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Abstract 
 
Irradiated graphite is a problematic nuclear waste stream and currently raises significant concern 

worldwide in identifying its long-term disposal route. This thesis describes the use of glass 

materials for the immobilisation of irradiated graphite prepared by microwave, conventional and 

sparks plasma sintering methods. Several potential glass compositions namely iron phosphate, 

aluminoborosilicate, calcium aluminosilicate, alkali borosilicate and obsidian were considered 

for the immobilisation of various loadings of graphite simulating irradiated graphite. The 

properties of the samples produced using different processing methods are compared selectively. 

An investigation of microwave processing using an iron phosphate glass composition revealed 

that full reaction of the raw materials and formation of a glass melt occurs with consequent 

removal of porosity at 8 minutes microwave processing. When graphite is present, iron 

phosphate crystalline phases are formed with much higher levels of residual porosity of up to 43 

% than in the samples prepared using conventional sintering under argon.  It is found that 

graphite reacts with the microwave field when in powder form but this reaction is minimised 

when the graphite is incorporated into a pellet, and that the graphite also impedes sintering of the 

glass. Mössbauer spectroscopy indicates that reduction of iron occurs with concomitant graphite 

oxidation. The production of graphite-glass samples using various powdered glass compositions 

by conventional sintering method still resulted in high porosity with an average of 6-17 % for 

graphite loadings of 20-25 wt%. Due to the use of pre-made glasses and controlled sintering 

parameters, the loss of graphite from the total mass is reduced compared to the microwaved 

samples; the average mass loss is < 0.8 %. The complication of iron oxidation and reduction is 

present in all the iron containing base glasses considered and this increases the total porosity of 

the graphite-glass samples. It is concluded that the presence of iron in the raw materials or base 

glasses as an encapsulation media for the immobilisation of the irradiated graphite waste is not 

advisable. The production of glass and graphite-glass samples based calcium aluminosilicate 

composition by spark plasma sintering method is found highly suitable for the immobilisation of 

irradiated graphite wastes. The advantages of the method includes short processing time i.e. < 40 

minutes, improved sintering transport mechanisms, limited graphite oxidation, low porosity (1-4 

%) and acceptable tensile strength (2-7 MPa). The most promising samples prepared using spark 

plasma sintering method were loaded with 30-50 wt% graphite. 
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1.  Introduction 
 
The maintaining, decommissioning and dismantling of certain types of nuclear power plants used 

to generate electricity are mainly responsible for the production of problematic irradiated 

graphite wastes. Currently, the conditioning and disposal plan for the irradiated graphite waste 

remains unclear in all waste producing countries (i.e. UK, Russia, US, France). The major 

concern related to the irradiated graphite is the huge volume of the waste, which accounted 

worldwide about 260 000 tonnes and the present of long-lived radionuclides i.e. 3H, 14C, 16Cl. 

Historically relative little attention has been given to identifying a disposal strategy for irradiated 

graphite waste. The irradiated graphite waste now urgently requires disposal management 

solutions and this triggered interest in studying immobilisation methods that may be suitable for 

the production of irradiated graphite wasteform based glass materials.   

 

A survey of the literature reveals several potential immobilisation methods that may suitable for 

the production of graphite glass composite wasteforms. This leads to the novel aim of the thesis; 

to investigate the potential of glass materials as a host for the production of irradiated graphite 

wasteforms prepared using unconventional and conventional processing methods. The aim can 

be divided into three primary research objectives as follow: 

 

i. To assess the potential of microwave processing method for the production of graphite 

wasteforms using iron phosphate glass.  

ii. To explore and assess the potential of conventional sintering in the production of graphite 

wasteforms prepared using various glass systems as a host. 

iii. To investigate the potential of spark plasma sintering method for the production of 

graphite wasteforms using calcium aluminosilicate glass. 

 

In order to achieve the mentioned aim and objectives, the thesis is structured and organised into 

six further chapters including literature review and theory, materials and experimental methods, 

result and discussion I, result and discussion II, result and discussion III and finally conclusion 

and suggestions for further work. Chapter 2 provides the background of nuclear power reactors 

as a source of radioactive wastes and particular focus is given to irradiated graphite waste; the 
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structure, properties, waste origin and problems arising from the irradiated graphite waste are 

reviewed. Attention is also given to recognise the suitability and materials processing techniques 

of microwave, conventional sintering and spark plasma sintering for the production of graphite-

glass wasteforms. 

 

Chapter 3 presents a description of graphite simulant and details about immobilisation methods 

used and processing methods employed throughout the preparation of graphite-glass composite 

wasteforms. All the basic principles of the instruments and the materials characterisation 

techniques conducted on the produced samples are explained in detail. This includes a variety of 

analytical techniques used such as particle size analysis, thermogravimetric analysis, differential 

thermal analysis, dilatometry, chemical analysis, volume shrinkage, assessing mass loss, density, 

porosity, X-ray diffraction, fourier transform infrared spectroscopy, microscopy, Raman 

spectroscopy, Mössbauer spectroscopy and indirect tensile testing – Brazilian method. 

 

Results and discussion are split into three chapters and structured accordingly to each of the 

research objectives. Chapter 4 gives the characterisation results of graphite simulant, iron 

phosphate glass and composite wasteforms prepared using microwave as well as a comparison of 

potential microwave samples with samples produced using conventional sintering. Findings from 

Chapter 4 lead to the development of Chapter 5, which discussed the use of various glass 

compositions as a host to encapsulate graphite simulant. The iron phosphate glass composition is 

used as a baseline in comparing with the results obtained using other glass compositions namely 

alumino-borosilicate, calcium aluminosilicate, modified alkali borosilicate and obsidian. Based 

on Chapter 4 and 5, Chapter 6 was developed and specifically focuses on the production of low 

porosity graphite-glass wasteforms using calcium aluminosilicate glass. The obtained data were 

compared with the sample produced using conventional sintering.  

 

The key findings from the results and discussion chapters are summarised in Chapter 7. In this 

chapter, future works and recommendations are also presented as guidelines to identifying an 

ideal wasteform for the immobilisation of irradiated graphite waste.   
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2. Literature Review and Theory 
 
2.1.  History, Current and Future Usage of Nuclear Technology 

 

In 1932, James Chadwick discovered the neutron (Chadwick 1932). The next year Enrico Fermi 

found a much greater variety of artificial radionuclides was formed when using neutrons instead 

of protons as a source for bombarding the atoms. The history of nuclear fission started at the end 

of 1938, when Otto Hahn and Fritz Strassmann attempted to create transuranic elements by 

bombarding uranium with neutrons. They expecting heavy elements, however, the product 

produced from the experiment were lighter elements including 141Ba and others which were 

about half the mass of uranium. This result was interpreted by Lise Meitner and Otto Frisch 

working under Neil Bohr (Meitner and Frisch 1939); they suggested that the neutron was 

captured by nucleus and causing severe vibration leading to the nucleus splitting into two 

roughly equal parts which termed fission (essentially the fission of 235U had occurred). In 1939, 

Otto Frisch successfully confirmed that the fission of 235U yielded numerous amount of energy, 

~200 MeV (Frisch 1939) and realised the potential of a fission chain reaction. This was the first 

experiment confirming the theory of Albert Einstein, which explained the equivalence between 

mass and energy, E = mc2 (Einstein 1905).  

 

Motivated from the neutron-induced fission, and thus potentiality of fission chain reaction to 

generate huge amounts of energy in a short time period, Enrico Fermi and co-worker developed 

the first man-made nuclear reactor (Chicago pile 1, originally known as ‘atomic piles’) with self 

sustaining nuclear fission chain reaction on 2 Dec 1942. The reactor utilised natural abundance 

of U, was graphite moderated, and controlled by a removable Cd neutron absorber; in order to 

achieve criticality (balance of neutrons for sustaining nuclear fission chain reaction), the crude 

reactor used 6 tonnes of uranium metal, 50 tonnes of uranium oxide and ~400 tonnes of graphite 

(Greenwood and Earnshaw 1997). It is unfortunate that the first nuclear reactor was purposely 

aimed to build nuclear weapons as part of Manhattan Project, evidenced in Trinity test explosion 

(16th July 1945) and controversial dropping of two atomic bombs to end World War II with 

Japan (6,9th August 1945). Nevertheless, it is evidence that graphite has been used in nuclear 

technology from the earliest days. 
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The new era of nuclear reactors used for generating electricity began in the 1950s and they have 

been improved ever since. The first nuclear reactor to generate electricity was built in a small 

scale by Argonne National laboratory, Idaho, USA in 1951. The reactor was called Experimental 

Breeder Reactor (EBR-1) and successfully powered four 100 W light bulbs. At present, more 

than 400 nuclear reactors are being used to generate electricity and the reference data of operated 

reactors connected to the grid at the end of 2013 is listed in Table 2-1. Note that the graphite is 

continuously used as moderator in current operated gas-cooled and light water graphite reactors.   

 

Table 2-1: Nuclear power reactors in commercial operation, 31 Dec 2013 (IAEA 2014b). 

 

Reactor type Main 
countries Number GWe Fuel Coolant  Moderator 

Pressurised Water 
Reactor (PWR) 
 
 
Boiling Water 
Reactor (BWR) 
 
Pressurised Heavy 
Water Reactor 
‘CANDU’ (PHWR) 
 
Gas-cooled Reactor 
(AGR, Magnox) 
 
 
Light Water 
Graphite Reactor 
(RBMK, EGP) 
 
Fast Neutron 
Reactor (FBR) 

US, Fance, 
Japan, 
Russia, China 
 
US, Japan, 
Sweeden 
 
Canada 
 
 
 
UK 
 
 
 
Russia 
 
 
 
Russia 

273 
 
 
 

81 
 
 

48 
 
 
 

15 
 
 
 

15 
 
 
 
2 

253 
 
 
 

76 
 
 

24 
 
 
 
8 
 
 
 

10.2 
 
 
 

0.6 

Enriched 
UO2 
 
 
Enriched 
UO2 
 
Natural UO2 
 
 
 
Natural U 
metal, 
enriched UO2 
 
Enriched 
UO2 
 
 
PuO2 and 
UO2 

Water 
 
 
 
Water 
 
 
Heavy 
Water 
 
 
CO2 
 
 
 
Water 
 
 
 
Liquid 
Sodium 

Water 
 
 
 
Water 
 
 
Heavy 
Water 
 
 
Graphite 
 
 
 
Graphite 
 
 
 
None 

Total 434 ~372    

 

 

The electricity supply from nuclear reactors worldwide is estimated to be about 11.3 % in 2013; 

the other types of energy sources generating electricity are estimated to contribute about 68.5, 
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17.8, and 2.4 % for thermal (solids, liquids, gasses, biomass and waste), hydro and renewable 

(geothermal, wind, solar, tide) energy respectively (IAEA 2014a). The use of nuclear power 

reactors to generate electricity is gaining attention as it makes significant contribution to the 

mitigation of green-house gas emissions e.g. in 2009, it was claimed that the nuclear power 

reactors reduced by about 10 % of CO2 emission from the world energy consumption 

(Adamantiades and Kessides 2009, Menyah and Wolde-Rufael 2010). Furthermore the use of a 

small amount of fuel, improved design of reactor and reliable energy source making the nuclear 

reactors favourable technology among the others in terms of generating electricity.  

 

It is clear that the global plan is to reduce the CO2 emissions, minimise the green-house gases 

and consequently decrease the amount of manmade global warming. This means that the use of 

coal thermal power plan will be further reduced and to meet the demand for electricity 

consumption that keeps increasing (global energy demand is estimated to increase by ~37 % by 

2040), the use of nuclear, hydro and renewable energy is being increased (IEA 2014b). It is also 

evidence in the past (from 1973-2012) that the total global electricity demand is increased from 

9.4 to 18.1 % (IEA 2014a). As a result, more nuclear reactors are being built and are planned to 

be built in the future. In 2013 alone, 77 nuclear reactors were under construction and 48 of those 

reactors were located in Asia (IAEA 2013). This is the highest number of reactors being 

constructed since 1989 and the figure is more likely to increase in the future, which may account 

for ~17 % of the global electricity production in 2050 (OECD et al 2015). Furthermore 

generation IV nuclear reactors (expected to arrive in ~2030) such as prismatic and pebble bed 

designed High Temperature Gas-cooled Reactor (HTGR) also utilise graphite as a reactor core 

and fuel matrix – tristructural-isotropic (TRISO) fuel and fuel pebble (OECD Nuclear Energy 

Agency 2014). Thus one can predict that more irradiated graphite will be produced in the future. 

 

2.2.  Commercial Nuclear Power Reactor 

 

Commercial nuclear power reactors generate electricity by converting thermal energy from 

nuclear fission reactions (heat generated from kinetic energy of fission products, absorption of 

gamma rays and radioactive decay from fission products) to mechanical energy. In principle, the 

process usually initiated by transferring heat to coolant and then water to produce high pressure 
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steam of which used to rotate the multiple blades in the turbine. The turbine is designed to 

minimise the energy lost and capable to condense the steam back into water so that the cycle 

could operate continuously. The kinetic energy created from the rotation of blades in the turbine 

is converted into electrical energy by a generator. Essentially, all the nuclear power reactors 

utilise similar concepts to generate electricity and schematics of the most popular commercial 

reactors to date is shown in Figure 2-1. Note that the turbine and generator parts of the reactors 

are not shown in the figure. 

 

 
 

Figure 2-1: Schematic of currently used nuclear reactors, (a) PWR, (b) BWR, (c) PHWR/Candu 

and (d) AGR (taken from WNA 2015).  

 

 

  

   

  

 

    (a)  (b) 

 (c)  (d) 
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2.2.1. Main Components  

 

The nuclear power reactors currently used for generating electricity can be categorised into 2 

types: fast and thermal (slow) reactors. Unlike the explosion of nuclear weapons, nuclear power 

reactors are meant to control the nuclear fission activity and sustain the nuclear chain reaction as 

well as maintaining the production of electricity in a long term condition; the expectation of 

lifespan is ~30-40 years. As evidenced in Table 2-1, the use of fast reactors (FBR) is less 

favourable compared to the thermal reactors (PWR, BWR, PHWR, AGR, Magnox, RBMK, 

EGP). The reason behind this is solely because fast reactors are difficult to build and very 

expensive to operate, although fast reactors are capable of generating ~60 times energy than 

thermal reactors. In spite of both reactors are technically different, most of the reactors 

components are largely similar and can be simplified as follows (Duderstadt and Hamilton 1976, 

Wilson 1996, IAEA 2007, Stacey 2007, Lewis 2008): 

 

Fuel (fissile element) – The main difference between both fast and thermal reactors are the types 

of fuels. A fast reactor usually employs enriched 239Pu or enriched 235U (require about 20-30% of 

fissile nuclei) core surrounded with 238U (fissionable/fertile element) blanket. This type of 

reactor generates more fuel than it consumes; this occurs because 238U has high probability to 

capture a fast neutron from the fission of 239Pu or 235U, neutrons induced by fission are then 

captured by 238U  and consequently breed 239Pu as well as releasing two β-decays (Cochran et al 

2010). The new generated 239Pu radionuclides can later be utilised as new fuel in future reactors. 

In contrast, thermal reactor mainly uses natural uranium (contained ~0.7 235U) or enriched 235U 

(up to 5 % of 235U) fuel. Generally the fuel is fabricated into pellets, being vertically 

arranged/stacked in a cladding tube (i.e. zircaloy, stainless steel, Mg alloy) called fuel rod and 

numerous fuels rod form the fuel assembly that specifically designed to be lifted into and out of 

the reactor core. To start the nuclear fission reaction, a neutron is captured by a fissile nucleus 

and the reactions occurring from 235U or 239Pu are given in Equation 2-1 and 2-2 respectively. 

Note that Equation 2-1 and 2-2 are the fissions caused by the thermal neutron without 

considering the energy from neutrinos. 

 

MeV9.192(average) neutrons 2.4fragmentsfission neutronU235 ++→+           [2-1] 
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MeV5.198(average) neutrons 2.9fragmentsfission neutronPu239 ++→+        [2-2] 

 

Moderator – In a fast nuclear reactor, the use of moderator is not necessary because the reactor 

utilises fast neutrons to cause fission in their fuel. Due to the low probability of fission versus 

neutron capture, the highly enriched fissile fuel is used to sustain the chain reaction. However, in 

the thermal reactors, the fast neutrons (resulting from fission) must be slowed by the moderator; 

as fast neutrons (kinetic energy ≥ 1 MeV) are most likely to be captured by 238U, which is non-

fissile. Only the thermal neutrons (kinetic energy < 1 eV) have a high cross-section (probability) 

to efficiently maintain and sustain the fission reaction of 235U. Theoretically, the neutrons are 

slowed by collisions with nuclei of about similar mass and these materials are not neutron 

absorbers. The common moderators used to date are ordinary water and purified graphite as well 

as the most excellent one but expensive heavy water. For gas-cooled nuclear power reactors i.e. 

AGR and Magnox, purified graphite is the most suitable material and widely used as a 

moderator. In fact the voluminous irradiated graphite waste largely originates from moderator 

part of nuclear power plant.  

 

Control Rod – The purpose of control rod is to maintain the rate of fission chain reaction, so 

that the nuclear power reactor achieves criticality and operates at a steady power level. To 

control the rate of fission reaction, neutron-absorbing materials whose nuclei absorb neutrons 

without undergoing any addition reaction, such as B, Cd or Hf are used for the production of 

control rods. The control rods are being inserted or withdrawn from the reactor core to control 

the number of the neutrons; absorbing more neutrons means that less neutrons are available for 

nuclear fission, thus inserting the control rod deeper into the reactor core will reduce the power 

output of the nuclear reactor and vice versa. The control rod is also used to halt the nuclear 

power reactor by absorbing all the neutrons to stop the fission reactions. 

 

Coolant – Nuclear reactor coolant circulating around the reactor core and is primarily used to 

remove and transfer the heat energy from the core to generate steam. The coolant must be mobile 

in nature, hence only satisfied by liquid or gas materials. In fast reactors, the use of moderator 

type coolants (water, heavy water) is not possible as water can moderate the fast neutron. In 

addition, the more compact core of fast reactor produces high temperature that cause severe 
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cooling problems, thus a more efficient coolant such as liquid Na or Pb is used. In thermal 

reactors, ordinary water, heavy water (water usually pressurised to maintain at liquid phase) or 

CO2 gas are commonly used as a coolant. All the thermal reactors except BWR type separate the 

cooling system from the water that will be boiled to produce high pressure steam.  

 

Pressure Vessel or Protective vessel – Fast reactors do not utilised pressurised coolant, thus the 

protective vessel is used as containment for its coolant and reactor core. In the thermal reactors, a 

steel pressure vessel (PWR, BWR, AGR, Magnox) or pressure tubes (PHWR) is used to hold the 

circulated pressurised coolant as well as acting as containment for the moderator, control rods 

(except PHWR) and reactor core (see Figure 2-1). The pressure vessel/tube or protective vessel 

also worked as the first layer of shielding; preventing most of the radiation and radionuclides 

from leaching out to the biological environment. In some cases, a reflector is installed inside the 

vessel or surrounding the core to reflect the scattered neutrons back to the reactor core 

(Duderstadt and Hamilton 1976); this increases the efficiency of the fission of the fuel and at the 

same time protects the vessel from neutron induced damage which decreases the lifespan of the 

vessel. Characteristically, the reflector possesses similar properties to the moderator and 

sometimes similar materials serve a dual purpose in the nuclear power reactor. The most 

common material used as a reflector is graphite.   

 

Steam Generator – This component is specifically designed as a heat exchanger, which 

converts water into steam. The steam generator is constructed separately in fast and thermal 

reactors. Only BWR (thermal reactor) boils the water in a pressurised vessel and directly uses 

steam generated in-situ by this process.  

 

Containment and Shielding – The purpose of containment and shielding is to protect the 

atmosphere and biological environment from contamination by radionuclides and radiation as 

well as acting as a safety system if any malfunctions of the components occur inside the reactors. 

Nuclear reactors are a source of intense radiation and contain radioactively contaminated 

components/systems, the whole reactor apart from the turbine (excluding BWRs) must be 

isolated and shielded from the biological system. A BWR usually needs a complete containment 

and shielding due to the whole components including the turbine containing radioactive 
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materials. Typically, a metre thick reinforced concrete or steel/lead structure is used as 

containment and shielding in current commercial reactors. 

 

Turbine and Generator – The turbine and generator are the key components to generate 

electricity from the nuclear energy and these components are being installed in all types of 

commercial nuclear reactors. In practice, the high pressure steam turns the turbine and the 

generator converts the produced mechanical energy to electrical energy by using an 

electromagnetic field. The produced electrical energy is then manipulated by the transformers, 

connected to the grid and supplied to the consumers. 

 

2.3.  Nuclear Wastes 

 

Nuclear power reactors are a mature technology and have been proven safe while generating 

reasonably clean electrical energy. The drawback of using nuclear power reactor is the fact that 

the nuclear reactor creates significant amount of radioactive waste from the fission process. The 

decay process of the waste emitting α, β and γ radiation can take up to millions of years. This is 

problematic as within this time period the nuclear wastes must be isolated from biosphere; the 

migration of the radioactive materials to the biosphere causes adverse effects and is highly 

hazardous to all biological systems/organisms. Therefore the nuclear waste must be treated with 

an appropriate fashion, stored in properly engineered storage facility and must not impose undue 

burden for future generations (IAEA 2011). The classification of the nuclear waste depends on 

the waste management policy of each waste producing country, typically taking account of the 

radiation levels, decay activity and disposal issues. In this study, the classification of the waste, 

characterisation and the waste disposal management will be based on the current UK regulations 

and policies. The radioactive wastes in the UK are divided into three categories and the details 

are as follows: 

 

2.3.1. High Level Waste 

 

High Level Waste (HLW) is defined as waste “in which the temperature may rise significantly as 

a result of their radioactivity, so that this factor has to be taken into account in designing storage 
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or disposal facilities” (Her Majesty’s Stationery Office 1995). Within the UK, HLW mainly 

existed in liquid form and is a by-product from the reprocessing of spent nuclear fuel; the process 

is carried out at Sellafield and will continue until 2018 (NDA and DECC 2013). Due to the heat 

generated and very high radiation levels, the HLW liquid requires continuous engineered cooling 

and substantial shielding. In order to increase the efficiency of the nuclear fuel cycle, the spent 

nuclear fuel reprocessing is aimed at recovering/extracting the (re-)usable uranium and 

plutonium. The extracted uranium and plutonium are later being recycled for the production of 

new fuel called mixed oxide (MOX) fuel. For immobilisation, the HLW liquid is calcined to 

become solid, mixed with alkali borosilicate glass frit and is converted into homogeneous glass 

by a vitrification process, poured into a stainless steel canister after which a lid is welded onto it 

(~150 litre capacity) and stored in an engineered air-cooled facility at Sellafield for at least 50 

years to allow the reduction of radioactivity by natural decay processes; the current plan for final 

disposal of the HLW canisters is long term disposal in a geological disposal facility (Ojovan and 

Lee 2005, CoRWM 2006, Defra et al 2008, NDA 2009, DECC 2014). 

 

2.3.2. Intermediate Level Waste 

 

Intermediate Level Waste (ILW) is defined as waste “with radioactivity levels exceeding the 

upper boundaries for low level wastes, but which do not require heating to be taken into account 

in the design of storage or disposal facilities” (Her Majesty’s Stationery Office 1995). The ILW 

may contain very long half live radionuclides, in particular, alpha emitting radionuclides and can 

require significant shielding during disposal process and storage (CoRWM 2006). Essentially, 

ILW comprises a wider range of materials than HLW and the major constituents of the waste 

include fuel cladding, irradiated graphite (see Section 2-4), contaminated reactor components 

and sludge from the treatment of radioactive liquid effluents. Typical treatment for ILW is 

cement encapsulation, packaged in 500 litre or higher volume containers manufactured from 

stainless steel, iron or concrete and temporarily stored in interim ILW storage at Berkeley, 

Bradwell, Hinkley Point A and Sizewell A; the final disposal plan of the ILW will be similar to 

the HLW namely in a geological disposal facility but not located in similar vault (Ojovan and 

Lee 2005, Lee et al 2013, Magnox and NDA 2013, DECC 2014). 
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2.3.3. Low Level Waste 

 

Low Level Waste (LLW) is defined as “radioactive waste having a radioactive content not 

exceeding 4 GBq per tonne of alpha or 12 GBq per tonne of beta/gamma activity”; a sub-

category of LLW is Very Low Level Waste (VLLW), which is split into two groups according to 

the specific disposal method as follows (Defra et al 2007): 

 

• Low volume VLLW (dustbin loads) – Defined as “radioactive waste which can be safely 

disposed of in an unspecified destination with municipal, commercial or industry waste 

(dustbin disposal), each 0.1 m3 of waste containing less than 400 kBq of total activity or 

single item containing less than 40 kBq of total activity”. With respect to VLLW that 

contains 14C and 3H, the activity limits from both radionuclides is 4000 and 400 kBq in 

each 0.1 m3 and for any single item respectively. No controls on disposal are needed 

when removing these wastes from premises to a disposal site. 

• High volume VLLW (bulk disposals) – Defined as “radioactive waste with maximum 

concentration of 4 MBq per tonne of total activity which can be disposed of to specified 

landfill sites”. The concentration limit for waste containing 3H is 40 MBq per tonne. 

Controls on disposal specified by the environmental regulators are required when 

removing these wastes from premises to a disposal site. 

 

In general, LLW and VLLW are materials that are lightly contaminated with radionuclides or 

materials that have been used in environment where radioactive materials are present. The 

volume of the wastes commonly arises from soil, metal components, building rubble, plastic, 

paper, protective clothing and laboratory equipment (Lee et al 2013). Since 1995, the LLW has 

been compacted in steel drums, stacked into larger containers, cement grouted and finally 

stored/disposed in an engineered concrete vault near Drigg, Cumbria (NDA 2010, 2011). The 

VLLW is either incinerated or undergoes controlled landfill disposal according to the 

aforementioned waste classification.  
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2.4.  Irradiated Graphite 

 

Irradiated graphite is a problematic waste resulting from the long term exposure of nuclear grade 

graphite or purified graphite to neutrons and mainly originates from gas-cooled nuclear power 

reactors. Currently, all the irradiated graphite waste producing countries have raised significant 

concerns about the management and disposal routes for the irradiated graphite waste. It is also 

worth mentioning that at present, there is no ideal solution for the final disposal of irradiated 

graphite (IAEA 2006, 2010). In addition, the complexity of irradiated graphite waste usually 

makes the handling (dismantling during decommissioning), transportation and waste packages 

challenging. Although the literature on the immobilisation of irradiated graphite waste is limited 

at the time being, in this section, it is intended to discuss the available literature about nuclear 

graphite, which includes the structure and properties of graphite, production of nuclear graphite, 

waste origin and volume, radiation effects on graphite and finally challenges for its waste 

immobilisation and disposal.        

 

2.4.1. Structure and Properties of Graphite 

 

Graphite is a crystalline allotrope of carbon that is made up from stacks of parallel aromatic or 

graphene layers. Each sp2 hybridised carbon atom in the graphene layer plane is bonded with 

three other similar carbon atoms to form a series of continuous hexagons in a network (infinite 

two-dimensional molecule). There are 2 types of bonds present in the graphene layer; (i) sigma 

bond (covalent) between each carbon atom in the hexagon structure, the bond length is 0.141 nm 

and it has a high strength of 524 kJ/mole; (ii) π-bond (van der Waals) from the hybridised fourth 

valence electron located perpendicular to the graphene layer plane paired with another 

delocalised electron from the adjacent graphene layer plane, the spacing between the graphene 

layer plane is 0.335 nm (twice the van der Waals radius of carbon) and it has a low strength of 7 

kJ/mole (Kelly 1981, Pierson 1993, Burchell 1999). The weak van der Waals bonds explains the 

soft characteristic of graphite which in general easily shears (cleaves) when force is applied. In 

nature, there are two known structures of graphite formed by different graphene staking 

sequences; -ABABAB- stacking for hexagonal graphite and -ABCABCABC- stacking for 

rhombohedral graphite (see Figure 2-2 and 2-3).  
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Figure 2-2: Hexagonal unit cell of graphite, space group: mmc/P6D 3
4
h6 −  (Pierson 1993). 

 

 
 

Figure 2-3: Rhombohedral unit cell of graphite, space group: m3RD5d3 −  (Reynolds 1968). 
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The hexagonal (alpha) structure of the graphite is thermodynamically stable and it is the 

commonest structure. In contrast, the rhombohedral (beta) graphite structure is 

thermodynamically unstable and the form is best known as an extended stacking fault of 

hexagonal graphite. The rhombohedral graphite is never found in the pure form and always 

exists in combination with hexagonal graphite. Normally natural and synthetic graphites contain 

a proportion of rhombohedrally structured material of which the amount found is typically less 

than 40 % (Pierson 1993, IAEA 2000). It is worthy of note that the content of rhombohedral 

graphite can be increased by grinding (shear deformation) and can also revert progressively to 

hexagonal graphite by heat treatment above 1300°C (Pierson 1993, IUPAC 1997). 

 

As mentioned previously, graphite is used in the nuclear industry due to its capability to reduce 

the kinetic energy of fission neutrons by collisions (moderator in Section 2.2.1) and it has a low 

neutron cross-section i.e. the value is around 3.5-3.8 mb for pure nuclear graphite (Nightingale 

1963). In addition, the properties of graphite such as being strong enough for structural 

components (produced by extrusion or vibration moulding or isostatic pressing), having good 

machinability, being stable and certified as one of the most inert materials make it highly 

attractive as well as suitable for many nuclear applications. The detailed properties of graphite 

can be seen in Tables 2-2 and 2-3; note that all the properties are based on the ideal graphite 

structure in powder form.  

 

Table 2-2: Physical properties of graphite (Kelly 1981, Pierson 1993, Burchell 1999). 

 

Property Description 

Colour 
Lattice parameters 
Atomic volume 
Theoretical density (300 K, 1 atm) 
Melting point (estimated) 

Black 
See Figure 2-2 
5.315 cm3/mol 
2.26 g/cm3 
4450 K 
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Table 2-3: Thermal, electrical, mechanical and chemical properties of graphite (Kelly 1981, 

Pierson 1993, Burchell 1999).  

 

Property Description 

Thermal 
Specific heat (at 25°C) 
Average thermal conductivity (at 25°C) 
 
 
Electrical 
Resistivity 
 
 
Mechanical  
Bulk Modulus 
Young’s modulus 
 
Chemical 
Low chemical resistance on these 
elements 
 
 

 
0.690-0.719 kJ/kg·K 
ab directions = 398 W/m·K, c direction = 2.2 
W/m·K 
 
 
ab directions = 2.5-5.0 × 10-6 ohm.m, c direction 
= 3000 × 10-6 ohm.m  
 
 
286 GPa 
ab directions = 1020 GPa, c direction = 36.3 GPa 
 
 
Liquefied – air, F2, He, H2, methane, N2, O2. 
Oxidising – Begins in air at 350-400°C 
Oxidising – F2, N2O4, O2 above 150°C 
Oxidising – Steam above 300°C 

 

2.4.2. Production of Nuclear Graphite 

 

Nuclear power reactors utilised highly purified synthetic polycrystalline graphite and the 

processing steps for the production of this material are shown in Figure 2-4. Basically, nuclear 

graphite is produced using a carbonaceous filler and carbonised binder by thermal, mechanical 

and chemical treatments. Special attention is given to producing a high degree of crystallinity, 

low porosity and high purity of the end product. The filler material can be petroleum coke, 

metallurgical coke, anthracite or lampblack, however, petroleum coke is the most common raw 

material used as it is cheap (considering tonnage quantities required) and can achieve a higher 

degree of crystallinity compared to the other mentioned materials. For the carbonised binder, 

coal-tar pitch (by-product of metallurgical coke production) is the material of choice as it has all 

the required properties such as being a good thermoplastic material, having high carbon content 

(~93 %), high specific gravity (1.3 g/cm3) as well as being relatively inexpensive from the 

tonnage quantity point of view. 
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Figure 2-4: Flow diagram showing the manufacturing process of nuclear graphite (Nightingale 

1963, Pierson 1993, Burchell 1999, Windes et al 2007). 

 

In the production of nuclear graphite, calcined petroleum coke is mixed with coal-tar pitch and 

sometimes additives are added i.e. furnace blacks, fine coke particles (< 10 µm) or extrusion oil 

which are added accordingly to the forming technique used, for example extrusion, vibration 
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moulding or cold isostatic pressing. The amounts of petroleum coke and coal-tar pitch are 

usually about 70 wt % and 30 wt % respectively. The produced green articles are baked at 

~1000°C (carbonisation) and impregnated with petroleum pitch several times (2-6) to increase 

strength and density of the bulk materials (Burchell 1999). The pre-treated bulk material is then 

graphitised at ~3000°C to form hexagonal graphite that closely matches the ideal hexagonal 

graphite structure. During graphitisation, chemical purification is carried out using cleaning 

agents (i.e. chlorine, fluorine, sodium fluoride, magnesium fluoride) and essentially heat treated 

in a halogen atmosphere. It is well known that halogen gases are capable of penetrating the pore 

structure of graphite, reacts with the impurities (neutron absorbing elements i.e. aluminium, 

boron, calcium, iron, silicon, vanadium, titanium) and vaporises as volatile halide salts. In the 

past (~1960), both chlorine and Freon gases were used to purify the graphite and in order to 

remove the residual chlorine from the graphite pore structures, the system was flushed with 

nitrogen or inert gas (Nightingale 1963). There is no clear information on any other gases used to 

flush the system, however the use of nitrogen is questionable as nitrogen will increase the 

production of 14C (see Section 2.4.4). It should be stressed that the residual impurities from the 

graphite and purification process also lead to the creation of problematic radionuclides. Due to 

the different raw materials, manufacturing and purification processes used, the properties of 

nuclear graphite are in general not similar as shown in Table 2-4; see also Table 2-5 for the 

chemical impurities detected in AGR and Magnox nuclear graphite.  
 

Table 2-4: Characteristics of nuclear graphite (Lim et al 2008, Béghein et al 2012). 
 

Parameter Grade of nuclear graphite 
IG-11 NBG-17 NBG-18 

Raw material 
Forming technique 
Bulk density (g/cm3) 
Impurity (ppm) 
 
 
 
 
 

Petroleum coke 
Isostatic pressing 
1.77 
Ash = < 20  
B = 1.4  
Si = 0.7 
Ti = 0.6 
V = 0.23 
Na, Al, K, Ca, Cr, Mn, 
Fe, Cu, Ni = < 0.1 

Pitch coke 
Vibration moulding 
1.89 
Ash = 180 
B = 0.9 
Cl = < 10 
U = < 0.13 
Th = < 0.05 

Pitch coke 
Vibration moulding 
1.85 
Ash = 180 
B = 0.9 
Cl = < 10 
U = < 0.13 
Th = < 0.05 

 



19 

 

Table 2-5: Impurities detected in Magnox and AGR nuclear graphite (White et al 1984). 

 

Element Magnox (ppm) AGR (ppm) 

B 
N 
Na 
Mg 
Al 
Si 
S 
Cl 
Ca 
Ti 
V 
Cr 
Mn 
Fe 
Co 
Ni 
Zn 
Sr 
Mo 
Sn 
Ba 
W 
Pb 

Li, Be, Ag, Cd, In, Sm, 
Eu, Gd, Dy, Bi 

0.1 
10 
1.0 
0.1 
1.0 
35 
50 
2.0 
35 
3 
12 

0.35 
0.04 
10 

0.02 
1.0 
0.13 
0.4 
0.1 
0.05 
1.5 
0.12 
0.12 
< 0.1 

0.5 
10 
4.0 
0.4 
4.0 
35 
60 
4.0 
25 
0.7 
0.4 
0.4 
0.25 
28 

0.70 
6.0 
1.0 
0.4 
2.5 
1.0 
0.5 
0.15 
0.8 

< 0.1 

 

 

The microstructure of Magnox and AGR nuclear graphite is illustrated in Figure 2-5. Essentially, 

the microstructure of nuclear grade graphite is largely dependent on the characteristic of filler 

material and forming process used in the production stage. Pile grade A (PGA) graphite utilised 

in Magnox nuclear reactors is produced using filler particles derived from the petroleum industry 

and formed using an extrusion technique. This type of filler particles tends to have an elongated, 

needle-like shape that preferentially aligns with the extrusion axis (Figure 2-5a). As the 

crystallites within the filler particles were also preferentially aligned, the bulk PGA graphite had 

anisotropic material properties. Gilsocarbon (GIL), on the other hand, is the type of nuclear 

grade graphite used in AGR nuclear reactors. The GIL graphite is manufactured using Gilsonite, 
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(naturally occurs in USA asphalt mine) as a filler material and formed by moulding technique. 

The coke prepared from Gilsonite produced spherical, onion-like grains, which had no 

preferential alignment to the forming process (Figure 2-5b). Thus the crystallites within the 

particles tended to align circumferentially leading to the production of bulk material with near 

isotropic behaviour. 

 

 
 

Figure 2-5: Optical micrographs of nuclear grade graphite, (a) PGA graphite used in Magnox 

nuclear reactors, (b) GIL graphite used in AGR nuclear reactors (Hall et al 2006).  

 

 

2.4.3. Waste Origin and Volume 

 

As mentioned above nuclear graphite has been widely used in the past for the construction of 

various components in certain types of nuclear power reactors, for e.g. gas-cooled reactors and 

light water graphite reactors. The decommissioning and dismantling of these types of nuclear 

reactors consequently leads to irradiated graphite waste. This waste mostly originates from the 

moderator and reflector components as well as other minor applications such as fuel-channel 

sleeve, thermal column, fuel matrix and control rod materials (Nightingale 1963, IAEA 2006, 

2010). At present, the huge volume of irradiated graphite waste has drawn significant attention 

and concern in all nuclear member countries. Approximately 260 000 tonnes of irradiated 

graphite waste requires an appropriate disposal decision and the volume identified in each waste 

producing country can be viewed in Figure 2-6. As can be seen in the pie chart, it is obvious that 

(a) (b) 
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the UK is the major contributor of irradiated graphite waste, followed by Russia, US, France and 

other minor contributors. This reflects the design of nuclear power reactors which utilise 

significant amounts of nuclear graphite. The main types of nuclear power reactors that are 

responsible for such volumes of irradiated graphite waste are as follows: UK – advanced gas-

cooled reactor (AGR), magnesium alloy graphite moderated gas-cooled uranium oxide reactor 

(Magnox), Russia – “reaktor bolshoy moshchnosti kanalniy” reactor (RBMK), US – high-

temperature gas-cooled reactor (HTGR), light water graphite reactor (LWGR), France – 

“uranium naturel graphite gaz” reactor (UNGG). 

Lithuana (1800)
German (2000)
Belgium (2500)
Japan (3000)
Italy (3000)
South Korea (3500)
Spain (3700)
Ukraine (5700)

France
(23000)

United Kingdom
(96000)

Russia
(60000)

United States
(55000)

 
Figure 2-6: Estimated volume of irradiated graphite (IAEA 2006, 2010, Fachinger 2012), 

numbers are in tonnes. 

 

 

2.4.4. Radiation Effects on Graphite 

 

The effects of radiation on nuclear graphite are important in order to understand the properties of 

irradiated graphite waste; the knowledge will help to outline an ideal waste management strategy 

for its long term disposal. However the effects of radiation on nuclear graphite, be it the 

alteration of physical or chemical properties greatly depend on the initial properties and the 

treatments in the nuclear reactor. This is complicated as several nuclear graphite grades were 
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used for different applications resulting in different irradiation behaviours (Burchell et al 1992, 

Goodwin et al 2014). To simplify, the effects of radiation on nuclear graphite are explained in 

rather general terms by considering the effect of fast and slow neutrons which may occur in all 

grades of nuclear graphite.  

 

Effects of fast neutrons – The use of nuclear graphite is purposely to reduce the kinetic energy 

of and/or reflect fast neutrons by elastic collisions. This elastic collision phenomenon results in 

structural alterations reducing the physical and mechanical properties of the original nuclear 

graphite (Kelly and Burchell 1994, Banhart 1999, Burchell and Snead 2007, Telling and Heggie 

2007). For example, when a fast neutron (energetic particle) collides with an equilibrium 

graphite atom, the graphite atom will displace and create a cascade of displacements; a single 

neutron collides with multiple carbon atoms. The displaced carbon atoms recoil through the 

graphite lattice, displacing other carbon atoms and creating vacant lattice sites. Additionally, if 

the collisions happen in close proximity, clusters of point defects may occur (Telling and Heggie 

2007). The displaced carbon atoms easily diffuse between the graphite layers and a proportion of 

these displaced carbon atoms will recombine immediately with the lattice vacancies (extremely 

dependent on the neutron flux and radiation temperature). This consequently creates a new 

graphite plane in so called dislocation loops or interstitial agglomerates (see Figure 2-7).  

 

 
 

Figure 2-7: A dislocation loop between the graphitic nanoparticle basal planes (taken from 

Banhart 1999). 

1 nm 
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The interstitial clusters are less mobile than the vacancies and on further irradiation can be 

destroyed by fast neutron and/or carbon knock on atoms (irradiation annealing). The adjacent 

lattice vacancies in the same graphite layer may collapse towards the graphite layer and 

potentially form sinks for other vacancies, hence no longer able to recombine with and annihilate 

interstitials (Burchell 2012). It should be noted that this classical dislocation theory considers a 

simple situation that works on perfect parallel basal planes whereas in practice the graphite 

structure is far more complicated. As a result, more research needs to be carried out to 

understand the radiation damage in nuclear graphite i.e. taking account the displaced carbon 

atoms bridging to adjacent graphite planes and buckling as well as shearing effect of the graphite 

layers (Heggie et al 2011). Nevertheless, it has been shown that the displacement process altered 

the structure of original nuclear graphite leading to lower strength, making the graphite brittle 

with increased porosity and changed dimensions (swelling) and thus complicating the 

dismantling and handling during decommissioning process.    

 

Another complicated phenomena occurring as a result of the displacement of carbon atoms by 

neutrons is the potential release of Wigner energy. Poor understanding of the effect of Wigner 

energy led to the Windscale pile 1 accident on 10th October 1957. Essentially, Wigner energy is 

the excess energy stored due to the presence of interstitial carbon atoms in non-ideal positions. 

This energy could be released when an interstitial carbon atom and a lattice vacancy recombine, 

or interplanar bonds are broken. The increase of stored Wigner energy only occurs with low 

temperature graphite radiation, < 250°C (IAEA 2000, 2006). This energy can be released 

violently as heat when the irradiated graphite is heated/annealed at 50°C above its initial 

irradiation temperature. Studies have demonstrated that the temperature rise during the release of 

Wigner energy could be as high as 1400°C (Rappeneau et al 1966). The effect of Wigner energy 

in nuclear reactors that are operated above 300°C is negligible as the stored energy is released 

slowly during operation (Burchell 2012). Due to the potential release of a huge amount of energy 

leading to a fire hazard, care must be taken when dealing with irradiated graphite that originated 

from low temperature (< 250°C) nuclear reactors.  

 

Effects of slow neutrons – The creation of problematic radionuclides in irradiated graphite 

wastes results from slow neutron activation of carbon atoms and various impurities that are 
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present in both nuclear graphite and nuclear reactors. The main radioactive isotopes that usually 

are of concern in irradiated graphite are 3H, 14C and 36Cl (Brown et al 1999, IAEA 2004, 

Podruzhina 2004, Pichon et al 2008). The characteristic and activation reactions of these 

radioisotopes by impurities, which induce neutron capture cross-section are shown in Table 2-6.  

 

Table 2-6: Characteristic and activation reactions of 3H, 14C and 36Cl. Thermal neutron cross 

section data (Mughabghab et al 1981, Haynes 2014). 

 

Radionuclide 
(half-life) 

Activation 
reaction Origin (natural abundance %) 

Thermal 
neutron cross 
section (barn) 

 

3H (12.3 years) 
 

 

235U(n,f)3H 
6Li(n,α)3H 
3He(n,p)3H 
10B(n,2α)3H 

 
Fission reaction of fuel (0.7204) 
Li impurity in graphite (7.59) 
He coolant (0.000134) 
Control rod (19.9) 

      
     586 
     940 
     5330 
     3840 

 

14C (5670 years) 
 
 

 

14N(n,p)14C 
13C(n,γ)14C 
17O(n,α)14C 

 
Air in graphite (99.636) 
Graphite, coolant, fuel (1.07) 
Air in graphite, coolant, fuel (0.038) 

      
     1.93 
     0.0014 
     0.257 

 

36Cl (308000 years) 
 

 

35Cl(n,γ)36Cl 
 
Cl impurity in graphite – purification 
process (75.76) 

      
     43.7 

 
 

Other minor contamination from graphite impurities, nuclear reactor components (impurities in 

coolant, metallic elements) and fission products may also be present in irradiated graphite, e.g. 
60Co, 55Fe, 63Ni (IAEA 2010). However this is very dependent on the origin of the nuclear 

graphite and the treatments given in the nuclear reactors. It should also be highlighted here that 

no two irradiated graphite wastes have identical (some may be similar) chemical properties or 

radionuclide species (see example in Table 2-7). These complexities are due to the different raw 

materials used to manufacture nuclear graphite, the range of chemicals used in the purification 

process and the various applications of nuclear graphite leading to different contamination. The 

presence of various radioactive isotopes in the irradiated graphite is a significant challenge in the 

nuclear industry, especially for the dismantling of nuclear reactors and the prevention of the 

radionuclides leaching out to the biosphere. Furthermore, these processes may require some 
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radiation shielding to protect the operators from being irradiated by the harmful radionuclides. 

The dismantling process must be carefully considered and aim at not accidently releasing the 

radionuclides to the environment. The irradiated graphite waste should be treated properly and 

the disposal options as well as the challenges for the immobilisation of irradiated graphite waste 

are summarised in Section 2.4.5.    
 

Table 2-7: Radionuclide inventory of various irradiated graphite wastes.  

 

N
uc

lid
e 

German, AVR 
(Fachinger et al 2008, 

Vulpius et al 2013) 

Spain, UNGG 
(Márquez et al 2011) 

France, UNGG  
(Guiroy 1995) 

UK, gas-cooled 
(White et al 1984) 

Vandellós I Marcoule G3 Magnox 

Reflector 
(Bq/g) 

Fuel 
matrix 
(Bq/g) 

Fuel 
sleeve 
(Bq/g) 

Moderator 
(Bq/g) 

Moderator 
(Bq/g) 

Moderator 
(Bq/g) 

 

3H 
14C 
36Cl 
60Co 
90Sr 
137Cs 
133Ba 
152Eu 
154Eu 
155Eu 
55Fe 
59Ni 
63Ni 
241Pu 
93mNb 
10Be 
41Ca 
54Mn 
65Zn 
93Mo 
94Nb 
99Tc 
108mAg 
113mCd 
121mSn 

 
8.84×105 
9.50×104 

- 
2.70×104 

- 
1.94×103 

- 
- 

5.60×102 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

 
3.2×105 
5.7×103 

- 
1.9×102 
9.5×103 
1.2×104 
4.9×101 
2.0×102 
1.7×102 

 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

 
8.93×104 
1.35×104 

- 
4.00×104 

- 
3.79×102 

- 
- 

4.35×102 

- 
2.70×104 
6.25×102 
5.88×104 
6.82×102 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

 
2.75×105 
5.62×104 

- 
1.34×104 

- 
- 
- 
- 
- 
- 

9.15×103 
- 

8.77×103 
6.89×102 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

 
2.9×105 

2.4×105 

1.4×103 

3.0×103 
- 

6.6×101 
6.3×101 

- 
3.1×102 

8.5×101 
- 
- 

4.1×103 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

 
5.37×104 
3.81×104 
9.5×102 
4.25×104 

- 
- 

2.51×102 
9.85×101 
2.33×103 
7.17×102 
6.72×103 
4.16×101 
5.82×103 

- 
2.46×10-1 
3.18×101 
3.27×102 
1.21×10-1 
9.40×10-2 
3.81×10-1 
4.48×10-5 
7.61×10-2 
1.03×101 

4.48 
2.01×101 
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2.4.5. Disposal Options and Challenge for the Waste Immobilisation 

 

Due to the presence of long-lived radionuclides (3H, 14C, 36Cl) and complicated contamination, 

irradiated graphite is classified as ILW in the UK and recognised as long-lived LLW in France 

(IAEA 2010). Historically, several methods have been considered for the disposal of irradiated 

graphite waste. These include land dumping (on surface), supervised interim storage (see Section 

2.3.2), sea dumping (White et al 1984), incineration (Guiroy 1995) and in a geological disposal 

facility. In the UK, on surface disposal, sea dumping and incineration of the irradiated waste is 

strictly forbidden (Wickham et al 1999). This is solely due to the concern of releasing the long-

lived radionuclides namely 3H, 14C and 36Cl to the biosphere. This trio of radionuclides are 

highly biocompatible elements which readily and rather easily react with water and/or organic 

species. For example, the organic 14C can transform to 14CO2 and 14CH4 through microbial 

degradation reactions (Yim and Caron 2006). The produced contamination 14C gases 

consequently will deplete the radionuclide inventory of the irradiated graphite via the 

groundwater pathway. The 3H (T) and 36Cl species can potentially react with water (sea water, 

vapour or groundwater) according to the reactions shown in Equations 2-3 and 2-4 respectively. 

Thus on surface and sea dumping disposal are not an option as these methods pose risk to the 

biosphere; radionuclide contaminated food chains are highly hazardous to biological organisms 

hence strictly unacceptable. 

 

22 HHTOOHHT +⎯→⎯+ RT              [2-3]  
 

ClHClOHOHCl 3636
22

36 +⎯→⎯+ RT                    [2-4] 

 

France and Russia are the leading countries that have suggested the incineration method for the 

disposal of irradiated graphite waste; pilot plants have been built and preliminary studies on the 

release of radionuclides especially 14C, looking at the advantages and disadvantages of this 

method have been undertaken (Guiroy 1995, Dubourg 1998, Girke et al 2012, Rublevskiy 2012). 

Essentially, when the irradiated graphite waste is incinerated, the 14C will be released via 

formation of 14CO2 and 14CO through the oxidation processes given in Equations 2-5 and 2-6. It 

is known that the incineration of irradiated graphite at a rate of 600 tonne/year over 50 years 
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operation of an incinerator will only increase the natural source of 14C by 0.5 % (Dubourg 1998). 

Although the release of 14C is low and negligible to the current natural radiation inventory, the 

emission of CO2 and CO is an issue. The nuclear power reactors are being used to reduce CO2 

and CO emissions. Incinerating the irradiated waste will rule out the aim of using nuclear power 

reactor regardless the potential release of other radionuclides (see Table 2-7). One may think that 

the chemical separation of radionuclides can be carried out before the incineration process, 

however chemical separation is in general expensive and also complicated due to various 

radionuclides being present. Another issue with the incineration method is the incinerator plant 

itself; the components in the plant will consequently be classified as radioactive waste, thus other 

options to dispose irradiated graphite might be better and should be considered.      

  

2
14/5.394

2
14 COOC ⎯⎯⎯⎯⎯ →⎯+ −=Δ molkJH             [2-5] 

 

CO2OC2 14/5.110
2

14 ⎯⎯⎯⎯⎯ →⎯+ −=Δ molkJH             [2-6] 

 

As mentioned in Section 2.3, most of the ILW produced in the UK is stored in supervised interim 

storage and the favourable final disposal route is in the geological disposal facility. However, the 

process for developing the geological disposal facility is slow and currently still at the initial 

stage of identifying suitable location and raising public awareness as well as enhancing 

cooperation for the implementation (DECC 2013, 2014). In the geological disposal facility, the 

waste package will be disposed deep underground (~1000 m) by utilising the multibarrier 

systems of which aiming to limit the ground water penetration (Figure 2-8).  

 

It is worth noting that at present there is no immobilisation route for irradiated graphite; Figure 

2-8 shows the common treatment for the ILW in the UK in which the waste is encapsulated by 

cement and contained in a stainless steel container. In case of packaging the irradiated graphite 

wasteform, there is an issue with the stainless steel containment; graphite can act as a noble 

metal and has the possibility to increase the galvanic corrosion rate of the stainless steel 

(Fachinger 2012). Although there is a possibility of water penetration, the multiple barriers 

namely host rock, clay buffer, containment (stainless steel) and irradiated graphite wasteform 

should lower the rate of water diffusion. Ideally the water should not come into contact with the 
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wasteform until completing the decay process. The most significant current discussions 

regarding the disposal of irradiated graphite waste relate to the choice of materials for 

incorporation or encapsulation of the waste for long-term disposal in geological disposal facility. 

This is important as the material used is the last chemical barrier to prevent the radionuclides 

from leaching out to the biosphere. This is reviewed in the next section.  

 

 
 

Figure 2-8: Cross-section of irradiated graphite wasteform in geological disposal facility (DECC 

2014). 

 

 

2.5.  Processing Routes for the Immobilisation of Irradiated Graphite 

 

Identifying a suitable immobilisation route for irradiated graphite waste is an important challenge 

for the nuclear industry. For this purpose, the material used and the production process must be 

appropriate to solve the issues of irradiated graphite waste (Section 2.4) and efficient in overall 

processing cost.  

 

One suggested route is cement encapsulation, however poor wetting of graphite by the cement 

pastes and density driven stratification are problematic. Yim and Caron (Yim and Caron 2006) 

suggested using calcite (CaCO3) to incorporate the 14C followed by cement encapsulation. Other 

studies have claimed that almost complete incorporation of 14C in the aqueous solutions in 

Host rock 

Cement buffer 

Stainless steel 
container 

Irradiated graphite 
wasteform 
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cementitious material can be expected due to the precipitation of calcite within the pores of the 

cement (Hietanfn et al 1984, Bayliss et al 1987, Serne et al 1992). Therefore, cement can be an 

effective long-term chemical barrier for the immobilisation of 14C. However cementation 

involves a volume increase leading to significant additional storage and disposal volume 

requirements. Hence if cementation is used to immobilise 260 000 tonnes irradiated graphite 

waste in a geological disposal facility, it will ridiculously increase the cost of waste management. 

 

Ceramics such as SiC and TiC are recognised as materials that have good mechanical properties 

and are thermally as well as chemically stable. Karlina et al (2005) showed that 14C in irradiated 

graphite can be transformed to TiC by undertaking the so called self-sustaining exothermic 

reaction at average temperature of 2300 ± 50K (Equation 2-7).  

 

32
14

2
14 O2AlCTi33TiO4AlC3 +⎯→⎯++            [2-7] 

 

However, the temperatures used in the reaction or in general to produce all ceramics are high and 

this is an issue for irradiated graphite waste; as graphite is vulnerable to oxidation at high 

temperature (see Table 2-3), thus releasing problematic radionuclides. Other evidence of graphite 

oxidation at temperature <1000°C is given by Schweitzer and Singer (1965), Lim et al (2008), 

Dunzik-Gougar and Smith (2014) and Huang et al (2014).  

 

2.5.1. Glass Materials 

 

Glasses are well known materials for the immobilisation of HLW. For example, borosilicate 

glasses are used in France and the UK for the immobilisation of HLW. Specifically, 5.3Li2O-

11.1Na2O-21.9B2O3-61.7SiO2 (wt%) borosilicate glass commonly called ‘MW’ glass is utilised 

in the vitrification of HLW at Sellafield, UK (Donald 2010). Since the development of the 

vitrification method in ~1960s, a number of borosilicate glasses for the immobilisation of HLW 

have been developed and information regarding their processing characteristics, corrosion 

behaviour, mechanical performance, thermal stability as well as radiation stability is widely 

available (Donald et al 1997, Plodinec 2000, Yang et al 2006, Ojovan and Lee 2005, Ojovan 

2011).  
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Essentially, glass is defined as any material produced by any processing techniques that have an 

amorphous structure, while completely lacking in long range order of periodic atomic 

arrangement and exhibiting a region of glass transformation behaviour (Shelby 2005). The glass 

transformation behaviour considering the enthalpy and temperature parameters is presented in 

Figure 2-9. Basically, most liquids (melts) on cooling below the melting temperature will 

crystallise resulting in a long range periodic atomic structure; the enthalpy decreases abruptly on 

crystallisation and continues decrease due to the heat capacity of the crystal. However, if the 

melt is not crystallised, a supercooled liquid is obtained and the enthalpy decreases slowly due to 

the discontinuous structure rearrangement. Further cooling the melt increases the viscosity until 

at some point the viscosity becomes so great that the atoms cannot rearrange to the equilibrium 

liquid structure; the enthalpy deviates from the equilibrium line. As the melt cools, the viscosity 

will further increase and at this point the structure of the melts is fixed as a frozen solid and is 

called a glass.  

 
 

Figure 2-9:  The enthalpy versus temperature diagram for a glass forming melt (taken from 

Shelby 2005). 

 

There are three classes of components for oxide glasses: namely network formers (i.e. Si, B, Ge), 

modifiers (i.e. Ca, Pb, Li, K) and intermediates (i.e. Ti, Al, Zn, Mg). Basically, glass is made up 
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from the combination of at least one glass former elements with or without glass modifier and/or 

glass intermediate elements. For the case of MW glass, according to the Zachariasen-Warren 

structural model, the network formers polyhedra ([SiØ4], [BØ3], [BØ4]-, [SiO3O]-) will corner 

share oxygens (bridging oxygen shown as Ø) to create a random network structure and network 

modifiers (Li and Na) will occupy interstices within the random network as well as charge 

balancing singly-bonded oxygen atoms (non-bridging oxygens). It is worthy of note that the use 

of glass in nuclear industry is due to this material being capable of incorporating a wide range of 

chemical elements in its structure as modifier network and/or chemically bonded with the former 

network (glass former and intermediate elements). 

 

For the immobilisation of irradiated graphite, the vitrification or glass melting process used for 

HLW seems irrelevant and due to graphite oxidation at low temperatures in air i.e. below 

1000°C. However, the glass encapsulation method is of interest as this particular method offers 

significant advantages to immobilise low solubility nuclear waste (Ojovan and Lee 2005) and 

might be suitable to encapsulate inert materials, in this case, irradiated graphite waste.  

Generally, the glass encapsulation method involves mixing the powdered glass with waste, 

pressing the mixture at a certain pressure and heat treating at a temperature lower than the 

melting temperature of the glass. The main advantage of using the glass encapsulation technique 

is as follows: 

 

•  The heating process can be carried out using a variety of techniques such as conventional 

furnace, microwave, hot pressing and spark plasma sintering (considered heating 

techniques in this study is discussed in the following sections). 

• The oxidation of irradiated graphite can be controlled by introducing heating in inert 

atmosphere i.e. argon, vacuum. 

• The final volume of the wasteform is generally lower than with cement encapsulation. 

• The physical and mechanical properties of the final wasteform could be altered as needed 

by optimising the processing parameters i.e. glass composition, particle size, pressing 

pressure and sintering temperature.  
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2.5.2. Microwave Processing 

 

Microwave or dielectric heating for the synthesis of materials is gaining attention because it 

offers several potential advantages such as being fast, clean and more economical compared to 

conventional heating (Rao et al 1999, Thostenson and Chou 1999). Microwaves are 

electromagnetic radiation, with wavelengths lying in the frequency range 0.3 to 300 GHz. 

However, for microwave heating purposes, only narrow frequency windows centred at 900 MHz 

and 2.45 GHz are permitted. To utilise direct microwave heating in the production of glasses and 

composites, it is essential for the composition to include components that can couple to the 

microwave field. By considering the interaction with electromagnetic radiation, materials can be 

divided into three categories: microwave reflectors (typically bulk metals and alloys), 

transmitters (e.g. fused quartz and zircon) and absorbers (mainly transition metals). In the 

production of glasses using a microwave oven, it is crucial that the glass batch contains one (or 

more) microwave absorbing material(s) as (a) major constituent(s) of the batch to take up energy 

from the microwave field and heat up very rapidly (Kharissova et al 2010, Stennett et al 2011). 

The evidence of rapid heating and temperature detected on various elements, minerals and 

compound using microwaves is listed in Table 2-8. Other literature that discussed the potential 

materials, which could be heated very rapidly using microwave radiation can be found elsewhere 

(Vidhyanathan et al 1994, Mcgill et al 1995, Meredith 1998). 

  

Essentially, the absorbers heat up rapidly starting from the molecular levels and the interaction 

usually can be explained based on two main effects; polar molecules and dielectric solids with 

charged particles (Menéndez et al 2010, Kim et al 2014). 

 

•  Polar molecules – The alternating electric field of the electromagnetic radiation forces 

both permanent and induced dipoles to rotate and this causes friction and creates heat 

energy by dipolar polarization. For e.g. water and polar fluids. 

• Dielectric solids with charged particles – The charged particle such as π-electrons in 

graphite material are only free to move in a delimited region and these electrons cannot 

couple to the change of the electric field phase. Due to this, heat is generated according to 

the Maxwell-Wagner effect either by interfacial or Maxwell-Wagner polarisation. 
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Additionally, the interaction of microwave with charged particles also generates electric 

conduction by obtaining the external kinetic energy from the electric field; the collisions 

with neighbouring atoms produce heat and the heating process known as Joule heating. 

 

A survey of the literature on the production of glasses using microwave heating indicated the 

potential of using iron phosphate glass compositions (Almeida et al 2007, Stennett and Hyatt 

2009, Wang et al 2009). It is known that the addition of iron improves the chemical durability of 

phosphate glasses and iron phosphates have been suggested for use in the immobilisation of 

nuclear wastes (Huang et al 2004, Sengupta 2012). It is hypothesised that the rapid heating using 

microwave synthesis should minimise the oxidation of the graphite when heating in air. 

 

Table 2-8: Microwave active elements, minerals and compounds heated using ordinary domestic 

microwave operating at 1 KW, 2.45 Ghz (Rao et al 1999). 

 

Element/mineral/compound Exposure time 
(min) 

Temperature detected 
(K) 

C (amorphous, <1 µm) 
C (graphite, 200 mesh) 
C (graphite, < 1 µm) 
Co 
Fe 
Mo 
W 
Zn 
TiB2 
Co2O3 
CuO 
Fe3O4 (magnetite) 
MnO2 
V2O5 
WO3 

1 
6 
1.75 
3 
7 
4 
6.25 
3 
7 
3 
6.25 
2.75 
6 
11 
6 

1556 
1053 
1346 
970 
1041 
933 
963 
854 
1116 
1563 
1285 
1531 
1560 
987 
1543 

 

2.5.3. Cold Press Sintering Processing 

 

The use of cold press sintering processing in this research is inspired from previous work 

(Abdelouas et al 2006, McGann and Ojovan 2011, Heath et al 2013), which attempted to 
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encapsulate graphite powder and tristructural-isotropic (TRISO) fuel using glass materials. 

Basically TRISO fuel is the new generation micro-fuel particle (diameter < 1 mm) for generation 

IV nuclear power reactors. A TRISO fuel particle is designed based on a multi-layer concept in 

which the outer layer consists of pyrolytic carbon (essentially similar to graphite); this will raise 

comparable issues to irradiated graphite waste. 

 

Graphite-glass composites prepared by cold press sintering have shown some potential for the 

encapsulation of irradiated graphite waste (McGann and Ojovan 2011). These authors examined 

three different base glass compositions and, of the ones studied, they found that soda-lime-silica 

based glass compositions appeared to be the most promising. However conventional sintering 

involves heating the waste for relatively long times and it is necessary to use an inert atmosphere 

to prevent excessive oxidation of the graphite. Furthermore, the porosity of the graphite-glass 

composites obtained was relatively high, between 7 and 55 %. In this work, it is therefore of 

interest to further investigate the potential of cold press sintering using other glass composition 

as well as to optimise the sintering parameters such as temperature and waste loading limit of the 

graphite.  

 

The encapsulation of TRISO fuel using powdered glass materials have been shown to be 

promising and this sheds some light on the potential encapsulation of irradiated graphite waste. 

For example, various glass compositions such as French borosilicate (R7T7) and soda-lime silica 

glasses have been tested and the cold press sintering method used seen as advantageous 

(Abdelouas et al 2006, Heath et al 2013) with low processing temperatures compared to the 

initial glass melting, good mechanical properties, minimal oxidation of the pyrolitic carbon and 

overall good chemical durability of the wasteform. However, from their study, several issues 

regarding the use of glass materials and the cold press sintering methods have been highlighted 

as follows: (a) the waste loading of the TRISO fuel is low ~10 %. This is acceptable for HLW 

but in the case of the irradiated graphite, the waste loading must be higher, otherwise it will be 

cost inefficient. (b) The wetting problem between glass materials. This can be argued whether 

there is genuine wetting issue or this is solely due to the different thermal expansion of the 

TRISO particle itself (note that the green mixtures have been pressed in order to help 

densification); as sintering take place the TRISO fuel will expand and shrink faster than the glass 
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materials, when cooling the increasing viscosity of the glass limits the viscous flow, leaving 

space between the glass and TRISO particle. In addition, both expansion and shrinkage 

behaviour of the TRISO fuel during sintering will lead to the cracking of the glass matrix.  

 

2.5.4. Spark Plasma Sintering Processing 

 

Using hot pressing to sinter mixtures of powdered glass with irradiated graphite simulant and/or 

natural graphite results in better physical properties of the graphite wasteform (i.e. low porosity < 

5 %, good mechanical properties) as well as maximising the waste loading; more than 50 wt % 

of waste was successfully incorporated (Fachinger et al 2012, Hrovat et al 2013). This led to the 

idea of using spark plasma sintering (also referred as field assisted sintering or pulsed electric 

current sintering) which potentially leads to similar results but a faster sintering process (Saheb 

et al 2012). This is due to more efficient heating by combination of thermal heating from the 

graphite mould and the reaction of the pulsed direct current with the green sample (see Figure 2-

10). Indeed spark plasma sintering is similar to hot pressing sintering but the way of heating is 

different. 

 

 
 

Figure 2-10: Basic schematic diagram of spark plasma sintering. 
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Basically, spark plasma sintering relies on the conductive graphite mould to produce heat. The 

heat is produced by the collision of the atoms, which is similar to Joule heating phenomenon 

occurred in the microwave processing (see Section 2.5.2). Currently, the mechanism of heating 

in spark plasma sintering method is not fully understood and more work needs to be carried out, 

especially to study the interaction of pulsed direct current with various types of materials. The 

sintering mechanism is often complicated as thermal, pulsed electric field (mainly used for 

conductive material and when materials produce a liquid phase) and external pressure take part 

simultaneously during sintering. In the literature, it is common to explain the interaction of 

pulsed electric current based on insulator (glass) and conductive (metal) materials. In the case of 

insulator materials, the heat is transferred from the graphite mould towards the sample by 

conduction and for conductive materials, heat conduction from the mould and pulsed electric 

effects may occur; if the sample is highly conductive (lower resistivity than graphite) the electric 

current will tend to flow directly through the sample rather than the surrounding graphite mould.  

It should be noted that when any material starts to become liquid, both heating from graphite 

mould and pulsed electric current will affect the heating process. The interaction of pulsed 

electric current is complicated as many mechanisms potentially occur depending on the electrical 

properties of the materials. A typical mechanism discussed in the literature are pulsed electric 

diffusion effect and the schematic is shown in Figure 2-11 (Tokita 1999, Saheb et al 2012, 

Suárez et al 2013). Recent publications also suggest several possible interactions between pulsed 

electric current and microstructure of the materials; (a) percolation effects of the current in the 

initially porous powder bed, (b) Peltier effect at the interface between the green body and 

punches, (c) electrochemical interaction and the interfaces and (d) electromigration (Guillon et al 

2014). 

 

A survey of material processing using spark plasma sintering revealed production of several 

glassy materials namely silicate (Zhang et al 2012) and silicon oxycarbide (Mazo et al 2012, 

Tamayo et al 2014) glasses. These studies highlighted that the processing time is fast (a matter of 

minutes), the sintering process enhances densification over grain growth, the density of the 

produced product is close to the theoretical density (> 98 %) and also limits the crystallisation of 

glass. Hence, it is seen that spark plasma sintering method is promising for immobilising 

irradiated graphite waste. Furthermore, it is also of interest to study the effects of glass material 
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and graphite-glass compositions using this method; the literature on mechanism of sintering for 

glassy materials based spark plasma sintering or simply the usage of this method in nuclear 

immobilisation is limited. 

 

 
 

Figure 2-11: Pulsed current flow through powder particles, coulomb discharge also referred to 

joule heat (taken from Saheb et al 2012). 

 

 

2.6.  Summary 

 

It has been explained in some detail that irradiated graphite waste is problematic and requires 

attention worldwide for appropriate final disposal. The complications of irradiated graphite waste 

are as follows: 

 

• Huge volume of the waste, 260 000 tonnes. 

• Various contaminations of radionuclides and inconsistency of the radionuclides in each 

type of irradiated graphite waste. The most problematic radionuclides are long-lived 3H, 
14C and 36Cl, which are highly reactive in environment and biocompatibility. 

• Low mechanical and physical properties of irradiated graphite. 

• Wigner energy 
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Irradiated graphite waste made waste immobilisation challenging due to: 

 

• Graphite being one of the most inert materials; chemical bonding with other materials is 

limited. 

• Vulnerability to oxidation at temperatures above ~350°C. 

• Thermal treatment used in the production of nuclear wasteforms is generally time 

consuming and typically undertaken at high temperatures. 

 

Therefore, in this study, the potential use of microwave, cold press sintering and spark plasma 

sintering processing for the immobilisation of graphite simulant in glass system is investigated. 
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3.  Materials and Experimental Methods 
 

3.1.  Introduction 

 

In this chapter, the irradiated graphite waste simulant and three processing methods used for 

preparing glasses and/or glass graphite composites; namely microwave processing, conventional 

processing and spark plasma sintering are explained in detail. The sample preparation and the 

basic principle for each characterisation techniques employed throughout the research are briefly 

summarised.  

 

3.2.  Irradiated Graphite Waste Simulant 

 

Non-active industrial grade graphite flake was used as an irradiated graphite waste simulant in 

this work. The graphite flake was obtained from China via Prof Shaowei Zhang (now at 

University of Exeter) and used directly without any physical and chemical treatment. Two 

graphite batches were utilised in different sample processing methods; the first batch in the 

microwave processing and the second batch in the conventional and spark plasma sintering 

processing. Because the graphite flake is soft and can shear easily between the graphene planes 

(due to the weak van der Waals bonding, refer Section 2.4.1), all the sample preparation 

associated with graphite were carefully conducted in order to minimise the graphite loss i.e. 

avoiding graphite smearing while grinding and polishing. 

 

3.3.  Microwave Processing 

 

Microwave processing of the samples was undertaken using a domestic microwave oven (DMO) 

with nominal power output of 800 W, operated at a frequency of 2.45 GHz. Two similar DMOs 

were used in this work, manufactured by DēLonghi, model EM821AAN-X2 and IGENIX, model 

IG2080. The rotating glass table was removed from the DMO to allow constant positioning of 

the samples throughout the experiments. Any modifications that would lead to breaking the 

Faraday cage of the DMO were avoided. 
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3.3.1. Experimental Setup 

 

At the beginning of the work, the hot-spot of the DMO was investigated by observing the rate of 

water vaporisation during operation of the microwave. In all cases, 5 mullite crucibles were filled 

with 5 ml distilled water and placed in the microwave cavity. The crucibles were then heated at 

full power for 5 min. The experiments were repeated several times with the crucibles at different 

locations and heights. The position with the highest water vaporisation rate was identified as the 

best position for absorption of the maximum microwave energy. The examples of the 

experiments are shown in Figure 3-1.  

 

 
 

Figure 3-1: Position of the crucibles for optimum radiation spot experiment, (a) varying x and z 

axis, (b) varying y axis. 

 

It was found that the best spot for optimum microwave radiation was at the horizontal centre and 

5.4 cm above the base of microwave cavity. Although two different models of DMO were used 

in this work, results indicated that the optimum sample position in both microwaves was similar.  

Based on this finding, the alumina block has been designed to isolate the crucible and mounted 

on the alumina spacers to achieve the mentioned position. Any spaces between the crucible and 

the alumina block were filled with sintered alumina powder to minimise the heat losses during 

microwave heating the samples. A schematic diagram of the inside of the DMO is presented in 

Figure 3-2. Due to the potential toxic gases released when the decomposition of the raw 

materials takes place, all the DMO experiments, apart from the experiment in an inert 

atmosphere, were carried out in a fume cupboard. 
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Figure 3-2: Schematic diagram of the experimental setup inside the DMO. 

 

3.3.2. Sample Preparation 

 

Many glass compositions were selected to be melted using microwave method. However, only 

the iron phosphate composition was successfully melted and showed some potential to 

immobilise graphite. Thus, iron phosphate glasses and their potential to encapsulate graphite 

have been studied using microwave processing method. The intention was to produce iron 

phosphate glass with a nominal composition of 40Fe2O3 – 60P2O5 (mol%), here after known as 

IP, whilst varying the processing times and the amount of graphite added. Iron phosphate glasses 

and iron phosphate graphite glasses were prepared from laboratory grade magnetite (Fe3O4 – 

97% pure, Alfa Aesar) and sodium dihydrogen phosphate (NH4H2PO4 – 98% pure, Alfa Aesar) 

and, where relevant, graphite flake. In this processing method, graphite was combined directly 

into the batch of iron phosphate raw materials. The designation of the batch compositions are 

given in Table 3-1. 

 

In all cases, batches necessary to produce 3 g samples were weighed using a high accuracy 

balance (±0.0001 g), mixed and manually ground in an agate mortar with a pestle for 

approximately 5 minutes to ensure homogeneity of the samples. 2 g of the batches were then 

inserted into a 13 mm diameter pellet mould and uniaxially compacted using a SPECAC press 

with a load of 3 tons and held for ~60 s.  At the end of the compaction period the pressure was 
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released slowly. To avoid any unwanted chemical reaction with the raw materials, the batches 

were pressed without binder. The samples were placed in either vitreous silica (glass production) 

or mullite (graphite-glass sample production) crucibles with vitreous silica lids for microwave 

heating. The crucible containing the pellet was fitted inside the recessed alumina block in the 

DMO cavity (see Figure 3-2). The pellet was then irradiated at maximum power up to 20 

minutes either in air or argon. For processing under flowing argon, the DMO was placed in a 

glovebox and a positive argon pressure was maintained while microwaving the samples. After 

microwave melting/sintering, the alumina block was removed from the microwave cavity. The 

crucible was taken out and cooled on a mullite plate to room temperature (RT) to maximise the 

cooling rate. The samples were kept dry for further characterisation. 

 

Table 3-1: Designation for microwave processing samples, G – Graphite. 

 

Designation Batch composition (wt%) 
Iron phosphate glass  Graphite loading 

 
IP 
IP20G 
IP30G 
IP38G 

 
100 
80 
70 
68 

 
0 
20 
30 
38 
 

 

 
3.4.  Conventional Processing 

 

The glass compositions under consideration for the conventional processing method were 

aluminoborosilicate (ABS), calcium aluminosilicate (CAS), alkali borosilicate (G11), IP and 

obsidian (OB). The IP glass was also investigated here in order to compare the results with the 

one that was prepared using microwave processing. The natural obsidian glass originated from 

Monte Pilato, which is located on the northern tip of the Aeolian island of Lipari, Italy (last 

erupted in 729 AD). Obsidian glasses have shown good chemical durability as they have 

survived in the natural environment for millions of years (Ericson et al 1975, Vogel et al 2006, 

Morgan et al 2009). Furthermore by using natural glass, the sample processing steps could be 

minimised, hence lowering the processing cost. 
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3.4.1. Batch Preparation 

 

The chemical compositions, precursors used, purity and its origin for in-house made glasses are 

listed in Table 3-2. In all cases, the necessary chemicals for a specific glass composition were 

weighed using a calibrated balance to an accuracy of ± 0.01 g. For safety reasons, the weighing 

procedures were carefully carried out in the fume cupboard. The batches were mixed using a 

spatula and transferred into polythene sample bags. The polythene bags together with the batches 

were then shaken for 5 min to ensure homogenisation of the chemicals. The homogeneous 

mixtures were stored and kept dry prior to melting. 

 

Table 3-2: Nominal chemical compositions of batched glasses. 

 

Oxide ABS 
(mol%) 

CAS 
(mol%) 

G11 
(mol%) 

IP 
(mol%) 

Precursor Purity 
(%) 

Supplier/Origin 

 
Al2O3 
B2O3 
CaO 
Fe2O3 
Li2O 
MgO 
Na2O 
P2O5 
SiO2 
 
Total  

 
5.29 
7.48 
3.02 
- 
- 
1.56 
7.48 
- 
75.17 
 
100.00 

 
7.17 
- 
51.40 
- 
- 
- 
- 
- 
41.43 
 
100.00 

 
2.59 
9.24 
- 
4.96 
9.69 
- 
15.57 
- 
57.95 
 
100.00 

 
- 
- 
- 
60.00 
- 
- 
- 
40.00 
- 
 
100.00 

 
Al(OH)3 
H3BO3 
CaCO3 
Fe3O4 
LiCO3 
H2MgO2 
Na2CO3 
NH4H2PO4 
SiO2 

 
>99 
≥99.5 
98+ 
97 

99+ 
>99 
99.5 
98 
98 
 
 

 
Fisher Scientific 
Fisher Scientific 
Fisher Scientific 
Alfa Aesar 
Fisher Scientific 
Sigma Aldrich 
Fisher Scientific 
Alfa Aesar 
Tilcon/Loch Aline 
 
 

 

 
3.4.2. Glass Melting 

 

The different furnaces, crucibles, melting and annealing conditions for the conventional melting 

route are detailed in Table 3-3. Due to the high melting temperature required for the ABS glass, 

the batched composition was melted using a gas furnace. 150 g of glass batch was added to 4 

separate crucibles and pre-heated overnight at 1000°C (2°C/min heating rate) in a Lenton box 

furnace. Whilst pre-heating the batches, the gas furnace was turned on and ramped to 1450°C. 

The pre-heated crucibles and batch were transferred into the gas furnace and the temperature of 
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the furnace was increased regularly until the melting temperature was achieved. An optical 

pyrometer was used to ensure the melting temperature was reached and remained consistent 

throughout the melting regime.  

 

Table 3-3: Melting and annealing conditions for the laboratory made glasses. 

 

Glass Furnace Crucible Melting conditions Annealing conditions 
 
ABS 
CAS 
G11 
IP 

 
Gas 
Electric 
Electric 
Electric 

 
Alumina 
Platinum 
Mullite 
Mullite 

 
3 h dwell at 1600˚C  
3 h dwell at 1450˚C 
5 h dwell at 1100˚C 
3 h dwell at 1150˚C 

 
1 h dwell at 700, 1°C/min to RT 
1 h dwell at 780, 1°C/min to RT 
1 h dwell at 450, 1°C/min to RT 
1 h dwell at 450, 1°C/min to RT 
 

 

 

The CAS, G11 and IP glass batched compositions were melted in an ELITE electric top loading 

box furnace with Kanthal SiC furnace elements. The temperature of the furnace was regulated by 

an ELITE, TLCF1514-3216+2116 controller. For all of these glass compositions, batches 

required to produce 300 g of glass were melted using similar melting procedures. The procedures 

involved transferring approximately 100 g of the batched composition using a stainless steel 

scoop to a preheated crucible at 1000°C and placing the crucible into the furnace at the chosen 

melting temperature. After 15 min, volume reduction of the initial fill allowed more batch to be 

added. The crucible was taken out using iron tongs and the crucible was refilled with the batch 

for a second time. The crucible was then placed back into the furnace. This process was repeated 

until the entire batch had been added into the crucible. The melts were given 1 h batch free time 

before a stirrer (constructed of a similar material to the crucible) was inserted to a depth of 

approximately 1 cm from the base of the crucible. The stirrer was rotated at 60 rpm for the 

reminder of the melting time.  

 

After completion of the melting schedule, about 50 % of the melts either prepared using the gas 

or electric furnace were cast into a pre-heated stainless steel mould and the rest were rapidly 

quenched into water to obtained glass frits (see Figure 3-3). Residual stresses in the cast glasses 

were removed by annealing process and the resulted glass blocks were stored for 
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characterisation. The glass frits were dried overnight at 90°C in a steel container with a lid; the 

lid was placed on top of the container with a small gap to accelerate the water vaporisation. The 

lid was used due to the glass frits spontaneously cracking during drying process (the effect of 

thermal shock).  

 

 
 

Figure 3-3: Pouring the glass melt: (a) into a pre-heated mould, (b) rapid quenching into water. 

 

3.4.3. Preparation of Powdered Glasses 

 

All the dried glass frits including obsidian (ABS, CAS, G11, IP and natural OB glasses) were 

crushed individually using a stainless steel percussion mortar. The resultant mixtures of glass 

particles were sieved using a < 75 µm test sieve in order to get a fine powder. The glass particles 

that did not go through the sieve were crushed and sieved once again; glass melting and powder 

processing was repeated until about 400 g powdered glasses for each composition were obtained.  

The powdered glasses were then passed over with a magnet in order to remove any metallic 

contamination arising from the percussion mortar. To homogenise the powder, dry milling was 

undertaken by loading each compositions of 400 g powdered glass into a polythene milling bottle 

(250 ml) and milling at 60 rpm for 8 h using Excal jar rolling mill. The homogenised powdered 

glasses were kept dry for further treatment. 

(a) (b) 
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3.4.4. Cold Press Sintering  

 

Cold press sintering (CPS) was carried out using an ELITE, TSH 12/38/130 tube furnace. Due to 

the temperature indicated on the EUROTHERM digital screen being from a thermocouple placed 

on the outside of the alumina worktube, calibration of the temperature inside the tube was 

performed using K type thermocouple attached with multilogger thermometer, CHY 502A. The 

thermocouple used for this purpose had been previously calibrated using a standard heating 

source and was found to be accurate to ± 2°C. The calibration of the tube furnace involved taking 

the temperature reading at the centre of the alumina tube from RT to 1000°C at 100°C 

increments. The temperature data were plotted and the calibration line was drawn. Based on this 

calibration line, the true temperature inside the alumina tube was known for each desired 

sintering temperature.  

 

In the CPS processing method, the intention was to study the effect of sintering temperatures and 

the effect of waste loading using various glasses and/or graphite glass compositions. The 

designation of the samples is indicated in Table 3-4.  

 

Table 3-4: Samples designation for CPS processing, x – graphite loading, G – Graphite. 

 

Designation Composition (wt%) 
Batch Graphite loading 

 
ABS 
ABSxG 
 
CAS 
CASxG 
 
G11 
G11xG 
 
IP 
IPxG 
 
OB 
OBxG 

 
(100-x)ABS 

(100-x)ABS + xG 
 

(100-x)CAS 
(100-x)CAS + xG 

 
(100-x)G11 

(100-x)G11 + xG 
 

(100-x)IP 
(100-x)IP + xG 

 
(100-x)OB 

(100-x)OB + xG 

 
x = 0 

x = 5, 10, 15, 20, 25, 30, 35 
 

x = 0 
x = 5, 10, 15, 20, 25, 30, 35 

 
x = 0 

x = 5, 10, 15, 20, 25, 30, 35 
 

x = 0 
x = 5, 10, 15, 20, 25, 30, 35 

 
x = 0 

x = 5, 10, 15, 20, 25, 30, 35 
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In all cases, 2 g batches consisting of powdered glass with or without graphite flake were mixed 

thoroughly in an agate mortar by gentle stirring using a spatula. The mixtures were stirred until 

no colour change could be seen, usually for about 5 min. The homogeneous mixtures were 

transferred into a 13 mm pellet mould and pressed with a load of 3 tons. The pressing procedure 

was similar to that used for the microwave samples and the details are described above in section 

3.3.2. For each temperature interval, three pellets were placed on mullite plate designed to keep 

the samples horizontal throughout the sintering process (see Figure 3-4). The pellets were then 

sintered in flowing argon at various sintering temperatures for 2 hours with 5°C/min heating and 

cooling rates. The fast cooling and heating rates were used to minimise the oxidation of the 

graphite. The flowing argon gas during sintering was set at 0.25 l/min. The sintered samples 

were kept dry and characterised. 

 

 
 

Figure 3-4: Mullite boat and plate used for CPS processing. 

 

3.5.  Spark Plasma Sintering Processing 

 

Spark plasma sintering (SPS) was utilised to research the sintering behaviour of glass and 

graphite glass composites that had undergone fast sintering with application of pressure. The SPS 

machine and the tools used are illustrated in Figure 3-5.  In this method, mixtures of powdered 

CAS glass (prepared in 3.4.3) and graphite flake were sintered at different temperatures and 

sintering times. The sintering process was performed under a static argon environment. 
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Figure 3-5: SPS machine, (a) main equipment, (b) close up of the furnace chamber, (c) 20 mm 

graphite mould. 

 

For all cases, 5 g batches consisting of 70 wt% powdered CAS glass and 30 wt% graphite flakes 

were homogenised by gently stirring the mixture using a stainless steel spatula in an agate 

mortar. The mixtures were stirred for approximately 5 min after which no colour change of the 

mixtures could be observed. A graphite sheet was placed on the inner wall and the base of the 

bottom punch of the 20 mm graphite mould. The homogenised mixture was then transferred into 

the graphite mould and another graphite sheet was inserted on top of the sample. The reason for 

placing the graphite sheet between the mould and the sample is to protect the mould from 

contamination and improve the thermal transfer while sintering. The upper punch was then 

pushed into the mould and subsequently pressed at 1 ton using a SPECAC press, held at this 

pressure for 60 s before the pressure was released slowly. The exposed length of upper and 

bottom punches were kept similar (see Figure 3-5c). The graphite mould was insulated with 

fibreglass cloth and placed in the furnace chamber as shown in Figure 3-5b. The chamber was 

closed and the required sintering programs were created using the ECS recipe manager (version 

4.0-build 12) on the control computer. An example of the program is presented in Table 3-5. The 

(a) (b) (c) 
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program was then uploaded to the machine and the sintering of the sample was started. In all 

runs, only the temperature and sintering dwell time were varied; the maximum pressure was kept 

at 35 MPa, the heating rate was maintained at 200ºC/min and an identical cooling program was 

used. The obtained sintered samples were kept dried prior to characterisation. 

 

Table 3-5: SPS sintering program for sample heated at 890°C for 20 min. 

 

Segment Segment time 
(min) 

Temperature 
(ºC) 

Pressure 
(MPa) 

Environment 

 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
 

 
0 
3 
1 
1 
2 
4 
2 
20 
1 
10 

0.17 

 
RT 
RT 
450 
450 
450 
450 
890 
890 

Cooling to RT 
Cooling to RT 

RT 

 
0 
16 
16 
16 
16 
16 
35 
35 
16 
16 
0 

 
Air 

Vacuum 
Argon 

Vacuum 
Argon 
Argon 
Argon 
Argon 
Argon 
Argon 

Air 

 

 

3.6.  Particle Size Analysis 

 

Particle size of samples was examined using a COULTER LS 130 particle analyser. This 

instrument is capable of measuring particle sizes from 0.1 to 900 µm. For each measurement, the 

electrical offset, laser beam alignment and background were initially measured prior to sample 

loading. About 2 g of powdered glass was poured into the sample vessel containing water until a 

polarised intensity differential scattering (PIDS) obscuration between 40 to 60 % was achieved. 

This loading level is important to provide an acceptable signal-to-noise ratio in the detector 

channels. For graphite samples, the powders were mixed with glycerol before being measured. 

The glycerol was used to reduce the agglomeration between the particles and help the graphite 

powders disperse in the water. In all cases sonication was applied during loading, run and 

interval of the measurements. 



50 

 

The information about the particle size was based on the diffraction of laser light and the PIDS 

methods. Both of these lights were used to illuminate the particles in sequence to achieve high 

precision data.  The additional PIDS method was needed in order to measure and improve the 

resolution of smaller particles i.e. < 0.4 µm. In principle, the diffraction of laser light method 

passed a 750 nm wavelength laser light through the suspended particles in the liquid which cause 

the light to be scattered. The incident light was then focused using a Fourier lens (focus signals 

from moving particles) to generate characteristic diffraction patterns that contain particle size 

information that were collected by arrays of phothodetectors (see Figure 3-6).  

 
Figure 3-6: Interaction of scattered light with Fourier lens (taken from Beckman Coulter Inc. 

2011). 

 

The PIDS method, on the other hand, used an incandescent tungsten-halogen lamp with two 

polarising filters (vertical and horizontal) to provide monochromatic polarised light at three 

different wavelengths; 450, 600 and 900 nm. Although the interaction with samples is similar to 

the diffraction of laser light method, the PIDS photodetectors measure the pattern arising from 

differences in the scattering of vertically and horizontally polarised light for each wavelength. 

The signals for both methods were finally converted to digital signals and were analysed using 

the COULTER@LS version 2.09 software package. The analysis made was based on a 

Fraunhofer optical model to calculate particle size. Each sample measurement was repeated 10 

times and each run was about 2 min. It should be pointed out that the analysis assumed the 

particles were spherical and that no agglomeration occurred during the course of the 

measurement. 
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3.7.  Thermogravimetric Analysis 

 

Thermogravimetric analysis (TGA) of graphite flakes was performed using a Perkin Elmer Pyris 

1 TGA. This instrument was primarily used to determine the mass loss behaviour (mainly 

oxidation) of graphite flakes whilst being heat treated in different environments. In each 

measurement, approximately 25 mg of as received powdered graphite was placed into an 

alumina crucible and heated at a constant heating rate (10ºC/min) to 1000ºC in air or argon. The 

weight changes of the samples throughout the heating process were recorded using a high 

accuracy balance that was installed in the instrument. The sensitivity, accuracy and precision of 

the balance are 0.1 µg, > 0.02 % and 0.001 %, respectively. The obtained data were plotted as a 

function of weight change versus temperature and analysed using the Pyris software package 

(version 11.0.3.0470). 

 

3.8.  Differential Thermal Analysis 

 

A Perkin Elmer simultaneous thermal analyser (STA 8000) was used to characterise the thermal 

properties of the prepared glasses, such as glass transition temperature (Tg) and crystallisation 

temperature (Tc). In all cases, approximately 25 mg of sieved powdered glass (< 75 µm) was 

placed in an alumina crucible and heated at 10°C/min from room temperature to 1000°C in 

argon, with aluminium oxide as a reference. The relative temperature differences (ΔT) between 

the sample and the reference material were taken every 0.1 s and plotted against temperature. 

The resultant curve provides information about exothermic and/or endothermic reactions in a 

sample over a temperature range. The Tg and Tc were carefully identified and taken as the 

extrapolated onset temperature using the Pyris software package (version 11.0.3.0470). 

 

3.9.  Dilatometry 

 

The Tg’s of ABS, CAS, G11 and IP glasses measured using STA 8000 were compared with Tg’s 

obtained using a Netzsch DIL 402C dilatometer. The dilatometer is push rod type and the 

simplified schematic diagram can be seen in Figure 3-7. The principle of operation involves 

measuring the changes of sample length during temperature program and accurately recorded by 
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linear variable displacement transducer (LVDT) system. The sample holder and the front part of 

the pushrod were exposed to the temperature program during heating, which would cause an 

error in measuring the sample length. For this reason, baseline calibration was initially 

undertaken by heating a cylindrical recrystallised alumina standard to 900°C at a 3°C/min 

heating rate under flowing argon. The calibration data were uploaded in the TASC measurement 

program for each run. 

 

 
 

Figure 3-7: Cross-section schematic diagram of a pushrod dilatometer. 

 

In all cases, 5×5×20 mm monoliths were prepared by cutting the annealed glasses using a 

diamond bladed slow saw. The glass monoliths were ground on all surfaces using 1200 grit 

grinding paper, which resulted in about 5 µm surface finish. Each monolith was then loaded into 

the dilatometer ensuring there was no gap between sample and pushrod. Samples were heated at 

3°C/min under flowing argon and the instrument was set to automatically turn off when the 

dilatometric softening point was reached. The 3°C/min heating rate was used as this rate should 

give results comparable with the DTA measurements detailed in Section 3.8 (Mazurin 2007, 

Mazurin and Gankin 2008). The Tg values of the glasses were determined by using the Proteus 

software package. 

 

3.10. Chemical Analysis 

 

Chemical compositions of prepared glasses were investigated using both X-ray fluorescence 

(XRF) spectrometry and inductive couple plasma – optical emission spectrometry (ICP-OES). 

Due to the complications associated with ensuring complete sample dissolution and limited 

Pushrod LVDT  
system 

Sample holder 

Furnace 

Sample 
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access to the instruments, selected samples, specifically those containing B and Li, were sent to 

an external lab for XRF and ICP-OES analysis. For this purpose, approximately 10 g powdered 

samples (< 75 µm) were sent to AMG Superalloys UK Limited. 

 

Chemical analyses of various glass samples were also been carried out using energy dispersive 

X-ray spectroscopy (EDS) in a JEOL JSM6400 electron microscope (see also section 3.17). In 

principle, the EDS is based on the analysis of the characteristic X-rays emitted when the incident 

electron knocked inner shell out from its orbit and the higher energy electron filled the vacancy 

to stabilise the configuration. For example, if the K shell electron of element is ejected by the 

incident electron, the L shell electron will fill the vacancy (KL transition) and emit a Kα X-ray 

unique to this element; other types of X-ray i.e. Kβ, Kγ or Lα can be emitted depending on the 

transition of the electron. As the energy levels for each element are different, the element 

associated with the characteristic X-ray produced can be distinguished by comparing the data 

with an available database. In this study, all the EDS elemental analysis was undertaken using 

Oxford INCA software package.  

 

3.11. Volume Shrinkage 

 

The volume shrinkage of the sintered pellets formed using the CPS method was determined by 

measuring the thickness (height) and the diameter of the samples before and after the sintering 

process using calibrated digital callipers. These measurements were intended to estimate the 

volume of the final wasteform produced via various preparation techniques. The percentage 

volume shrinkage was calculated using 
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where Di, Df, hi, and hf are the initial diameter, final diameter, initial height and final height of 

the samples, respectively.  
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3.12. Assessing Mass Loss 

 

The change in sample mass after processing is important and should be compared with the 

theoretical evaluation to verify the loss of volatile materials as well as to have an indication of 

any other chemical reactions (oxidation and/or reduction of materials) that may have occurred 

during sintering. With this target in mind, the mass of samples (whether microwaved or 

conventionally sintered) was measured before and after melting/sintering using a high precision 

balance (± 0.0001 g). The percentage mass loss was computed by differentiating the masses as 

given by 

 

100 = loss mass % ×⎟⎟
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where mi and mf are the initial and final masses of the samples, respectively. 

 

3.13. Density 

 

The densities of the solid and powdered samples were recorded both by using Archimedes’ 

principle (Mettler Toledo density balance, MS-DNY-43) and a Micromeritics Accupyc II 1340 

helium gas pycnometer.  

 

For the Archimedes measurements, distilled water (H2O) was used as the immersion liquid. 

Although all the measurements were done at RT, slight changes of temperature will affect the 

density of distilled water, thus decreasing the accuracy of the measurement. Due to this reason, 

in each measurement, the initial temperature was measured using thermometer and inputted into 

the density balance. The selected bulk samples were weighted in air and after that submerged in 

distilled water to displace all the air from the samples. Bubbles that appeared on the surface of 

the sample were carefully removed using a rigger type brush. Only the stable weight of the 

sample in distilled water was taken. The sample density (ρsample) was then calculated 

automatically using the recommended equation from Mettler Toledo as follows: 
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where ma and mw denote the mass of samples in air and mass of samples in water. The density of 

air (ρair) was assumed constant at 0.0012 g/cm3; although this also varies with temperature, the 

effect should be very small. The density of distilled water (ρwater) at various temperatures used in 

the software package (version V1.30) can be found in Appendix A1. For each sample the 

average of at least three measurements was calculated.  

 

For the pycnometer measurements, samples were crushed and ground in a mortar using a pestle 

and sieved to < 75 µm. The known masses of powdered samples were inserted into a 1 cm3 steel 

sample holder, placed in the sample chamber and purged 50 times with research grade helium 

gas (removing water and volatiles). The pressure of the gas in the sample chamber was set to 170 

kPa. The gas molecules rapidly filled the pores of the sample; only solid phase of the sample 

displaces the gas. The gas was then discharged into a second empty chamber which allows 

computation of the sample solid phase volume using 
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where Vcell, Vexp, P1 and P2 are sample chamber volume, expansion chamber volume, gauge 

pressure after fill and gauge pressure after expansion, respectively. The density was then 

calculated by dividing mass over volume of the sample. The density measurement was repeated 

50 times and the average taken.  

 

3.14. Porosity 

 

Porosities in sintered samples, whether resulting from poor consolidation of the glass particles 

during sintering, limitations of sample processing, and/or from the effect of releasing gases (due 

to decomposition or oxidation of the materials), were determined by calculating the difference 

between the density of the bulk and powdered samples. The percentage of porosity is defined by 
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Where density of powder sample (ρpowder) and density of bulk sample (ρbulk) are determined using 

gas pycnometer and Archimedes principle (refer to section 3.13).  

 

3.15. X-ray Diffraction 

 

Powder X-ray diffraction (XRD) was primarily conducted to confirm whether the glasses were 

X-ray amorphous and, if not, which crystalline phases had precipitated during the production of 

the glass composite materials. Siemens D500 and D5000 diffractometers with CuKα (1.5406 Å) 

radiation operated at 40 kV and 30 mA were used. In theory, when the generated X-ray interacts 

with the planes of atoms, a fraction of the beam is transmitted, absorbed, scattered or diffracted 

by the samples. XRD is based on the diffraction of the incidence beam which is described using 

Bragg’s law: 

 

θλ sin2dn =                 [3-6] 

 

where n is an integer, λ is wavelength, d is spacing between atomic planes and θ is the angle of 

incidence. Two phenomena can be observed from the XRD data; sharp peaks if the X-ray beam 

diffracted by the regular lattice planes (crystalline materials) and/or a broad hump indicating 

diffuse scattering by the random orientated atoms (amorphous materials). The XRD data were 

collected by the detector using reflection geometry and the basic principle of the interaction 

between X-ray beam and the regular lattice planes is illustrated in Figure 3-8. 

 

For all XRD measurements, only powdered samples that had been sieved to < 75 µm were 

analysed. The samples were placed in the sample holder and the top of the surface was flattened 

using a glass slide. The detector was scanned over a 2θ range from 10 to 80° at 1°/min intervals 

with a step size of 0.05°. In some cases, overnight XRD measurements were undertaken by using 

identical scan conditions but with increased scan time to improve resolution (1°/8min intervals). 
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The XRD data was analysed using PDF-4+ 2012 software package (version 4.12.0.4) of which 

utilised The International Centre for Diffraction Data (ICDD) database. 

 

 
 

Figure 3-8: Schematic diagram showing the basic principles of X-ray diffraction. 

 

3.16. Fourier Transform Infrared Spectroscopy 

 

The types of the bonds contributing to the network structure of the samples were identified using 

a Perkin Elmer Frontier Fourier transform infrared spectrometer (FTIR). The FTIR spectrometer 

consists of four major spectrometer components: radiation source, interferometer, sample 

compartment, pyroelectric detector (triglycine sulphate, DTGS) and a computer to run the 

mathematical procedure called fast Fourier transform (FFT). The FTIR is based on the principle 

of Michelson interferometer and a block diagram of the instrument is shown in Figure 3-9. 

 

The Michelson interferometer is a device that produces interference between two beams of light. 

The operation of the interferometer is as follows; the infrared beam generated from the source 

(various frequencies in infrared region) was split 50:50 by the beam splitter, one beam travelled 

to the stationary mirror and one to the moving mirror that introduced different optical path 

lengths, the beams were reflected by the mirrors and recombined to create an interference signal 

called an interferogram. The interferogram is a unique signal resulting from the constructive and 

destructive interferences (due to different optical paths) and contains all infrared frequencies. 

The interferogram passed through the sample and the resultant interferogram is detected using 

the pyroelectric detector. Each molecular bond will couple with a specific frequency of light 

Incoming X-rays 

d 

Diffracted X-rays 

θ 
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causing molecular bond vibrations and a signal in the interferogram. According to quantum 

mechanics, the molecular bonds vibrate by absorbing energy and excite from the lowest state to 

the highest (usually from the ground state to the first exited state). For a transition to be FTIR 

active, the molecule must undergo a dipole moment change during vibration. The resultant 

interferogram was finally Fourier transformed to generate intensity as a function of wavenumber 

(see example in Figure 3-10). 

 

 
 

Figure 3-9: Basic configuration of FTIR spectrometer. 

 

The samples to be analysed were prepared using the KBr disc method. This is due to the 

diamond attenuated total reflection (ATR) module that was available at the time being limited to 

detecting bands at lower wavenumbers, < 700 cm-1. In all cases, 0.2 g of powder KBr were 

mixed with 0.002 g of sample, ground in an agate mortar with a pestle for 5 min to ensure the 

homogeneity of the mixture and pressed using a 10 mm diameter mould at 10 tons. The 

background scan was carried out without the sample prior to each measurement in order to 

calibrate the detector of the instrument. The prepared pellets were scanned using the FTIR from 

400 to 4000 cm-1 wavenumbers and 20 spectra were accumulated for each to ensure high 
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accuracy of the data; each cycle was a complete scan of moving back and forth of the moving 

mirror. The obtained data were then analysed using the Spectrum software package (version 

10.4.1.262) and compared with the data reported in the literature. 

 

 
 

Figure 3-10: Fourier transform of measured interferogram yields a single beam spectrum (taken 

from Smith 2011). 

 

3.17. Microscopy 

 

The size of features that can be observed using a microscope is related to its resolving power 

which is the smallest separation at which two separate objects can be distinguished. The 

resolving power of a microscope is ultimately dependant on the wavelength of light. This is why 

an optical microscope (λ = 400-700 nm) has lower resolution compared to an electron 

microscope (λ < 1 nm). Although hugely different in resolution, optical and electron microscopes 

share similar basic principles; both of the microscopes use lenses to magnify an image of an 

object. In an optical microscope, the visible light is focused by glass objective lenses (very short 

focal length) and this magnifies an image of the sample. Apart from giving a low resolution 

image, the optical microscope offers significant advantages, such as no coating being required, 

producing a real colour image and being suitable for all kind of samples i.e. liquids, solids and 

living microorganism. Whilst in an electron microscope, the electron beam generated from 

tungsten-hairpin gun is focused using electromagnetic lenses (by changing the current through 

the objective lens coil) onto the surface of the sample. The interactions of the electron beam with 
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the surface of sample result in a range of signals being emitted and these signals are recorded by 

the detectors (see Figure 3-11).  

 

 
 

(a) 

    

 
(b) 

 

Figure 3-11: Showing (a) signals emitted from the interaction between electron beam and 

sample, (b) the interaction volume and the regions from which the signals may be detected 

(Goodhew et al 2001). 

 

In this work, surface morphology and microstructural analysis were conducted using a Nikon 

ECLIPSE, LV150 optical microscope and a JEOL JSM6400 scanning electron microscope 

(SEM) equipped with an EDS. Samples were cut using a diamond bladed slow saw, cold 

mounted in epoxy resin and left to harden for 24 h. Mounted samples were ground flat by 

successive steps using 120, 400, 800 and 1200 grit abrasive papers. The samples were then 
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polished with 9, 6, 3 and 1 µm diamond pastes to achieve a mirror-like surface. After polishing, 

the samples were rinsed using acetone/isopropanol to accelerate the drying process. Polished 

samples were observed using an optical microscope to identify the bulk microstructures. Samples 

with interesting microstructures were then carbon coated, silver painted around the edge of the 

samples to improve the conductivity and kept dry prior to SEM examination. Secondary and 

backscattered images of the samples were collected along with elemental analysis by EDS. For 

semi-quantitative analysis using EDS, high purity cobalt was used as reference and the detector 

was calibrated every 5 semi-quantitative measurements. 

 

In some cases, the samples observed using optical microscopy were also subjected to optical 

profilometer analysis. Essentially, the optical profilometer is the combination of an inferometer 

and optical microscope into one instrument. The optical profilometer analysis was undertaken in 

order to investigate the surface roughness of the samples and to observe the surface behaviour of 

glass/glass composites and graphite components.  

 

 
 

Figure 3-12: Typical microscope interferometry objectives, (a) Michelson-type objective, (b) 

Mirau-type objective, more detail in Niehues et al. (2012).  

 

For these purposes, the samples were examined using a Veeco ContourGT optical profilometer 

and analysed using the BRUKER-vision64 (version 5.30 update 4) software package. The 
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working principle of a Veeco ContourGT optical profilometer is based on the interferometer 

device that splits a collimated beam of light (emitted from a halogen lamp) into two separate 

beams; where one beam is reflected from the sample under test and another one is reflected from 

the reference mirror. Both of the beams are then recombined to create an interference signal 

(bright and dark bands known as fringes) that make up the interferogram. The produced 

interferogram is detected by the charge-coupled device (CCD) detector and analysed using 

interferometric-phase mapping programs, which generates 3D image that represent the 

topography of the sample. The Veeco ContourGT optical profilometer is equipped with two 

types of interferometer devices that couple into the microscope objectives (see Figure 3-12); 

Michelson (for low magnification, 2-5×) and Mirau (for high magnification 10-100×).  

 

3.18. Raman Spectroscopy 

 

Raman and FTIR are two similar spectroscopic techniques; both probing the vibrations of 

molecular bonds. However, the selection rules are different so that weak bands in the FTIR 

spectroscopy may be strong in the Raman spectroscopy and vice versa. In Raman spectroscopy, 

the molecular transitions take place by changing the polarisability of molecule during the 

vibration, which means the electron cloud of the molecule must experience positional change (by 

an external electric field). Due to this advantage, Raman spectroscopy is widely used to study 

symmetrical molecules e.g. O2. 

 

In principle, a monochromatic laser is used to illuminate the sample, the interaction of the 

polarisable molecule with the incoming radiation creates an induced dipole moment in the 

molecule and the radiation emitted/scattered contains Rayleigh (elastic) and Raman (inelastic) 

scattering. Rayleigh scattering corresponds to the light scattered at the frequency of the incident 

radiation whilst Raman scattering is shifted in frequency, and hence energy, from the frequency 

of the incident radiation by the vibrational energy that is gained (Stokes Raman) or lost (anti-

Stokes Raman) in the molecule. Both Rayleigh and Raman processes are depicted in Figure 3-13. 

 

For the Raman spectroscopy experiments, samples prior or after SEM observation were used to 

confirm which molecular bonds of base glasses were present after sample processing.  Samples 
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after SEM observation were re-polished back to 1 µm to remove the carbon coating on the 

sample. Raman spectra were obtained with a Renishaw Invia Raman spectrometer equipped with 

a CCD detector that was calibrated using Si (100). A monochromatic green laser (514.5 nm) 

operated at 20 mW power was focused on the flat sample (powdered samples were flatten using 

glass slit) surface using 50× objective lens. The spectra were scanned 20 times in an energy 

range of 0 - 4000 cm-1 with an exposure time of 60 s. Cosmic radiation was ignored in all spectra 

measurements.  

 
 

Figure 3-13: Illustration of Rayleigh scattering as well as Stokes and anti-Stokes Raman 

scattering (taken from Larkin 2011). 

 

3.19. Mössbauer Spectroscopy 

 

Since the discovery of the Mössbauer effect, which involves a nucleus embedded in a solid 

matrix emitting and absorbing gamma (γ) rays without recoil (recoil energy less than the lowest 

quantised lattice vibrational energy), many studies regarding the interaction between γ rays with 

materials primarily with the nuclei 57Fe, 119Sn, 151Eu, 121Sb and 161Dy have been performed. In 
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this work, room temperature Mössbauer spectroscopy (WissEl MB-500 Mössbauer bench) was 

used to study the valency of the iron in iron-containing base glass and the graphite-glass 

composite samples. To achieve this aim, having a radioactive source in an excited state 

containing a similar isotope to the samples in a ground state is essential. For this purpose 25 mCi 
57Co prepared by diffusing 57Co into a Rh matrix (so that the 57Co atoms have the same local 

environment and the same nuclear energy) with a half live of ~271 days was used. The nuclear 

decay scheme of 57Co to metastable state and finally to the ground state via a γ ray cascade is 

illustrated in Figure 3-14.    

 

 
 

Figure 3-14: Schematic diagram of energy level of 57Co to 57Fe, I = spin state of the nucleus 

(Dickson and Berry 1986). 

 

In principle, the 14.4 keV γ rays emitted from the source were passed through the sample by 

moving the source relative to the stationary sample with constant acceleration, resonance 

absorption occurred due to the emitted γ rays matching the nuclear transition energy in the 

sample and the resultant signals were detected by the proportional counter. The Mössbauer 

spectra obtained from the measurement consist of a plot of γ ray counts versus the velocity of the 

source with respect to the sample. 

 

As the samples studied were non-magnetic the analysis of the Mössbauer spectra could be 

interpreted based on the electric monopole (Coulomb) interactions. Figure 3-15 shows a 
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schematic diagram of the situation where this electric monopole interaction is the only hyperfine 

interaction affecting the nuclear energy levels in the samples. 

 

In every experiment, approximately 5 mg of powdered sample were loaded into the copper 

holder with a transparent perspex window. The velocity of the spectrometer was calibrated using 

a pure iron foil. The obtained calibration and experimental data were convoluted and analysed 

with extended Voigt-based fitting (xVBF) analysis using the Recoil software package (version 

1.03). All the data were fitted by considering centre shift (CS) and quadrupole splitting (QS) 

values of desired glasses that have been reported in the literature. The relevant crystalline phases 

observed by XRD and crystallography data from ICDD database were also taken into account in 

the analysis. 

 
 

Figure 3-15: The effect of the nuclear energy level of 57Fe, (a) the centre shift, δ, (b) the 

quadrapole spitting, Δ; I = spin state of the nucleus, mI = magnetic quantum numbers (Dickson 

and Berry 1986). 

 

3.20. Indirect Tensile Testing – Brazilian Method 

 

The Brazilian test method is geotechnical laboratory test that is usually used for the measurement 

of indirect tensile strength of rocks. This method is also relevant to measure the tensile strength 

of concretes, ceramics and glass materials. In the Brazilian test method, a load is applied 
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continuously at a constant rate across the diameter of cylindrically shaped samples until failure 

occurs. The loading scheme for the test and the suggested ideal failure (Andreev 1991) of the 

sample is shown in Figure 3-16. 

 

In this work, tensile strength of sintered samples produced using the CPS method was performed 

in a Zwick/Roell Z050 universal tester. The samples were placed vertically towards the upper 

and bottom punches of the instrument and subsequently loaded at a test speed of 0.5 mm/min. 

The tester was set to stop and return back to initial position after exceeding 20 mm deformation. 

At least 5 identical samples were tested and samples that did not break as stipulated for Brazilian 

indirect tensile tests were discarded. The force required for fracture for each sample was 

extracted from the testXpert II software and the average indirect tensile strength values were 

calculated using 

 

rh
F

sample π
σ =                 [3-7] 

 

where F, r, and h are force, radius and height of the samples, respectively. The radius and height 

of the samples were measured using calibrated digital callipers. 

 

 
 

Figure 3-16: Loading scheme for the Brazilian test using a cylindrically shaped sample. 
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4. Results and Discussion I: Graphite Immobilisation in Iron 
 Phosphate Glass Composite Materials Prepared using 
 Microwave and Conventional Processing 
 
4.1.  Introduction 

 

The objective of this chapter is to assess the potential of DMO processing for the production of 

wasteforms intended for the immobilisation of irradiated graphite waste. For comparison 

purposes, the well established conventional glass melting and CPS methods were used to 

produce equivalent samples to those successfully made using the DMO. A wide selection of 

characterisation techniques were implemented to investigate the properties of the produced 

glasses and graphite wasteforms. To simplify the presentation, the results have been divided into 

four sections: characterisation of graphite, characterisation of iron phosphate base glasses, 

characterisation of iron phosphate glass composites and Mössbauer spectroscopy analysis. This 

chapter is then followed by the discussion and summary sub-sections. 

 

4.2.  Characterisation of Graphite  

 

As mentioned previously in Section 3.2, two types of graphite powder were utilised as an 

irradiated graphite waste simulant. Knowledge of the physical and chemical properties of the 

graphite powders is important in the production of graphite wasteforms. Due to this reason, the 

graphite powders have been characterised by means of particle size, density, TGA, XRD, FTIR 

and SEM with EDS analysis. All the obtained data are presented and discussed in this section.   

 

4.2.1. Particle Size and Density 

 

The particle size distributions of the specific graphite powders used in the DMO, CPS and SPS 

processing methods are summarised in Table 4-1. Although the average size of the particles 

based on volume considerations is comparable, equivalent to average diameters of 167 ± 8 or 

145 ± 7 µm, on a number basis there were much greater numbers of small particles used in the 

DMO experiments with an average size of 0.24 ± 0.01 µm. It is worth noting that the presence of 
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the small particle size means that there is a high surface area and this may increase the possibility 

of graphite oxidation during sintering. The powder density of smaller size graphite was slightly 

larger, being about 2 % greater than the graphite used in the CPS and SPS processing. This can 

be understood as the large particles of graphite may contain more porosity and consequently 

lowering the powder density.    

 

Table 4-1: Statistical particle size analysis and density of graphite powders. 

 

Parameter 
DMO CPS, SPS 

(Volume basis) 
Diameter /µm 

(Number basis) 
Diameter /µm 

(Volume basis) 
Diameter /µm 

(Number basis) 
Diameter /µm 

 
Average size 

 
145 ± 7 

 
0.24 ± 0.01 

 
167 ± 8 

 
4.59 ± 0.23 

 
Size 
distribution 
10% 
25% 
50% 
75% 
90% 

 
 
 
< 46.6 ± 2.3 
< 86.5 ± 4.3 
< 131.5 ± 6.6 
< 189.9 ± 9.5 
< 258.5 ± 12.9 

 
 
 
< 0.11 ± 0.01 
< 0.11 ± 0.01 
< 0.14 ± 0.01 
< 0.19 ± 0.01 
< 0.28 ± 0.01 

 
 
 
< 34.5 ± 1.7 
< 73.6 ± 3.7 
< 139.2 ± 6.7 
< 229.6 ± 11.5 
< 336.5 ± 16.8 

 
 
 
< 1.62 ± 0.08 
< 2.03 ± 0.10 
< 2.87 ± 0.14 
< 4.58 ± 0.23 
< 8.44 ± 0.42 

 
Density 

 
2.3287 ± 0.0046 g/cm3 

 
2.2746 ± 0.0029 g/cm3 

 

 

4.2.2. Effect of Heating under Air and Argon  

 

The main issue in the production of graphite wasteform is the potential of the waste to oxidise to 

CO and/or CO2 whilst being heat treated at low temperature. This behaviour can be seen in 

Figure 4-1, which demonstrates the oxidation reaction under air and argon (see below) resulting 

from continuous heating at 10°C/min. It is apparent that both of the graphite powders started to 

oxidise in air at temperatures as low as ~600°C, the percentage mass loss gradually increased 

after this temperature. It is hypothesised that if the lower heating rate and longer dwell time were 

used in the sintering process, it may also increase the loss of the graphite. This oxidation reaction 

is unacceptable, as if the irradiated graphite is considered, radionuclides such as 14CO and 14CO2 
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may be released to the biosphere. When the graphite powders are heated in argon, more than 95 

% of the mass can be retained, suggesting that the presence of air is not possible if heating above 

600°C is needed in the production of graphite wasteforms. The small loss of graphite under 

argon is probably due to the impurities in the gas (95 % pure according to manufacturer). It is 

also seen that the smaller particles of the graphite used in the DMO method resulted in a slight 

increase of the percentage mass loss in both heating environments. This is expected as the 

smaller particles have a large surface area and this promotes the oxidation reaction. 
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Figure 4-1: TGA of graphite powders measured under air and argon environments. 

 

4.2.3. XRD 

 

Figure 4-2a shows the normalised XRD patterns of graphite powders measured at room 

temperature. The diffractograms matched with PDF card 26-1076 and revealed the positions of 

the peaks for both of graphite powders are essentially identical; especially the maximum 

intensity peak is located at 26.5° 2θ. It is also evidenced in Figure 4-2a that the intensity of the 

secondary peak (54.6° 2θ) for graphite used in CPS and SPS processing is two magnitudes 

higher than the one used in DMO, suggesting a higher degree of crystallisation. Magnifying the 

diffractograms as shown in Figure 4-2b, peaks matched with sodalite (Na6Al6(SiO4)6, PDF card 
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04-009-5260) and some unknown peaks labelled with a star (*) were identified. It is thought that 

these peaks are due to contamination in the graphite powders. Comparing the diffractograms, it is 

clear that higher degree of sodalite crystallisation (as another 2 peaks were identified) is present 

in the graphite powder used in DMO processing.  Due to the low intensity of the unknown peaks, 

the software could not identify these peaks. To address this issue, EDS analysis of the graphite 

powders was carried out and the results can be viewed in Section 4.2.5. 

 
Figure 4-2: Normalised XRD patterns of graphite powders, (a) overall diffractograms, (b) close 

up of the diffractograms, * = unknown peak, Δ = Na6Al6(SiO4)6, G = graphite. 

 

4.2.4. FTIR  

 

The comparison of the FTIR spectra of both graphite powders used in this study is depicted in 

Figure 4-3. The absorption bands of the FTIR spectra are analysed based on the literature as 

follows: the band at about 771 cm-1 can be recognised as the stretching mode of C-H out-of-

plane bending in o-substituted benzenes (Socrates 2004); the band at 1025 cm-1 is attributed to 

the vibration of C-H in plane bending in p-substituted benzenes (Socrates 2004) and may also 

correspond to the C-OH stretching mode (Yu et al 2014); the band at 1110 cm-1 is assigned as 
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the stretching mode of C-O, ketals and acetals (Socrates 2004, Wang and Dou 2012); the doublet 

observed at 1578-1635 cm-1 is believed to be due to C=C or C=O directly conjugated to the 

aromatic rings (Nakahara and Sanada 1995, Socrates 2004) and finally the band at 3430 cm-1 is 

associated with O-H stretching vibrations (Socrates 2004, Chen et al 2013b, Lipińska et al 2014, 

Olanipekun et al 2014). Theoretically, the FTIR spectrum of 100 % pure graphite is flat (without 

peaks) as no IR active functional group exists in this material (Choi et al 2010); another flat 

spectra of pure graphite with some contamination of C=C groups has been reported elsewhere 

(Yu et al 2014, Zhang et al 2014). Based on the FTIR analysis, it can be inferred that both of the 

graphite powders used in this study are not 100 % pure and are essentially contaminated with the 

hydrocarbon impurities.  

500 1000 1500 2000 2500 3000 3500 4000

771

1110

1025

3430

1630
1578

 Graphite (DMO)
 Graphite (CPS, PECS)

A
bs

or
ba

nc
e 

(a
.u

)

Wavenumber (cm-1)

 
Figure 4-3: FTIR spectra of graphite powders. 

 

4.2.5. Microstructure and EDS Analysis 

 

The microstructure and compositional mapping analysis of the most contaminated graphite (used 

in DMO processing) are illustrated in Figure 4-4. SE image indicates that the graphite powder 

has an irregular shape with the average length of particles varying from 100 to 150 µm, which is 

consistent with the particle size analysis (Table 4-1). It is clearly seen that almost all particles 
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were identified as C (see Figure 4-4b). Based on the individual mapping images, minor 

contamination by chemicals such as Al, Si, S, Ca, Fe, K and Na can be distinguished. The similar 

position of Al, Si and Na species (see Figure 4-4Al, Si, Na) reflect the sodalite contamination 

that was previously detected in the XRD analysis (Section 4.2.3). Other contaminations may be 

recognised as calcium aluminosilicate and iron sulphide compounds. This statement is solely due 

to some elements being detected in a similar area; Al, Si, Ca (Figure 4-4Al, Si, Ca) and S, Fe 

(Figure 4-4S, Fe). Additionally, the Al, Si, S, Ca and Fe elements correlate well with the O. This 

leads to the suggestion that these elements may as well present as oxide phases.    

 

The compositional mapping analysis of the graphite powders used in the CPS and SPS 

processing is shown in Figure 4-5. Basically, the elemental images exhibited identical 

contaminations albeit less detection of XRD peaks (refer Figure 4-2b). Larger particle size than 

graphite that utilised in DMO processing can be seen in the SE image (Figure 4-5a). This is also 

in agreement with the particle size analysis. Potential sodalite and calcium aluminosilicate 

compounds as well as the Al, Si, S, Ca and Fe correlate well with O are also detected in this 

graphite batch; refer Figure 4-5O, Al, Si, S, Ca, Fe and Na. However, the possibility of iron 

sulphide compound existed in DMO graphite is not visible in the mapping analysis of the new 

batch; Figure 4-5S and Fe show that Fe and S are present in different places. 

 

Overall, the small contamination of both graphite samples detected by EDS analysis may at least 

explain the detection of unknown peaks in the XRD diffractograms. The impurities were thought 

to originate from the graphite manufacturing process; as-received graphite powders without any 

treatments were characterised. Although both of the graphite samples were mostly identified as 

C, it should be noted that this contamination will affect the production of wasteforms in this 

research. 
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Figure 4-4: SE micrograph and individual compositional analysis of graphite powder used in 

DMO processing. 

C O Al 

Si S Ca 

Fe K Na 

Graphite (DMO) 



74 

 

 

 

 
 

 

Figure 4-5: SE micrograph and individual compositional analysis of graphite powder used in 

CPS and SPS processing. 
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4.3.  Characterisation of Iron Phosphate Base Glasses 

 

This section describes various characterisation data of iron phosphate base glasses prepared 

using DMO and conventional melt processing. Note that only iron phosphate based glass without 

the addition of graphite is being discussed. In this particular section, the intention is to compare 

the properties of iron phosphate glasses formed using unconventional (microwave melting) and 

conventional melt processing methods.  

 

4.3.1. Chemical and Physical Properties 

 

Information about chemical and physical properties of the IP base glasses prepared using DMO 

and conventional processing methods is detailed in Table 4-2.  

 

Table 4-2: Properties of iron phosphate glasses prepared using microwave and conventional 

melting methods. 

 

Element As 
batched 

Microwave  
(EDS) 

Conventional  
(EDS) 

 
Fe (at.%) 
P (at.%) 
Al (at.%) 
Si (at.%) 
O (at.%) 
 
Fe2O3 (mol %) 
P2O5 (mol %) 

 
12.90 
19.35 

- 
- 

67.74 
 

40.00 
60.00 

 
13.78 ± 0.12 
19.88 ± 0.04 

- 
0.95 ± 0.12 
65.39 ± 0.03 

 
40.94 ± 0.44 
59.06 ± 0.64 

 
13.75 ± 0.07 
20.31 ± 0.03 

- 
0.46 ± 0.04 
65.47 ± 0.03 

 
40.37 ± 0.17  
59.63 ± 0.23 

 
13.43 ± 0.06 
20.64 ± 0.01 
0.37 ± 0.04 

- 
65.57 ± 0.01 

 
39.42 ± 0.09 
60.58 ± 0.14 

 
Melting time (min) 
Mass loss (%) 

  
8 

29.3 ± 2.9 

 
20 

28.6 ± 2.9 

 
180 

27.0 ± 2.7 
Tg - DTA (ºC) 
Density (g/cm3) 

 489 ± 5 
2.9955 ± 0.0005 

490 ± 5 
3.0110 ± 0.0064 

474 ± 5 
3.0904 ± 0.0004 

 

 

In DMO processing, the raw materials of the glass were successfully transformed to glass after 8 

minutes melting, with a black shiny solid being formed after rapid cooling of the melt. An 
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identically coloured glass was obtained from the conventional melt processing. The chemical 

composition analysis revealed that there is a lower amount of P in the microwaved iron 

phosphate glasses. This suggests that the higher heating rate during the microwave melting led to 

slightly increased P loss. Corrosion of the vitreous silicate or mullite crucibles by the glass melt 

at high temperatures was confirmed as some contamination by Si or Al was detected. The 

difference in the chemical compositions is in agreement with the mass loss data, which shows 

higher mass loss for the microwaved glasses. Despite the differing amounts of P in the glasses, 

Tg and powder density of iron phosphate glasses obtained from conventional and microwave 

melting were similar.  

 

4.3.2. XRD 

 

XRD patterns for the base iron phosphate glass prepared by means of DMO and conventional 

melting are shown in Figure 4-6.  
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Figure 4-6: XRD patterns of iron phosphate glasses prepared by microwave and conventional 

heating, Z = Fe2(P2O7). 
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After microwaving for 2 and 4 minutes a number of peaks were observed which were matched 

with Fe2(P2O7), PDF card 04-009-4840. Traces of an amorphous phase were also detected in 

these samples. The intensity of some peaks decreased after 4 minutes of microwave heating, 

indicating a reduction in crystallinity. On further increasing the microwave times to 8 minutes or 

20 minutes, the diffractogram shows diffuse scattering between 20 and 35° of 2θ and an absence 

of any distinct crystalline species. This is consistent with the presence of iron phosphate glass in 

the sample. A similar pattern was also obtained from iron phosphate glasses prepared by using 

conventional heating, whether involving rapid quenching into water or annealing of the cast 

glass.  

 

4.3.3. FTIR 

 

The FTIR spectra for the IP base glasses produced using DMO and conventional melting 

methods are displayed in Figure 4-7.  
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Figure 4-7: FTIR spectra of IP base glasses. 

 

In general, the patterns of the spectra for all glasses have peaks at identical wave numbers 

implying all the glasses shared similar chemical functional groups. According to the literature, 
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the peaks can be assigned to specific bond vibrations that are consistent with iron phosphate 

glasses as follows: 515 cm-1 is due to overlapping vibrations of bending of O-P-O in P2O7 units, 

and of Fe-O bonds (Schofield 2011, Lai et al 2011a, Joseph et al 2012, Lai et al 2014); 756 cm-1 

to symmetric stretching of P-O-P bridges (Kim and Day 2003, Schofield 2011, Lai et al 2011a, 

2011b, 2014); 938 cm-1 is attributed to asymmetric stretching P-O-P bridges (Schofield 2011, Lai 

et al 2011b, 2014); 1107 cm-1 to P-O Q1 terminal oxygens (Schofield 2011, Lai et al 2011a); 

1255 cm-1 corresponds to P=O (Schofield 2011, Lai et al 2011a, 2014) and the rest of the peaks 

(1630 and 3468 cm-1) are related to P-OH or water (Lai et al 2011a, 2011b).     

 

4.4.  Characterisation of Iron Phosphate Glass Composites 

 

The characterisation data of produced iron phosphate glass composites containing 20 - 38 wt% 

graphite powder formed using DMO are discussed in this section. Selected DMO samples are 

compared with the samples made using the CPS method. This section is divided into 4 parts 

namely physical properties, XRD, FTIR, and finally microstructure and EDS analysis. The focus 

of this section is to identify the potential of DMO processing in the production of graphite 

wasteform based iron phosphate glass compositions. 

 

4.4.1. Physical Properties 

 

The mass loss of the microwaved IP20G glass composites is presented in Figure 4-8. Pellets 

microwaved for 1, 2 and 3 minutes show increasing mass losses of 17.6 ± 1.8, 24.1 ± 2.4 and 

26.9 ± 2.7 %, indicating the removal of volatile elements. After 4 minutes microwave 

processing, the mass change of the microwave heated pellets was 28.2 ± 2.8 % and there was no 

significant change as the microwave processing time was increased from 4 to 20 minutes.  

 

Figure 4-9 shows the variation in density of the pellets and powdered IP20G glass composites as 

a function of microwave processing time. In general, the bulk density of the pellets decreased 

gradually from the green state up to 3 minutes processing time, became stable for processing 

times varying from 4 to 12 minutes, increased slightly again between 12 and 14 minutes and 

reached its maximum value for processing times varying from 14 to 20 minutes. It is thought that 
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at this time frame (14 – 20 minutes) the glass component was partially liquid, which enabled 

some pore filling and leads to the release of entrapped gasses, thus increasing the bulk density of 

the composites. In contrast the density of the powdered iron phosphate glass composites 

gradually increased for processing times up to 4 minutes and thereafter was stable for processing 

times between 4 and 20 minutes.  
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Figure 4-8: Mass loss of microwaved IP20G glass composites. 
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Figure 4-9: Bulk and powdered densities of microwaved IP20G glass composites at various 

exposure times. 
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From the density data, the porosity of the samples was calculated. As can be seen from Figure 4-

10 it is apparent that the microwaved samples are highly porous with only a limited decrease in 

porosity for microwave processing times in excess of 14 minutes. Based on the physical 

properties of the IP20G series, it was inferred that 20 minutes is an adequate exposure time to 

complete the reaction of the iron phosphate glass composites for higher graphite loadings. 
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Figure 4-10: Porosity of microwaved IP20G glass composites at various exposure times. 

 

The physical properties of iron phosphate composites containing various waste loadings and 

produced in various environments are listed in Table 4-3. It is found that similarly high porosity 

values were obtained from samples IP30G and IP38G. This not acceptable as the high porosity 

material will increase the volume and lower the mechanical properties as well as the chemical 

durability (when in contact with water) of the final wasteform, hence only limited analysis was 

conducted on these samples. Table 4-3 also shows that there is no significant difference between 

samples with a 20 wt% waste loading that have been microwave processed in air or in argon with 

both samples showing between 36 and 38 % porosity. In comparison IP20G samples that were 

conventionally sintered (CPS) at 770°C for 2 h exhibit much lower porosity levels of about 15 % 

(see Section 5.3 for detailed analysis of iron phosphate graphite-glass materials made using 

CPS).  
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Table 4-3: Physical properties of various iron phosphate glass composites. 
 

 
Sample 

Measured 
mass loss 
(%) 

Bulk 
density 
(g/cm3) 

Powdered 
density 
(g/cm3) 

Porosity  
(%) 

IP38G (DMO), 20 min 22.9 ± 2.3 1.6 ± 0.2 2.8 ± 0.1 42.8 ± 4.3 
IP30G (DMO), 20 min  25.8 ± 2.6 1.6 ± 0.2 2.9 ± 0.1 45.8 ± 4.6 
IP20G (DMO), 20 min  29.0 ± 2.9 1.9 ± 0.2 3.2 ± 0.2 36.9 ± 3.7 
IP20G (DMO), 20 min (Ar) 29.2 ± 2.9 1.9 ± 0.2 3.0 ± 0.2 37.5 ± 3.8 
IP20G (CPS), 2h 770°C (Ar) 0.6 ± 0.1 2.6 ± 0.3 3.1 ± 0.2 14.9 ± 1.5 

 

4.4.2. XRD 
 

Figure 4-11 shows the XRD patterns of IP20G glass composites produced using various 

exposure times, environments and sintering methods. Graphite peaks can be seen in all of the 

XRD patterns. For all of the microwaved samples, mixtures of FeP2O6 (PDF 04-009-5697), 

Fe(PO3)3 (PDF 00-038-0109) and Fe2(P2O7) (PDF 04-009-4840) together with graphite 

contamination of sodalite (refer section 4.2.3) were detected. In addition, traces of Fe2O3, 

NH4H2PO4 and Fe3O4 were also identified in samples microwaved for 1 to 3 minutes. This 

agrees with the mass loss data that suggest decomposition of the raw materials occurs on this 

time scale. The formation of Fe2O3 at shorter exposure times was due to oxidation of Fe3O4. This 

oxidation process seems to occur during the initial rapid heating phase. Based on the 

diffractograms, it is seen that the peaks related to iron phosphate crystalline phases become 

sharper and more pronounced/dominant as the microwave processing time increases while 

heating under air. There is a slight decrease in the relative intensity of the iron phosphate phases 

in samples that were microwaved for 20 minutes under argon. Identical crystalline phases, but 

with more clearly defined XRD patterns, were also found for the IP20G sample that was 

conventionally sintered at 770°C for 2 hours in argon. Similar crystallisation data were obtained 

for samples that contained 30 and 38 wt% graphite although, as expected, the intensities of the 

graphite peaks increased with increasing waste loading. It is worth noting that the diffuse 

scattering pattern located between 20 and 35° of 2θ was present in all diffractograms. However, 

in this case the diffuse scattering patterns are not visible in Figure 4-11 due to the intensity scale 

used.  
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Figure 4-11: Normalised XRD patterns of IP20G glass composites, H = Fe2O3, N = NH4H2PO4, 

M = Fe3O4, X = FeP2O6, Y = Fe(PO3)3, Z = Fe2(P2O7), Δ = Na6Al6(SiO4)6, G = Graphite. 

 

4.4.3. FTIR 

 

According to the XRD analysis it is expected that the FTIR spectra of the iron phosphate glass 

composites will have contributions from the glass, crystalline phases and graphite. The 

aforementioned spectra obtained from IP20G samples prepared using DMO and CPS methods 

are presented in Figure 4-12. By considering the information in Section 4.2.4 and 4.3.3, the 

contributions of graphite and IP glass can be distinguished and are labelled as G and I. The rest 

of the peaks are thought to be from crystalline phases that precipitated during sintering. Overall, 

there is no significant difference in the position of the peaks for all the IP20G composites. The 

peaks have been assigned as follows:  504 cm-1 is due to O-P=O bending vibrations (Abid et al 

2003), 563 cm-1 to the O-P-O bending mode (Lai et al 2014), 601 cm-1 is due to Fe-O vibrations, 

and can be observed if Fe2O3 content greater than 20 mol % (Jermoumi et al 2002), 714 cm-1 to 

P-O-P bridge symmetric stretching (Karabulut et al 2003), 920 cm-1 to P-O-P asymmetric 

stretching in Q0 units (Lai et al 2014), 1005 and 1145 cm-1 are the vibrations of P-O- groups, 

chain terminator (Hafid et al 2002), 1184 cm-1 to asymmetric and symmetric vibrations of (PO2)- 
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in Q2 units (Moguš-Milanković et al 2004) and finally 1231 cm-1 to P=O in Q3 groups (Bingham 

et al 2005). 
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Figure 4-12: FTIR spectra of IP20G glass composites, I = contribution from IP glass, G = 

contribution from graphite. 

 

4.4.4. Microstructure and EDS Analysis 

 

The nature of the produced pellets from both microwave and CPS processing as well as the 

optical microscope images of the samples are shown in Figure 4-13. It is clear that the use of raw 

materials (iron and phosphate precursors) in microwave processing affects the structural integrity 

of the pellets; some material has formed a liquid phase on top of the sample whilst microwaving 

(Pellet a); this is most probably caused by the aggression of the released gases that occurred in 

the decomposition process of the raw materials. By using pre-made iron phosphate glass powder 

(Pellet b) in CPS processing, this effect is negligible, presumably because there are no volatile 

materials apart from graphite in the sample. Optical images of the microwaved IP20G at 20 

minutes confirm the high amount of porosity compared to the equivalent sample composition 

prepared using CPS (see optical microscope images, Figure 14-13a and 14-13b).  
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Figure 4-13: Photographic and OM images of iron phosphate glass composites (a) IP20G 

(DMO), 20 min (b) IP20G (CPS), 2h 770°C (Ar). 

 

Figure 4-14 exhibits SEM micrographs of iron phosphate phases encapsulating the graphite 

particles. For all of the microwaved samples, it is apparent that some of the graphite has 

oxidised, with the effect of this oxidation process being indicated by the spherical porosity on the 

graphite particles (indicated by arrows). Figures 4-14c and 4-14d confirm the presence of 

extensive porosity in the microwaved IP30G and IP38G samples; an evidence of graphite 

particles pull out from grinding and polishing process is also shown in Figure 4-14c. A reduction 

of porosity can be seen by comparing micrographs for samples processed for 20 minutes in air 

using the DMO  (Figure 4-14a) with those processed for 2 hours using CPS under argon (Figure 

4-14e). The microstructures of samples microwaved for 20 minutes under air or argon were 

found to be similar (see Figure 4-14a and 4-14b). The extent of the crystalline phases as against 

glassy phases encapsulating the graphite particles seems to be higher for the conventionally 

sintered samples than in those prepared using a DMO (compare Figure 4-14a with 4-14d). 

(a) (b) 

(a) (b) 
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Figure 4-14: SEM micrographs of iron phosphate glass composites, (a) IP20G (DMO), 20 min, 

(b) IP20G (DMO), 20 min (Ar), (c) IP30G (DMO), 20 min , (d) IP38G (DMO), 20 min, (e) 

IP20G (CPS), 2h 770°C (Ar). 

 

When using raw materials in DMO processing and pre-made glass in CPS processing, the 

distribution of Fe and P is homogeneously encapsulating graphite particles. This can be clearly 

seen by comparing the compositional mapping analysis in Figure 4-15 with Figure 4-16. It is 

(e) 

(c) (d) 

(a) (b) 
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worth noting that the graphite particles in both samples are completely separated from the iron 

phosphate phases, suggesting encapsulation and that no chemical reaction between these 

materials occurred during sintering. 

 

 
Figure 4-15: Elemental mapping analysis of IP20G (DMO), 20 min, (a) O, (b) C, (c) Fe, (d) P. 

 
Figure 4-16: Elemental mapping analysis of IP20G (CPS), 2h 770°C (Ar), (a) O, (b) C, (c) Fe, 

(d) P. 

(d) 

(b) 

(c) 

(a) 

(d) 

(b) (a) 

(c) 
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Higher magnification SEM images suggest that at least 3 different components are present in the 

samples (see Figure 4-17). The black regions were confirmed to be graphite by EDS analysis. 

From the EDS spectra, areas A and C contain Fe and P, whereas areas B and D also contain Si, 

Al and/or Ca. Based on compositional mapping analysis of the graphite Al, Si and Ca are 

confirmed to originate from graphite (Section 4.2.5); Al or Si may also result from contamination 

of the crucibles (Table 4-1). It is clear that the phosphate and iron ratios were in line with the 

XRD analysis. The measured P:Fe ratios can be matched with crystalline phases identified by 

XRD as follows: FeP2O6 (Fe:P = 1:2) - areas A/A1/A2, Fe(PO3)3 (Fe:P = 1:3) - areas B/B1/D and 

Fe2(P2O7) (Fe:P = 1:1) - area C. 

 

 
 

Figure 4-17: Backscattered electron SEM micrographs and normalised EDS spectra of iron 

phosphate glass composites, (a) IP20G (DMO), 20 min, (b) IP20G (DMO), 20 min (Ar), (c) 

IP20G (CPS), 2h 770°C (Ar). 
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4.5.  Mössbauer Spectroscopy Analysis 

 

Figure 4-18 indicates the fitted Mössbauer spectra for selected glasses and IP20G composite 

materials. The fitted Mössbauer parameters are given in Table 4-4. Fe2+ and Fe3+ were assigned 

by considering the work of Darby-Dyar et al. (Dyar et al 2006). Mössbauer parameters from the 

literature for iron phosphate glasses (Forder et al 2012), FeP2O6 (Ericsson et al 1990), Fe(PO3)3 

(Elbouaanani et al 1999) and Fe2(P2O6) (Ericsson et al 1990, Millet et al 1989) were used as 

references in the fitting. The magnetite used in this work matched with PDF card 19-629, and 

contained 69 % Fe3+ and 31 % Fe2+.  

 

Some reduction of Fe3+ to Fe2+ occurred during the initial stages of glass processing (when no 

carbon was present) whether this involved 8 minutes in a microwave or 3 hours in a conventional 

melting furnace. This reducing environment occurred due to the presence of NH3 generated from 

the decomposition of the ammonium dihydrogen phosphate used as a phosphate source. As the 

microwave melting time increased to 20 minutes, the amount of Fe3+ increased significantly, 

indicating that a longer melting time leads to oxidation of iron. It is found that rapid quenching 

or annealed glasses prepared using conventional glass melting resulted in a similar Fe2+/ΣFe 

ratio. The iron phosphate composite materials, on the other hand, had much more complicated 

Mössbauer spectra due to the contribution of Fe2+ and Fe3+ in glassy and crystalline phases. 

Generally, IP20G samples prepared using both DMO and CPS methods shows that some iron has 

been reduced, consistent with loss of graphite. It is clear that the reduction of iron occurred to a 

greater extent in the IP20G (DMO) composite microwaved for 20 minutes in air compared to the 

equivalent sample that was microwaved for 20 minutes under argon with the Fe2+/ΣFe ratios 

being 62 to 51 % respectively. A decreased amount of crystalline phases and increased glassy 

content were also seen in sample that was microwaved under argon. Comparing the microwaved 

composites with composites prepared using CPS, the contributions of glassy phase was dominant 

rather than crystalline phases. This is in line with the XRD analysis that indicated more intense 

and sharper crystallisation peaks for the CPS composites. It is also worth noting that one 

unknown quadrupole was fitted to the CPS composite data. This phase was not detected in XRD 

analysis and due to the high value of QS, it is assigned as Fe2+. 
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Figure 4-18: Mössbauer spectra of glass and glass composite samples formed using microwave 

and conventional melting/sintering methods. 
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Table 4-4: Mössbauer parameters (±0.02 mm/s) of glass and IP20G samples produced by 

microwave and conventional heating (CS = centre shift, QS = quadrupole splitting, FWHM = 

full width half maximum). 

 

Sample CS 
(mm/s) 

QS 
(mm/s) 

FWHM 
(mm/s) 

Assigned 
phase 

Area 
(%) Site 

(Fe2+/ 
ΣFe) × 
100 % 

 
Glass (DMO), 8 

min 

 
0.40 
1.19 

 
0.87 
2.23 

 
0.14 
0.14 

 
Glass 
Glass 

 
58 
42 

 
Fe3+ 
Fe2+ 

 
42 

 
Glass (DMO), 20 

min 

 
0.40 
1.08 

 
0.84 
2.41 

 
0.14 
0.14 

 
Glass 
Glass 

 
77 
23 

 
Fe3+ 
Fe2+ 

 
23 

 
Glass (C), 3 h 

1150˚C 

 
0.40 
1.20 

 
0.89 
2.21 

 
0.14 
0.14 

 
Glass 
Glass 

 
50 
50 

 
Fe3+ 
Fe2+ 

 
50 

 
Glass (C), 3 h 

1150˚C annealed 

 
0.42 
1.19 

 
0.83 
2.30 

 
0.15 
0.15 

 
Glass 
Glass 

 
48 
52 

 
Fe3+ 
Fe2+ 

 
50 

 
IP20G (DMO), 20 

min 
 

 
0.42 
1.21 
1.31 
1.19 
0.43 
0.45 
1.25 
1.37 

 
0.99 
2.55 
1.50 
2.64 
0.42 
0.28 
2.38 
2.76 

 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 

 
Glass 
Glass 

FeP2O6 
FeP2O6 

Fe(PO3)3 
Fe(PO3)3 
Fe2(P2O7) 
Fe2(P2O7) 

 
18 
10 
10 
25 
13 
7 

11 
6 

 
Fe3+ 
Fe2+ 
Fe2+ 

Fe2+ 

Fe3+ 

Fe3+ 

Fe2+ 

Fe2+ 

 
62 

 
IP20G (DMO), 20 

min (Ar) 
 

 
0.40 
1.22 
1.31 
1.15 
0.47 
0.43 
1.29 
1.41 

 
0.88 
2.31 
1.84 
2.63 
0.41 
0.36 
2.70 
2.55 

 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 

 
Glass 
Glass 

FeP2O6 
FeP2O6 

Fe(PO3)3 
Fe(PO3)3 
Fe2(P2O7) 
Fe2(P2O7) 

 
33 
6 

16 
16 
10 
6 
6 
7 

 
Fe3+ 
Fe2+ 
Fe2+ 

Fe2+ 

Fe3+ 

Fe3+ 

Fe2+ 

Fe2+ 

 
51 

 
IP20G (CPS), 2 h 

770˚C (Ar) 
 

 
0.40 
1.03 
1.33 
1.28 
0.45 
0.42 
1.20 
1.39 
1.18 

 
1.04 
2.20 
1.47 
2.63 
0.33 
0.39 
2.85 
2.60 
4.35 

 
0.12 
0.12 
0.12 
0.12 
0.12 
0.12 
0.12 
0.12 
0.12 

 
Glass 
Glass 

FeP2O6 
FeP2O6 

Fe(PO3)3 
Fe(PO3)3 
Fe2(P2O7) 
Fe2(P2O7) 
Unknown 

 
19 
4 

15 
25 
21 
3 
6 
2 
4 

 
Fe3+ 
Fe2+ 
Fe2+ 

Fe2+ 

Fe3+ 

Fe3+ 

Fe2+ 

Fe2+ 

Fe2+ 

 
57 
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4.6.  Discussion 

 

Microwave and conventional melting resulted in iron phosphate glasses with largely similar 

physical and structural properties, although the microwaved samples retained slightly less 

phosphorus than the conventionally melted samples, which is consistent with other reported 

studies (Bingham et al 2006, 2009). Due to the similar properties of the glasses prepared by the 

two methods, it is suggested that the temperature reached in the microwave processing is around 

1150°C. If it is assumed that all of the ammonium dihydrogen phosphate completes the 

decomposition processes during microwave heating i.e. 

 

[ ] OH3NH2OPPOHNH2 2352424 ++⎯→⎯ΔQ       [4-1] 

 

then a theoretical mass loss of glass during melting can be calculated based on an assumed iron 

oxidation state; the two extreme cases being all of the iron being present as Fe3+ i.e. 

 

32243 OFe6OOFe4 ⎯→⎯+ ΔQ       [4-2]  

 

or all of the iron being present in the Fe2+ i.e. 

 

243 OFeO6OFe2 +⎯→⎯ΔQ       [4-3]  

 

The former case gives a theoretical mass loss of 25.4 % whereas the latter gives a theoretical 

mass loss of 28.6 %. In practice the actual mass loss of glass after 20 minutes in the DMO is in 

line with the larger of these two values being 28.6 ± 2.9 %, suggesting that all of the iron is 

present as Fe2+. In contrast the Mössbauer results indicate Fe2+/ ΣFe = 0.23 for this sample (see 

Table 4-4), which suggests that the weight loss should be less than 28.6 %. The glass prepared 

using conventional melting on the other hand agrees with the theoretical mass loss rather than 

that calculated based on the Mössbauer data. The cause of this discrepancy is not clear although 

it may be associated with the slightly lower amount of P2O5 in the microwaved glass (see Table 
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4-2). Therefore the experimental value of the mass loss for the base glass has been used in 

determining the extent of graphite loss from the microwaved composites. 

 

The mass loss from the glass composites prepared in the DMO has been compared with the 

measured mass loss for full transformation of the raw materials to glass by microwave melting. 

This comparison indicates that for the microwaved IP20G samples formed in air and argon, up to 

4.8 and 5.0 % of the total mass loss is due to oxidation of graphite, whereas these losses are 

reduced to 4.2 and 3.7 % for the IP30G and IP38G samples respectively. In contrast the IP20G 

samples sintered at 770°C using CPS had a much lower total mass loss about 0.6 %, which is 

equivalent to 0.4 % of graphite loss (considering the mass loss of glass component) whilst 

sintering. Although the properties of graphite used in the DMO processing was confirmed to 

accelerate the graphite oxidation (small particles size and higher mass loss measured using 

TGA), the use of the CPS method is far superior in term of the physical integrity of the produced 

samples (higher bulk density and lower amount of porosity).  

 

Considering the obtained iron phosphate glasses, it is accepted that a higher Fe3+ content will 

increase the connectivity of the glass network and its chemical durability (Forder et al 2012, 

Cassingham et al 2008). In this work, it is shown that the glass processed by microwave melting 

for 20 minutes has an increased amount of Fe3+ namely 77 % compared to 50 % in the level in 

the glass melted conventionally at 1150°C for 3 hours. Thus it is shown that the use of 

microwave glass melting (at least in the laboratory) can reduce the processing time from hours to 

minutes, hence if it could be successfully scaled up and used in waste vitrification, use of a 

microwave furnace will both potentially save energy and be cost effective. 

 

To understand the effect of microwave heating on graphite-glass composite production, the 

production of iron phosphate glass composites that contained 20 wt% graphite was studied in 

detail. It is worthy of note that for samples that contained only 10 wt% of graphite the 

microwaved samples did not retain the cylindrical shape of the initial pellets. At this level of 

graphite loading melting of the glass forming components clearly takes place. In contrast at 20 

wt% loading or greater it was found that the amount of sintering (or melting) was reduced; it 

seems that increasing the graphite content effectively prevents flow and/or passivates the effects 
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of the electromagnetic field in the DMO. The addition of 30 and 38 wt% of graphite resulted in 

still greater amounts of porosity and reduced the density of the microwaved pellets. This 

suggests that only the iron phosphate raw material, specifically the Fe3O4, couples with the 

electromagnetic waves, not the graphite i.e. the graphite does not act as a susceptor in this 

situation. To investigate this hypothesis, the reaction of loose powdered graphite and pressed 

powdered graphite pellets in the DMO has been examined. The loose graphite powder glowed 

red in less than 1 minute when exposed to microwaves but there was little obvious change in the 

pressed pellets when exposed to microwave radiation. Although graphite powder is a microwave 

suscepting material, our experiments suggest that the graphite only exhibits surface heating when 

pressed into pellets. This behaviour is related to the penetration depth of the microwaves. It is 

well known that most metals couple with microwaves in powder form, usually on the micron 

scale. Similar behaviour is also seen in the present study (see Table 4-1 for particle size 

analysis). This phenomenon was also reported by Rajkumar and Aravindan (Rajkumar and 

Aravindan 2009), who found that graphite couples with microwaves when the particle size is of 

the same order of penetration depth i.e. about 30 µm. 

 

Comparing iron phosphate glass composites heated for 20 minutes in the DMO with CPS iron 

phosphate glass composites shows that similar FTIR spectra and phase assemblages (with some 

small differences in amounts) were obtained in both cases. However, from the Mössbauer 

analysis it was clear that different amounts of glassy and crystalline phases were produced in the 

composite materials, whether formed by microwave heating or the CPS method. Due to the 

similarity of crystalline phases observed in the two cases, it is suggested that a sintering 

temperature of approximately 770-870°C may have been achieved in DMO, although no direct 

measurements of this temperature have been made.  

 

It was originally hoped that the short processing time in a microwave oven would limit or 

prevent oxidation of any graphite incorporated into the glass however, in practice greater 

graphite loss was found in the microwaved samples. As noted above a high percentage of 

graphite has oxidised during the microwave heating process; the oxygen source is likely to be the 

iron oxide as essentially the same result was obtained for samples microwaved under argon. This 

is a reflection of the use of Fe3O4 as a suscepting raw material for glass composite production in 
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the DMO, whereas the CPS process utilised pre-made glass. As expected, greater reduction of 

iron to form crystalline materials was seen when the samples were microwaved in air rather than 

in argon. Overall the Mössbauer analysis indicates that the graphite-glass composite materials 

sintered using DMO or CPS methods resulted in the formation of FeP2O6 and Fe2(P2O6), 

indicating an increase in the total amount of Fe2+. 

 

The primary aim was to produce a graphite wasteform whilst minimising the oxidation of 

graphite. In this work, it is found that the most promising sample was prepared by using CPS 

method, loaded with 20 wt% graphite and heated at 770°C for 2 hours (Ar) with graphite losses 

of about 0.4 %, respectively. It is also found that > 90 % graphite oxidised when heated at 770°C 

in air whereas this was not the case when heating was carried out under argon indicating that Ar 

successfully prevents graphite oxidation despite the potential for a redox coupling involving 

graphite and the iron oxide redox in the glass. Although complete encapsulation of graphite by 

the iron phosphate glass was not achieved in either case, less oxidation of the graphite, a 

wasteform greater densification and thus less porosity were obtained by CPS, suggesting that 

CPS is a better method than microwave heating for the production of graphite-glass composites 

for the encapsulation of irradiated graphite waste. 

 

4.7.  Summary 

 

The use of microwave and conventional sintering processing with an iron phosphate base glass to 

produce stable graphite-glass composite materials for the immobilisation of irradiated graphite 

waste has been investigated. The base glass, 40Fe2O3 – 60P2O5 (mol%) was successfully 

prepared by both conventional and microwave glass melting with the rapid microwave glass 

melting process resulting in a small loss of P from the final glass. Graphite-glass composite 

production using microwave processing was less successful, with the decomposition of iron 

phosphate raw materials and the graphite impeding densification resulting in porous wasteforms 

regardless of whether the process was conducted in air or under Ar. 

 

Some oxidation of graphite by reduction of iron was identified via microstructural and 

Mössbauer investigations of microwaved iron phosphate glass composites; heating in either air 
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or argon made little difference to the results. About 5 % of total mass loss is due to graphite 

oxidation in the microwave samples loaded with 20 wt% graphite. Increased waste loading of the 

samples led to greater amounts of porosity. Mössbauer analysis confirmed that the oxidation of 

graphite happens via reduction of iron during processing. The most promising sample was that 

conventionally heated in argon at 770°C for 2 hours. This sample successfully encapsulated 20 

wt% graphite particles in iron phosphate crystalline phases and resulted in about 0.4 % oxidation 

of graphite with much lower porosity levels compared to the microwaved samples. Overall 

however the porosity levels in this sample are probably too high for viable wasteform 

production. 
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5. Results and Discussion II: The Production of Various Graphite 
 -glass Composites by CPS Method for the Immobilisation of 
 Irradiated Graphite Waste 

 
5.1.  Introduction 

 

In Chapter 4, it was shown that the use of CPS method is more promising than the microwave 

method for the immobilisation of graphite in iron phosphate glass composite materials. This led 

to the work in Chapter 5 which aims to explore and access the potential of the CPS method in 

production of graphite wasteforms using various glass systems. Although some data with regard 

to iron phosphate glass and iron phosphate glass composites prepared using conventional melting 

and CPS have been discussed previously, these materials are studied in greater detail and used to 

draw comparisons with other selected glass compositions. This chapter is divided into five main 

sections: characterisation of base glasses, the effects of sintering temperatures on graphite-glass 

composites, the effects of waste loading on graphite-glass composites, discussion and summary. 

 

5.2.  Characterisation of Base Glasses 

 

Laboratory made glasses namely alumino-borosilicate (ABS), calcium aluminosilicate (CAS), 

alkali borosilicate (G11) and iron phosphate (IP) were successfully prepared using conventional 

melt processing. Natural obsidian glass has also been researched in this chapter. This is due to its 

interesting properties (i.e. reasonably high chemical durability) and to investigate the use of a 

natural glass for the immobilisation of graphite waste. Photos of the annealed manufactured 

glasses and as-received obsidian glasses are shown in Figure 5-1. The ABS and CAS glass 

appeared transparent with ABS being colourless and CAS slightly yellowish. The other glasses 

are opaque and black in colour. For each laboratory-made glass composition, the obtained 

glasses whether annealed or rapid quenched into water were found to be visibly similar in colour, 

apart from G11 and IP glass frits that were green, particularly in thin section. To understand the 

physical, chemical and structural properties of the glasses, various characterisation 

methods/techniques such as XRF, ICP, EDS, density measurement, DTA, dilatometry, particle 

size, XRD, FTIR and Raman have been employed and the results are summarised in this section. 
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Figure 5-1: Photographic images of ABS, CAS, G11, IP and OB base glasses. 

 

5.2.1. Chemical Composition and Physical Properties 

 

The results of chemical composition, density, Tg and particle size of the base glasses are detailed 

in Table 5-1. For the chemical composition analysis, multiple measurement techniques which are 

XRF, ICP and EDS have been conducted. In general, XRF and EDS were used to detect all the 

elements in the base glasses and ICP was used for the identification of light elements (B and Li) 

that present in ABS and G11 base glasses. According to the measured data (data were normalised 

and shown in brackets), it is clear that all the nominal elements in ABS, CAS, G11 and IP 

glasses were detected and the values except Al2O3 are below 5 % measurement error. For OB 

glass, the normalised EDS and XRF data are also similar apart from Cl, which was only detected 

in the EDS analysis. Al2O3 crucibles were used to prepare ABS glass, a platinum crucible was 

used for CAS glass and mullite crucibles were used for G11 and IP glasses. It should be noted 

here that the use of alumina and mullite crucibles in glass melting leads to an increase in the 

Al2O3 content of the prepared glasses. There is no contamination detected in CAS glass due to 

the use of a Pt crucible. It is found that the Al2O3 content increases about 0.76 mol % in ABS, 

0.47 mol % in G11 and 1.07 mol % in IP glasses. The highest Al2O3 contamination in IP glass 

indicates that the melts created during glass melting were highly corrosive.  

ABS CAS G11 

IP OB 
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The density data for bulk and powdered glasses were measured using Archimedes’ principle and 

gas pycnometry. Based on the results, for each glass composition, similar bulk and powder 

density data were found, despite the different state of the samples and measurement techniques 

used. This is in agreement with the obtained glasses, which appeared dense without any visible 

porosity. 

 

The Tg values of the base glasses measured using DTA and dilatometry (DIL 420C) were found 

to be slightly different. It is worth noting that the heating rates used in the DTA and dilatometry 

experiments are compatible as suggested in the literature (Mazurin 2007). As seen in Table 5-1, 

the Tg measured using dilatometry were found approximately ± 6 % different from the DTA data. 

Although powdered and monolith samples were used in the DTA and dilatometry measurements, 

it is believed that the samples are similar in phase and structure. Furthermore, the annealing 

temperatures used for the preparation of each monolith samples are around Tg and this should not 

alter the glass structure. The discrepancy in the Tg values obtained by the two techniques is 

discussed in Section 5.5. 

 

All the laboratory made glass frits and as-received obsidian glasses were crushed manually into 

powder, sieved < 75 µm and dry milled for 8 h before being used in the production of graphite-

glass composites. In all cases, similar crushing and milling methods were applied. However the 

particle size analysis suggest slight differences in values for each glass composition, whether 

considering the volume or number basis (see Table 5-1). This can be understood in that each 

glass compositions had different hardness and toughness values, which lead to the different 

distribution of particle sizes of powdered glasses. It should be noted that the small particle size 

leads to high surface area and will promote sintering; the CPS method depends on reducing the 

free energy of the system. Furthermore, the closer the particle to one another, the shorter the 

diffusion path will be and consequently speed up the sintering kinetics (i.e. surface diffusion and 

viscous flow) resulting in a dense sintered product with minimal porosity (Kang 2005). 
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Table 5-1: Chemical composition and physical properties of ABS, CAS, G11, IP and OB base 

glasses. 

 

Oxide 
(mol %) 

ABS 
Nominal 

(XRF & ICP) 

CAS 
Nominal 
(EDS) 

G11 
Nominal  

(XRF & ICP) 

IP 
Nominal 
(EDS) 

OB 
EDS (XRF) 

 
Al2O3 
B2O3 
BaO 
CaO 
Cl 
Cr2O3 
Fe2O3 
K2O 
Li2O 
MgO 
Mn3O4 
Na2O 
P2O5 
SiO2 
SrO 
TiO2 
V2O5 
ZnO 
ZrO2 

 
5.29 (6.05) 
7.48 (7.43) 
- (< 0.02) 
3.02 (3.02) 
-  
- (< 0.02) 
- (< 0.02) 
- (< 0.03) 
-  
1.56 (1.56) 
- (< 0.01) 
7.48 (7.40) 
- (< 0.02) 
75.17 (74.26) 
- (< 0.03) 
- (< 0.04) 
- (< 0.02) 
- (< 0.04) 
- (< 0.03) 

 
7.17 (7.25) 
- 
- 
51.40 (49.92) 
- 
- 
- 
- 
- 
- 
- 
- 
- 
41.43 (42.83) 
- 
- 
- 
- 
- 

 
2.59 (3.06) 
9.24 (9.62) 
- (< 0.02) 
- (< 0.06) 
- 
- (< 0.02) 
4.96 (5.10) 
- (0.11) 
9.69 (9.29) 
- (< 0.08) 
- (< 0.02) 
15.57 (15.13) 
- (< 0.02) 
57.95 (57.30) 
- (< 0.03) 
- (< 0.04) 
- (< 0.02) 
- (< 0.04) 
- (< 0.03) 

 
- (1.07) 
- 
- 
- 
- 
- 
60.00 (59.93) 
- 
- 
- 
- 
- 
40.00 (39.00) 
- 
- 
- 
- 
- 
- 

 
8.36 (8.36)  
- 
- (< 0.02) 
0.87 (0.86) 
0.57  
- (< 0.02) 
0.61 (0.74)  
3.47 (3.70) 
- 
- (< 0.08) 
- (< 0.02) 
4.43 (4.48) 
- (< 0.02) 
81.70 (81.52) 
- (< 0.03) 
- (0.07) 
- (< 0.02) 
- (< 0.04) 
- (< 0.03) 

Density 
Bulk (g/cm3) 
Powder (g/cm3) 

 
2.318 ± 0.116 
2.3099 ± 
0.0025 

 
2.908 ± 0.145 
2.8781 ± 
0.0093 

 
2.584 ± 0.129 
2.5729 ± 
0.0056 

 
3.152 ± 0.158 
3.1614 ± 
0.0009 

 
2.357 ± 0.118 
2.3601 ± 
0.0029 

Tg 
DTA (ºC) 
DIL 420C (ºC)  

 
588 ± 5 
610 ± 5 

 
792 ± 5 
784 ± 5 

 
411 ± 5 
434 ± 5 

 
474 ± 5 
457 ± 5 

 
659 ± 5 
- 

Average 
particle size  
(diameter / µm) 
 
Volume basis 
Number basis 

 
 
 
 
34.7 ± 1.7 
0.93 ± 0.05 

 
 
 
 
38.8 ± 1.9 
0.76 ± 0.04 

 
 
 
 
35.0 ± 1.8 
0.81 ± 0.04 

 
 
 
 
34.8 ± 1.7 
0.76 ± 0.04 

 
 
 
 
32.0 ± 1.6 
0.91 ± 0.05 

 

 

5.2.2. XRD 

 

Figure 5-2 presents the overnight XRD patterns of the powdered glasses. CAS, IP and OB 

diffractograms exhibit diffuse scattering behaviour without any evidence of crystalline peaks. 
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This confirmed that the glasses were X-ray amorphous. Similar diffuse scattering behaviour can 

be seen in the ABS and G11 diffractograms but in these diffractograms, a weak β-quartz peak 

(SiO2, PDF card 01-086-1562) is detected at ~ 27.3° 2θ. It is believed that this SiO2 peak might 

represent the SiO2 from batch that was not properly dissolved whilst glass melting. Overall the 

intensity of the SiO2 peak is very low and it is assumed that the content of crystalline phase in 

the glasses is less than 5 %.    
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Figure 5-2: XRD patterns of powdered ABS, CAS, G11, IP and OB base glasses, ∇ = SiO2. 

 

5.2.3. FTIR Spectroscopy 

 

The FTIR spectra of powdered glasses recorded from 400 - 4000 cm-1 using KBr disc method are 

shown in Figure 5-3. The data from 2000-3000 cm-1 were removed from the graph as no 

absorption bands were detected in this region. In all spectra, bands at 1640 and 3467 cm-1 

correspond to the bending and stretching vibration modes of O-H in hydroxyl groups or water 

molecules in the samples. The assignments of other FTIR bands for each glass were made on the 

basis of previous literature that specifically related to the tested glasses. 
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For ABS spectrum, six main absorption bands located at 460, 697, 792, 1060 with a shoulder at 

1175 and 1414 cm-1 have been identified. The band at 462 cm-1 is assigned to Si-O-Si and O-Si-

O bending vibrations of bridging oxygens Q4 (Gaafar and Marzouk 2007, Song et al 2009, 

Saddeek et al 2010, Bootjomchai et al 2012, Marzouk et al 2013). It is also suggested that there 

is a contribution of B-O-B linkages overlapping at this particular band (Gaafar and Marzouk 

2007, Bootjomchai et al 2012). Bands at 697 and 792 cm-1 are attributed to bending vibrations of 

B-O-B (BO3) and B-O-B (BO4)  (Darwish and Gomaa 2006, McGann et al 2012) overlapping 

with stretching vibrations of Al-O-Al in [AlO4] tetrahedron (Song et al 2009). The band at 1060 

cm-1 is assigned to stretching vibrations of Si-O-Si in [SiO4] tetrahedra (Gaafar and Marzouk 

2007, Song et al 2009, Saddeek et al 2010) and a shoulder arising at 1175 cm-1 is associated with 

stretching vibrations of Si-O-NBO in Q3 structural units (El-Egili 2003, Bingham and Jackson 

2008) overlapping with stretching vibrations of bridging oxygens of BO3 triangles (Gaafar and 

Marzouk 2007). The broad band at 1414 cm-1 is assigned to stretching vibrations of NBOs of 

BO3 triangles (Gaafar and Marzouk 2007, Song et al 2009, Saddeek et al 2010). 

 

Four absorption bands observed in CAS spectrum can be assigned to the following vibration 

modes: 503 cm-1 to bending vibrations of Si-O-(Si, Al) (Huang and Behrman 1991, Środa and 

Paluszkiewicz 2008, Mahdy and Ibrahim 2012, Garcia-lodeiro et al 2014), however it may also 

be attributed to symmetric stretching of Al-O-Al in [AlO6] (Środa and Paluszkiewicz 2008); 696 

cm-1 to symmetrical stretching of Si-O-(Si, Al) (Środa and Paluszkiewicz 2008) overlapping with 

stretching vibration of Al-O-Al in [AlO4] tetrahedra (Huang and Behrman 1991, Środa and 

Paluszkiewicz 2008, Sontakke et al 2009, Garcia-lodeiro et al 2014); broad shoulder at 876 cm-1 

is due to the asymmetric stretching of Si-O bond involving NBO atoms of [SiO4] tetrahedra Q3, 

i.e. Si-O tetrahedra with two corners shared with Al-O or Ca-O polyhedra (Huang and Behrman 

1991, Środa and Paluszkiewicz 2008, Sontakke et al 2009) and the band at 967 cm-1 is attributed 

to the asymmetric stretching of Si-O bond involving BO atoms of [SiO4] tetrahedra Q2 (Środa 

and Paluszkiewicz 2008, Sontakke et al 2009). 

 

In G11 spectrum, the vibration modes of the bands can be assigned as follows: 458 cm-1 to 

bending vibrations of Si-O-Si and O-Si-O related to bridging oxygens Q4 overlapped with B-O-B 

linkages (Marzouk et al 2013); 726 cm-1 is due to bending vibrations of B-O-B of BO3 triangles 
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overlapped with Al-O-Al in [AlO4] tetrahedra (Song et al 2009), it is also thought that this band 

was developed from the overlapping contribution of bending vibrations of B-O-B (BO4); 991 cm-

1 is due to the stretching vibrations of Si-O-Si of [SiO4] tetrahedra (MacDonald et al 2000, 

McGann et al 2012) and finally the band at 1409 cm-1 is due to the stretching vibrations of NBOs 

in BO3 triangles, respectively (Gaafar and Marzouk 2007, Song et al 2009, Saddeek et al 2010, 

McGann et al 2012). 

 

The FTIR spectrum resulted from the different batches of powdered IP glass formed using 

similar conventional melting were found to be identical, with the differences in the bands 

position being approximately ± 7 cm-1. This implies that the new batch of IP glass had similar 

chemical functional groups. To avoid repetition of the data, the FTIR spectrum of the IP glass 

produced using conventional melting can be viewed in the previous chapter (see Section 4.3.3, 

Figure 4-7).  
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Figure 5-3: FTIR spectra of powdered ABS, CAS, G11, IP and OB base glasses. 

 

It can be seen from the OB spectrum that the bands positioned at 462, 1063 and 1177 cm-1 are 

comparable with the ABS spectrum, suggesting some similarity in the structure of these glasses. 
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Based on the chemical composition analysis (see Table 5-1), which indicates the absence of 

B2O3, it is believed that there is no contribution of boron structural units in OB glass. With this in 

mind, the absorption bands of OB glass can be assigned as follow: 462 cm-1 is attributed to Si-O-

Si and O-Si-O bending vibrations of bridging oxygens Q4 (Gaafar and Marzouk 2007, Song et al 

2009, Saddeek et al 2010, Bootjomchai et al 2012, Marzouk et al 2013); 727 cm-1 is associated 

with symmetrical stretching modes of Si-O-(Si, Al) (Środa and Paluszkiewicz 2008); 787 cm-1 

corresponds to Al-O-Al in [AlO4] tetrahedra (Huang and Behrman 1991, Środa and 

Paluszkiewicz 2008, Sontakke et al 2009, Garcia-lodeiro et al 2014); 1063 cm-1 is due to 

stretching vibrations of Si-O-Si in [SiO4] tetrahedra (Gaafar and Marzouk 2007, Song et al 2009, 

Saddeek et al 2010) and finally a shoulder at 1177 cm-1 is related to a stretching vibration of Si-

O-NBO in Q3 structural unit (El-Egili 2003, Bingham and Jackson 2008). 

 

5.2.4. Raman Spectroscopy 

 

Raman spectra of powdered base glasses from the low to mid-range frequency band (0 – 2000 

cm-1) are presented in Figure 5-4. Spectra from 2000 – 4000 cm-1 were removed from the graph 

as there are no features detected in this frequency region. Similar to the FTIR data, the Raman 

bands have been assigned to specific bond vibrations that have been reported in the literature for 

the tested glasses. In the Raman spectra of the powdered base glasses, it is seen that the 

luminescence or fluorescence background increase started at ~1600, 1200 and 800 cm-1 for ABS, 

CAS and OB spectra respectively. This is unexpected and the downside of this phenomenon is 

that this luminescence covered the Raman spectra, which in this case heavily affects the CAS 

and OB glasses. Very minimal luminescence background was detected in the G11 and IP spectra. 

 

Considering the ABS spectrum, seven distinct features located at 82, 465, 601, 800, 1065, 1180 

and 1446 cm-1 are identified. The peak at 82 cm-1 is attributed to the ‘boson peak’ resulting from 

vibrational excitations made up of acoustic phonons, which are scattered strongly from elastic 

inhomogeneities in the disordered glass structure (Schroeder et al 2004). The low frequency 

envelope measured from ~200 – 650 cm-1 with the detection of a peak centred at 465 cm-1 and 

accompanied with a shoulder at 601 cm-1 can be assigned as follows: the band at 465 cm-1 is due 

to contributions from mixed stretching-bending vibration modes of Si/B-O-Si/B bridging bonds 
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overlapping with breathing vibrations of 4-fold (D1) silicate rings. The shoulder at 601 cm-1 is 

due to the breathing vibrations of 3-fold (D2) silicate rings, D1 and D2 also known as defect 

modes (Furukawa et al 1981, Galeener 1982, Mercier et al 2009, McKeown et al 2010, 

Kalampounias 2011, Kjeldsen et al 2013, Winterstein-Beckmann et al 2014). The shoulder at 

601 cm-1 may also overlap with Al-O-Al vibrational modes of AlO4 tetrahedra (Rupesh Kumar et 

al 2013). The band at 800 cm-1 is assigned to Si-O-Si bending modes (Kamitsos 1996, 

Kalampounias 2011, Winterstein-beckmann et al 2014) overlapped with breathing modes of 

boroxol rings (Kumar et al 2013, Winterstein-beckmann et al 2014). The broad band located at 

1065 cm-1 with a shoulder at 1180 cm-1 is attributed to asymmetric stretching modes of Si-O-Si 

bridges in a fully polymerised silicate network, which specifically related to the characteristic 

vibrations of Q3 and Q4 species (Kamitsos 1996, McKeown et al 2010, Rupesh Kumar et al 

2013). A broad, weak intensity band at 1446 cm-1 is associated to B-O stretching vibrations in 

BO3 and BO2O- trigonal borate units (Mckeown et al 2010, Kumar et al 2013, Winterstein-

beckmann et al 2014). 

 

In CAS spectrum, several Raman bands can be distinguished in the lower frequency region (< 

800 cm-1), which are individually positioned at 126, 223, 383, 586 and 683 cm-1. The most 

distinctive band was detected at about 936 cm-1 with a trace of a shoulder at 1038 cm-1. The band 

at 126 cm-1 is assigned to the ‘boson peak’. The weak bands centred at 223 and 383 cm-1 are 

possibly contributions of Al-O bending vibrations of AlO4 tetrahedra and Al-O symmetric 

stretching of AlO6
3- octahedra respectively (Kamitsos et al 1994). The band at 586 cm-1 can be 

interpreted as being due to the presence of Al-O-Al bridges (Mcmillan et al 1982, Seifert et al 

1982, Neuville et al 2004, 2006). The band at 683 cm-1 has a similar intensity with the previous 

band detected at 586 cm-1 and the appearance of this band is ascribed as Al-O stretching 

vibrations of AlO4 tetrahedra (Kamitsos et al 1994, McMillan and Piriou 1982). The band 

peaking at 936 cm-1 with a trace of a shoulder at 1038 cm-1 is associated with Si-O stretching 

vibrations of SiO4 tetrahedra involving NBO atoms of SiO4 tetrahedra, particularly related to Q2 

and Q3 species (McMillan 1984, Kamitsos et al 1994). It is also suggested in the literature that 

these bands (936 and 1038 cm-1) are due to the stretching vibrations of SiO4 tetrahedra bound to 

one and two Al atoms (McMillan and Piriou 1982, Mysen et al 1982, Neuville et al 2004). 
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Figure 5-4: Raman spectra of powdered ABS, CAS, G11, IP and OB base glasses. 
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For G11 glass, the ‘boson peak’ is located at 84 cm-1. The position of the low frequency and mid-

range frequency of Raman bands in G11 spectrum are similar to those seen in ABS and CAS 

glasses. This is due to the fact that the G11 glass is an alkali borosilicate glass with additions of 

Li and Fe. Thus, the structure of this glass is comparable to the structure of ABS and CAS 

glasses. In this case, the bands at ~495, 612 and 1388 cm-1 are assigned similarly to the bands 

detected at ~465, 601 and 1446 cm-1 in the ABS glass spectrum. The bands at ~952 and 1054 cm-

1 are analogous to the bands at about 936 and 1038 cm-1 in the CAS glass spectrum. However, 

the increased amount of B in G11 glass (refer table 5-1) gives rise to the broad band at about 738 

cm-1. This band is attributed to the breathing mode of three-membered borate rings with [BO4]- 

tetrahedral units (Winterstein-beckmann et al 2014). It also has been reported that this band may 

overlap with Al-O stretching vibration modes of AlO4 tetrahedra (Neuville et al 2006, Rupesh 

Kumar et al 2013).  

 

The Raman features of IP glass spectrum are observed at ~78, 228, 330, 408, 602, 743, 952, 

1068, 1242 and 1645 cm-1. It is apparent that the ‘boson peak’ for this glass is located at about 78 

cm-1. The bands at lower Raman frequency range, between 200 and 800 cm-1 can be assigned as 

follows: 228 cm-1 corresponds to network vibrations and P-O-P bending modes (Chakraborty and 

Arora 2012, Qian et al 2012); 330 cm-1 is due to bending vibrations of PO4 tetrahedra with a 

cation as modifier (Chakraborty and Arora 2012, Lai et al 2014); a shoulder at 408 cm-1 is due to 

the O-P-O bending vibrations of Q0 units (Moguš-Milanković et al 2004, Chakraborty and Arora 

2012, Joseph et al 2012); a broad shoulder at 602 cm-1 is associated with P-O-P symmetric 

stretching of bridging oxygen atoms in Q2 units (Moguš-Milanković et al 2004, Bingham et al 

2009, Qian et al 2012) and the band at 743 cm-1 is assigned to symmetric stretching of P-O-P 

bridging bonds in the Q1 (P2O7)4- structural units (Moguš-Milanković et al 2004, Lai et al 2011b, 

Chakraborty and Arora 2012, Premila et al 2012, Qian et al 2012, Ma et al 2014). In the mid-

range Raman frequency ~800-1400 cm-1, it is clear that there are three distinct features 

positioned at 952, 1068 and 1242 cm-1 in the spectrum envelope. The shoulder at 952 cm-1 is 

assigned to the asymmetric stretching of Q0 tetrahedra of (PO4)3- monomer units (Moguš-

Milanković et al 2004, Lai et al 2011b, Chakraborty and Arora 2012, Premila et al 2012, Qian et 

al 2012, Ma et al 2014). The most prominent band at 1068 cm-1 is attributed to the asymmetric 

stretching modes of Q1 tetrahedra of (P2O7)4- structural units, implying there is a large number of 
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pyrophosphate groups in the network of this glass (Moguš-Milanković et al 2004, Chakraborty 

and Arora 2012, Joseph et al 2012). A shoulder trace at 1242 cm-1 is associated with asymmetric 

stretching vibrations of Q2 tetrahedra, (PO3)- metaphosphate groups (Lai et al 2011b). Finally the 

weak band located at 1645 cm-1 is due to the bending vibrations of H-O-H indicating the 

presence of water (Mysen 1990).  

 

In agreement with FTIR analysis, the Raman spectrum of OB glass shows largely similar 

positions of the bands to those of the ABS spectrum. The difference in the bands position 

compared to the ABS is ± 6 cm-1 apart from the band located at 1038 cm-1, which is found to be 

shifted to a lower Raman frequency (by about 27 cm-1). It is worth noting that the OB spectrum 

here is identical to the previous Raman study of a similar obsidian sample originated from Lipari, 

Italy (White and Minser 1984). Due to the similarity of OB and ABS spectra, the bands of OB 

spectrum are assigned based on the ABS analysis and the assignment is as follows: the peak at 

82 cm-1 is attributed to the ‘boson peak’; the band at 465 cm-1 to contributions from mixed 

stretching-bending vibration modes of Si-O-Si bridging bonds overlapped with breathing 

vibrations of 4-fold (D1) silicate rings; a shoulder at 601 cm-1 is due to the breathing vibrations of 

3-fold (D2) silicate rings; the band at 800 cm-1 is assigned to Si-O-Si bending modes and finally 

the band located at 1065 cm-1 accompanied with a shoulder at 1180 cm-1 are assigned to 

asymmetric stretching modes of Si-O-Si bridges in a fully polymerised silicate network that 

related to Q3 and Q4 units. 

 

5.3.  The Effects of Sintering Temperature on Graphite-glass Composites 

 

In this section, the effects of sintering temperatures on various systems of compacted powdered 

glasses with the addition of 20 wt% graphite in argon environment are studied. The compacted 

graphite-glass composites were sintered from 50°C above Tg to a range of higher temperatures all 

of which were below 1000°C. The sintered products of the ABS20G and CAS20G series can be 

seen in Figure 5-5. In terms of the colour of the samples, the final product of G1120G, IP20G 

and OB20G series were found to be visually similar to the ABS20G and CAS20G series 

respectively. To determine the effect of sintering temperatures at various temperatures on 

graphite-glass composites, a range of analysis methods have been implemented including the 
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analysis of volume shrinkage, mass loss, density, porosity, crystal phase, microstructure with 

elemental analysis and the investigation of iron valence behaviour in the samples. All the data 

obtained from these analyses are detailed in this section. 

 

 
 

Figure 5-5: Selected photographic images of graphite-glass composites formed at various 

temperatures, (a) ABS20G series, from left to right: 638°C, 690°C, 790°C, 854°C, (b) CAS20G 

series, from left to right: 842°C, 890°C, 990°C. 

 

5.3.1. Volume Shrinkage 

 

Figure 5-6 shows the variation of volume shrinkage of graphite-glass composites with increasing 

sintering temperatures. It is apparent that overall trends of volume shrinkage for all graphite-

glass composites are similar except the OB series; the trend shows an increase of volume 

shrinkage from Tg, which reaches a maximum at 790, 890, 560 and 770°C for the ABS20G, 

CAS20G, G1120G and IP20G series respectively and subsequently a decrease at the highest 

sintering temperatures for each series. For the OB20G series, the maximum is at 960°C and the 

general trend is comparable to the other series except that the volume shrinkage has small 

negative values at the lower sintering temperatures, between 700 and 800°C. This indicates that 

the samples have expanded and it is believed that is due to the release of some gases from 

volatile components (Westrich et al 1988, Dunbar and Kyle 1992, Barclay and Carroll 1996, 

Lowenstern et al 2012) and/or graphite during sintering. The maximum value of volume 

(a) (b) 
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shrinkage is found to be 8.4 ± 0.2 %, 6.1 ± 0.2, 5.3 ± 0.1, 4.2 ± 0.2 and 2.0 ± 0.2 % for the 

ABS20G, G1120G, CAS20G, OB20G and IP20G series respectively. 
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Figure 5-6: Volume shrinkage of graphite-glass composites (20 wt% graphite loading) formed at 

various sintering temperatures. 

 

5.3.2. Mass Loss 

 

The total mass loss calculated from the different mass between green and final product of 

graphite-glass composites is shown in Figure 5-7. In general, the trend of total mass loss for all 

series indicates a linear increase with increasing sintering temperature. Only IP20G samples 

sintered at 890°C showed a significant mass loss about 2 %. From the data, it is worth noting that 

low mass loss values are obtained from CAS20G and G1120G series, suggesting less oxidation 

of graphite occurred in these samples despite the high temperatures that were used to sinter the 

CAS series. It is known from Chapter 4 that the iron content in iron phosphate glass composites 

can be reduced by graphite when sintered at 770°C. Based on this information, it is inferred that 

more iron reduction reactions take place at 890°C. A detailed study of iron valence behaviour in 

selected samples is discussed later in Section 5.3.7.  
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Figure 5-7: Total mass loss of graphite-glass composites (20 wt% graphite loading) formed at 

various sintering temperatures. 

 

5.3.3. Density and Porosity 

 

The bulk density of compacted powdered glass depends mostly on porosity, which was created 

whilst consolidation of particles takes place during sintering or from the effect of releasing gases. 

In this work, the bulk and powder densities of sintered graphite-glass composites were 

determined in order to predict the porosity.  

 

Figure 5-8 shows the bulk density of various graphite-glass composite samples. It is apparent 

that the trend of bulk density is similar for all graphite-glass composite series; with bulk density 

decreasing with increasing sintering temperatures. This suggests that the porosity generated in 

the samples is increased with increasing sintering temperatures.  
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Figure 5-8: Bulk density of graphite-glass composites (20 wt% graphite loading) formed at 

various sintering temperatures. 

 

When the powder density is considered (see Figure 5-9), it is observed that the trends are similar 

for IP20G and CAS20G series; both series show increased values of powder density as the 

sintering temperature increases, with a maximum at 770 and 890°C and a slight decrease at 

greater sintering temperatures, respectively. For the G1120G series, the powder densities are 

reasonably similar at about 2.54 g/cm3 at the first three sintering temperatures and then decrease 

at 610°C. The reason for these trends is most probably because some of the materials in the glass 

composite systems exhibit crystallisation and may increase or decrease the powder density of the 

samples (see Figures 5-12, 5-13 and 5-14). No significant differences are identified in the 

powder densities of the ABS20G and OB20G series over the sintering temperatures studied. Due 

to the similarity of the powder density trends for the ABS20G and OB20G series, it is expected 

that there is no significant change in terms of the crystallisation of the materials upon sintering at 

various temperatures. It is worth noting here that the error for each powder density measurement 

is very small approximately < 0.0050 g/cm3, hence the error bars are not visible in the graph. 
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Figure 5-9: Powder density of graphite-glass composites (20 wt% graphite loading) formed at 

various sintering temperatures, error bar < 0.0050 g/cm3.  

 

The porosity based on the difference between bulk and powder densities was calculated and the 

data are presented in Figure 5-10. There are two main factors that may lead to the generation of 

porosity; the oxidation of graphite by oxygen in the glass or air that was trapped in the samples 

during pressing and the reduction of iron (for iron-containing base glasses). The trend of porosity 

in all graphite-glass composites series shows an increasing value with increasing sintering 

temperature. The increasing trend of porosity is paralleled by an increasing trend of total mass 

loss and decreasing trend of bulk density for all graphite-glass composite series. From the graph, 

the porosity generated at maximum volume shrinkage for each series is as follows: 14.5 ± 1.9 % 

for ABS20G sintered at 790°C, 9.7 ± 1.2 % for CAS20G sintered at 890°C, 16.4 ± 2.0 % for 

G1120G sintered at 560°C, 17.0 ± 2.2 % for IP20G sintered at 770°C and 7.1 ± 0.7 % for 

OB20G sintered at 960°C. It is found that the porosity generated in OB20G series is much lower 

compared to the other graphite-glass composite systems, consistent with the detection of small 

particle size (Table 5.1) which is hypothesised to promote sintering. This may lead to the 

development of improved wasteforms, although more analysis related to crystalline phase, 
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microstructure, iron valency and investigation of mechanical properties must be carried out to 

support this claim. 

400 500 600 700 800 900 1000 1100
0

10

20

30

40

Po
ro

si
ty

 (%
)

Sintering temperature (oC)

 ABS20G
 CAS20G
 G1120G
 IP20G
 OB20G

 
Figure 5-10: Total porosity of graphite-glass composites (20 wt% graphite loading) formed at 

various sintering temperatures. 

 

5.3.4. XRD 

 

XRD measurements were undertaken to determine the crystalline phases that potentially 

precipitated in all graphite-glass composites during sintering processing. Note that, in all XRD 

patterns, Δ is sodalite, Na6Al6(SiO4)6, which originated from the contamination of the graphite 

raw material (Section 4.2.3). XRD patterns of ABS and ABS20G samples sintered at various 

sintering temperatures are shown in Figure 5-11.  For ABS20G samples sintered at 638, 690 and 

790°C, the XRD patterns show diffuse scattering characteristics (amorphous phase) with the 

detection of identical graphite peaks in all samples. This suggests that there is no alteration of 

phase, whether considering the glass component or the graphite particles. The diffuse scattering 

pattern of sintered ABS and sintered ABS20G at 790°C were largely similar; both remain 

amorphous except that graphite peaks appear in ABS20G samples. At 854°C sintering 

temperature, similar diffuse scattering and graphite peaks along with some crystalline peaks were 



114 

 

identified. The peaks are assigned with β-quartz (SiO2, PDF card 01-086-1564) and unknown 

peak (*). The SiO2 is thought to originate from the glass components rather than contamination 

from graphite (no detection of these peaks at lower sintering temperatures). The intensity of the 

graphite peaks was similar in all ABS20G samples; changing the sintering temperature does not 

affect the intensity of the peaks. 
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Figure 5-11: XRD patterns of sintered ABS glass and ABS20G heated at various sintering 

temperatures, G = graphite, Δ = Na6Al6(SiO4)6, SiO2 = β-quartz, * = unknown peak. 

 

The XRD patterns of sintered CAS and CAS20G samples are displayed in Figure 5-12. At 

842°C, the XRD pattern of CAS20G sample indicates diffuse scattering behaviour between 20 

and 40° of 2θ with the detection of graphite peaks. As the sintering temperature increases to 

890°C, identical crystallisation peaks are detected in the sintered CAS and CAS20G samples. 

These crystallisation peaks are attributed to larnite (Ca2SiO4, PDF card 00-033-0302). Further 

increasing the sintering temperature of CAS20G sample to 990°C gives rise to the formation of 

new crystalline phases along with the detection of identical graphite peaks. The new phases are 

assigned to gehlenite (Ca2(Al(AlSi)O7), PDF card 01-075-1677), kilchoanite (Ca6(SiO4)(Si3O10), 

PDF card 00-029-0370) and traces of β-quartz (SiO2, PDF card 01-086-1564). From the XRD 
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analysis, the most intense gehlenite peak is significantly higher than the most intense peaks of 

kilchoanite and β-quartz, suggesting that the gehlenite, phase may be dominant in this sample, 

although quantitative XRD would be needed to confirm this. It is also worth noting that the 

diffuse scattering characteristic of the glass component is present in all samples. However, the 

intensity of the amorphous hump is decreased with increasing sintering temperature, implying a 

smaller contribution/amount of glassy phase in samples sintered at higher temperatures. 
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Figure 5-12: XRD patterns of sintered CAS glass and CAS20G heated at various sintering 

temperatures, G = graphite, L = Ca2SiO4, g = Ca2(Al(AlSi)O7), k = Ca6(SiO4)(Si3O10), Δ = 

Na6Al6(SiO4)6. 

 

Figure 5-13 shows XRD patterns of sintered G11 and G1120G at various sintering temperatures. 

In the graph, it is obvious that the glass component of G1120G samples sintered at 461 and 

510°C remains unchanged and no significant differences in the graphite peaks can be observed. 

Comparing G11 and G1120G sintered at 560°C, it is apparent that both diffractograms show 

identical diffuse scattering patterns with similar crystalline peaks assigned to lithium silicate 

(Li2SiO3, PDF card 04-008-3005). The missing graphite peaks in the sintered G11 sample is due 

to the fact that this sample was intentionally made without the addition of graphite. Further 
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development of the Li2SiO3 crystalline phase (the intensity of the peaks increase), precipitation 

of β-quartz (SiO2, PDF card 01-086-1564), unknown peak (*), an identical diffuse scattering 

pattern and identical graphite peaks can be seen in sample sintered at 610°C. Overall, it is 

confirmed that there is no change in terms of intensity and position of graphite peaks in all 

sintered G1120G samples. Only the glass component crystallises to Li2SiO3 and SiO2 on 

sintering at 610°C. 
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Figure 5-13: XRD patterns of sintered G11 glass and G1120G heated at various sintering 

temperatures, G = graphite, Li = Li2SiO3, Δ = Na6Al6(SiO4)6, SiO2 = β-quartz, * = unknown 

peak.  

 

In the XRD patterns of IP and IP20G, there are several contributions of iron phosphate 

crystalline phases namely FeP2O6, Fe(PO3)3 and Fe2(P2O7) mixed together with the contribution 

of iron phosphate glass and/or graphite. It should be mentioned here that IP20G sample sintered 

at 770°C has been compared with the microwave samples in Section 4.4.2. This is due to the fact 

that this sample gave the highest volume shrinkage and a reasonably low total mass loss, and has 

thus been selected as the best sample in the IP20G series. The XRD patterns of sintered IP and 

the complete series of IP20G are presented in Figure 5-14. Considering the IP20G diffractograms 

from 524 to 870°C, it can be seen that the most intense peak (labelled as X) belongs to FeP2O6 
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(~29° 2θ) and shows an increasing trend, suggesting the development of this phase, which 

becomes dominant in the samples sintered at higher temperatures (670-870°C). The contribution 

of Fe2(P2O7), labelled as Z turns out to be less dominant as some peaks disappear and this can be 

clearly seen by comparing the IP20G diffractograms from 524-770°C. For Fe(PO3)3 a crystalline 

phase (labelled as Y), has its most intense peak located at ~23° 2θ, which is detected in the 

IP20G sample sintered at 670˚C. The intensity of this peak is slightly decreased in the sintered 

sample with graphite loading (compare IP and IP20G sample sintered at 770°C) and completely 

disappears in the IP20G sample sintered at 870°C. This indicates a larger contribution of 

Fe(PO3)3 crystals in the IP samples with the content of the phases probably following the order 

IP 770°C > IP20G 770°C > IP20G 870°C. Besides the different intensities of the Fe(PO3)3 peak 

and no detection of graphite in IP sample, the IP and IP20G diffractograms sintered at 770°C 

were found to be otherwise identical to each other. Based on the most intense peak of the 

FeP2O6, Fe2(P2O7) and Fe(PO3)3 crystalline phases, it is found that the amounts of the phases in 

IP20G sample sintered at 770 and 870°C follows the order of FeP2O6 > Fe(PO3)3 > Fe2(P2O7) 

and FeP2O6 > Fe2(P2O7) > Fe(PO3)3 respectively. 
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Figure 5-14: XRD patterns of sintered IP glass and IP20G heated at various sintering 

temperatures G = Graphite, X = FeP2O6, Y = Fe(PO3)3, Z = Fe2(P2O7), Δ = Na6Al6(SiO4)6. 
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Figure 5-15 shows the XRD patterns of OB and OB20G series sintered above the Tg of the glass 

component. The diffuse scattering characteristic and 100 % intensity of graphite peak has been 

confirmed to be similar in all the sintered OB20G samples. However, the increase in the graphite 

peak at ~45° of 2θ from low to high sintering temperatures is not clearly understood; although 

the degree of crystallisation of graphite may increase in the samples sintered to high temperature. 

It is noticeable that all the diffractograms are identical apart from the missing graphite peaks in 

the sintered OB sample. Among all the studied graphite-glass composite systems, the ABS20G 

and OB20G series are considered as the most resistant to crystallisation; the crystallisation 

behaviour of both series are in agreement with the powder density data (see Figure 5-9). This 

implies that the graphite is immobilised in a glassy system for the ABS20G and OB20G series 

rather than a glass-ceramic system as seen for the CAS20G, G1120G and IP20G series.   
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Figure 5-15: XRD patterns of sintered OB glass and OB20G heated at various sintering 

temperatures, G = graphite, Δ = Na6Al6(SiO4)6. 

 

5.3.5. Optical Microscopy and Optical Profilometry 

 

The images related to the surface morphology and surface roughness of the selected graphite-

glass composites are shown in Figure 5-16 and Figure 5-17. As can be seen in the optical 
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microscope images, the surface morphology of all sintered samples is visually similar. The 

IP20G sample has been previously observed using optical microscopy (see Section 4.4.4, Figure 

4-13) and the image of a different sample batch shown here has a similar morphology. Based on 

the optical microscope images, the feature observed as grey in colour with rounded/bevel-like 

edges are thought to be the glass component and the graphite is seen as black and bright white in 

colour. The reason graphite appears as a bright white feature in some samples is due to the fact 

that the particles were pressed and this created mirror surfaces. These mirror surface particles 

reflect the light from the optical microscope. According to the 3D images, the characteristics of 

the surface can be assigned as follow: the flat surface is the glass or glass-ceramic phases and the 

rough surface with measured depth in range of 5 - 20 µm is the graphite. It is obvious from the 

optical microscope and optical profilometer 3D images that the graphite components are not 

level with the glass and/or glass-ceramic components, implying some of the graphite has been 

removed from the surface. This event has been confirmed by grinding and polishing processes, 

which results in the presence of graphite on the polishing cloth. 
 

 
 

Figure 5-16: Optical microscope and optical profilometer images of selected graphite-glass 

composites formed at various sintering temperatures, ABS20G - 790°C, CAS20G - 890°C.  

CAS20G CAS20G 

ABS20G ABS20G 
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Figure 5-17: Optical microscope and optical profilometer images of selected graphite-glass 

composites formed at various sintering temperatures, G1120G - 560°C, IP20G - 770°C, OB20G 

- 960°C.  

 

5.3.6. SEM and EDS 

 

With the XRD results in mind, the primary interest in this section is to investigate the 

microstructure and the presence of crystalline phases, particularly in the high magnification SEM 

images of sintered graphite-glass composites. In all images, the black regions have been 

G1120G G1120G 

IP20G IP20G 

OB20G OB20G 
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confirmed to be graphite. To avoid repetition, the IP20G samples sintered at 770°C are not 

shown here and the image analysis can be viewed in Section 4.4.4, Figure 4-14e. Low 

magnification of SE and BE images of selected graphite-glass composite samples are shown in 

Figure 5-18 and Figure 5-19. In agreement with the porosity data, SE images of sintered 

ABS20G, G1120G and IP20G samples indicate more micro-sized porosity compared to the SE 

images of sintered CAS20G and OB20G samples. It is evident in the BE images that different 

size of graphite particles (black region) were successfully encapsulated by the glass and/or glass-

ceramic materials. It is also clear that the graphite particles have irregular shapes and sizes are 

comparable with the previous particle size analysis (Section 4.2.1). It is worth noting that the 

area of SE and BE images are taken selectively from the whole surface of the samples; the 

amount of graphite shown in the image might not represent the total amount of graphite loaded in 

the samples. 

 

 

 
 

Figure 5-18: Complementary SE (left) and BE (right) images of selected graphite-glass 

composites prepared at various sintering temperatures, ABS20G - 790°C, CAS20G - 890°C. 
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Figure 5-19: Complementary SE (left) and BE (right) images of selected graphite-glass 

composites prepared at various sintering temperatures, ABS20G - 790°C, CAS20G - 890°C, 

G1120G - 560°C, IP20G - 770°C, OB20G - 960°C. 

 

As can be seen in Figure 5-20ABS20G, three distinctive features labelled A, B and C were 

identified in sample sintered at 790°C. Based on the EDS analysis, the features can be interpreted 

as follows: area A contains similar elements to the glass except boron which cannot be detected 

by EDS; area B contains similar elements to area A along with traces of Fe and area C is found 

to be rich in calcium. When the XRD results are considered, area A, B and C can be assigned to 

ABS glass, contamination from the graphite (also see Section 4.2.5) and possibly of CaCO3 

precursor from batch, due to similar microstructure as seen in literature (Amjad and Zuhl 2006) 

or initial development of a CaO crystalline phase.   

 

OB20G, SE OB20G, BE 

G1120G, SE G1120G, BE 
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Contributions of glass, graphite and larnite are expected in the sintered CAS20G at 890°C. From 

the low and high magnification BE images (see Figure 5-20CAS20Ga and Figure 5-

20CAS20Gb), at least three distinct features can be distinguished; graphite, needle-like crystals 

and crystalline free regions. The needle-like randomly dispersed feature on the surface of glass 

particles are believed to be larnite, (area D). The grey region without any precipitation of needle-

like crystals is assigned to CAS glass (area E). However, there is no significant difference in the 

EDS spectra obtained from both crystal and glassy areas (compare spectra D and E). 

 

For G1120G samples sintered at 560°C, the XRD analysis suggests the existence of Li2SiO3 

mixed with the amorphous phases. Identification of this phase using EDS analysis is not 

possible; EDS cannot detect elements that have a lower atomic mass than sodium. Due to this 

reason the investigation of the Li2SiO3 phase is limited to the BE image (Figure 5-20G1120G). 

From the BE image and EDS spectra, area F can be assigned to the glass with rich iron content. 

Area G is pointed at the middle of the spherical porosity and the EDS spectrum suggests the 

presence of a large amount of iron mixed with traces of glass. In area H, all the chemical 

compositions are present in the EDS spectrum and the EDS analysis on the similar area (results 

not shown) resulted in similar result, hence it is assigned to the glass. The spherical porosity with 

the detection of a large amount of iron might represent the effect of iron reduction (further 

explanation in Section 5.5). In this reaction, CO2 is released and may create spherical porosity 

that is similar to area G. It is also worth noting that some darker grey areas can be observed in 

the image; the areas have been measured using EDS but the spectrum was found to be identical 

with the spectrum obtained from area H. As Li2SiO3 phase is present (based on XRD results), the 

darker grey areas may be due to the contribution of Li2SiO3 crystals mixed with the amorphous 

phase. 

 

In the BE image of OB20G sintered at 960°C (Figure 5-20OB20G), no crystalline features can 

be found and this is consistent with the XRD analysis. All the elements present in the glass have 

been detected in the EDS spectrum. Comparing the BE image of OB20G and ABS20G, it can be 

observed that the microstructures of these sample are largely similar to each other except some 

contaminations are seen in the ABS20G image.  
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Figure 5-20: BE images and normalised EDS spectra of graphite-glass composites formed at the 

optimum sintering temperature.  

 

To understand the interaction/reaction of glass or glass-ceramics with the graphite at various 

sintering temperatures, the samples that yielded maximum volume shrinkage for each series were 

subjected to line scan analysis. The line scan is very sensitive to the surface roughness of the 
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samples and the intensity of each spectrum is highly dependent on the depth of the surface 

profile. The results of the line scan analysis for ABS20G, CAS20G, G1120G, IP20G and OB20G 

are presented in Figures 5-21 to 5-25. All the line scans show there is no C in the glass and/or 

glass-ceramic matrix regions. It is also seen that all the expected elements of the glass or glass 

ceramic are detected by the EDS apart from the OB20G samples that revealed two amorphous 

phases that appear to be silicate and sodium aluminosilicate, respectively. Due to the similarity 

of the results, it can be inferred that there is no interaction between the graphite and glass/glass-

ceramics particles in all sintered samples except for the possiblity of graphite oxidation (Figure 

5-7) and the corresponding reduction of iron in G1120G, IP20G and OB20G samples. The 

evidence of iron reduction was observed in the BE images analysis of sintered G1120G at 560°C 

(Figure 5-20G1120G) and in previous Mössbauer analysis of sintered IP20G at 770°C (Section 

4.5). There is no clear evidence of iron reduction in OB20G sample; this sample will be analysed 

further in Section 5.3.7. Overall, it can be seen from the results that the glass/glass-ceramics 

components are well attached to the graphite and the line scans data at ~2000× magnification 

implying that no chemical reaction between the materials occurred apart from some potential 

graphite oxidation and iron reduction.  

 
 

Figure 5-21: SE, BE images and normalised EDS line scan of ABS20G sintered at 790°C. 

Yellow line indicates the line scan. 
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Figure 5-22: SE, BE images and normalised EDS line scan of CAS20G sintered at 890°C. 

Yellow line indicates the line scan. 

 
Figure 5-23: SE, BE images and normalised EDS line scan of G1120G sintered at 560°C. Yellow 

line indicates the line scan. 
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Figure 5-24: SE, BE images and normalised EDS line scan of IP20G sintered at 770°C. Yellow 

line indicates the line scan. 

 
Figure 5-25: SE, BE images and normalised EDS line scan of OB20G sintered at 960°C. Yellow 

line indicates the line scan. 
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5.3.7. Mössbauer Spectroscopy 

 

The fitted Mössbauer spectra analysed using Recoil software and the Mössbauer parameters of 

selected graphite-glass composites are shown in Figure 5-26 and Table 5-2 respectively. Only the 

samples that yielded maximum volume shrinkage are analysed in this section; the results on 

equivalent sample for IP20G can be seen in Section 4.5. The Mössbauer data of IP20G sintered 

at 890°C is presented here due to the total mass loss data for this sample (Section 5.3.2) which 

was significantly higher than in the other samples. From the spectra, two doublets have been 

fitted for glass samples to represent the contribution of Fe3+ and Fe2+.  For the IP20G samples 

sintered at 890°C, a similar approach used in the previous study (Chapter 4) is applied to 

quantify the contribution of glass and iron phosphate crystalline phases. 
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Figure 5-26: Mössbauer spectra of powdered base glasses and sintered graphite-glass 

composites. 
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As can be seen in Table 5-2, there is evidence that 2 % of Fe3+ has been reduced to Fe2+ in going 

from the G11 to G1120G samples. This explains the detection of porosity with iron content in 

the microstructural analysis of sintered G1120G at 560°C. For IP20G sample sintered at 870°C, 

85 % of Fe2+ is detected. The amount of Fe2+ is increased by 28 % from the previous sintering 

temperature at 770°C. Further comparing both IP20G samples, it is found that the contribution of 

Fe3+ and Fe2+ in the glass is decreased and gives rise to more contribution of crystalline phases at 

890°C; increased contribution of FeP2O6 and Fe2(P2O7) and decreased contribution of Fe(PO3)3 

can be observed. These findings are in agreement with the total mass loss data and the XRD 

analysis.  

 

Table 5-2: Mössbauer parameters (± 0.02 mm/s) of powdered base glasses and sintered graphite-

glass composites (CS = centre shift, QS = quadrupole splitting, FWHM = full width half 

maximum). 

 

Sample CS 
(mm/s) 

QS 
(mm/s) 

FWHM 
(mm/s) 

Assigned 
phase 

Area 
(%) 

Site (Fe2+/ ΣFe) 
× 100 % 

 
G11 glass 

 
0.27 
0.94 

 
0.93 
1.92 

 
0.19 
0.19 

 
Glass 
Glass 

 
84 
16 

 
Fe3+ 
Fe2+ 

 
16 

 
G1120G, 2h 

560°C 

 
0.28 
0.99 

 
0.90 
2.00 

 
0.22 
0.22 

 
Glass 
Glass 

 
82 
18 

 
Fe3+ 
Fe2+ 

 
18 

 
IP20G, 2h 

870°C 

 
0.35 
1.16 
1.34 
1.24 
0.30 
0.84 
1.18 
1.35 

 
1.26 
2.49 
1.44 
2.76 
0.41 
0.84 
1.85 
2.49 

 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 

 
Glass 
Glass 

FeP2O6 
FeP2O6 

Fe(PO3)3 
Fe(PO3)3 
Fe2(P2O7) 
Fe2(P2O7) 

 
8 
10 
16 
36 
4 
3 
7 
16 

 
Fe3+ 
Fe2+ 
Fe2+ 

Fe2+ 

Fe3+ 

Fe3+ 

Fe2+ 

Fe2+ 

 
85 

 
OB glass 

 
0.16 
1.02 

 
0.21 
1.82 

 
0.27 
0.27 

 
Glass 
Glass 

 
10 
90 

 
Fe3+ 
Fe2+ 

 
90 

 
OB20G, 2h 

960°C 

 
0.14 
1.03 

 
0.17 
1.68 

 
0.15 
0.15 

 
Glass 
Glass 

 
13 
87 

 
Fe3+ 
Fe2+ 

 
87 
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In OB glass, Mössbauer analysis suggests that the Fe2+ is dominant with the total value about 90 

%. This may be due to the fact that the OB glass was formed in the presence of various reducing 

agents. As the OB glass is sintered with 20 wt% graphite loading, 3 % of the Fe2+ in the glass 

was oxidised to Fe3+, suggesting that no reduction of iron by graphite occurred in this sample.  

 

5.4.  The Effects of Waste Loading on Graphite-glass Composites 

 

In this section, further investigation is undertaken to identify the effect of waste loading on 

graphite-glass composite samples prepared using the CPS method. From the previous analysis, it 

is found that the main factors that need to be clarified in order to identify the waste loading limit 

in the glass composite system are as follows: the volume shrinkage of the graphite-glass 

composites, the mass loss of graphite, the porosity generated in the graphite-glass composites 

and the mechanical properties of the final wasteforms. The sintering temperatures that yielded 

maximum volume shrinkage (based on samples loaded with 20 wt% graphite) were used to sinter 

the graphite-glass composites with varying graphite loading from 5-35 wt%. A photographic 

image of the selected samples is shown in Figure 5-27.   
 

 
 

Figure 5-27: Photographic image of CAS series sintered at 890°C (from left to right: 5, 10, 15, 

20, 25, 30, 35 % graphite loading), similar images were obtained for the other series. 

 

It must be noted that two assumptions have been made in this section. The crystalline phase of 

the samples is assumed to be similar; i.e. changing the waste loadings does not affect the phase 

of the samples. This assumption has been made as it is evident that the sintered glass and sintered 

graphite-glass composites loaded with 20 wt % graphite do not show any significant differences 
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in their XRD patterns (Section 5.3.4). The second assumption is that a similar microstructure is 

obtained with the amount of graphite seen depending on the waste loading. The work is not 

focussed on the microstructural study due to the fact that the glass/glass-ceramic component does 

not react with the graphite, only graphite oxidation and reduction of iron occurred in samples that 

involved G11 and IP base glasses. Due to the potentially increased graphite loss, it is inferred 

that these samples are not suitable to immobilise graphite. However, for the sake of comparison, 

these samples were also investigated in this section. 

 

5.4.1. Volume Shrinkage 

 

The volume shrinkage as a function of graphite loading is shown in Figure 5-28.  
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Figure 5-28: Volume shrinkage versus various waste loading of graphite-glass composites 

formed at selected sintering temperature: ABS - 790°C, CAS - 890°C, G11 - 560°C, IP - 770°C, 

OB - 960°C. 
 

In all graphite-glass composite series, it is seen that the volume shrinkage decreased from 5-35 % 

graphite loading. However this is not the case for the G115G sample; a lower volume shrinkage 

of about 9.8 % was found at 5 % graphite loading. This may be due to the glass particles having 

become sufficiently fluid whilst sintering and it is observed that 5 % graphite loading is not 



132 

 

adequate to hold the shape of the pellet (pellet became bloated), thus giving the lower volume 

shrinkage value. From the graph, it is apparent that the OB30G and OB35G samples indicate 

negative values of volume shrinkage, suggesting the samples have slightly expanded. The reason 

for the expansion behaviour might be due to the effect of excessive amount of graphite oxidation 

(also boating effect caused by significant amount of gas diffusion). Overall, apart from the 

G115G sample, it is clear that the trend of volume shrinkage for all series is similar despite the 

different base glasses used. 

 

5.4.2. Mass Loss 

 

The variations of total mass loss measured in various graphite-glass composites samples with 

varying waste loading are presented in Figure 5-29. It is clear from the graph that each series of 

the samples has a similar total mass loss trend; the total mass loss increases with increasing 

graphite loading. Although similar trends were found in all series, the highest total mass loss 

throughout the various graphite loadings is detected in the OB series. As mentioned before, this 

phenomenon may be due to the release of volatile components in OB glass together with 

potential graphite oxidation to CO and/or CO2. This finding is in agreement with the volume 

shrinkage data and the volume expansion of OB30G and OB35G samples.  The total mass loss of 

CAS and G11 series are comparable to each other and yielded the lowest total mass loss 

compared to the other sample series. In all series, the total mass loss data were thought to 

originate from the mixed contributions of gases released from the glass (i.e. moisture, volatile 

elements in OB glass) and graphite (i.e. graphite oxidation, reduction of iron by graphite).  

 

In order to identify the graphite loss in all samples, each total mass loss value has been 

subtracted from the mass loss of the sintered base glasses prepared using similar method to the 

graphite-glass composite samples. The graphite loss data for each sample is presented in Figure 

5-30. Based on the data, the mass loss of graphite is small and in general < 0.8 %. It is worth 

noting that the studied sample is small; for example 0.8 % is equivalent to ~0.016 g graphite loss. 

In all series, the trend of the graphite loss increases with increasing graphite loading. It is notable 

that the graphite losses in ABS, IP and OB series vary at lower waste loadings but exhibit similar 

mass losses at 30 and 35 % graphite loadings where the values are about 0.6 and 0.7 % 
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respectively. Similarly with the total mass loss data, the lowest graphite losses in the region of 

20-35 wt% graphite loading are seen in the CAS and G11 series. 
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Figure 5-29: Total mass loss versus various waste loadings of graphite-glass composites formed 

at selected sintering temperatures: ABS - 790°C, CAS - 890°C, G11 - 560°C, IP - 770°C, OB - 

960°C. 
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Figure 5-30: Percentage of graphite loss after considering the losses from the sintered base 

glasses. 
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5.4.3. Density and Porosity 

 

The bulk density of the prepared graphite-glass composites with varying waste loadings is 

displayed in Figure 5-31. The trends of the bulk density of CAS and IP graphite-glass composite 

series were found to be similar with both showing a decrease in bulk density with increasing 

graphite loading. This is in agreement with the mass loss data of these samples. For the G11 

series, the bulk density data seem to fluctuate below 20 wt% and afterward increase steadily to 

35 % graphite loading. The reason for this could be the porosity that is generated whilst 

undertaken the sintering process. Comparing the trend in bulk density of the ABS and OB series, 

it is seen that the trend is reasonably flat. There is no significant changes can be found in the 

density values for each series except the slight decrease of the density of the ABS series, which 

can be observed from 5-20 wt% graphite loadings.  
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Figure 5-31: Bulk density versus various waste loadings of graphite-glass composites formed at 

selected sintering temperature: ABS - 790°C, CAS - 890°C, G11 - 560°C, IP - 770°C, OB - 

960°C. 

 

Figure 5-32 shows the measured powder density of graphite-glass composite samples prepared 

with various graphite loadings. The overall trend of powder density in all series is decreasing 
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with the increase of graphite loading. This is expected as the density of graphite is lower than the 

density of the glasses. In this case the greater addition of graphite in the samples will further 

reduce the powder density of the graphite-glass composites. It is also seen in the graph that the 

powder density data of the ABS and OB series are similar.  
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Figure 5-32: Powder densities versus various waste loadings of graphite-glass composites 

formed at selected sintering temperature: ABS - 790°C, CAS - 890°C, G11 - 560°C, IP - 770°C, 

OB - 960°C. 

 

Figure 5-33 shows the complication of porosity data as a function of graphite loading. In general, 

the trend of porosity for ABS, G11 and IP series is found to be similar apart from the G115G 

sample; the trend shows increasing porosity from 5-20 wt% and afterwards decreases gradually 

to 35 % graphite loading. As G115G sample is considered, the high value of porosity is in 

agreement with the low value of volume shrinkage (see Section 5.4.1). For CAS series, the trend 

of the porosity is found to increase from 5-25 % and decreases steadily towards 35 % graphite 

loading. The trend of porosity for OB series, on the other hand, was found to decrease from 5-15 

%, increase slightly at 20 wt% and afterward was found to be stable from 25-35 % graphite 

loading. Overall, the highest percentage of porosity is found in the G11 and IP series, followed 
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with ABS, CAS and OB series respectively. Based on the graph, it is observed that the porosity 

tends to decrease at high waste loading (> 20 wt %). This phenomenon may be related to the soft 

nature of the graphite particles that potentially filled the voids during the pressing of the green 

body; when graphite powder is pressed at 3 tons (does not involve sintering), 94.55 % of 

theoretical density is achieved. 
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Figure 5-33: Porosity versus various waste loading of graphite-glass composites formed at 

selected sintering temperature: ABS - 790°C, CAS - 890°C, G11 - 560°C, IP - 770°C, OB - 

960°C. 

 

5.4.4. Indirect Tensile Testing 

 

The indirect tensile strength as a function of graphite loading is presented in Figure 5-34. In this 

particular characterisation, 175 samples have been tested and the data at each point represents the 

average of 5 successful measurements. It can be seen that a large scatter was found with lower 

waste loadings of < 15 %. This is due the shape of the samples being slightly concave, which 

leads to an increase in the measurement error. The concave shape is thought to be due to the 

effect of gravity during the sintering process. The values of indirect tensile strength in all series 
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fluctuate below 20 wt% graphite loading, however, the overall trend indicates that the indirect 

tensile strength decreases with increasing graphite loading. At above 15 wt% graphite loading, 

the data are more consistent and it is clear that IP and OB series yield the lowest value of the 

indirect tensile strength compared to the other series. The ABS, CAS and G11 series show 

similar indirect tensile strength data with the values about 6, 5 and 4 MPa at 25, 30 and 35 % 

graphite loading respectively. It is worth noting that the graphite is easily removed from the 

samples that yielded indirect tensile strength values below 5 MPa. 

0 5 10 15 20 25 30 35 40
0

5

10

15

20

Te
ns

ile
 st

re
ng

ht
 (M

Pa
)

Graphite content (wt%)

 ABS
 CAS
 G11
 IP
 OB

 
Figure 5-34: Indirect tensile strength versus graphite loading of graphite-glass composites 

formed at selected sintering temperature: ABS - 790°C, CAS - 890°C, G11 - 560°C, IP - 770°C, 

OB - 960°C. 

 

5.5.  Discussion 

 

In this work, the use of ABS, CAS, G11, IP and natural OB as base glasses for the 

immobilisation of simulant irradiated graphite have been studied. The selected base glasses have 

been previously shown to be capable of immobilising nuclear wastes and have potential for 

dealing with problematic irradiated graphite waste. For example, ABS glass has been identified 
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as a promising candidate to immobilise TRISO fuel generated from HTR reactors (Heath et al 

2013); CAS glass as a composition to incorporate Cl originating from pyrochemical reprocessing 

(Schofield et al 2009, Schofield 2011); G11 glass has been suggested as a host glass for ILW and 

is resistant to gamma radiation (Bingham et al 2012, McGann et al 2012) and IP glass has been 

widely researched for HLW immobilisation (Day et al 1998, Marasinghe et al 2000). Moreover, 

OB has been considered due to its high durability (Ericson et al 1975); obsidians can survive up 

to millions of years in the natural environment (Vogel et al 2006, Morgan et al 2009).  

 

From the elemental analysis, similar chemical compositions to those batched were found in all 

the in-house produced glasses except for contamination of Al2O3 from the alumina and mullite 

crucibles. Although the use of a Pt crucible can avoid contamination while preparing the glasses, 

this crucible is not suitable for making large amounts of glass (ABS), coloured glass (G11) and 

highly corrosive melts (IP). This is due to the fact that the Pt crucible used had low volume, 

coloured glass will complicate the cleaning process and IP melts react with the crucible. Among 

all the studied base glasses, the IP melts created during glass melting have been confirmed as 

being extremely corrosive as this glass yielded the highest Al2O3 contamination about 1.07 mol 

%. This corrosive nature of IP glass is in agreement with the literature related to iron phosphate 

glass (Donald 2010). The EDS elemental analysis suggested that Cl is present in the OB glass. 

Although there is no clear evidence, it is believed that Cl is the reason why the OB glass 

aggressively reacts at temperatures of ~700-1000°C (expended and bubbling), which made the 

dilatometry measurement impossible. 

 

According to the density analysis, it is suggested that the lowest amount of porosity is developed 

in the annealed base glasses, which was found to be < 1 %. The prepared base glasses have been 

confirmed to be predominantly amorphous with a negligible detection of SiO2 crystalline phase 

(β-quartz) in ABS and G11 glasses. In thermal analysis, the Tg value of each base glass measured 

with DTA and dilatometer were found not similar; the difference in Tg values for each glass is 

about ± 6 %. This is not expected, however, the reason for such different values may be due to 

the use of powdered glass frits for DTA measurements and polished annealed monoliths for 

dilatometry measurements. Whilst there is no problem using the powdered glass for DTA 

measurements, it is thought that the sample dimensions prepared for the dilatometry 
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measurements was not perfect, thus less accuracy on sample expansion reading, which 

consequently creates measurement error. In agreement with literature, the Tg values of some 

glasses measured using dilatometry were found fluctuated in value compared to the Tg obtained 

from DTA technique (Mazurin 2007). 

 

The FTIR and Raman spectra of each base glass revealed largely similar detection of molecular 

bonds. The only advantage of using Raman spectroscopy is that the spectra show more clear 

detection of silicate ring defect modes in the lower frequency region of the ABS, G11 and OB 

spectra. Based on the FTIR and Raman analysis, the elements acting as network formers in each 

glass is identified as follow: ABS - Si, B, Al, CAS - Si, Al, G11 - Si, B, Al, IP - P, Fe 

(intermediate) and OB - Si, Al; other elements detected in the glasses are network modifiers.  

Besides no detection of B network in OB glass, both FTIR and Raman spectra of ABS and OB 

glasses were comparable (compare FTIR and Raman spectra in Figure 5-3 and 5-4) and the data 

suggested that these glasses shared similar structural properties. This finding is consistent with 

the similar results of density and chemical composition of these glasses. Although Cl, K2O and 

Fe2O3 are detected in OB glass, it is believed that these elements act as network modifiers, 

hence, are not detected in FTIR and Raman spectra. In addition, the Cl element might as well 

substitute with O and this leads to the same outcome. 

 

Based on the physical properties of graphite-glass composites (loaded with 20 % graphite) 

sintered from 50°C above Tg to various high temperatures and specifically from the maxima of 

the volume shrinkage values, it can be inferred that the best sintering temperatures for ABS20G, 

CAS20G, G1120G, IP20G and OB20G samples are 790, 890, 560, 770 and 960°C respectively. 

The mass loss, density and porosity data for each series of graphite-glass composites confirmed 

that gas release occurred during the sintering process. Furthermore, in all graphite-glass 

composites series, gas release was found to increase significantly with increase of sintering 

temperature/graphite loading. Although all the sintering was undertaken in closed systems with 

flowing argon gas, it is suggested that some oxygen may be present whilst sintering process take 

place and consequently promotes the oxidation of graphite. The presence of oxygen in the 

system may originate from different sources as follows: 
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i. Impurities in the argon gas. The manufacturer claimed that the gas is 95 % pure; the other 

5 % may contain air. 

ii. There is abundance of oxygen in the glass network and sintering to high temperatures 

give rise to the rearrangement of the molecules; this process may release the oxygen. 

iii. The air that is trapped in the void between glass and graphite particle created whilst 

pressing the samples.  
 

As the presence of oxygen is considered, it is suggested that two main reactions occurred that 

lead to the possibility of releasing CO2 and CO whilst undertaken the sintering process; when the 

samples are in excess of oxygen,  
 

22 COOC ⎯→⎯+ ΔQ
      [5-1]  

 

and when the air and/or oxygen supply is restricted to the samples, incomplete combustion can 

occur as  

 

2COO2C 2 ⎯→⎯+ ΔQ .                 [5-2]  

 

In the base glasses that contain considerably large amounts of iron, in this case G11, and IP, the 

reduction of iron, from Fe3+ to Fe2+ also contributes to the release of gases. The reaction that 

would occur in the presence of CO in the G1120G and IP20G graphite-glass composite samples 

is given by  

 

243 COFeO3COOFe +⎯→⎯+ ΔQ .                [5-3]  

 

This finding is supported by the significant increase of mass loss data, detection of porosity 

related to iron reduction in SEM images and the increase of Fe2+ component in Mössbauer data. 

Specifically, for IP20G and G1120G samples that yielded maximum volume shrinkage, the 

Mössbauer analysis confirmed the 7 and 2 % increase of Fe2+ compared to the base glass of these 

samples. This suggested that the reduction reaction occurred in the samples and led to the loss of 

graphite as well as releasing CO2, hence increasing the total porosity of the samples. Severe 
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reduction of iron is found in IP20G samples sintered at 870°C with the highest mass loss among 

all graphite-glass composite series (about 2 %). This in agreement with the literature that 

suggested iron reduction heavily occurs in this temperature region (Hisa et al 2004, Mondal et al 

2004, Piotrowski et al 2005). In the OB20G sample series, the Mössbauer data suggests that the 

iron content was largely present as Fe2+ in the base glass and 3 % of it oxidised to Fe3+ when 

sintered at 960°C. This suggested that less release of gas occurred which is in line with the low 

values of total mass loss and porosity of this sample. The equation for this reaction is given by  

 

322 OFe2O4FeO ⎯→⎯+ ΔQ .                 [5-4]  

 

In crystalline phase analysis, the glass component in all graphite-glass composites is found to 

crystallise on sintering at high temperatures. Referring to the samples that yielded maximum 

volume shrinkage, it is found that graphite is immobilised in glass system for ABS20G and 

OB20G and in glass-ceramics system for CAS20G, G1120G and IP20G respectively. The 

comparison between sintered glass and sintered graphite glass composites for each sample 

revealed similar detection of crystalline phases (refer Section 5.3.4). It is also found that there is 

no signification change in the graphite peaks in all sintered samples.  This clearly indicates that 

the presence of graphite does not affect the crystallisation of the glass component. The XRD data 

is backed up by the SEM and EDS analysis. Based on the SEM images, all detected crystalline 

phases from XRD analysis are identified apart from the undetectable lithium silicate phase. 

 

The surface analysis of all potential samples indicated that some of the graphite particles have 

been removed whilst undertaken grinding and polishing processes. This finding suggests that the 

soft characteristic of graphite remains similar; pressing the samples at 3 tons and sintered at high 

temperature does not affect the soft characteristic of the graphite. Despite the fact that some 

graphite is removed, the glass and/or glass-ceramic components indicate better mechanical 

strength on the surface and this has been confirmed by optical profilometer images (refer Figures 

5-16 and 5-17). 

 

The SEM with EDS analysis confirms that reduction of iron occurred in G1120G and IP20G 

samples. From the microstructure of the samples, the porosity seen in the images is also in 
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agreement with the porosity data; G1120G, IP20G and ABS20G samples indicate more micro 

size porosity compared to the CAS20G and OB20G samples (Figure 5-18 and 5-19).  The 

increase of porosity in G1120G and IP20G series is in line with the occurrence of iron reduction. 

The detection of high levels of porosity in ABS20G samples is not clear. However, it is believed 

due to the decomposition of unreacted CaCO3 precursor together with the influence of Ca species 

(perhaps present as CaCO3) from graphite contamination that favours to form CaO (see Section 

5.3.6, Figure 5-20ABS20G), leading to the release of CO2 therefore increasing the total porosity. 

  

From the investigation of graphite-glass composites with varying waste loading, it is found that 

the volume shrinkage decreases with increasing waste loading. This suggests that the graphite 

particles remained in a similar state as in the green body; only glass particles softened with 

temperature and become sufficiently liquid to fill the porosity in the samples. From the mass loss 

data, a minimal amount of graphite is oxidised from CAS and G11 series, however, the porosity 

data suggest a large amount of porosity in the G11 series (refer Figure 5-33). This is due to the 

effect of iron reduction in this sample (more porosity generated). The OB series indicated 

minimum porosity compared to the other sample but in terms of the mass loss, this series yielded 

high graphite loss and considerably lower indirect tensile strengths. In regard to all the data, it is 

suggested that the potential base glass to immobilise graphite is CAS. This is due to this glass 

yielding minimum graphite loss and acceptable indirect tensile strength at a waste loading of 30 

wt%. In addition, iron is not present in this glass and this is advantageous for the immobilisation 

of graphite. 

 

5.6.  Summary  

 

Considering all the data discussed in this chapter, it is concluded that the use of a base glass 

containing iron is not suitable for the immobilisation of graphite. This is due to the reduction of 

iron in this glass promoting the development of porosity and may reduce the corrosion and 

leaching resistance of the wasteform. The most promising sample is found to be CAS30G with 

graphite loss, porosity and indirect tensile strength of 0.37 %, 10.74 % and 5.2 MPa respectively. 

However the porosity generated in this sample is still too high for viable wasteform production. 

Overall, the CPS method used in this chapter is seen to be ineffective to immobilise simulant 
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irradiated graphite waste. Thus for further investigatation, sintering under pressure with an inert 

environment (e.g. argon, vacuum) must be considered.   
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6. Results and Discussion III: The Immobilisation of Simulant 
 Irradiated Graphite in Calcium Aluminosilicate Glass 
 Composites Using Spark Plasma Sintering   
 
6.1.  Introduction 

 

As mentioned in Section 3.5, the SPS method utilises pulsed electric current (on-off DC) to 

generate heat and offers sintering processing under pressure in a static argon environment. The 

fast sintering process and the application of pressure arising from the SPS method were 

hypothesised to be advantageous for the immobilisation of irradiated graphite; this method may 

reduce the amount of porosity which has been identified as a major problem in graphite-glass 

composites that were formed using microwave (Chapter 4) and CPS (Chapter 5) processing. In 

this novel investigation, the prepared samples were characterised using various analytical 

methods including density, porosity, XRD, optical microscope, SEM equipped with EDS, optical 

profilometry and indirect tensile testing. The sintering parameters of SPS processing such as 

sintering temperatures and sintering dwell time together with the investigation of graphite 

loading limit in the CAS glass system are studied in this chapter.  

 

6.2.  Sintering Profile of SPS 

 

Figure 6-1 presents the typical temperature, pressure, piston displacement and average speed 

characteristics that were recorded in-situ during the preparation of the CAS30G sample using the 

SPS method. The sintering profile was initialised at 450°C with an applied pressure of 16 MPa. 

This pre-sintering stage is necessary in order to remove the residual air trapped between the 

particles and also to ensure both upper and bottom punches are aligned parallel to each other. At 

about 5 min processing time, the temperature and pressure are programmed to increase 

simultaneously to 890°C with a maximum pressure of 35 MPa. The heating rate of the sintering 

process was maintained at ~200°C/min. The densification mainly began during the heating stage 

as the measured displacement and average speed of the pistons increased significantly when the 

maximum sintering temperature and pressure were reached; this event occurred in all samples 

sintered by using SPS method. The negative displacement at around ~6 min processing time 
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appears to be associated with the thermal expansion of the samples, graphite sheet, graphite 

mould, graphite spacers and/or pistons (Córdoba et al 2013, Huang et al 2013, Hussainova et al 

2014). The displacement and the average speed of the pistons did not significantly change during 

the sintering dwell time (20 min) and rapid cooling process. However, a slight increase of the 

displacement value can be observed from ~7.5 min to the end of the sintering process. The 

displacement increases slowly and steadily at this time period, implying continued densification 

of the sample. This may occur when the CAS glass component reached a partially solid-liquid 

state and potentially further filled the porosity. The measured displacement and shrinkage rate of 

CAS30G sample are found to be 2.50 mm and 10.35 mm/min respectively. 

00:00 05:00 10:00 15:00 20:00 25:00 30:00 35:00

Temperature

Pressure

Displacement

 

Time (min:sec)

A
rb

ita
ry

 u
ni

ts
 (a

.u
)

Average speed/shrinkage rate
Max - Min = 10.35 mm/min

Final - Initial = 2.50 mm

16 MPa16 MPa
35 MPa

450oC 450oC

890oC, 20 min

 
Figure 6-1: Sintering profile of CAS30G sample recorded in-situ during SPS experiment. 

 

For all samples prepared using the SPS method, similar pre-sintering treatments, heating rates, 

pressure profiles and cooling processes to that described were used. The displacement and the 

average speed of the pistons were monitored throughout the preparation process and these 

parameters may shed some light about the shrinkage, density and porosity behaviour of the 

samples whilst undertaking SPS processing. However, based on the analysis of the displacement 

and the average speed of all samples, it is found that the patterns of both sets of data were not 

coherent with the fundamental theory of densification i.e. the displacement of the CAS30G 
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samples should increase with the increasing sintering dwell times (sintered at 890°C - this 

temperature resulted in the highest density value of sintered glass) and become constant at some 

point where densification is completed; the data recorded in-situ suggesting some fluctuation of 

the displacement and average speed values. This behaviour is due to the complication of some 

samples that are present in a solid-liquid state whilst sintering and which can leak through the 

small slits between graphite dies. In addition, the green body samples were enveloped with the 

graphite sheet in order to increase the lifetime of the graphite mould and improve the heat 

transfer mechanism. The inconsistent thickness of graphite sheet might also influence the 

displacement and average speed data. Thus, in this work, the data have been replaced with the 

measured bulk and powder density as well as the analysis of the calculated porosity of the 

samples. 

 

6.3.  Sintered CAS Glass Prepared using CPS and SPS Methods 

 

In this section, the sintered CAS base glass powder compact prepared without the addition of 

graphite using CPS method is compared with the equivalent sample produced using the SPS 

method. The purpose of this comparison is to understand the effectiveness of the SPS method, 

and whether it is suitable for the immobilisation of irradiated graphite. It is worth noting that a 

similar sintering temperature (890°C) with dwell times of 2 h and 20 min respectively were used 

for the preparation of sintered CAS glass using CPS and SPS methods. The thermal analysis, 

XRD, FTIR and Raman analysis of the powdered CAS glass were discussed in Section 5.2.  

 

6.3.1. Density and Porosity 

 

The averaged density and porosity data of sintered CAS samples formed using the CPS and SPS 

methods are detailed in Table 6-1. The SPS sample has higher powder and bulk density values 

and a lower porosity than the CPS sample. This data indicates greater densification was achieved 

in the SPS sample compared to the CPS sample, which was sintered for a longer time. It can be 

seen that the SPS method successfully reduced most of the porosity in sintered CAS sample and 

this is a good indication for producing a better wasteform, especially when the simulant graphite 

waste is introduced into the system. 
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Table 6-1: Density and porosity data of sintered CAS glasses prepared using CPS and SPS 

methods. 

 
Parameter CAS 890°C (2h, CPS) CAS 890°C (20 min, SPS) 
 

Powder density (g/cm3) 

Bulk density (g/cm3) 

Porosity (%) 

 

2.9607 ± 0.0028 

2.809 ± 0.140 

5.1 ± 0.1 

 

2.9955 ± 0.0025 

2.957 ± 0.148 

1.3 ± 0.2 

 

 
6.3.2. XRD 

 

Figure 6-2 compares the normalised XRD patterns measured from the sintered CAS samples 

prepared using SPS and CPS methods. From the XRD analysis, it is found that the same 

crystalline phase is precipitated in both samples; all peaks matched with larnite (Ca2SiO4, PDF 

card 00-033-0302).  
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Figure 6-2: Normalised XRD patterns of sintered CAS glasses prepared using SPS and CPS 

methods, L = Ca2SiO4. 
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The difference pattern indicates that the intensity of larnite peaks located at ~32.5 and ~41.1° of 

2θ (indicated by arrows) is increased in the SPS diffractogram. Another distinctive feature in the 

difference pattern is the occurrence of a negative diffuse scattering characteristic (inverted 

amorphous hump) located between 25 and 35° 2θ. These phenomena suggest that more 

crystalline phase and less glassy phase was present in the SPS sample. According to the PDF 

card, the density of larnite is 3.28 g/cm3 and the measured powder density of the CAS glass 

using pycnometry is 2.89 g/cm3 (refer Table 5-1). Based on this data, the crystalline phase 

analysis can be directly related to the measured density (Table 6-1), as the SPS sample has a 

density exceeding that of the pure glass and CPS sample. Indeed, this event is believed due to the 

slight reduction of glassy phase that favoured formation of larnite crystals.  

 

6.3.3. Optical Microscopy 

 

Figure 6-3 shows low and high magnification optical micrographs of sintered CAS glasses 

produced using the CPS and SPS methods. As can be seen in the low magnification images 

(Figure 6-3a and Figure 6-3c), it is obvious that there is a larger amount of isolated porosity in 

the CPS sample compared to the SPS sample. The size of porosity in CPS samples is in range 

between ~1 and 100 µm. In contrast, limited porosity is detected in the SPS sample (arrowed) 

with an average diameter of < 5 µm. The low magnification images also indicate that the grains 

appeared similar to the original glass particles but that there are crystalline ingrowths. Apart 

from the difference in porosity, it can be seen that some areas appeared lighter in colour in the 

SPS sample (see Figure 6-3c). The lighter features are thought to be the crystal-free regions with 

a mirror-like finished surface that reflect light of the microscope. This has been confirmed in the 

high magnification image (Figure 6-3d) that is focused on a lighter feature, labelled X; the grey 

area without any crystalline feature is assumed to be a glass region (refer Figure 6-4 for the EDS 

data).  The ingrowth of the crystalline features appears to be completed at region Y. However, 

the orientation of the particle may have affected the image. It is arguable that the particle (area 

Y) is fully crystallised or the particle is ground and polished at the top surface, which at this 

region is dominated by the crystalline material. Comparing both high magnification images of 

the CPS (Figure 6-3b) and SPS (Figure 6-3d) samples, it can be observed that the SPS sample is 

heavily crystallised whereas any crystal growth in the CPS sample appears to be confined to the 
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grain boundaries. It is also seen that the needle-like feature occurred in the SPS sample seems to 

be longer in length compared to the ones that occurred in the CPS sample. Based on the XRD 

analysis it is suggested that the needle-like feature that randomly dispersed on the surface of the 

particles in both samples are larnite crystals. 

 

 
 

Figure 6-3: Optical micrographs of CAS glasses sintered at 890°C, (a) overview of CPS sample, 

(b) high magnification of CPS sample, (c) Overview of SPS sample, (d) High magnification of 

SPS sample. 

 

6.3.4. SEM and EDS 

 

The SEM micrographs and EDS analysis of sintered CAS formed using CPS and SPS methods 

are presented in Figure 6-4. It should be noted that the magnification of the SEM micrographs 

are not similar for the CPS and SPS samples; features in SPS samples are too big which makes 

high magnification images not suitable for the purposes of comparison. In general, the SE images 
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show similar features namely isolated porosity, crystalline larnite and a glassy phase to that 

observed in the optical micrographs.  

 
 

 
Figure 6-4: SEM micrographs and normalised EDS analysis of CAS glasses sintered at 890°C, 

(a) SE images of CPS sample, (b) BE image of CPS sample, (c) SE image of SPS sample, (d) BE 

image of SPS sample. 
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On comparing the BE micrographs of the samples, it is noticeable that the crystalline region of 

the CPS sample (area A) appeared black in colour whereas the equivalent region of the SPS 

sample (area D) was seen as light grey. The difference contrast in these images is attributed to 

the uneven surface of the CPS sample; the depth of profile of needle-like crystals were slightly 

lower than the glass region and this leads to the detection of elements with lower atomic number 

(in this case is gas, also note that EDS is not capable of detecting light elements < Na), hence 

appeared black in colour. This phenomenon may also explain the porosity region that appeared 

black in Figure 6-4b. As seen in optical microscope images, the SEM micrographs also indicate 

similar behaviour of crystal growth of larnite crystalline phase; the crystals seem to grow from 

the surface toward the centre of CAS glass particles. The EDS data suggest that there is no 

difference in the chemical elements present in the crystalline or glassy regions, whether the 

sample was prepared using CPS or SPS. However this is probably due to the EDS technique that 

measures over an interaction volume (details in Section 3.17) which is larger than the features 

observed. 

 

6.4.  The Effect of Sintering Temperatures on CAS30G Composites 

 

In this section, CAS30G composite samples sintered at various sintering temperatures from ~Tg 

to < 1000°C using SPS are examined. The dwell time at the maximum sintering temperature for 

all samples was kept at 20 min. Where possible, the data obtained from the CAS30G samples 

sintered via SPS are compared with that of an equivalent sample formed using CPS.  

 
 

Figure 6-5: A CAS30G sample sintered at 890C for 20 min using SPS. 
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A photographic image of the CAS30G sample sintered at 890°C for 20 min using SPS is 

presented in Figure 6-5. It is worth noting that the graphite sheet has been removed and the 

sample has been ground using 1200 grit grinding paper for further analysis. For other SPS 

samples sintered at various temperatures, a similar treatment was applied and the colour of all 

sintered samples was found to be similar. 

 

6.4.1. Density and Porosity 

 

The measured bulk and powder densities of CAS30G samples sintered at various sintering 

temperatures using SPS are shown in Figure 6-6. It is apparent that the trends in both bulk and 

powder density of the samples are similar; the density increased from 790 to 890°C and 

decreased slightly at the maximum sintering temperature (note that the scale of the y-axis is 

reasonably small). The highest bulk and powder densities are found with the SPS samples 

sintered at 890°C, with measured density values of 2.69 and 2.72 g/cm3 respectively. In 

comparison, the bulk and powder densities of the equivalent CAS30G samples formed using 

CPS (sintered at 890°C for 2h) are 2.46 and 2.75 g/cm3. Indeed the powder density of both 

samples were about similar, regardless of the differences in the sintering method used. Overall, 

the powder density data shown in Figure 6-6 are found to be higher than the Archimedes density 

and this suggests that porosity is present in the samples. 

 

The porosity data calculated based on the difference between the powder and bulk densities are 

shown in Figure 6-7. It can be seen that the porosity is constant within error from 790 to 840°C 

and afterwards increased steadily as sintering temperature increased from 840 to 940°C. 

Comparing the porosity of the CAS30G sample (1.18 %) that gave highest density value with the 

equivalent CAS30G sample (10.74 %) sintered at 2h using the CPS (both sintered at 890°C), it is 

found that 89 % of porosity has been removed in the CAS30G sample formed at 20 min using 

SPS. This shows that the use of SPS is more feasible for the production of graphite-glass 

wasteforms than the use of CPS. 
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Figure 6-6: Bulk and powder density of CAS30G sintered at various temperatures for 20 min 

using SPS method. 
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Figure 6-7: Porosity of CAS30G sintered at various sintering temperatures for 20 min using SPS 

method. 
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6.4.2. XRD 

 

Figure 6-8 shows the crystalline phases that precipitated in all of the CAS30G samples made 

using SPS and a comparison of the data for the sample that had the highest density values with 

respect to the equivalent sample prepared using CPS. It should be noted that the sodalite 

(Na6Al6(SiO4)6, PDF card 04-009-5260) phase marked as Δ were detected in all diffractograms; 

this phase originated from the contamination of the graphite raw material (refer Section 4.2.3). 
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Figure 6-8: Normalised XRD patterns of CAS30G samples sintered using SPS and CPS method, 

G = graphite, L = Ca2SiO4, k = Ca6(SiO4)(Si3O10), g = Ca2(Al(AlSi)O7), Δ = Na6Al6(SiO4)6, SiO2 

= β-quartz. 

 

As the sample was sintered at ~Tg, the XRD pattern reveals that the glass component tends to 

remain amorphous upon sintering, along with the detection of graphite (PDF card 26-1076). 

When the sintering temperature is increased to 840°C, a similar pattern can be observed along 

with an indication of a weak peak located at ~32.5° of 2θ. In reference to the PDF card, this 

weak peak is positioned at the same place as the 100 % intensity peak for larnite (Ca2SiO4, PDF 

card 00-033-0302). On further increasing the sintering temperature to 890°C, it is clear that 
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mixture of an amorphous phase, graphite and larnite are present in the sample. Similar phases 

were detected in the equivalent samples prepared using CPS. However, the 100 % intensity peak 

of larnite was found to be more pronounced in the sample prepared using SPS. This may suggest 

that the degree of crystallisation of larnite is higher in the SPS sample compared to the CPS 

sample sintered at 890°C. At the maximum sintering temperature of 940°C, a more complex 

mixture of an amorphous phase, graphite, larnite, SiO2 (β-quartz, PDF card 01-086-1564), 

gehlenite (Ca2(Al(AlSi)O7), PDF card 01-075-1677) and kilchoanite (Ca6(SiO4)(Si3O10), PDF 

card 00-029-0370) is obtained. Based on the comparison of the maximum intensity peaks of 

larnite, gehlenite and kilchoanite, these crystal phases are present in the following order 

kilchoanite > gehlenite > larnite, although quantitative XRD measurements should be considered 

to identify the percentages of each phases.      

 

6.5.  The Effect of Sintering Dwell Time on CAS30G Composites 

 

The effect of sintering dwell time in the production of CAS30G samples with the aim of 

identifying the optimum sintering parameter for SPS is described in this section. All the 

CAS30G samples discussed in this section were sintered at 890°C using SPS and prepared at 

various sintering dwell times ranging from 3 to 30 minutes. The sintering temperature of 890°C 

was used due to the fact that CAS30G sample sintered at this temperature produces the highest 

bulk and powder density values (Figure 6-6). 

 

6.5.1. Density and Porosity 

 

The pattern of bulk and powder densities of obtained CAS30G samples formed using SPS 

method is presented in Figure 6-9. Generally, both bulk and powder densities of the samples are 

found to be similar with the variation of the measured density values from 2.69 to 2.72 g/cm3. 

The bulk density values are increased from 3 to 15 minutes, slightly decreased at 20 minutes, 

increased again at 25 minutes and after which it was stable to 30 minutes sintering dwell time. 

For the powder density of similar samples, it can be observed that the density increased from 3 - 

5 minutes, decreased linearly from 5 - 20 minutes, increased again from 20 - 25 minutes and no 

significant change of the density data was found between 25 and 30 minute sintering dwell times. 



156 

 

Although the changes in the density values in bulk and powder density is very small, it is 

suggested that such variations are due to the release of air that trapped between the glass and/or 

graphite particles. The degree of crystallisation may also responsible for the slight increase of 

bulk and powder densities from 20 - 30 minutes.  Furthermore, it is clear that the difference in 

the bulk and powder density data slightly fluctuated from 3 - 20 minutes and afterwards the 

difference in the densities remains similar.  
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Figure 6-9: Bulk and powder density of CAS30G samples prepared at various sintering dwell 

times. 

 

From the percentage differences in the density values measured on each CAS30G sample, the 

porosity data are obtained and presented in Figure 6-10. The porosity is increased from 3 - 5 

minutes, decreased steadily from 5 - 20 minutes, increased again from 20 - 25 minutes and was 

stable from 25 - 30 minutes sintering dwell times. The porosity data revealed that the removal of 

air and/or porosity from the green body was completed at 20 minutes. This leads to the 

suggestion that 20 minutes sintering dwell time is adequate to produce a CAS30G sample with a 

reasonably low amount of porosity: 1.18 % at 20 minutes. The slight increase of porosity from 

20 - 30 minutes dwell time may be attributed to the generation of porosity created from the 

oxidation of graphite, which presumably occurred through the scavenging the oxygen from the 
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glassy component; this event was evidenced and discussed earlier in Chapter 5. Although there is 

the possibility of the graphite oxidation in the samples, the low percentage of porosity data 

suggested that the graphite oxidation in the samples made using SPS is negligible. 
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Figure 6-10: Percentage porosity in CAS30G samples prepared with various sintering dwell 

times using SPS. 
 

6.5.2. XRD 

 

Figure 6-11 presents the XRD patterns measured from CAS30G samples sintered for various 

dwell times. Note that due to the larger scale used, the contamination phase of sodalite 

(Na6Al6(SiO4)6, PDF card 04-009-5260) originating from the graphite is less visible. It is obvious 

that a similar mixture of amorphous material, graphite and larnite (Ca2SiO4, PDF card 00-033-

0302) is present in all CAS30G samples. Comparing Figure 6-8 and Figure 6-11 shows that the 

development of crystalline material in CAS30G system is highly dependent on the sintering 

temperature as similar phases were detected in all samples. The only difference in the time series 

XRD patterns is the intensity of larnite crystalline peaks, which increased with increasing 

sintering dwell time, especially the 100 % intensity peaks located at ~32.5° 2θ. This suggests that 

the degree of crystallisation of larnite crystalline phase increased from 3 to 30 minute sintering 

dwell times. 
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Figure 6-11: Normalised XRD patterns of CAS30G samples prepared at various sintering dwell 

times, G = graphite, L = Ca2SiO4, Δ = Na6Al6(SiO4)6. 

 

6.6.  Microstructural Analysis of CAS30G Composites 

 

Based on the findings in Section 6.4 and 6.5, it was concluded that the best CAS30G composite 

material is produced by SPS processing at 890°C with a sintering dwell time of 20 minutes. This 

is due to the fact that at these sintering parameters, a high density and low porosity CAS30G 

composite is obtained. In this section, the microstructure of mentioned CAS30G composite 

sample is compared with the sample that prepared using CPS method (sintered at 890°C for 2 

hours).  

 

6.6.1. Optical Microscopy and Optical Profilometry 

 

As seen in Figure 6-12, the top view of the CAS30G sample formed using CPS revealed that 

some amount of graphite has been removed from the surface of the sample. The counterpart 

image obtained from optical profilometry also implies similar removal behaviour with the 
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measured depth of profile in the graphite regions being in the range of 5 - 25 µm. In the cross 

sectional view of the sample, it can be observed from the optical microscope that some graphite 

is retained on the sample, which can be observed as light grey features (marked by arrow). Less 

removal of graphite is evident in the cross sectional view of the optical profilometer image with a 

measured depth of profile at graphite regions being about 5 - 20 µm. From the optical 

microscope and optical profilometer images of the samples, it is inferred that more graphite is 

being removed by grinding and polishing of the sample from the top surface compared to the 

cross sectional surface, regardless of the fact that similar grinding and polishing methods were 

applied on both surfaces. This graphite removal is in agreement with the previous study of the 

mixtures of CAS glass and graphite in Section 5.3.5. 

 

 
 

Figure 6-12: Optical microscope and optical profilometer images of a CAS30G sample prepared 

using CPS, sintered at 890°C for 2 h. 

 

Similar analysis techniques were conducted on CAS30G sample prepared using SPS. In Figure 

6-13, it is clear that the effect of pressure in the SPS transformed the microstructure of the 
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sample, which can be seen in both top view and cross sectional view. The CAS glass ceramic 

regions in the top view were seen to be flatter (larger area) and the graphite regions in the cross 

sectional view were found more compact compared to the images of CAS30G sample prepared 

using CPS. The cross sectional optical micrograph shows that the graphite sheet does not react 

with the CAS30G and the black regions are not porosity; in this case the black regions have been 

thoroughly observed and it seems that the regions are due to particles pull out caused from the 

grinding and polishing processes. From the analysis of the optical and optical profilometer 

images, some graphite has also been removed on both top and cross section surfaces of the 

sample. However, in comparison with the CPS sample, this graphite removal is reduced, as the 

measured depth of profile in the top and cross sections of the surfaces are in range of ~2 - 18 µm 

and ~0.5 - 3.5 µm respectively. This is again a good indication of encapsulation of graphite in 

glass system and leads to the suggestion that the pressure assisted SPS is a better processing 

method for retaining graphite in glass composite materials. 

 

 
 

Figure 6-13: Optical microscope and optical profilometer images of a CAS30G sample prepared 

using SPS method, sintered at 890°C for 20 min. 
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6.6.2. SEM and EDS 

 

Figure 6-14 compares BE and SE micrographs of CAS30G samples sintered at 890°C for 2 h and 

20 min using CPS and SPS methods. Essentially, the top and cross sectional view of BE 

micrographs are in agreement with the optical microscopy images. In the BE micrographs, 

additional information about the elemental composition of graphite and CAS glass ceramic can 

be distinguished. It is clearly seen that the graphite component is encapsulated by the CAS glass 

ceramic component. Similar to the analysis of the optical microscope images, the effect of the 

pressure is also observed in top and cross sectional views of the BE micrographs; the CAS glass 

ceramic component is flatter (larger area) and the graphite sandwiched between the CAS glass 

ceramic components is more compact with respect to the CAS30G samples formed using the 

CPS method. This pressure effect that increases the driving force for pore removal is most 

probably the reason why the SPS made sample had a very low porosity (Figure 6-7 and 6-10). 

 

Comparing the higher magnification SE micrographs (taken from the cross section surface), the 

most distinct feature that can be seen in the micrographs is the behaviour of the larnite 

crystallisation. It is apparent that the degree of crystallisation is higher in the CAS30G sample 

formed using SPS compared to the sample formed using CPS (compare Figure 6-14e and 6-14f). 

As mentioned previously, there is no evidence in the micrographs to suggest the needle-like 

features observed in the SE micrographs are definitely the larnite crystalline phase. However, by 

considering the XRD patterns of CAS30G samples, it can be concluded that the needle-like 

features are larnite crystals. Overall, apart from the behaviour of graphite (pressure effect), the 

crystallisation of larnite crystalline phase seen in the CAS30G sintered at 890°C using CPS (2 h) 

and SPS (20 min) methods are in line with the sintered glasses, which were previously discussed 

in Sections 6.3.3 and 6.3.4. 

 

Further investigation on the CAS30G sample prepared using SPS was carried out using the EDS 

mapping analysis. As seen in Figure 6-15, all the expected chemical elements namely graphite 

(C) and CAS glass (Ca, Al, Si, O) are detected. The trace of Fe is believed originated from the 

contamination of the graphite (see chapter 4, Section 4.2.5). This statement is supported with the 

Fe elemental image, which revealed the area of Fe is located at the graphite regions (see Figure 
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6-15C and Figure 6-15Fe). Based on the elemental mapping analysis, there is no evidence of 

chemical bonding or chemical reaction occurred between graphite and CAS glass ceramic 

components. This is consistent with the XRD data and further confirmed that the graphite has 

been encapsulated with the CAS glass ceramic materials without any chemical interactions. 

 

 
 

Figure 6-14: BE and SE micrographs of CAS30G samples prepared using CPS and SPS 

methods, (a) top view of CPS sample, (b) top view of SPS sample, (c) cross sectional view of 

CPS sample, (d) cross sectional view of SPS sample, (e) close-up view of CPS sample, (f) close-

up view of SPS sample. 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 6-15: EDS mapping analysis on cross section of CAS30G sample prepared using SPS 

method, sintered at 890°C for 20 min. 

 

6.7.  The Effect of Waste Loading on CAS Glass Composites 

 

In this section, various waste loadings ranging from 30 - 90 wt% of graphite powder have been 

loaded into the powdered CAS glass system and sintered at 890°C for 20 minutes using SPS. The 

aim of this investigation is to find out how waste loading affecting the density, porosity and the 

tensile strength of the samples. The XRD and microstructure analyses have not been studied here 

due to the crystallisation of the material being dependent primarily on the sintering temperature, 

sintering method; no chemical reaction occurs between the CAS components (glassy and/or 

CAS30G 

C Ca Al 

Si O Fe 
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crystalline phases) and graphite. As seen above sintered CAS glass with or without graphite 

contains the same phases (see Sections 6.3.2, 6.4.2 and 6.5.2).  

 

Figure 6-16 shows a photograph of the samples taken after the graphite sheet has been removed 

by grinding process. It can be observed that the surfaces of CAS30G and CAS50G are smoother 

than those of CAS70G and CAS90G. It is clear that some scratches appeared on the surface of 

CAS70G and CAS90G samples, suggesting that these samples have poorer mechanical 

properties. Based on the observation whilst undertaking grinding process, the graphite 

component was more easily removed from the CAS70G and CAS90G samples. 

 

 
 

Figure 6-16: Photographic images of graphite-glass composites, A = CAS30G, B = CAS50G, C 

= CAS70G, D = CAS90G.  

 

6.7.1. Density and Porosity 

 

Figure 6-17 shows the bulk and powder densities of graphite-glass composites prepared with 

various graphite loadings. The trends of bulk and powder densities of the samples are similar 

with both decreasing with increasing graphite loading. This is expected as the density of graphite 

is lower than the glass ceramic component. Thus the increase in graphite content will lower the 

total densities of the samples. From the data, it is clear that the difference in the bulk and powder 

densities is more pronounced when the graphite content is increased from 30 to 90 wt%. The 

calculated theoretical density of CAS30G, CAS50G, CAS70G and CAS90G samples prepared 

using SPS is about 99.82, 96.12, 94.64 and 93.51 % respectively. In comparison, the CAS30G 

A B C D 
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sample prepared using CPS only achieved 89.26 % of the theoretical density, which is much 

lower than the highest waste loaded sample prepared using the SPS method. 
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Figure 6-17: Bulk and powder density of graphite-glass composites prepared from mixtures of 

CAS glass and graphite. 
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Figure 6-18: Porosity of prepared graphite-glass composites with various graphite loadings. 
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Figure 6-18 shows that the porosity increases monotonically with increased graphite loading. 

This is in agreement with the trends of the density data. Although at 90 wt% graphite loading, it 

is interesting that the measured porosity is low, about 6.5 %. In comparison with the CPS method 

that was previously studied using various glass systems in Chapter 5, it is confirmed that the SPS 

method is advantageous for reducing porosity of the graphite-glass composites based on the CAS 

glass system. 

 

6.7.2. Indirect Tensile Testing  

 

Figure 6-19 presents the tensile strength data for all SPS made glass-composites samples with 

various graphite loadings; an average of five measurements was taken at each data point. It 

should be noted that all the samples were carefully ground with 1200 grit grinding paper and the 

cylindrical shape of the compacted samples was preserved as accurately as possible, otherwise 

the shape of the sample (if not cylindrical in shape) will affect the tensile strength measurement 

i.e. the splitting of the sample will not follow the requirement of the test (details information in 

Section 3.20).  

20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

Te
ns

ile
 st

re
ng

th
 (M

Pa
)

Graphite content (wt %)

 
Figure 6-19: Indirect tensile strength of graphite-glass composites loaded with various graphite 

loadings. 
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From the graph, the tensile strength is found to decrease as the graphite content is increased from 

30 to 90 wt%. As seen in Figure 6-16, the surface of samples loaded with 30 and 50 wt% 

graphite are smoother (without visible scratches) than samples loaded with 70 and 90 wt% 

graphite, which may, at least partially explain the lower strength values. These results suggest 

that the graphite loadings of 70 and 90 wt% are too high and the mechanical integrity of the 

samples is not suitable for the production of nuclear wasteforms. In comparison with the 

CAS30G sample made using CPS method, the tensile strength of CAS30G formed using SPS is 

1.4 MPa higher than that of the sample prepared using CPS. This further implies that the SPS is a 

better method for the production of graphite-glass composite materials. 

 

6.8.  Discussion 

 

The scope of this chapter is to assess the use of the SPS processing method for the production of 

graphite-glass wasteforms based on the CAS glass system. Essentially, the SPS method is a 

relatively new approach to sintering and since the 1990s SPS has been applied in the production 

of various materials i.e. glass, ceramics, composites and metallic alloys (Suárez et al 2013, Xie 

2013). In spite of the fact that many studies have been undertaken in the recent years, the 

interaction of the materials with the sintering mechanism of SPS is not yet fully understood 

(Saheb et al 2012, Guillon et al 2014). The SPS method has attracted many researchers due to 

the following advantages; 1) it can form dense materials at relatively low temperatures; 2) it 

provides the application of pressure whilst undertaking sintering process; 3) sintering parameters 

and sintering environment are changeable as needed and finally 4) the whole sample processing 

time is much shorter compared to conventional and hot isostatic pressing (Sahin et al 2012, 

Fredrick et al 2013, Guyon et al 2013). Due to the stated advantages, the SPS method is seen to 

be attractive for the immobilisation of problematic nuclear graphite waste. The crucial aim is to 

reduce the porosity of graphite-glass composites and also to minimise graphite oxidation whilst 

retaining the mechanical strength of the samples. 

 

In this contribution, it has been demonstrated that the SPS method is superior to the CPS method 

and successfully reduced the porosity of produced glass composite and graphite-glass composite 

materials based on the CAS glass system. The reduction of porosity in the obtained samples is 
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directly related to the transport mechanisms involved during sintering processing. Basically, in 

the initial stage of viscous glass sintering, the surface transport mechanism is mainly dominated 

by surface diffusion and can be described by considering the neck formation between the two 

identical glass spheres. The neck growth does not affect the densification (due to no change in 

particle spacing) as the mass flow originates and terminates on the particle surface. The early 

stage of viscous glass sintering has been modelled by Frenkel (1945) and the model is valid 

roughly for the first 10 % of linear shrinkage. This model takes into account the neck formation 

of spherical, monodispersed particles by viscous flow and assumed the remaining parts of the 

particles retain their spherical shape as they approach one another (Ristić and Milosević 2006). It 

is worth noting that this model was not particularly developed to analye the case of viscous glass 

sintering, however the Frenkel model is the most applicable to the initial stage of viscous glass 

sintering. In the final stage of viscous glass sintering, the bulk transport mechanism known as 

viscous flow occurs and leads to the system densification. The driving force for this flow is 

surface tension that varies as a function of surface curvature of which connecting the rate of 

shear strain with the shear stress. The material flows toward the particle necks and fills into the 

pores as the pores become spherical and reduce in size, thus densifying the powder compact. A 

model for the final stage of viscous glass sintering has been developed by Mackenzie & 

Shuttleworth (1949). This model successfully explained the sintering of glasses and suggested 

that the densification rate will increase if the external pressure is applied to a compact whilst 

undertaking sintering process.  

 

With both models in mind, it is believed that the neck formation may occur in the early stage of 

the CAS glass sintering using the CPS method. However, the optical micrograph of sintered CAS 

glass (see Figure 6-3a and 6-3b) shows that the sample exhibits surface crystallisation, 

suggesting at the later stage the glass particle starts to crystallise when sintering. Although the 

CAS glass obeys the law of deformation for a solid with Newtonian viscosity, the surface 

crystallisation hinders the viscous flow mechanism; as the crystallised particles do not flow 

(Prado and Zanotto 2002, Chen et al 2013a). In this case, the vacancy diffusion mechanism 

probably plays an important role for the densification of the sintered CAS glass using CPS. The 

sintering process of sintered CAS glass using CPS can be simplified as follow: (a) when two 

glass particles are bought into contact, neck formation with high curvature forms (b) due to 
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surface crystallisation, the concentration of vacancies in the neck region is higher than the 

surface far away from the neck, leading to a driving force for diffusion; the vacancies moving 

away from the neck caused the material to move towards the neck. Note that the concentration of 

the vacancies is strongly dependent on the surface stress (c) and that a grain boundary acts as a 

sink for vacancies resulting a flux toward itself and allowing for their accumulation and collapse. 

This leads to the vacancies moving toward and into the grain boundary from nearby surface 

regions, balanced by the rate of collapse along the grain boundary and caused by an inward 

motion of the particles; this motion is known as the plating velocity of the particles (d) 

eventually, the mentioned vacancy diffusion mechanisms result in system shrinkage or 

densification (Djohari et al 2009, Djohari and Derby 2009). Based on the experiments reported 

here, the transport mechanisms are in agreement with the results of sintered CAS glass using 

CPS; the plating velocity is also observed in Figure 6-3b, which at some areas shows the 

migration/spreading of non-crystallised materials to the adjacent particle, breaking the grain 

boundary and crystalline line. It is also seen that the sintered CAS glass compact using CPS 

achieved 94.9 % theoretical density. In contrast, the sintered CAS glass compact using pressure 

assisted SPS increased in density to 98.7 % theoretical density. The increase value of theoretical 

density complements the Mackenzie & Shuttleworth model and is also in line with the study of 

glass sintering with concurrent crystallisation (Prado and Zanotto 2002, Djohari et al 2009, 

Djohari and Derby 2009).  

 

The larnite crystals in sintered CAS glass compacts produced using SPS were found to be more 

developed than those in the equivalent sample made using CPS; the needle-like features are 

longer in length, suggesting an increased rate of crystal growth. This is thought due to the 

efficiency of the heating mechanism in SPS. In SPS, a pulsed electric current is passed through 

the graphite mould and directly interacts with the sample by joule heating together with the 

electrical field diffusion effect (Birkel et al 2013, Rizzo et al 2014), also refer Section 2.5.4. This 

leads to homogeneous heating with very minimal energy loss. In contrast in the CPS method, the 

heat transfer mechanism is mainly by conduction and heat is being transferred from the heat 

source to the surface of sample. This gives less efficient heat transfer when the system contains 

large amounts of porosity; gases are much less conductive than solids. From the obtained powder 
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density data of sintered CAS glass compacts, the larnite crystalline material can be quantified 

using the law of mixtures that gives  
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Equation 6-1 can be rewritten as follow  

 

( ) ( )ff cgt −+= 1ρρρ               [6-2]  

 

where ρt is the density of sintered CAS glass, ρg is the density of CAS glass, ρc is the density of 

larnite, Vg is the volume of glass, Vc is the volume of crystal and f is the volume fraction of 

glassy material in the sintered body (refer Table 6-1 and Section 6.3.2 for the density data). 

Based on Equation 6-2, the volume fraction of larnite was calculated and found to be ~17.9 and 

28.2 % for sintered CAS glass compacts formed using CPS and SPS methods, respectively. 

These values are in agreement with the obtained physical and microstructure data (Section 6.3). 

 

When the graphite is present in the CAS glass system, the results revealed that the properties of 

sintered CAS and CAS30G samples are largely similar whether CPS or SPS is used. The major 

difference between the sintered CAS glass and CAS30G samples made using CPS and SPS is the 

amount of porosity, which is high in CPS samples and reasonably low in SPS samples. This 

confirmed that external pressure provided an increased driving force for densification and this 

leads to the reduction of porosity; in this case, similar porosity values are identified in sintered 

CAS and CAS30G samples formed using SPS. In addition, a low amount of porosity in nuclear 

wasteform is very important as this will avoid any penetration of ground water or aquatic phases 

into the wasteform (Fachinger et al 2012), hence potentially increasing the lifetime and/or 

chemical durability. The maximum graphite loading in CAS glass system is suggested to be 

between 30 and 50 wt%. CAS30G and CAS50G achieved 98.82 and 93.51 % theoretical density, 

1.18 and 6.49 % porosity and 6.6 and 2.2 MPa tensile strength. These data are comparable with 

the recent United States Patent (family ID - 42285667) on the production of graphite-glass 
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composite materials using hot isostatic processing (Hrovat et al 2013). The patent indicates that 

their graphite-glass samples achieved about 95 - 97 % of theoretical density with 5 - 2 % of 

porosity. The clear advantage of CAS30G and CAS50G made using SPS is the reduced 

processing time, which is less than 40 minutes. 

 

In this chapter, it has been shown that the SPS method can be used to encapsulate irradiated 

graphite waste with several advantages including low porosity, limited loss of graphite, no 

reaction occurring between the graphite and glass binder, and acceptable mechanical properties. 

Consequently, these parameters lead to the better properties of wasteform for long term disposal, 

ideally in a deep geological disposal facility. However, SPS processing method is not feasible 

due to the huge volume of irradiated graphite waste, accounted worldwide about 260 000 tonnes 

(refer Figure 2-6). The SPS machine used in this study can only produce < 500 g graphite-glass 

sample at a time. It is suggested that SPS method may of be use only for immobilising 

contaminated irradiated graphite with high level waste; as graphite is chemically stable, the 

remaining irradiated graphite waste can be treated as low level waste and disposed near surface.    

 

6.9.  Summary  

 

The aim of the study has been achieved with the production of low porosity CAS and CAS(30-

50)G composite materials using SPS. SPS is advantageous as it gives fast sintering due to the 

application of pressure, which in this work efficiently reduced the porosity with negligible loss 

of graphite. Overall, the data suggest that the samples produced using the SPS method are better 

in terms of physical, crystal growth, microstructure and tensile strength data compared to the 

samples those sintered using CPS. The graphite loading limit is suggested to be between 30 and 

50 wt% to avoid significantly compromising the wasteform properties. The CAS50G composite 

is acceptable for the encapsulation of graphite with a measured porosity and tensile strength are 

about 3.87 g/cm3 and 2.22 MPa respectively. Improvements in the density, porosity and the 

tensile strength of CAS50G sample may possible by increasing the pressure whilst undertaking 

the SPS process. However, due to time constraints, this investigation was not carried out and 

should be considered in future work. 
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7.  Conclusions and Suggestions for Further Work 
 
7.1.  Introduction 

 

The use of microwave heating, CPS and SPS as potential processing methods for the production 

of graphite-glass wasteforms have been investigated in Chapters 4, 5 and 6 respectively. Various 

base glass compositions have been used to encapsulate different waste loadings of graphite 

simulants, only some of which were found to possess suitable physical and chemical properties 

to be potential nuclear wasteforms. In this chapter, the key findings obtained from all result and 

discussion chapters are summarised and suggestions for future work are outlined for further 

research. Although this present research does not completely solve the immobilisation problems 

of the irradiated graphite waste, it is believed that the knowledge from this thesis contributes to 

the development of a route for the immobilisation of active irradiated graphite waste.  

 

7.2.  Contamination of Graphite Simulants in Graphite-glass Wasteforms 

 

The contamination present in the irradiated graphite originating from the purification process at 

manufacturing stage, is without a doubt, a major problem that leads to the creation of 

problematic radionuclides (e.g. 16Cl) resulting from the long term exposure to neutrons in the 

nuclear power plant. Other contaminations from nuclear reactor components during operation 

and nuclear incident also cause difficulties in the irradiated graphite waste management (e.g. 
60Co, 63Ni, 55Fe, fission products). In this study (Section 4.2), it was identified that the graphite 

simulants used were contaminated with various chemical elements namely O, Al, Si, S, Ca, Fe, 

K and Na as well as various hydrocarbon impurities. Sodalite present in the graphite simulant 

raw materials did not react with the base glasses; this phase can be seen in all the graphite-glass 

samples produced (evidence in Figure 4-11, 5-12, 5-13, 5-14, 5-15, 6-8, 6-11 ). Less problematic 

species such as Al, Si and Ca, probably in oxide form, are found incorporated with glassy 

materials as shown by the EDS elemental analysis; traces of such elements are identified in the 

glassy regions (Figure 4-17, 5-20). This is the advantage of using glass materials as they 

potentially encapsulate and/or incorporate such phase/elements in more stable glassy structure. 

From the results of this study it can be concluded that one should pay attention to the amounts of 
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O and Fe (3+ oxidation state) in the active irradiated graphite waste; large amounts of these 

elements could release 14C (via the formation of 14CO, 14CO2) and promote porosity when 

thermally treated in glass materials. This consequently decreases the mechanical properties of the 

graphite wasteforms and will complicate the handling and transportation process. High porosity 

of graphite wasteforms is unacceptable as it can accelerate the migration of radionuclides when 

brought into contact with aquatic phases.  

 

7.3.  Graphite Immobilisation using Microwave Processing 

 

At the beginning of the study, microwave processing was thought to be beneficial as it can melt 

or sinter the glass materials in a short processing time, typically a matter of minutes. This was 

seen to be advantageous for the immobilisation of irradiated graphite waste as the short 

processing time could reduce the oxidation rate of graphite. The main challenge of using 

microwave processing is to identify the materials that can act as a heat source in the glass 

systems (microwave absorber materials). Significant amount of time was given to identify the 

heat source that coupled with the microwave energy, however, only the iron phosphate glass 

composition was found suitable for use in the microwave processing. Magnetite was chosen as 

the heat source and at this stage, it is foreseen that this element can potentially accelerate the 

oxidation of graphite via iron reduction reaction. Nevertheless, the study was carried out to 

understand the effect of iron reduction reaction on graphite wasteforms produced using 

microwave processing. 

 

Based on the investigation in Chapter 4, it can be concluded that the microwave processing is 

promising only in the production of glass materials; iron phosphate glasses were produced at 8 

minutes with equivalent physical and chemical properties to glass sample prepared for 3 h using 

conventional melt processing (Table 4-2). However this is not the case for the graphite-glass 

composites based iron phosphate composition. The best graphite-glass composites (20 wt% 

waste loading – IP20G) formed after 20 minutes microwaving and the sample properties are 

unacceptable for the nuclear graphite wasteform; although produced in short processing time, the 

sample had ~37 % porosity and 5 % of the total mass loss was due to the graphite oxidation. 

Microwaving this sample in Ar did not give significant improvements. Increasing graphite 
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loading in the system led to a greater amount of porosity. The high porosity and graphite loss in 

the microwaved graphite-glass composites are due the release of a considerable amount of gases 

(NH3, H2O, CO, CO2) which resulted from the decomposition of iron phosphate raw materials, 

the presence of oxygen in the sample and the environment as well as reduction of Fe3+ to Fe2+. 

The comparison between the graphite-glass composite (20 % waste loading – IP20G) samples 

formed using microwave and CPS revealed that the CPS sample produced utilising pre-made 

glass had better properties; ~15 % porosity and only 0.4 % graphite oxidation from the total mass 

loss (Table 4-3). Hence the use of microwave processing by utilising magnetite as a heat source 

is seen not suitable for the production of nuclear graphite wasteforms.  

 

7.4.  Graphite Immobilisation in Various Glass Compositions by CPS  

 

In Chapter 5, powdered base glasses namely ABS, CAS, G11, IP and natural OB were used as a 

host to encapsulate various graphite loadings using CPS method. A wide selection of 

characterisation techniques were conducted on the produced graphite-glass composites. The aim 

was to identify the potential of each glass in the production of graphite wasteforms, particularly 

in investigating the loss of graphite, amount of porosity, crystallisation behaviour, role of iron in 

pre-made glass, reaction of glass component with graphite and tensile strength of the obtained 

graphite-glass samples. From the extensive data analysis, the work in Chapter 5 can be 

summarised as follows: 

 

The CPS method utilised a controlled Ar environment which was effective in reducing the 

graphite oxidation reaction; the graphite losses for all CPS samples sintered at optimum sintering 

temperatures were found generally to be < 0.8 % from the total mass loss (Figure 5-30). 

Although the mass loss of the graphite is low, the presence of Fe3+ in the glass led to similar iron 

reduction which accelerated the loss of graphite at temperatures around 870°C; it was also 

observed that the sample that initially had high amount of Fe2+ tended to oxidise to Fe3+. 

Mossbauer analysis suggested that the reduction of iron occurred in G1120G and IP20G samples 

and in sintered OB20G sample, the iron was found to be oxidised (see Table 5-2). Both reactions 

potentially lead to increases in the total porosity of the samples. This complexity of iron 
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oxidation and/or reduction reaction(s) further suggests that the presence of this element is not 

suitable for the production of graphite-glass wasteforms. 

  

The total porosity of all graphite-glass composite materials from low to high follows the order 

OB series < CAS series < ABS series < G11 series < IP series respectively (Figure 5-33). The 

total porosity of the produced graphite-glass composites loaded with 20-35 wt % graphite 

simulant were found to be in the range of 6-17 %. The low porosity in the OB, CAS and ABS 

series samples was due to the absence of iron reduction reaction. However, the porosity of these 

samples with such a low waste loading still seems too high for viable graphite glass wasteforms.    

   

From the crystallisation analysis of all graphite-glass composite materials, the ABS and OB 

series were identified as the most resistant to crystallisation compared to the CAS series, which 

crystallised to larnite phase at the optimum sintering temperature. It is known that the 

crystallisation of the materials might slow down the sintering kinetics, limiting the flow of the 

glass materials while sintering and resulting in not properly filled the pores. However, from the 

data, this effect is difficult to observe as the generation of porosity in the graphite-glass samples 

mostly occurred due to the releasing of gaseous species (see Section 5-5). Investigation of the 

reaction of glass materials with graphite revealed that that there no chemical bonding between 

the graphite and the glass occurred in all graphite-glass composite series. The acceptable tensile 

strength of the graphite-glass composite samples made using CPS is suggested to be > 5 MPa, 

otherwise graphite particle could be easily removed from the samples’ surface.  

 

Overall the research in Chapter 5 leads to the conclusion that the use of CPS method is 

ineffective due to the production of high porosity graphite-glass composite materials. The 

important parameters worthy of attention for the graphite encapsulation in glass materials are: (a) 

all the thermal processing must be carried out in inert environment i.e. Ar, vacuum, (b) glass 

materials must not contain element that induces graphite oxidation i.e. iron as well as (c) the 

need for external pressure whilst sintering to reduce the porosity of the graphite-glass composite 

materials. 
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7.5.  Graphite Immobilisation in CAS Glass Composites using SPS  

 

The use of SPS method utilising external pressure was found to be promising and capable of 

producing low porosity graphite-glass wasteforms based on CAS glass systems. The SPS method 

successfully encapsulated graphite in CAS composite materials and the samples possessed better 

physical, crystal growth, microstructure and tensile strength properties compared to the samples 

sintered using CPS. The whole processing time is short being < 40 minutes and this is 

advantageous as low processing time reduced the oxidation of graphite during the thermally 

treatment.  Whilst sintering the compacted CAS glass samples, larnite was formed and impedes 

viscous flow as shown in the samples that were prepared using CPS; a residue of isolated 

porosities is also seen in the microstructure analysis of the obtained sample (Figure 6-3a, 6-3b). 

This effect however is negligible in the sample made using SPS; the constant pressure given 

during heating forces the sample to achieve densification and thus resulting in low total porosity 

(Figure 6-3c, 6-3d). 

 

For graphite-glass composite samples prepared using SPS, the graphite loss of the samples 

cannot be measured. However, the data could be estimated from the similar sample produced 

using CPS: graphite loss from total mass for CAS30G is 0.37 %. It should be noted that CAS30G 

sample prepared using SPS is produced in less than 40 minutes, the graphite loss should be less 

that the mentioned figure. Nevertheless, the microstructure analysis suggested that the porosity in 

the SPS made samples is low (Figure 6-8). Furthermore, similar to CPS method, no chemical 

bonding was identified between CAS glass composite and graphite. The waste loading limit is 

suggested to be in the range 30-50 wt% and the key properties of the potential graphite-glass 

composite materials based CAS glass compositions are as follows: CAS30G – 2.69 g/cm3 bulk 

density, 1.1 % porosity, 6.6 MPa tensile strength; CAS50G – 2.59 g/cm3 bulk density, 3.9 % 

porosity, 2.22 MPa tensile strength. 

 

7.6.  Future Work and Recommendations 

 

The work undertaken in this thesis has highlighted the potential use of SPS to produce graphite-

glass composite wasteforms with acceptable properties. It is clearly demonstrated that inert 
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environment and application of pressure are necessary in the production of graphite-glass 

wasteforms. However, several future investigations should be considered in order to optimise the 

physical and chemical properties of the graphite-glass composite samples as follows: 

 

• Analysis of the gas species released during thermal treatments that imitate the sintering 

profile of SPS method should improve understanding on the mass loss behaviour of the 

graphite-glass composite materials. This can be carried out using TG-MS and TG-FTIR 

analytical techniques. 

• The maximum pressure used in the study is 35 MPa. From the observations made during 

the course of study, the pressure can be increased and this may further reduce the total 

porosity of the graphite-glass composite sample. The graphite loading probably can be 

increased with the presence of higher pressure. 

• There is an interest in using G11 glass with the iron content removed as a host for the 

production of graphite-glass materials using SPS method; this is due to the potential of 

this glass to incorporate a wide range of chemical elements, which might be suitable for 

the encapsulation of highly contaminated irradiated graphite waste. Essentially by 

removing the iron content from the glass, the composition will be similar to the 

borosilicate used for the vitrification of the HLW in the UK. 

• In general, physical and chemical properties of irradiated graphite waste in nature are not 

consistent; it depends on the waste origin and how the irradiated graphite is treated in the 

nuclear power reactors. This is one of the major challenges in the immobilisation of 

irradiated graphite waste, however, it is interesting if one could demonstrate the 

production of graphite-glass composite materials using active waste and compare the 

result to that obtained data in this thesis. 

• Finally, the chemical durability study should be undertaken on the ideal graphite-glass 

wasteforms; the environment of deep geological facility i.e. temperature, pressure and the 

groundwater behaviour/flow must be carefully considered. The chemical durability of the 

graphite-glass wasteforms produced using CPS and SPS can also be evaluated and should 

make clear whether the latter method is necessary to immobilise irradiated graphite 

waste.  
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Appendix A1: Density of Distilled Water at Various Temperatures 
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