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Abstract 
	
  
Graphical models represent conditional independence relationships between variables, 

including, for example, those between the various symptoms and causes of a disease. 

An important topic in the area of machine learning is learning these types of models 

from data. In some applications, it is crucial to include information that is not 

contained in the data, i.e. prior information. The aim of this research is to design an 

efficient algorithm that utilises prior knowledge in a manner which allows users to 

express what they know about the problem domain. This involves creating a system 

where the input is composed of prior knowledge, together with data, connected to a 

Bayesian learning algorithm. Our main aim is to facilitate the design of an algorithm 

that uses prior knowledge ahead of time, in order to both speed up the process of 

learning and ensure that the learning is more accurate. 
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1 Introduction And Motivation 
	
  
This chapter shows how machine learning is used to learn a well-known set of 

graphical models – Bayesian networks – and is concerned with learning the structure 

of Bayesian networks and parameter estimation. The thesis gives the necessary 

background for graphical models by giving simple examples of medical diagnosis 

problems. Section 1.2 gives a detailed account of the motivation and the research 

hypothesis behind the work in this thesis, which is based on a well-known graphical 

representation for learning Bayesian networks specifically, using prior knowledge. 

Finally, an overview of the thesis is given in Section 1.3. 

	
  

 Introduction 1.1
	
  

	
  
A Bayesian network (BN) is a graphical model that encodes the dependencies 

between variables, where nodes represent the random variables and edges represent 

the probabilistic dependence between variables (discussed in detail in section 2.2). 

The rest of this section will use the following simple medical diagnosis problem. 

 

Let’s take an example of a lung cancer problem: A patient has been suffering from 

dyspnoea and visits the doctor. The patient is concerned that he may have lung 

cancer. However, the doctor knows that other diseases cause dyspnoea, as well as 

lung cancer. Additional information includes whether or not the patient is a smoker, 

and if the patient has been exposed to pollution that might increase the chances of 

having cancer. In addition, a positive X-ray would reveal whether the patient has lung 

cancer (Korb & Ann E. Nicholson, 2003). 
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Figure 1: A Bayesian network for the lung cancer problem. 

 

In this medical diagnosis example, two nodes should be connected directly if one 

affects or causes the other, with the edge specifying the direction of the effect. On 

other hand, having cancer will affect the patient’s breathing, which increases the 

probability of a positive X-ray result.  

 

A node is a parent of a child if there is an edge from the parent to the child. From a set 

of directed nodes, we can say that the Cancer node has two parents: Pollution and 

Smoker. Furthermore, node Smoker is an ancestor of both X-ray and Dyspnoea, as it 

appears earlier in the directed set. Whereas, node X- ray is a child of Cancer and a 

descendant of Smoker and Pollution, as it comes later in the directed set. 

A Bayesian networks offer complete representations of probability distributions over 

their variables. Therefore, this indicates that they can be conditioned on any subset of 

variables, which supports any direction of reasoning. Bayesian networks allow us to 

perform diagnostic or predictive reasoning.  

 

A doctor observes Dyspnoea and then updates his belief about Cancer. If the patient is 

a Smoker, this is an example of reasoning from symptoms to cause. However, if the 

doctor knows that the patient is a smoker, then the doctor also knows this will 

increase the probability of the patient having cancer. This is an example of predictive 

reasoning. 

 

 

Pollution  

Cancer  

XRay  Dyspnoea  

Smoker  
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On the other hand, if we already know that the patient has cancer, then knowing 

whether they are a smoker will not make any difference to the probability of 

dyspnoea. Thus, dyspnoea is conditionally independent of smoking given the patient 

has cancer.  

 

However, learning an optimal Bayesian networks from a given set of data is a 

computationally difficult problem. In structure learning algorithms, we find that for 

every possible edge in the network there is a question about whether to add the edge 

in the final network and in which direction. For larger problems, we have to resort to 

heuristic search approaches. In this thesis, we will use a hill climbing algorithm.  

The number of possible network structures grows exponentially with every possible 

subset of edges, which could represent a network structure. Even restricting the 

structure learning so that it only has k parents (for k >1) has been proven to be NP-

Complete (discussed in section 3.5). There is no efficient polynomial-time algorithm 

for searching the space of possible network structures (unless P=NP) in order to find a 

network structure that best fits with the data. 
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  Motivation 1.2
	
  
	
  
This thesis investigates how different sorts of prior knowledge are incorporated into 

the developed learning algorithms. There are different types of prior knowledge, and 

different people have various types and levels of knowledge about a particular 

problem domain. However, given that a wide variety of problems need to be solved, 

the aim of this research is to develop a way of using the prior knowledge provided.  

 

The main goal of this thesis is to create an algorithm that uses prior knowledge as 

input data, together with data, and builds a Bayesian network with a high posterior 

probability. Consequently, including the prior knowledge will make learning the 

Bayesian network much easier. Sometimes, working out what the right prior 

knowledge is may be difficult, but this thesis is not concerned with determining what 

the right prior knowledge is. Instead, the goal is to include all of the information and 

implicitly incorporate it in a prior distribution. This thesis discusses what sort of prior 

knowledge will be allowed and the Bayesian structure-learning algorithm that is used.  

 

 

There are many types of prior knowledge, including the knowledge of whether or not 

node A is a parent of node B and known topological ordering. The most challenging 

type of prior knowledge, and the main subject of this research, is known ancestor 

relations and conditional independence. However, the main issue is that more 

complicated prior knowledge cannot be incorporated into a local score (as discussed 

in section 4.3). In addition to this, once we have complicated prior knowledge, just 

using hill climbing without changing it will fail because it will constantly generate 

networks that are not allowed. Therefore, we need to add some intelligence.  
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As learning Bayesian networks is NP-hard and these exact learning approaches will 

not scale to bigger datasets, exact leaning approaches are not the answer to every 

problem due to scalability issues. Thus, we have to use an approximate approach and 

a greedy approach such as hill climbing. Consequently, we need to explore 

improvements to hill climbing.  

The Bayesian structure-learning problem is described as an optimisation problem. 

This thesis follows a search and score approach which builds upon a hill-climbing 

algorithm. It is difficult to create a good Bayesian network manually, and in many 

cases (applications), we have prior knowledge about a variable as well as data. 

Therefore, there is some motivation for designing an algorithm that takes advantage 

of prior knowledge. The aim of this thesis is to create an algorithm that uses prior 

knowledge as input data while simultaneously dealing with bigger problems. 
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  Thesis Overview  1.3
 
This thesis is organised as follows:  

Chapter 2 provides the necessary background. It introduces the field survey, and then 

provides a review of graphical models and probability theory. It also discusses the 

two main representations of graphical models: Bayesian networks and Markov 

networks. Next, it introduces the two main methods for handling the problem of 

parameter estimation for Bayesian networks: one is maximum likelihood estimation 

(MLE), and the other is based on the Bayesian approach. The directed acyclic graph 

represents the structure in a Bayesian network, and the values of the conditional 

probability distribution are the parameters. It also aims to provide an illustration of 

the form of prior and posterior distributions when we are in a situation where we need 

to express our uncertainty concerning a beta distribution (as in the case of a binary 

parameter) and a Dirichlet distribution (as in the case of multinomial variables).  

 

Chapter 3 describes Bayesian network structure learning. It investigates the three 

main approaches used for Bayesian structure learning: constraint-based, score-based, 

and the Bayesian model-averaging approach. This chapter attempts to illustrate why it 

is important to study prior knowledge, and the various approaches that have been 

considered. It highlights different, related work on Bayesian structure learning 

approaches, and discusses the theoretical limits of learning Bayesian networks. 

Finally, the chapter examines some existing applications for Bayesian network 

learning.  

 

Chapter 4 proposes an algorithm to learn Bayesian networks from data. It presents 

Cowell's (2009) approach to the exact learning of the maximum likelihood Bayesian 

network. It introduces the developed learning algorithm, which is a hill-climbing 

algorithm prior knowledge (HCPK). First, it shows how the directed acyclic graph 

(DAG) is represented. Then, it explains how cycle checking and the scoring function 

are used in the developed learning algorithm. Finally, it gives a detailed discussion of 

the search procedure in the HCPK. 



Introduction	
  And	
  Motivation	
  	
   20	
  

Chapter 5 is about the main contribution of this thesis: presenting an algorithm that 

can incorporate different types of prior to the developed algorithm. This section 

introduces prior information and highlights the differences between hard and soft 

prior information. It then describes how different sorts of prior knowledge are 

incorporated into the developed learning algorithms.  

 

Chapter 6 reviews the research thesis objectives and results. It emphasises the 

contributions that this research has made, and presents experiments conducted using 

the developed algorithm on Dynamic Programming and HCPK, with and without 

prior knowledge.  

 

Chapter 7 presents a summary of all the chapters included in the thesis. It identifies 

the limitations of the current work, and provides some possible directions for future 

study.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Background	
  	
   21	
  

 

2 Background 
	
  

This chapter covers the background about the fields of machine learning, graphical 

models, and probability theory. Section 2.1 provides an introduction to machine 

learning, and introduces probability theory and how it is linked to graphical models. 

An overview of the different types of graphical models that are most commonly used 

as representations of variable relationships is presented. The main types of graphs are 

a Bayesian network (discussed in section 2.2) and a Markov network (discussed in 

section 2.3). Section 2.4 explains the two main methods used to handle the problem of 

parameter estimation for Bayesian networks.   

	
  

  Introduction  2.1
	
  
A	
  machine	
  typically	
   learns	
  whenever	
   it	
  changes	
   its	
  structure,	
  data,	
  or	
  software.	
  

These	
   changes	
   are	
  based	
  on	
   inputs	
  or	
   external	
   information.	
  However,	
   learning	
  

similar	
  to	
  intelligence	
  covers	
  a	
  wide	
  range	
  of	
  processes	
  that	
  are	
  difficult	
  to	
  define	
  

precisely.	
   Machine	
   learning	
   denotes	
   the	
   changes	
   in	
   any	
   system	
   that	
   performs	
  

some	
   tasks	
   linked	
   with	
   artificial	
   intelligence.	
   Examples	
   of	
   such	
   tasks	
   are	
  

recognition,	
   diagnosis,	
   and	
   prediction,	
   and	
   the	
   changes	
   might	
   be	
   either	
  

improvements	
  to	
  the	
  system’s	
  performance	
  or	
  the	
  installation	
  of	
  new	
  systems.	
  In	
  

addition	
   to	
   this,	
   different	
  methods	
  of	
   learning	
  are	
  possible.	
  One	
  of	
   the	
   reasons	
  

machine	
   learning	
   is	
   important	
   is	
   because	
   “The	
   amount	
   of	
   knowledge	
   available	
  

about	
  certain	
  tasks	
  might	
  be	
  too	
  large	
  for	
  explicit	
  encoding	
  by	
  humans.	
  Machines	
  

that	
   learn	
   this	
   knowledge	
   gradually	
   might	
   be	
   able	
   to	
   capture	
   more	
   of	
   it	
   than	
  

humans	
  would	
  want	
  to	
  write	
  down”	
  (Nilsson,	
  2005).	
  	
   

In general, probability theory is the mathematical study of uncertainty. It plays a main 

part in machine learning because the design of learning algorithms typically relies on 

the assumption of probabilistic data. According to Murphy (2001),	
  when	
  probability	
  

theory	
  and	
  graph	
  theory	
  are	
  combined,	
  this	
  is	
  called	
  graphical	
  models.	
  He goes on 
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to, “They provide a natural tool for dealing with two problems that	
  occur	
  throughout	
  

applied	
   mathematics	
   and	
   engineering	
   –	
   uncertainty	
   and	
   complexity	
   –	
   and,	
   in	
  

particular,	
   they	
   are	
   playing	
   an	
   increasingly	
   important	
   role	
   in	
   the	
   design	
   and	
  

analysis	
  of	
  machine	
  learning	
  algorithms”	
  (Murphy,	
  2001).	
  	
  

Generally,	
  a	
  probabilistic	
  graphical	
  model	
  is	
  a	
  graph	
  where	
  random	
  variables	
  are	
  

represented	
  by	
  nodes,	
  and	
   the	
   lack	
  of	
  edges	
  denotes	
  conditional	
   independence	
  

assumptions.	
   There	
   are	
   two	
   main	
   classes	
   of	
   graphical	
   models:	
   Bayesian	
  

networks	
   (BN)	
   and	
   Markov	
   networks	
   (MN).	
   Bayesian	
   networks	
   are	
   directed	
  

graphical	
   models	
   that	
   are	
   common	
   in	
   artificial	
   intelligence	
   (AI)	
   and	
   machine	
  

learning.	
   By	
   contrast,	
   Markov	
   networks	
   are	
   undirected	
   graphical	
   models	
   that	
  

mainly	
   concern	
   the	
   physics	
   and	
   vision	
   communities.	
   A	
   chain	
   graph	
   has	
   both	
  

undirected	
  and	
  directed	
  links.	
  	
  

	
  

The	
  basic	
  concept	
  of	
  probability	
  theory	
  can	
  be	
  illustrated	
  by	
  considering	
  the	
  idea	
  

of	
   finding	
   the	
   probability	
   that	
   a	
   cancer	
   patient	
   will	
   react	
   to	
   some	
   particular	
  

chemotherapy,	
   or	
   by	
   observing	
   the	
   outcome	
   of	
   rolling	
   a	
   pair	
   of	
   dice.	
   These	
  

possible	
  outcomes	
  are	
  called	
  sample	
  points.	
  The	
  set	
  of	
  all	
  possible	
  sample	
  points	
  

in	
  a	
  situation	
  of	
  interest	
  is	
  called	
  a	
  sample	
  space.	
  The	
  sample	
  points	
  in	
  a	
  sample	
  

space	
   must	
   be	
   mutually	
   exclusive	
   and	
   collectively	
   exhaustive.	
   A	
   probability	
  

measure,	
   p(⋅),	
   is	
   a	
   function	
   on	
   subsets	
   of	
   a	
   sample	
   space	
   Ω,	
  which	
   are	
   called	
  

events.	
  The	
  values	
  of	
  p(A),	
  p(A	
  ∪	
  B),	
   and	
  p(Ω)	
   indicate	
   the	
  probabilities	
  of	
   the	
  

respective	
  events	
  (for	
  A,	
  B	
  ⊆	
  Ω).	
  The	
  function	
  p(⋅)	
  is	
  a	
  measure	
  with	
  the	
  following	
  

properties:	
  	
  

1. “Definition:	
   A	
   probability	
   measure	
   on	
   a	
   sample	
   space	
   Ω	
   is	
   a	
   function	
  

mapping	
  subsets	
  of	
  Ω	
  to	
  the	
  interval	
  [0,	
  1]	
  such	
  that:”	
  (Krause,	
  1998)	
  

2. 𝐴   ⊆Ω,P 𝐴 ≥ 0,𝐴  any  event	
  

3. 𝑃(Ω) = 1	
  

4. For	
   any	
   countably	
   infinite	
   collection	
   of	
   disjoint	
   subsets	
   of	
  Ω,𝐴! ,K =

1, . . ,∞  	
  

	
  𝑃( )!
!!!   𝐴! = 𝑃(𝐴!!

!!! )	
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Furthermore, according to Krause (1998), probability theory offers a method through 

which the probabilities of events are updated as we obtain evidence. In probability 

theory, conditional probability and Bayes' theorem are very important. Bayes' theorem 

has an enormous use in practical fields; for example, in medical	
  diagnosis,	
   to	
   find	
  

the	
  probability of a disease, given a symptom. Bayes' theorem is also used to manage 

some situations where an event is the parameter value or particular structure for a 

given data set. The probability of a particular event 𝐴 that is conditional on event 𝐵 is 

expressed as P A B . Bayes' theorem is: 

	
  

P A B =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵) 	
  

Where	
  𝑃(𝐴)	
  is	
   the	
   prior	
   probability,	
  𝑃(𝐵|𝐴)	
  is	
   the	
   likelihood	
   of	
   observing  𝐵	
  

(which	
  is	
  conditional	
  on  𝐴),	
  and	
  𝑃(𝐵)	
  is	
  the	
  probability	
  of	
  the	
  evidence	
  𝐵.	
  

	
  

In	
   probability	
   theory,	
   a	
   set	
   of	
   events	
   is	
   often	
   defined	
   using	
   random	
   variables	
  

(Russell	
  &	
  Norvig,	
  2010).	
  Every	
  value	
  of	
  a	
  random	
  variable	
  takes	
  some	
  domain.	
  

These	
  random	
  variables	
  can	
  be	
  Boolean,	
  discrete,	
  or	
  continuous.	
  In	
  the	
  case	
  of	
  a	
  

Boolean	
   variable,	
   it	
   generally	
   has	
   the	
   value	
  𝑡𝑟𝑢𝑒  𝑜𝑟  𝑓𝑎𝑙𝑠𝑒.	
   For	
   example,	
   when	
  

throwing	
  dice	
  the	
  instance	
  when	
  a	
  double	
  is	
  rolled	
  can	
  be	
  written	
  as	
  𝑑𝑜𝑢𝑏𝑙𝑒𝑠 =

𝑇𝑟𝑢𝑒.	
  Discrete	
  variables	
  have	
  a	
  countable	
  domain;	
  for	
  example,	
  𝑤𝑒𝑎𝑡ℎ𝑒𝑟	
  has	
  the	
  

domain	
   <sunny,	
   snow,	
   rainy,	
   cloudy>;	
  𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = sunny.	
   	
   Continuous	
   variables	
  

take	
  on	
  values	
  from	
  real	
  numbers.	
  We	
  can	
  express	
  the	
  probability	
  that	
  a	
  random	
  

variable	
   lies	
   within	
   some	
   particular	
   range	
   of	
   value	
  𝑥 ,	
   for	
   example,	
   today’s	
  

temperature	
  𝑥   ≥ 9.	
  

	
  

In	
   addition,	
   probability	
   theory	
   is	
   a	
   suitable	
   basis	
   for	
   uncertain	
   reasoning.	
  

Uncertainty	
   occurs	
   due	
   to	
   computational	
   limitations	
   and	
   lack	
   of	
   knowledge.	
  

Probabilities	
  encode	
  user	
  uncertainty	
  and	
  are	
  used	
   to	
  obtain	
   the	
  right	
  decision	
  

within	
  a	
  domain	
  of	
  interest,	
  summarising	
  beliefs	
  relative	
  to	
  the	
  evidence.	
  Let	
  us	
  

consider	
  an	
  example	
  of	
  uncertain	
  reasoning	
  in	
  the	
  medical	
  domain:	
  diagnosing	
  a	
  

patient’s	
   toothache.	
   For	
   a	
   particular	
   patient	
   that	
   has	
   toothache,	
   we	
   might	
  

consider	
  that	
  the	
  toothache	
  is	
  caused	
  by	
  a	
  cavity,	
  but	
  this	
  is	
  not	
  necessarily	
  true	
  

because	
   some	
   patients	
   may	
   have	
   gum	
   problems	
   or	
   another	
   of	
   the	
   many	
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problems	
   that	
   result	
   in	
   toothache.	
  We	
  can	
  say	
   that	
  we	
  believe	
   there	
   is	
  an	
  80%	
  

chance	
  (probability	
  of	
  0.8)	
  that	
  someone	
  who	
  has	
  a	
  toothache	
  will	
  have	
  a	
  cavity.	
  

In	
  other	
  words,	
  the	
  probability	
  that	
  the	
  patient	
  has	
  a	
  cavity,	
  given	
  that	
  he	
  has	
  a	
  

toothache,	
   is	
   0.8.	
   However,	
   knowing	
   the	
   patient's	
   history	
   of	
   other	
   toothache	
  

problems	
  will	
  alter	
  this	
  statement,	
  so	
  we	
  could	
  say	
  that	
  the	
  probability	
  that	
  this	
  

patient	
  has	
  a	
  cavity,	
  given	
  that	
  he	
  has	
  a	
  toothache	
  and	
  other	
  toothache	
  problems,	
  

is	
  0.4.	
  

Prior probabilities typically represent person degrees of belief 𝑃 cavity = 0.2, and 

then later we obtain information, which is called evidence. Moreover, prior 

probability distribution of an uncertain amount is probability distribution that one can 

express their belief before some evidence is considered. If	
  a	
  person	
   is	
  going	
  to	
  the	
  

dentist	
  because	
  he	
  has	
  toothache,	
  then	
  𝑃 cavity = 0.2	
  will	
  be	
  updated	
  based	
  on	
  

observed	
   information	
   relating	
   to	
   the	
   toothache,	
   this	
   is	
   called	
   the	
   posterior	
  

probability	
  𝑃 cavity  |  toothache = 0.6.	
  Probabilistic	
  inference,	
  which	
  is	
  used	
  for	
  

answering	
   any	
   queries,	
   is	
   the	
   process	
   of	
   computing	
   any	
   query	
   conditioned	
   on	
  

observed	
  evidence.	
  	
  

However, Empirical Bayes methods are used to estimate the statistical inference from 

the data of the prior distribution. This method is an alternative for the Bayesian 

method in which the prior distribution is to be fixed before observation. Although 

Empirical Bayes is considered different yet it resembles the complete Bayesian 

hierarchical model treatment. In this the higher hierarchy parameters are paired with 

their most possible values without being integrated. Maximum Marginal Likelihood is 

another name of the Empirical Bayes method and it symbolizes the hyper parameters 

approach.   
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2.2 Bayesian	
  network	
  	
  

	
  

A Bayesian network (BN) is a graphical model that encodes the dependencies 

between variables. Furthermore, “Bayesian networks are one of the most important, 

efficient, and elegant frameworks for representing and reasoning with probabilistic 

models. They have been applied to many real-world problems in diagnosis, 

forecasting, automated vision, sensor fusion, and manufacturing control“(Getoor & 

Taskar, 2007).  

	
  

As shown in Figure [2], the main representation in Bayesian networks is the directed 

acyclic graph (DAG): where nodes represent the random variables and edges 

represent the probabilistic dependence between variables (influences). 

 	
  
Figure 2: An example of Bayesian network 

 

Figure [2] demonstrates an example of a BN with five random variables. 𝐵 and 𝐸 are 

represented as parents of child 𝐴, and child  𝐴 is a parent of 𝐽 and 𝑀. Also, the set 

{𝐵,𝐸} of the parents of a child is identified as the parent set of that child, which is 

denoted by 𝐴 ←    {𝐵,𝐸}. 

 

 

 

 

B 

A 

J M 

E 



Background	
  	
   26	
  

However, the main semantics of Bayesian networks are illustrated by the full joint 

distribution 𝑃(𝓍!,… ,𝓍!);  the joint probability distributions for variable  𝑥: 

𝑃 𝓍!,… ,𝓍! =   𝑃(𝑥!|  parents(𝑥!))!
!!! . Moreover, at each node there is a 

conditional probability distribution (CPD) for the corresponding variable given its 

parents  𝑃(𝓍!|  parents(𝑥!)),  which encodes the strength of dependencies. 

This conditional probability distribution  𝑃(𝓍!|  parents(𝑥!)) for discrete variables is 

typically expressed as a table that has an entry for each joint assignment for the 

corresponding variable  𝓍!   and its  parents(𝑥!) . Therefore, for each node there is a 

conditional probability table that measures the effect of the parents on the node. The 

parameters are expressed as the probabilities in these conditional probability tables 

(CPTs), as shown in Figure [3]. 

For variables that have no parents, the conditional probability table conditioned on the 

empty set of variables, prior probabilities, and CPD becomes a marginal distribution; 

for example, from Figure [3], where 𝑃 𝐵  and  𝑃 𝐸  are the prior probabilities.  

Meanwhile, each entry in a joint distribution is represented by the product of the 

CPTs in a Bayesian network (Russell & Norvig, 2010). 

 

	
  
Figure 3: Conditional probability tables (CPTs). 

As the DAG is the main graphical representation for a Bayesian network, there are no 

cycles in the graphs, which means no directed path will start and end at the same node 

(Koller & Friedman, 2009). This is mainly to ensure that  

𝑃 𝓍!,… ,𝓍! =   𝑃(𝓍!|  parents(𝑥!))!
!!!   holds.  
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Dependencies	
  and	
  Independencies	
  in	
  Bayesian	
  network	
  

	
  
The dependencies and independencies in Bayesian networks are the main properties 

of the distribution they define, and it is important to gain an understanding about its 

behaviour. D-separation is one of the ways of checking for conditional independence 

relations, and it discovers nodes reachable from a node A, given a set of nodes 

Z, via active trails. The local independencies in Bayesian networks are that each 

node is independent of its non-descendants, given its parents. Whilst global 

independencies are derived from d-separation, which helps to ensure that specific sets 

of independencies 𝐴 ⊥ 𝐵 𝐶)  hold in a distribution, so that a variable A is 

conditionally independent on a particular variable B, given variable C.  

	
  

Jensen and Nielsen (2007) demonstrate that in d-separation there are three main 

patterns that illustrate whether two variables are independent in the presence of 

evidence. The first is known as a serial connection, and is shown in Figure [4]. 

	
  

	
  

	
  

	
  

Figure 4: A serial connection. 

	
  

When  𝐵  is not observed,  𝐴 has an influence on  𝐶  through 𝐵. Also, evidence about 𝐶 

will influence the certainty of 𝐴 through 𝐵. 𝐴 and 𝐶 are mutually dependent. On the 

other hand, when 𝐵 is observed, 𝐴 will not provide additional information about 𝐶, so 

the path will be blocked. Then, 𝐴 and 𝐶 are independent and these are d-separated, 

given 𝐵 . When the variable is observed, it is instantiated, which blocks 

communication between 𝐴 and 𝐶. 

	
  

	
  

	
  

	
  

	
  

	
  

A	
   B	
   C	
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The second pattern is known as a diverging connection, and is demonstrated in Figure 

[5]. 

	
  
Figure 5: A diverging connection. 

	
  	
  

When 𝐴 is not observed in this situation, influence is passed through to all of the 

children of  𝐴. For example, 𝐵 gives us information about 𝐴, and helps to predict 𝐸 

and 𝐶 . In this case,  𝐵 , 𝐶  and 𝐸  are dependent, and we say that, 𝐶  and 𝐸  are d- 

connected. However, when 𝐴 is observed, influence is not passed between all of the 

children of 𝐴 because if we know 𝐴 then knowing about 𝐵  will not tell us anything 

new about 𝐶 or 𝐸. In this case, 𝐵, 𝐶 and 𝐸 are independent, so we say that 𝐵, 𝐶 and 𝐸 

are d-separated, given 𝐴.  

A	
  

C	
  
	
  

E	
  B	
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Finally,	
  the	
  case	
  of	
  converging	
  connections,	
  as	
  demonstrated	
  in	
  Figure	
  [6].	
  	
  

	
  
Figure 6: Converging connections. 

	
  

When 𝐴 is not observed, influence is blocked between all of the parents of  𝐴. The 

parents 𝐵 , 𝐶  and 𝐸  are independent, and we say that 𝐵 , 𝐶  and 𝐸  are d-separated. 

However, when 𝐴 is observed the influence moves from 𝐵 through 𝐴 to affect what 

we believe about 𝐶, and 𝐸; so the communication is active between its parents.   

	
  
Furthermore, here is an example of the converging connection in Earthquake Pearl 

(1988). 

 

Figure 7: Converging connections for Earthquake Pearl (1988). 

Suppose we heard an 𝐴𝑙𝑎𝑟𝑚, and there are two possible causes: 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒 or 

𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦, as it shown in Figure [7]. Then, someone said there was a 𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦; this 

reduces the probability of 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒. From the other perspective, if the 𝐴𝑙𝑎𝑟𝑚 has 

sounded and there is a burglary, this reduces the probability of an 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒 since 

it has been “explained away” by the 𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦. 
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Markov	
  equivalent	
  	
  

	
  
Bayesian network structures (DAGs) are equivalent if they have the same conditional 

independence relations. Let 𝐺!  𝑎𝑛𝑑  𝐺!be graphs that have the same set of nodes, such 

that𝐺!   = (𝑉,𝐸!   )	
   and𝐺!   = (𝑉,𝐸!   ). Then the two graphs are called Markov 

equivalent if 𝐴,𝐵,𝐶   ⊆ 𝑉 in  𝐺!  , and the nodes A and B are d-separated, given C, if, 

and only if, the nodes in  𝐺!  A and B are d-separated, given C: 

𝐼!!  (𝐴,𝐵|𝐶)⟺ 𝐼!!   𝐴,𝐵 𝐶 	
  

Markov equivalence can be identified using the following theorem: “two DAGs 

𝐺!  and 𝐺!  Markov equivalent if and only if they have the same links (edges without 

regard for direction) and the same set of uncoupled head-to-head meeting” (Richard 

E. Neapolitan, 2004).  

 

The scoring-equivalent is used with a combination of heuristic search algorithms to 

obtain a model. However, it is more crucial to search between equivalence classes 

than to search through every single network structure that is used by some 

approaches. In order to define the search space, the general representation needs to be 

stated. There is a skeleton for any directed acyclic graph, which means that for each 

edge it disregards its directionality. Another representation is a directed acyclic graph 

𝐺 that holds the direct edges 𝑥 → 𝑦 and 𝑧 → 𝑦 (as shown in figure [8]) in such a way 

that every triple sequence of nodes  (𝑥,𝑦, 𝑧), and 𝑥 and 𝑧 are not adjacent in 𝐺,  is 

called a v-structure (D. M. Chickering, 2002). 

	
  

	
  
Figure 8: V-Structure. 
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However, if two directed acyclic graphs have exactly equal skeletons and exactly 

equal v-structures, they are said to be equivalent. Uncoupled head-to-head meeting is 

also called immorality.  (Koller & Friedman, 2009) define an immorality as follows: 

“A v-structure 𝑥 → 𝑧 ← 𝑦 is an immorality if there is no direct edge between 𝑥 and 𝑦. 

If there is such an edge, it is called a covering edge for the v-structure”. Moreover, 

two DAGs are Markov equivalent if they encode the same conditional independence  

relations, as illustrated in Figure [9]. 

	
  
	
  
	
  
	
  
	
  
	
  

	
  
	
  
	
  

	
  
	
  
	
  
	
  

	
  
	
  
Figure 9: DAG pattern for a Markov equivalence class. 

 

(Gillispie & Perlman, 2001) shows the efficiency of searching with Markov 

equivalence classes rather than searching with DAGs. They discuss an algorithm that 

enumerates the equivalence classes of DAGs and records their sizes. The software 

generates DAGs and then places them into the relevant equivalence classes. As a 

result, the software shows that the effective speed was significantly improved.  
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2.3 Markov	
  Network	
  

	
  
Markov networks (MN) are another fundamental class of graphical model 

representation, built on the basis of undirected graphs, as shown in Figure [10] (Koller 

& Friedman, 2009). Nodes in a Markov network represent random variables, and 

edges represent interaction among the neighbouring variables. Undirected graphs can 

also be used to represent dependency interactions, and are useful in modelling 

domains where the neighbouring variables seem symmetrical. Also, Markov networks 

are useful when one cannot naturally assign directionality to the interaction among the 

neighbouring variables, as you need to assign a directionality to each influence for a 

Bayesian network. 

	
  
	
  
	
  
	
  

	
  
	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  
Figure 10: Markov network. 

	
  

A clique is defined as follows: “A subgraph over 𝑋 is complete if every two nodes in 

𝑋 are connected by some edges. The set 𝑋 is often called a clique; we say that a clique 

𝑋 is maximal if for any superset of nodes 𝑌 ⊃   𝑋, 𝑌 is not a clique” (Koller & 

Friedman, 2009).  

However, the joint probability is in a product form in both Markov and Bayesian 

networks, where the CPTs are in a Bayesian network. As such, the probability 

distribution is denoted as a product of clique potentials.  

It is necessary to associate the network structure with parameters in order to obtain a 

distribution. Therefore, a Markov network uses Φ to obtain a distribution. A clique is 

a subset of nodes in Markov networks; let 𝐶! ,… , 𝐶!   be the cliques in a Markov 

network. As shown in Figure [10], there are four cliques, which are {A, B}, {B, C}, 

A	
  

E	
   B	
  

C	
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{C, D} and {A, D}. Let 𝐶 be a clique. The parameterisation in the Markov network is 

performed by a set of factors,Φ, and each factor is assigned to a clique 𝐶!. These 

factors are called clique potentials Φ! 𝐶! ,… ,Φ! 𝐶! . A clique potential Φ! maps 

each joint instantiation of the variables in 𝐶 to non-negative real numbers. 

𝑙𝑒𝑡  Φ = {Φ! 𝐶! ,… ,Φ! 𝐶! } 

A	
  distribution	
  𝑃!is	
  parameterised	
  by	
  a	
  set	
  of	
  factors	
  Φ	
  

𝑃!   𝑋!,… ,𝑋! =
1
𝑍 𝑃

!
!   𝑋!,… ,𝑋!   ,𝑤ℎ𝑒𝑟𝑒	
  

𝑃′!   𝑋!,… ,𝑋! =   Φ! 𝐶!   ×   …Φ! 𝐶!   	
  

Where	
  𝑍	
  is	
  the	
  normalizing	
  constant.	
  	
  

There are two types of Markov property, which are defined as local Markov 

properties and global Markov properties. The main idea is that nodes   𝑋  are 

independent from nodes   𝑌 , conditioned on intervening nodes 𝑍 . Let 𝐻  be an 

undirected graph, and let 𝜒  be the set of all nodes of 𝐻. Then for each node 𝑋 ∈ 𝜒, the 

Markov blanket of 𝑋 (𝑀𝐵! 𝑋 ) is the set of neighbours of 𝑋 in the graph. The local 

independence in a Markov network is defined as:  

 

𝐼 𝐻 = { 𝑋 ⊥ 𝜒 − 𝑋 −𝑀𝐵! 𝑋 𝑀𝐵! 𝑋 ∶ 𝑋 ∈ 𝜒 	
  	
  	
  

This means that a node is conditionally independent from the remaining nodes in the 

network structure. On the other hand, the global independencies assumption is that if 

there is no active path between any 𝑋 ∈ 𝑿 and 𝑌 ∈ 𝒀, given a set of nodes 𝒁, then we 

can say that 𝑋  is separated 𝑌  in Markov network   𝐻 , which is expressed by 

𝑠𝑒𝑝!(𝑿;𝒀|𝒁). Moreover, “Let 𝐻 be a Markov network structure, and Let 𝑋! -…-𝑋! 

be a path in Η. let 𝒁 ⊆ 𝑋 be a set of observed variables. The path  𝑋! -…-𝑋!is active 

given  𝒁 if none of the 𝑋!!𝑠, 𝑖 = 1, , , 𝑘, is in 𝑍  ” (Koller & Friedman, 2009).  Also, a 

path is defined as if we have a path  𝑋! -…-𝑋!  in a graph 𝐻 and for every 𝑖 =

1,… 𝑘 − 1, we have that either 𝑋! → 𝑋!!!  𝑜𝑟  𝑋! − 𝑋!!!. The global independencies 

are denoted as: 

𝐼 𝐻 = {𝑿 ⊥ 𝒀   𝒁 : 𝑠𝑒𝑝!(𝑿;𝒀|𝒁)}.	
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There are conditional independence relations that can be expressed with a Markov 

network but cannot be expressed with a Bayesian network. For example, in the 

Markov network shown in Figure [10], the only independence relations are 

𝐴 ⊥ 𝐷 𝐵,𝐶) and 𝐵 ⊥ 𝐶 𝐴,𝐷); however, there is no equivalent Bayesian network to 

that Markov network. Moreover, the arrows in a Bayesian network do not necessarily 

indicate causation. The main reason for using a Markov network rather than a 

Bayesian network is that some conditional independence relations can be expressed 

using a Markov network but not a Bayesian network.  .   
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2.4 Bayesian	
  Estimation	
  of	
  Probabilities	
  

	
  

	
  
Figure 11: Thumbtack position. 

	
  

Let	
  us	
  look	
  at	
  the	
  issue	
  of	
  parameter	
  estimation	
  for	
  Bayesian	
  networks.	
  First,	
  we	
  

make	
  an	
  assumption	
   that	
  we	
  have	
  a	
   fully	
  observed	
  data	
   set	
  and	
   fixed	
  network	
  

structure(Koller	
  &	
  Friedman,	
  2009).	
  

Here, we will discuss the problem of thumbtack tosses as parameter learning for one 

variable. Flipping the thumbtack many times will result in a dataset that has heads or 

tails as the outcome, as shown in Figure [11]. Using this dataset, we want to estimate 

the probability that the next toss will land on heads or tails. Moreover, we have made 

a hypothesis for thumbtack tosses as ruled by some unknown parameter θ, which is 

used in the thumbtack tosses to illustrate the frequency of heads. A parameter is a real 

number. In general, a set of parameters for a probability model specifies a particular 

probability distribution; for example, given a Bayesian network model defined by a 

DAG, the parameters are the CPTs. From the thumbtack toss example in Figure [11], 

the parameter is the probability of the thumbtack landing as heads. It is not 

necessarily connected to any Bayesian network. 

We have also created another hypothesis: that the data instances in thumbtack tosses 

are independent and identically distributed (IID). As we toss the thumbtack many 

times, we produce a dataset that consists of heads or tails outcomes. Based on this 

dataset, we want to estimate the probability that the next toss will land on heads or 

tails (P). We also need to define the parameter space	
  θ	
   for the thumbtack problem 

within the interval [0,1], which is the probability (P) of the thumbtack	
  (x:	
  θ)	
  	
  	
  

	
  

thumbtack(x:  θ) =     θ                        x = head
1− 𝜃            𝑥 = 𝑡𝑎𝑖𝑙 	
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We have already made the assumption that the thumbtack tosses are controlled by 

some parameter	
  θ.	
  This parameter governs the frequency of heads in the thumbtack 

tosses. We have also made another assumption: that the data is independent and 

identically distributed (IID).  

There are two main methods to handle the problem of parameter estimation for 

Bayesian networks in the frameworks of structured CPDs: one is maximum likelihood 

estimation and other is the Bayesian approach.   

 

Using a Bayesian network to represent a distribution, we need to link the network 

structure with a set of parameters. The DAG represents the structure in a Bayesian 

network and the values of the CPD are the parameters. We turn now to provide an 

illustration of the form of prior and posterior distributions. If we are in a situation 

where we need to express our uncertainty, one convenient choice is to use a beta 

distribution (in the case of binary parameters), and Dirichlet distributions (in the case 

of multinomial variables).  

	
  

2.4.1 Beta	
  distribution	
  	
  

	
  
	
  Let us give an example of the forms of prior and posterior. In the case of flipping a 

coin, it is convenient to describe our uncertainty about the parameters using a beta 

distribution for binary random variables. The beta distribution is parameterised by 

two hyperparameters that help to control the distribution over parameter 𝜃 (Bishop, 

2007). The two hyperparameters are ℎ (related to the number of observations of 

heads) and 𝑡 (related to the number of observations of tails). The data set D contains 

the number of heads ℎ and tails 𝑡. The likelihood function here is the binomial 

distribution function, which is the distribution of the number m of observation of 

heads  𝑥 = 1,  ( 𝑚 = 𝑥! +⋯+ 𝑥!) and is conditional on the size of the dataset 𝑁. 

𝐵𝑖𝑛 𝑚 𝑁,𝜃 =   
𝑁
𝑚 𝜃!  (1− 𝜃)!!!	
  

Picking some initial values for ℎ  and 𝑡 states the prior belief. 

	
  

	
  𝑃 𝜃 = 𝐵𝑒𝑡𝑎 𝜃 ℎ, 𝑡 = ! !!!
! ! ! !

  𝜃!!!   1− 𝜃 !!!	
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Where Γ 𝑥   is the gamma function and !(!!!)
! ! ! !

 is used to make sure the area under the 

curve equals one.  

 

The posterior distribution is also a beta distribution, and represented by multiplying 

the prior belief with the likelihood function. To compute the posterior distribution we 

make an increment of ℎ for each heads outcome, and 𝑡  for each tails outcome. 

	
  

𝑝 𝜃 𝑚, 𝑙, ℎ, 𝑡 ∝   𝜃!!!!!   1− 𝜃 !!!!!    ,𝑤ℎ𝑒𝑟𝑒  𝑙 = 𝑁 −𝑚	
  

Based on the number of observations 𝑁 the probability of heads on the next toss can 

be determined, given the observed dataset D: 

𝑃 ℎ𝑒𝑎𝑑𝑠 𝐷 =
𝑚 + ℎ

𝑚 + ℎ + 𝑙 + 𝑡	
  

From the posterior distribution, we can compute the mean and variance of the beta 

distribution easily. 

	
  

𝔼 𝜃 =
ℎ

ℎ + 𝑡	
  

𝑉𝑎𝑟 𝜃 =
ℎ𝑡

(ℎ + 𝑡)!  (ℎ + 𝑡 + 1)	
  

	
  

	
  

	
  

2.4.2 Dirichlet	
  distribution	
  	
  
	
  
In contrast, what if the variable is not Boolean such that it takes n values (n >2)?. 

Dirichlet distributions are a generalisation of beta distributions for parameters 𝜃  ! of 

the multi-valued case: a multinomial distribution (Bishop, 2007).  The distribution 

here is parameterised by a set of hyperparameters  𝛼!,… ,𝛼!. 

A Dirichlet distribution allows us to illustrate our uncertainty about the value of 

parameters of the multi-valued case 𝜃!,… ,𝜃!. 

The prior Dirichlet distribution of parameters conditioned on the parameters  𝛼 takes 

this form: 

𝐷𝑖𝑟 𝜃 𝛼 ∝ 𝜃!
!!!!!

!!! 	
  	
  	
  	
  	
  	
  	
  	
  Where	
  𝛼	
  is	
  (	
  𝛼!,… ,𝛼!)	
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The likelihood function is the multinomial distribution that is the probability of 

parameters given the total size of the dataset 𝑁.  

𝑀𝑢𝑙𝑡 𝑚!,… ,𝑚! 𝜃,𝑁 =
𝑁

𝑚!,… ,𝑚!
𝜃!
!!

!

!!!

      	
  

The posterior distribution is defined by multiplying the likelihood function by the 

prior distribution. 

	
  

  𝑃 𝜃 𝐷,𝛼 = 𝐷𝑖𝑟 𝜃 𝛼 +𝒎 ∝    𝜃!
!!!!!!!

!

!!!

	
  

𝑤ℎ𝑒𝑟𝑒  𝒎 = (𝑚!,… ,𝑚!)𝑻	
  

This equation makes it clear that it very easy to compute the posterior distribution, as 

the parameters of the posterior are the parameter prior plus counting data.  

	
  

2.4.3 Maximum	
  likelihood	
  estimation	
  (MLE)	
  

	
  
In the maximum likelihood estimation approach, we use the likelihood function to 

determine the quality for various parameter values. The maximum likelihood 

estimator (MLE) attempts to find the Θ that maximises the likelihood of parameter 

values  θ relative to the datasets 𝐷. Let’s take an observed dataset 𝐷 of 𝑚 outcomes 

and use it to instantiate the values 𝑥 1 ,… , 𝑥 𝑚 . The likelihood function is: 

	
  
𝐿 𝜃:𝐷 = 𝑃 𝑥 𝑚 : θ)

!

	
  

Next, we choose the parameter value that maximises the likelihood:  

Θ = max! 𝐿 𝜃:𝐷 	
  

However, one of the drawbacks of the MLE method is, for example, if we run an 

experiment of the thumbtack problem and obtain 3 heads out of 10 (the chances of 

seeing 3/10 heads). In this example we want to determine 𝜃, the probability of 

obtaining a result of heads of this coin.  
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𝑑𝐿(𝜃)
𝑑𝜃 = (1− 𝜃)!  3𝜃! − 𝜃!    7(1− 𝜃)! 

= 𝜃! 1− 𝜃 ![  3 1− 𝜃 − 7𝜃] 

if  !"(!)
!"

= 0, then 

3− 10𝜃 = 0 

𝜃 = !
!"
= 0.3 

𝐿 𝜃 ∝ 𝜃!  (1− 𝜃)!   

	
  

In other words, 0.3 leads to the highest probability of observing 3 heads out of 10 

tosses. However, if we conduct another experiment where we obtain 300 heads out of 

10,000 then, there will be a difference between the experiments because we have 

more confidence in the last experiment. 

	
  
	
  

2.4.4 Bayesian	
  Estimation	
  

	
  
The Bayesian approach applies a prior distribution over the parameters. In addition, 

we express our uncertainty about the value of a parameter by placing a prior 

distribution over possible values of 𝜃. Using Bayes' theorem to calculate the posterior 

distribution given the observed data: 

	
  

P 𝜃 D =
𝑃(𝐷|𝜃)𝑃(𝜃)

𝑃(𝐷) 	
  

Where   𝑃(𝜃) 	
  is	
   the	
   prior	
   distribution,	
   	
   𝑃 𝐷 	
  is	
   the	
   marginal	
   likelihood/	
  

normalising	
  constant,	
  and	
  𝑃(𝐷|𝜃)	
  is	
  the	
  likelihood	
  function.	
  	
  

	
  

Furthermore, (Heckerman, 1996) shows that in the Bayesian approach we can express 

our uncertainty about the structure  𝐺 by stating the discrete variables that are likely to 
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make it the optimal structure. The probability of estimating the next case from 

observed data  𝐷 is:  

𝑃 𝑥!!! 𝐷 = 𝐺 𝐷 𝑃 𝑥!!! 𝜃,𝐺 𝑃 𝜃 𝐷,𝐺   𝑑𝜃
!

	
  

	
  

The computation 𝑃 𝜃 𝐷,𝐺   is done by making the assumptions that the data are fully 

observed, and that we have parameter independence: 

 𝑃 𝜃 𝐷,𝐺 =    𝑝(𝜃!"
!!
!!!

!
!!! |𝐷,𝐺) 

Here 𝜃!"is the multinomial parameter and 𝑞! is the number of configurations of the 

variable 𝑥  corresponding to the parents. We also make the assumption that the 

parameters vector  𝜃!"  is independent and is a Dirichlet prior distribution.  From 

Bayes’ theorem: 

𝑃 𝐺 𝐷 =
𝑃 𝐺   𝑃(𝐷|𝐺)

𝑃(𝐷) 	
  

𝑃(𝐷)  is a normalising constant that does not help to make a distinction between 

structures, so it can be omitted. The marginal 𝑃(𝐷|𝐺)  of data conditioned on the 

structure can be written as: 

	
  

𝑃 𝐷 𝐺 = 𝑃 𝐷 𝜃,𝐺 𝑃(𝜃|𝐺)    dθ	
  

Here  𝑃 𝐷 𝜃,𝐺  is the likelihood of data given network structure and parameters. 

𝑃(𝜃|𝐺) is the parameter priors given network structure. The structure prior 𝑃 𝐺  

defines a probability over each network structures. One of the simplest methods for 

placing a prior on a structure is to make the assumption that every structure has the 

same probability. The drawback in this assumption is that it can be incorrect and is 

usually used for the ease of the choice. A more complex prior is for the user to rule 

out some structures, and then execute the rest of the structures as a uniform prior.   
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Works	
  for	
  CPT	
  	
  

	
  
	
  
As shown in the section 2.2, for each node in a Bayesian network we consider each 

entry in its CPT. Each node Xi has a conditional probability distribution P(Xi | 

Parents(Xi)). For each entry in the CPT, there is a prior Dirichlet or Beta distribution 

over its values. This distribution is updated based on the relevant data points, which 

are those that were approved on the conditional probability for the parents that 

correspond with this CPT entry. Also, the score that used in the developed algorithm 

is based on Dirichlet distribution. 

 

In this chapter, the necessary background of graphical models and probability theory 

was presented. In addition, the two main representations of graphical models: 

Bayesian networks and Markov networks were discussed. Then, the two main 

methods for handling the problem of parameter estimation for Bayesian networks, the 

maximum likelihood estimation (MLE) and the Bayesian approach, were discussed. 

However, what if we do not know the structure? The following chapter will discuss 

the problems of learning both parameters and structures that are based on fully 

observed data. 
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3 Approaches To Bayesian Network Structure 

Learning 
	
  
This chapter covers the problems of learning both parameters and structures that are 

based on fully observed data. Section 3.1 discusses the three main approaches for 

Bayesian structure learning: constraint-based, score-based, and the Bayesian model 

averaging approach. Section 3.2 introduces prior knowledge and explains why it is 

important to study this area. Section 3.3 presents a discussion about related work on 

Bayesian structure learning approaches, along with different approaches that have 

considered some form of prior knowledge. Existing applications for Bayesian network 

learning are discussed in section 3.4, and the theoretical limits of learning Bayesian 

networks are examined in section 3.5.  

	
  

 Bayesian Structure Learning   3.1
	
  
The previous chapter explains the problem concerning learning the parameters of 

Bayesian networks based on fully observed data. An assumption was made that the 

network structure was fixed. But what if we do not know the structure? In this section, 

we will consider the problems of learning both parameters and structures that are also 

based on fully observed data. This section discusses the three main approaches for 

Bayesian structure learning; constraint-based, score-based, and the Bayesian model 

averaging approach. 
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3.1.1. Constraint-­‐Based	
  Approach	
  	
  	
  	
  
 

Given the set of conditional independencies in a probability distribution, the 

constraint-based approach attempts to find a DAG for which the Markov condition 

requires all those conditional independencies. From the dataset, we assume that the 

conditional independencies 𝐼𝑁𝐷!  can be estimated in a probability distribution 𝑃. The 

aim of this approach is to find a DAG whose d-separations are the same as 𝐼𝑁𝐷!. The 

conditional independencies represented by d-separation are faithful to the network 

structure if all the conditional independencies hold the d-separation in the structure, so 

that all the network structures are Markov equivalent to the network structure 

(Richard E. Neapolitan, 2004). 

	
  

In the constraint-based approach, d-separation is given to the learning algorithm and 

the main goal is to learn a Bayesian network that satisfies these constraints. The PC 

algorithm is an example of using the constraint-based approach to focus on local 

independence questions. Constraint-based approaches require a statistical test of the 

conditional dependence and independence in the data. The problem with this 

approach is that the answer is not very accurate. Mistakes can be made when checking 

for conditional independencies; for example, maybe A and B are really dependent, but 

in the data it looks as if they are independent because we do not have enough data 

(Jensen & Nielsen, 2007). Overall, constraint-based approaches offer the Bayesian 

network as a representation of independence. This approach tries to find the best 

network structure to explain the dependencies and independencies by making use of 

some testing for conditional dependence and independence in the data. The drawback 

of these approaches is that they can be sensitive to the failure of individual tests for 

independence (Koller, Friedman, Getoor, & Taskar, 2007). 
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3.1.2. Score-­‐Based	
  Approach	
  	
  	
  	
  

	
  
Score-based approaches are where each possible network structure is assessed by a 

score, which measures how well the network structure fits the data (Markowetz & 

Spang, 2007). To start with, this approach defines a search space that consists of a set 

of possible network structures from the domain of interest. Then, it scores possible 

network structures using a scoring function. It is necessary to define a search 

procedure in order to search within the search space and return the network structure 

with the highest score.   

There are three principal issues with using the score-based approach for Bayesian 

network structure learning: the structure space, the scoring function and the search 

procedure. In the score based approach, a neighbourhood relation (connectivity) of the 

search space is typically defined by some operation to move from one point of the 

search space to another. Generally, the search space results from defining the 

neighbourhood relation on network structure learning by the shift between 

neighbourhood structures if they differ by one edge. The difference between 

neighbouring structures is either the absence of an edge in one of them, adding an 

edge, or the reversal of an edge.     

A scoring function measures how well the network structure fits the data. It is not 

clear how it finds the highest-scoring network, but it can find the optimal network in 

some situations. Therefore, the drawback of score-based approaches is that there is no 

guarantee that they will find the optimal network. Nevertheless, the computational 

issue is to find the highest-scoring network, as the space of a Bayesian network 

structure contains a superexponential number of network structures  2! !! (Koller et 

al., 2007). In most cases the problem is NP-hard, and we will discuss this in detail in 

section 3.5.  
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An example of methods that combine a constraint-based approach and score-based 

approach is discussed by Tsamardinos, Brown, and Aliferis (2006). They represent 

the max-min hill-climbing (MMHC) algorithm, which combines both the score-based 

and constraint-based approach into a single hybrid algorithm. The first phase of the 

MMHC identifies the parent and children sets of each variable, and then the hill-

climbing algorithm is applied. The second phase of the MMHC is used to choose 

which edges will be in the final network and to orient the edge directions based on the 

network structure identified in phase one.  

 

 

 Scoring Function 3.1.2.1.

 

In Bayesian network structure learning, a scoring function assesses how well a given 

structure fits the data. Then, it finds the best Bayesian network that maximises this 

scoring function.    

One of the choices for the scoring-based method is the maximum likelihood, which 

attempts to pick the best network structure that fits the data. The maximum likelihood 

score is given by: 

 

𝑆𝑐𝑜𝑟𝑒  𝑀𝐿 𝐺 = 𝑚𝑎𝑥!   𝑃(𝐷|𝐺,𝜃) 

This attempts to maximise 𝑃  (𝐷|𝐺,𝜃); the likelihood of data conditioned on structure 

and parameter from the local distribution. The disadvantage of this method is 

overfitting, as this means that it may not be suitable to choose the best structure. One 

way to overcome this is by restricting the likelihood with regards to the complexity of 

structure. Overfitting occurs when a model attempts to fit the data. It is usually a 

problem in structural learning, as more complex models will offer a better fit to the 

data compared to simpler models. In statistics, one approach to overfitting avoidance 

is the use of a penalty that penalises the number of parameters; for example, the 

number of unknown parameters. However, there is no need for penalties in the 

Bayesian approach because it penalises the model complexity naturally (Berger et al., 

2001). 
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Therefore, a penalty in the scoring function for the complexity of the Bayesian 

network structure is needed. (Friedman, K. Murphy, & Russell, 1998) describe a 

scoring method that is derived from the posterior distribution of a Bayesian network 

structure. When fitting models, overfitting is more likely to occur because it is 

possible to increase the likelihood by adding parameters. The Bayesian information 

criterion (BIC) resolves this drawback by including a penalty term for the number of 

parameters in the model. However, it can be difficult to state the parameter priors and 

evaluate the integral 𝑃(𝐷|𝐺). Therefore, BIC avoids the integration computation 

of  𝑃(𝐷|𝐺). The BIC score is used to rank possible network structures:  

𝐵𝐼𝐶  𝑠𝑐𝑜𝑟𝑒 = logPr 𝐷   𝐺,     Θ!   )−
log𝑁
2  

    Θ!  is the parameter configuration of the network structure  𝐺 that maximises the 

likelihood function, where 𝑁 is the number data instances.  

 

Minimum description length (MDL) is another scoring approach used in Bayesian 

structure learning, and is based on finding the network structure that gives the best 

compression of the dataset (Friedman, 1996). The MDL principle helps to avoid 

overfitting, and the MDL scoring function of network structure 𝐵 given dataset 𝐷 is: 

𝑀𝐷𝐿 𝐵 𝐷) =
1
2 log𝑁   𝐵 − 𝐿𝐿(𝐵  |𝐷) 

𝐵  is the number of the parameters in the network, which denotes the network 

complexity. 𝐿𝐿 𝐵   𝐷  is the log-likelihood of the network’s structure given data, 

which is the log probability of the generated data given the network’s structure. The 

first part sums how many bits are needed to encode the network 𝐵. log𝑁  is the bits 

for each parameter. The second part measures how many bits are needed for the 

representation of 𝐷. 

 

𝐿𝐿 𝐵   𝐷 = 𝑁   𝑃!! 𝑥! ,𝜋!! log  (𝜃!!|!!!)      
!!!!!!

   

Where 𝜃!!|!!!
   is the parameters for each possible value of 𝑥!, given the value for 

parents set 𝜋!!. 
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(Heckerman, 1996) describes the Bayesian-Dirichlet (BD) score (a special case of 

marginal likelihood), which is based on the following assumptions. The first 

assumption is that the dataset is a multinomial sample determined by parameters   Θ!"#, 

which is the probability of variable  𝑖 having value  𝑘, given the  𝑗!!  configuration of the 

parents. Another assumption is parameter independence. Given a Bayesian network 

structure 𝐺, then: 

• 𝑃 Θ! 𝐺 = 𝑃 Θ! 𝐺!
!!!  

Where the vector of parameters is defined as follows:  Θ! is the parameters of a 

Bayesian network with underlying DAG. Θ! is the parameters concerning only the 

variable 𝑥! in 𝐺. Parameters associated with every variable in the network structure 

are independent; this assumption is called Global parameter independence.   

• 𝑃 Θ! 𝐺 = 𝑃 Θ!" 𝐺     !!
!!! 𝑓𝑜𝑟  𝑖 = 1,… ,𝑛 

 

The vector of parameters   Θ!"  is the parameters for variable   𝑥!  in 𝐺 , given 

the  𝑗!!  configuration of the parents. Parameters associated with every instance of the 

parents in the network structure are also independent. This assumption is called Local 

parameter independence.   

Also, the parameter modularity assumption relies on the assumption that if there are 

two Bayesian network structures 𝐺! and 𝐺!, and a variable has the same parents in 

both graph, then it should have the same distribution of the variable of conditional 

probabilities.   

𝑃(Θ!"|𝐺!)=  𝑃(Θ!"|𝐺!)     for  𝑗 = 1,… , 𝑞! 

 

Another accepted assumption is that parameters have a Dirichlet distribution; “given a 

network structure 𝐺 such that 𝑃 𝐺 > 0, 𝑃(Θ!"|𝐺!) is Dirichlet for all  Θ!" ⊆ Θ!” such 

that the exponents  𝛼!"#depending on 𝐺 satisfy: 

𝑃 Θ!" 𝐺! = 𝑐. 𝜃!"#
∝!"#!!

!  where c is the normalising constant. 

The last assumption is that the data are fully observed. These assumptions are used 

together to drive  𝑃 𝐺 𝐷 . Then, the Bayesian Dirichlet (BD) scoring function is 

defined as follows: 

𝑝 𝐷 𝐺 ∝
Γ(𝛼!")

Γ(𝛼!" + 𝑁!")

!!

!!!

!

!!!

   .
Γ(𝛼!"# + 𝑁!"#)

𝛼!"#

!!

!!!
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 𝛼!"# is the Dirichlet exponent of 𝜃!"#from the Dirichlet assumption, and 𝑁!"# is the 

number of cases in the data where variable 𝑥! = 𝑘 and the configuration of parent 

𝜋! = 𝑗, and  𝑁!" = 𝑁!"#
!!
!!!  , and  𝛼!" = 𝛼!"#

!!
!!! . 

When combined with the previous assumptions, the likelihood equivalence hypothesis 

presents the following result. Two network structures 𝐺! and 𝐺!are equivalent if they 

can encode the same joint probability distributions. Moreover, assuming two network 

structures 𝐺! and 𝐺!such that  𝑃 𝐺! > 0  and 𝑃 𝐺! > 0; if 𝐺! and 𝐺!are equivalent 

then 𝑃 𝜃 𝐺! = 𝑃(𝜃|𝐺!). This assumption is called likelihood equivalence. All of the 

previous assumptions are used in likelihood equivalence to derive the BDe (Bayesian 

Dirichlet likelihood equivalence): where 𝛼!"# = 𝛼.    𝑃(𝑥!   = 𝑘,𝜋! = 𝑗|𝐺)  is the 

number of cases in a dataset where  𝑥!   = 𝑘  and  𝜋! = 𝑗 . Here 𝛼  is the user’s 

equivalent sample size for the  𝑃(𝜃|𝐺!).   

Similarly to the BD score, the BDe entails knowing  𝑃 𝑥!   = 𝑘,𝜋! = 𝑗 𝐺   for all 

𝑖, 𝑗  and 𝑘. A particular case of BDe appears when 

𝑃 𝑥!   = 𝑘,𝜋! = 𝑗 𝐺 =
1
𝑟!   𝑞!

 

The prior network assigns a uniform probability to each configuration of 𝑥!  . The 

resulting score is called BDeu (“u” stands for uniform joint distribution). 

 

Silander, et al. (2007) note that BDeu’s marginal likelihood score is commonly used 

in learning network structures. In order to gain the BDeu score, we need to have the 

parameter value of 𝛼 (the equivalent sample size) in order to state the strength of our 

prior belief in the uniform prior distribution of the network. The authors claim that 

there is no method to choose the best parameter value for 𝛼. They also claim that the 

obtained network structure is “highly sensitive to the chosen 𝛼 parameter value” 

(Silander, Kontkanen, & Myllymäki, 2007). In addition, we get different optimal 

graphs depending on the value of 𝛼, as we do not know the value of 𝛼. If we have a 

prior distribution for the value of 𝛼, we can then average over the different possible 

values of 𝛼 and choose the best model that way. 
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Koller, et al. (2007) state that typically “An important property of the scores that 

affects the efficiency of search is their decomposability. A score is decomposable if 

we can write the score of a network structure 𝑔” 

 

𝑠𝑐𝑜𝑟𝑒 𝑔 ∶   𝐷 = 𝐹𝑎𝑚𝑆𝑐𝑜𝑟𝑒(𝑋! ,
!

𝑃𝑎!
! ∶ 𝐷) 

However, if a network structure 𝑔 is independence-equivalent to another network 

structure𝑔!, then each of the scores is score equivalence.  

𝑠𝑐𝑜𝑟𝑒 𝑔 ∶   𝐷 = 𝑠𝑐𝑜𝑟𝑒 𝑔! ∶   𝐷  

	
  

 

3.1.3. The	
  Bayesian	
  Model	
  Averaging	
  Approach	
  

	
  
Another approach in structure learning is where many potential network structures are 

generated, instead of just learning a single network structure. This approach attempts 

to average all the potential network structures. Basically, we cannot learn a single 

network structure from data in order to represent different network structures. 

Bayesian learning enables us to estimate the strength from the data that implies the 

presence/absence of a particular feature. Thus, we can estimate the posterior 

probability given the data for some feature 𝑓 𝐺  over all possible graphs 𝐺; for 

example, the presence of an edge is likely conditioned on the data. 

𝑃 𝑓 𝐷) = 𝑓 𝐺 𝑃 𝐺 𝐷)!    

Unfortunately, the number of the potential network structures is superexponential 

2!(!! !"#!), 𝑤ℎ𝑒𝑟𝑒  𝑛  𝑖𝑠  𝑡ℎ𝑒  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠. 

One of the methods used to overcome and decrease this number is to make a 

restriction on the network structure 𝐺, so that for each node there is a bound 𝐾 for the 

number of parents. The next section will discuss the Bayesian model averaging 

approach further (N. Friedman & Koller, 2003).  
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 Informative parameter Prior And Non-Informative 3.2

parameter Prior  
	
  
	
  
Recall that the marginal likelihood 𝑃 𝐷 𝐺  is the main component of the Bayesian 

scoring approach. It is the full structure likelihood averaged over parameters of local 

probability distributions.  

𝑃 𝐷 𝐺 =    𝑝 𝐷 𝐺,𝜃 𝑝 𝜃 𝐺 𝑑Θ
  

!
 

Computation of 𝑃 𝐷 𝐺  relies on the choice of local probability distributions and 

local priors in the Bayesian network structure. However, in order to compute 𝑃 𝐷 𝐺 , 

the prior  𝑝 𝜃 𝐺  must correspond to the likelihood 𝑝 𝐷 𝐺,𝜃 . This correspondence is 

called conjugacy. If the posterior probability has the same form as the prior 

distribution, then this prior distribution is conjugate to 𝑝 𝐷 𝐺,𝜃  (Markowetz & 

Spang, 2007). 

(Cooper & Herskovits, 1992) discuss the marginal likelihood 𝑃 𝐷 𝐺   for discrete 

Bayesian networks. For simplicity, they assume that all network structures are 

considered equally likely, a priori.  

 

The prior distribution can be represented by a set of possible parameter values, stating 

our uncertainty about 𝜃. The binomial distribution 𝐵𝑖𝑛 𝑚 𝑁,𝜃 , gives the probability 

for any number of successes regarding the observation of observing that, for a 

sequence of n independent trails success/failure and where the data is denoted by m, 

“we have seen that the uniform prior distribution for 𝜃 implies that prior predictive 

distribution for m (given n) is uniform on the discrete set {0,…,n} given an equal 

probability to the n+1 possible value” (Gelman, Carlin, Stern, & Rubin, 2003).     

 

It is important to state a prior distribution for 𝜃 in a binomial model in order to carry 

out Bayesian inference. Thus, so far, making the assumption that 𝜃 has a prior 

uniform distribution within the intervals [0,1]. Generally, we are uncertain about 𝜃, or 

know nothing and, therefore, uniform prior is appropriate here. If the posterior 
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distribution has the same parameter quantity as the prior distribution, then it is called 

conjugacy. One of the benefits of a conjugate prior distribution is that it is suitable for 

the computational issue of being interpretable extra information.  

 

In spite of the example of population, it is difficult to construct the prior distribution if 

it has no base in the actual population. Therefore, the prior distribution should have 

little effect on the posterior distribution, so that the inferences have no influence, and 

the prior density should be flat or non-informative. However, ignoring useful 

information is a bad idea, as an informative prior expresses certain information about 

a variable; for example, is a prior distribution for the temperature at tomorrow's 

temperature.  
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 Bayesian Structure Learning along with the 3.3

Approaches to Assigning Priors Information 
 
This section goes into detail about Bayesian structure learning approaches, and 

follows this up with the approaches that incorporate prior information. A considerable 

number of search algorithms are used in the search space to obtain the best network 

structure. A simple and fast, but still powerful, approach to learn structure is a hill 

climbing algorithm, which explores local moves in the search space. It chooses an 

initial network structure in the search space to start from: the empty graph in this case. 

Then, it continually applies a local move to the current network structure by adding an 

edge, which leads to the best scoring network. This is repeated until no local 

alteration of the current structure improves the graph score. Finally, if there is no 

graph in the neighbourhood that has a better score than the current graph, the search 

procedure stops because the local optimum has been reached. This method finds local 

maxima of the Bayesian network (Markowetz & Spang, 2007). 

	
  

Another approach is presented by (Nir Friedman, 1999), who introduced the Sparse 

Candidate Algorithm. Basically, this algorithm obtains a fast performance in learning 

by restricting the search space. It searches for pairs of nodes that are highly dependent 

in order to restrict the number of candidate parents for every individual node.  

 

(Koller et al., 2007) discuss the strategies that are used to improve the network 

returned by a greedy search algorithm. One of these improvements is the random 

restart: when an algorithm is stuck at a local maximum we restart the search again 

with different random restarts. As a result of restarting the greedy search, we will 

eventually discover an optimal network. Another improvement is to avoid all 

structures in a list of 𝐾 most visited network structures, this is called a TABU search.  
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Cooper and Herskovits (1992) propose a search procedure, the k2 algorithm, which 

assumes that there is an ordering on the nodes. The k2 procedure is one of the 

approaches for maximising 𝑃(𝐺,𝐷). As a starting point, a hypothesis is made that 

there is an ordering on the nodes, and that all the network structures are equally likely. 

Another hypothesis is also formed: that a node has no parents. Then, we keep adding 

a parent until no single parent can increase the probability. We shall use the following 

function: 

𝑔 𝑖,𝜋! =
(𝑟! − 1)!

(𝑁!" + 𝑟! − 1)!

!!

!!!

𝑁!"#!
!!

!!!

	
  

Where 𝑟 is the number of values for the variable 𝑖. 𝑁!"# is the number of instances in 

dataset D;   𝑁!" = 𝑁!"#
!!
!!!  . However, the assumption is made that the prior 

probability 𝑃(𝐺) can be computed as  𝑃 𝐺 = 𝑃(𝜋! ⟶ 𝑥!)!!!!! . Therefore, “for 

all distinct pairs of variables 𝑥!and 𝑥!, our belief about  𝑥! having some set of parents 

is independent of our belief about 𝑥!having some set of parents”. Moreover, the 

probability 𝑃(𝜋! ⟶ 𝑥!)  can be derived by some other method and can also be 

measured explicitly so that “one method would be to assume that the presence of an 

arc in 𝜋! ⟶ 𝑥! is independent of the presence of the other arcs there; if the probability 

of each arc in  𝜋! ⟶ 𝑥!  is specified, we then can compute 𝑃(𝜋! ⟶ 𝑥!) ” (Cooper & 

Herskovits, 1992). 

	
  

(Russell & Norvig, 2010) describe a Markov Chain Monte Carlo (MCMC) algorithm. 

This procedure creates a movement from one state to another, according to a 

transition probability. In the state space, let 𝑞 𝑥 ⇢ 𝑥!  be the probability that a 

movement is made from one state 𝑥  to another 𝑥! . This transition probability 

describes the term Markov chain. The procedure is repeated until the chain converges 

to the stationary distribution. Assuming that the chain runs for 𝑡 steps, 𝜋!(𝑥) is the 

probability of being in state 𝑥 at time 𝑡. Let 𝜋!!!be the probability of being in state 

𝑥!at time 𝑡 + 1. We can say that the chain has reached its stationary distribution if 

𝜋! = 𝜋!!!; 

𝜋 𝑥! = 𝜋 𝑥   𝑞 𝑥 → 𝑥!   𝑓𝑜𝑟  𝑎𝑙𝑙  𝑥!! 	
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Friedman and Koller (2003) demonstrate the use of an MCMC algorithm. However, 

this approach is executed by searching amongst orders of nodes instead of amongst 

the network structure. They argue that “the space of orders is smaller and more 

regular than the space of structures, and has a much smoother posterior” (N. Friedman 

& Koller, 2003). There are 𝑛! possible orders; making a uniform prior over orders ≺ . 

In addition, a Markov chain ℳ  is defined through a space that contains all 𝑛! possible 

orders. The Markov chain is designed to ensure it has a stationary distribution 

𝑃(≺ |𝐷). Then, a simulation is made allowing ℳto gain a series of orders sampling 

  ≺!,… ,≺! The Metropolis algorithm is used to make sure that the chain is reversible 

so that 𝑃 ≺→≺` = 𝑃 ≺`→≺ , and the stationary distribution is a posterior 

distribution 𝑃 ≺ 𝐷 .  Furthermore, for every single order   ≺ , we identify the 

probability which will propose a movement from ≺ 𝑡𝑜 ≺` which this function called a 

proposal probability  𝑞 ≺` | ≺ . This movement can be accepted by a probability: 

min  [! ≺`|!     ! ≺|≺`

    ! ≺|!   ! ≺`|≺
, 1]	
  	
  

Furthermore, the authors claim that “the Markov chain over orders mixes much faster 

and more reliably than the chain over network structures” (N. Friedman & Koller, 

2003). 

	
  

It is possible to conduct MCMC directly over structures, as described by (Koller & 

Friedman, 2009). This is done by defining a Markov chain using a space of potential 

network structures whose stationary distribution is the posterior distribution  𝑃(𝐺|𝐷). 

In this approach, a set of possible network structures is generated by performing some 

random walks in this Markov chain, and this is repeated until it reaches its stationary 

distribution. The algorithm considers some local operations to move from one 

structure to another: these operations are adding, deleting, or reversing an edge. The 

Metropolis algorithm accepting procedure is used; in which the movement can be 

accepted by a probability: 

min  [! !`,!     ! !`→!
    ! !,!   ! !→!`

, 1]	
  

However, there are some problems that possibly limit its efficiency for large domains; 

for example, including many variables, as the space of the network grows 

superexponentially in this situation.  
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Friedman and Koller (2003) described the effect of a structure prior by testing the 

sensitivity of a Bayesian model averaging approach on the choices of the prior. They 

compared the results between using a prior over structure—MCMC 𝑃(𝐺) and using a 

prior over ordering—MCMC  𝑃(≺). Friedman and Koller defined a uniform prior 

over ordering  𝑃(≺) and also need to define 𝑃(𝐺| ≺). Every graph consistent with a 

particular order is equally likely. For example, the empty graph is consistent with all 

orders: 𝑃 𝐸𝑚𝑝𝑡𝑦  𝑔𝑟𝑎𝑝ℎ = 𝑃 𝐸𝑚𝑝𝑡𝑦  𝑔𝑟𝑎𝑝ℎ| ≺  ≺ .  

The prior over possible structure requires restricting the bound of the number of 

possible parents, so that a node 𝑋! has 𝐾 parents; therefore, there are !!!
! potential 

parent sets. In addition, assuming a uniform prior:  

𝑃(𝐺) ∝
𝑛 − 1

|𝑃𝑎! 𝑋! |

!!!

!!!

 

However, with uniform prior over orders, sparse graphs have prior probability than 

with uniform prior on structure. 

The results of a structure learning algorithm are sensitive to the structure prior, and 

priors can lead to very different results. Moreover, the authors claim that “Given that 

the choice of prior is often somewhat arbitrary, there is no reason to assume that our 

order-based prior is less reasonable than any other” (Friedman & Koller, 2003). 

Network structure is consistent, in that more orderings are more likely. Priors over 

network structures are used for practical purposes and are easy to work with and 

simple. 

 

A number of methods and applications have been presented to address relationship 

identification problems. (Sheehan & Egeland, 2007) show how prior information can 

be incorporated into this problem. In both human and non-human populations, 

reconstructing the pedigree of related families and the amount of inbreeding from 

genetic data is important within a species. An example of the problem of 

reconstructing pedigrees is found in mass-grave tragedies in which the remains of 

many individuals are found and can only be recognised by DNA. If G is the pedigree 

Bayesian network structure that contains a set of nodes V and a directed edge set E, 

then each node in the pedigree Bayesian network structure represents the genotype of 

an individual and has one of three possible parent configurations:  
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• An individual that has only one parent identified in the pedigree, if there is one 

incoming arrow.  

• An individual that has two parents identified in the pedigree, if there are two 

incoming arrows.  

• If there are no incoming arrows, the individual is a founder in the pedigree. 

A Bayesian approach is used to include prior knowledge, which is expressed by 

assigning a prior probability over the space of pedigree samples. The likelihood 

function here is computed based on DNA datasets for every single pedigree, and this 

data is updated along with prior probability in order to discover the posterior 

distribution using Bayes' theorem. Basically, prior knowledge helped rule out some 

possibilities. They also demonstrate the difference between hard and soft prior 

information. Hard prior information is a piece of information that the user definitely 

knows, whilst soft prior information is where the user writes down some probabilistic 

equation. However, the global prior information in the relationship identification 

problem is the general knowledge about the population (for example, information 

about mating behaviour), and the local prior information is that related to particular 

parts of the pedigree. Therefore, hard, local and global information is combined to 

rule out a number of possibilities. Afterwards, the prior function Pr  (𝑔) is used to 

assign a prior probability to every pedigree in the sample space for 𝑛 individuals: 

Pr 𝑔 = 𝑐 𝑀!
!!(!)!

!!! 𝑅!"
!!"(!)!

!,!!!
!!!

  𝑤ℎ𝑒𝑟𝑒  𝑐  𝑖𝑠  𝑡ℎ𝑒  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	
  	
  

Where  𝑀!,… ,𝑀!are the global parameters that enable pedigrees based on  𝑠, 

particular information to be weighted. If 𝑀!   set to: 

	
  

𝑀! =
0, 𝑖𝑓    𝑏!(𝑔) > 0
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 	
  

	
  

Where 𝑏!(𝑔) is the integer exponent, which corresponds to 𝑀!    that offers a specific 

measure of an individual pedigree  𝑔, and, therefore, provides the degree of the 

relative weightings of different pedigrees for the 𝑖 individual. Just pedigrees with 

𝑏! 𝑔 = 0  are accepted (similar to setting 𝑀! = 0). Whilst if 𝑀! = 1 , then this 

amounts to locating a flat prior. Assigning values between 0 and 1 will increase the 

probability. 
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𝑅!" is the local parameters. Setting  𝑅!" = 0 will exclude the pedigrees presenting 𝑗 

from being a parent of  𝑘. If 𝑅!" > 1, then this will favour a pedigree with specific 

characteristics. However, there is no general form for choosing the values for  𝑅 and 

𝑀. The decision for choosing them is sensitive and should be investigated for a 

specific domain. The prior function Pr 𝑔    is simple to interpret and modify.  

	
  

Angelopoulos and Cussens (2005) discuss a technique for specifying informative 

priors applied to classification and regression tree (C&RT) models. Basically, C&RT 

is a method used to classify data into different classes. The authors decided to use a 

Bayesian approach, so that there is a prior for every possible tree. Then, they used an 

approximate sample for the observed data. Bayes' theorem is used to approximate the 

posterior distribution of the trees. The authors state that “the goal of including prior 

knowledge is to improve decision making under uncertainty” (Angelopoulos & 

Cussens, 2005). However, the drawback of assigning a prior to each possible tree is 

that this is very difficult when you have a large number of possible trees. So, in this 

particular case they took a novel approach to defining a prior using a sampling 

algorithm, a stochastic logic program (SLP). An SLP can be used to define a prior 

over a given space of statistical models. In addition to this, the SLP will generate a 

tree each time, which specifies the prior implicitly. This approach is proposed instead 

of using a closed-form expression, which defines a prior by writing down some 

equation. They used an MCMC algorithm to take approximate samples from the 

posterior probability over all C&RT models. The MCMC proposal distribution is 

based on the prior. 

	
  

The same SLP approach can be used to effect a Bayesian approach to Bayesian 

network learning (Angelopoulos & Cussens, 2009). Once the model spaces have been 

defined using logic programs, then the SLP is used to define an informative prior on 

the Bayesian network structure over model spaces. They demonstrate that learning 

Bayesian networks with priors achieves a robust result, and an informative prior 

increases the quality of the results a lot. The way hard information is represented in a 

prior distribution is by reducing some network structures to zero probability, which 

sets the posterior probability to zero regardless of the data. Also, they discuss the 

important use of Markov equivalence classes for setting priors. Moreover, the authors 
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also claim that “If we consider working in a model space of Markov equivalence 

classes there is no inconsistency: the prior probability of a Markov equivalence class 

of BNs can be defined to be the sum of the priors of the BNs in that class. There 

seems no reason why these Bayesian network priors need be equal. Of course, it may 

be more convenient to define a prior directly on the Markov equivalence class: this is 

a knowledge engineering issue” (Angelopoulos & Cussens, 2009).   

However, there are often huge practical difficulties with the application of Bayesian 

analysis. Moreover, formalising prior knowledge requires a representation language in 

order to bridge the gap between the prior information in an individual's brain and that 

stated by a probability distribution. Also, one of the difficulties with the Bayesian 

approach is getting hold of the posterior. Therefore, a conjugate prior distribution is 

typically used to simplify the computation of the posterior distribution and its 

representation.  

	
  

(Castelo & Siebes, 1998) discuss how a user can assign a prior probability to each 

DAG. In this approach, a user has to specify partial prior knowledge, which is 

completed later to create full prior knowledge over all possible Bayesian networks. A 

degree of belief over the dependency between two variables is coupled with the nature 

of the models they try to induce. The approximation of the full prior knowledge is 

done using directed graphs. They assume that the user’s prior belief is coherent. 

Moreover, the user's prior knowledge over the three possible links between two 

variables must obey a probability distribution. For example, let 𝑎  and 𝑏 be nodes in a 

Bayesian network and let 𝑃(𝑎 → 𝑏)be the probability for an edge, 𝑃(𝑎 ← 𝑏) be the 

probability for the other direction, and P(𝑎… 𝑏)be the probability that there is no 

edge; then: 

𝑃 𝑎 → 𝑏 + 𝑃 𝑎 ← 𝑏 +P(𝑎… 𝑏) = 1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

The	
  priors	
   for	
  all	
   the	
  potential	
  network	
  structures	
  sum	
  to	
  one.	
  However,	
  when	
  

considering	
  two	
  options	
  for	
  a	
  normalising	
  constant,	
  the	
  distribution	
  would	
  then	
  

be:	
  	
  

	
  𝑃 𝑔 = 𝑐 + 𝑃 𝑣!, ⇋ 𝑣!!!,,!!∈!
!!!

	
  

Or	
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𝑃 𝑔 = 𝑐 𝑃 𝑣!, ⇋ 𝑣!
!!,,!!∈!
!!!

	
  

	
  

Also, (Koller & Friedman, 2009) illustrate the advantages of making the assumption 

that a structure prior satisfies structure modularity, where the prior structure 𝑃 𝑔   is 

proportional to multiplying the terms  (𝑃𝑎!! = 𝑃𝑎!!
! ), which represent locating the 

prior probability to choose a set of parents  𝑋!. It is represented as: 

𝑃 𝑔 ∝ 𝑃(𝑃𝑎!!! = 𝑃𝑎!!
! )	
  

	
  

(Buntine, 1991) demonstrates the use of incorporating expert knowledge into 

learning, and how the information is converted into a prior on Bayesian networks. The 

author assumes that we know the variable ordering and that we have expert 

knowledge 𝐸. The expert specifies the total ordering ≺ for the variables, in which the 

parents of a variable must be less than the variable. In other words, for instance, if 

𝑦 ∈ 𝜋! then  𝑦 ≺ 𝑥. If we have 𝑥,𝑦 ∈ 𝑋, in which  𝑦 ≺ 𝑥, then the prior probability of 

𝑦 being a parent of 𝑥 is represented as Pr 𝜋 ≺,𝐸 . As we have the ordering, the prior 

probability for a particular graph is: 

Pr 𝜋 ≺,𝐸 = Pr 𝜋! ≺,𝐸 ,
!∈!

	
  

𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔  𝜋  𝑖𝑠  𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡  𝑤𝑖𝑡ℎ ≺,𝑤ℎ𝑒𝑟𝑒    	
  

Pr 𝜋! ≺,𝐸 = Pr 𝑦 → 𝑥 ≺,𝐸     
!∈!!

. Pr 𝑦 → 𝑥 ≺,𝐸     
!∉!!

	
  

	
  

In addition, the expert specifies the total number of variables ≺.  Along with a prior 

probability for every possible parents set 𝐸, this combined information is represented 

as Sample;  Pr 𝜋 𝑆𝑎𝑚𝑝𝑙𝑒  ,≺,𝐸 . The structure posterior is computed as:  

Pr 𝜋 𝑆𝑎𝑚𝑝𝑙𝑒  ,≺,𝐸 = Pr 𝜋! 𝑆𝑎𝑚𝑝𝑙𝑒  ,≺,𝐸
!!∈!!  ∧!∈!!

	
  

Where	
  𝑃!	
  is	
  parent	
  structure.	
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(Tsamardinos, Brown, & Aliferis, 2006) also discuss the max-min hill-climbing 

(MMHC) algorithm, which combines both the score-based and constraint-based 

approach into a single hybrid algorithm. Conditional independence is assessed using a 

statistical test on the data. This test assumes independence and does not consider the 

null hypothesis when two variables are conditionally dependent. The first phase of the 

MMHC identifies the parents and children set of each variable, and then the hill-

climbing algorithm is applied. The second phase of the MMHC is used to choose 

which edges will be in the final network, and also to orient the edge directions based 

on the network structure identified in phase one.  

 

Another approach to incorporating prior information is introduced by (Borboudakis & 

Tsamardinos, 2012), who present algorithms for incorporating path constraints to 

Partially Directed Acyclic Graphs (PDAGs) and Partially Oriented Ancestral Graphs 

(PAGs). This path constraint is about the presence or absence of (possibly indirect) 

causal relations in a causal model. Moreover, the incorporation of causal knowledge 

into a PDAG (PAG) forces the orientation of certain edges, which results in a 

corresponding PC-PDAG with fewer structural uncertainties.  

 

Also, (Campos, Zeng, & Ji, 2009) present a novel algorithm for the exact learning of 

Bayesian network structure from data that incorporates an expert's knowledge, which 

is based on (decomposable) score functions. It combines structural and parameter 

constraints with data through a branch-and- bound (B&B) approach to ensure global 

optimality with respect to the score function. 
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(Mansinghka, Kemp, Tenenbaum, & Griffiths, 2006) provide a Bayesian hierarchical 

framework that incorporates edge priors, using MCMC for sampling networks, and 

therefore improves the structure of the network recovery. Their approach is built on 

nonparametric, hierarchical Bayesian models that finds graph regularities in terms of 

node classes. Meanwhile, (Werhli & Husmeier, 2007)), used a different form of 

incorporating prior knowledge using MCMC for sampling networks. A Bayesian 

approach is adopted to incorporate various sources of prior knowledge in terms of an 

energy function. From this function a prior distribution over structures is found in the 

form of a Gibbs distribution, from which the penalty on a particular edge can be 

determined.  
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 Existing Tools for Bayesian Network Learning 3.4
	
  
In this section, the existing tools to learn Bayesian networks from the data are 

examined. Kevin Murphy’s website lists a lot of software packages for graphical 

models. I went through most of them and found that some of them work fine, whilst 

others do not (as a result of broken links, etc.). This section gives an overview of 

some of the existing tools that I checked. 

 

To begin with, UnBBayes (k2 for structure learning) is a probabilistic network 

framework with a graphical user interface to enable a user to perform sampling, 

learning, and evaluation. UnBBayes supports Bayesian networks, structures, and 

parameters, and shows the efficacy of probabilistic reasoning. It represents user 

degrees of certainty; for example, it can predict whether a statement is more likely to 

be true or false. UnBBayes is a flexible tool that enables users to manipulate and build 

a Bayesian network based on a knowledge domain. The software allows the creation 

of a Bayesian network from scratch, which also allows the user to add nodes and 

edges, and edit CPTs. Moreover, UnBBayes uses a junction tree algorithm to perform 

Bayesian inferences. 

 

GOBNILP (Globally Optimal Bayesian Network learning using Integer Linear 

Programming) learns Bayesian networks from complete discrete data or from local 

scores. GOBNILP is a free, publicly available Bayesian network structure-learning 

package. Also, GOBNILP can find the optimal network, given a constraint on the 

maximum number of parents, which is 3 by default. In this research, GOBNILP is 

used to find the optimal networks, and in some experiments prior knowledge is 

consistent with the optimal network. 

 

Banjo is software for static and dynamic Bayesian structure learning. It performs 

structural inference in Bayesian networks using a BDe score for discrete variables. 

The search procedure is based on simulated annealing and greedy algorithms. A 

search algorithm in Banjo consists of a set of main components that suggest a new 

network, or number of networks, and then checks the suggested networks for cycles, 
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computes the score of the suggested network, and determines whether the suggested 

network is accepted or not. 

 

B-Course, which is represented by U. Helsinki, is a web application tool for Bayesian 

modelling. The software has two main options. The first consists of dependency 

models that allow a user to go through clear steps of Bayesian modelling and 

inference. The second option is classification modelling, which uses Naive Bayes 

Networks. A user can either use their own data, or example datasets provided by the 

website. The network is run on B-Course’s server and the results are viewed on their 

website. They use both a simple and a greedy random search, and a BDe score. 

 

Finally, bnlearn is an R package that includes several algorithms for Bayesian 

networks structure learning, with either discrete or continuous variables. Furthermore, 

bnlearn also allows users to use either a constraint-based approach or score-based 

algorithms with different scoring functions. A user can incorporate prior information 

in the data by means of the blacklist and whitelist arguments. 
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  The Complexity of Bayesian Network Learning 3.5
	
  

This section discusses the theoretical limits of learning Bayesian networks. Learning 

the structure of a Bayesian network is an NP-hard problem. It is difficult to search all 

possible Bayesian networks for different sets of variables. The number of graphs 

grows exponentially with the number of variables. This problem also exists with a 

small number of variables, as there are many DAGs to consider in the search space 

and it is difficult to search for a high scoring network that fits with the data. 

  

(Cormen, Leiserson, Rivest, & Stein, 2009) explain computational complexity. 

Consider a particular algorithm which takes the graph that is input and checks 

whether there is a Hamiltonian cycle or not, and returns a yes/no answer. The 

Hamiltonian cycle of an undirected graph is a simple cycle that contains each vertex. 

The Hamiltonian cycle problem can be defined as “Does graph G have a Hamiltonian 

cycle?”. A graph that does have a Hamiltonian cycle is called Hamiltonian, and if not 

then it is called nonhamiltonian. So the formal language is represented as: 

𝐻𝐴𝑀 − 𝐶𝑌𝐶𝐿𝐸 = {< G > :  G  is  a  Hamiltonian  graph}  
The algorithm is difficult because deciding whether there is a Hamiltonian cycle or 

not takes a long time. Algorithms that are NP are those that give you a yes/no 

solution, which is known as a decision problem. Generally, the length of time it takes 

for an algorithm to run depends on how big the input is. In Bayesian learning, we are 

trying to find the highest score in a Bayesian network. So, in cases where the dataset 

consists of two variables, the algorithm runs very quickly. However, as the number of 

the variables increases, the problem gets harder. A Polynomial time algorithm has a 

run time based on an input of size 𝑛 for the worst situation running time 𝑂(𝑛!)for 

some constant 𝑘. However, not all problems can be solved in Polynomial time. 

 

In addition, if an algorithm takes a Polynomial time to finish, it would appear to be a 

quick algorithm. On the other hand, if we are using an algorithm where the answer is 

yes/no, and the Hamiltonian for checking a possible solution and whether there is a 

correct solution that will take a Polynomial amount of time, then the problem is 
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known as an NP-problem. An NP-problem is one way of reaching a decision in cases 

when the time to solve the original problem could be very long. However, checking 

for verification is easy; this is known as Polynomial Time Verification. In addition, 

“the complexity class NP is the class of languages that can be verified by a 

Polynomial time algorithm. More precisely, a language 𝐿 belongs to NP if and only if 

there exists a two-input Polynomial time algorithm 𝐴 and constant 𝑐 such that: 

𝐿 = {𝑥 ∈ {0,1}: 𝑡ℎ𝑒𝑟𝑒  𝑒𝑥𝑖𝑠𝑡𝑠  𝑎  𝑐𝑒𝑟𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑒  𝑦  𝑤𝑖𝑡ℎ   𝑦 = 𝑂( 𝑋 !) 

We say that algorithm 𝐴 verifies language 𝐿 in Polynomial time” (Cormen et al., 

2009). Therefore, 𝐻𝐴𝑀 − 𝐶𝑌𝐶𝐿𝐸 ∈ 𝑁𝑃 if there is a Polynomial time algorithm to 

choose 𝐿 . This algorithm can easily be transformed to a two argument input 

verification algorithm by accepting the exact string that is defined in 𝐿 . 

Therefore,  𝑃 ⊆ 𝑁𝑃 . Where P problems are considered easy to solve, NP problems 

are easy to check. 

 

According to Cooper (1990), the computation of the probability of a particular 

variable of interest, given other variables, is called probabilistic inference. The author 

assumes that the nodes represent propositional variable 𝑌, which would have an 

assigned value of either true (𝑇) or false (F). The probabilistic inference of a Bayesian 

network is used to mean the computation of 𝑃(𝑆!|𝑆!), where  𝑆!is either a single 

assigned value or a combination assigned value. While 𝑆!  is the combination assigned 

value, and the computation of the probabilistic inference in the case that no explicit 

conditioned information (𝑌 = 𝑇) is NP-hard. Furthermore, Cooper illustrates that 

probabilistic inference using Bayesian networks is NP-hard. Thus, “it seems unlikely 

that an exact algorithm can be developed to perform probabilistic inference efficiently 

over all classes of belief networks” (Cooper, 1990).  

 

(David Chickering, Heckerman, & Meek, 2003) explain the problem of finding the 

best Bayesian network structure in which each node has at most 𝑘 parents, for  𝑘 ≥ 3. 

Therefore, finding the highest scoring network structure is NP-hard. However, many 

Bayesian network learning algorithms do not guarantee to return the high scoring 

network.  
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As discussed earlier, a number of approaches for learning a Bayesian network are 

based on two main elements. One of these is defining the score metric, such as the 

BDe metric, which calculates a score for each possible network structure. These 

scores indicate how the network structure fits with the data. The other element is that 

the search procedure attempts to yield the highest score amongst all the possible 

network structures that are computed by the score matrix (D. Chickering, Geiger, & 

Heckerman, 1995). However, the authors discuss the problem of finding the highest 

scoring network from all the possible network structures so that every node has no 

more than 𝑘 parents. Consequently, the main drawback is where every node has at 

most 𝑘 parents; which is NP-hard for 𝑘 > 1. For the general case K-LEARN: 

“INSTANCE: Set of variables 𝑈, database 𝐷 = 𝐶!,… ,𝐶! ,, where each 𝐶!  is an 

instance of all variables in 𝑈, scoring metric 𝑀 𝐷,𝐺  and real value 𝑝”. 

“QUESTION: does there exist a network structure 𝐺 defined over the variables in 𝑈, 

where each node in 𝐺 has at most 𝑘  parents, such that  𝑀 𝐷,𝐺 ≥ 𝑝?” (D. Chickering 

et al., 1995). 

In addition, one of the approaches demonstrates that K-LEARN is NP-complete for 

𝑘 > 1 in the case when using BD metric.  

 

Algorithms are used to solve a number of problems that also have different 

complexities (Koller & Friedman, 2009). In optimisation problems, the target is to 

maximise a problem for a potential solution ℴ  in a given solution space ∑ . 

Additionally, the evaluation of the value of every possible solution is done by an 

objective function 𝑓:  ∑ → ℝ. The main target is to obtain a solution that yields the 

maximum score: 

 

ℴ∗ = arg𝑚𝑎𝑥ℴ∈∑ 𝑓(ℴ) 

 

In an optimisation problem, where the solution space contains discrete hypothesis, the 

number grows exponentially in most cases, related to the size of the problem for the 

number of the solution space ∑. Therefore, we cannot enumerate in order to obtain 

the best solution.  
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A decision problem is a problem with a "yes" or "no" answer. The complexities of 

decision problems are basically harder than those that can be answered by a 

nondeterministic Turing machine in polynomial time. When a decision about a 

combinatorial optimisation problem is shown to NP-complete problems, the 

subsequent optimisation is NP-hard (Atallah & Blanton, 2009). 

 

 

In this chapter, the problems of learning both parameters and structures that are also 

based on fully observed data were considered. The three main approaches for 

Bayesian structure learning—constraint-based, score-based, and the Bayesian model 

averaging approach—were discussed. This chapter demonstrated why it is important 

to study prior knowledge and reviewed the several approaches that have been 

considered. Different related work on Bayesian structure learning approaches were 

highlighted and some existing applications for Bayesian network learning were 

examined. Finally, the theoretical limits of learning Bayesian networks were 

presented.  

 

 

	
  

	
  

.	
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4 Learning algorithms that use prior 

knowledge  
	
  
This chapter presents an algorithm to learn Bayesian networks from data. It 

demonstrates Cowell's (2009) approach to the exact learning of the maximum 

likelihood Bayesian network. Then, it goes into detail about the developed heuristic 

search-learning algorithm (based on a hill-climbing algorithm) and shows how the 

directed acyclic graph (DAG) is represented. It also describes how cycle checking and 

the scoring function are used in the developed learning algorithm. Finally, it presents 

a detailed discussion about the search procedure in the hill-climbing algorithm. 

	
  
 

 Introduction 4.1
	
  
Finding the Bayesian network that maximises a score function is described as 

structure learning. Most work about Bayesian network learning has focused on 

heuristic searches, where there is no guarantee that the optimal network will be found. 

However, there is an increasing trend towards the work on exact Bayesian network 

structure learning. One approach is to use dynamic programming, which has been 

used successfully, as long as there is a limit on parent set sizes. This chapter aims to 

develop a Bayesian network learning algorithm that can be used to incorporate prior 

information. Overall, there are three approaches: the score-based approach, the 

constraint-based approach and the model-averaging approach. People typically use a 

non-Bayesian method in the constraint-based approach, which requires a statistical 

test of the conditional dependence and independence in the data. Another reason why 

the constraint-based approach does not normally use the Bayesian approach is 

because it uses hard information. The model-averaging approach considers several 

possible networks. Therefore, it is not possible to choose the best network, as you 

cannot be sure which is the correct one.   
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Some Bayesian learning algorithms are heuristic search algorithms, which attempt to 

maximise a score using some data. Our current experimental work uses a hill-

climbing algorithm (a heuristic search) that makes local moves, which lead to a local 

score-maximal Bayesian network. Score-based approaches employ different scores, 

and devote the most effort to maximising scores without much consideration of prior 

information. This thesis investigates the score-based approach. 

	
   The main reason for working on this exact dynamic programming algorithm is 

because it is commonly used. It is also an exact learning approach that always finds 

the optimal network, which makes it easy to validate whether things work. 

Nevertheless, it is not clear what else can be done to incorporate any prior knowledge 

when using the exact dynamic programming dynamic programming algorithm, so I 

conducted research regarding this question. There is some motivation to extend the 

exact dynamic programming (2009) approach towards exact learning in order to 

incorporate different sorts of prior knowledge and investigate the effect of the prior 

knowledge on the dynamic programming algorithm.  

The structure learning of Bayesian networks is an NP-Hard optimisation problem 

since the number of structures grows exponentially with the number of variables. As 

learning Bayesian networks are NP-hard and these exact learning approaches will not 

scale to bigger datasets, exact leaning approaches are not the answer to every problem 

due to scalability issues. Thus, we have to use a greedy approach, such as the hill-

climbing approach. Consequently, we need to explore improvements to the hill-

climbing approach. The high cardinality of the search spaces of heuristic approaches 

have been shown to be effective and efficient; therefore, I researched this question. As 

a result, there is some motivation for designing an algorithm that uses prior 

knowledge as input data, while simultaneously dealing with bigger problems.  
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 Dynamic Programming 4.2
 
As a starting point for this thesis, I used Cowell's (2009) approach to the exact 

learning of the maximum likelihood Bayesian network. The main reason for working 

on this dynamic programming algorithm is because it is commonly used. It is also an 

exact learning approach that always finds the optimal network, which makes it easy to 

check whether things work. However, it is not clear what else can be done to 

incorporate any prior knowledge when using the exact dynamic programming 

algorithm. A user provides some prior information, in addition to the dataset, and the 

goal is to find the most likely network that fits the user’s prior knowledge. 

 
(Cowell, 2009) demonstrates that reconstructing the pedigree of related families using 

genotype data is an important task. Learning a pedigree is like learning Bayesian 

networks from data, as each node denotes the genotype of an individual. Cowell uses 

an algorithm (proposed by  Silander & Myllymäki, 2006)  to obtain a maximum 

likelihood pedigree using fully observed data gained from the genotype data of related 

family samples. 

	
  

This exact dynamic programming is an attempt to search for a pedigree of up to 31 

individuals (approximately). Given a pedigree on  𝑛 nodes in a set V the dynamic 

programming algorithm approach is used to find the set of local scores of possible 

parent configurations for each individual 𝑖. This approach tries to find the best sinks 

for any subset of variables, where sinks are variables that have no children. The basic 

idea here is to find the sinks for bigger subsets by using the sinks for small subsets. 

Then, it identifies the best ordering of the best sinks. The dynamic programming 

attempts to find the best sink  𝑖 for 𝑉, and subsequently the best sink for 𝑉\{𝑖} and so 

on. In this way, we can find the best sink for the entire set of all vertices. The entire 

best parent set for that sink is the one with highest scores. Any Bayesian network has 

one or more total ordering. The last variable in that total ordering will always has the 

best possible parent set to choose from, which has a high score. 
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The algorithm consists of four main steps. The first step of the reconstruction 

technique is where we search a list Λ!for the possible set of parent combinations (j, k) 

for each individual  i ∈ V. Every   Λ!  for the corresponding local scores for parent 

configurations α i j, k) is sorted in decreasing order: 

-­‐ Find the Local scores 𝛼 𝑖 𝑗, 𝑘) 

-­‐ Order the local scores in a decreasing order. 

 

In the second step, we find the best score and the best sink for each subset of 𝑉. To 

begin with, we need to generate a subset 𝑊 from the set of all variables  𝑉 so that for 

every subset there is a score and a sink. If we want to get the score for a particular 

subset, we go through each member of 𝒊 and remove it to get 𝑼 then we find the best 

parent sets for 𝒊. We make sure that we compute this beforehand, as this is just a 

looking-up procedure.  

	
  
-­‐ Generates	
  𝑊	
  from	
  𝑉	
  

-­‐ 	
  For	
  every	
  𝑊 ⊆ 𝑉	
  in	
  order	
  Do	
  

Ø 	
  𝑆𝑐𝑜𝑟𝑒𝑠[𝑊] ← 0.0	
  

Ø 𝑠𝑖𝑛𝑘𝑠 𝑊 ← −1	
  

-­‐ Loop	
  for	
  all	
  𝑖 ∈𝑊	
  Do	
  

Ø 𝑈 ←𝑊 ∖ {𝑖}	
  

Ø 𝑠𝑘𝑜𝑟𝑒 ← 𝐵𝐿𝑆 𝑖,𝑈 + 𝑠𝑐𝑜𝑟𝑒𝑠[𝑈]	
  

//  𝐵𝐿𝑆  𝑖𝑠	
  best  Local  Score    	
  

§ 𝑖𝑓  (  𝑠𝑖𝑛𝑘𝑠 𝑊 = −1  𝑜𝑟  𝑠𝑘𝑜𝑟𝑒 > 𝑠𝑐𝑜𝑟𝑒𝑠[𝑊]	
  )	
  Do	
  

o 𝑆𝑐𝑜𝑟𝑒𝑠[𝑊] ← 𝑠𝑘𝑜𝑟𝑒	
  

o Sinks[W]  ← 𝑖	
  

In the third step, if element 𝑖 was a sink for  𝑊, then we look for the parent set that 
will work best. 
	
  

-­‐ 	
  𝑙𝑒𝑓𝑡 = |𝑉|	
  

-­‐ For	
  i=|𝑉|	
  to	
  1	
  Do	
  

Ø 𝑜𝑟𝑑[𝑖] ← 𝑠𝑖𝑛𝑘𝑠[𝑙𝑒𝑓𝑡]	
  

Ø 𝑙𝑒𝑓𝑡 ← 𝑙𝑒𝑓𝑡 ∖ {𝑜𝑟𝑑 𝑖 }	
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Finally,	
  we	
  simply	
  recall	
  the	
  best	
  sink	
  and	
  score	
  for	
  each	
  subset.	
  
	
  

-­‐ 𝑝𝑟𝑒𝑑𝑒𝑐𝑠 ← ∅	
  

-­‐ For	
  	
  i=1	
  to	
  1	
  to	
  |V|	
  DO	
  

Ø 𝑝𝑎𝑟𝑒𝑛𝑡 𝑜𝑟𝑑 𝑖 ← 𝐵𝑝𝑠𝑒𝑡 𝑜𝑟𝑑 𝑖 ,𝑝𝑟𝑒𝑑𝑒𝑠 	
  

//	
  𝐵𝑝𝑠𝑒𝑡  𝑖𝑠  𝑡ℎ𝑒  𝑏𝑒𝑠𝑡  𝑝𝑎𝑟𝑒𝑛𝑡  𝑠𝑒𝑡𝑠	
  

Ø 	
  𝑝𝑟𝑒𝑑𝑒𝑐𝑠 ← 𝑝𝑟𝑒𝑑𝑒𝑐𝑠 ∪ {𝑜𝑟𝑑 𝑖 }	
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 A Hill Climbing Algorithm with Prior Knowledge 4.3

(HCPK) 
A simple and fast approach in a heuristic search for structure learning is hill climbing, 

which explores local moves in the search space. It chooses an initial network structure 

in a search space to start from; an empty graph was used in this research. Then, the 

algorithm continually applies a local move to the current network structure by adding 

an edge, if that leads to a better score. This is repeated until no local moves applied to 

the current structure improve the graph score. Finally, if there is no graph in the 

neighbourhood that has a better score than the current graph, the search procedure 

stops because a local optimum has been reached. This method finds local maxima of 

the Bayesian scoring metric. In this research, we aimed to keep the hill-climbing as 

simple as possible. If we start with empty graph, then it is possible to construct any 

Bayesian network by adding edges. In this research, we explored the difference 

between this particular algorithm and the same algorithm with prior knowledge. 

 

 Representation	
  of	
  DAG	
  4.3.1
Recall that the structure of a Bayesian network is a directed acyclic graph (DAG), in 

which nodes represent the random variables and edges represent probabilistic 

dependence among variables. Here, a DAG is represented by specifying the parent set 

for each vertex; for example, if variables  𝐵 and 𝐶 are parents for child 𝐴, this is 

represented as 𝐴 ← [𝐵,𝐶]. 

 Cycle	
  Checking	
  4.3.2
Since DAGs are acyclic, each time our hill-climbing algorithm makes a change it 

must be checked for a cycle. A list of current ancestors for each node is maintained, 

which allows for the fast checking of cycles. 
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 BDe	
  Score	
  4.3.3
 

There are a number of different methods of scoring. In this learning algorithm, the 

Bayesian Dirichlet likelihood equivalence (BDe) scoring method is used. Each 

variable in a BDe score is reviewed in order to discover which parents it has in the 

graph. The BDe score is the (marginal) probability of the observed data conditional 

on the graph structure, assuming a Dirichlet parameter prior (Heckerman & 

Chickering, 1995). 

 

 Search	
  Procedure	
  4.3.4
The local moves in this algorithm are the addition of an edge. In this HCPK, we chose 

an empty graph as a starting point in the search space. Basically, the algorithm 

computes the local BDe Score for each child and its possible parent sets, and chooses 

the one with the highest score. This process is repeated until no graph has a larger 

score than the current graph. The details are as follows (Algorithm 1): 

The algorithm shown takes all of the variables V = {𝑥!, 𝑥!,… , 𝑥!}  from the dataset D 

and places them in an arbitrary order V. Each child x! is selected from the ordered set 

V. The remainder of the variables, not just those who are earlier in the order, are the 

possible parents PP!(x), and can be added as parents in any move. The objective is to 

examine each variable and find the best possible parent sets.  

When choosing a parent set for  x!, the algorithm works by adding one parent P! x   at 

a time. The number of possible parents that may be added is limited to a certain, 

adjustable number. Therefore, the user needs to set a parameter in order to establish 

that limit.  

The variable earliest in the order has the best possible parent sets to choose from, 

whilst it is more difficult to arrive at a good parent set for the variables later in the 

order because it is harder to avoid cycles.  

The algorithm computes the local score of the possible parent sets for each child. 

Since the BDe score is decomposable into local scores, this is all that needs to be 

computed after each local move. The algorithm performs some checks, as there are 

some sequences concerning the early decisions that the algorithm needs to make if we 

do not have prior knowledge.  
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Before computing the local score for the possible parents, we have to check that the 

current possible parent does not violate any constraints at line 11. If 𝑋 has been 

previously chosen as a parent of 𝑌, then 𝑌 will be excluded when we choose a parent 

for 𝑋. 

The algorithm considers all of the possible sets and chooses the one with highest 

score. In addition, if any given local score is better than the best score, the set is 

assigned to the best score. Then, the algorithm adds edges from parents to children 

and updates the ancestor relation. Since DAGs are acyclic, each time our HCPK 

algorithm makes a change it must be checked for a cycle, which entails an additional 

step. A list of current ancestors for each node is maintained, which allows for the fast 

checking of cycles. However, if there is prior knowledge, Algorithm 1 checks whether 

this is satisfied by using an extra check at line 11. 
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Algorithm 1: HCPK algorithm 

 

 

 
 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

V ← allVariables  

g ← empty 

𝐅𝐨𝐫  i = 0  to  length V   𝐃𝐨 

BP!(x) ← [  ]  //  Best  Parents  Combination 

x ← V[i] // child 

PP!(x) ← V − x // Possible parents   

bestLocalScore ← Score(x,BP!(x))   

𝐅𝐨𝐫    j = 1  to  length(PP!(x))   Do 

P!(x) ← PP!(x)[j] 

BP!(x). add[P!(x)]  

IF CheckPriorKnowledge(P!(x)) == FALSE     

Continue 

END IF 

localScore   ← Score(x,BP!(x)) {Using BDe score} 

𝐈𝐅  bestLocalScore     <     localScore  AND  checkCyclicMap g  , x,BP!(x)   𝐓𝐡𝐞𝐧 

bestLocalScore   ← localScore               

  g. update x,BP!(x)                  

  {See  explanation  in  section  4.3.2}  

ELSE  

BP!(x).Remove[P!(x)] 

END IF 

END FOR 

END FOR 

Return g 
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 Hill	
  Climbing	
  with	
  Random	
  Restart	
  4.3.5
 

This algorithm cannot guarantee that it will find the optimal network because it may 

become stuck at a local maximum, of which there could be many. One run is not 

enough in HCPK. In this situation, it is best to start the search again. Therefore, we 

run HCPK several times with different random orderings V of the variables to 

partially compensate for the myopia of hill climbing. Different random orderings give 

different scores. Hence, the variable earliest in the order has the best possible parent 

set to choose from, whilst it is more difficult to arrive at a good parent set for the last 

variable in the ordering. Many choices of high-scoring parent sets will not be 

possible, as choosing them would lead to a cycle. 

However, the best total score of the ordering is kept. If a new iteration of HCPK 

produces a better total score, the new score replaces the previous best total score and 

returns the network with the highest score.  

 

Algorithm 2: HCPK algorithm with random restarts 

 

	
  
 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

i ← 0 

V ← allVariables  

BestScore ← −∞ 

While(i < NumberRuns)   

V ← RandomOrdering(V)  

BN ← HillClimbing 

If  (  Score BN < BestScore) 

BestScore ← Score BN  

i + +   
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This chapter proposed an algorithm to learn Bayesian networks from data. It 

presented the exact learning of the maximum likelihood Bayesian network. Also, it 

presented the developed learning algorithm, which is a hill-climbing algorithm prior 

knowledge (HCPK). Finally, it gave a detailed discussion of the search procedure in 

the HCPK. While, in the following chapter show how can we incorporate different 

types of prior to these developed algorithms. 
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5 Incorporating Prior Knowledge 
	
  

This chapter introduces the main contribution of this thesis; presenting an algorithm 

that can incorporate different types of prior into the developed algorithm. This section 

discusses prior information, and highlights the differences between hard and soft prior 

information. It then describes how different sorts of prior knowledge are incorporated 

into the developed learning algorithms.  

	
  

  Introduction  5.1
	
  
Prior information is any information people have, in addition to the data, that helps to 

obtain a good model. Hard information reduces the probability of some network 

structures to zero. In other words, in order to use prior information you have to take 

hard information and (perhaps implicitly) express it in the prior distribution to give 

certain networks zero probability. If the prior probability is zero then the posterior 

probability will still be zero, no matter what sort of data is available. In contrast, soft 

prior information gives nonzero prior probability to some possible network structures, 

and some will achieve higher probabilities than others. However, even if we set a 

prior probability to a small number, if there is enough supporting data then the 

posterior probability could be large. Uniform prior knowledge can be used if we do 

not have any information because it represents a lack of information, which means 

that each structure has an equal prior probability of being true. 

 

The learning algorithm is intended to enable users to express their knowledge of a 

variety of problems in a straightforward manner. The main objective of this section is 

to investigate whether incorporating prior knowledge leads to significantly better 

results, and to evaluate its effect on learning speed. This section discusses the many 

experiments conducted during the development process in order to generate numerous 

results. In this work, we aimed to develop learning algorithms using different datasets 

and types of prior knowledge. There are many types of prior knowledge, including the 
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knowledge of whether or not node A is a parent of node B and known topological 

ordering. The most challenging type of prior knowledge (and the main subject of this 

research) is known ancestor relations and conditional independence. However, the 

main issue is that more complicated prior knowledge cannot be incorporated into 

local score. In addition to this, once we have complicated prior knowledge, simply 

using hill climbing without changing it will fail because it will constantly generate 

networks that are not allowed. Therefore, we need to add some intelligence. 
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  Dynamic Programming 5.2
	
  
Looking back at the dynamic programming algorithm described in section 4.2. Here, 

we extend Cowell's (2009) approach towards the exact learning in order to 

incorporate different sorts of prior knowledge. The exact dynamic programming 

dynamic programming algorithm is an exact learning approach that always finds the 

optimal network, and this makes it useful for checking whether things work. In this 

section, we investigate the effect of the prior knowledge on the dynamic programming 

algorithm.  

 

There are a lot of different types of prior knowledge, which might be, for example, 𝐴 

has to be the parent of 𝐵, or 𝐴 must not be the parent of 𝐵. For this reason, we allow 

the user to say that a certain arrow has to be there. Another type of prior knowledge is 

the statement that 𝐴 has to be an ancestor of 𝐵 (𝐵 cannot be a descendent). Therefore, 

the algorithm incorporates different types of users’ prior knowledge and drops the 

assumption that there are two parents at most as follows: 

 Arrows	
  which	
  must	
  be	
  absent	
  𝑨 ↚ 𝑩	
  5.2.1
  
The user can specify the prior knowledge that variable 2 must not be a parent of 0. 

This is a hard constraint, and it is straightforward to incorporate this prior knowledge 

by removing all the choices of the parents’ set from the datasets. Thus, ruling out the 

parents’ set does not fit with this prior knowledge. Moreover, each variable has a 

choice of parents from the dataset and one that does not fit with the prior knowledge 

can be ruled out.  
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 Arrows	
  which	
  have	
  to	
  be	
  there	
  𝐀   ← 𝐁	
  5.2.2
	
  
Given a Bayesian network on 𝑛 nodes in a set V, for each individual i ∈ V, we search 

for the valid set of parent combinations in a list  Λ!. We also find the corresponding 

local scores for parent configuration. Moreover, in the exact dynamic programming 

algorithm each list   Λ! always has at least one element corresponding to having no 

parents, and it treats  𝑖 as a founder. However, if we have prior knowledge, this will 

rule out the choice of no parents and, as a result, will produce a wrong network. 

On the other hand, suppose the user's prior knowledge is 0 ← 2,  where 2 must be a 

parent of 0, and the aim is to find the maximum likelihood network where that is true. 

If we consider  𝑊 = {0,2,3}, where the sink is 0 and 2 is an element of the set  𝑢 is 

considered 𝑖 = 0  &  2 ∈ 𝑢 . Although this will always return a network satisfying the 

respective constraint, it cannot guarantee that it will produce a network with a high 

score, as the best sink could be 3(3 ← 0 ← 2). As a result, it is not necessary to 

consider whether there is a particular arrow or not when we are choosing the best 

sink. However, we have not examined the case where 2 ← 0 (i=2 & u={0,3}), and the 

rest of the scores need consideration ((i=0 & u={2,3}) and (i=3 & u={0,2})). A 

constraint is needed to help obtain a network that meets this prior knowledge: 

1. Suppose user prior knowledge is 0 ← 2   and 0,2 ⊆𝑊 

𝑇ℎ𝑒𝑛, 2  𝑛𝑜𝑡  𝑡ℎ𝑒  𝑠𝑖𝑛𝑘  𝑤ℎ𝑒𝑛  0 ∈ 𝑈	
  

2. 𝑖𝑓   𝑖 = 0  &&  2 ∈ 𝑈 	
  

Then	
  	
  

BLS(i, U) only returns the parent set that contains 2.  



Incorporating	
  Prior	
  Knowledge	
  	
   83	
  

 

Therefore, from the dynamic programming algorithm, step 2: finding the best sinks 

Prior! = 0 
Prior! = 2 

-­‐ For	
  every	
  𝑊 ⊆ 𝑉	
  in	
  order	
  Do	
  

Ø 	
  𝑆𝑐𝑜𝑟𝑒𝑠[𝑊] ← 0.0	
  

Ø 𝑠𝑖𝑛𝑘𝑠 𝑊 ← −1	
  

-­‐ Loop	
  for	
  all	
  𝑖 ∈𝑊	
  Do	
  

Ø 𝑈 ←𝑊 ∖ {𝑖}	
  

Ø 𝐵𝐿𝑆 𝑖,𝑈 +only	
  returns	
  the	
  parent	
  set	
  that	
  contains	
  .Prior! 

Ø 𝑠𝑐𝑜𝑟𝑒 ← 𝐵𝐿𝑆 𝑖,𝑈 + 𝑠𝑐𝑜𝑟𝑒𝑠[𝑈]	
  

§ 𝑖𝑓  (  𝑠𝑖𝑛𝑘𝑠 𝑊 = −1  𝑜𝑟  𝑠𝑘𝑜𝑟𝑒 > 𝑠𝑐𝑜𝑟𝑒𝑠[𝑊]	
  )	
  

&&	
  
𝑖𝑓(  𝑁𝑂𝑇   (𝑖 == Prior!)  &&(  Prior! ∈ 𝑈) )	
  
	
  Do	
  

o 𝑆𝑐𝑜𝑟𝑒𝑠[𝑊] ← 𝑠𝑐𝑜𝑟𝑒	
  

o Sinks[W]  ← 𝑖	
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 Known	
  ordering	
  	
  5.2.3
The dynamic programming algorithm attempts to find the best ordering and after it 

finds it, the rest is easy. If we knew the ordering then most of the algorithm would not 

happen. For example, suppose a Bayesian network and the variables are [0,1,2,3]. If 

we know that [1,3,2,0] is the right ordering, then it is easy.  

However, suppose we only knew that 0 has to come before 2 (0 < 2), and did not 

know anything else. The aim is to check whether it is possible for the exact dynamic 

programming algorithm to find the best network so that an ordering respects 0 < 2. 

	
  
v 0<2	
  	
  (2	
  cannot	
  come	
  earlier	
  0)	
  

Suppose user's prior knowledge is 0 < 2 and  0,2 ⊆𝑊 

𝑇ℎ𝑒𝑛, 0  𝑛𝑜𝑡  𝑡ℎ𝑒  𝑠𝑖𝑛𝑘𝑠  𝑤ℎ𝑒𝑛  2 ∈ 𝑈. 

Therefore, from the dynamic programming algorithm, step 2: finding the best sinks 

Prior! = 0 
Prior! = 2 

-­‐ For	
  every	
  𝑊 ⊆ 𝑉	
  in	
  order	
  Do	
  

Ø 	
  𝑆𝑐𝑜𝑟𝑒𝑠[𝑊] ← 0.0	
  

Ø 𝑠𝑖𝑛𝑘𝑠 𝑊 ← −1	
  

-­‐ Loop	
  for	
  all	
  𝑖 ∈𝑊	
  Do	
  

Ø 𝑈 ←𝑊 ∖ {𝑖}	
  

Ø 𝐵𝐿𝑆 𝑖,𝑈 +	
  only	
  return	
  the	
  parent	
  set	
  that	
  contains	
  Prior!	
  

Ø 𝑠𝑘𝑜𝑟𝑒 ← 𝐵𝐿𝑆 𝑖,𝑈 + 𝑠𝑐𝑜𝑟𝑒𝑠[𝑈]	
  

§ 𝑖𝑓  (  𝑠𝑖𝑛𝑘𝑠 𝑊 = −1  𝑜𝑟  𝑠𝑘𝑜𝑟𝑒 > 𝑠𝑐𝑜𝑟𝑒𝑠[𝑊]	
  )	
  

&&	
  
  𝑖𝑓  𝑁𝑂𝑇 (𝑖 == Prior!)  &&  (Prior! ∈ 𝑈) 	
  Do	
  

o 𝑆𝑐𝑜𝑟𝑒𝑠[𝑊] ← 𝑠𝑘𝑜𝑟𝑒	
  

o Sinks[W]  ← 𝑖	
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  Hill Climbing with Prior Knowledge Algorithm 5.3

(HCPK) 
	
  
This research describes how different sorts of prior knowledge are incorporated into 

the developed learning algorithms. There are many types of prior knowledge, 

including the knowledge of whether or not node A is a parent of node B and known 

topological ordering. The most challenging type of prior knowledge, and the main 

subject of this research, is known ancestor relations and conditional independence. 

However, the main issue is that more complicated prior knowledge cannot be 

incorporated into local score. In addition to this, once we have complicated prior 

knowledge, simply using hill climbing without changing it will fail because it will 

constantly generate networks that are not allowed. Therefore, we need to add some 

intelligence. 

	
  
	
  

 Arrows	
  which	
  must	
  be	
  absent	
  𝑨 ↚ 𝑩	
  5.3.1
	
  
The user can specify 𝐴 ↚ 𝐵 to represent the prior knowledge that 𝐵 must not be a 

parent of 𝐴. This hard constraint can easily be incorporated as prior knowledge by 

eliminating all violating parent sets. Therefore, this rule out situations where the 

parent set does not fit with this prior knowledge. 
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 Arrows	
  which	
  have	
  to	
  be	
  there	
  𝑨   ← 𝑩	
  5.3.2
	
  
With this prior knowledge, an arrow can be added to a particular child based on the 

given parents. A child is selected first, and then a decision is made in terms of which 

parents to add. The HCPK algorithm allows the network for many possible parents to 

be learnt. For example, take 𝐴   ← 𝐵, where 𝐵 must be a parent of 𝐴. Assume that 𝐴 is 

the child specified by the user and that 𝐵 is the parent specified by the user. In 

Algorithm 1 line 11, a constraint is needed to help obtain a network that meets this 

prior knowledge.  

• Users can specify either entire parent sets or just part of a parent set. If users 

specify part of a parent set, then if the score is high, more possible parents are 

added. But, if users specify the entire parent sets, then only the specified 

parents are considered. 

• The algorithm needs to ensure that 𝐴 cannot be the ancestor of 𝐵. 

 

Figure 12 and Figure 13 show the results of applying HCPK with random restarts to 

different learning problems for synthetic data generated by the insurance network. 

The score of the best network found so far was plotted against the number of restarts. 

In Figure 12, we see that adding prior knowledge leads to a better result. However, 

when we have more prior knowledge (as shown in Figure 13) the optimal network is 

found at 159. We used GOBNILP to find the optimal networks, and all prior 

knowledge is consistent with the optimal network (Cussens, 2011). 
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Figure 12: Arrows which have to be there. 

The figure shows some runs without prior knowledge and the result of incorporating 

user's prior knowledge. Here the user specified the parent set 𝟐𝟑 ← 𝟏𝟏,𝟐𝟐 or each of 

the1,000 restarts. 

	
  

	
  
Figure 13: More prior knowledge. 

User prior knowledge 𝟏𝟕 ← 𝟕,𝟏𝟔 ; 𝟐𝟒 ← 𝟏𝟓 ; 𝟐𝟓 ← 𝟏𝟒,𝟐𝟎 ; 𝟐𝟔 ← 𝟑,𝟐𝟏,𝟐𝟒   

for 1,000 restarts. More Prior knowledge has more effect in the learning algorithm, 

which sometimes get to the optimal. 
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 Ancestor	
  Relation	
  5.3.3
Sometimes, a network that does not meet a user's prior knowledge is generated by an 

algorithm. This network does not present a problem if the user's prior knowledge is 

simple, like deleting or adding edges. Algorithm 1 is used here to obtain a network 

that satisfies the constraint. However, if the prior knowledge deals with an ancestor 

relation, the impossibility of creating a legal network can go undetected until 

extremely late in the process, which creates problems. The algorithm works by 

considering a number of possibilities at various points. The algorithm does not 

consider every possible network; instead, it makes several choices and sticks with 

them. Overall, it is not hard to check whether a particular ancestor relation is there. 

However, it is difficult to ensure that the graph we are building will satisfy a given 

ancestor relation. 

 

 
5.3.3.1 Backtrack	
  Approach	
  

	
  
The primary challenge is to decide what action to take when a branch of the search 

fails or reaches a dead end. The backtrack approach overcomes this issue by returning 

to an earlier point that might fix the problem (Russell & Norvig, 2010). Therefore, if 

the generated network does not meet the user's prior knowledge, Algorithm 3 will 

perform backtracking. If the generated network is inconsistent with the user's prior 

knowledge, then Algorithm 4 backtracks to a node in the search tree. Only ancestor 

relations are considered when the algorithm selects a random variable to backtrack. 

This random variable is selected from the ancestor of the child specified by the user, 

and then a new parent set is chosen. The algorithm keeps track of the parent sets that 

have previously been selected with respect to the backtrack point in order to avoid 

selecting them again and reducing the structure space. However, a limited portion of 

the most selected parent sets is retained. When the algorithm reaches the limited 

number of the most selected parent set, it starts the search again with a new random 

ordering in order to avoid an infinite loop. 
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If no legal value for parent sets can be found for the child variable, this will produce 

an illegal network structure. As a result, the algorithm backtracks to the beginning of 

the network structure: the first child variable for the particular ordering V. 

 
 

5.3.3.2 Restarts	
  And	
  Backtrack	
  Approach	
  

	
  
In this method, we employ a greedy search until we hit a local maximum. Then, we 

randomly change the ordering of the variable of the network structure and repeat the 

process for a certain number of iterations. In addition to this, using several random 

restarts may be a better strategy if the number of nodes is large and the optimisation is 

more likely to be complex. In contrast, backtracking is often suitable when a network 

structure is inconsistent with a constraint. One of the goals of backtracking is to 

backtrack to the most recent point that might solve the problem and then attempt to 

find different values. For any single random restart, a backtrack method is applied if 

the produced network is inconsistent with a user's prior knowledge. Figure 14 shows 

the results of applying HCPK with random restarts to different learning problems 

when we plot the score of the best network found so far against the number of restarts.  

For example, take the prior knowledge 𝐵 ⇠ 𝐴 which indicates that 𝐴 must be an 

ancestor of 𝐵. Assume that 𝐵 is the specified child by the user and that 𝐴 is the 

specified ancestor by the user. If there is an ancestor relation algorithm 3 checks that 

it is satisfied by an extra check at line 12. These constraints are needed to generate a 

network that meets this prior knowledge.  

•  Variable 𝐵 cannot have an empty parent set  

• The algorithm needs to ensure that 𝐵 cannot be ancestor of 𝐴 

If these constraints are true, we denote this by:  

   𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝐴,𝐵) = 𝑇𝑟𝑢𝑒 
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Figure 14: Ancestor relation prior knowledge.  

The figure shows some runs without and some with user prior knowledge  𝟔 ⇠23, 

which indicates that 23 must be an ancestor of 6. It shows the results of applying 

HCPK with random restarts to different learning problems for synthetic data 

generated by the insurance network. The score of the best network found so far was 

plotted against the number of restarts. 
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Algorithm 3: Restart and backtrack. 

 

 
 
 
  

	
  	
  
	
  	
  
	
  	
  
1.	
  
2.	
  
3.	
  
4.	
  
5.	
  
6.	
  
7.	
  
8.	
  
9.	
  
10.	
  
11.	
  
12.	
  
13.	
  
14.	
  
15.	
  
16.	
  
	
  	
  
	
  	
  
17.	
  
18.	
  
19.	
  
20.	
  
21.	
  
22.	
  
23.	
  
24.	
  
25.	
  
26.	
  
27.	
  
28.	
  
29.	
  
30.	
  
31.	
  
32.	
  
33.	
  
34.	
  
35.	
  
36.	
  
37.	
  

REQUIRE:RemovingList   Contains  all  the  children  with  most  visited  parents   	
  
REQUIRE  {Parameter  number  to  limited  number  of  the  most  visited  parent  sets}	
  
REQUIRE  g  {a  graph}	
  

For  i = 0  to  length V   Do	
  
BP!(x) ← [  ]	
  	
  //  Best  Parents  Combination	
  
x ← V[i]	
  //	
  child	
  
  if    not  RemovingList. contains x   then	
  

continue	
  
end  if	
  
PP!(x) ← V − x	
  //	
  Possible	
  parents	
  	
  	
  
bestLocalScore ← Score(x,BP!(x))	
  	
  	
  
For    j = 1  to  length(PP!(x))  	
  Do	
  

P!(x) ← possibleParents[j]	
  
BP!(x). add[P!(x)]	
  	
  
IF	
  CheckThatParentIsOk(P!(x))	
  ==	
  FALSE	
  then	
    	
  	
  

Continue	
  
END	
  IF	
  
localScore   ← Score(x,BP!(x))	
  {Using	
  BDe	
  score}	
  
IF  bestLocalScore     <
localScore  AND  checkCyclicMap g  , x,BP! x AND constraint    apply     	
  
AND  disjoint RemovingList. get x ,BP! x     	
  
Then	
  

bestLocalScore   ← localScore        	
  	
  	
  	
  	
  	
  	
  
  g. update x,BP!(x)     	
  	
  

ELSE	
  	
  
BP!(x).Remove[P!(x)]	
  

END	
  IF	
  
list   ←   RemovingList. get(x)	
  
if  {list   == null  or  list. size()   >   P)	
  
then	
  
  RemovingList. put(x,BP!(x))	
  
else	
  

list. addAll(BP!(x))  
RemovingList. put(x, list)	
  

end  if	
  
end	
  for	
  

end	
  for	
  
if    illegal g   then	
  
          ancestorRelation/conditional  independence(V, true)  
  else    
          ancestorRelation/conditional  independence(V, false)	
  
end  if	
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Algorithm 4: Ancestor relation 

  
	
  	
  
	
  	
  
	
  	
  
1.	
  
2.	
  
3.	
  
4.	
  
5.	
  
7.	
  
8.	
  
9.	
  
10.	
  
11.	
  
12.	
  
13.	
  
14.	
  
15.	
  
	
  	
  
16.	
  
17.	
  

𝐑𝐄𝐐𝐔𝐈𝐑𝐄: ordered  variables	
  
𝐑𝐄𝐐𝐔𝐈𝐑𝐄: user′s  prior  knowledge  about  the  child	
  
𝐑𝐄𝐐𝐔𝐈𝐑𝐄 ∶  fromStart,	
  True	
  or	
  False	
  
position   ← 0	
  
  removingListMap   ← [  ]  	
  
𝐢𝐟  checkAncestorRelationisok(child  user′s  knowledge)   ==   True	
  𝐭𝐡𝐞𝐧	
  

return	
  
𝒆𝐧𝐝  𝐢𝐟	
  
𝐈𝐅  not  formStart  𝐭𝐡𝐞𝐧	
  

  Backtrack   ←     ancestor child .Random	
  
𝒆𝒍𝒔𝒆{  𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔  𝑓𝑟𝑜𝑚  𝑡ℎ𝑒  𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔}	
  

𝐵𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘   ← 𝑎𝑙𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝𝑜𝑠𝑡𝑖𝑜𝑛 	
  
end	
  if	
  
SelectedBacktrack   ← allVariables. indexOf Backtrack   	
  
𝐟𝐨𝐫    i   ← SelectedBacktrack  To  allVariables. size()  𝐝𝐨  

removingListMap. add(i)  
ancestor. remove i   {ancestor, contains  a  list  of  all  the  children	
  
  with  their  ancestors  }  	
  

𝐞𝐧𝐝  𝐟𝐨𝐫  
Restarts  and  Backtrack allVariables,RemovingList 	
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Let us take the prior knowledge that  6 ⇠ 7, which indicates 7 must be an 

ancestor of  6. Assuming that 6 is the child specified by the user and that 7 is the 

ancestor specified by the user, then the following constraints are needed to generate a 

network that meets this prior knowledge: 

• Variable 6 cannot have an empty parent set. 

• The algorithm must ensure that 6 cannot be an ancestor of 7. 

The result of applying HCPK ancestor relations, for synthetic data generated by the 

Asia 100, is shown in Figure 1: 

 

Figure 15: The generated network from HCPK. 

The generated network is inconsistent with the user's prior knowledge, and we need to 

perform backtracking again. The current ancestors of the child specified by the user 

are [4], as only ancestor relations are considered when the algorithm selects a random 

variable to backtrack. In this example, Node 4 is selected from the ancestor of the 

child specified by the user and then a new parent set is chosen. If the score is high, 

more parents that are possible are added. For Child 4, the parent sets that have 

previously been selected will not be parents again, as the HCPK algorithm keeps track 

of the parent sets that have previously been selected with respect to the backtrack 

point. The generated network is shown in Figure 16. 
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Figure 16: The generated network from HCPK after backtracking. 

	
  

The generated network is consistent with the user's prior knowledge, and we do not 

need to perform backtracking. The total score is -248.02. We run several iterations of 

the HCPK algorithm with different random orderings of the variables to compensate 

partially for the myopia of hill climbing. Different random orderings result in 

different scores. Therefore, after a few iterations, the HCPK algorithm found a high 

scoring network at -245.64. 

 

Generally, when adding prior knowledge, it is consistent with the optimal network, or 

the true network helps the algorithm to generate a more accurate network. However, it 

is not necessary the true network have a high scoring network. Adding prior 

knowledge gives us slightly fewer arrows. Occasionally, the algorithm performs 

worse without prior knowledge. The HCPK algorithm deals with bigger problems, 

can incorporate different sorts of prior knowledge, and always returns a network that 

satisfies user prior knowledge regardless of whether it achieves a high score or not. 

Such a randomised restart ensures that the best scoring network that is consistent with 

the constraints will eventually be produced. However, the use of backtracking (as 

opposed to a pure random-restart approach) adds intelligence to the search and greatly 

increases the chances of generating a good network on each iteration. 
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Overall, when the HCPK algorithm performs backtracking, it keeps track of the 

parent sets that have previously been selected with respect to the backtrack point to 

avoid selecting them again, reducing the structure space. Additionally, a limited 

portion of the most-selected parent sets is retained, and it starts the search again with 

a new random ordering when it reaches the limit.  

Recall that there are two backtrack points (see Section 5.3.3.1 for more details); if the 

generated network is inconsistent with the user's prior knowledge, then Algorithm 4 

backtracks to the following: 

- A node in the search tree: Only ancestor relations are considered when the algorithm 

selects a random variable to backtrack. 

- The beginning of the network structure: The first child variable for the particular 

ordering V if no legal value for parent sets can be found for the child variable.  

 

In addition, the constraints in Section 5.3.3.2 play a big role in the HCPK algorithm to 

facilitate generating a network that meets the user’s prior knowledge and ensures that 

the graph will satisfy a given ancestor relation. These constraints are needed to 

generate a network that satisfies a user’s prior knowledge and reduces the structure 

space. Therefore, 

 (user’s Prior knowledge) ×( HCPK) × (Dataset) ≈ a network  that satisfied user’s 

prior knowledge . 
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  Conditional	
  Independence	
  5.3.4

 
Dependencies and independencies are the main issues in a probability distribution. 

Local independencies in Bayesian networks are where each node is independent of its 

non-descendants, given its parents. Global independencies are derived from d-

separation, which helps to ensure that specific sets of independencies (𝐴 ⊥ 𝐵  |  𝑍) hold 

in a distribution, so that a variable  𝐴 is conditionally independent of a particular 

variable 𝐵, given its variable  𝑍. In other words, the observation of 𝐴 changes the 

belief about  𝐵, in the presence of evidence about 𝑍. D-separation is one of the ways 

of detecting conditional independence relations. In d-separation, Koller and Friedman 

(2009) demonstrate that there are three main patterns that illustrate whether two 

variables are independent in the presence of evidence.  

In this section, we investigate incorporating the conditional independence prior 

knowledge into the developed learning algorithm using two different approaches.   
 

5.3.4.1 Restarts	
  and	
  Backtrack	
  Approach	
  

 
Intelligent backtracking often applies when a network structure is inconsistent with a 

constraint. For any single random restart, an algorithm checks for conditional 

independence. For example, take (𝐴 ⊥ 𝐵  |  𝑍)  as the conditional independence prior 

knowledge specified by the user, where 𝐴 is a conditional independent of  𝐵 given   𝑍. 

The algorithm uses the d-Separation algorithm to check for conditional independence, 

and discovers the nodes reachable from 𝐴 given 𝑍 via active trails. If the generated 

network does not meet the user's prior knowledge of conditional independence, the 

backtrack method is applied.  
 
 
In Algorithms 5 and 3, if the current network does not meet the user's prior 

knowledge then the algorithm backtracks to a node in the search tree. Only 

conditional independence active trails are considered when the algorithm selects a 

random variable to backtrack (see Algorithm 5's pseudo-code for details). Meanwhile, 

if no legal value for parent sets can be found for the child variable, this will generate 
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an illegal network structure. As a result, the algorithm backtracks to the beginning of 

the network structure: the first child variable for the particular ordering . In Algorithm 

2, a constraint is needed to help obtain a network that meets this prior. 

• If  𝑍 is current child then {𝐴,𝐵}   ⊄   𝑃! 𝑍  

 

Algorithm 5: Conditional independence 

  
	
  	
  
	
  	
  
	
  	
  
1.	
  
2.	
  
3.	
  
4.	
  
5.	
  
	
  	
  	
  
6.	
  
7.	
  
8.	
  
	
  	
  	
  
9.	
  
10.	
  
11.	
  
12.	
  
13.	
  
14.	
  
15.	
  
16.	
  
17.	
  

𝐑𝐄𝐐𝐔𝐈𝐑𝐄: ordered  variables	
  
𝐑𝐄𝐐𝐔𝐈𝐑𝐄: user′s  prior  knowledge  about  the  child	
  
𝐑𝐄𝐐𝐔𝐈𝐑𝐄 ∶  fromStart,	
  True	
  or	
  False	
  
position   ← 0	
  
  removingListMap   ← [  ]  	
  
  R =   FindReachable(A, Z)  
𝐢𝐟  {  R == True}  

return  {  R  is  DSeparation  algorithm  for  finding  nodes  reachable  	
  
from  A  given  Z  via  active  trails  }	
  

𝒆𝐧𝐝  𝐢𝐟	
  
𝐈𝐅  not  formStart  𝐭𝐡𝐞𝐧	
  

  Backtrack   ←     R List .Random  	
  
{R  is  returned  list  of  active  trails  from  D − Separation  }  

𝒆𝒍𝒔𝒆{  𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔  𝑓𝑟𝑜𝑚  𝑡ℎ𝑒  𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔}	
  
𝐵𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘   ← 𝑎𝑙𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝𝑜𝑠𝑡𝑖𝑜𝑛 	
  

end	
  if	
  
SelectedBacktrack   ← allVariables. indexOf Backtrack   	
  
𝐟𝐨𝐫    i   ← SelectedBacktrack  To  allVariables. size()  𝐝𝐨  

removingListMap. add(i)  
ancestor. remove i ancestor, contains  a  list  of  all  the  children  with  their  ancestors 	
  

𝐞𝐧𝐝  𝐟𝐨𝐫  
Restarts  and  Backtrack allVariables,RemovingList 	
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5.3.4.2 Conditional	
  Independence	
  Checks 

  
To investigate the effect of including conditional independence prior knowledge, we 

used a d-Separation algorithm for each move in the HCPK algorithm. For example, 

take (𝐴 ⊥ 𝐵  |  𝑍) as the conditional independence prior knowledge specified by the 

user, where 𝐴 is a conditional independent of 𝐵 given 𝑍. 

Therefore, for each additional move, the algorithm creates a temporary graph that 

contains the current graph and the possible parent set. It then checks this temporary 

graph for conditional independence. If the possible parent sets do not satisfy the 

conditional independence checks, it is not considered. Using this approach, we 

continue to build the graph by conducting these early checks and, eventually, end up 

with a network that meets the user's prior knowledge. As shown in Figure 15, adding 

the prior knowledge has a positive effect on the learning. In Algorithm 1, a constraint 

is needed to help obtain a network that meets this prior knowledge.  

• If  𝑍 is current child then {𝐴,𝐵}   ⊄   𝑃! 𝑍  

• For each additional move, the algorithm checks the current graph for 

conditional independence; checking that 𝐵 is not reachable from 𝐴 given 𝑍 via 

active trails. 

((𝐴 ⊥ 𝐵  |  𝑍),𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦𝐺𝑟𝑎𝑝ℎ) == 𝑇𝑟𝑢𝑒)  
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Figure 17: Conditional independence prior knowledge. 

The figure shows some runs without prior knowledge and some with user prior 

knowledge (𝟏𝟏 ⊥ 𝟏𝟒  |  𝟔). We plotted the results of the best network found so far 

against the number of restarts. As shown, adding prior knowledge leads to a better 

result: the best network was found at 600, and then a better network was found at 617. 

	
  
In this chapter, we presented an algorithm that can incorporate different types of 

priors to the developed algorithm. This chapter introduced prior information and 

highlighted the differences between hard and soft prior information. Then, how 

different sorts of prior knowledge are incorporated into the developed learning 

algorithms were described. The results of applying the dynamic programming and 

HCPK with prior knowledge to different learning problems are given in the following 

chapter. 
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6 Results And Evaluation  
	
  
 
This chapter presents experiments conducted using a developed algorithm on 

Dynamic Programming and HCPK, with and without prior knowledge. Here is the 

main contribution of this thesis: presenting an algorithm that can incorporate different 

types of prior knowledge to the developed algorithm. Section 6.1 describes the results 

of applying the dynamic programming with prior knowledge to different learning 

problems. Section 6.2 investigates whether our current algorithm can result in a high 

score without prior knowledge and compare it to other existing applications. It then 

describes how different sorts of prior knowledge are incorporated into the developed 

learning algorithms (HCPK).  

In these experiments, we have used different datasets and a random number of runs. 

We have used the datasets available at http://www.cs.york.ac.uk/aig/sw/gobnilp/data. 

In this research, GOBNILP is used to find the optimal networks, and all prior 

knowledge is consistent with the optimal network.  

We have implemented the algorithms described in this thesis and our implementation 

is written in Java programming language. The experiments to be described next were 

run under Windows on an ordinary desktop PC with a 2.4GHz Pentium processor and 

2.0GB of memory. 
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 Dynamic Programming Algorithm  6.1
  

Evaluation of the accuracy of a structure-learning algorithm for this experiment is 

based on a comparison between the output produced by the developed algorithm of 

the dynamic programming and GOBNILP. In this research, GOBNILP is used to find 

the optimal networks, and all prior knowledge is consistent with the optimal network. 

The next section include full details of the result of incorporating different types of 

prior knowledge to the dynamic programming algorithm. 

 

In reference to efficiency, the dynamic programming algorithm was efficient and the 

speed was acceptable because the local scores were sorted in a decreasing order. In 

addition, with prior knowledge, one can often speed up the algorithm. When we do 

the main loop to find the best sinks for sets, if we have prior knowledge, it speeds up 

the algorithm a bit. However, the step involved with finding the best sinks has the 

greatest computational complexity: 𝐵𝐿𝑆 𝑖,𝑈    has complexity 𝑂(𝑛!) . In this 

algorithm, the 𝑓𝑜𝑟  loop for a given  𝑊 ⊂ 𝑉 is called 1 ≤ |𝑊| ≤ 𝑛 times and for each 

of the 2!  subsets of  𝑉. Moreover, each 𝑓𝑜𝑟  loop call also has complexity 𝑂(𝑛!). 

Therefore, the computational complexity of the algorithm is, at worst,𝑂(𝑛!2!). 

 

The dynamic programming algorithm is a good one because if	
   it	
   terminates,	
   it	
  will	
  

return	
   the	
   optimal	
   network. Moreover, if users wish, they can input prior 

knowledge; if they do not have prior knowledge, the algorithm still works. However, 

the problem is that the algorithm has certain limitations by itself. The algorithm is 

limited by the amount of memory, which has to be used. This algorithm is an attempt 

to search for a pedigree of up to approximately 31 individuals. The dynamic 

programming algorithm approach will fail if we have too many variables because it 

will just run out of memory. Another problem is that, in the dynamic programming 

algorithm, we have to compute all of the local scores first, but, if we have many 

variables and we allow variable possibilities in terms of having too many parents, 

then computing the score does not work because there are too many of them. 	
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Here, we show the results of incorporating prior knowledge to the dynamic 

programming to different learning problems. In these experiments, we have used 

different datasets. The results of applying the dynamic programming to different 

learning problems for synthetic data generated by the Asia (8 variables) and Kredit 

(18 variables) networks. For variables more than 30, the execution has stopped 

because the program has run out of available memory.  The score found by the 

developed dynamic programming in Figures 16 to 25.  
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Figure 18:The results of applying the dynamic programming with prior knowledge 

consistent with GOBNILP, arrows which have to be there and known ordering, for 

synthetic data generated by the Asia 100. 

	
  
Figure 19: The results of applying the dynamic programming with prior knowledge 

inconsistent with GOBNILP, arrows which have to be there, for synthetic data 

generated by the Asia 100. 
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Figure	
  20:	
  The results of applying the dynamic programming with prior knowledge 
inconsistent with GOBNILP, known ordering, for synthetic data generated by the 
Asia 100.	
  

	
  
	
  
Figure	
  21:	
  The results of applying the dynamic programming with prior knowledge 
consistent with GOBNILP, arrows which have to be there and known ordering, for 
synthetic data generated by the Asia 1000. 
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Figure	
  22: The results of applying the dynamic programming with prior knowledge 
inconsistent with GOBNILP, arrows which have to be there, for synthetic data 
generated by the Asia 1000. 

	
  

	
  
Figure	
  23:	
  The results of applying the dynamic programming with prior knowledge 
inconsistent with GOBNILP, known ordering, for synthetic data generated by the 
Asia 1000.	
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Figure	
  24:	
  The results of applying the dynamic programming with prior knowledge 
consistent with GOBNILP, arrows which have to be there and known ordering, for 
synthetic data generated by the Asia 10000. 

	
  
Figure	
  25:	
    The results of applying the dynamic programming with prior knowledge 
inconsistent with GOBNILP, arrows which have to be there, for synthetic data 
generated by the Asia 10000. 
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Figure	
  26:	
    The results of applying the dynamic programming with prior knowledge 
inconsistent with GOBNILP, known ordering, for synthetic data generated by the 
Asia 10000. 
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Figure	
  27:	
  The results of applying the dynamic programming with prior knowledge 
consistent with GOBNILP, arrows which have to be there and known ordering, for 
synthetic data generated by the Kredit 10000. 

	
  

Figure	
  28:	
  The results of applying the dynamic programming with prior knowledge 
inconsistent with GOBNILP, arrows which have to be there and known ordering, for 
synthetic data generated by the Kredit 10000. 
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The results of applying the dynamic programming with prior knowledge to different 

learning problems for synthetic data were generated by the Asia, Kredit, insurance, 

Alarm, Carpo, and Diabetes networks. The score of the best network found so far 

against the number of restarts as shown in Figures 16, 19, 22. It shows the results of 

incorporating prior knowledge arrows, which have to be there. With this prior 

knowledge, an arrow can be added to a particular child based on the given parents.  

For datasets, aisa100, asia1000, and aisa10000 (8 variables), it always found the 

optimal network (Please see details in Appendix-A).  

 

Figure 25 shows the results for the dataset Kredit 10000 (18 variables) wherein the 

optimal network was also always found. It also shows the results of incorporating 

prior knowledge arrows, which have to be there, as well as knowing ordering. 

In dynamic programming, prior knowledge consistent with GOBNILP always results 

in the optimal network. Inconsistent prior knowledge has quite a negative effect on 

the learning. As the result shows that if we incorporate inconsistent prior knowledge, 

we get a consistently worse score as shown in Figures 17,18, 20, 21 23, 24, and 26. 

However, if we have inconsistent prior knowledge, sometimes we got a worse 

network. There’s a Bayesian network, which is a Markov equivalent in which the 

GOBNILP found to be consistent with this order. For most networks, there are several 

orderings we can have, and most networks have some Markov equivalent wherein 

they have different ordering. Thus, it is not a big surprise that we can change the 

constraints in the ordering and still get the same score. But, if we specify an ordering 

or parent set that is not in a v-structure, then this will not have beneficial effect on 

learning. For example, from GOBNILP 10→17←16 was a v-structure in a Kredit 

dataset, and if we specify a parent set of a variable where there was not a v-structure, 

then we get a low score. For example, pk9 when a user specifies an ordering 17<10, 

which is 17 comes earlier than 10, then we have a worse score, as it shown in figure 

26. 

Nevertheless, variables more than 30 (insurance, Alarm, Carpo, and Diabetes), the 

execution has stopped because the program has run out of available memory.             
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 HCPK  6.2
	
  
	
  

In this section, we show the results of applying HCPK with random restarts to 

different learning problems for synthetic data. In these experiments, we have used 

different datasets and a random number of runs. We have used the datasets available 

at http://www.cs.york.ac.uk/aig/sw/gobnilp/data. In this research, GOBNILP is used 

to find the optimal networks, and all prior knowledge is consistent with the optimal 

network. In these experiments, Bayesian networks score are averages. The averages 

were taken over four different runs. 

 

	
  
The results of applying HCPK with random restarts to different learning problems 

results in synthetic data generated by the Asia, Kredit, insurance, Alarm, Carpo 

networks, as well as the score of the best network found so far against the number of 

restarts. For datasets, Asia 100, Asia 1000, and Asia 10000 (8 variables), it always 

found the optimal network. Also, for the dataset Kredit 10000 (18 variables), the 

optimal network was always found. 

	
  
To investigate whether our current algorithm can get a high score without prior 

knowledge and compare it to other existing application, we ran three freely available 

programs on nine different datasets. Table 1 shows the comparison between different 

applications, where '1' is the HCPK algorithm  restricted to a maximum of three 

parents per node , '2' is the HCPK algorithm with no restriction on the number of 

parents, 'B8a' is Banjo (Greedy) restricted to a maximum of eight parents, 'B3a' is 

Banjo (Greedy) restricted to a maximum of three parents, 'B8s' is Banjo (SimAnneal) 

restricted to a maximum of eight parents, and ' B3s ' is Banjo (SimAnneal) restricted 

to a maximum of three parents. Also, GOBNILP was restricted to a maximum of 

three parents. However, - indicates the maximum number of states that a variable can 

assume, limited to 7, and * indicates that execution has stopped because the program 

has run out of available memory.                       	
  

	
  

For many cases, simple HCPK gets quite close to the optimal network. Table 1 shows 

that the current algorithm without prior knowledge is generally slightly worse than 
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Banjo. Also, although GOBNILP can find optimal networks on these small examples, 

it will have problems due to the fact that, for example, nodes can have many parents. 

However, our current algorithm does not have this problem and can incorporate 

different sorts of prior knowledge and more complicated knowledge such as ancestor 

information and conditional independence, which cannot be incorporated into local 

scores, thereby leading to a much better network. For bigger datasets, including a 

sample size of 10000 generated from this network, which contains more then 400 

discrete variables (with 10 to 20 levels each) it was hard to use Bnlearn as it requires 

the levels for each variable to be written manually. 

 

Table 1: Comparison software 

 Gobnilp 1 2 B8a B3a B8s B3s Bnlearn 
Alarm_37  -1345.5 -1380.1 -1376.2  -1370.9  -1378.1  -1344.4  -1348.2 -1431.7 
Insurance-27 -1667.9 -1678.2 -1677.1 -1679.1 -1678.6 -1670.7 -1674.9 -1730.4 
Mildew_35  -5968.3 -6420.1 -6420.1 - - - - -6532.8 
Asia_8  -243.6 -243.6 -243.6 -243.6  -243.6  -243.6  -243.6 -248.97 
Carpo_60  -1825.7 -1856.0 -1844.6 -1971.3 -1975.7 -1851.1 -1858.5 -1933.1 
Hailfinder-56  -6019.4 -6021.4 -6019.8 - - - - -6222.5 
kredit -16694.3 -16694.3 -16694.3 - - - - -16804.2 
Pigs-441 * -41980.9 -42003.4 * * * * -43112.5 
Diabetes-413 * -59695.4 -56230.1 - - - -  
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Restarts	
  averaging	
  

	
  
In this section, we show the results of applying HC without incorporating prior 

knowledge, with random restarts to different learning problems for synthetic data.  

	
  
Figure 29: Alarm network without prior knowledge 

 

Figure 27 shows the results of applying HC without prior knowledge with random 

restarts for synthetic data generated by the alarm network when we plot the score of 

the best network found so far against the number of restarts. Each run has 1,000 

random restarts. 
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Figure	
  30:	
  Insurance	
  network	
  without	
  prior	
  knowledge.	
  

Figure 28 shows the results of applying HC without prior knowledge with random 

restarts for synthetic data generated by the Insurance network when we plot the score 

of the best network found so far against the number of restarts. Each run has 1,000 

random restarts.	
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Figure 31: Mildew network without prior knowledge 

	
  
	
  
Figure 29 shows the results of applying HC without prior knowledge for synthetic 

data generated by the Mildew network when we plot the score of the best network 

found so far against the number of restarts and each run has 1,000 random restarts. As 

shown, HC without incorporating prior knowledge always found the same network. 

This is mainly explained by the fact that local scores of different parent sets tend to be 

very similar.  
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Figure 32: Carpo network without prior knowledge. 

	
  
Figure 30 shows the results of applying HC without prior knowledge for synthetic 

data generated by the Carpo network. We plotted the results of the best network found 

so far against the number of restarts. As shown, HC without incorporating prior 

knowledge: the best network was found at 53, and then a better network was found at 

488. 
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 Arrows	
  Which	
  Have	
  To	
  Be	
  There	
  𝑨   ← 𝑩	
  6.2.1
	
  
	
  	
  
With this prior knowledge, an arrow can be added to a particular child based on the 

given parents. A child is selected first, and then a decision is made in terms of which 

parents to add. The HCPK algorithm allows the network for many possible parents to 

be learnt. For example, take 𝐴   ← 𝐵, where 𝐵 must be a parent of 𝐴. Assume that 𝐴 is 

the child specified by the user and that 𝐵  is the parent specified by the user 

knowledge (discussed in section 5.3.2).  

 

With entire parent sets specified, * indicates the child variable where there are v-

structures (Please see Appendix-B for further details). BDe scores of learned 

Bayesian network are mapped against items of prior knowledge. BDe scores of the 

network of our algorithm are found with prior knowledge and without. Adding more 

prior knowledge will have a greater effect on the learning algorithm, which can 

sometimes achieve an optimal network. Also, in terms of the effect of prior 

knowledge for bigger dataset sizes, if users specify the entire parent set, as shown, 

prior knowledge has typically an effect on the learning.  
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Figure	
   33:	
   The results of applying HCPK, arrows which have to be there, for 
synthetic data generated by the Insurance100.  

	
  

Figure	
   34: The results of applying HCPK, arrows which have to be there, for 
synthetic data generated by the Insurance 1000. 
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Figure	
   35:	
   The results of applying HCPK, arrows which have to be there, for 
synthetic data generated by the Insurance 10000.	
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Figure	
   36:	
   The results of applying HCPK, arrows which have to be there, for 
synthetic data generated by the Mildew 100.	
  

	
  
Figure	
   37:	
   The results of applying HCPK, arrows which have to be there, for 
synthetic data generated by the Mildew 1000. 
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Figure	
   38:	
   The results of applying HCPK, arrows which have to be there, for 
synthetic data generated by the Mildew 10000.	
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Figure	
   39:	
   The results of applying HCPK, arrows which have to be there, for 
synthetic data generated by the Alarm 100. 

	
  
Figure	
   40:	
   The results of applying HCPK, arrows which have to be there, for 
synthetic data generated by the Alarm 1000. 
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Figure	
   41:	
   The results of applying HCPK, arrows which have to be there, for 
synthetic data generated by the Alarm 10000.	
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Figure	
   42:	
   The results of applying HCPK, arrows which have to be there, for 
synthetic data generated by the Carpo 100. 

	
  
Figure	
   43: The results of applying HCPK, arrows which have to be there, for 
synthetic data generated by the Carpo 1000. 
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Figure	
   44:	
   The results of applying HCPK, arrows which have to be there, for 
synthetic data generated by the Carpo 10000. 
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For prior knowledge, users can specify entire parent sets, or part of them, with the 

appropriate arrows. If users specify entire parent sets, this has a greater effect on 

learning. It is also interesting to note that specifying a parent set of a variable where 

there was a v-structure had a beneficial effect on learning. If we add more prior 

knowledge, this has a greater effect on the learning algorithm, which sometimes 

achieves the optimal network. 

 Even for larger dataset sizes, if users specify the entire parent set, then prior 

knowledge has an effect on the learning. However, the effect of prior knowledge if 

users specify part of a parent set is similar to the result seen when users specify the 

entire parent set.   
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 Ancestor	
  Relation	
  6.2.2
	
  
This section shows the results of incorporating ancestor relation prior knowledge. For 

example, take the prior knowledge 𝐵 ⇠ 𝐴 which indicates that 𝐴 must be an ancestor 

of 𝐵. Assume that 𝐵 is the specified child by the user and that 𝐴 is the specified 

ancestor by the user (discussed in section 5.3.3). 

	
  
Figure	
   45: The results of applying HCPK, ancestors relation, for synthetic data 
generated by the Insurance 100. 
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Figure	
   46: The results of applying HCPK, ancestors relation, for synthetic data 
generated by the Insurance 1000. 

	
  
Figure	
   47:	
   The results of applying HCPK, ancestors relation, for synthetic data 
generated by the Insurance 10000.	
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Figure	
   48:	
   The results of applying HCPK, ancestors relation, for synthetic data 
generated by the Alarm 100.	
  

	
  

Figure	
   49:	
   The results of applying HCPK, ancestors relation, for synthetic data 
generated by the Alarm 1000. 
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Figure	
   50:	
   The results of applying HCPK, ancestors relation, for synthetic data 
generated by the Alarm 10000. 
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Figure	
   51:	
   The results of applying HCPK, ancestors relation, for synthetic data 
generated by the Mildew 100. 

	
  

Figure	
   52:	
   The results of applying HCPK, ancestors relation, for synthetic data 
generated by the Mildew 1000. 
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Figure	
   53:	
   The results of applying HCPK, ancestors relation, for synthetic data 
generated by the Mildew 10000. 
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Figure	
   54:	
   The results of applying HCPK, ancestors relation, for synthetic data 
generated by the Carpo 100. 
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Figure	
   55:	
   The results of applying HCPK, ancestors relation, for synthetic data 
generated by the Carpo 1000. 

	
  
Figure	
   56:	
   The results of applying HCPK, ancestors relation, for synthetic data 
generated by the Carpo 10000.	
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With respect to ancestor relation, these tables show that prior knowledge typically has 

an effect on learning a Bayesian network (Please see details in Appendix-C). 

However, the algorithm retains records of the selected parent sets for any single 

restart in order to avoid repetition later in the search. Therefore, there is a trade-off 

between the highest scoring network and a network consistent with the user's prior 

knowledge. As a result, it should be noted that learning is less affected by prior 

knowledge for some datasets. 

 In Figure 49, we noticed that ancestor information that is usually beneficial turned 

out not to be in this case. This is primarily explained by the fact that local scores of 

different parent sets tend to be very similar. However, it is more difficult for prior 

knowledge to help us obtain a high-scoring network in any file where the local scores 

tend to be quite similar to each other, such as, for example, mildew datasets.  
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 Conditional	
  Independence	
  6.2.3
	
  
Dependencies and independencies are the main issues in a probability distribution as 

discussed in section 5.3.4. Local independencies in Bayesian networks are where each 

node is independent of its non-descendants, given its parents. Global independencies 

are derived from d-separation, which helps to ensure that specific sets of 

independencies (𝐴 ⊥ 𝐵  |  𝑍) hold in a distribution, so that a variable  𝐴 is conditionally 

independent of a particular variable 𝐵, given its variable 𝑍. In this section, we show 

the result of incorporating the conditional independence prior knowledge into the 

developed learning algorithm using two different approaches.   

	
  
	
  
	
  

6.2.3.1 Conditional	
  independence	
  checks	
  approach	
  

	
  
In this section we show the effect of including conditional independence prior 

knowledge, we used a d-Separation algorithm for each move in the HCPK algorithm. 

Therefore, for each additional move, the algorithm creates a temporary graph that 

contains the current graph and the possible parent set. It then checks this temporary 

graph for conditional independence. If the possible parent sets do not satisfy the 

conditional independence checks, it is not considered. Using this approach, we 

continue to build the graph by conducting these early checks and, eventually, end up 

with a network that meets the user's prior knowledge (discussed in section 5.3.4.2, 

algorithm 4). 
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Figure	
   57:	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Insurance 100. 

	
  
Figure	
   58:	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Insurance 1000. 
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Figure	
   59: The results of applying HCPK, conditional independence, for synthetic 
data generated by the Insurance 10000. 
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Figure	
   60:	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Alarm 100. 

	
  

Figure	
   61:	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Alarm 1000. 
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Figure	
   62:	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Alarm 10000.	
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Figure	
   63:	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Mildew 100. 

	
  
Figure	
   64: The results of applying HCPK, conditional independence, for synthetic 
data generated by the Mildew 1000. 
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Figure	
   65:	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Mildew 10000.	
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Figure	
   66:	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Carpo 100. 

	
  
Figure	
   67:	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Carpo 1000.	
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Figure	
   68:	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Carpo 10000.  
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6.2.3.2 Backtrack	
  approach	
  	
  

	
  
Intelligent backtracking often applies when a network structure is inconsistent with a 

constraint. For any single random restart, an algorithm checks for conditional 

independence. For example, take (𝐴 ⊥ 𝐵  |  𝑍)  as the conditional independence prior 

knowledge specified by the user, where 𝐴 is a conditional independent of  𝐵 given   𝑍. 

The algorithm uses the d-Separation algorithm to check for conditional independence, 

and discovers the nodes reachable from 𝐴 given 𝑍 via active trails. If the generated 

network does not meet the user's prior knowledge of conditional independence, the 

backtrack method is applied (discussed in section 5.3.4.1, algorithm 3).  
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Figure	
   69:	
   	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Insurance 100. 

	
  
Figure	
   70:	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Insurance 1000.	
  



Results	
  And	
  Evaluation	
  	
   146	
  

	
  

	
  

Figure	
   71:	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Insurance 10000. 
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Figure	
   72:	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Alarm 100. 

	
  
Figure	
   73:	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Alarm 1000.	
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Figure	
   74:	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Alarm 10000. 
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Figure	
   75:	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Mildew 100.	
  

	
  
Figure	
   76:	
   	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Mildew 1000. 
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Figure	
   77:	
  The results of applying HCPK, conditional independence, for synthetic 
data generated by the Mildew 10000. 
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The results of incorporating conditional independence prior knowledge, using the 

conditional independence checks approach, are presented in Figures from 55 to 66. 

The results of incorporating conditional independence prior knowledge, using the 

backtrack approach, are presented in Figures from 67 to 75. These results show that 

the effects of prior knowledge when users specify conditional independence 

knowledge, using a backtrack approach and a conditional independence checks 

approach, typically have a positive effect on the learning (Please see Appendix-D for 

further details). 

 

However, using a dataset where the local scores tend to be quite similar to each other, 

such as mildew datasets for size 100, demonstrates that the conditional independence 

prior knowledge has less effect on the learning in both approaches.  

For larger dataset sizes, the conditional independence prior knowledge also has a 

positive effect on the learning in both approaches. 
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 Inconsistent	
  Prior	
  Knowledge	
  6.2.4
	
  
In this research, GOBNILP was used to find the optimal networks, and all prior 

knowledge was consistent with the optimal network. It has demonstrated that 

consistent prior knowledge typically has a positive beneficial effect on the learning 

algorithm, but inconsistent prior knowledge has quite a negative effect on the 

learning. 

 The result shows that if we incorporate inconsistent prior knowledge, we get a 

consistently worse score. Each time we incorporate inconsistent prior knowledge we 

make the search space smaller, and it becomes more difficult for HCPK to find a 

high-score network because the really good high-score networks are ruled out. 

	
  

	
  
Figure	
   78: The results of applying HCPK, inconsistent prior knowledge, for 
synthetic data generated by the Insurance 100.	
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Figure	
   79:	
   The results of applying HCPK, inconsistent prior knowledge, for 
synthetic data generated by the Insurance 1000. 

	
  
Figure	
   80:	
   The results of applying HCPK, inconsistent prior knowledge, for 
synthetic data generated by the Insurance 10000.	
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Figure	
   81: The results of applying HCPK, inconsistent prior knowledge, for 
synthetic data generated by the Alarm 100. 

	
  
Figure	
   82:	
   The results of applying HCPK, inconsistent prior knowledge, for 
synthetic data generated by the Alarm 1000.	
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Figure	
   83:	
   The results of applying HCPK, inconsistent prior knowledge, for 
synthetic data generated by the Alarm 10000. 

  



Results	
  And	
  Evaluation	
  	
   156	
  

	
  
Figure	
   84:	
   The results of applying HCPK, inconsistent prior knowledge, for 
synthetic data generated by the Mildew 100. 

	
  
Figure	
   85:	
   	
   The results of applying HCPK, inconsistent prior knowledge, for 
synthetic data generated by the Mildew 1000. 
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Figure	
   86:	
   The results of applying HCPK, inconsistent prior knowledge, for 
synthetic data generated by the Mildew 10000.	
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 Learning	
  Bigger	
  problems	
  	
  6.2.5
	
  
In section 6.2, we compared our current algorithm to other existing applications, 

running three freely available programs on nine different datasets. Table 1 shows the 

comparison between different applications such as Banjo, GOBNILP and Bnlearn, to 

HCPK. 

However, for bigger problems such as Diabetes and Pigs datasets, the applications 

execution has stopped that, mainly because the maximum number of states that a 

variable can assume is limited to 7, or it runs out of available memory.    While, our 

current algorithm without prior knowledge for bigger problems has been solved, for 

many cases, the simple HCPK gets quite close to the optimal network. 

 

Also, although some applications can find optimal networks on these small examples, 

it will have problems due to the fact that, for example nodes can have many parents’ 

sets. However, HCPK does not have this problem and can incorporate different sorts 

of prior knowledge and more complicated knowledge, such as ancestor information 

and conditional independence, which cannot be incorporated into local scores, thereby 

leading to a much better network, as it shown in Figures 85 to 90.  
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Figure	
   87:	
   The results of applying HCPK, arrows which have to be there, for 
synthetic data generated by the Diabetes.	
  

	
  
Figure	
   88:	
   The results of applying HCPK, ancestor relation, for synthetic data 
generated by the Diabetes.	
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Figure	
   89:	
   	
  The results of applying HCPK, conditional independence checks, for 
synthetic data generated by the Diabetes.	
  

	
  

	
  
Figure	
   90:	
   The results of applying HCPK, arrows which have to be there, for 
synthetic data generated by the Pigs. 
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Figure	
   91:	
   The results of applying HCPK, ancestor relation, for synthetic data 
generated by the Pigs. 

	
  
Figure	
   92:	
   The results of applying HCPK, conditional independence checks, for 
synthetic data generated by the Pigs.  
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 The execution of HCPK 6.2.1
 

A summary of the timing results of the execution of HCPK algorithm is in Table 2. 

We summarise the time of HCPK algorithm, which shown in '100', '1000', and '10000' 

columns and displays the time in seconds. 

We summarise the time of HCPK algorithm using different sorts of prior knowledge, 

which shown in Tables 3, 4 and 5, and displays the time in seconds. 

	
  
Table 2: Time of HCPK algorithm 

Datasets Number 
of 
variables 

 100 1000 10000 

Asia 8 0 0 2 
Insurance 27 1 5 43 
Water 32 2 8 68 
Mildew 35 2 10 96 
Alarm 37 2 12 92 
Hailfinder 56 5 30 277 
Carpo 60 8 44 359 
Diabetes 413 2420 >6 Hours >6 Hours 
Pigs 441 2567 >6 Hours >6 Hours 
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Table	
  3:	
  Time of HCPK algorithm, using prior knowledge, for synthetic data 
generated by the insurance.	
  

 

 

	
  
	
  

Insurance_100 Insurance_1000 Insurance_10000 
Pk 1 arrows which have to 
be there  

1 Pk 1 arrows which have to 
be there  

4 Pk 3 arrows which have to 
be there  

40 

Pk 2 arrows which have to 
be there  

1 Pk 2 arrows which have to 
be there  

4 Pk 4 arrows which have to 
be there  

40 

Pk 3 arrows which have to 
be there  

1 Pk 4 arrows which have to 
be there  

4 Pk 5 arrows which have to 
be there  

40 

Pk 4 arrows which have to 
be there  

1 Pk 5 arrows which have to 
be there  

4 Pk 1 arrows which have to 
be there  

41 

Pk 5 arrows which have to 
be there  

1 Pk 5 ancestor relation 4 Pk 2 arrows which have to 
be there  

42 

Pk1 ancestor relation 1 Pk 3 arrows which have to 
be there  

5 Pk 1 ancestor relation 42 

Pk3 ancestor relation 1 Pk 1 ancestor relation 5 Pk 2 ancestor relation 42 
Pk1 backtrack approach 1 Pk 2 ancestor relation 5 Pk 4 ancestor relation 42 
Pk2 backtrack approach 1 Pk 3 ancestor relation 5 Pk 5 ancestor relation 42 
Pk3 backtrack approach 1 Pk 4 ancestor relation 5 Without 43 
Pk4 backtrack approach 1 Pk1 backtrack approach 5 Pk1 backtrack approach 46 

Pk5 backtrack approach 1 Pk2 backtrack approach 5	
   Pk 1  conditional 
independence checks 

46 

Pk 1  conditional 
independence checks 

1	
   Pk3 backtrack approach 5	
   Pk3 backtrack approach 47 

Pk2  conditional 
independence checks 

1	
   Pk4 backtrack approach 5	
   Pk4 backtrack approach 47 

Pk2  conditional 
independence checks 

1	
   Pk5 backtrack approach 5	
   Pk5 backtrack approach 47 

Pk3conditional 
independence checks 

1	
   Pk 1  conditional 
independence checks 

5	
   Pk2  conditional 
independence checks 

47 

Pk4  conditional 
independence checks	
  

1	
   Pk2  conditional 
independence checks	
  

5	
   Pk2  conditional 
independence checks	
  

47 

Pk5  conditional 
independence checks	
  

1	
   Pk2  conditional 
independence checks	
  

5	
   Pk3conditional 
independence checks	
  

47 

Pk2 ancestor relation	
   2	
   Pk3conditional 
independence checks	
  

5	
   Pk5  conditional 
independence checks	
  

47 

Pk4 ancestor relation	
   2	
   Pk4  conditional 
independence checks	
  

5	
   Pk2 backtrack approach	
   48 

Pk5 ancestor relation	
   2	
   Pk5  conditional 
independence checks	
  

5	
   Pk4  conditional 
independence checks	
  

48 

Without 1 Without 5 Pk 3 ancestor relation 74 
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Table	
   4:	
   Time of HCPK algorithm, using prior knowledge, for synthetic data 
generated by the Mildew.	
  

 

 

Mildew _100 Mildew _1000 Mildew _10000 
Pk 1 arrows which have to 
be there  

 
2 

Pk 5 arrows which have to 
be there  

  Pk 3 arrows which have to 
be there  

 90 

Pk 2 arrows which have to 
be there  

 
2 

Pk 1 arrows which have to 
be there  

 9 Pk 5 arrows which have to 
be there  

 91 

Pk 3 arrows which have to 
be there  

 
2 

Pk 2 arrows which have to 
be there  

 9 Pk 4 arrows which have to 
be there  

 92 

Pk 4 arrows which have to 
be there  

 
2 

Pk 3 arrows which have to 
be there  

 9 Pk 1 arrows which have to 
be there  

 93 

Pk 5 arrows which have to 
be there  

 
2 

Pk 4 arrows which have to 
be there  

 9 Pk 2 arrows which have to 
be there  

 93 

Pk4 ancestor relation 2 Pk3  conditional 
independence checks 

9 Pk 1  conditional 
independence checks 

93 

Pk1 backtrack approach 2  Pk4  conditional 
independence checks 

9 Pk3  conditional 
independence checks 

93 

Pk2 backtrack approach 2 Pk2 ancestor relation  
10 

Pk4  conditional 
independence checks 

93 

Pk3 backtrack approach 2 Pk3 ancestor relation  
10 

Pk5  conditional 
independence checks 

93 

Pk4 backtrack approach 2 Pk2 backtrack approach  
10 

Pk1 backtrack approach  94 

Pk5 backtrack approach 2 Pk3 backtrack approach  
10 

Pk2 backtrack approach  94 

Pk 1  conditional 
independence checks 

2 Pk4 backtrack approach  
10	
  

Pk3 backtrack approach  94 

Pk2  conditional 
independence checks 

2	
   Pk5 backtrack approach  
10	
  

Pk4 backtrack approach  94 

Pk3  conditional 
independence checks 

2	
   Pk 1  conditional 
independence checks 

10	
   Pk1 ancestor relation 96 

Pk4  conditional 
independence checks 

2	
   Pk2  conditional 
independence checks 

10	
   Pk2 ancestor relation  96 

Pk5  conditional 
independence checks 

2	
   Pk5  conditional 
independence checks 

10	
   Pk3 ancestor relation  96 

Without	
   2 	
   Without	
    
10	
  

Pk4 ancestor relation	
    96 

Pk3 ancestor relation	
   6	
   Pk1 backtrack approach	
    
11	
  

Pk5 backtrack approach	
   96 

Pk1 ancestor relation	
    
7	
  

Pk1 ancestor relation	
   20	
   Pk2  conditional 
independence checks	
  

96 

Pk2 ancestor relation	
    
7	
  

Pk4 ancestor relation	
   21	
   Without	
   96 

Pk5 ancestor relation 7 Pk5 ancestor relation 22 Pk5 ancestor relation 177 
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Table	
   5:	
   Time of HCPK algorithm, using prior knowledge, for synthetic data 
generated by the Alarm.	
  

 

 

	
  

Alarm_100 Alarm_1000 Alarm_10000 
Pk 1 arrows which have to 
be there  

2 Pk 1 arrows which have to 
be there  

 
11 

Pk 1 arrows which have to 
be there  

 87 

Pk 2 arrows which have to 
be there  

 
2 

Pk 2 arrows which have to 
be there  

 
11 

Pk2 ancestor relation  88 

Pk 3 arrows which have to 
be there  

2 Pk 3 arrows which have to 
be there  

 
11 

Pk 3 arrows which have to 
be there  

 90 

Pk 4 arrows which have to 
be there  

 
2 

Pk 4 arrows which have to 
be there  

 
11 

Pk 5 arrows which have to 
be there  

 90 

Pk 5 arrows which have to 
be there  

2 Pk 5 arrows which have to 
be there  

 
11 

Pk 2 arrows which have to 
be there  

 91 

Pk1 ancestor relation 2 Pk4 ancestor relation  
11 

Pk 4 arrows which have to 
be there  

 91 

Pk3 ancestor relation  
2 

Pk5 ancestor relation  
11 

Without 92 

Pk4 ancestor relation  
2 

Pk1 backtrack approach  
12 

Pk1 ancestor relation  93 

Pk1 backtrack approach 2  Pk2 backtrack approach  
12 

Pk3 ancestor relation  93 

Pk2 backtrack approach  
2 

Pk3 backtrack approach  
12 

Pk3 backtrack approach  
100 

Pk3 backtrack approach 2  Pk4 backtrack approach  
12 

Pk4 backtrack approach  

100 

Pk4 backtrack approach  
2 

Without 12	
   Pk5 backtrack approach 100 

Pk5 backtrack approach 2 	
   Pk5 backtrack approach 13	
   Pk 1  conditional 
independence checks 

100 

Pk 1  conditional 
independence checks 

2	
   Pk 1  conditional 
independence checks 

13	
   Pk1 backtrack approach 101 

Pk2  conditional 
independence checks 

2 	
   Pk2  conditional 
independence checks 

13	
   Pk2 backtrack approach 101 

Pk3  conditional 
independence checks 

2	
   Pk3  conditional 
independence checks 

13	
   Pk2  conditional 
independence checks 

103 

Pk4  conditional 
independence checks	
  

2 	
   Pk4  conditional 
independence checks	
  

13	
   Pk3  conditional 
independence checks	
  

103 

Pk5  conditional 
independence checks	
  

2	
   Pk5  conditional 
independence checks	
  

13	
   Pk5  conditional 
independence checks	
  

103 

Without	
   3	
   Pk1 ancestor relation	
   19	
   Pk4  conditional 
independence checks	
  

104 

Pk2 ancestor relation	
   4	
   Pk3 ancestor relation	
   20	
   Pk4 ancestor relation	
   180 

Pk5 ancestor relation 4 Pk2 ancestor relation 26 Pk5 ancestor relation 190 
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When users specify the parent set, prior knowledge typically has a positive effect on 

the learning by achieving a high-scoring network and speeds up the learning process. 

For example, recall the timing execution of HC without prior knowledge in Table 1 

for Insurance 1000 dataset, it is 5 seconds. In contrast, when the user specifies the 

parent sets with prior knowledge 21←2,12 for Insurance 1000 dataset, the timing 

results of the execution of HCPK is 4 seconds.  

 

In the backtrack approach for a single restart, we backtrack until the user's prior 

knowledge is satisfied. HCPK constraints are given to generate a network that meets 

this prior knowledge (as discussed in section 5.3.3.2). Therefore, sometimes HCPK 

does not need to backtrack as it generates a network that meets this prior knowledge.  

However, if backtracking is preformed, then the timing of the execution can 

sometimes take longer than without prior knowledge, as we need to backtrack to a 

node in the search tree. 

For example, when the user specifies the ancestor relation prior knowledge 11⇠22 for 

Insurance 1000 dataset, the timing results of the execution of HCPK algorithm using 

the backtrack approach is 8 seconds. Although the timing of the execution can 

sometimes take longer than without prior knowledge (5 seconds), it satisfies the user’s 

prior knowledge. Whilst it is not difficult to check whether a particular ancestor 

relation is there, it is difficult to ensure that the graph we are building will satisfy a 

given ancestor relation. Ancestor relation prior knowledge typically has a positive 

effect on learning a Bayesian network.  
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In the conditional independence checks approach for a signal restart, we continue to 

build the graph by conducting these early checks for conditional independence and, 

eventually, end up with a network that satisfies the user's prior knowledge. While 

using the backtrack approach for a signal restart, we backtrack until the user's prior 

knowledge is satisfied. For example, when the user specifies the conditional 

independence prior knowledge 18⊥ 16|  15 for Insurance 1000 dataset, the timing 

results of the execution of HCPK algorithm, using the conditional independence 

checks approach, is 5 seconds, whereas, the timing results of the execution of the 

HCPK algorithm, using the backtrack approach, is 8 seconds. 

 

Therefore, the conditional independence checks approach achieved faster 

performance than the backtrack approach so in bigger problems in this thesis, we used 

the conditional independence checks approach. 
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 True	
  network	
  6.2.2
	
  
In this section we compare the structure of the generated network by HCPK and the 

true networks. We measure the edges’ differences between the true network and the 

learned network using the structural hamming distance (SHD) algorithm. Moreover, it 

computes the SHD between two network structures, which is the minimal number of 

edge additions, edge deletions, and edges reversals required to convert one network 

structure to another network structure. In this experiment, we used SHD from Bnlearn 

to compare two different Bayesian networks. In this approach each DAG is converted 

to a partially directed graph (PDAG), which represents the Markov equivalence class 

for the DAG. The SHD is then computed on the PDAGs not the original DAGs. 

Tsamardinos defined SHD as, ‘Algorithms that return a DAG are converted to the 

corresponding PDAG before calculating this measure’ (Tsamardinos et al., 2006). See 

algorithm 6 for computing the SHD.  

. 

Algorithm 6: SHD Algorithm 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

SHD(  Learned  PDAG  H,True  PDAG    G) 

Shd = 0 

𝐟𝐨𝐫  every  edge  E  diferent  in  H  than  G  𝐃𝐨   

𝐢𝐟  E  is  missing  in  H  𝐭𝐡𝐞𝐧 

shd+= 1 

end if 

𝐢𝐟  E  is  extra  in  H  𝐭𝐡𝐞𝐧 

shd+= 1 

end if 

𝐢𝐟  E  is  incorrectly  oriented  in  H  𝐭𝐡𝐞𝐧 

shd+= 1 

end if 

end for 
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Tables 6, 7 and 8 shows the comparison between the structure of the generated 

network by HCPK and the true networks. The symbol + indicates that prior 

knowledge is consistent with the true network, While symbol * indicates that prior 

knowledge is inconsistent with the true network but consistent with the optimal 

network. 

Table 6: The comparison between the structure of the generated network by HCPK 
and the true networks synthetic data generated by the Insurance. 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
   	
  

Insurance_100 Insurance_1000 Insurance_10000 

+19⇠17 35 Optimal 30 Optimal 12 

*1←24 36 +23⇠4 33 +4 ⊥ 5  |  ∅   28 

+23←11,22 36 +13⇠0 33 +13←12,2 31 

*4←7 36 +21←2,12 34  +14←4,6 32 

+13←2,12 37 *11⇢22 36 +11 ⊥ 21  |  1 33 

+23⇠6 37 +23←11,22 37 +10 ⊥ {4,6}  |  9 33 

+8⇠1 37 +22 ⊥ 20|  1  37 + 23←11,22  35 

+18⇠15 38 +3⊥ 26|  15  37  +26←15 36 

+17←7,16 39 +16←11,15 38 +17←7,10,16 37 

*24←15 39 + 16⇠15 38  *10 ⇠ 9 37 

*0←3,25 39 *1⊥ {2,12}|  4  39 +21⇠0 39 

+14←4,6 39 +6←1  39 * 0←1,25 40 

+7⇠6 39 +14←4,6 40 +7⇠1 40 

*5⊥7|26  39 +13←2,12 40  *24⇠5 40 

*13 ⊥ 21  |12  39 *0⇠4 41 +24←15,23 41 

*1 ⊥ 11  |  6 39 *5←7 43 *25 ⊥ 5  |  6 41 

Optimal  42 *18⊥ 16|  15  44 *12 ⊥ 15|  13   41 

+  5 ⊥ 10  |  ∅  45 *14⊥ 16|  10  44  +8←1,2 42 

*11 ⊥ 14  |  6  46 +9←1,2 45 +5 ⊥ 6  |  ∅   45 

*16 ⊥18,20|15  46 Without 45 *26⇠15 46 

Without 48 *11←6,22 46  Without 46 
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Table 7: The comparison between the structure of the generated network by HCPK 
and the true networks synthetic data generated by the Alarm. 

Alarm_100 Alarm_1000 Alarm_10000 
+15←10  39 Optimal  18 Optimal  2 
+ 25⊥36 | 24  39 + 0 ⊥ 15  |  10 29 +24←22,23 32 

+ 1 ⊥ 3  |  0   40 +32⇠18 30 +28←17,27 33 

+13←9,12,23 41 +8←2,3,7 32 -21←10,11 33 
+17←16+ 41 +0 ⊥ 7  |  2   32 + 1←0 36 
* 6⇠7 41 +7←5,6 33 +24⇠23 36 

+13⇠10 41 +18⇠10 34 +26⇠23 36 

+{26,6} ⊥ 34  |  23  41 *2⇠3 34 +{8,7} ⊥ 9  |  3    37 

Optimal  42 +17⇠16 35 +10←3,8 38 

*6←5,7,27 42 +10 ⊥ 11  |  ∅  36  *9←0,3 41 
+31 ⊥ 1  |  0  42 +8 ⊥ {25,14}  |  2  36 +10⇠3 41 

*  8 ⊥ 31|7 42 +27←19,26 37 +15←10 46 
+33←3,8 43 +0←1 37 +9 ⊥ 1  |  0    46 
+36⇠24 43 +35←19,20 37 +34 ⊥ {24,26}  |  23    46 

+35←19,20 44 +13←9,12 37 +5 ⊥ 6  |  ∅    46 
* 22⇠16 44 +31 ⊥ 24  |  25  37 +17⇠16 47 

+ 33⇠8 44 +3 ⊥ 7  |  ∅    37 +27←19,26 49 

+35 ⊥ 24  |  25  44 +3 ⊥ {12,14}  |  10 39 +4⇠5 49 

* 26⊥16 | ∅ 44 +19←18,34 40 +17 ⊥ 15  |  ∅   49 

* 23←24,26 45 +{2,3} ⊥ 11  |  ∅  40 +12←10,11 50 
+12←10,20,21 46 +29←8,15 42 +18⇠10 50 

* 2←16,28, 46 *20⇠3 42 +19 ⊥ 29  |  18  52 

*3←0,9 46 +25 ⊥ 23  |  24  42 +0 ⊥ 3  |  ∅  54 
+25⇠24 46 +10⇠7 43  *4←5 56 

+{16,14}⊥3 | 9  46 *21⇠34 43 +28⇠27 56 

*22⇠24 47 +6 ⊥ 31  |  7  43 Without 57 

*29⇠8 48 *20←9 46 +31⇠3 57 

Without 49 Without 49 +7 ⊥ 4  |  5  57 
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Table 8: The comparison between the structure of the generated network by HCPK 
and the true networks synthetic data generated by the Mildew. 

Mildew _100 Mildew _1000 Mildew _10000 

+33←23,27,32 42 +33⇠31 32 Optimal  24 

+27←23,24,26 43 *0←11 33 +21←20  29 

+14←9 44 +3←1,2 33 +13 ← 8, 12  30 

+30←13,29 44 +20⇠1 33 +21⇠20 30 

+31←14 44 +9⇠1 33 +24⇠20 31 

+32←31 44 +1⊥2 | φ  33 +32←28,31 32 

*23⊥{26, 24} | φ  44 *15←17 34 +8←2,4 34 

*0⇠11 44 +9←3 34 +20←3,19 35 

*3⇠9 44 Optimal  36 +1⊥25 | 9 35 

+34⇠33 44 +23←9 36 *34←14 36 

+31⇠14 44 +17⇠15 41 +27⇠9 36 

+32⇠31 44 +2⊥26 | 14      42 *5←7 37 

+  19⊥15 | 17 44 *30←13,29 43 +30⇠12 38 

 +14⊥32 | 31  44 +26←14 43 +{1,3}⊥{25,26} | 14 38 

*14⊥21 | 9  44 +8←2,4 43 +28⊥31 | φ  38 

Without 44 +13⊥29 | φ  43 +9 ← 3, 8  39 

*4←8,27,34 46 +1⊥20 | 3 43 +30 ← 13, 29  39 

*4←8,27,34 46 Without 44 Without 39 

+  1⊥6 | φ  46 *4⇠31 44 +8⊥12 | φ  39 

+  22⊥3 | 9  46 *8⇠13 45 +33⇠14 40 

*2←20,26,33 47 *{3,9}⊥22 | 23      45 *0⊥10 | 11 40 

+33⇠32  49 *27←14 46 *16⊥15 | 17 41 

Optimal  63 *0⊥10 | 11 46 *10⇠11 47 
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We measure the edges’ difference between the true network and the learned network 

using the SHD algorithm. The optimal network and the true network are quite close, 

but not quite the same, which helps our algorithm to get close to the true network. 

However, it is not surprising that, as the amount of data increases, the optimal 

network is closer to the true network. We learn the Bayesian network model from the 

data, and, as we have more data, there is a better chance of finding the true network. 

Moreover, if we do not have much data, it is challenging to learn what the true 

network is. Usually, adding prior knowledge gives us slightly fewer arrows. 

Occasionally, the algorithm performs worse without prior knowledge. Interestingly, 

with bigger datasets, we get bad results without prior knowledge but better ones with 

prior knowledge. Such consistent prior knowledge, working with the optimal network, 

which itself is quite close to, but not the same as, the true network, also achieves a 

better result. For the dataset 100, adding prior knowledge typically has a greater effect 

on the learning algorithm, as it gets closer to the true network than the optimal. 

Generally, when adding prior knowledge, either it is consistent with the optimal 

network or the true network helps the algorithm to generate a more accurate network. 

Circumstances in which the number of data points has increased have become more 

prevalent.  

In terms of GOBNILP, when the data are not too large, GOBNILP finds the optimal 

network, but for bigger datasets, it will fail. For large problems, learning the Bayesian 

network model from data is NP-hard. We know that, if the problem is too large, there 

is difficulty in finding the optimal network. Therefore, we had to look for an 

alternative approach for big cases, and hill-climbing is a good place to start from. 

Although on these particular datasets, GOBNILP finds the optimal networks, there are 

other datasets where it cannot work. Also, in previous cases, where GOBNILP limited 

the parents to three, it worked well, as the true network had three parents as well. 

However, if we have a problem where variables have, for example 10 parents, 

GOBNILP will not find them. Adding prior knowledge to HCPK is helpful, but it still 

cannot find an accurate network as GOPNILP, and this is primarily because of the 

greedy nature of the hill-climbing approach. Additionally, there is not enough data to 

identify the true network.  



Results	
  And	
  Evaluation	
  	
   173	
  

As learning Bayesian networks is NP-hard and these exact learning approaches will 

not scale to bigger datasets, GOBNILP is not the answer to all problems because of 

scalability issues. Thus, we have to use an approximate approach and a greedy 

approach such as hill climbing. Consequently, we need to explore improvements to 

hill climbing. Our current HCPK deals with bigger problems. 

In these experiments, we measure the edges’ difference between the true network and 

the learned network, using the SHD algorithm for 1,000 restarts. For example, in 

Table 6 for Insurance 100 datasets with prior knowledge 23←11,22, the Bayesian 

network score is -1700.83, and for the first restart, the difference between the true 

network and the learned network is 53. After 10 restarts, a better score was found -

1700.83, with the difference here being 46. After 1000 restarts, the Bayesian network 

score was -1691.65 and the difference between the true network and the learned 

network is 36. Finding the optimal solution thus becomes a question of using enough 

iteration on the data as we get close to the true network.  

This chapter reviewed the research thesis objectives and results. The contributions 

that this research has made were emphasised, and experiments conducted using the 

developed algorithm on dynamic programming and HCPK were presented, with and 

without prior knowledge,  while future work is given in the following chapter.  
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7 Conclusions and future work 
	
  
	
  
This chapter summarises the content of this thesis and highlights its main 

contributions. It also points out the different directions that could be followed in order 

to extend these contributions.  

 
The thesis started by providing the necessary background for graphical models. 

Bayesian networks and Markov networks were then explained, and the Bayesian 

estimation of a probabilities approach was also described. Thereafter, Bayesian 

structure learning was then introduced. Firstly, the constraint-based, score-based, and 

Bayesian model averaging approaches were explained. Then, the thesis went into 

detail about Bayesian structure learning approaches and applications, following this 

with approaches that incorporate prior information. The theoretical limits of learning 

Bayesian networks were discussed. 

The thesis proposed algorithms for Bayesian network structure learning, which is 

described as an optimisation problem. A search-and-score approach was followed, 

which built upon a hill-climbing algorithm and using the Bayesian Dirichlet 

likelihood equivalence (BDe) as a scoring metric. This thesis presented a hill-

climbing algorithm with prior knowledge (HCPK), a heuristic search, which makes 

local moves that lead to a locally scored-maximal Bayesian network. The HCPK 

algorithm is intended to enable users to express their knowledge of a variety of 

problems in a straightforward manner.  

The direction taken by this thesis was the combination of ideas from both the 

backtrack approach and HC. We demonstrated how to investigate the effect of 

including ancestor relations prior knowledge via combining the backtrack approach 

with the HCPK algorithm. In addition to this, we investigated how to develop an 

approach that builds upon a hill-climbing algorithm and d-Separation algorithm, 

which was used to investigate the effect of including conditional independence prior 

knowledge (aside from the backtrack approach). We also showed a comparison of the 

effects of prior knowledge when users specify conditional independence knowledge, 
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using the backtrack approach and the developed conditional independence checks 

approach. 

 
The results of these studies point the way to further directions that could be pursued. 

For instance, to incorporate conditional independence prior knowledge, we used the 

backtrack approach. The algorithm uses the d-Separation algorithm to check for 

conditional independence, and discovers the nodes reachable from given active trails. 

If the generated network does not meet the user's prior knowledge of conditional 

independence, the backtrack method is applied. Only conditional independence active 

trails are considered when the algorithm selects a random variable to backtrack. 

A further direction could be taken using the approach suggested by Tian, Paz and 

Pearl (1998), who noted the problem of finding a minimal separator in Bayesian 

networks. Therefore, in the future, we should investigate this interesting direction 

with a view to finding a set of nodes that separates a given pair of nodes such that no 

suitable subset separates that pair. 

 

In this research, we aimed to keep the hill-climbing as simple as possible to 

investigate the effect of different sorts of prior knowledge. If we start with an empty 

graph, then it is possible to construct any Bayesian network by adding edges. 

Moreover, in this research, we explored the difference between this particular 

algorithm and the same algorithm with prior knowledge. The local moves in this 

algorithm are the addition of an edge. Thus, in future work, we will also examine in 

more detail the results of prior knowledge in a less greedy search approach by adding, 

deleting and reversing an edge. In addition, another possible direction for future work 

is adopting a simulated annealing approach, which finds a good solution to an 

optimization problem where we can avoid getting stuck at local maxima. However, 

while these solutions tend to be better than any others nearby, they are typically not 

optimal. 
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Hill climbing does not have computational space issues as it looks only at the current 

state. Hill climbing’s main source of computational complexity emerges from the 

time required to explore the problem space. HCPK with Random-restart can, in 

theory, reach optimal solutions within polynomial time for most problem spaces. 

However, for some NP-complete problems, the number of local maxima can be the 

cause of exponential computational time to find an optimal solution. Hence, further 

investigation needs to be carried out to increase the performance of HCPK, which 

finds a good solution to an optimization problem.  
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Appendix A 
  

Table 9: The results of applying the dynamic programming with prior knowledge, 
arrows which have to be there, for synthetic data generated by the Asia. 

Asia_100 Asia _1000 Asia _10000 
Optimal  -245.64 Optimal   -2317.41 Optimal  -22466.39 
Without -245.64   Without  -2317.41 Without -22466.39 

Prior knowledge consistent with GOBNILP 
0←2 -245.64 0←2 -2317.41 0←2 -22466.39 
1←0,4 -245.64 1←0 -2317.41 1←0 -22466.39 
3←4 -245.64 4←0,3 -2317.41 3←4 -22466.39 
5←1,4 -245.64 4←0 -2317.41 5←1 -22466.39 
6←1 -245.64 4←3 -2317.41 6<-5 -22466.39 
7←2 -245.64 7←2 -2317.41 7<-2 -22466.39 

Inconsistent prior knowledge with GOBNILP 
1←6 -245.65 1←5 -2318.53 5←0 -22472.05 
5←6 -245.65 5←6 -2318.53 4←0,5 -22474.39 
5←6,4 -245.65 5←0 -2319.45 7←4 -22475.19 
1←6 -245.65 4←6 -2319.92 7←1 -22475.19 
4←5 -245.65 0←6 -2322.29 5←2 -22476.64 
4←1,5 -245.79 6←0 -2322.29 0←6 -22477.27 
0←1,7 -247.28 5←2,7 -2324.43 5←2,7 -22477.60 
0←6 -247.74 6←7 -2329.05 1←2,5 -22478.55 
1←0,6 -247.74 1←7,6 -2333.12 2←6,7 -22479.91 
5←0,6 -247.74 0←7 -2335.26 6←7 -22481.51 
6←0 -247.74 0←7,5 -2335.26 1←7 -22484.05 
7←0 -248.51 2←7,0 -2335.26 0←7 -22495.82 
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Table 10: The results of applying the dynamic programming with prior knowledge, 
known ordering, for synthetic data generated by the Asia. 

Asia_100 Asia _1000 Asia _10000 
Optimal  -245.64 Optimal   -2317.41 Optimal  -22466.39 
Without -245.64   Without  -2317.41 Without -22466.39 

Prior knowledge consistent with GOBNILP 
2<0 -245.64  3<5 -2317.41 5<6 -22466.39 
0<1 -245.64  2<7 -2317.41 0<5 -22466.39 
1<6 -245.64  0<7 -2317.41 2<7 -22466.39 
5<6 -245.64  1<5 -2317.41 0<7 -22466.39 
2<7 -245.64  3<6 -2317.41 1<6 -22466.39 
0<5 -245.64  2<1 -2317.41 2<0 -22466.39 

Inconsistent prior knowledge with GOBNILP 
1<4 -245.65 4<0 -2317.66 5<4  22468.53 
1<0 -245.65 6<1 -2318.53 5<1 -22468.53 
5<0 -245.65 6<5 -2318.53 6<1 -22468.53 
6<0 -245.65 6<4 -2318.53 6<5  22468.53 
6<4 -245.65 7<5 -2322.58 7<0 -22473.62 
5<4 -245.65 7<2 -2323.56 7<5 -22475.19 
5<7 -245.64 6<7 -2317.41 6<7 -22466.39 
3<2 -245.64 2<5 -2317.41 2<0 -22466.39 
6<7 -245.64 4<1 -2317.41 4<3 -22466.39 
3<1 -245.64 3<2 -2317.41 0<5 -22466.39 
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Table 11: The results of applying the dynamic programming with priors knowledge, 
known ordering and arrows which have to be there, for synthetic data generated by 
the Kredit. 

	
  
	
  
	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

 

	
   	
  

Kredit 10000 
Prior knowledge consistent with GOBNILP 

Arrows which have to 
be there  

Arrows which have to 
be there  

 Ordering  BNs score 

0←4 0←12 13<0 -16695.66 
1←10,17 1←0 12<1 -16695.66 
2←15 2←0 15<9 -16695.66 
4←14 4←0 14<11 -16695.66 
5←4 5←14 16<17 -16695.66 
8←5 8←17 6<10 -16695.66 
9←15 9←5 0<12 -16695.66 
10←7 10←12 5<14 -16695.66 
11←14 11←2 8<4 -16695.66 
12←0 12←9 4<1 -16695.66 
14←13 14←16 9<5 -16695.66 
15←14 15←7 3<5 -16695.66 
17←4 17←10,16 11<1 -16695.66 

Inconsistent prior knowledge with GOBNILP 
Arrows which have to 
be there  

 BNs score   Ordering  BNs score 

10←8 -16696.48 15<12 -16695.66 
1←10 -16697.11 14<10 -16695.66 
17←15 -16697.36 12<15 -16695.66 
10←17 -16698.00 10<8 -16695.66 
17←12 -16701.41 7<12  -16695.66 
16←17 -16701.89 16<17 -16695.66 
14←10 -16709.24 11<6 -16695.66 
15←12 -16710.25 9<12 -16695.66 
12←15 -16710.25 17<16 -16697.36 
10←16 -16714.73 17<10 -16698.00 



Appendix	
  B	
  	
   180	
  

Appendix B 
	
  
	
  
Table 12: The results of applying HCPK, arrows which have to be there, for synthetic 
data generated by the Insurance. 

	
  
	
  
	
  
	
  
	
  
	
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Insurance_100 Insurance_1000 Insurance_10000 
Optimal  -1686.22 Optimal  -13887.35 Optimal -132968.57 
1←24 -1691.65 *21←2,12  -13966.04 *13←12,2 -133655.01 

*17←7,16 -1691.65 *19←17,18  -13972.82 * 23←11,22  -133657.64  
24←15 -1691.65 *7←4,6  -13973.29 * 19←17,18 -133732.17 

*23←11,22 -1691.65 *14←4,6  -13983.54 *17←7,10,16  133744.11 

*13←2,12 -1691.67 23←11,22  -13986.19 *21←2,12 -133825.48 

25←14,20 -1693.52 11←6,22  -13987.26 *8←1,2 -133828.22 
*0←3,25 -1693.73 *16←11,15  -13992.23 *24←15,23 -133898.14 

*14←4,6 -1693.73 *9←1,2  -14002.44 *15←5,13 -133941.81 

6←1 -1694.60 2←0,3  -14014.37 6←1 -133959.36 

*9←1,2 -1695.34 6←1  -14017.12 *14←4,6 -133962.48 
11←6 -1695.42 *8←1,2  -14018.59 *7←4,5,6 -134028.62 

*8←1,2 -1695.49 *13←2,12  -14018.95 *16←11,15 -134075.60 

4←7 -1695.60 10←4  -14021.98  3←0,2 -134100.02 

7←6 -1695.76 *0←3,10  -14022.36 *22←4,6 -134106.98 
20←1 -1695.76 5←7  -14022.76 0←1,25 -134156.58 

21←12 -1695.78 *22←4,6  -14025.06  26←15 -134182.02 

15←13 -1695.88 *17←7,10,16  -14025.66 Without -134474.33 

3←2 -1696.07 26←15  -14033.05 12←0,3 -134490.17 
19←17,18 -1696.52 Without  -14038.33 4←1 -140288.41 
Without -1697.81 25←0  -14262.08 25←20,9 -140660.06 
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Table 13: The results of applying HCPK, arrows which have to be there, for synthetic 
data generated by the Mildew. 

Mildew _100 Mildew _1000 Mildew _10000 

Optimal  -6380.72 Optimal  -52258.85 Optimal  -454894.40 

*33←23,27,32 -6543.71 23←9 -52258.85 *13 ← 8, 12  -455746.79  

*27←23,24,26 -6586.02 0←11 -52264.28 21←20 ���  -455801.10  

*2←20,26,33 -6633.54 15←17 -52291.72 *9 ← 3, 8  -455834.56  

*4←8,27,34 -6646.04 10←11 -52292.33 *8←2,4 -455846.98 

*12←20,28,33 -6647.73 13←31 -52292.33 *30 ← 13, 29  -455861.47  

*11←12,27,29 -6648.03 19←20 -52292.33 *20←3,19 -455987.05 

*29←3,27,34 -6648.43 33←34 -52292.33 34←14 -456050.35 

*21←22,24,27 -6651.99 27←14 -52292.33 *32←28,31 -456154.28 

*17←19,24,34 -6652.01  4←13 -52292.33 0←11 -456167.67 

9←21,24,27 -6652.26 *8←2,4 -52297.75 16←17 -456220.68 

*7←12,23,27 -6652.51 *30←13,29 -52297.75 5←7 -456243.40 

Without -6658.16 22←23 -52297.75 *24 ← 21, 23  -456285.25  

20←21 -6658.16 34←31 -52304.02 *23←9,22 -456320.52 

*30←13,29 -6658.16 9←3 -52307.13 27←14 -456491.04 

31←14 -6658.16 12←13 -52307.60 *14←9,13 -456632.90 

5←7 -6658.16 31←14 -52307.60 *26←14,25 -456656.59 

14←9 -6658.16 *3←1,2 -52318.82  *3←4,5 -456879.13 

15←17 -6658.16 26←14 -52318.92 Without -457258.64  

32←31 -6658.16 Without -52510.18  4←8,9 -457951.11 
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Table 14: The results of applying HCPK, arrows which have to be there, for synthetic 
data generated by the Alarm. 

Alarm_100 Alarm_1000 Alarm_10000 
Optimal  -1349.22 Optimal  -11240.34 Optimal   -105226.51 
*13←9,12,23 -1373.17 *27←19,26 -11399.58 *28←17,27  -105850.61  

*12←10,20,21 -1376.28 *8←2,3,7 -11413.76 15←10  -105869.75   

25←24 -1376.32 20←9 -11414.01 *26←22,23 -105899.20  

*33←3,8 -1377.382 *29←8,15 -11416.55 *27←19,26 -105969.99  

*2←16,28, -1378.15 0←1 -11419.20 *21←10,11 -106083.38    

3←0,9 -1378.44 *19←18,34 -11422.43 *12←10,11 -106098.35 

*0←7,9 -1379.44 36←24 -11423.77 1←0 -106106.34 

*35←19,20 -1379.48 *35←19,20 -11427.70 *24←22,23 -106131.71 

15←10 -1380.02 *7←5,6 -11427.82 10←3,8 -106152.00 

11←20 -1380.31 *13←9,12 -11429.52 34←23 -106167.89 

17←16 -1380.54 15←10 -11439.95 *29←8,15 -106190.31  

*23←24,26 -1380.71 22←23,24 -11441.57  *9←0,3 -106193.67 

21←2,19 -1381.51 *9←0,3 -11447.16 *32←19,30 -106219.26 

*4←5,12,22 -1381.96 *21←19,20 -11450.40 *35←19,20 -106300.84 

*6←5,7,27 -1382.29 *1←2,11 -11450.66 *8←2,3,7 -106334.40 

*10←0,3,8 -1382.51 26←22,23 -11452.63 4←5 -106345.22 

*18←0,15,17 -1382.53 10←3,8 -11456.17 *31←2,3,7 -106353.83  

*22←16,26,35 -1382.58 *31←3,7 -11465.51 *18←15,17 -106398.84  

*20←18,21 -1383.15 *18←15,17 -11466.51 19←18 -106464.83   
Without -1384.68 Without -11467.32 Without -106496.20 
8←7 -1387.51 23←22,24 -11470.89 33←3,8 -106536.36  
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Table 15: The results of applying HCPK, arrows which have to be there, for synthetic 
data generated by the Carpo. 

Carpo_100 Carpo_1000 Carpo_10000 

Optimal  -1829.30 Optimal  -17718.94 Optimal  -174130.56 

*11←40,46,52 -1854.83 *27←0,22,24 -17855.22  52← 6 -175364.94 

*2←35,49 -1856.71 *16←11,12,15 -17856.72 *16←11,14,15 -175393.50 

*10←3,12,26 -1857.71 *47←12,24 -17860.41 *30←0,6,20 -175669.97 

*33←20,24 -1857.97 *58←0,22,53 -17871.78 *47←8,24 -175755.71 

*40←17,18 -1858.50 *36←15,51,53 -17875.23 *33←6,20,24 -175822.23 

4*←13,32,43 -1858.52 40←16 -17876.11 *25←20,24,33 -175826.03 

*24←1,37 -1858.81 *49←25,35 -17879.82 *7←6,8 -175830.59 

21←20 -1859.48 *4←3,6,13 -17882.18 12←11,16 -175881.79 

*38←0,24,59 -1859.70 *50←0,8,59 -17883.44 *20←11,19 -175902.89 

*55←2,20,59 -1860.02 *23←9,22 -17885.38 *44←0,20,22 -175912.76 

*0←2,24,35 -1860.06 29←24,25 -17894.00 *6←4,5 -175946.62 

*7←6,19,37 -1860.71 39←22 -17895.44 *34←10,36 -175984.94 

*53←9,34,54 -1861.32 *10←5,27,58 -17899.47 *9←8,13 -176040.59 

*44←20,22,42 -1861.37 *42←0,6,51 -17901.33 *27←0,22,24 -176061.64 

*59←6,25 -1862.25 6←13 -17901.85 59←25 -176073.28 

12←43 -1862.25 *38←0,6,24 -17902.48 *50←0,8 -176143.16 

5←12 -1862.51 *53←3,34,56 -17907.16 31←24,25 -176176.78 

*17←14,50,58 -1862.70 *8←5,9,14 -17908.33 *38←6,24,25 -176356.19 

56←36 -1862.82 *2←0,49 -17908.99 Without -176357.80 

Without -1893.34  Without -17916.95  24←32 -177147.85 
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Appendix C 
	
  
Table 16: The results of applying HCPK, ancestors relation, for synthetic data 
generated by the Insurance. 

Insurance_100 Insurance_1000 Insurance_10000 

Optimal  -1686.22 Optimal  -13887.35 Optimal -132968.57 

25⇠  4 -1691.67 11⇠22 -13973.78 0⇠25 -133689.72 

23⇠6 -1691.67  8⇠3 -13978.52 10 ⇠ 9 -133710.57 

18⇠13 -1693.71 2⇠3 -13979.52 24⇠5 -133714.13 

16⇠13 -1694.28 
 

12⇠3 -13986.60 13⇠2 -133793.24 

7⇠6 -1695.01 14⇠1 -14005.63 2⇠25 -133834.40 

18⇠15 -1695.07  21⇠3 -14011.25 26⇠15 -133852.04 

15⇠13 -1695.34 0⇠4 -14011.47 11⇠6 -133870.28 

19⇠17 -1695.42  16⇠15 -14022.36 22⇠1 -133879.29 

22⇠4 -1695.44  17⇠4 -14023.35 19⇠7 -133902.66 

24⇠15 -1695.49  14⇠6 -14025.36 7⇠ 1 -133950.60 

20⇠1 -1695.49  10⇠4 -14029.36 23⇠22 -133972.61 

19⇠7 -1695.50  Without -14038.33 21⇠0 -133995.45 

14⇠4 -1695.59 19⇠7 -14038.80 3⇠1 -134089.53 

8⇠1 -1695.62 13⇠0 -14040.36 9⇠0 -134118.60  

11⇠6 -1695.76 5⇠4 -14042.59 3⇠0 -134218.05 

9⇢ 1 -1695.76 23⇠4 -14135.83 8⇠2 -134239.28 

23⇠11 -1695.86  24⇠11 -14234.17 13⇠3 -134286.54 

Without -1697.81 25⇠0 -14294.73 Without -134474.33 

26⇠3 -1698.78 20⇠1 -14316.69 1 ⇠ 25 -134883.54 

17⇠7 -1699.72 22⇠6 -14390.39 6 ⇠25 -136688.28  
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Table 17: The results of applying HCPK, ancestors relation, for synthetic data 
generated by the Alarm. 

Alarm_100 Alarm_1000 Alarm_10000 

Optimal   -1349.22 Optimal   -11240.34 Optimal  -105226.51 

25⇠24 -1374.67 10⇠7 -11403.12 4⇠5 -105973.18 

22⇠24 -1377.11 21⇠34 -11403.12 17⇠16 -106052.34 

36⇠24 -1378.48 32⇠18  -11410.48 10⇠3 -106074.86 

6⇠7 -1379.44 28⇠27 -11415.09 24⇠23 -106093.55 

22⇠16 -1379.70 18⇠10 -11428.23 26⇠23 -106192.09 

13⇠10 -1380.30 2⇠3 -11431.55 28⇠27 -106202.46 

33⇠8 -1380.51 20⇠3 -11433.07 18⇠10 -106218.86 

29⇠8 -1381.10 17⇠16 -11434.60 31⇠3 -106276.17 

32⇠30 -1382.16 2⇠7 -11435.07 7⇠6 -106298.34 

23⇠24 -1383.34 35⇠20 -11435.33 29⇠2 -106316.37 

34⇠23 -1383.61  12⇠3  -11443.31 36⇠22 -106339.11 

35⇠19 -1383.66 15⇠8 -11444.11 36⇠22 -106339.11 

4⇠7 -1383.83 33⇠2 -11457.36 27⇠22 -106346.77 

28⇠17 -1383.88 5⇠4 -11462.96 Without -106496.20 

Without -1384.68 Without -11467.32 33⇠2 -106473.40 

19⇠0 -1384.97 9⇠1 -11474.42 33⇠2 -106473.40 

27⇠19 -1385.26 0⇠11 -11484.00 21⇠18 -106478.67 

3⇠9 -1385.57 25⇠2 -11486.64 12⇠8 -106509.12 

11⇠18 -1386.64 36⇠25 -11496.21 32⇠18 -106546.94 

12⇠0 -1387.08 22⇠25 -11499.25 15⇠8 -106669.29 
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Table 18: The results of applying HCPK, ancestors relation, for synthetic data 
generated by the Mildew. 

Mildew _100 Mildew _1000 Mildew _10000 

Optimal  -6380.72 Optimal  -52258.85 Optimal -454894.40 

27⇠26 -6579.86 20⇠1 -52264.28 21⇠20 -455394.63 

27⇠23 -6585.10 33⇠31 -52285.45 24⇠20 -455414.84 

2⇠21  -6592.21 22⇠9 -52292.33 33⇠14 -456072.11 

7⇠20 -6620.00 12⇠31 -52303.90 30⇠13 -456190.16 

33⇠32 -6643.30 9⇠1 -52312.53 27⇠9  -456259.62 

Without -6658.16 3⇠27 -52399.22 30⇠12 -456308.54 

0⇠11 -6658.16 4⇠31 -52422.01 32⇠31 -456589.06 

3⇠9 -6658.16 5⇠7 -52423.05 3⇠2 -456701.36 

34⇠33 -6658.16 8⇠13 -52432.93 5⇠8 -457011.69 

32⇠14 -6658.160 17⇠15 -52443.92 16⇠17 -457028.32 

31⇠14 -6658.16 21⇠3 -52471.87 6⇠8 -457053.18 

32⇠31 -6658.16 34⇠14 -52475.47 20⇠3 -457180.48 

14⇠9 -6658.16 Without -52510.18 10⇠11 -457479.49 

4⇠34 -6670.78 23⇠3 -52524.10 14⇠3 -458237.48 

15⇠0 -6670.78 19⇠3 -52524.10 13⇠4 -458284.12 

15⇠3 -6671.80 26⇠9 -52313.50 26⇠9 -458294.89 

17⇠19 -6672.05 9⇠2 -52340.85 23⇠8 -458727.85 

29⇠9 -6674.17 27⇠9 -52292.33 27⇠13 -459361.27 

0⇠12 -6691.10 14⇠3 -52344.47 Without -459642.31 

4⇠34 -6700.28 13⇠14 -52297.75 21⇠3 -460949.90 
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Table 19: The results of applying HCPK, ancestors relation, for synthetic data 
generated by the Carpo. 

Carpo_100 Carpo_1000 Carpo_10000 

Optimal  -1829.30 Optimal  -17718.94 Optimal  -174130.56 

54⇠4 -1853.74 53⇠0 -17807.83 1⇠24 -175438.70 

11⇠17 -1857.04 27⇠6 -17813.72 27⇠38 -175449.54 

9⇠0 -1857.07 48⇠14 -17824.20 50⇠24 -175484.91 

41⇠13 -1858.26 5⇠16 -17824.88 38⇠4 -175684.80 

14⇠35 -1858.38 14⇠16 -17828.84 52⇠6 -175758.50 

0⇠35 -1859.22 41⇠34 -17831.81 37⇠32 -175886.53 

20⇠13 -1859.51 18⇠5 -17840.14 13⇠16 -176006.31 

26⇠4 -1860.42 16⇠20 -17840.57 45⇠34 -176055.59 

21⇠34 -1860.50 19⇠12 -17842.66 21⇠11 -176060.13 

55⇠35 -1860.68 0⇠13 -17844.01 18⇠19 -176074.25 

53⇠3 -1860.74 30⇠13 -17845.99 17⇠11 -176108.39 

49⇠33 -1860.84 10⇠12 -17849.95 44⇠26 -176158.73 

3⇠24 -1861.45 44⇠33 -17852.52 57⇠11 -176178.40 

59⇠0 -1862.63 24⇠12 -17853.11 16⇠6 -176209.82 

30⇠2 -1862.97 13⇠14 -17854.83 58⇠0 -176275.47 

5⇠43 -1864.16 59⇠24 -17870.56 29⇠20 -176355.47 

29⇠1 -1864.40 37⇠32 -17888.63 Without -176357.80 

17⇠0 -1864.84 50⇠5 -17892.01 9⇠12 -176438.38 

45⇠ 35 -1866.74 58⇠32 -17892.87 33⇠11 -176658.93 

Without -1893.34  Without -17916.95 0⇠32 -176761.21 
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Appendix D 
	
  

Conditional independence checks approach 
	
  
	
  
Table 20: The results of applying HCPK, conditional independence, for synthetic 
data generated by the Insurance. 

Insurance_100 Insurance_1000 Insurance_10000 

Optimal  -1686.22 Optimal -13887.35 Optimal -132968.57 

{3,10} ⊥ 13  |  2  -1693.19 22 ⊥ 20|  1  -13970.8 10 ⊥ {4,6}  |  9 -133635.10 

5⊥7|26  -1693.73 3⊥ 7|  ∅  -13992.87 25 ⊥ 5  |  6 -133640.68 

11 ⊥ 14  |  6  -1694.62 1⊥ {2,12}|  4  -13997.25 12 ⊥ 15|  13   -133810.38 

16 ⊥18,20|15  -1694.62 3⊥ 26|  15  -14000.51 11 ⊥ 21  |  1 -133834.78 

13 ⊥ 21  |12  -1694.70 17 ⊥ 5  |  7  -14002.64 {9,8} ⊥ 14  |  1   -133861.81 

12 ⊥ {19,23}  |  13 -1695.49 8⊥ 6|  1 -14007.62 5 ⊥ 6  |  ∅   -133866.53 

 6⊥ 9|  1 -1695.52 {5,1} ⊥ 24  |  16  -14010.52 21 ⊥ 22  |  0 -133891.00 

5 ⊥ 10  |  ∅  -1695.62 3⊥ 10|  4  -14016.64 {2,0} ⊥ 10  |  9 -133910.24 

13 ⊥ 14  |15  -1695.76 3 ⊥ {22,11}  |  4  -14019.42 20 ⊥ 5  |  12 -133968.49 

1 ⊥ 11  |  6 -1695.86 20 ⊥ 24  |  16  -14030.33 25 ⊥ 6  |  1  -133969.31 

10 ⊥ 12  |  ∅ -1696.42 11⊥ 12|  4  -14034.82 24 ⊥ 26  |  15 -133974.57 

7 ⊥ 22  |  4 -1696.52  Without -14038.33 5 ⊥ 13  |  ∅  -133977.21 

2⊥ 12|  ∅  -1696.76 15 ⊥ 24  |  16  -14040.12 0 ⊥ 15  |  13     -133983.46 

3 ⊥ 21  |  ∅  -1696.78 18⊥ 16|  15  -14042.80 4 ⊥ 20  |  1 -134057.24 

15 ⊥ 20  |  1 -1696.78 {21,8} ⊥ 26  |  15  -14047.01 4 ⊥ 5  |  ∅  -134188.78 

16⊥ 18|  15  -1696.82 {9,2,}⊥ 6|  1  -14053.93 3 ⊥ 10  |  9 -134261.52 

12 ⊥ 17  |  13 -1697.57 22 ⊥ 3  |  ∅  -14055.88 1 ⊥ 12  |  0   -134291.56 

Without -1697.81 12 ⊥ 10  |  ∅  -14066.43 {9,2} ⊥ 6  |  1   -134301.84 

26 ⊥ 10  |  21  -1699.41 3 ⊥ 10  |  ∅  -14074.55  Without -134474.33 

{8,10} ⊥ 6  |  1   -1701.61 14⊥ 16|  10  -14076.14 21,12 ⊥ {22,7}  |  0 -134702.23 
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Table 21: The results of applying HCPK, conditional independence, for synthetic 
data generated by the Alarm. 

Alarm_100 Alarm_1000 Alarm_10000 
Optimal   -1349.22 Optimal   -11240.34 Optimal  -105226.51 
31 ⊥ 1  |  0  
  

-1373.52 0 ⊥ 15  |  10 -11384.56 19 ⊥ 26  |  ∅    
 

-105857.61 

 1 ⊥ 3  |  0   
 

 -1375.14 3 ⊥ {12,14}  |  10  
 

-11411.59 16 ⊥ 21  |  19    
 

-105941.51 

{16,14}⊥3 | 9  -1377.07 0 ⊥ 7  |  2   
 

-11420.83 2 ⊥ 3  |  ∅    
 

-106106.84 

{26,6} ⊥ 34  |  23  -1379.02 14 ⊥ 2  |  33  -11421.83 6 ⊥ 29  |  7    
 

-106126.18 

35 ⊥ 24  |  25  
 

-1380.15 1 ⊥ 30  |  0  -11431.38 31 ⊥ 9  |  3    
 

-106130.97 

32 ⊥ 27  |  19  
  

-1380.80 3 ⊥ 12  |  10 -11432.22 34 ⊥ {24,26}  |  23    
 

-106208.56 

26⊥16 | ∅ -1381.83 10 ⊥ 11  |  ∅  -11432.35 17 ⊥ 15  |  ∅    
 

-106267.41 

24 ⊥ {35,26 }|22 
 

-1382.01 8 ⊥ {25,14}  |  2  -11436.23 6,14 ⊥ {29,15}  |  7    
 

-106313.33 

25⊥36 | 24  -1382.07 6 ⊥ 31  |  7  -11444.39 0 ⊥ 3  |  ∅    
 

-106352.21 

9 ⊥ 7  |  ∅   
  

-1382.21 25 ⊥ 23  |  24  -11447.10 19 ⊥ 20  |  ∅    
 

-106427.13 

17⊥9 | 16  -1382.95 10 ⊥ 22  |  2 -11450.03 16 ⊥ {28,27}  |  17    
 

-106474.39 

24 ⊥ 34  |  23  
 

-1383.20 15 ⊥ 12  |  10  -11450.35 Without -106496.20 

28 ⊥ 25  |  22  
 

-1383.31 {23,34} ⊥ 36  |  24 -11452.67 9 ⊥ 1  |  0    
     

-106529.75 

8 ⊥ 31|7 -1383.83 6,3 ⊥ {1,25}  |  2 -11453.78 0,1 ⊥ {8,6}  |  3    
 

-106549.80 

14 ⊥ 17  |  ∅ -1383.90 30 ⊥ 9  |  0  
 

-11463.15 0 ⊥ 8  |  19    
 

-106563.69 

0 ⊥ 19  |  18  
  

-1383.97 {17,16} ⊥ 3  |  10 -11463.65 29 ⊥ 0  |12    
 

-106572.44 

Without -1384.68 Without  -11467.32 7 ⊥ 4  |  5   
     

-106635.78 

16 ⊥ 7  |  1  
 

-1385.19 {2,3} ⊥ 11  |  ∅  -11467.57 {8,7} ⊥ 9  |  3    
 

-106637.25 

{18,19} ⊥ 25  |  24   -1385.34 31 ⊥ 24  |  25  -11470.19 19 ⊥ 29  |  18   
 

-106653.91 

1 ⊥ 17  |  ∅  
 

-1385.86 3 ⊥ 7  |  ∅     
 

-11471.48 5 ⊥ 6  |  ∅    
   

-107342.07 
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Table 22: The results of applying HCPK, conditional independence, for synthetic 
data generated by the Mildew. 

Mildew _100 Mildew _1000 Mildew _10000 
Optimal  -6380.72 Optimal  -52258.85 Optimal -454894.40 
Without -6658.16 0⊥10 | 11 -52292.33 {1,3}⊥{25,26} | 14 -455587.36 

23⊥{26, 24} | φ  -6658.16 6⊥5 | 7  -52292.33 28⊥31 | φ  -455653.01 

27⊥7 | 23 -6658.16  30⊥4 | 13      -52292.33 1⊥25 | 9 -455849.04 

13⊥20 | 12  -6658.16  31⊥26 | 14      -52292.33 16⊥15 | 17 -455868.95 

12⊥{27, 29} | 11  -6658.16  12⊥4 | 13       -52292.33 8⊥12 | φ  -456028.60 

30⊥34 | φ  -6658.16  13⊥29 | φ  -52297.75 14⊥25 | φ -456201.06 

14⊥21 | 9  -6658.16  {2,3}⊥{26,27} | 
14  

-52297.75 7⊥13 | 8 -456312.73 

22⊥24 | φ  -6658.16  1⊥20 | 3 -52297.75 3⊥26 | 14 -456362.77 

19⊥15 | 17 -6658.16 21⊥19 | 20      -52297.75 13⊥34 | 14  -456379.62 

14⊥32 | 31  -6658.16 {2,9}⊥21 | 20      -52304.02 6⊥5 | 7  -456503.22 

23⊥5 | 7 -6658.16 3⊥23 | 9      -52304.02 0⊥{16,18} | φ -456564.09 

34 ⊥ 8  |  27 
 

-6658.16 16⊥15 | 17      -52307.60 9⊥20 | 3 -456611.20 

{1,6}⊥{16,18} |  φ -6662.71 {16,18}⊥{15,25} | 
17      

-52307.60 0⊥10 | 11 
 

-456642.36 

23⊥24 | φ -6665.10 2⊥26 | 14      -52312.21 6⊥{5,31} | 7  -457044.02 

22⊥3 | 9  -6665.10 18⊥24 |  φ 
 

-52312.21 {12,18}⊥{33,34} | 
14  

-457147.47 

  28⊥0 | 11 -6665.10 3⊥34 | 9       -52313.50 {19,18}⊥8 | 3 -457160.45 

9⊥31 | 14 
 

-6665.10 {3,9}⊥22 | 23      -52322.06 2⊥5 | 8 -457542.56 

9 ⊥ 32  |  31     
 

-6665.10 1⊥2 | φ -52325.98 29⊥22 | 30 -457799.43 

  1⊥6 | φ -6665.10 14⊥4 | 31   -52357.31 4⊥2 | φ  -458315.63 

13⊥20 | 31     
 

-6665.10 Without -52510.18 Without -459642.31 

 
  



Appendix	
  D	
  	
   191	
  

Table 23: The results of applying HCPK, conditional independence, for synthetic 
data generated by the Carpo. 

Carpo_100 Carpo_1000 Carpo_10000 
Optimal  -1829.30 Optimal   -17718.94 Optimal  -174130.56 
18⊥35 | 12 -1857.66 46⊥40 | φ -17803.26 {30,3}⊥{2,58} | 0 -175154.78 

43⊥13 | 12 -1857.72 12⊥15 | φ -17811.24 {48, 34 }⊥4 | 35 -175211.78 

14⊥58 | 0 -1859.97 52⊥38 | 6 -17819.98 24⊥8 | φ -175349.54 

5⊥43 | 12 -1860.41 1⊥ {44,38} | 0 -17824.69 34 ⊥4 | 35 -175351.80 

34⊥21 | 20 -1860.65 {39,55}⊥54 | 22 -17825.13 2 ⊥3 | 0 -175411.19 

21⊥1 | 20 -1860.78 56⊥28 | 20 -17826.58 6⊥24 | φ -175526.15 

13⊥35 | φ -1860.92 48⊥23 | 34 -17830.17 11 ⊥39 | 20 -175542.47 

35⊥18 | φ -1861.31 14⊥40 | 16 -17830.28 10⊥36 | φ -175572.90 

18⊥34 | 13 -1861.84 55⊥54 | 22 -17830.73 35⊥4 | 45 -175673.73 

3⊥33 | 0 -1862.04 7⊥48 | 34 -17832.27 30⊥2 | 0 -175687.69 

13⊥18 | φ -1862.17 1⊥44 | 0 -17841.24 {29, 32 }⊥37 | 24 -175691.73 

{18,35}⊥36 | 34 -1862.40 32⊥37 | 24 -17841.39 {1,46} ⊥58 | 0 -175702.74 

{58,3}⊥2 | 0 -1862.76 47⊥37 | 24 -17842.08 1 ⊥58 | 0 -175716.66 

24⊥3 | 0 -1862.89 {11,58}⊥57 | 20 -17843.05 18⊥29 | 19 -175924.69 

10⊥36 | φ -1863.01 57⊥33 | 20 -17844.96 37⊥33 | 24 -175948.52 

36⊥57 | 56 -1863.19 10⊥18 | 19 -17858.55 20⊥16 | 11 -175983.38 

18⊥36 | 34 -1863.59 11⊥12 | φ -17861.97 6⊥12 | 14 -176082.25 

{13,35}⊥18 | φ -1869.13 1⊥38 | 0 -17882.78 {14,11}⊥15 | φ -176210.61 

20⊥23 | 33 -1872.09 15⊥11 | φ -17887.52 11⊥14 | φ -176224.26 

Without -1893.34  Without -17916.95 Without -176357.80 
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Backtrack approach  
	
  
Table 24: The results of applying HCPK, conditional independence, for synthetic 
data generated by the Insurance. 

Insurance_100 Insurance_1000 Insurance_10000 

Optimal  -1686.22 Optimal -13887.35 Optimal  -132968.57 

11 ⊥ 14  |  6  -1691.65 3⊥ 26|  15  -13961.60 1 ⊥ 12  |  0   -133706.43 

3 ⊥ 21  |  ∅  -1694.62 11⊥ 12|  4  -13967.58 0 ⊥ 15  |  13     -133717.48 

13 ⊥ 21  |12  -1694.72 3⊥ 7|  ∅  -13978.71 20 ⊥ 5  |  12 -133800.31 

16 ⊥18,20|15  -1695.32 18⊥ 16|  15  -13999.65 5 ⊥ 13  |  ∅  -133812.14 

12 ⊥ {19,23}  |  13 -1695.34 22 ⊥ 3  |  ∅  -14001.24 10 ⊥ {4,6}  |  9 -133827.87 

10 ⊥ 12  |  ∅ -1695.44 {21,8} ⊥ 26  |  15  -14011.20 3 ⊥ 10  |  9 -133849.94 

2⊥ 12|  ∅  -1695.49 20 ⊥ 24  |  16  -14011.49 4 ⊥ 20  |  1 -133855.60 

 6⊥ 9|  1 -1695.50 {5,1} ⊥ 24  |  16  -14013.06 21 ⊥ 22  |  0 -133864.14 

15 ⊥ 20  |  1 -1695.50 14⊥ 16|  10  -14014.60 {9,8} ⊥ 14  |  1   -133907.63 

16⊥ 18|  15  -1695.52 15 ⊥ 24  |  16  -14020.57 25 ⊥ 6  |  1   -133935.88 

  5⊥7| 26  -1695.59 22 ⊥ 20|  1  -14022.39 25 ⊥ 5  |  6 -133935.88 

  5 ⊥ 10  |  ∅  -1695.59 3 ⊥ 10  |  ∅  -14023.12 12 ⊥ 15|  13   -133975.39 

26 ⊥ 10  |  21  -1695.76 3⊥ 10|  4  -14023.16 11 ⊥ 21  |  1 -134011.44 

{3,10} ⊥ 13  |  2  -1695.76 8⊥ 6|  1 -14025.73 4 ⊥ 5  |  ∅   -134063.19 

1 ⊥ 11  |  6 -1695.86 1⊥ {2,12}|  4  -14026.38 21,12 ⊥ {22,7}  |  0 -134105.09 

12 ⊥ 17  |  13 -1697.26 17 ⊥ 5  |  7  -14029.44 24 ⊥ 26  |  15 -134127.88 

13 ⊥ 14  |15  -1697.49  Without -14038.33 5 ⊥ 6  |  ∅  -134175.76 

Without -1697.81 3 ⊥ {22,11}  |  4  -14042.36 {2,0} ⊥ 10  |  9 -134324.92 

{8,10} ⊥ 6  |  1   -1702.40 {9,2,}⊥ 6|  1  -14054.60 {9,2} ⊥ 6  |  1  -134437.74 

7 ⊥ 22  |  4 -1706.62 12 ⊥ 10  |  ∅  -14059.09  Without -134474.33 
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Table 25: The results of applying HCPK, conditional independence, for synthetic 
data generated by the Alarm. 

Alarm_100 Alarm_1000 Alarm_10000 

Optimal  -1349.22 Optimal   -11240.34 Optimal   -105226.51 

25⊥36 | 24  -1374.55 3 ⊥ {12,14}  |  10  -11380.49 34 ⊥ {24,26}  |  23    -105893.03 

8 ⊥ 31|7 -1376.04 6,3 ⊥ {1,25}  |  2 -11401.14 5 ⊥ 6  |  ∅     -105907.83 

14 ⊥ 17  |  ∅ -1378.69  25 ⊥ 23  |  24  -11405.91 0 ⊥ 8  |  19    -105948.84 

{16,14}⊥3 | 9  -1380.23 17,16 ⊥ 3  |  10 -11412.46 11 ⊥ 10  |  ∅    -106030.56 

{26,6} ⊥ 34  |  23  -1380.43 10 ⊥ 11  |  ∅  -11412.60 19 ⊥ 26  |  ∅    -106102.35 

24 ⊥ {35,26 }|22 -1380.62 30 ⊥ 9  |  0  -11420.60 19 ⊥ 29  |  18   -106175.85 

16 ⊥ 7  |  1  -1380.78 6 ⊥ 31  |  7  -11421.98 7 ⊥ 4  |  5   -106177.47 

9 ⊥ 7  |  ∅   -1381.84 0 ⊥ 7  |  2    -11423.43 16 ⊥ {28,27}  |  17 -106230.54 

14 ⊥ 5  |  16  -1381.84 10 ⊥ 22  |  2 -11431.22 2 ⊥ 3  |  ∅    -106234.82 

31 ⊥ 1  |  0  -1383.04 14 ⊥ 2  |  33  -11432.35 16 ⊥ 21  |  19    -106235.67 

35 ⊥ 24  |  25  -1383.16 3 ⊥ 12  |  10 -11435.66 9 ⊥ 1  |  0    -106265.50 

26⊥16 | ∅ -1383.37 15 ⊥ 12  |  10  -11439.40 6 ⊥ 29  |  7    -106278.46 

17⊥9 | 16  -1383.67 31 ⊥ 24  |  25  -11442.60 0 ⊥ 3  |  ∅    -106285.84 

Without -1384.68 0 ⊥ 15  |  10 -11445.44 6,14 ⊥ {29,15}  |  7    -106289.23 

1 ⊥ 3  |  0   -1385.34 5 ⊥ 6  |  ∅  -11447.34 29 ⊥ 0  |12    -106289.66 

32 ⊥ 27  |  19  -1385.36 8 ⊥ {25,14}  |  2 -11454.67 0,1 ⊥ {8,6}  |  3    -106295.53 

24 ⊥ 34  |  23  -1385.87 1 ⊥ 30  |  0  -11456.61 17 ⊥ 15  |  ∅    -106314.16 

{18,19} ⊥ 25  |  24  -1385.95 {2,3} ⊥ 11  |  ∅  -11462.93 Without -106496.20 

28 ⊥ 25  |  22  -1385.98 Without -11467.32 31 ⊥ 9  |  3    -106590.23 

0 ⊥ 19  |  18  -1388.70 {23,34} ⊥ 36  |  24 -11474.42 {8,7} ⊥ 9  |  3    -106602.64 

1 ⊥ 17  |  ∅  -1389.75 3 ⊥ 7  |  ∅     -11476.70 19 ⊥ 20  |  ∅    -106685.48 
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Table 26: The results of applying HCPK, conditional independence, for synthetic 
data generated by the Mildew. 

Mildew _100 Mildew _1000 Mildew _10000 

Optimal  -6380.72 Optimal  -52258.85 Optimal -454894.40 

Without -6658.16 0⊥10 | 11 -52292.33 {1,3}⊥{25,26} | 14 -455587.36 

23⊥{26, 24} | φ  -6658.16 6⊥5 | 7  -52292.33 28⊥31 | φ  -455653.01 

27⊥7 | 23 -6658.16  30⊥4 | 13      -52292.33 1⊥25 | 9 -455849.04 

13⊥20 | 12  -6658.16  31⊥26 | 14      -52292.33 16⊥15 | 17 -455868.95 

12⊥{27, 29} | 11  -6658.16  {2,9}⊥21 | 20      -52292.33 8⊥12 | φ  -456028.60 

30⊥34 | φ  -6658.16  12⊥4 | 13       -52292.33 14⊥25 | φ  -456201.06 

14⊥21 | 9  -6658.16  13⊥29 | φ  -52297.75 7⊥13 | 8  -456312.73 

22⊥24 | φ  -6658.16  {2,3}⊥{26,27} | 14  -52297.75 3⊥26 | 14 -456362.77 

19⊥15 | 17 -6658.16 1⊥20 | 3 -52297.75 13⊥34 | 14  -456379.62 

14⊥32 | 31   -6658.16   21⊥19 | 20      -52297.75 6⊥5 | 7   -456503.22 

23⊥5 | 7 -6658.16 3⊥23 | 9      -52304.02 0⊥{16,18} | φ -456564.09 

34 ⊥ 8  |  27 -6658.16 16⊥15 | 17      -52307.60 9⊥20 | 3 -456611.20 

{1,6}⊥{16,18} |  φ -6662.71 {16,18}⊥{15,25} | 

17      

-52307.60 0⊥10 | 11 

 

-456642.36 

23⊥24 | φ -6665.10 2⊥26 | 14      -52312.21 6⊥{5,31} | 7  -457044.02 

22⊥3 | 9  -6665.10   3⊥34 | 9       -52313.50 {12,18}⊥{33,34} | 14  -457147.47 

  28⊥0 | 11 -6665.10 {3,9}⊥22 | 23      -52322.06 {19,18}⊥8 | 3 -457160.45 

  9⊥31 | 14 -6665.10 1⊥2 | φ -52325.98 2⊥5 | 8 -457542.56 

  9 ⊥ 32  |  31     -6665.10   14⊥4 | 31  -52357.31 29⊥22 | 30 -457799.43 

  1⊥6 | φ -6665.10   14⊥{4,13} | 31  -52360.22 4⊥2 | φ  -458315.63 

13⊥20 | 31     -6665.10 Without -52510.18 Without -459642.31 
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Appendix E 
	
  
Table	
  27: The results of applying HCPK, inconsistent prior knowledge, for synthetic 
data generated by the Insurance.	
  

Insurance_100 Insurance_1000 Insurance_10000 

Optimal  -1686.22 Optimal -13887.35 Optimal  -132968.57 

Without -1697.81  Without -14038.33 8 ⊥ 10|    7 -134175.69 

 12⇠13  -1697.81  
 

20 ⊥ 13  |    ∅ -14269.85  Without  -134474.33 

13 ⊥ {21,24}  |  26 -1700.52   4⇠22 -14279.55 5⇠7 -137956.77 

 18⇠19  -1701.94  
 

10⇠17 -14332.42 26⇢16 
 

-138946.45 

 22⇠23  -1702.79  
 

11←16 -14365.53 0⇠3 -140432.56 

 26←5  -1702.83  3←0,2 -14368.29 26←21,7 -141171.52 

 10⇠13  -1702.95  2←1,8 -14368.79 {15,8} ⊥ 18|    19 -141318.94 

 0 ⊥ 2  |  26  
 

-1703.01 14 ⊥ 15  |    3 -14387.19 5⇠1,3 -142031.43 

10 ⊥ {21,26}  |    0 
 

-1704.97  
 

22 ⊥ 26  |    16 -14435.432 10←0 -142134.12 

 4 ⊥ 13  |    ∅ 
 

-1721.12  0⇠25 -14487.30 1⇠4 -142176.65 

 13 ← 22,9  -1721.42  25 ⊥ {12,11}  |    6 -14498.98 0 ⊥ 15|    12 -142571.83 

 7 ← 22,13  -1737.38  11⇠23 -14611.14 5←15,13 -143289.97 

0ß26,9,4  -1746.95  17←3,7,1 -14733.58 {17,6} ⊥ 13  |  2  
 

-144445.43 
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Table 28: The results of applying HCPK, inconsistent prior knowledge, for synthetic 
data generated by the Alarm. 

Alarm_100 Alarm_1000 Alarm_10000 

Optimal   -1349.22 Optimal   -11240.34 Optimal  -105226.51 

10⇠12 -1384.23 11←2,1 -11458.50 Without -106376.13 

Without -1384.68 Without  -11467.32 {7,11}⊥3| 35 -113744.13 

10⊥{21,20}|∅ -1386.69 3 ← 6 -11467.61 26←19,27 -114776.71 

2←14  -1389.06 20←19,21 -11475.40 20⇠35 -115153.53 

24⇠36 -1389.11 3⇠30  -11490.28 30⇠32 -115642.70 

3⊥13| 9  -1389.89 14⇠30 -11514.29 2⇠31 -115939.97 

7 ⊥ 4  |  5   -1390.74  31⇠2 -11525.48 15⊥9| 27 -117195.50 

14⇠28  -1391.50 11⇠31 -11526.02 23 ⊥ {25,17}  |  22    -117439.74 

7⇠30  -1394.72 27←17,28 -11670.61  9←13,12 -117853.31 

 6←33,9  -1395.36 33⊥1| 16 -12065.96  24←36 -117909.42 

35←0,7,33 -1405.77 30⊥6| ∅ -12221.95 11⇠12 -118255.05 

15←5,12,22 -1411.10 22⊥20| 16 -12371.76 3←0,9 -118387.56 

{13,20} ⊥ 30  |  7     -1468.11 2⊥{12,4}| 16 -12500.21 20⊥21| 27 -118456.34 
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Table 29: The results of applying HCPK, inconsistent prior knowledge, for synthetic 
data generated by the Mildew. 

Mildew _100 Mildew _1000 Mildew _10000 

Optimal  -6380.72 Optimal  -52258.85 Optimal -454894.40 

34 ⇠4  -6605.61  6⊥7 | 5 -52333.38 1⇠3 -455959.98 

27 ← 8,9,34  -6623.89  30⊥27 | ∅ -52337.50 19⇠20 -456768.16 

Without -6658.16 3←5 -52348.57 3← 4,5 -456879.13 

27 ← 7  -6658.16  22⊥20 | 16 -52367.27 20⊥6 | 21 -456937.74 

20⊥26 | 2  -6658.16  {4,8}⊥31 | 13 -52423.58 33⊥12 | ∅ -457328.70 

23⊥{7, 27} | 12  -6658.16 24⇠5  -52495.74 29⊥4 | 30 -457905.55 

{ 34,26}⊥{19,5} | 3  -6658.16 Without -52510.18 3⇠14 -457942.74 

27⊥11 | 29 -6658.16 2⇠12 -52624.50 4← 8,9 -457951.11 

32 ⇠33  -6662.86  14⇠26 -52634.89 {1,3}⊥27 | 9 -457973.62 

19 ⇠17  -6672.05  22←30,2  -52654.26 8⇠13 -458002.35 

23⇠4 -6677.38 7⇠12 -52716.42 4⇠8 -458107.37 

2 ← 0,2,34  -6750.20  30←2,3 -52846.96 30← 32,1 -459603.47 

33 ← 12, 13  -6876.71  8←20,1 -53779.44 Without -459642.31 
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Appendix F 
	
  
	
  
Table 30: The results of applying HCPK for synthetic data generated by the Diabetes. 

Diabetes 

Arrows 
which  
have to be 
there 

 
BNs score 

 
Ancestor 
relation 

 
BNs 

 
Conditional 
independence checks 

 
BNs score 

59←57,58  58192.49 11⇠8 -58206.53 391 ⊥ 388  |    389 -58198.89 

358←357,54 -58046.47 312⇠304 -58206.53 {9,2} ⊥ 6  |    1 -58206.53 

199←45,198 -58054.52 401⇠394 -58211.55 90 ⊥ 9  |    10 -58206.53 

373←368,372 -58083.91 344⇠343 -58218.09 2 ⊥ 1  |    ∅ -58206.53 

397←57,396  -58109.54 230⇠228 -58231.35 228 ⊥ 254  |    ∅ -58206.53 

409←392,408 -58109.84 12⇠10  -58234.26 404 ⊥ 412  |    410 -58206.53 

81←68,80 -58156.93 209⇠2758 -58265.46 379 ⊥ 402  |    380 -58206.53 

401←395,400 -58186.88 91⇠14  -58476.69  307 ⊥ 310  |    164 -58206.53 

148←147,144 -58192.98 393⇠391 -58635.04 55 ⊥ 241  |    30 -58206.53 

302←287,288 -58205.88 410⇠402 -58733.17 204 ⊥ 202  |    205 -58206.53 

120←107,119 -58206.42 165⇠162 -58877.96 176 ⊥ 177  |    175 -58215.17 

410←404,405 -58211.44 52⇠0 -58877.96 43 ⊥ 46  |    44 -58218.34 

277←275 -58214.05 377⇠359 -58877.96 175 ⊥ 195  |    188 -58225.77 

319←317,318 -58230.24 187⇠42 -59483.24 324 ⊥ 310  |    ∅ -58292.40 

171←170,169 -58230.28 355⇠331 -59506.82 {263,247} ⊥ 279  |    57 -58326.58 

135←130 -58242.94 20-6 -59508.72 306 ⊥ 307  |    ∅ -58340.79 

70←68  -58248.32 261⇠259 -59543.73 58 ⊥ 57  |    ∅ -58357.53 

300←299,298 -58292.40 101⇠99 -59683.41 216 ⊥ 232  |    57 -58764.96 

282←275,280 -58303.33 41⇠40 -59888.84 40 ⊥ 39  |    ∅ -58877.96 

250←243,248 -58318.47 180⇠57 -60150.23 57 ⊥ 167  |    ∅ -58877.96 

Without -59695.4  Without -62506.72 Without -59695.4 
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