
−X

(0)
4

(
X

(1)
2 (X(0)

0 Y
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0 − Y

(0)
0 )− (X(0)

2 X
(0)
0 −X

(−2)
2 )

)

+X
(−1)
4 (X(0)

0 Y
(2)
0 − Y

(0)
0 )−X

(−2)
4 X

(−0)
0

)
. (E.8b)

In the former P6, we introduce the curve y2 = 4x3 − g2x − g3 and since these two
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polynomials are equal, a further set of relations arises

1

4
(Y

(2)
3 + Y

(2)
0 ) = X

(1)
4 + X

(1)
2 , (E.9a)

1

4
(Y

(2)
3 Y

(2)
2 − Y

(1)
3 ) = X

(1)
4 Y

(2)
2 −X

(0)
4 + (X

(1)
2 Y

(2)
2 −X

(0)
2 −X

(0)
0 ), (E.9b)
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3 X
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=
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4 X
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=
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0 X
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, (E.9d)
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which introduce the non-zero curve constants g2 and g3.
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As one last example we show the derivation of P7 where we use xP5 and yP4 to generate

the two polynomials, where the values of P6 from yP2 and P5 from yP3 are used. These

two polynomials also satisfy the relations above, since if all the P7 are individually worked

out there are 16 representations. Initially we present the form of P7 acquired using xP5
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and then we use yP4 with the same values
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These polynomials satisfy the following series of relations (found by equating the P7),
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Equations J. Math. Anal. Appl. 180 342–360 (1993).

[65] G. Freud, On the coefficients in the recursion formulae of Orthogonal Polynomials,

Proc. Roy. Irish Acad. Sect. A 76 (1976) 1–6.

[66] G. Freud Orthogonale Polynome, Birkhäuser, 1969 = Orthogonal Polynomials,
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