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ABSTRACT 

 

This thesis investigates the problem of treatment sequencing within health economic 

evaluations. For some chronic conditions, sequences of treatments can be used. When there 

are a lot of alternative treatments, then the number of possible sequences becomes very 

large. When undertaking an economic evaluation, it may not be feasible to estimate the costs 

and benefits of every alternative treatment sequence. The objective of the thesis is to test the 

feasibility of simulation optimisation methods to find an optimal or set of near-optimal 

sequences of disease modifying treatments for rheumatoid arthritis in an economic evaluation 

framework. 

A large number of economic evaluations have been undertaken to estimate the costs and 

benefits associated with different treatments for rheumatoid arthritis. Many of these have not 

considered the downstream sequence of treatments provided, and no published study has 

considered identifying the best, or optimal, treatment sequence. The published evidence is 

therefore of limited applicability if the objective is to maximise patient benefit while 

constrained by a finite budget. It is plausible that decision-makers have developed sub-optimal 

guidance for rheumatoid arthritis, and this could extend to other chronic conditions. 

A simulation model can provide an expectation of the population mean costs and benefits for 

alternative treatment sequences. These models are routinely used to inform health economic 

evaluations. However, they can be computationally expensive to run, and therefore the 

evaluation of potentially millions of treatment sequences is not feasible. However, simulation 

optimisation methods exist to identify a good solution from a simulation model within a 

feasible period of time. Using these methods within an economic evaluation of treatment 

sequences has not previously been investigated. 

In this thesis I highlight the importance of the treatment sequencing problem, review and 

assess relevant simulation optimisation methods, and implement a simulated annealing 

algorithm to explore its feasibility and appropriateness.  From the implementation case study 

within rheumatoid arthritis, simulation optimisation via simulated annealing appears to be a 

feasible method to identify a set of good treatment sequences. However, the method requires 

a significant amount of time to implement and execute, which may limit its appropriateness 

for health resource allocation decision making. Further research is required to investigate the 

generalisability of the method, and further consideration regarding its use in a decision-making 

context is important. 
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CHAPTER 1: INTRODUCTION 

 

1.1 MOTIVATION 

Economic evaluation is a framework to provide a formal quantification of the costs and 

benefits of alternative allocations of health care resources. The evidence provided by 

economic evaluations enables decision makers to make informed decisions regarding the 

allocation of scarce health resources. These decisions may involve the development of a 

hospital, the introduction of a screening programme, or the funding of a medical treatment.  

The efficacy of many treatments can be uncertain, and even if they provide short term 

benefits, these may not persist. Therefore a switch may be made to an alternative treatment, 

and longer term and chronic conditions may be treated with a sequence of treatments. This 

sequence can provide disease control and symptomatic relief over a patient’s lifetime. 

Therefore, for an economic evaluation to capture the full future costs and benefits, a 

comparison is required between alternative treatment sequences, rather than alternative 

individual treatments. 

Evidence of the costs and benefits of competing alternatives or sequences are often 

unobserved, especially when accrued over a long time. Therefore decision analytic models are 

used to estimate expected future costs and benefits. These incorporate a range of evidence 

and assumptions, and for complex chronic conditions, a simulation model may be built to 

accurately reflect patient heterogeneity and capture future health events.  

Simulation models may be more appropriate for chronic conditions, especially when patient 

heterogeneity has an impact on future costs and benefits. However, they are often 

computationally expensive. 

In some chronic conditions, there can be a large number of treatments available. This is 

especially the case for rheumatoid arthritis (RA), where there are at least 13 unique 

treatments, and many treatments can be used in combination. There is a very large number of 

possible treatment sequences to be compared in an economic evaluation, so that the best 

sequence can be identified and the optimal use of health resources recommended. However, 

this large number of sequences, coupled with a simulation model which takes time to evaluate 

each sequence, means that it is not feasible to evaluate every possible sequence. This is the 

‘treatment sequencing problem’. 
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This problem can be framed as an optimisation problem, and simulation optimisation methods 

can be applied to determine a good enough solution within a feasible amount of time. 

However, applying a simulation optimisation method to address a treatment sequencing 

problem has not been conducted before. 

The motivation for this thesis is to review simulation optimisation methods which can be 

applied to this treatment sequencing problem. The implementation of a method in this thesis 

for the RA treatment sequencing problem will enable a consideration about whether it is 

feasible for use in other treatment sequencing problems, and other large health economic 

evaluation problems more generally. 

RESEARCH QUESTION 

The primary research question for this PhD thesis is ‘How can economic evaluations of 

sequential therapies for chronic conditions improve health resource allocation decision 

making?’ The PhD uses RA as a case study. 

The formal aims and objectives of the thesis are stated in Chapter 3, section 3.7. 

 

1.2 OVERVIEW OF THESIS 

Chapter 2 provides an introduction to economic evaluation. The theoretical basis to economic 

evaluation is explored and the decision analytic methods used to inform economic evaluations 

for decision makers are introduced. Chapter 3 provides a rationale for this thesis. It defines 

treatment sequences, considers a taxonomy for where treatment sequences may be used, and 

explains why treatment sequences represent a unique challenge when developing decision 

analytic models to inform an economic evaluation. Chapter 4 supports the rationale of this 

thesis by reporting a systematic review of economic evaluations of disease modifying anti-

rheumatic therapies (DMARDs) for RA. It highlights that no previously conducted economic 

evaluation has attempted to estimate the optimal treatment sequence for RA. 

In Chapter 5, a health economic model is developed to inform the currently ongoing NICE 

Technology Appraisal for biologic DMARDs. This allows a model to be utilised for the 

application of simulation-optimisation methods, which are reviewed in Chapter 6. Chapter 7 

reports the application of simulation optimisation via simulated annealing (SOSA) for the RA 

treatment sequencing problem. The thesis ends with Chapter 8, a discussion about the 

strengths and limitations of the work undertaken, recommendations for policy makers and 

further research, and overall conclusions. 
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1.3 RHEUMATOID ARTHRITIS 

EPIDEMIOLOGY 

Rheumatoid arthritis (RA) is a chronic inflammatory disease. It is characterised by progressive 

and irreversible joint damage, as well as impaired joint function, pain, and tenderness. The 

condition leads to disability and reduced quality of life.1 RA is associated with significant direct 

costs, as well as indirect costs due to reduced productivity.2,3 Evidence strongly suggests that 

patients with RA have a reduced life expectancy.4,5 

An estimated 400,000 people in England and Wales have RA,6 and it is more prevalent in 

females (1.16%) than males (0.44%).7 The majority of cases of RA are diagnosed when patients 

are between 40 and 70 years old.8 

ASSESSMENT 

In 1987, classification criteria for RA were produced by the American College of Rheumatology 

(ACR).9 In summary, for a diagnosis of RA, a patient must have at least four of the seven 

criteria: morning stiffness lasting for at least one hour; swelling in three or more joints; 

swelling in hand joints; symmetric joint swelling; x-ray imaging showing joint erosion or 

decalcification; rheumatoid nodules; and abnormal serum rheumatoid factor. The European 

League Against Rheumatism (EULAR) have also developed classification criteria, but these 

focus more on the identification of persistent synovitis, rather than satisfying the ACR 

criteria.10 

The EULAR and ACR classification systems have led to the development of two measures of 

improvement in RA symptoms: ACR responses,11 and EULAR responses.12 

An ACR20 response requires: a 20% improvement in swollen joint counts; and a 20% 

improvement in at least three of the following five ‘core set items’: Physician global 

assessment; Patient global assessment; patient pain; self-reported disability (using a validated 

instrument); and Erythrocyte sedimentation rate / C-reactive protein. ACR50 and ACR70 are 

also routine measure of improvement, with 50% and 70% improvements required, rather than 

20%. ACR response measures are routinely used in randomised controlled trials (RCTs). 

In the UK and across Europe, the disease activity score of 28 joints (DAS28)) is a routinely used 

measure of RA. The DAS28 can be used to classify both disease activity, and the level of 

improvement. The EULAR response criteria combine baseline DAS28 level, and the size of the 

DAS28 change, to classify response into ‘good’, ‘moderate’ and ‘none’. The method for 

determining the EULAR response classification is provided later in the thesis, in Table 5.14. 
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A commonly used measure of patient functional capacity is the health assessment 

questionnaire (HAQ). The HAQ instrument has established reliability and validity and is 

routinely used in RCTs and observational registries. It is commonly used to provide a profile of 

functional worsening over time due to RA. HAQ scores range from 0 to 3, best to worst. The 

scale is discrete, with step values of 0.125, which results in 25 HAQ values. 

TREATMENT 

The traditional medical treatments for RA involve conventional disease-modifying anti-

rheumatic drugs (cDMARDs), which include methotrexate (MTX), sulfasalazine (SSZ), 

hydroxycholorquine HCQ), leflunomide (LEF) and gold injections. Alongside these disease 

modifying treatments, analgesics, steroids, and non-steroidal anti-inflammatories were (and 

still are) commonly prescribed. 

However, more recently, a group of genetically-engineered biological therapies have been 

developed. Such drugs have been labelled as biologic DMARDs (bDMARDs). These treatments 

have amassed a significant amount of evidence to support their superiority over monotherapy 

cDMARDs, and their introduction to clinical practice has significantly improved the prognosis 

for patients with severe RA. However, the benefits provided by bDMARDs come with a 

significant price, and the introduction of bDMARDs has significantly increased spending on 

medical care for RA patients. The area of application within this thesis considers the cost-

effectiveness of these bDMARDs, and their optimal use in clinical practice. 
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CHAPTER 2: THE ECONOMIC FRAMEWORK FOR HEALTH TECHNOLOGY 

ASSESSMENT (HTA) 

 

2.1 INTRODUCTION 

Economics is the study of how choices are made and how the resources of society are used.13 

Resources are scarce, meaning there are not enough resources to satisfy the desires of all 

people. The scarcity of resources is the fundamental problem which economic theory and 

analysis look to address. Often, the definition of the social science of economics is posed as 

three related questions: “what is to be produced?”; “how is it to be produced?”; “who gets the 

output?”.14  

Health itself is an economic good, which allows the analysis of its demand, production and 

consumption in similar ways to the analysis of other goods and services.15 However, health has 

particular characteristics, and is often viewed as a ‘basic pleasure’16 or a ‘fundamental 

commodity’.17,18 Health has a significant impact on people’s welfare or utility, both directly as a 

consumption good, but also indirectly as an investment good, because it provides more 

healthy days which can lead to additional earnings and utility.18 Because health itself cannot be 

purchased or traded, economic analysis has to focus on the production and allocation of health 

care resources, which have demand derived from the demand for health. People’s desire for 

health in turn sees desire for more tangible goods and services which are considered a means 

to create health. This heightens the need for analytical insights into the allocation of health 

resources, because of the significant impact they have on people’s welfare. 

With scarcity of health care resources, an economic problem is observed in the field of health. 

The scarcity of resources must be considered alongside the objectives of a particular health 

system, such as maximising societal health. The production of health care is constrained by 

finite resources (factors of production) and technical possibilities, the two together 

represented by a production-possibility frontier. With a constrained supply of health care 

resources, decisions have to be made about how these scarce resources are allocated. The 

best allocation is that which satisfies the objective of the system, subject to the constrained 

supply of resources and the technologies available.  

This chapter will look to discuss the economic theory and methods that have been used to 

inform the allocation of scarce health resources. The objective is not to provide a 

comprehensive discussion about every aspect of health economic theory, but to instead 

provide context and background for the aims and objectives of this thesis. 
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2.2 OBJECTIVES OF A UNIVERSAL HEALTH SYSTEM 

A health care system is regularly defined as “the sum total of all the organisations, institutions 

and resources whose primary purpose is to improve health.”* This definition has been argued 

as being reductionist, by ignoring interrelations between components of the system, by 

removing the role of the population in a health care system, and by limiting its goal to just 

improving health.19 Kleczkowski (1984) provides a model of a health system, with five 

contributory components (Table 2.1).20 

Table 2.1: Kleczkowski model of a health care system 

 Component of a health care system 

1.  Development of health resources 

2.  Organised arrangement of resources 

3.  Delivery of health care 

4.  Economic support 

5.  Management 

 

Kleczkowski’s model defines a health care system in terms of the production of health care 

resources, and also the delivery of health care and the overarching management of the 

system. The model also reveals the broad objective of a health care system; the efficient use of 

health resources at a population level. In economics, efficiency is concerned with both the 

production of goods and services (technical efficiency), as well as the distribution of goods and 

services (allocative efficiency). An allocatively efficient distribution of goods is where the social 

surplus is maximised, and therefore the marginal benefits equal the marginal costs.  

The concept of allocative efficiency is aligned with the moral and political philosophy of 

distributive justice – what is just, or right, in allocating goods within a society.21 Two prominent 

moral theories of distributive justice are utilitarianism and egalitarianism, and they have a 

particular place in current health care resource allocation theory.22 

In utilitarianism, efficiency can broadly be defined as “greatest happiness of the greatest 

number”. Therefore the objective, to a utilitarian, is to maximise total social happiness, and a 

sacrifice from a minority that promotes the happiness of a majority is a worthy endeavour 

because the total social happiness has increased. Utilitarianism therefore makes no 

distributional judgement with regard to who ‘wins’ and who ‘loses’, and so equity of health 

                                                           
*
 http://www.who.int/topics/health_systems/qa/en/index.html - Accessed June 2015 

http://www.who.int/topics/health_systems/qa/en/index.html
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care resource allocation would not be of concern. Egalitarianism is concerned with a 

distribution of resources so each member of society receives an equal share.22 

However, equity, along with efficiency, is an important policy objective in health care, as well 

as social policy more generally.23 Equity incorporates a particular goal for which equality is 

desired. Equity in health care can be concerned with both the financing of health care, as well 

as the distribution of health care resources. With respect to the distribution of health care, 

equity can be considered in two dimensions. Vertical equity is the consideration that unequal 

people should be treated unequally, with horizontal equity the equal treatment of equal 

people. Defining how people are equal or unequal is specified by the equity goal. The quantity 

of literature related to equity in health care is enormous, however three equity goals are 

commonly discussed:24 

 Access 

 Utilisation 

 Outcomes 

An objective of ‘equal access for equal need’ requires the conditions where the opportunities 

to access health care are equal for those with equal need – horizontal equity. The corollary, for 

vertical equity, is that those with unequal needs have unequal opportunities to access health 

care. It is the case that equal access does not necessarily translate to equal utilisation, perhaps 

due to varying individual preferences. The acceptability of these reasons for differential 

utilisation should be considered. Equity of access, equity of utilisation and equity of outcomes 

as equity goals have different implications in terms of the delivery and allocation of health 

resources.  

Equity and efficiency do not align as objectives. In practice, maximising health outcomes may 

be at the expense of an equity goal (known as the ‘equity-efficiency trade-off’25). The corollary 

is that the achievement of an equity goal may be at the expense of health maximisation. 

 

2.3 WELFARE ECONOMICS AND HEALTH CARE ALLOCATION 

Welfare economics is the systematic analysis of the social desirability of any set of 

arrangements.15 With respect to resource allocation, it is the development of value 

judgements which allow a logical and consistent ranking of all alternative social states. With a 

scarce pool of health care resources, welfare economics allows informed and rational decision-

making for resource allocation. Welfare economics recognises that value judgements, and 
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normative economics, cannot be avoided. A fundamental question for health economics is 

how to determine the relative desirability of alternative ways of providing health care.  

Welfare economics is distinguished by four key underlying assumptions. Firstly, welfarism is a 

central axiom.  Welfarism is the requirement that “…the evaluation of any social state be 

based exclusively on the utilities generated in that state.”26 Secondly, it is underpinned by 

individualism, where social choices are constructed with only the views of those individuals 

affected considered. This assumes that individuals are the best (and only) judge of their own 

welfare, with perfect information and rational behaviour always motivating them towards 

achieving utility-maximisation. The third assumption is consequentialism, where the 

judgement of an action is based on its impact. Finally, welfare economics is defined by 

aggregation, which estimates social welfare as the aggregate of individual welfare. Welfare, or 

utility, is treated as ordinal in modern economics.  This requires a value judgement to rank 

different states of the world, or the observation of preference relations in the real world – 

revealed preference theory.  

If utility is considered a cardinal concept as defined in the early neoclassical approach,27 then 

the state with maximum utility could be identified via the aggregation of numeric utility, within 

a defined unit of measurement. With cardinal utility, equation [2.1] provides a social welfare 

function for state of the world (𝑋), which is a function of the utility obtained by each individual 

(𝑈) in that state. 

𝑊(𝑋) = 𝑓(𝑈1(𝑋), 𝑈2(𝑋), … , 𝑈𝑛(𝑋)) [2.1] 

However, economists moved away from the belief that by observing the purchasing of goods 

by consumers, that you can attach a numerical value in terms of the utility derived. Many 

economists now assume that utility is only measurable in an ordinal sense. You may observe a 

preference for a particular good by consumers, but not the relative strength of that 

preference. 

Vilfredo Pareto was one such economist, and his influential work at the turn of the 20th century 

highlighted that an improvement (a Pareto improvement) in social welfare is possible via a 

reallocation of resources that makes one person better off without making anyone else worse 

off. A Pareto optimum is achieved when all Pareto improvements have been made, and 

therefore the only possible way to make one individual better off is to make another worse off. 

Adam Smith’s ‘invisible hand’ is confirmed by the First Welfare Theorem – that a competitive 

market finds equilibrium at a Pareto optimum.  
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Pareto efficiency can identify between optimal and non-optimal states of the world, however 

it cannot rank between multiple points of optimality. Also, achieving Pareto optimality in 

practice is likely to be impossible. The difficulty of achieving the criterion of Pareto optimality 

stems from the fact that a person’s utility can only be inferred from revealed preferences, and 

so an evaluation of a distribution of resource that impacts on a large population becomes 

impossible. Instead, Kaldor-Hicks optimality is a less stringent criterion for an efficient 

allocation of resources. A Kaldor-Hicks allocation is superior to the status quo if the gains could 

be theoretically be used to compensate all those made worse off by the new distribution. A 

Kaldor-Hicks optimum is where no more Kaldor-Hicks improvements can be achieved. The 

difference between Pareto and Kaldor-Hicks is that the compensation does not actually have 

to be paid. If it is, then the losers do not lose and Pareto holds. The Kaldor-Hicks criterion is an 

attempt at being less restrictive; however flaws of the method have been identified. These 

include the fact that individuals require the same marginal utility of income,28 and also the 

possibility that after an improvement to increase social welfare, a move back to the original 

allocation could again increase welfare - the Scitovsky paradox.29 It is important to remember 

that Pareto and Kaldor-Hicks are neutral to any equity or distributional concerns,28 in particular 

when considering how compensation will have an impact on the distribution of income. 

The theoretical concepts of economic efficiency, Pareto and Kaldor-Hicks compensation, have 

been transferred to applied economics and policy evaluation. If the benefits of a policy are 

greater than the costs, then in principle the losers could be fully compensated with a net 

benefit remaining.30 There are numerous market failures associated with the provision of 

health care, meaning perfectly competitive markets in health are unlikely to exist.31 Therefore, 

the evaluation of policy and government provision and regulation of healthcare is required to 

ensure efficiency and welfare maximisation. 

 

2.4 ECONOMIC EVALUATION TO INFORM HEALTH CARE ALLOCATION 

When considering resource-allocation processes, a useful classification of ‘economic 

processes’ and ‘non-economic processes’ has been determined by several authors.32,33 The 

fundamental difference is that economic methods explicitly account for the scarcity of 

resources. By deploying a particular resource, it has been exhausted, and can be valued in 

terms of its opportunity cost, or the benefit foregone from the next best alternative. Each 

decision to deploy a resource is therefore explicitly valued by the next best alternative that 

could have been used in its place. Non-economic processes may be undertaken by determining 

a core set of services, a minimum requirement of need for a population, or via the ‘decibel 
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approach’ and political processes.32 However, these non-economic processes do not account 

for the opportunity cost of the deployment of resources and the differential preferences and 

demand for health care resources across a population.  

The economic processes of health care resource allocation are underpinned by the welfare 

economic theory detailed in 2.3. Brouwer and Koopmanschap (2000) discuss two competing 

views regarding economic evaluation in health care; the welfarist approach, and the 

pragmatist approach.34 The key distinction being that welfarists may try to ground economic 

evaluation on individualistic models of welfare, compared to pragmatists (or decision-makers) 

basing their recommendations for economic evaluation on societal values and on more 

pragmatic assumptions. The limitation of welfare economics in estimating cardinal measures 

of welfare, in particular to allow interpersonal comparisons of utility has been discussed and 

debated.35 This saw the development of Paretian theories and the Kaldor-Hicks criterion, as 

explained in Section 2.3. 

These theories have been operationalised as cost-benefit analysis (CBA), with the objective to 

identify Pareto improvements, or potential-Pareto improvements. CBA requires a consistent 

unit of measurement for both costs and benefits (usually monetary). The aim is to therefore 

identify those competing alternatives with a positive net benefit. The link to welfare 

economics is enhanced when considering Kaldor-Hicks, because the quantification of an 

individual utility change by compensation can be aggregated across all individuals who are 

affected. If the sum of compensation across individuals is positive, then this satisfies the 

Kaldor-Hicks criterion, and is equivalent to the net benefit estimated in the CBA. The primary 

decision rule for a CBA is to undertake activities with a positive net benefit when compared to 

the current status quo, and with a constrained budget the appropriate rule is to prioritise in 

order of the activity with the largest net benefit. Undertaking a CBA requires the identification 

of potential Pareto improvements, and also the identification of all costs and benefits which 

are relevant to a decision maker. Analyses that are explicitly limited in their capture of costs 

and benefits are known as partial CBA. Box 2.1 presents the usual summary measures from a 

CBA, the net present value (NPV) and the cost-benefit ratio. The NPV is the sum of the present 

value (PV) of both benefits and costs. 

The limitations of Paretian theory have seen a movement of welfare economics towards 

identifying independent arguments in the welfare function (the extra-welfarist approach), 

which would allow the methods of welfare analysis to survive. Health has been proposed as an 

important independent argument in the welfare function,28 as it would be an obvious measure 

to allow interpersonal comparisons within the health system. Therefore health itself, rather 
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than welfare, can be the objective when looking to evaluate the distribution of health care 

resources. The challenge in recent times has involved the development of a quantifiable and 

commensurate measure of health benefit. The quality adjusted life year (QALY) has evolved as 

a regularly used measure of health benefit, particularly in the UK. It has two primary 

dimensions, quantity and quality of life. A QALY requires quality of life to be anchored on a 

scale of one equal to perfect health, and zero equivalent to death. The scores for quality of life 

are more formally called health related quality of life (HRQL) states, or utility values. One QALY 

is therefore equivalent to one year spent in full health.* 

 
𝑁𝑃𝑉 =  ∑

(𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 − 𝐶𝑜𝑠𝑡𝑠)𝑡

(1 + 𝑟)𝑡

𝑛

𝑡=0

 
[2.2] 

Where: 
𝑟 = discount rate 
𝑡 = year 
𝑛 = time horizon (years) 

  

 
𝐶𝑜𝑠𝑡 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑅𝑎𝑡𝑖𝑜 =  

𝑃𝑉𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠

𝑃𝑉𝑐𝑜𝑠𝑡𝑠
 

[2.3] 

Where: 
𝑃𝑉𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠  = present value of benefits 

𝑃𝑉𝑐𝑜𝑠𝑡𝑠 = present value of costs 

  

Box 2.1: Cost Benefit Analysis 

The valuation of QALYs, or more formally the valuation of defined HRQL states, does not 

commit the evaluation to a narrow concept of utility or welfare. Instead, the use of QALY 

analysis allows health states to be valued, but also allows these values to be determined by 

peoples values and feelings for a particular health state, or by some objective principles.36 

COST EFFECTIVENESS ANALYSIS 

The QALY has increased the use of cost-effectiveness analyses (CEA), where benefits are 

measured in units other than money.15 Costs and benefits are evaluated across competing 

alternatives, to inform the allocation of health care resources. Cost-effectiveness analyses are 

related to cost-minimisation analyses (CMA), where the benefits are assumed equal between 

two or more alternatives, and therefore the solution is to pick the alternative with the lowest 

cost. CEA can incorporate benefits of interest such as life years gained (LYG), disability adjusted 

life years (DALYs), as well as clinical outcomes such as hip fractures avoided. When QALYs are 

used to quantify health benefits, the evaluation is formally called a Cost-Utility Analysis (CUA). 

This label recognises that overall health benefits, like utility, are of value. 

                                                           
*
 1 year of life x 1 perfect health HRQL state = 1 QALY 

3 years of life x 0.4 HRQL state = 1.2 QALYs 
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The major advantage of the QALY and CUA is that it allows a comparison of benefits across 

different treatments and conditions due to the common metric to value health benefits. The 

consistent application of CUA allows interpersonal comparison within a health system. For 

consistency and clarity, from now on only the term cost-effectiveness analysis (CEA) will be 

used, although the assumption is that this is equivalent to cost-utility analysis (CUA), and 

unless specified QALYs will be the metric of health benefits. 

Because a CEA does not provide a direct comparison of the value of the effects and the costs, 

decision rules are required. If comparing two treatments, one may cost more but also provide 

more QALYs. The problem for decision-makers is determining how much extra benefit is 

required to justify the extra expenditure, because there is an opportunity cost associated with 

allocating resources. A cost-effective treatment is one where, given limited resources, its use 

will contribute to the maximisation of health benefits. Traditionally, the output of a CEA is 

reported as a ratio of the difference in costs and effects between two alternatives, the 

incremental cost-effectiveness ratio (ICER), as demonstrated in Box 2.2. 

 
𝐼𝐶𝐸𝑅 =  

(𝐶𝑎 − 𝐶𝑏)

(𝐸𝑎 − 𝐸𝑏)
 [2.4] 

Where: 
𝑎 = Treatment A 
𝑏 = Treatment B 
𝐶 = Costs 
𝐸 = Effects 

 

 

 
𝐼𝐶𝐸𝑅 =  

∆𝐶

∆𝐸
 [2.5] 

Box 2.2: Cost Effectiveness Analysis 

The ICER can be interpreted as the cost per unit of effect, as represented in equation [2.4]. For 

decision makers, there are four possible situations when using an ICER, which are presented in 

Table 2.2. 

Table 2.2: Results from a cost-effectiveness analysis (CEA) 

 CEA result ICER  Interpretation Fund new treatment? 

1. + Inc. Cost 

+ Inc. QALYs 

Positive More costly and more effective ? 

2. - Inc. Cost 

- Inc. QALYs 

Positive Less costly and less effective ? 

3. + Inc. Cost 

- Inc. QALYs 

Negative More costly and less effective  

4. - Inc. Cost 

+ Inc. QALYs 

Negative Less costly and more effective  
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With situations 3 and 4, the solution for decision-makers is very straight forward. However, it 

is clear that a definitive answer cannot be provided based on just an ICER value. The estimates 

of costs and effects are required to ensure dominant (less costly and more effective) 

treatments are adopted and dominated (more costly and less effective) treatments are 

refused. With situations 1 and 2, the magnitude of the ICER will have an impact on whether it 

is viewed as cost-effective. The interpretation of an ICER as the cost per additional unit of 

effect means that the higher the ICER, the more you will have to be willing to pay for that 

additional unit of effectiveness. Formally, a cost-effectiveness threshold (𝜆) is a ceiling for 

which an ICER must be less than for it to be considered cost-effective. The 𝜆 threshold can be 

used as a tool to resolve situations 1 and 2, however 2 is generally rare and often other 

decision rules are considered, such as not accepting treatments which result in a health loss, 

which may also be unethical. In situation 1, an ICER for an option below 𝜆 is considered cost-

effective, or the additional (reduced) effect is at an acceptable cost (saving). 

The true definition of the 𝜆 threshold value has been widely debated in health economics. 

Some have proposed that the 𝜆 threshold is a societal estimate of the willingness to pay for a 

QALY.37 This definition allows an empirical estimate of 𝜆 to be found through either revealed 

preferences or studies with hypothetical games. The major issue with this approach is that a 

societal willingness to pay value for a QALY does not consider the fact that the NHS budget is 

fixed, and decision-makers must consider the opportunity cost of the deployment of 

resources. An exhaustive consideration of the costs and QALYs of all NHS services would allow 

a ranking of all by their cost-effectiveness and a budget to be allocated via a cost-effectiveness 

league table.38 A threshold 𝜆 can be derived from the league table approach; it is the ICER of 

the least cost-effective intervention that is currently funded. This intervention would ideally be 

decommissioned by the NHS if a more cost-effective intervention was developed. This 

approach may be feasible for a small budget-holder with only a small set of activities to 

prioritise, however for the NHS the task of identifying these opportunity costs is likely to be 

impossible. Also, the use of a league table could clearly highlight equity issues, such as 

populations of people having no NHS care. 

To allow economic evaluation to inform health care resource allocation, a pragmatic approach 

has been proposed.39,40  The 𝜆 threshold can be informed empirically by past decisions, or by 

estimates from other public sectors. By using past decisions, a decision-maker can be a 

‘threshold seeker’,40 and analyses can highlight services which should be displaced, with clear 

recommendations for disinvestment. The search for a 𝜆 threshold does highlight a limitation of 

economic evaluation and the identification of optimal allocations of health care resources. The 
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current approaches for the economic evaluation of health resources continue to be 

contentious, and the ongoing research to inform the 𝜆 threshold is of great importance.41 

When an evaluation is of only two competing alternatives, then application of the decision rule 

is usually straight forward. The ICER can be calculated between the two alternatives and the 

standard 𝜆 threshold applied. However, when an economic evaluation considers more than 

two alternatives, the decision rules become more complicated, and the quick interpretation of 

results requires a set procedure for the presentation of results. This procedure, known as an 

incremental analysis, consists of ruling out options which are simply dominated (where a less 

costly and more effective alternative exists), and extendedly dominated (where a combination 

of two alternative options is less costly and more effective). The process for undertaking a full 

incremental analysis is presented in Box 2.3. 

1. Rank options by increasing cost 

2. Eliminate options that are simply dominated – there is a less costly and more effective 

comparator 

3. Eliminate options that are extendedly dominated – there is a combination of two other 

options that are less costly and more effective 

4. Calculate the incremental costs and incremental benefits of each remaining option 

5. Calculate the ICER compared to the next best (non-dominated) alternative 

Box 2.3: Process for undertaking a full incremental analysis 

While this process is routinely undertaken for economic evaluations, and ICERs are the 

standard output for a CEA, the ratio properties of an ICER means that often their 

interpretation can be a challenge, especially when there are many comparators. Therefore to 

avoid the limitations of an ICER, it is common to internalise the 𝜆 threshold decision-rule which 

essentially returns us to a CBA, but does not require the imposition of a welfarist framework. 

The aim is to allow cost-effectiveness to be interpreted by a single figure which is not a ratio. 

The net benefit approach is used, with 𝜆 being used to convert either costs into units of effect, 

or benefits into monetary units. 

The net benefit approach is demonstrated in Box 2.4, with the cost effectiveness threshold 𝜆 

used to convert either costs or benefits into a consistent unit. Using the net benefit approach 

for more than two options is simple; the decision rule is to select the option with the greatest 

net benefit. 
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 𝑁𝑒𝑡 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 =  ∆𝐸 − ∆𝐶 [2.6] 

Where: 
∆𝐸 and ∆𝐶 are in the same units 
Cost Effectiveness Threshold 𝜆  

 
 

 𝑁𝑒𝑡 𝑀𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 =  𝜆 ∙ ∆𝐸 − ∆𝐶 [2.7] 

If 𝑁𝑀𝐵 > 0, then cost-effective   

 
𝑁𝑒𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 = ∆𝐸 −

∆𝐶

𝜆
 [2.8] 

If 𝑁𝐻𝐵 > 0, then cost-effective   

Box 2.4: Net Benefit 

DECISION ANALYTIC MODELLING 

Health technology assessment (HTA) is “..a multidisciplinary process to evaluate the social, 

economic, organisational and ethical issues of a health intervention or technology.”* It is the 

framework which underpins health resource allocation decision making. For a CEA to inform 

HTA, the costs and effects of competing alternatives are required. However, the estimation of 

costs and effects requires evidence which in general is not observable. Even where costs and 

effects have been observed, for instance within a clinical trial, the evidence may be limited in 

terms of its generalisability and appropriateness for decision-making. In particular, the 

evidence may be short-term, where long-term implications are important, or a trial may not 

include all relevant comparators (placebo-controlled trials are common). For decision-making 

within a HTA process, trial and observational evidence may form a subset of the evidence 

required; however HTA often requires the synthesis of evidence to estimate the costs and 

effects of a technology in circumstances which often have not been observed. For example, a 

novel cancer therapy may have a short placebo-controlled trial to prove efficacy, however the 

long term implications in clinical practice may have never been observed. 

Decision analytic modelling (DAM) “represents the real world with a series of numbers and 

mathematical and statistical relationships.”42  Decision analysis and DAM in the context of 

economic evaluation uses mathematical models to determine the possible consequences that 

would emerge from the competing alternatives being evaluated. A decision analytic model 

(from now on referred to as a ‘model’) allows the consideration of the costs and effects of a 

range of future consequences, with the likelihood of those consequences also being estimated. 

This allows the calculation of the expected costs and expected effects of each option. The 

expected cost (effect) is the sum of all costs (effect) of each consequence weighted by the 

                                                           
*
 http://www.who.int/medical_devices/assessment/en/ - Accessed June 2015 

http://www.who.int/medical_devices/assessment/en/
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probability of that consequence.43 Brennan and Akehurst (2000) detail five roles and 

applications which modelling has within HTA, which are provided in Box 2.5:42 

1. Extending results (from a single trial) 

2. Combining multiple sources of evidence to answer policy questions 

3. Generalising results from one specific context to others 

4. Modelling to inform research strategy and design 

5. Modelling uncertainties in the knowledge base. 

Box 2.5: Roles and applications of modelling within Health Technology Assessment42 

Modelling has become a key component in HTA and the consideration of the cost-

effectiveness of new treatments. Briggs, Claxton and Sculpher (2007) discuss that the 

increased role of modelling is due to the requirements of economic evaluation. Namely, that 

all relevant evidence is synthesised, all relevant comparators are considered, that an 

evaluation time horizon is appropriately long, and that uncertainty in the evidence is captured 

as decision uncertainty.43 

Many models use a cohort approach, where expected costs and effects are estimated for an 

average person, or a cohort of average persons. The outcomes of the model are therefore 

population estimates. This includes methods such as decision trees, and cohort state-

transition/Markov models.44 These methods are often appropriate for the decision context and 

available evidence, however their shortcomings mean that more advanced individual level 

methods have emerged. The decision-maker is concerned with the expected cost and effect 

per patient, to allow an estimation of the cost-effectiveness of a new treatment across a 

population. However, cohort modelling approaches in general do not allow for variability in 

patients outcomes according to particular characteristics. However, these characteristics may 

contribute to costs and effects. Cohort models are often built which allow cohort sub-groups 

to be tracked through a model, and parameters applied which relate to the particular 

characteristics of the subgroup cohort. However these approaches only partially capture 

patient variability, and may result in very complex models, or many models with different 

subgroup populations evaluated.  

An alternative to cohort model approaches are individual level models (ILMs), where 

individuals with their own characteristics can be simulated in a model and the impact of these 

characteristics on costs and effects can be captured. Also, the complexity of treatment 

pathways and the fact that patient history could have an impact on the future can be more 

easily represented.  

ILMs such as patient-level simulation, discrete event simulation (DES), and agent based models 

estimate individual patient output (cost and effects) which is contingent on individual patient 
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covariates. When the simulation is run across a large number of individual patients, the 

expected cost and effects across the population can be estimated. However, the benefits of 

ILMs are at least partially offset due to the requirement of usually thousands of individual 

patient simulations, meaning that ILMs are usually more computationally expensive when 

compared to cohort decision analytic models. 

 

2.5 NATIONAL LEVEL NHS HEALTH RESOURCE ALLOCATION 

In England, the National Institute for Health and Care Excellence (NICE) was established in 

1999.* It is a HTA decision making organisation and has a mandate from the Department of 

Health to evaluate (appraise) the health benefits and costs of new and established health 

technologies and clinical practice. NICE publishes guidance in six areas, as detailed in Table 2.3. 

Table 2.3: Types of NICE guidance 

NICE Programmes Guidance 

published*  

Remit Cost-effectiveness analyses 

Clinical Guidelines 158 Advisory Existing CEA’s reviewed 

Potential CEA’s prioritised 

New analysis – focussed CUA 

Public Health 57 Advisory Existing CEA’s reviewed 

Potential CEA’s prioritised  

New analysis – comprehensive 

CUA 

Technology Appraisals 

(TA) 

270 Mandatory Existing CEA’s reviewed 

New analysis – comprehensive 

CUA 

Interventional 

procedures 

458 Advisory None 

Medical technologies 25 Advisory Existing CEA’s reviewed 

New analysis – cost-

consequence 

Highly specialised 

technologies 

1 Advisory Existing CEA’s reviewed 

New analysis – comprehensive 

CUA 

Diagnostic 

technologies 

16 Advisory Existing CEA’s reviewed 

New analysis – comprehensive 

CUA 
*as of September 2015 – includes replaced guidance.  

CEA = Cost effectiveness analysis. CUA = Cost utility analysis 

                                                           
*
 Then called the National Institute for Clinical Excellence, with a remit for England and Wales 
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Only NICE Technology Appraisals have a mandatory status, which means that if a positive 

conclusion is reached about the use of a particular health technology in the NHS, then there is 

legal requirement for that technology to be available if considered clinically appropriate by a 

patient’s physician.45 Although NICE Clinical Guidelines are not legally mandated, there is an 

expectation by the Care Quality Commission that NICE Clinical Guidelines provide the basis for 

routine clinical practice.46  

The majority of NICE programmes require a review of relevant economic evaluation literature 

to be undertaken, and where appropriate a development of a new economic evaluation to 

ensure that any guidance developed promotes a cost-effective use of NHS resources. 

Therefore the work of NICE has seen a large increase in economic evaluations for health 

treatments and services, and has also driven the discussion and development of new 

methodologies for economic evaluation. The methods, assumptions and evidence used to 

undertake an economic evaluation for NICE, and similar organisations worldwide, will 

therefore have a direct impact on health resource allocation and patient outcomes. 

For their Technology Appraisals programme, NICE have a “Guide to the Methods of Technology 

Appraisal.”47 This document describes the methods that should be used when submitting 

evidence to NICE, as well as their decision making process. This enables consistency across 

Technology Appraisals, as well as ensuring the methods used are robust and transparent. For 

an economic evaluation being submitted as part of a NICE Technology Appraisal, the methods 

guide prescribes which methods should be used within a ‘reference case’. Important 

components of the reference case include that health effects should be measured using 

QALYs, and that a time horizon is long enough to ensure all future health and effects are 

captured. 

The methods guide also states that if the most plausible ICER for a technology is below 

£20,000 per QALY gained, then it is likely to be recommended for NHS use. If the ICER falls 

between £20,000 to £30,000 per QALY gained, then additional factors will be considered by 

the appraisal committee. These include: the degree of certainty around the ICER, whether 

changes to HRQL have been appropriately captured, if the technology is particularly 

innovative, if the technology is a life-extending treatment at the end of life, and if there are 

aspects of the technology related to non-health objectives of the NHS. Above £30,000 per 

QALY gained, then even stronger arguments with respect to the factors listed above will need 

to be made for a positive recommendation to be passed. 
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Therefore the decision rule used by NICE is predominantly based on cost-effectiveness, 

although there is the ability for the decision-makers (one of four appraisal committees) to 

incorporate their judgement regarding those other specific factors. 

The theoretical construct behind NICE’s decision making approach is that recommending 

technologies under £20,000 - £30,000 per QALY will require the disinvestment of technologies 

that have an ICER above £20,000 - £30,000 per QALY gained. This enables total QALYs to 

increase but with no net cost to the total NHS budget. However, while the appraisal process 

clearly explores the costs and benefits provided by a new technology, the interventions that 

are displaced are unknown. This is a source of criticism for NICE, and some have commented 

that the approach is un-economic, with disinvestment and opportunity cost not explicitly 

accounted for.48–50 However, proponents of NICE highlight that the methodology is grounded 

in extra-welfarism theory, while maintaining a process which is pragmatic and feasible. 

 

2.6 OPERATIONAL RESEARCH 

Operational research (OR) is the discipline of applying advanced analytical methods to help 

make better decisions.* OR is also known as ‘management science’.51 It developed as a 

discipline during the wartime period of the early 20th century to inform decision-making 

regarding military strategy and resourcing, and in the post-war period operational researchers 

moved out into industries such as steel and engineering. OR expanded in academia, as well as 

private and governmental organisations, during the second half of the 20th century.52 The 

increase in computational power during the 1980s and 1990s saw practical applications of OR 

methods in wider fields, and interdisciplinary working across academic fields and organisations 

has been a key characteristic of OR.  

Modern OR is often dichotomised as ‘hard’ OR, which involves quantitative analysis, and ‘soft’ 

OR, which incorporates non-mathematical techniques and problem-structuring methods 

(PSMs).53 Soft OR includes methods for structuring and exploring (often complex) problems, 

and the facilitation of engagement in problem-solving, and is often best considered as 

methods to tackle problems in their own right, as well as being complements to hard OR 

methods.53 The hard OR methods draw upon mathematics, economics and computing for 

theoretical underpinning. This is to be expected, due to OR being developed as a relatively new 

interdisciplinary field that included people with these backgrounds. In particular, areas of 

common interest include optimisation, game theory, production, finance and forecasting. 

                                                           
*
 www.theorsociety.com – Accessed June 2015 

http://www.theorsociety.com/
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However, it should be highlighted that often economists and operational researchers have 

different interests, and therefore the fields are distinct. Health economics and health resource 

allocation is an area where the fields of economics and OR have collaborated and combined. 

OR methods have had an important role to play in HTA and economic evaluations. Soft OR 

methods, in particular PSMs and model conceptualisation methods, are used to support the 

development of DAMs for HTA.54 Hard OR methods, such as simulation, have been used to 

provide estimates of long term costs and QALYs for economic evaluations via the development 

of ILMs.44 

Optimisation is the task of making the best decision among various alternatives.55 Optimisation 

is a prominent area in OR, involving analytical and heuristic methods to identify an optimal 

(best) or near-optimal solution for a particular maximisation or minimisation problem. 

Optimisation allows the representation of health resource allocation as a maximisation 

problem. That is, how to maximise population health given a fixed monetary budget and 

competing healthcare programs. Health care resource allocation can be represented in a linear 

programming (LP) formulation, as demonstrated by Stinnett and Paltiel (Box 2.6).56 Linear 

Programming is a form of constrained optimisation where the objective function (the function 

that is to be maximised) is linear. The constraints are that the proportion of each program 𝑖 

can only be between 0 and 1, and the total cost must not exceed the budget 𝐶. 

Maximise: ∑ 𝑥𝑖𝑒𝑖 [2.9] 

Subject to: 0 ≤ 𝑥𝑖 ≤ 1  (for all 𝑖) [2.10] 

 ∑ 𝑥𝑖𝑐𝑖 ≤ 𝐶 [2.11] 

Where: 
𝑒𝑖 and 𝑐𝑖 are the effectiveness and cost of program 𝑖 if fully implemented 
𝐶 is the total available budget 
𝑥𝑖 is the proportion implemented of program 𝑖 

Box 2.6: Linear Programming formulation of health care resource allocation56 

A contested aspect of the linear programming formulation, along with CEA more generally, is 

that implementing only proportions of programs (their divisibility) is not likely to be 

appropriate. Also, the divisibility of programs is related to the assumption of constant returns 

to scale for programs, which is contested most notably by Birch and Gafni.48,57 As a program 

increases in size, it is expected that the output will increase by more than a proportional 

increase in inputs (at least to a certain point), but the linear programming formulation does 

not account for this. Instead, a solution is to formulate the problem as an integer programme 

(IP). This has been presented by Torrance (1972)58 and Birch & Gafni (1992), as illustrated in 
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Box 2.7.59 Constraint [2.13] has been altered from the linear programming formulation so that 

programs can only be fully implemented, and therefore programs are not divisible. 

Maximise: ∑ 𝑥𝑖𝑒𝑖 [2.12] 

Subject to: 𝑥𝑖  ∈  {0,1} [2.13] 

 ∑ 𝑥𝑖𝑐𝑖 ≤ 𝐶 [2.14] 

Box 2.7: Integer Programming formulation of health care resource allocation59 

The IP formulation above is defined in OR as the knapsack problem (which is an IP with just 

one constraint). Given a set of items with a given weight and value, the problem is to 

determine which items to place in a knapsack with a given weight limit as to maximise the 

total value. For health, the constrained optimisation problem is to allocate a fixed budget to 

competing programs, each with their own cost and effectiveness. The problem cannot be 

solved analytically, and therefore mathematical algorithms are developed to solve the 

problem. When mathematical algorithms are required, the assumptions and the size of the 

problem have a direct impact on the ability to reach an optimal answer within a given period 

of time.  

The algorithms used to solve or approximately solve constrained optimisation problems like 

the knapsack problem may also have a role when looking to estimate the appropriate 

sequence of therapies for patients with chronic conditions. The objective is to maximise net 

benefits by selecting treatments from an available set, each with their own cost and health 

benefit.  

There is therefore the potential to apply optimisation methods from OR to address economic 

evaluations which have a very large set of competing alternatives. In the following chapter, the 

treatment sequencing problem for economic evaluations of chronic conditions is introduced. 

In Chapter 6, a systematic review of OR literature to identify optimisation methods which may 

be applicable to the treatment sequencing problem is undertaken. 

 

2.7 CONCLUSIONS 

The use of economic evaluations and cost-effectiveness analyses to inform the allocation of 

scarce health resources has increased in recent years, in particular with the development of 

organisations like NICE. However, these methods are likely to be limited in their ability to 

achieve allocative efficiency in a true economic sense, due to the pragmatic approaches 

required to allow a feasible estimate of the impact of alternative states of the world. Instead, 
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economic evaluation represents a transparent and formally defined set of methods which 

allow an informed attempt at meeting social objectives where government provision of health 

care is required. The use of DAMs and OR methods has increased, to allow the synthesis of 

evidence and the estimation of lifetime costs and QALYs for complex conditions and treatment 

pathways.  

Chapter 1 provided an introduction and brief motivation for this thesis. This current chapter 

provides a theoretical underpinning for the remaining thesis. In particular, that models are 

simplifications of reality, and therefore ‘wrong’, however to allocate health care resources 

fairly and efficiently they are required to better inform decision-makers. 

In the next chapter (Chapter 3), the treatment sequencing problem is formally introduced, and 

the rationale for this thesis is provided. The chapter explores what treatment sequences are, 

when they are used, and why they present a challenge for both developing models and 

undertaking economic evaluations. After this, the following chapter reveals how the treatment 

sequencing problem has not been formally address in rheumatoid arthritis (RA), via a 

systematic review (Chapter 4). A model is then developed for an economic evaluation to 

inform a NICE appraisal of biologic treatments for RA (Chapter 5). A review of OR optimisation 

methods is conducted to identify suitable methods to solve the treatment sequencing problem 

(Chapter 6). A method is selected, implemented and evaluated in Chapter 7, before discussions 

and conclusions are drawn in the final chapter.  



23 
 

CHAPTER 3: RATIONALE FOR THIS THESIS 

 

3.1 INTRODUCTION 

The aim of this thesis is to identify a simulation optimisation method which can be applied to 

an economic evaluation of sequential therapies for a chronic condition. The rationale for 

undertaking this research will be described in this chapter. 

In Section 3.2, treatment sequences are defined and the reasons for their use are explored. In 

particular, the conditions in which a treatment sequence may be used are highlighted. In 

Section 3.3, the reasons why treatment sequences represent a unique challenge for economic 

evaluation are introduced. It is demonstrated why a long sequence or large number of 

potential treatments can result in an infeasible number of sequences to compare explicitly. 

In Section 3.4, a consideration of the influence of pharmaceutical markets and the 

development of new technologies is reported. These often compound the difficulties in 

evaluating treatment sequences. 

In Section 3.5, there is a discussion regarding how patient choice may impact on the 

development of guidance for treatment sequences. Section 3.6 draws conclusions. Section 3.7 

and Section 3.8 report the aims and objectives, and the structure of the thesis, respectively. 

 

3.2 TREATMENT SEQUENCES 

A literature search using Google Scholar and PubMed was undertaken, but no agreed 

definition of ‘sequential treatments’ was identified. However, it is frequently used to describe 

medical treatment which may follow or precede other treatments.60–62 For this thesis, 

sequential therapies are defined as “the purposeful use of treatments administered one at a 

time to manage a condition over time”. However, to improve the definition, it should be stated 

that “the sequence is determined a priori”, and so the subsequent treatment or remaining 

sequence are known before a prior therapy is delivered. This is because in clinical practice the 

pool of available treatments will be considered before selecting a first therapy, and potentially 

the order of subsequent therapies. In general, a treatment refers to one particular medical 

drug, however many drugs can be used concomitantly, and so combination drug therapy also 

represents a particular treatment within the set of available treatments.  
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The definition highlights that at a decision point* a physician and patient may have multiple 

treatments available to them, and therefore have multiple potential sequences of treatment 

to consider. The selection of a sequence is based on considering the set of available 

treatments and all possible sequences.  

An example of the issues which arise in considering sequences of treatments is given by the 

NICE Technology Appraisal of tocilizumab for the treatment of RA.† In this evaluation, 

treatment sequences were widely discussed and considered, because tocilizumab could be 

approved in multiple positions within a treatment sequence. The appraisal focussed on the 

assumptions made by the manufacturer, Roche, regarding the sequence of treatments for 

patients with RA. Alternative assumptions about what may occur both before and after 

tocilizumab treatment had a significant impact on the potential cost-effectiveness of 

tocilizumab treatment compared to conventional DMARDs. 

During the course of the appraisal, the NICE Decision Support Unit (NICE-DSU) was 

commissioned to provide additional evidence for the appraisal committee. In their report to 

the committee, the authors Palmer and Sculpher comment that “…the appropriate use of new 

biologics therapies in RA inevitably involves a consideration of the appropriate sequence of 

therapies given the chronic nature of the condition, the fact that therapies do not typically 

remain efficacious and tolerable on a permanent basis and the availability of a number of 

biologic therapies which are licensed for RA.”63 This statement is found in a small report within 

a complex technology appraisal but contains three primary reasons for why treatment 

sequences are used in clinical practice: 

- Chronicity – a chronic condition is more likely to require treatment with a treatment 

sequence 

- Uncertainty – when the effectiveness of a treatment is limited, and response to a 

treatment cannot be predicted, then a sequence may be used to identify a treatment 

which is effective 

- Competition – if there are many possible treatments available, then sequential therapy 

may be used. 

In the remainder of this section, these reasons for why treatments are used in clinical practice 

will be examined further (Competition is discussed within Section 3.4). Also, some further 

                                                           
*
 A decision point could be a new diagnosis, or the failure (loss of efficacy or an adverse effect) of a 

treatment and a consultation to determine the next therapy 
†
 http://www.nice.org.uk/guidance/ta247 - Accessed June 2015 

http://www.nice.org.uk/guidance/ta247
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reasons will be considered to determine the key characteristics which are required for 

treatment sequences to be clinically appropriate. 

EFFECTIVENESS 

The effectiveness of a particular treatment is defined as the extent to which “...they achieve 

health improvements in real practice settings.” 64 In clinical practice, the effectiveness of a 

treatment may be determined by a measure of improvement, which may be a measure of 

survival, HRQL, or a surrogate outcome such as a laboratory test for a biomarker. Determining 

effectiveness may be complex because a treatment may have multiple impacts on health. For 

example, a treatment might immediately reduce disease activity, but increase the risk of a 

future undesired health effect. These multiple effects, both benefits and risks, can be 

aggregated to provide a benefit-risk profile for a particular treatment.65 Formally, a benefit-risk 

profile is a “reflection of the overall balance of a treatment’s potential benefits with its 

identified risks as revealed through the safety and efficacy evidence.”* A benefit-risk profile 

could be a formally weighted and quantitative assessment of a treatment, or a qualitative 

judgement. Quantitative benefit-risk assessments are included in the regulatory processes 

undertaken by licensing bodies such as the Food and Drug Administration (FDA) in the USA and 

the European Medicines Agency (EMA). New medical products have to provide evidence to 

ensure that the potential benefits clearly outweigh any risks. Qualitative judgements regarding 

the benefit-risk profile of a treatment are routinely undertaken by a clinician who draws upon 

evidence, experience and clinical expertise, along with considering a patient’s views and 

particular circumstances. 

Many treatments will only have a limited effectiveness, both for chronic and acute conditions. 

In some cases it may be immediately obvious that a treatment has not been effective in 

achieving patient benefit. For some treatments, a consideration of the long-run outcomes is 

required, where any benefit may diminish over time, or negative effects such as adverse 

events may occur. In either case, the clinical decision to switch to another treatment to try to 

achieve health benefits may be made. The limited effectiveness is dependent on both the 

treatment, and also the condition. A person’s condition may become refractory over time, and 

control be lost, or a treatment may provide short term benefit but is not sustained. For chronic 

conditions, where a treatment cannot provide cure, it may be the case that a treatment will 

only be effective for a proportion of a patient’s lifetime.  

The effectiveness of available treatments is one determinant of the likelihood of treatment 

sequences being required. If a treatment is curative, or highly effective, then there is less 

                                                           
*
 http://www.hc-sc.gc.ca/dhp-mps/homologation-licensing/gloss/index-eng.php#b - Accessed June 2015 

http://www.hc-sc.gc.ca/dhp-mps/homologation-licensing/gloss/index-eng.php#b
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reason to require a sequence of therapies. However, if the treatments available for a particular 

condition are less effective, or a condition is chronic, then a sequence of treatments is more 

likely to be observed. Modern medicine, in particular for chronic conditions, has seen the 

development of long-term treatment plans.66 These plans frequently incorporate a strategy for 

sequence selection to ensure effective long term care. 

UNCERTAINTY 

Often in clinical practice, a clinician is uncertain about the best treatment for a particular 

patient. Treatment sequences recognise the limitations of modern medicines and treatments, 

that there is uncertainty with respect to their effectiveness, and also to their adverse event 

profile. If physicians knew with certainty that a treatment would be effective, or that a 

treatment would definitely cause a serious adverse event, then clinical decision-making would 

be rather easier than it actually is. Sequences emerge because a treatment may work in one 

patient, but in a clinically identical patient the same treatment may not work. One patient may 

not tolerate a treatment, while another can. There is uncertainty about how a patient will 

respond to a particular treatment, and treatment sequences emerge through a process of trial 

and error - persisting when a treatment works and switching if it does not. 

With this uncertainty, sequences are required to achieve clinical goals. These goals may be the 

remission or cure of a condition, the control of a chronic condition, or ensuring that a patient 

remains alive. In all cases, a purposeful decision is made to employ a sequence of treatments 

to account for treatment failure.  

An example of this uncertainty is the use of methotrexate, a disease-modifying anti rheumatic 

drug (DMARD) for the treatment of people with rheumatoid arthritis (RA). For many patients 

with RA, methotrexate is effective at reducing disease activity and improving HRQL.67–70 

However, the mechanism of action for methotrexate is still not fully understood, and for some 

patients methotrexate is not effective.71,72 The uncertainty is a challenge for clinicians who are 

initiating DMARD therapy, because their effectiveness is unpredictable, and the mechanism is 

still unclear. This uncertainty leads to variation in treatment selection, with alternative first line 

treatments being prescribed by clinicians.73 It also leads to variation in the time spent on a 

treatment, with therapies tried and rapidly changed if not immediately successful. This rapid 

switching through alternative therapies naturally leads to list of alternatives to try if a first line 

DMARD fails; a treatment sequence. 

CHRONICITY 

The chronicity of a particular condition increases the likelihood of sequential therapies being 

utilised. If a condition is acute, either the treatment may be curative, or there may only be a 
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short period of time to intervene and so a sequence of treatments will not be used. Acute 

conditions may require follow-up care or support, however the future downstream treatments 

are unrelated to the initial decision-point and so these downstream treatments are not 

formally part of a treatment sequence. It should be noted that this has implications for how 

economic evaluations are conducted and will be discussed further in Section 3.3.  

Where a condition is lifelong and chronic, sequences of treatments are very likely to be 

observed. The emphasis of treatment is on long-term control of the primary condition and its 

impact on a patient’s HRQL. Control (the impact of a treatment on a person’s condition) may 

be specific to symptoms (short term control) or disease activity (long term control). The 

objective of a treatment may be to control acute episodes of symptomatic and active disease 

which may be a characteristic of a chronic condition (e.g. ‘flares’ in RA74 and Crohn’s disease75, 

relapses in Multiple Sclerosis76). The natural history of chronic conditions may be of chronic 

progression, where disease activity increases over time and worsens a patient’s HRQL. 

Alternatively, it may be of a relapsing and remitting nature, where an episode of active disease 

begins and a patient is provided with active treatment. Relapsing-remitting conditions include 

multiple sclerosis and some forms of chronic depression, where there are periods of active and 

inactive disease. Treatments for relapsing-remitting conditions may only have short term 

benefits for the current episode of disease, or they may have long term benefits where they 

reduce the risk or increase the time to a future relapse. Relapsing-remitting conditions may 

lend themselves to sequential treatments more naturally, because a treatment may only 

provide short term disease control and repeated control may not be possible or plausible, and 

so a switch to a different treatment is made when a patient experiences a future episode of 

active disease.  These ‘rhythms’ are important when considering how a decision analytic model 

may be constructed to evaluate the cost-effectiveness of treatments and/or treatment 

sequences.77 

The characteristics and the impact a chronic condition will have on a patients HRQL define the 

treatment plan developed for a patient, and also the use of sequential therapies. Also, a 

condition may not be acute or chronic, but instead have an element of chronicity or long-term 

duration which may lead to the use of sequential therapies to maintain long term disease 

control. 

SWITCHING RULE 

As has been discussed in the previous section, factors including chronicity, effectiveness and 

uncertainty will lead to a decision to purposefully employ a sequence of treatments to manage 

a condition over the long term. The reason for change from one treatment to another is often 
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called the ‘switching rule’. In clinical practice, this may be a clinically observable and 

measurable signal that a patient will receive greater benefit from switching to another 

treatment, as opposed to continuing with the incumbent treatment. Alternatively, it may be 

because a treatment is toxic and the benefit/risk profile has changed. 

In particular, the switching rule is the result of a sequence of treatments being possible. If 

there are no alternative treatments, then the only switch possible is to no treatment, and an 

active treatment will be used for as long as health benefits are realised. If many treatments are 

available, the switching rule may allow a change of treatment after a short period of time or if 

only small benefits occur. This allows alternative treatments to be attempted and rapidly 

changed until one is found to provide significant benefits. 

In recent years, there has been the development of biologic therapies. In contrast to standard 

molecular pharmaceutics, these treatments are an extraction or semisynthesis of a biological 

source. They often look to copy the effect of substances that are produced by a body’s 

immune system. They are highly effective in treating many conditions, but their unique design 

and process for manufacture means they are costly to produce, as well as very profitable for 

manufacturers because generics (formally biosimilars) are harder to produce after patent 

expiry.  

For patients with RA, treatment with biologics is limited to people with severe active RA 

(Disease Activity Score 28 (DAS28) > 5.1). Some biologics have been shown to be effective in 

moderately active RA (3.2 < DAS28 < 5.1), however there is less scope for improvement (i.e. 

fewer QALYs are generated by moving from moderate RA to remission, compared to severe RA 

to remission) and so the use of biologics in moderate RA is less likely to be cost-effective when 

the dose (and therefore treatment cost) is the same. Therefore a switch to a subsequent 

treatment may only occur when disease severity has increased and the patient is back in a 

severe active RA state. Determining an appropriate switching rule is often where cost-

effectiveness analyses and decision-analytic modelling can prove to be very informative. It also 

raises the distinction between individual clinical decision making and decision-making based 

on population health. Clinical decision making is concerned with health improvements for each 

patient who is face to face with the clinician, but population health maximisation requires 

trading off the health gains between individuals to ensure that population health is maximised. 

If a clinician is a budget holder or is very budget aware, an individual clinician may have to 

consider both perspectives, to their considerable discomfort in some cases. 
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3.3 TREATMENT SEQUENCES AND ECONOMIC EVALUATION 

The time horizon of a cost-effectiveness analysis should extend far enough into the future to 

capture the major health and economic outcomes – both intended effects and unintended side 

effects and costs.64 By omitting any future consequences, the present value estimated for a 

particular intervention may be biased, and a sub-optimal decision could be made regarding the 

allocation of health resources. Future costs and consequences which do not occur at time zero, 

but at some time in the future, must be taken into account.78 This is to ensure that all costs 

and consequences of choosing one action over another are captured. Future costs and 

consequences will include treatments which were not administered at the primary decision 

point, but are subsequent therapies as part of a sequence.  

An economic evaluation contributes to a particular decision problem. Often for NICE, the 

decision problem is whether or not to recommend a new treatment in a particular patient 

population. For NICE, the decision problem is clearly specified. This decision problem 

determines the focus of the economic evaluation. 

A cost-effectiveness analysis may compare treatment A vs. treatment B at a point in time; 

however it is more appropriate to consider it a comparison of treatment pathway with A vs. 

treatment pathway with B. If the treatment is likely to have long term costs and consequences, 

then a short time horizon is unlikely to be appropriate. More specifically, treatments within a 

sequence will have different effectiveness and treatment duration, meaning that a switch may 

happen sooner or later, and the patients at that point of switch will be different. This means 

the costs and benefits attributable to a downstream sequence of treatments do not just cancel 

out in the comparison. NICE in their Guide to the Methods of Technology Appraisal (2013) 

recommend that “the time horizon should be sufficient to reflect important cost and benefit 

differences between the technologies being compared.”47  

In Figure 3.1, the QALY profile for two treatments, A and B, are illustrated. Treatment A is both 

life enhancing and life extending. The curves represent HRQL over time, with the area under 

the curves the QALYs gained. The area between the two HRQL curves represents the QALYs 

gained by A compared to B. Only by estimating the QALYs up until death (assumed to be where 

HRQL = 0) will the full impact in terms of QALYs gained be estimated.  
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Figure 3.1: HRQL profile 

For a chronic condition of a relapsing/remitting nature, the HRQL profile may look different. In 

Figure 3.2, a patient has a relapsing/remitting condition and is treated a sequence of two 

treatments: 

 

Figure 3.2: QALY profile - relapsing/remitting chronic condition 

At point 1 a patient begins a first line treatment which significant and quickly improves their 

HRQL up to point 2. The disease slowly worsens over time while on treatment. At point 3, 

treatment effectiveness is lost and the patients HRQL declines during a relapse of severe 

disease until point 4. At this stage, a treatment switch occurs and an improvement (albeit 

smaller) in HRQL is observed. The condition continues to worsen. The overall trajectory of the 

condition and the overall QALYs that are aggregated across a patient’s lifetime are a function 

of the magnitude of initial response, what happens over the longer term, how long a 

treatment is effective for, and when a patient will die. 

The effectiveness of a downstream treatment is contingent on what has happened as a result 

of previous treatments. The patient may be more or less likely to achieve a response if 

response was obtained on a prior therapy.* The patient may be older, and in turn have more or 

less potential for response. The condition may have caused irreversible changes to a person 

and therefore a subsequent treatment may have less potential for benefit. 

                                                           
*
 A patient may be more likely to respond if they responded to a previous treatment. Alternatively, a 

patient may be less likely to respond to a treatment if the previously responded to a treatment with a 
similar mechanism.  
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In Figure 3.3, three different comparator sequence HRQL profiles (SB) are compared to a 

common sequence HRQL profile (SA). SA is identical in all three scenarios. 

 

Figure 3.3: QALY profiles for comparator sequences 

In Scenario 1, SB has an improved initial response, but faster worsening of HRQL over time. The 

switch to a second treatment sees an improvement in HRQL, but HRQL is below where it would 

be on SA. Although death occurs at the same time, there is a net QALY loss on SB. A model will 

need to capture the full sequence until death to ensure the full impact on QALYs is captured. 

In Scenario 2, SB has an identical initial response, and HRQL declines at the same rate as SA. 

However, the patient remains on treatment for longer before switching. The QALY 

contribution of the second line treatment is identical, but due to occurring at different points 

in the future, the discounting undertaken to account for time preferences and estimate 

present values will result in different estimates of this QALY contribution. Again, a model will 

need to capture the full sequence until death to ensure the full impact on QALYs is captured. 

Although it may be fair to assume a future treatment will provide the same benefits, if 

treatments are initiated at different times then discounting to obtain the present value will 

reduce the QALYs accrued. 

Scenario 3 is the only illustration provided where the second line treatment in SA and SB results 

in identical QALYs, and in an economic evaluation these will cancel out between the two 

comparator sequences. In this case, it would be fair to develop a model which has a time 

horizon up until the end of the first treatment, because an accurate estimation of lifetime 

QALYs is not required to provide an accurate estimation of the incremental QALYs for the 
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purpose of an economic evaluation, there is no incremental difference after the first line 

treatment. 

For any economic evaluation there is a decision point, time zero, where a comparison between 

alternatives is made. Some researchers have called this point the ‘divergence point’ of a 

decision analytic model, because the treatment sequence up until the divergence point is 

identical. An evaluation of sequential therapy requires the movement of the divergence point 

to the first line therapy, so that the consequences of all possible subsequent sequences can be 

estimated and compared. The evaluation of a sequence of treatments is important if there is a 

particular treatment which can be used at multiple points within a sequence. For a model to 

allow an estimation of costs and QALYs of all possible sequences, then a model is required 

which allows treatments to vary along the full length of the sequence. Also, the comparison is 

between alternative sequences of treatments, rather than a head to head comparison 

between one particular treatment against a comparator treatment.  

Figure 3.4 provides a schematic for a decision tree model to evaluate three treatments (A, B 

and C). There are three treatment pathways for the model to enumerate the costs and QALYs. 

 

Figure 3.4: Three treatment decision tree model 

However, if the three treatments (A, B and C) can be used sequentially, once only, and in any 

order, then there are six treatment pathways to be enumerated. This is shown 

diagrammatically in Figure 3.5. 

The additional pathways (branches) add both complexity to the decision analytic model and 

evaluation, and require greater amounts of evidence about the costs and consequences of 

each pathway, and the position of treatments therein. 

As the number of treatments included in the sequence increases, it becomes increasingly 

challenging to know what the true treatment effects are likely to be for every technology in 

every position in the sequence. For example, if treatments have been studied in clinical trials 

as first-line treatments, but then are placed second or third-line in a sequence, the efficacy of 
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these treatments in the sequence may be very different from that observed in the trial. The 

corollary is that, as seen frequently with modelling treatment sequences, there is a danger that 

the model has parameters that are difficult to estimate.  

 

Figure 3.5: Three treatment sequential decision tree model 

To resolve this issue, treatment effect decrements have been used in NICE appraisals.63 These 

use the assumption that a treatment will be less effective, the further down the treatment 

sequence it is used. The effectiveness evidence (often a trial) may provide parameters for a 

particular point in the sequence (e.g. first line). This evidence is used to provide treatment 

effectiveness parameters for the model if used in other places in the sequence (where trial 

data may not exist) and a decrement applied to reduce the effectiveness parameters and 

account for diminished effectiveness. These decrements could potentially be informed by 

external data, potentially from registries, or from expert opinion (including elicitation). 

Observational studies could potentially be used to estimate treatment effects, although the 

limitations of this approach have been widely discussed.79–81 In particular, estimating 

treatment effects from observational studies is likely to be biased because groups of patients 

(e.g. patients on different treatments) will vary systematically in ways related to the outcome 

of interest – unmeasured confounders. These confounders can result in mistaken causal 

inferences and biased estimates of treatment effect unless they are accounted for. 

HOW MANY SEQUENCES? 

The number of sequences to be enumerated in an economic evaluation is dependent on the 

number of comparator treatments, and assumptions about the perspective of the sequence. 

The sequence perspective determines how a new treatment will interact with the existing 
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treatment sequence. The perspective of the sequence affects the potential size of an economic 

evaluation and the number of comparators therein. 

Firstly, are the existing treatments within a sequence in a fixed sequential order? An example 

is a treatment only licensed for use after a previous therapy. In this case, there is at least a 

partially fixed sequence of treatments. 

Secondly, is the length of the sequence fixed? If so, the new treatment will replace a therapy in 

the sequence to ensure the length of treatment sequence is fixed. If the sequence is not fixed, 

then it is possible for a new treatment to be an addition into the treatment sequence and the 

resulting sequence is extended. 

Thirdly, are truncated sequences of treatments possible? This means that instead of providing 

a full sequence of active treatments for a patient’s lifetime, a sequence could instead be 

stopped. Therefore the evaluation requires the inclusion of all truncated sequences for 

comparison.  

For hypothetical situations the number of sequences to be evaluated can be calculated, as 

shown in Table 3.1. However, in practice, it is likely that the sequences are more complex. 

Some treatments may have a fixed position, as determined by clinical guidance or their 

licensed indication, and some treatments may have a fixed position relative to other therapies 

(again, determined by clinical guidance or by their licensed indication). 

In Table 3.1, A and B are the two existing treatments, and X is a new treatment. The number of 

possible sequences to evaluate in order to identify an optimal sequence is dependent on the 

perspective of the sequence. If the sequence is ordered, that means A and B must retain their 

order. If the sequence is variable, then all treatments can be in alternative orders. If a new 

treatment can be an addition, then the sequence length will extend. However if the treatment 

is a replacement, the length of the sequence is fixed and an existing treatment is removed. If 

truncated sequences are possible, then all sequences of all possible lengths must be 

estimated. 

With an ordered sequence (either addition or replacement), the number of sequences to 

compare grows linearly with the number of treatments eligible. With a variable sequence, the 

growth is exponential. If truncated sequences are plausible, then every plausible truncated 

variable sequence must be included for evaluation. Suddenly for just eight unique treatments, 

the number of treatments sequences that are plausible could be over 100,000. 
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Table 3.1: Number of potential sequences given the perspective 

Sequence 

perspective 

Comparator sequences 

(2 existing treatments (A and B) and a 

new treatment (X)) 

Permutation 

formula 

𝑛 = number of 

treatments 

Number of 

sequences 

𝒏 =  

3 4 8 

Ordered - 

addition 

{A, B} 

{X, A, B} 

{A, X, B} 

{A, B, X} 

𝑛 + 1 4 5 9 

Ordered - 

replacement 

{A, B} 

{X, A} 

{A, X} 

𝑛 3 4 8 

Variable - 

addition 

{A, B} 

{X, A, B} 

{A, X, B} 

{A, B, X}  

{B, A} 

{X, B, A} 

{B, X, A} 

{B, A, X} 

𝑛! + (𝑛 − 1)! 

 

8 30 45,360 

Variable - 

replacement 

{A, B} 

{X, A} 

{A, X} 

{B, A} 

X, B} 

B, X} 

𝑛! 6 24 40,320 

Truncated 

(subsets) 

{A} 

{B} 

{X} 

{A, B} 

{B, A} 

{X, B} 

{X, A} 

{A, X} 

{B, X} 

{X, A, B} 

{A, X, B} 

{A, B, X} 

{X, B, A} 

{B, X, A} 

{B, A, X} 

∑
𝑛!

(𝑛 − 𝑘)!

𝑛

𝑘=1

 
15 64 109,600 

 

TREATMENT SEQUENCE OR DOWNSTREAM TREATMENT? 

It must also be noted that treatment sequences are not always the same as downstream 

treatments (often called ‘future costs’). Downstream treatments are the full range of possible 

treatments that may be employed after the use of a particular intervention. These treatments 

may be related to the primary condition, and therefore are conditional on the effectiveness of 

the primary intervention, or they may be unrelated to the primary condition. For example a 

patient with RA may be treated with a DMARD, and a downstream treatment may be a 

biologic DMARD. However some patients with RA may also have depression, and will receive 

unrelated (to RA) downstream treatments for their depression. With most modern health 

services structured around specialist treatment and care, unrelated downstream treatments 

are unlikely to be the primary concern for a physician, however several economists argue that 

all costs incurred, related or not, should be included.82–84  
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However, related downstream treatments are not always the same as a treatment sequence, 

because a sequence implies that the order of the therapies can alter. A downstream treatment 

for the purpose of this thesis is defined as one which cannot change position with another 

treatment. For example, a downstream treatment may be palliative care for a patient, and 

would not be provided prior to an active therapy. Treatment sequences therefore capture 

many of the instances where downstream treatments may occur, however reversibility 

represents a key difference. 

Future related health costs still require inclusion within a model to provide an estimate of the 

cost-effectiveness of a particular treatment or treatment sequence. This is because the 

initiation of that particular treatment (sequence) reflects a decision about a course for the 

patients’ condition, and therefore an evaluation of its cost-effectiveness should include health 

costs that are attributable to the primary treatment. 

 

3.4 PHARMACEUTICAL MARKETS AND TREATMENT SEQUENCES 

The pharmaceutical market continues to expand, in particular for chronic conditions. The 

population of many developing countries is ageing, and novel therapies are being developed 

with improved effectiveness and tolerability. The RA drugs market in 2010 generated an 

estimated $12.7bn,* and is expected to continue increasing. 

In a potentially profitable market, pharmaceutical manufacturers will look to develop novel 

therapies for the improved treatment of a condition. Also, manufacturers will look to develop 

‘me-too’ therapies, and generic equivalents when patent protection expires. These competitor 

products increase therapeutic options for clinicians and patients, and therefore increase the 

potential use of sequences to effectively manage chronic conditions. Also, pharmaceutical 

companies will compete for market share to generate a return for their investment in 

developing the new product. In a condition with many incumbent therapies, a company may 

promote sequential use of their product. This decision to build the therapeutic value 

proposition around a sequence is likely to be made early in the development process so that 

appropriate trials and evidence can be generated for both marketing authorisation and 

reimbursement.  

New treatments with marketing authorisation are often constrained by the earliest they can 

be used (i.e. not before another treatment has been attempted), or by a level of disease 

                                                           
*
 http://www.visiongain.com/Report/679/Rheumatoid-Arthritis-World-Drug-Market-2011-2021 - 

Accessed June 2015 

http://www.visiongain.com/Report/679/Rheumatoid-Arthritis-World-Drug-Market-2011-2021
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severity. Therefore the position of treatment within a sequence is not fully fixed, and there 

may be several potential positions that a drug can be used in clinical practice. If a license is not 

restrictive, a drug could potentially be used in any position in a sequence, and therefore allow 

alternative sequences of treatments to be used in clinical practice. 

The biological DMARD (bDMARD) anti-tumor necrosis factor alpha therapies (TNFa’s) for 

patients with RA are broadly similar. They are targeted at the same cytokine, although their 

mechanism may be different.* Also they may differ through mode of administration, and by 

their effectiveness and adverse event profile. The similarities of newer TNFa therapies to 

existing TNFa therapies means they have been categorised as ‘me-too’ therapies.85,86 The term 

‘me-too’ in general refers to products which have many similarities to a competitor, but have 

enough of a difference to allow them to be marketable as a separate product along with its 

own patent. A me-too product on which research is started after the initial product in the class 

is on the market is likely to be less costly to develop, compared to the novel therapy. Much 

research and development may be conducted to develop an innovative therapy, and then only 

a relatively small amount of research and development is required to alter the original therapy 

and obtain a separate licence. The ‘me-too’ title may be unfair on products which come to 

market only a short time after the novel therapy, because the long process of drug 

development means that they were probably equally innovative during their development but 

just happened to enter the market slightly later. 

Me-too therapies, along with all treatment developments in a particular condition, allow price 

competition between competitors.87 This price competition means that often prices are very 

similar (or identical) for rival products. This adds complexity to evaluating cost-effectiveness, 

because similar cost and similar effects can mean that the results are extremely sensitive to 

evidence, assumptions and uncertainty. The availability of multiple therapies also supports 

physician and patient choice to select a particular drug based on favourable characteristics 

such as mode of administration, particular side-effect profiles, or patient co-morbidities. These 

attributes may not directly affect HRQL, or may only have a small impact, however patients 

may value particular characteristics or they may have an impact on wider wellbeing. 

Alternatively, these characteristics may not have been valued within a QALY framework, but 

revealed preferences have still been elicited via an alternative method.88 

Competition also exists between therapies for positioning in a sequence. Manufacturers will 

look to enhance their profitability, generally by offering long term treatment to as many 

                                                           
*
 Monoclonal antibodies for infliximab, adalimumab, certolizumab pegol and golimumab, or a circulating 

receptor fusion protein such as etanercept 



38 
 

patients as possible, which maximises the sales of their particular product. In general this 

means that the earlier the position in the sequence, the more profitable it is for a 

manufacturer, due to the length of time available for active therapy, the size of the patient 

population, and assumption that the patients are likely to have less refractory disease. 

For example, if an incumbent treatment exists for a chronic condition, and a new therapy is 

granted marketing authorisation for use in patients with that condition (with no restriction on 

position), then the decision by that manufacturer is whether to attempt to compete at first 

line, or enter as a second (or later) line therapy. If the evidence generated for market 

authorisation and HTA purposes is focussed on first line use, then the manufacturer may be at 

risk of an unfavourable decision at second line due to less robust evidence. More likely, NICE 

would not make a recommendation either way for second line use if not in the original scope 

or manufacturer’s submission, and it would be up to local level decision-making if 

commissioners wished to fund it. 

The market for second line use may be less profitable (smaller and more refractory patient 

population) but if the entrant therapy is only equivalent (in terms of costs and benefits) 

compared to the incumbent therapy then it may not capture a significant market share at first 

line. This example ignores defensive strategies by the incumbent manufacturer. In this 

example, a me-too therapy may not be appropriate at second line if it has the same 

mechanism of action, because it may not be effective after the first line therapy. However, if a 

new therapy can be effective in second line, then it may prove to be a profitable position for 

that therapy and sequential treatment may expand. 

Over the longer term, once patent protection expires for a branded therapy, generic and 

biosimilar alternatives may be developed and granted a licence.  Like me-too therapies, these 

will increase competition in the market for a condition. Because of the reduced R&D costs for a 

generic product, costs and prices are generally lower, and competition is increased.89 

In all these instances, increased competition may lead to sequential therapies because only 

one therapy can generally be used at a time. There are instances where combination therapies 

are used, such as concomitant methotrexate in RA. Often combination therapies are used to 

combine multiple or complementary mechanism of actions,90 or to minimise drug resistance.91 

Whether a novel therapy, a me-too, or generic equivalent, new pharmaceuticals will increase 

the therapeutic options for patients, and are likely to increase the likelihood of sequential 

therapies being used.   
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3.5 PATIENT CHOICE AND TREATMENT SEQUENCES 

In the UK, the National Health Service (NHS) highlights in the NHS Constitution that ‘choice’ is a 

clear ideology as a component of universal health care.* Patients have the choice of GP 

practice, as well as specific health care. In particular, the NHS supports informed choice, with 

support for patients when making choices, as well as providing information to help people 

participate in healthcare decisions. 

Choice is integral in the treatments of chronic conditions. This is for a number of reasons: 

1. Self-management – often the effective management of chronic conditions requires 

both medical treatment  as well as self-management 

2. Adherence – By allowing patients to be an active participant in decision making, rather 

than a passive recipient, adherence to treatment is improved 

3. Long-term ownership – For long term chronic conditions, people have an increased 

risk of mental health issues. Psychological ownership is the term for people finding 

meaning when they are diagnosed with a chronic illness, and learning to make sense of 

living with a chronic illness. 92 As with the above reasons, choice empowers patients, 

leading to engagement with health services, adherence to medication and the desire 

to improve their health. 

Some of these reasons may have positive implications for cost-effectiveness. Self-management 

and adherence both ensure that the realised benefits of treatment are maximised. However, 

sometimes choice may be promoted but the implications for efficiency and cost-effectiveness 

are less clear. Should NICE promote a choice in treatment when there is no net benefit, or 

when a relatively small net benefit is offset by guidance development and implementation 

costs? 

Sequential therapy is often driven by the requirement of choice – that an effective alternative 

will improve the likelihood of controlling a disease, and therefore improve expected health 

outcomes. However, it is also driven by the desire for choice. Irrespective of potential to 

provide benefit, the cost, or the number of treatments already attempted, there is a strong 

belief that a patient requires active treatment. This could be extended to the extreme, where 

further active treatment may have no additional benefit on top of palliation or supportive care. 

This concept could potentially be the ‘arrow in the quiver’ argument; that there must always 

be a choice between alternative options at any point in time. Benefit may be provided by the 

delivery of care even if the treatment is not effective – the placebo effect. 

                                                           
*
 http://www.nhs.uk/choiceintheNHS/Rightsandpledges/NHSConstitution/Pages/Overview.aspx - 

Accessed June 2015 

http://www.nhs.uk/choiceintheNHS/Rightsandpledges/NHSConstitution/Pages/Overview.aspx
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3.6 CONCLUSIONS 

This chapter has highlighted the clinical reasons for why treatment sequences may be 

observed - effectiveness of a treatment, uncertainty regarding its effectiveness, patient 

variability, chronicity of a condition, and the ability to define a switching rule. The chapter also 

explored how the pharmaceutical market and the desire for healthcare choice may further 

promote the use of treatment sequences. 

This chapter has highlighted several challenges for consideration by a research team when 

undertaking an economic evaluation of sequential therapies for chronic conditions. 

Firstly, when the decision space for an economic evaluation includes treatment sequences, 

then the factorial rate of growth in the number of comparators becomes unfeasible for 

decision analytic models to evaluate every possible sequence. Also, the evidence requirements 

for populating a model with numerous treatment sequences as comparators grow rapidly. Not 

all treatment sequences are likely to be clinically plausible, and so scoping has to determine all 

clinically sensible comparator treatment sequences. Some explicit pre judgement has to be 

applied. 

Secondly, when a model becomes more complex, it can lose face validity.93 It is important that 

decision-makers and clinicians can believe the results of the model, and this can become a 

challenge when models require numerous assumptions or have a large amount of parameter 

uncertainty. 

The validity of a model also comes at the expense of complexity that is required to provide 

estimates of the long term costs and effects due to a treatment sequence. The model requires 

complexity to account for the multiple sources of evidence which need to be incorporated, as 

well as the chosen methodology to account for uncertainty, and the consideration of 

alternative decisions such as switching rules. 

Finally, the incorporation of sequential therapies in an economic evaluation may become 

unfeasible for decision-makers and for researchers. The evidence requirements and model 

development time may not fit in with the timeliness of developing clinical guidance. The 

evaluation may also require clinical evidence which may not be available when early decisions 

are made requiring the acceptance or rejection of potential treatments. 
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3.7 AIMS AND OBJECTIVES 

The primary research question for this PhD thesis is ‘How can economic evaluations of 

sequential therapies for chronic conditions improve health resource allocation decision 

making?’ The PhD uses RA as a case study. 

The aim of this thesis is to test the feasibility of simulation optimisation methods to find an 

optimal or near-optimal sequence of disease modifying treatments for RA in an economic 

evaluation framework. 

The objectives to meet this aim are: 

 To explore the key challenges when undertaking an economic evaluation of sequential 

therapies in chronic conditions 

 To identify any published attempt to estimate the most cost-effective (optimal) 

sequence of treatments for patients with RA 

 To develop a cost-effectiveness model which allows the evaluation of sequential 

disease modifying therapies for RA 

 To review and assess the relative merits of methods of optimising a discrete event 

simulation model for a combinatorial decision problem when an incremental analysis 

of all possible alternative treatment sequences is not feasible. 

 To implement and evaluate an identified method using RA as a case study condition 

 To provide recommendations about the application of the implemented method 

 To provide recommendations for further research. 

 

3.8 STRUCTURE OF THE THESIS 

The first chapter provided an overview of the motivation for this thesis. Chapter 2 explored the 

economic framework for Health Technology Assessment (HTA). This set the scene in terms of 

background theory and the current methodology that are applied for the allocation of finite 

healthcare resources. 

This current chapter provides a rationale for this thesis. It explored why treatment sequences 

are used, and why they represent a challenge for undertaking an economic evaluation. In 

particular, it highlights how an incremental analysis is unlikely to be feasible when a large 

number of sequences are available for comparison. 

The next chapter (Chapter 4) reports a systematic review of economic evaluations for disease 

modifying anti-rheumatic drugs (DMARDs) for RA. The objective of this review is to explore the 
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existing economic evidence for RA, assess the quality of this evidence, report to what extent 

they identify an optimal sequence of treatments, and identify where improved methods for 

economic evaluation may improve decision making in this context. 

Chapter 5 reports the development of a discrete event simulation model for the evaluation of 

treatment sequences in RA. In Chapter 6, a systematic review of relevant simulation 

optimisation methods is reported, which are subsequently applied to the discrete event 

simulation model in Chapter 7. The thesis ends with Chapter 8, and a discussion regarding the 

strengths and limitations of the work undertaken. Recommendations for policy makers and 

further research are reported, before overall conclusions are drawn. 
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CHAPTER 4: A SYSTEMATIC REVIEW OF ECONOMIC EVALUATIONS OF 

DISEASE MODIFYING ANTI-RHEUMATIC DRUGS (DMARDS) FOR 

RHEUMATOID ARTHRITIS 

 

4.1 CHAPTER OVERVIEW 

The previous chapters have introduced the rationale for this thesis, by exploring why 

sequences of treatments represent a unique challenge when conducting an economic 

evaluation. This chapter contains a systematic review of economic evaluations of DMARDs for 

RA. The review determines the extent to which treatment sequences have been evaluated, 

and the methodological challenges that have arisen when developing a DAM. The review 

provides important information regarding the structure and parameterisation of a DAM 

developed in Chapter 5, and used in Chapter 7 as part of the simulation-optimisation analysis. 

The scope of the systematic review is purposefully broad, enabling all economic evaluations of 

DMARDs for RA to be included, irrespective of if they did or did not model a treatment 

sequence. Only by including the full body of evidence can a conclusion be drawn regarding the 

extent to which treatment sequences have been explicitly modelled and considered, and only 

then can an inference be drawn to whether decision-makers are being provided with evidence 

required to potentially develop an optimal treatment sequence for clinical guidance. 

There are many studies identified that did not formally consider the downstream sequence of 

treatments. While in many ways these studies are less useful for the objectives of the review, 

it is important to determine, where possible, the justification for why the scope of the 

economic evaluation was limited. 

This systematic review was published in a peer-reviewed journal: 

Tosh J, Stevenson M, Akehurst RL. Health Economic Modelling of Treatment Sequences for 

Rheumatoid Arthritis: A Systematic Review. Current Rheumatology Reports (2014). 16:44794 

  

4.2 INTRODUCTION 

This chapter contains a systematic review of economic evaluations undertaken of DMARDs for 

RA. In Section 4.3 the methods of this systematic review are described. In particular, the 

information sources, eligibility criteria, and methods for data extraction and critical appraisal 

are reported. Section 4.4 presents the results of the search, including the characteristics of 
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each identified economic evaluation and a critical appraisal using the Drummond checklist.78 

Also included is a narrative synthesis of the identified studies. This includes the scope of the 

economic evaluation, the extent to which downstream costs, benefits and sequences are 

captured, the modelling methods used and the final health economic results of the 

evaluations. Section 4.5 provides a discussion of the systematic review, and finally Section 4.6 

draws conclusions and implications for the rest of the thesis. 

OBJECTIVES 

The aim of this systematic review is to summarise the existing economic evidence for the use 

of DMARDs in the treatment of RA. The systematic review will assess the strengths and 

limitations of specific economic evaluations which compare DMARDs, and will draw 

generalised conclusions regarding the methodologies currently used to evaluate treatments 

for RA. 

Specifically, the objectives of the review are: 

1. To identify the existing economic evidence for disease modifying therapies for RA, 

and to assess where there are gaps in the existing evidence base. 

2. To assess the health economic evaluation studies, with respect to their objectives 

and the methods used to meet these objectives. 

3. To identify how improvement in the methods of economic evaluation may 

improve decision making regarding the treatment of people with RA. 

The systematic review is reported to the PRISMA standards.95 A completed PRISMA checklist 

can be found in Appendix A.1. The PRISMA criteria are applicable to clinical systematic reviews, 

and so some elements of the checklist are not directly applicable to this review of economic 

evaluations. However, the PRISMA standard provides a useful checklist of items to ensure all 

relevant details pertaining to the review are reported. The review has been registered with the 

International Prospective Register of Systematic Reviews (PROSPERO). 

EXISTING SYSTEMATIC REVIEWS 

Twenty-four existing systematic reviews of economic evaluations undertaken of disease 

modifying therapies for RA have been identified by the searches detailed in Section 4.3.96–119 

These reviews synthesised the general economic evidence, however the focus varied: some 

focussed on particular treatments, some focussed on particular patient populations, and some 

on particular aspects of the methodology and evidence used. For example, Bansback et al. 

(2008) focussed on HRQL in RA economic evaluations,98 and Emery (2004) focussed on DAM 

methods.103 However, none of the reviews focussed explicitly on the methods used to identify 
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and evaluate sequential therapies for patients with RA, although Sullivan et al. (2013) consider 

the economic impact of sequential DMARD treatment.120 Therefore this review will add to the 

existing evidence base. 

 

4.3 METHODS 

ELIGIBILITY CRITERIA 

Systematic searches of electronic databases were conducted to identify all published economic 

evaluations of DMARDs for RA. Because DMARDs for RA are numerous, using conventional 

methods for a systematic review would require the formulation of numerous search terms for 

each particular DMARD. Because of the significant number of interventions, and therefore 

search terms, a conventional search method could miss relevant interventions and economic 

evaluations. To ensure that the systematic search had high sensitivity (the identification of 

appropriate studies), a search strategy was developed by applying economics related terms to 

a set of clinical terms covering RA and DMARDs. The disease component of the electronic 

search was based on a previously used electronic search strategy for the NICE RA guideline.121 

Database filters to identify economic evaluations were used from the InterTASC Information 

Specialists’ Sub-Group (ISSG) website.* 

A scoping search was undertaking using Google Scholar© to identify keywords for the search 

strategies. These keywords are listed in Table 4.1 and reported in the PICO (Population, 

Intervention, Comparator, Outcome) format. 

Table 4.1: Keywords for systematic review (PICO format) 

Population Rheumatoid Arthritis, RA 

Intervention/Comparator Disease modifying, disease-modifying, DMARD, biologic, therapy, 

treatment, anti-rheumatic, anti rheumatic, TNF, tumor necrosis 

factor alpha, tumour necrosis factor alpha, TNF-alpha, TNF 

inhibitor, TNF blocker, interleukin 1, IL-1, monoclonal antibody, 

costimulation blocker, interleukin 6, IL-6 

Outcomes Economic, economics, cost, cost-effectiveness, cost-utility, cost-

benefit, utility, health related quality of life, quality of life, quality 

adjusted life year, QALY 

 

The search strategies used MeSH terms, including ‘rheumatoid arthritis’ and ‘economics’, and 

text string terms which were combined in the search strategy using Boolean logic. The search 

                                                           
*
 http://www.york.ac.uk/inst/crd/intertasc/index.htm -  Accessed June 2015 

http://www.york.ac.uk/inst/crd/intertasc/index.htm
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strategies for all databases are provided in Appendix A.2. The search strategies were designed 

to maximise sensitivity, however this was at the cost of poor specificity (the rejection of 

inappropriate studies). This meant the search returned a large number of inappropriate 

studies, and therefore the review required extensive sifting of the results to filter out the 

appropriate studies. 

INFORMATION SOURCES 

Systematic searches were conducted in ten databases (Table 4.2). Conference abstracts were 

not included, however publications by the authors of any included studies were searched to 

identify any later publications. Reference and citation searching was undertaken on all 

included studies, including any identified reviews of published economic evaluations of 

DMARDs for RA. Published NICE Technology Appraisals and NICE Clinical Guidelines were 

searched to identify any studies not detected in the electronic searches.  

Table 4.2: Systematic review databases 

Database Date* 

BIOSIS (all databases) 

Cochrane Database of Systematic Reviews (CDSR) 

Cochrane Database of Methodological Reviews 

Cochrane Central Register of Controlled Trials (CCRCT) 

Database of Abstracts of Reviews and Effects (DARE) 

Cumulative Index to Nursing and Allied Health Literature (CINAHL) 

Embase 

MEDLINE 

NHS Economic Evaluations Database (NHSEED) 

Science Citation Index: Web of Science 

1899 – Feb 2013 

All years – Feb 2013 

All years – Feb 2013 

All years – Feb 2013 

All years – Feb 2013 

1994 – Feb 2013 

1974 – Feb 2013 

1945 – Feb 2013 

All years – Feb 2013 

1899 – Feb 2013 

 

All database searches were undertaken on 1st February 2013, and no date restriction was 

applied. No study type or language restrictions were applied to the electronic search. The 

search strategies were reviewed by an information specialist. 

INCLUSION AND EXCLUSION CRITERIA 

The primary objective of the systematic search is to identify any economic evaluations of 

DMARDs for RA. The search was irrespective of any decision-making context or geographical 

location. The eligibility criteria for the systematic review are presented in Table 4.3. 

Studies were included in the review if they reported a comparative economic evaluation (cost-

effectiveness (CEA), cost-utility (CUA) or cost-benefit analysis (CBA)). Cost-consequence 

                                                           
*
 “All years” when a formal start date for the Database is not provided. 
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analyses (CCA) were also included, because the evidence provided in the study can be used 

comparatively even if the comparison has not been made by the authors. Cost-minimisation 

analyses (CMA) were also included. However, economic evaluations where a full comparison 

between two or more alternatives was not conducted were excluded. This is because they do 

not consider an estimate of incremental costs or benefits between treatments. However, 

excluding these (likely rare) studies may ignore potentially relevant studies where the costs or 

benefits of sequential therapies have been estimated. This is a potential limitation of the study 

and will be discussed subsequently. 

Table 4.3: Eligibility criteria 

Inclusion Criteria 

 Economic evaluation including a comparison of costs and health benefits based on 

outcomes data or undertaken using a decision analytic model 

 Economic evaluations of interventions targeting a change to the natural disease profile of 

people with rheumatoid arthritis (i.e. disease-modifying therapies) 

 Studies reporting costs and health outcomes 

Exclusion Criteria 

 Non-comparative/partial economic evaluations 

 Cost analyses/Cost-of-illness/Burden-of-illness studies 

 Methodological papers which do not report economic and health benefit outcomes 

 Commentaries, letters, editorials 

 Conference abstracts 

 Studies which claim cost-effectiveness but with no estimation of costs and effectiveness 

outcomes 

 Economic evaluations of therapies and treatments which do not modify the progression 

of RA 

 Non-English language studies 

 

CRITICAL APPRAISAL AND DATA EXTRACTION 

The identified studies were appraised using the validated and commonly used Drummond 

(2005) ‘Critical appraisal of a published article’ checklist.78 This is a brief checklist and was used 

to appraise the key aspects of each economic evaluation.  

While the checklist aided the extraction of data and appraisal of the quality of studies, it was 

not appropriate to use just a checklist for this particular review. Many systematic reviews of 

economic evaluations attempt to assess the quality and appropriateness of studies which are 

addressing a similar decision problem, and checklists are designed to aid this. For example, a 

systematic review of early treatments in patients with newly-diagnosed RA may be undertaken 

to appraise the relevant published cost-effectiveness evidence in that particular population, 
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and for that particular decision problem. Instead, the objective for this systematic review is to 

examine where studies have addressed or not addressed the sequential aspect of treatment 

for people with RA. Therefore data pertaining to treatment sequences and modelling 

methodology were extracted. Where studies were similar, themes were extracted to 

generalise the approach taken. Where studies were different but the decision context was 

apparently similar (e.g. the patient population or comparator treatments) then the difference 

in methodology was noted. The full data extraction template is provided in Table 4.4. 

The data extracted from identified studies included general details regarding the economic 

evaluation (method, patient population, comparator interventions or sequences, time horizon, 

disease and treatment history, and health economic results). Data were also extracted 

regarding the sequential nature of the treatments for RA and how this was captured in the 

analysis. In particular, whether all relevant comparators were included in the sequence of 

treatments. Where relevant, information regarding the modelling methods used for the 

economic evaluation were extracted, to identify how data sources were used in reflecting the 

costs and benefits of particular treatments, at all points in the evaluated sequence. The 

principal summary measures for the review were the study name and year, country, evaluated 

interventions, time horizon of the study, the type of economic evaluation, the type of decision-

analytic model used (if appropriate), and the basecase health economic results. 
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Table 4.4: Data extraction template 

Evaluation information 

Study (name and year)  

Country  

Evaluation type (CEA, CUA, CCA, CMA, CBA)  

Comparators  

Previous treatment history  

Time horizon of analysis  

Analysis method (Trial evaluation, model)  

Basecase results  

Uncertainty analysis  

Conclusions  

Drummond (2005) Checklist
78

 

Question Yes No Not sure Additional information 

Was a well-defined question posed in an answerable 

form? 

    

Was a comprehensive description of the competing 

alternatives given? 

    

Was there evidence that the programme’s 

effectiveness had been established? 

    

Were all important and relevant costs and 

consequences for each alternative identified? 

    

Were costs and consequences measured accurately in 

appropriate physical units? 

    

Were costs and consequences valued credibly?     

Were costs and consequences adjusted for 

differential timing? 

    

Was an incremental analysis of costs and 

consequences of alternatives performed 

    

Was allowance made for the uncertainty in the 

estimates of costs and consequences? 

    

Did the presentation and discussion of study results 

include all issues of concern to users? 

    

Sequencing information 

If a sequence was evaluated, how many lines?  

Were all relevant treatments included in each sequence?   

Was the methodology used amenable to varying the sequence and 

comparing a full range of alternatives? 

 

 Was an attempt to find an ‘optimal’ sequence undertaken?  

Modelling information 

If the analysis was undertaken using a decision analytic method, what 

method was used? 

 

How was initial treatment response modelled?  

What determined a switch to an alternative therapy?  

How were the costs and effectiveness of subsequent treatments in a 

sequence modelled 

 

Where data were not available for a treatment in a sequence, how was this 

accounted for? 
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4.4 RESULTS 

STUDIES IDENTIFIED 

From the systematic searching of electronic databases, 8,281 citations were identified 

(Quorum flow-diagram provided in Figure 4.1). After excluding 3,250 duplicate citations 

electronically, the remaining 5,031 citations were screened by their abstract. Of these, 4,913 

abstracts did not meet the inclusion criteria and 118 full papers were retrieved for a full 

inspection. A total of 70 papers were excluded for not meeting the inclusion criteria, and 9 

other papers were identified by reference and citation searches and searching any identified 

systematic reviews. 57 published studies were included in the systematic review. The full 

papers that were excluded, and the reason for exclusion, are provided in Appendix A.3. The 

data extraction tables and Drummond checklist results are provided in Appendix A.4 and 

Appendix A.5, respectively. 

 

Citations from electronic 

searches 

n = 8,281 

Other studies identified 

n = 9 

Excluded – duplicate 

citations 

n = 3,250 

Paper screened by 

abstract 

n = 5,031 

Abstract did not meet 

inclusion criteria 

n = 4,913 

Full paper retrieved for 

inspection 

n = 118 

Full paper did not meet 

inclusion criteria 

n = 70 

Most common reasons 

Review article = 25 

Non-comparative = 14 

No long-term costs = 6 

Non-English = 5 

See Appendix A.3 

Studies included in 

review 

n = 57 

Figure 4.1: Quorum flow diagram 
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CHARACTERISTICS OF THE ECONOMIC EVALUATIONS 

Of the 57 included studies, 43 (75%) were CUAs with QALYs as the unit of health benefit. Nine 

(16%) CEAs were conducted, with three (5%) CCAs, and two (4%) CMAs. Eleven (19%) studies 

were conducted with a UK perspective, and 11 (19%) with a US perspective. The remainder of 

the studies are mainly European (26 (46%)), along with six (11%) studies from Canada, and one 

(2%) study each from India, Japan and Thailand. The results reinforce the belief that QALYs are 

a common generic metric for health benefits when undertaking a CEA,122,123 and while CEAs are 

undertaken world-wide, they are more common in developed countries. The studies are 

summarised in Table 4.5. 
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Table 4.5: Summary of reviewed studies (Table also published in Tosh et al. (2014)94) 

Recent onset RA       

Study, year Country Interventions Time 

horizon 

Type Model type Incremental Cost-effectiveness Ratio (ICER) 

Chen et al. 2006
124

 UK TNFa with or without MTX at first 

line or third line 

Lifetime CUA Individual Level 

Model 

ICERs for ETN, ADA and IFX after multiple cDMARD failure were £24k, 

£30k and £38k per QALY, respectively 

Davies et al. 2009
125

 US MTX vs. ADA+MTX vs. ETN vs. 

IFX+MTX vs. ADA+MTX 

Lifetime CUA Individual Level 

Model 

IFX and ETN extendedly dominated by ADA. ADA+MTX ICER $47k per 

QALY vs. cDMARDs. ADA+MTX then ETN ICER $42k per QALY vs. 

cDMARDs 

Finckh et al. 2009
126

 US Symptomatic therapy vs. MTX vs. 

bDMARDs 

Lifetime CUA Individual Level 

Model 

bDMARDs dominated by cDMARDs. cDMARDs ICER $4k per QALY vs. 

symptomatic therapy 

Hartman et al. 

2004
127

 

NL Placebo vs. folic acid vs. folinic acid. 

Adjunct to MTX 

48 weeks CUA Trial analysis Placebo dominates folic acid. Folinic acid dominates placebo 

Kobelt et al. 2002
128

 UK MTX vs. SSZ vs. LEF 10 year CUA Markov model Using Strand et al, LEF dominates MTX. Using Emery et al, MTX 

dominates LEF. Using Smolen et al, LEF dominates SSZ. 

Kobelt et al. 2011
129

 Sweden ETN+MTX vs. MTX 10 year CUA Markov model ETN+MTX ICER is €13k per QALY vs. MTX 

Korthals-de Bos et al. 

2004
130

 

NL MTX+SSZ+Prednisolone vs. SSZ 56 weeks CUA n/a Combo cDMARDs dominates SSZ 

Maetzel et al. 2002
131

 Canada Adding LEF to a cDMARD sequence 5 year CUA Decision tree Adding LEF ICER is Can$71k per QALY vs. cDMARD sequence 

Schadlich et al. 

2005
132

 

Germany Adding LEF to cDMARD sequences 3 years CUA Decision tree ICER of adding LEF vs. cDMARD sequence is €8k per QALY 

Schipper et al. 

2011
133

 

NL Sequential TNFa use 5 years CUA Markov model ICER TNFa €138k per QALY vs. MTX. ICER MTX+LEF €439k per QALY vs. 

MTX 

Spalding et al. 

2006
134

 

US MTX vs. bDMARD mono and combos Lifetime CUA Markov model ICERs ranged $63k per QALY for ADA vs. MTX to $409k per QALY for IFX 

vs. MTX. 

Tosh et al. 2011
135

 UK Alternative cDMARD mono and 

combo therapies 

Lifetime CUA Individual Level 

Model 

Mono, Step-up, Parallel, Steroid are all dominated by step-down. 

Intensive ICER £27k per QALY vs. step-down 

van den Hout et al. 

2009
136

 

NL Comparing  cDMARD combos vs. IFX 

combo therapy 

2 year CUA Trial analysis Initial combo therapy with prednisone is likely to be the most cost-

effective strategy at a WTP per QALY of  <€100k 

Verhoeven et al. 

1998
137

 

 

NL Step-down cDMARDs vs. SSZ 1 year CUA n/a Combo. cDMARDs dominates SSZ 
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Established RA       

Study, year Country Interventions Time 

horizon 

Type Model type Incremental Cost-effectiveness Ratio (ICER) 

Anis et al.  

1996
138

 

Canada CYA vs. AZA/PEN vs. placebo 1 year CEA Decision tree CYA ICER $11k per patient improved vs. placebo. 

Bansback et al. 

2005
139

 

Sweden TNFa with or without MTX vs. 

cDMARDs 

Lifetime CUA Individual level 

Markov model 

For all TNFa strategies, ICERs using ACR50 response criteria are between 

€34k per QALY and €42k per QALY vs. cDMARDs. ADA+MTX likely to be 

the optimal strategy 

Barbieri et al. 2005
140

 UK IFX+MTX vs. MTX 1 year and 

lifetime 

CUA Markov model IFX-MTX ICER is £33k per QALY vs. MTX 

Barton et al. 2004
141

 UK ETN vs. IFX vs. cDMARD sequence Lifetime CUA Individual Level 

Model 

ETN ICER £50k per QALY vs. basecase. IFX ICER £68k per QALY vs. 

basecase. ETN ICER £28k per QALY vs. IFX 

Benucci et al. 2009
142

 Italy ABT with LEF or MTX vs. ETN with 

LEF or MTX 

2 years CUA Observational 

analysis 

ETN+MTX had the lowest CER compared to baseline (non bDMARD tx) - 

€39k per QALY. 

Benucci et al. 2011
143

 Italy RTX vs. constant disease 6 months, 1 

year 

CUA Observational 

analysis 

RTX ICER €15k per QALY vs. consistent disease comparator (6 months). 

ICER €23k in 1 year 

Beresniak et al. 

2011
144

 

Spain ADA vs. IFX vs. ABT vs. RTX 2 years CEA Unclear Highest effectiveness and lowest CER for ABT. LDAS and RS outcomes 

Brennan et al. 

2004
145

 

UK ETN vs. cDMARD sequence Lifetime CUA Individual Level 

Model 

ETN ICER £16k per QALY vs. cDMARDs 

Brennan et al. 

2007
146

 

UK TNFa vs. cDMARDs Lifetime CUA Individual Level 

Model 

TNFa ICER is £23k per QALY vs. cDMARDs 

Chiou et al. 2004
147

 US ANA vs. ETN vs. ADA vs. IFX 1 year CUA Decision tree ETN ICER $7k per QALY vs. ANA. ADA and IFX dominated by ETN 

Choi et al. 2000
148

 US cDMARD mono and combo vs. 

bDMARD mono and combo 

6 months CEA Decision tree ETN ICER $42k per ACR20 responder vs. triple cDMARD therapy. 

Choi et al. 2002
149

 US cDMARD mono and combo vs. 

bDMARD mono and combo 

6 months CEA Decision tree ETN ICER $41k per ACR20 responder vs. MTX 

Cimmino et al. 

2011
150

 

Italy ABT vs. ADA vs. RTX vs. IFX 2 years CEA Unclear Highest effectiveness and lowest CER for ABT. LDAS and RS outcomes 

Clark et al. 2004
151

 UK Adding ANA in a treatment sequence Lifetime CUA Individual Level 

Model 

ANA ICER over £100k per QALY vs. standard care 

Coyle et al. 2006
152

 Canada GLD vs. bDMARD mono and combo 5 years CUA Markov model IFX and ETN had ICERS over $100k per QALY vs. cDMARDs 
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Diamantopoulos et 

al. 2012
153

 

Italy Sequential bDMARD use lifetime CUA Individual Level 

Model 

TCZ dominates replacing ETN or ADA. TCZ ICER €2k per QALY vs. IFX. TCZ 

ICER €17k when added first line. 

Hallinen et al. 2010
154

 Finland Sequential bDMARD use Lifetime CUA Individual level 

Markov model 

RTX dominates ADA, ABT, ETN after TNFa failure. RTX ICER €30k per QALY 

vs. BSC. 

Jobanputra et al. 

2002
155

 

UK Adding ETN and IFX into a cDMARD 

sequence 

Lifetime CUA Individual Level 

Model 

ETN ICER £83k per QALY vs. basecase. IFX ICER £115k per QALY vs. 

basecase. ETN ICER £44k per QALY vs. IFX. 

Kavanaugh et al. 

1996
156

 

US GLD vs. MTX vs. bDMARDs 6 months CCA Decision tree Efficacy reflected as costs. GLD = $6k, MTX = $5k, bDMARDs = $9k 

Kielhorn et al. 

2008
157

 

UK RTX+MTX vs. cDMARD sequence lifetime CUA Individual level 

Markov model 

RTX ICER £11k per QALY vs. cDMARDs. With no sequential bDMARD us, 

RTX ICER £14 per QALY vs. cDMARDs. 

Kievit et al. 2009
158

 NL Comparing treatment guidelines 6 months CCA Trial analysis All strategies had an equal cost. All variations to guideline generated 

more responders. 

Kobelt et al. 2003
159

 Sweden,  

UK 

IFX+MTX vs. MTX 10 year CUA Markov model IFX ICER is €3k per QALY vs. MTX in Sweden. £21k per QALY vs. MTX in UK 

Kobelt et al. 2004
160

 Sweden TNFa vs. cDMARDs 1 year CUA Trial analysis TNFa ICER is €43k per QALY vs. previous years' therapy 

Kobelt et al. 2005
161

 Sweden ETN vs. MTX vs. ETN+MTX 2 year/ 10 

year 

CUA Markov model ETN+MTX ICER is €37k per QALY vs. MTX (2 year horizon). 

ETN+MTX ICER is €46k per QALY vs. MTX (109 year horizon) 

Lekander et al. 

2010
162

 

Sweden IFX vs. cDMARDs 20 year CUA Markov model IFX ICER €22k per QALY vs. cDMARDs 

Lindgren et al. 

2009
163

 

Sweden RTX vs. TNFa lifetime CUA Discrete Event 

Simulation 

RTX dominates TNFa 

Maetzel et al. 

2002a
164

 

Canada LEF vs. MTX vs. placebo 1 year CCA n/a MTX dominates LEF and placebo 

Malottki et al. 

2011
165

 

UK ADA vs. ETN vs. IFX vs. RTX vs. ABT 

vs. cDMARD sequence 

Lifetime CUA Individual Level 

Model 

RTX dominates ADA, ETN and IFX 

ABT ICER £130k per QALY vs. RTX  

Marra et al. 2007
166

 Canada IFX+MTX vs. MTX 10 years CUA Markov model IFX ICER between $Can32k-70k per QALY vs. MTX. 

Merkesdal et al. 

2010
167

 

Germany Adding RTX+MTX to a sequence Lifetime CUA Individual level 

Markov model 

RTX ICER €24k per QALY vs. TNFa 

Nuijten et al. 2001
168

 NL ETN vs. IFX 1 year CMA Unclear ETN dominates IFX 

Osiri et al. 2007
169

 Thailand Comparing cDMARD strategies 1 year CEA n/a MTX = $2k (per 1 point HAQ change vs. AM). MTX + AM = dominates. 

MTX + SSZ = $625. AM + SSZ = $14k. AM + MTX + SSZ = $1k. LEF = $1k. 

Other DMARDS = $16k 
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Rubio-Terrés et al. 

2001
170

 

Spain IFX+MTX vs. LEF 1 year CMA Unclear LEF dominates IFX+MTX in the CMA 

Russell et al. 2009
171

 Canada Sequential TNFa use 2 years CEA Decision tree 1st bDMARD position: ABT dominates when using both remission and 

LDAS as outcomes. 2nd bDMARD position: ICER $20k per LDAS and $26k 

per remission 

Saraux et al. 2010
172

 France Sequential TNFa use 2 year CEA Unclear Lower costs per 'theoretical expected number of days in remission' with 

ABT after first TNFa compared with RTX. Consistent with remission 

criteria as well. 

Shini et al. 2010
173

 India cDMARD mono and combo therapies 3 months CEA n/a For mono, lowest CER was HCQ. For combo, lowest CER was MTX+HCQ 

Soini et al. 
174

 2012 Finland ADA vs. ETN vs. TCZ Lifetime CUA Individual Level 

Model 

Wholesale prices: TCZ dominates ADA and ETN and ICER €18k per QALY 

vs. MTX. Retail prices TCZ extendedly dominates ADA, ETN and ICER €17k 

per QALY vs. MTX. 

Tanno et al. 2006
175

 Japan Adding ETN to a cDMARD sequence Lifetime CUA Markov model ETN ICER ¥3.5 per QALY vs. standard therapy 

Vera-Llonch et al. 

2008
176

 

US ABT vs. cDMARDs lifetime CUA Individual Level 

Model 

ABT ICER $45k per QALY vs. cDMARDs 

Vera-Llonch et al. 

2008a
177

 

US ABT+MTX vs. MTX lifetime CUA Microsimulation ABT+MTX ICER $43k per QALY vs. MTX 

Wailoo et al. 2008
178

 US ETA vs. ADA vs. ANA vs. IFX Lifetime CUA Individual Level 

Model 

ANA was the least effective and least costly strategy. ETN, IFX and ADA 

were similar in terms of effectiveness but IFX was more costly.  

Welsing et al. 2004
179

 NL Usual care vs. LEF vs. TNFa vs. 

LEF,TNFa sequences 

5 years CUA Markov model Post-DMARD failure most cost effective position for TNFa, with ICER of 

€163k per QALY vs. usual care. 

Wong et al. 2002
180

 US IFX+MTX vs. MTX Lifetime CUA Markov model IFX ICER is £30k per QALY vs. MTX 

See glossary for definitions of abbreviations. NL = Netherlands, US = United States. Mono = Monotherapy, Combo = Combination therapy. LDAS = Low disease activity state. RS = Remission state 
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PATIENT POPULATION AND TREATMENTS 

To categorise the patient population and decision point for which a new treatment is being 

considered, a conceptualisation of RA is required. 

The current NICE Clinical Guideline for RA (CG90) defines one subset of the patient population 

as ‘recent-onset’ – where patients have active RA with no prior use of DMARDs.121 It states 

that the objective for health care professionals is to diagnose active RA as soon as possible so 

that DMARD therapy can be initiated within 3 months of the onset of persistent symptoms. 

Once patients have received DMARD therapy, then the guideline categorises patients as having 

‘established’ disease. The studies will be categorised into these two broad groups, with 

subgroups defined where appropriate.  

The NICE Clinical Guideline (CG90) provides a treatment algorithm to determine the 

appropriate strategy of care for a patient in either population (Figure 4.2). The development of 

the NICE Clinical Guideline was constrained by the fact that NICE Technology Appraisals had 

already developed guidance for the use of bDMARDs in patients with RA,181 and therefore this 

guidance was mandatory and the advisory remit of the Clinical Guideline could not alter this.182  

 

Figure 4.2: NICE Clinical Guideline (CG90) - Patient population and treatment algorithm 
(simplified) 

The treatment algorithm highlights that in general the view of decision-makers has been that 

bDMARDs, due to their cost, should only be attempted when two less costly cDMARDs have 

been attempted first. The NICE Clinical Guideline commissioned a de novo CUA to compare 

different combination therapy and monotherapy cDMARD strategies in patients with recent-

onset RA.135 This CUA informed the treatment algorithm which recommends patients with 

RECENT-ONSET RA 

-Confirmed diagnosis 

-Active disease  

-Persistent symptoms 

-No DMARD therapy 

ESTABLISHED RA 

-Confirmed diagnosis 

-Active disease  

-Persistent symptoms 

-Prior DMARD therapy 

cDMARDs 

-Combination cDMARD therapy 

where possible, or monotherapy 

cDMARD  

 

cDMARDs and bDMARDs 

-Switch from combination 

cDMARDs to a bDMARD, or from 

monotherapy cDMARD to a 

second cDMARD 

TREATMENT ALGORITHM 

 

PATIENT POPULATION 
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recent-onset RA receive combination cDMARD therapy as their first strategy. The downstream 

impact is that non-responders to combination cDMARDs move more quickly to bDMARDs 

when compared to a trial of cDMARDs in sequence. 

For this systematic review, the patient population for each economic evaluation will be 

determined as either recent-onset or established RA. The position of the decision point in the 

economic evaluation will make reference to the standard treatment algorithm, where a recent 

onset population has no prior DMARD treatment, and established RA patients will have 

previously had DMARD treatment. If bDMARDs are evaluated for the use in treating recent 

onset RA patients, then this will be clearly reported. 

The patient population for each economic evaluation is determined by the point in which the 

comparison between alternatives is made. Some researchers call this the divergence point,124 

because a DAM may explicitly model the previous treatment sequence from recent-onset RA, 

however the sequence only differs at the divergence point. For example a model may have an 

identical recent-onset RA sequence of cDMARDs, and then the divergence point occurs where 

there is a comparison of alternative bDMARDs in patients with established RA. Modelling 

upstream treatments (before the divergence point) may be undertaken to allow movement of 

the divergence point, allow alternative patient populations to be generated, or to allow 

screening or diagnostics to be evaluated. 

There are fourteen (25%) studies of DMARD therapy in patients with recent-onset RA.124–137 42 

(74%) of studies are in patients with established RA.138–155,157–180 In one study (1%), it was 

unclear whether the interventions compared were for recent-onset or established RA.156 The 

study references are provided in Table 4.6. 
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Table 4.6: Review patient population 

Patient 

population 

Studies References 

Recent -

onset RA 

14 (25%) Chen et al. 2006124, Davies et al. 2009125, Finckh et al. 2009126, 

Hartman et al. 2004127, Kobelt et al. 2002128, Kobelt et al. 2011129, 

Korthals-de Bos et al. 2004130, Maetzel et al. 2002131, Schadlich et 

al. 2005132, Schipper et al. 2011133, Spalding et al. 2006134, Tosh et 

al. 2011135, van den Hout et al. 2009136, Verhoeven et al. 1998137 

Established 

RA 

42(74%) Anis et al. 1996138, Bansback et al. 2005139, Barbieri et al. 2005140, 

Barton et al. 2004141, Benucci et al. 2009142, Benucci et al. 2011143, 

Beresniak et al. 2011144, Brennan et al. 2004145, Brennan et al. 

2007146, Chiou et al. 2004147, Choi et al. 2000148, Choi et al. 2002149, 

Cimmino et al. 2011150, Clark et al. 2004151, Coyle et al. 2006152, 

Diamantopoulos et al. 2012153, Hallinen et al. 2010154, Jobanputra 

et al. 2002155, Kielhorn et al. 2008157, Kievit et al. 2009158, Kobelt et 

al. 2003159, Kobelt et al. 2004160, Kobelt et al. 2005161, Lekander et 

al. 2010162, Lindgren et al. 2009163, Maetzel et al. 2002a164, 

Malottki et al. 2011165, Marra et al. 2007166, Merkesdal et al. 

2010167, Nuijten et al. 2001168, Osiri et al. 2007169, Rubio-Terrés et 

al. 2001170, Russell et al. 2009171, Saraux et al. 2010172, Shini et al. 

2010173, Soini et al. 174. 2012, Tanno et al. 2006175, Vera-Llonch et 

al. 2008176, Vera-Llonch et al. 2008a177, Wailoo et al. 2008178, 

Welsing et al. 2004179, Wong et al. 2002180 

Unclear 1 (1%) Kavanaugh et al. 1996156 

Total 57 (100%)  

 

The studies cover a range of monotherapy and combination therapies utilising both cDMARDs 

and bDMARDs for patients with recent-onset RA. These are summarised in Table 4.7 and Table 

4.8. 

CRITICAL APPRAISAL OF THE ECONOMIC EVIDENCE FOR DMARDS IN RECENT-ONSET RA 

Presented here is a critical appraisal of the economic evaluations conducted which compared 

treatment strategies for patients with recent-onset RA. Fourteen studies were identified in this 

population.124–137  

i) Scope of the economic evaluations in recent-onset RA 

The summary details for all fourteen recent-onset RA economic evaluations are presented in 

Table 4.5. All fourteen studies were CUAs, with benefits quantified using QALYs. Ten (71%) of 

the studies considered the introduction of a particular DMARD to a treatment 

pathway,124,125,127,133,134,137 and four (29%) studies evaluated the adjustment or tapering of a 

treatment strategy.126,131,135,136 The specific treatments evaluated for people with recent-onset 

RA in the identified studies are reported in Table 4.7. 
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Table 4.7: Treatments evaluated for recent-onset RA 

Type Specific treatment Studies References 

Monotherapy 

cDMARDs 

LEF 

 

2 Kobelt et al. 2002128, Schadlich et al. 

2005132 

MTX 

 

7 Davies et al. 2009125, Finckh et al. 

2009126, Kobelt et al. 2002128, Kobelt et 

al. 2011129, Schipper et al. 2011133, 

Spalding et al. 2006134, Tosh et al. 2011135 

SSZ 2 Kobelt et al. 2002128, Korthals-de Bos et 

al. 2004130 

Combination 

cDMARDs 

MTX+LEF 1 Schipper et al. 2011133 

MTX+SSZ 1 Tosh et al. 2011135 

MTX+Prednisone 1 Tosh et al. 2011135 

MTX+SSZ+Prednisone 1 Korthals-de Bos et al. 2004130 

Step-up combination 1 Tosh et al. 2011135 

Step-down combination 1 Tosh et al. 2011135 

Intensive combination 1 Tosh et al. 2011135 

Monotherapy 

bDMARDs 

ADA 2 Chen et al. 2006124, Spalding et al. 

2006134 

ETN 3 Chen et al. 2006124, Davies et al. 2009125, 

Spalding et al. 2006134 

Combination 

bDMARDs 

ADA+MTX 3 Chen et al. 2006124, Davies et al. 2009125, 

Spalding et al. 2006134 

ETN+MTX 2 Chen et al. 2006124, Kobelt et al. 2011129 

IFX+MTX 3 Chen et al. 2006124, Davies et al. 2009125, 

Spalding et al. 2006134 

Other cDMARDs 2 Chen et al. 2006124, Schadlich et al. 

2005132 

bDMARDs 2 Finckh et al. 2009126, Schipper et al. 

2011133 

Non-DMARD 1 Finckh et al. 2009126 

Placebo+MTX 1 Hartman et al. 2004127 

Folic Acid+MTX 1 Hartman et al. 2004127 

Folinic Acid+MTX 1 Hartman et al. 2004127 

See glossary for definitions of abbreviations. 

 

The studies were diverse in their treatment considerations, and since 2006 seven of the 

fourteen studies (50%) have evaluated the use of bDMARDs in recent-onset RA.124–

126,129,133,134,136 Prior to 2006, six studies (43%) were published which evaluated the economic 

impact of cDMARDs.127,128,130–132,137 This leaves one (7%) relatively recent study (Tosh et al. 
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(2011))135 evaluating cDMARDs. This suggests that with bDMARDs coming on the market in 

early 2000s, there has understandably been a shift to evaluating their cost-effectiveness, at 

the expense of continuing evidence generation for the use of established and lower cost 

cDMARD treatments. 

The disease severity in the patient population being evaluated was not clearly reported across 

the studies. Kobelt et al. (2011) evaluated ETN+MTX vs. MTX in a severe RA population.129 

Kobelt et al. (2002) was an evaluation of MTX+SSZ vs. LEF in any patient with RA.128 Six (43%) of 

studies were explicitly reported as being in an active RA population.124,127,132,135–137 In the 

remaining six (43%) studies, the patient population and disease severity was not 

reported.125,126,130,131,133,134 

Only five (36%) of the studies had a lifelong time horizon for the economic evaluation.124–

126,134,135 Of these five studies, four of them were evaluations of bDMARDs in recent-onset RA, 

and all four used decision-analytic modelling methods to estimate costs and effects.124–126,134 

This included Chen et al. (2006), a publication of the independent submission made by the 

NICE Technology Appraisal Group based at Birmingham.124 Only Tosh et al. (2011) considered 

the lifetime costs and effects of alternative cDMARD monotherapy and combination therapy 

strategies in recent-onset RA.135 TNFa’s were not considered at this divergence point, due to 

the evaluation being used to inform the NICE Clinical Guideline,121 and the NICE guidance at 

that time published from Technology Appraisals recommending that bDMARDs (specifically, 

TNF-a inhibitors) only be used after treatment failure with at least two cDMARDs. 

Four studies (29%) had a time horizon of no more than 2 years.127,130,136,137 A truncated time 

horizon of this magnitude is likely to omit future costs and benefits that occur between 

alternative treatments, and in particular if a DMARD therapy is assumed to have a disease-

modifying effect on the future course of a chronic condition like RA. Therefore, the short time 

horizon in these studies is likely to lead to biased estimates of cost-effectiveness. 

Ten of the fourteen (71%) studies used DAM methods to estimate expected costs and 

QALYs.124–126,128,129,131,132,134,135 The remaining four studies (29%) were economic evaluations 

alongside clinical trials.127,130,136,137 Prior to 2006, six studies (43%) evaluated the economic 

impact of cDMARDs, with no evaluation having a time horizon of longer than 10 years.127,128,130–

132,137 Three of the six studies (50%) undertook an economic evaluation alongside a clinical 

trial.127,130,137 This partially explains the short time horizon and why downstream implications 

are not fully considered. The extrapolation or modelling of costs and effects may not be the 

primary objective when reporting a clinical trial; however the results of these studies will be of 

limited use for resource allocation decision-making. 
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ii) Downstream costs and effects in recent-onset RA 

In the five studies with a lifelong time horizon for the economic evaluation, only Chen et al. 

(2006) explicitly modelled a downstream sequence of treatments.124 The analysis allowed a 

consideration of multiple positions of bDMARDs within the treatment sequence. However, the 

authors did not attempt to identify an optimal treatment sequence from the available 

treatment set.  

Of the remaining four studies, Tosh et al. (2011) considered alternative cDMARD monotherapy 

and combination therapy strategies in recent-onset RA.135 TNFa’s were not considered at this 

divergence point, due to the evaluation being used to inform the NICE Clinical Guideline, and 

the NICE guidance at that time stating that bDMARDs can only be used after treatment with at 

least two cDMARDs.121 The lifelong time horizon would have allowed the implications of faster 

access to bDMARDs (but using combination rather than sequential monotherapy cDMARDs) to 

be quantified, however the downstream bDMARDs were not explicitly modelled, and instead 

estimates of expected costs and QALYs were added on. Spalding et al. (2006) used a pooled 

estimate of costs and effects to provide evidence of the downstream sequence after 

comparing the first line use of bDMARDs.134 Finckh et al. (2009)  compared symptomatic care 

with MTX and bDMARDs, and did not clearly report how future costs and QALYs after 

treatment failure were estimated.126 Davies et al. (2009) evaluated bDMARDs at first line 

position in an explicit sequence (bDMARD, MTX+HCQ, LEF, GLD, PC), however they did not 

clearly report how evidence was used to determine the cost and QALY impact of these future 

treatments.125 

From the nine studies with a truncated time horizon, five explicitly included a downstream 

sequence of treatments.129,131–133,136 Kobelt et al. (2011) evaluated ETN+MTX vs. MTX over a 10 

year time horizon, with a downstream sequence of two bDMARDs and then progression to a 

standard therapy extrapolation of costs and disease activity.129 Both Maetzel et al. (2002)131 

and Schadlich et al.(2005)132 evaluated the impact of adding LEF to a cDMARD sequence at 

second line, over a five year and three year time horizon, respectively. Neither study evaluated 

the cost-effectiveness of adding LEF at alternative positions in the sequence. Schipper et al. 

(2011) evaluated the cost-effectiveness of allowing sequential bDMARD use in recent-onset 

RA, over a five year time horizon.133 After bDMARD use the model contained a transition to 

combination cDMARDs, however the impact of this on costs and effects was not reported. Van 

den Hout et al. (2009) compared cDMARD monotherapy and combination therapies with initial 

IFX+MTX therapy, over a two year time horizon.136 The analysis was an economic evaluation 

alongside a clinical trial, and after switching treatment in the trial the patient progressed to 

another active therapy. The trial was reported as Intention to Treat (ITT), and so the costs and 
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effects of transition to downstream sequential therapies were included in the economic 

evaluation but only within the trial follow up period. 

Four studies remain with a truncated time horizon and no explicit inclusion of downstream 

costs and effects.127,128,130,137 All four studies are relatively old (1998-2004) and are evaluations 

of cDMARDs. For these treatments, there was less of a focus on future benefits such as disease 

control and joint damage, and more of a focus on a short term reduction in disease activity. 

Three of the four studies were clinical trials,127,130,137 and only Kobelt et al.(2002) used a DAM  

to estimates costs and effects over a 10 year time horizon.128 In their analysis, long term costs 

and effects are derived from an observational study (the Early Rheumatoid Arthritis Study). 

iii) Decision-analytic modelling methods in recent-onset RA 

Ten of the fourteen (71%) studies used DAM methods to determine expected costs and 

QALYs.124–126,128,129,131,132,134,135 Two of the ten models (20%) were a decision tree,131,132 four 

studies (40%) are cohort Markov/State-transition models,128,129,133,134 and four studies (40%) 

are ILMs.124–126,135 

The decision tree model by Maetzel et al. (2002) had a 5 year time horizon and was capable of 

modelling a sequence of six explicit treatments.131 However, this modelling method required 

simplifications which lead to limitations of the final analysis. In particular, only one level of 

treatment response was incorporated (ACR20), with the authors recognising that incorporating 

ACR50 would have allowed the potential superiority of newer DMARDs to be quantified in the 

model. Also, the model only incorporates approximate direct costs over the long term. The 

decision tree model by Schadlich et al. (2005)132 had a 3 year time horizon and was very similar 

to that of Maetzel et al. (2002).131 It also suffered from the same limitations, and additionally 

the fact that it did not account for disease duration or diminished clinical response for 

cDMARDs used at later points in the sequence. 

The four Markov models defined health states and transition probabilities between different 

states. Two defined these health states by HAQ score, one by DAS score, and one simply by 

either being on an active treatment or dead, and with time dependent costs and 

utilities.128,129,133,134 

The four ILMs explicitly modelled sequential treatments.124–126,135 Tosh et al (2011)135 and 

Davies et al. (2009)125 used a regular 6-month time point to update costs and QALYs. This 

represents a simplification of evidence, in particular when events can occur at any time, or 

when regular events (such as treatment re-administration) occur outside of the 6-month cycle. 

Chen et al. (2006)124 and Finckh et al. (2009)126 overcome this limitation by being a time-to-
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event model. The model time is updated when an event occurs which has an impact on costs 

or effects. 

The six older studies evaluating cDMARDs in recent-onset RA were, unsurprisingly, less likely to 

meet the Drummond checklist for assessing the quality of the study.127,128,130–132,137 Only 

Maetzel et al. (2002)131 fully met the Drummond criteria. The other studies in general did not 

have a long enough time horizon to fully capture future costs and benefits,127,128,130,132,137 and 

did not report a fully incremental analysis between alternatives.127,132,137 Probabilistic 

Sensitivity Analysis was not commonly performed, however if detailed and comprehensive 

scenario and one-way sensitivity analyses were performed then it was considered that this was 

an appropriate level of testing for uncertainty. 

Of the eight newer studies, five fully met the Drummond criteria.124–126,135,136 Kobelt et al. 

(2011)129, Schipper et al. (2011)133 and Spalding et al. (2006)134 did not clearly detail the 

evidence to establish the programme’s effectiveness, and the latter two studies did not report 

fully incremental results. 

iv) Health economic results in recent-onset RA 

Seven studies (50%) evaluated the economic impact of cDMARDs in patients with recent-onset 

RA.127,128,130–132,135,137 Three of these studies evaluated combination cDMARD strategies, and all 

three found that a combination of cDMARDs dominated monotherapy cDMARDs.130,135,137 Of 

the remaining four studies, three evaluated LEF monotherapy. Maetzel et al. (2002) estimated 

an ICER for LEF of $Can71,000 per QALY compared to a cDMARD sequence.131  Kobelt et al. 

(2002) concluded that LEF either dominates or is dominated compared to SSZ and MTX 

depending on the clinical evidence used to derive effectiveness.128 Schadlich et al. (2005) 

estimated that adding LEF to a cDMARD sequence generated additional QALYs, with an ICER of 

€8,000 per QALY.132 Hartman et al. (2004) estimated that, adjunct to MTX, folic acid was 

dominated by placebo, and folinic acid dominated placebo.127 

In the seven studies (50%) evaluating the economic impact of bDMARDs in patients with 

recent-onset RA, the general conclusion was that bDMARDs added both costs and benefits to 

cDMARD comparators.124–126,129,133,134,136 However, Finckh et al. (2009) estimated that 

bDMARDs would be dominated by cDMARDs in recent-onset RA.126 Chen et al. (2006),124 

Schipper et al. (2011),133 Spalding et al. (2006),134 and van den Hout et al. (2009)136 concluded 

that the ICERs comparing bDMARDs to cDMARDs are likely to be too high for decision-makers 

to approve. Only Davies et al. (2009),125 with an ICER of $47k per QALY for ADA+MTX vs 

cDMARDs, and Kobelt et al. (2011),129 with an ICER of €13k per QALY for ETN+MTX vs MTX, are 
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potentially within the threshold for being cost-effective.* Both analyses are for countries (US 

and Sweden respectively) where cost-effectiveness thresholds are not established for health 

resource allocation decision-making. 

Of the fourteen studies, six (43%) reported sensitivity analysis did not significantly alter the 

baseline estimates of cost-effectiveness.128,130,132,133,137,182 It was not possible to clearly identify 

what criteria were used to suggest the results were robust, and whether the sensitivity 

analysis was comprehensive enough.  Eight studies reported significant decision uncertainty, 

with four studies (29%) reporting specific model parameters which lead to decision 

uncertainty. These were the progression rate of HAQ whilst on treatment,124,125  the mapping 

algorithm from HAQ to utility,125 the initial effectiveness,124 and withdrawal rate for cDMARDs, 

125 and the initial change in HAQ score after a treatment response.134 

CRITICAL APPRAISAL OF THE ECONOMIC EVIDENCE FOR DISEASE-MODIFYING THERAPIES IN 

ESTABLISHED RA 

Presented here is a critical appraisal of the economic evidence identified within established 

RA.  42 studies provided economic evidence for treatments of established RA.138–155,157–180 

i) Scope of the economic evaluations of disease-modifying therapies in established RA 

All 42 studies were economic evaluations of DMARD therapies for people with established RA. 

The summary details for all of the established RA economic evaluations are presented in Table 

4.5. 29 of the 42 studies (69%) were CUAs, with effects quantified as QALYs.139–143,145–147,151–

155,157,159–163,165–167,174–180 Nine studies (21%) were CEAs,138,144,148–150,169,171–173 with four using low 

disease activity score (LDAS) or remission as the unit of effect,144,150,171,172 two with ACR70 

weighted response,148,149 and one study apiece using per patient improved,138 HAQ 

improvement,169 and DAS improvement.173 Two studies (1%) were CCAs,158,164 and two studies 

(1%) were CMAs.168,170 The specific treatments evaluated for people with established RA in the 

identified studies are reported in Table 4.8. 

  

                                                           
*
 Assuming a threshold of £30,000 (or €40,000 or $50,000) per QALY.  
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Table 4.8: Treatments evaluated for established RA 

Type Treatment Studies References 

Monotherapy 

cDMARDs 

AZA 1 Shini et al. 2010
173

 

CYA 1 Anis et al. 1996
138

 

GLD 1 Barton et al. 2004
141

 

HCQ 2 Osiri et al. 2007
169

, Shini et al. 2010
173

 

LEF 3 Maetzel et al. 2002a
164

, Rubio-Terrés et al. 2001
170

, Welsing et 

al. 2004
179

 

MTX 10 Barbieri et al. 2005
140

, Choi et al. 2000
148

, Choi et al. 2002
149

, 

Kobelt et al. 2003
159

, Kobelt et al. 2005
161

, Maetzel et al. 

2002a
164

, Marra et al. 2007
166

, Osiri et al. 2007
169

, Shini et al. 

2010
173

, Wong et al. 2002
180

 

SSZ 1 Shini et al. 2010
173

 

Combination 

cDMARDs 

AZA+Pen 1 Anis et al. 1996
138

 

HCQ + SSZ 2 Osiri et al. 2007
169

, Shini et al. 2010
173

 

HCQ + SSZ 

+ MTX 

3 Choi et al. 2000
148

, Choi et al. 2002
149

, Osiri et al. 2007
169

 

MTX + 

HCQ 

2 Osiri et al. 2007
169

, Shini et al. 2010
173

 

MTX + SSZ 2 Osiri et al. 2007
169

, Shini et al. 2010
173

 

MTX + LEF 1 Shini et al. 2010
173

 

MTX + CYA 2 Choi et al. 2000
148

, Choi et al. 2002
149

 

Monotherapy 

bDMARDs 

ABT 6 Beresniak et al. 2011
144

, Cimmino et al. 2011
150

, Hallinen et al. 

2010
154

, Malottki et al. 2011
165

, Russell et al. 2009
171

, Saraux et 

al. 2010
172

 

ADA 11 Bansback et al. 2005
139

, Beresniak et al. 2011
144

, Chiou et al. 

2004
147

, Cimmino et al. 2011
150

, Diamantopoulos et al. 2012
153

, 

Hallinen et al. 2010
154

, Malottki et al. 2011
165

, Russell et al. 

2009
171

, Saraux et al. 2010
172

, Soini et al. 
174

 2012, Wailoo et al. 

2008
178

 

ANA 2 Chiou et al. 2004
147

, Wailoo et al. 2008
178

 

ETN 18 Bansback et al. 2005
139

, Barton et al. 2004
141

, Brennan et al. 

2004
145

, Chiou et al. 2004
147

, Choi et al. 2000
148

, Choi et al. 

2002
149

, Clark et al. 2004
151

, Coyle et al. 2006
152

, 

Diamantopoulos et al. 2012
153

, Hallinen et al. 2010
154

, 

Jobanputra et al. 2002
155

, Kobelt et al. 2005
161

, Malottki et al. 

2011
165

, Nuijten et al. 2001
168

, Russell et al. 2009
171

, Saraux et 

al. 2010
172

, Soini et al. 
174

, 2012 Tanno et al. 2006
175

, Wailoo et 

al. 2008
178

 

IFX 13 Barton et al. 2004
141

, Beresniak et al. 2011
144

, Chiou et al. 

2004
147

, Cimmino et al. 2011
150

, Diamantopoulos et al. 2012
153

, 

Hallinen et al. 2010
154

, Jobanputra et al. 2002
155

, Lekander et al. 

2010
162

, Malottki et al. 2011
165

, Nuijten et al. 2001
168

, Russell et 

al. 2009
171

, Saraux et al. 2010
172

, Wailoo et al. 2008
178

 

RTX 7 Benucci et al. 2011
143

, Beresniak et al. 2011
144

, Cimmino et al. 

2011
150

, Hallinen et al. 2010
154

, Lindgren et al. 2009
163

, Malottki 
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et al. 2011
165

, Saraux et al. 2010
172

 

TCZ 2 Diamantopoulos et al. 2012
153

, Soini et al. 2012
174

 

Combination 

bDMARDs 

ABT+LEF 1 Benucci et al. 2009
142

 

ABT+MTX 3 Benucci et al. 2009
142

, Vera-Llonch et al. 2008
176

, Vera-Llonch et 

al. 2008a
177

 

ADA+MTX 1 Bansback et al. 2005
139

 

ETN+LEF 1 Benucci et al. 2009
142

 

ETN+MTX 5 Bansback et al. 2005
139

, Benucci et al. 2009
142

, Choi et al. 

2000
148

, Choi et al. 2002
149

, Kobelt et al. 2005
161

 

IFX+MTX 7 Bansback et al. 2005
139

, Barbieri et al. 2005
140

, Coyle et al. 

2006
152

, Kobelt et al. 2003
159

, Marra et al. 2007
166

, Rubio-Terrés 

et al. 2001
170

, Wong et al. 2002
180

 

RTX+MTX 2 Kielhorn et al. 2008
157

, Merkesdal et al. 2010
167

 

Other cDMARDs 8 Bansback et al. 2005
139

, Brennan et al. 2004
145

, Brennan et al. 

2007
146

, Clark et al. 2004
151

, Osiri et al. 2007
169

, Tanno et al. 

2006
175

, Vera-Llonch et al. 2008
176

, Vera-Llonch et al. 2008a
177

 

Constant 

disease 

4 Benucci et al. 2011
143

, Kobelt et al. 2004
160

, Lekander et al. 

2010
162

, Lindgren et al. 2009
163

 

bDMARDs 4 Brennan et al. 2007
146

, Kobelt et al. 2004
160

, Merkesdal et al. 

2010
167

, Welsing et al. 2004
179

 

Treatment 

Guidance 

1 Kievit et al. 2009
158

 

 

The studies were diverse in the treatments considered, however only four (9%) studies were 

exclusively for cDMARDs.138,164,169,173 This potentially reflects the development of bDMARD 

therapies in the last 15 years, and their relatively high cost requiring a formal economic 

evaluation to determine if they offer value for money for use in patients with established RA. 

In fourteen (33%) of the 42 studies, the disease severity in the patient population being 

evaluated was not clearly reported.138,141,145,148,149,151,159,160,165,168,169,173,175,178 Eleven (26%) studies 

were reported as being in an active RA patient population.146,155–157,162–164,167,170,179,180 Four (9%) 

studies were in a severe RA patient population,140,152,154,161 leaving thirteen (24%) studies in a 

moderate-severe RA patient population.139,142–144,147,150,153,158,171,172,174,176,177 

Only 19 (45%) of the studies had a lifelong time horizon for the economic evaluation.139–

141,145,146,151,153–155,157,163,165,167,174–178,180 All of these studies used decision-analytic modelling 

methods. None of the cDMARD exclusive studies in established RA had a lifelong time horizon. 

17 (40%) studies had a time horizon of no more than two years.138,142–144,147–150,158,160,164,168–173 

36 (86%) of the 42 studies used DAM methods to determine the expected costs and QALYs.138–

141,144–155,157–159,161–163,165–168,170–172,174–180 This includes prospective studies with a model to 

extrapolate estimates into the longer-term. Of the six remaining studies, five were 
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observational studies,101,142,160,169,173 and one was an economic evaluation alongside a clinical 

trial.164 None of these six studies had a time horizon longer than two years. 

ii) Downstream costs and effects in established RA 

In the 19 studies with a lifelong time horizon for the economic evaluation, 13 (68%) explicitly 

modelled a downstream sequence of treatments.114,139,141,145,146,151,153–155,157,163,165,175 None of 

these studies attempted to estimate the optimal sequence of treatments from the available 

treatment set. 

Bansback et al. (2005) evaluated bDMARDs with or without adjunct MTX vs cDMARDs in 

patients who had already failed on two previous cDMARDs.139 The downstream cDMARD 

sequence was explicitly modelled; however the sequence was fixed for all comparisons. 

Hallinen et al. (2010) compared alternative sequences of bDMARDs after failure on one 

bDMARD.154 

Jobanputra et al. (2002),155 and Barton et al. (2004)141 evaluated ETN and IFX in a cDMARD 

sequence. ETN and IFX were evaluated in three different positions in a sequence of 10 active 

therapies. The same decision analytic model was used by Clark et al. (2004) to evaluate 

anakinra in alternative positions in a cDMARD sequence,151 and by Malottki et al. (2011) to 

evaluate bDMARDs after failure on a previous bDMARD.165 

Brennan et al. (2004) evaluated ETN in a cDMARD sequence.145 ETN was only evaluated in one 

position, after 2 cDMARDs had failed. However, alternative downstream sequences were 

modelled in scenario analyses. This was the same for a latter evaluation by Brennan et al. 

(2007) comparing TNFa’s as a class to a cDMARD sequence.146  Tanno et al. (2006) evaluated 

ETN in a sequence of three cDMARDs over a patient’s lifetime,175 after failure on bucillamine. 

The downstream sequence is likely to be too short and omits other cDMARD options and 

sequential bDMARD use for this patient population. 

Diamantopoulos et al. (2012) compared alternative positions of TCZ in a bDMARD naïve and 

experienced population.153 Kielhorn et al. (2008) evaluated the introduction of RTX+MTX after 

people had failed on two previous bDMARDs.157 The downstream sequence, or position of 

RTX+MTX, was not altered. Lindgren et al. (2009) evaluated the introduction of RTX after 

failure on one previous bDMARD.163 The subsequent sequence of treatments was not 

specified, and was not altered. Merkesdal et al. (2010) evaluated the introduction of RTX after 

failure on one previous bDMARD.167 The subsequent sequence of cDMARDs was not altered, 

and no comparison to other bDMARDs was made. 
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Six studies (72%) had a lifelong time horizon but did not explicitly model the downstream 

treatments.140,174,176–178,180 Barbieri et al (2005) simulated HAQ states with associated costs and 

utilities.140 Soini et al. (2012) modelled progression to best supportive care, and did not clearly 

report how costs and HRQL were estimated.174 Vera-Llonch et al. (2008) used the same model 

for two analyses, and after treatment withdrawal moved onto a linear extrapolation of HAQ 

with mapped estimates of costs and utilities.176,177 Wailoo et al. (2008) also extrapolated HAQ 

after treatment withdrawal.178 Wong et al. (2002) estimated future costs and health effects by 

simulating a worsening of HAQ score via movement of the modelled cohort through Markov 

health states.180 

23 of the 42 studies (55%) in established RA did not have a lifelong time horizon. Of these, only 

six (26%) explicitly modelled a downstream sequence of treatments.144,150,152,171,172,179 The time 

horizon for these studies was no longer than 5 years, and only Coyle et al. (2006) considered 

more than one downstream treatment in the sequence (the other five modelling only a switch 

onto one other active therapy).152 

17 studies remain with a truncated time horizon and no explicit inclusion of downstream costs 

and effects.131,138,142,143,147–149,158–162,166,168–170,173 The justification for omitting long-term future 

costs and effects is not clear in any of the studies. Six studies are either observational 

analyses,101,142,160,169,173 or evaluations alongside a trial,164 and long-term modelling may not 

have been the primary research objective. 

iii) Decision-analytic modelling methods in established RA 

As already mentioned, 36 (86%) of the 42 studies used DAM methods to determine the 

expected costs and QALYs.138–141,144–155,157–159,161–163,165–168,170–172,174–180 Five (14%) of the 36 

models were a decision tree,138,147–149,171 nine (25%) were cohort Markov 

models,140,152,159,161,162,166,175,179,180 and 16 (44%) were individual level models.139,141,145,146,151,153–

155,157,163,165,167,174,176–178 For the remaining six (17%) studies, the method of decision-analytic 

modelling was unclear.144,150,158,168,170,172 

Of the five decision tree models,138,147–149,171 none had a time horizon of over 2 years. Only 

Russell et al. (2009) considered sequential use of therapies.171  Moving onto a second therapy 

occurred after an inadequate response, and the evidence for this was not clearly reported.  

The nine Markov models were also limited in considering the costs and effects of future 

treatments.140,152,159,161,162,166,175,179,180 Only three had a lifelong time horizon,140,175,180 and only 

three considered sequential use of treatments.152,175,179 
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The 16 individual level simulations all had a lifelong time horizon.139,141,145,146,151,153–

155,157,163,165,167,174,176–178 12 of these studies also considered sequential use of therapies in 

patients with established RA.139,141,145,146,151,153,154,157,163,165,167 All 12 determined a treatment 

switch by either a short-term lack of response, or a long-term withdrawal due to a loss of 

efficacy or an adverse event. Initial response was modelled using an ACR response mapped to 

a HAQ improvement in six models.139,145,153,154,157,167 Brennan et al. (2007) modelled initial 

treatment response using the EULAR response categories and mapping the response to EQ-5D 

(or SF-6D) via a multivariate regression.146 

Only 17 of the 42 (40%) met the Drummond checklist for assessing the quality of the 

study.141,145,146,151,154,157,159,162,165–167,175–178,180 The most common reason for not meeting the 

Drummond criteria were: not providing a comprehensive description of the competing 

alternatives;174,179 not providing evidence that the programme’s effectiveness had been 

established;148,155,168,170 not including all important and relevant costs and 

consequences;144,148,150,158,170,179 not measuring costs and consequences appropriately;144,150 not 

undertaking a fully incremental analysis;138,139,144,150,152,153,158,161,168,170–172 not allowing for 

uncertainty;140,147–149,170,172 and not including all issues of interest.138–

140,144,148,150,152,153,155,158,161,168,170–172 

iv) Health economic results in established RA 

The health economic results are provided for each study in Table 4.5. None of the studies 

looked to identify the optimal sequence of treatments from the treatment set included in the 

analysis. 

Four of the 42 studies (10%) were exclusively for cDMARDs in patients with established 

RA.138,164,169,173 In Maetzel et al (2002)164 observed in a one year economic evaluation alongside 

a clinical trial that MTX dominates LEF and placebo, with Osiri et al (2007) also concluding that 

MTX+AM dominates AM, and non-MTX strategies are unlikely to be cost effective.169 Shini et 

al. (2010) performed a CEA with change in HAQ as the unit of health benefit.173 Their study 

suggests that HCQ is the most cost effective monotherapy cDMARD strategy, with MTX+HCQ 

the most cost effective combination strategy. Anis et al. (1996) estimated an ICER of CYA 

therapy of $1,000 per patient improved compared to placebo.138 

19 studies (45%) were non-sequential evaluations of bDMARDs in patients with established 

RA.140,142,143,147–149,158,161,162,166,168,170,174,176–178,180 In general, the studies found that bDMARDs 

were more effective but also more costly compared to cDMARDs in patients with established 

disease. This conclusion was consistent across all studies, irrespective of country, patient 

population or method of evaluation. Six of the 19 studies were decision-analytic models with a 
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lifelong time horizon.140,174,176–178,180 Barbieri et al. (2005)140 and Wong et al. (2002)180 estimated 

an ICER for IFX+MTX vs MTX of £33,000 and £30,000 per QALY, respectively. Likewise, two 

analyses performed by Vera-Llonch et al. (2008) estimated an ICER for ABT+MTX vs MTX of 

$43,000 per QALY and $45,000 per QALY, in a TNFa naïve177 and TNFa experienced176 patient 

population, respectively. 

19 studies (45%) were evaluations of alternative sequences of bDMARDs in patients with 

established RA.139,141,144–146,150–155,157,163,165,167,171,172,175,179 13 of these studies had a lifelong time 

horizon, and as before these studies found sequential bDMARD use to be more effective but 

also more costly.139,141,145,146,151,153–155,157,163,165,167,175  

Four studies evaluated the introduction RTX into a sequence of DMARDs. Hallinen et al. 

(2010),154 Lindgren et al. (2009),163 and Merkesdal et al. (2010)167 concluded that RTX was cost-

effective after TNFa failure compared to TNFa’s. Kielhorn et al. (2008) concluded that RTX after 

two TNFa failures was cost-effective.157 None of the studies considered the optimal position of 

RTX, at the very least by comparing RTX after one or two TNFa failures.* 

Of the nine remaining studies, nearly all were consistent in concluding that bDMARDs were 

likely to be cost effective. The studies by Barton et al. (2004)141 and Jobanputra et al. (2002)155 

were the only studies to conclude that, after two cDMARDs, bDMARDs were unlikely to be cost 

effective compared to further cDMARD treatment. 

There were six studies with an explicitly modelled sequence of downstream treatments, but 

with a truncated time horizon.144,150,152,171,172,179 These studies reported that bDMARDs were 

less likely to be cost effective. The truncated time horizon may therefore omit important 

downstream health benefits from bDMARDs, such as delayed joint erosion or disease 

progression. 

22 of 42 (52%) of studies reported the results were robust when undertaking sensitivity 

analyses.140,141,144,148,150,152–154,157–160,162,163,165,168,170,172,176,177,179,180 As with the similar conclusion 

from the recent-onset RA population, it was not clear what criteria had been used to suggest 

that the results were robust, and whether rigorous enough testing had been performed. Eight 

studies (19%) reported significant uncertainty,139,145–147,149,155,166,174 with six studies (14%) 

reporting specific model parameters which lead to significant sensitivity in the economic 

model. These were the baseline age in the model,139 the standardised mortality ratios,139 the 

algorithm to estimate HRQL,139,146,166 the rate of disease progression,145,146 discounting rates,146 

ACR response rates,147 and cost parameters.149 

                                                           
*
 RTX is not licensed for used prior to a TNFa therapy 
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4.5 DISCUSSION 

The review identified 57 unique economic evaluations of DMARD therapy for people with RA. 

However, none of the identified studies have considered identifying the most cost effective 

sequence from the full treatment set available. This has therefore led to clinical guidance being 

developed without published economic evidence being available to ensure that health 

resource allocation decisions are fully informed. Where models have been developed that 

consider a lifelong time horizon and downstream treatment sequences, evidence gaps have 

been identified, and evaluations have not fully considered optimising the sequence. These 

evidence gaps include the efficacy of treatments in downstream positions, and the long term 

impact of treatments on costs and HRQL in the future. The review has identified that methods 

have not been consistently applied, which has led to varied estimates of cost-effectiveness and 

uncertainty with respect to the most appropriate analyses to address particular decision 

questions. 

A number of key themes have been identified from this systematic review of economic 

evaluations of disease modifying therapies for rheumatoid arthritis. 

Firstly, the review highlights the significant decision space within rheumatoid arthritis. 

Fourteen economic evaluations were undertaken of therapies within a recent-onset RA 

population, and 42 undertaken within an established RA population. Evaluations were 

undertaken when people have had no prior treatment, up to patients having had cDMARDs 

and two bDMARDs. There are several potential positions for each DMARD therapy, and the 

review identified approximately 30 discrete treatments. Therefore the decision space on a very 

crude level is every potential sequence constructed from that set of 30 treatments.* 

Understandably, the vast decision space and therefore huge number of potential comparators 

led to no study attempting to determine the optimal sequence of therapies. The decision 

space could be broadly divided into recent-onset RA and established RA populations. The 

evaluation by Chen et al. (2006) represents the only attempt from 57 evaluations to determine 

whether bDMARDs should be used in recent-onset or established RA.124 However, the 

evaluation only considers a small subset of all feasible treatment sequences. Therefore the 

review has identified a significant number of constrained or pair-wise evaluations, the majority 

of which did not conduct a fully incremental analysis or discuss the possibility of alternatives 

positions other than the primary analysis. This is not particularly surprising, because each 

                                                           
*
 30! = 265,252,859,812,191,058,636,308,480,000,000. If each sequence took one second to enumerate, 

it would take over 8 years to solve 
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study was undertaken for its own particular decision-making context. The heterogeneity in 

terms of comparators, sequences and methodology reflect both local/national variation and 

also the context in which health economic evaluation is conducted. 

Secondly, the modelling methodology was a significant predictor with respect of the quality of 

the study and the ability to evaluate alternative sequences. Models with a lifelong time 

horizon were more likely to be an individual level simulation, and Markov and decision tree 

models were less likely to evaluate the impact of switching onto another therapy. In all studies, 

the quality of reporting about the impact of future treatments on costs and health benefits 

was varied. Within a short peer-reviewed journal article it is understandable that not every 

detail regarding a model can be fully explained. However, in sensitivity analyses undertaken in 

several studies, the long term progression of disease was shown to be a key parameter that 

determines cost-effectiveness. 

Finally, when downstream treatments were explicitly modelled, the evidence used to 

parameterise this part of the model was not consistent, and also poorly reported. Evidence 

used was often referred to rather than explicitly stated. In several evaluations assumptions of 

equal efficacy between treatments, or potential treatment decrements for later positioning 

within a sequence, was referred to when direct evidence was not identified. However, the 

quantitative or qualitative evidence to support these assumptions was not provided. The 

assumptions used to determine differences in impact of alternative treatments lead to 

significant uncertainties in the evaluations, and also highlighted that when cDMARDs or 

bDMARDs can largely be considered a class, with similar costs and health effects, small 

assumptions can have a significant impact on a treatment’s cost-effectiveness. Therefore it is 

important to identify and synthesise all relevant evidence to inform models, not just at the 

divergence point, but also throughout the complete model pathway. 

As with any systematic review, there are limitations that should be considered. The review 

does not include non-economic evaluations, or purely disease modelling studies. Some studies 

which modelled a sequence of treatments may have been omitted. These studies may have 

provided data regarding modelling methods, but their usefulness would have been limited by 

not being a comparative evaluation, which will determine model structure, evidence and 

assumptions.  

Secondly, there were some aspects of the data extraction which relied on a certain level of 

subjectivity. Where possible, checkbox choices and the Drummond checklist were used to 

ensure bias was minimised. However, when considering particular modelling methodologies 

and the ability of the model to estimate sequences or identify an optimal sequence, the 
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knowledge of the reviewer was required. To minimise bias, the reviewer relied on what was 

reported by the author as fact. Where details were missing, this was noted, rather than 

assuming what had been undertaken. Also the identified systematic reviews of economic 

evaluations in RA were cross-checked when data extraction overlapped. Some of this 

subjectivity could have been accounted for by having multiple reviewers to ensure consistency. 

However, for this PhD it was not feasible. 

Finally, manufacturer’s submissions to organisations such as NICE were not included, because 

full text versions of their reports are not publicly available. These submissions would have 

potentially been a very informative source of evidence regarding some of the published 

studies identified, as well as unpublished models which have been used substantially to inform 

health resource allocation decisions within RA. 

The electronic searches were conducted in February 2013. There is the potential for relevant 

studies to have been published after this date. The review has not been formally updated due 

to time constraints; however non-systematic searches were conducted to ensure that any 

recently published studies would not materially affect the conclusions of this systematic 

review. These searches were performed when the systematic review was published, when it 

contributed to the NICE biologics TA, and when the thesis was finalised in 2015. No major 

papers were identified. 

 

4.6 CONCLUSIONS 

This chapter highlights that treatment sequences represent a challenge when undertaking an 

economic evaluation of DMARDs for people with RA. The methods used to model treatment 

sequences have a significant impact on the final estimates of cost-effectiveness, and these 

methods have not been consistently applied. This has led to varied estimates of cost-

effectiveness, which may potentially alter decisions regarding reimbursement if used in 

practice. The level of reporting of the methods and data used to assess the impact of 

downstream treatments in a sequence was poor, and when downstream treatments have 

been modelled, evidence gaps have been identified. 

This systematic review has demonstrated the significant challenges faced when attempting to 

estimate cost-effectiveness of competing treatment sequences. There is therefore a 

requirement for methods that allows all relevant sequences to be evaluated. The remainder of 

this thesis attempts to address this, by developing a flexible decision-analytic model in Chapter 

5 which addresses the model limitations identified in this review.  
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CHAPTER 5: DEVELOPING A HEALTH ECONOMIC MODEL FOR THE NICE 

TECHNOLOGY APPRAISAL OF BIOLOGICS FOR RHEUMATOID ARTHRITIS 

 

5.1 CHAPTER OVERVIEW 

The first three chapters provided the background, context and rationale for this thesis. In 

Chapter 4, a systematic review was undertaken to highlight the extent to which treatment 

sequences have been evaluated in RA, and some of the methodological challenges which have 

arisen in previous attempts to develop decision analytic models for RA economic evaluations. 

This chapter introduces the current NICE Technology Appraisal of biologics for RA in Section 

5.2, and the decision problem is defined in Section 5.3. NICE decided not to appraise 

downstream (post 1 bDMARD) sequences within this appraisal. This has led to the potential for 

a sub-optimal sequence to be recommended. The reasons for this are detailed, and 

subsequently discussed in Section 5.7. 

For the appraisal, a health economic model was developed. The chapter reports the 

conceptualisation of the model in Section 5.4, and highlights how key decisions regarding the 

structure of the model were reached. A discrete event simulation model was developed for 

the appraisal, and this is reported in Section 5.5. The model evaluates three main populations, 

patients with severe RA and no previous DMARD treatment (Population 1), patients with 

severe RA and treatment with two previous DMARDs (Population 2), and patients with 

moderate to severe RA and treatment with two previous DMARDs (Population 3). These 

populations further divided into two, one sub-population with people eligible for 

methotrexate (MTX) therapy, and one sub-population who are not. 

The results of the analysis are reported, and the model finds that the ICER for bDMARD use in 

populations 2 & 3 are over £60,000 per QALY gained compared to a cDMARD treatment 

sequence.* In patients who are ineligible for MTX, the ICERs are higher, at approximately 

£90,000 per QALY gained. bDMARD therapy in Population 1 is unlikely to be cost-effective, 

with ICERs of over £300,000 per QALY gained. 

The key component of the model that significantly affects the estimated ICER is the growth 

model used to estimate HAQ progression whilst on cDMARD therapy. Using a previously used 

                                                           
*
 The original results for the analysis reported in the Assessment Group report – viewable here: 

http://www.nice.org.uk/guidance/gid-tag313/documents/rheumatoid-arthritis-adalimumab-
etanercept-infliximab-certolizumab-pegol-golimumab-abatacept-and-tocilizumab-review-assessment-
report2 - Accessed June 2015 

http://www.nice.org.uk/guidance/gid-tag313/documents/rheumatoid-arthritis-adalimumab-etanercept-infliximab-certolizumab-pegol-golimumab-abatacept-and-tocilizumab-review-assessment-report2
http://www.nice.org.uk/guidance/gid-tag313/documents/rheumatoid-arthritis-adalimumab-etanercept-infliximab-certolizumab-pegol-golimumab-abatacept-and-tocilizumab-review-assessment-report2
http://www.nice.org.uk/guidance/gid-tag313/documents/rheumatoid-arthritis-adalimumab-etanercept-infliximab-certolizumab-pegol-golimumab-abatacept-and-tocilizumab-review-assessment-report2
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linear model brings the ICER down to £37,000 per QALY for Population 2 patients who can 

receive MTX. However, this linear model is less valid compared to the latent class growth 

model used within this analysis. 

The results and the ongoing nature of the appraisal are discussed in Section 5.7, before 

conclusions are drawn in Section 5.8. 

 

5.2 INTRODUCTION 

This chapter has two objectives. The first is to report the development of a health economic 

model for the NICE Multiple Technology Appraisal (MTA) of bDMARDs for RA. The second is to 

explain how NICE determined the scope for this appraisal and their rationale for not fully 

evaluating all possible treatment sequences. 

At the start of the PhD, an opportunity arose to develop a Technology Assessment Group 

(TAG) cost effectiveness model for the NICE MTA update (now referred to as the ‘NICE RA 

biologics appraisal’) of bDMARDs in people with moderate and severe RA.* 

With the PhD requiring the development of a flexible health economic model for RA, it was 

decided that developing the model for the NICE RA biologics appraisal would be beneficial to 

the PhD. In particular, the opportunity to engage with the NICE appraisal process for a complex 

chronic condition with treatment sequences would add value to this PhD. 

This chapter is divided into four sections. Section 5.3 explains the decision problem for the 

NICE RA biologics appraisal. Section 5.4 explains the conceptualisation process of the health 

economic model. Sections 5.5 and 5.6 explain how the model was develop, reports the input 

parameters and assumptions used, and provides the results of the analysis. Section 5.7 

presents a discussion before conclusions are drawn in Section 5.8. 

INDEPENDENT ASSESSMENT GROUP 

The University of Sheffield School of Health and Related Research (ScHARR) Technology 

Assessment Group (ScHARR-TAG) are assigned the role of independent assessment group for 

some NICE single technology appraisals (STAs) and MTAs. For both forms of appraisal, ScHARR-

TAG provides a critique of the clinical and cost-effectiveness evidence submitted by sponsor 

organisations, as well as a systematic review of the wider published clinical and cost-

                                                           
*
 Adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, tocilizumab and abatacept for 

the treatment of rheumatoid arthritis not previously treated with disease-modifying anti-rheumatic 
drugs (DMARDS) and after the failure of conventional disease-modifying anti-rheumatic drugs 
(cDMARDs) only 
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effectiveness evidence. For MTAs, a de novo cost effectiveness analysis is submitted by the 

TAG for consideration alongside the sponsor submissions by the NICE Technology Appraisal 

Committee. 

The ScHARR-TAG assessment for this NICE RA biologics appraisal was understandably a large 

and collaborative research project, led by Professor Matt Stevenson, and included a team 

comprised of systematic reviewers, statisticians, information specialists, clinicians, health 

economic modellers and health economists. As a member of the team, my specific role was to 

design, develop and validate the de novo cost effectiveness analysis, and to include the 

systematic review of economic evaluations (from this PhD research). Many parameter values 

used as inputs into the model were identified by other colleagues, which included the 

development of econometric models to estimate certain patient-level parameters. The final 

validation and debugging of the model, running the simulations, and reporting the results, was 

undertaken by Professor Matt Stevenson. 

DMARDS: CONVENTIONAL AND BIOLOGIC 

The disease modifying anti-rheumatic drugs (DMARDs) licensed for RA are numerous. Table 5.1 

provides a list of 16 commonly used DMARDs for RA. They are classified into two groups, 

conventional DMARDS (cDMARDs), and biologic DMARDs (bDMARDs).  

Table 5.1: Disease modifying anti-rheumatic drugs (DMARDs) 

Conventional DMARDS (cDMARDs) Biologic DMARDS (bDMARDs) 

Methotrexate 

Sulfasalazine 

Hydroxychloroquine 

Leflunomide 

Azathioprine 

Penicillamine 

Gold injections 

Cyclosporin 

MTX 

SSZ 

HCQ 

LEF 

AZA 

PEN 

GLD 

CYA 

Infliximab 

Etanercept 

Adalimumab 

Certolizumab pegol 

Golimumab 

Rituximab 

Tocilizumab 

Abatacept 

IFX 

ETN 

ADA 

CTZ 

GOL 

RTX 

TCZ 

ABT 

 

Conventional DMARDs are in general older and less expensive. They can be used as 

monotherapy treatments, in combinations with each other (double or triple cDMARD therapy), 

or with steroids. Their effectiveness varies, however many patients with RA benefit from their 

use.  

Biologic DMARDs are newer and more expensive. Evidence suggests that bDMARD 

monotherapies are superior to cDMARDs monotherapies.183–185 However, recent evidence 

suggests non-inferiority between triple cDMARD combination therapy and bDMARDs.186 The 
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significant cost of bDMARDs (over £10,000 per annum) is why NICE have been required to 

appraise their clinical and cost-effectiveness. Some bDMARDs are used as monotherapy, and 

some are only licensed for use with concomitant methotrexate (Table 5.3). At present there is 

little evidence to support combination therapies of multiple bDMARDs and their high cost 

would suggest that any clinical use is unlikely. 

 

5.3 DECISION PROBLEM 

As discussed in Chapter 3, a decision problem is where a decision maker is faced with 

competing options. NICE faces a complex decision problem in the treatment of people with RA. 

The fundamental problem is - which treatment(s) to approve for people with a diagnosis of 

RA? The utility function for the outcome of each competing option is the net benefit for each 

competing alternative. However, the chronic nature of RA, the numerous treatments available 

(both cDMARDs and bDMARDs), and the uncertain and limited efficacy of these treatments 

means that another problem emerges – what treatment(s) to approve for patients with RA 

who have failed a DMARD? This decision problem is contingent on the recommendations that 

NICE have made ‘upstream’, because treatments will not be available if they have been used 

previously. 

The decision problem is therefore compounded by the multiple treatment histories that will be 

faced by a rheumatologist. Some patients will have a new diagnosis of RA and no previous 

DMARD treatment, and some will have established RA and have failed on several DMARDs. 

When considering RA, and reflecting on the findings from the previous chapters, there is a 

treatment sequencing issue which leads to another decision problem – what is the optimal 

sequence of treatments for a patient with RA? However, this decision problem is not 

addressed in either this appraisal, or the previous guidance developed by NICE. The systematic 

review in Chapter 4 showed that it has not been addressed by any published cost-effectiveness 

analysis, and exploring this decision problem is an objective of this PhD. 

SCOPE 

The NICE RA biologics appraisal does not attempt to address the fundamental decision 

problems stated above. Instead, the scope is a complex subset of questions which have been 

formed due to the existing NICE guidance which are being reviewed, and the scoping process 

undertaken by NICE to determine the most important questions to be addressed within the 

timescales of the appraisal. 
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The NICE RA biologics appraisal is a review of NICE TA guidance 130, 186, 224, 234, and a part 

review of TA guidance 225 and 247. Table 5.2 outlines these individual pieces of NICE 

guidance. All guidance is for patients with a Disease Activity Score (DAS28) greater than 5.1; 

classified as severe RA by the European League against Rheumatism (EULAR). 

Table 5.2: Technology Appraisals being updated by NICE RA biologics appraisal 

Appraisal Type bDMARDs Guidance 

TA130 MTA Adalimumab, 

etanercept, 

infliximab 

Adalimumab, etanercept and infliximab, in combination 

with methotrexate, recommended in patients with 

active RA who have tried methotrexate and one other 

DMARD. Adalimumab or etanercept can be given as 

monotherapy if intolerant to methotrexate. 

TA186 STA Certolizumab 

pegol 

As per TA130 

TA224 STA Golimumab Suspended – no evidence submitted by manufacturer 

TA234 STA Abatacept As per TA130 

TA225 STA Golimumab As per TA130, and recommended in combination with 

methotrexate in patients who have failed a previous 

TNF inhibitor  

TA247 STA Tocilizumab As per TA130, and recommended in combination with 

methotrexate in patients who have failed a previous 

TNF inhibitor and are contraindicated to, or suffer an 

adverse event from, rituximab. 

MTA = Multiple Technology Appraisal. STA = Single Technology Appraisal 

 

TA195 appraised adalimumab, etanercept, infliximab, rituximab and abatacept after TNF 

inhibitor failure. The recommendation was that rituximab was the preferred treatment in this 

position, and the other treatments were only recommended if the patient was contraindicated 

to, or suffer an adverse event from, rituximab. TA195 was not to be updated within this 

appraisal (for reasons detailed later in this section). Therefore this guidance represented a 

constraint to the sequences which could be evaluated within this appraisal. 

A NICE Clinical Guideline was published in 2009, recommending the use of combination 

cDMARDs* in patients with early active RA.121 However, this is only a recommendation, and is 

not mandatory guidance for the NHS. 

                                                           
*
 Specifically an intensive cDMARD combination which combines three cDMARDs and steroids, as used 

in the TICORA trial
336
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From these seven NICE Technology Appraisals, as well as a NICE Clinical Guideline, a complex 

sequence of treatments has emerged for patients with severe active RA (DAS>5.1). This 

sequences is shown in Figure 5.1. 

 

Figure 5.1: Summary of biologics within NICE TA guidance *†‡ 

 

For the NICE RA Biologics appraisal, the remit of the appraisal was to “appraise the clinical and 

cost effectiveness of adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, 

tocilizumab and abatacept within their licensed indications for the treatment of rheumatoid 

arthritis.”§  

The scope was to re-appraise the recommendations made for severe active RA patients in the 

light of new evidence, and also to assess whether the interventions were cost-effective in 

moderate-to-severe active RA patients (DAS28 3.2 - 5.1). All previously appraised bDMARDs 

have a licensed indication which covers both moderate-severe and severe RA patients. In the 

previous NICE TAs, bDMARDs were not approved for use in patients with moderate-to-severe 

RA, only severe RA. Not all bDMARDs are licensed to be used without concomitant 

methotrexate, or prior to the use of methotrexate. The licenses for bDMARDs are summarised 

in Table 5.3. 

                                                           
*
In combination with methotrexate 

†
 If rituximab and MTX is contraindicated or withdrawn due to adverse events then the following can be 

used: adalimumab or etanercept or infliximab or abatacept in combination with MTX; adalimumab or 
etanercept monotherapy TA195 : tocilizumab in combination with MTX TA 247, assuming these have not 
been used previously in the sequence 
‡
 Would not be used if tocilizumab has been used previously in the sequence 

§
 http://guidance.nice.org.uk/TAG/313#keydocs Final Scope – Accessed June 2015 

Intensive cDMARDs 

bDMARD* 

adalimumab or etanercept or infliximab TA130 or certoloizumab pegol TA186 

or golimumab TA225 or tocilizumab TA247 or abatacept TA280 

Ritixumab in combination with methotrexate TA195† 

Tocilizumab in combination with methotrexate TA247‡ 

cDMARD / Palliation 

http://guidance.nice.org.uk/TAG/313#keydocs
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The scope was constrained by the fact that post bDMARDs positions were not to be included in 

this appraisal (TA195 is to be reviewed separately at a later date). This means that after a 

bDMARD is used in a sequence, the sequence then follows the existing NICE TA195 guidance. 

This limits the ability for the appraisal to identify and recommend an optimal sequence of 

DMARDs for patients with severe RA. 

There were three reasons why NICE made the decision not to include sequential bDMARD use 

within the scope of the appraisal. Firstly, there was a desire by the manufacturers to see a re-

appraisal of biologics in the moderate-severe active RA population in the light of the original 

rejection by NICE and a maturing of the evidence base. This guided the scoping discussions, 

and placed the focus on this patient population. Secondly, manufacturers were not interested 

in addressing sequential positions of their treatments. If manufacturers identify an optimal 

sequence, it exposes them to the risk of their treatment not being recommended, or being 

‘relegated’ to a less attractive downstream position. Thirdly, NICE believed that the appraisal 

was already complex enough without adding in the sequential biologics question. The scope of 

the appraisal (seven bDMARDs) across multiple patient populations represents the largest 

NICE appraisal to date. 

Table 5.3: Licenses for RA bDMARDs 

Intervention Is the intervention licensed… 

 Prior to the 

use of MTX? 

As a 

monotherapy? 

For patients 

with severe 

RA? 

For patients with 

moderate to 

severe RA? 

Abatacept      

Adalimumab     

Certolizumab pegol     

Etanercept     

Golimumab     

Infliximab     

Tocilizumab     

 

5.4 MODEL CONCEPTULISATION 

For the de novo cost-effectiveness model developed by the TAG, a conceptual model was 

firstly developed. This process involves translating the decision problem with the aim of 

guiding the development of a mathematical model.54,187 

The conceptualisation of the model for the TAG submission involved understanding the scope 

of the appraisal and making decisions regarding the sequences of treatments to be compared 
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within a cost-utility analysis. It also involved the conceptualisation of a health economic model 

which could estimate the costs and QALYs of each defined DMARD treatment sequence. 

FINAL DECISION PROBLEM 

Having consulted with NICE, the TAG project team made the decision to fix the downstream 

sequence of drugs beyond the first use of bDMARDS. This was for two reasons: firstly to reflect 

the NICE scope for the appraisal, where existing guidance was available for sequential biologics 

(TA195) and was not changeable within the remit of this appraisal, and secondly to reduce the 

workload of the TAG by reducing the number of evaluations required. It avoided the 

undertaking of analyses which would not be considered by the appraisal committee and 

therefore would not have a bearing on the final guidance. 

The TAG defined three patient populations for their report and analyses. 

 Population 1: Adults with severe active RA not previously treated with cDMARDS 

 Population 2: Adults with severe active RA that have been previously treated with 

cDMARDS but not bDMARDS 

 Population 3: Adults with moderate to severe active RA that have been previously 

treated with cDMARDS only (including MTX unless contraindicated or inappropriate) 

Population 1 is patients with severe active RA who are newly diagnosed and have not been 

treated with cDMARDS. Population 2 and 3 follow this point, and are patients who have been 

treated with cDMARDS, but not bDMARDS. Population 2 is severe patients with RA, and 

Population 3 moderate to severe patients with RA. 

These populations were run for two different analyses. One was the comparison of bDMARDS 

in combination with MTX, and one was the comparison of bDMARD monotherapy. Therefore 

across three populations, six baseline analyses were undertaken (Table 5.4). 

Table 5.4: Populations and analyses 

Population Analysis code 

In combination 

with MTX 

Monotherapy 

1: Adults with severe active RA not previously treated 

with cDMARDs 

1 2 

2: Adults with severe active RA that have been 

previously treated with cDMARDs but not bDMARDs 

3 4 

3: Adults with moderate to severe active RA that have 

been previously treated with cDMARDs only (including 

MTX unless contraindicated or inappropriate) 

5 6 
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For each analysis, a baseline cDMARD treatment sequence was required which represented 

the baseline comparator. Each bDMARD would then be compared to this baseline cDMARD 

sequence, as well as each alternative bDMARD sequence. 

For Population 1, the NICE RA Clinical Guideline recommends combination cDMARDs.121 This 

guidance was based on a cost-effectiveness analysis comparing combination cDMARDs to 

monotherapy cDMARDs.135 Therefore, it was assumed that patients will have had combination 

cDMARDs as first line treatment, and subsequently the comparator cDMARD sequence would 

be sequential monotherapy cDMARD use (specifically called non-biologic therapy (NBT)).  

After first line bDMARD use (the comparison of the interventions in the appraisal) patients 

progress to RTX+MTX and then TCZ+MTX (if not received at first line bDMARD position), as per 

existing NICE guidance. Patients who can receive MTX are eligible to receive TCZ+MTX, which is 

only licensed for use after MTX (Table 5.5). 

For patients who are unable to receive MTX, tocilizumab is not eligible for any sequence, as 

well as abatacept and certolizumab (only licensed for concomitant use with MTX). Intensive 

cDMARD treatment is possible with alternative cDMARD treatments (Table 5.6). 
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Table 5.5: Sequences (patients who could receive MTX) 

Population Treatment sequence (line) 

1
st

 2nd 3rd 4th 5th 6th 7th 

Population 1 MTX Intensive cDMARDs Non-biologic therapy 

MTX Intensive cDMARDs bDMARD + MTX RTX + MTX TCZ + MTX MTX Non-biologic therapy 

MTX Intensive cDMARDs TCZ + MTX RTX + MTX MTX Non-biologic therapy 

bDMARD + MTX
1 

RTX + MTX TCZ + MTX MTX Intensive cDMARDs Non-biologic therapy 

Population 2 & 3 MTX Non-biologic therapy 

bDMARD
2
 + MTX RTX + MTX TCZ + MTX MTX Non-biologic therapy 

TCZ + MTX RTX + MTX MTX Non-biologic therapy 
1
Excluding abatacept, certolizumab and tocilizumab. 

2
Excluding tocilizumab 

 

Table 5.6: Sequences (patients who could not receive MTX) 

Population Treatment sequence (line) 

1
st

 2nd 3rd 4th 5th 

Population 1 Intensive cDMARDs cDMARD Non-biologic therapy 

Intensive cDMARDs bDMARD  bDMARD cDMARD Non-biologic therapy 

bDMARD
1
  bDMARD

2
 Intensive cDMARDs cDMARD Non-biologic therapy 

Population 2 & 3 cDMARD cDMARD Non-biologic therapy 

bDMARD
1
 bDMARD

2
 cDMARD Non-biologic therapy 

1
Excluding abatacept, certolizumab and tocilizumab. 

2
Excluding tocilizumab 
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Table 5.7 to Table 5.10 provide the full sets of sequences evaluated in each analysis. 

Table 5.7: Sequences evaluated for Populations 2 and 3 for those who can receive MTX 

 First line Second line Third line Fourth line Fifth line 

1 MTX NBT    

2 ABT iv+ RTX+ TCZ+ MTX NBT 

3 ABT sc+ RTX+ TCZ+ MTX NBT 

4 ADA+ RTX+ TCZ+ MTX NBT 

5 CTZ+ RTX+ TCZ+ MTX NBT 

6 ETN+ RTX+ TCZ+ MTX NBT 

7 GOL+ RTX+ TCZ+ MTX NBT 

8 IFX+ RTX+ TCZ+ MTX NBT 

9 TCZ+ RTX+ MTX NBT  

‘+’ with MTX 

 

Table 5.8: Sequences evaluated for Populations 2 and 3 for those who cannot receive MTX 

 First line Second line Third line Fourth line 

1 SSZ NBT   

2 ADA ETN SSZ NBT 

3 CTZ ETN SSZ NBT 

4 ETB ADA SSZ NBT 

5 TCZ ETN SSZ NBT 

 

Table 5.9: Sequences evaluated for Population 1 for those who can receive MTX 

 First line Second line Third line Fourth line Fifth line Sixth line 

1 MTX Int CD+ NBT    

2 ETN+ RTX+ TCZ+ MTX Int CD+ NBT 

‘+’ with MTX; Int CD+ = Intensive cDMARDs 

 

Table 5.10: Sequences evaluated for Population 1 for those who cannot receive MTX 

 First line Second line Third line 

1 SSZ NBT  

2 ETB ADA NBT 



86 
 

CONCEPTUAL MODEL 

A conceptual model was developed by the project team, which provided an agreed 

representation of RA, and the treatment of RA, which would be represented mathematically in 

the decision analytic model. 

The conceptual model was developed during project meetings, which included drawing upon 

the team’s experience at developing other health economic models for RA. Time constraints 

meant that the conceptual model was not formally stated or recorded, but there was 

agreement as to the important aspects of the condition and its treatments which would need 

to be captured in the health economic model. 

Rheumatoid arthritis is a chronic autoimmune disease which results in inflammation and 

damage to synovial joints. The conceptual model for the disease focussed on the relapsing-

remitting nature of RA, along with an insidious worsening of disease activity leading to 

irreversible joint damage and permanent disability. Similar to other RA models summarised by 

Madan et al. and Tosh et al., the conceptual model identified three phases of the disease for 

each treatment, which were repeated as the sequence of treatments progressed.188,189 

Phase 1 – Initial response to treatment and improvement in Health Related Quality of Life 

(HRQL) 

Phase 2 – Long-term progression of the disease while on treatment causing a gradual 

worsening of HRQL 

Phase 3 – Loss of efficacy or adverse event causing a worsening of HRQL 

A treatment therefore has the opportunity to improve the long term HRQL of patients with RA 

via the initial response, the progression of disease on treatment, and the time spent on a 

treatment. After a loss of efficacy or adverse event, the treatment is switched to a subsequent 

therapy, and the phases are repeated. 

DISCRETE EVENT SIMULATION 

The decision was made at the conceptualisation stage to develop an individual level simulation 

model for the NICE RA biologics appraisal. Individual level simulation models use probability 

distributions for a set of patient characteristics (e.g. age, gender, disease severity), which can 

be sampled using Monte Carlo methods to simulate an individual patient. Further sampling of 

future events is conducted for each patient, to simulate their disease and the engagement 

with health services, treatments and related events. Each patient simulation allows the 

estimation of lifetime costs and QALYs, and by repeated sampling and simulation of patients, 
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the expected costs and QALYs for the simulated population can be estimated. As discussed in 

Chapter 2, there are benefits to using an individual level model methodology instead of cohort 

model methods, and these benefits were seen as important when looking to develop a lifetime 

model for RA. In particular, it was a priori seen as important to incorporate patient covariates 

throughout the model process, because certain model parameters were dependent on patient 

covariates which when repeatedly sampled would provide an accurate estimate of the 

expected costs and QALYs for the patient population.  

Secondly, a patient level approach was seen as important to allow flexibility in assumptions 

and methods underpinning the analysis, with the expectation that the appraisal committee 

might request alternative analyses, and also the ability to adapt the model to provide 

comparison to the models provided by the manufacturers.  

Finally, the team was confident that the model could be programmed efficiently using 

Microsoft Excel and Visual Basic for Applications (VBA) so that computational time for running 

the patient simulations, probabilistic sensitivity analysis (PSA) and alternative scenarios was 

not excessive. TAGs are limited to Microsoft Excel, TreeAge, WinBugs and R when developing 

cost-effectiveness models for NICE appraisals.190,191 If they wish to use a bespoke simulation 

package (such as Simul8 or Arena) then they are expected to provide licences for each 

stakeholder so that the model can be accessed, which is not feasible. 

It was decided at the conceptualisation stage to develop the patient level health economic 

model using discrete event simulation (DES) methods. A discrete event simulation is often 

called a ‘time to event’ model within health economics. An event is scheduled to occur at a 

particular instance in time, and mark a change of state in the system. For health economic 

modelling, this means that events can occur to a patient (e.g. begin treatment, experience an 

adverse event, disease progresses) which will impact both on their instant costs and HRQL, but 

also on the future competing events which may occur, and when they will occur. A list of all 

possible events is developed, with a time of when each event will occur. The event with the 

shortest time is then selected, and this triggers logic in the model code which updates the 

costs, HRQL and also the list of event times. The process is then repeated until the death event 

occurs and the simulation ends. 

An alternative to DES for a patient level simulation is to use a fixed Markovian time cycle 

(classified by Brennan et al. as simulated patient-level Markov model (SPLMM))44 occurring at 

some arbitrarily time (e.g. 1 month, 6 months, 1 year). The decision between using a DES 

approach compared to a fixed Markovian approach was made by weighing up the advantages 

and disadvantages of the two. These are summarised in Table 5.11. 
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Table 5.11: Discrete vs Markovian patient level simulation 

 Discrete event simulation Fixed Markovian time-cycle 

Advantages Model calculations only occur at 

actual events – potential 

improved efficiency 

Provides a regular time cycle for updating 

costs and QALYs. 

Time to event data more 

accurately incorporated 

Disadvantages Events may frequently occur 

which requires a frequent update 

of the simulation time 

Running the simulation model at time 

cycles when no events are occurring is 

computationally inefficient 

May require manipulation of time-

specific data to fit into time cycle 

 

Due to the size of the appraisal and number of anticipated model simulations and evaluations, 

it was decided to use a DES method to try to minimise the run time. 

 

5.5 MODEL DEVELOPMENT 

MODEL 

The model informed a cost-utility analysis with costs from a NHS and Personal Social Services 

(PSS) perspective, and outcomes measured as QALYs. The model employs a lifetime patient 

time horizon (limited to 101 years), with costs and QALYs discounted at 3.5% per annum as 

recommended by NICE.47 A comprehensive set of sensitivity analyses were undertaken, as well 

as PSA. 

The model estimated a Health Assessment Questionnaire (HAQ) score for the patient at each 

event point because HAQ was used to subsequently estimate costs and a patient’s HRQL. HAQ 

is not a continuous score, but has 25 possible scores from 0-3 at 0.125 intervals. Sampled HAQ 

scores were continuous, and were rounded to a legitimate discrete HAQ score by using the 

inverse relation to their distance from legitimate score and estimating probabilities from which 

to sample from.*  

At the start of the model, a patient was simulated with a baseline age, disease duration, HAQ 

score, Disease Activity Score (DAS), number of DMARDs previously used, and life expectancy. 

                                                           
*
 A non-legitimate HAQ sample of 1.600 has a 20% chance of being rounded to 1.500 and 80% chance of 

being rounded to 1.625, because 1.600 is 80% of the distance between 1.500 and 1.625 



89 
 

Their life expectancy was adjusted with a hazard ratio defined by their baseline HAQ to 

account for the reduction life expectancy experienced by people with RA. 

A patient would then begin their first DMARD treatment, with a EULAR response (good, 

moderate or none) estimated at 6 months.* If a good or moderate EULAR response was 

simulated, treatment was continued until a loss of efficacy or adverse event occurred and 

treatment was withdrawn. If no EULAR response occurred, then the treatment would be 

withdrawn. Each EULAR response is associated with a change in a patient’s HAQ score. After 

withdrawal, the patient would lose any gain in HAQ obtained in the first 6 months and would 

switch to the next treatment in the sequence. 

POPULATION 

The model sampled patients who had experienced MTX treatment (Populations 2 & 3) from 

the British Society for Rheumatology Biologics Registry (BSRBR). A multivariate regression 

analysis was undertaken using the patient level data which provided an econometric model 

from which to sample patients with accurately correlated characteristics. Individuals were 

resampled until they met DAS score for the population being modelled (DAS 3.2-5.1 for 

moderate-severe, DAS > 5.1 for severe). This required significant resampling for moderate-

severe DAS patients because they were a minority in the BSRBR dataset.† Multivariate 

sampling was undertaken using the University of Sheffield Centre for Bayesian Statistics in 

Health economics Excel Functions.‡ This allowed the correlation between characteristics to be 

maintained via the variance-covariance matrix from the regression analysis.  

MTX naïve patients (Population 1) were very rarely seen in the BSRBR, due to almost all 

patients on a bDMARD having been previously treated with MTX. Therefore the COMET trial 

was used to sample patient characteristics for population 1.192 Because a covariance matrix 

was not available in the published journal article, the correlation structure between patient 

characteristics could not be maintained. The mean parameters for all Population 1 (COMET 

trial) and Populations 2&3 (BSRBR) are provided in Table 5.12. 

  

                                                           
*
 see latter section – Short Term Response, for further information regarding EULAR response 

†
 The AG was not provided with spate databases for the two patient populations 

‡ http://www.shef.ac.uk/chebs - Accessed June 2015 

http://www.shef.ac.uk/chebs
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Table 5.12: Population parameters 

Characteristic COMET trial (population 1) BSRBR (populations 2 & 3) 

Mean (unless specified) s.d. Mean (unless specified) s.d. 

Age 51.4 0.6 56.2 12.2 

Proportion female 73% - 76.3% - 

Disease duration 0.8 0.0 13.3 9.6 

DAS 6.5 1.0 6.6 1.0 

Previous DMARDs 0.0 0.0 3.9 1.6 

HAQ 1.7 0.7 2.0 0.6 

Weight 73.11 17.611 73.1 17.6 
1 not reported by COMET so set equal to BSRBR 

 

SIMULATION 

A simulation ‘engine’ was developed for the DES model in Microsoft Excel and Visual Basic for 

Applications (MS VBA). The engine maintained the simulation event list, which contained all 

possible events, and identified the event on the list with the shortest time to occurrence (Time 

to Next Event (TTNE)). Once a next event is identified by the engine, the simulation clock is 

updated and the event occurs, triggering logic code in the model to update costs and QALYs. 

The event also impacts on the time to other events occurring, and therefore each event can 

update the simulation event list. The process of sampling the TTNE is then repeated until the 

next event to occur is death, and the patient simulation is completed. 

The simulation included five competing events: HAQ progression; death; administration of a 

treatment; response to a treatment; and withdrawal from a treatment. More details on each 

event are provided in Table 5.13. 

A logic diagram of the simulation model is provided in Figure 5.2. The diagram shows the 

different events which can occur in the model, and how simulation time and TTNE are used to 

determine the flow of a patient through the sequence of treatments. 
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Table 5.13: Simulation event list 

Event List Method of estimating time to event 

Time to HAQ 

change 

Both costs and utility are related to HAQ (and explicitly related in the 

model). Therefore each change in HAQ score is modelled as an explicit 

event. 

Time to death Hazard ratios associated with baseline HAQ scores are used to 

appropriately reduce the sampled life expectancy for each simulated 

patient at model entry. 

Time to 

administration 

The majority of treatments modelled are given in a very frequent 

(continuous) dosing regimen. However, IFX, RTX and TCZ are infrequent 

infusions and therefore their dosing is modelled as an event, to ensure 

accurate costs are calculated in the model. 

Time to response Set for six months until response decision point (good, moderate, none), 

and then large number until next treatment initiated 

Time to withdrawal 

from treatment 

For bDMARDs, uses a statistical model that estimates expected time on 

treatment using patient covariates. 

For cDMARDs, published Weibull distributions are sampled from to 

estimate the time on treatment for different cDMARDs (MTX, 

combination cDMARDs, SSZ etc) 
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Figure 5.2: Simulation logic for RA model 

ENTRY: Patient generation 

Set patient characteristics: age, gender, 

disease duration, HAQ, DAS, previous 

DMARDs, age at death, weight 

Patient start 

Set model time = 0 

Mortality HR based on HAQ 

Set adjusted age of death 

Set TTD = age of death – model time 

Patient fulfils 

population 

criteria? 

YES 

NO 

Initiate next treatment in sequence 

If treatment is continuous, TTA = large 

number, else TTA set to dosing frequency 

TTR = 6 months 

TTNE = min(TTD, TTR, TTA) 

Route 1 = Dead, Route 2 = Response, Route 3 

= Administration 

 

1. Dead 

Update model time 

Update QALYs 

Update Costs  

  

3. Administration 

Update model time 

Set TTD = age of death – model time 

Update costs and QALYs 

Reset TTA 

TTNE = min(TTD, TTR, TTA, TTH) 

Route 1 = Dead, Route 2 = Response, Route 3 = 

Administration, Route 4 = HAQ Progression 

2. Response 

Simulate response (good, 

moderate, none) 

Estimate HAQ change 

Update costs and QALYs 

  

EULAR response 
Good or Moderate None 

Long term treatment phase 

Update model time 

Set TTD = age of death – model time 

Set HAQ change (based on response), 

Update costs and QALYs  

Set TTW (based on response), TTH, TTD 

TTNE = min(TTD, TTA, TTH, TTW) 

Route 1 = Dead, Route 3 = 

Administration, Route 4 = HAQ 

Progression, Route 5 = Withdraw, 5. Withdraw 

Update model time 

Set HAQ rebound 

Update costs and QALYs 

 

4. HAQ Progression 

Update model time 

Set TTD = age of death – model time 

Set HAQ increment 

Update costs and QALYs 

Set TTW, TTH, TTD 

TTNE = min(TTD, TTA, TTH, TTW) 

Route 1 = Dead, Route 3 = 

Administration, Route 4 = HAQ 

Progression, Route 5 = Withdraw 

 

Legend 
TTD = Time to Death, TTR = Time 

to Response, TTA = Time to 

Administration, TTH = Time to 

HAQ change, TTW = Time to 

Withdrawal, TTNE = Time to Next 

Event 
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SHORT TERM RESPONSE 

Short term response was estimated using the EULAR criteria for RA. The EULAR criteria defines 

response based on both the magnitude of a DAS change observed, and also the final DAS score 

(see Table 5.14). It is a response criterion which is used in current NICE guidance for bDMARDs 

in RA and is aligned with UK clinical practice. The DAS is a routinely collected measure in the 

NHS and therefore EULAR response is very easily collected and reported. Alternative response 

criteria include the American College of Rheumatology (ACR) criteria (ACR20/50/70), which is 

not routinely used in the NHS, but is very commonly reported in RA clinical trials. In the 

decision-analytic model, response was assumed to occur during the first six months on 

treatment, which was aligned with the standard time point for observing response in both 

clinical practice and the reviewed clinical trials. 

Table 5.14: EULAR response criteria 

Final DAS28 DAS28 improvement 

> 1.2 > 0.6 and ≤ 1.2 ≤ 0.6 

≤ 3.2 Good Moderate No response 

> 3.2 and ≤ 5.1 Moderate Moderate No response 

> 5.1 Moderate No response No response 

 

The EULAR response probabilities were taken from a network meta-analysis of all included 

clinical trials. Not all reported EULAR response, however all reported ACR response. Where 

EULAR was missing, a model using the US Veterans Affairs Rheumatoid Arthritis (VARA) dataset 

was used to provide an empirical relationship between EULAR response and ACR response. 

This model allowed all ACR trials to be interpreted using the EULAR response criteria, however 

these trials were not combined into one analysis, but evaluated separately. 

The main analysis used the mean EULAR response from all trials (Figure 5.3). Scenario analyses 

included the inclusion of trials which did not meet the strict inclusion criteria, and an analysis 

using the ACR trials. 

A sampled EULAR response in the patient level simulation was converted to an appropriate 

improvement in the patients HAQ score. These changes in HAQ scores were identified from 

the BSRBR. The BSRBR data were restricted to patients who had a full set of baseline 

characteristics, and had at least two measurements of HAQ whilst on bDMARD therapy. This 

resulted in 10,186 included patients, with 2,417 (24%) good EULAR responders, 5,492 (54%) 

moderate EULAR responders, and 2,277 (22%) EULAR non-responders. 
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Figure 5.3: Mean EULAR response probabilities for comparator treatments (Population 2&3, 
main analysis - all ACR trials) - reproduced from ScHARR Technology Appraisal Report* 

It was assumed that the change in HAQ due to a response would be the same, irrespective of 

treatment, and therefore was applied to cDMARDs as well as bDMARDs. This assumption was 

considered acceptable by the clinical advisors to the project. The change in HAQ score are 

provided in Table 5.15. 

Table 5.15: Mean HAQ improvement by EULAR response - BSRBR dataset 

EULAR response baseline – 6 month HAQ change 

Mean s.e. 

None 0 - 

Moderate -0.317 0.048 

Good -0.672 0.112 

HAQ PROGRESSION – CONVENTIONAL DMARDS 

After the initial 6 month improvement due to a treatment response, those patients who had 

either a good or moderate EULAR response remained on a cDMARD until withdrawal due to an 

adverse event or loss of efficacy. While on treatment, a worsening (progression) of their HAQ 

over time was modelled. 

In many other health economic evaluations of RA therapies, an annual rate of HAQ progression 

is used for patients receiving cDMARDs to account for disease progression. Estimates include 

                                                           
*
 ‘+’ with methotrexate 
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0.08 per annum over 5 years,193 0.06 per annum over 3 years,194 and 0.05 per annum over 5 

years.195 However, the challenges with estimating this are well recognised and the clinical 

plausibility is weak, especially for tolerated cDMARDs which can be administered for many 

years.196 In models with a lifetime horizon, it’s common for HAQ with a linear trajectory to 

‘bottom out’ at 3, which is not clinically realistic, and is a health state usually valued as worse 

than death.  

To overcome these limitations, a non-linear growth mixture model was developed by Norton 

et al. using the Early Rheumatoid Arthritis Study (ERAS) inception cohort study (n=1460, 10 

years follow up).197 This model was corroborated using two other datasets.* The growth 

mixture model produced four latent classes of HAQ progression, and the probability of 

membership of each of these classes given the patient descriptors from the DES model. 

Therefore, given the four latent classes, and a patients set of baseline characteristics, the 

expected HAQ at any time point can be estimated. This allowed the growth model to be 

implemented within the DES model. 

The baseline characteristics sampled in the cost-utility model provided the probabilities of 

latent class membership, which when applied to each of the latent classes provided an 

expected HAQ profile for a given patient. This profile was used to estimate the time to a HAQ 

increase over the longer-term. The growth mixture model provided a HAQ profile up to 15 

years. Patients who stayed on a cDMARD for over 15 years were assumed to remain on a 

constant HAQ score (no progressive worsening). 

HAQ PROGRESSION – BIOLOGIC DMARDS 

To estimate the HAQ progression of patients while on a bDMARD treatment, the dataset from 

the BSBRB to estimate the initial HAQ change due to a EULAR response was used. An 

Autoregressive Latent Trajectory (ALT) model was fitted to moderate and good EULAR 

responders.† The model uses baseline patient covariates, including baseline HAQ, to estimate 

both initial HAQ response (6 months) and the longer term progression of a patient’s HAQ in a 

single statistical model. The predictions of HAQ over time, across different EULAR responders 

is provided in Figure 5.4. With no worsening of HAQ observed over the three year time period, 

this assumption was used within the health economic model, for the whole period while on a 

bDMARD therapy. 

                                                           
*
 The Norfolk Arthritis Register (NOAR) and the Early Rheumatoid Arthritis Network (ERAN). 

†
 Full details are provided in the Assessment Group report – viewable here: 

http://www.nice.org.uk/guidance/gid-tag313/documents/rheumatoid-arthritis-adalimumab-
etanercept-infliximab-certolizumab-pegol-golimumab-abatacept-and-tocilizumab-review-assessment-
report2 - Accessed June 2015 
 

http://www.nice.org.uk/guidance/gid-tag313/documents/rheumatoid-arthritis-adalimumab-etanercept-infliximab-certolizumab-pegol-golimumab-abatacept-and-tocilizumab-review-assessment-report2
http://www.nice.org.uk/guidance/gid-tag313/documents/rheumatoid-arthritis-adalimumab-etanercept-infliximab-certolizumab-pegol-golimumab-abatacept-and-tocilizumab-review-assessment-report2
http://www.nice.org.uk/guidance/gid-tag313/documents/rheumatoid-arthritis-adalimumab-etanercept-infliximab-certolizumab-pegol-golimumab-abatacept-and-tocilizumab-review-assessment-report2
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Figure 5.4: Mean HAQ by EULAR response for bDMARD patients 

 

TIME TO TREATMENT WITHDRAWAL 

After the six month response period, patients remain on treatment until they either die or 

withdraw due to a loss of efficacy or adverse event. The BSRBR database was used to estimate 

survival times on treatments, using the dates on which therapies are initiated and ended. 

Separate models were fitted for those patients obtaining good and moderate EULAR responses 

at 6 months. 

A range of parametric survival models were considered, and based on the Akaike information 

criteria (AIC) and Bayesian information criteria (BIC) the generalised gamma distribution was 

selected for moderate EULAR responders, and the log normal distribution for good EULAR 

responders. 

It was assumed that treatment duration would be unaffected by whether or not cDMARDs 

were used prior to bDMARDs. It was also assumed that the treatments included in the BSRBR 

(ETN, IFX, and ABT) would be very similar to the newer bDMARDs being modelled (GOL, TCZ, 

ADA, CTZ). Due to a lack of data regarding duration of treatment for patients receiving 

cDMARDs, it was assumed that the survival duration for each EULAR response category for 

bDMARDs would be applicable to cDMARDs. This may be an unfavourable assumption for 

cDMARDs, which in general are less toxic compared to bDMARDs. 

COSTS 

Direct drug costs were taken from the BNF January 2013 (BNF65). Illustrative costs are 

provided in Table 5.16. Often, a manufacturer will negotiate a confidential discount with the 
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Department of Health, which reduces the treatment cost and therefore increases the 

likelihood of a positive recommendation by NICE. These discounts are called a Patient Access 

Scheme. Details regarding the Patient Access Schemes are confidential, and are not applied to 

the treatment costs shown in Table 5.16 for this reason. However, the Patient Access Schemes 

are included in the model and subsequent cost-effectiveness results. 
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Table 5.16: Drug costs for all included treatments 

Treatment Dose regimen Cost per dose
1
 Cost (first 6 months)

2
 Subsequent annual cost 

Abatacept (intravenous) 500 mg below 60 kg, 750 mg between 60-100 kg, 1000 mg above 100 kg; 0, 2 and 4 

weeks then every 4 weeks thereafter 

169.34 (250mg) £6,350.40 £10,886.40 

Abatacept 

(subcutaneous) 

125mg weekly following loading dose 500 mg below 60 kg, 750 mg between 60-100 

kg, 1000 mg above 100 kg. 

169.34 (125mg) £8,796.44 £15,778.48 

Adalimumab 40 mg; every other week £352.14 (40mg) £4,593.45 £9,186.89 

Certolizumab pegol 400 mg per week initially, repeated at weeks 2and 4 weeks followed by a 

maintenance dose of 200 mg every 2 weeks 

£357.50 (200 mg)  £5,440.59 £9,326.73 

Etanercept 50 mg; every week £178.75 (50mg) £4,663.36 £9,326.73 

Golimumab 50 mg below 100 kg, 100 mg above 100 kg, per month £762.97 (50mg) £4,557.82 £9,115.64 

Infliximab
3
 3 mg/kg: 0, 2, 6 then every 8 weeks  £419.62 (100mg) £6,294.30 £8,222.40 

Tocilizumab 8 mg/kg every four weeks 80.38 (80mg) £5,222.40 £11,673.60 

Rituximab
4 

2000mg every 9 months £3,492.60 (2000 mg) £3,492.60 £3,492.60 per dose 

Hydroxycholoroquine
5
 6.5mg/kg per day (max. 400mg per day) £0.17 (400mg) £31.35 £62.70 

Methotrexate 7.5mg per week escalated by 2.5mg per week up to 20mg per week £0.80 (20mg) £19.32 £41.57 

Prednisolone 7.5mg per day £1.07 (7.5mg) £196.25 £392.50 

Sulphasalazine 500mg per day escalated by 500mg per week up to 3000 mg per day £0.79 (3000mg) £131.38  £290.17 

Intensive combination 

DMARD therapy 

Hydroxycholoroquine + methotrexate + prednisolone + sulfasalazine (doses as per 

monotherapy treatments) 

NA  £378.31 £786.94 

Palliative Care / Rescue 

Therapy
6
 

N/A Assumed £60 per 

month 

£360 £720 

1
Treatment can be daily or weekly. Assumes weight distribution from the BSRBR and choses the least expensive way of meeting the dose requirement. No vial sharing assumed. No PAS schemes 

included. 
2
No administration or monitoring costs included. 

3
Assuming 8 doses in year 1 and 6.5 in subsequent years. 

4
Rituximab provided every 9 months. 

5
Using a BSRBR average weight of 73kg for 

illustration. 
6
An approximation of monthly ‘post bDMARD’ cDMARD therapy (leflunomide, gold, cyclosporine). N/A = not applicable 
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As well as direct drug costs, administration costs and monitoring costs were included. Infusions 

were assumed to cost £154, as reported in TA247.198 It was assumed that 10% of subcutaneous 

injections would require administration by a district nurse, costing an average administration 

cost per subcutaneous injection of £2.61. 

Monitoring of treatment toxicity was assumed equal between cDMARDs and bDMARDs. The 

monitoring costs assumed are provided in Table 5.17. 

Table 5.17: Monitoring costs 

Monitoring component FBC1 ESR2 Biochemical 

profile 

Chest 

X-Ray 

Outpatient 

attendance 

Total 

cost 

Cost £23 £33 £33 £333 £1283 

Methotrexate: pre-treatment 1 1 1 1 1 £170 

Methotrexate: first 6 months 10 0 10 0 10 £1,700 

Monthly monitoring 1 0 1 0 1 £134 
1FBC = Full Blood Count, 2ESR = Erythrocyte Sedimentation Rate 

3NHS Reference Costs 2012. 

 

It is plausible that hospitalisation costs increase as HAQ increases, due to diminished functional 

ability, and damage to joints requiring surgery. Values of the cost per HAQ value were taken 

from the Norfolk Arthritis Register (NOAR), and their number of inpatient hospital stays and joint 

replacement surgeries.* These values are provided in Table 5.18. 

Table 5.18: HAQ related costs 

HAQ score Cost 

0.0 – 0.5 £167.41 

0.5 – 1.0 £102.54 

1.0 – 1.5 £364.68 

1.5 – 2.0 £523.68 

2.0 – 2.5 £1,246.26 

2.5 – 3.0 £2,687.97 

                                                           
*
 http://www.nice.org.uk/guidance/indevelopment/gid-tag313 - data used from Roche submission.  

Accessed June 2015 

http://www.nice.org.uk/guidance/indevelopment/gid-tag313
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UTILITIES 

Utility values were estimated each time a HAQ change was simulated. By taking the time 

between two HAQ changes, the associated utility values were used calculate QALYs via the 

trapezium rule.  

To estimate utility values, a mixture model developed and published by Hernandez et al. was 

used in the DES model, which estimated utility as a function of HAQ, HAQ2, pain, age, age2 and 

gender.199,200  All of these variables were tracked in the discrete event simulation, apart from 

pain. Pain was estimated from an independent model based on HAQ. Many models estimate 

utility from only HAQ, but the evidence from Hernandez et al. shows that pain is a significant 

independent predictor of HRQL.199,200 

Hernandez et al. fitted the mixture model to data from a US observational database with over 

100,000 observations. The model for pain based on HAQ score was developed using the ERAS 

dataset, and over 13,357 observations. The model is quadratic in HAQ, with HAQ and HAQ2 the 

dependent variables to determine pain. 

This two-step approach of calculating pain based on HAQ, and then utility based on HAQ, pain, 

age, involves significant calculations at each HAQ change event. These events can occur 

frequently when HAQ progression rates are high. This is potentially inefficient for the patient 

level simulation. 

UNCERTAINTY 

Parameter uncertainty was quantified using PSA. This involved assigning probability distributions 

to parameters and undertaking Monte Carlo sampling from these. Repeated sampling reduces 

the Monte Carlo error and allows the estimation of the expected costs and QALYs, and also the 

quantification of parameter uncertainty via Cost Effectiveness Acceptability Curves and the 

probability of being cost-effective given a particular ICER threshold. 

As noted above, many parameters were the coefficients from econometric models. Where 

possible, multivariate normal distributions were assumed for correlated parameters, otherwise 

independent normal distributions were assumed  

Costs were known with certainty and therefore not subject to probabilistic sensitivity analysis, 

and the short term effectiveness probabilities from the network meta-analysis were sampled 

using the CODA (Convergence Diagnostic and Output Analysis) output from the WinBUGS 

software package. 
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Numerous methodological and structural changes were tested using scenario analyses. These 

included using alternative methods to estimate utility values, using EULAR data only (rather than 

including mapped EULAR from ACR trials), various inclusions and exclusions of particular 

heterogeneous trials, and alternative discount rates. 

 

5.6 MODEL RESULTS AND DISCUSSION 

MODEL RUN TIME AND CONVERGENCE 

The model was found to provide relatively stable ICERs at between 3,000-5,000 patient 

simulations (see Figure 5.5). Two tests of 10,000 simulation patients was undertaken, with a 

difference of approximately £1,000 per QALY in the ICERs from the tests. 10,000 patients were 

simulated (taking approximately 1 hour) for the severe population, and 1,000 patients were 

simulated for the moderate-severe population (also taking approximately 1 hour, due to the 

high amount of resampling to identify an eligible patient). For the PSA, 1,000 patients were 

simulated for the severe population, and 100 for the moderate-severe population, and 100 

probabilistic samples were evaluated. This resulted in PSA taking approximately 10 hours to run. 

Undertaking more simulations was not feasible due to the large number of models to run and 

the time constraints of the NICE appraisal. 

 

Figure 5.5: Discounted ICER of bDMARD sequence compared to non bDMARD sequence in 
Population 1 (from Assessment Group report) 
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RESULTS 

The full results are published online and for that reason they are not replicated here.* Also it 

should be noted that the appraisal is still ongoing, and therefore the results may change if the 

committee requests changes to the analysis, and future publications from this appraisal may 

have different results. A summary of the deterministic and probabilistic basecase results and key 

scenario analyses is provided in Table 5.19 to Table 5.22. 

The ICER for bDMARD treatment in Population 2 (severe RA) is approximately £60,000 per QALY 

gained. In Population 3 (moderate to severe RA) the ICER increases to over £70,000 per QALY 

gained. If a patient cannot have MTX, then the ICER increases further (Table 5.20), to 

approximately £90,000 per QALY gained. 

The ICER for Population 1 is £300,000 per QALY gained in patients who can receive MTX (Table 

5.21), and £400,000 per QALY gained in patients who cannot receive MTX (Table 5.22). 

The key parameter within the model that significantly affects the estimated ICER is the method 

used to estimate HAQ progression whilst on cDMARD therapy. If a linear progression rate is used 

(as per previous NICE appraisals), then the ICER falls significantly. The ICER for Population 2 in 

patients who can receive MTX falls to approximately £37,000 per QALY gained (Table 5.19). 

 

                                                           
*
 https://www.nice.org.uk/guidance/gid-tag313/documents/rheumatoid-arthritis-adalimumab-

etanercept-infliximab-certolizumab-pegol-golimumab-abatacept-and-tocilizumab-review-assessment-
report-addendum2 - Accessed June 2015 

https://www.nice.org.uk/guidance/gid-tag313/documents/rheumatoid-arthritis-adalimumab-etanercept-infliximab-certolizumab-pegol-golimumab-abatacept-and-tocilizumab-review-assessment-report-addendum2
https://www.nice.org.uk/guidance/gid-tag313/documents/rheumatoid-arthritis-adalimumab-etanercept-infliximab-certolizumab-pegol-golimumab-abatacept-and-tocilizumab-review-assessment-report-addendum2
https://www.nice.org.uk/guidance/gid-tag313/documents/rheumatoid-arthritis-adalimumab-etanercept-infliximab-certolizumab-pegol-golimumab-abatacept-and-tocilizumab-review-assessment-report-addendum2
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Table 5.19: Summarised results: Median ICERS for all bDMARD strategies compared with MTX alone strategy. Populations 2 & 3 who can receive MTX 

 Response 

Measure 

Assumed 

HAQ 

Progression 

Basecase Scenario analysis 

 RCTs with 

small %age of 

bDMARD prior 

use , adequate 

MTX-history 

RCTs with small 

%age of bDMARD 

prior use 

(irrespective of 

MTX-history)  

Trials with 

inadequate 

MTX history 

Malottki 

mapping 

of HAQ to 

utility 

Discount 

rates (6% 

costs, 1.5% 

QALYs) 

Impact of 

AEs 

assumed to 

be 100-fold 

higher 

Relationship 

between HAQ 

and pain taken 

from ERAS 

PSA 

results 

Population 2 

(severe MTX –

experienced) 

(ANALYSIS 3) 

EULAR ERAS £61,200 £61,400 No data No data £49,700 £39,500 £62,200 £73,700 £61,700 

Linear £37,900 £36,300 No data No data £32,400 £22,300 £38,300 £46,300 £37,600 

ACR ERAS £62,200 £62,200 £62,600 £68,900 £49,700 £39,500 £62,200 £73,700 £62,700 

Linear £35,500 £35,100 £35,700 £36,400 £30,900 £21,400 £35,600 £43,700 £35,900 

Population 3 

(moderate 

MTX- 

experienced) 

(ANALYSIS 5) 

EULAR ERAS £75,000 £74,200 No data No data £53,400 £46,600 £78,100 £87,300 £76,800 

Linear £37,500 £36,600 No data No data £31,300 £21,800 £39,300 £48,300 £35,800 

ACR ERAS £77,100 £77,500 £77,300 £79,200 £53,900 £48,300 £79,800 £89,300 £79,000 

Linear £38,000 £36,700 £38,000 £39,200 £30,000 £21,800 £39,100 £46,700 £38,400 

All numbers rounded to the nearest £100. 
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Table 5.20: Summarised results: Median ICERs for all bDMARD strategies compared with SSZ alone strategy. Populations 2 & 3 who cannot receive MTX 

 Response 

Measure 

Assumed 

HAQ 

Progression 

Basecase Scenario analysis 

 RCTs with 

small %age 

of bDMARD 

prior use , 

adequate 

MTX-

history 

RCTs with small 

%age of bDMARD 

prior use 

(irrespective of 

MTX-history)  

Trials with 

inadequate 

MTX history 

Malottki 

mapping 

of HAQ to 

utility 

Discount 

rates (6% 

costs, 1.5% 

QALYs) 

Impact of 

AEs 

assumed to 

be 100-fold 

higher 

Relationship 

between HAQ 

and pain 

taken from 

ERAS 

PSA 

results 

Population 2 

(severe MTX –

experienced) 

(ANALYSIS 4) 

EULAR ERAS £87,600 £89,000 No data No data £71,600 £58,200 £89,100 £107,000 £88,400 

Linear £39,600 £38,000 No data No data £34,800 £24,800 £40,200 £49,200 £39,100 

ACR ERAS £94,800 £93,900 £99,600 £94,700 £79,000 £64,700 £97,200 £117,400 £90,000 

Linear £38,500 £37,300 £37,200 £37,200 £34,100 £23,600 £39,300 £47,800 £38,800 

Population 3 

(moderate 

MTX- 

experienced) 

(ANALYSIS 6) 

EULAR ERAS £104,800 £108,100 No data No data £74,400 £65,100 £108,700 £121,900 £105,400 

Linear £41,400 £39,300 No data No data £32,800 £23,900 £41,600 £49,700 £41,700 

ACR ERAS £106,400 £107,900 £110,500 £107,900 £77,200 £70,000 £105,900 £120,300 £108,200 

Linear £38,800 £38,500 £38,000 £37,200 £31,100 £23,800 £40,500 £47,100 £39,600 

All numbers rounded to the nearest £100. 
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Table 5.21: Summarised results: Median ICERs for all bDMARD strategies compared with MTX alone strategy. Population 1 who can receive MTX 

 Response 

Measure 

Assumed 

HAQ 

Progression 

Baseaase Scenario analysis 

 RCTs with small 

%age of MTX 

prior use 

Malottki mapping 

of HAQ to utility 

Discount 

rates (6% 

costs, 1.5% 

QALYs) 

Impact of AEs 

assumed to be 100-

fold higher 

Relationship between HAQ 

and pain taken from ERAS 

PSA 

results 

Population 1 

(severe MTX –

naïve) 

(ANALYSIS 1) 

ACR 

mapped 

to EULAR 

ERAS £308,700 £571,700 £214,800 £185,000 £326,100 £344,800 £295,700 

Linear £296,300 £432,800 £216,400 £192,900 £323,600 £344,700 £296,700 

All numbers rounded to the nearest £100. 

 

Table 5.22: Summarised results: Median ICERs for all bDMARD strategies compared with SSZ alone strategy. Population 1 who cannot receive MTX 

 Response 

Measure 

Assumed 

HAQ 

Progression 

Basecase Scenario analysis 

 RCTs with small 

%age of MTX 

prior use 

Malottki mapping 

of HAQ to utility 

Discount 

rates (6% 

costs, 1.5% 

QALYs) 

Impact of AEs 

assumed to be 100-

fold higher 

Relationship between HAQ 

and pain taken from ERAS 

PSA 

results 

Population 1 

(severe MTX – 

naïve) 

(ANALYSIS 2) 

ACR 

mapped 

to EULAR 

ERAS £414,700 £140,418 £340,500 £295,400 £382,000 £438,700 £404,500 

Linear £378,000 £139,800 £357,700 £291,200 £375,300 £460,000 £408,800 

All numbers rounded to the nearest £100. 
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5.7 DISCUSSION 

This chapter reports the development of a health economic model for the NICE MTA of 

bDMARDs for RA. The chapter details the NICE appraisal process and decision problem for this 

particular MTA. It reports how the health economic model was conceptualised and developed, 

before provide the basecase results from the evaluation. 

The MTA continues to be in development. After the first appraisal committee meeting in 

October 2013, the standard NICE process would be to publish draft guidance in the form of an 

Appraisal Consultation Document (ACD). This guidance would be subject to stakeholder 

comments and review, and often the manufacturers and assessment group are requested to 

undertake further analysis. The committee would then meet one or more times to develop the 

final appraisal document (FAD), which provides the final published guidance.  

Instead, an ACD has not yet been published. The ICERs initially reported in the analysis by the 

assessment group (at least £60,000 per QALY for bDMARDs) were above the normal NICE 

threshold. Following these figures through to a natural conclusion would lead to NICE 

reversing their original decision to recommend bDMARD therapies for funding by the NHS. 

Instead, NICE recognised that the key sensitivity in the model estimates was the growth model 

used to estimate HAQ progression in cDMARD treatment sequences. 

The previously used linear method of HAQ progression results in an ICER that is more likely to 

see a positive recommendation, whereas a more methodologically robust method of latent 

class growth models resulted in a much higher ICER. The decision was made by NICE to 

temporarily halt the MTA while they requested further independent analysis regarding the 

cDMARD HAQ progression modelling. 

At this time of writing (May 2015), the second appraisal committee meeting is imminent; 

however the delay has meant that the final guidance cannot be reported in this thesis. 

As reported earlier in the chapter, NICE decided at the scoping stage to not include 

downstream sequential treatments within the decision problem for the MTA. The reasons for 

this decision were that the manufacturers did not request an appraisal which focussed on 

sequential or post-bDMARD use of alternative bDMARDs. Also, the existing size of the MTA 

appraisal meant it was not seen as feasible to include an attempt to optimise the treatment 

sequence. 

This raises fundamental questions about the objective of NICE and their appraisal process. If 

‘partial’ evaluations are being undertaken, then inconsistent and potentially sub-optimal 



107 
 

guidance will be published. However, on the other hand, if feasible methods exist to inform an 

optimal or near-optimal treatment sequence, then they have the potential to be utilised within 

an appraisal process and make a significant positive impact to the development of NICE 

guidance and the optimal allocation of finite health care resources. 

This thesis is therefore well placed to identify and evaluate how untried methods of simulation 

optimisation may help inform future NICE appraisals and resource allocation decisions. 

It should be noted that the model is relatively slow to run. It was developed in Microsoft Excel 

and requires a large amount of data manipulation to use the right data and parameters for 

every possible patient population and analysis. From experience, Microsoft Excel is many times 

slower than a bespoke simulation software package to evaluate a DES model. Rebuilding the 

model in a bespoke package is likely to be a worthwhile endeavour due to the significant 

speed-up that would be gained. The slowness of the model meant that precise ICERs were not 

estimated, due to persisting Monte Carlo error (noise) at 1,000 to 10,000 patient simulations. 

Therefore the bDMARDs were treated as a class and incremental analyses comparing specific 

bDMARDs were not seen as being robust. A much faster model would allow the evaluation of 

more patients and a more precise estimate of each sequence’s costs and QALYs. 

 

5.8 CONCLUSIONS 

The chapter has highlighted that the process for guidance development used by NICE allows 

the possibility of sub-optimal treatment sequences to be recommended for NHS funding. 

Methods which allow the evaluation of all potential treatment sequences may have significant 

value for the formulation of guidance based on economic evaluation evidence. However, these 

methods need to be appropriate and feasible within the NICE appraisal process. The following 

two chapters with seek to identify and implement a simulation optimisation method to inform 

an economic evaluation of RA bDMARDs. In Chapter 8, the feasibility of these methods within 

the context of a NICE appraisal will be discussed. 
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CHAPTER 6: A CITATION PEARL GROWING SYSTEMATIC REVIEW OF THE 

METHODOLOGICAL LITERATURE 

6.1 CHAPTER OVERVIEW 

This chapter reports a systematic review to identify methods which are relevant for a 

treatment sequencing problem. The chapter begins by framing the treatment sequencing 

problem, and defining it as a combinatorial discrete simulation optimisation problem. By 

formally characterising the properties of the problem, the relevance of the methods identified 

can be judged. The systematic review uses citation pearl growing methods.201 This involves 

identifying key references, and undertaking citation and reference searches to ensure all 

relevant literature are obtained. 

The appropriateness of each identified method is judged by a bespoke framework. The 

development and theoretical basis of each method is reported. The practical applicability of 

each method to the treatment sequencing problem is judged. The search methodology is 

pragmatic, and methods are considered even if not identified in the first instance but become 

known during the process of searching, synthesis and reflection. This is to account for the fact 

that the literature is reported across many academic disciplines. 

The chapter provides a range of potential methods which could be taken forward for 

implementation and evaluation in Chapter 7 and Chapter 8. These methods are broad in 

scope: published in different disciplines and applied to a range of combinatorial problems. 

Many methods have only been recently developed, and therefore the evidence to support 

their use is relatively scant. However, there are methods of genuine promise, and numerous 

routes for further research have been identified. Contrastingly, some methods have been 

established for a long time, in particular methods applicable to general optimisation which 

have shown good performance for simulation optimisation methods. The robustness of these 

methods, including simulated annealing (SA) and genetic algorithms (GA), across a range of 

problem contexts has been proven. 

 

6.2 INTRODUCTION 

This chapter contains a systematic search and review to identify relevant methods for finding 

an optimal or near-optimal sequence of treatments in an economic evaluation using DES. 

Section 6.3 describes the methods used to undertake the systematic review, and Section 6.4 

describes the search strategy to identify relevant studies. Sections 6.5 and 6.6 detail how the 
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quality of the papers was assessed, how data were extracted and how it was synthesised. The 

results of the search are provided in Section 6.7, and Section 6.8 is a narrative synthesis of the 

identified methods. Section 6.9 provides discussion and conclusions, including the implications 

of this chapter for the remaining thesis.  

PROBLEM DESCRIPTION 

When undertaking a systematic review of methods (in contrast to a systematic review of 

evidence), there must be a clearly defined problem for which the applicability of identified 

methods can be evaluated.  

The problem to be addressed within this thesis is how to find an optimal sequence of 

treatments for a chronic condition when a discrete event simulation is required to evaluate the 

objective function for an economic evaluation. The objective function in this case is the net 

monetary benefit (NMB). Maximising net monetary benefit represents the optimal 

configuration of health care resources (treatments) for a particular condition. Therefore this 

problem can be represented as an optimisation problem, where a configuration of treatments 

is sought that maximises NMB. 

A general optimisation problem: 

max
𝑥∈𝑿

𝑔(𝑥) [6.1] 

Where 𝑥 ∈ 𝑿 represents a vector of input variables 𝑥 from the potentially feasible solution 

space 𝑿. Therefore 𝑥 is a particular permutation of a sequence of treatments from all 

potentially feasible treatment sequences 𝑿. 𝑔(𝑥) is the objective function, which cannot be 

determined directly (analytically or observed), but instead must be estimated via simulation. In 

the case of an infinite number of simulations, the simulation model provides an estimation of 

the objective function 𝑔(𝑥) : 

𝑔(𝑥) =  𝐸𝜔[𝐺(𝑥, 𝜔)] [6.2] 

The performance measure estimated via the simulation model 𝐺(𝑥, 𝜔) is stochastic, with 𝜔 

the randomness exhibited in each run of the simulation. 

For 𝑁 simulation runs (𝑖), the sample average is: 

�̅�(𝑥) =  
1

𝑁
∑ 𝐺(𝑥, 𝜔𝑖

𝑁

𝑖=1

) [6.3] 

This can be used as an approximation of the objective function 𝑔(𝑥), as �̅�(𝑥) → 𝑔(𝑥) for 

𝑁 →  ∞: 
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𝐸𝜔[𝐺(𝑥, 𝜔)] ≈  �̅�(𝑥) ≡  
1

𝑁
∑ 𝐺(𝑥, 𝜔𝑖

𝑁

𝑖=1

) [6.4] 

By the strong law of large numbers (Billingsley 1995) when 𝑁 is sufficiently large, the sample 

average can approximate the objective value 𝑔(𝑥). 

The problem is specifically a discrete combinatorial optimisation problem -the set of available 

sequences (the feasible solution space) may be very large, but it is discrete and finite. The size 

of the feasible solution space (𝑿) is very complex to formally estimate, given the various rules 

regarding the eligibility of the position of each treatment. However, an upper bound (𝑿max) can 

be derived using the following formula for k-permutations of n objects, where k is the length of 

the sequence (up to a maximum sequence length L) and n is the total number of treatments in 

a set.*  

𝑿𝑚𝑎𝑥 = ∑
𝑛!

(𝑛 − 𝑘)!

𝐿

𝑘=1

 
[6.5] 

For 12 treatments† this equates to an upper bound on the feasible solution space (𝑿max) of 

over 10 billion unique solutions. 

As discussed in previous chapters, full enumeration and comparison of every possible solution 

(treatment sequence) is not possible when the decision space is large. Therefore this particular 

decision problem requires a method which can find a good enough solution within a feasible 

amount of time, rather than a method that can search every feasible solution to find a true 

optimum. In this instance, whether a solution is good enough is a judgement to be made by 

the decision maker, however methods can look to ensure that the good enough solution 

cannot be improved upon and therefore increase confidence that it is a true optimum. 

 

6.3 METHODS 

The methods for systematically reviewing published health evidence (for example, health 

economic evidence, or clinical trial evidence) are well established.202 The classical approach to 

information retrieval involves matching a search query with the relevant literature. Increasing 

the sensitivity of the search increases the likelihood of finding relevant literature, but at the 

cost of finding irrelevant literature. Refining the specificity of the search will reject irrelevant 

                                                           
*
 (a selection of k objects from a list of n, where k ≤ n), and where the order of selection matters and 

selections cannot be repeated. 
†
 n = L = 12 
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literature, and by increasing the sensitivity and specificity of the search, strive towards the 

‘impossible ideal’ as shown in Figure 6.1. 

 

Figure 6.1: Classical search model (Levay 2012)* 

Systematic reviews of clinical effectiveness literature compare the results of different clinical 

studies and take into account the quality of each study. The quality is judged using an explicit 

framework (randomisation, blinding, allocation etc).203,204 However, a systematic review of 

methodological literature is different from reviewing published effectiveness evidence.202,205 In 

particular, methodological literature may be published in disparate or unexpected fields, may 

have been applied in one particular problem but may be relevant for another, and may be 

difficult in general to identify. Most importantly, there is no ‘gold standard’ that different 

methods can be compared against, and therefore alternative methods must be judged upon 

other factors, such as their theoretical suitability and their practical suitability. In the book by 

Black, Brazier and Fitzpatrick (1998), two chapters are dedicated to the issue of searching and 

reviewing health services research methods: Edwards et al. (1998); and Hutton and Ashcroft 

(1998).202  

The chapter by Edwards et al. (1998) proposes that the review of methods must be considered 

according to an explicit framework, as would be the case with any systematic review of clinical 

research evidence. Also, the authors propose that any search spans a range of academic 

disciplines. Because a systematic review of methodological literature is influenced by the topic 

of interest, there is no ‘best practice’ set of methods or processes for the review. Instead, 

Edwards et al. (1998) propose that any systematic review of methods should be ‘objective’ and 

                                                           
*
http://www.ihs.manchester.ac.uk/events/pastworkshops/2012/ESN131212/paullevay.pdf - Accessed 

June 2015 
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that the process by which literature are obtained and synthesised should be methodological 

and explicit.202 

Therefore, a framework for this systematic review of methods has been developed. This 

framework contains three key factors of interest. Firstly, it is important to understand whether 

the method was developed specifically for a simulation optimisation context, and also whether 

it was developed for a discrete and combinatorial problem. If the method is an adaptation of 

an alternative method, then it is important to understand how the method has been adapted. 

Secondly, the theoretical basis of the identified method contains the key assumptions, 

limitations and possible biases associated with the method. Understanding these ensures that 

the method is suitable for application within the problem context. Thirdly, the practical 

applicability of an identified method considers how it performs when used to solve a real-

world problem. Although the review is focussed on methodological papers, any applications of 

a particular method that are identified will help inform the suitability of a method in practice. 

These factors are summarised within the review framework in Table 6.1. 

Table 6.1: Framework for the methods review 

Framework factor Issues to consider 

Development What problem was the method originally developed for? 

Has the method been adapted from its original context? 

Was the method designed to address discrete event simulation (DES) 

optimisation?  

Or is it a general optimisation method that could be suitable for DES? 

Theoretical basis How does the method address optimising a DES with a combinatorial 

problem? 

What assumptions does the method require? 

What are the theoretical limitations of the method? 

What are the potential biases associated with the method? 

Practical 

applicability 

Has the method been used to optimise a DES with a combinatorial problem? 

If so, how did it perform? (Speed, optimality, ease of implementation) 

If not, are there any suggestions to its practical applicability? 

 

The use of a bespoke framework for classifying the results and evidence introduces bias, due 

to there being many different ways to classify information. In particular, subjective issues 

regarding the limitations and biases of an identified method may be challenging to classify and 

summarise, and therefore a framework ‘cannot be completely impartial.’202 In an ideal 

situation, multiple researchers would be employed to identify and classify information using 

the predefined framework. However, in this PhD thesis it was not possible to employ multiple 

researchers to ensure that inter-observer reliability was maintained. 
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6.4 SEARCH STRATEGY 

A systematic review of methodological literature may cover a number of different 

disciplines.202 For a systematic review of discrete event simulation optimisation methods for 

combinatorial problems, it is expected that methods may emerge from operational research, 

computer science, mathematics, and other academic areas. Therefore a systematic search 

much be performed across all potentially relevant disciplines. 

Rather than a systematic review of clinical trials, where each trial must be identified, a 

systematic search of methods must identify all appropriate methods, rather than all published 

instances of each appropriate method. Therefore rather than a global search identifying an 

infeasible amount of potentially relevant studies, an iterative search focussing on citations and 

references was assumed to be valid in this instance. Edwards et al. (1998) refers to this 

approach as ‘theoretical saturation’, where an iterative approach is used due to the unknown 

quantity of relevant literature. In this model of searching, methodological topics tend to 

frequently return a large quantity of theoretical articles, and the marginal benefit of adding 

further articles decreases rapidly beyond a certain point. The model focuses on truncating the 

search when new information is not forthcoming, rather than pursuing every last possible 

reference. The model therefore needs a net that is cast wide across many types of literature, 

to ensure that relevant methods are not missed. 

 While the classical approach to searching is perfectly acceptable for a tightly defined set of 

information, they rely on pre-defined queries which suggest that there is a subset of 

knowledge which can be defined as “all the relevant evidence” (see Figure 6.1). More complex 

queries or evidence searches (including ‘dynamic queries’) allow new questions and answers to 

emerge from the evidence. 

This breaks down the process of searching for evidence, and allows reflection and thinking to 

occur based on the documents retrieved before either varying the next search query, or 

deciding that information saturation has been reached. It is also a pragmatic process, which 

avoids an unmanageable volume of results. 

Citation pearl growing is a method of searching citation indexes to iteratively explore the 

published evidence. It is particularly useful where terminology or indexing to categorise 

evidence varies (perhaps across fields or disciplines), which has significant benefits for 

searching methodological articles.205 Pearl growing is similar to qualitative research methods, 

where key documents (called ‘pearls’) are identified and then references citing these 

documents are also reviewed to assess their relevance. However, as with qualitative research, 
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the method relies on the prior selection of key records to begin the search process. The 

process is also dependent on relevant literature being relatively well cited. 

SEARCH 

A search was designed based on specific terms already identified in the topic area. These terms 

were generated from the title, abstracts and keywords of already identified relevant papers. In 

particular, Andradottir’s (2006) review of simulation optimisation via random search review 

paper,206 and Fu’s (1994) review of simulation optimisation.207 These search terms are shown 

in Table 6.2. The electronic search was conducted in March 2014 within the ISI Web of Science 

(ISI WoS) database. All databases within ISI WoS were searched including the Science Citation 

Index and the Social Science Citation Index. ISI WoS was selected due to its excellent coverage 

across the full spectrum of science, including the social sciences, computer science and 

technology. It is an index of over 5000 journals, 54 million records which span 100 years. 

Table 6.2: Search terms 

Search step Search terms Results 

1 TITLE: (optimi* AND simulation) 8,996 

2 TOPIC=(method* OR approach) 51,549,272 

3 TOPIC =(simulation) 3,505,384 

4 TOPIC=(optimi*) 2,138,034 

5 TOPIC: (discrete OR combinatorial) 824,381 

6 #1 AND #2 AND #3 AND #4 AND #5 462 

7 #6 Refined by: DOCUMENT TYPES=(ARTICLE OR REVIEW OR BOOK) 170 

Timespan = All years 

ISI Web of Science database (all databases) 

Search language = English   

INCLUSION/EXCLUSION CRITERIA 

From the search, abstracts of identified papers were screened before ordering the full-text 

papers of relevant citations. The inclusion and exclusion criteria used for the screening of 

relevant papers are provided in Table 6.3. 

Table 6.3: Inclusion and Exclusion criteria 

Inclusion criteria Exclusion criteria 

- Methodological papers relevant to 

the problem formulation 

- Methodological papers which are 

potentially generalisable 

- Papers applying a method to a 

broadly similar problem  

- Papers describing or implementing a method which 

is not relevant to the problem formulation 

- Conference abstracts or editorials 

- Methods not applicable to a simulation approach to 

estimate the objective function 

- Methods for obtaining a local optima 
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- Statistical methods for small problems, or to inform 

the comparison of simulation output 

- Methods solely for multi-objective problems 

- Naïve methods (enumeration, trial and error) 

 

CITATIONS AND REFERENCES 

The identification of papers from the search was confirmed by searching the references and 

citations of each paper. By searching citations, any future development of methods could be 

identified. By searching the references, it allowed the identification of the methods’ origins, or 

alternative methods. This process allowed the set of pearl papers to be finalised. 

 

6.5 QUALITY ASSESSMENT 

A published criterion for critically appraising the quality of identified methods for this review 

was not identified. Therefore the framework presented in Table 6.1 was used as a quality 

assessment tool. The synthesis of each identified method includes a critical appraisal based on 

the application of this framework. 

 

6.6 DATA EXTRACTION AND SYNTHESIS 

Data extraction for the review was based upon the framework presented in Table 6.1, and is 

provided in Table 6.4. Full evidence tables are contained in Appendix B.4. A narrative review 

methodology was used to synthesise the details of each identified methodology. A narrative 

review provides a discussion and summary of a particular topic, and the review framework was 

used to provide a structure to this narrative synthesis. Where identified methods were broadly 

similar (or a modification) then they were grouped together. 

Table 6.4: Data extraction form 

Reference Details 

Development 

What is the method?  

What problem was the method originally developed for?  

Has the method been adapted from its original context?  

Was the method designed to address discrete event simulation (DES) 

optimisation?  

 

 Or is it a general optimisation method that could be suitable for DES?  
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Theoretical basis 

How does the method address optimising a DES with a combinatorial problem?  

How does the method work?  

What assumptions does the method require?  

What are the theoretical limitations of the method?  

What are the potential biases associated with the method?  

Practical applicability 

Has the method been used to optimise a DES with a combinatorial problem?  

If so, how did it perform? (Speed, optimality, ease of implementation)  

If not, are there any suggestions to its practical applicability?  

 

6.7 SEARCH RESULTS 

The initial search of the database identified 170 citations. 84 of these citations were excluded 

immediately for not being a full peer-reviewed journal article, or not being English language. 

Of the remaining 86 citations, 49 were excluded and a full list of citations and reasons for 

exclusion is provided in Appendix B.1. 

37 full articles were retrieved for assessment. 21 were excluded and a full list of articles and 

the reason for exclusion is provided in Appendix B.2. The remaining 16 articles (pearls) were 

included in the review, and a reference and citation search was applied to these articles. 16 

citations/references were of interest and full papers were ordered. Nine of these articles were 

excluded, and full details are provided in Appendix B.3. The seven remaining articles were 

added to the original 16 pearl articles. Four reviews were cross-checked to identify any 

relevant articles that may have been missed by the database search.206–209 No relevant articles 

were identified. The full process of sifting and exclusion is detailed in the QUORUM diagram in 

Figure 6.2. 

In total, 23 papers were identified which either developed or applied a method for a 

combinatorial simulation optimisation problem. The references of the 23 studies included in 

the systematic review are provided Appendix B.3. 
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Figure 6.2: QUORUM diagram for methods review 

 

6.8 NARRATIVE SYNTHESIS OF IDENTIFIED METHODS 

This section of the chapter classifies and describes the methods identified. For each method, 

the development, theoretical basis and practical applicability to the treatment sequencing 

problem are described in detail. Methods of most relevance to the treatment sequencing 

problem (i.e. a combinatorial problem with discrete parameters and a large, finite decision 

space which is evaluated using a discrete event simulation model) are the focus of this section, 

because these will potentially be taken forward for implementation in Chapter 7. Identified 

methods which are not deemed to be as relevant are described in less detail. The reasons for 

why they are not deemed to be as relevant or appropriate are clearly specified. 

Papers identified from 

database search 

n=170 
Excluded at initial sift (study type 

and non-English language) 

n=84 
Full abstracts retrieved 

and sifted 

n=86 
Excluded at abstract stage (see 

Appendix B.1 for details) 

n=49 
Full articles retrieved 

and sifted 

n=37 
Excluded at full paper stage (see 

Appendix B.2 for details) 

n=21 
Pearls identified 

n=16 

Citations and references sifted 

n=16 
Excluded (see Appendix 

B.3 for details) 

n=9 
Citations and references added 

n=7 

Reviews crosschecked and articles 

identified 

n=0 
Final papers included in 

review 

n=23 
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Full tables reporting data extraction from all 23 studies are provided within Appendix B.4. 

Many of the studies identified used similar methods. Where the methods used overlap across 

studies, then some studies are discussed in less detail than others to avoid repetition. Also, 

many methods for simulation optimisation are variations or applications of established 

optimisation methods which do not require a simulation model for solution evaluation. The 

papers included within this review are methods specifically for simulation optimisation, 

however much of the development or theoretical basis for these methods may come from 

general optimisation methods. Where required, reference will be made to these. 

OPTIMISATION 

Optimisation is the task of making the best decision among various alternatives.55 An 

introduction to optimisation is provided in chapter Section 2.6, and the treatment sequencing 

problem is defined as an optimisation problem in Section 6.2. The treatment sequencing 

problem can be defined as a discrete optimisation problem, as opposed to a continuous 

optimisation problem, because alternative solutions are determined by discrete variables. The 

problem is also finite in size, because there is a limited, albeit very large, set of available 

treatments, providing a finite limit on the number of feasible sequences. The number of 

feasible solutions is defined as the potentially feasible solution space 𝑿, where each potential 

solution is 𝑥 ∈ 𝑿 

The global optima within a feasible search space is the configuration of each design parameter 

which maximises (or minimises) an objective function. There may be one global optimum, or 

many configurations which are all global optima. Local optima represent the best solution 

within a particular local neighbourhood of potential solutions. Figure 6.3 provides a 

representation of a continuous search space which contains local and global maxima, where 

𝑔(𝑥) is the objective function value of vector of input variables 𝑥 from the potentially feasible 

space 𝑿.  
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Figure 6.3: Local and global optima 

LOCAL SEARCH FOR OPTIMISATION 

If the feasible search space is small enough, then a brute force (or exhaustive) search 

algorithm can be used to systematically enumerate all possible solutions, and therefore 

identify the optimal.* 

However, many optimisation problems are combinatorial (including the treatment sequencing 

problem), which means that the feasible space of potential solutions is finite (but often very 

large).210 As the size of the problem increases (in terms of number of input variables), the 

computational difficulty of enumerating each solution increases. These problems are 

computationally hard to solve,† and therefore beyond small-sized problems, full enumeration 

is unlikely to be feasible.211 In this situation, a local search method can be applied to identify a 

good enough solution within a feasible amount of time. 

Local search (LS) involves the movement from solution to solution by applying local changes. 

Specifically, LS looks for a nearby solution which is better or as good as the current solution. 

The algorithm continually makes moves to better solutions until no further improvement can 

be found. The key to the performance of LS is the neighbourhood function which determines 

how to identify a nearby solution. Formally, the neighbourhood function is 𝑁(𝑥), where 𝑥 ∈ 𝑿. 

For a minimisation problem, a solution 𝑥, is a local optimum with respect to the 

neighbourhood function 𝑁, if 𝑓(𝑥) < 𝑓(𝑦) for every 𝑦 in 𝑁(𝑥). Neighbourhood functions are 

often problem specific and the performance of a search can be closely related to the 

specification of the neighbourhood function. 

                                                           
*
 More formally, all optima 

†
 NP-complete or NP-hard, as defined by computational complexity theory 

𝑔(𝑥) 

Local maxima 

Global maxima 

𝑥 



121 
 

LS will find a local optimum, but they are unlikely to find a global optima if local optima are 

present. For example a hill climbing algorithm is a very simple form of LS. The algorithm starts 

with a randomly selected solution. Incremental changes to an element of the current solution 

are made until the change produces a better solution, at which point the new solution is 

accepted. The process is then repeated until no further improvements can be found.  

Because only local optima can be guaranteed, many LS methods incorporate modifications to 

overcome this, which allow them to become global search methods. These modifications 

include repeated local search, which just repeats the LS with numerous starting points, or an 

iterative local search, which allows the algorithm to jump to another point in the search space 

when a local optimum is found. Alternative modifications have focused on the ability to 

randomly allow worsening moves to be accepted, a form of stochastic optimisation (more 

detail in the following sub-section). This allows the algorithm to avoid becoming trapped in a 

local optimum and to continue to seek a global optimum. 

SIMULATION OPTIMISATION 

Simulation optimisation was the most commonly used term to present the use of a simulation 

model to evaluate the objective function for an optimisation problem. Andradottir (2006) 

defines simulation optimisation as “…a special case of stochastic optimization where the 

required objective function values g(x) are estimated via computer simulation, and hence 

involve some noise.”206 

Stochastic optimisation is defined as optimisation of a problem where there is random noise in 

the measurement of the objective function 𝑔(𝑥). Somewhat confusingly, stochastic 

optimisation is also used to define LS algorithms where there is a random (often Monte Carlo) 

choice made in the search direction as the LS algorithm iterates.212 As was explored in the 

previous section. 

Many of the identified simulation optimisation methods identified in this review met both of 

these definitions. They used a simulation model to determine an approximate estimate of 

𝑔(𝑥), and they used a stochastic optimisation process which allowed worsening solutions to 

be accepted during the search.  

Many heuristics and search methods are designed for deterministic optimisation. These are 

general optimisation methods, and may be applied to a problem where there is an analytic 

value of the objective function. For example the distances between cities for a travelling 

salesman problem are known. Therefore the objective function value (the total route distance) 

can be calculated with certainty.  
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When used in a deterministic setting, a stochastic optimisation algorithm will return the 

solution identified with the best performance as the ‘best solution’. However, within 

simulation optimisation, it is common for the best performing solution to be attributed to the 

solution with the best sample mean objective value. Simulation optimisation may therefore 

attribute a wrong best solution, due to stochastic or Monte Carlo error. 

With a large combinatorial search space, it is not possible to guarantee that an identified 

solution is the global optimum. In particular, for a stochastic simulation setting, even if the 

search algorithm does visit the true global optimum, there is no assurance that the algorithm 

will correctly identify this, due to the stochastic nature of the objective function. For this 

reason, simulation optimisation methods often have to balance a search/selection trade-off.213 

If there is a fixed computation budget, how to allocate computing resources between 

searching the feasible space for better solutions, and evaluating the performance of each 

solution (via a computationally expensive simulation model) to ensure the search is sensible 

and results are useful for decision-making purposes? 

Taxonomies of simulation optimisation methods are provided in Appendix B.5. 

METHODOLOGICAL STUDIES AND CATEGORIES 

The papers identified represent a body of literature concerning simulation optimisation of a 

combinatorial problem. Finding key methodological papers within this literature was a difficult 

task, because many methods were first developed for optimisation problems without 

simulation required to evaluated performance, or for continuous optimisation problems which 

were then applied to combinatorial problems. Therefore the literature identified studies which 

either applied established methods, or adapted established methods, as well as novel 

methods. Within this review, the development of each discussed method is detailed, including 

the background to established methods where necessary. However, the focus remains on the 

suitability of all methods to our particular treatment sequencing problem, and the practical 

applicability of each method revealed by the reviewed studies. 

The 23 identified studies can be classified into broad method areas and specific method 

categories. This classification is detailed in Table 6.5. These classifications are used to guide the 

narrative review. Where several identified studies are within one class, the review is much 

more detailed, compared with classes with just one study. This is to ensure that the 

differences in approaches and specific details are emphasised, while minimising repetition and 

unnecessary detail. The review provides detail about the background, development and 

practical applicability for each identified method. Details regarding how each method works 

are provided in Appendix B.6. 
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Table 6.5: Methodological studies and categories 

Class Category Specific methodology Brief details Papers included*  

Random 
Search 

Random 
Search 

Random search hill climbing A stochastic optimisation method where neighbourhood solutions are 
selected using a probabilistic method. 

Jacobson el al. (1998)
214

 
Kamrani el al. (2012)

215
 

Adaptive 
Random 
Search 

Balanced Explorative and Exploitative 
Search 

An adaptive random search method where a switch between local and 
global search is incorporated into the algorithm 

Andradottir el al. (2009)
216

 

Convergent Optimisation via Most-
Promising-Area Stochastic Search  

A random search algorithm with a unique neighbourhood function Hong el al. (2006)
217

 
Huang el al. (2012)

218
 

Metaheuristics 
 

Simulated annealing A stochastic metaheuristic which mimics the annealing process of a 
crystalline solid. 
 
It accepts worsening random moves with a decreasing probability based on 
cooling the ‘temperature’ parameter 

Ahmed el al. (1997)
219

 
Ahmed el al. (2002)

220
 

Alrefaei el al. (1999)
221

 
Ghiani el al. (2007)

222
 

Haddock el al. (1992)
223

 
Lacksonen el al. (2001)

224
 

Rosen el al. (2005)
225

 

Genetic algorithms Population based metaheuristics using crossover and mutation to replicate 
evolution and natural selection 
 

Ding el al. (2005)
226

 
Jun el al. (2010)

227
 

Korytkowski el al. (2013)
228

 
Lacksonen el al. (2001)

224
 

Yang el al. (2007)
229

 

Tabu search A metaheuristic that forbids movement to recently visited (tabu) solutions Azadeh el al. (2010)
230

 
Yang el al. (2004)

231
 

Ordinal Optimisation A metaheuristic to identify solutions with a high probability of being ‘good 
enough’ 

Ho el al. (2000)
232

 

Nested partitions A metaheuristic where the feasible region is partitioned and searching 
focusses on regions of most promise 

Shi el al. (2000)
233

 

Particle Swarm Optimisation A population based metaheuristic where the direction of movement 
through the search space is influenced by the current best solution 

Kuo el al. (2011)
234

 

Hybrid and other methods Averaging framework for simulated 
annealing 

A variation of simulated annealing which records the performance of 
previous solutions to estimate how much simulation effort is required 

Prudius el al. (2012)
235

 

Empirical stochastic branch-and-bound A hybrid method of nested partitioning and branch and bound. Xu el al. (2013)
236

 

*some studies repeated if include multiple methods 



124 
 

Random search 

Random search methods are a broad class of optimisation techniques. There is a general 

distinction between two main types of random search – traditional random search, and 

adaptive random search. These two types of methods are used to provide the structure in this 

section of the narrative review. Also, random search methods are the foundation for many of 

the metaheuristic methods which will be reviewed in the subsequent section of this chapter. 

Search results 

Two studies were identified which used a traditional random search method for a 

combinatorial simulation optimisation problem.214,215  Four studies were identified which used 

an adaptive random search method for a combinatorial simulation optimisation problem.216–

218,236  

Traditional Random Search 

Development 

Traditional Random Search (RS) methods were in general developed to solve deterministic 

optimisation problems, where there is no uncertainty in the value of the objective function for 

a given solution.206 In particular, they were developed as a gradient free method, which 

enables use for non-differentiable discrete and continuous problems. Early development 

coincided with the development of computers, and Rastrigin is often attributed with the first 

use of the term ‘random search’.237 

Practical applicability 

Two studies have reported the use of RS for a combinatorial simulation optimisation 

problem.214,215 Jacobson et al. (1998) use RS for a discrete manufacturing process design 

optimisation problem.214 They apply generalised hill climbing algorithms which incorporate 

different random variables to determine the selection of an inferior solution. Each random 

variable has a different mechanism for accepting an inferior solution at a particular iteration, 

and these are provided in Table 6.6). For instance, one algorithm is a local search, where the 

probability of accepting a worse solution is always returned as 0. This is in contrast to the 

Monte Carlo search (often called a random walk). Here, the algorithm will always accept any 

neighbouring solution, irrespective of its performance.  

One of the random search algorithms applied is a simulated annealing metaheuristic. However, 

the details are limited and therefore this method is not formally reviewed here, and simulation 

annealing is reviewed within the metaheuristics section of this review. 
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Table 6.6: Jacobson et al. algorithm formulations214 

Generalised Hill Climbing algorithms Parameter(s) determining the acceptance of an 
inferior solution 

Simulated Annealing −𝑡𝑘ln (𝑢) 

Threshold accepting 𝑄𝑘 

Monte Carlo search 1 

Local search 0 

Weibull accepting −𝑡𝑘(− ln(𝑢))1/∝ 

Where 𝑡𝑘 is a temperature parameter, ∝ is a shape parameter, 𝑄𝑘 is a threshold constant, 
𝑢 = 𝑈(0,1) uniform variable. More details regarding Simulated Annealing provided in the 
Metaheuristics section  

 

The study incorporated three different neighbourhood rules, which are used to estimate a 

neighbouring solution from a current solution. 

The study found that simulated annealing, threshold accepting and Weibull accepting methods 

all found comparable results which were superior to Monte Carlo search and local search. The 

local search results tended to yield higher variance. The first neighbourhood rule was very 

conservative, and took a large number of iterations before the stopping rule was met. The 

third rule was aggressive and often terminated very quickly. The authors conclude that rule 

two provided an acceptable balance between time taken to run, and the quality of the solution 

found. The study is limited in providing information about convergence and stopping rules, 

along with the computational burden of the problem and efficiency of the algorithms. 

However, they conclude quite positively by stating that these results are a useful and practical 

tool for a complex manufacturing sequencing problem. 

Kamrani et al. (2012) use RS for a business process optimisation problem.215 The problem 

involves finding the most beneficial assignment of tasks to agents. Tasks can be defined as 

critical and non-critical, and assignments of workers to tasks must avoid invalidating a pre-

defined work process. In one formulation of the problem, assignment of any task to any agents 

does not affect the flow of the business process, and the Hungarian algorithm is applied.* In a 

separate formulation of the problem, the assignment of tasks does affect workflow, and a RS 

heuristic is applied to solve this. The RS algorithm is specifically a hill climbing algorithm, where 

any improving move is accepted (irrespective of being the best move in the evaluated 

neighbourhood), and no worsening moves are accepted. 

                                                           
*
 The Hungarian method is an algorithm that solves the assignment problem. It was developed by Harold 

Kuhn in 1955, and is named after two influential Hungarian mathematicians - Kőnig and Egerváry 
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The random search method was applied with three initial solutions. The algorithm reached 

near optima after 80 iterations. The relative deviation for a number of problem sizes is less 

than 0.5% from the analytically proven optimal value. The authors noted that the algorithm 

showed good performance in their problem context, but is not generalisable to combinatorial 

problems outside of assignment problems. This is because it applies rules based on a 

determination between critical and non-critical tasks in the problem. The optimisation process 

is one relatively minor component of the overall study, and therefore specific details are 

relatively brief. 

Adaptive Random Search – Introduction 

Adaptive Random Search (ARS) is a search method which is designed to address the limitations 

of having a fixed neighbourhood structure. In particular, when an algorithm revisits a solution, 

the candidate solutions are drawn from the same neighbourhood. ARS looks to change the 

neighbourhood structure based on information generated during the algorithm process. With 

an ARS, the neighbourhood will in general shrink as information regarding the objective 

function is gathered. In particular, many problems will have a cluster of good solutions within 

an particular area. Algorithms with an adaptive neighbourhood structure will often perform 

better than those with a fixed neighbourhood structure.217 

The method was initially developed for continuous optimisation problems, and research 

involved experimenting with neighbourhood structures (then referred to as ‘variable step 

sizes’) throughout the 1960s and 1970s. Schumer and Steiglitz developed the ‘Adaptive Step-

Size Random Search’,238 which was extended by Kregting and White and their ‘Adaptive 

Directional Random Search’.239 

Search results 

Three studies used an adaptive random search method for a combinatorial simulation 

optimisation problem.216–218 One study developed the Balanced Explorative and Exploitative 

Search (BEES) framework.216 The two remaining studies report the development and 

application of the Convergent Optimisation via Most-Promising-Area Stochastic Search 

(COMPASS) adaptive search method.217,218 



127 
 

Adaptive Random Search – Balanced Explorative and Exploitative Search (BEES) 

Development 

The BEES algorithm was developed by Andradottir & Prudius,216 with the aim of providing 

almost surely* convergent random search algorithms which are simple and general enough to 

provide applicability to a range of combinatorial simulation optimisation problems.216 

Practical applicability 

The algorithms have only be applied to test functions, and not to a real world combinatorial 

simulation optimisation problem. The performance of these algorithms appears to be 

promising, and convergence within a finite search space has been proven by the authors under 

certain conditions. A limitation is that the methods all required user-specified tuning 

parameters (for the deterministic, stochastic and adaptive variants of the Adaptive Random 

Search methods), and these parameters require extensive experimentation. 

Adaptive Random Search – Convergent Optimisation via Most Promising Area Stochastic 

Search (COMPASS) 

Development 

Convergent Optimisation via Most-Promising-Area Stochastic Search (COMPASS) is a random 

search algorithm with a unique neighbourhood function. It was developed by Hong & Nelson 

(2006).217 The method is therefore relatively new and unproven, but has already garnered 

interest in the simulation optimisation field.240 

Practical applicability? 

In the original paper by Hong & Nelson (2006), the algorithm was applied to an assemble-to-

order manufacturing problem, and not to a combinatorial simulation optimisation problem.217 

This particular problem uses mixed value decision parameters and therefore is not strictly 

included within the parameters of this systematic review. However, the algorithm showed 

good performance within this particular problem type.  

Huang et al. (2012) applied the COMPASS algorithm to a vehicle allocation problem. The 

application was for the purpose of testing the method, rather than solving a real work 

problem. The problem is to maximise the throughput of vehicles through an intrabay system 

for semiconductor manufacturing. 11 vehicles can be allocated to 10 intrabay systems. As the 

algorithm iterates, the same size for each solution in the visited-solution set is increased. This 

increases the precision of the objective function estimates. From an initial solution, an extra 10 

                                                           
*
 Almost sure convergence implies that the probability of convergence on a target value (the global 

optima) is 1. 
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designs are sampled. The best solution is selected and the algorithm iterates. The algorithm 

converges to the optimal solution after only 30 iterations of the algorithm. 

A limitation of the study is that the feasible space is not constrained, and therefore the 

simulation model is simplistic and not applicable to the real life problem the authors look to 

solve. Also, little information is given about the relative efficiency of the method, against other 

more established search algorithms. 

METAHEURISTICS 

The majority of methods identified fall under the category of metaheuristics. These methods 

are summarised within this section. To define a metaheuristic, a definition of a heuristic is 

required. 

A heuristic is simply a method of finding a solution to a particular problem. They are designed 

for a specific problem type, and exploit the particularities of a problem which enables a more 

efficient search for a solution. A heuristic may require the trading off between the time it takes 

to execute, and the accuracy of the solution found. Heuristics may be compared to exact 

methods. While an exact method may guarantee a proven optimal solution within a finite 

period time, in reality this time may be prohibitively large. Instead, heuristics are developed to 

find a ‘good enough’ solution within a ‘small enough’ period of time.241 

An example of a heuristic is the greedy algorithm, which simply selects the optimal local choice 

at each stage of the algorithm. For example, the classic travelling salesman problem (TSP) 

requires the shortest possible route between a network of cities to be found. Each city must be 

visited exactly once and the route must end where it begins (e.g. a closed loop). A greedy 

algorithm will select the optimal local choice, which in the case of a TSP is the nearest 

unvisited city. Because TSP is an NP-Complete problem*, the optimal solution for a relatively 

small problem is intractable. The greedy algorithm cannot guarantee to find the optimal 

solution, but by finding a ‘good enough’ solution, it is commonly applied in many situations.242  

Metaheuristics are problem-independent techniques which may not guarantee an optimal 

solution. In contrast to heuristics, metaheuristics are not specific to any particular problem. 

Instead, they offer the capacity to be applied to a wide range of problem types. Metaheuristics 

are a higher-level procedure, meaning they ‘…provide a set of guidelines or strategies to 

                                                           
*
 NP-Complete is a computational complexity theory classification for particular decision problems. NP-

Complete problems are both NP and NP-Hard, where NP refers to ‘nondeterministic polynomial time’. A 
particular characteristic of these problems is that no fast solution is known, because as the input size 
increases, the algorithm time required is superpolynomial (for example, exponential).   



129 
 

develop heuristic optimisation algorithms.’241 Metaheuristics are therefore guidelines to follow 

when designing a search method to solve a particular optimisation problem.  

Because metaheuristics look for a good enough solution within a relatively small period of 

time, they are not subject to combinatorial explosion, where the time required for an 

algorithm to find an optimal solution for an NP-hard problem increases exponentially with the 

problem size.  

All metaheuristics can be defined on the basis of five components: 

1. Representation 

2. Evaluation function 

3. Neighbourhood relation 

4. Search process 

5. Mechanism for escaping from local optima 

Representation 

The representation (or encoding) of a particular solution is fundamental to metaheuristic 

methods. Metaheuristics require a solution to be contained as an object within the computer 

program. It must be possible to manipulate the object using the different operators applied by 

the metaheuristic. Binary encoding, integer encoding, and permutation encoding are all 

common representation types for combinatorial problems, with different types being more 

appropriate for particular problems. For example, binary encoding may be more appropriate 

for knapsack and Boolean Satisfiability (SAT) problems, where a decision variable is yes/no, 

include/exclude. Integer encoding may be more appropriate for an assignment problem, 

where the value and order within a solution may represent tasks and resources applied for 

each task. Permutation encoding may be more appropriate for TSP and sequencing problems, 

where the order of elements (cities) is implied in the solution, and each element (city) is 

uniquely represented by an integer. The representation of a solution must retain the ability for 

the metaheuristic to change the solution, but also be coded efficiently. 

Evaluation function 

The evaluation function provides an indication of the quality of alternative solutions, and 

allows better and worse solutions to be distinguished. Many metaheuristics require the 

magnitude of change in competing solutions to be estimated (that is, precise estimates of the 

performance of two solutions to allow an accurate estimate of the difference), but some 

methods can work based on ordinal ranking of solutions (see the Ordinal Optimisation 

section). There may be single or multiple objectives within the optimisation problem which 



130 
 

each require evaluation. The evaluation function may be exact, or it may be approximated (e.g. 

approximation models) or estimated (e.g. simulation models). 

Neighbourhood relation 

The neighbourhood is a set of solutions that can be reached by a simple operator (often 

defined the ‘move operator’). If 𝑿 is the solution space, and 𝑥 ∈ 𝑿 a particular solution, then 

the neighbourhood function for 𝑥 ∈ 𝑿 is denoted 𝑁(𝑥). Neighbour solutions are expected to 

provide similar solutions in terms of their performance. However, for discrete problems this is 

rarely the case, and therefore the neighbourhood relation requires particular consideration 

given the problem type and method of representation. 

With a binary representation of a solution, a neighbourhood function may be flipping of one 

bit in the solution array (called a ‘bit flip’). The neighbourhood size is equal to the solution size. 

Representations and common move operators are demonstrated in Table 6.7, along with the 

corresponding neighbourhood size. 

Table 6.7: Neighbourhood size and move operators 

Representation Example Details Neighbourhood size 

Binary representation 10010  00010 Flip one bit in the 
solution vector 

Binary vector of size n, 
neighbourhood size of n 

Integer representation 57664  27664 A discrete value 
replaced by 
another character 
in the set 

If set of size k, and vector 
size n, then 
neighbourhood size (k-1)n 

Permutation Adjacent 
pairwise 
interchange 

51432  15432 Swap two 
adjacent 
elements 

Permutation size n, 
neighbourhood size n-1 

Insertion 
operator 

51432  54312 Select an element 
and insert in 
another position 

Permutation size n, 
neighbourhood size n(n-1) 

Exchange 
operator 

51432  51234 Two selected 
elements are 
swapped 

Permutation size n, 
neighbourhood size n-1 

Inversion 
operator 

51432  52341 Select two 
elements and 
exchange the 
sequence 
between them 

Dependent on element 
selection distance 

 

Search process 

The search process within a metaheuristic represents the lower-level heuristic (a perturbation) 

chosen to determine a step to a neighbouring solution. Alternative processes include ‘best 
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improvement’, where all neighbouring solutions are evaluated and the step with the best 

improvement (steepest descent/ascent within the neighbourhood) is accepted. Also 

commonly used is a ‘first improvement’ (gradient descent/ascent) process, where 

neighbouring solutions are evaluated and the first solution to offer an improvement is 

accepted. Finally, a random selection process can be used, where any neighbouring solution is 

selected at random, irrespective of if it is an improvement.  

It is important to note that the best improvement search process will find the local minimum, 

but it requires all possible solutions in the neighbourhood to be evaluated before the 

algorithm can iterate to that identified best solution. For a metaheuristic, it is important to 

balance the search process between exploitation of the best solutions found (referred to as 

intensification around a local optima) and exploration of the whole search space 

(diversification). A search process which is extreme in terms of intensification will only accept 

an improving solution, whereas a process extreme in terms of diversification will accept any 

solution.  

Mechanism for escaping from local optima 

There are two broad approaches to avoid an algorithm being trapped within local optima. The 

first is to repeatedly restart the algorithm with alternative starting points/solutions. The 

second is to allow moves to inferior solutions to be accepted. Allowing non-improving moves 

allows the search to escape a local optima, and this is often achieved by introducing a 

stochastic process which allows a non-improving move to be accepted with a given probability; 

and these are therefore a subset of stochastic optimisation methods. A deterministic algorithm 

will always find the same solution with a given starting solution. However, a 

probabilistic/stochastic algorithm may report a different solution from an identical starting 

solution.  

Memory and solutions 

There is a distinction between metaheuristics which require a memory of previously visited 

solutions, and those which only require the current best solution. Tabu search and particle 

swarm optimisation are two methods with a memory based structure to the algorithm, and 

use the memory of previously visited solutions to guide the algorithm through the search 

space. 

Also, in each iteration of a metaheuristic algorithm, there could be a single solution being 

considered, a population of solutions, or a set of local neighbouring solutions. These 

differences have important implications for the success of the algorithm, as well as the 

computational burden. Single solution searches include simulated annealing and tabu search, 
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population searches include genetic algorithms and particle swarm optimisation. Nested 

partitioning is a metaheuristic focussed on searching a current best neighbourhood/set. A 

table of methods classified by their memory structure and search type is provided in Table 6.8. 

Table 6.8: Metaheuristics - memory structure and algorithm type 

Algorithm 
type 

Memory structure 

No memory Memory 

Single Simulated Annealing, 
Greedy randomised adaptive search procedure 
Iterative local search 

Tabu Search 

Population Genetic and evolutionary algorithms Particle Swarm optimisation 
Ant Colony optimisation 

Set Nested partitioning - 

 

Search results 

Metaheuristics emerged from the search as the predominant class of method for simulation 

optimisation problems. 16 of the 28 (57%) identified studies were metaheuristic methods. Of 

these 16 studies, seven (44%) were simulated annealing methods, and five (31%) were genetic 

and evolutionary algorithms. See Table 6.5 for the full breakdown of studies and method 

types. 

It is important to note that none of the metaheuristic studies identified for simulation 

optimisation of a combinatorial problem were specifically new methods designed especially for 

the problem. In fact, the majority of studies were applications of established metaheuristics, 

with only four adapting the method to fit the combinatorial or simulation aspect of the 

problem.219,220,222,230  

Genetic algorithms 

Development 

The original genetic algorithm as defined by Holland et al. is now known as the simple genetic 

algorithm (SGA).243 Alternative and newer GAs and evolutionary algorithms (EAs) use 

alternative operations within the algorithm, but the concept is broadly similar. The method 

was not specific to simulation optimisation, but was developed as a metaheuristic with broad 

applicability to a range of optimisation problems. Very quickly, GAs became widely researched 

and applied in a range of areas.244–246 
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Practical applicability 

Five studies reported the use of a genetic algorithm for a combinatorial simulation 

optimisation problem.224,226–229 

Ding et al. (2005) apply a genetic algorithm to a supply chain simulation model with a single 

objective.226 Binary encoding was used and elements of the array represented supplier 

utilisation, assignment weight and replenishment level. The algorithm used roulette wheel 

selection and two-point crossover. Fixed probabilities for mutation and crossover were applied 

and an elitist selection strategy incorporated. Two limitations of the approach were that the 

algorithm stopping rule was simply after a predetermined number of iterations (500), and 

penalty factors were used to account for constraints being broken. These constraints were not 

encoded out and therefore represent inefficiency within the algorithm. However, the 

simulation model only took 1 second to run, and therefore the algorithm terminated after a 

few minutes. Convergence was identified after 100 iterations in their particular problem. 

Jun et al. (2010) report a modification to the SGA approach which incorporates an orthogonal 

quantized crossover operator.227 This method was originally designed for continuous 

optimisation, however it is discussed as applicable for combinatorial problems but it is not 

implemented in a simulation optimisation problem, and therefore the methodology proposed 

is theoretical at this stage.  

Korytkowski et al. (2013) apply a genetic algorithm to a dispatching problem, with four 

independent objectives considered.228 Integer encoding was used and a combination of 

roulette wheel and tournament selection applied. Two point crossover and mutation were 

applied with predefined probabilities. Elitist selection was applied and the algorithm stopped 

when the best solution stabilised. The algorithm reached a stop condition after 10.5 hrs 

(~36,000 iterations). For its four criteria of interest, the algorithm converged and the authors 

conclude that a near optimal solution was found after an acceptable time. 

Lacksonen et al. (2001) applied a genetic algorithm (along with three other optimisation 

algorithms) for four buffer-size problems.224 The study therefore provides a useful comparison 

of alternative methods across four different problems. However, because of this, full details 

about the genetic algorithm are not reported. The authors found that the size of the problem 

had a significant effect on the success of all methods (pattern search, simulated annealing, 

simplex method) apart from the genetic algorithm. The other three methods had poor results 

when the problem size increased, however the GA require significantly more replications to 

achieve the better result. The authors suggest that GAs have a clear trade-off between 
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accuracy and speed. Good solutions were generally found after 1000 replications; however this 

is problem-specific. 

Yang et al. (2007) applied an evolutionary algorithm to a parallel-machine scheduling 

problem.229 Real encoding of the solution was used, and roulette wheel with elitism applied for 

selection. Two-point crossover and mutation was undertaken using a predefined probability. 

Stopping criteria was a fixed number of iterations. The algorithm was found to be robust for 

alternative tuning parameters (crossover and mutation rates) and starting populations. 

However, the authors raised concerns about the computational efficiency of the algorithm; the 

algorithm took 2 hours to execute.  

None of the identified studies were concerned with a combinatorial sequencing problem, and 

therefore there was no permutation encoding of the solutions. Along with the encoding of the 

solution, the methods identified required tuning of the crossover and mutation parameters, 

the selection of the starting population, and the rules for terminating the algorithm. These 

user-defined aspects to the method introduce potential biases. However, there is an 

established body of literature outside of simulation-optimisation to ensure the GA is 

developed correctly and these parameters are unlikely to require special attention due to the 

evaluation of the objective function requiring a simulation. 

None of the studies fully consider how constraints and infeasible solutions are accounted for. 

Ding et al. (2005) use penalty functions which are applied to the output of an infeasible 

solution.226 This is an obvious inefficiency and it is likely to be much quicker to encode out 

infeasible solutions rather than simulating a solution and penalising it. 

Across most studies identified, convergence of the algorithm was identified after a few 

hundred iterations of the GA. It is not clear how relevant this may be to the treatment 

sequencing problem, but it provides an indication of the computational burden that GAs 

generally require. Lacksonen et al. (2001) and Yang et al. (2007) both report concerns about 

the efficiency of genetic algorithms.224,229  

The recognised strengths of GAs are that they are a good method for combinatorial problems, 

and the population approach balances exploration and exploitation, generally achieving 

convergence to near optima and avoiding early convergence. User-defined tuning of the 

algorithm is required, but there has been much research outside of simulation-optimisation to 

inform this. 

The limitations identified include the concerns from two studies that the algorithm is slow. 

Also, no study used a permutation representation of the permutation, which is more complex 
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to apply mutation and crossover. In theory, the stochastic nature of a simulation model is likely 

to cause problems to the traditional stochastic selection process such as roulette-wheel. 

Although some authors used tournament selection, it was surprising that there was not more 

discussion regarding this within a simulation-optimisation context. 

Simulated annealing 

Development 

Simulated annealing (SA) is a local search metaheuristic with the capacity to escape from local 

optima. The term ‘simulated annealing’ is an analogy to the process of annealing within 

crystalline solid. A solid is heated and then allowed to very slowly cool so that a crystalline 

structure of superior structural integrity remains.247 The stochastic acceptance mechanism of 

SA is a generalisation of the Metropolis algorithm, which is a method of sampling a Boltzmann 

distribution. The Metropolis algorithm is provided in Box 6.1.248 

𝑝(𝛿𝐸) = 𝑒(−
𝛿𝐸
𝑘𝑇

) 

Where: 

𝑝(𝛿𝐸) = probability of an increase in energy by 𝛿𝐸 

𝑇= temperature 

𝑘= Boltzmann’s constant (from the law of thermodynamics) 

Box 6.1: Metropolis algorithm 

The Metropolis algorithm requires a control parameter, called the ‘temperature’. SA allows the 

temperature parameter to be slowly cooled as the algorithm iterates, and this cooling rate is a 

key determinant of the success of the SA algorithm. This method was applied to solving 

combinatorial optimisation problems by Kirkpatrick et al. (1983) and Černý et al. (1985).249,250 It 

has now become one of the most widely used metaheuristics in combinatorial optimisation. A 

key development by Belisle (1992) was the development of a generalised SA algorithm which 

contained a heuristic temperature cooling schedule.251 

The method has been mathematically proven to converge on a global optimum, even in multi-

modal, discontinuous and noisy functions. A good discussion and summary of the proofs and 

conditions of convergence can be founded in Henderson et al. (2003).247  

How does it work? 

The original SA algorithm begins with an initial solution, typically determined at random. At 

each iteration of the algorithm a neighbouring solution is selected (either at random or some 

other low level heuristic). If the neighbour is better than or equal to the current solution, it is 

selected as the current best. If the neighbour is worse, then it is selected with a probability 

determined by the difference in objective values between the two competing solutions, and a 
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temperature parameter determined by the current number of algorithm iterations. The 

acceptance criterion is formally stated below in Box 6.2. 

𝑃{Accept 𝑥′as next solution} = {
exp [−

𝑔(𝑥′) − 𝑔(𝑥)

𝑡𝑘

] , if 𝑔(𝑥′) − 𝑔(𝑥) < 0

1, if 𝑔(𝑥′) − 𝑔(𝑥)  ≥ 0

 

Where: 

𝑥′ is a solution in the neighbourhood of 𝑥 

𝑡𝑘 is the temperature parameter at iteration 𝑘 such that: 

𝑡𝑘 > 0 for all 𝑘  

Box 6.2: Simulated Annealing acceptance criterion 

The probability of accepting a worse solution is based on Boltzmann’s law of thermodynamics, 

analogous to the annealing process that underpins the SA methodology. As with annealing, the 

SA algorithm begins with a high temperature (a higher probability of accepting a worsening 

move). This allows the algorithm to move out of local optima, especially in the early iterations. 

As the algorithm iterates, the temperature is gradually reduced based on a cooling schedule. 

This allows the algorithm to gradually focus on an area within the search space where a near 

optimum can be found. 

A recognised advantage of the SA algorithm is the relatively small number of parameters which 

need to be modified (tuned). The initial solution and the neighbouring feasible solution can be 

randomly selected. The two key parameters within the algorithm are the initial temperature, 

and the temperature cooling schedule. The stopping criteria for the algorithm are often based 

on either a maximum number of iterations, or when an improvement is not seen for a number 

of iterations. 

However, the tuning of the temperature value and cooling schedule is absolutely crucial to the 

success of a SA application. A large temperature value evaluates to a probability of one within 

the acceptance criteria for accepting an inferior move – resulting in a random search. 

However, a small temperature value results in a standard local hill climbing algorithm, because 

the probability of accepting an inferior move is zero. Therefore the tuning of this parameter is 

important to ensure a balance between exploration and exploitation. 

Three main cooling schedules have been the focus of much research involving SA – the 

logarithmic, Cauchy and exponential cooling schedules. Proofs are available which show that 

SA will converge to a global optima when the logarithmic cooling schedule is used.252,253 A 

faster cooling schedule was developed by Cauchy, and proven to converge on a global 

optima.254 An even faster exponential schedule has been often used. Attempted proofs 

regarding its convergence are contentious, however there have been strong arguments for its 

convergence when variables are bounded, which supports its use for discrete and finite 
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optimisation problem.255 Although its theoretical capabilities are unproven, the speed of the 

algorithm is often required for efficient computation and therefore it has been applied for 

optimisation or large problems or those with an expensive simulation.  

Practical applicability 

Seven studies reported the use of simulated annealing for a combinatorial simulation 

optimisation problem.219–225 

Ahmed et al. (1997) applied a slightly modified SA method to three multi-echelon repairable 

item inventory systems. The neighbourhood function was defined as the set that could be 

reached via a single perturbation (one change to the solution). The approach deviated from 

the standard SA, in particular by using the White method to determine the initial temperature. 

This involves computing a number of transitions from a starting solution and estimating the 

standard deviation of the objective value. The initial temperature is then set to this value.256 A 

cooling rate of 0.9 was selected based on the theoretical research by Kirkpatrick et al. 

(1983).257 As per the White method, the stopping criterion for the algorithm was based on the 

final temperature value. There was no modification or consideration of the stochastic nature 

of the evaluation function and how that may influence the performance of the SA algorithm. 

Instead, the authors focus on the fact that their particular problem contains stochastic 

constraints within the search space. However, the results from the study suggest a good 

performance of their SA algorithm. They were able to generate analytical solutions to the 

Markovian system that their problem was related to. In all three test cases the SA algorithm 

found results very close to the analytically proven optima. The authors conclude that the 

algorithm was relatively efficient and viable for their simulation run time and problem size. 

Interestingly, they highlight the problem of using the penalty approach to avoid an infeasible 

solution being the selected as near optima by the algorithm. During early configurations, the 

algorithm selected final solutions outside of the feasible region even when using penalty 

functions. Therefore they encoded the neighbourhood function to ensure that only feasibly 

transitions were accepted. 

In another study by the same research group, Ahmed et al. (2002) present a modified SA 

algorithm which incorporates ranking and selection methods to solve discrete stochastic 

optimisation problems.220 This is called Simulated Annealing with a Ranking and Selection 

procedure (SARS). A mathematical proof for near-guaranteed convergence is provided and 

empirical estimates based on an inventory optimisation problem. 
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Ranking and selection (R&S) is a statistical method for selecting the best result from a 

comparison of stochastic simulation results with a specified level of confidence. Often R&S is 

used when a small set of comparisons are reported by a simulation model. However R&S is 

also able to consider, at each iteration of a simulation model, whether the extra unit of 

computation effort is worthwhile. Therefore R&S minimises the computation effort to reach 

this specified level of confidence. This allows a specification of the number of samples required 

to ensure a desired probability of selecting the best alternative, as well as determining when 

alternatives can be designated as inferior and the simulation terminated. For optimisation, this 

is a very useful method if the search algorithm has already identified some good solutions 

because it provides a method of discarding inferior solutions at an early stage of the 

simulation. Traditionally a frequentist procedure, Chick and Inoue (2001) developed R&S 

procedures based on Bayesian expected value of information methods,258 with good results 

shown in several studies.259,260 

Ahmed et al. (2002) prove that by combining R&S with SA, the sequence converges almost 

surely to the optimum as the simulation runs required to evaluate the solution objective goes 

to infinity.220 However, in practice a stopping criterion is required for the algorithm. 

The algorithm was tested within an inventory problem, where an analytical solution was 

provided. Across eight different case test cases, the algorithm found solutions very close to the 

proven analytical solution. Little detail was given to the practical implications of these results 

and the run time required. The simulation used was relatively simplistic to enable comparison 

with an analytical solution. 

Alrefaei et al. (1999) used a SA algorithm to solve a discrete stochastic optimisation problem. 

They modify the algorithm to use a constant temperature, rather than the standard SA 

approach using a decreasing temperature as the algorithm iterates. This allows the search to 

more freely move within the state. They find that under mild conditions the search converges. 

They also modify the approach to treat the most visited state as the current optimum, rather 

than the recorded ‘current best’ solution. The rationale for these changes is not clearly 

provided. They test the performance of their algorithm in two queuing problems and against 

two alternative SA algorithms. They conclude that their algorithm is superior, with better 

solutions identified, but the performance was dependent on tuning a number of parameters 

(temperature and neighbourhood structure in particular). 

Ghiani et al. (2007) use a SA algorithm to solve a discrete stochastic optimisation problem. The 

focus of their study, rather than proving convergence, is the efficient applicability to numerous 

problems and the ability to parallelise (see later) the SA algorithm to ensure a consistently 
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good result is found in a reasonable amount of time. They also incorporate an indifference-

zone R&S procedure, based on the method by Rinott.261 This method requires an ‘indifference 

zone width’ δ parameter, which selects a solution with expected performance within δ units of 

the optimal performance with a confidence level of 1-δ. The procedure requires a reference 

configuration of samples to calculate the sample mean and marginal sample variance (first-

stage). The second stage involves a number of additional samples of this reference 

configuration to calculate the overall sample means. The number of replications allocated to 

each configuration is proportional to the estimated sample variance in the first stage of the 

procedure, as well as the indifference zone width parameter. 

As mentioned previously, R&S procedures are traditionally only relevant to small sized 

problems with full enumeration possible (although computationally expensive) and they 

require a decision-maker to be ‘indifferent to very similar differences’. Within the Ghiani et al. 

(2007) study, the authors have incorporated the Rinott R&S procedure within the SA algorithm 

in an innovative approach to avoid the traditional R&S limitations. 

The algorithm begins with estimating the Rinott procedure for the initial starting feasible 

solution (randomly chosen). The acceptance criteria are then determined by the estimated 

sample mean from the Rinott procedure for the new neighbouring solution. In practice, the 

process requires the interruption of the simulation model to estimate the first stage sample 

statistics, which informs the number of samples required for the second stage. 

Parallelisation (parallel computing) is where an algorithm or computer process is written so 

that many calculations are carried out simultaneously (as opposed to sequentially).262 If a large 

problem is divided into smaller ones, then these smaller problems can be allocated across 

numerous processors (from single computers, to clusters and clouds) and the total problem 

solved much more quickly. However, the concurrent nature of tasks running in parallel 

introduces complexity, and therefore parallel programming is often much more difficult than 

sequential programming.263 Also, the nature of the SA algorithm does not naturally offer up 

parallelisation solutions, because the standard Metropolis algorithm for acceptance 

“…depends on one or more previous states plus one or more random variables. This serial 

nature of SA is an inherent distraction to parallelization.”264 However, some literature outside 

of simulation-optimisation has attempted to develop parallelised versions of SA, with 

acceptable speed-up gains found.265–267 

Within this study, a master-slave single-thread parallelisation process was incorporated, which 

found significant speed-up gains (between ~2 (2 processors) and ~13 (16 processors) times 

faster than a sequential implementation). However, better solutions were not obtained. Multi-
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thread parallelisation process found slightly superior results (less than 3% on average), but 

much longer computation times was required to achieve this relatively small improvement, 

compared to master-slave single-thread parallelisation. The balance between efficiency and 

effectiveness of search algorithms appears to be a major issue within the parallelisation 

literature, as well as the general metaheuristics literature. 

Haddock et al (1992) used simulated annealing to solve a discrete manufacturing process 

problem. The problem size was small (120 combinations) and therefore it was possible to 

enumerate each solution. The authors found that a more expensive process of multi-restarting 

the algorithm was required to achieve a value which is optimal or near optimal. Otherwise, the 

algorithm was sensitive to different tuning parameter values (initial temperature, number of 

iterations at each temperature, final temperature value). The authors found that the SA 

algorithm identified the global optimum after evaluating approximately 30% of the total 120 

input variable combinations. 

The small problem size limit the conclusions of this study in terms of its relevance; however it 

does suggest that SA can be a reliable method to identify a near optimal solution, in particular 

if a multi-restart method is incorporated. 

Lacksonen et al. (2001) applied a SA algorithm (along with three other optimisation algorithms) 

for four buffer-size problems.224 As mentioned in the genetic algorithm subsection, the study 

therefore provides a useful comparison of alternative methods across four different problems. 

The SA algorithm used was simplistic, and may account for its lack of performance compared 

to the genetic algorithm. The cooling schedule had little justification and it was not clear what 

tuning was applied to each parameter. For each problem size, the SA algorithm was found to 

be inferior to the GA, however the GA required almost double the amount of replications to 

solve. The authors explore the possibility that the problems with the SA algorithm arose from 

requiring different cooling schedules and starting points for each solution. It was not clear why 

this was not conducted to provide a fair comparison between each search method. 

Rosen et al. (2005) applied a SA algorithm to solve a discrete manufacturing process problem. 

The algorithm is a modification of the standard Kirkpatrick et al. SA algorithm.257 The authors 

implement both algorithms to provide a comparison, and find that their modified SA algorithm 

identified either equivalent or superior results in all instances, and usually required a similar 

number of simulation runs. Significant was the finding that the new algorithm was easier to 

tune and in general required fewer simulation runs. 



141 
 

The modified algorithm incorporated a linear approximation method to identify an area where 

a solution of high quality is likely to be. These linear approximation methods are adaptations of 

the response surface methods by Box and Wilson.268 The assumption made is that other high 

quality solutions could exist in an adjacent neighbourhood, which is explored using SA. 

Repeatedly iterating this two-phase process using different starting solutions is undertaken to 

find a final best solution. 

Tabu search 

Development 

Tabu search was developed by Glover (1989, 1990) to solve combinatorial optimisation 

problems.269,270 The method is an extension to standard local search hill climbing methods, and 

introduces memory to prevent reversing recently accepted moves. Therefore whenever a local 

optimum is encountered, non-improving moves are accepted because previously visited 

solutions recorded in the memory (the tabu-list) are forbidden. 

Since its development in the late 1980s, the method has a reasonably stable history, with only 

minor modifications to the process of the algorithm and the rules regarding memory structure. 

In the first fifteen years from the method’s development, TS has been applied to combinatorial 

optimisation problems in well over 100 published papers.271 

The development of TS was partially motivated by human behaviour. Glover discusses that 

inconsistent behaviour has often be observed even in similar circumstances and the tendency 

to deviate from a course might both be an error but also an unexpected gain.269 The TS does 

not deviate randomly, but instead supposes that there is no point accepting a poor solution 

unless it is to avoid an already investigated area. 

Tabu search is an example of a computational algorithm with adaptive memory. Adaptive 

memory programming is a growing area of research within metaheuristics and an avenue of 

rich potential.272 

Practical applicability 

Two studies have reported the use of TS for a combinatorial simulation optimisation 

problem.230,231 

Azadeh et al. (2010) develop an integrated process of response surface methodology (RSM) 

and TS to optimise a TS to a discrete production system problem.230 A design of experiment 

analysis is undertaken using the RSM to provide a modelled estimate of the search space and 

objective function. The TS is then applied to these modelled estimates, rather than requiring 
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simulation runs to evaluate the objective function for each solution. There are a number of 

limitations to the study which should be noted. Firstly, the problem size is relatively small, and 

the RSM is fitted for 81 (34) observations, which allows enumeration rather than requiring a TS. 

The TS only required 26 replications to converge, and the neighbourhood structure for three 

competing design factors results in six possible neighbours for each solution. It is not fully clear 

how long the simulation model of the production process requires to achieve a steady state 

estimate of the objective function. A useful comparison would have been to see what 

efficiency saving was made by incorporating the RSM model and whether the results with and 

without (just a simulation-optimisation via TS) identified would differ. The RSM invariably adds 

a level of uncertainty and it is not fully detailed how the model was specified and validated. 

The authors conclude that the methods they follow can be applied for all types of discrete 

production system optimisation which is probably over optimistic given the problem size they 

consider. They also conclude that a global optimum is identified, but no proof is provided. 

Yang et al. (2004) attempt to solve a flow shop with multiple processors (FSMP) problem using 

a TS simulation optimisation method. The FSMP problem involves sequencing jobs in a flow 

shop for processing by more than one identical processing machine. This is a commonly 

observed NP-hard problem in manufacturing and operational research. A discrete event 

simulation model is used to evaluate the performance of each solution, with tardiness the 

objective to be minimised. The TS is separated into two methods, TS1 and TS2. TS1 presents 

the basic implementation of TS as proposed by Glover. TS2 incorporates a long-term memory 

structure to inform the restart procedure of the algorithm. Moves from the current solution 

are undertaken using a pairwise-exchange/swap method. This is a commonly used method to 

construct a neighbouring solution in a permutation-represented problem.273 An aspiration 

criterion is applied so that tabu moves are (re)accepted if they are good solutions. Tabu list 

size is based on previous research which suggests that it is an integer between n/3 and 3n/2 

where n is the problem size.274 The search stops after a defined number of iterations, based on 

the problem size and number of possible swaps, n(n-1). 

The search is run for five different problem scenarios. The authors apply a steepest descent 

pairwise interchange (SDPI) heuristic to solve the problem and provide a benchmark solution. 

Both TS1 and TS2 were a superior search, taking a comparable computational time compared 

to SDPI and finding superior solutions in all five scenarios. In three scenarios, TS1 found a 

better solution compared to TS2. The study represents a good implementation of TS for a 

permutation problem. The high speed of the simulation model results in a final solution being 

found by the TS algorithm within 30 minutes, which represents a good method for solving a 
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practical optimisation problem. The authors do not identify any limitations with the TS method 

that they propose. 

Nested partitions 

Development 

Nested Partitions (NP) is a randomised optimisation framework.233,275,276 The method was 

developed to be applicable to both deterministic and stochastic discrete optimisation 

problems. Immediately after development, the method was applied to two combinatorial 

problems, Shi et al. (1999) for a Travelling Salesman Problem, and Olafsson et al. (2000) for a 

Parallel-Machine Flexible-Resource Scheduling problem.276,277 

Practical applicability 

One study has reported the use of Nested Partitions (NP) for a combinatorial simulation 

optimisation problem.233  Shi et al. (2000) use the stochastic nested partitions method to 

optimise a stochastic travelling salesman problem (TSP).233 The problem is stochastic because 

the time between each city is uncertain, and the total time for each route estimated as the 

average time across each replication of the simulation model. Test problems of size 51, 76 and 

101 nodes were used. The percentage over the optimum for the three problems was 2.77%, 

3.12% and 5.38% respectively, which required 300 iterations of the NP algorithm. This 

performance worsened by approximately 10% when variable noise was added to the 

performance measure of the problem. The authors suggest this is a reasonable amount and 

conclude that the algorithm is relatively robust to noise in the simulation. Convergence to a 

near optimum after 300 replications across three relatively large problem sizes is a positive 

result for the relatively new NP method. 

Ordinal optimisation 

Development 

The development of ordinal optimisation (OO) for simulation optimisation arose because 

making a decision to move within the solution space only requires an ordinal comparison 

between two solutions (𝑔(𝑥1) < 𝑔(𝑥2)) . A precise estimate of the difference between two 

solutions is not required. As stated by Deng and Ho (1999), “It is much easier to determine 

‘order’ than ‘value’”.278  These comparisons are the focus of OO, which was developed by Ho et 

al. (1992).279 In particular, when uncertainty is present then the benefit of an ordinal approach 

over a cardinal approach is even more significant. There is an error possible in simulation 

optimisation because a solution chosen as superior could be inferior due to the uncertain 
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estimate of their performance. This error decreases in probability as the difference between 

two comparators increases. 

It has been shown that ordinal comparison methods converge much more quickly compared to 

cardinal estimation, potentially at an exponential rate with respect to the number of algorithm 

iterations.280 The development of these methods was independent of any particular 

metaheuristic. This is because in all metaheuristics, moves are all based on comparisons 

between solutions and therefore the ordinal comparison approach is relevant to all 

metaheuristics. 

Practical applicability 

One study has reported the use of OO for a combinatorial simulation optimisation problem.232  

Ho et al. (2000) use OO for a buffer allocation problem. A stochastic resource allocation 

algorithm is used with ordinal comparison between alternatives applied. The problem was 

fixed so that the optimal solution was analytically possible to find. The algorithm required only 

approximately 20 iterations to converge on the analytical solution. Even when using the worse 

possible allocations as the starting selection, the algorithm very quickly converged. 

However, there are some limitations to note. Firstly, the problem is simplistic and the 

simulation (6 users for 24 buffer slots) would be extremely fast to run. Secondly, very little 

detail is provided regarding the simulation model and the methods used to apply the OO 

algorithm. 

Particle swarm optimisation 

Development 

Particle Swarm Optimisation (PSO) was developed by Eberhart & Kennedy (1995).281 It is a 

population based metaheuristic with candidate solutions (particles) moving through the search 

space via formulae determining their position and velocity. These formulae incorporate 

information regarding the particle’s own best solution, but also the best solutions of other 

particles in the ‘swarm’ which guide each particle towards good positions within the search 

space. 

PSO was developed as a computer algorithm to simulate the movement of organisms, such as 

birds and fish. The algorithms original objective was to simulate the choreography of swarms 

of organisms, which results in synchronous movement. With particles emulating the success of 

neighbouring particles, the algorithm was found to discover optimal regions within high 

dimensional search spaces. The method was refined and simplified when the objective altered 
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and became focussed specifically on the applicability of the particle swarm algorithm for 

optimisation.282 

Practical applicability 

One study has reported the use of PSO for a combinatorial simulation optimisation problem.234 

Kuo et al. (2011) report using a PSO algorithm for an assembly line problem. They modify the 

standard PSO approach by incorporating a mutation operator which alters similar particles 

(Particle Swarm Optimisation algorithm with Mutation based on Similarity – PSOMS). The 

method also incorporates an inertia weight. They also incorporate two genetic algorithms to 

compare against the PSOMS method. Only very limited information about these genetic 

algorithms is provided which is why they are not formally included in the review. A standard 

PSO algorithm was implemented as well. 

The results showed that PSOMS converged fastest and to the best solution when compared to 

PSO and two GAs. However, the success of the algorithm was dependent on the inertia weight 

parameters. Five evaluations were undertaken and the results varied dramatically by the 

inertia weight used. The PSOMS was also very sensitive to the number of particles used. In 

general, the algorithm improved with higher numbers of particles. The results were also 

sensitive to the learning factor parameters and the mutation parameters. On the whole, the 

PSOMS appears to require the tuning of several parameters and therefore the appropriateness 

of the method must be considered.  

HYBRID AND OTHER METHODS 

Not all of the identified methods for a combinatorial simulation optimisation problem can be 

easily classified. Many of the methods that have been reviewed already are themselves 

modifications of existing methods. Often, particular elements from a method are revised or 

used within a different method, to provide a more appropriate solution to a given problem.  

However, the two methods reviewed in this section, averaging for simulated annealing, and 

empirical stochastic branch-and-bound, are truly hybrid methods which look to combine 

heuristic algorithms with statistical methods so that they resolve the unique issues which arise 

when attempting to optimise a simulation model. 

Also included in this section is a discussion regarding hyperheuristic methods. Although 

hyperheuristics methods for simulation optimisation were not found within this review, 

discussion with experts at a National Taught Course Centre in Operational Research (NATCOR) 

metaheuristics course highlighted that hyperheuristics is a field of research which may have 
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potential applicability to our sequencing problem. Therefore a discussion and review of the key 

literature is provided. 

Hybrid methods 

Development 

Prudius et al. (2012) developed an averaging framework for simulated annealing.235 The 

method is a hybrid application of random search methods as well as averaging methods. The 

method is recently developed, however it draws upon the whole spectrum of simulation 

optimisation methods as reviewed within this chapter. 

Xu et al. (2013) developed an empirical stochastic branch-and-bound method for simulation 

optimisation.236 This is a hybrid method which combines nested partitions and stochastic 

branch-and-bound.  

Practical applicability 

Prudius et al. (2012) apply their average framework for simulated annealing method to a 

three-stage buffer allocation problem.235 They do not provide a great deal of information 

about the practical application of their method. The global algorithms incorporating averaging 

perform better than local algorithms, however this is not unexpected. They do identify that 

averaging does not always benefit the algorithm it is applied to. They apply two variants of 

simulated annealing and demonstrated that averaging alone may either help or hurt the 

performance of the algorithm, compared with no averaging. They do find that averaging within 

the algorithm as well as an adaptiveness component to avoid unnecessary simulation does 

appear to be an effective strategy. 

Xu et al. (2013) apply their empirical stochastic branch and bound method to a three-stage 

flow line with finite buffer storage problem. They find that the algorithm converges 

asymptotically to the global optimum, and they empirically show that their method 

outperforms the standard nested partitioning approach. The advantages of the method are 

maximised when the problem is noisy or there are significant interactions between the 

decision variables. Little other information regarding performance was given, due to the study 

being focussed on the methodological development and proof of convergence. 

Hyperheuristics 

The current heuristic approaches for searching and optimisation still tend to focus on bespoke 

systems and solutions, even given their flexibility. In general, these solutions and algorithms 

have been found to be expensive to develop and run. However, despite this they have 

provided successful results for real world problems. 
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Unfortunately, the application of a metaheuristic to a new problem domain (or even a new 

problem instance) still tends to require expert involvement and often an expensive period of 

research. While a metaheuristic may generate good performance in an alternative problem 

instance, it is often observed that an alternative may also generate good or superior 

performance.283,284 

The goal of much current research is to raise the generalisability of search methodologies 

through learning and adaptation so that these methods are applicable across a broad range of 

problems without requiring any human expert intervention. This area is challenging, because 

there is a lack of theoretical understanding of how to build a meta-level intelligent search 

method which is capable of automatically tuning, selecting and generating a search system.285 

A hyperheuristic is a search method or learning mechanism for selecting or generating 

heuristics to solve computationally difficult problems. The hyperheuristic operates on the high-

level search space of heuristics, rather than on the low level search space of solutions. Or more 

simply, a hyperheuristic is optimising the selection of a lower level heuristic, which in turn 

derives a solution for the problem. 

Although a cutting edge area of current research, the origin of hyperheuristics can be traced 

back to the early 1960s.286,287 Recent research has involved the benchmarking of alternative 

hyperheuristics (HyFlex research project), with the AdapHH heuristic showing clear 

superiority.288,289 However, it in itself requires the tuning of approximately 20 parameters. It is 

still not clear if it really offers a generalisable framework for applying heuristics to solve a 

computationally difficult problem. 

The cutting edge nature of hyperheuristics contrasts the more established background of 

metaheuristics, many of which have a proven theoretical basis. For our particular sequencing 

problem, it does not currently seem appropriate to take advantage of hyperheuristics and 

automate the process of heuristic selection. Instead it seems more appropriate to apply one or 

more established metaheuristic methods to attempt to find a good solution and method, and 

then in the future to maybe consider the applicability of a hyperheuristic. 

 

6.9 DISCUSSION AND CONCLUSIONS 

The aim of this chapter was to systematically search published literature to identify relevant 

methods for finding an optimal or near-optimal sequence of treatments in an economic 

evaluation using discrete event simulation. 
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The treatment sequencing problem was formulated as a combinatorial discrete simulation 

optimisation problem. Therefore methods were searched for which were either developed for, 

or addressed, problems of this type. To facilitate this review, a citation pearl growing search 

was undertaken to identify all relevant methods across a disparate area of research. From the 

results of this search, a narrative review and synthesis was undertaken to draw conclusions 

regarding the applicability of each main method type. Methods were assessed using a bespoke 

framework which addressed their theoretical basis, practical applicability, and relevance to the 

treatment sequencing problem.  

The methods identified could be grouped into two broad categories: random search methods; 

and metaheuristic methods. The majority of methods identified were metaheuristics, which 

are generalised methods with the objective of being applicable to a range of problem types. 

This is an attractive property, because they provide a theoretical basic for their applicability, 

and the review found that they have been applied to a wide range of problems. This supports 

their use for a combinatorial discrete simulation optimisation problem, although no instances 

were found where a metaheuristic was found for a problem with a permutation encoding. This 

is most likely to be the superior way to represent the treatment sequencing problem. Little 

evidence was found about the relative performance of each metaheuristic. Lacksonen et al. 

(2001) applied SA and GA algorithms for four buffer-size problems.224 The SA algorithm used 

was simplistic, and may account for its perceived lack of performance compared to the GA. 

Also, the detail provided in the article was limited, and therefore robust conclusions cannot be 

drawn.  

Statistical methods such as metamodeling, adaptive sampling, and approximation, were 

excluded from the review. These methods are concerned with how simulation runs can be 

efficiently ‘selected’, and how superiority can be proven in the presence of noise. These 

methods have been shown to work well in combination with a range of search algorithms, and 

may provide a significant ‘speed up’ to the ability of a search algorithm to identify a near 

optimal solution. However, some of the methods are were only relevant for relatively small 

problems. Additionally, some required a continual evaluation of the output of the simulation 

model while it was simulated.  

Some important trade-offs have been identified, and some methods explicitly provide the 

ability to ‘balance’ these. In particular, there is a trade-off between exploitation and 

exploration – ensuring the global space is searched but also looking for the local optima within 

a particular area. Furthermore, there is a trade-off between the ability to search within the 
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space, and ensuring that precision is obtained in each simulation of a solutions objective 

function. 

Some limitations of the systematic review should be noted. Firstly, the use of a bespoke 

framework is required because there is no gold standard method against which to compare. 

This is open to reporting bias, in particular due to one researcher working on this review. 

However, the use of a framework to assess the relevance and merits of alternative 

methodologies has been recommended in the methodological systematic review literature.202  

Also, the review of methods fell well outside of health economics and the regular area of 

research and expertise – into engineering, computing and mathematics. This may provide the 

potential for errors in interpreting and understanding particular aspects of a method or 

problem. Intensive training was undertaken alongside this PhD research, in particular on 

metaheuristic methods and simulation modelling, to ensure the skills were available to assess 

and apply alternative methods in this area. The objective of the reviews was not to inform the 

theoretical design of a new optimisation method, but to understand existing methods to an 

appropriate level which would allow a judgement regarding their appropriateness to the 

treatment sequencing problem, and subsequently the ability to implement the method using 

the RA DES model. 

Finally, the search was specific to combinatorial and simulation optimisation problems, 

however methods that are not specific to these may still be relevant and applicable. It should 

be noted that very few sequencing or permutation problems were identified, which are of 

particular applicability to the treatment sequencing problem. These problem types have 

particular issues for search algorithms, in particular neighbourhood functions and move 

operators. Further reviewing for approaches to resolve these may be required when selecting, 

implementing and evaluating a method in the next stage of this thesis.  
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CHAPTER 7: APPLICATION OF SIMULATION OPTIMISATION VIA 

SIMULATED ANNEALING FOR AN ECONOMIC EVALUATION OF 

TREATMENT SEQUENCES FOR RHEUMATOID ARTHRITIS 

 

7.1 CHAPTER OVERVIEW 

This chapter contains the pivotal analysis within this thesis. It draws from Chapter 5, where a 

discrete event simulation (DES) model is developed for estimating the cost-effectiveness of RA 

DMARDs. It also draws from Chapter 6, where a systematic review to identify methods which 

are relevant for the treatment sequencing problem is conducted.  

In this chapter, simulated annealing (SA) with a memory function is the selected methodology 

to enable the simulation optimisation (SO) of the DES model developed in Chapter 5. The 

whole method is referred to as SOSA (Simulation Optimisation via Simulated Annealing). 

The reasons for selecting SA are fully explained, and the methodology is reported for 

transparency. Modifications to the DES model are required to enable it to be operated by the 

simulation optimisation algorithm. Justifications for these modifications are provided and the 

model is validated. 

The SA algorithm is comprehensively ‘tuned’, where key control parameters are altered to 

obtain good performance of the algorithm. The algorithm is then used to identify a good 

solution to the problem, and sensitivity analysis conducted to test the robustness of the 

results. The identified results are considered in terms of their potential implications for health 

resource allocation policy. 

The overall performance of the SA algorithm is considered in the final discussion section of the 

chapter. 

 

7.2 INTRODUCTION 

The aim of this chapter is to undertake a simulation optimisation of a DES model, to enable the 

identification of an optimal or near-optimal DMARD treatment sequence for patients with RA. 

Section 7.3 reports the methods of the analysis. This includes a justification for the chosen SO 

method, a SA algorithm with a memory structure. Modifications are required to the existing 
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DES model to enable it to be operated by the SA algorithm, and these are fully reported. The 

SOSA method and the process undertaken to tune its performance are detailed. 

Section 7.4 presents the results of the SOSA analysis, along with sensitivity analyses. Section 

7.5 provides a discussion on the analysis, and draw conclusions. 

 

7.3 METHODS 

SIMULATION OPTIMISATION 

As reviewed and discussed in Chapter 6, simulation-optimisation (SO) methods are concerned 

with finding an optimal or near-optimal solution for a problem when potential solutions are 

evaluated using a simulation model. SO has two unique aspects, compared with standard 

optimisation methods. Firstly, the simulation model may be stochastic, with an uncertain 

estimate of the objective function. Secondly, the simulation model may take a significant 

period of time to evaluate a solution. SO methods must therefore overcome these challenges. 

Rational for Simulation-Optimisation using Simulated Annealing (SOSA) 

On the basis of the review and appraisal reported in Chapter 6, SA has been selected as the 

metaheuristic SO method to address the RA treatment sequencing problem outlined in earlier 

chapters. The rationale for this decision is based on the following four factors. 

1. SA was found to be the most commonly used method in the systematic review 

reported in Chapter 6. Seven of the 28 (25%) of studies identified were studies where 

SA had been applied to a combinatorial SO problem. These studies on the whole 

reported that SA performed well for their particular SO problem. 

2. Only one study has been identified which compares the performance of SA against 

other metaheuristics.224 Lacksonen et al. (2001) found in their case that SA might not 

perform as well as a genetic algorithm (GA), however neither method was extensively 

‘tuned’ (the process of optimising the control parameters of the algorithms). On one 

occasion the SA method found a solution in much fewer replications compared to GA, 

which indicates that no definitive conclusions were found. There are several 

limitations of the Lacksonen et al. (2001) study which are detailed in Chapter 6. 

3. SA is relatively easy to implement and programme, compared with more complex 

metaheuristics like Tabu Search, Particle Swarm and Genetic Algorithms. 
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4. Genetic Algorithm, another potential method, has in general been found to be robust, 

but also very slow to implement and run. Therefore a trade-off between speed and 

precision is required. 

These four factors have led to the decision to select SA as the method to implement. 

Unfortunately the time taken to implement, validate and run multiple SO methods means that 

is it not possible to implement more than one SO method and judge their relative performance 

within this thesis.  

Simulation Optimisation algorithm 

A Simulation Optimisation (SO) algorithm has been developed to allow the simulation 

optimisation of the RA treatment sequencing problem. The algorithm is detailed in Figure 7.1. 

The SO algorithm allows an optimisation algorithm (in this case, a metaheuristic) to evaluate a 

particular potential solution by running a simulation model. The optimisation algorithm then 

considers the performance of that particular potential solution (the output of the simulation 

model) before generating a new potential solution for the simulation model to evaluate, or 

stopping the SO algorithm. 

The algorithm begins by initialising both the simulation model and the optimisation algorithm. 

User-defined parameters govern both parts of the SO algorithm and need to be selected 

before starting the procedure. Also, a patient-level dataset is required for the simulation 

model. This contains patient characteristics as well as probabilistic parameter values. This 

dataset is generated at the start of the SO algorithm and passed to the patient simulation 

model. Alternatively, to ensure consistent results, a previously generated dataset can be 

loaded into the simulation model.  

A starting treatment sequence is then generated (either at random, or a user-defined 

sequence) and this is evaluated by the simulation model. The results from this evaluation (the 

net monetary benefit (NMB) given a specified cost-effectiveness threshold) are then passed to 

the optimisation algorithm (in this case, a simulated annealing metaheuristic algorithm) which 

generates a neighbouring solution and loads this into the simulation model. The process of 

evaluation, results processing, next sequence generation and re-evaluation is fully automated 

once the algorithm is begun. The algorithm stops when a stopping criterion is met. The 

following sections within this chapter report on the methods utilised to contribute to this SO 

algorithm. 
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Figure 7.1: Simulation Optimisation algorithm 

 

SIMULATION MODEL 

Simul8 

Simul8© is a simulation modelling software package widely used to develop discrete event 

simulation models. In recent years it has been increasingly used to develop patient level 

simulation models for cost-effectiveness analyses.290–293 The advantages of Simul8 for 

developing a patient level simulation model include: being faster than similar models 

implemented in MS Excel; having an intuitive graphical user interface (GUI) which allow easy 
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debugging and validation; and possessing a relatively powerful Visual Logic (VL) language 

which allows user defined functions and code to be run when events occur in the model. 

Simul8 was chosen as the software package to implement the RA model because, from 

experience, it is much faster than MS Excel when running similar patient level simulation 

models. However, Simul8 is not routinely supported by NICE for submissions to its NICE 

Technology Appraisal process (because it is a relatively expensive bespoke simulation software 

package) and therefore the original RA model as reported in Chapter 5 was developed in MS 

Excel. It was decided the investment in time to rebuild the model in Simul8 was worthwhile to 

gain a much faster patient level model. 

Modifications from NICE model 

Where possible, the Simul8 version of the NICE model is an exact copy of the original NICE 

model developed in MS Excel. All analysis is in a severe RA population (Population 1 and 2). 

Identical parameters, evidence sources and costs are used (including confidential ‘Patient 

Access Schemes’ which reduce the cost of selected bDMARD treatments). The following 

sections report the particular areas of the current Simul8 model which deviate from the 

original NICE RA model. 

Treatment decrement parameter 

A treatment decrement parameter has been included within the Simul8 model. This parameter 

was not included within the NICE RA model, because of time constraints within the appraisal. 

Treatment decrement parameters have been used in previous NICE RA appraisals to consider 

the impact on the efficacy of a treatment of having several previous failures on treatments of 

the same general class. It is not seen as clinically plausible that the efficacy of a bDMARD after 

no previous bDMARDs is going to be the same as after 3 or 4 previous bDMARDs. Therefore for 

both bDMARDs and cDMARDs, a treatment decrement parameter was incorporated, broadly 

in line with the approach requested by NICE for the TA198 (now TA247) appraisal of TCZ for 

RA.* In this appraisal, the manufacturer undertook trial subgroup analyses specific to TCZ, ETN 

and RTX to adjust the efficacy data used in the economic model (efficacy reported using ACR 

20/50/70 criteria). Their subgroup analysis produced inconsistent results in places, with 

improved efficacy seen in some levels of response, however it was accepted by the NICE 

appraisal committee as being valid in the absence of better data. These data are reported in 

Table 7.1. 

 

                                                           
*
 http://www.nice.org.uk/guidance/ta247 - Accessed June 2015 

http://www.nice.org.uk/guidance/ta247
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Table 7.1: TA198 Treatment decrement estimates 

Treatment  ACR 20/50/70 (%) 

Tocilizumab (TCZ) First line efficacy 

‘Degraded’ efficacy 

62/31/12 

50/31/15 

Etanercept (ETN) First line efficacy 

‘Degraded’ efficacy 

62/38/16 

49/26/7 

Rituximab (RTX) First line efficacy 

‘Degraded’ efficacy 

46/23/14 

42/22/10 

 

It has been assumed that after two prior bDMARD or cDMARD treatments in the sequence, the 

decrement is applied. In the basecase, this treatment decrement is set at 10%, and will be 

varied in scenario analyses.  

Meta model and curve-fitting 

The NICE RA patient-level simulation uses the estimated coefficients from three econometric 

models to provide patient-specific model parameters. 

Specifically, these models are: 

- A generalised gamma regression model used to determine the length of treatment for 

a patient with a moderate EULAR treatment response 

- A log-normal regression model used to determine the length of treatment for a patient 

with a good EULAR treatment response 

- An Adjusted Limited Dependent Variable Mixture Model (ALDVMM) use to estimate 

health related utility values (HRUVs). 

Table 7.2 provides the independent (patient specific) variables used throughout the patient 

simulation, which when combined with the estimated coefficients from the models, determine 

time on treatment (given a moderate or good EULAR response) and HRUV. 

In MS Excel, these models can be easily incorporated to obtain a patient level prediction within 

the simulation model, by using Excel’s inbuilt statistical functions (specifically, probability and 

cumulative distribution functions for normal, log-normal and gamma distributions). However, 

within Simul8 these statistical functions are not included. 

From experience, Simul8 provides a significant improvement in simulation speed compared to 

MS Excel, and therefore undertaking a simulation-optimisation process is not likely to be 

feasible just in MS Excel. However, these econometric models represent the best use of 

available evidence to provide patient-level parameters in the simulation model. Therefore, 
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metamodels of these econometric models were constructed to enable their inclusion in the 

Simul8 model. 

Table 7.2: NICE RA econometric models for patient level parameters 

Model Log normal Generalised Gamma ALDVMM 

Dependent variable Time on treatment 

(Good EULAR response) 

Time on treatment  

(Moderate EULAR response) 

Health 

Related 

Utility Value 

Independent 

variables 

Age 

Age2 

Gender 

Disease Duration 

Disease Duration2 

DAS 

Number of previous DMARDs 

HAQ 

HAQ 

HAQ2 

Age 

Age2 

 

Prediction 

parameters 

Constant term 

Independent variable 

coefficients 

Sigma 

Constant term 

Independent variable 

coefficients 

Sigma 

Kappa 

- 

Method to account 

for uncertainty 

Multivariate normal distributions across all parameters 

 

 

Health Related Utility Value (HRUV) meta model 

For the HRUV econometric model, a pragmatic solution was to fit a meta-model (essentially a 

regression model of a model) to allow the prediction of the dependent variables given specific 

patient characteristics, which can then be easily incorporated into the Simul8 simulation 

model. 

To fit the metamodel, a dataset of the dependent and corresponding independent variables 

from the econometric model was required. Therefore, a dataset was generated using the 

simulation model in Excel, which returned both the dependent and independent variables. A 

dataset of 2000 simulation observations was generated for the utility value and corresponding 

independent variables. For the utility model, the independent variables are simply Age, Age2, 

HAQ, HAQ2. Therefore these independent variables were fitted to the meta model. 

An OLS regression model was therefore fitted with the following functional form: 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 =  𝛽0 + 𝛽1𝑎𝑔𝑒 + 𝛽2𝑎𝑔𝑒2 + 𝛽3𝐻𝐴𝑄 + 𝛽4𝐻𝐴𝑄2 + 𝜀 [7.1] 

The results of the regression are provided in Box 7.1. 
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      Source |       SS       df       MS              Number of obs =    2000 

-------------+------------------------------           F(  4,  1995) = 4262.72 

       Model |  41.0386948     4  10.2596737           Prob > F      =  0.0000 

    Residual |  4.80164569  1995   .00240684           R-squared     =  0.8953 

-------------+------------------------------           Adj R-squared =  0.8950 

       Total |  45.8403405  1999  .022931636           Root MSE      =  .04906 

 

------------------------------------------------------------------------------ 

        util |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |   -.000971   .0006111    -1.59   0.112    -.0021695    .0002275 

        age2 |   .0000105   5.11e-06     2.05   0.040     4.67e-07    .0000205 

         haq |  -.2041815   .0074534   -27.39   0.000    -.2187988   -.1895643 

        haq2 |  -.0129101   .0024876    -5.19   0.000    -.0177887   -.0080315 

       _cons |   .9100248   .0183569    49.57   0.000     .8740241    .9460255 

------------------------------------------------------------------------------ 

Box 7.1: HRUV meta model regression results 

The residuals showed some slight correlation (Figure 7.2), and alternative functional forms and 

other independent variables (such as a cubic term) may have improved the fit of the model, 

however within the timeframe of the thesis this was not possible. The predicted values 

appeared to fit the data (Figure 7.3). 

 

Figure 7.2: HRUV meta model regression residuals 
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Figure 7.3: HRUV meta model regression fit 

Time-on-treatment meta model 

For the two time-on-treatment models, the output from the econometric model was a survivor 

function and corresponding survival curve. The survival function could not be implemented in 

Simul8, and therefore the two curves (good and moderate EULAR response) for a patient with 

mean characteristics from the analysis were digitised to allow a parametric distribution to be 

fitted to the digitised data. This is a commonly conducted method to allow a parametric model 

to be fitted to a published aggregate survival curve. In this case it represented the most 

effective way of incorporating the survival model data into the Simul8 model, however it is at 

the expense of reduced accuracy, in particular because the time-on-treatment parameters are 

now essentially global parameters, rather than being patient specific. 

Parametric distributions were fitted to the data and the distribution parameters optimised by 

minimising the mean squared error using the MS Excel Solver add-in. Log-normal distributions 

were selected for both models (the EULAR Good Response time-on-treatment model is a log-

normal, however the EULAR Moderate Response model is a generalised gamma) and were 

found to fit very closely to the original data (Figure 7.4, Figure 7.5). 
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Figure 7.4: Time-on-treatment (Moderate EULAR response) 

 

Figure 7.5: Time-on-treatment (Good EULAR response) 

 

Treatments and decision space size 

As highlighted in the systematic review of economic evaluations in Chapter 4, there is a large 

set of DMARDs for patients with rheumatoid arthritis. 

For this analysis, all potential competing DMARDs currently used regularly in the NHS were 

selected for the pool of treatments from which to derive each treatment sequence. There are 

several cDMARD therapies (leflunomide, aziathaprine, ciclosporin, penicillamine, injectable 

gold) which are less commonly used and have therefore been omitted. This decision was based 

on two factors. Firstly, to ensure that resulting sequences are clinically meaningful and 

appropriate. Secondly, there is less comparative evidence to provide estimates of the relative 

efficacy of these older and less-commonly used treatments compared to more commonly used 

cDMARD treatments and the new biologic DMARDs (bDMARDs). 
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The set of treatments within the analysis is provided in Table 7.3. The treatments are grouped 

by their general classification, and include the current licenced indication for each treatment. 

Treatments can either be used first line, after a previous cDMARD, or after a previous bDMARD 

(rituximab).  

Table 7.3: Treatments included in analysis 

Classification Treatment Abbreviation First possible use* 

Pre 

cDMARD 

Post 

cDMARD 

Post 

bDMARD 

Biological 

DMARDs 

(bDMARDs)† 

Abatacept 

Abatacept (subcut.) 

Adalimumab 

Certolizumab Pegol 

Etanercept 

Golimumab 

Infliximab 

Rituximab 

Tocilizumab 

ABT 

ABTS 

ADA 

CTZ 

ETN 

GOL 

IFX 

RTX 

TCZ 

 

 

X 

 

X 

X 

 

 

 

X 

X 

 

X 

 

 

X 

 

X 

 

 

 

 

 

 

 

X 

Conventional 

DMARDs 

(bDMARDs) 

Hydroxychloroquine 

Methotrexate 

Sulfasalazine 

TICORA‡ 

HCQ 

MTX 

SSZ 

TICORA 

X 

X 

X 

X 

  

Sequence end 

treatment§ 

Best supportive care 

 

BSC X   

 

Therefore there are 14 treatments (including Best Supportive Care (BSC)) in the pool from 

which sequences can be generated and evaluated using the simulation model. There is a 

maximum possible sequence length of 13, due to it not being clinically appropriate to have a 

sequence including both abatacept and subcutaneous abatacept. The size of the decision 

space (S) is very complex to formally estimate given the various rules regarding the potential 

position of each treatment (e.g. ritixumab cannot start a sequence). However, an upper bound 

(Smax) can be derived using the following formula for k-permutations of n objects, where k is 

                                                           
*
 Based on current EMA licensed indication for adult patients with established moderate-severe 

rheumatoid arthritis 
†
 All bDMARDs administered with concomitant MTX 

‡
 TICORA in an intensive combination cDMARD strategy based on the TICORA study and treatment 

protocol. 
§
 Always provided at the end of a sequence of active treatments for symptomatic relief 
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the length of the sequence (up to a maximum sequence length 𝐿) and 𝑛 is the total number of 

treatments in a set.*  

∑
𝑛!

(𝑛 − 𝑘)!

𝐿

𝑘=1

 
[7.2] 

In our case, 𝐿 = 12 and 𝑛 = 13. An upper bound is therefore: 

𝑆𝑚𝑎𝑥 = ∑
13!

(13 − 𝑘)!

12

𝑘=1

 
[7.3] 

The maximum size of the decision space is provided in Table 7.4. 

Table 7.4: Maximum size of the decision space 

Sequence length (𝒌) Number of sequences (𝑺) 

0 (only BSC) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1 

13 

156 

1,716  

 17,160  

 154,440  

 1,235,520  

 8,648,640  

 51,891,840  

 259,459,200  

 1,037,836,800  

 3,113,510,400  

 6,227,020,800 

TOTAL (𝑆𝑚𝑎𝑥) 10,699,776,685 

 

𝑆𝑚𝑎𝑥 is therefore over 10 billion sequences. This is far beyond the capacity of even a highly 

efficient patient level simulation to evaluate within a reasonable period of time, and likely to 

be far larger than any decision space that has been formally evaluated within a health 

economic evaluation. 

Validation 

The Simul8 RA sequence model was carefully and fully validated. The optimisation algorithm 

was programmed in Excel to allow defined sequences to be run as a group, which allows a 

standard fully incremental analysis of competing sequences to be estimated. The paper by 

Tappenden & Chilcott (2014) provides a list of practical procedures to follow when validating a 

health economic model.294 These are reported below in Table 7.5, and represent just the main 

ways in which the model was validated. 

                                                           
*
 (a selection of k objects from a list of n, where k ≤ n), and where the order of selection matters and selections 

cannot be repeated. 
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Table 7.5: Validation tests 

Area of model Test applied 

QALYs calculated 

properly 

If utility is fixed to 1, then total QALYs equal total life years gained 

(LYG) 

Model is valid Set equal efficacy for all treatments – should result in optimal 

treatment sequence in ascending order of cost 

Checked user defined 

formulae and functions 

within Simul8 

Tested externally in MS Excel, and Simul8 ‘stepped into’ when run 

to check intermediate values were correct 

All treatments set to 

the same efficacy 

Each treatment run in a ‘1 treatment’ sequence and tested for equal 

QALYs and as expected total cost 

All treatments set to 

equal efficacy and cost 

Every evaluated sequence has identical costs and QALYs 

Check ‘eligibility’ code Generated 100 random sequences and manually checked the ‘error 

flag’ to ensure ineligible sequences had be correctly identified 

HAQ progression 

modelling 

Simul8 model built with ‘debug code’ so that intermediate values 

over time were output by the model. This allowed a visual debug of 

the progression of HAQ over time 

Model breakpoints Breakpoints were added to the model, so if impossible 

parameters/values or situations occurred, the model would break 

and an error message reported (e.g. negative costs, HAQ outside 

feasible range (0-3), utility over 1 etc. 

 

The external validity of the results was tested by comparing to the original NICE RA model 

Number of patient simulations 

In a patient level simulation model, there is sampling error due to the variability between each 

simulated patient, often called first-order uncertainty.295 For an identical simulated patient, 

there are random events which will occur, meaning one simulated patient may respond to a 

particular treatment (for example), but an identical patient in the next simulation may not. By 

increasing the number of patients simulated, this first-order uncertainty can be reduced, and a 

better estimate of the true NMB can be derived. However, the reduction in uncertainty is at 

the expense of increased computational time. Therefore, identifying the appropriate number 

of patient simulations is of crucial importance. 

When undertaking a cost-effectiveness analysis using a patient simulation model, the current 

recommendation by the NICE Decision Support Unit is to clearly justify the number of patients 

simulated, normally by using a graphical representation of the model output along with an 

estimate of the cumulative mean and its standard error.295 It is also important to ensure that 

the pseudorandom number generator (PNG) used within the simulation has no effect on the 
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results. Many software packages (including Simul8) allow a seed number to be used to 

initialise the PNG. When the same seed number is used, the PNG generates an identical string 

of pseudorandom numbers, which allows a model with the same parameters and seed number 

to generate identical output when run repeatedly. This functionality is useful for debugging a 

simulation model. When changing the PNG seed number and re-running the model, there 

should be negligible discrepancy in the results if sufficient individual patients have been 

simulated. 

For the RA model, the output of interest is the Net Monetary Benefit (NMB). This enables a 

continuous numerical output from the model to act as the estimate of the objective function 

within the optimisation problem. Using an ICER would be problematic, because improving 

solutions cannot always be inferred by an improved (lower ICER) due to its ratio properties, 

and therefore a multi-criteria optimisation method would be required to incorporate cost and 

QALY output. 

When comparing two solutions (sequences), the incremental NMB (iNMB) is simply the 

difference in the estimated NMB of the two solutions. Ideally, the simulation model should 

therefore be run with enough patients to ensure that an accurate estimation of the iNMB can 

be calculated between two similar solutions, and that the standard error of the mean iNMB is 

low enough for it not to affect the results. 

Figure 7.6 to Figure 7.8 provide graphic output of running 50,000 patients in a simulation 

(approximately 4 minutes simulation time for each comparison). This is repeated across three 

sets of different PNG seeds. Reported are the cumulative mean iNMB, its standard error, and 

the 95% confidence interval. The treatment sequences compared were similar*, to ensure 

sufficient numbers of patients were selected to enable an accurate estimate of low values of 

iNMB (or, to rank sequences with similar NMB).  

Each set of figures relates to a particular setting of uncertainty in the model. In Figure 7.6 , the 

model has no probabilistic uncertainty, and uses only point estimates for each of these model 

parameters. Also the patients sampled are all identical, with no heterogeneity. This setting 

therefore corresponds to a deterministic analysis of a particular patient cohort (in this case, 

the mean characteristics of the patient population as taken from the BSRBR study (see earlier 

section). With probabilistic uncertainty accounted for, the estimated iNMB is stable, as is the 

corresponding confidence interval. However, this interval spans 0 in all three random number 

sets, and at 50,000 patients. Therefore the underlying patient variability is such that using 

                                                           
*
 {TICORA, ETN, RTX, TCZ, MTX, BSC} vs {TICORA, CTZ, RTX, TCZ, MTX, BSC} 
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50,000 simulated patients is not sufficient to accurately confirm which sequence has the 

higher NMB, at 95% confidence.  

The model used to generate Figure 7.7 also has no PSA, but patient level heterogeneity is 

reintroduced. With Figure 7.8, the model includes both patient heterogeneity and 

probabilistically sampled parameters. This model therefore is equivalent to the standard 

basecase model.  Also provided in Table 7.7 to Table 7.9 are the results for different numbers 

of patients simulated. 
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Random Number Set 1 Random Number Set 2 

  

Random Number Set 3  

 

 

Figure 7.6: No patient heterogeneity. No PSA (Deterministic)  
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Random Number Set 1 Random Number Set 2 

  

Random Number Set 3  

 

 

Figure 7.7: Patient heterogeneity. No PSA  
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Random Number Set 1 Random Number Set 2 

  

Random Number Set 3  

 

 

Figure 7.8: Patient heterogeneity. PSA (Basecase model)  
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Table 7.6: No patient heterogeneity. No PSA (Deterministic) 

Patient 

Simulations 

iNMB: Random Seed Set 1 iNMB: Random Seed Set 2 iNMB: Random Seed Set 3 

Mean SE L95 U95 Mean SE L95 U95 Mean SE L95 U95 

1,000 £2,572 £1,844 -£1,117 £6,260 £1,400 £1,847 -£2,294 £5,094 -£2,468 £1,880 -£6,228 £1,292 

10,000 £992 £584 -£176 £2,160 -£463 £586 -£1,635 £710 £299 £588 -£877 £1,475 

20,000 £860 £412 £36 £1,684 -£74 £414 -£902 £754 £347 £416 -£484 £1,179 

30,000 £542 £336 -£129 £1,214 -£56 £339 -£735 £622 £482 £338 -£195 £1,158 

40,000 £482 £292 -£102 £1,066 £13 £294 -£574 £601 £289 £293 -£298 £875 

50,000 £500 £261 -£21 £1,022 £413 £262 -£111 £938 £344 £262 -£181 £868 

 

Table 7.7: Patient heterogeneity. No PSA 

Patient 

Simulations 

iNMB: Random Seed Set 1 iNMB: Random Seed Set 2 iNMB: Random Seed Set 3 

Mean SE L95 U95 Mean SE L95 U95 Mean SE L95 U95 

1,000 £2,189 £3,005 -£3,820 £8,198 £2,167 £2,882 -£3,597 £7,931 -£2,745 £2,823 -£8,390 £2,900 

10,000 £2,117 £928 £260 £3,974 £1,507 £935 -£363 £3,377 £2,063 £933 £197 £3,929 

20,000 £1,628 £658 £312 £2,943 £1,804 £667 £469 £3,139 £876 £661 -£446 £2,198 

30,000 £1,564 £543 £479 £2,650 £1,840 £546 £747 £2,933 £1,278 £543 £192 £2,364 

40,000 £1,174 £470 £234 £2,114 £2,047 £473 £1,101 £2,994 £903 £469 -£36 £1,841 

50,000 £1,398 £419 £559 £2,236 £2,077 £423 £1,230 £2,924 £1,104 £419 £267 £1,941 
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Table 7.8: Patient Heterogeneity. PSA (Basecase model) 

Patient 

Simulations 

iNMB: Random Seed Set 1 iNMB: Random Seed Set 2 iNMB: Random Seed Set 3 

Mean SE L95 U95 Mean SE L95 U95 Mean SE L95 U95 

1,000 £1,318 £2,919 -£4,521 £7,157 -£880 £3,077 -£7,033 £5,274 -£948 £3,047 -£7,041 £5,145 

10,000 £2,523 £940 £643 £4,404 £684 £936 -£1,188 £2,557 £2,451 £951 £549 £4,354 

20,000 £2,262 £667 £928 £3,595 £724 £657 -£591 £2,039 £2,249 £670 £909 £3,590 

30,000 £1,898 £545 £808 £2,988 £1,760 £545 £671 £2,849 £1,918 £549 £820 £3,016 

40,000 £1,631 £470 £690 £2,572 £1,998 £472 £1,054 £2,942 £1,817 £473 £871 £2,764 

50,000 £1,853 £421 £1,011 £2,694 £1,929 £421 £1,087 £2,771 £1,445 £423 £599 £2,291 
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In Figure 7.6, the standard error is low compared with the mean iNMB, however the 95% 

confidence interval spans zero, which confirms that the patient variability in the model is too 

severe to allow a confident distinction between two very similar sequences. Certolizumab 

pegol and etanercept were specifically chosen as comparator treatments within a fixed 

sequence. Their efficacy and costs are not overly dissimilar, as shown in Table 7.9. The 

downstream sequences after these treatments are identical. 

Table 7.9: Comparing certolizumab pegol to etanercept 

Parameter Certolizumab Etanercept 

Probability of a EULAR Response None 

Moderate 

Good 

0.400 

0.274 

0.325 

0.274 

0.318 

0.409 

Treatment cost
1
 Response period 

Subsequent annual cost 

£5,440.59 

£9,326.73 

£4,663.36 

£9,326.73 
1
Excluding Patient Access Scheme (PAS) discounts 

 

Adding patient heterogeneity and parameter uncertainty increases the standard error of the 

mean iNMB. It also results in a different estimate of iNMB compared with the deterministic 

results. This justifies the use of a probabilistic patient simulation model, because there is non-

linearity between the input parameters and the NMB output. A further explanation is that, 

when patient heterogeneity is removed, only a female cohort of patients is run (females are 

significantly more likely than men to have RA). Therefore life expectancy and patient level 

predictions which include age (HAQ progression) lead to different results, compared with 

when patient heterogeneity is introduced and men are simulated.  

From 40,000 patient simulations, the standard error is under £500 for all three random 

number sets, compared to an iNMB output of over £1000. The lower 95% confidence intervals 

are all above zero (Table 7.8). It was decided that 40,000 patient was a pragmatic number of 

patients to run. The simulation model takes approximately 3 minutes to run each sequence, 

and the desire is for each optimisation run to take days, rather than months to complete. The 

average standard error (£472) for this comparison will be used as an indicator of ‘indifference’ 

between compared sequences when their iNMB is within 2 standard errors (£944). 

There was not believed to be any significant marginal benefit in running more patient 

simulations, at the expense of significant increases in computational time. For the purposes of 

tuning the algorithm, 2,000 patient simulations was selected as an adequate number for each 

tuning run of the optimisation algorithm, because the accuracy of the model output is less 

important for this objective. This lower number of patient simulations allowed a greater 

degree of tuning to be undertaken given the fixed time available. 
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Linkage to MS Excel 

For the SO algorithm to be fully automated, a data link between the optimisation algorithm 

and the simulation model is required. Treatment sequence information must be passed to the 

patient simulation model, and the evaluated results from the patient simulation model passed 

back to the optimisation algorithm. Within one software package or computing language, this 

linkage would be fully integrated. However, although Simul8 is an ideal software package for 

discrete event simulation, its inbuilt Visual Logic language is not flexible enough to enable 

some of the statistical requirements of the patient simulation model. Also, it is not possible to 

generate and manipulate array variables, which are the ideal variable structure for dealing 

with treatment sequence data and applying the low level heuristics to implement the 

neighbourhood function. 

Therefore, a decision was made to link Simul8 with Microsoft Excel. Excel provides standard 

spreadsheet functions, as well as access to the powerful Visual Basic for Applications (VBA) 

language. Excel can be linked to Simul8 via Windows COM, the interface standard for 

Microsoft software. This allows the full automation and manipulation of a Simul8 model from 

MS Excel, including within an Excel VBA macro. Therefore this allows the required data linkage 

between Excel and Simul8 (see Figure 7.9). An Excel VBA macro can theoretically provide an 

infinite cycle of data flow between Excel and Simul8, which is required for an SO algorithm. 

 

Figure 7.9: COM Interface 

The linkage of two software packages via COM has introduced an element of inefficiency into 

the overall optimisation process. Each time the simulation model is updated with new 

sequence information, it has to be saved, and each time the Excel macro calls the simulation 

model to run, Simul8 has to open the saved simulation model, run the model, save the model 

and shut it down. It has been estimated that this process costs approximately five seconds per 

iteration of the optimisation algorithm. 
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CACHE SEARCH 

The use of Excel for the optimisation algorithm allows evaluated sequences and their results to 

be stored within a spreadsheet (a cache). Due to common random numbers being used for 

each iteration of the patient simulation model, the repeated simulation of the same treatment 

sequence will result in identical results for the same patients. 

Using a VBA search algorithm, the current sequence can be searched for in this cache to see if 

it has already been evaluated by the simulation model. If it has, then there is no need to run 

the simulation model, and instead the cached result can be inserted. This represents a form of 

‘simulated annealing with memory’, and borrows principles from Tabu search, which is an 

alternative metaheuristic which incorporates memory. Unlike Tabu Search, the memory does 

not guide the search heuristic, but instead is just to avoid inefficient re-evaluation of 

sequences. The cache search heuristic was tested and even when the cache contained 10,000 

evaluated sequences and their results, the cache took under 1 second to search, compared to 

at least 8 seconds to evaluate the sequence in the simulated model (assuming 2000 patient 

simulations). A simple process could be added to turn off the cache search when the cache 

search time was expected to take longer than the evaluation time, but it was not seen as 

necessary in this instance. 

SIMULATED ANNEALING 

Simulated annealing (SA) is a local search algorithm with the capability to escape from a local 

optima.247 It is a probabilistic metaheuristic which is frequently applied to global optimisation 

problems. It is so named due to its analogy to the physical annealing process undertaken by a 

crystalline solid. SA is most commonly applied to discrete optimisation problems, although it 

has the capability to optimise continuous problems. A more complete introduction to SA is 

provided in the methodological review of simulation optimisation methods reported in 

Chapter 6. 

SA requires the decision problem to be encoded in a way which enables the decision space to 

be searched. Common methods of encoding include integer encoding, bit encoding and 

permutation encoding. These are detailed in Chapter 6. For this particular decision problem, 

permutation encoding is the more suitable, because each treatment within a sequence is 

unique and can only be used once only.  

SA requires a neighbourhood function to be designed, which determines the movement of the 

algorithm from one solution to another ‘nearby’ solution. The neighbourhood function is a 

formal statement of what ‘nearby’ means in a problem specific context. The neighbourhood 

function therefore allows the movement of search to evaluate nearby solutions and find local 
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optima. At each iteration of the algorithm, two potential solutions are compared. These are 

the current solution in the algorithm (𝑥), and a newly selected neighbour of the current 

solution (𝑥’)). If the newly selected neighbour is an improvement compared with the current 

solution (𝑔(𝑥′) − 𝑔(𝑥) >  0) then the new solution is accepted and it becomes the current 

solution (𝑥). The algorithm then takes a neighbour from that new solution and repeats the 

process. However, a proportion of non-improving (inferior) solutions are also accepted based 

on an acceptance criterion. The acceptance of inferior solutions allows the possibility of 

escaping local optima. The acceptance criterion is a function of the temperature in the 

algorithm, which is a parameter which decreases in value as the algorithm iterates. The 

probability of accepting an inferior solution 𝑥’ as the next solution is based on the Metropolis 

acceptance criterion, which is reported in Box 7.2: Metropolis acceptance criterion.248 

𝑃{Accept 𝑥′as next solution} = {
exp [

𝑔(𝑥′) − 𝑔(𝑥)

𝑡𝑘
] , if 𝑔(𝑥′) − 𝑔(𝑥) ≤ 0

1, if 𝑔(𝑥′) − 𝑔(𝑥) >  0

 

𝑡𝑖 is the temperature parameter at iteration 𝑖 such that: 

𝑡𝑖 > 0 for all 𝑖  

Box 7.2: Metropolis acceptance criterion 

Therefore the probability of accepting an inferior solution is a function of the current 

temperature, and the magnitude of the difference between the solutions. The probability 

decreases as the temperature decreases (moving the search from a random search to a local 

search as the algorithm iterates), and the probability increases as the difference between 

solutions decreases. As the algorithm iterates, the temperature is reduced. It can be reduced 

at every iteration (𝑖), or after a fixed number of iterations called a temperature step length (𝑛), 

where 𝑛 > 𝑖. The number of steps that have occurred in the algorithm is step count (𝑘). A 

graphical representation of the relationship between temperature, algorithm iterations and 

steps is provided in Figure 7.10 

 

Figure 7.10: Temperature cooling steps and iterations 
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The generalised simulated annealing algorithm to maximise a discrete problem is provided in 

Box 7.3, and provides the basis for the applied algorithm. 

Parameters 

Current solution 𝑥 

Simulated estimate of objective function value (NMB) of solution 𝑥  = 𝑔(𝑥)  

Temperature 𝑡 

Best solution 𝑥𝑏𝑒𝑠𝑡  

Iteration 𝑖 

Temperature step count 𝑘 

Cooling function 𝜑(𝑘) 

Length of temperature step  𝑛 

Neighbourhood definition 𝑁 

 

Initialisation 

Initial solution 𝑥0 

Initial Temperature 𝑡0 

Starting iteration 𝑖0 = 𝑖 = 1 

Temperature step count 𝑘 = 1 

 

Repeat 

 Repeat 

  Randomly select 𝑥′ ∈ 𝑁(𝑥); 

  𝛿 = 𝑔(𝑥′) − 𝑔(𝑥); 

  If 𝛿 > 0 

   𝑥 = 𝑥′; 

  Else  

   If exp (
𝛿

𝑡
) > 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) 

    𝑥 = 𝑥′; 

   Endif 

  Endif 

  If𝑔(𝑥) > 𝑔(𝑥𝑏𝑒𝑠𝑡) 

   𝑥𝑏𝑒𝑠𝑡 = 𝑥; 

  Endif 

                             𝑖 = 𝑖 + 1 

 Until 𝑖 = n 

 Set 𝑡 = 𝜑(𝑘); 

 Set 𝑖 = 1 

Until stopping conditions are met 

Output 𝑥𝑏𝑒𝑠𝑡 as best solution found 

Box 7.3: Simulated annealing algorithm 

It is common for implementations of SA to incorporate a restart process into the algorithm, 

and so this has been incorporated (but is not illustrated in Box 7.3). This allows the algorithm 

to automatically repeat once a stopping criterion has been met.296 This is useful to ensure that 
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the algorithm has converged on the best solution possible within that particular run (with 

multiple restarts) of the algorithm. The restart process normally selects the best solution from 

the prior iteration of the algorithm as the starting solution. This is analogous to the algorithm 

‘reheating’ at a converged solution. Each run of the algorithm, and each consecutive restart of 

the algorithm, is called a ‘round’. After multiple restarts, the overall best solution found is then 

used as a starting point for short local search, to ensure the overall best solution is the local 

optima. For tuning purposes, the algorithm can restart with a randomly generated starting 

solution to provide repeated tests of the performance of a particular tuning parameter. 

Tuning the algorithm 

The algorithm is contingent on the following parameters and components: 

- Initial temperature 𝑡0 

- Cooling function (change in temperature) 𝜑(𝑡) 

- Number of iterations at each temperature level 𝑘 

- The construction of the neighbourhood of the problem 𝑁 

- The rule(s) to determine when the algorithm stops 

The appropriate specification of these parameters of the algorithm can be critical. In general, 

the algorithm is sensitive to all parameters and therefore successfully implementing the 

algorithm is contingent on finding appropriate parameter values. In this case, “success” is 

defined as the SA algorithm finding a good solution within a reasonable amount of time. A 

good solution is defined as having face validity, being a true local optimum, and not being 

improved upon when subjected to multiple restarts of the SA algorithm.  

There are no hard rules which determine how these parameters are selected, and instead one 

relies on the user ‘tuning’ the algorithm to optimise its performance. Historically, 

parameterising an SA algorithm was a process of trial and error alongside low level heuristics 

and experience. However, newer methods have looked to automate the tuning process, and 

even newer hyperheuristic methods allow fully automated tuning of the metaheuristic. This 

includes selecting between SA and alternative metaheuristics. However, these methods are 

beyond the scope of this research problem, in particular because these methods are very 

computationally expensive (hundreds of iterations of the metaheuristic) and for a SO problem 

they are not likely to be feasible. 

Each specification of the algorithm when tuning parameters represents a particular 

experiment. It would be possible to use a factorial design, to ensure that every possible 

combination of tuning parameter values is attempted. However, in this case this is not feasible. 
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Although SA has relatively few parameters compared to other metaheuristics, the range of 

potential parameter values and the time required to run the SO algorithm mean that this level 

of tuning is not feasible. Instead, each parameter will be tuned in turn, and then a full 

validation of the final set of parameter values to ensure the final specification is robust.  

In reality, SA cannot guarantee that the true global optima will be identified within a feasible 

amount of time. However, re-running and restarting the process can build confidence that the 

best potential solution found by the algorithm is in fact the true global optimum. Also, running 

a local search at the end of the algorithm process allows verification that the best potential 

solution at the end of the SA algorithm is in fact at least a local optimum. As tuning is 

conducted, a ‘current best’ solution is likely to emerge. Therefore all references during the 

tuning process to the performance of the algorithm will be made to the ‘current best’ overall 

solution. The frequency in which it is found will be a measure of confidence that it is the true 

global optimum (the best sequence in the decision space), and if a particular specification of 

the algorithm does not perform well, then this judgement is based on its inability to efficiently 

find the ‘current best’. The following sections provide in depth detail about the tuning of each 

component of the algorithm. 

Neighbourhood function 

The definition used for the neighbourhood function is crucial to the efficiency of any SA 

algorithm.247 When designing the neighbourhood function, there are two specific rules which 

must be enforced to guarantee convergence of the algorithm. Firstly, all potential solutions 

must be reachable (in a finite number of steps). Secondly, the neighbourhood must be 

symmetrical, and therefore backwards moves must be possible.  

Much literature is devoted to highlighting how a neighbourhood function is required that 

imposes a smooth topology to the search space. In reality, that means a neighbourhood 

function with small changes to the solution, resulting in a relatively small change in the 

objective function. This also means that there are a large number of possible neighbourhood 

moves (the ‘neighbourhood size’). However, for the RA treatment sequencing problem, any 

change to a solution (for example the addition or removal or a treatment, or swapping the 

position of two treatments) could in reality have a large impact on the objective function. 

Research is ongoing about the size of the neighbourhood (e.g. how many neighbouring 

solutions can be drawn from for a given solution within the decision space).247 While some 

researchers believe a smaller neighbourhood to be favourable,297 others propose that the 

neighbourhood is as large as possible.298 A small neighbourhood means the algorithm takes a 

long time to search through the solution space, whereas a large neighbourhood corresponds 
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to random sampling within the solution space.299 The only area of agreement in this particular 

area of SA research is that the neighbourhood function tends to be a problem-specific issue.247 

For this application of SA, a neighbourhood function was designed based on three possible 

changes (move operators) to the current solution: a treatment addition; a treatment removal; 

and a swap of two selected elements. These operators borrow concepts from the Genetic 

Algorithm literature regarding encoding a permutation problem. The order of the sequence is 

important, as well as the fact that a treatment cannot be used twice. These move operators 

respect those problem-specific conditions, in that they will not invalidate the permutation 

encoding of the problem. The first two change operators were relatively simple to implement. 

A list of unused treatments is maintained by the algorithm. For the treatment addition 

operator, a random treatment from this list is selected and inserted into the sequence at a 

randomly selected position. The downstream treatments all shift down by one position to 

accommodate the new intervention. For the treatment removal operator, a randomly selected 

treatment is removed from the sequence.  

The swap operator was programmed with two options. Firstly, an adjacent pairwise 

interchange operator, with two adjacent treatments within the sequence swapped.  Secondly, 

a random exchange operator, with two randomly selected treatments swapped. Box 7.4 

provides a representation of the move operators for the neighbourhood function. 

When problems can have an infeasible solution (for example, a treatment sequence with a 

treatment in a non-licensed position) then traditionally in optimisation these solutions are 

evaluated and then penalised. This process works well when both the evaluation and 

penalising of a solution can be done in a trivial amount of time. However, in SO, evaluating 

infeasible solutions can be very inefficient, especially when there are numerous rules regarding 

the eligibility of treatment in various positions. Therefore for this problem, VBA code was 

written to check that each sequence generated is eligible and feasible. Each time a sequence is 

generated, or a neighbour sequence generated, the code is run to check that a sequence is 

eligible. If necessary the move operation is re-run until an eligible sequence is generated. The 

eligibility check and re-running of a move operator proved to be many times more efficient 

that running the simulation model, evaluating the solution and penalising an infeasible 

solution.* 

                                                           
*
 Over 50 eligible sequences can be generated per second in MS Excel VBA. A simulation of 40,000 

patients in the Simul8 model took over 2 minutes, with additional time required for data transfer 
between MS Excel and Simul8 for each algorithm iteration. 
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The addition, removal and adjacent pairwise interchange are all competing move operators 

when a neighbouring solution is required in the SA algorithm. Therefore, user defined 

probabilities are required so that the algorithm randomly selects a move operation. When a 

sequence has a length of 1 or 13 (the minimum and maximum possible sequence length) then 

the probability of a treatment addition or removal operator being selected is set to zero (as 

appropriate). 

 1 2 3 4 5   

 GOL IFX MTX TCZ BSC   

Addition        

 GOL IFX MTX TCZ HCQ BSC  

        

 1 2 3 4 5 6  

 GOL IFX MTX TCZ HCQ BSC  

Removal        

 GOL HCQ TCZ IFX BSC   

        

 1 2 3 4 5 6  

 GOL IFX MTX TCZ HCQ BSC  

Adjacent pairwise interchange        

 GOL MTX IFX TCZ HCQ BSC  

        

 1 2 3 4 5 6  

 GOL IFX MTX TCZ HCQ BSC  

Random exchange operator        

 GOL HCQ MTX TCZ IFX BSC  

        

Box 7.4: Neighbourhood move operators 

Three different probability values for the competing move operators were assigned to the 

algorithm and tested. Table 7.10 provides the results of tuning the neighbourhood function.  

Each experiment for tuning was undertaken with a random starting sequence for each round 

(as opposed to using the best sequence identified in a previous round, which is the case for 

generating the final results). The stopping criteria applied were: when 2400 runs were 

completed; when the temperature was below 100; or 50 consecutive solutions were rejected. 

The initial temperature was set at 15,000. A 50 repetition geometric cooling schedule with a 

rate of 0.9 was used to decrease the temperature as the algorithm iterated.* These criteria and 

parameter values were selected based on some rapid experiments to establish settings for an 

initial algorithm that performed well.  

                                                           
*
 Further details regarding these particular cooling schedules is provided later in the chapter. 
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Neighbourhood function experiment 2 (see Table 7.10), with a medium probability of adding 

or removing a treatment to the sequence (20% for each operator) along with an adjacent 

pairwise interchange operator (compared to a random exchange operator), converged on the 

best performing sequence (across all tuning trials) and converged on this solution for each of 

the five rounds. 

This set of neighbourhood function parameters (20% probability of add/remove and a 60% 

probability of an adjacent pairwise interchange) were taken forward when tuning the other 

components of the SA algorithm. 
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Table 7.10: Tuning the neighbourhood function 

Neighbourhood function 1: 5% Addition, 5% Removal, 90% Adjacent pairwise interchange 

Round Sequence (line) NMB* Costs* QALYs* Iteration when 

best solution found 1 2 3 4 5 6 7 8 9 10 11 

1 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  1824 

2 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  662 

3 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  1550 

4 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  97 

5 MTX SSZ HCQ TICORA GOL RTX CTZ ETN IFX ADA BSC £140,657 £59,034  6.656  1586 

Neighbourhood function 2: 20% Addition, 20% Removal, 60% Adjacent pairwise interchange 

1 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  845 

2 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  796 

3 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  798 

4 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  315 

5 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  813 

Neighbourhood function 3: 40% Addition, 40% Removal, 20% Adjacent pairwise interchange 

1 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  1019 

2 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  1125 

3 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  1148 

4 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  1284 

5 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  1029 

Neighbourhood function 4: 20% Addition, 20% Removal, 60% Adjacent pairwise interchange 

1 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  1096 

2 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  1074 

3 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  1277 

4 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  1496 

5 MTX SSZ HCQ TICORA BSC       £143,530 £39,106  6.088  499 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Green shading for ‘current best’ solution identified by algorithm. bDMARDs in bold 

Algorithm settings: Initial temperature 15,000, 50 repetition schedule and geometric cooling at rate 0.9. Random initial solution for every round. Stop when 2400 

runs completed (temperature < 100) or 50 consecutive solutions rejected. 2,000 simulation model runs for tuning. 
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Initial temperature 

The initial temperature parameter value is of critical importance to the performance of the SA 

algorithm. If the initial temperature is low, then the search may be restricted to the region of 

the search space around the initial starting point, because the algorithm is less likely to escape 

a local optimum. If the initial temperature is too high, the SA algorithm will initially perform a 

‘random walk’, with many inferior solutions accepted. This is inefficient, and it can lead to the 

algorithm terminating early if the total number of algorithm iterations is fixed. 

The initial temperature parameter must be defined so almost any feasible solution is accepted 

during the first run of the algorithm. A priori information regarding the problem and the 

neighbourhood design can inform analytically derived values for the initial temperature. 

However, it is common to use the SA algorithm itself to provide an estimate of an appropriate 

initial temperature parameter value, in particular when information regarding the problem 

and neighbourhood design is difficult to derive. Both methods rely on the concept of an 

‘acceptance ratio’ or ‘acceptance probability’, This is the number of worse solutions accepted 

at a given temperature, divided by the total number of worse solutions proposed by the 

algorithm. An acceptance ratio of 0.8 is suggested by Kirkpatrick, although he highlights that 

this parameter is problem-specific.257 The initial temperature parameter is a highly researched 

and contentious issue and beyond the scope of this thesis, however an alternative acceptance 

ratio of 0.6 will be tested, to see if the initial temperature it derives performs well compared to 

initial temperature derived by the established ratio of 0.8.  

Based on a pre-specified acceptance ratio, two methods for deriving the initial temperature 

are commonly used; the van Laarhoven formulae, and a rapid warm-up algorithm. 

Van Laarhoven formulae 

Van Laarhoven et al. (1988) proposed a formulae to determine the initial temperature  𝑡0, 

where Ξ is the target acceptance ratio, and |∆𝐺𝑚| is the mean absolute change in the objective 

function of every proposed move from a set of iterations, 𝑚 .300 This method of determining 

the initial temperature is well established.301 

 𝑡0 =
|∆𝐺𝑚|

𝑙𝑛(Ξ−1)
 [7.4] 

After running a random search algorithm, the mean change in objective function (NMB) after 

𝑚 = 500 iterations was £4,653. This resulted in estimates of initial temperature of 9,110 from 

a target acceptance ratio of 0.6, and 20,855 from a target acceptance ratio of 0.8 (Table 7.11). 
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Table 7.11: van Laarhoven formulae estimates of initial temperature parameter 

Target acceptance ratio Estimated initial temperature value (𝒕𝟎) 

0.6 9,110 

0.8 20,855 

 

Rapid warm-up algorithm 

An alternative method to the van Laarhoven formula is to start the simulated annealing 

algorithm at a low initial temperature, and periodically increase the temperature until the 

acceptance ratio is met. This was undertaken by setting the initial temperature at 1,000. The 

algorithm then increased the temperature in increments of 1,000 every time the algorithm had 

random drawn 20 inferior potential solutions. Therefore the algorithm begins with a low 

temperature, and therefore a low likelihood of accepting a worse move. As the temperature is 

increased and worse moves begin to be accepted, the probability of accepting a worse move 

increases, until the predefined acceptance ratio target is achieved. 

This was conducted over 10 rounds of the algorithm for both 0.6 and 0.8 acceptance ratio 

targets. The results are provided in Table 7.12. 

Table 7.12: Rapid warm-up algorithm for initial temperature parameter 

 Estimated initial temperature value (T0) 

Round Acceptance ratio target = 0.6 Acceptance ratio target = 0.8 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

5,000 

6,000 

7,000 

6,000 

4,000 

5,000 

5,000 

4,000 

7,000 

5,000 

11,000 

10,000 

8,000 

7,000 

9,000 

11,000 

11,000 

7,000 

11,000 

7,000 

Maximum = 7,000 

Mean = 5,400 

Maximum = 11,000 

Mean = 9,200 

Temperature increased in steps of 1,000  

20 worse moves required at each temperature iteration 

Each round uses a random initial solution 

 

With an acceptance ratio of 0.6, the estimated initial temperature generated by the rapid 

warm-up algorithm (mean = 5,400) is smaller than the estimated initial temperature from the 
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van Laarhoven formula (9,110). This difference is also found with a higher acceptance ratio of 

0.8, with a mean 𝑡0 of 9,200 estimated by the rapid warm-up algorithm, compared to 20,855 

as estimated by the van Laarhoven formula. 

The algorithm was run with four alternative initial temperatures, which spanned the range of 

temperatures identified via the two methods and two acceptance criteria. The results are 

provided in Table 7.13. The results show that, in this decision problem, the algorithm was not 

sensitive to the alternative initial temperature values. The current best sequence found from 

any tuning run {MTX, SSZ, HCQ, TICORA, BSC} was found by all experiments and on every 

restart. To reduce the computational time required, the lowest value tested (7,000) was taken 

forward for the next stage of algorithm tuning. 

It is common for the initial temperature to be tuned as part of the overall annealing 

component of the algorithm (including the cooling schedule and stopping rule). However, it 

was not feasible to do a full factorial experimental design to tune all possible combinations of 

all parameters, which is a common problem for SA, even though it has relatively few 

parameters. Therefore a decision was made to tune individual components and then test the 

final set of parameters for robustness. With several rounds and full sensitivity analysis 

conducted, any invalid solutions should be able to be identified and algorithms re-run if 

required. 
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Table 7.13: Tuning the initial temperature parameter 

Initial temperature T0 = 7,000 (Maximum possible runs per round = 1400) 

Round Sequence (line) NMB* Costs* QALYs* Iteration when best 

solution found 1 2 3 4 5 

1 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  821 

2 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  893 

3 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  640 

4 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  1073 

5 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  1052 

Initial temperature T0 = 11,000 (Maximum possible runs per round = 2150) 

1 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  1029 

2 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  347 

3 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  757 

4 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  575 

5 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  850 

Initial temperature T0 = 15,000 (Maximum possible runs per round = 2400) 

1 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  845 

2 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  796 

3 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  798 

4 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  315 

5 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  813 

Initial temperature T0 = 20,000 (Maximum possible runs per round = 2550) 

1 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  470 

2 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  1180 

3 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  1393 

4 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  1243 

5 MTX SSZ HCQ TICORA BSC £143,530 £39,106  6.088  1010 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Green shading for ‘current best’ 

solution being identified by algorithm. bDMARDs in bold 

Algorithm settings: 50 repetition schedule and geometric cooling at rate 0.9. Random initial solution for every 

round. Stop when temperature < 100 or 50 consecutive solutions rejected. 2000 simulation model runs for tuning. 

 

Cooling schedule 

The strategy for cooling (reducing) the temperature as the algorithm iterates is of critical 

importance. When the temperature is very high, the algorithm operates as a random walk (all 

inferior solutions accepted), and when the temperature is very low, the algorithm operates as 

a local search (only improving solutions accepted). Therefore the rate of cooling acts as formal 

parameter to balance the exploration and exploitation of the search space by the algorithm. 

Many cooling schedules exist for SA. Static cooling schedules are only dependent on globally 

defined parameters and the current number of algorithm iterations and temperature. Five 

commonly used static cooling schedules are provided in Table 7.14.  

The algorithm iterates (𝑖) from 1,…,𝑙 where 𝑙 is a maximum number of iterations. The 

algorithm temperature steps down after a set of iterations, 𝑛. The cooling schedule of the 

algorithm is generally comprised of three parameters: the number of temperature steps, 𝑘, 

the number of iterations, 𝑖, and the temperature change parameter. With these three 



186 
 

parameters, the temperature at iteration 𝑖, 𝑡(𝑖), can be estimated. The cooling schedule can 

be dependent or independent of the current temperature parameter. A commonly used 

temperature dependent cooling schedule is a geometric cooling function, where the change in 

temperature is a function of both the temperature in the algorithm, and the temperature 

change parameter. Another commonly used independent cooling schedule is a linear cooling 

function, where the magnitude of the change in temperature is the same at every step, 

irrespective of the current temperature parameter. 

Table 7.14: Static cooling schedules for simulated annealing 

Type Temperature at iteration 𝒊 Temperature change parameter(s) 

Geometric 𝑡(𝑘𝑖) =  𝑡0 ∝𝑘 0 ≪∝< 1 

Linear 𝑡(𝑘𝑖) =  𝑡0 − 𝜂𝑘 𝜂 > 0 

Lundy and Mees 𝑡(𝑘𝑖) = 𝑡(𝑘) =  𝑡𝑖−1/(1 + 𝛽𝑡𝑖−1) 0 < 𝛽 ≪ 1 

Exponential 
𝑡(𝑘𝑖) =  𝑡0exp (−∝ 𝑡𝑘

1
𝑁) 

0 ≪∝< 1 

𝑁 = Neighbourhood size 

Logarithmic 𝑡(𝑘𝑖) =  
𝑐

log(𝑘 + 𝑑)
 𝑐 ≥ Energy barrier* 

Typically 𝑑 = 1 

Where: 

𝑡(𝑘) is the current temperature at cooling ‘step’ 𝑘 

𝑡(𝑖) is the current temperature at algorithm iteration 𝑖 

𝑡0 is the initial temperature 

*Energy Barrier is the largest possible difference in the objective function between 

neighbouring solutions 

 

A unique one-parameter cooling schedule was proposed by Lundy and Mees, with one 

iteration performed at each temperature step (𝑛 = 1, therefore 𝑘 = 𝑖).302 The temperature is 

reduced according to 𝑡 → 𝑡/(1 + 𝛽𝑡). Exponential and Logarithmic cooling schedules are also 

used, however they require further parameterisation which is specific to the problem and 

neighbourhood function. The logarithmic cooling schedule is analytically proven to converge 

on the true global optima, but only within a very long period of time, and for all purposes is 

not practical. 

More advanced cooling schedules are adaptive, and incorporate learning and feedback from 

the decision space at each temperature level. Reheating of the temperature is sometimes 

incorporated when good solutions are not being found. Our particular implementation of the 

algorithm incorporates a restart procedure once a stopping rule has been met, which is a 

simple incorporation of a reheating process. A true reheating process was not applied due to 

time constraints. 
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The geometric, linear and Lundy & Mees cooling schedules are all commonly performed and 

well tested for their performance. An appropriate cooling schedule is problem-specific, and so 

tuning is required to identify those which perform well. These three cooling schedules will be 

tested, and if none perform well then the exponential will be tested. 

As can be seen from Figure 7.11, the three selected cooling schedules all offer quite different 

performance when moving through the decision space. Given a fixed number of iterations to 

reach a target temperature, they all move from explorative searching at a high temperature to 

exploitative search at low temperature. The Lundy schedule is aggressive, moving quickly from 

a high temperature down to a relatively low temperature, where it spends a significant 

amount of time as an exploitative search. The Linear schedule is much slower at reducing the 

temperature. The geometric schedule operates in-between the two more extreme schedules. 

The tuning of the cooling schedule will be constrained by the total running time that can be 

afforded for each experiment. The exact number of replications and temperature changes will 

be estimated on this basis, using data from previous tuning experience to identify the expected 

running time. 

 

Figure 7.11: Lundy, Geometric and Linear Cooling Schedules (scaled for clarity) 
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Lundy and Mees cooling schedule 

The Lundy and Mees Cooling Schedule was run with four different Lundy parameter values (β). 

These are reported in Table 7.15. The Lundy parameter values selected for tuning were solved 

for by setting four levels of maximum iterations (between approximately 500 and 2500 

iterations) and estimating the corresponding β.  

Table 7.15: Lundy parameter values 

Lundy parameter (β) Maximum number of algorithm iterations 

4.0x10-6 

6.5x10-6 

1.4x10-5 

2.0x10-5 

2500 

1517 

705 

493 

With 𝑡0= 7,000 and final 𝑡 = 100 

 

 

Figure 7.12: Lundy cooling schedules 
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resulting in lower NMB at £30k per QALY compared to the ‘cDMARD only’ sequence that is 

currently the best sequence identified. 

However, with the largest Lundy parameter tested (2.0x10-5), the algorithm performs well, 

finding the best solution (from all tuning experiments) in all five rounds. The results are 

surprising, and suggest that performance is not linear in the cooling schedules control 

parameter. Instead, it may be the case that this particular parameter value has found a 

particular ‘sweet spot’ in the decision space and neighbourhood function which allows the 

algorithm to extremely quickly find the best solution (between just 129 and 180 iterations).  
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Table 7.16: Lundy cooling schedule 

Lundy Parameter 4.0x10
-6 

(Maximum possible runs per round = 2500) 

Round Sequence (line) NMB* Costs* QALYs* Iteration when 

best solution found 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 MTX SSZ HCQ TICORA BSC         £143,530 £39,106  6.088  271 

2 MTX SSZ HCQ TICORA GOL RTX CTZ TCZ ABT ETN ADA IFX BSC £141,337 £59,717  6.702  508 

3 MTX SSZ HCQ TICORA BSC         £143,530 £39,106  6.088  361 

4 MTX SSZ HCQ TICORA ADA ETN CTZ RTX ABTS TCZ BSC   £139,715 £59,874  6.653  438 

5 MTX SSZ HCQ TICORA BSC         £143,530 £39,106  6.088  277 

Lundy Parameter 6.5x10
-6 

(Maximum possible runs per round = 1517) 

1 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  248 

2 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  107 

3 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  148 

4 SSZ MTX TICORA HCQ ADA RTX IFX ETN ABTS GOL TCZ BSC   £136,518 £61,739 6.609  117 

5 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  169 

Lundy Parameter 1.4x10
-5 

(Maximum possible runs per round = 705) 

1 MTX SSZ HCQ TICORA BSC               £143,530 £39,106 6.088  141 

2 MTX HCQ TICORA SSZ ADA IFX RTX CTZ BSC       £137,444 £61,153    6.620  73 

3 MTX HCQ GOL RTX ADA ETN CTZ TCZ TICORA SSZ BSC   £128,255 £77,899     6.872  300 

4 MTX SSZ HCQ TICORA BSC               £143,530 £39,106     6.088  178 

5 MTX HCQ TICORA SSZ CTZ RTX ETN ADA ABTS BSC     £139,026 £59,325 6.612  260 

Lundy Parameter 2.0x10
-5 

(Maximum possible runs per round = 493) 

1 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  180 

2 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  129 

3 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  166 

4 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  119 

5 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  161 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Green shading for ‘current best’ solution being identified by algorithm. bDMARDs in bold 

Algorithm settings: Initial temperature 7000, 1 repetition schedule. Random initial solution for every round. Stop when maximum runs completed (temperature < 100) or 50 consecutive 

solutions rejected. 2000 simulation model runs for tuning. 
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Linear cooling schedule 

The algorithm was run with four alternative parameter settings for a linear cooling schedule. 

The two parameters for this cooling schedule (the number of repetitions at each cooling step, 

and the size of the change in temperature at each step) were estimated by setting an upper 

(2800) and lower (700) bound on the maximum number of iterations at each round. These 

values were selected based on the time required to run each algorithm, subject to the total 

time available for algorithm tuning. 

A simple 2x2 experimental design was established, with number of repetitions either 50 or 

100, and size of the decrement in temperature either 250 or 500. The corresponding cooling 

schedules are shown graphically in Figure 7.13. 

The results are provided below in Table 7.17. The algorithm performed well across all four 

experiments, with 18 out of 20 rounds in total finding the current best sequence. The 

algorithm found the current best sequence in both experiments where the repetition 

parameter was set to 100, and was not sensitive in this case to the size of the temperature 

decrement. With 100 repetitions and a temperature change decrement of 500, the algorithm 

found the current best at all five independent rounds, and the maximum number of iterations 

of 1400 per restart is relatively efficient. 

 

Figure 7.13: Linear cooling schedule 
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Table 7.17: Linear cooling schedule 

Linear Cooling: 100 Repetitions per step. 250 Decrement per step. (Maximum possible iterations per round = 2800) 

Round Sequence (line) NMB* Costs* QALYs* Iteration when  

best solution found 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  634 

2 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  1237 

3 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  326 

4 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  1344 

5 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  1337 

Linear Cooling: 100 Repetitions per step. 500 Decrement per step. (Maximum possible iterations per round = 1400) 

1 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  893 

2 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  1246 

3 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  881 

4 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  1340 

5 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  1261 

Linear Cooling: 50 Repetitions per step. 250 Decrement per step. (Maximum possible iterations per round = 1400) 

1 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  893 

2 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  1246 

3 MTX SSZ HCQ TICORA ADA RTX IFX ETN ABT CTZ GOL BSC   £139,580 £60,277  6.662  881 

4 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106  6.088  1340 

5 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106  6.088  1261 

Linear Cooling: 50 Repetitions per step. 500 Decrement per step. (Maximum possible iterations per round = 700) 

1 HCQ MTX TICORA SSZ ADA BSC        £138,612 £52,699  6.377  517 

2 MTX SSZ HCQ TICORA BSC          £143,530 £39,106  6.088  486 

3 MTX SSZ HCQ TICORA BSC          £143,530 £39,106  6.088  693 

4 MTX SSZ HCQ TICORA BSC          £143,530 £39,106  6.088  470 

5 MTX SSZ HCQ TICORA BSC          £143,530 £39,106  6.088  575 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Green shading for ‘current best’ solution being identified by algorithm. bDMARDs in bold 

Algorithm settings: Initial temperature 7000. Random initial solution for every round. Stop when maximum runs completed (temperature < 100) or 50 consecutive solutions rejected. 

2000 simulation model runs for tuning. 
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Geometric cooling schedule 

The algorithm was run with four alternative parameter settings for a geometric cooling 

schedule. The first settings (50 repetitions and 0.9 cooling rate) were the initial settings for the 

tuning of the neighbourhood function. Three alternative experiments were established, with 

two levels for the repetition schedule (50 or 25), and a cooling rate of between 0.80 and 0.95. 

This resulted in a maximum number of algorithm iterations of between 1000 and 2075 (see 

Table 7.18).  

Table 7.18: Geometric cooling parameters 

Repetitions Cooling rate Maximum number of algorithm iterations 

50 

25 

50 

50 

0.90 

0.95 

0.85 

0.8 

2050 

2075 

1350 

1000 

 

This range of cooling rate has been well established as a sensible range for a geometric cooling 

function in general.247 The resulting cooling schedules are shown graphically in Figure 7.14. The 

50/0.9 schedules and 25/0.95 schedules are very similar in terms of resulting rate of change in 

the temperature parameter. 

 

Figure 7.14: Geometric cooling schedule 
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step repetitions (25 compared to 50). This result is similar to that found with the Lundy 

algorithm, where the more aggressive algorithm achieved greater success. 

The algorithm also found that when comparing the two similar schedules (50/0.9 and 25/0.95), 

the algorithm failed to find the current best sequence in two of the five restarts with the latter 

parameterisation. 
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Table 7.19: Geometric cooling schedule 

Geometric Cooling: 50 Repetitions per step. Cooling rate 0.9 (Maximum possible runs per round = 2050) 

Round Sequence (line) NMB* Costs* QALYs* Iteration when  

best solution found 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  821 

2 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  893 

3 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  640 

4 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  1073 

5 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  1052 

Geometric Cooling: 25 Repetitions per step. Cooling rate 0.95 (Maximum possible runs per round = 2075) 

1 HCQ MTX SSZ TICORA BSC         £143,321 £39,315 6.088  234 

2 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  1106 

3 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  399 

4 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  887 

5 SSZ MTX HCQ TICORA BSC         £143,523 £39,114 6.088  487 

Geometric Cooling: 50 Repetitions per step. Cooling rate 0.85 (Maximum possible runs per round = 1350) 

1 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  473 

2 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  562 

3 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  227 

4 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  505 

5 MTX SSZ HCQ TICORA GOL ABTS CTZ ETN ADA IFX RTX TCZ BSC £141,984 £59,813 6.727  899 

Geometric Cooling: 50 Repetitions per step. Cooling rate 0.80 (Maximum possible runs per round = 1200) 

1 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  543 

2 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  366 

3 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  767 

4 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  383 

5 MTX SSZ HCQ TICORA BSC         £143,530 £39,106 6.088  287 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Green shading for ‘current best’ solution being identified by algorithm. bDMARDs in bold  

Algorithm settings: Initial temperature 7000. Random initial solution for every round. Stop when maximum runs completed (temperature < 100) or 50 consecutive solutions 

rejected. 2000 simulation model runs for tuning. 
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In Table 7.20, each chosen cooling schedule for each method is run with 10 random restarts. 

The Lundy cooling schedule finds the current best solution in six out of ten attempts, but is 

also relatively quick at finding these solutions (within 300 iterations). On the other hand, the 

Linear cooling schedule performs similarly, but is much slower (maximum number of iterations 

per restart is 1400). The Geometric cooling schedule is the best performing, in this particular 

experiment. It finds the current best solution in seven out of ten restarts, and is faster than the 

linear schedule, but slower than the Lundy schedule. 

Similar results were found when using the current best solution for each restart. Each schedule 

performed well, and identified the current best well within ten restarts. These results are 

presented in Table 7.21. 
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Table 7.20: Final tuning - random starting solution for each round 

Lundy Parameter 2.0x10-5 (Maximum possible runs per round = 493) 

Round Sequence (line) NMB* Costs* QALYs
* 

Iteration when  
best solution found 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 MTX SSZ HCQ ETN RTX TICORA ABTS TCZ ADA IFX GOL CTZ BSC £136,969 £66,605 6.786 131 
2 SSZ HCQ TICORA TCZ RTX GOL CTZ IFX ETN MTX ADA ABTS BSC £130,555 £72,455 6.767 181 
3 MTX SSZ TICORA ABT CTZ ADA HCQ IFX BSC         £133,987 £66,842 6.694 174 
4 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  228 
5 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  170 
6 MTX SSZ HCQ TICORA CTZ IFX GOL BSC           £139,997 £58,243 6.608 101 
7 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  119 
8 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  87 
9 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  237 
10 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  109 

Linear Cooling: 100 Repetitions per step. 500 Decrement per step. (Maximum possible runs per round = 1400) 

1 MTX SSZ HCQ TICORA BSC          £143,530 £39,106 6.088  339 
2 MTX SSZ HCQ TICORA BSC          £143,530 £39,106 6.088  908 
3 MTX SSZ HCQ BSC            £141,133 £34,748 5.862 27 
4 SSZ HCQ TICORA BSC            £141,304 £39,870 6.039 572 
5 MTX SSZ HCQ TICORA CTZ BSC        £142,545 £49,168 6.390 1236 
6 MTX SSZ HCQ TICORA BSC          £143,530 £39,106 6.088  908 
7 MTX SSZ HCQ TICORA BSC          £143,530 £39,106 6.088  996 
8 MTX SSZ HCQ TICORA BSC          £143,530 £39,106 6.088  1049 
9 HCQ SSZ MTX TICORA BSC          £143,317 £39,319 6.088 247 
10 MTX SSZ HCQ TICORA BSC          £143,530 £39,106 6.088  1226 

Geometric Cooling: 50 Repetitions per step. Cooling rate 0.80 (Maximum possible runs per round = 1200) 

1 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  748 
2 SSZ MTX HCQ TICORA ETN CTZ GOL IFX ADA RTX TCZ ABT BSC £139,686 £60,567 6.675 609 
3 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  538 
4 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  262 
5 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  249 
6 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  464 
7 HCQ MTX TICORA SSZ CTZ BSC               £141,849 £50,742 6.420 301 
8 MTX SSZ HCQ TICORA CTZ GOL ETN RTX ADA TCZ ABTS IFX BSC £141,212 £59,772 6.699 564 
9 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  494 
10 MTX SSZ HCQ TICORA BSC                 £143,530 £39,106 6.088  334 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Green shading for ‘current best’ solution being identified by algorithm. bDMARDs in bold . Algorithm settings: Initial temperature 7000. 
Random initial solution for every round. Stop when maximum runs completed (temperature < 100) or 50 consecutive solutions rejected. 2000 simulation model runs for tuning. 

 



198 
 

Table 7.21: Final tuning - current best solution for each round 

Lundy Parameter 2.0x10-5 (Maximum possible runs per round = 493) 

Round Sequence (line) NMB* Costs*  QALYs* Iteration when  
best solution found 1 2 3 4 5 6 7 8 9 10 

1 MTX SSZ HCQ TICORA CTZ GOL RTX ADA IFX BSC £139.748 £59,705 6.648  153 
2 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  110 
3 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
4 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
5 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
6 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
7 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
8 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
9 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
10 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 

Linear Cooling: 100 Repetitions per step. 500 Decrement per step. (Maximum possible runs per round = 1400) 

1 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  69 
2 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
3 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
4 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
5 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
6 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
7 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
8 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
9 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
10 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 

Geometric Cooling: 50 Repetitions per step. Cooling rate 0.80 (Maximum possible runs per round = 1200) 

1 MTX SSZ TICORA BSC       £141,619 £39,555 6.039  430 
2 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  208 
3 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
4 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
5 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
6 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
7 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
8 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
9 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 
10 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Green shading for ‘current best’ solution being identified by algorithm. bDMARDs in bold . Algorithm 
settings: Initial temperature 7000. Previous best solution for every round. Stop when maximum runs completed (temperature < 100) or 50 consecutive solutions rejected. 2000 
simulation model runs for tuning. 
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The Lundy cooling schedule continued to show good performance compared with the linear 

and geometric cooling schedules. All three converged to the same optima and the Lundy 

schedule was faster than the Geometric schedule at finding this optima. The Lundy cooling 

schedule was run one more time under the same conditions to confirm its performance. On 

this occasion it converged on the best-identified optima in the first restart, and after just 97 

iterations (see Table 7.22). 

Table 7.22: Final test of Lundy cooling schedule 

Lundy Parameter 2.0x10
-5 

(Maximum possible runs per round = 493) 

Round Sequence (line) NMB* Costs* QALYs* Iteration when  

best solution 

found 

1 2 3 4 5 

1 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  97 

2 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 

3 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 

4 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 

5 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 

6 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 

7 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 

8 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 

9 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 

10 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Green shading for ‘current best’ solution 

being identified by algorithm. bDMARDs in bold. Algorithm settings: Initial temperature 7000. Previous best solution 

for every round. Stop when maximum runs completed (temperature < 100) or 50 consecutive solutions rejected. 2000 

simulation model runs for tuning. 

 

Efficiency of the algorithm 

The Lundy (2.0x10-5) algorithm was taken forward to conduct the basecase analysis. Tuning 

experiments were conducted to attempt to improve the efficiency of the algorithm. 

The algorithm will continue to iterate indefinitely until a stopping criterion is met. The 

implemented algorithm contains three stopping rules, which can each be independently 

activated: 

1. Maximum number of algorithm iterations 

2. Minimum temperature value 

3. Maximum consecutive rejected solutions 

Stopping rule 1 acts as an overall control on the algorithm and is always active. Stopping rules 

2 and 3 avoid inefficient running of the algorithm when stuck at a local optimum. When the 

temperature is zero or very near to zero, then the algorithm is performing a local search. 

When the algorithm is rejecting every consecutive neighbouring solution, then it is a signal that 

the algorithm has converged on a solution. 
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At the end of the optimisation process, including every restart, the algorithm has been 

designed to perform a short local search (temperature = 0, iterations = 100) to check that the 

best identified solution across all restarts is likely to be the true local optimum. 

Tuning was conducted on stopping rule 3, the maximum consecutive number of rejected 

solutions. This was conducted to improve the overall efficiency of the algorithm while 

attempting to minimise any reduction in its performance. 

Table 7.24 to Table 7.26 report the effect of reducing the number of consecutive failed 

attempts. From 50 to 15, there is no noticeable effect on the total number of iterations run per 

round. The results from the algorithm are consistent. 

When reducing the number of consecutive failed attempts to 10 (Table 7.26), the algorithm 

continues to perform well, however it only requires approximately half the total number of 

iterations (see Table 7.23).  Reducing this again to five (Table 7.26) has an impact on the 

performance of the algorithm (in two attempts, the algorithm required four and two rounds 

respectively, before finding the current best solution). The improved efficiency from 10 to 5 

maximum consecutive failed attempts is at a cost of the reduced performance in the 

algorithm. For this reason, 10 consecutive failed attempts was selected as an appropriate 

stopping rule to avoid inefficient running of the algorithm. This decision was based on there 

not being any obvious increase in the rounds required to find the current best (3 rounds), but 

it also offered a significant decrease in the total number of iterations required (from 4448 to 

2723).  

Table 7.23: Tuning the maximum number of consecutive failed attempts 

Maximum number of 

consecutive failed 

attempts 

Round when current 

best solution 

identified 

Iteration when best 

solution identified 

Total number of 

iterations 

50 

40 

30 

20 

15 

10 

5 

2 

1 

3 

1 

1 

3 

4 

673 

347 

791 

170 

363 

413 

313 

4930 

4930 

4658 

4930 

4448 

2723 

646 
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Table 7.24: Maximum consecutive failed attempts (50 - 30) 

Maximum consecutive failed attempts = 50 

Round Sequence (line) NMB* Costs* QALYs* Iteration when  
best solution found 

Total Iterations 
1 2 3 4 5 6 7 8 9 10 11 12 

1 MTX SSZ HCQ TICORA GOL ADA RTX ETN TCZ ABTS CTZ BSC £139.969 £60,369 6.678 453 493 
2 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  180 493 
3 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
4 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
5 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
6 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
7 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
8 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
9 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
10 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 

Maximum consecutive failed attempts = 40  

1 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  347 493 
2 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
3 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
4 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
5 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
6 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
7 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
8 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
9 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
10 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 

Maximum consecutive failed attempts = 30  

1 MTX HCQ TICORA GOL SSZ RTX ABT BSC     £135,523 £63,120 6.621 84 221 
2 MTX SSZ HCQ TICORA ADA RTX BSC      £140,912 £54,953 6.529 381 493 
3 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  77 493 
4 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
5 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
6 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
7 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
8 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
9 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 
10 MTX SSZ HCQ TICORA BSC        £143,530 £39,106 6.088  1 493 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Green shading for ‘current best’ solution being identified by algorithm. bDMARDs in bold . Algorithm settings: Initial temperature 7000. Previous 
best solution for every round. Stop when maximum runs completed (temperature < 100). 2000 simulation model runs for tuning. Lundy Parameter 2.0x10-5 (Maximum possible runs per restart = 493) 
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Table 7.25: Maximum consecutive failed attempts (20 and 15) 

Maximum consecutive failed attempts = 20 

Round Sequence (line) NMB* Costs* QALYs* Iteration when  
best solution found 

Total Iterations 
1 2 3 4 5 

1 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  170 493 
2 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 493 
3 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 493 
4 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 493 
5 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 493 
6 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 493 
7 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 493 
8 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 493 
9 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 493 
10 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 493 

Maximum consecutive failed attempts = 15  

1 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  363 493 
2 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 493 
3 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 388 
4 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 493 
5 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 493 
6 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 493 
7 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 493 
8 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 390 
9 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 493 
10 MTX SSZ HCQ TICORA BSC £143,530 £39,106 6.088  1 219 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Green shading for ‘current best’ solution being identified by 
algorithm. bDMARDs in bold . Algorithm settings: Initial temperature 7000. Previous best solution for every round. Stop when maximum 
runs completed (temperature < 100). 2000 simulation model runs for tuning. Lundy Parameter 2.0x10

-5 
(Maximum possible runs per 

restart = 493) 
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Table 7.26: Maximum consecutive failed attempts (10 and 5) 

Maximum consecutive failed attempts = 10 

Round Sequence (line) NMB* Costs* QALYs* Iteration when  
best solution found 

Total 
Iterations 1 2 3 4 5 6 7 8 9 10 

1 MTX TICORA ADA RTX GOL SSZ IFX HCQ ABT BSC £127,682 £76,127 6.794  61 104 
2 HCQ MTX SSZ TICORA GOL RTX ETN BSC   £143,530 £39,106 6.088  101 113 
3 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  196 272 
4 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 493 
5 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 164 
6 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 387 
7 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 274 
8 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 343 
9 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 329 
10 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 244 

Maximum consecutive failed attempts = 5 

1 MTX SSZ HCQ ABTS ADA GOL BSC    £134,989 £66,785 6.726 39 56 
2 MTX SSZ TICORA HCQ ABTS GOL ADA RTX BSC  £136,215 £61,828 6.601 5 59 
3 MTX SSZ HCQ TICORA CTZ BSC     £142,545 £49,168 6.390 41 66 
4 MTX SSZ HCQ TICORA CTZ BSC     £142,545 £49,168 6.390 1 74 
5 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  58 79 
6 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 142 
7 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 9 
8 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 40 
9 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 22 
10 MTX SSZ HCQ TICORA BSC      £143,530 £39,106 6.088  1 99 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Green shading for ‘current best’ solution being identified by algorithm. bDMARDs in bold . Algorithm 
settings: Initial temperature 7000. Previous best solution for every round. Stop when maximum runs completed (temperature < 100). 2000 simulation model runs for tuning. Lundy 
Parameter 2.0x10

-5 
(Maximum possible runs per restart = 493) 
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7.4 RESULTS 

BASECASE ANALYSIS 

The basecase analysis was run with the tuned parameter settings for the SA algorithm. These 

were the Lundy cooling schedule with a parameter of 2.0x10-5, an initial temperature of 7,000 

and the algorithm stopping after 10 consecutive rejected solutions or a temperature less than 

100. The algorithm was run for 10 rounds with the best solution identified used at the initial 

solution for each restart. The results of the basecase analysis are provided in Table 7.27, along 

with the final parameter values. 40,000 patient simulations were run for each iteration of the 

algorithm, and the maximum possible number of iterations for each restart of the algorithm 

was 493. The algorithm converged on the current best solution during the first round after just 

188 iterations. Nine subsequent rounds of the algorithm did not find any improvement. 

The current best solution is exclusively a cDMARD sequence, given a willingness to pay of 

£30,000 per QALY gained. The best sequence found is {MTX, SSZ, HCQ, TICORA, BSC}. This 

sequence is consistent with the best sequence found in any of the tuning experiments. 

Therefore it is likely to be the global optima, although it is not possible to be certain. 

Table 7.27: Basecase results 

Basecase analysis 

Round Sequence (line) NMB* Costs* QALYs* Iteration 

when  

best 

solution 

found 

Total 

Iterations 1 2 3 4 5 

1 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 188 291 

2 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 183 

3 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 60 

4 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 362 

5 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 493 

6 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 261 

7 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 166 

8 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 264 

9 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 173 

9 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 180 

END MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 100 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Green shading for ‘current 

best’ solution being identified by algorithm. bDMARDs in bold. Algorithm settings: Initial temperature 

7,000. Previous best solution for every round. Stop when maximum runs completed (temperature < 100) 

or 10 consecutive solutions rejected. 40,000 simulation model runs for tuning. Lundy cooling schedule 

with parameter 2.0x10
-5 

(Maximum possible runs per restart = 493) 



205 
 

2,433 total iterations of the algorithm were performed until the algorithm terminated.* From 

rounds 2 to 10, a better solution was not identified, however the algorithm still iterated 

(between 60 and 493 times) due to accepting worse solutions at high temperatures. The final 

‘end run’ local search was conducted (100 iterations) after 10 rounds, and confirmed the 

current best solution was a local optima. 

For every potential solution evaluated by the simulation optimisation algorithm, the NMB was 

stored within a cache. Therefore the final cache can be ranked in order of performance to 

identify the potential solutions that were close to the current best solution found. This was 

undertaken and the results for the top 20 solutions reported. This ranked top 20 of the cache 

is displayed in Table 7.28. The top 18 are highlighted in green, because their own performance 

falls within 2 estimated standard errors of the current best solution, indicating that there may 

be indifference between these solutions due to the patient level variance. The top 20 solutions 

are all composed of purely cDMARD sequences. In fact, all bar two sequences are within the 

neighbourhood of the current best, because they can all be reached by one of the three 

neighbourhood operators.  

  

                                                           
*
 This required ~15 hours on a Windows 64-bit PC with i5 Quad Core @ 2.00GHZ and 8GB RAM 
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Table 7.28: Basecase results (top 20 ranked) 

Solutions 

(ranked by 

NMB) 

Sequence (line) NMB* Costs* QALYs* 

1 2 3 4 5 

1 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 

2 SSZ MTX HCQ TICORA BSC £141,816 £38,368 6.006 

3 MTX HCQ SSZ TICORA BSC £141,752 £38,433 6.006 

4 SSZ HCQ MTX TICORA BSC £141,740 £38,445 6.006 

5 HCQ MTX SSZ TICORA BSC £141,609 £38,575 6.006 

6 HCQ SSZ MTX TICORA BSC £141,605 £38,579 6.006 

7 MTX SSZ TICORA HCQ BSC £140,342 £39,604 5.998 

8 SSZ MTX TICORA HCQ BSC £140,334 £39,612 5.998 

9 MTX HCQ TICORA SSZ BSC £140,214 £39,732 5.998 

10 SSZ HCQ TICORA MTX BSC £140,199 £39,747 5.998 

11 MTX SSZ HCQ BSC  £140,152 £34,586 5.825 

12 SSZ MTX HCQ BSC  £140,145 £34,594 5.825 

13 MTX HCQ SSZ BSC  £140,080 £34,658 5.825 

14 HCQ MTX TICORA SSZ BSC £140,070 £39,876 5.998 

15 SSZ HCQ MTX BSC  £140,068 £34,670 5.825 

16 HCQ SSZ TICORA MTX BSC £140,062 £39,884 5.998 

17 HCQ MTX SSZ BSC  £139,937 £34,801 5.825 

18 HCQ SSZ MTX BSC  £139,933 £34,805 5.825 

19 MTX TICORA SSZ HCQ BSC £138,136 £43,095 6.041 

20 SSZ TICORA MTX HCQ BSC £138,123 £43,108 6.041 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Algorithm settings: Initial 

temperature 7000. Previous best solution for every round. Stop when maximum runs completed 

(temperature < 100) or 50 consecutive solutions rejected. 40000 simulation model runs for tuning. 

Lundy Parameter 2.0x10
-5 

(Maximum possible runs per restart = 493). Highlighted green if within 2 

standard errors (£944) of best identified sequence 

 

SCENARIO ANALYSIS 

Alternative cost-effectiveness thresholds (λ) 

By varying lambda (the cost-effectiveness threshold), the net monetary benefit of each 

sequence will change, ceteris paribus. 

When lambda is zero, cost-minimisation is assumed, because any benefits are not valued at all. 

When lambda is very large, the decision problem tends towards benefit-maximisation, because 

the monetary value of any benefit dwarfs any costs associated with each sequence. 

When using the net monetary benefit framework for an economic evaluation, it is important to 

test the results and explore how they are affected by varying lambda, especially when the ICER 
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between comparators may fall very close to lambda (and therefore the incremental NMB will 

be very close), because a decision-maker’s belief about ‘true lambda’ may be very important 

when determining the true optimal solution. For NICE, their cost-effectiveness threshold is 

defined as £20,000 - £30,000 per QALY gained, and there are instances where technologies can 

be approved with an ICER above £30,000 per QALY gained. Therefore a single defined lambda 

is not available for the purposes of NICE. Therefore scenario analysis with alternative values of 

lambda is important. Scenario analysis was performed with lambda values of £0, £20,000, 

£50,000, £100,000 and £1,000,000. 

Table 7.29 provides the scenario analysis results for lambda values of £0, £20,000 and £50,000 

per QALY. The cost minimising (lambda of £0 per QALY) strategy was ‘do nothing’, with the 

optimal sequence purely best supportive care. At lambda of £20,000 per QALY, the results 

were consistent with the basecase analysis (lambda of £30,000 per QALY) with the best 

sequence found being {MTX, SSZ, HCQ, BSC}. When lambda is increased to £50,000 per QALY, 

bDMARDs contribute to the best identified sequence, but only after all cDMARD treatments 

have been used. The best sequence is {SSZ, HCQ, MTX, TICORA, CTZ, RTX, ETN, ADA, ABTS, 

GOL, BSC}. 

Table 7.30 provides the scenario analysis results for lambda values of £100,000 and £1,000,000 

per QALY. At £100,000 per QALY, first line use of bDMARDs contribute to the optimal 

treatment sequence. The best sequence identified is {ADA, RTX, MTX, SSZ, HCQ, TICORA, ABTS, 

ETN, CTZ, GOL, IFX, TCZ, BSC}. At £1,000,000 per QALY, the results are identical to £100,000. 

The best sequence identified is {ADA, RTX, MTX, SSZ, HCQ, TICORA, ABTS, ETN, CTZ, GOL, IFX, 

TCZ, BSC} 

It should be noted that the algorithm was not tuned for these much larger estimates of the 

objective function (NMB). Therefore it is not surprising that the algorithm appears to perform 

less well when undertaking these scenario analyses with a high lambda. The same solution is 

identified at £100,000 per QALY and at £1,000,000 per QALY, but the algorithm appears to 

require more rounds before the best solution is identified, at least compared to the basecase 

analysis and the scenarios conducted with lower lambda values. 
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Table 7.29: Scenario analysis - Lambda values £0, £20,000, £50,000 

Lambda £0 per QALY (Cost-Minimisation) 

Round Sequence (line) NMB* Costs* QALYs* Iteration when  

best solution found 1 2 3 4 5 6 7 8 9 10 11 

1 BSC           -£22,995 £22,995 4.502 205 

2 BSC           -£22,995 £22,995 4.502 1 

. . . 

               

10 BSC           -£22,995 £22,995 4.502 1 

END BSC           -£22,995 £22,995 4.502 1 

Lambda £20,000 per QALY 

1 MTX SSZ HCQ BSC        £81,906 £34,586 5.825 35 

2 MTX SSZ HCQ BSC        £81,906 £34,586 5.825 1 

. . . 

               

10 MTX SSZ HCQ BSC        £81,906 £34,586 5.825 1 

END MTX SSZ HCQ BSC        £81,906 £34,586 5.825 1 

Lambda £50,000 per QALY 

1 SSZ MTX HCQ TICORA ETN ADA RTX IFX GOL BSC   £264,592 £61,950 6.531 87 

2 MTX SSZ HCQ TICORA CTZ RTX ETN BSC       £266,383 £57,491 6.477 138 

3 MTX SSZ HCQ TICORA CTZ RTX ETN BSC       £266,383 £57,491 6.477 1 

4 MTX SSZ HCQ TICORA ABTS RTX ADA CTZ ETN BSC   £266,516 £60,074 6.532 162 

5 MTX SSZ HCQ TICORA ABTS RTX ADA CTZ ETN BSC   £266,516 £60,074 6.532 1 

6 MTX SSZ HCQ TICORA ABTS RTX ADA CTZ ETN BSC   £266,516 £60,074 6.532 1 

7 MTX SSZ HCQ TICORA ABTS RTX ADA CTZ ETN BSC   £266,516 £60,074 6.532 1 

8 MTX SSZ HCQ TICORA ABTS RTX ADA CTZ ETN BSC   £266,516 £60,074 6.532 1 

9 MTX SSZ HCQ TICORA ABTS RTX ADA CTZ ETN BSC   £266,516 £60,074 6.532 1 

10 SSZ HCQ MTX TICORA CTZ RTX ETN ADA ABTS GOL BSC £266,832 £59,746 6.532 276 

END SSZ HCQ MTX TICORA CTZ RTX ETN ADA ABTS GOL BSC £266,832 £59,746 6.532 1 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Green shading for ‘current best’ solution being identified by algorithm. bDMARDs in bold . Algorithm settings: Initial 

temperature 7000. Previous best solution for every round. Stop when maximum runs completed (temperature < 100) or 50 consecutive solutions rejected. 40,000 simulation model. 
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Table 7.30: Scenario analysis - Lambda values £100,000, £1,000,000 

Lambda £100,000 per QALY 

Round Sequence (line) NMB* Costs* QALYs* Iteration when  

best solution found 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 ADA RTX SSZ MTX HCQ CTZ TICORA ABTS ETN GOL IFX BSC  £614,106 £112,587 7.267 426 

2 ADA RTX SSZ MTX HCQ TICORA ABTS ETN CTZ GOL IFX TCZ BSC £614,214 £111,885 7.261 227 

3 ADA RTX SSZ MTX HCQ TICORA ABTS ETN CTZ GOL IFX TCZ BSC £614,214 £111,885 7.261 1 

4 ADA RTX SSZ MTX HCQ TICORA ABTS ETN CTZ GOL IFX TCZ BSC £614,214 £111,885 7.261 1 

5 ADA RTX SSZ MTX HCQ TICORA ABTS ETN CTZ GOL IFX TCZ BSC £614,214 £111,885 7.261 1 

6 ADA RTX SSZ MTX HCQ TICORA ABTS ETN CTZ GOL IFX TCZ BSC £614,214 £111,885 7.261 1 

7 ADA RTX SSZ MTX HCQ TICORA ABTS ETN CTZ GOL IFX TCZ BSC £614,214 £111,885 7.261 1 

8 ADA RTX MTX SSZ HCQ TICORA ABTS ETN CTZ GOL IFX TCZ BSC £614,216 £111,883 7.261 3 

9 ADA RTX MTX SSZ HCQ TICORA ABTS ETN CTZ GOL IFX TCZ BSC £614,216 £111,883 7.261 1 

10 ADA RTX MTX SSZ HCQ TICORA ABTS ETN CTZ GOL IFX TCZ BSC £614,216 £111,883 7.261 1 

END ADA RTX MTX SSZ HCQ TICORA ABTS ETN CTZ GOL IFX TCZ BSC £614,216 £111,883 7.261 1 

Lambda £1,000,000 per QALY 

1 ADA ETN TCZ GOL CTZ RTX MTX ABTS TICORA IFX SSZ HCQ BSC £7,300,822 £148,251 7.449  321 

2 ADA RTX ETN GOL CTZ TCZ IFX TICORA MTX ABTS SSZ HCQ BSC £7,302,991 £133,829 7.437  185 

3 ADA RTX ETN GOL CTZ TCZ IFX TICORA MTX ABTS SSZ HCQ BSC £7,302,991 £133,829 7.437  1 

. . .              
 

   

10 ADA RTX MTX SSZ HCQ TICORA ABTS ETN CTZ GOL IFX TCZ BSC £614,216 £111,883 7.261 1 

END ADA RTX MTX SSZ HCQ TICORA ABTS ETN CTZ GOL IFX TCZ BSC £614,216 £111,883 7.261 1 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Green shading for ‘current best’ solution being identified by algorithm. bDMARDs in bold . Algorithm settings: Initial 

temperature 7000. Previous best solution for every round. Stop when maximum runs completed (temperature < 100) or 50 consecutive solutions rejected. 40,000 simulation model. 
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Alternative treatment decrement values 

A treatment decrement parameter affects the effectiveness of the treatment within a 

sequence. It is applied to any cDMARD treatment where two prior cDMARDs are used, and 

also to any bDMARD treatment where two prior bDMARDs have been used. In the basecase 

analysis, the parameter is set at 10%. Once two prior (cDMARD or bDMARDs) have been used 

in the treatment sequence, the probability of treatment response is reduced by multiplying the 

probability of response by 1-10%. By varying the treatment decrement parameter, the 

downstream efficacy of treatments can be altered, to reflect diminished efficacy when similar 

treatments have already been attempted (classified by cDMARD or bDMARD status). 

Scenario analyses were conducted with the treatment decrement parameter set at 0%, 20%, 

30% and 40%, compared to the basecase value of 10%. 

This analysis found that the best sequence found identical to that found in the basecase 

analysis when the treatment decrement parameter was varied in all instances. (Table 7.31).  
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Table 7.31: Scenario analysis - treatment decrement values 

Treatment Decrement = 0% 

Round Sequence (line) NMB  Costs* QALYs* Iteration when  
best solution found 1 2 3 4 5 

1 MTX SSZ HCQ TICORA BSC £142,913 £40,314 6.108 120 
2 MTX SSZ HCQ TICORA BSC £142,913 £40,314 6.108 1 

. . . 

         

10 MTX SSZ HCQ TICORA BSC £142,913 £40,314 6.108 1 
END MTX SSZ HCQ TICORA BSC £142,913 £40,314 6.108 1 

Treatment Decrement = 20% 

1 MTX SSZ HCQ TICORA BSC £139,471 £36,074 5.852 179 
2 MTX SSZ HCQ TICORA BSC £139,471 £36,074 5.852 1 

. . . 

         

10 MTX SSZ HCQ TICORA BSC £139,471 £36,074 5.852 1 
END MTX SSZ HCQ TICORA BSC £139,471 £36,074 5.852 1 

Treatment Decrement = 30% 

1 MTX SSZ HCQ TICORA BSC £138,588 £34,552 5.771 311 
2 MTX SSZ HCQ TICORA BSC £138,588 £34,552 5.771 1 

. . . 

         

10 MTX SSZ HCQ TICORA BSC £138,588 £34,552 5.771 1 
END MTX SSZ HCQ TICORA BSC £138,588 £34,552 5.771 1 

Treatment Decrement = 40% 

1 MTX SSZ HCQ TICORA BSC £138,217 £34,390 5.754 171 
2 MTX SSZ HCQ TICORA BSC £138,217 £34,390 5.754 1 

. . . 

         

10 MTX SSZ HCQ TICORA BSC £138,217 £34,390 5.754 1 
END MTX SSZ HCQ TICORA BSC £138,217 £34,390 5.754 1 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Green shading for ‘current best’ solution being identified by algorithm. 
bDMARDs in bold . Algorithm settings: Initial temperature 7000. Previous best solution for every round. Stop when maximum runs completed (temperature < 
100) or 50 consecutive solutions rejected. 40,000 simulation model. 
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Alternative cooling schedules 

The final scenario analysis involved running the SA algorithm using the linear and geometric 

cooling schedules. These cooling schedules were run using the tuned parameters estimated in 

the tuning process (see Table 7.20 and Table 7.21). The results are reported in Table 7.32. 

Table 7.32: Scenario analysis - alternative cooling schedules 

Geometric Cooling: 50 Repetitions per step. Cooling rate 0.80 (Maximum possible runs per round = 1200) 

Round Sequence (line) NMB* Costs* QALYs* Iteration 

when  

best solution 

found 

Total 

Iterations 1 2 3 4 5 

1 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 615 1001 

2 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 693 

3 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 874 

4 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 671 

5 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 961 

6 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 828 

7 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 350 

8 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 746 

9 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 540 

10 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 549 

END MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 100 

Linear Cooling: 100 Repetitions per step. 500 Decrement per step. (Maximum possible runs per round = 1400) 

1 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 971 1400 

2 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 1301 

3 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 1400 

4 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 1400 

5 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 1400 

6 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 1400 

7 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 1400 

8 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 1400 

9 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 1400 

10 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 1400 

END MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 1 100 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Green shading for ‘current best’ 

solution being identified by algorithm. bDMARDs in bold. Algorithm settings: Initial temperature 7,000. Previous 

best solution for every round. Stop when maximum runs completed (temperature < 100) or 10 consecutive 

solutions rejected. 40,000 simulation model runs  

 

The best found sequence was consistent with that identified in the basecase analysis, 

irrespective of which cooling schedule was use. However, the basecase cooling schedule 

(Lundy) was much more efficient. The geometric and linear cooling schedules took 6,312 and 

14,001 iterations, respectively, compared with the basecase analysis which took 2,433. 

OPTIMAL CDMARD-ONLY TREATMENT SEQUENCE 

The patient simulation model was run without the optimisation procedure, enabling a subset 

of user-specified cDMARD treatment sequences to be run. The total number of sequences 

which only include cDMARD treatments is 65 (see Table 7.33). All 65 sequences were run in 
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the simulation model to identify the optimal cDMARD-only treatment sequence, and the 

results are presented in Table 7.33. MTX, HCQ and SSZ have identical efficacy*, which is why 

many sequences generate identical total QALY estimates. Unsurprisingly, these results 

mirrored the basecase analysis, with an optimal sequence of {MTX, SSZ, HCQ, TICORA, BSC}. 

The top six solutions are within two standard errors of the apparent optimal solution {MTX, 

SSZ, HCQ, TICORA, BSC}, and are highlighted in green. 

The most effective set of sequences {TICORA, cDMARD, BSC} (solutions 43-48 in Table 7.33) 

were also the most costly. From this analysis, some conclusions can be drawn. Firstly, at a 

lambda threshold of £30,000 per QALY, an intensive strategy (TICORA) of combination 

DMARDs may not be cost effective as first line treatment. Also, if treatments are assumed to 

have equal efficacy and licensed indication (as with MTX, SSZ and HCQ) then it is logical that 

treatments are prescribed in ascending order of treatment cost.  

  

                                                           
*
 They are identical in terms of initial treatment response, length of time spent on treatment, and their 

impact on HAQ progression over time.  
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Table 7.33: Optimisation of cDMARD treatment sequence 

Sequence 
(ranked by NMB) 

Line NMB* Costs* QALYs* 
1 2 3 4 5 

1 MTX SSZ HCQ TICORA BSC £141,824 £38,361 6.006 
2 SSZ MTX HCQ TICORA BSC £141,816 £38,368 6.006 
3 MTX HCQ SSZ TICORA BSC £141,752 £38,433 6.006 
4 SSZ HCQ MTX TICORA BSC £141,740 £38,445 6.006 
5 HCQ MTX SSZ TICORA BSC £141,609 £38,575 6.006 
6 HCQ SSZ MTX TICORA BSC £141,605 £38,579 6.006 
7 MTX SSZ TICORA HCQ BSC £140,342 £39,604 5.998 
8 SSZ MTX TICORA HCQ BSC £140,334 £39,612 5.998 
9 MTX HCQ TICORA SSZ BSC £140,214 £39,732 5.998 

10 SSZ HCQ TICORA MTX BSC £140,199 £39,747 5.998 
11 MTX SSZ HCQ BSC 

 
£140,152 £34,586 5.825 

12 SSZ MTX HCQ BSC 
 

£140,145 £34,594 5.825 
13 MTX HCQ SSZ BSC 

 
£140,080 £34,658 5.825 

14 HCQ MTX TICORA SSZ BSC £140,070 £39,876 5.998 
15 SSZ HCQ MTX BSC 

 
£140,068 £34,670 5.825 

16 HCQ SSZ TICORA MTX BSC £140,062 £39,884 5.998 
17 HCQ MTX SSZ BSC 

 
£139,937 £34,801 5.825 

18 HCQ SSZ MTX BSC 
 

£139,933 £34,805 5.825 
19 MTX TICORA SSZ HCQ BSC £138,136 £43,095 6.041 
20 SSZ TICORA MTX HCQ BSC £138,123 £43,108 6.041 
21 MTX TICORA HCQ SSZ BSC £138,095 £43,136 6.041 
22 SSZ TICORA HCQ MTX BSC £138,079 £43,152 6.041 
23 HCQ TICORA MTX SSZ BSC £137,855 £43,376 6.041 
24 HCQ TICORA SSZ MTX BSC £137,852 £43,379 6.041 
25 MTX SSZ TICORA BSC 

 
£137,672 £38,370 5.868 

26 SSZ MTX TICORA BSC 
 

£137,664 £38,377 5.868 
27 MTX HCQ TICORA BSC 

 
£137,387 £38,655 5.868 

28 SSZ HCQ TICORA BSC 
 

£137,360 £38,681 5.868 
29 HCQ MTX TICORA BSC 

 
£137,243 £38,798 5.868 

30 HCQ SSZ TICORA BSC 
 

£137,224 £38,817 5.868 
31 MTX SSZ BSC 

  
£136,339 £32,686 5.634 

32 SSZ MTX BSC 
  

£136,332 £32,694 5.634 
33 MTX HCQ BSC 

  
£136,053 £32,972 5.634 

34 SSZ HCQ BSC 
  

£136,027 £32,999 5.634 
35 HCQ MTX BSC 

  
£135,911 £33,114 5.634 

36 HCQ SSZ BSC 
  

£135,892 £33,133 5.634 
37 MTX TICORA SSZ BSC 

 
£135,646 £41,894 5.918 

38 SSZ TICORA MTX BSC 
 

£135,633 £41,907 5.918 
39 MTX TICORA HCQ BSC 

 
£135,453 £42,086 5.918 

40 SSZ TICORA HCQ BSC 
 

£135,427 £42,113 5.918 
41 HCQ TICORA MTX BSC 

 
£135,213 £42,326 5.918 

42 HCQ TICORA SSZ BSC 
 

£135,200 £42,340 5.918 
43 TICORA MTX SSZ HCQ BSC £134,294 £47,885 6.073 
44 TICORA SSZ MTX HCQ BSC £134,290 £47,889 6.073 
45 TICORA MTX HCQ SSZ BSC £134,252 £47,927 6.073 
46 TICORA SSZ HCQ MTX BSC £134,245 £47,934 6.073 
47 TICORA HCQ MTX SSZ BSC £134,177 £48,002 6.073 
48 TICORA HCQ SSZ MTX BSC £134,175 £48,005 6.073 
49 MTX TICORA BSC 

  
£132,292 £40,465 5.759 

50 SSZ TICORA BSC 
  

£132,266 £40,491 5.759 
51 HCQ TICORA BSC 

  
£131,845 £40,912 5.759 

52 TICORA MTX SSZ BSC 
 

£131,437 £46,703 5.938 
53 TICORA SSZ MTX BSC 

 
£131,432 £46,707 5.938 

54 TICORA MTX HCQ BSC 
 

£131,232 £46,907 5.938 
55 TICORA SSZ HCQ BSC 

 
£131,214 £46,926 5.938 

56 TICORA HCQ MTX BSC 
 

£131,157 £46,982 5.938 
57 TICORA HCQ SSZ BSC 

 
£131,143 £46,996 5.938 

58 MTX BSC 
   

£127,929 £29,661 5.253 
59 SSZ BSC 

   
£127,902 £29,687 5.253 

60 TICORA MTX BSC 
  

£127,678 £45,125 5.760 
61 TICORA SSZ BSC 

  
£127,660 £45,143 5.760 

62 HCQ BSC 
   

£127,483 £30,107 5.253 
63 TICORA HCQ BSC 

  
£127,385 £45,418 5.760 

64 TICORA BSC 
   

£121,357 £42,091 5.448 
65 BSC 

    
£112,062 £22,995 4.502 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY.  
Highlighted green if within 2 standard errors (£484) of best identified sequence 
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COMPARISON TO NICE MTA APPRAISAL OF RA BIOLOGICS 

The simulation model was run using the treatment sequences evaluated in the NICE MTA 

appraisal of RA bDMARDs (Severe RA patients, Population 1 and 2). 12 sequences were 

evaluated; one cDMARD comparator sequence {MTX, TICORA, BSC}; eight third-line bDMARD 

sequences {MTX, TICORA, bDMARD 1, RTX 2, bDMARD2*, BSC}, and three first line bDMARD 

sequences {bDMARD1, RTX, TCZ, MTX, TICORA, BSC}. 

The full results are presented in Table 7.34. At a lambda threshold of £30,000 per QALY gained, 

the optimal sequence was the cDMARD comparator sequence. bDMARD sequences were not 

cost-effective, at both first line and third line use. The cDMARD comparator sequence was 

both the least costly and least effective. The bDMARD sequences provided additional benefits 

in terms of QALYs, but at too high a cost. 

Table 7.34: Comparison to NICE MTA appraisal of RA biologics 

Sequence 

Line NMB* Costs* QALYs* ICER 

1 2 3 4 5 6 7 

cDMARD comparator sequence 

1 TICORA MTX BSC 

  

  £127,678 £45,125 5.760 - 

Third line bDMARD sequences 

2 TICORA ABT RTX TCZ MTX BSC  £105,055 £99,095 6.805 £51,646
1
 

3 TICORA ABTS RTX TCZ MTX BSC  £105,658 £99,782 6.848 £50,236
1
 

4 TICORA ADA RTX TCZ MTX BSC  £105,086 £99,874 6.832 £51,072
1
 

5 TICORA CTZ RTX TCZ MTX BSC  £107,156 £96,994 6.805 £49,635
1
 

6 TICORA ETN RTX TCZ MTX BSC  £104,527 £100,733 6.842 £51,394
1
 

7 TICORA GOL RTX TCZ MTX BSC  £104,647 £99,773 6.814 £51,848
1
 

8 TICORA IFX RTX TCZ MTX BSC  £99,160 £100,550 6.657 £61,789
1
 

9 TICORA TCZ RTX MTX BSC   £119,853 £95,277 7.171 £55,911
1
 

Current NICE recommended treatment sequence 

10 MTX TICORA ADA RTX TCZ SSZ BSC £120,777 £77,043 6.594 - 

First line bDMARD sequence  

11 ADA RTX TCZ MTX BSC   £93,074 £120,136 7.107 £84,002
2
 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. 
1
Compared to sequence 1 

 
2
Compared to sequence 10 

 

The use of bDMARDs in third-line had an ICER of between £49,635 and £61,789 per QALY 

gained compared to cDMARDs only. The range was dependent on the particular bDMARD 

therapy used. These results are slightly lower than the original results estimated in the NICE RA 

MTA assessment group analysis. The basecase ICER using the original model was £56,000 per 

QALY gained for third line bDMARD therapy compared to cDMARDs only. 

The use of bDMARDs in first line had an ICER of £84,002 per QALY gained compared a 

treatment sequence reflecting NICE guidance. These results are slightly lower than the original 
                                                           
*
 Where relevant 
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results estimated in the NICE RA MTA assessment group analysis. The range was dependent on 

the particular bDMARD therapy used. The basecase ICER using the original model was £98,000 

per QALY gained for first line bDMARD therapy compared a treatment sequence reflecting 

NICE guidance. 

Unfortunately the full NICE MTA results, in terms of absolute costs and QALYs, cannot be 

reported due to being Commercial in Confidence. 

The deviation between the two analyses could come from several different sources: 

1. The modifications undertaken (see page 155) within the Simul8 model may have 

significantly altered the results. Using metamodels and incorporating a treatment decrement 

parameter will undoubtedly alter the results slightly. 

2. An error in either version of the model, which given the size and complexity of the 

models does remain a possibility 

3. Slight different sequences of treatments being modelled – the SOSA analysis model 

was amended slightly to match the NICE MTA sequences evaluated 

4. Slightly different patient populations – this analysis used the treatment naïve 

(Population 1) data for the patient population, and then models cDMARD use until bDMARDs 

(Population 2/3 in the MTA), and these patients may be different to those sampled in 

Population 2/3 used in the MTA. 

Both models were fully validated, and the NICE MTA model underwent a full external peer-

review. Therefore it is important to highlight that the software package used, and therefore 

the methods used to develop the model and simulate lifetime costs and QALYs may have an 

impact on the validity of the final results. It should also be noted that the objective of this 

analysis was not to replicate the NICE MTA model, but instead to provide a model which would 

enable the implementation of the simulation optimisation method, and therefore the 

deviation between the two sets of results does not detract from meeting this objective. 

COMPARISON TO EXISTING NICE GUIDANCE 

The existing NICE clinical pathway for patients with severe RA was detailed in Figure 5.1. After 

two cDMARDs, patients can receive a bDMARD. After this bDMARD, patients can receive RTX, 

and then TCZ. If a patient is contraindicated to RTX, then an alternative bDMARD can be used. 

The model was run with the 21 sequences possible from this current NICE guidance pathway. It 

was assumed, for simplicity, that people are eligible for RTX treatment. The first line treatment 

was either TICORA, or two sequential cDMARD therapies before bDMARDs. If the first line 

treatment was TICORA, then Sequences 8-14 assume that cDMARDs are not used after 
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bDMARD treatment, and Sequences 15-21 assume that the remaining cDMARDs are used after 

bDMARD treatment. 

The best sequence identified from the basecase simulation optimisation {MTX, SSZ, HCQ, 

TICORA, BSC} was run as a comparator (Sequence 22). This was undertaken to see if the new 

sequence identified was superior, and whether it was more efficacious than current NICE 

guidance. 

Table 7.35 presents the results from this analysis. The best sequence in terms of maximising 

NMB remains the sequences found in the basecase simulation optimisation {MTX, SSZ, HCQ, 

TICORA, BSC}. 

However, this sequence is both less costly and less efficacious when compared with the NICE 

guidance pathway. In these sequences, bDMARDs are used from third line position in the 

sequence. The addition of bDMARDs increases the lifetime QALYs provided by the treatment 

sequence. These sequences are also much more costly. Using {MTX, SSZ} as the first line 

treatment in the sequence is superior compared to using TICORA. This reinforces earlier 

findings (Table 7.28). 



218 
 

Table 7.35: NICE guidance comparison 

Sequences 

 

Line NMB* Costs* QALYs* 

1 2 3 4 5 6 7 8 

“MTX, SSZ” first line NICE sequence 

1 MTX SSZ ADA RTX TCZ TICORA HCQ BSC £123,629 £75,467 6.637 

2 MTX SSZ ETN RTX TCZ TICORA HCQ BSC £123,182 £76,521 6.657 

3 MTX SSZ IFX RTX TCZ TICORA HCQ BSC £122,018 £76,652 6.622 

4 MTX SSZ CTZ RTX TCZ TICORA HCQ BSC £125,364 £73,346 6.624 

5 MTX SSZ GOL RTX TCZ TICORA HCQ BSC £123,799 £75,246 6.635 

6 MTX SSZ ABT RTX TCZ TICORA HCQ BSC £123,105 £75,562 6.622 

7 MTX SSZ ABTS RTX TCZ TICORA HCQ BSC £123,446 £75,648 6.636 

TICORA first line NICE sequence(no post-biologics cDMARDs) 

8 TICORA ADA RTX TCZ BSC    £104,275 £99,266 6.786 

9 TICORA ETN RTX TCZ BSC    £102,993 £100,690 6.789 

10 TICORA IFX RTX TCZ BSC    £102,826 £100,085 6.764 

11 TICORA CTZ RTX TCZ BSC    £105,439 £96,768 6.740 

12 TICORA GOL RTX TCZ BSC    £104,999 £98,838 6.795 

13 TICORA ABT RTX TCZ BSC    £103,996 £98,761 6.759 

14 TICORA ABTS RTX TCZ BSC    £104,144 £99,210 6.778 

TICORA first line NICE sequence(including post-biologics cDMARDs) 

15 TICORA ADA RTX TCZ MTX SSZ HCQ BSC £105,897 £100,240 6.871 

16 TICORA ETN RTX TCZ MTX SSZ HCQ BSC £105,301 £101,415 6.891 

17 TICORA IFX RTX TCZ MTX SSZ HCQ BSC £104,949 £101,039 6.866 

18 TICORA CTZ RTX TCZ MTX SSZ HCQ BSC £107,269 £97,717 6.833 

19 TICORA GOL RTX TCZ MTX SSZ HCQ BSC £106,004 £100,032 6.868 

20 TICORA ABT RTX TCZ MTX SSZ HCQ BSC £105,661 £99,880 6.851 

21 TICORA ABTS RTX TCZ MTX SSZ HCQ BSC £106,022 £100,297 6.877 

Best sequence from simulation optimisation 

22 MTX SSZ HCQ TICORA BSC    £141,824 £38,361 6.006 

*Costs (£) and QALYs discounted at 3.5%. NMB valued at £30,000 per QALY. Highlighted green if maximum, red if minimum. 
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7.5 DISCUSSION AND CONCLUSIONS 

The aim of this chapter was to undertake a simulation optimisation of a discrete event 

simulation model, to enable the identification of an optimal or near-optimal DMARD 

treatment sequence for patients with RA. 

SA with a memory function was selected as the simulation optimisation method to be 

implemented. Modifications to the DES model were required to enable the simulation 

optimisation algorithm to run. The SA algorithm required tuning of control parameters to 

enable it to function properly. The best solution found (across all simulations, as well as in the 

basecase analysis) was a CDMARD-exclusive sequence of {MTX, SSZ, HCQ, BSC}. For the 

basecase analysis, the algorithm was relatively quick to complete, requiring about 15hrs to 

run, and evaluating over 2,400 potential solutions. 

The best solution found was robust when the treatment decrement parameter was varied. The 

best solution found was also robust when a cost effectiveness threshold of £20,000 per QALY 

was assumed. At a threshold of £50,000 per QALY, the best sequence found included 

bDMARDs after four previous cDMARD treatments. First line bDMARD use was found to be 

potentially optimal when the threshold was increased to £100,000 per QALY. 

Compared to the NICE RA MTA model developed in Excel, the results using this model were 

found to be slightly different. This will be discussed further in the following paragraphs. Finally, 

the best sequence found was compared to the existing set of sequences recommended in the 

NICE guidance for RA. It was found that the best sequence identified {MTX, SSZ, HCQ, BSC} was 

optimal compared to NICE guidance, in that NMB would be increased. However, this increase 

in NMB was at the cost of a reduction in total QALYs.  

There are several limitations which require further consideration. 

Firstly, the Simul8 model is slightly different to the original model developed in Excel. 

Modifications were required to enable it to be developed in Simul8. The significant speedup 

offered by Simul8 came at a potential cost because the econometric models used to provide 

patient level parameters could not be properly incorporated. This represents a limitation of 

Simul8, but it also highlights the general trade-off between precision and speed, when 

developing a complex computer model. 

The difference in the results is highlighted in Table 7.34. These differences may come from the 

modifications made to the Simul8 model, as discussed. However, it could be that an error 

remains within the analysis, either in the Simul8 model for this thesis or the Excel model for 
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the RA MTA appraisal. Both models were validated but there always remains a risk of an 

unidentified error within a model. 

Secondly, the patient level variability within the model was such that a definitive statement 

about superiority between two very similar sequence was not possible. To account for this, the 

standard error of the best found sequence was used to illustrate which nearby solutions may 

be within a level of tolerance (twice an estimated standard error). In all cases, the results 

found to be within this margin of tolerance were very similar to that found to be the best. 

However, as reviewed in Chapter 6, there is a large body of methodological literature that 

looks to inform how to compare and rank the output of noisy simulation models. Due to 

limited time, it was not possible to investigate how these methods could be applied to the 

treatment sequencing problem, however this remains an area for further research. 

The SA algorithm required tuning to enable good performance. Trial and error was used across 

some control parameters, and simple factorial design across others, to enable experimentation 

of different control parameters. Ideally, a full factorial set of experiments would have been 

conducted to obtain the optimal setting for the algorithm, however this was not feasible. In 

reality, designing and tuning an optimisation algorithm such as a metaheurstic itself represents 

an optimisation problem. Hyperheuristic methods (see Section 6.8) enable the automation of 

this tuning process; however they require a very efficient simulation model for their use in a 

simulation optimisation problem. Also there remains the possibility of algorithm parameters 

which would enable the algorithm to perform better. Repeated tuning experiments was 

undertaken to build confidence that it was a change in a parameter which affected 

performance, rather than chance. However, it does remain possible that the final set of tuned 

parameters were found by chance, and that superior parameter settings exist. 

The algorithm appears to have performed well, given its simplicity compared to much more 

advanced SA implementations. Relatively simple static cooling schedules were evaluated and 

the SA algorithm uses a simple restart procedure to provide the algorithm with the best 

chance of escaping a local optima in the early rounds. The memory cache of previously 

evaluated solutions enabled a significant speed-up and should be considered in future. While 

the cooling schedules and SA algorithm performed well, more advanced schedules, such as 

dynamic schedules, and more advanced algorithms, including reheating procedures and 

adaptive neighbourhood functions could have improved performance even more. 

While the algorithm performed well in the basecase, when the lambda threshold was 

increased to a point where there was a large change in the NMB objective values being 

evaluated, then the algorithm performed less well. This was likely to occur because the 
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algorithm was not tuned for objective values of this particular magnitude. This is an important 

implication for health economic evaluation. Using a NMB framework allows the problem to be 

characterised as a simple maximisation problem, but the NMB for any solution is dependent 

on the lambda value used to monetise benefits. Therefore further tuning may be required if a 

set of lambda values are to be fully evaluated.  

The SO procedure utilises a link between Excel (the optimisation process) and Simul8 (the 

simulation model) to enable neighbouring sequences to be selected (implemented in Excel 

VBA) and then passed to Simul8 via Microsoft COM. This is potentially an area of inefficiency 

for the SO procedure. Also, the way the link was implemented meant that the number of 

simulation runs had to be predefined. That is, every run of the SO algorithm had a predefined 

number of patient simulations in the Simul8 model. Therefore it was not possible to attempt 

ordinal optimisation, or a statistical method which reduces the simulations required for 

solutions which are clearly inferior. This is a limitation of the approach taken, mainly due to 

current computing expertise, and also the fact that health economic models are normally 

developed in a package which enables a level of user interface. Executable models written in a 

true programming language may have offered significant speed up, as well as the possibility to 

test alternative SO methods, but it was not possible in this case. 

Finally, it was not possible within these timescales to implement an alternative metaheuristic 

method. For example, it would have been valuable to implement GA and compare its 

performance to SA. In the review in Chapter 6, only one study compared GA and SA in a 

combinatorial simulation optimisation problem. It would have added to the body of evidence 

to implement another metaheuristic and compare their performance. GA’s are harder to 

implement, and require more tuning due to having a greater number of user control 

parameters. The limited evidence from Lacksonen et al. (2001) is that GA’s offer greater 

performance but at the expense of longer running time.224 Therefore it was decided to try to 

implement one method but with as full an experimentation and tuning as possible, rather than 

implement two methods but with less time for tuning and experimentation. The comparative 

evidence would have been less robust, compared to the evidence found in this chapter which 

broadly supports SA and its use for SO. SA has been found to be efficient at reaching what 

appears to be a global optima of the problem. The method was relatively straightforward to 

implement, although the modifications required to rebuild the model in Simul8 may have 

made the final results less robust. The SA algorithm also requires more tuning to ensure that 

the results found when lambda is varied. 
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CHAPTER 8: DISCUSSIONS, RECOMMENDATIONS AND CONCLUSIONS 

 

8.1 CHAPTER OVERVIEW 

This chapter provides a discussion of the research presented within this thesis. It highlights the 

contribution of this work within the context of other related research. It also provides 

recommendations for further research, before drawing conclusions. 

Section 8.2 presents the contribution of this work in the context of other research. Section 8.3 

considers the strengths and limitations of this research. Section 8.4 presents recommendations 

for further research. Finally, Section 8.5 draws conclusions about the overall value and impact 

of this research. 

 

8.2 CONTRIBUTION OF THIS WORK IN THE CONTEXT OF OTHER 

RESEARCH 

Since beginning this PhD at the start of 2012, there have been several key publications and 

further advances in research related to this area. 

Firstly, Tappenden et al. published a Whole Disease Modelling (WDM) methodological 

framework and an application of this framework.292,303 This WDM framework is a system-level 

approach to health economic modelling which captures the whole system of disease and 

treatment pathway within one consistent mathematical infrastructure. It allows the 

incorporation of multiple decision points, and the full quantification in terms of costs and 

QALYs of downstream consequences. An innovative aspect of the WDM framework is that it 

allows multiple decision points to be evaluated. Within the context of colorectal cancer, 

Tappenden et al. were able to evaluate screening, surgery, and metastatic treatment across 

the full pathway of cancer diagnosis and treatment.292 

The DES model developed for implementing simulation optimisation for the RA treatment 

sequencing problem is consistent with the principles of the WDM framework. A whole disease 

model is required for a full treatment sequence to be evaluated. The full consequences of 

alternative treatment sequences have been captured, and alternative options at every decision 

point (e.g. first line, second line, third line therapy) have been formally evaluated in the RA 

simulation optimisation analysis.  
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While the framework was not formally applied when developing either the NICE RA model or 

the Simul8 model, our research adds value to the WDM research by highlighting the 

importance of a consistent model which allows the evaluation of all possible decision points in 

a patient’s pathway. Piecemeal models and partial economic evaluations are likely to lead to 

sub-optimal decisions if downstream consequences are omitted. 

The application of a simulation optimisation extends the WDM framework. Rather than a 

process of identifying key decision questions and using a whole disease model to evaluate each 

decision question, all possible questions can be considered as an optimisation problem – how 

do we optimise the complete treatment pathway for a particular population? Although our 

context has been treatment sequencing, it would not be unfeasible to incorporate alternative 

policy decisions about diagnosis and treatment, such as optimising screening intervals and 

population selection, and optimising treatment switching rules. 

Secondly, there is an ongoing PhD on a similar topic by a post graduate student at ScHARR. 

Their research is specific to hypertension treatment, and applies metaheuristic methods to a 

health economic model. There has not been dialogue between the two PhD candidates while 

research has been ongoing. The PhD topics were developed in very separate contexts and had 

separate supervisory teams. However, it will be of great interest to consider the final outputs 

of both PhDs to see where conclusions are similar and where differences are found. 

Thirdly, a relevant paper was identified during the latter stages of this thesis. Brailsford et al. 

(2006) report the application an ant colony optimisation (ACO) model to identify optimal 

screening policies for diabetic retinopathy.304 It is not clear why this paper was not identified 

during the systematic review of simulation optimisation methods in Chapter 6. As such, this 

highlights a limitation of the search process used in the review.  

ACO is a population-based stochastic optimisation method. When a combinatorial problem can 

be demonstrated through a graph, such as the travelling salesman problem, then ACO can be 

applied to find the optimal route or path through the graph. 

Brailsford et al. used a previously published simulation based ACO method (S-ACO) for their 

analysis.305,306 The method used by Brailsford et al. is particularly interesting due to the 

dynamic process utilised. The development of a solution for evaluation (a particular screening 

programme) is guided by the simulation and ACO process in one model. This is different to an 

optimisation algorithm generating a solution, and then passing that solution to a simulation 

model for evaluation. The authors report that the method worked well and their results have 
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face validity. In particular, they maximise cost-effectiveness (identify the strategy with the 

lowest cost per year of sight saved), and also report the most effective screening strategy. 

It is a weakness of this thesis that this research was not identified earlier and considered in the 

systematic review. ACO appears to be a promising method, and further research within a 

health economic evaluation context would be of significant value. 

Finally, in 2013 NICE updated their Guide to the Methods of Technology Appraisal.47 I was an 

invited expert to provide a briefing paper and attend a working party meeting during this 

process (before this PhD began).* NICE had found that treatment sequences had caused issues 

for the development of guidance. My briefing paper regarding treatment sequences and 

downstream costs was considered by the working party. It highlighted that sequences should 

be considered, explores the key issues when modelling sequences, and identifies the key 

primary and sensitivity analyses which should be reported. This particular topic, as well as 

others, was influential in a modification to the Guide to the Methods of Technology Appraisal, 

which clarified that at the scoping stage, potentially relevant comparators should not be 

eliminated. Treatment sequences continue to represent a challenge for decision-makers and 

health economists. It is hoped that this thesis has provided a significant insight into the 

problem, and provides a potential method which can be applied. 

 

8.3 STRENGTHS AND LIMITATIONS OF THIS RESEARCH 

The rationale for undertaking this research is grounded by a systematic review (Chapter 3) 

which identifies how current methods have led to differing estimates of cost-effectiveness, 

and potentially sub-optimal decisions, with respect to RA sequences of treatments. 

The systematic review reported in Chapter 4 is comprehensive. All major databases were 

searched with no date limit applied and across all possible disease modifying treatments. 57 

studies and fully appraising them using the validated Drummond checklist.78 Systematic 

reviews are regarded as the most robust of all study design types, within evidence based 

medicine.† Although this particular review concerned health economic evaluations, rather than 

randomised controlled trials, it is still a transparent and robust synthesis of the totality of 

health economic evidence pertaining to RA treatment. 

                                                           
*
  http://www.nicedsu.org.uk/NICE-Methods-Guide-updates(1985333).htm – Accessed June 2015 

†
  http://www.cebm.net/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/ - 

Accessed June 2015 

http://www.nicedsu.org.uk/NICE-Methods-Guide-updates(1985333).htm
http://www.cebm.net/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/
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The systematic review was validated by cross-checking other reviews of RA health economic 

literature, including a systematic review also concerned with health economic evaluations for 

RA treatment sequences.120 The conclusions found across these similar reviews were 

consistent, adding to its validity. The chapter was also peer-reviewed and published in an 

international RA journal.94 

The research in this thesis is further underpinned by another systematic review (Chapter 6). 

This pearl growing systematic review uses innovative searching methods to identify methods 

of potential applicability to the treatment sequencing problem. As before, a systematic review 

is robust due to its validated and transparent methodology. In this case, the search and review 

was conducted across a range of academic disciplines. The applicability of each identified 

method was judged using a bespoke framework. This was reported with full transparency 

(extraction tables provided in Appendix B.4), to avoid bias.  

The breath of search may have meant that meant that some studies of relevance were missed. 

This is known to be true for the Brailsford et al. diabetic retinopathy study, and related 

research using Ant Colony Optimisation methods.304 It may have been beneficial to involve 

experts within the area of simulation optimisation to ensure that relevant methods and studies 

had been identified; however this was not feasible within the time available. 

The review sought to identify relevant methods, irrespective of the academic field they were 

developed in or applied. This included fields such as engineering, computing and mathematics. 

As such, there may be bias and errors in the interpretation of particular aspects of the method 

or optimisation problem. To minimise the risk of this, intensive training was undertaken 

alongside this PhD research. Courses offered by the OR Society and the National Taught Course 

Centre in Operational Research (NATCOR) were attended. Courses focussed on stochastic 

modelling, metaheuristics, optimisation and simulation modelling. Skills were developed to 

ensure that alternative methods could be assessed and applied to the RA treatment 

sequencing problem. 

The review of methods was specific to combinatorial problems and focussed on simulation 

optimisation methods. Therefore non-combinatorial problems were not included, although 

potentially they could work for a treatment sequencing problem. Also, statistical methods of 

sample approximation, and metamodeling/emulation were not included within this review. 

These could provide a solution to the treatment sequencing problem, but a decision was made 

to focus on metaheuristic methods due to the significant amount of current research that has 

been applied to combinatorial simulation optimisation problems. 
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Both systematic reviews would have benefitted from a second reviewer to validate and cross-

check data extraction and data appraisal. This approach is standard practice in regular health 

research and systematic reviewing, but not feasible for a PhD project. 

The timing of this PhD was ideal, because it enabled involvement with the NICE re-appraisal of 

biologics for RA. This enabled a model to be developed for the NICE appraisal and a separate 

model based on this to be developed for the PhD. The NICE MTA model was developed as a 

collaborative effort, involving health economists, statisticians, systematic reviews and 

modellers. This meant that the final model used the most appropriate evidence, and avoided 

simplifications which would have been inevitable if conducted by just one person. The model 

development process and team were carefully constructed so that I retained overall 

responsibility for the final model. However, much of the evidence synthesis used with in the 

model is the result of other people’s work. This reflects the reality of health economic model 

development, which is almost always a collaborative process. PhD’s are normally the 

endeavour of one person and sometimes this can act as a constraint. However, good timing 

and an accommodating team within ScHARR enabled my PhD to benefit from a much more 

comprehensive model, and I was able to engage with the NICE appraisal process and further 

understand the NICE process (scoping, appraisal, guidance development). 

The research would have benefitted from the experience of using the simulation optimisation 

methodology within a real world decision-making context. This was not possible during this 

PhD. However, with the SOSA method providing positive results, it is hoped to engage with 

upcoming NICE appraisals, in RA and in other chronic conditions, where flexible simulation 

modelling methods and optimisation methods can potentially be applied. 

A weakness is that a comparative evaluation of simulated annealing and an alternative 

optimisation method was not possible. It would have been ideal to implement alternative 

methods (for example, a genetic algorithm) and explore whether one particular method is 

superior. However, it was not feasible to undertake this within the PhD. Programming, tuning 

and evaluating one simulation optimisation method was a substantial undertaking, even 

though simulated annealing is often seen as a relatively straight forward algorithm to 

implement (compared with population based and adaptive metaheuristics methods). Also, the 

value of a comparison of two or more methods is limited due to their performance often being 

problem-specific. Finding that one method is superior to another in one problem context may 

not be useful if the converse is true in an alternative problem context. Therefore further 

studies of alternative methods within alternative problem contexts are of value. The evidence 

found within the systematic review of methods (Chapter 5) did not report a clear finding as to 
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which method is potentially best for a combinatorial simulation optimisation problem. 

Therefore this unanswered question is wider than just health economic evaluation, but a 

question for simulation optimisation as a discipline. 

The SOSA methodology would have been improved if it was possible to incorporate the 

precision of the estimated objective value into the algorithm’s decision to run a set of patients. 

For example, some SO methods allow the decision about whether to run more simulations to 

be determined by the expected estimate of the objective function and its variance. Therefore 

solutions which are clearly inferior are only run for a small number of patient simulations, but 

solutions which are very close, or potentially an improving solution are run for a large number 

of patient simulations. This could have improved the accuracy of the results, due to simulation 

time being focussed on good solutions and improving the precision of the estimate of 

performance, however it was not feasible due to the software used. Simul8 has limits on the 

dimensions of its data and it is unable to easily and efficiently move large data in and out of 

Excel. Also, the number of patients run had to be determined a priori using the COM interface, 

and was therefore the same for every evaluation. Using an alternative software package, or a 

programming language, would have got around this limitation, but this was not feasible. 

SOSA is limited by the software package or language it is implemented in. If using a bespoke 

simulation package such as Simul8 or Arena, then the complexity of the optimisation algorithm 

is limited to the bespoke programming language in each package (Visual Logic for Simul8, and 

a limited Visual Basic interface for Arena). Simul8 was chosen over Arena due to user 

familiarity, as well as being routinely used in our academic department; however it may be 

that it is feasible to program the simulation model and optimisation process within an Arena 

model. Further investigation and dialogue with OR simulation community may resolve this. 

The alternative to using a bespoke simulation package is to develop the simulation model and 

optimisation process within a particular programming language (C++, Java, Fortran, R etc.), the 

benefit may be increased performance, but the downside is that often programmed models 

are less visual for decision making purposes, which are significant limitations when considering 

the NICE appraisal process and the fact that the stakeholders and independent assessment 

groups must be able to externally validate and critique the model.  

Simul8 and Arena both have an optimisation software package associated with them 

(OptQuest), however this package is bespoke, black box and requires the full Professional 

version. It is not clear exactly what algorithm and process is being applied, although the 

documentation reports that composite search algorithm is used combining ‘tabu search, 
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scatter search, integer programming and neural networks’.* Using a black box bespoke 

optimisation software package is less suitable for academic purposes, although it may well 

deliver good performance in practice. 

A final strength of this research is that the generalisability and robustness of SA continues to 

be reinforced. The algorithm remains relatively simple and easy to implement, but has good 

performance across a range of simulation and non-simulation optimisation problems. Applying 

it to a treatment sequencing problem is yet another unique problem instance where it has 

performed well. There remain several other possibilities for optimisation within a health 

economic evaluation context and SA would appear to be a potential solution. 

8.4 RECOMMENDATIONS FOR FURTHER RESEARCH 

This thesis represents a single attempt to apply SOSA to the RA treatment sequencing 

problem. Therefore remains several unresolved methodological issues regarding SOSA which 

require further research. 

FURTHER EVALUATION 

Repeated evaluation would generate greater evidence regarding the appropriateness and 

feasibility of using simulation optimisation for DES models in a health economic evaluation 

context. Within simulated annealing, there are alternative neighbourhood functions, cooling 

schedules and algorithm methodologies which could provide better results and greater 

efficiency. The algorithm applied is relatively simplistic, and a significant improvement in using 

SA for the RA treatment sequencing problem could be made by applying more cutting edge SA 

methods. 

Outside of SA, there remain other metaheuristics which may offer greater performance. GAs 

have been shown to perform well for combinatorial SO problems, but there remain questions 

regarding their efficiency. Brailsford et al. found that ACO performed well for their diabetic 

retinopathy screening optimisation problem. Further evaluation with these alternative 

methodologies is required. 

FURTHER GENERALISABILITY 

This research focussed on an application of SOSA for a treatment sequencing problem in RA. 

There are other clinical conditions where treatment sequencing issues remain, and where sub-

optimal sequences of treatments may be used, both from a clinical and health economic 

viewpoint. These conditions include depression, hypertension, epilepsy and other chronic 

conditions. Also, wider than just clinical areas, the new advances in personalised medicine and 

                                                           
*
 http://goo.gl/0B8wM9 - OptQuest documentation - Accessed June 2015 

http://goo.gl/0B8wM9
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gene therapy open up possibilities for SOSA to be applied to individualised patient treatment 

pathways, including adaptive treatment decisions which involve patient characteristics and 

rapid simulation of future costs and benefits.  

If SOSA is used in other clinical areas and problem contexts, then further evaluation should be 

undertaken. Qualitative research involving health economists could provide further evidence 

regarding the feasibility of SOSA within the particular decision context within which it is being 

applied.  Also, more broadly, qualitative research involving decision-makers would help 

understand more fully the contexts in which SOSA may and may not be helpful. 

PILOT STUDY WITH A DECISION-MAKING CONTEXT 

The application of SOSA within a real-life decision-making context would be very valuable. The 

current window of time afforded to model development and evaluation within a NICE MTA is 

already very tight. It is unlikely that SOSA could be undertaken within this current window. The 

implementation, tuning and evaluation took the best part of 1 year to complete, and that was 

with an existing model structure to use, albeit in a separate platform. There may be ways to 

significantly reduce the time required to undertake SO. Computer code was written from 

scratch for this analysis; however components could be reused in the future (see Code in 

Appendix D). If further evaluations of alternative SO methods are undertaken then less tuning 

may be required as confidence in the performance of alternative metaheuristics grows. 

Efficiently coded DES models could theoretically be used with a hyperheuristic, which would 

remove a great deal of bespoke coding and algorithm development. Simulation methods 

continue to advance, along with computing power, which will enable more complex models to 

be evaluated more quickly. 

The SO process could be brought forward in the NICE decision-making context, and instead of 

being used for optimisation, it could be used as a method to ‘seek’ decision problems and 

contexts which may or may not be most important for evaluation. For example, the results 

show from our evaluation that first line bDMARD use is not cost-effective. This could have 

been identified at the scoping stage and not taken forward for full evaluation. An existing 

model would be required, but it would enable NICE to avoid evaluating decision problems with 

a high likelihood of an intervention not being cost-effective. Where quite different sequences 

are identified to have very similar NMB, then a much more robust evaluation and comparison 

between those two (or more) sequences could be conducted.* 

                                                           
*
 for example, a non-bDMARD sequence has similar estimated NMB to a bDMARD sequence 
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Instead the results can be used to identify the iNMB between ‘good sequences’ and highlight 

where further evaluations (including many more patient simulations) should focus to gain 

more confidence in the optimality of a particular sequence. 

Making a definitive decision to recommend one treatment sequence over another when the 

iNMB between them is very small is unlikely to happen. Monte Carlo error leads to a risk that a 

wrong decision is made in reality, and even if the right decision is made, the net gain is very 

small. There may be numerous reasons for why a decision maker may decide to avoid making a 

distinction between closely performing alternative sequences. These include: pharmaceutical 

competition; patient choice; clinical choice; benefits not captured within the QALY; and the 

continued generation of clinical evidence. Also, it is likely to suggest overconfidence in the DES 

model that underpins the analysis, and a metaheuristic cannot guarantee the optimal solution, 

just a near-optimal solution with varying degrees of confidence. 

  

8.5 CONCLUSIONS 

The aim of this research was to test the feasibility of simulation optimisation methods to find 

an optimal or near-optimal sequence of disease modifying treatments for RA in an economic 

evaluation framework. The thesis has looked to explore why treatment sequences are used 

and why they present a challenge for economic evaluation, and reviewed economic 

evaluations in RA to identify why sequences have not been fully considered. The thesis then 

framed the treatment sequencing problem as an optimisation problem, and reviewed 

simulation optimisation methods and assessed their appropriateness and feasibility for 

addressing the treatment sequencing problem. Finally, the thesis contains an implementation 

of SOSA, and considers its real world applicability within a health economic evaluation context. 

The review of economic evaluations in Chapter 4 reaffirmed a prior belief, that existing 

analyses have not sought an optimal treatment sequence in RA. Coupled with NICE 

undertaking numerous partial evaluations and appraisals, there is a significant risk that sub-

optimal guidance has been developed for RA. This concern could pass through to other chronic 

conditions where treatment sequences are common. 

SOSA has been identified and applied, which represents a novel use of a methodology from 

another field, and its application to a health economic evaluation problem is unique. SOSA has 

shown promise as a potential method for resolving treatment sequencing health economic 

evaluation problems, where a simulation model is computationally expensive, and the number 

of alternative competing solutions is large. 
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The implementation of SOSA found that the best solution found by the analysis generates 

greater net monetary benefit that the current sequence recommended by NICE. However, the 

sequence identified is more cost-effective, but at reduced total QALYs. While plausible and 

economically valid, it is unlikely to see implementation by NICE. Identifiable patients would 

suffered reduced health benefits while unidentifiable patients would benefit. 

When this research began, there was an absence of literature informing the development of 

health economic models for treatment sequencing problems. As such, there was variability in 

the approaches used to model treatment sequences.94 The research undertaken has 

attempted to fill this void, and reduce this variability, by drawing across academic disciplines 

and applying and evaluating a methodology which has not previously been attempted. 

 Overall, the aims and objectives of this thesis have been achieved. The research represents a 

novel and innovative addition to the body of methodological research that underpins health 

economic evaluation. There is scope for further research; however this thesis represents a 

significant first step in ensuring that optimality remains a goal, even in complex chronic 

conditions  
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APPENDIX A: RA ECONOMIC EVALUATION SYSTEMATIC REVIEW 

APPENDIX A.1: PRISMA CHECKLIST 
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on page #  
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Title  1 Identify the report as a systematic review, meta-analysis, or both.  43 
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Structured summary  2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; 

study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.  

45 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of what is already known.  43 
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METHODS   

Protocol and 

registration  
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Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).  46 

Data collection process  10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data 

from investigators.  

47 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.  47 

Risk of bias in 

individual studies  

12 Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), 

and how this information is to be used in any data synthesis.  

47 

Summary measures  13 State the principal summary measures (e.g., risk ratio, difference in means).  47 

Synthesis of results  14 Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I
2
) for each meta-analysis.  n/a 

Risk of bias across 

studies  

15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).  n/a 

Additional analyses  16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.  n/a 

RESULTS  

Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow 

diagram.  

50 

Study characteristics  18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.  52 

Risk of bias within 

studies  

19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).  58 

Results of individual 

studies  

20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and 

confidence intervals, ideally with a forest plot.  

n/a 

Synthesis of results  21 Present results of each meta-analysis done, including confidence intervals and measures of consistency.  n/a 
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Risk of bias across 

studies  

22 Present results of any assessment of risk of bias across studies (see Item 15).  n/a 

Additional analysis  23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).  n/a 

DISCUSSION  

Summary of evidence  24 Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare 

providers, users, and policy makers).  

71 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).  71 

Conclusions  26 Provide a general interpretation of the results in the context of other evidence, and implications for future research.  71 

FUNDING   

Funding  27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.  1 

 
From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. 
doi:10.1371/journal.pmed1000097  
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APPENDIX A.2: SEARCH STRATEGIES 

Database Search Strategy 

BIOSIS (WoK) all 

databases 

1. Topic=(rheumatoid arthritis) 

2. Topic=((disease modifying or disease-modifying or DMARD* or biologic* or therap* or treatment* or anti-rheumatic or anti rheumatic or TNF or tumor necrosis factor 

alpha or tumour necrosis factor alpha or TNF-alpha or TNF inhibitor* or TNF blocker* or interleukin 1 or IL-1 or monoclonal antibod* or costimulation blocker* or 

interleukin 6 or IL-6)) 

3. Topic=((methotrexate or sulfasalazine or leflunomide or hydroxychloroquine or chloroquine or gold or minocycline or azathioprine or ciclosporin or cyclosporine or 

penicillamine or cyclophosphamide or etanercept or infliximab or adalimumab or certolizumab* or golimumab or anakinra or rituximab or abatacept or tocilizumab)) 

4. Title=((economic* or cost or costs or costly or costing or price or prices or pricing or pharmacoeconomic* or pharmaco-economic* or value for money or budget*)) 

5. #2 OR #3 

6. #1 AND #4 AND #5 

Cochrane Database of 

Systematic Reviews 

(CDSR), The Cochrane 

database of methodology 

reviews, Cochrane 

Central Register of 

Controlled Trials (CCRCT), 

Database of Abstracts of 

Reviews of Effects (DARE) 

1. MeSH descriptor Arthritis, Rheumatoid explode all trees 

2. (disease modifying or disease-modifying or DMARD* or biologic* or therap* or treatment* or anti-rheumatic or anti rheumatic or TNF or tumor necrosis factor alpha or 

tumour necrosis factor alpha or TNF-alpha or TNF inhibitor* or TNF blocker* or interleukin 1 or IL-1 or monoclonal antibod* or costimulation blocker* or interleukin 6 or 

IL-6):ti,ab,kw 

3. (methotrexate or sulfasalazine or leflunomide or hydroxychloroquine or chloroquine or gold or minocycline or azathioprine or ciclosporin or cyclosporine or 

penicillamine or cyclophosphamide or etanercept or infliximab or adalimumab or certolizumab* or golimumab or anakinra or rituximab or abatacept or 

tocilizumab):ti,ab,kw 

4. (economic* or cost or costs or costly or costing or price or prices or pricing or pharmacoeconomic* or pharmaco-economic* or value for money or budget*):ti,ab,kw 

5. (#2 OR #3) 

6. (#1 AND #4 AND #5) 

CINAHL 1. (MH "Arthritis, Rheumatoid") 

2. TI (disease modifying or disease-modifying or DMARD* or biologic* or therap* or treatment* or anti-rheumatic or anti rheumatic or TNF or tumor necrosis factor alpha 

or tumour necrosis factor alpha or TNF-alpha or TNF inhibitor* or TNF blocker* or interleukin 1 or IL-1 or monoclonal antibod* or costimulation blocker* or interleukin 6 

or IL-6) OR AB (disease modifying or disease-modifying or DMARD* or biologic* or therap* or treatment* or anti-rheumatic or anti rheumatic or TNF or tumor necrosis 

factor alpha or tumour necrosis factor alpha or TNF-alpha or TNF inhibitor* or TNF blocker* or interleukin 1 or IL-1 or monoclonal antibod* or costimulation blocker* or 

interleukin 6 or IL-6) 

3. TI (methotrexate or sulfasalazine or leflunomide or hydroxychloroquine or chloroquine or gold or minocycline or azathioprine or ciclosporin or cyclosporine or 

penicillamine or cyclophosphamide or etanercept or infliximab or adalimumab or certolizumab* or golimumab or anakinra or rituximab or abatacept or tocilizumab) OR 

AB (methotrexate or sulfasalazine or leflunomide or hydroxychloroquine or chloroquine or gold of minocycline or azathioprine or ciclosporin or cyclosporine or 

penicillamine or cyclophosphamide or etanercept or infliximab or adalimumab or certolizumab* or golimumab or anakinra or rituximab or abatacept or tocilizumab) 

4. (MH "Economics") OR (MH "Economics, Dental") OR (MH "Economics, Pharmaceutical") OR (MH "Economic Value of Life") OR "Economic" OR (MH "Economic Aspects 
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of Illness") 

5. TI (economic* or cost or costs or costly or costing or price or prices or pricing or pharmacoeconomic* or pharmaco-economic* or value for money or budget*) OR AB 

(economic* or cost or costs or costly or costing or price or prices or pricing or pharmacoeconomic* or pharmaco-economic* or value for money or budget*) 

6. S2 OR S3 

7. S4 OR S5 

8. S1 AND S6 AND S7 

EMBASE 1. exp arthritis, rheumatoid/ 

2. (disease modifying or disease-modifying or DMARD$ or biologic$ or therap$ or treatment$ or anti-rheumatic or anti rheumatic or TNF or tumor necrosis factor alpha or 

tumour necrosis factor alpha or TNF-alpha or TNF inhibitor$ or TNF blocker$ or interleukin 1 or IL-1 or monoclonal antibod$ or costimulation blocker$ or interleukin 6 or 

IL-6).tw. 

3. (methotrexate or sulfasalazine or leflunomide or hydroxychloroquine or chloroquine or gold or minocycline or azathioprine or ciclosporin or cyclosporine or 

penicillamine or cyclophosphamide or etanercept or infliximab or adalimumab or certolizumab$ or golimumab or anakinra or rituximab or abatacept or tocilizumab).tw. 

4. Economics/ 

5. exp "Costs and Cost Analysis"/ 

6. Economics, Dental/ 

7. exp Economics, Hospital/ 

8. economics, medical/ 

9. economics, nursing/ 

10. economics, pharmaceutical/ 

11. (economic$ or cost or costs or costly or costing or price or prices or pricing or pharmacoeconomic$).ti,ab. 

12. (expenditure$ not energy).ti,ab. 

13. value for money.ti,ab. 

14. budget$.ti,ab. 

15. 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14  

16. ((energy or oxygen) adj cost).ti,ab. 

17. (metabolic adj cost).ti,ab. 

18. ((energy or oxygen) adj expenditure).ti,ab. 

19. 16 or 17 or 18 

20. 15 not 19 

21. letter.pt. 

22. editorial.pt. 

23. historical article.pt. 

24. 21 or 22 or 23 
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25. 20 not 24 

26. Animals/ 

27. Humans/ 

28. 26 not (26 and 27) 

29. 25 not 28 

30. 2 or 3 

31. 1 and 29 and 30 

MEDLINE(R) In-Process & 

Other Non-Indexed 

Citations and Ovid 

MEDLINE(R) 

1. exp arthritis, rheumatoid/ 

2. (disease modifying or disease-modifying or DMARD$ or biologic$ or therap$ or treatment$ or anti-rheumatic or anti rheumatic or TNF or tumor necrosis factor alpha or 

tumour necrosis factor alpha or TNF-alpha or TNF inhibitor$ or TNF blocker$ or interleukin 1 or IL-1 or monoclonal antibod$ or costimulation blocker$ or interleukin 6 or 

IL-6).tw. 

3. (methotrexate or sulfasalazine or leflunomide or hydroxychloroquine or chloroquine or gold or minocycline or azathioprine or ciclosporin or cyclosporine or 

penicillamine or cyclophosphamide or etanercept or infliximab or adalimumab or certolizumab$ or golimumab or anakinra or rituximab or abatacept or tocilizumab).tw. 

4. Economics/ 

5. exp "Costs and Cost Analysis"/ 

6. Economics, Dental/ 

7. exp Economics, Hospital/ 

8. economics, medical/ 

9. economics, nursing/ 

10. economics, pharmaceutical/ 

11. (economic$ or cost or costs or costly or costing or price or prices or pricing or pharmacoeconomic$).ti,ab. 

12. (expenditure$ not energy).ti,ab. 

13. value for money.ti,ab. 

14. budget$.ti,ab. 

15. 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14  

16. ((energy or oxygen) adj cost).ti,ab. 

17. (metabolic adj cost).ti,ab. 

18. ((energy or oxygen) adj expenditure).ti,ab. 

19. 16 or 17 or 18 

20. 15 not 19 

21. letter.pt. 

22. editorial.pt. 

23. historical article.pt. 
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24. 21 or 22 or 23 

25. 20 not 24 

26. Animals/ 

27. Humans/ 

28. 26 not (26 and 27) 

29. 25 not 28 

30. 2 or 3 

31. 1 and 29 and 30 

NHSEED/HTA MeSH DESCRIPTOR arthritis, rheumatoid EXPLODE ALL TREES IN NHSEED,HTA 

SCI WoK 1. Topic=(rheumatoid arthritis) 

2. Topic=((disease modifying or disease-modifying or DMARD* or biologic* or therap* or treatment* or anti-rheumatic or anti rheumatic or TNF or tumor necrosis factor 

alpha or tumour necrosis factor alpha or TNF-alpha or TNF inhibitor* or TNF blocker* or interleukin 1 or IL-1 or monoclonal antibod* or costimulation blocker* or 

interleukin 6 or IL-6)) 

3. Topic=((methotrexate or sulfasalazine or leflunomide or hydroxychloroquine or chloroquine or gold or minocycline or azathioprine or ciclosporin or cyclosporine or 

penicillamine or cyclophosphamide or etanercept or infliximab or adalimumab or certolizumab* or golimumab or anakinra or rituximab or abatacept or tocilizumab)) 

4. Topic=((economic* or cost or costs or costly or costing or price or prices or pricing or pharmacoeconomic* or pharmaco-economic* or value for money or budget*)) 

5. #2 OR #3 

6. #1 AND #4 AND #5 
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APPENDIX A.3: EXCLUDED ARTICLES 

Reference Reason for exclusion 

Agarwal, Sukhpreet V. and Tiwari, Pramil Treatment and monitoring costs in rheumatoid arthritis: Preliminary results from an Indian setting Indian Journal of Pharmaceutical 

Sciences 2007, 69(2):226-231. 

Not a comparative 

analysis 

Agnew-Blais, J. C., Coblyn, J. S., Katz, J. N., Anderson, R. J., Mehta, J., and Solomon, D. H. Measuring quality of care for rheumatic diseases using an electronic medical record 

Annals of the Rheumatic Diseases 2009, 68(5):May 

No long-term 

evaluation 

Allaart, C. F., Breedveld, F. C., and Dijkmans, B. A. C. Treatment of recent-onset rheumatoid arthritis: lessons from the BeSt Study Journal of Rheumatology 2-11-2007, 34:25-

33. 

No long term costs 

Anderson, R. B., Needleman, R. D., Gatter, R. A., Andrews, R. P., and Scarola, J. A. Patient outcome following inpatient vs outpatient treatment of rheumatoid arthritis 

Journal of Rheumatology 1988, 15(4):556-560. 

No treatment specific 

long term evaluation 

Andrews, G., Simonella, L., Lapsley, H., Sanderson, K., and March, L. Evidence-based medicine is affordable: The cost-effectiveness of current compared with optimal 

treatment in rheumatoid and osteoarthritis Journal of Rheumatology 2006, 33(4):671-680. 

Not a comparative 

analysis 

Anon. Patients with rheumatoid arthritis survive longer if treated with methotrexate Pharmaceutical Journal 2002, 268(7192):06 News article 

Anon. Treatment of rheumatoid arthritis: unknown long-term effects. [Review] [71 refs] Prescrire International 2001, 10(52):55-61. Article 

Arce-Salinas, C. A., Vargas, J., Ivanova, E., and Villasenor-Ovies, P. Estimation of rheumatoid arthritis (RA) treatment costs in Mexico. Comparison between biologic agents 

and the ticora strategy using a markov's model Journal of Rheumatology 2006, 33(2):422-422. 

Abstract 

ArizaAriza, R., MestanzaPeralta, M., and Cardiel, M. H. Direct costs of medical attention to Mexican patients with rheumatoid arthritis in a tertiary care center Clinical and 

Experimental Rheumatology 1997, 15(1):75-78. 

No long term costs 

Arshad, A. and Sulaiman, W. Optimizing the use of traditional DMARD in RA: 2781Getting the most out of what we can afford! APLAR Journal of Rheumatology 2007, 

10(1):April 

Review 

Bagust, A., Boland, A., Hockenhull, J., Fleeman, N., Greenhalgh, J., Dundar, Y., Proudlove, C., Kennedy, T., Moots, R., Williamson, P., and Dickson, R. Rituximab for the 

treatment of rheumatoid arthritis Health technology assessment (Winchester, England) 2009, 13(pp 23-29):Sep 

NICE ERG report 

Bansback, N. J., Regier, D. A., Ara, R., Brennan, A., Shojania, K., Esdaile, J. M., Anis, A. H., and Marra, C. A. An overview of economic evaluations for drugs used in rheumatoid 

arthritis - Focus on tumour necrosis factor-alpha antagonists Drugs 2005, 65(4):473-496. 

Review 

Bansback, N., Ara, R., Karnon, J., and Anis, A. Economic evaluations in rheumatoid arthritis Pharmacoeconomics 2008, 26(5):395-408. Review 

Bansback, N., Brennan, A., and Anis, A. H. A pharmacoeconomic review of adalimumab in the treatment of rheumatoid arthritis Expert Review of Pharmacoeconomics and 

Outcomes Research 2005, 5(5):October 

Review 

Bansback, N., Marra, C. A., Finckh, A., and Anis, A. The economics of treatment in early rheumatoid arthritis Best Practice and Research: Clinical Rheumatology 2009, 

23(1):February 

Review 

Bansback, N., and Marra, C. A. Now That We Know What's BeSt, What Is Good Value for the Money? Arthritis & Rheumatism-Arthritis Care & Research 2009, 61(3):289-290. Editorial 

Bansback, Nick, Marra, Carlo A., Finckh, Axel, and Anis, Aslam The economics of treatment in early rheumatoid arthritis Best practice & research.Clinical rheumatology 2009, 

23(1):83-92. 

No de novo analysis 
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Barra, L., Pope, J. E., and Payne, M. Real-world anti-tumor necrosis factor treatment in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: cost-effectiveness 

based on number needed to treat to improve health assessment questionnaire (Provisional abstract) Journal of Rheumatology 2009, 36:1421-1428. 

Not a comparative 

analysis 

Benucci, M., Saviola, G., Manfredi, M., Sarzi-Puttini, P., and Atzeni, F. Cost effectiveness analysis of disease-modifying antirheumatic drugs in rheumatoid arthritis. A 

systematic review literature International journal of rheumatology 2011, 2011 

Review 

Beresniak, Ariel, Gossec, Laure, Goupille, Philippe, Saraux, Alain, Bamberger, Marion, Bregman, Bruno, and Dupont, Danielle Direct Cost-Modeling of Rheumatoid Arthritis 

According to Disease Activity Categories in France Journal of Rheumatology 2011, 38(3):439-445. 

No long term costs 

Blomqvist, P., Feltelius, N., Ekbom, A., and Klareskog, L. Rheumatoid arthritis in Sweden. Drug prescriptions, costs, and adverse drug reactions Journal of Rheumatology 

2000, 27(5):1171-1177. 

No long term costs 

Boonen, A. and Severens, J. L. Evaluating Treatment Strategies in Patients with Early Rheumatoid Arthritis: Merging Modeling Theory with Clinical Practice Journal of 

Rheumatology 2011, 38(8):1538-1540. 

Editorial 

Bullano, M. F., McNeeley, B. J., Yu, Y. F., Quimbo, R., Burawski, L. P., Yu, E. B., and Woolley, J. M. Health economics. Comparison of costs associated with the use of 

etanercept, infliximab, and adalimumab for the treatment of rheumatoid arthritis Managed care interface 2006, 19(9):47-53. 

No long term costs 

Colombo, G., Muzio, A., and Longhi, A. Economic evaluation of Infliximab (Remicade) vs Etanercept (Enbrel) in the treatment of rheumatoid arthritis Farmeconomia e 

Percorsi Terapeutici 2003, 4(2):77-86. 

Not in English 

Crespo, Carlos, Brosa, Max, Galvan, Jordi, Carbonell, Jordi, Maymo, Jordi, Marenco, Jose Luis, Del Pino-Montes, Javier, Alonso, Alberto, and Rodriguez, Carlos 

[Pharmacoeconomic analysis of Metoject() in the treatment of rheumatoid arthritis in Spain] Reumatologia clinica 2010, 6(4):203-211. 

Not in English 

Doan, Q. V., Chiou, C. F., and Dubois, R. W. Review of eight pharmacoeconomic studies of the value of biologic DMARDs (adalimumab, etanercept, and infliximab) in the 

management of rheumatoid arthritis Journal of managed care pharmacy : JMCP 2006, 12(7):Sep 

Review 

Drummond, M. Pharmacoeconomics: friend or foe? Annals of the Rheumatic Diseases 2006, 65 Suppl 3:iii44-iii47. No de novo analysis 

Emery, P. Review of health economics modelling in rheumatoid arthritis Pharmacoeconomics 2004, 22(2):55-69. Review 

Ferraz, M. B., Maetzel, A., and Bombardier, C. A summary of economic evaluations published in the field of rheumatology and related disciplines Arthritis and Rheumatism 

1997, 40(9):1587-1593. 

Review 

Finckh, A., Bansback, N., and Liang, M. H. Cost-effectiveness of biologics in early rheumatoid arthritis Annals of Internal Medicine 2-3-2010, 152(5):333-334. Letter 

Fleurence, Rachael and Spackman, Eldon Cost-effectiveness of biologic agents for treatment of autoimmune disorders: Structured review of the literature Journal of 

Rheumatology 2006, 33(11):2124-2131. 

Review 

Fries, J. F. Safety, cost and effectiveness issues with disease modifying anti-rheumatic drugs in rheumatoid arthritis Annals of the Rheumatic Diseases 1999, 58:86-89. Review 

Gabriel, S. E., Coyle, D., and Moreland, L. W. A clinical and economic review of disease-modifying antirheumatic drugs Pharmacoeconomics 2001, 19(7):715-728. Review 

Gabriel, S. E., Crowson, C. S., Luthra, H. S., Wagner, J. L., and O'Fallon, W. M. Modeling the lifetime costs of rheumatoid arthritis Journal of Rheumatology 1999, 26(6):1269-

1274. 

Not a comparative 

analysis 

Gabrielle, Pham, Ba', Machado, M. +, Ieraci, Luciano, Witteman, William, Bombardier, Claire, and Krahn, Murray Cost-effectiveness of biologic response modifiers compared 

to disease-modifying antirheumatic drugs for rheumatoid arthritis: a systematic review Arthritis Care & Research (2151464X) 2011, 63(1):65-78. 

Review 

Hoving, J., Bartelds, G., Sluiter, J., Sadiraj, K., Groot, I., Lems, W., Dijkmans, B. A. C., Wijbrandts, C. A., Tak, P. P., Nurmohamed, M. T., Voskuyl, A. E., and Frings-Dresen, M. H. 

W. Perceived work ability, quality of life, and fatigue in patients with rheumatoid arthritis after a 6-month course of TNF inhibitors: prospective intervention study and 

Not a comparative 

analysis 
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partial economic evaluation Scandinavian Journal of Rheumatology 2009, 38(4):246-250. 

Hulsemann, J. L., Ruof, J., Zeidler, H., and Mittendorf, T. Costs in rheumatology: results and lessons learned from the 'Hannover Costing Study' Rheumatology International 

2006, 26(8):704-711. 

No long term costs 

Kavanaugh, A. The pharmacoeconomics of newer therapeutics for rheumatic diseases Rheumatic Disease Clinics of North America 2006, 32(1):45-+. Review 

Kobelt, G. and Joensson, B. The burden of rheumatoid arthritis and access to treatment: outcome and cost-utility of treatments European Journal of Health Economics 2008, 

8:S95-S106. 

Review 

Kobelt, G., Jonsson, L., Lindgren, P., Young, A., and Eberhardt, K. Modeling the progression of rheumatoid arthritis - A two-country model to estimate costs and 

consequences of rheumatoid arthritis Arthritis and Rheumatism 2002, 46(9):2310-2319. 

Not a comparative 

analysis 

Kobelt, G., Lindgren, P., and Geborek, P. Costs and outcomes for patients with rheumatoid arthritis treated with biological drugs in Sweden: a model based on registry data 

Scandinavian Journal of Rheumatology 2009, 38(6):409-418. 

Not a comparative 

analysis 

Kobelt, G., Lindgren, P., Lindroth, Y., Jacobson, L., and Eberhardt, K. Modelling the effect of function and disease activity on costs and quality of life in rheumatoid arthritis 

Rheumatology 2005, 44(9):1169-1175. 

Not a comparative 

analysis 

Laas, K., Peltomaa, R., Kautiainen, H., Puolakka, K., and Leirisalo-Repo, M. Pharmacoeconomic study of patients with chronic inflammatory joint disease before and during 

infliximab treatment Annals of the Rheumatic Diseases 2006, 65(7):924-928. 

Not a comparative 

analysis 

Lyseng-Williams, K. A. and Foster, R. H. Infliximab - A pharmacoeconomic review of its use in rheumatoid arthritis Pharmacoeconomics 2004, 22(2):107-132. Review 

Lyseng-Williamson, K. A. and Plosker, G. L. Etanercept - A pharmacoeconomic review of its use in rheumatoid arthritis Pharmacoeconomics 2004, 22(16):1071-1095. Review 

Maetzel, A. Cost-effectiveness estimates reported for tumor necrosis factor blocking agents in rheumatoid arthritis refractory to methotrexate--a brief summary The Journal 

of rheumatology.Supplement 2005, 72(pp 51-53):Jan 

Review 

Maetzel, A., Ferraz, M. B., and Bombardier, C. A review of cost effectiveness analyses in rheumatology and related disciplines Current Opinion in Rheumatology 1998, 

10(2):1998 

Review 

McLeod, C., Bagust, A., Boland, A., Dagenais, P., Dickson, R., Dundar, Y., Hill, R., Jones, A., Mota, R. Mujica, and Walley, T. Adalimumab, etanercept and infliximab for the 

treatment of ankylosing spondylitis: A systematic review and economic evaluation Health Technology Assessment 2007, 11(28):IX-+. 

Not Rheumatoid 

Arthritis 

Merkesdal, S. and Ruof, J. Current aspects of cost effectiveness of TNF-alpha blocking agents in patients with rheumatoid arthritis Zeitschrift fur Rheumatologie 2002, 61:29-

32. 

Not in English 

Merkesdal, S., Ruof, J., Mittendorf, T., and Zeidler, H. Cost-effectiveness of TNF-alpha-blocking agents in the treatment of rheumatoid arthritis Expert Opinion on 

Pharmacotherapy 2004, 5(9):1881-1886. 

Review 

Nurmohamed, M. T. and Dijkmans, B. A. C. Efficacy, tolerability and cost effectiveness of disease-modifying antirheumatic drugs and biologic agents in rheumatoid arthritis 

Drugs 2005, 65(5):661-694. 

Review 

Ostrov, B., Robbins, L., Ferriss, J., Newman, E., Maclary, S., Ayoub, W., Harrington, T., and Perruquet, J. Improved tolerance and cost-effectiveness of subcutaneous vs oral 

methotrexate in rheumatoid arthritis (RA) and juvenile rheumatoid arthritis (JRA) Arthritis and Rheumatism 1998, 41(9 SUPPL.):S75 

Abstract 

Prashker, M. J. and Meenan, R. F. The Total Costs of Drug-Therapy for Rheumatoid-Arthritis - A Model-Based on Costs of Drug, Monitoring, and Toxicity Arthritis and 

Rheumatism 1995, 38(3):318-325. 

Cost analysis 

Ruchlin, H. S., Elkin, E. B., and Paget, S. A. Assessing cost-effectiveness analyses in rheumatoid arthritis and osteoarthritis Arthritis Care and Research 1997, 10(6):413-421. Review 
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Sany, J., Cohen, J. D., Combescure, C., Bozonnat, M. C., Roch-Bras, F., Lafon, G., and Daures, J. P. Medico-economic evaluation of infliximab in rheumatoid arthritis--

prospective French study of a cohort of 635 patients monitored for two years Rheumatology (Oxford, England) 2009, 48(10):Oct 

Not a comparative 

analysis 

Schadlich, P. K., Zeidler, H., Zink, A., Gromnica-Ihle, E., Schneider, M., Straub, C., Brecht, J. G., and Huppertz, E. Contribution of leflunomide to the cost effectiveness of 

sequential DMARD therapy of rheumatoid arthritis in Germany Zeitschrift fur Rheumatologie 2004, 63(1):61-77. 

Not in English 

Schoels, Monika, Wong, John, Scott, David L., Zink, Angela, Richards, Pamela, Landewe, Robert, Smolen, Josef S., and Aletaha, Daniel Economic aspects of treatment options 

in rheumatoid arthritis: a systematic literature review informing the EULAR recommendations for the management of rheumatoid arthritis Annals of the Rheumatic 

Diseases 2010, 69(6):995-1003. 

Review 

Schulze-Koops, H., Deeg, M., Runge, C., Volmer, T., and Brecht, J. Health-economic assessment of combination therapy for rheumatoid arthritis with methotrexat and 

etanercept based on the TEMPO Study Zeitschrift fur Rheumatologie 2009, 68(10):836-841. 

Not in English 

Suarez-Almazor, M. E., Ortiz, Z., Lopez-Olivo, M., Moffett, M., Pak, C., Skidmore, B., Kimmel, B., Kallen, M., and Cox, V. Long-term clinical and cost-effectiveness of infliximab 

and etanercept for rheumatoid arthritis 2007 

Summary report 

Suka, M. and Yoshida, K. Cost effectiveness of leflunomide in the treatment of rheumatoid arthritis in Japan Expert Review of Pharmacoeconomics and Outcomes Research 

2004, 4(6):December 

Not a comparative 

analysis 

Tella, M. N., Feinglass, J., and Chang, R. W. Cost-effectiveness, cost-utility, and cost-benefit studies in rheumatology: a review of the literature, 2001-2002 Current Opinion in 

Rheumatology 2003, 15(2):127-131. 

Review 

van den Hout, W. B., Goekoop-Ruiterman, Y. P., Allaart, C. F., Vries-Bouwstra, J. K., Hazes, J. M., Kerstens, P. J., Van, Zeben D., Hulsmans, H. M., De Jonge-Bok, J. M., De 

Sonnaville, P. B., Dijkmans, B. A., and Breedveld, F. C. Cost-utility analysis of treatment strategies in patients with recent-onset rheumatoid arthritis Arthritis and 

Rheumatism (Arthritis Care and Research) 2009, 61(3):291-299. 

Duplicate citation 

van der Velde, G., Pham, B., Machado, M., Ieraci, L., Witteman, W., Bombardier, C., and Krahn, M. Cost-Effectiveness of Biologic Response Modifiers Compared to Disease-

Modifying Antirheumatic Drugs for Rheumatoid Arthritis: A Systematic Review Arthritis Care & Research 2011, 63(1):65-78. 

Duplicate citation 

van, der, V, Pham, B., Machado, M., Ieraci, L., Witteman, W., Bombardier, C., and Krahn, M. Cost-effectiveness of biologic response modifiers compared to disease-

modifying antirheumatic drugs for rheumatoid arthritis: a systematic review. [Review] Arthritis Care & Research 2011, 63(1):65-78. 

Review 

Verhoeven, A., Bibo, J., Boers, M., Engel, G., Schouten, H., and van der Linden, S. Combination of step-down steroids, methotrexate, and sulphasalazine is cost-effective 

compared to sulphasalazine alone in early rheumatoid arthritis British Journal of Rheumatology 1997, 36(SUPPL. 1):181 

Abstract 

Virkki, L., Konttinen, Y., Peltomaa, R., Suontama, K., Saario, R., Immonen, K., Jantti, J., Tuomiranta, T., Nykanen, P., Hameenkorpi, R., Heikkila, S., Isomaki, P., and Nordstrom, 

D. Cost-effectiveness of infliximab in the treatment of rheumatoid arthritis in clinical practice Clinical and Experimental Rheumatology 2008, 26(6):1059-1066. 

Not a comparative 

analysis 

Walsh, C., Minnock, P., Slattery, C., Kennedy, N., Pang, F., Veale, D., Bresnihan, B., and FitzGerald, O. Quality of life and economic impact of switching from established 

infliximab therapy to adalimumab in patients with rheumatoid arthritis Rheumatology 2007, 46(7):1148-1152. 

Not a comparative 

analysis 

Welsing, P. M. J., Severens, J. L., and Laan, R. F. J. M. Optimistic assumptions in modelling studies have a substantial influence on the cost-effectiveness result Rheumatology 

2003, 42(12):1574-1575. 

Letter 

Welsing, Paco M., Severens, Johan L., Hartman, Margriet, van Gestel, Anke M., van Riel, Piet L., and Laan, Roland F. The initial validation of a Markov model for the economic 

evaluation of (New) treatments for rheumatoid arthritis Pharmacoeconomics 2006, 24(10):1011-1020. 

Not a comparative 

analysis 

Wong, J. B. Cost-effectiveness of anti-tumor necrosis factor agents Clinical and Experimental Rheumatology 2004, 22(5):S65-S70. Article 
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APPENDIX A.4: DATA EXTRACTION 

Name Sequencing information Modelling information 

 If a sequence 

was evaluated, 

how many lines? 

Were all 

relevant 

treatments 

included in 

each 

sequence? 

Was the 

methodology 

used amenable 

to vary the 

sequence and 

comparing a full 

range of 

alternatives 

Was an 

attempt to find 

a truly 'optimal 

' sequence 

undertaken? 

If the analysis 

used modelling, 

what method 

was used? 

How was initial 

treatment 

response 

modelled? 

What determined 

a switch to an 

alternative 

therapy? 

How were the costs 

and effectiveness of 

subsequent 

treatments in a 

sequence 

modelled? 

Where data 

were not 

available for a 

treatment in a 

sequence, how 

was this 

accounted for? 

Anis  1996
138

 1 Unclear N No Decision tree Functional 

index 

improvement 

n/a n/a n/a 

Bansback  

2005
139

 

5 (comparator 

bDMARD, 

DMARD 1,2,3, 

Pall Care) 

Potentially, 

however no 

sequential use 

of bDMARDs 

Yes No Individual level 

Markov model 

ACR response 

to HAQ change 

Short term 

withdrawal for 

non-response. 

Long term 

withdrawal for 

loss of efficacy or 

an AE 

For sequential 

DMARDs, efficacy is 

modified by a OR for 

disease duration. 

Adjustments 

based on 

registry data. 

Barbieri  2005
140

 1 No Markov model. 

Unlikely 

No Markov model HAQ score An undescribed 

transition 

probability 

n/a n/a 

Barton  2004
141

 Up to 11 Potentially Potentially No Individual 

Sampling Model 

HAQ score Probability of 

early withdrawal 

and time to later 

withdrawal 

Modelled explicitly.  Not clear 

Benucci  2009
142

 1 No. Infliximab 

not included 

No No Observational 

analysis 

HAQ score n/a observational data n/a 

Benucci  2011
143

 1 No No No Observational 

analysis 

n/a n/a n/a n/a 
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Beresniak  

2011
144

 

2 No. IFX not 

included in 

second line. 

Potentially No. No 

incremental 

analysis 

performed and 

full range of 

possible 

sequences not 

modelled 

Unclear Remission or 

LDAS 

Failure to achieve 

the constant 

probability of 

effectiveness 

while on 

maintenance 

therapy 

Modelled explicitly 

within model time 

horizon and 

comparators. No 

future projections of 

costs and benefits 

Assumed same 

as other tx 

Brennan  

2004
145

 

4 No Potentially No Individual 

Sampling Model 

ACR20 to HAQ Short term 

withdrawal for 

non-response. 

Long term 

withdrawal for 

loss of efficacy or 

an AE 

Explicitly Data were 

available. 

Assumed class 

effect on HAQ 

progression 

Brennan  

2007
146

 

6 lines Potentially, 

however 

sequential use 

of TNFa's only 

considered in 

scenario 

analysis 

Potentially yes No Individual 

Sampling Model 

EULAR response 

categories 

withdrawal rates 

or non-response 

Observational data 

and maintenance 

therapy after 6 

treatments 

Generalised 

DMARDs used 

based on 

position in 

sequence. 

Chen  2006
124

 Approximately 

10 

Almost. 

Sequential 

considered 

Potentially No Individual 

Sampling Model 

HAQ score Probability of 

early withdrawal 

and time to later 

withdrawal 

Modelled explicitly.  Not clear 

Chiou  2004
147

 1 No No No Decision tree ACR response n/a n/a n/a 

Choi  2000
148

 n/a n/a n/a n/a Decision tree ACR response n/a n/a n/a 

Choi  2002
149

 1 No No No Decision tree ACR response n/a n/a n/a 
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Cimmino  

2011
150

 

2 No. IFX not 

included in 

second line. 

Potentially No. No 

incremental 

analysis 

performed and 

full range of 

possible 

sequences not 

modelled 

Unclear Remission or 

LDAS 

Failure to achieve 

the constant 

probability of 

effectiveness 

while on 

maintenance 

therapy 

Modelled explicitly 

within model time 

horizon and 

comparators. No 

future projections of 

costs and benefits 

Assumed same 

as other tx. 

Expert opinion 

Clark  2004
151

 Up to 11 Potentially Potentially No Individual 

Sampling Model 

HAQ score Probability of 

early withdrawal 

and time to later 

withdrawal 

Modelled explicitly.  Not clear 

Coyle  2006
152

 6 No No No Markov model ACR Response Stopping for AE or 

stopping for lack 

of benefit 

Trial data or 

simulated 

Assumed the 

same as other 

treatments 

Davies  2009
125

 5 (unique) No. No 

combination 

DMARDs for 

early RA. No 

full 

comparators 

Potentially yes No Individual 

Sampling Model 

ACR50 Withdrawal for AE 

or inefficacy 

Not reported Not reported 

Diamantopoulos  

2012
153

 

5 (with 6 for one 

sensitivity 

analysis) 

Yes Potentially No Individual 

Sampling Model 

ACR response 

to HAQ change 

withdrawal rates 

or non-response 

Trial data Assumed equal 

to other 

treatments. 

Finckh  2009
126

 Approximately 3 Alternative 

tapered 

DMARD 

treatments not 

considered 

Yes Within 

comparator set 

yes. Wider no 

Individual 

Sampling Model 

Multivariate 

distribution for 

response level 

(excellent, 

good, 

moderate, no) 

Database 

withdrawal rates, 

and response 

level 

Using trial evidence, 

although 

downstream past 3 

TNFs not stated 

Registry data 

Hallinen  2010
154

 Up to 4 Potentially Yes Potentially No Individual level 

Markov model 

ACR response 

to HAQ change 

withdrawal rates 

or non-response 

Trial data Assumptions 
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Hartman  

2004
127

 

1 No No No Trial analysis n/a n/a n/a n/a 

Jobanputra  

2002
155

 

Up to 11 Potentially Potentially No Individual 

Sampling Model 

HAQ score Probability of 

early withdrawal 

and time to later 

withdrawal 

Modelled explicitly.  Not clear 

Kavanaugh  

1996
156

 

1 Yes potentially N No Decision tree Unclear n/a n/a n/a 

Kielhorn  

2008
157

 

6 base case, 7 SA Maybe Y N Individual level 

Markov model 

ACR response 

to HAQ change 

withdrawal rates 

or non-response 

Data where possible, 

however 

downstream 

cDMARDs assumed 

equal effectiveness 

See before, 

equal efficacy 

used 

Kievit  2009
158

 1 Yes. Guidelines 

for 

Netherlands 

followed and 

alternative 

options 

considered. 

No No Trial analysis DAS Guideline and 

trial protocols. 

DAS28 

improvement in 

general 

DAS28 response and 

costs of drugs 

n/a 

Kobelt  2002
128

 1 No No No Markov model Observational 

data to develop 

HAQ transition 

matrices 

Observational 

data 

Observational data n/a 

Kobelt  2003
159

 1 No No No Markov model EQ-5D n/a n/a n/a 

Kobelt  2004
160

 1 No No No Trial analysis EQ-5D n/a n/a n/a 

Kobelt  2005
161

 1 No. No 

comparison to 

other aTNFs 

No No Markov model Change in 

functional 

capacity and 

disease activity 

n/a n/a n/a 

Kobelt  2011
129

 3 (maybe more) 

not clear 

No Potentially No Markov model Remission Trial 

discontinuation 

Trial and registry 

data 

n/a 
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rates 

Korthals-de Bos  

2004
130

 

n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Lekander  

2010
162

 

1 No No No Markov model HAQ and DAS28 n/a n/a n/a 

Lindgren  

2009
163

 

Open ended No Potentially No Discrete Event 

Simulation 

HAQ score Treatment 

withdrawal rate 

taken from trial 

data 

Assumed same as 

previous line for RTX 

sequence (i.e. RTX 

has no impact on 

treatment 

effectiveness). For 

TNF data provided 

on 2nd and 3rd line 

from registry but not 

for subsequent lines 

Not clearly 

reported 

Maetzel  2002
131

 6 Yes Yes No Decision tree ACR20 response LoE or Toxicity All from trial 

evidence 

n/a 

Maetzel  

2002a
164

 

1 No No No n/a n/a n/a n/a n/a 

Malottki  

2011
165

 

6 No. No 

sequential 

biologic use 

Potentially No Individual 

Sampling Model 

HAQ score Probability of 

early withdrawal 

and time to later 

withdrawal 

Modelled explicitly.  Not clear 

Marra  2007
166

 n/a n/a n/a n/a Markov model HAQ score n/a n/a n/a 

Merkesdal  

2010
167

 

6 Potentially Yes No Individual level 

Markov model 

ACR response 

to HAQ change 

LoE or AE Trial data adjusted 

crudely 

Not clear. Trial 

data not 

appropriately 

references 

Nuijten  2001
168

 1 Potentially No No Unclear n/a n/a n/a n/a 

Osiri  2007
169

 1 n/a n/a n/a n/a n/a n/a n/a n/a 

Rubio-Terrés  

2001
170

 

n/a n/a n/a n/a Unclear n/a n/a n/a n/a 
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Russell  2009
171

 3 No. Abatacept 

not considered 

as 3rd line 

treatment 

Yes, however 

data limited 

No Decision tree Remission or 

LDAS 

Not achieving 

remission 

From trial data n/a 

Saraux  2010
172

 2 No Yes No Unclear DAS Not achieving 

remission 

From trial data n/a 

Schadlich  

2005
132

 

6 No No No Markov model DAS Not achieving 

remission 

Registry data 2nd line aTNF 

set equal to 1st 

line.  

Schipper  

2011
133

 

1 Maybe. Wide 

choice of 

DMARDs 

No No n/a n/a n/a n/a n/a 

Shini  2010
173

 Only 1 line 

evaluated. 

Sequence 

included 6 

therapies 

(bDMARD, RTX, 

IFX, LEF, CSA, 

MTX) 

Alternative 

aTNFs and 

bDMARDs not 

included 

Yes No Individual 

Sampling Model 

ACR response Lack of ACR20 

response or 

treatment 

discontinuation 

Trials and indirect 

comparisons. Some 

assumptions 

All data 

accounted for, 

however data 

not position 

specific 

Soini  
174

 2012 2 No No No Markov model HAQ score Transition 

probabilities for 

toxicity and loss 

of efficacy 

Pooled estimate of 

cost and effect 

Not clearly 

reported 

Spalding  

2006
134

 

4 No Probably not No Markov model ACR20 response Lack of ACR20 

response or 

treatment 

discontinuation 

Trial data Assumed equal 

to other 

treatments 

(MTX+SSZ 

assumed equal 

to just SSZ) 

Tanno  2006
175

 3 (biologics 

merged) 

No Potentially No Individual 

Sampling Model 

ACR response Short term 

withdrawal for 

non-response. 

Bolted-on costs and 

QALYs 

as before, from 

another study 
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Long term 

withdrawal for 

loss of efficacy or 

an AE 

Tosh  2011
135

 8 (in one 

strategy) 

Potentially yes Trial based 

evaluation 

No Trial analysis DAS DAS > 2.4 Trial Trial 

van den Hout  

2009
136

 

1 No Unclear No Individual 

Sampling Model 

ACR response 

or HAQ change 

n/a n/a n/a 

Vera-Llonch  

2008
176

 

1 No Unclear No Microsimulation ACR response 

or HAQ change 

n/a n/a n/a 

Vera-Llonch  

2008a
177

 

1 Y N N n/a n/a n/a n/a n/a 

Verhoeven  

1998
137

 

1+ (unclear tx 

regimen) 

Potentially. 

Not clear 

Potentially yes No Individual 

Sampling Model 

ACR response 

to HAQ change 

LoE or AE Not clear. HAQ 

progression? 

Not clear 

Wailoo  2008
178

 3 at most No No No Markov model Not clear Not clear Trial data n/a 

Welsing  2004
179

 1 No No No Markov model Trial data n/a n/a n/a 
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APPENDIX A.5: DRUMMOND CHECKLIST 

 Drummond Checklist (Y=Yes, N=No, C=Can’t tell, n/a=Not applicable) 

1 2 3 4 5 6 7 8 9 10 

Was a well-

defined 

question 

posted in 

an 

answerable 

form? 

Was a 

comprehensive 

description of 

the competing 

alternatives 

given? 

Was there 

evidence that 

the 

programme's 

effectiveness 

had been 

established? 

Were all 

important and 

relevant costs 

and 

consequences 

for each 

alternative 

identified? 

Were costs and 

consequences 

measured 

accurately in 

appropriate 

physical units? 

Were costs 

and 

consequences 

valued 

credibly? 

Were costs 

and 

consequences 

adjusted for 

differential 

timing? 

Was an 

incremental 

analysis of costs 

and 

consequences 

of alternatives 

performed 

Was 

allowance 

made for the 

uncertainty in 

the estimates 

of costs and 

consequences

? 

Did the 

presentation 

and 

discussion of 

study results 

include all 

issues of 

concern to 

users? 

Anis  1996
138

 Y Y C Y Y Y N N Y N 

Bansback  2005
139

 Y Y Y Y Y Y Y N Y N 

Barbieri  2005
140

 Y Y Y Y Y Y Y Y N N 

Barton  2004
141

 Y Y Y Y Y Y Y Y Y Y 

Benucci  2009
142

 Y Y Y N N N N N N N 

Benucci  2011
143

 Y N N C C C N Y N N 

Beresniak  2011
144

 Y Y Y N N Y C N Y N 

Brennan  2004
145

 Y Y Y Y Y Y Y Y Y Y 

Brennan  2007
146

 Y Y Y Y Y Y Y Y Y Y 

Chen  2006
124

 Y Y Y Y Y Y Y Y Y Y 

Chiou  2004
147

 Y Y Y Y Y Y n/a Y N Y 

Choi  2000
148

 Y Y N N Y Y n/a Y N N 

Choi  2002
149

 Y Y Y Y Y Y n/a Y N Y 
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 1 2 3 4 5 6 7 8 9 10 

Cimmino  2011
150

 Y Y Y N N Y C N Y N 

Clark  2004
151

 Y Y Y Y Y Y Y Y Y Y 

Coyle  2006
152

 Y Y Y Y Y Y Y N Y N 

Davies  2009
125

 Y Y Y Y Y Y Y Y Y Y 

Diamantopoulos  2012
153

 Y Y Y Y Y Y Y N Y N 

Finckh  2009
126

 Y Y Y Y Y Y Y Y Y Y 

Hallinen  2010
154

 Y Y Y Y Y Y Y Y Y Y 

Hartman  2004
127

 Y Y Y N Y Y N N Y Y 

Jobanputra  2002
155

 Y Y N Y Y Y Y Y Y N 

Kavanaugh  1996
156

 Y N Y Y Y Y N N Y N 

Kielhorn  2008
157

 Y Y Y Y Y Y Y Y Y Y 

Kievit  2009
158

 Y Y Y N Y Y N N Y N 

Kobelt  2002
128

 Y Y Y N Y Y Y Y Y Y 

Kobelt  2003
159

 Y Y Y Y Y Y Y Y Y Y 

Kobelt  2004
160

 Y N C Y Y Y Y Y Y N 

Kobelt  2005
161

 Y Y Y Y Y Y Y N Y N 

Kobelt  2011
129

 Y Y N Y Y Y Y Y Y Y 

Korthals-de Bos  2004
130

 Y Y N N Y Y n/a Y Y N 

Lekander  2010
162

 Y Y Y Y Y Y Y Y Y Y 

Lindgren  2009
163

 Y Y Y Y Y Y Y Y Y Y 

Maetzel  2002
131

 Y Y Y Y Y Y Y Y Y Y 

Maetzel  2002a
164

 Y Y Y Y Y Y Y N Y N 
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 1 2 3 4 5 6 7 8 9 10 

Malottki  2011
165

 Y Y Y Y Y Y Y Y Y Y 

Marra  2007
166

 Y Y Y Y Y Y Y Y Y Y 

Merkesdal  2010
167

 Y Y Y Y Y Y Y Y Y Y 

Nuijten  2001
168

 Y Y N Y Y Y Y N Y N 

Osiri  2007
169

 Y Y N N Y Y n/a N N N 

Rubio-Terrés  2001
170

 Y Y N N Y Y n/a N N N 

Russell  2009
171

 Y Y C Y Y Y C N Y N 

Saraux  2010
172

 Y Y Y Y Y Y C N N N 

Schadlich  2005
132

 Y Y Y N Y Y N N Y Y 

Schipper  2011
133

 Y Y N Y N Y Y N Y N 

Shini  2010
173

 Y Y N N N Y N N N N 

Soini  2012
174

 Y N Y Y Y Y Y Y Y Y 

Spalding  2006
134

 Y Y N Y Y Y Y N N N 

Tanno  2006
175

 Y Y Y Y Y Y Y Y Y Y 

Tosh  2011
135

 Y Y Y Y Y Y Y Y Y Y 

van den Hout  2009
136

 Y Y Y Y Y Y Y Y Y Y 

Vera-Llonch  2008
176

 Y Y Y Y Y Y Y Y Y Y 

Vera-Llonch  2008a
177

 Y Y Y Y Y Y Y Y Y Y 

Verhoeven  1998
137

 Y Y Y N Y Y n/a N Y Y 

Wailoo  2008
178

 Y Y Y Y Y Y Y Y Y Y 

Welsing  2004
179

 Y N Y N Y Y Y Y Y Y 

Wong  2002
180

 Y Y Y Y Y Y Y Y Y Y 
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APPENDIX B: METHODOLOGICAL REVIEW 

APPENDIX B.1: ARTICLES EXCLUDED AT INITIAL SIFT STAGE 

 Reference Reason for exclusion 

1 Ali M, Vukovic V, Sahir MH, Fontanella G. Energy analysis of chilled water system configurations using simulation-based optimization. Energy and Buildings. 

2013;59:111-22. 

Unrelated problem type 

2 Almeder C, Preusser M, Hartl RF. Simulation and optimization of supply chains: alternative or complementary approaches? Or Spectrum. 2009;31(1):95-119. Unrelated problem type (mixed 

integer) 

3 Arena C, Mazzola MR, Scordo G. A simulation/optimization model for selecting infrastructure alternatives in complex water resource systems. Water Science 

and Technology. 2010;61(12):3050-60. 

Not a combinatorial problem 

4 Azadeh A, Moghaddam M, Asadzadeh SM, Negahban A. An integrated fuzzy simulation-fuzzy data envelopment analysis algorithm for job-shop layout 

optimization: The case of injection process with ambiguous data. European Journal of Operational Research. 2011;214(3):768-79. 

Unrelated problem type – 

production efficiency 

5 Bachelet B, Yon L. Model enhancement: Improving theoretical optimization with simulation. Simulation Modelling Practice and Theory. 2007;15(6):703-15. Not optimisation of a simulation 

model 

6 Bhatnagar S, Mishra VK, Hemachandra N. Stochastic Algorithms for Discrete Parameter Simulation Optimization. Ieee Transactions on Automation Science 

and Engineering. 2011;8(4):780-93. 

Looking to optimise the 

performance of a simulation 

7 Chen Y, Mockus L, Orcun S, Reklaitis GV. Simulation-optimization approach to clinical trial supply chain management with demand scenario forecast. 

Computers & Chemical Engineering. 2012;40:82-96. 

Not a combinatorial problem 

8 Fu MC. Optimization for simulation: Theory vs. practice. Informs Journal on Computing. 2002;14(3):192-215. Not a combinatorial problem 

9 Fu Z, Mo J, Chen L, Chen W. Using genetic algorithm-back propagation neural network prediction and finite-element model simulation to optimize the 

process of multiple-step incremental air-bending forming of sheet metal. Materials & Design. 2010;31(1):267-77. 

Not a combinatorial problem 

10 Geyik F, Dosdogru AT. Process plan and part routing optimization in a dynamic flexible job shop scheduling environment: an optimization via simulation 

approach. Neural Computing & Applications. 2013;23(6):1631-41. 

Not a combinatorial problem 

11 Gosavi A, Ozkaya E, Kahraman AF. Simulation optimization for revenue management of airlines with cancellations and overbooking. Or Spectrum. 

2007;29(1):21-38. 

Not a combinatorial problem 

12 Gulyanitskii LF, Koshlai LB, Sergienko IV. CONVERGENCE OF A SIMULATION METHOD FOR SOLUTION OF COMBINATORIAL OPTIMIZATION PROBLEMS. 

Cybernetics and Systems Analysis. 1993;29(3):445-9. 

Not concerned with stochastic/ 

simulation based problem 

13 Gupta A, Evans GW, Heragu SS. Simulation and optimization modeling for drive-through mass vaccination - A generalized approach. Simulation Modelling 

Practice and Theory. 2013;37:99-106. 

Only an application of a ‘off the 

shelf’ solution 

14 Hong JH, Seo K-M, Kim TG. Simulation-based optimization for design parameter exploration in hybrid system: a defense system example. Simulation-

Transactions of the Society for Modeling and Simulation International. 2013;89(3):362-80. 

Mixed (integer and continuous) 

problem 
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15 Horng S-C, Lin S-Y, Lee H, Chen C-H. Memetic Algorithm for Real-Time Combinatorial Stochastic Simulation Optimization Problems With Performance 

Analysis. Ieee Transactions on Cybernetics. 2013;43(5):1495-509. 

Off-line and on-line problem 

16 Huang Y, Li YP, Chen X, Bao AM, Zhou M. Simulation-based optimization method for water resources management in Tarim River Basin, China. In: Yang Z, 

Chen B, editors. International Conference on Ecological Informatics and Ecosystem Conservation. Procedia Environmental Sciences. 22010. p. 1451-60. 

Not a combinatorial problem 

17 Iassinovski S, Artiba A, Bachelet V, Riane F. Integration of simulation and optimization for solving complex decision making problems. International Journal of 

Production Economics. 2003;85(1):3-10. 

Not specific for combinatorial 

problems 

18 Jeong KY. Conceptual frame for development of optimized simulation-based scheduling systems. Expert Systems with Applications. 2000;18(4):299-306. Not a combinatorial problem 

19 Keskin BB, Melouk SH, Meyer IL. A simulation-optimization approach for integrated sourcing and inventory decisions. Computers & Operations Research. 

2010;37(9):1648-61. 

Not a combinatorial problem 

20 Kleijnen JPC, Rubinstein RY. Optimization and sensitivity analysis of computer simulation models by the score function method. European Journal of 

Operational Research. 1996;88(3):413-27. 

Not a combinatorial problem 

21 Klemmt A, Horn S, Weigert G, Wolter K-J. Simulation-based optimization vs. mathematical programming: A hybrid approach for optimizing scheduling 

problems. Robotics and Computer-Integrated Manufacturing. 2009;25(6):917-25. 

Not a combinatorial problem 

22 Latorre J-I, Jimenez E. Simulation-based optimization of discrete event systems with alternative structural configurations using distributed computation and 

the Petri net paradigm. Simulation-Transactions of the Society for Modeling and Simulation International. 2013;89(11):1310-34. 

A method for parallel 

programming for DES 

optimisation 

23 Li J, Sava A, Xie X. Simulation-Based Discrete Optimization of Stochastic Discrete Event Systems Subject to Non Closed-Form Constraints. Ieee Transactions on 

Automatic Control. 2009;54(12):2900-4. 

Not a combinatorial problem 

24 Lu M, Lam H-C, Dai F. Resource-constrained critical path analysis based on discrete event simulation and particle swarm optimization. Automation in 

Construction. 2008;17(6):670-81. 

Not a combinatorial problem 

25 Lu M, Wu D-p, Zhang J-p. A particle swarm optimization-based approach to tackling simulation optimization of stochastic, large-scale and complex systems. 

In: Yeung DS, Liu ZQ, Wang XZ, Yan H, editors. Advances in Machine Learning and Cybernetics. Lecture Notes in Artificial Intelligence. 39302006. p. 528-37. 

Not a combinatorial problem 

26 Mahdavi I, Shirazi B, Sahebjamnia N. Development of a simulation-based optimisation for controlling operation allocation and material handling equipment 

selection in FMS. International Journal of Production Research. 2011;49(23):6981-7005. 

Multi-objective optimisation 

27 Mardan N, Klahr R. Combining optimisation and simulation in an energy systems analysis of a Swedish iron foundry. Energy. 2012;44(1):410-9. Not relevant 

28 Marseguerra M, Zio E, Podofillini L. Condition-based maintenance optimization by means of genetic algorithms and Monte Carlo simulation. Reliability 

Engineering & System Safety. 2002;77(2):151-65. 

Not a combinatorial problem 

29 Matott LS, Tolson BA, Asadzadeh M. A benchmarking framework for simulation-based optimization of environmental models. Environmental Modelling & 

Software. 2012;35:19-30. 

Not a combinatorial problem 

30 Medaglia AL, Fang SC, Nuttle HLW. Fuzzy controlled simulation optimization. Fuzzy Sets and Systems. 2002;127(1):65-84. Not identifying optimal or near-

optimal solutions 

31 Mele FD, Guillen G, Espuna A, Puigjaner L. A simulation-based optimization framework for parameter optimization of supply-chain networks. Industrial & 

Engineering Chemistry Research. 2006;45(9):3133-48. 

Not a combinatorial problem 
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32 Napalkova L, Merkuryeva G. MULTI-OBJECTIVE STOCHASTIC SIMULATION-BASED OPTIMISATION APPLIED TO SUPPLY CHAIN PLANNING. Technological and 

Economic Development of Economy. 2012;18(1):132-48. 

Multi-objective optimisation 

33 Narciso M, Piera MA, Guasch A. A Methodology for Solving Logistic Optimization Problems through Simulation. Simulation-Transactions of the Society for 

Modeling and Simulation International. 2010;86(5-6):369-89. 

Not relevant 

34 Nielsen AL, Hilwig H, Kissoon N, Teelucksingh S. Discrete event simulation as a tool in optimization of a professional complex adaptive system. In: Andersen 

SK, Klein GO, Schulz S, Aarts J, Mazzoleni MC, editors. Ehealth Beyond the Horizon - Get It There. Studies in Health Technology and Informatics. 1362008. p. 

247-52. 

Simple optimisation via 

enumeration 

35 Park C, Telci IT, Kim S-H, Aral MM. Designing an optimal water quality monitoring network for river systems using constrained discrete optimization via 

simulation. Engineering Optimization. 2014;46(1):107-29. 

Not a combinatorial problem 

36 Ramwadhdoebe S, Buskens E, Sakkers RJB, Stahl JE. A tutorial on discrete-event simulation for health policy design and decision making: Optimizing pediatric 

ultrasound screening for hip dysplasia as an illustration. Health Policy. 2009;93(2-3):143-50. 

Not a combinatorial problem 

37 Rosen SL, Harmonosky CM, Traband MT. A simulation optimization method that considers uncertainty and multiple performance measures. European Journal 

of Operational Research. 2007;181(1):315-30. 

Multi-objective optimisation 

38 Roux O, Jamali MA, Kadi DA, Chatelet E. Development of simulation and optimization platform to analyse maintenance policies performances for 

manufacturing systems. International Journal of Computer Integrated Manufacturing. 2008;21(4):407-14. 

Not relevant 

39 Rubinstein RY. Optimization of computer simulation models with rare events. European Journal of Operational Research. 1997;99(1):89-112. Not a combinatorial problem 

40 Salama A, Nehring M, Greberg J. Operating value optimisation using simulation and mixed integer programming. International Journal of Mining Reclamation 

and Environment. 2014;28(1):25-46. 

Not a combinatorial problem 

41 Sanchez D, Amodeo L, Prins C. Meta-heuristic Approaches for Multi-objective Simulation-based Optimization in Supply Chain Inventory Management. In: 

Benyoucef L, Grabot B, editors. Artificial Intelligence Techniques for Networked Manufacturing Enterprises Management. Springer Series in Advanced 

Manufacturing2010. p. 249-69. 

Multi-objective optimisation 

42 Waanders BGvB, Carnes BR. Optimization under adaptive error control for finite element based simulations. Computational Mechanics. 2011;47(1):49-63. Not relevant 

43 Wu F, Dantan J-Y, Etienne A, Siadat A, Martin P. Improved algorithm for tolerance allocation based on Monte Carlo simulation and discrete optimization. 

Computers & Industrial Engineering. 2009;56(4):1402-13. 

Not a combinatorial problem 

44 Yang T. An evolutionary simulation-optimization approach in solving parallel-machine scheduling problems - A case study. Computers & Industrial 

Engineering. 2009;56(3):1126-36. 

Not a combinatorial problem 

45 Yang Y, Blum RS. Sensor Placement in Gaussian Random Field Via Discrete Simulation Optimization. Ieee Signal Processing Letters. 2008;15:729-32. Not a combinatorial problem 

46 Yeo IY, Guldmann JM. Global spatial optimization with hydrological systems simulation: application to land-use allocation and peak runoff minimization. 

Hydrology and Earth System Sciences. 2010;14(2):325-38. 

Not a combinatorial problem 

47 Yoo T, Cho H, Yuecesan E. Web Services-Based Parallel Replicated Discrete Event Simulation for Large-Scale Simulation Optimization. Simulation-Transactions 

of the Society for Modeling and Simulation International. 2009;85(7):461-75. 

Not relevant 

48 Zamora-Cristales R, Boston K, Sessions J, Murphy G. Stochastic simulation and optimization of mobile chipping and transport of forest biomass from harvest 

residues. Silva Fennica. 2013;47(5). 

Not a combinatorial problem 
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49 Zhang R, Chiang W-C, Wu C. Investigating the impact of operational variables on manufacturing cost by simulation optimization. International Journal of 

Production Economics. 2014;147:634-46. 

Not a combinatorial problem 
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APPENDIX B.2: ARTICLES EXCLUDED AT FULL PAPER STAGE 

 Reference Reason for exclusion 

1 Abspoel SJ, Etman LFP, Vervoort J, van Rooij RA, Schoofs AJG, Rooda JE. Simulation based optimization of stochastic systems with integer design 

variables by sequential multipoint linear approximation. Structural and Multidisciplinary Optimization. 2001;22(2):125-38. 

Statistical method of approximation 

2 Alkhamis TM, Ahmed MA. Sequential stochastic comparison algorithm for simulation optimization. Engineering Optimization. 2004;36(5):513-24. Statistical method for comparison of 

results 

3 Andradottir S. An Overview of Simulation Optimization via Random Search. Simulation. 2006;13:617-31. Review paper 

4 Azimi P. SIMSUM1: A GENERAL OPTIMISATION VIA SIMULATION APPROACH FOR 0-1 PROGRAMMING MODELS. International Journal of Simulation 

Modelling. 2012;11(3):150-64. 

Not optimisation of a simulation model 

5 Barton RR, Ivey JS. Nelder-Mead simplex modifications for simulation optimization. Management Science. 1996;42(7):954-73. Direct search method, and not specific for 

combinatorial problems 

6 Barton RR, Meckesheimer M. Metamodel-Based Simulation Optimization. Simulation. 2006;13:535-74. Meta-model methods for continuous, not 

combinatorial problems 

7 Chang X, Dong M, Yang D. Multi-objective real-time dispatching for integrated delivery in a Fab using GA based simulation optimization. Journal of 

Manufacturing Systems. 2013;32(4):741-51. 

Multi-objective optimisation 

8 Fu MC, Healy KJ. Techniques for optimization via simulation: An experimental study on an (s,S) inventory system. Iie Transactions. 1997;29(3):191-9. Not a combinatorial problem 

9 Ho, Yu-Chi, R_S Sreenivas, and P. Vakili. "Ordinal optimization of DEDS." Discrete event dynamic systems 2.1 (1992): 61-88. Not optimisation of a simulation model 

10 Hurrion RD. An example of simulation optimisation using a neural network metamodel: finding the optimum number of kanbans in a manufacturing 

system. Journal of the Operational Research Society. 1997;48(11):1105-12. 

Metamodel method 

11 Jia Q-S. An Adaptive Sampling Algorithm for Simulation-Based Optimization With Descriptive Complexity Preference. Ieee Transactions on 

Automation Science and Engineering. 2011;8(4):720-31. 

Sampling strategy for search 

12 Koulouriotis DE, Xanthopoulos AS, Tourassis VD. Simulation optimisation of pull control policies for serial manufacturing lines and assembly 

manufacturing systems using genetic algorithms. International Journal of Production Research. 2010;48(10):2887-912. 

Not a combinatorial problem 

13 Martins MSR, Fuchs SC, Pando LU, Lueders R, Delgado MR. PSO with path relinking for resource allocation using simulation optimization. Computers 

& Industrial Engineering. 2013;65(2):322-30. 

Not a combinatorial problem 

14 Miranda AK, Del Castillo E. Robust parameter design optimization of simulation experiments using stochastic perturbation methods. Journal of the 

Operational Research Society. 2011;62(1):198-205. 

Robust parameter design methods. Not 

optimisation of a simulation 

15 Pan Y, Zhou M, Chen Z. SIMULATION-BASED OPTIMIZATION FOR RESOURCE ALLOCATION AT THIRD-PARTY LOGISTICS SYSTEMS. International 

Journal of Industrial Engineering-Theory Applications and Practice. 2012;19(2):101-15. 

Not accessible 

16 Pinho AFd, Montevechi JAB, Marins FAS, Costa RFdS, Miranda RdC, Friend JD. Evaluation of a proposed optimization method for discrete-event 

simulation models. Pesquisa Operacional. 2012;32(3):543-60. 

Only reporting a black box solver 

17 Pichitlamken J, Nelson BL, Hong LJ. A sequential procedure for neighborhood selection-of-the-best in optimization via simulation. European Journal Sampling strategy for search 
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of Operational Research. 2006;173(1):283-98. 

18 Smew W, Young P, Geraghty J. SUPPLY CHAIN ANALYSIS USING SIMULATION, GAUSSIAN PROCESS MODELLING AND OPTIMISATION. International 

Journal of Simulation Modelling. 2013;12(3):178-89. 

Not a combinatorial problem 

19 Subramanian D, Pekny JF, Reklaitis GV, Blau GE. Simulation-optimization framework for stochastic optimization of R&D pipeline management. Aiche 

Journal. 2003;49(1):96-112. 

Not a combinatorial problem 

20 Swisher JR, Hyden PD, Jacobson SH, Schruben LW. A survey of recent advances in discrete input parameter discrete-event simulation optimization. 

Iie Transactions. 2004;36(6):591-600. 

Review paper 

21 Yoo T, Cho H, Yuecesan E. Hybrid algorithm for discrete event simulation based supply chain optimization. Expert Systems with Applications. 

2010;37(3):2354-61. 

Not a combinatorial problem 

 

APPENDIX B.3: ARTICLES EXCLUDED AT CITATION/REFERENCE REVIEW STAGE 

 Reference Reason for exclusion 

1 Andradottir S. A method for discrete stochastic optimization. Management Science 1995;41(12):1946}61. Not a combinatorial problem 

2 D. Costa, E.A. Silver, Tabu search when noise is present: An illustration in the context of cause and effect analysis, Journal of Heuristics 4 (1998) 5–23. Not of a simulation model 

3 Guo Yet al (2006) SimOpt: a new simulation optimization system based virtual simulation for manufacturing system. Simul Model Pract Theory 14:577–585 Computer engineering of an 

algorithm / program 

4 Kleijnen, Jack PC, Wim van Beers, and Inneke van Nieuwenhuyse. "Constrained optimization in expensive simulation: Novel approach." European Journal of 

Operational Research 202.1 (2010): 164-174. 

Use of black box optimiser 

5 Nemhauser, G.L.; Wolsey, L.A. 1988: Integer and combinatorial optimization. New York: John Wiley & Sons Not of a simulation model 

6 Spinellis, D.D. and Papadopoulos, C.T., 2000. A simulated annealing approach for buffer allocation in reliable production lines. Annals of Operations 

Research, 93, 373–384. 

Not of a simulation model 

7 Sriver, Todd A. Pattern search ranking and selection algorithms for mixed-variable optimization of stochastic systems. AIR FORCE INST OF TECH WRIGHT-

PATTERSON AFB OH SCHOOL OF ENGINEERING AND MANAGEMENT, 2004. 

Not of a simulation model 

8 Zeng, Q.,&Yang,Z.(2009).Integrating simulation and optimization to schedule loading operations in container terminals. Computers & Operations 

Research,36, 1935–1944 

Not a combinatorial problem 

9 Zhang H, Li H (2004) Simulation-based optimization for dynamic resource allocation. Autom Constr 13:409–420 Dynamic modelling 
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APPENDIX B.4: REFERENCES FOR INCLUDED STUDIES 

 Reference 

1 Ahmed MA, Alkhamis TM, Hasan M. Optimizing discrete stochastic systems using simulated annealing 

and simulation. Computers & Industrial Engineering. 1997;32(4):823-36. 

2 Ahmed MA, Alkhamis TM. Simulation-based optimization using simulated annealing with ranking and 

selection. Computers & Operations Research. 2002;29(4):387-402. 

3 M.H. Alrefaei, S. Andradoittir, A simulated annealing algorithm with constant temperature for 

discrete stochastic optimization, Management Science 45 (1999) 748–764. 

4 Andradottir S, Prudius AA. Balanced Explorative and Exploitative Search with Estimation for 

Simulation Optimization. Informs Journal on Computing. 2009;21(2):193-208. 

5 Azadeh A, Maghsoudi A. Optimization of production systems through integration of computer 

simulation, design of experiment, and Tabu search: the case of a large steelmaking workshop. 

International Journal of Advanced Manufacturing Technology. 2010;48(5-8):785-800. 

6 Ding HW, Benyoucef L, Xie XL. A simulation optimization methodology for supplier selection problem. 

International Journal of Computer Integrated Manufacturing. 2005;18(2-3):210-24. 

7 Ghiani G, Legato P, Musmanno R, Vocaturo F. A combined procedure for discrete simulation-

optimization problems based on the simulated annealing framework. Computational Optimization 

and Applications. 2007;38(1):133-45. 

8 Haddock J, Mittenthal J. Simulation optimization using simulated annealing. Computers and Industrial 

Engineering 1992;20(4):87}395. 

9 Ho YC, Cassandras CG, Chen CH, Dai L. Ordinal optimisation and simulation. Journal of the 

Operational Research Society. 2000;51(4):490-500. 

10 Hong, L. Jeff, and Barry L. Nelson. "Discrete optimization via simulation using COMPASS." Operations 

Research 54.1 (2006): 115-129. 

11 Huang C-J, Chang K-H, Lin JT. Optimal vehicle allocation for an Automated Materials Handling System 

using simulation optimisation. International Journal of Production Research. 2012;50(20):5734-46. 

12 Jacobson SH, Sullivan KA, Johnson AW. Discrete manufacturing process design optimization using 

computer simulation and generalized hill climbing algorithms. Engineering Optimization. 

1998;31(2):247-60. 

13 Jun Z, Yu-An T, Xue-Lan Z, Jun L. An improved dynamic structure-based neural networks 

determination approaches to simulation optimization problems. Neural Computing & Applications. 

2010;19(6):883-901. 

14 Kamrani F, Ayani R, Moradi F. A framework for simulation-based optimization of business process 

models. Simulation-Transactions of the Society for Modeling and Simulation International. 

2012;88(7):852-69. 

15 Korytkowski P, Wisniewski T, Rymaszewski S. An evolutionary simulation-based optimization 

approach for dispatching scheduling. Simulation Modelling Practice and Theory. 2013;35:69-85. 

16 Kuo, R. J., and C. Y. Yang. "Simulation optimization using particle swarm optimization algorithm with 

application to assembly line design." Applied Soft Computing 11.1 (2011): 605-613. 

17 Lacksonen, T., Empirical comparison of search algorithms for discrete event simulation. Computers & 

Industrial Engineering, 2001, 40, 133–148. 

18 Prudius AA, Andradottir S. Averaging frameworks for simulation optimization with applications to 

simulated annealing. Naval Research Logistics. 2012;59(6):411-29. 

19 Rosen SL, Harmonosky CM. An improved simulated annealing simulation optimization method for 

discrete parameter stochastic systems. Computers & Operations Research. 2005;32(2):343-58. 

20 L. Shi, S. Olafsson, Nested partitions method for stochastic optimization, Methodology and 

Computing in Applied Probability 2(3) (2000) 271–291. 
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21 Xu WL, Nelson BL. Empirical stochastic branch-and-bound for optimization via simulation. Iie 

Transactions. 2013;45(7):685-98. 

22 Yang T, Kuo Y, Chang I. Tabu-search simulation optimization approach for flow-shop scheduling with 

multiple processors - a case study. International Journal of Production Research. 2004;42(19):4015-

30. 

23 Yang T, Fu H-P, Yang K-Y. An evolutionary-simulation approach for the optimization of multi-constant 

work-in-process strategy - A case study. International Journal of Production Economics. 

2007;107(1):104-14. 

 

APPENDIX B.5: TAXONOMIES OF SIMULATION OPTIMISATION 

Numerous simulation optimisation methods exist for the identification of local optima, including 

approximation,307 response surface methods (RSM),308,309 and ranking and selection.310 A 

taxonomy of local and global simulation optimisation methods is provided in Figure AB.1. A 

comprehensive review of local simulation optimisation methods is provided by Fu et al. in 1994 

and 2002.207,311 

Identified in this review was the contribution that LS methods had made to the development of 

global search methods. In particular, many global methods use LS algorithms to identify local 

optima before moving to another area within the search space. Therefore these local search 

methods will be considered where relevant within the results of this review. 

 

Figure AB.1: Local/Global taxonomy of simulation optimisation methods 

Optimisation problems can also be classified by function argument variables that the problem 

contains. In fact, this step is crucial in determining an appropriate method for an optimisation 

problem, since many optimisation algorithms and solutions are specifically tailored for a type of 

SIMULATION OPTIMISATION 

LOCAL OPTIMA GLOBAL OPTIMA 

DISCRETE STATE SPACE CONTINUOUS STATE SPACE 

Ranking and Selection 

Multiple Comparison Procedures 

Ordinal Optimisation 

Random Search 

Simplex 

Pattern Search 

Response Surface Methods 

Approximation Methods 

 

Metaheuristics 

Sampling algorithms 

Gradient Surface Methods 
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problem. Even methods which promote the ability to work across a range of problem types may 

still perform better or worse in particular instances. 

Optimisation problems with variables that take values from a discrete set are discrete problems, 

with a discrete input state space. Optimisation problems with variables that can take any real 

value, either finite or infinite, are continuous optimisation problems. Often, although not always, 

continuous problems are easier to solve, because the smoothness of the objective function 

means the function can be used to determine information about solutions within a 

neighbourhood. Often methods estimate derivatives to determine movements towards an 

optima. Some problems may have a mixture of both discrete and continuous variables – called 

mixed state optimisation problems. 

This classification of the treatment sequencing problem allows several methods applicable only 

to continuous state spaces to be ruled out. These include derivative based approaches including 

gradient based and hessian based methods via standard calculus, and derivative free approaches 

for continuous problems, including the Nelder-Mead simplex method,312 and standard 

applications of Particle Swarm Optimisation.313 

Many continuous optimisation methods rely on the ability to continue moving in a favourable 

direction. In a discrete search space, the concept of ‘direction’ may not have any significant 

meaning. Therefore the theory that underpins many methods may be distinct to either discrete 

or continuous optimisation, however some methods have proven successful across both state 

space types. The exact methods contained in this taxonomy are global methods for small (or 

simple) optimisation problems. These are methods which will guarantee to final a global optima. 

Therefore they are only relevant for relatively small problems. Examples of these methods 

include exhaustive and implicit enumeration, Branch and Bound,314 Dantzig’s simplex method,315 

and column generation.316 For large or more complex problems, particular features of the 

problem may guarantee to find a global optimum, however due to the size of the problem (or 

the computational complexity of the problem) this may require a long time to execute.  

A taxonomy of simulation optimisation methods grouped by the state space they apply to is 

provided in Figure AB.2. 
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Figure AB.2: State space taxonomy of simulation optimisation methods 
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APPENDIX B.6: HOW THE METHODS WORK 

Traditional Random Search 

Random search (RS) is a stochastic optimisation procedure, with a probabilistic (or random) 

procedure determining which neighbouring solutions are selected during the iteration. The 

general structure of RS for simulation optimisation involves a defined sampling strategy for the 

selection of neighbouring solutions. These solutions are evaluated, the best solution selected, 

and the algorithm iterates to a new point in the search space. The sampling strategy is often a 

key component of the algorithm. A generic RS algorithm is provided in Table AB.1.206 

The number of sample solutions at iteration 𝑛 is given by 𝑀𝑛, and is a parameter of the 

sampling strategy. There are no other user-defined (tuning) parameters required for this 

algorithm. The generic RS algorithm does not include a stopping criterion, because RS 

literature has shown that the sequence will converge asymptotically on the global 

optima (𝑥𝑛 → 𝑥∗ for 𝑛 → ∞). However, in practice stopping rules are applied to ensure the RS 

algorithm terminates in a finite period of time.206 

Table AB.1: Traditional random search algorithm for simulation optimisation (Adapted from 
Andradottir (2006))206 

Step Process Details 

0 Initialise Choose initial sampling strategy 𝑆1 and set iteration count n = 1 

1 Sample Select 𝑥𝑛
(1)

, … , 𝑥𝑛
(𝑀𝑛)

∈ 𝑿 according to the sampling strategy 𝑆𝑛 

2 Simulate Estimate 𝑔(𝑥𝑛
(𝑖)

), for 𝑖 = 1, … , 𝑀𝑛, using the simulation model 

3 Update Select optimal solution 𝑥𝑛
∗ , update 𝑆𝑛+1, n = n+1, Go to Step 1 

𝑀𝑛 is the number of sample solutions at iteration 𝑛 

 

Adaptive Random Search – Balanced Explorative and Exploitative Search (BEES) 

The concept underpinning the adaptive random search method is that there is an optimal 

point where each random search method should switch from the exploration of the global 

search space, to an exploitation of the local search space. The authors, Andradottir & 

Prudius,216 present two variations of their methodological framework. Deterministic 

optimisation using randomised search (R-BEES) uses a probability sampled from a uniform 

distribution to switch the algorithm between either a local or global search. Stochastic 

optimisation using randomised search (R-BEES with estimation = R-BEESE) is applicable for 

stochastic problems, and also uses a probabilistic switch between local and global search. 

The authors also present adaptive variations of the two methods. These require tracking the 

change in the optimal solution and the distance between the two optimal solutions. The 
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algorithm switches from local to global if the change in optimal solution is small (suggesting a 

local optimum nearby). A switch from global to local can happen when a promising region is 

found (a small improvement) or if a large improvement is found in a short distance (to focus on 

that area). 

Adaptive Random Search – Convergent Optimisation via Most Promising Area Stochastic 

Search (COMPASS) 

Initially, the most promising area identified is the whole feasible search space. At every 

iteration of the algorithm, a small number of simulation runs are undertaken of a sample of 

solutions. All visited solutions are collected into a set, and full simulations are undertaken as 

assigned by the simulation-allocation rule (SAR) for each solution within the set. As the 

algorithm proceeds, the set enlarges and more runs are required for each solution. The sample 

average of each solution therefore updates iteratively. As the sample becomes sufficiently 

large, the algorithm can select the best performing solution. 

For each iteration, the algorithm selects the best current solution, and the most-promising 

area is defined as the set of feasible solutions that are at least as close to the current best as 

they are to other visited solutions. Therefore as more solutions are sampled, the most-

promising area shrinks in size. 

Genetic algorithms 

Genetic algorithms are a population-based metaheuristic, with a pool of potential solutions 

maintained in the algorithm. They mimic the process of natural evaluation and use concepts of 

natural selection and genetic inheritance to navigate the search space.317 Each potential 

solution is represented as a chromosome with each decision variable (often called an element) 

a gene. This representation type naturally leads GAs to be a popular method for combinatorial 

problems. 

There are two key operations within the GA which evolve the pool of potential solutions – 

crossover and mutation. Crossover is the operation of taking parent solutions from the 

population, and generating offspring with a ‘crossed over’ set of chromosomes (see Box AB.1). 

Mutation is the altering of each gene independently via a specified probability (the mutation 

rate - see Box AB.2). 

Evolutionary algorithms are related to genetic algorithms, but they only include offspring 

mutation, and not crossover. 
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    Crossover   

        

Parent 1 0 0 0 0 0 0  

        

Parent 2 1 1 1 1 1 1  

        

        

Offspring 1 0 0 0 1 1 1  

        

Offspring 2 1 1 1 0 0 0  

       

Box AB.1: One point crossover 

        

Offspring 1 0 0 0 1 1 1  

        

Offspring 2 1 1 1 0 0 0  

        

        

Offspring 1 Mutated 0 1 0 0 0 1  

        

Offspring 2 Mutated 0 1 1 1 0 1  

        

Box AB.2: Mutation 

The SGA has a simple iterative process to replace the whole population with the offspring 

generated by crossover and mutation: 

1. Select parents for the mating pool (size of mating pool = population size) 

2. Shuffle the mating pool 

3. Select a set of parents from the mating pool. For each consecutive pair apply crossover 

with a defined probability, otherwise copy parents. This requires two parents and 

results in two offspring. 

4. For each offspring apply mutation (for a binary representation - bit-flip with a defined 

probability independently for each bit) 

5. Replace the set of parents with the resulting offspring and return to mating pool. 

Even more so than other metaheuristic methods, the representation of the solution is crucial 

for genetic algorithms. This is because the newer and more complex crossover and mutation 

operators are directly informed by the representation type. The SGA was represented by a bit 

array (binary representation). However, as already discussed, binary representation is only 

suitable for a subset of combinatorial optimisation problems. 
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Permutation representation as already discussed is more appropriate for ordering and 

sequencing problems (e.g. TSP, sequencing problem), and the RA treatment sequencing 

problem. However, permutation representation introduces challenges for genetic algorithms 

and standard crossover and mutation operations. This is because the order and the adjacency 

of elements within the solution sequence are crucial.318 Normal crossover and mutation 

operators lead to inadmissible solutions, and therefore at least two elements/genes within the 

chromosome must be changed to ensure a valid solution. This increases the neighbourhood 

size for the GA. 

Four common mutation operators for permutation representation and provided below (Box 

AB.3, with details on their ability to retain order and adjacency information within the 

chromosome. 

Like mutation, normal crossover operations will often result in inadmissible solutions. 

Therefore a large number of specialised operators have been devised which focus on 

combining order and adjacency information from the two parents. These include order one 

crossover, partially mapped crossover, cycle crossover, edge recombination and multi-parent 

recombination.319 

Within a genetic algorithm, there are two points where selection of solutions occurs. Firstly, 

when selecting from the current population which solutions are going to take part in mating 

(parent selection). Secondly, when selecting which parents and offspring go into the next 

generation (survivor selection). 

1. Insert mutation  

 1 2 3 4 5 6  1 2 5 3 4 6  

Select two values, move second to follow first and shift rest to accommodate. This method 
preserves most order and adjacency information. 
 

2. Swap mutation 

 1 2 3 4 5 6  1 5 3 4 2 6  

Pick two values and swap. Preserves most adjacency information but disruptive to order. 
 

3. Inversion mutation  

 1 2 3 4 5 6  1 5 4 3 2 6  

Pick two values and invert substring between them. Preserved most adjacency information 
but disruptive to order. 
 

4. Scramble Mutation 

 1 2 3 4 5 6  1 4 3 5 2 6  

Select a subset and randomly rearrange. Disruptive to order and adjacency. 

Box AB.3: Mutation operators 
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Traditionally, fitness-proportionate selection has been a commonly applied method, including 

roulette-wheel algorithms and Baker’s stochastic universal sampling (SUS) algorithm.320 

However, these can be problematic if a highly fit member dominates the population and can 

lead to premature convergence. Also, when a population is very similar in terms of fitness, the 

selection pressure of the algorithm can drop and convergence does not occur.321,322 Selection 

pressure is the informal term within the evolutionary algorithm literature to reflect the 

balance between exploration and exploitation. Some authors quantify selection pressure as 

the ratio of maximum to average fitness within the population.323 

Rank based selection is a potential solution to the limitations of fitness-proportionate 

selection, and is based on relative rather than absolute fitness. This is a common way to 

maintain selection pressure within the algorithm. However, a sorting overhead is imposed on 

the algorithm when this is introduced. Tournament selection is similar, with a subset of 

solutions randomly selected from the pool and the best solution then selected as a parent. The 

size of the subset (tournament) is a user-defined parameter and the selection pressure is 

highly sensitive to the tournament size.324 

For survivor selection, there are two general methods: age based selection where the oldest is 

deleted, and fitness based selection. However, two special cases have been introduced and 

widely used - Elitism (always keep the best solution), and GENITOR (GENetic ImplemaTOR - 

always delete the worst solution).325 Elitism means that the fitness of the best solution in the 

population never deteriorates as the algorithm iterates. The ability of a GA to asymptotically 

converge has been found to rely on elitism, and several studies have shown that algorithms 

with elitism converge faster than those without.326,327 

If there are constraints to the problem, then genetic algorithms can incorporate penalties to 

the objective function.328 However, it is much preferable to encode out any infeasible 

solutions, rather than evaluate and then apply a subsequent penalty.329 

Tabu search 

Tabu search (TS) is a local search method with a flexible memory structure. Unlike branch and 

bound (rigid memory structure) and simulated annealing (no memory structure), TS has a 

short-term memory structure to avoid moving back to a recently visited solution (tabu moves). 

TS has the same foundations as an ordinary local or neighbourhood search. Each vector of 

decision variables from the feasible space 𝑥 ∈ 𝐗 has an associated neighbourhood 𝐍(𝑥) ⊂ 𝐗 

and each neighbouring solution 𝑥′ ∈ 𝐍(𝑥) is reached from 𝑥 via a move operation. 
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Unlike genetic algorithms and simulated annealing, which are probabilistic/stochastic search 

methods, TS accepts non-improving solutions deterministically by guiding a steepest-

descent/ascent hill-climbing heuristic based on the best neighbouring non-tabu solution. 

However, for problem where 𝐍(𝑥) is large or each element of 𝐍(𝑥) is computationally costly 

to retrieve, the steepest descent method may be impractical. Therefore any improving move 

can be selected as a relaxation to the algorithm. 

The decision regarding the evaluation (and subsequent selection) of a solution is called the 

‘candidate list strategy’ and is an important component of the TS method. In particular, the 

relevance of choosing a good solution is magnified when looking to move out of a local 

optimum (where a descent method would normally terminate). At this point, the method 

requires the selection of the best non-improving solution.272 

If the best neighbouring solution (descent) heuristic is relaxed to avoid evaluating every 

possible move in a current neighbourhood, then it needs to be the case that neighbours are 

identified which are meaningful for the particular problem. Candidate lists are methods to 

isolate good candidate moves from the current neighbourhood. Candidate moves use an 

intelligent process, rather than random or naïve processes.330 It allows a reduction in the 

number of evaluations conducted and allows the problem structure to be exploited (called 

‘context related rules’ in Glover & Laguna (1997).272,330 

Examples of candidate list strategies include the ‘elite candidate list strategies’, which records 

the best moves encountered and then implement this list of moves for each solution. 

‘Aspiration plus strategy’ is an adaptive method of only implementing moves which currently 

have proved to improve a solution by a given threshold level. More detail regarding these 

strategies is provided in Rangaswamy et al (1998).330 It should be noted that candidate list 

strategies are memory based methods, in keeping with the general paradigm of TS. The 

memory that is used to record recently visited (tabu) solutions is called the Tabu list. This list is 

typically short term, and therefore updated with each move. Diversification within the 

algorithm can be encouraged by increasing the length of the tabu list (tenure), or using a 

dynamic tabu list structure. 

Nested partitions 

The underlying concept of the algorithm is to systematically partition the feasible region into 

subregions, evaluate the potential of each subregion, and then focus on the most promising 

region. The process iterates with each partition nested within the previous most promising 

partition. 
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More formally, a promising region at iteration 𝑘, 𝜎(𝑘), is defined, and the initial state of the 

algorithm contains no knowledge regarding the most promising region, 𝜎(0) = 𝑿. At the 𝑘-th 

iteration of the algorithm, a region 𝜎(𝑘) ⊆ 𝑿 is considered the most promising. The most 

promising region is partitioned into 𝑀 subsets which cover the entire best region, and the 

remaining surrounding region 𝑿/𝜎(𝑘) is aggregated into one partition. At each iteration, 

𝑀 + 1 subsets are generated and each region is randomly sampled to estimate a set of 

solutions. The next most promising region is the subset with the best sampled value. If the 

surrounding region is the most promising, then the algorithm backtracks. The new most 

promising region is partitioned and sampled which generates a sequence of set partitions, with 

each partition nested within the last. 

A stochastic version of the method is developed by Shi et al. (2000) where the only 

modification from the original algorithm is the way the optimum is estimated. This 

modification is required to ensure convergence with stochastic problems. Specifically, the best 

solution is the most frequently visited region (the region most often in the most-promising 

region).  

The NP method is particularly robust for simulation optimisation, because nested partition is a 

set-based method with a stochastic move operation. Like genetic algorithms, this stochastic 

move appears to make it relatively insensitive to the noise from the simulation model.331 

To improve the nested partition method, a modification by Olafsson (2004) was made to 

introduce a statistical selection mechanism to guide the search, which acts as a control to the 

noise in the algorithm. A first phase to the algorithm undertakes a small sample of the 

performance variance in each region. This also allows very poor regions to be screened. Then 

based on the initial samples a second phase of sampling is conducted to ensure that the 

correct selection of a region is made, using an indifference zone selection procedure with a 

specified minimum probability.332  

Ordinal optimisation 

In ordinal optimisation (OO), the objective is relaxed from finding the optimal solution to 

finding a subset of ‘good enough’ solutions. This is also known as ‘goal softening’. The authors 

make it clear that this is a retreat from a hard method to a soft method, but it is necessary 

within the context of simulation optimisation. Exact optimisation may just be too 

computationally expensive for many simulation optimisation problems. The shift from cardinal 

to ordinal optimisation methods means looking to maximise the alignment probability of 

alternative solutions – that is, the probability that competing solutions are ranked correctly.  
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The aim of the OO algorithm is to find a subset of the search space 𝑮 which is ‘good enough’. 

In traditional optimisation, the subset 𝑮 is a solution, the optimum (or an optima). However in 

OO the subset 𝑮 is a set of solutions. The OO algorithm uses a selected subset 𝑺 of the search 

space, which again is a set of solutions. In traditional optimisation, 𝑺 is also a single solution, 

with the aim of 𝑺 = 𝑮, so that the selected solution is the optium. However in ordinal 

optimisation, the objective is that 𝑮 intersects 𝑺 above a user defined alignment probability 

(e.g. 95%) , 𝑘. This alignment probability, 𝑃𝑟𝑜𝑏[|𝑮 ∩ 𝑺| ≥ 𝑘], is the probability that there are 𝑘 

truly good enough designs within 𝑺. 

An important component of the method is the Ordered Performance Curve (OPC). This simply 

ranks the designs from a sample of the search space in order of their performance. Lau et al. 

(1997) identify four general types of OPC, as denoted in Figure AB.3.333 

The procedure for OO is simple: 

1. Using a uniform and random sampling method, sample 𝑵 designs 

2. Estimate the performance of these 𝑵 designs (using a crude fast model if required) 

3. Estimate the OPC type and the noise level within the model used for Step 2. The user 

specifies the size of the good enough set and the required alignment level 𝑘 (e.g. 95%) 

4. Calculate the s value (the initial size of subset 𝑺) based on Ho et al. (2008) tables (data 

from step 3).334 

5. Select the top s designs of 𝑵 and specify as the selected set 𝑺. 

6. This top set contains at least k truly good enough designs with probability no less than 

95% 

The OO method introduces a tolerance to the imprecise estimates determined by a stochastic 

simulation model because the goal has been softened and the user has a high confidence in 

obtaining a ‘good enough’ design from a selected set. OO is a method itself, but the idea of 

ordinal comparison can be integrated into alternative search algorithms to provide a much 

faster convergence rate.334 
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Figure AB.3: Types of Ordered Performance Curve (Lau et al (1997))333 

 

Particle swarm optimisation 

Particle swarm optimisation (PSO) is a population based method. The algorithm is initialised 

with a population of random particles (representing different solutions) and each generation 

of the algorithm sees an updating of the particles, which allows a search for the optima. 

Each particle (𝑖𝑑) records its previous best position (𝑃𝑏𝑒𝑠𝑡𝑖𝑑) and has a velocity with which the 

particle travels within the multi-dimensional search space (𝑥 ∈ 𝑿). At each iteration, the 

particle with the best fitness (𝐺) and the position vector of the current particle are combined 

to adjust the velocity. That new updated velocity is then used to compute the new position for 

the particle. Global best and local best alternatives are possible when looking to influence the 

direction of the swarm. Two tuning parameters (c1 and c2) determine the relative influence of 

the social and cognition components (learning factors) of the algorithm. With these, the 

following updating rule is applied within the algorithm: 

𝑣𝑖𝑑
𝑛𝑒𝑤 = 𝑣𝑖𝑑

𝑜𝑙𝑑 + 𝑐1 × 𝑟𝑎𝑛𝑑1 × (𝑃𝑏𝑒𝑠𝑡𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2 × 𝑟𝑎𝑛𝑑2 × (𝐺𝑏𝑒𝑠𝑡𝑖𝑑 − 𝑥𝑖𝑑) [AB.1] 

𝑥𝑖𝑑
𝑛𝑒𝑤 = 𝑥𝑖𝑑

𝑜𝑙𝑑+ 𝑣𝑖𝑑
𝑛𝑒𝑤 [AB.2] 

The maximum velocity is traditionally constrained, which controls the ability of the algorithm 

to explore the search space. However, an inertia component has been added to provide a 

better balance of exploration and exploitation, and this has rendered maximum velocity 

redundant.335 At first, the inertia weight was a constant parameter, however a decreasing rate 

for the inertia parameter was found to have more potential. This is because the higher weight 
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enables great exploitation as the beginning to find a good area, and the smaller weight 

towards the end has the ability to search the local area. 

Averaging framework for simulated annealing 

The averaging framework for simulated annealing, as developed by Prudius et al. (2012), is 

adaptive, and uses the information gathered at previous iterations of the algorithm to 

determine the amount of simulation effort required.235 Averaging is used to provide estimates 

of the objective values based on the average of all previously visited solutions. 

The authors present a random search variant of the method which incorporates a point-based 

movement. This allows the random search to iterate between different points within the 

feasible space, and is particularly applicable to discrete optimisation problems. The authors 

find that the random search method is globally convergent under mild conditions, and do not 

explore any potential limitations of the method. 

Empirical stochastic branch and bound 

The empirical stochastic branch-and-bound method, as developed by Xu et al. (2013), is a 

combination of nested partitioning and branch and bound. It uses the partitioning structure of 

stochastic branch and bound to determine subregions of the search space. However, it uses 

bounds based on the performance of sampled solutions, as per the nested partitions 

method.233 These bounds are determined by maintaining a set of feasible solutions, as well as 

a set of all solutions. It simulates solutions within the set of feasible solutions and computes 

the bounds using their estimated performance. In the next iteration, a subset of solutions from 

the current partition is sampled. The method is memory intensive due to the overhead 

required to retain and refine the partition structure. The assumptions regarding bounding are 

key, because they provide the guarantee for convergence. Also, there are four tuning 

parameters which enable the balance between sampling solutions and running simulations to 

be adjusted. 
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APPENDIX B.4: DATA EXTRACTION TABLES 

Ahmed MA, Alkhamis TM. Simulation-based optimization using simulated annealing with ranking and selection. Computers & Operations Research. 2002;29(4):387-402. 
220

 

Development 

What is the method? Simulated annealing with ranking and selection 

What problem was the method originally 

developed for? 

Solving a discrete stochastic optimisation problem 

Has the method been adapted from its original 

context? 

The method combines simulated annealing and ranking and selection procedures. 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

Yes 

Or is it a general optimisation method that could 

be suitable for DES? 

No, it adapts general optimisation methods for use with a  DES 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

That simulated annealing (SA) has been successfully applied to solve a wide range of combinatorial optimisation problems. Ranking and selection 

(RS) procedures are statistical methods designed to solve discrete stochastic optimisation problems. 

 

Combining the two approaches resolves the limitations of each individual approach. 

 

The method shows that the configuration that has been visited most often in the first m iterations converges almost surely to a globally optimum 

solution.  

How does the method work In each iteration of the algorithm, two neighbouring configurations are compared using RS. This procedure explicitly sets the sample size (run 

length), so to guarantee that the probability of selecting the best configuration is suitably large. 

 

1. Obtain initial solution and temperature 

2. Choose neighbour candidate based on probability distribution 

3. Move to selected candidate 

4. Update temperature and repeat 

What assumptions does the method require? The method resembles original SA (it accepts worse neighbouring configurations, with an acceptance probability which tends to zero). 

 

This therefore requires a ’generating probability function’ for each candidate solution points. 

What are the theoretical limitations of the 

method? 

SA tends to need an accurate evaluation of the objective function values, and RS tends to only be efficient when the number of alternatives are 

small. 
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Original SA only guaranteed to converge in probability. 

What are the potential biases associated with 

the method? 

None identified by the authors. Standard SA biases (initial temperature, temperature length, cooling rate, final temperature) 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

Yes – an inventory system example. This was a standard infinite horizon single item periodic review inventory model with zero lead times. An (s,S) 

policy for linear costs – order placed when inventory below s, and order is the difference between S and the inventory position. At each period an 

order can be placed for any positive quantity of stock. The objective is to minimise the long-run average cost function per period. By varying s and 

S. The model is developed with exponential demands, so that an analytical solution is possible.  

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

Little information given. The method converges almost surely to a global optimal position. Results are very close to analytical solutions in all cases. 

If not, are there any suggestions to its practical 

applicability? 

I think by forcing simplistic assumptions (exponential demand) you are simplifying the search space. 

Ahmed MA, Alkhamis TM, Hasan M. Optimizing discrete stochastic systems using simulated annealing and simulation. Computers & Industrial Engineering. 1997;32(4):823-36. 
219

 

Development 

What is the method? Simulated annealing 

What problem was the method originally 

developed for? 

Solving a discrete stochastic optimisation problem 

Has the method been adapted from its original 

context? 

They have used Simulated Annealing. They have adapted the rejection/acceptance criteria for stochastic constraints. Normally SA uses a penalty 

system for constraints, but this can result in an “optimal” result being infeasible. Therefore an adaptation to the SA algorithm is used which only 

accepts feasible transitions. 

How does the method work Initialise the user-defined settings (intial temp, temp length, cooling rate, final temp) 

 

Standard SA methods with only feasible transitions accepted 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

Yes 

Or is it a general optimisation method that could 

be suitable for DES? 

No, it adapts general SA for use with a  DES 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

That simulated annealing (SA) has been successfully applied to solve a wide range of combinatorial optimisation problems. Acceptance/rejection is 

based on the expected output of the simulation model. Rejection/acceptance is modified to take into consideration stochastic system constraints. 

The method also includes control variate as a variance reduction technique. 
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How does the method work Standard SA method, with a couple of modifications:  

1. SA algorithm only accepts feasible transitions 

2. Neighbourhood based on a single perturbation 

3. Controlled probability for uphill perturbation move 

What assumptions does the method require? None 

What are the theoretical limitations of the 

method? 

SA tends to need an accurate evaluation of the objective function values. 

Only allows single neighbour perturbation. Inefficient? 

 

What are the potential biases associated with 

the method? 

Standard SA biases (initial temperature, temperature length, cooling rate, final temperature) 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

1. Classical machine repair problem 

2. Two-echelon repairable item provisioning system 

3. Multi-echelon repairable item provisioning system  

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

For 1, the algorithm found the analytical solution. For 2, the algorithm almost found the analytical solution. For 3, not analytical solution is possible 

– it was tested against a greedy algorithm with the same number of iterations. The proposed algorithm was superior for all 6 cases of Test 3. No 

further details 

If not, are there any suggestions to its practical 

applicability? 

 

M.H. Alrefaei, S. Andradoittir, A simulated annealing algorithm with constant temperature for discrete stochastic optimization, Management Science 45 (1999) 748–764.
221

 

Development 

What is the method? Modified simulated annealing 

What problem was the method originally 

developed for? 

Discrete stochastic optimisation 

Has the method been adapted from its original 

context? 

The method differs from the original simulated annealing algorithm by using a constant (rather than decreasing) temperature 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

Yes 

Or is it a general optimisation method that could 

be suitable for DES? 

No 

Theoretical basis 

How does the method address optimising a DES Because rapidly decreasing temperatures reduce the algorithm time, but the convergence of the algorithm is not guaranteed. The higher the 
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with a combinatorial problem? temperature value, the greater the chance of accepting a worse move (hill climbing move).  

How does the method work It is a simple modification of the standard SA method. 

 

The method also modifies the criteria to evaluate the optimal solution. Firstly by using the number of visits made to different states, and secondly 

to use the state that has the best average estimated value. 

What assumptions does the method require? Standard SA assumptions 

What are the theoretical limitations of the 

method? 

The paper provides a proof of almost-sure convergence. 

What are the potential biases associated with 

the method? 

Standard SA biases 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

Discrete queuing systems 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

Compared against GM-GP and FH SA algorithms (using decreasing annealing schedule), the modified algorithms perform well. However, the 

performance depends on the choice of temperature, neighbourhood, and the number of estimated function values from each iteration. However, 

the algorithm does not show great sensitivity to the initial temperature. Better overall performance in comparison, with better overall optimal 

solutions estimated. 

If not, are there any suggestions to its practical 

applicability? 

No 

Andradottir S, Prudius AA. Balanced Explorative and Exploitative Search with Estimation for Simulation Optimization. Informs Journal on Computing. 2009;21(2):193-208.
216

 

Development 

What is the method? Balanced Explorative and Exploitative Search with Estimation (BEESE) for simulation optimisation 

What problem was the method originally 

developed for? 

Simulation optimisation 

Has the method been adapted from its original 

context? 

No 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

Yes 

Or is it a general optimisation method that could 

be suitable for DES? 

No 

Theoretical basis 

How does the method address optimising a DES The method is a framework which balances exploration for a global search with exploitation for a local search. The advantage is that its 
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with a combinatorial problem? numerically efficient when applied to solve problems with little known structure 

How does the method work The concept underpinning the method is that there’s an optimal switch point from exploration to exploitation. 

 

Deterministic optimisation using R-BEES has a simple probability assigned which is sampled using a uniform distribution to switch between 

searching either the global space or the local space. 

 

Stochastic optimisation using R-BEESE, with a probability parameter sampled to switch between the current optimal solution and sampling as 

before. 

 

Adaptive variations of the two methods are possible. These require tracking of the change in optimal solution, and the distance between the top 

two optimal solutions. The algorithm switches from local to global if the change in optimal solution is small (suggest near local optima). If making 

good progress, the local search is maintained. A switch from global to local can happen when a promising region is found (small improvement) or 

large improvement with a short distance (suggesting a focus on the local area). 

What assumptions does the method require? None, the method is a framework to guide the development of search algorithms which more formally consider the balance between exploration 

and exploitation 

What are the theoretical limitations of the 

method? 

None (see above) 

What are the potential biases associated with 

the method? 

The method requires user-specified algorithms which deterministically, stochastically or adaptively switch the algorithm between local and global 

search. These are open to bias. 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

No 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

 

If not, are there any suggestions to its practical 

applicability? 

 

Azadeh A, Maghsoudi A. Optimization of production systems through integration of computer simulation, design of experiment, and Tabu search: the case of a large steelmaking workshop. 

International Journal of Advanced Manufacturing Technology. 2010;48(5-8):785-800.
230

 

Development 

What is the method? A combination of design of experiment and Tabu search 

What problem was the method originally 

developed for? 

A discrete production system with discrete decision making parameters 
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Has the method been adapted from its original 

context? 

Both design of experiment, and Tabu search, are established simulation and global metaheuristic optimisation methods. 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

Yes 

Or is it a general optimisation method that could 

be suitable for DES? 

 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

It uses a metaheurstic method (Tabu search) to optimise the fitted metamodel. This limits the simulations required by fitting a regression model 

using parameter sets determined by the DOE. The Tabu search is then used to optimise this regression function. 

How does the method work 1. Formulate problem 

2. Simulation verification and validation 

3. Simulated output and parameters 

4. Use ANOVA and RSM to establish a design of experiments 

5. Fit a polynomial order regression (Least Squares) 

6. Identify efficient parameters 

7. Undertake a Tabu search 

What assumptions does the method require? Assumptions regarding the functional form of the fitted regression model 

What are the theoretical limitations of the 

method? 

Tabu searches are memory intensive. 

 

What are the potential biases associated with 

the method? 

Regression model determinant on the simulation data – appropriate design required 

 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

Yes a discrete production system with discrete decision making parameters. 

 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

It claims a global optimum was identified but it’s not fully clear how that’s proven in this case.  

If not, are there any suggestions to its practical 

applicability? 

The method was only tested for 4 factors (converters, slag pockets, mixers, blastfurnaces), which only required 81 experiments to be run. 

Ding HW, Benyoucef L, Xie XL. A simulation optimization methodology for supplier selection problem. International Journal of Computer Integrated Manufacturing. 2005;18(2-3):210-24.
226

 

Development 

What is the method? Genetic algorithm 

What problem was the method originally It is designed for a supplier selection problem. This is a supply chain planning problem.  
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developed for? 

Has the method been adapted from its original 

context? 

Genetic algorithms have been used in numerous optimisation problems. 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

No 

Or is it a general optimisation method that could 

be suitable for DES? 

Yes 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

The method allows the encoding of design points as chromosomes. Design points are explicitly discrete in a combinatorial problem, and therefore 

the methodology is naturally aligned with our problem. 

 

GA’s used to search large, non-linear search spaces where expert knowledge is lacking or difficult to encode and where traditional optimization 

techniques fall short. 

How does the method work 1. Initialise parameters for GA optimizer and sim model 

2. Create initial population 

3. Check feasibility of each network, and repair if not feasible (this allows ‘bad genes’ to be removed and only feasible networks evaluated) 

4. Create and run DES for each individual 

5. Calculated the fitness of each individual according to the fitness definition 

6. Select individuals for mating 

7. Mate individuals to produce offspring 

8. Check stopping criteria 

What assumptions does the method require?  GA’s work with a population of individual strings (chromosomes). Each string represents a possible solution. In practice, each position in the 

chromosome may take on one fof a finite set of values. Each chromosome is assigned a fitness values according to the result of the simulation. 

Highly fit chromosomes survive more frequently and are given more opportunities to reproduce. 

 

Therefore for realistic problems, GA can often find good(near optimal) solutions in a relatively short search period 

What are the theoretical limitations of the 

method? 

Not sure at present. None discussed 

What are the potential biases associated with 

the method? 

GA’s require user input in key ways: 

1. How constraints/legal solutions are managed 

2. How fitness is evaluated 

3. How mutation and reproductions occurs 
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4. Stopping criteria 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

Yes – a supply chain simulation model is used. A binary string is used, with segments of the string representing supplier utilisation, assignment 

weight, and replenishment level. 

 

Maximum GA generations set at 500, and each population contains 20 individuals. Roulette wheel selection used, with two-point crossover. Fixed 

probabilities for mutation and crossover. An elitist strategy is used to preserve the best individuals. 

 

A penalty factor is used to avoid ‘missed demands’ – constraint on system 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

Each simulation takes less than one second. 

The algorithm converges quickly (within 100 generations – so a couple of minutes).  

If not, are there any suggestions to its practical 

applicability? 

The case study illustrates the applicability of the methods. The simulation model is coded efficiently which allows a rapid evaluation. 

 

There could have been greater evaluation of the performance by altering user-defined parameters of the algorithm. Little is said about these 

fundamental assumptions. 

Ghiani G, Legato P, Musmanno R, Vocaturo F. A combined procedure for discrete simulation-optimization problems based on the simulated annealing framework. Computational Optimization 

and Applications. 2007;38(1):133-45.
222

 

Development 

What is the method? Simulated Annealing 

What problem was the method originally 

developed for? 

Optimising a discrete stochastic problem 

Has the method been adapted from its original 

context? 

Yes 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

No 

Or is it a general optimisation method that could 

be suitable for DES? 

Yes 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

It uses Simulated Annealing, combined with a statistical procedure for comparing solutions.  

How does the method work Standard SA methodology with a Rinott Procedure to compare the current solution and neighbour by using ‘Indifference Zone Ranking and 

Selection’ = SARP 
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What assumptions does the method require? The Rinott Procedure requires the definition of an indifference zone width, and a confidence level. An objective function gap of less than the 

indifference zone width is considered negligible. In the first iteration of the algorithm, independent replications from a reference configurations 

are taken to estimate the sample mean and marginal sample variance, and subsequently solve the Rinott integral. 

What are the theoretical limitations of the 

method? 

None reported in the paper. In theory, standard SA limitations 

What are the potential biases associated with 

the method? 

None reported in the paper. In theory, standard SA biases 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

No, only test problems 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

- 

If not, are there any suggestions to its practical 

applicability? 

- 

Haddock J, Mittenthal J. Simulation optimization using simulated annealing. Computers and Industrial Engineering 1992;20(4):87}395.
223

 

Development 

What is the method? Simulated annealing 

What problem was the method originally 

developed for? 

Standard optimisation 

Has the method been adapted from its original 

context? 

No 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

No 

Or is it a general optimisation method that could 

be suitable for DES? 

Yes 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

Standard SA 

How does the method work Uses traditional methods for SA. No changes identified  

What assumptions does the method require? The method resembles original SA (it accepts worse neighbouring configurations, with an acceptance probability which tends to zero). 

 

This therefore requires a ’generating probability function’ for each candidate solution points. 
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What are the theoretical limitations of the 

method? 

SA tends to need an accurate evaluation of the objective function values, and RS tends to only be efficient when the number of alternatives are 

small. 

 

Original SA only guaranteed to converge in probability. 

What are the potential biases associated with 

the method? 

None identified by the authors. Standard SA biases (initial temperature, temperature length, cooling rate, final temperature) 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

A simple simulation model is used but due to age of the study it is unlikely to be relevant (1992) 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

 

If not, are there any suggestions to its practical 

applicability? 

 

Ho YC, Cassandras CG, Chen CH, Dai L. Ordinal optimisation and simulation. Journal of the Operational Research Society. 2000;51(4):490-500.
232

 

  

Development 

What is the method? Ordinal optimisation 

What problem was the method originally 

developed for? 

Optimisation of a complex stochastic simulation model 

Has the method been adapted from its original 

context? 

No 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

No 

Or is it a general optimisation method that could 

be suitable for DES? 

Yes 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

Rather than requiring the computations to make a precise estimate of each compared design (which converges slowly), this method of ordinal 

comparison can converge exponentially fast. Also the method uses goal softening to ease the computational burden. 

 

The key concepts are that order converges exponentially fast, compared to value converging at a much slower rate. It is easier to estimate whether 

A>B than it is to estimate A-B = ? 
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Also, goal softening eases the computational burden of finding the optimum 

How does the method work The method assumes that the performance measures are nromall distributed. The optimisation problem can then be reduced to determining 

whether the difference in the means is positive or negative.  

 

The method is then to draw independent samples of the compared solutions, and estimate the indifference amount (e.g. the amount of overlap 

between the distributions of the two compared soltuions). Then as the algorithm iterates the simulation will finally produce an estimate of the 

ordinal difference between the two solutions which is below a defined level of tolerance (the indifference amount).  

 

The method also promotes the use of variance reduction techniques (e.g. common random numbers) to reduce the variance in the comparison 

What assumptions does the method require? Normality in the distribution in the uncertainty of the output function 

What are the theoretical limitations of the 

method? 

None noted by the authors 

What are the potential biases associated with 

the method? 

Normality. The use of an indifference amount causes the possibility to arise that the wrong solution is selected. The concept behind this goal 

softening approach is that if the solutions are very close, then it doesn’t matter if the wrong solution is selected. This implies an explicit bias. It is 

for the decision maker to determine whether it is acceptable. 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

Yes – a queuing system with N parallel servers. Buffer allocation problem. 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

Very fast convergence to the proven optimum. Little discussion about how easy it is to implement. 

If not, are there any suggestions to its practical 

applicability? 

This was a very hypothetical simulation with a proven analytical solution.  

Hong, L. Jeff, and Barry L. Nelson. "Discrete optimization via simulation using COMPASS." Operations Research 54.1 (2006): 115-129.
217

 

Development 

What is the method? COMPASS 

What problem was the method originally 

developed for? 

The optimisation of discrete simulation models 

Has the method been adapted from its original 

context? 

 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

No 

Or is it a general optimisation method that could Yes 
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be suitable for DES? 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

It is a random research-based algorithm with a unique neighbourhood structure, termed ‘the most promising area’. It is defined at each iteration 

to help the algorithm focus on a subset of the decision space that is of potential so to reduce the required simulation runs.  

How does the method work Initially, the most promising area is the whole decision space. At every iteration samples of a couple of solutions are made. All visited solutions are 

collected in a set, and proper runs are assigned by the simulation-allocation rule (SAR) for each solution in the set. As the algorithm proceeds, the 

set enlarges and more runs required for each solution. The sample average of each solution in the set is updated iteratively. As the sample 

becomes sufficiently large, the sample average approaches truth, and the algorithm can correctly select the solution that truly has best 

performance. 

 

For each iteration, the algorithm selects the best current solution, and the most-promising area is defined as the set of feasible solutions that are 

at least as close to the current best as they are to other visited solutions. Therefore as more solutions are sampled the most-promising area shrinks 

in size. 

What assumptions does the method require? 1. It requires that the sample mean of the simulation is a good estimator. If the simulation is independent and identically distributed, then 

strong law of large numbers applies. 

2. The SAR guarantees a converge because the most promising area shrinks in size 

What are the theoretical limitations of the 

method? 

Well the method requires a stored set of solutions and require continue recalculation of sample means and variance – likely to be memory 

intensive. 

 

What are the potential biases associated with 

the method? 

None stated explicitly 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

No 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

 

If not, are there any suggestions to its practical 

applicability? 

 

Huang C-J, Chang K-H, Lin JT. Optimal vehicle allocation for an Automated Materials Handling System using simulation optimisation. International Journal of Production Research. 

2012;50(20):5734-46.
218

 

Development 

What is the method? An implementation of the ‘Convergent Optimisation via Most-Promising-Area Stochastic Search’ COMPASS method of Hong and Nelson (2004) 
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What problem was the method originally 

developed for? 

The optimisation of discrete simulation models 

Has the method been adapted from its original 

context? 

No 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

Yes 

Or is it a general optimisation method that could 

be suitable for DES? 

 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

It is a random research-based algorithm with a unique neighbourhood structure, termed ‘the most promising area’. It is defined at each iteration 

to help the algorithm focus on a subset of the decision space that is of potential so to reduce the required simulation runs.  

How does the method work Initially, the most promising area is the whole decision space. At every iteration samples of a couple of solutions are made. All visited solutions are 

collected in a set, and proper runs are assigned by the simulation-allocation rule (SAR) for each solution in the set. As the algorithm proceeds, the 

set enlarges and more runs required for each solution. The sample average of each solution in the set is updated iteratively. As the sample 

becomes sufficiently large, the sample average approaches truth, and the algorithm can correctly select the solution that truly has best 

performance. 

 

For each iteration, the algorithm selects the best current spoultion, and the most-promising area is defined as the set of feasible solutions that are 

at least as close to the current best as they are to other visited solutions. Therefore as more solutions are sampled the most-promising area shrinks 

in size. 

What assumptions does the method require? 3. It requires that the sample mean of the simulation is a good estimator. If the simulation is independent and identically distributed, then 

strong law of large numbers applies. 

4. The SAR guarantees a converge because the most promising area shrinks in size 

What are the theoretical limitations of the 

method? 

Well the method requires a stored set of solutions and require continue recalculation of sample means and variance – likely to be memory 

intensive. 

 

What are the potential biases associated with 

the method? 

None stated explicitly 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

Yes – a vehicle allocation problem.  

If so, how did it perform? (Speed, optimality, It is not clear from the example if a near optimal result is found, the model does not seem to converge after only 30 iterations, however it does 
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ease of implementation) show continual improvement in the objective function 

If not, are there any suggestions to its practical 

applicability? 

None stated in the paper.  

Jacobson SH, Sullivan KA, Johnson AW. Discrete manufacturing process design optimization using computer simulation and generalized hill climbing algorithms. Engineering Optimization. 

1998;31(2):247-60.
214

 

Development 

What is the method? The whole class of stochastic generalised hill climbing methods for discrete manufacturing design optimisation problems 

What problem was the method originally 

developed for? 

For discrete manufacturing design optimisation problems 

Has the method been adapted from its original 

context? 

The paper is an overview and application of several GHC algorithms 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

No 

Or is it a general optimisation method that could 

be suitable for DES? 

Yes 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

 

How does the method work The paper presents a generalised framework for ‘generalised hill climbing’ methods. These retain the best visited solution and allow the visiting of 

many inferior designs to search for a globally optimal design. 

 

Simulated annealing, threshold accepting, tabu search, monte carlo search, local search and Weibull accepting are all variations of GHC. 

What assumptions does the method require? Penalties are applied to infeasible solutions or broken constraints 

What are the theoretical limitations of the 

method? 

The paper doesn’t discuss these 

What are the potential biases associated with 

the method? 

The paper doesn’t discuss these 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

Yes 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

Simulated annealing, threshold accepting, weibull accepting all yielded results superior to those by monte carlo search and local search 
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A neighbourhood selection process that balances conservatism with aggression was superior. 

If not, are there any suggestions to its practical 

applicability? 

None 

Jun Z, Yu-An T, Xue-Lan Z, Jun L. An improved dynamic structure-based neural networks determination approaches to simulation optimization problems. Neural Computing & Applications. 

2010;19(6):883-901.
227

 

Development 

What is the method? The method is a hybrid approach using an improved ‘orthogonal genetic algorithm with quantization (OGA/Q)’ evolutionary algorithm combined 

with a neural network determination approach. 

What problem was the method originally 

developed for? 

Simulation optimisation 

Has the method been adapted from its original 

context? 

Yes 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

Yes 

Or is it a general optimisation method that could 

be suitable for DES? 

 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

The method uses OGA/Q to solve the simulation optimisation problem. At the same time, dynamic structure-based neural networks are applied to 

learn and replace the known simulation model as an auxiliary method to solve the problem. 

How does the method work 1. Start with the generation counter to zero 

2. Set initial configurations for the simulator (population initialization) 

3. Evaluate fitness of all initial configurations in population by running simulations (population evaluation) 

4. Increase generation counter 

5. Generate the next simulator configurations by the optimization algorithm, which uses performance measures and search techniques to 

decide on these configurations (population recombination) 

6. Evaluate the new obtained configurations by simulations (population evaluation) 

7. Test for termination criterion (number of generations, fitness) and stop or go back to 4. 

What assumptions does the method require? Evolutionary algorithms avoid the shortcomings of SO methods – in particular, sensitivity to local extrema, limitations in addressing problems with 

mixed numerical and no-numerical variables or high computational load.  

What are the theoretical limitations of the 

method? 

EA’s are in general quite slow. The proposed method (Orthogonal genetic algorithm with quantization (OGA/Q) designs a new method for 

generating good initial populations and a new crossover operator. 

What are the potential biases associated with Not explicitly stated in the article. 
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the method? 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

No – just test examples 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

The proposed determination approach based on OGA/Q for the DSNN (dynamic structure-based neural network) can find optimal or close-to 

optimal solutions quickly. The number of evaluations was drastically reduced. Numerous evaluations replaced by the evaluation of trained DSNNs. 

Although NN training is time-consuming, its training frequency is small. 

If not, are there any suggestions to its practical 

applicability? 

No 

Kamrani F, Ayani R, Moradi F. A framework for simulation-based optimization of business process models. Simulation-Transactions of the Society for Modeling and Simulation International. 

2012;88(7):852-69.
215

 

Development 

What is the method? The method(s) involve combining the Hungarian algorithm with a hill climbing heuristic method. 

What problem was the method originally 

developed for? 

Optimizing a business process model with the objective of finding the most beneficial assignment of tasks to agents. Where assignments of tasks to 

agents do not affect the flow of the business process, a Hungarian algorithm is applied. Where assignments of tasks to agents DO affect the 

workflow, depending on who performs them – then the heuristic method is applied to large problem. 

Has the method been adapted from its original 

context? 

Yes 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

Yes in this case 

Or is it a general optimisation method that could 

be suitable for DES? 

These are general methods that have been combined 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

Because there are scenarios where the assignment combinations may change the probabilities that govern the path of the workflow – this means 

that there is not a unique ‘value added’ matrix. Instead, different assignments result in different matrices. 

How does the method work The method overcomes this by distinguishing between tasks whose assignment may affect the flow of the process, and other tasks. These are 

called critical and non-critical tasks. 

 

Depending on the size of the problem, either the optimal or near-optimal solution can be identified. 

 

The method employs the Hungarian algorithm to find the optimal assignment for non-critical tasks, which minimises the complexity of the 

algorithm. A heuristic method used in the algorithm (similar to hill climbing) is used to find the near optimal solution for the critical tasks.  
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What assumptions does the method require? That you can clearly distinguish between critical and non-critical tasks. 

 

What are the theoretical limitations of the 

method? 

The Hungarian algorithm has a time complexity of O(m3), where m is the number of tasks. Little mention is given to the appropriateness of a hill-

climbing method for the heuristic. 

 

What are the potential biases associated with 

the method? 

None explicitly stated. 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

The random search method was applied with three initial solutions. The algorithm reached a near optima after 80 iterations. The relative deviation 

for a number of problem sizes is less than 0.5% from the optimal value 

 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

 

If not, are there any suggestions to its practical 

applicability? 

 

Korytkowski P, Wisniewski T, Rymaszewski S. An evolutionary simulation-based optimization approach for dispatching scheduling. Simulation Modelling Practice and Theory. 2013;35:69-85.
228

 

Development 

What is the method? Genetic algorithm with modified genetic operations (selection and crossover) 

What problem was the method originally 

developed for? 

GA’s have been used routinely for optimisation, including combinatorial simulation optimisation 

 

Has the method been adapted from its original 

context? 

Yes – the modification of (regularly modified) selection and crossover rules 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

No 

Or is it a general optimisation method that could 

be suitable for DES? 

Yes 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

The method described is a very standard application of a GA.  

How does the method work  

What assumptions does the method require? Pre-experiments were conducted to established the correct size of the initial population (trade off between speed and avoiding premature 

convergence). Selection process was modified, with firstly a proportionate selection) draw from an unjust roulette wheel), and then a tournament 
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to avoid losing the best genetic material. The algorithm also applied an elitist strategy, so the chromosomes with the best fitness go into the next 

population. 

 

Crossover was two-point. 

 

Mutation probability set at 0.05 

 

Stop condition was when the best solution stays within a range (E) for a given population size. 

What are the theoretical limitations of the 

method? 

Generic GA limitations 

What are the potential biases associated with 

the method? 

The fact that GA’s in general require a lot of ‘tinkering’ to set up. 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

Yes – an offset printing problem. Discrete parameters requiring a DES to evaluate 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

The algorithm reached a stop condition after 10.5 hrs (36k replications). For all 4 criteria it converged and found, after an acceptable time, a near 

optimal result.  

If not, are there any suggestions to its practical 

applicability? 

None noted 

Kuo, R. J., and C. Y. Yang. "Simulation optimization using particle swarm optimization algorithm with application to assembly line design." Applied Soft Computing 11.1 (2011): 605-613.
234

 

Development 

What is the method? Particle Swarm Optimisation 

What problem was the method originally 

developed for? 

Simulation optimisation (assembly line design) 

Has the method been adapted from its original 

context? 

No 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

No 

Or is it a general optimisation method that could 

be suitable for DES? 

Yes 

Theoretical basis 

How does the method address optimising a DES Particle Swarm Optimisation) PSO has many similarities to evolutionary methods such as genetic algorithms. The method uses the simulation 



312 
 

with a combinatorial problem? system as the fitness function for the algorithm.  

 

PSO does not have an evolutionary operator in the algorithm (unlike GA). Therefore there is no crossover or mutation.  

 

However, this method in this study uses a modification of PSO which incorporates mutation based on similarity (PSOMS). The concept is based on 

similarity between the specific particle and the current global best particle in the swarm. The collectivity is used to randomly mutate the position 

of all the particles so to maintain diversity in the space. 

 

In PSO, the potential solutions (particles) move through the search space by following the currently optimum particles. 

How does the method work There are three global variables which are tracked: 

1. The target value or condition 

2. The global best value indicating which particle’s data is currently the closest to the target value or condition 

3. Stopping value which indicates when the algorithm should stop 

 

Each particle consists of: 

1. Data that represents a possible solution 

2. A velocity value which indicates how much that possible solution can be changed 

3. A personal best value indicating the closest the particle’s data has come to the target 

 

All these data are combined in an updating procedure to inform a new set of velocities for the particles. 

What assumptions does the method require? Not clearly explained 

What are the theoretical limitations of the 

method? 

Not clearly explained. PSO has a strong theoretical background however 

What are the potential biases associated with 

the method? 

Number of particles, weight, number of epochs, inertia rate, rate of mutation. These are all user defined parameters 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

Yes – an assembly line design problem 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

It was fully validated and tested in a good comprehensive study. There were 30 tests conducted. PSO has better regional searching ability and 

required approximately 150 iterations to achieve satisfactory convergence results. It was compared to GA’s and the PSOMS was found to have the 

best problem-solving effect.  

If not, are there any suggestions to its practical None mentioned 
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applicability?  

Lacksonen, T., Empirical comparison of search algorithms for discrete event simulation. Computers & Industrial Engineering, 2001, 40, 133–148.
224

 

Development 

What is the method? Four methods are tested in an empirical study: 

1. Genetic algorithm 

2. Pattern search 

3. Simulated annealing 

4. Simplex method 

What problem was the method originally 

developed for? 

These were tested on two integer problems – standard buffer problem, and distribution models. 

Has the method been adapted from its original 

context? 

No – the algorithms appear to be implementations of standard algorithms 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

No 

Or is it a general optimisation method that could 

be suitable for DES? 

Yes 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

See other papers for each method 

How does the method work See other papers for each method 

What assumptions does the method require? The methods required coding of all parameters as integers. A decision regarding the initial solution is required for the SA, pattern search. Simplex 

requires N+1 initial solutions for N variables. 

What are the theoretical limitations of the 

method? 

Pattern search and simplex are local search techniques using one-at a time direct search. 

 

However, SA and GA are global search techniques.  

What are the potential biases associated with 

the method? 

SA and GA require tuning of several parameters (see other papers) 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

Yes 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

Problem size had a significant effect on the accuracy on all methods apart from GA. The other three methods had poor results when the problem 

size grew. However, GA required significantly more replications to achieve the better results. 
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If not, are there any suggestions to its practical 

applicability? 

Clear trade-off between accuracy and speed. However, although the GA is slow, it is robust and found good results for all factors tested. Good 

solutions with the GA were usually found within 1000 replications. 

Prudius AA, Andradottir S. Averaging frameworks for simulation optimization with applications to simulated annealing. Naval Research Logistics. 2012;59(6):411-29.
235

 

Development 

What is the method? Adaptive random search 

What problem was the method originally 

developed for? 

General optimisation methods 

Has the method been adapted from its original 

context? 

Yes 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

Yes 

Or is it a general optimisation method that could 

be suitable for DES? 

No 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

The method is adaptive, so it used information gathered at previous iterations to decide on how much simulation effort is expended in the current 

iteration. Also, averaging is used  

How does the method work The method is a random search. Also presented is a random search method using point-based methods, where there is iterative movement 

between points within the feasible region. 

What assumptions does the method require? The method is fundamentally an adaptation of established search methods which uses the feedback of information from previous iterations to 

determine the next iteration. 

What are the theoretical limitations of the 

method? 

The methods are only globally convergent under mild conditions 

What are the potential biases associated with 

the method? 

None mentioned in the paper 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

Yes. Not a fully combinatorial problem but a discrete three-stage buffer allocation problem using a discrete event simulation model. 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

Not much information is provided for this. The global algorithms perform better than the local algorithms, but they also show that averaging alone 

isn’t necessarily beneficial. The numerical examples involving two variants of SA demonstrated that averaging alone may either help or hurt 

performance relative to no averaging. But that averaging together with adaptiveness in expending simulation effort appears to be effective. 

If not, are there any suggestions to its practical 

applicability? 

None mentioned. 
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Rosen SL, Harmonosky CM. An improved simulated annealing simulation optimization method for discrete parameter stochastic systems. Computers & Operations Research. 2005;32(2):343-58.
225

 

Development 

What is the method? SA based simulation optimisation method  

What problem was the method originally 

developed for? 

developed to improve the performance of SA for discrete variable simulation optimisation 

Has the method been adapted from its original 

context? 

Yes 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

No 

Or is it a general optimisation method that could 

be suitable for DES? 

Yes – Simulated Annealing 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

Simulated Annealing has an established based for discrete parameters simulation optimisation when there is a large solution space. The method 

has two phases. The first phase is a search process using linear approximations. Phase two is an exploration of a small subset of the feasible region 

around the phase 1 solution to locate a solution of possible higher quality. 

 

Therefore Phase 1 is possible local optima solutions, and SA works well for phase 2 because it has the ability to move away from a local optima. 

 

The technique of constructing linear model approximations and searching along the direction of improvement related to the linear model is similar 

to response surface methods. This method is a modification of RSM because it is applicable to discrete decision space. 

How does the method work The main concept is to search out different high quality local optima. Starting points are generated in all areas of the feasible region, but not 

generated within a close area of the final phase 2 solution (which would trigger convergence at an already found solution. 

What assumptions does the method require? The model assumes that if a solution is of high quality, that other high quality solutions could exist in adjacent and nearby neighbourhoods and 

therefore these are searched. 

What are the theoretical limitations of the 

method? 

 

What are the potential biases associated with 

the method? 

As with any SA method, tuning is required to established the algorithm. Also a user defined termination criteria. 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

Yes 

If so, how did it perform? (Speed, optimality, It required substantially fewer (~17%) simulation runs to optimise.  
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ease of implementation) 

If not, are there any suggestions to its practical 

applicability? 

None. However, a positive is that it allows better control over the convergence rate of the algorithm by varying the number of searches 

completed. It can be used as either a quick local optima method, or a more thorough method to find a global optima with high probability. 

L. Shi, S. Olafsson, Nested partitions method for stochastic optimization, Methodology and Computing in Applied Probability 2(3) (2000) 271–291.
275

 

Development 

What is the method? Nested partitions 

What problem was the method originally 

developed for? 

Simulation optimisation 

Has the method been adapted from its original 

context? 

No 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

Yes – optimisation of discrete stochastic problems 

Or is it a general optimisation method that could 

be suitable for DES? 

No 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

Nested partitions is a global sampling strategy for optimisation of a large but finite space which is constantly adapted via the partitioning of the 

search space. 

 

The NP method naturally suits parallelisation, which is a benefit for computation. 

 

It naturally combines global and local search  

How does the method work? At each iteration of the algorithm, we assume there is a sub-region of the search space which is the ‘most promising’. This most promising region is 

partitioned into subregions and the entire surrounding region is aggregated into one region. Therefore at each iteration a disjoint subset of the 

feasible region is searched. Each region is sampled using a random sampling scheme and a ‘promising index’ is calculated for each region. 

 

The promising indices are used to compare all regions and identify the most promising for the next iteration. 

 

If one subregion is best, then it becomes the most promising region 

 

If the surrounding region is best, a region of less depth than the current region = most promising 

 

The portioning and sampling is repeated 
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What assumptions does the method require? Each point in the region must have a positive probability of being selected to ensure convergence 

What are the theoretical limitations of the 

method? 

None explored in this paper 

What are the potential biases associated with 

the method? 

There are 5 important considerations: 

1. How to partition the search space 

2. How to obtain sampled points 

3. How to select a ‘promising index’ 

4. How to backtrack 

5. How to select the initial region of most promise 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

Yes – a stochastic Travelling Salesman Problem 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

Performance is relatively good for large problems. 

If not, are there any suggestions to its practical 

applicability? 

The convergence and efficiency of the NP method relies on partitioning being performed such that good solutions are clustered in a particular sub 

region. If this holds – the method works well. 

Xu WL, Nelson BL. Empirical stochastic branch-and-bound for optimization via simulation. Iie Transactions. 2013;45(7):685-98.
236

 

Development 

What is the method? The method is empirical stochastic branch and bound (ESB&B).  

What problem was the method originally 

developed for? 

‘large scale complicated stochastic optimisation’ 

Has the method been adapted from its original 

context? 

Yes 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

Yes 

Or is it a general optimisation method that could 

be suitable for DES? 

It’s a combination of nested partitioning and branch and bound 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

 

How does the method work It uses the partitioning structure of stochastic branch and bound, however uses bounds based on the performance of sampled solutions – as per 

nested partitions. 
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The algorithm bounds as per NP by maintaining a set of feasible solutions. It also maintains a set of all solutions. It simulates solutions within the 

set of feasible solutions and computes the bounds using their estimated performance. In the next iteration, it allocates a subset of solutions to be 

sampled from the current partition. At each iteration, the best estimated performance is the current best solution  

What assumptions does the method require? Not fully clear 

What are the theoretical limitations of the 

method? 

There is an overhead needed to retain and refine a larger partition structure. 

What are the potential biases associated with 

the method? 

The bounding assumptions are key – these provide the ‘convergence estimators’. 

 

Sampling and simulation can be balanced by the adjusting of four parameters: 

1. Number of samples for current best region 

2. Number of samples for other regions 

3. Initial number of simulations for new samples 

4. Incremental number of simulations for re-sampled solutions 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

Yes – a three-stage flow line with finite buffer storage. 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

Converges asymptotically to the global optimum. Shows that ESB&B outperforms nested partitioning in general. Advantages are maximised when 

the problem is noisy or significant interactions between decision variables. Normal probability based sample allocation scheme offers the most 

potential 

If not, are there any suggestions to its practical 

applicability? 

 

Yang T, Kuo Y, Chang I. Tabu-search simulation optimization approach for flow-shop scheduling with multiple processors - a case study. International Journal of Production Research. 

2004;42(19):4015-30.
231

 

Development 

What is the method? Tabu search simulation optimisation 

What problem was the method originally 

developed for? 

TS is a local search-based optimisation method that has been successfully applied to solve many difficult combinatorial optimisation problems 

Has the method been adapted from its original 

context? 

Not really – it seems a fairly straight forward implementation of TS to a DES model 

Was the method designed to address discrete 

event simulation (DES) optimisation?  

No 



319 
 

Or is it a general optimisation method that could 

be suitable for DES? 

Yes 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

There isn’t a great deal of discussion regarding the influence of a DES evaluating the objective. Only that there needs to be a balance between 

precision and efficiency. 

How does the method work Initial solution using a heuristic approach. Then a move is initiated (pair-wise exchange/swap) is often used as a move to construct a 

neighbourhood solution in a permutation-type problem (glover 1995). The neighbourhood size has an impact on the process for selecting a 

neighbour (e.g. searching whole neighbourhood for best solution may not be feasible). 

The TS algorithm searches for non-tabu moves except if it’s exhausted all non-tabu options and cannot improve. If the best search result from the 

tabu list outperforms the best solution, then the aspiration criterion overrules the tabu rule. 

 

A long-term memory structure of intensification and diversification are used to generate the initial search sequence and restart the TS procedure.  

What assumptions does the method require? An assumption for the Tabu tenure size. This determins the tabu list for the recent past (preventing the search from repeating moves). 

What are the theoretical limitations of the 

method? 

Tabu searches are memory intensive. 

 

What are the potential biases associated with 

the method? 

No real discussion. There are many assumptions regarding the memory and neighbourhood selection that can lead to bias, but not discussed. 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

Yes – flow shop problem 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

The solution is significantly better than that found by a simple descent algorithm. Also in most instances it’s quicker. 

If not, are there any suggestions to its practical 

applicability? 

No 

Yang T, Fu H-P, Yang K-Y. An evolutionary-simulation approach for the optimization of multi-constant work-in-process strategy - A case study. International Journal of Production Economics. 

2007;107(1):104-14.
229

 

Development 

What is the method? Evolutionary algorithm (using just mutation) 

What problem was the method originally 

developed for? 

For a simulation optimisation 

Has the method been adapted from its original 

context? 

Yes – from the original EA methods 
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Was the method designed to address discrete 

event simulation (DES) optimisation?  

Yes 

Or is it a general optimisation method that could 

be suitable for DES? 

Yes – it’s an adaptation of EAs 

Theoretical basis 

How does the method address optimising a DES 

with a combinatorial problem? 

The method requires an appropriate coding of the solution. 

How does the method work The method uses a vector to code the chromosomes. A population of solutions is generated, and roulette wheel is used for selection (not clear if 

elitism contained). Recombination is conducted via two randomly selecting two intersecting points and the ranges between the two points are 

exchanged. 

 

Mutation is via the exchange of two randomly chosen genes 

What assumptions does the method require? Little – the EA appears fairly robust to the problem type 

What are the theoretical limitations of the 

method? 

None discussed 

What are the potential biases associated with 

the method? 

None discussed. In particular, regarding the appropriate number of evaluations, and the number of algorithm runs and stopping rule. 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

Yes – a parallel-machine scheduling problem 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

Reported as effective and robust. However, the computational efficiency was a concern as the problem size increased. 

If not, are there any suggestions to its practical 

applicability? 

Only the computational efficiency. The heuristic could potentially be more efficient which would allow problems of a greater size to be solved 

Practical applicability 

Has the method been used to optimise a DES 

with a combinatorial problem? 

 

If so, how did it perform? (Speed, optimality, 

ease of implementation) 

 

If not, are there any suggestions to its practical 

applicability? 
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APPENDIX C: SIMUL8 MODEL 

APPENDIX C.1: MODEL 
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APPENDIX C.2: FULL MODEL CODE 

SIMUL8 Documentation for: C:\Users\User\Google 
Drive\FELLOWSHIP\MODEL\model8.s8 at time 16/05/2015 
11:48:39 Version: 21.0.0.3122 
----------------------------------------------------------------------------------------- 
 
Created by: Jon Tosh 
Last opened by: Jon Tosh 
 
****************************************************** 
General Simulation Information 
------------------------------ 
 
  Warm Up Time: 0   Results Collection Time: 2000 (Minutes) 
  Start of day: 540 Length of day: 480 ,   Days per week: 5 
  Current Random Stream Set: 2 
  Travel Time between objects: automatically set up 
  Data display when simulation stopped: Work Item Count 
****************************************************** 
 
Distributions 
  s_mod 
    Named Distribution 
      Distribution Detail: 
        Log Normal 4.85656 2.98837 1.41979 0.56665 
  s_good 
    Named Distribution 
      Distribution Detail: 
        Log Normal 9.97923 5.72325 2.15832 0.53326 
 
Labels 
  tta 
    (Number) 
  haq 
    (Number) 
  ttd 
    (Number) 
  t 
    (Number) 
  ttw 
    (Number) 

  tth 
    (Number) 
  router 
    (Number) 
  tc1 
    (Number) 
  tc2 
    (Number) 
  dCost 
    (Number) 
  Cost 
    (Number) 
  timex 
    (Number) 
  tx 
    (Text) 
  tx_cost 
    (Number) 
  tx_count 
    (Number) 
  tx_tta 
    (Number) 
  ID 
    (Number) 
  ttr 
    (Number) 
  t_p 
    (Number) 
  tx_class 
    (Text) 
  admin_count 
    (Number) 
  u2 
    (Number) 
  lhaq 
    (Number) 
  c_age 
    (Number) 
  u1 
    (Number) 

  tq1 
    (Number) 
  b_age 
    (Number) 
  tq2 
    (Number) 
  prog_count 
    (Number) 
  hhaq 
    (Number) 
  QALY 
    (Number) 
  dQALY 
    (Number) 
  age_death 
    (Number) 
  loop_count 
    (Number) 
  tx_discrete 
    (Number) 
  tx_response 
    (Text) 
  t_haq 
    (Number) 
  c_dmards 
    (Number) 
  tx_r_t 
    (Number) 
  tx_good 
    (Number) 
  tx_w_t 
    (Number) 
  response_rand 
    (Number) 
  tx_s_t 
    (Number) 
  c_bdmards 
    (Number) 
  tx_mod 
    (Number) 
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  loop_check 
    (Number) 
  t_haq_entry 
    (Number) 
  response_cost 
    (Number) 
  tx_s_haq 
    (Number) 
  tx_r_haq 
    (Number) 
  pre_response_haq 
    (Number) 
  gainhaq 
    (Number) 
  tx_w_haq 
    (Number) 
  failed2dmards 
    (Number) 
  t_dec 
    (Number) 
  b_dd 
    (Number) 
  LYG 
    (Number) 
  b_sex 
    (Number) 
  tx_weight 
    (Number) 
  phaq 
    (Number) 
  age_onset 
    (Number) 
  c_dd 
    (Number) 
  eular_mod 
    (Number) 
  b_haq 
    (Number) 
  dead_tx 
    (Number) 
  dLYG 
    (Number) 

  bio_prog_mod_s 
    (Number) 
  bio_prog_mod_i_age 
    (Number) 
  bio_prog_mod_i 
    (Number) 
  bio_prog_mod_i_pgen 
    (Number) 
  bio_prog_mod_i_dd 
    (Number) 
  bio_prog_mod_i_das 
    (Number) 
  bio_prog_mod_i_dmards 
    (Number) 
  bio_prog_mod_s_age 
    (Number) 
  bio_prog_mod_s_pgen 
    (Number) 
  bio_prog_mod_s_dd 
    (Number) 
  bio_prog_mod_s_das 
    (Number) 
  bio_prog_mod_s_dmards 
    (Number) 
  eular_good 
    (Number) 
  bio_prog_good_s_age 
    (Number) 
  bio_prog_good_i_age 
    (Number) 
  bio_prog_good_i 
    (Number) 
  bio_prog_good_s 
    (Number) 
  bio_prog_good_i_pgen 
    (Number) 
  bio_prog_good_i_dd 
    (Number) 
  bio_prog_good_i_das 
    (Number) 
  bio_prog_good_i_dmards 
    (Number) 

  bio_prog_good_s_pgen 
    (Number) 
  bio_prog_good_s_dd 
    (Number) 
  bio_prog_good_s_das 
    (Number) 
  bio_prog_good_s_dmards 
    (Number) 
  i_d_qaly 
    (Number) 
  b_das 
    (Number) 
  b_weight 
    (Number) 
  b_dmards 
    (Number) 
  entry_t_p 
    (Number) 
  eular_none 
    (Number) 
  i_d_cost 
    (Number) 
  dead_flag 
    (Number) 
  bio_prog_mod_xt5 
    (Number) 
  bio_prog_good_xt5 
    (Number) 
  bio_prog_good_xt2 
    (Number) 
  bio_prog_good_rho2 
    (Number) 
  bio_prog_mod_xt2 
    (Number) 
  bio_prog_mod_rho2 
    (Number) 
  bio_prog_mod_xt3 
    (Number) 
  bio_prog_mod_rho3 
    (Number) 
  bio_prog_mod_xt4 
    (Number) 
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  bio_prog_mod_rho4 
    (Number) 
  bio_prog_mod_rho5 
    (Number) 
  bio_prog_good_rho5 
    (Number) 
  bio_prog_good_xt3 
    (Number) 
  bio_prog_good_rho4 
    (Number) 
  bio_prog_good_xt4 
    (Number) 
  bio_prog_good_rho3 
    (Number) 
  bio_prog_good_rho1 
    (Number) 
  bio_prog_mod_rho1 
    (Number) 
  bio_prog_mod_rho6 
    (Number) 
  bio_prog_good_rho6 
    (Number) 
  r_tx 
    (Number) 
  debug1 
    (Number) 
  tx_c 
    (Number) 
  c_das 
    (Number) 
  tx_resp 
    (Text) 
  s_first_mod_g_age 
    (Number) 
  s_first_mod_g_age2 
    (Number) 
  s_first_mod_g_pgen 
    (Number) 
  s_first_mod_g_dd 
    (Number) 
  s_first_mod_g_dd2 
    (Number) 

  s_first_mod_g_das 
    (Number) 
  s_first_mod_g_dmards 
    (Number) 
  s_first_mod_g_haq 
    (Number) 
  s_first_mod_g_cons 
    (Number) 
  s_first_mod_g_lnsig 
    (Number) 
  s_first_mod_g_kappa 
    (Number) 
  s_first_mod_g_sigma 
    (Number) 
  s_first_good_ln_age 
    (Number) 
  s_first_good_ln_age2 
    (Number) 
  s_first_good_ln_pgen 
    (Number) 
  s_first_good_ln_dd 
    (Number) 
  s_first_good_ln_dd2 
    (Number) 
  s_first_good_ln_das 
    (Number) 
  s_first_good_ln_dmards 
    (Number) 
  s_first_good_ln_haq 
    (Number) 
  s_first_good_ln_cons 
    (Number) 
  s_first_good_ln_lnsig 
    (Number) 
  s_first_good_ln_sigma 
    (Number) 
  loopexit 
    (Number) 
  temp_haq 
    (Number) 
  testg 
    (Number) 

  tx1 
    (Text) 
  tx2 
    (Text) 
  tx3 
    (Text) 
  tx4 
    (Text) 
  tx5 
    (Text) 
  tx6 
    (Text) 
  tx7 
    (Text) 
  tx8 
    (Text) 
  tx9 
    (Text) 
  tx10 
    (Text) 
  tx11 
    (Text) 
  tx12 
    (Text) 
  tx13 
    (Text) 
  tx14 
    (Text) 
  loopcount 
    (Number) 
  block 
    (Number) 
  trip 
    (Number) 
 
Images 
  Default Image Entry 
    Width: 32  Height: 32 
    Transparent Color: 12945930 
  Default Image Queue 
    Width: 32  Height: 32 
    Transparent Color: 12748546 
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  Default Image Activity 
    Width: 32  Height: 32 
    Transparent Color: 12946445 
  Default Image Exit 
    Width: 32  Height: 32 
    Transparent Color: 13078035 
  Default Image Resource 
    Width: 32  Height: 32 
    Transparent Color: 12880393 
  Default Image Conveyor 
    Width: 32  Height: 32 
    Transparent Color: 16777215 
  Default Image Tank 
    Width: 32  Height: 32 
    Transparent Color: 16777215 
  Default Image Rotz 
    Width: 32  Height: 32 
    Transparent Color: 16777215 
  Default Image Process 
    Width: 32  Height: 32 
    Transparent Color: 16777215 
  Default Image Loader 
    Width: 32  Height: 32 
    Transparent Color: 16777215 
  Default Image Vehicle 
    Width: 32  Height: 32 
    Transparent Color: 16777215 
  Default Image Component 
    Width: 32  Height: 32 
    Transparent Color: 255 
  Default Image 3D Light 
    Width: 32  Height: 32 
    Transparent Color: 16777215 
  Default Image 3D Object 
    Width: 32  Height: 32 
    Transparent Color: 16777215 
  Redb 
    Width: 8  Height: 8 
    Transparent Color: 16777215 
  Image   2 
    Width: 32  Height: 32 
    Transparent Color: 16777215 

 
SIMUL8 Windows and Sub Processs 
------------------------------- 
    Open 
    Icon Location  X:960 Y:585 W:32 H:32 
    Window Location  X:0 Y:1174 W:1902 H:960 
    Color 16777215 
 
Work Item Types 
--------------- 
  Main Work Item Type 
    Image: Redb 
    Length 1 
    Attached Labels: 
      ID 
      LYG 
      dLYG 
      Cost 
      dCost 
      QALY 
      dQALY 
      b_age 
      b_sex 
      b_dd 
      b_haq 
      b_das 
      b_dmards 
      b_weight 
      age_death 
      tx_count 
      timex 
      ttd 
      tta 
      ttw 
      tth 
      ttr 
      prog_count 
      haq 
      lhaq 
      temp_haq 
      hhaq 
      t 

      tx_s_haq 
      loopexit 
      router 
      dead_tx 
      dead_flag 
      r_tx 
      c_age 
      c_dd 
      s_first_mod_g_age 
      s_first_mod_g_age2 
      s_first_mod_g_pgen 
      s_first_mod_g_dd 
      s_first_mod_g_dd2 
      s_first_mod_g_das 
      s_first_mod_g_dmards 
      s_first_mod_g_haq 
      s_first_mod_g_cons 
      s_first_mod_g_lnsig 
      s_first_mod_g_kappa 
      s_first_mod_g_sigma 
      s_first_good_ln_age 
      s_first_good_ln_age2 
      s_first_good_ln_pgen 
      s_first_good_ln_dd 
      s_first_good_ln_dd2 
      s_first_good_ln_das 
      s_first_good_ln_dmards 
      s_first_good_ln_haq 
      s_first_good_ln_cons 
      s_first_good_ln_lnsig 
      s_first_good_ln_sigma 
      c_dmards 
      testg 
      tx 
      tx_class 
      tx_discrete 
      tx_weight 
      response_cost 
      tx_cost 
      tc2 
      tc1 
      i_d_cost 
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      i_d_qaly 
      bio_prog_mod_i 
      bio_prog_mod_s 
      bio_prog_mod_i_age 
      bio_prog_mod_i_pgen 
      bio_prog_mod_i_dd 
      bio_prog_mod_i_das 
      bio_prog_mod_i_dmards 
      bio_prog_mod_s_age 
      bio_prog_mod_s_pgen 
      bio_prog_mod_s_dd 
      bio_prog_mod_s_das 
      bio_prog_mod_s_dmards 
      bio_prog_mod_rho1 
      bio_prog_mod_xt2 
      bio_prog_mod_rho2 
      bio_prog_mod_xt3 
      bio_prog_mod_rho3 
      bio_prog_mod_xt4 
      bio_prog_mod_rho4 
      bio_prog_mod_xt5 
      bio_prog_mod_rho5 
      bio_prog_mod_rho6 
      bio_prog_good_i 
      bio_prog_good_s 
      bio_prog_good_i_age 
      bio_prog_good_i_pgen 
      bio_prog_good_i_dd 
      bio_prog_good_i_das 
      bio_prog_good_i_dmards 
      bio_prog_good_s_age 
      bio_prog_good_s_pgen 
      bio_prog_good_s_dd 
      bio_prog_good_s_das 
      bio_prog_good_s_dmards 
      bio_prog_good_rho1 
      bio_prog_good_xt2 
      bio_prog_good_rho2 
      bio_prog_good_xt3 
      bio_prog_good_rho3 
      bio_prog_good_xt4 
      bio_prog_good_rho4 

      bio_prog_good_xt5 
      bio_prog_good_rho5 
      bio_prog_good_rho6 
      tx_tta 
      admin_count 
      tq2 
      u2 
      tq1 
      u1 
      tx_c 
      tx_mod 
      tx_good 
      response_rand 
      tx_response 
      tx_r_t 
      tx_w_t 
      c_das 
      tx_resp 
      phaq 
      age_onset 
      failed2dmards 
      t_p 
      tx_s_t 
      tx_r_haq 
      tx_w_haq 
      eular_none 
      eular_mod 
      eular_good 
      pre_response_haq 
      gainhaq 
      debug1 
      t_haq_entry 
      t_haq 
      entry_t_p 
      loop_check 
      loop_count 
      c_bdmards 
      t_dec 
      trip 
 
****************************************************** 
 

Simulation Objects 
------------------ 
  Start 
    Model Entry 
    ----------- 
      Display Parameters 4 
      X:30 Y:145 W:32 H:32 
       Xinc -10 Yinc 0 
      Show Title 
      Show Count 
      Show Image 
    Work Item Type: Main Work Item Type 
    Inter-arrival time 
      Distribution Detail: 
        Fixed 0.00001 0 0 0 
      Route Out Objects 
        Treatment Start 
    On Label Action Visual Logic: 
      VL SECTION: Model Entry Entry Logic ,  LOCALDATA: 
u:[NUMBER] ,  q:[NUMBER] ,  S:[NUMBER] 
        'Set Results labels = 0 
        '(These capture the output for each patient) 
        SET LYG  =  0 
        SET dLYG  =  0 
        SET Cost  =  0 
        SET dCost  =  0 
        SET QALY  =  0 
        SET dQALY  =  0 
        (Disabled) SET trip  =  0 
        'HAQout is a record of HAQ progression data for the last 
person to be simulated. At the start of each patient run, this sheet 
is cleared first. 
        Clear Sheet Area    haqout[2,2] ,  200 ,  200 
        'Set instantaneous discounting parameters 
        SET i_d_cost  =  LOG[1+d_cost] 
        SET i_d_qaly  =  LOG[1+d_qaly] 
        'Set timers (timex is for loops, t = time in model, tc1 and tq1 
are 'increment' timestamps for discrete QALY and cost calcs) 
        SET timex  =  0 
        SET t  =  0 
        SET tc1  =  t 
        SET tq1  =  t 



327 
 

        'SET any random numbers to be used so not resampled every 
time 
        SET r_tx  =  RANDOM[0] 
        'Set the break code so that the model stops once the sim_nbr 
set of patients have been run 
        IF Model Entry.Arrived Count  =  sim_nbr 
          SET Model Entry.Interarrival Time  =  large_nbr 
        'Set patient characteristics at baseline 
        SET b_age  =  data[2,4+ID] 
        SET b_sex  =  data[3,4+ID] 
        SET b_dd  =  data[4,4+ID] 
        SET b_haq  =  data[5,4+ID] 
        SET b_das  =  data[6,4+ID] 
        SET b_weight  =  data[8,4+ID] 
        SET age_death  =  data[9,4+ID] 
        SET ttd  =  age_death-b_age 
        IF [b_age-b_dd]  <  1 
          SET age_onset  =  1 
        ELSE 
          SET age_onset  =  b_age-b_dd 
        SET haq  =  b_haq 
        'HAQadjust forces the HAQ value to be an eligible discrete 
HAQ score 
        CALL haqadjust 
        'Set the current patient characteristics (currently equal to 
baseline) 
        SET c_age  =  b_age 
        SET c_dd  =  b_dd 
        SET c_dmards  =  b_dmards 
        SET c_bdmards  =  0 
        SET failed2dmards  =  0 
        'SET initial Utility 
        SET u1  =  
[[[[0.91002]+[haq*NEG[0.20418]]]+[[haq^2]*NEG[0.01291]]]+[c_a
ge*NEG[0.00097]]]+[[c_age^2]*NEG[0.00001]] 
        'debug option 
        (Disabled) SET u1  =  1 
        'Set the treatment counter 
        SET tx_count  =  0 
        'Set Biologic progression model parameters 
        SET bio_prog_mod_i  =  data[37,4+ID] 
        SET bio_prog_mod_s  =  data[38,4+ID] 

        SET bio_prog_mod_i_age  =  data[39,4+ID] 
        SET bio_prog_mod_i_pgen  =  data[40,4+ID] 
        SET bio_prog_mod_i_dd  =  data[41,4+ID] 
        SET bio_prog_mod_i_das  =  data[42,4+ID] 
        SET bio_prog_mod_i_dmards  =  data[43,4+ID] 
        SET bio_prog_mod_s_age  =  data[44,4+ID] 
        SET bio_prog_mod_s_pgen  =  data[45,4+ID] 
        SET bio_prog_mod_s_dd  =  data[46,4+ID] 
        SET bio_prog_mod_s_das  =  data[47,4+ID] 
        SET bio_prog_mod_s_dmards  =  data[48,4+ID] 
        SET bio_prog_mod_rho1  =  data[49,4+ID] 
        SET bio_prog_mod_xt2  =  data[50,4+ID] 
        SET bio_prog_mod_rho2  =  data[51,4+ID] 
        SET bio_prog_mod_xt3  =  data[52,4+ID] 
        SET bio_prog_mod_rho3  =  data[53,4+ID] 
        SET bio_prog_mod_xt4  =  data[54,4+ID] 
        SET bio_prog_mod_rho4  =  data[55,4+ID] 
        SET bio_prog_mod_xt5  =  data[56,4+ID] 
        SET bio_prog_mod_rho5  =  data[57,4+ID] 
        SET bio_prog_mod_rho6  =  data[58,4+ID] 
        SET bio_prog_good_i  =  data[59,4+ID] 
        SET bio_prog_good_s  =  data[60,4+ID] 
        SET bio_prog_good_i_age  =  data[61,4+ID] 
        SET bio_prog_good_i_pgen  =  data[62,4+ID] 
        SET bio_prog_good_i_dd  =  data[63,4+ID] 
        SET bio_prog_good_i_das  =  data[64,4+ID] 
        SET bio_prog_good_i_dmards  =  data[65,4+ID] 
        SET bio_prog_good_s_age  =  data[66,4+ID] 
        SET bio_prog_good_s_pgen  =  data[67,4+ID] 
        SET bio_prog_good_s_dd  =  data[68,4+ID] 
        SET bio_prog_good_s_das  =  data[69,4+ID] 
        SET bio_prog_good_s_dmards  =  data[70,4+ID] 
        SET bio_prog_good_rho1  =  data[71,4+ID] 
        SET bio_prog_good_xt2  =  data[72,4+ID] 
        SET bio_prog_good_rho2  =  data[73,4+ID] 
        SET bio_prog_good_xt3  =  data[74,4+ID] 
        SET bio_prog_good_rho3  =  data[75,4+ID] 
        SET bio_prog_good_xt4  =  data[76,4+ID] 
        SET bio_prog_good_rho4  =  data[77,4+ID] 
        SET bio_prog_good_xt5  =  data[78,4+ID] 
        SET bio_prog_good_rho5  =  data[79,4+ID] 
        SET bio_prog_good_rho6  =  data[80,4+ID] 

        'Set EULAR HAQ response changes 
        SET eular_none  =  data[81,4+ID] 
        SET eular_mod  =  data[82,4+ID] 
        SET eular_good  =  data[83,4+ID] 
        SET t_dec  =  seq[7,2] 
    Label Actions 
      ID 
      Unique 
      Financial Information 
        Capital: 10 
        Per Unit: 1 
      Carbon Emissions Information 
        Carbon Footprint: 10 
        Per Unit: 1 
   
  Activity 
    Treatment Router 
    ---------------- 
      Display Parameters 4 
      X:231 Y:145 W:32 H:32 
       Xinc -10 Yinc 0 
      Show Title 
      Show Count 
      Show Image 
    Replicate 1 
    Priority 50 
    Routing In 
      Priority 
        Route In Objects 
          Response Administration 
          Treatment Start 
      Require resources before collecting any work items 
    Routing Out 
      Label 
      On label: router 
      Preference only 
        Route Out Objects 
          Response 
          Dead 
          Response Administration 
      Release resources as soon as task complete 
    Operation Time 
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      Distribution Detail: 
        Fixed 0 0 0 0 
    On End Visual Logic: 
      VL SECTION: Treatment Router Work Complete Logic ,  
LOCALDATA: u:[NUMBER] ,  q:[NUMBER] ,  S:[NUMBER] 
        'debug option 
        (Disabled) SET tx_discrete  =  0 
        IF ttd  =  1 
          SET ttd  =  ttd 
        'SET MODEL COSTS HERE (HAQ RELATED AND DISCRETE 
TREATMENT) 
        CALL haqcost 
        SET timex  =  0 
        SET admin_count  =  admin_count+1 
        IF admin_count  =  1 
          IF tx_discrete  =  1 
            SET tta  =  0 
        CALL min_response 
        SET t  =  t+timex 
        IF router  =  1 
          SET ttd  =  ttd-ttr 
          SET tta  =  tta-ttr 
          IF tx_discrete  =  0 
            CALL cresponsecost 
        IF router  =  2 
          CALL haqcost 
          SET dead_tx  =  tx_count 
          SET dead_flag  =  1 
          SET ttd  =  0 
        IF router  =  3 
          SET ttd  =  ttd-tta 
          SET ttr  =  ttr-tta 
        IF t  >  [age_death-b_age] 
          SET t  =  t 
        (Disabled) SET tx_discrete  =  seq[4,tx_count+1] 
      Financial Information 
        Capital: 10 
        Per Unit: 1 
      Carbon Emissions Information 
        Carbon Footprint: 10 
        Per Unit: 1 
   

  Activity 
    Response 
    -------- 
      Display Parameters 4 
      X:314 Y:144 W:32 H:32 
       Xinc -10 Yinc 0 
      Show Title 
      Show Count 
      Show Image 
    Replicate 1 
    Priority 50 
    Routing In 
      Priority 
        Route In Objects 
          Treatment Router 
      Require resources before collecting any work items 
    Routing Out 
      Label 
      On label: router 
      Preference only 
        Route Out Objects 
          Withdraw 
          Maintenance Router 
      Release resources as soon as task complete 
    Operation Time 
      Distribution Detail: 
        Fixed 0 0 0 0 
    On End Visual Logic: 
      VL SECTION: Response Work Complete Logic 
        (Disabled) CALL qaly 
        'set timers (t_p is the timer index for cDMARD progression) 
        SET t_p  =  0.5 
        SET tth  =  0.5 
        SET pre_response_haq  =  haq 
        SET response_rand  =  RANDOM[0] 
        IF tx_class  =  "PALLIATIVE CARE" 
          SET router  =  2 
          SET tx_response  =  "PALLIATIVE CARE" 
          SET ttw  =  large_nbr 
        ELSE 
          IF response_rand  <  [1-tx_good]-tx_mod 
            SET router  =  1 

            SET tx_response  =  "NONE" 
            SET haq  =  haq+eular_none 
          ELSE IF response_rand  >  1-tx_good 
            SET router  =  2 
            SET tx_response  =  "GOOD" 
            SET ttw  =  SAMPLE["Lognormal,9.979226,5.723247"] 
            SET haq  =  haq+eular_good 
            CALL haqadjust 
          ELSE 
            SET router  =  2 
            SET tx_response  =  "MOD" 
            SET ttw  =  SAMPLE["lognormal,4.856564,2.988371"] 
            SET haq  =  haq+eular_mod 
            CALL haqadjust 
        'set trackers and output values 
        SET tx_r_haq  =  haq 
        SET gainhaq  =  pre_response_haq-haq 
        SET tx_r_t  =  t 
        SET haqout[3,3*tx_count]  =  tx_r_haq 
        SET haqout[2,3*tx_count]  =  tx_r_t 
        SET haqout[6,3*tx_count]  =  tx_response 
        CALL qaly 
      Financial Information 
        Capital: 10 
        Per Unit: 1 
      Carbon Emissions Information 
        Carbon Footprint: 10 
        Per Unit: 1 
   
  End 
    Model End 
    --------- 
      Display Parameters 4 
      X:561 Y:279 W:32 H:32 
       Xinc -10 Yinc 0 
      Show Title 
      Show Count 
      Show Image 
      Input Objects 
        Dead 
      Financial Information 
        Per Unit: 100 
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      Carbon Emissions Information 
        Per Unit: 100 
   
  Activity 
    Dead 
    ---- 
      Display Parameters 4 
      X:396 Y:279 W:32 H:32 
       Xinc -10 Yinc 0 
      Show Title 
      Show Count 
      Show Image 
    Replicate 1 
    Priority 50 
    Routing In 
      Priority 
        Route In Objects 
          Treatment Router 
          Maintenance Router 
      Require resources before collecting any work items 
    Routing Out 
      Circulate 
      Preference only 
        Route Out Objects 
          Model End 
      Release resources as soon as task complete 
    Operation Time 
      Distribution Detail: 
        Fixed 0 0 0 0 
    On End Visual Logic: 
      VL SECTION: Dead Work Complete Logic ,  LOCALDATA: 
tester:[NUMBER] 
        (Disabled) SET tx_count  =  tx_count+1 
        CALL qaly 
        SET t  =  t 
        SET ttd  =  ttd 
        SET tester  =  age_death-b_age 
        SET age_death  =  age_death 
                SET tx_s_t  =  tx_s_t 
        SET tx_r_t  =  tx_r_t 
        SET tx_w_t  =  tx_w_t 
        SET tx_r_t  =  999 

                IF tx_w_t  <  tx_s_t 
          SET tx_w_t  =  999 
                SET haqout[7,2]  =  age_death-b_age 
        SET haqout[8,2]  =  dead_tx 
                (Disabled) IF trip  =  1 
          (Disabled) SET t  =  t-0.01 
        (Disabled) SET trip  =  0 
        SET LYG  =  t 
        'debug 
        (Disabled) SET LYG  =  age_death-b_age 
        SET dLYG  =  LYG/[[1+i_d_qaly]^LYG] 
        SET output[1,4+ID]  =  ID 
        SET output[2,4+ID]  =  LYG 
        SET output[3,4+ID]  =  Cost 
        SET output[4,4+ID]  =  QALY 
        SET output[5,4+ID]  =  dLYG 
        SET output[6,4+ID]  =  dCost 
        SET output[7,4+ID]  =  dQALY 
        SET output[8,4+ID]  =  b_age 
        SET output[9,4+ID]  =  b_sex 
        SET output[10,4+ID]  =  b_dd 
        SET output[11,4+ID]  =  b_haq 
        SET output[12,4+ID]  =  b_das 
        SET output[13,4+ID]  =  b_dmards 
        SET output[14,4+ID]  =  b_weight 
        SET output[15,4+ID]  =  age_death 
        SET output[16,4+ID]  =  dead_tx 
        SET output[17,4+ID]  =  output[2,4+ID] 
        SET output[18,4+ID]  =  [age_death-b_age] 
        SET output[19,4+ID]  =  [age_death-b_age]-t 
        SET output[20,4+ID]  =  t 
        IF ID  =  sim_nbr 
          Sum Sheet Area    output[2,5] ,  1 ,  sim_nbr ,  output[2,3] 
          Sum Sheet Area    output[3,5] ,  1 ,  sim_nbr ,  output[3,3] 
          Sum Sheet Area    output[4,5] ,  1 ,  sim_nbr ,  output[4,3] 
          Sum Sheet Area    output[5,5] ,  1 ,  sim_nbr ,  output[5,3] 
          Sum Sheet Area    output[6,5] ,  1 ,  sim_nbr ,  output[6,3] 
          Sum Sheet Area    output[7,5] ,  1 ,  sim_nbr ,  output[7,3] 
          Sum Sheet Area    output[8,5] ,  1 ,  sim_nbr ,  output[8,3] 
          Sum Sheet Area    output[9,5] ,  1 ,  sim_nbr ,  output[9,3] 
          Sum Sheet Area    output[10,5] ,  1 ,  sim_nbr ,  output[10,3] 
          Sum Sheet Area    output[11,5] ,  1 ,  sim_nbr ,  output[11,3] 

          Sum Sheet Area    output[12,5] ,  1 ,  sim_nbr ,  output[12,3] 
          Sum Sheet Area    output[13,5] ,  1 ,  sim_nbr ,  output[13,3] 
          Sum Sheet Area    output[14,5] ,  1 ,  sim_nbr ,  output[14,3] 
          Sum Sheet Area    output[15,5] ,  1 ,  sim_nbr ,  output[15,3] 
          Sum Sheet Area    output[16,5] ,  1 ,  sim_nbr ,  output[16,3] 
          SET output[2,4]  =  output[2,3]/sim_nbr 
          SET output[3,4]  =  output[3,3]/sim_nbr 
          SET output[4,4]  =  output[4,3]/sim_nbr 
          SET output[5,4]  =  output[5,3]/sim_nbr 
          SET output[6,4]  =  output[6,3]/sim_nbr 
          SET output[7,4]  =  output[7,3]/sim_nbr 
          SET output[8,4]  =  output[8,3]/sim_nbr 
          SET output[9,4]  =  output[9,3]/sim_nbr 
          SET output[10,4]  =  output[10,3]/sim_nbr 
          SET output[11,4]  =  output[11,3]/sim_nbr 
          SET output[12,4]  =  output[12,3]/sim_nbr 
          SET output[13,4]  =  output[13,3]/sim_nbr 
          SET output[14,4]  =  output[14,3]/sim_nbr 
          SET output[15,4]  =  output[15,3]/sim_nbr 
          SET output[16,4]  =  output[16,3]/sim_nbr 
          SET m_LYG_nbr  =  output[2,4] 
          SET m_Cost_nbr  =  output[3,4] 
          SET m_QALY_nbr  =  output[4,4] 
          SET m_dLYG_nbr  =  output[5,4] 
          SET m_dCost_nbr  =  output[6,4] 
          SET m_dQALY_nbr  =  output[7,4] 
          SET m_age_nbr  =  output[8,4] 
          SET m_sex_nbr  =  output[9,4] 
          SET m_dd_nbr  =  output[10,4] 
          SET m_haq_nbr  =  output[11,4] 
          SET m_das_nbr  =  output[12,4] 
          SET m_dmards_nbr  =  output[13,4] 
          SET m_weight_nbr  =  output[14,4] 
          SET m_age_death_nbr  =  output[15,4] 
          SET m_tx_nbr  =  output[16,4] 
      Financial Information 
        Capital: 10 
        Per Unit: 1 
      Carbon Emissions Information 
        Carbon Footprint: 10 
        Per Unit: 1 
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  Activity 
    Withdraw 
    -------- 
      Display Parameters 4 
      X:396 Y:204 W:32 H:32 
       Xinc -10 Yinc 0 
      Show Title 
      Show Count 
      Show Image 
    Replicate 1 
    Priority 50 
    Routing In 
      Priority 
        Route In Objects 
          Response 
          Maintenance Router 
      Require resources before collecting any work items 
    Routing Out 
      Circulate 
      Preference only 
        Route Out Objects 
          Treatment Start 
      Release resources as soon as task complete 
    Operation Time 
      Distribution Detail: 
        Fixed 0 0 0 0 
    On End Visual Logic: 
      VL SECTION: Withdraw Work Complete Logic 
        SET tx_w_t  =  t 
        SET tx_w_haq  =  haq 
         
        SET haqout[3,[3*tx_count]+1]  =  tx_w_haq 
        SET haqout[2,[3*tx_count]+1]  =  tx_w_t 
        SET haqout[6,3*tx_count]  =  tx_response 
        (Disabled) CALL qaly 
        IF tx_discrete  =  0 
          CALL continuouscost 
        (Disabled) SET ttd  =  ttd-ttw 
        (Disabled) SET tx_count  =  tx_count+1 
        (Disabled) SET tx  =  seq[2,tx_count+2] 
        (Disabled) SET tx_class  =  seq[3,tx_count+2] 
        (Disabled) SET tx_discrete  =  seq[4,tx_count+2] 

        (Disabled) SET tx_weight  =  seq[5,tx_count+2] 
        (Disabled) IF tx_discrete  =  1 
          (Disabled) IF tx  =  "ABT" 
            (Disabled) SET tx_tta  =  costs[4,2] 
          (Disabled) IF tx  =  "IFX" 
            (Disabled) SET tx_tta  =  costs[4,8] 
          (Disabled) IF tx  =  "RTX" 
            (Disabled) SET tx_tta  =  costs[4,9] 
          (Disabled) IF tx  =  "TCZ" 
            (Disabled) SET tx_tta  =  costs[4,10] 
          (Disabled) ELSE 
            (Disabled) SET tx_tta  =  large_nbr 
        (Disabled) ELSE 
          (Disabled) SET tx_tta  =  large_nbr 
        (Disabled) SET tta  =  tx_tta 
        SET haq  =  haq+gainhaq 
        CALL haqadjust 
        SET t  =  t+withdraw_time_nbr 
        SET ttd  =  ttd-withdraw_time_nbr 
        CALL qaly 
      Financial Information 
        Capital: 10 
        Per Unit: 1 
      Carbon Emissions Information 
        Carbon Footprint: 10 
        Per Unit: 1 
   
  Activity 
    Maintenance Router 
    ------------------ 
      Display Parameters 4 
      X:491 Y:145 W:32 H:32 
       Xinc -10 Yinc 0 
      Show Title 
      Show Count 
      Show Image 
    Replicate 1 
    Priority 50 
    Routing In 
      Priority 
        Route In Objects 
          Progression 

          Maintenance Administration 
          Response 
      Require resources before collecting any work items 
    Routing Out 
      Label 
      On label: router 
      Preference only 
        Route Out Objects 
          Progression 
          Withdraw 
          Dead 
          Maintenance Administration 
      Release resources as soon as task complete 
    Operation Time 
      Distribution Detail: 
        Fixed 0 0 0 0 
    On End Visual Logic: 
      VL SECTION: Maintenance Router Work Complete Logic ,  
LOCALDATA: u:[NUMBER] ,  q:[NUMBER] ,  S:[NUMBER] 
        CALL haqcost 
        (Disabled) SET tx_discrete  =  0 
        SET timex  =  0 
        CALL min_maintenance 
        SET t  =  t+timex 
        IF router  =  3 
          CALL haqcost 
          SET dead_tx  =  tx_count 
          SET dead_flag  =  1 
          SET ttd  =  0 
        IF router  =  4 
          SET ttd  =  ttd-tta 
          SET ttw  =  ttw-tta 
          SET tth  =  tth-tta 
        IF router  =  1 
          SET ttd  =  ttd-tth 
          SET ttw  =  ttw-tth 
          SET tta  =  tta-tth 
        IF router  =  2 
          SET ttd  =  ttd-ttw 
        (Disabled) SET tx_discrete  =  seq[4,tx_count+1] 
      Financial Information 
        Capital: 10 
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        Per Unit: 1 
      Carbon Emissions Information 
        Carbon Footprint: 10 
        Per Unit: 1 
   
  Activity 
    Progression 
    ----------- 
      Display Parameters 4 
      X:561 Y:209 W:32 H:32 
       Xinc -10 Yinc 0 
      Show Title 
      Show Count 
      Show Image 
    Replicate 1 
    Priority 50 
    Routing In 
      Priority 
        Route In Objects 
          Maintenance Router 
      Require resources before collecting any work items 
    Routing Out 
      Circulate 
      Preference only 
        Route Out Objects 
          Maintenance Router 
      Release resources as soon as task complete 
    Operation Time 
      Distribution Detail: 
        Fixed 0 0 0 0 
    On End Visual Logic: 
      VL SECTION: Progression Work Complete Logic 
        CALL haqprog 
        CALL qaly 
      Financial Information 
        Capital: 10 
        Per Unit: 1 
      Carbon Emissions Information 
        Carbon Footprint: 10 
        Per Unit: 1 
   
  Activity 

    Response Administration 
    ----------------------- 
      Display Parameters 4 
      X:231 Y:80 W:32 H:32 
       Xinc -10 Yinc 0 
      Show Title 
      Show Count 
      Show Image 
    Replicate 1 
    Priority 50 
    Routing In 
      Priority 
        Route In Objects 
          Treatment Router 
      Require resources before collecting any work items 
    Routing Out 
      Circulate 
      Preference only 
        Route Out Objects 
          Treatment Router 
      Release resources as soon as task complete 
    Operation Time 
      Distribution Detail: 
        Fixed 0 0 0 0 
    On End Visual Logic: 
      VL SECTION: Response Administration Work Complete Logic 
        CALL discretecost 
        (Disabled) CALL qaly 
        CALL haqcost 
        SET tta  =  tx_tta 
      Financial Information 
        Capital: 10 
        Per Unit: 1 
      Carbon Emissions Information 
        Carbon Footprint: 10 
        Per Unit: 1 
   
  Activity 
    Maintenance Administration 
    -------------------------- 
      Display Parameters 4 
      X:560 Y:79 W:32 H:32 

       Xinc -10 Yinc 0 
      Show Title 
      Show Count 
      Show Image 
    Replicate 1 
    Priority 50 
    Routing In 
      Priority 
        Route In Objects 
          Maintenance Router 
      Require resources before collecting any work items 
    Routing Out 
      Circulate 
      Preference only 
        Route Out Objects 
          Maintenance Router 
      Release resources as soon as task complete 
    Operation Time 
      Distribution Detail: 
        Fixed 0 0 0 0 
    On End Visual Logic: 
      VL SECTION: Maintenance Administration Work Complete Logic 
        CALL discretecost 
        CALL haqcost 
        SET tta  =  tx_tta 
      Financial Information 
        Capital: 10 
        Per Unit: 1 
      Carbon Emissions Information 
        Carbon Footprint: 10 
        Per Unit: 1 
   
  Activity 
    Treatment Start 
    --------------- 
      Display Parameters 4 
      X:127 Y:145 W:32 H:32 
       Xinc -10 Yinc 0 
      Show Title 
      Show Count 
      Show Image 
    Replicate 1 
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    Priority 50 
    Routing In 
      Priority 
        Route In Objects 
          Model Entry 
          Withdraw 
      Require resources before collecting any work items 
    Routing Out 
      Label 
      On label: router 
      Preference only 
        Route Out Objects 
          Treatment Router 
      Release resources as soon as task complete 
    Operation Time 
      Distribution Detail: 
        Fixed 0 0 0 0 
    On End Visual Logic: 
      VL SECTION: Treatment Start Work Complete Logic ,  
LOCALDATA: u:[NUMBER] ,  q:[NUMBER] ,  S:[NUMBER] 
        'Increment the treatment counter 
        SET tx_count  =  tx_count+1 
        SET admin_count  =  0 
        SET prog_count  =  0 
        SET c_dmards  =  c_dmards+1 
        SET tx_s_haq  =  haq 
        SET tx_s_t  =  t 
        IF c_dmards  >  2 
          SET failed2dmards  =  1 
        'Pickup the treatment parameters and values 
        IF seq[2,tx_count+1]  =  1 
          SET tx  =  "ABT" 
        IF seq[2,tx_count+1]  =  2 
          SET tx  =  "ABTS" 
        IF seq[2,tx_count+1]  =  3 
          SET tx  =  "ADA" 
        IF seq[2,tx_count+1]  =  4 
          SET tx  =  "CTZ" 
        IF seq[2,tx_count+1]  =  5 
          SET tx  =  "ETN" 
        IF seq[2,tx_count+1]  =  6 
          SET tx  =  "GOL" 

        IF seq[2,tx_count+1]  =  7 
          SET tx  =  "HCQ" 
        IF seq[2,tx_count+1]  =  8 
          SET tx  =  "IFX" 
        IF seq[2,tx_count+1]  =  9 
          SET tx  =  "MTX" 
        IF seq[2,tx_count+1]  =  10 
          SET tx  =  "RTX" 
        IF seq[2,tx_count+1]  =  11 
          SET tx  =  "PC" 
        IF seq[2,tx_count+1]  =  12 
          SET tx  =  "SSZ" 
        IF seq[2,tx_count+1]  =  13 
          SET tx  =  "TCZ" 
        IF seq[2,tx_count+1]  =  14 
          SET tx  =  "TICORA" 
        SET tx_weight  =  seq[5,tx_count+1] 
        SET tx_discrete  =  seq[4,tx_count+1] 
        IF seq[3,tx_count+1]  =  1 
          SET tx_class  =  "bDMARD" 
        IF seq[3,tx_count+1]  =  2 
          SET tx_class  =  "cDMARD" 
        IF seq[3,tx_count+1]  =  3 
          SET tx_class  =  "PALLIATIVE CARE" 
          SET tx_discrete  =  0 
        IF tx_class  =  "PALLIATIVE CARE" 
          SET tx_mod  =  0 
          SET tx_good  =  0 
        'Set treatment administration time (large number if a 
continuous tx) 
        IF tx_discrete  =  1 
          IF tx  =  "ABT" 
            SET tx_tta  =  costs[4,2] 
          IF tx  =  "IFX" 
            SET tx_tta  =  costs[4,8] 
          IF tx  =  "RTX" 
            SET tx_tta  =  costs[4,9] 
          IF tx  =  "TCZ" 
            SET tx_tta  =  costs[4,10] 
        ELSE 
          SET tx_tta  =  large_nbr 
        'Set timing labels 

        SET tta  =  tx_tta 
        SET ttr  =  response_time_nbr 
        'Set Costs 
        IF tx  =  "ABT" 
          SET response_cost  =  data[11,4+ID] 
          SET tx_cost  =  data[24,4+ID] 
        IF tx  =  "ABTS" 
          SET response_cost  =  data[12,4+ID] 
          SET tx_cost  =  data[25,4+ID] 
        IF tx  =  "ADA" 
          SET response_cost  =  data[13,4+ID] 
          SET tx_cost  =  data[26,4+ID] 
        IF tx  =  "CTZ" 
          SET response_cost  =  data[14,4+ID] 
          SET tx_cost  =  data[27,4+ID] 
        IF tx  =  "ETN" 
          SET response_cost  =  data[15,4+ID] 
          SET tx_cost  =  data[28,4+ID] 
        IF tx  =  "GOL" 
          SET response_cost  =  data[16,4+ID] 
          SET tx_cost  =  data[29,4+ID] 
        IF tx  =  "IFX" 
          SET response_cost  =  data[17,4+ID] 
          SET tx_cost  =  data[30,4+ID] 
        IF tx  =  "RTX" 
          SET response_cost  =  data[18,4+ID] 
          SET tx_cost  =  data[31,4+ID] 
        IF tx  =  "TCZ" 
          SET response_cost  =  data[19,4+ID] 
          SET tx_cost  =  data[32,4+ID] 
        IF tx  =  "HCQ" 
          SET response_cost  =  data[20,4+ID] 
          SET tx_cost  =  data[33,4+ID] 
        IF tx  =  "MTX" 
          SET response_cost  =  data[21,4+ID] 
          SET tx_cost  =  data[34,4+ID] 
        IF tx  =  "SSZ" 
          SET response_cost  =  data[22,4+ID] 
          SET tx_cost  =  data[35,4+ID] 
        IF tx  =  "TICORA" 
          SET response_cost  =  data[23,4+ID] 
          SET tx_cost  =  data[36,4+ID] 
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        IF tx_class  =  "bDMARD" 
          SET c_bdmards  =  c_bdmards+1 
        'Set router to Treatment Router 
        SET router  =  1 
        IF tx_count  =  1 
          IF tx  =  "ADA" 
            SET tx_mod  =  data[84,4+ID] 
            SET tx_good  =  data[92,4+ID] 
          IF tx  =  "ETN" 
            SET tx_mod  =  data[85,4+ID] 
            SET tx_good  =  data[93,4+ID] 
          IF tx  =  "GOL" 
            SET tx_mod  =  data[86,4+ID] 
            SET tx_good  =  data[94,4+ID] 
          IF tx  =  "IFX" 
            SET tx_mod  =  data[87,4+ID] 
            SET tx_good  =  data[95,4+ID] 
          IF tx  =  "HCQ" 
            SET tx_mod  =  data[88,4+ID] 
            SET tx_good  =  data[96,4+ID] 
          IF tx  =  "MTX" 
            SET tx_mod  =  data[89,4+ID] 
            SET tx_good  =  data[97,4+ID] 
          IF tx  =  "SSZ" 
            SET tx_mod  =  data[90,4+ID] 
            SET tx_good  =  data[98,4+ID] 
          IF tx  =  "TICORA" 
            SET tx_mod  =  data[91,4+ID] 
            SET tx_good  =  data[99,4+ID] 
        IF tx_count  =  2 
          IF tx  =  "ABT" 
            SET tx_mod  =  data[100,4+ID] 
            SET tx_good  =  data[113,4+ID] 
          IF tx  =  "ABTS" 
            SET tx_mod  =  data[101,4+ID] 
            SET tx_good  =  data[114,4+ID] 
          IF tx  =  "ADA" 
            SET tx_mod  =  data[102,4+ID] 
            SET tx_good  =  data[115,4+ID] 
          IF tx  =  "CTZ" 
            SET tx_mod  =  data[103,4+ID] 
            SET tx_good  =  data[116,4+ID] 

          IF tx  =  "ETN" 
            SET tx_mod  =  data[104,4+ID] 
            SET tx_good  =  data[117,4+ID] 
          IF tx  =  "GOL" 
            SET tx_mod  =  data[105,4+ID] 
            SET tx_good  =  data[118,4+ID] 
          IF tx  =  "IFX" 
            SET tx_mod  =  data[106,4+ID] 
            SET tx_good  =  data[119,4+ID] 
          IF tx  =  "RTX" 
            SET tx_mod  =  data[107,4+ID] 
            SET tx_good  =  data[120,4+ID] 
          IF tx  =  "TCZ" 
            SET tx_mod  =  data[108,4+ID] 
            SET tx_good  =  data[121,4+ID] 
          IF tx  =  "HCQ" 
            SET tx_mod  =  data[109,4+ID] 
            SET tx_good  =  data[122,4+ID] 
          IF tx  =  "MTX" 
            SET tx_mod  =  data[110,4+ID] 
            SET tx_good  =  data[124,4+ID] 
          IF tx  =  "SSZ" 
            SET tx_mod  =  data[111,4+ID] 
            SET tx_good  =  data[124,4+ID] 
          IF tx  =  "TICORA" 
            SET tx_mod  =  data[112,4+ID] 
            SET tx_good  =  data[125,4+ID] 
        IF tx_count  >  2 
          IF tx  =  "ABT" 
            SET tx_mod  =  data[100,4+ID]*[1-[t_dec*c_bdmards]] 
            SET tx_good  =  data[113,4+ID]*[1-[t_dec*c_bdmards]] 
          IF tx  =  "ABTS" 
            SET tx_mod  =  data[101,4+ID]*[1-[t_dec*c_bdmards]] 
            SET tx_good  =  data[114,4+ID]*[1-[t_dec*c_bdmards]] 
          IF tx  =  "ADA" 
            SET tx_mod  =  data[102,4+ID]*[1-[t_dec*c_bdmards]] 
            SET tx_good  =  data[115,4+ID]*[1-[t_dec*c_bdmards]] 
          IF tx  =  "CTZ" 
            SET tx_mod  =  data[103,4+ID]*[1-[t_dec*c_bdmards]] 
            SET tx_good  =  data[116,4+ID]*[1-[t_dec*c_bdmards]] 
          IF tx  =  "ETN" 
            SET tx_mod  =  data[104,4+ID]*[1-[t_dec*c_bdmards]] 

            SET tx_good  =  data[117,4+ID]*[1-[t_dec*c_bdmards]] 
          IF tx  =  "GOL" 
            SET tx_mod  =  data[105,4+ID]*[1-[t_dec*c_bdmards]] 
            SET tx_good  =  data[118,4+ID]*[1-[t_dec*c_bdmards]] 
          IF tx  =  "IFX" 
            SET tx_mod  =  data[106,4+ID]*[1-[t_dec*c_bdmards]] 
            SET tx_good  =  data[119,4+ID]*[1-[t_dec*c_bdmards]] 
          IF tx  =  "RTX" 
            SET tx_mod  =  data[107,4+ID]*[1-[t_dec*c_bdmards]] 
            SET tx_good  =  data[120,4+ID]*[1-[t_dec*c_bdmards]] 
          IF tx  =  "TCZ" 
            SET tx_mod  =  data[108,4+ID]*[1-[t_dec*c_bdmards]] 
            SET tx_good  =  data[121,4+ID]*[1-[t_dec*c_bdmards]] 
          IF tx  =  "HCQ" 
            SET tx_mod  =  data[109,4+ID]*[1-[t_dec*c_dmards]] 
            SET tx_good  =  data[122,4+ID]*[1-[t_dec*c_dmards]] 
          IF tx  =  "MTX" 
            SET tx_mod  =  data[110,4+ID]*[1-[t_dec*c_dmards]] 
            SET tx_good  =  data[124,4+ID]*[1-[t_dec*c_dmards]] 
          IF tx  =  "SSZ" 
            SET tx_mod  =  data[111,4+ID]*[1-[t_dec*c_dmards]] 
            SET tx_good  =  data[124,4+ID]*[1-[t_dec*c_dmards]] 
          IF tx  =  "TICORA" 
            SET tx_mod  =  data[112,4+ID]*[1-[t_dec*c_dmards]] 
            SET tx_good  =  data[125,4+ID]*[1-[t_dec*c_dmards]] 
          IF tx_mod  <  0 
            SET tx_mod  =  0 
          IF tx_good  <  0 
            SET tx_good  =  0 
        'Set haqout values 
        SET haqout[3,[3*tx_count]-1]  =  tx_s_haq 
        SET haqout[2,[3*tx_count]-1]  =  tx_s_t 
        SET haqout[4,[3*tx_count]-1]  =  tx 
        SET haqout[5,[3*tx_count]-1]  =  tx_class 
        (Disabled) 'Debug option (set common effectiveness for all 
treatments) 
        (Disabled) SET tx_mod  =  0.5 
        (Disabled) SET tx_good  =  0.2 
        (Disabled) 'debug option (set common costs for all treatments) 
        (Disabled) SET tx_cost  =  100 
        (Disabled) SET response_cost  =  100 
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        (Disabled) 'debug option (set discrete tx's to the same 
administration time) 
        (Disabled) IF tx_discrete  =  1 
          (Disabled) SET tx_tta  =  1 
          (Disabled) SET tta  =  tx_tta 
        (Disabled) IF tx_class  =  "PALLIATIVE CARE" 
          (Disabled) SET tx_mod  =  0 
          (Disabled) SET tx_good  =  0 
        (Disabled) IF tx_class  =  "bDMARD" 
          (Disabled) SET tx_mod  =  0.6 
          (Disabled) SET tx_good  =  0.3 
        (Disabled) IF tx_class  =  "cDMARD" 
          (Disabled) SET tx_mod  =  0.4 
          (Disabled) SET tx_good  =  0.1 
      Financial Information 
        Capital: 10 
        Per Unit: 1 
      Carbon Emissions Information 
        Carbon Footprint: 10 
        Per Unit: 1 
 
Information Store 
----------------- 
   
  Simulation Time 
  --------------- 
    SIMUL8 Data 
    Current Value 0 
   
  Warm Up Period 
  -------------- 
    SIMUL8 Data 
    Current Value 0 
   
  Results Collection Period 
  ------------------------- 
    SIMUL8 Data 
    Current Value 2000 
   
  Current Work Item 
  ----------------- 
    SIMUL8 Data 

    Current Value 0 
   
  Overhead Cost 
  ------------- 
    SIMUL8 Data 
    Current Value 0 
   
  Overhead Revenue 
  ---------------- 
    SIMUL8 Data 
    Current Value 0 
   
  Graph Sync Interval 
  ------------------- 
    SIMUL8 Data 
    Current Value 5 
   
  large_nbr 
  --------- 
    Number 
    Current Value 1000000 
    Reset Value 1000000 
   
  sim_nbr 
  ------- 
    Number 
    Current Value 47 
    Reset Value 47 
   
  data 
  ---- 
    Spreadsheet 
   
  output 
  ------ 
    Spreadsheet 
   
  m_age_death_nbr 
  --------------- 
    Number 
    Current Value 0 
    Reset Value 0 

   
  m_LYG_nbr 
  --------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  m_dLYG_nbr 
  ---------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  m_Cost_nbr 
  ---------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  m_dCost_nbr 
  ----------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  m_QALY_nbr 
  ---------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  m_dQALY_nbr 
  ----------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  m_age_nbr 
  --------- 
    Number 
    Current Value 0 
    Reset Value 0 
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  m_sex_nbr 
  --------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  m_dd_nbr 
  -------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  m_haq_nbr 
  --------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  m_das_nbr 
  --------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  m_dmards_nbr 
  ------------ 
    Number 
    Current Value 0 
    Reset Value 0 
   
  m_weight_nbr 
  ------------ 
    Number 
    Current Value 0 
    Reset Value 0 
   
  response_time_nbr 
  ----------------- 
    Number 
    Current Value 0.5 
    Reset Value 0.5 

   
  haqlook 
  ------- 
    Spreadsheet 
   
  m_tx_nbr 
  -------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  withdraw_time_nbr 
  ----------------- 
    Number 
    Current Value 0.5 
    Reset Value 0.5 
   
  seq 
  --- 
    Spreadsheet 
   
  costs 
  ----- 
    Spreadsheet 
   
  d_cost 
  ------ 
    Number 
    Current Value 0.035 
    Reset Value 0.035 
   
  d_qaly 
  ------ 
    Number 
    Current Value 0.035 
    Reset Value 0.035 
   
  m_age 
  ----- 
    Number 
    Current Value 51.4 
    Reset Value 51.4 

   
  m_sex 
  ----- 
    Number 
    Current Value 0.73 
    Reset Value 0.73 
   
  m_das 
  ----- 
    Number 
    Current Value 6.5 
    Reset Value 6.5 
   
  m_dmards 
  -------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  m_dd 
  ---- 
    Number 
    Current Value 0.75 
    Reset Value 0.75 
   
  iDR_c nbr 
  --------- 
    Number 
    Current Value -0.0344 
    Reset Value -0.0344 
   
  iDR_q nbr 
  --------- 
    Number 
    Current Value -0.0344 
    Reset Value -0.0344 
   
  dmard_prog_i1 
  ------------- 
    Number 
    Current Value 0.238 
    Reset Value 0.238 
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  dmard_prog_i2 
  ------------- 
    Number 
    Current Value 1.084 
    Reset Value 1.084 
   
  dmard_prog_i3 
  ------------- 
    Number 
    Current Value 0.728 
    Reset Value 0.728 
   
  dmard_prog_i4 
  ------------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  dmard_prog_s1 
  ------------- 
    Number 
    Current Value -0.257 
    Reset Value -0.257 
   
  dmard_prog_s2 
  ------------- 
    Number 
    Current Value 0.023 
    Reset Value 0.023 
   
  dmard_prog_s3 
  ------------- 
    Number 
    Current Value -0.153 
    Reset Value -0.153 
   
  dmard_prog_s4 
  ------------- 
    Number 
    Current Value 0 
    Reset Value 0 

   
  dmard_prog_q1 
  ------------- 
    Number 
    Current Value 0.037 
    Reset Value 0.037 
   
  dmard_prog_q2 
  ------------- 
    Number 
    Current Value 0.011 
    Reset Value 0.011 
   
  dmard_prog_q3 
  ------------- 
    Number 
    Current Value 0.031 
    Reset Value 0.031 
   
  dmard_prog_q4 
  ------------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  dmard_prog_c1 
  ------------- 
    Number 
    Current Value -0.001 
    Reset Value -0.001 
   
  dmard_prog_c2 
  ------------- 
    Number 
    Current Value -0.001 
    Reset Value -0.001 
   
  dmard_prog_c3 
  ------------- 
    Number 
    Current Value -0.001 
    Reset Value -0.001 

   
  dmard_prog_c4 
  ------------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  dmard_prog_int1 
  --------------- 
    Number 
    Current Value 11.718 
    Reset Value 11.718 
   
  dmard_prog_int2 
  --------------- 
    Number 
    Current Value 5.611 
    Reset Value 5.611 
   
  dmard_prog_int3 
  --------------- 
    Number 
    Current Value 8.874 
    Reset Value 8.874 
   
  dmard_prog_age1 
  --------------- 
    Number 
    Current Value -0.088 
    Reset Value -0.088 
   
  dmard_prog_age2 
  --------------- 
    Number 
    Current Value -0.042 
    Reset Value -0.042 
   
  dmard_prog_age3 
  --------------- 
    Number 
    Current Value -0.063 
    Reset Value -0.063 
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  dmard_prog_sex1 
  --------------- 
    Number 
    Current Value -1.78 
    Reset Value -1.78 
   
  dmard_prog_sex2 
  --------------- 
    Number 
    Current Value -0.479 
    Reset Value -0.479 
   
  dmard_prog_sex3 
  --------------- 
    Number 
    Current Value -1.195 
    Reset Value -1.195 
   
  dmard_prog_das1 
  --------------- 
    Number 
    Current Value -0.731 
    Reset Value -0.731 
   
  dmard_prog_das2 
  --------------- 
    Number 
    Current Value -0.287 
    Reset Value -0.287 
   
  dmard_prog_das3 
  --------------- 
    Number 
    Current Value -0.474 
    Reset Value -0.474 
   
  dmard_prog_dd1 
  -------------- 
    Number 
    Current Value -0.021 
    Reset Value -0.021 

   
  dmard_prog_dd2 
  -------------- 
    Number 
    Current Value 0.011 
    Reset Value 0.011 
   
  dmard_prog_dd3 
  -------------- 
    Number 
    Current Value -0.003 
    Reset Value -0.003 
   
  dprog 
  ----- 
    Spreadsheet 
   
  dmard_prog_dep1 
  --------------- 
    Number 
    Current Value -1.333 
    Reset Value -1.333 
   
  dmard_prog_dep2 
  --------------- 
    Number 
    Current Value -0.547 
    Reset Value -0.547 
   
  dmard_prog_dep3 
  --------------- 
    Number 
    Current Value -0.56 
    Reset Value -0.56 
   
  dmard_prog_rf1 
  -------------- 
    Number 
    Current Value -0.204 
    Reset Value -0.204 
   
  dmard_prog_rf2 

  -------------- 
    Number 
    Current Value 0.11 
    Reset Value 0.11 
   
  dmard_prog_rf3 
  -------------- 
    Number 
    Current Value -0.209 
    Reset Value -0.209 
   
  dmard_prog_acr1 
  --------------- 
    Number 
    Current Value -1.036 
    Reset Value -1.036 
   
  dmard_prog_acr2 
  --------------- 
    Number 
    Current Value -0.576 
    Reset Value -0.576 
   
  dmard_prog_acr3 
  --------------- 
    Number 
    Current Value -0.753 
    Reset Value -0.753 
   
  dmard_prog_f2d1 
  --------------- 
    Number 
    Current Value -2.361 
    Reset Value -2.361 
   
  dmard_prog_f2d2 
  --------------- 
    Number 
    Current Value -0.181 
    Reset Value -0.181 
   
  dmard_prog_f2d3 
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  --------------- 
    Number 
    Current Value -1.148 
    Reset Value -1.148 
   
  dmard_prog_r6m1 
  --------------- 
    Number 
    Current Value 2.543 
    Reset Value 2.543 
   
  dmard_prog_r6m2 
  --------------- 
    Number 
    Current Value 0.965 
    Reset Value 0.965 
   
  dmard_prog_r6m3 
  --------------- 
    Number 
    Current Value 1.392 
    Reset Value 1.392 
   
  m_dep 
  ----- 
    Number 
    Current Value 0.49 
    Reset Value 0.49 
   
  m_rf 
  ---- 
    Number 
    Current Value 0.73 
    Reset Value 0.73 
   
  m_acr 
  ----- 
    Number 
    Current Value 1 
    Reset Value 1 
   
  m_r6m 

  ----- 
    Number 
    Current Value 1 
    Reset Value 1 
   
  haqout 
  ------ 
    Spreadsheet 
   
  Var86 
  ----- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  Var87 
  ----- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  start_time 
  ---------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  end_time 
  -------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  runtime 
  ------- 
    Number 
    Current Value 0 
    Reset Value 0 
   
  end 
  --- 
    Spreadsheet 

 
Start Run Visual Logic: 
  VL SECTION: Start Run Logic 
    'Warning: This code can run at any simulation time when the 
user click the RUN button 
    'load sequence details 
    Get PC Clock    start_time 
    SET sim_nbr  =  Results Collection Period 
    SET sim_nbr  =  sim_nbr 
End Run Visual Logic: 
  VL SECTION: End Run Logic ,  LOCALDATA: u:[NUMBER] ,  
q:[NUMBER] ,  S:[NUMBER] 
    'Obeyed when the simulation reaches end of "Results Collection 
Period" 
    SET Model Entry.Interarrival Time  =  0.00001 
    Get PC Clock    end_time 
    SET runtime  =  [end_time-start_time]*100000 
    (Disabled) Call COM Event    "Finished" 
    SET seq[6,2]  =  1 
Other Visual Logic: 
  VL SECTION: Reset Logic 
    Get Throughput    ???? ,  0 ,  0 ,  ???? 
    SET Model Entry.Interarrival Time  =  0.00001 
    Get from EXCEL    data[2,5] ,  "[test.XLS]Export" ,  2 ,  5 ,  8 ,  100 
Other Visual Logic: 
  VL SECTION: haqadjust ,  LOCALDATA: RESULT:[NUMBER] 
    IF haq  <  0 
      SET haq  =  0 
    ELSE IF haq  >  3 
      SET haq  =  3 
    ELSE 
      SET lhaq  =  [TRUNC[haq/0.125]*0.125] 
      SET hhaq  =  lhaq+0.125 
      IF RANDOM[0]  >=  [[haq-lhaq]/[hhaq-haq]] 
        SET haq  =  lhaq 
      ELSE 
        SET haq  =  hhaq 
Other Visual Logic: 
  VL SECTION: discretecost ,  LOCALDATA: c:[NUMBER] 
    SET c  =  Cost 
    SET Cost  =  c+tx_cost 
    SET c  =  dCost 
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    SET dCost  =  c+[tx_cost/[1+d_cost]^t] 
Other Visual Logic: 
  VL SECTION: cresponsecost ,  LOCALDATA: c:[NUMBER] ,  
temp:[NUMBER] 
    IF tx  =  "PC" 
      SET response_cost  =  200*6 
    SET c  =  Cost 
    SET Cost  =  c+response_cost 
    SET temp  =  response_time_nbr/2 
    SET c  =  dCost 
    SET dCost  =  c+[response_cost/[[1+d_cost]^[temp+t]]] 
Other Visual Logic: 
  VL SECTION: haqcost ,  LOCALDATA: haq_temp:[NUMBER] ,  
c:[NUMBER] ,  DiscTemp1:[NUMBER] ,  DiscTemp2:[NUMBER] 
    IF haq  <=  3 
      SET haq_temp  =  2687.97 
    IF haq  <=  2.5 
      SET haq_temp  =  1246.26 
    IF haq  <=  2 
      SET haq_temp  =  523.68 
    IF haq  <=  1.5 
      SET haq_temp  =  364.68 
    IF haq  <=  1 
      SET haq_temp  =  102.54 
    IF haq  <=  0.5 
      SET haq_temp  =  167.41 
    SET tc2  =  t 
    SET c  =  Cost 
    SET Cost  =  c+[haq_temp*[tc2-tc1]] 
    SET c  =  dCost 
    SET DiscTemp2  =  EXP[iDR_c nbr*tc2] 
    SET DiscTemp1  =  EXP[iDR_c nbr*tc1] 
    SET dCost  =  c+[[[1/iDR_c nbr]*[DiscTemp2-
DiscTemp1]]*haq_temp] 
    SET tc1  =  t 
Other Visual Logic: 
  VL SECTION: haqprog ,  LOCALDATA: p1:[NUMBER] ,  
p2:[NUMBER] ,  p3:[NUMBER] ,  p4:[NUMBER] ,  y1:[NUMBER] ,  
y2:[NUMBER] ,  y3:[NUMBER] ,  y4:[NUMBER] ,  cdf1:[NUMBER] ,  
cdf2:[NUMBER] ,  cdf3:[NUMBER] ,  cdf4:[NUMBER] ,  
pdf1:[NUMBER] ,  pdf2:[NUMBER] ,  pdf3:[NUMBER] ,  
pdf4:[NUMBER] ,  haq1:[NUMBER] ,  haq2:[NUMBER] ,  

haq3:[NUMBER] ,  haq4:[NUMBER] ,  dm_age:[NUMBER] ,  
dm_sex:[NUMBER] ,  dm_dd:[NUMBER] ,  dm_das:[NUMBER] ,  
dm_dmards:[NUMBER] ,  i:[NUMBER] ,  S:[NUMBER] ,  
prob1:[NUMBER] ,  prob2:[NUMBER] ,  prob3:[NUMBER] ,  
prob4:[NUMBER] ,  Local_t_p:[NUMBER] 
    IF tx_class  =  "bDMARD" 
      IF tx_response  =  "MOD" 
        SET i  =  
[[[[bio_prog_mod_i+[bio_prog_mod_i_age*dm_age]]+[bio_prog_
mod_i_pgen*dm_sex]]+[bio_prog_mod_i_dd*dm_dd]]+[bio_prog
_mod_i_das*dm_das]]+[bio_prog_mod_i_dmards*dm_dmards] 
        SET S  =  
[[[[bio_prog_mod_s+[bio_prog_mod_s_age*dm_age]]+[bio_prog_
mod_s_pgen*dm_sex]]+[bio_prog_mod_s_dd*dm_dd]]+[bio_prog
_mod_s_das*dm_das]]+[bio_prog_mod_s_dmards*dm_dmards] 
        IF prog_count  =  1 
          SET haq  =  
haq+[[[i+[S*bio_prog_mod_xt3]]+[bio_prog_mod_rho3*haq]]-
[[i+[S*bio_prog_mod_xt2]]+[bio_prog_mod_rho2*phaq]]] 
          SET tth  =  0.5 
        ELSE IF prog_count  =  2 
          SET haq  =  
haq+[[[i+[S*bio_prog_mod_xt4]]+[bio_prog_mod_rho4*haq]]-
[[i+[S*bio_prog_mod_xt3]]+[bio_prog_mod_rho3*phaq]]] 
          SET tth  =  0.5 
        ELSE IF prog_count  =  3 
          SET haq  =  
haq+[[[i+[S*bio_prog_mod_xt5]]+[bio_prog_mod_rho5*haq]]-
[[i+[S*bio_prog_mod_xt4]]+[bio_prog_mod_rho4*phaq]]] 
          SET tth  =  0.5 
        ELSE IF prog_count  =  4 
          SET haq  =  
haq+[[[i+[S*bio_prog_mod_xt5]]+[bio_prog_mod_rho6*haq]]-
[[i+[S*bio_prog_mod_xt5]]+[bio_prog_mod_rho5*phaq]]] 
          SET tth  =  0.5 
        ELSE 
          SET tth  =  large_nbr 
      ELSE 
        SET i  =  
[[[[bio_prog_good_i+[bio_prog_good_i_age*dm_age]]+[bio_prog_
good_i_pgen*dm_sex]]+[bio_prog_good_i_dd*dm_dd]]+[bio_prog
_good_i_das*dm_das]]+[bio_prog_good_i_dmards*dm_dmards] 

        SET S  =  
[[[[bio_prog_good_s+[bio_prog_good_s_age*dm_age]]+[bio_prog
_good_s_pgen*dm_sex]]+[bio_prog_good_s_dd*dm_dd]]+[bio_pr
og_good_s_das*dm_das]]+[bio_prog_good_s_dmards*dm_dmard
s] 
        IF prog_count  =  1 
          SET haq  =  
haq+[[[i+[S*bio_prog_good_xt3]]+[bio_prog_good_rho3*haq]]-
[[i+[S*bio_prog_good_xt2]]+[bio_prog_good_rho2*phaq]]] 
          SET tth  =  0.5 
        ELSE IF prog_count  =  2 
          SET haq  =  
haq+[[[i+[S*bio_prog_good_xt4]]+[bio_prog_good_rho4*haq]]-
[[i+[S*bio_prog_good_xt3]]+[bio_prog_good_rho3*phaq]]] 
          SET tth  =  0.5 
        ELSE IF prog_count  =  3 
          SET haq  =  
haq+[[[i+[S*bio_prog_good_xt5]]+[bio_prog_good_rho5*haq]]-
[[i+[S*bio_prog_good_xt4]]+[bio_prog_good_rho4*phaq]]] 
          SET tth  =  0.5 
        ELSE IF prog_count  =  4 
          SET haq  =  
haq+[[[i+[S*bio_prog_good_xt5]]+[bio_prog_good_rho6*haq]]-
[[i+[S*bio_prog_good_xt5]]+[bio_prog_good_rho5*phaq]]] 
          SET tth  =  0.5 
        ELSE 
          SET tth  =  large_nbr 
    IF tx_class  =  "cDMARD" 
      SET p1  =  
EXP[[[[[[[[dmard_prog_int1+[dmard_prog_age1*age_onset]]+[dm
ard_prog_sex1*b_sex]]+[dmard_prog_dep1*m_dep]]+[dmard_pro
g_dd1*c_dd]]+[dmard_prog_rf1*m_rf]]+[dmard_prog_acr1*m_acr
]]+[dmard_prog_f2d1*failed2dmards]]+[dmard_prog_r6m1*m_r6
m]] 
      SET p2  =  
EXP[[[[[[[[dmard_prog_int2+[dmard_prog_age2*age_onset]]+[dm
ard_prog_sex2*b_sex]]+[dmard_prog_dep2*m_dep]]+[dmard_pro
g_dd2*c_dd]]+[dmard_prog_rf2*m_rf]]+[dmard_prog_acr2*m_acr
]]+[dmard_prog_f2d2*failed2dmards]]+[dmard_prog_r6m2*m_r6
m]] 
      SET p3  =  
EXP[[[[[[[[dmard_prog_int3+[dmard_prog_age3*age_onset]]+[dm
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ard_prog_sex3*b_sex]]+[dmard_prog_dep3*m_dep]]+[dmard_pro
g_dd3*c_dd]]+[dmard_prog_rf3*m_rf]]+[dmard_prog_acr3*m_acr
]]+[dmard_prog_f2d3*failed2dmards]]+[dmard_prog_r6m3*m_r6
m]] 
      SET p4  =  1 
      SET prob1  =  p1/[[[p1+p2]+p3]+p4] 
      SET prob2  =  p2/[[[p1+p2]+p3]+p4] 
      SET prob3  =  p3/[[[p1+p2]+p3]+p4] 
      SET prob4  =  p4/[[[p1+p2]+p3]+p4] 
      SET haq1  =  dprog[6,[[t_p*2]+3]] 
      SET haq2  =  dprog[7,[[t_p*2]+3]] 
      SET haq3  =  dprog[8,[[t_p*2]+3]] 
      SET haq4  =  dprog[9,[[t_p*2]+3]] 
      SET t_haq_entry  =  
[[[prob1*haq1]+[prob2*haq2]]+[prob3*haq3]]+[prob4*haq4] 
      SET t_haq  =  t_haq_entry 
      SET entry_t_p  =  t_p 
      SET loop_check  =  0 
      SET loop_count  =  0 
      WHILE loop_check  =  0 
        SET haq1  =  dprog[6,[[t_p*2]+3]] 
        SET haq2  =  dprog[7,[[t_p*2]+3]] 
        SET haq3  =  dprog[8,[[t_p*2]+3]] 
        SET haq4  =  dprog[9,[[t_p*2]+3]] 
        SET t_haq  =  
[[[prob1*haq1]+[prob2*haq2]]+[prob3*haq3]]+[prob4*haq4] 
        SET loop_count  =  loop_count+1 
        SET t_p  =  t_p+0.5 
        IF loop_count  >  [26-t_p] 
          SET loop_check  =  1 
        IF [ABS[t_haq-t_haq_entry]]  >=  [0.125] 
          SET loop_check  =  1 
      SET haq  =  [haq+t_haq]-t_haq_entry 
      SET tth  =  t_p-entry_t_p 
      IF loop_count  >  [26-t_p] 
        SET tth  =  large_nbr 
      (Disabled) SET haq  =  haq+0.125 
      (Disabled) SET tth  =  3 
      'fix this!!! 
    IF tx_class  =  "PALLIATIVE CARE" 
      SET tth  =  [1/0.045]*0.125 
      SET haq  =  haq+0.125 

    CALL haqadjust 
    SET prog_count  =  prog_count+1 
    SET phaq  =  haq 
    IF prog_count  >  10 
      SET prog_count  =  prog_count 
Other Visual Logic: 
  VL SECTION: continuouscost ,  LOCALDATA: C:[NUMBER] ,  
DiscTemp1:[NUMBER] ,  DiscTemp2:[NUMBER] 
    SET C  =  Cost 
    SET Cost  =  C+[[tx_w_t-tx_r_t]*[12*tx_cost]] 
    SET C  =  dCost 
    SET DiscTemp2  =  EXP[iDR_c nbr*tx_w_t] 
    SET DiscTemp1  =  EXP[iDR_c nbr*tx_r_t] 
    SET dCost  =  C+[[[1/iDR_c nbr]*[DiscTemp2-
DiscTemp1]]*[tx_cost*12]] 
    (Disabled) SET dCost  =  
C+[[[tx_c*12]*[[[1/NEG[i_d_cost]]*EXP[NEG[i_d_cost]*tx_w_t]]]]-
[[1/NEG[i_d_cost]]*EXP[NEG[i_d_cost]*tx_r_t]]] 
    SET admin_count  =  admin_count+1 
Other Visual Logic: 
  VL SECTION: qaly ,  LOCALDATA: q:[NUMBER] ,  u:[NUMBER] ,  
DiscTemp2:[NUMBER] ,  DiscTemp1:[NUMBER] ,  h:[NUMBER] ,  
h2:[NUMBER] ,  a:[NUMBER] ,  a2:[NUMBER] 
    SET c_age  =  b_age+t 
    SET tq2  =  t 
    SET u2  =  
[[[[0.91002]+[haq*NEG[0.20418]]]+[[haq^2]*NEG[0.01291]]]+[c_a
ge*NEG[0.00097]]]+[[c_age^2]*NEG[0.00001]] 
    'debug option 
    (Disabled) SET u2  =  1 
    SET q  =  QALY 
    SET QALY  =  [[[[u2+u1]*[tq2-tq1]]]/2]+q 
    SET q  =  dQALY 
    SET DiscTemp2  =  EXP[iDR_q nbr*tq2] 
    SET DiscTemp1  =  EXP[iDR_q nbr*tq1] 
    SET dQALY  =  q+[[[1/iDR_q nbr]*[DiscTemp2-
DiscTemp1]]*[[u2+u1]/2]] 
    'debug option 
    (Disabled) SET dQALY  =  QALY 
    SET u1  =  u2 
    SET tq1  =  t 
Other Visual Logic: 

  VL SECTION: min_maintenance 
    'this avoids competing events with the same time, which causes 
issues for routing 
    IF ttd  =  ttw 
      SET ttw  =  ttw+0.0001 
    IF ttd  =  tth 
      SET tth  =  tth+0.0001 
    IF ttd  =  tta 
      SET tta  =  tta+0.0001 
    IF ttw  =  tth 
      SET tth  =  tth+0.0001 
    IF ttw  =  tta 
      SET tta  =  tta+0.0001 
    IF tta  =  tth 
      SET tth  =  tth+0.0001 
    'this returns the minimum of (ttw, ttd, tth, tta) 
    IF [ttd < tta] & [ttd < tth] & [ttd < ttw]  =  1 
      SET timex  =  ttd 
      SET router  =  3 
    IF [tth < tta] & [tth < ttd] & [tth < ttw]  =  1 
      SET timex  =  tth 
      SET router  =  1 
    IF [tta < ttd] & [tta < tth] & [tta < ttw]  =  1 
      SET timex  =  tta 
      SET router  =  4 
    IF [ttw < ttd] & [ttw < tth] & [ttw < tta]  =  1 
      SET timex  =  ttw 
      SET router  =  2 
Other Visual Logic: 
  VL SECTION: haqresponse ,  LOCALDATA: dm_age:[NUMBER] ,  
dm_sex:[NUMBER] ,  dm_dd:[NUMBER] ,  dm_das:[NUMBER] ,  
dm_dmards:[NUMBER] ,  i:[NUMBER] ,  S:[NUMBER] 
    'this is the haqchange given a response to a tx (cDMARD or 
bDMARD) 
    IF prog_count  =  0 
      SET c_age  =  b_age+t 
      SET c_dd  =  b_dd+t 
      SET c_das  =  b_das 
      SET dm_age  =  [c_age-m_age]/10 
      SET dm_sex  =  b_sex 
      SET dm_dd  =  c_dd-m_dd 
      SET dm_das  =  c_das-m_das 



341 
 

      SET dm_dmards  =  c_dmards-m_dmards 
      SET phaq  =  haq 
    IF tx_response  =  "GOOD" 
      SET i  =  
[[[[bio_prog_good_i+[bio_prog_good_i_age*dm_age]]+[bio_prog_
good_i_pgen*dm_sex]]+[bio_prog_good_i_dd*dm_dd]]+[bio_prog
_good_i_das*dm_das]]+[bio_prog_good_i_dmards*dm_dmards] 
      SET S  =  
[[[[bio_prog_good_s+[bio_prog_good_s_age*dm_age]]+[bio_prog
_good_s_pgen*dm_sex]]+[bio_prog_good_s_dd*dm_dd]]+[bio_pr
og_good_s_das*dm_das]]+[bio_prog_good_s_dmards*dm_dmard
s] 
      SET haq  =  
haq+[[[i+[S*bio_prog_good_xt2]]+[bio_prog_good_rho2*haq]]-
[[i+[S*0]]+[bio_prog_good_rho1*phaq]]] 
    IF tx_response  =  "MOD" 
      SET i  =  
[[[[bio_prog_mod_i+[bio_prog_mod_i_age*dm_age]]+[bio_prog_
mod_i_pgen*dm_sex]]+[bio_prog_mod_i_dd*dm_dd]]+[bio_prog
_mod_i_das*dm_das]]+[bio_prog_mod_i_dmards*dm_dmards] 
      SET S  =  
[[[[bio_prog_mod_s+[bio_prog_mod_s_age*dm_age]]+[bio_prog_
mod_s_pgen*dm_sex]]+[bio_prog_mod_s_dd*dm_dd]]+[bio_prog
_mod_s_das*dm_das]]+[bio_prog_mod_s_dmards*dm_dmards] 
      SET haq  =  
haq+[[[i+[S*bio_prog_mod_xt2]]+[bio_prog_mod_rho2*haq]]-
[[i+[S*0]]+[bio_prog_mod_rho1*phaq]]] 
    IF tx_response  =  "NONE" 
      SET haq  =  haq 
      SET tth  =  large_nbr 
    IF tx_class  =  "PALLIATIVE CARE" 
      SET tth  =  [1/0.045]*0.125 
      SET haq  =  haq 
    CALL haqadjust 
    SET prog_count  =  prog_count+1 
    SET phaq  =  haq 
Other Visual Logic: 
  VL SECTION: min_response ,  LOCALDATA: RESULT:[NUMBER] ,  
temp1:[NUMBER] 
    'this avoids having competing events with the same times, which 
causes issues for routing 
    IF ttd  =  ttr 

      SET ttr  =  ttr+0.0001 
    IF ttd  =  tta 
      SET tta  =  tta+0.0001 
    IF ttd  <  0 
      SET ttd  =  ttd 
    'this returns the minimum of (ttd, ttr, tta) 
    IF [ttd < tta] & [ttd < ttr]  =  1 
      SET timex  =  ttd 
      SET router  =  2 
    IF [ttr < tta] & [ttr < ttd]  =  1 
      SET timex  =  ttr 
      SET router  =  1 
    IF [tta < ttd] & [tta < ttr]  =  1 
      SET timex  =  tta 
      SET router  =  3 
 
****************************************************** 
SIMUL8 Profit Financial Information 
----------------------------------- 
  Currency: £ 
  Fixed Cost: 0 
  Fixed Revenue: 0 
 
******************************************************
Carbon Emissions Information 
---------------------------- 
  Carbon Footprint Unit: CO2e 
  Fixed Carbon Footprint: 0 
  Fixed Carbon Offset: 0 
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APPENDIX D: SIMULATION OPTIMISATION MODEL 

APPENDIX D.1: MODEL 
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APPENDIX D.2: MODEL CODE 

 
CALL SIMUL8 MODEL 

Sub runmodel(i, numsim) 
 
Dim tabl As Range 
Dim max_runs, lambda, evaluate_switch As Integer 
Dim t_dec As Double 
Dim s As Integer 
Calculate 
t_dec = Range("t_dec").Value 
Set tabl = ThisWorkbook.Names("tabl").RefersToRange 
max_runs = Range("max_runs").Value 
lambda = Range("lambda").Value 
evaluate_switch = Range("evaluate_switch").Value 
 
Range("S20").Value = i 
s = Range("S20").Value 
 
If evaluate_switch = 1 Then 
 
    Set MYSIMUL8 = GetObject("", "SIMUL8.S8Simulation") 
     
    MYSIMUL8.Open "C:\model8.s8" 
     
    line = 1 
     
    MYSIMUL8.GDValueDouble("seq", 6, 2) = -1 
    MYSIMUL8.GDValueDouble("seq", 7, 2) = t_dec 
     
    Do Until line > 14 
        tx = Worksheets("Frontsheet").Range("B35").Offset(i - 1, line - 1).Value 
         
        If tx <> "" Then 
            MYSIMUL8.GDValueDouble("seq", 2, line + 1) = Application.VLookup(tx, tabl, 11, 0)   'tx 
            MYSIMUL8.GDValueDouble("seq", 3, line + 1) = Application.VLookup(tx, tabl, 8, 0)    'class 
            MYSIMUL8.GDValueDouble("seq", 4, line + 1) = Application.VLookup(tx, tabl, 9, 0)    'discrete 
            MYSIMUL8.GDValueDouble("seq", 5, line + 1) = Application.VLookup(tx, tabl, 10, 0)   'weight 

        End If 
 
        line = line + 1 
    Loop 
     
    MYSIMUL8.RunSim numsim 
     
    'this makes the VBA wait until the model completes and then SIMUL8 makes the cell equal 1 on the run 
end. this is the trigger for VBA to progress. 
    Do Until MYSIMUL8.GDValueDouble("seq", 6, 2) = 1 
        Sleep (100) 
    Loop 
     
    Worksheets("Frontsheet").Range("Q35:Q35").Offset(s - 1, 0).Value = MYSIMUL8.GDValue("output", 6, 
4) 
    Worksheets("Frontsheet").Range("R35:R35").Offset(s - 1, 0).Value = MYSIMUL8.GDValue("output", 7, 4) 
     
    'extra debugging outputs from SIMUL8 model 
'    Worksheets("Frontsheet").Range("AE35:AE35").Offset(s - 1, 0).Value = MYSIMUL8.GDValue("output", 
2, 4) 
'    Worksheets("Frontsheet").Range("AF35:AF35").Offset(s - 1, 0).Value = MYSIMUL8.GDValue("output", 
18, 5) 
     
    nmb = (MYSIMUL8.GDValue("output", 7, 4) * lambda - MYSIMUL8.GDValue("output", 6, 4)) 
    Worksheets("Frontsheet").Range("P35:P35").Offset(s - 1, 0).Value = nmb 
    MYSIMUL8.Save "C:\model8.s8" 
End If 
 
End Sub 
 
SIMULATION OPTIMISATION CODE 
 
Private Sub CommandButton1_Click() 
 
Dim numsim, i, max_runs, export_switch, gen_export_switch, exp_cooling_active, linear_cooling_active, _ 
 lambda, evaluate_switch, init_sol, currentseqlength, cache_search_active, temp_algorith_start, 
email_notification, _ 
 mintempstop, min_init_length, max_length, min_length, acceptworsecount, worsecount, restart_rule, _ 
 restarts, programme, line, sequence_generation, repetition_schedulestopsim, worseloop, 
end_run_search, _ 
 stopsimreason, failed_attempts, accept, min_temp_stop_active, temp_algorithm_increment, 
end_run_search_active, _ 
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 max_failed_attempts, max_failed_attempts_active, evaluationsetnum, duplicate, duplicate_index, 
total_i, _ 
 overallbestseq_index, overallbestseqlength, currentruns, totalruns, percentcomplete, 
lundy_cooling_active As Integer 
 
Dim r_seq, r_seq2, start_time, end_time, eval_start_time, eval_end_time, best_cost, best_qaly, 
temperature, _ 
 initial_temperature, current_nmb, current_cost, current_qaly, best_nmb, p_accept_target, p_accept, _ 
 best_nmb_index, exp_cooling, linear_cooling, previous_nmb, p_remove, p_add, bp_remove, _ 
 bp_add, p_add2, p_remove2, bp_add2, bp_remove2, overall_best_nmb, lundy_cooling As Double 
 
Dim currentseq, prevseq, bestseq, overallbestseq 
Dim tabl, rng As Range 
Dim tx, pc_name As String 
 
evaluate_switch = Range("evaluate_switch").Value 
init_sol = Range("init_sol").Value 
bp_remove = Range("p_remove").Value 
bp_add = Range("p_add").Value 
bp_remove2 = Range("p_remove2").Value 
bp_add2 = Range("p_add2").Value 
min_init_length = Range("min_init_length").Value 
sequence_generation = Range("sequence_generation").Value 
numsim = Range("numsim").Value 
export_switch = Range("export_switch").Value 
gen_export_switch = Range("gen_export_switch").Value 
lambda = Range("lambda").Value 
max_runs = Range("max_runs").Value 
restarts = Range("restarts").Value 
initial_temperature = Range("init_temp").Value 
programme = Range("programme").Value 
repetition_schedule = Range("rep_sched").Value 
exp_cooling = Range("exp_cooling").Value 
exp_cooling_active = Range("exp_cooling_active").Value 
linear_cooling = Range("linear_cooling").Value 
linear_cooling_active = Range("linear_cooling_active").Value 
lundy_cooling = Range("lundy_cooling").Value 
lundy_cooling_active = Range("lundy_cooling_active").Value 
end_run_search_active = Range("end_run_search_active").Value 
end_run_search = Range("end_run_search").Value 
restart_rule = Range("restart_rule").Value 
email_notification = Range("email_notification").Value 

pc_name = Range("pc_name").Value 
 
min_temp_stop = Range("min_temp_stop").Value 
min_temp_stop_active = Range("min_temp_stop_active").Value 
max_failed_attempts = Range("max_failed_attempts").Value 
max_failed_attempts_active = Range("max_failed_attempts_active").Value 
cache_search_active = Range("cache_search_active").Value 
p_accept_target = Range("p_accept_target").Value 
temp_algorithm_increment = Range("temp_algorithm_increment").Value 
temp_algorithm_start = Range("temp_algorithm_start").Value 
worseloop = Range("worseloop").Value 
totalruns = max_runs * restarts 
 
tabl = ThisWorkbook.Names("tabl").RefersToRange 
max_length = 14 
min_length = 1 
duplicate = 0 
acceptworsecount = 0 
worsecount = 0 
p_accept = 0 
overall_best_nmb = 0 
total_i = 1 
'prevrestartbestseq_index = 0 
'overallbestseq_index = 0 
'Range("V20:V21").ClearContents 
If programme = 5 Then 
    max_runs = 10000 
    Range("X23:X32").ClearContents 
    end_run_search_active = 0 
End If 
 
If lundy_cooling_active = 1 Then 
    repetition_schedule = 1 
End If 
 
Calculate 
ReDim currentseq(0 To 0) 
 
If evaluate_switch = 1 Then             'Debug option to turn off evaluation 
    Set MYSIMUL8 = GetObject("", "SIMUL8.S8Simulation") 
End If 
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Range("B35:AJ10034").ClearContents 
Range("B35:AJ10034").Interior.ColorIndex = 0 
Range("B35:AJ10034").Font.Bold = False 
Range("B23:U33").ClearContents 
Range("U20").ClearContents 
Worksheets("Cache").Range("B2:R10002").ClearContents 
Worksheets("R1").Range("B2:AJ10002").ClearContents 
Worksheets("R2").Range("B2:AJ10002").ClearContents 
Worksheets("R3").Range("B2:AJ10002").ClearContents 
Worksheets("R4").Range("B2:AJ10002").ClearContents 
Worksheets("R5").Range("B2:AJ10002").ClearContents 
Worksheets("R6").Range("B2:AJ10002").ClearContents 
Worksheets("R7").Range("B2:AJ10002").ClearContents 
Worksheets("R8").Range("B2:AJ10002").ClearContents 
Worksheets("R9").Range("B2:AJ10002").ClearContents 
Worksheets("R10").Range("B2:AJ10002").ClearContents 
 
evaluationsetnum = 1000 - Application.WorksheetFunction.CountBlank( _ 
    Worksheets("Evaluation Set").Range("A2:A1002")) + 1 
start_time = Now() 
 
If gen_export_switch = 1 Then           'Generate a fresh patient dataset 
    Call gen_export 
End If 
 
If exp_cooling_active + linear_cooling_active = 2 Then   'check a cooling schedule is selected 
    MsgBox "ERROR: Define the cooling schedule properly" 
    End 
End If 
 
If exp_cooling_active + lundy_cooling_active = 2 Then 'check a cooling schedule is selected 
    MsgBox "ERROR: Define the cooling schedule properly" 
    End 
End If 
 
If lundy_cooling_active + linear_cooling_active = 2 Then 'check a cooling schedule is selected 
    MsgBox "ERROR: Define the cooling schedule properly" 
    End 
End If 
 
If lundy_cooling_active + linear_cooling_active + exp_cooling_active = 3 Then 'check a cooling schedule is 
selected 

    MsgBox "ERROR: Define the cooling schedule properly" 
    End 
End If 
 
If export_switch = 1 Then               'export the dataset to SIMUL8 
    Dim length, width, L, W, x, y As Integer 
    L = 1 
    W = 1 
    x = 1 
    y = 1 
    length = numsim 
    width = 124 
     
    MYSIMUL8.Open "C:\model8.s8" 
     
    Do Until x > width 
        Do Until L > length 
            W = L 
            y = x 
            MYSIMUL8.GDValueDouble("data", x + 1, L + 4) = _ 
                Worksheets("Export").Cells(W + 4, y + 1).Value 
            Application.StatusBar = _ 
                "Row " & L & " out of " & length & _ 
                    ". Column " & x & " out of " & width 
            L = L + 1 
            Calculate 
        Loop 
        x = x + 1 
        L = 1 
    Loop 
     
    MYSIMUL8.Save "C:\model8.s8" 
    
End If 
 
temploop = 0 
b = 1 
 
Do While b <= restarts                  '########### main 'restart' loop 
    Range("B35:AJ10034").ClearContents 
    Range("B35:AJ10034").Interior.ColorIndex = 0 
    Range("B35:AJ10034").Font.Bold = False 
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    If programme <> 5 Then 
        If mintempstop > initial_temperature Then   'check that the initial temp > min temp 
            MsgBox "ERROR: Minimum Temperature value > Initial Temperature." 
            End 
        End If 
    End If 
     
    i = 0 
 
    If programme = 4 Then               'Runs a set of sequences as defined in "Evaluation Set" 
        Worksheets("Evaluation Set").Range("O2:Q20002").ClearContents 
         
        Do 
            i = i + 1 
            total_i = total_i + 1 
             
            If Worksheets("Evaluation Set").Range("A2:A2").Offset(i - 1, 0) = "" Then 
                end_time = Now() 
                Range("S21").Value = SecondsToDateTimeSerial(DateDiff("s", start_time, end_time)) 
                i = i - 1 
                MsgBox i & " Evaluations. Model Run Time = " _ 
                    & SecondsToDateTimeSerial(DateDiff("s", start_time, end_time)) 
 
                Exit Do 
            Else 
                Worksheets("Frontsheet").Range("B21:O21").Value = _ 
                    Worksheets("Evaluation Set").Range("A2:N2").Offset(i - 1, 0).Value 
                Application.StatusBar = "Running evaluation programme: Iteration " _ 
                    & i & " out of " & evaluationsetnum 
                insert_length = 14 - Application.WorksheetFunction.CountBlank(Range("B21:O21")) 
                ReDim currentseq(1 To insert_length) 
                currentseqlength = insert_length 
                a = 1 
                Do Until a > insert_length 
                    currentseq(a) = Range("B21").Offset(0, a - 1).Value 
                    Range("B35").Offset(i - 1, a - 1).Value = currentseq(a) 
                    a = a + 1 
                Loop 
                Call eligible(currentseq, currentseqlength, seqfault) 
            End If 
             

            duplicate = 0 
            duplicate_index = 0 
            eval_start_time = 0 
            eval_end_time = 0 
             
            If total_i > 1 Then 
                If cache_search_active = 1 Then 
                    eval_start_time = Now() 
                    Call cache_search(total_i, i, duplicate, duplicate_index, currentseqlength) 
                    eval_end_time = Now() 
                End If 
            End If 
             
            If duplicate = 1 Then 
                Worksheets("Frontsheet").Range("P35:P35").Offset(i - 1, 0).Value = 
Worksheets("Cache").Range("P2").Offset(duplicate_index - 1, 0).Value 
                Worksheets("Frontsheet").Range("Q35:Q35").Offset(i - 1, 0).Value = 
Worksheets("Cache").Range("Q2").Offset(duplicate_index - 1, 0).Value 
                Worksheets("Frontsheet").Range("R35:R35").Offset(i - 1, 0).Value = 
Worksheets("Cache").Range("R2").Offset(duplicate_index - 1, 0).Value 
                Worksheets("Frontsheet").Range("AE35:AE35").Offset(i - 1, 0).Value = "DUPLICATE" 
                Worksheets("Frontsheet").Range("AF35:AF35").Offset(i - 1, 0).Value = 
SecondsToDateTimeSerial(DateDiff("s", eval_start_time, eval_end_time)) 
            Else 
                eval_start_time = Now() 
                Call runmodel(i, numsim)        'run model to evaluate 
                If Worksheets("Frontsheet").Range("AC35:AC35").Offset(i - 1, 0).Value = 1 Then 
                    nmb = -999999999 
                    Worksheets("Frontsheet").Range("P35:P35").Offset(i - 1, 0).Value = nmb 
                End If 
                 
                eval_end_time = Now() 
                Worksheets("Frontsheet").Range("AE35:Ae35").Offset(i - 1, 0).Value = "EVALUATE" 
                Worksheets("Frontsheet").Range("AF35:AF35").Offset(i - 1, 0).Value = 
SecondsToDateTimeSerial(DateDiff("s", eval_start_time, eval_end_time)) 
            End If 
             
            Worksheets("Evaluation Set").Range("O2:Q2").Offset(i - 1, 0).Value = _ 
                Worksheets("Frontsheet").Range("P35:R35").Offset(i - 1, 0).Value 
             
        Loop 
        End                             'Once the programme is run, exit the simulation. 
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    End If 
        
    i = 1 
 
    stopsim = 0 
    failed_attempts = 0 
    acceptworsecount = 0 
    Do While stopsim = 0                '########### main 'iteration' loop 
        
        Calculate 
         
        Range("S21").Value = SecondsToDateTimeSerial(DateDiff("s", start_time, Now())) 
         
        currentruns = ((b - 1) * max_runs) + i 
        percentcomplete = Int(currentruns / totalruns * 100) 
         
        Application.StatusBar = "Restart " & b & " out of " _ 
            & restarts & ": Evaluation " & i & " out of " & max_runs & " (" & percentcomplete & "%)" 
                 
        If programme = 5 Then 
            If i = 1 Then 
                temperature = temp_algorithm_start 
                p_accept = 0 
                prevseqlength = currentseqlength 
            End If 
        Else 
            If i = 1 Then                   'set temperature 
                temperature = initial_temperature 
                prevseqlength = currentseqlength 
            Else 
                temperature = temperature 
            End If 
             
            If temploop = repetition_schedule Then  'cooling schedule temp reduction 
                 
                If exp_cooling_active = 1 Then 
                    temperature = temperature * exp_cooling 
                    temploop = 0 
                End If 
                 
                If linear_cooling_active = 1 Then 
                    temperature = temperature - linear_cooling 

                    temploop = 0 
                End If 
                 
                If lundy_cooling_active = 1 Then 
                    temperature = temperature / (1 + (lundy_cooling * temperature)) 
                    temploop = 0 
                End If 
                 
            End If 
            If temperature < 0 Then 
                MsgBox "MAJOR ERROR: TEMPERATURE NEGATIVE" 
                End 
            End If 
        End If 
        
        temploop = temploop + 1 
                 
        If i = 1 Then                   '########### FIRST ITERATION 
            If b = 1 Then                   'First Restart 
                If init_sol = 1 Then        'Random Seq to start 
                    Call gen_random_seq(i, currentseq, currentseqlength) 
                Else                        'or insert Seq to start 
                                            '(to check performance with same starting sequence) 
                    insert_length = 14 - Application.WorksheetFunction.CountBlank(Range("B21:O21")) 
                    ReDim currentseq(1 To insert_length) 
                    currentseqlength = insert_length 
                    a = 1 
                    Do Until a > insert_length 
                        currentseq(a) = Range("B21").Offset(0, a - 1).Value 
                        Range("B35").Offset(i - 1, a - 1).Value = currentseq(a) 
                        a = a + 1 
                    Loop 
                    Call eligible(currentseq, currentseqlength, seqfault) 
                    If seqfault = 1 Then 
                        MsgBox "MAJOR ERROR: INITIAL SEQUENCE NOT ELIGIBLE" 
                        End 
                    End If 
                End If 
            Else                            'next restarts 
                Select Case restart_rule 
                    Case 1                  'random restart 
                        If init_sol = 1 Then        'Random Seq to start 
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                            Call gen_random_seq(i, currentseq, currentseqlength) 
                        Else                        'or insert Seq to start 
                                                    '(to check performance with same starting sequence) 
                            insert_length = 14 - Application.WorksheetFunction.CountBlank(Range("B21:O21")) 
                            ReDim currentseq(1 To insert_length) 
                            currentseqlength = insert_length 
                            a = 1 
                            Do Until a > insert_length 
                                currentseq(a) = Range("B21").Offset(0, a - 1).Value 
                                Range("B35").Offset(i - 1, a - 1).Value = currentseq(a) 
                                a = a + 1 
                            Loop 
                            Call eligible(currentseq, currentseqlength, seqfault) 
                            If seqfault = 1 Then 
                                MsgBox "MAJOR ERROR: INITIAL SEQUENCE NOT ELIGIBLE" 
                                End 
                            End If 
                        End If 
                    Case 2                  'restart with overall best seq 
                        insert_length = 14 - 
Application.WorksheetFunction.CountBlank(Range("B23:O23").Offset(overallbestseq_index - 1, 0)) 
                        ReDim currentseq(1 To insert_length) 
                        currentseqlength = insert_length 
                        a = 1 
                        Do Until a > insert_length 
                            currentseq(a) = Range("B23").Offset(overallbestseq_index - 1, a - 1).Value 
                            Range("B35").Offset(0, a - 1).Value = currentseq(a) 
                            a = a + 1 
                        Loop 
                        Call eligible(currentseq, currentseqlength, seqfault) 
                        If seqfault = 1 Then 
                            MsgBox "MAJOR ERROR: INITIAL SEQUENCE NOT ELIGIBLE" 
                            End 
                        End If 
                End Select 
                prevseqlength = currentseqlength 
            End If 
              
        Else                            '########### SUBSEQUENT ITERATIONS 
            If sequence_generation = 1 Then     'Generate a random sequence 
                Call gen_random_seq(i, currentseq, currentseqlength) 
            ElseIf sequence_generation = 2 Then     'Pairwise swap 

                'Call pairswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                 
                Select Case currentseqlength    'addition/remove 1 or 2 tx, 
                                                'dependent on probs & length of sequence 
                    Case 1 To 2 
                        p_add = 1 
                        p_add2 = bp_add2 
                        p_remove = 0 
                        p_remove2 = 0 
                        r_seq = Rnd 
                        r_seq2 = Rnd 
                        If r_seq > 1 - p_remove Then 
                            If r_seq2 < p_remove2 / p_remove Then 
                                Call removeseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call removeseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        ElseIf r_seq < p_add Then 
                            If r_seq2 < p_add2 / p_add Then 
                                Call addseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call addseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        Else 
                            Call pairswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                        End If 
                    Case 3 
                        p_add = bp_add 
                        p_add2 = bp_add2 
                        p_remove = bp_remove 
                        p_remove2 = 0 
                        r_seq = Rnd 
                        r_seq2 = Rnd 
                        If r_seq > 1 - p_remove Then 
                            If r_seq2 < p_remove2 / p_remove Then 
                                Call removeseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call removeseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        ElseIf r_seq < p_add Then 
                            If r_seq2 < p_add2 / p_add Then 
                                Call addseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
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                            Else 
                                Call addseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        Else 
                            Call pairswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                        End If 
                    Case 4 To 10 
                        p_add = bp_add 
                        p_add2 = bp_add2 
                        p_remove = bp_remove 
                        p_remove2 = bp_remove2 
                        r_seq = Rnd 
                        r_seq2 = Rnd 
                        If r_seq > 1 - p_remove Then 
                            If r_seq2 < p_remove2 / p_remove Then 
                                Call removeseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call removeseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        ElseIf r_seq < p_add Then 
                            If r_seq2 < p_add2 / p_add Then 
                                Call addseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call addseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        Else 
                            Call pairswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                        End If 
                    Case 11 To 12 
                        p_add = bp_add 
                        p_add2 = 0 
                        p_remove = bp_remove 
                        p_remove2 = bp_remove2 
                        r_seq = Rnd 
                        r_seq2 = Rnd 
                        If r_seq > 1 - p_remove Then 
                            If r_seq2 < p_remove2 / p_remove Then 
                                Call removeseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call removeseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        ElseIf r_seq < p_add Then 

                            If r_seq2 < p_add2 / p_add Then 
                                Call addseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call addseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        Else 
                            Call pairswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                        End If 
                    Case 13 To 14 
                        p_add = 0 
                        p_add2 = 0 
                        p_remove = bp_remove 
                        p_remove2 = bp_remove2 
                        r_seq = Rnd 
                        r_seq2 = Rnd 
                        If r_seq > 1 - p_remove Then 
                            If r_seq2 < p_remove2 / p_remove Then 
                                Call removeseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call removeseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        Else 
                            Call pairswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                        End If 
                End Select 
            ElseIf sequence_generation = 3 Then     'Random swap + Add/Subtract (DEFAULT) 
                Select Case currentseqlength    'addition/remove 1 or 2 tx, 
                                                'dependent on probs & length of sequence 
                    Case 1 To 2 
                        p_add = 1 
                        p_add2 = bp_add2 
                        p_remove = 0 
                        p_remove2 = 0 
                        r_seq = Rnd 
                        r_seq2 = Rnd 
                        If r_seq > 1 - p_remove Then 
                            If r_seq2 < p_remove2 / p_remove Then 
                                Call removeseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call removeseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        ElseIf r_seq < p_add Then 
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                            If r_seq2 < p_add2 / p_add Then 
                                Call addseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call addseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        Else 
                            Call randomswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                        End If 
                    Case 3 
                        p_add = bp_add 
                        p_add2 = bp_add2 
                        p_remove = bp_remove 
                        p_remove2 = 0 
                        r_seq = Rnd 
                        r_seq2 = Rnd 
                        If r_seq > 1 - p_remove Then 
                            If r_seq2 < p_remove2 / p_remove Then 
                                Call removeseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call removeseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        ElseIf r_seq < p_add Then 
                            If r_seq2 < p_add2 / p_add Then 
                                Call addseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call addseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        Else 
                            Call randomswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                        End If 
                    Case 4 To 10 
                        p_add = bp_add 
                        p_add2 = bp_add2 
                        p_remove = bp_remove 
                        p_remove2 = bp_remove2 
                        r_seq = Rnd 
                        r_seq2 = Rnd 
                        If r_seq > 1 - p_remove Then 
                            If r_seq2 < p_remove2 / p_remove Then 
                                Call removeseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call removeseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 

                            End If 
                        ElseIf r_seq < p_add Then 
                            If r_seq2 < p_add2 / p_add Then 
                                Call addseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call addseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        Else 
                            Call randomswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                        End If 
                    Case 11 To 12 
                        p_add = bp_add 
                        p_add2 = 0 
                        p_remove = bp_remove 
                        p_remove2 = bp_remove2 
                        r_seq = Rnd 
                        r_seq2 = Rnd 
                        If r_seq > 1 - p_remove Then 
                            If r_seq2 < p_remove2 / p_remove Then 
                                Call removeseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call removeseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        ElseIf r_seq < p_add Then 
                            If r_seq2 < p_add2 / p_add Then 
                                Call addseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call addseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        Else 
                            Call randomswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                        End If 
                    Case 13 To 14 
                        p_add = 0 
                        p_add2 = 0 
                        p_remove = bp_remove 
                        p_remove2 = bp_remove2 
                        r_seq = Rnd 
                        r_seq2 = Rnd 
                        If r_seq > 1 - p_remove Then 
                            If r_seq2 < p_remove2 / p_remove Then 
                                Call removeseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
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                            Else 
                                Call removeseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        Else 
                            Call randomswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                        End If 
                End Select 
            End If 
        End If 
         
        duplicate = 0 
        duplicate_index = 0 
        eval_start_time = 0 
        eval_end_time = 0 
         
        If total_i > 1 Then 
            If cache_search_active = 1 Then 
                eval_start_time = Now() 
                Call cache_search(total_i, i, duplicate, duplicate_index, currentseqlength) 
                eval_end_time = Now() 
            End If 
        End If 
         
        If duplicate = 1 Then 
            Worksheets("Frontsheet").Range("P35:P35").Offset(i - 1, 0).Value = 
Worksheets("Cache").Range("P2").Offset(duplicate_index - 1, 0).Value 
            Worksheets("Frontsheet").Range("Q35:Q35").Offset(i - 1, 0).Value = 
Worksheets("Cache").Range("Q2").Offset(duplicate_index - 1, 0).Value 
            Worksheets("Frontsheet").Range("R35:R35").Offset(i - 1, 0).Value = 
Worksheets("Cache").Range("R2").Offset(duplicate_index - 1, 0).Value 
            Worksheets("Frontsheet").Range("AE35:AE35").Offset(i - 1, 0).Value = "DUPLICATE" 
            Worksheets("Frontsheet").Range("AF35:AF35").Offset(i - 1, 0).Value = 
SecondsToDateTimeSerial(DateDiff("s", eval_start_time, eval_end_time)) 
            Worksheets("Frontsheet").Range("AG35:AG35").Offset(i - 1, 0).Value = duplicate_index 
        Else 
            eval_start_time = Now() 
            Range("U20").Value = total_i 
            Call runmodel(i, numsim)        'run model to evaluate 
            If Worksheets("Frontsheet").Range("AC35:AC35").Offset(i - 1, 0).Value = 1 Then 
                nmb = -999999999 
                Worksheets("Frontsheet").Range("P35:P35").Offset(i - 1, 0).Value = nmb 
            End If 

            eval_end_time = Now() 
            Worksheets("Frontsheet").Range("AE35:Ae35").Offset(i - 1, 0).Value = "EVALUATE" 
            Worksheets("Frontsheet").Range("AF35:AF35").Offset(i - 1, 0).Value = 
SecondsToDateTimeSerial(DateDiff("s", eval_start_time, eval_end_time)) 
        End If 
         
        current_nmb = Worksheets("Frontsheet").Range("P35:P35").Offset(i - 1, 0).Value 
        current_cost = Worksheets("Frontsheet").Range("Q35:Q35").Offset(i - 1, 0).Value 
        current_qaly = Worksheets("Frontsheet").Range("R35:R35").Offset(i - 1, 0).Value 
         
        Sheets("Cache").Range("B2:R2").Offset(total_i - 1, 0).Value = 
Worksheets("Frontsheet").Range("B35:R35").Offset(i - 1, 0).Value 
         
     
        If i = 1 Then                   'update current best results 
            best_nmb = current_nmb 
            best_cost = current_cost 
            best_qaly = current_qaly 
            previous_nmb = current_nmb 
            bestseq = currentseq 
            Worksheets("Frontsheet").Range("T35:T35").Value = best_nmb 
            best_nmb_index = i 
            Worksheets("Frontsheet").Range("S35:S35").Value = best_nmb_index 
        Else 
            If current_nmb > best_nmb Then      'improvement. update current best 
                best_nmb = current_nmb 
                best_cost = current_cost 
                best_qaly = current_qaly 
                bestseq = currentseq 
                 
                Worksheets("Frontsheet").Range("T35:T35").Offset(i - 1, 0).Value = best_nmb 
                best_nmb_index = i 
                Worksheets("Frontsheet").Range("S35:S35").Offset(i - 1, 0).Value = i 
            Else                        'otherwise retain the current best 
                Worksheets("Frontsheet").Range("T35:T35").Offset(i - 1, 0).Value = best_nmb 
                Worksheets("Frontsheet").Range("S35:S35").Offset(i - 1, 0).Value = best_nmb_index 
            End If 
        End If 
                 
        Worksheets("Frontsheet").Range("W35:W35").Offset(i - 1, 0).Value = temperature 
             
        If temperature = 0 Then 
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            temperature = 1 
        End If 
             
        If programme = 1 Then           'random search (every sequence accepted) 
            If i = 1 Then 
                prevseq = currentseq 
                previous_nmb = current_nmb 
                prevseqlength = currentseqlength 
            Else 
                If current_nmb > previous_nmb Then 
                    Worksheets("Frontsheet").Range("U35:U35").Offset(i - 1, 0).Value = 1 
                    Worksheets("Frontsheet").Range("V35:V35").Offset(i - 1, 0).Value = 1 
                    prevseq = currentseq 
                    prevseqlength = currentseqlength 
                    previous_nmb = current_nmb 
                Else 
                    Worksheets("Frontsheet").Range("U35:U35").Offset(i - 1, 0).Value = 0 
                    Worksheets("Frontsheet").Range("V35:V35").Offset(i - 1, 0).Value = 1 
                    prevseq = currentseq 
                    prevseqlength = currentseqlength 
                    previous_nmb = current_nmb 
                    acceptworsecount = acceptworsecount + 1 
                End If 
                prevseq = currentseq 
            End If 
        ElseIf programme = 2 Then       '########### SIMULATED ANNEALING 
            If i = 1 Then 
                prevseq = currentseq 
                previous_nmb = current_nmb 
                prevseqlength = currentseqlength 
            Else 
                If current_nmb > previous_nmb Then      'Improvement = Accept 
                    Worksheets("Frontsheet").Range("U35:U35").Offset(i - 1, 0).Value = 1 
                    Worksheets("Frontsheet").Range("V35:V35").Offset(i - 1, 0).Value = 1 
                    prevseq = currentseq 
                    prevseqlength = currentseqlength 
                    previous_nmb = current_nmb 
                    failed_attempts = 0 
                Else 
                    r_sa = Rnd 
                    If r_sa < Exp((current_nmb - previous_nmb) / temperature) Then              'Accept 
                        Worksheets("Frontsheet").Range("U35:U35").Offset(i - 1, 0).Value = 0 

                        Worksheets("Frontsheet").Range("V35:V35").Offset(i - 1, 0).Value = 1 
                        prevseq = currentseq 
                        prevseqlength = currentseqlength 
                        previous_nmb = current_nmb 
                        failed_attempts = 0 
                        acceptworsecount = acceptworsecount + 1 
                    Else 
                        Worksheets("Frontsheet").Range("U35:U35").Offset(i - 1, 0).Value = 0    'Reject 
                        Worksheets("Frontsheet").Range("V35:V35").Offset(i - 1, 0).Value = 0 
                        prevseq = prevseq 
                        prevseqlength = prevseqlength 
                        previous_nmb = previous_nmb 
                        failed_attempts = failed_attempts + 1 
                    End If 
                End If 
            End If 
        ElseIf programme = 3 Then       'Local search (only improving moves accepted) 
            If i = 1 Then 
                prevseq = currentseq 
                previous_nmb = current_nmb 
                prevseqlength = currentseqlength 
            Else 
                If current_nmb > previous_nmb Then          'Improvement = Accept 
                    Worksheets("Frontsheet").Range("U35:U35").Offset(i - 1, 0).Value = 1 
                    Worksheets("Frontsheet").Range("V35:V35").Offset(i - 1, 0).Value = 1 
                    prevseq = currentseq 
                    prevseqlength = currentseqlength 
                    previous_nmb = current_nmb 
                    failed_attempts = 0 
                Else                                        'Reject 
                    Worksheets("Frontsheet").Range("U35:U35").Offset(i - 1, 0).Value = 0 
                    Worksheets("Frontsheet").Range("V35:V35").Offset(i - 1, 0).Value = 0 
                    prevseq = prevseq 
                    prevseqlength = prevseqlength 
                    previous_nmb = previous_nmb 
                    failed_attempts = failed_attempts + 1 
                End If 
            End If 
        ElseIf programme = 5 Then                       'INITIAL TEMP SETTING ALGORITHM 
            If i = 1 Then 
                prevseq = currentseq 
                previous_nmb = current_nmb 
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                prevseqlength = currentseqlength 
            Else 
                If current_nmb > previous_nmb Then      'Improvement = Accept 
                    Worksheets("Frontsheet").Range("U35:U35").Offset(i - 1, 0).Value = 1 
                    Worksheets("Frontsheet").Range("V35:V35").Offset(i - 1, 0).Value = 1 
                    prevseq = currentseq 
                    prevseqlength = currentseqlength 
                    previous_nmb = current_nmb 
                    failed_attempts = 0 
                Else 
                    worsecount = worsecount + 1 
                    r_sa = Rnd 
                    If r_sa < Exp((current_nmb - previous_nmb) / temperature) Then              'Accept 
                        Worksheets("Frontsheet").Range("U35:U35").Offset(i - 1, 0).Value = 0 
                        Worksheets("Frontsheet").Range("V35:V35").Offset(i - 1, 0).Value = 1 
                        prevseq = currentseq 
                        prevseqlength = currentseqlength 
                        previous_nmb = current_nmb 
                        failed_attempts = 0 
                        acceptworsecount = acceptworsecount + 1 
                    Else 
                        Worksheets("Frontsheet").Range("U35:U35").Offset(i - 1, 0).Value = 0    'Reject 
                        Worksheets("Frontsheet").Range("V35:V35").Offset(i - 1, 0).Value = 0 
                        prevseq = prevseq 
                        prevseqlength = prevseqlength 
                        previous_nmb = previous_nmb 
                        failed_attempts = failed_attempts + 1 
                    End If 
                End If 
            End If 
        End If 
         
        If temperature = 1 Then 
            temperature = 0 
        End If 
                                                            '####STOPPING RULE 
        If i = max_runs Then                                'Maximum runs reached = stop 
            stopsim = 1 
            stopsimreason = 1 
        End If 
        
        If min_temp_stop_active = 1 Then                    'Minimum temperature reached 

            If temperature < min_temp_stop Then 
                stopsim = 1 
                stopsimreason = 2 
            End If 
        End If 
         
        If max_failed_attempts_active = 1 Then 
            If failed_attempts >= max_failed_attempts Then  'Max consecutive failed attempts reached 
                stopsim = 1 
                stopsimreason = 3 
            End If 
        End If 
         
        If programme = 5 Then 
            If worsecount > 0 Then 
                p_accept = acceptworsecount / worsecount 
            End If 
 
            If worsecount = worseloop Then 
                temperature = temperature + temp_algorithm_increment 
 
                If p_accept >= p_accept_target Then 
                    stopsim = 1 
                    Worksheets("Frontsheet").Range("X23:X23").Offset(b - 1, 0).Value = temperature 
                Else 
                    acceptworsecount = 0 
                    worsecount = 0 
                End If 
            End If 
            Worksheets("Frontsheet").Range("AH35:AH35").Offset(i - 1, 0).Value = p_accept 
            Worksheets("Frontsheet").Range("AI35:AI35").Offset(i - 1, 0).Value = acceptworsecount 
            Worksheets("Frontsheet").Range("AJ35:AJ35").Offset(i - 1, 0).Value = worsecount 
        End If 
 
        i = i + 1 
        total_i = total_i + 1 
        ActiveWindow.ScrollRow = i 
    Loop 
     
    Calculate 
     
    a = 1 
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    Do Until a > UBound(bestseq)                            'Update the best sequence in the spreadsheet 
        Range("B23").Offset(b - 1, a - 1).Value = bestseq(a) 
        a = a + 1 
    Loop 
'    prevrestartbestseq = bestseq 
'    prevrestartbestseq_index = b 
     
    If b = 1 Then 
        overall_best_nmb = best_nmb 
        overallbestseq = bestseq 
        overallbestseq_index = b 
    Else 
        overall_best_nmb = best_nmb 
        overallbestseq = bestseq 
        overallbestseq_index = b 
    End If 
    Range("V20").Value = overallbestseq_index 
'    Range("V21").Value = prevrestartbestseq_index 
     
    Worksheets("Frontsheet").Range("P23:P23").Offset(b - 1, 0).Value = best_nmb 
    Worksheets("Frontsheet").Range("Q23:Q23").Offset(b - 1, 0).Value = best_cost 
    Worksheets("Frontsheet").Range("R23:R23").Offset(b - 1, 0).Value = best_qaly 
    Worksheets("Frontsheet").Range("S23:S23").Offset(b - 1, 0).Value = best_nmb_index 
    Worksheets("Frontsheet").Range("T23:T23").Offset(b - 1, 0).Value = i - 1 
    Worksheets("Frontsheet").Range("U23:U23").Offset(b - 1, 0).Value = stopsimreason 
     
    Select Case b 
        Case 1 
            Sheets("R1").Range("B2:AJ10002").Value = Sheets("Frontsheet").Range("B35:AJ10035").Value 
        Case 2 
            Sheets("R2").Range("B2:AJ10002").Value = Sheets("Frontsheet").Range("B35:AJ10035").Value 
        Case 3 
            Sheets("R3").Range("B2:AJ10002").Value = Sheets("Frontsheet").Range("B35:AJ10035").Value 
        Case 4 
            Sheets("R4").Range("B2:AJ10002").Value = Sheets("Frontsheet").Range("B35:AJ10035").Value 
        Case 5 
            Sheets("R5").Range("B2:AJ10002").Value = Sheets("Frontsheet").Range("B35:AJ10035").Value 
        Case 6 
            Sheets("R6").Range("B2:AJ10002").Value = Sheets("Frontsheet").Range("B35:AJ10035").Value 
        Case 7 
            Sheets("R7").Range("B2:AJ10002").Value = Sheets("Frontsheet").Range("B35:AJ10035").Value 
        Case 8 

            Sheets("R8").Range("B2:AJ10002").Value = Sheets("Frontsheet").Range("B35:AJ10035").Value 
        Case 9 
            Sheets("R9").Range("B2:AJ10002").Value = Sheets("Frontsheet").Range("B35:AJ10035").Value 
        Case 10 
            Sheets("R10").Range("B2:AJ10002").Value = Sheets("Frontsheet").Range("B35:AJ10035").Value 
    End Select 
       
    b = b + 1                                               'Next Restart (if relevent) 
Loop 
         
If programme = 5 Then 
    stopsimreason = 4 
End If 
 
If end_run_search_active = 1 Then 
    Range("B35:AJ999999").ClearContents 
    i = 1 
     
    Do Until i > end_run_search 
        Calculate 
        Application.StatusBar = "End Run Evaluation " & i & " out of " & end_run_search 
         
        If i = 1 Then 
            a = 1 
            overallbestseqlength = UBound(overallbestseq) 
            Do Until a > UBound(overallbestseq)                            'Update the best sequence in the spreadsheet 
                Range("B35").Offset(i - 1, a - 1).Value = overallbestseq(a) 
            a = a + 1 
            Loop 
            prevseq = overallbestseq 
        Else 
            duplicate = 0 
            duplicate_index = 0 
            eval_start_time = 0 
            eval_end_time = 0 
             
            If sequence_generation = 1 Then     'Generate a random sequence 
                Call gen_random_seq(i, currentseq, currentseqlength) 
            ElseIf sequence_generation = 2 Then     'Pairwise swap 
                Call pairswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
            ElseIf sequence_generation = 3 Then     'Random swap + Add/Subtract (DEFAULT) 
                Select Case currentseqlength    'addition/remove 1 or 2 tx, 
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                                                'dependent on probs & length of sequence 
                    Case 1 To 2 
                        p_add = 1 
                        p_add2 = bp_add2 
                        p_remove = 0 
                        p_remove2 = 0 
                        r_seq = Rnd 
                        r_seq2 = Rnd 
                        If r_seq > 1 - p_remove Then 
                            If r_seq2 < p_remove2 / p_remove Then 
                                Call removeseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call removeseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        ElseIf r_seq < p_add Then 
                            If r_seq2 < p_add2 / p_add Then 
                                Call addseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call addseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        Else 
                            Call randomswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                        End If 
                    Case 3 
                        p_add = bp_add 
                        p_add2 = bp_add2 
                        p_remove = bp_remove 
                        p_remove2 = 0 
                        r_seq = Rnd 
                        r_seq2 = Rnd 
                        If r_seq > 1 - p_remove Then 
                            If r_seq2 < p_remove2 / p_remove Then 
                                Call removeseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call removeseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        ElseIf r_seq < p_add Then 
                            If r_seq2 < p_add2 / p_add Then 
                                Call addseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call addseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 

                        Else 
                            Call randomswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                        End If 
                    Case 4 To 10 
                        p_add = bp_add 
                        p_add2 = bp_add2 
                        p_remove = bp_remove 
                        p_remove2 = bp_remove2 
                        r_seq = Rnd 
                        r_seq2 = Rnd 
                        If r_seq > 1 - p_remove Then 
                            If r_seq2 < p_remove2 / p_remove Then 
                                Call removeseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call removeseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        ElseIf r_seq < p_add Then 
                            If r_seq2 < p_add2 / p_add Then 
                                Call addseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call addseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        Else 
                            Call randomswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                        End If 
                    Case 11 To 12 
                        p_add = bp_add 
                        p_add2 = 0 
                        p_remove = bp_remove 
                        p_remove2 = bp_remove2 
                        r_seq = Rnd 
                        r_seq2 = Rnd 
                        If r_seq > 1 - p_remove Then 
                            If r_seq2 < p_remove2 / p_remove Then 
                                Call removeseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call removeseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        ElseIf r_seq < p_add Then 
                            If r_seq2 < p_add2 / p_add Then 
                                Call addseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
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                                Call addseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        Else 
                            Call randomswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                        End If 
                    Case 13 To 14 
                        p_add = 0 
                        p_add2 = 0 
                        p_remove = bp_remove 
                        p_remove2 = bp_remove2 
                        r_seq = Rnd 
                        r_seq2 = Rnd 
                        If r_seq > 1 - p_remove Then 
                            If r_seq2 < p_remove2 / p_remove Then 
                                Call removeseq2(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            Else 
                                Call removeseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                            End If 
                        Else 
                            Call randomswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
                        End If 
                End Select 
            End If 
        End If 
         
        duplicate = 0 
        duplicate_index = 0 
        eval_start_time = 0 
        eval_end_time = 0 
     
        If total_i > 1 Then 
            If cache_search_active = 1 Then 
                eval_start_time = Now() 
                Call cache_search(total_i, i, duplicate, duplicate_index, currentseqlength) 
                eval_end_time = Now() 
            End If 
        End If 
     
        If duplicate = 1 Then 
            Worksheets("Frontsheet").Range("P35:P35").Offset(i - 1, 0).Value = 
Worksheets("Cache").Range("P2").Offset(duplicate_index - 1, 0).Value 

            Worksheets("Frontsheet").Range("Q35:Q35").Offset(i - 1, 0).Value = 
Worksheets("Cache").Range("Q2").Offset(duplicate_index - 1, 0).Value 
            Worksheets("Frontsheet").Range("R35:R35").Offset(i - 1, 0).Value = 
Worksheets("Cache").Range("R2").Offset(duplicate_index - 1, 0).Value 
            Worksheets("Frontsheet").Range("AE35:AE35").Offset(i - 1, 0).Value = "DUPLICATE" 
            Worksheets("Frontsheet").Range("AF35:AF35").Offset(i - 1, 0).Value = 
SecondsToDateTimeSerial(DateDiff("s", eval_start_time, eval_end_time)) 
            Worksheets("Frontsheet").Range("AG35:AG35").Offset(i - 1, 0).Value = duplicate_index 
        Else 
            eval_start_time = Now() 
            Range("U20").Value = total_i 
            Call runmodel(i, numsim)        'run model to evaluate 
            If Worksheets("Frontsheet").Range("AC35:AC35").Offset(i - 1, 0).Value = 1 Then 
                nmb = -999999999 
                Worksheets("Frontsheet").Range("P35:P35").Offset(i - 1, 0).Value = nmb 
            End If 
             
            eval_end_time = Now() 
            Worksheets("Frontsheet").Range("AE35:Ae35").Offset(i - 1, 0).Value = "EVALUATE" 
            Worksheets("Frontsheet").Range("AF35:AF35").Offset(i - 1, 0).Value = 
SecondsToDateTimeSerial(DateDiff("s", eval_start_time, eval_end_time)) 
        End If 
     
        current_nmb = Worksheets("Frontsheet").Range("P35:P35").Offset(i - 1, 0).Value 
        current_cost = Worksheets("Frontsheet").Range("Q35:Q35").Offset(i - 1, 0).Value 
        current_qaly = Worksheets("Frontsheet").Range("R35:R35").Offset(i - 1, 0).Value 
        Sheets("Cache").Range("B2:R2").Offset(total_i - 1, 0).Value = 
Worksheets("Frontsheet").Range("B35:R35").Offset(i - 1, 0).Value 
        If i = 1 Then                   'update current best results 
            best_nmb = current_nmb 
            best_cost = current_cost 
            best_qaly = current_qaly 
            previous_nmb = current_nmb 
            bestseq = currentseq 
            Worksheets("Frontsheet").Range("T35:T35").Value = best_nmb 
            best_nmb_index = i 
            Worksheets("Frontsheet").Range("S35:S35").Value = best_nmb_index 
        Else 
            If current_nmb > best_nmb Then      'improvement. update current best 
                best_nmb = current_nmb 
                best_cost = current_cost 
                best_qaly = current_qaly 
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                bestseq = currentseq 
                 
                Worksheets("Frontsheet").Range("T35:T35").Offset(i - 1, 0).Value = best_nmb 
                best_nmb_index = i 
                Worksheets("Frontsheet").Range("S35:S35").Offset(i - 1, 0).Value = i 
            Else                        'otherwise retain the current best 
                Worksheets("Frontsheet").Range("T35:T35").Offset(i - 1, 0).Value = best_nmb 
                Worksheets("Frontsheet").Range("S35:S35").Offset(i - 1, 0).Value = best_nmb_index 
            End If 
            Worksheets("Frontsheet").Range("W35:W35").Offset(i - 1, 0).Value = "LOCAL" 
        End If 
 
        If i = 1 Then 
            currentseq = bestseq 
            prevseq = currentseq 
            previous_nmb = current_nmb 
            currenseqlength = UBound(currentseq) 
            prevseqlength = currentseqlength 
        Else 
            If current_nmb > previous_nmb Then          'Improvement = Accept 
                Worksheets("Frontsheet").Range("U35:U35").Offset(i - 1, 0).Value = 1 
                Worksheets("Frontsheet").Range("V35:V35").Offset(i - 1, 0).Value = 1 
                prevseq = currentseq 
                prevseqlength = currentseqlength 
                previous_nmb = current_nmb 
                failed_attempts = 0 
            Else                                        'Reject 
                Worksheets("Frontsheet").Range("U35:U35").Offset(i - 1, 0).Value = 0 
                Worksheets("Frontsheet").Range("V35:V35").Offset(i - 1, 0).Value = 0 
                prevseq = prevseq 
                prevseqlength = prevseqlength 
                previous_nmb = previous_nmb 
                failed_attempts = failed_attempts + 1 
            End If 
        End If 
     
        i = i + 1 
        total_i = total_i + 1 
        ActiveWindow.ScrollRow = i 
    Loop 
     
    If best_nmb > overall_best_nmb Then 

        overall_best_nmb = best_nmb 
        overallbestseq = bestseq 
    End If 
     
    a = 1 
    Do Until a > UBound(overallbestseq)                            'Update the best sequence in the spreadsheet 
        Range("B33").Offset(0, a - 1).Value = bestseq(a) 
        a = a + 1 
    Loop 
 
    Worksheets("Frontsheet").Range("P33:P33").Value = best_nmb 
    Worksheets("Frontsheet").Range("Q33:Q33").Value = best_cost 
    Worksheets("Frontsheet").Range("R33:R33").Value = best_qaly 
    Worksheets("Frontsheet").Range("S33:S33").Value = best_nmb_index 
  
End If 
                                                            'End of simulation 
end_time = Now() 
Range("S21").Value = SecondsToDateTimeSerial(DateDiff("s", start_time, end_time)) 
Set MYSIMUL8 = Nothing 
 
If email_notification = 1 Then 
  
    Dim iMsg As Object 
    Dim iConf As Object 
    Dim strbody As String 
    Dim Flds As Variant 
      
    Set iMsg = CreateObject("CDO.Message") 
    Set iConf = CreateObject("CDO.Configuration") 
      
    iConf.Load -1 ' CDO Source Defaults 
    Set Flds = iConf.Fields 
    With Flds 
        .Item("http://schemas.microsoft.com/cdo/configuration/smtpusessl") = True 
        .Item("http://schemas.microsoft.com/cdo/configuration/smtpauthenticate") = 1 
        .Item("http://schemas.microsoft.com/cdo/configuration/sendusername") = "**********" 
        .Item("http://schemas.microsoft.com/cdo/configuration/sendpassword") = *********" 
        .Item("http://schemas.microsoft.com/cdo/configuration/smtpserver") = "smtp.gmail.com" 
          
        .Item("http://schemas.microsoft.com/cdo/configuration/sendusing") = 2 
        .Item("http://schemas.microsoft.com/cdo/configuration/smtpserverport") = 465 
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        .Update 
    End With 
      
    strbody = "Hi there" & vbNewLine & vbNewLine & _ 
    "Simulation is complete. MESSAGE FROM " & pc_name & vbNewLine & _ 
    "Number of restarts: " & b - 1 & vbNewLine & _ 
    "Number of evaluations: " & i & vbNewLine & _ 
    "Best NMB: " & overall_best_nmb 
      
    With iMsg 
        Set .Configuration = iConf 
        .To = "*********" 
        .CC = "********" 
        .BCC = "" 
         ' Note: The reply address is not working if you use this Gmail example 
         ' It will use your Gmail address automatic. But you can add this line 
         ' to change the reply address  .ReplyTo = "Reply@something.nl" 
        .From = """TOSHALERT"" <t******t@gmail.com>" 
        .Subject = "Simulation complete" 
        .TextBody = strbody 
        .Send 
    End With 
      
End If 
 
Select Case stopsimreason 
    Case 1 
        MsgBox "REASON FOR STOPPING = MAXIMUM RUNS REACHED. " & i - 1 & _ 
            " Evaluations. Model Run Time = " & SecondsToDateTimeSerial(DateDiff("s", start_time, end_time)) 
    Case 2 
        MsgBox "REASON FOR STOPPING = MINIMUM TEMPERATURE REACHED. " & i - 1 & _ 
            " Evaluations. Model Run Time = " & SecondsToDateTimeSerial(DateDiff("s", start_time, end_time)) 
    Case 3 
        MsgBox "REASON FOR STOPPING = MAXIMUM NUMBER OF FAILED ATTEMPTS REACHED. " & _ 
            i - 1 & " Evaluations. Model Run Time = " & SecondsToDateTimeSerial(DateDiff("s", start_time, 
end_time)) 
    Case 4 
        MsgBox "REASON FOR STOPPING = INITIAL TEMPERATURE SETTING ALGORITHM COMPLETE." 
End Select 
 
End Sub 
 

 
GENERATE RANDOM SEQUENCE 
 
Sub gen_random_seq(i, currentseq, currentseqlength) 
 
Dim t As String 
Dim c1_flag, c2_flag, c3_flag, c4_flag, first_line_flag, _ 
    line, tx, shift, flag, bestseqnum, min_init_length, sim, _ 
    numsim, loopcount, init_sol As Integer 
Dim c1_flag_arr, c2_flag_arr, c3_flag_arr, c4_flag_arr As Variant 
Dim tabl As Range 
Dim checklist, bestseq 
Dim p_short, p_length, random As Double 
 
Sheets("Frontsheet").Activate 
Set tabl = ThisWorkbook.Names("tabl").RefersToRange 
Set c1_flag_arr = ThisWorkbook.Names("_c1_array").RefersToRange 
Set c2_flag_arr = ThisWorkbook.Names("_c2_array").RefersToRange 
Set c3_flag_arr = ThisWorkbook.Names("_c3_array").RefersToRange 
Set c4_flag_arr = ThisWorkbook.Names("_c4_array").RefersToRange 
 
seqfault = 1 
min_init_length = Range("min_init_length").Value 
 
Do Until seqfault = 0 
    ReDim checklist(1 To 1) 
    ReDim currentseq(1 To 1) 
     
    If i = 1 Then 
        Range("B35:V35").ClearContents 
    End If 
     
    tx = 0 
    c4_flag = 0 
    first_line_flag = 0 
    c1_flag = 0 
    c2_flag = 0 
    c3_flag = 0 
    c4_flag = 0 
    flag = 0 
    shift = 0 
    random = Rnd 
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    Do Until c4_flag = 1 
        tx = tx + 1 
        loopcount = 0 
         
        Do 
            Calculate 
            t = Application.WorksheetFunction.Index(Range("R4:R17"), _ 
                Application.WorksheetFunction.Rank(Range("S4"), Range("S4:S17"))) 
             
            flag = Application.VLookup(t, tabl, 3 + shift, 0) 
             
            'loop until eligible treatment is selected based on option matrix (flag) 
            'which is offset depending on previous class flags (see later) 
             
            loopcount = loopcount + 1 
             
            If IsError(Application.Match(t, checklist, 0)) Then 
                Exit Do 
            End If 
        Loop 
             
        If tx = 1 Then 
            first_line_flag = 1 
        Else 
            first_line_flag = 0 
        End If 
         
        'UPDATE FLAGS (if it's an error it means that a match hasn't been found) 
        If IsError(Application.Match(t, c4_flag_arr, 0)) Then 
        Else 
            c4_flag = 1 
            shift = 4 
        End If 
         
        If IsError(Application.Match(t, c3_flag_arr, 0)) Then 
        Else 
            c3_flag = 1 
            shift = 3 
        End If 
         
        If IsError(Application.Match(t, c2_flag_arr, 0)) Then 

        Else 
            c2_flag = 1 
            shift = 2 
        End If 
         
        If IsError(Application.Match(t, c1_flag_arr, 0)) Then 
        Else 
            c1_flag = 1 
            shift = 1 
        End If 
         
        If c1_flag = 1 Then 
            shift = 1 
            If c2_flag = 1 Then 
                shift = 2 
                If c3_flag = 1 Then 
                    shift = 3 
                    If c4_flag = 1 Then 
                        shift = 4 
                    End If 
                End If 
            End If 
        End If 
         
        'UPDATE WORKSHEET 
        Range("B35").Offset(i - 1, tx - 1).Value = t 
               
        ReDim Preserve checklist(1 To tx) 
        ReDim Preserve currentseq(1 To tx) 
        checklist(tx) = t 
        If tx = 1 Then 
            If t = "PC" Then 
                t = t 
            End If 
        End If 
 
    Loop 
         
    currentseq = checklist 
    currentseqlength = tx 
    Call eligible(currentseq, currentseqlength, seqfault) 
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    If i = 1 Then 
        If currentseqlength < min_init_length Then 
            seqfault = 1 
        End If 
    End If 
Loop 
 
End Sub 
 
 
CHECK SEQUENCE ELIGIBILITY 
 
Sub eligible(currentseq, currentseqlength, seqfault) 
Dim t, fault As String 
Dim loopexit, loopcount, tx, shift, flag As Integer 
Dim c1_flag, c2_flag, c3_flag, c4_flag, first_line_flag As Integer 
Dim c1_flag_arr, c2_flag_arr, c3_flag_arr, c4_flag_arr As Variant 
Dim line As Integer 
Dim tabl As Range 
 
Set tabl = ThisWorkbook.Names("tabl").RefersToRange 
Set c1_flag_arr = ThisWorkbook.Names("_c1_array").RefersToRange 
Set c2_flag_arr = ThisWorkbook.Names("_c2_array").RefersToRange 
Set c3_flag_arr = ThisWorkbook.Names("_c3_array").RefersToRange 
Set c4_flag_arr = ThisWorkbook.Names("_c4_array").RefersToRange 
 
loopcount = 0 
shift = 0 
seqfault = 0 
 
Do Until loopcount = currentseqlength 
     
    loopcount = loopcount + 1 
    t = currentseq(loopcount) 
     
    flag = Application.VLookup(t, tabl, 3 + shift, 0) 
     
    If flag = 1 Then 
        fault = "No" 
    Else 
        fault = "Yes" 
        seqfault = 1 

    End If 
     
    If IsError(Application.Match(t, c4_flag_arr, 0)) Then 
    Else 
        c4_flag = 1 
        shift = 4 
    End If 
     
    If IsError(Application.Match(t, c3_flag_arr, 0)) Then 
    Else 
        c3_flag = 1 
        shift = 3 
    End If 
     
    If IsError(Application.Match(t, c2_flag_arr, 0)) Then 
    Else 
        c2_flag = 1 
        shift = 2 
    End If 
     
    If IsError(Application.Match(t, c1_flag_arr, 0)) Then 
    Else 
        c1_flag = 1 
        shift = 1 
    End If 
     
    If c1_flag = 1 Then 
        shift = 1 
        If c2_flag = 1 Then 
            shift = 2 
            If c3_flag = 1 Then 
                shift = 3 
                If c4_flag = 1 Then 
                    shift = 4 
                End If 
            End If 
        End If 
    End If 
         
    If loopcount > 1 Then 
        a = 1 
        Do Until a = loopcount 
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            If t = currentseq(a) Then 
                seqfault = 1 
            End If 
             
            a = a + 1 
        Loop 
    End If 
 
Loop 
 
End Sub 
 
 
PAIRWISE SWAP 
 
Sub pairswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
Dim sequence 
Dim selection_index1, selection_index2, throwaway, a As Integer 
Dim selection_tx1, selection_tx2 As String 
Dim r_num As Double 
seqfault = 1 
throwaway = 0 
Do Until seqfault = 0 
    r_num = Rnd 
    sequence = prevseq 
     
    If prevseqlength > 2 Then 
     
        selection_index1 = Int(((prevseqlength - 2) - 1 + 1) * r_num + 1) 
         
        selection_tx1 = sequence(selection_index1) 
        selection_index2 = selection_index1 + 1 
        selection_tx2 = sequence(selection_index2) 
         
        Range("Y35").Offset(i - 1, 0).Value = selection_index1 
        Range("Z35").Offset(i - 1, 0).Value = selection_tx1 
        Range("AA35").Offset(i - 1, 0).Value = selection_index2 
        Range("AB35").Offset(i - 1, 0).Value = selection_tx2 
         
        If currentseqlength > 3 Then    'swap elements 
            temp = sequence(selection_index1) 
            sequence(selection_index1) = sequence(selection_index2) 

            sequence(selection_index2) = temp 
        End If 
     
    End If 
     
    a = 1 
    Do Until a > prevseqlength 
        Range("B35").Offset(i - 1, a - 1).Value = sequence(a) 
        a = a + 1 
    Loop 
     
    currentseq = sequence 
    currentseqlength = prevseqlength 
    Call eligible(currentseq, currentseqlength, seqfault) 
    Range("AC35").Offset(i - 1, 0).Value = seqfault 
    Range("AD35").Offset(i - 1, 0).Value = throwaway 
     
    throwaway = throwaway + 1 
    If throwaway > 200 Then 
        throwaway = throwaway 
        currentseq = prevseq 
        seqfault = 0 
    End If 
     
Loop 
Range("X35").Offset(i - 1, 0).Value = "PAIRSWAP" 
 
End Sub 
 
 
RANDOM SWAP 
 
Sub randomswap(i, prevseq, currentseq, currentseqlength, prevseqlength) 
Dim sequence 
Dim selection_index1, selection_index2, loopcount, a, throwaway As Integer 
Dim selection_tx1, selection_tx2 As String 
Dim r_num1, r_num2 As Double 
seqfault = 1 
throwaway = 0 
 
Do Until seqfault = 0 
    sequence = prevseq 
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    selection_index1 = 0 
    selection_index2 = 0 
    If prevseqlength > 2 Then 
        loopcount = 1 
         
        Do Until selection_index1 <> selection_index2 
             
            r_num1 = Rnd 
            r_num2 = Rnd 
 
            selection_index1 = Int(r_num1 * (prevseqlength - 1)) + 1 
            selection_index2 = Int(r_num2 * (prevseqlength - 1)) + 1 
            selection_tx1 = sequence(selection_index1) 
            selection_tx2 = sequence(selection_index2) 
             
            Range("Y35").Offset(i - 1, 0).Value = selection_index1 
            Range("Z35").Offset(i - 1, 0).Value = selection_tx1 
            Range("AA35").Offset(i - 1, 0).Value = selection_index2 
            Range("AB35").Offset(i - 1, 0).Value = selection_tx2 
             
            If loopcount = 1000 Then 
                Exit Do 
            End If 
            loopcount = loopcount + 1 
    
        Loop 
         
        If prevseqlength >= 3 Then      'swap elements 
            temp = sequence(selection_index1) 
            sequence(selection_index1) = sequence(selection_index2) 
            sequence(selection_index2) = temp 
        End If 
         
    End If 
     
    a = 1 
    Do Until a > prevseqlength 
        Range("B35").Offset(i - 1, a - 1).Value = sequence(a) 
        a = a + 1 
    Loop 
     
    currentseq = sequence 

    currentseqlength = prevseqlength 
    Call eligible(currentseq, currentseqlength, seqfault) 
    Range("AC35").Offset(i - 1, 0).Value = seqfault 
    Range("AD35").Offset(i - 1, 0).Value = throwaway 
     
    throwaway = throwaway + 1 
    If throwaway > 200 Then 
        throwaway = throwaway 
        currentseq = prevseq 
        seqfault = 0 
    End If 
     
Loop 
'Range("B35").Offset(i - 1, selection_index1 - 1).Font.Bold = True 
'Range("B35").Offset(i - 1, selection_index2 - 1).Font.Bold = True 
'Range("B35").Offset(i - 2, selection_index1 - 1).Font.Bold = True 
'Range("B35").Offset(i - 2, selection_index2 - 1).Font.Bold = True 
Range("X35").Offset(i - 1, 0).Value = "SWAP" 
 
End Sub 
 
 
REMOVAL 
 
Sub removeseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
Dim sequence 
Dim selection_index, a, throwaway As Integer 
Dim selection_tx As String 
Dim r_num As Double 
ReDim sequence(1 To prevseqlength) As String 
seqfault = 1 
throwaway = 0 
Do Until seqfault = 0 
    sequence = prevseq 
    r_num = Rnd 
    selection_index = Int(r_num * (prevseqlength - 1)) + 1 
    selection_tx = sequence(selection_index) 
    Range("Y35").Offset(i - 1, 0).Value = selection_index 
    Range("Z35").Offset(i - 1, 0).Value = selection_tx 
     
    If selection_index > 1 Then 
        ReDim arr1(1 To selection_index - 1) As String 
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        ReDim arr2(1 To prevseqlength - selection_index) As String 
        ReDim newseq(1 To prevseqlength - 1) As String 
         
        For n = 1 To UBound(arr1) 
            newseq(n) = sequence(n) 
        Next n 
         
        For n = 1 To UBound(arr2) 
            newseq(n + selection_index - 1) = sequence(n + selection_index) 
        Next n 
    Else 
        ReDim newseq(1 To prevseqlength - 1) As String 
        For n = 1 To UBound(newseq) 
            newseq(n) = sequence(n + 1) 
        Next n 
    End If 
     
    a = 1 
    Do Until a > prevseqlength - 1 
        Range("B35").Offset(i - 1, a - 1).Value = newseq(a) 
        a = a + 1 
    Loop 
    currentseq = newseq 
    currentseqlength = prevseqlength - 1 
     
    Call eligible(currentseq, currentseqlength, seqfault) 
    Range("AC35").Offset(i - 1, 0).Value = seqfault 
    Range("AD35").Offset(i - 1, 0).Value = throwaway 
    throwaway = throwaway + 1 
    If throwaway > 200 Then 
        throwaway = throwaway 
        currentseq = prevseq 
        seqfault = 0 
    End If 
Loop 
 
Range("X35").Offset(i - 1, 0).Value = "REMOVAL" 
'Range("B35").Offset(i - 2, selection_index - 1).Interior.ColorIndex = 3 
 
End Sub 
 
 

ADDITION 
 
Sub addseq(i, prevseq, currentseq, currentseqlength, prevseqlength) 
Dim sequence 
Dim selection_index, insert_selection_index, a, throwaway As Integer 
Dim selection_tx, insert_selection_tx As String 
Dim r_num, r_num2 As Double 
ReDim sequence(1 To prevseqlength) As String 
Dim txlist(1 To 14) As String 
txlist(1) = "ABT" 
txlist(2) = "ABTS" 
txlist(3) = "ADA" 
txlist(4) = "CTZ" 
txlist(5) = "ETN" 
txlist(6) = "GOL" 
txlist(7) = "HCQ" 
txlist(8) = "IFX" 
txlist(9) = "MTX" 
txlist(10) = "RTX" 
txlist(11) = "PC" 
txlist(12) = "SSZ" 
txlist(13) = "TCZ" 
txlist(14) = "TICORA" 
seqfault = 1 
throwaway = 0 
 
Do Until seqfault = 0 
    sequence = prevseq 
    r_num = Rnd 
    selection_index = Int(r_num * (prevseqlength - 1)) + 1 
    selection_tx = sequence(selection_index) 
    Range("Y35").Offset(i - 1, 0).Value = selection_index + 1 
     
    If selection_index > 1 Then 
             
        ReDim arr1(1 To selection_index) As String 
        ReDim arr2(1 To prevseqlength - selection_index) As String 
        ReDim newseq(1 To prevseqlength + 1) As String 
         
        For n = 1 To UBound(arr1) 
            newseq(n) = sequence(n) 
        Next n 
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        loopcount = 1 
         
        Do 
            r_num2 = Rnd 
            insert_selection_index = Int(r_num2 * 14) + 1 
            insert_selection_tx = txlist(insert_selection_index) 
            Range("Z35").Offset(i - 1, 0).Value = insert_selection_tx 
            If IsInArray(insert_selection_tx, sequence) Then 
                 
            Else 
                Exit Do 
            End If 
            If loopcount = 1000 Then 
                Exit Do 
            End If 
            loopcount = loopcount + 1 
        Loop 
        newseq(selection_index + 1) = insert_selection_tx 
         
        For n = 1 To UBound(arr2) 
            newseq(n + selection_index + 1) = sequence(n + selection_index) 
        Next n 
    Else 
        ReDim newseq(1 To prevseqlength + 1) As String 
        loopcount = 1 
        Do 
            r_num2 = Rnd 
            insert_selection_index = Int(r_num2 * 14) + 1 
            insert_selection_tx = txlist(insert_selection_index) 
            Range("Z35").Offset(i - 1, 0).Value = insert_selection_tx 
            If IsInArray(insert_selection_tx, sequence) Then 
                 
            Else 
                Exit Do 
            End If 
                        If loopcount = 1000 Then 
                Exit Do 
            End If 
            loopcount = loopcount + 1 
        Loop 
        newseq(selection_index) = insert_selection_tx 
         

        For n = 1 To UBound(newseq) - 1 
            newseq(n + 1) = sequence(n) 
        Next n 
    End If 
     
    a = 1 
    Do Until a > prevseqlength + 1 
        Range("B35").Offset(i - 1, a - 1).Value = newseq(a) 
        a = a + 1 
    Loop 
 
    currentseqlength = prevseqlength + 1 
    Call eligible(newseq, currentseqlength, seqfault) 
    Range("AC35").Offset(i - 1, 0).Value = seqfault 
    currentseqlength = prevseqlength - 1 
    Range("AD35").Offset(i - 1, 0).Value = throwaway 
     
    throwaway = throwaway + 1 
    If throwaway > 200 Then 
        throwaway = throwaway 
        currentseq = prevseq 
        seqfault = 0 
    End If 
Loop 
 
'If selection_index > 1 Then 
'    Range("B35").Offset(i - 1, selection_index).Interior.ColorIndex = 4 
'Else 
'    Range("B35").Offset(i - 1, selection_index - 1).Interior.ColorIndex = 4 
'End If 
 
currentseq = newseq 
If throwaway > 200 Then 
    currentseqlength = prevseqlength 
    currentseq = prevseq 
Else 
    currentseqlength = prevseqlength + 1 
End If 
 
Range("X35").Offset(i - 1, 0).Value = "ADDITION" 
 
End Sub 
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