
	
 	
 	

	

Learning Graphical Models Using Prior Knowledge

Eman Marzouq Aljohani

PHD

University of York

Computer Science

April 2015

	

	

	

	

	
 ii	

	

Abstract
	

Graphical models represent conditional independence relationships between variables,

including, for example, those between the various symptoms and causes of a disease.

An important topic in the area of machine learning is learning these types of models

from data. In some applications, it is crucial to include information that is not

contained in the data, i.e. prior information. The aim of this research is to design an

efficient algorithm that utilises prior knowledge in a manner which allows users to

express what they know about the problem domain. This involves creating a system

where the input is composed of prior knowledge, together with data, connected to a

Bayesian learning algorithm. Our main aim is to facilitate the design of an algorithm

that uses prior knowledge ahead of time, in order to both speed up the process of

learning and ensure that the learning is more accurate.

	
 iii	

List of contents

Abstract	
 ...	
 ii	

List of contents	
 ...	
 iii	

List of Figures	
 ...	
 v	

List of Tables	
 ...	
 ix	

List of Algorithms	
 ...	
 xi	

Acknowledgements	
 ...	
 xii	

Declaration	
 ..	
 xiii	

1	
 Introduction	
 And	
 Motivation	
 ...	
 14	

	
 Introduction	
 ..	
 14	
 1.1
	
 Motivation	
 ..	
 17	
 1.2
	
 Thesis	
 Overview	
 ..	
 19	
 1.3

2	
 Background	
 ...	
 21	

	
 Introduction	
 ..	
 21	
 2.1
2.2	
 Bayesian	
 network	
 ..	
 25	

2.3	
 Markov	
 Network	
 ..	
 32	

2.4	
 Bayesian	
 Estimation	
 of	
 Probabilities	
 ..	
 35	

3	
 Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 42	

	
 Bayesian	
 Structure	
 Learning	
 ...	
 42	
 3.1
3.1.1.	
 Constraint-­‐Based	
 Approach	
 ...	
 43	

3.1.2.	
 Score-­‐Based	
 Approach	
 ..	
 44	

3.1.3.	
 The	
 Bayesian	
 Model	
 Averaging	
 Approach	
 ...	
 49	

	
 Informative	
 parameter	
 Prior	
 And	
 Non-­‐Informative	
 parameter	
 Prior	
 	
 50	
 3.2
	
 Bayesian	
 Structure	
 Learning	
 along	
 with	
 the	
 Approaches	
 to	
 Assigning	
 3.3

Priors	
 Information	
 ...	
 52	

	
 Existing	
 Tools	
 for	
 Bayesian	
 Network	
 Learning	
 ...	
 62	
 3.4
	
 The	
 Complexity	
 of	
 Bayesian	
 Network	
 Learning	
 ..	
 64	
 3.5

4	
 Learning	
 algorithms	
 that	
 use	
 prior	
 knowledge	
 ..	
 68	

	
 Introduction	
 ..	
 68	
 4.1
	
 Dynamic	
 Programming	
 ...	
 70	
 4.2
	
 A	
 Hill	
 Climbing	
 Algorithm	
 with	
 Prior	
 Knowledge	
 (HCPK)	
 	
 73	
 4.3

	
 Representation	
 of	
 DAG	
 ..	
 73	
 4.3.1
	
 Cycle	
 Checking	
 ...	
 73	
 4.3.2
	
 BDe	
 Score	
 ...	
 74	
 4.3.3
	
 Search	
 Procedure	
 ...	
 74	
 4.3.4
	
 Hill	
 Climbing	
 with	
 Random	
 Restart	
 ..	
 77	
 4.3.5

5	
 Incorporating	
 Prior	
 Knowledge	
 ...	
 79	

	
 Introduction	
 ..	
 79	
 5.1
	
 Dynamic	
 Programming	
 ...	
 81	
 5.2

	
 Arrows	
 which	
 must	
 be	
 absent	
 𝑨 ↚ 𝑩	
 ...	
 81	
 5.2.1
	
 Arrows	
 which	
 have	
 to	
 be	
 there	
 𝐀 ← 𝐁	
 ...	
 82	
 5.2.2
	
 Known	
 ordering	
 ..	
 84	
 5.2.3

	
 Hill	
 Climbing	
 with	
 Prior	
 Knowledge	
 Algorithm	
 (HCPK)	
 	
 85	
 5.3

	
 iv	

	
 Arrows	
 which	
 must	
 be	
 absent	
 𝑨 ↚ 𝑩	
 ...	
 85	
 5.3.1
	
 Arrows	
 which	
 have	
 to	
 be	
 there	
 𝑨 ← 𝑩	
 ..	
 86	
 5.3.2
	
 Ancestor	
 Relation	
 ...	
 88	
 5.3.3
	
 Conditional	
 Independence	
 ...	
 96	
 5.3.4

6	
 Results	
 And	
 Evaluation	
 ..	
 100	

	
 Dynamic	
 Programming	
 Algorithm	
 ...	
 101	
 6.1
	
 HCPK	
 ...	
 110	
 6.2

	
 Arrows	
 Which	
 Have	
 To	
 Be	
 There	
 𝑨 ← 𝑩	
 ...	
 116	
 6.2.1
	
 Ancestor	
 Relation	
 ..	
 126	
 6.2.2
	
 Conditional	
 Independence	
 ..	
 135	
 6.2.3
	
 Inconsistent	
 Prior	
 Knowledge	
 ...	
 152	
 6.2.4
	
 Learning	
 Bigger	
 problems	
 ...	
 158	
 6.2.5
	
 The execution of HCPK	
 ..	
 162	
 6.2.1
	
 True	
 network	
 ..	
 168	
 6.2.2

7	
 Conclusions	
 and	
 future	
 work	
 ...	
 174	

Appendix	
 A	
 ..	
 177	

Appendix	
 B	
 ..	
 180	

Appendix	
 C	
 ..	
 184	

Appendix	
 D	
 ...	
 188	

Conditional	
 independence	
 checks	
 approach	
 ...	
 188	

Backtrack	
 approach	
 ...	
 192	

Appendix	
 E	
 ..	
 195	

Appendix	
 F	
 ..	
 198	

Bibliography	
 ...	
 199	

	

	

	
 	

	
 v	

List of Figures
Figure 1: A Bayesian network for the lung cancer problem.	
 ..	
 15	

Figure 2: An example of Bayesian network	
 ...	
 25	

Figure 3: Conditional probability tables (CPTs).	
 ..	
 26	

Figure 4: A serial connection.	
 ..	
 27	

Figure 5: A diverging connection.	
 ...	
 28	

Figure 6: Converging connections.	
 ..	
 29	

Figure 7: Converging connections for Earthquake Pearl (1988).	
 	
 29	

Figure 8: V-Structure.	
 ..	
 30	

Figure 9: DAG pattern for a Markov equivalence class.	
 ..	
 31	

Figure 10: Markov network.	
 ..	
 32	

Figure 11: Thumbtack position.	
 ..	
 35	

Figure 12: Arrows which have to be there.	
 ...	
 87	

Figure 13: More prior knowledge.	
 ...	
 87	

Figure 14: Ancestor relation prior knowledge.	
 ..	
 90	

Figure 15: The generated network from HCPK.	
 ...	
 93	

Figure 16: The generated network from HCPK after backtracking.	
 	
 94	

Figure 17: Conditional independence prior knowledge.	
 ...	
 99	

Figure 18:The results of applying the dynamic programming with prior knowledge

consistent with GOBNILP, arrows which have to be there and known ordering,
for synthetic data generated by the Asia 100.	
 ...	
 103	

Figure 19: The results of applying the dynamic programming with prior knowledge
inconsistent with GOBNILP, arrows which have to be there, for synthetic data
generated by the Asia 100.	
 ..	
 103	

Figure	
 20:	
 The results of applying the dynamic programming with prior knowledge
inconsistent with GOBNILP, known ordering, for synthetic data generated by the
Asia 100.	
 ...	
 104	

Figure	
 21:	
 The results of applying the dynamic programming with prior knowledge
consistent with GOBNILP, arrows which have to be there and known ordering,
for synthetic data generated by the Asia 1000.	
 ..	
 104	

Figure	
 22: The results of applying the dynamic programming with prior knowledge
inconsistent with GOBNILP, arrows which have to be there, for synthetic data
generated by the Asia 1000.	
 ...	
 105	

Figure	
 23:	
 The results of applying the dynamic programming with prior knowledge
inconsistent with GOBNILP, known ordering, for synthetic data generated by the
Asia 1000.	
 ...	
 105	

Figure	
 24:	
 The results of applying the dynamic programming with prior knowledge
consistent with GOBNILP, arrows which have to be there and known ordering,
for synthetic data generated by the Asia 10000.	
 ..	
 106	

Figure	
 25:	
 The results of applying the dynamic programming with prior knowledge
inconsistent with GOBNILP, arrows which have to be there, for synthetic data
generated by the Asia 10000.	
 ...	
 106	

Figure	
 26:	
 The results of applying the dynamic programming with prior knowledge
inconsistent with GOBNILP, known ordering, for synthetic data generated by the
Asia 10000.	
 ..	
 107	

Figure	
 27:	
 The results of applying the dynamic programming with prior knowledge
consistent with GOBNILP, arrows which have to be there and known ordering,
for synthetic data generated by the Kredit 10000.	
 ..	
 108	

	
 vi	

Figure	
 28:	
 The results of applying the dynamic programming with prior knowledge
inconsistent with GOBNILP, arrows which have to be there and known ordering,
for synthetic data generated by the Kredit 10000.	
 ..	
 108	

Figure 29: Alarm network without prior knowledge	
 ...	
 112	

Figure	
 30:	
 Insurance	
 network	
 without	
 prior	
 knowledge.	
 ..	
 113	

Figure 31: Mildew network without prior knowledge	
 ..	
 114	

Figure 32: Carpo network without prior knowledge.	
 ..	
 115	

Figure	
 33:	
 The results of applying HCPK, arrows which have to be there, for

synthetic data generated by the Insurance100.	
 ...	
 117	

Figure	
 34: The results of applying HCPK, arrows which have to be there, for

synthetic data generated by the Insurance 1000.	
 ...	
 117	

Figure	
 35:	
 The results of applying HCPK, arrows which have to be there, for

synthetic data generated by the Insurance 10000.	
 ...	
 118	

Figure	
 36:	
 The results of applying HCPK, arrows which have to be there, for

synthetic data generated by the Mildew 100.	
 ...	
 119	

Figure	
 37:	
 The results of applying HCPK, arrows which have to be there, for

synthetic data generated by the Mildew 1000.	
 ...	
 119	

Figure	
 38:	
 The results of applying HCPK, arrows which have to be there, for

synthetic data generated by the Mildew 10000.	
 ..	
 120	

Figure	
 39:	
 The results of applying HCPK, arrows which have to be there, for

synthetic data generated by the Alarm 100.	
 ..	
 121	

Figure	
 40:	
 The results of applying HCPK, arrows which have to be there, for

synthetic data generated by the Alarm 1000.	
 ..	
 121	

Figure	
 41:	
 The results of applying HCPK, arrows which have to be there, for

synthetic data generated by the Alarm 10000.	
 ...	
 122	

Figure	
 42:	
 The results of applying HCPK, arrows which have to be there, for

synthetic data generated by the Carpo 100.	
 ...	
 123	

Figure	
 43: The results of applying HCPK, arrows which have to be there, for

synthetic data generated by the Carpo 1000.	
 ..	
 123	

Figure	
 44:	
 The results of applying HCPK, arrows which have to be there, for

synthetic data generated by the Carpo 10000.	
 ..	
 124	

Figure	
 45: The results of applying HCPK, ancestors relation, for synthetic data

generated by the Insurance 100.	
 ..	
 126	

Figure	
 46: The results of applying HCPK, ancestors relation, for synthetic data

generated by the Insurance 1000.	
 ...	
 127	

Figure	
 47:	
 The results of applying HCPK, ancestors relation, for synthetic data

generated by the Insurance 10000.	
 ...	
 127	

Figure	
 48:	
 The results of applying HCPK, ancestors relation, for synthetic data

generated by the Alarm 100.	
 ..	
 128	

Figure	
 49:	
 The results of applying HCPK, ancestors relation, for synthetic data

generated by the Alarm 1000.	
 ..	
 128	

Figure	
 50:	
 The results of applying HCPK, ancestors relation, for synthetic data

generated by the Alarm 10000.	
 ...	
 129	

Figure	
 51:	
 The results of applying HCPK, ancestors relation, for synthetic data

generated by the Mildew 100.	
 ..	
 130	

Figure	
 52:	
 The results of applying HCPK, ancestors relation, for synthetic data

generated by the Mildew 1000.	
 ...	
 130	

Figure	
 53:	
 The results of applying HCPK, ancestors relation, for synthetic data

generated by the Mildew 10000.	
 ...	
 131	

	
 vii	

Figure	
 54:	
 The results of applying HCPK, ancestors relation, for synthetic data
generated by the Carpo 100.	
 ...	
 132	

Figure	
 55:	
 The results of applying HCPK, ancestors relation, for synthetic data
generated by the Carpo 1000.	
 ..	
 133	

Figure	
 56:	
 The results of applying HCPK, ancestors relation, for synthetic data
generated by the Carpo 10000.	
 ..	
 133	

Figure	
 57:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Insurance 100.	
 ..	
 136	

Figure	
 58:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Insurance 1000.	
 ..	
 136	

Figure	
 59: The results of applying HCPK, conditional independence, for synthetic
data generated by the Insurance 10000.	
 ..	
 137	

Figure	
 60:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Alarm 100.	
 ...	
 138	

Figure	
 61:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Alarm 1000.	
 ..	
 138	

Figure	
 62:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Alarm 10000.	
 ..	
 139	

Figure	
 63:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Mildew 100.	
 ..	
 140	

Figure	
 64: The results of applying HCPK, conditional independence, for synthetic
data generated by the Mildew 1000.	
 ..	
 140	

Figure	
 65:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Mildew 10000.	
 ...	
 141	

Figure	
 66:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Carpo 100.	
 ...	
 142	

Figure	
 67:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Carpo 1000.	
 ...	
 142	

Figure	
 68:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Carpo 10000.	
 ...	
 143	

Figure	
 69:	
 	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Insurance 100.	
 ..	
 145	

Figure	
 70:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Insurance 1000.	
 ..	
 145	

Figure	
 71:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Insurance 10000.	
 ..	
 146	

Figure	
 72:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Alarm 100.	
 ...	
 147	

Figure	
 73:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Alarm 1000.	
 ..	
 147	

Figure	
 74:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Alarm 10000.	
 ..	
 148	

Figure	
 75:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Mildew 100.	
 ..	
 149	

Figure	
 76:	
 	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Mildew 1000.	
 ..	
 149	

Figure	
 77:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Mildew 10000.	
 ...	
 150	

	
 viii	

Figure	
 78: The results of applying HCPK, inconsistent prior knowledge, for synthetic
data generated by the Insurance 100.	
 ..	
 152	

Figure	
 79:	
 The results of applying HCPK, inconsistent prior knowledge, for synthetic
data generated by the Insurance 1000.	
 ..	
 153	

Figure	
 80:	
 The results of applying HCPK, inconsistent prior knowledge, for synthetic
data generated by the Insurance 10000.	
 ..	
 153	

Figure	
 81: The results of applying HCPK, inconsistent prior knowledge, for synthetic
data generated by the Alarm 100.	
 ...	
 154	

Figure	
 82:	
 The results of applying HCPK, inconsistent prior knowledge, for synthetic
data generated by the Alarm 1000.	
 ..	
 154	

Figure	
 83:	
 The results of applying HCPK, inconsistent prior knowledge, for synthetic
data generated by the Alarm 10000.	
 ..	
 155	

Figure	
 84:	
 The results of applying HCPK, inconsistent prior knowledge, for synthetic
data generated by the Mildew 100.	
 ..	
 156	

Figure	
 85:	
 	
 The results of applying HCPK, inconsistent prior knowledge, for
synthetic data generated by the Mildew 1000.	
 ...	
 156	

Figure	
 86:	
 The results of applying HCPK, inconsistent prior knowledge, for synthetic
data generated by the Mildew 10000.	
 ...	
 157	

Figure	
 87:	
 The results of applying HCPK, arrows which have to be there, for
synthetic data generated by the Diabetes.	
 ..	
 159	

Figure	
 88:	
 The results of applying HCPK, ancestor relation, for synthetic data
generated by the Diabetes.	
 ..	
 159	

Figure	
 89:	
 	
 The results of applying HCPK, conditional independence checks, for
synthetic data generated by the Diabetes.	
 ..	
 160	

Figure	
 90:	
 The results of applying HCPK, arrows which have to be there, for
synthetic data generated by the Pigs.	
 ...	
 160	

Figure	
 91:	
 The results of applying HCPK, ancestor relation, for synthetic data
generated by the Pigs.	
 ...	
 161	

Figure	
 92:	
 The results of applying HCPK, conditional independence checks, for
synthetic data generated by the Pigs.	
 ...	
 161	

	

	

	
 ix	

	

	

List of Tables
	

Table 1: Comparison software	
 ..	
 111	

Table 2: Time of HCPK algorithm	
 ..	
 162	

Table	
 3:	
 Time of HCPK algorithm, using prior knowledge, for synthetic data

generated by the insurance.	
 ...	
 163	

Table	
 4:	
 Time of HCPK algorithm, using prior knowledge, for synthetic data

generated by the Mildew.	
 ..	
 164	

Table	
 5:	
 Time of HCPK algorithm, using prior knowledge, for synthetic data

generated by the Alarm.	
 ...	
 165	

Table 6: The comparison between the structure of the generated network by HCPK

and the true networks synthetic data generated by the Insurance.	
 	
 169	

Table 7: The comparison between the structure of the generated network by HCPK

and the true networks synthetic data generated by the Alarm.	
 	
 170	

Table 8: The comparison between the structure of the generated network by HCPK

and the true networks synthetic data generated by the Mildew.	
 	
 171	

Table 9: The results of applying the dynamic programming with prior knowledge,

arrows which have to be there, for synthetic data generated by the Asia.	
 	
 177	

Table 10: The results of applying the dynamic programming with prior knowledge,

known ordering, for synthetic data generated by the Asia.	
 	
 178	

Table 11: The results of applying the dynamic programming with priors knowledge,

known ordering and arrows which have to be there, for synthetic data generated
by the Kredit.	
 ...	
 179	

Table 12: The results of applying HCPK, arrows which have to be there, for synthetic
data generated by the Insurance.	
 ...	
 180	

Table 13: The results of applying HCPK, arrows which have to be there, for synthetic
data generated by the Mildew.	
 ...	
 181	

Table 14: The results of applying HCPK, arrows which have to be there, for synthetic
data generated by the Alarm.	
 ...	
 182	

Table 15: The results of applying HCPK, arrows which have to be there, for synthetic
data generated by the Carpo.	
 ..	
 183	

Table 16: The results of applying HCPK, ancestors relation, for synthetic data
generated by the Insurance.	
 ..	
 184	

Table 17: The results of applying HCPK, ancestors relation, for synthetic data
generated by the Alarm.	
 ...	
 185	

Table 18: The results of applying HCPK, ancestors relation, for synthetic data
generated by the Mildew.	
 ..	
 186	

Table 19: The results of applying HCPK, ancestors relation, for synthetic data
generated by the Carpo.	
 ...	
 187	

Table 20: The results of applying HCPK, conditional independence, for synthetic data
generated by the Insurance.	
 ..	
 188	

Table 21: The results of applying HCPK, conditional independence, for synthetic data
generated by the Alarm.	
 ...	
 189	

	
 x	

Table 22: The results of applying HCPK, conditional independence, for synthetic data
generated by the Mildew.	
 ..	
 190	

Table 23: The results of applying HCPK, conditional independence, for synthetic data
generated by the Carpo.	
 ...	
 191	

Table 24: The results of applying HCPK, conditional independence, for synthetic data
generated by the Insurance.	
 ..	
 192	

Table 25: The results of applying HCPK, conditional independence, for synthetic data
generated by the Alarm.	
 ...	
 193	

Table 26: The results of applying HCPK, conditional independence, for synthetic data
generated by the Mildew.	
 ..	
 194	

Table	
 27: The results of applying HCPK, inconsistent prior knowledge, for synthetic
data generated by the Insurance.	
 ...	
 195	

Table 28: The results of applying HCPK, inconsistent prior knowledge, for synthetic
data generated by the Alarm.	
 ...	
 196	

Table 29: The results of applying HCPK, inconsistent prior knowledge, for synthetic
data generated by the Mildew.	
 ...	
 197	

Table 30: The results of applying HCPK for synthetic data generated by the Diabetes.
	
 ..	
 198	

	
 xi	

List of Algorithms
Algorithm 1: HCPK algorithm	
 ..	
 76	

Algorithm 2: HCPK algorithm with random restarts	
 ...	
 77	

Algorithm 3: Restart and backtrack.	
 ..	
 91	

Algorithm 4: Ancestor relation	
 ...	
 92	

Algorithm 5: Conditional independence	
 ..	
 97	

Algorithm 6: SHD Algorithm	
 ..	
 168	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 xii	

	

	

	

	

Acknowledgements

I thank and praise Allah (God) the Almighty for giving me the courage and ability to

seek knowledge and complete this thesis.

I would like to express my special appreciation and thanks to my Supervisor Dr James

Cussens who has been a tremendous mentor to me. I would like to thank him for

encouraging my research and allowing me to grow as a research scientist. His advice

on my research and my career have been priceless. I would also like to thank Daniel

Kudenko for providing me with comments and suggestions throughout the milestones

of this research.

I would like to thank my family for all their love and encouragement. During this

research, my parents Marzouq and Fozyah Aljohani have been with me through their

prayers and encouragement. Words are not enough to express my gratitude to them.

Finally yet importantly, I would like to thank my loving and patient husband, whose

faithful support during this PhD is so appreciated, and my daughter Lujain, to whom I

did not give enough whilst working on this thesis; I dedicate this thesis to you.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 xiii	

	

	

Declaration
	

This thesis has not previously been accepted in substance for any degree and is not

being concurrently submitted in candidature for any degree other than Doctor of

Philosophy of the University of York. This thesis is the result of my own

investigations, except where otherwise stated. Other sources are acknowledged by

explicit references. Some parts of this thesis were presented at the following events:

• Eman Aljohani and James Cussens. Informative priors for learning in

graphical models. In AIGM workshop, 2014.

Introduction	
 And	
 Motivation	
 	
 14	

1 Introduction And Motivation
	

This chapter shows how machine learning is used to learn a well-known set of

graphical models – Bayesian networks – and is concerned with learning the structure

of Bayesian networks and parameter estimation. The thesis gives the necessary

background for graphical models by giving simple examples of medical diagnosis

problems. Section 1.2 gives a detailed account of the motivation and the research

hypothesis behind the work in this thesis, which is based on a well-known graphical

representation for learning Bayesian networks specifically, using prior knowledge.

Finally, an overview of the thesis is given in Section 1.3.

	

 Introduction 1.1
	

	

A Bayesian network (BN) is a graphical model that encodes the dependencies

between variables, where nodes represent the random variables and edges represent

the probabilistic dependence between variables (discussed in detail in section 2.2).

The rest of this section will use the following simple medical diagnosis problem.

Let’s take an example of a lung cancer problem: A patient has been suffering from

dyspnoea and visits the doctor. The patient is concerned that he may have lung

cancer. However, the doctor knows that other diseases cause dyspnoea, as well as

lung cancer. Additional information includes whether or not the patient is a smoker,

and if the patient has been exposed to pollution that might increase the chances of

having cancer. In addition, a positive X-ray would reveal whether the patient has lung

cancer (Korb & Ann E. Nicholson, 2003).

Introduction	
 And	
 Motivation	
 	
 15	

	

Figure 1: A Bayesian network for the lung cancer problem.

In this medical diagnosis example, two nodes should be connected directly if one

affects or causes the other, with the edge specifying the direction of the effect. On

other hand, having cancer will affect the patient’s breathing, which increases the

probability of a positive X-ray result.

A node is a parent of a child if there is an edge from the parent to the child. From a set

of directed nodes, we can say that the Cancer node has two parents: Pollution and

Smoker. Furthermore, node Smoker is an ancestor of both X-ray and Dyspnoea, as it

appears earlier in the directed set. Whereas, node X- ray is a child of Cancer and a

descendant of Smoker and Pollution, as it comes later in the directed set.

A Bayesian networks offer complete representations of probability distributions over

their variables. Therefore, this indicates that they can be conditioned on any subset of

variables, which supports any direction of reasoning. Bayesian networks allow us to

perform diagnostic or predictive reasoning.

A doctor observes Dyspnoea and then updates his belief about Cancer. If the patient is

a Smoker, this is an example of reasoning from symptoms to cause. However, if the

doctor knows that the patient is a smoker, then the doctor also knows this will

increase the probability of the patient having cancer. This is an example of predictive

reasoning.

Pollution

Cancer

XRay Dyspnoea

Smoker

Introduction	
 And	
 Motivation	
 	
 16	

On the other hand, if we already know that the patient has cancer, then knowing

whether they are a smoker will not make any difference to the probability of

dyspnoea. Thus, dyspnoea is conditionally independent of smoking given the patient

has cancer.

However, learning an optimal Bayesian networks from a given set of data is a

computationally difficult problem. In structure learning algorithms, we find that for

every possible edge in the network there is a question about whether to add the edge

in the final network and in which direction. For larger problems, we have to resort to

heuristic search approaches. In this thesis, we will use a hill climbing algorithm.

The number of possible network structures grows exponentially with every possible

subset of edges, which could represent a network structure. Even restricting the

structure learning so that it only has k parents (for k >1) has been proven to be NP-

Complete (discussed in section 3.5). There is no efficient polynomial-time algorithm

for searching the space of possible network structures (unless P=NP) in order to find a

network structure that best fits with the data.

	

Introduction	
 And	
 Motivation	
 	
 17	

 Motivation 1.2
	

	

This thesis investigates how different sorts of prior knowledge are incorporated into

the developed learning algorithms. There are different types of prior knowledge, and

different people have various types and levels of knowledge about a particular

problem domain. However, given that a wide variety of problems need to be solved,

the aim of this research is to develop a way of using the prior knowledge provided.

The main goal of this thesis is to create an algorithm that uses prior knowledge as

input data, together with data, and builds a Bayesian network with a high posterior

probability. Consequently, including the prior knowledge will make learning the

Bayesian network much easier. Sometimes, working out what the right prior

knowledge is may be difficult, but this thesis is not concerned with determining what

the right prior knowledge is. Instead, the goal is to include all of the information and

implicitly incorporate it in a prior distribution. This thesis discusses what sort of prior

knowledge will be allowed and the Bayesian structure-learning algorithm that is used.

There are many types of prior knowledge, including the knowledge of whether or not

node A is a parent of node B and known topological ordering. The most challenging

type of prior knowledge, and the main subject of this research, is known ancestor

relations and conditional independence. However, the main issue is that more

complicated prior knowledge cannot be incorporated into a local score (as discussed

in section 4.3). In addition to this, once we have complicated prior knowledge, just

using hill climbing without changing it will fail because it will constantly generate

networks that are not allowed. Therefore, we need to add some intelligence.

Introduction	
 And	
 Motivation	
 	
 18	

As learning Bayesian networks is NP-hard and these exact learning approaches will

not scale to bigger datasets, exact leaning approaches are not the answer to every

problem due to scalability issues. Thus, we have to use an approximate approach and

a greedy approach such as hill climbing. Consequently, we need to explore

improvements to hill climbing.

The Bayesian structure-learning problem is described as an optimisation problem.

This thesis follows a search and score approach which builds upon a hill-climbing

algorithm. It is difficult to create a good Bayesian network manually, and in many

cases (applications), we have prior knowledge about a variable as well as data.

Therefore, there is some motivation for designing an algorithm that takes advantage

of prior knowledge. The aim of this thesis is to create an algorithm that uses prior

knowledge as input data while simultaneously dealing with bigger problems.

Introduction	
 And	
 Motivation	
 	
 19	

	

 Thesis Overview 1.3

This thesis is organised as follows:

Chapter 2 provides the necessary background. It introduces the field survey, and then

provides a review of graphical models and probability theory. It also discusses the

two main representations of graphical models: Bayesian networks and Markov

networks. Next, it introduces the two main methods for handling the problem of

parameter estimation for Bayesian networks: one is maximum likelihood estimation

(MLE), and the other is based on the Bayesian approach. The directed acyclic graph

represents the structure in a Bayesian network, and the values of the conditional

probability distribution are the parameters. It also aims to provide an illustration of

the form of prior and posterior distributions when we are in a situation where we need

to express our uncertainty concerning a beta distribution (as in the case of a binary

parameter) and a Dirichlet distribution (as in the case of multinomial variables).

Chapter 3 describes Bayesian network structure learning. It investigates the three

main approaches used for Bayesian structure learning: constraint-based, score-based,

and the Bayesian model-averaging approach. This chapter attempts to illustrate why it

is important to study prior knowledge, and the various approaches that have been

considered. It highlights different, related work on Bayesian structure learning

approaches, and discusses the theoretical limits of learning Bayesian networks.

Finally, the chapter examines some existing applications for Bayesian network

learning.

Chapter 4 proposes an algorithm to learn Bayesian networks from data. It presents

Cowell's (2009) approach to the exact learning of the maximum likelihood Bayesian

network. It introduces the developed learning algorithm, which is a hill-climbing

algorithm prior knowledge (HCPK). First, it shows how the directed acyclic graph

(DAG) is represented. Then, it explains how cycle checking and the scoring function

are used in the developed learning algorithm. Finally, it gives a detailed discussion of

the search procedure in the HCPK.

Introduction	
 And	
 Motivation	
 	
 20	

Chapter 5 is about the main contribution of this thesis: presenting an algorithm that

can incorporate different types of prior to the developed algorithm. This section

introduces prior information and highlights the differences between hard and soft

prior information. It then describes how different sorts of prior knowledge are

incorporated into the developed learning algorithms.

Chapter 6 reviews the research thesis objectives and results. It emphasises the

contributions that this research has made, and presents experiments conducted using

the developed algorithm on Dynamic Programming and HCPK, with and without

prior knowledge.

Chapter 7 presents a summary of all the chapters included in the thesis. It identifies

the limitations of the current work, and provides some possible directions for future

study.

Background	
 	
 21	

2 Background
	

This chapter covers the background about the fields of machine learning, graphical

models, and probability theory. Section 2.1 provides an introduction to machine

learning, and introduces probability theory and how it is linked to graphical models.

An overview of the different types of graphical models that are most commonly used

as representations of variable relationships is presented. The main types of graphs are

a Bayesian network (discussed in section 2.2) and a Markov network (discussed in

section 2.3). Section 2.4 explains the two main methods used to handle the problem of

parameter estimation for Bayesian networks.

	

 Introduction 2.1
	

A	
 machine	
 typically	
 learns	
 whenever	
 it	
 changes	
 its	
 structure,	
 data,	
 or	
 software.	

These	
 changes	
 are	
 based	
 on	
 inputs	
 or	
 external	
 information.	
 However,	
 learning	

similar	
 to	
 intelligence	
 covers	
 a	
 wide	
 range	
 of	
 processes	
 that	
 are	
 difficult	
 to	
 define	

precisely.	
 Machine	
 learning	
 denotes	
 the	
 changes	
 in	
 any	
 system	
 that	
 performs	

some	
 tasks	
 linked	
 with	
 artificial	
 intelligence.	
 Examples	
 of	
 such	
 tasks	
 are	

recognition,	
 diagnosis,	
 and	
 prediction,	
 and	
 the	
 changes	
 might	
 be	
 either	

improvements	
 to	
 the	
 system’s	
 performance	
 or	
 the	
 installation	
 of	
 new	
 systems.	
 In	

addition	
 to	
 this,	
 different	
 methods	
 of	
 learning	
 are	
 possible.	
 One	
 of	
 the	
 reasons	

machine	
 learning	
 is	
 important	
 is	
 because	
 “The	
 amount	
 of	
 knowledge	
 available	

about	
 certain	
 tasks	
 might	
 be	
 too	
 large	
 for	
 explicit	
 encoding	
 by	
 humans.	
 Machines	

that	
 learn	
 this	
 knowledge	
 gradually	
 might	
 be	
 able	
 to	
 capture	
 more	
 of	
 it	
 than	

humans	
 would	
 want	
 to	
 write	
 down”	
 (Nilsson,	
 2005).	
 	

In general, probability theory is the mathematical study of uncertainty. It plays a main

part in machine learning because the design of learning algorithms typically relies on

the assumption of probabilistic data. According to Murphy (2001),	
 when	
 probability	

theory	
 and	
 graph	
 theory	
 are	
 combined,	
 this	
 is	
 called	
 graphical	
 models.	
 He goes on

Background	
 	
 22	

to, “They provide a natural tool for dealing with two problems that	
 occur	
 throughout	

applied	
 mathematics	
 and	
 engineering	
 –	
 uncertainty	
 and	
 complexity	
 –	
 and,	
 in	

particular,	
 they	
 are	
 playing	
 an	
 increasingly	
 important	
 role	
 in	
 the	
 design	
 and	

analysis	
 of	
 machine	
 learning	
 algorithms”	
 (Murphy,	
 2001).	
 	

Generally,	
 a	
 probabilistic	
 graphical	
 model	
 is	
 a	
 graph	
 where	
 random	
 variables	
 are	

represented	
 by	
 nodes,	
 and	
 the	
 lack	
 of	
 edges	
 denotes	
 conditional	
 independence	

assumptions.	
 There	
 are	
 two	
 main	
 classes	
 of	
 graphical	
 models:	
 Bayesian	

networks	
 (BN)	
 and	
 Markov	
 networks	
 (MN).	
 Bayesian	
 networks	
 are	
 directed	

graphical	
 models	
 that	
 are	
 common	
 in	
 artificial	
 intelligence	
 (AI)	
 and	
 machine	

learning.	
 By	
 contrast,	
 Markov	
 networks	
 are	
 undirected	
 graphical	
 models	
 that	

mainly	
 concern	
 the	
 physics	
 and	
 vision	
 communities.	
 A	
 chain	
 graph	
 has	
 both	

undirected	
 and	
 directed	
 links.	
 	

	

The	
 basic	
 concept	
 of	
 probability	
 theory	
 can	
 be	
 illustrated	
 by	
 considering	
 the	
 idea	

of	
 finding	
 the	
 probability	
 that	
 a	
 cancer	
 patient	
 will	
 react	
 to	
 some	
 particular	

chemotherapy,	
 or	
 by	
 observing	
 the	
 outcome	
 of	
 rolling	
 a	
 pair	
 of	
 dice.	
 These	

possible	
 outcomes	
 are	
 called	
 sample	
 points.	
 The	
 set	
 of	
 all	
 possible	
 sample	
 points	

in	
 a	
 situation	
 of	
 interest	
 is	
 called	
 a	
 sample	
 space.	
 The	
 sample	
 points	
 in	
 a	
 sample	

space	
 must	
 be	
 mutually	
 exclusive	
 and	
 collectively	
 exhaustive.	
 A	
 probability	

measure,	
 p(⋅),	
 is	
 a	
 function	
 on	
 subsets	
 of	
 a	
 sample	
 space	
 Ω,	
 which	
 are	
 called	

events.	
 The	
 values	
 of	
 p(A),	
 p(A	
 ∪	
 B),	
 and	
 p(Ω)	
 indicate	
 the	
 probabilities	
 of	
 the	

respective	
 events	
 (for	
 A,	
 B	
 ⊆	
 Ω).	
 The	
 function	
 p(⋅)	
 is	
 a	
 measure	
 with	
 the	
 following	

properties:	
 	

1. “Definition:	
 A	
 probability	
 measure	
 on	
 a	
 sample	
 space	
 Ω	
 is	
 a	
 function	

mapping	
 subsets	
 of	
 Ω	
 to	
 the	
 interval	
 [0,	
 1]	
 such	
 that:”	
 (Krause,	
 1998)	

2. 𝐴 ⊆Ω,P 𝐴 ≥ 0,𝐴 any event	

3. 𝑃(Ω) = 1	

4. For	
 any	
 countably	
 infinite	
 collection	
 of	
 disjoint	
 subsets	
 of	
 Ω,𝐴! ,K =

1, . . ,∞ 	

	
 𝑃()!
!!! 𝐴! = 𝑃(𝐴!!

!!!)	

	

	

Background	
 	
 23	

Furthermore, according to Krause (1998), probability theory offers a method through

which the probabilities of events are updated as we obtain evidence. In probability

theory, conditional probability and Bayes' theorem are very important. Bayes' theorem

has an enormous use in practical fields; for example, in medical	
 diagnosis,	
 to	
 find	

the	
 probability of a disease, given a symptom. Bayes' theorem is also used to manage

some situations where an event is the parameter value or particular structure for a

given data set. The probability of a particular event 𝐴 that is conditional on event 𝐵 is

expressed as P A B . Bayes' theorem is:

	

P A B =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵) 	

Where	
 𝑃(𝐴)	
 is	
 the	
 prior	
 probability,	
 𝑃(𝐵|𝐴)	
 is	
 the	
 likelihood	
 of	
 observing 𝐵	

(which	
 is	
 conditional	
 on 𝐴),	
 and	
 𝑃(𝐵)	
 is	
 the	
 probability	
 of	
 the	
 evidence	
 𝐵.	

	

In	
 probability	
 theory,	
 a	
 set	
 of	
 events	
 is	
 often	
 defined	
 using	
 random	
 variables	

(Russell	
 &	
 Norvig,	
 2010).	
 Every	
 value	
 of	
 a	
 random	
 variable	
 takes	
 some	
 domain.	

These	
 random	
 variables	
 can	
 be	
 Boolean,	
 discrete,	
 or	
 continuous.	
 In	
 the	
 case	
 of	
 a	

Boolean	
 variable,	
 it	
 generally	
 has	
 the	
 value	
 𝑡𝑟𝑢𝑒 𝑜𝑟 𝑓𝑎𝑙𝑠𝑒.	
 For	
 example,	
 when	

throwing	
 dice	
 the	
 instance	
 when	
 a	
 double	
 is	
 rolled	
 can	
 be	
 written	
 as	
 𝑑𝑜𝑢𝑏𝑙𝑒𝑠 =

𝑇𝑟𝑢𝑒.	
 Discrete	
 variables	
 have	
 a	
 countable	
 domain;	
 for	
 example,	
 𝑤𝑒𝑎𝑡ℎ𝑒𝑟	
 has	
 the	

domain	
 <sunny,	
 snow,	
 rainy,	
 cloudy>;	
 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = sunny.	
 	
 Continuous	
 variables	

take	
 on	
 values	
 from	
 real	
 numbers.	
 We	
 can	
 express	
 the	
 probability	
 that	
 a	
 random	

variable	
 lies	
 within	
 some	
 particular	
 range	
 of	
 value	
 𝑥 ,	
 for	
 example,	
 today’s	

temperature	
 𝑥 ≥ 9.	

	

In	
 addition,	
 probability	
 theory	
 is	
 a	
 suitable	
 basis	
 for	
 uncertain	
 reasoning.	

Uncertainty	
 occurs	
 due	
 to	
 computational	
 limitations	
 and	
 lack	
 of	
 knowledge.	

Probabilities	
 encode	
 user	
 uncertainty	
 and	
 are	
 used	
 to	
 obtain	
 the	
 right	
 decision	

within	
 a	
 domain	
 of	
 interest,	
 summarising	
 beliefs	
 relative	
 to	
 the	
 evidence.	
 Let	
 us	

consider	
 an	
 example	
 of	
 uncertain	
 reasoning	
 in	
 the	
 medical	
 domain:	
 diagnosing	
 a	

patient’s	
 toothache.	
 For	
 a	
 particular	
 patient	
 that	
 has	
 toothache,	
 we	
 might	

consider	
 that	
 the	
 toothache	
 is	
 caused	
 by	
 a	
 cavity,	
 but	
 this	
 is	
 not	
 necessarily	
 true	

because	
 some	
 patients	
 may	
 have	
 gum	
 problems	
 or	
 another	
 of	
 the	
 many	

Background	
 	
 24	

problems	
 that	
 result	
 in	
 toothache.	
 We	
 can	
 say	
 that	
 we	
 believe	
 there	
 is	
 an	
 80%	

chance	
 (probability	
 of	
 0.8)	
 that	
 someone	
 who	
 has	
 a	
 toothache	
 will	
 have	
 a	
 cavity.	

In	
 other	
 words,	
 the	
 probability	
 that	
 the	
 patient	
 has	
 a	
 cavity,	
 given	
 that	
 he	
 has	
 a	

toothache,	
 is	
 0.8.	
 However,	
 knowing	
 the	
 patient's	
 history	
 of	
 other	
 toothache	

problems	
 will	
 alter	
 this	
 statement,	
 so	
 we	
 could	
 say	
 that	
 the	
 probability	
 that	
 this	

patient	
 has	
 a	
 cavity,	
 given	
 that	
 he	
 has	
 a	
 toothache	
 and	
 other	
 toothache	
 problems,	

is	
 0.4.	

Prior probabilities typically represent person degrees of belief 𝑃 cavity = 0.2, and

then later we obtain information, which is called evidence. Moreover, prior

probability distribution of an uncertain amount is probability distribution that one can

express their belief before some evidence is considered. If	
 a	
 person	
 is	
 going	
 to	
 the	

dentist	
 because	
 he	
 has	
 toothache,	
 then	
 𝑃 cavity = 0.2	
 will	
 be	
 updated	
 based	
 on	

observed	
 information	
 relating	
 to	
 the	
 toothache,	
 this	
 is	
 called	
 the	
 posterior	

probability	
 𝑃 cavity | toothache = 0.6.	
 Probabilistic	
 inference,	
 which	
 is	
 used	
 for	

answering	
 any	
 queries,	
 is	
 the	
 process	
 of	
 computing	
 any	
 query	
 conditioned	
 on	

observed	
 evidence.	
 	

However, Empirical Bayes methods are used to estimate the statistical inference from

the data of the prior distribution. This method is an alternative for the Bayesian

method in which the prior distribution is to be fixed before observation. Although

Empirical Bayes is considered different yet it resembles the complete Bayesian

hierarchical model treatment. In this the higher hierarchy parameters are paired with

their most possible values without being integrated. Maximum Marginal Likelihood is

another name of the Empirical Bayes method and it symbolizes the hyper parameters

approach.

	
 	

Background	
 	
 25	

	

2.2 Bayesian	
 network	
 	

	

A Bayesian network (BN) is a graphical model that encodes the dependencies

between variables. Furthermore, “Bayesian networks are one of the most important,

efficient, and elegant frameworks for representing and reasoning with probabilistic

models. They have been applied to many real-world problems in diagnosis,

forecasting, automated vision, sensor fusion, and manufacturing control“(Getoor &

Taskar, 2007).

	

As shown in Figure [2], the main representation in Bayesian networks is the directed

acyclic graph (DAG): where nodes represent the random variables and edges

represent the probabilistic dependence between variables (influences).

 	

Figure 2: An example of Bayesian network

Figure [2] demonstrates an example of a BN with five random variables. 𝐵 and 𝐸 are

represented as parents of child 𝐴, and child 𝐴 is a parent of 𝐽 and 𝑀. Also, the set

{𝐵,𝐸} of the parents of a child is identified as the parent set of that child, which is

denoted by 𝐴 ← {𝐵,𝐸}.

B

A

J M

E

Background	
 	
 26	

However, the main semantics of Bayesian networks are illustrated by the full joint

distribution 𝑃(𝓍!,… ,𝓍!); the joint probability distributions for variable 𝑥:

𝑃 𝓍!,… ,𝓍! = 𝑃(𝑥!| parents(𝑥!))!
!!! . Moreover, at each node there is a

conditional probability distribution (CPD) for the corresponding variable given its

parents 𝑃(𝓍!| parents(𝑥!)), which encodes the strength of dependencies.

This conditional probability distribution 𝑃(𝓍!| parents(𝑥!)) for discrete variables is

typically expressed as a table that has an entry for each joint assignment for the

corresponding variable 𝓍! and its parents(𝑥!) . Therefore, for each node there is a

conditional probability table that measures the effect of the parents on the node. The

parameters are expressed as the probabilities in these conditional probability tables

(CPTs), as shown in Figure [3].

For variables that have no parents, the conditional probability table conditioned on the

empty set of variables, prior probabilities, and CPD becomes a marginal distribution;

for example, from Figure [3], where 𝑃 𝐵 and 𝑃 𝐸 are the prior probabilities.

Meanwhile, each entry in a joint distribution is represented by the product of the

CPTs in a Bayesian network (Russell & Norvig, 2010).

	

Figure 3: Conditional probability tables (CPTs).

As the DAG is the main graphical representation for a Bayesian network, there are no

cycles in the graphs, which means no directed path will start and end at the same node

(Koller & Friedman, 2009). This is mainly to ensure that

𝑃 𝓍!,… ,𝓍! = 𝑃(𝓍!| parents(𝑥!))!
!!! holds.

	

Background	
 	
 27	

Dependencies	
 and	
 Independencies	
 in	
 Bayesian	
 network	

	

The dependencies and independencies in Bayesian networks are the main properties

of the distribution they define, and it is important to gain an understanding about its

behaviour. D-separation is one of the ways of checking for conditional independence

relations, and it discovers nodes reachable from a node A, given a set of nodes

Z, via active trails. The local independencies in Bayesian networks are that each

node is independent of its non-descendants, given its parents. Whilst global

independencies are derived from d-separation, which helps to ensure that specific sets

of independencies 𝐴 ⊥ 𝐵 𝐶) hold in a distribution, so that a variable A is

conditionally independent on a particular variable B, given variable C.

	

Jensen and Nielsen (2007) demonstrate that in d-separation there are three main

patterns that illustrate whether two variables are independent in the presence of

evidence. The first is known as a serial connection, and is shown in Figure [4].

	

	

	

	

Figure 4: A serial connection.

	

When 𝐵 is not observed, 𝐴 has an influence on 𝐶 through 𝐵. Also, evidence about 𝐶

will influence the certainty of 𝐴 through 𝐵. 𝐴 and 𝐶 are mutually dependent. On the

other hand, when 𝐵 is observed, 𝐴 will not provide additional information about 𝐶, so

the path will be blocked. Then, 𝐴 and 𝐶 are independent and these are d-separated,

given 𝐵 . When the variable is observed, it is instantiated, which blocks

communication between 𝐴 and 𝐶.

	

	

	

	

	

	

A	
 B	
 C	

Background	
 	
 28	

The second pattern is known as a diverging connection, and is demonstrated in Figure

[5].

	

Figure 5: A diverging connection.

	
 	

When 𝐴 is not observed in this situation, influence is passed through to all of the

children of 𝐴. For example, 𝐵 gives us information about 𝐴, and helps to predict 𝐸

and 𝐶 . In this case, 𝐵 , 𝐶 and 𝐸 are dependent, and we say that, 𝐶 and 𝐸 are d-

connected. However, when 𝐴 is observed, influence is not passed between all of the

children of 𝐴 because if we know 𝐴 then knowing about 𝐵 will not tell us anything

new about 𝐶 or 𝐸. In this case, 𝐵, 𝐶 and 𝐸 are independent, so we say that 𝐵, 𝐶 and 𝐸

are d-separated, given 𝐴.

A	

C	

	

E	
 B	

Background	
 	
 29	

Finally,	
 the	
 case	
 of	
 converging	
 connections,	
 as	
 demonstrated	
 in	
 Figure	
 [6].	
 	

	

Figure 6: Converging connections.

	

When 𝐴 is not observed, influence is blocked between all of the parents of 𝐴. The

parents 𝐵 , 𝐶 and 𝐸 are independent, and we say that 𝐵 , 𝐶 and 𝐸 are d-separated.

However, when 𝐴 is observed the influence moves from 𝐵 through 𝐴 to affect what

we believe about 𝐶, and 𝐸; so the communication is active between its parents.

	

Furthermore, here is an example of the converging connection in Earthquake Pearl

(1988).

Figure 7: Converging connections for Earthquake Pearl (1988).

Suppose we heard an 𝐴𝑙𝑎𝑟𝑚, and there are two possible causes: 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒 or

𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦, as it shown in Figure [7]. Then, someone said there was a 𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦; this

reduces the probability of 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒. From the other perspective, if the 𝐴𝑙𝑎𝑟𝑚 has

sounded and there is a burglary, this reduces the probability of an 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒 since

it has been “explained away” by the 𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦.

	
 B	
 C	
 E	

A	

F	

Earthquake	
 Alarm	

	

Burglary	

	

Background	
 	
 30	

Markov	
 equivalent	
 	

	

Bayesian network structures (DAGs) are equivalent if they have the same conditional

independence relations. Let 𝐺! 𝑎𝑛𝑑 𝐺!be graphs that have the same set of nodes, such

that𝐺! = (𝑉,𝐸!)	
 and𝐺! = (𝑉,𝐸!). Then the two graphs are called Markov

equivalent if 𝐴,𝐵,𝐶 ⊆ 𝑉 in 𝐺! , and the nodes A and B are d-separated, given C, if,

and only if, the nodes in 𝐺! A and B are d-separated, given C:

𝐼!! (𝐴,𝐵|𝐶)⟺ 𝐼!! 𝐴,𝐵 𝐶 	

Markov equivalence can be identified using the following theorem: “two DAGs

𝐺! and 𝐺! Markov equivalent if and only if they have the same links (edges without

regard for direction) and the same set of uncoupled head-to-head meeting” (Richard

E. Neapolitan, 2004).

The scoring-equivalent is used with a combination of heuristic search algorithms to

obtain a model. However, it is more crucial to search between equivalence classes

than to search through every single network structure that is used by some

approaches. In order to define the search space, the general representation needs to be

stated. There is a skeleton for any directed acyclic graph, which means that for each

edge it disregards its directionality. Another representation is a directed acyclic graph

𝐺 that holds the direct edges 𝑥 → 𝑦 and 𝑧 → 𝑦 (as shown in figure [8]) in such a way

that every triple sequence of nodes (𝑥,𝑦, 𝑧), and 𝑥 and 𝑧 are not adjacent in 𝐺, is

called a v-structure (D. M. Chickering, 2002).

	

	

Figure 8: V-Structure.

	

	

	

X

Y

Z

Background	
 	
 31	

However, if two directed acyclic graphs have exactly equal skeletons and exactly

equal v-structures, they are said to be equivalent. Uncoupled head-to-head meeting is

also called immorality. (Koller & Friedman, 2009) define an immorality as follows:

“A v-structure 𝑥 → 𝑧 ← 𝑦 is an immorality if there is no direct edge between 𝑥 and 𝑦.

If there is such an edge, it is called a covering edge for the v-structure”. Moreover,

two DAGs are Markov equivalent if they encode the same conditional independence

relations, as illustrated in Figure [9].

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure 9: DAG pattern for a Markov equivalence class.

(Gillispie & Perlman, 2001) shows the efficiency of searching with Markov

equivalence classes rather than searching with DAGs. They discuss an algorithm that

enumerates the equivalence classes of DAGs and records their sizes. The software

generates DAGs and then places them into the relevant equivalence classes. As a

result, the software shows that the effective speed was significantly improved.

	

	
 	

G	

X	

Y	

Z	

G	

Y	

Z	
 X	
 Z	

G	

Y	

X	

Markov
equivalence class

Graph 1

	

Graph 2

	

Background	
 	
 32	

2.3 Markov	
 Network	

	

Markov networks (MN) are another fundamental class of graphical model

representation, built on the basis of undirected graphs, as shown in Figure [10] (Koller

& Friedman, 2009). Nodes in a Markov network represent random variables, and

edges represent interaction among the neighbouring variables. Undirected graphs can

also be used to represent dependency interactions, and are useful in modelling

domains where the neighbouring variables seem symmetrical. Also, Markov networks

are useful when one cannot naturally assign directionality to the interaction among the

neighbouring variables, as you need to assign a directionality to each influence for a

Bayesian network.

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure 10: Markov network.

	

A clique is defined as follows: “A subgraph over 𝑋 is complete if every two nodes in

𝑋 are connected by some edges. The set 𝑋 is often called a clique; we say that a clique

𝑋 is maximal if for any superset of nodes 𝑌 ⊃ 𝑋, 𝑌 is not a clique” (Koller &

Friedman, 2009).

However, the joint probability is in a product form in both Markov and Bayesian

networks, where the CPTs are in a Bayesian network. As such, the probability

distribution is denoted as a product of clique potentials.

It is necessary to associate the network structure with parameters in order to obtain a

distribution. Therefore, a Markov network uses Φ to obtain a distribution. A clique is

a subset of nodes in Markov networks; let 𝐶! ,… , 𝐶! be the cliques in a Markov

network. As shown in Figure [10], there are four cliques, which are {A, B}, {B, C},

A	

E	
 B	

C	

Background	
 	
 33	

{C, D} and {A, D}. Let 𝐶 be a clique. The parameterisation in the Markov network is

performed by a set of factors,Φ, and each factor is assigned to a clique 𝐶!. These

factors are called clique potentials Φ! 𝐶! ,… ,Φ! 𝐶! . A clique potential Φ! maps

each joint instantiation of the variables in 𝐶 to non-negative real numbers.

𝑙𝑒𝑡 Φ = {Φ! 𝐶! ,… ,Φ! 𝐶! }

A	
 distribution	
 𝑃!is	
 parameterised	
 by	
 a	
 set	
 of	
 factors	
 Φ	

𝑃! 𝑋!,… ,𝑋! =
1
𝑍 𝑃

!
! 𝑋!,… ,𝑋! ,𝑤ℎ𝑒𝑟𝑒	

𝑃′! 𝑋!,… ,𝑋! = Φ! 𝐶! × …Φ! 𝐶! 	

Where	
 𝑍	
 is	
 the	
 normalizing	
 constant.	
 	

There are two types of Markov property, which are defined as local Markov

properties and global Markov properties. The main idea is that nodes 𝑋 are

independent from nodes 𝑌 , conditioned on intervening nodes 𝑍 . Let 𝐻 be an

undirected graph, and let 𝜒 be the set of all nodes of 𝐻. Then for each node 𝑋 ∈ 𝜒, the

Markov blanket of 𝑋 (𝑀𝐵! 𝑋) is the set of neighbours of 𝑋 in the graph. The local

independence in a Markov network is defined as:

𝐼 𝐻 = { 𝑋 ⊥ 𝜒 − 𝑋 −𝑀𝐵! 𝑋 𝑀𝐵! 𝑋 ∶ 𝑋 ∈ 𝜒 	
 	
 	

This means that a node is conditionally independent from the remaining nodes in the

network structure. On the other hand, the global independencies assumption is that if

there is no active path between any 𝑋 ∈ 𝑿 and 𝑌 ∈ 𝒀, given a set of nodes 𝒁, then we

can say that 𝑋 is separated 𝑌 in Markov network 𝐻 , which is expressed by

𝑠𝑒𝑝!(𝑿;𝒀|𝒁). Moreover, “Let 𝐻 be a Markov network structure, and Let 𝑋! -…-𝑋!

be a path in Η. let 𝒁 ⊆ 𝑋 be a set of observed variables. The path 𝑋! -…-𝑋!is active

given 𝒁 if none of the 𝑋!!𝑠, 𝑖 = 1, , , 𝑘, is in 𝑍 ” (Koller & Friedman, 2009). Also, a

path is defined as if we have a path 𝑋! -…-𝑋! in a graph 𝐻 and for every 𝑖 =

1,… 𝑘 − 1, we have that either 𝑋! → 𝑋!!! 𝑜𝑟 𝑋! − 𝑋!!!. The global independencies

are denoted as:

𝐼 𝐻 = {𝑿 ⊥ 𝒀 𝒁 : 𝑠𝑒𝑝!(𝑿;𝒀|𝒁)}.	
 	

Background	
 	
 34	

There are conditional independence relations that can be expressed with a Markov

network but cannot be expressed with a Bayesian network. For example, in the

Markov network shown in Figure [10], the only independence relations are

𝐴 ⊥ 𝐷 𝐵,𝐶) and 𝐵 ⊥ 𝐶 𝐴,𝐷); however, there is no equivalent Bayesian network to

that Markov network. Moreover, the arrows in a Bayesian network do not necessarily

indicate causation. The main reason for using a Markov network rather than a

Bayesian network is that some conditional independence relations can be expressed

using a Markov network but not a Bayesian network. .

	

	

	
 	

Background	
 	
 35	

2.4 Bayesian	
 Estimation	
 of	
 Probabilities	

	

	

Figure 11: Thumbtack position.

	

Let	
 us	
 look	
 at	
 the	
 issue	
 of	
 parameter	
 estimation	
 for	
 Bayesian	
 networks.	
 First,	
 we	

make	
 an	
 assumption	
 that	
 we	
 have	
 a	
 fully	
 observed	
 data	
 set	
 and	
 fixed	
 network	

structure(Koller	
 &	
 Friedman,	
 2009).	

Here, we will discuss the problem of thumbtack tosses as parameter learning for one

variable. Flipping the thumbtack many times will result in a dataset that has heads or

tails as the outcome, as shown in Figure [11]. Using this dataset, we want to estimate

the probability that the next toss will land on heads or tails. Moreover, we have made

a hypothesis for thumbtack tosses as ruled by some unknown parameter θ, which is

used in the thumbtack tosses to illustrate the frequency of heads. A parameter is a real

number. In general, a set of parameters for a probability model specifies a particular

probability distribution; for example, given a Bayesian network model defined by a

DAG, the parameters are the CPTs. From the thumbtack toss example in Figure [11],

the parameter is the probability of the thumbtack landing as heads. It is not

necessarily connected to any Bayesian network.

We have also created another hypothesis: that the data instances in thumbtack tosses

are independent and identically distributed (IID). As we toss the thumbtack many

times, we produce a dataset that consists of heads or tails outcomes. Based on this

dataset, we want to estimate the probability that the next toss will land on heads or

tails (P). We also need to define the parameter space	
 θ	
 for the thumbtack problem

within the interval [0,1], which is the probability (P) of the thumbtack	
 (x:	
 θ)	
 	
 	

	

thumbtack(x: θ) = θ x = head
1− 𝜃 𝑥 = 𝑡𝑎𝑖𝑙 	

	

Background	
 	
 36	

We have already made the assumption that the thumbtack tosses are controlled by

some parameter	
 θ.	
 This parameter governs the frequency of heads in the thumbtack

tosses. We have also made another assumption: that the data is independent and

identically distributed (IID).

There are two main methods to handle the problem of parameter estimation for

Bayesian networks in the frameworks of structured CPDs: one is maximum likelihood

estimation and other is the Bayesian approach.

Using a Bayesian network to represent a distribution, we need to link the network

structure with a set of parameters. The DAG represents the structure in a Bayesian

network and the values of the CPD are the parameters. We turn now to provide an

illustration of the form of prior and posterior distributions. If we are in a situation

where we need to express our uncertainty, one convenient choice is to use a beta

distribution (in the case of binary parameters), and Dirichlet distributions (in the case

of multinomial variables).

	

2.4.1 Beta	
 distribution	
 	

	

	
 Let us give an example of the forms of prior and posterior. In the case of flipping a

coin, it is convenient to describe our uncertainty about the parameters using a beta

distribution for binary random variables. The beta distribution is parameterised by

two hyperparameters that help to control the distribution over parameter 𝜃 (Bishop,

2007). The two hyperparameters are ℎ (related to the number of observations of

heads) and 𝑡 (related to the number of observations of tails). The data set D contains

the number of heads ℎ and tails 𝑡. The likelihood function here is the binomial

distribution function, which is the distribution of the number m of observation of

heads 𝑥 = 1, (𝑚 = 𝑥! +⋯+ 𝑥!) and is conditional on the size of the dataset 𝑁.

𝐵𝑖𝑛 𝑚 𝑁,𝜃 =
𝑁
𝑚 𝜃! (1− 𝜃)!!!	

Picking some initial values for ℎ and 𝑡 states the prior belief.

	

	
 𝑃 𝜃 = 𝐵𝑒𝑡𝑎 𝜃 ℎ, 𝑡 = ! !!!
! ! ! !

 𝜃!!! 1− 𝜃 !!!	

Background	
 	
 37	

Where Γ 𝑥 is the gamma function and !(!!!)
! ! ! !

 is used to make sure the area under the

curve equals one.

The posterior distribution is also a beta distribution, and represented by multiplying

the prior belief with the likelihood function. To compute the posterior distribution we

make an increment of ℎ for each heads outcome, and 𝑡 for each tails outcome.

	

𝑝 𝜃 𝑚, 𝑙, ℎ, 𝑡 ∝ 𝜃!!!!! 1− 𝜃 !!!!! ,𝑤ℎ𝑒𝑟𝑒 𝑙 = 𝑁 −𝑚	

Based on the number of observations 𝑁 the probability of heads on the next toss can

be determined, given the observed dataset D:

𝑃 ℎ𝑒𝑎𝑑𝑠 𝐷 =
𝑚 + ℎ

𝑚 + ℎ + 𝑙 + 𝑡	

From the posterior distribution, we can compute the mean and variance of the beta

distribution easily.

	

𝔼 𝜃 =
ℎ

ℎ + 𝑡	

𝑉𝑎𝑟 𝜃 =
ℎ𝑡

(ℎ + 𝑡)! (ℎ + 𝑡 + 1)	

	

	

	

2.4.2 Dirichlet	
 distribution	
 	

	

In contrast, what if the variable is not Boolean such that it takes n values (n >2)?.

Dirichlet distributions are a generalisation of beta distributions for parameters 𝜃 ! of

the multi-valued case: a multinomial distribution (Bishop, 2007). The distribution

here is parameterised by a set of hyperparameters 𝛼!,… ,𝛼!.

A Dirichlet distribution allows us to illustrate our uncertainty about the value of

parameters of the multi-valued case 𝜃!,… ,𝜃!.

The prior Dirichlet distribution of parameters conditioned on the parameters 𝛼 takes

this form:

𝐷𝑖𝑟 𝜃 𝛼 ∝ 𝜃!
!!!!!

!!! 	
 	
 	
 	
 	
 	
 	
 	
 Where	
 𝛼	
 is	
 (
 𝛼!,… ,𝛼!)	

Background	
 	
 38	

The likelihood function is the multinomial distribution that is the probability of

parameters given the total size of the dataset 𝑁.

𝑀𝑢𝑙𝑡 𝑚!,… ,𝑚! 𝜃,𝑁 =
𝑁

𝑚!,… ,𝑚!
𝜃!
!!

!

!!!

 	

The posterior distribution is defined by multiplying the likelihood function by the

prior distribution.

	

 𝑃 𝜃 𝐷,𝛼 = 𝐷𝑖𝑟 𝜃 𝛼 +𝒎 ∝ 𝜃!
!!!!!!!

!

!!!

	

𝑤ℎ𝑒𝑟𝑒 𝒎 = (𝑚!,… ,𝑚!)𝑻	

This equation makes it clear that it very easy to compute the posterior distribution, as

the parameters of the posterior are the parameter prior plus counting data.

	

2.4.3 Maximum	
 likelihood	
 estimation	
 (MLE)	

	

In the maximum likelihood estimation approach, we use the likelihood function to

determine the quality for various parameter values. The maximum likelihood

estimator (MLE) attempts to find the Θ that maximises the likelihood of parameter

values θ relative to the datasets 𝐷. Let’s take an observed dataset 𝐷 of 𝑚 outcomes

and use it to instantiate the values 𝑥 1 ,… , 𝑥 𝑚 . The likelihood function is:

	

𝐿 𝜃:𝐷 = 𝑃 𝑥 𝑚 : θ)

!

	

Next, we choose the parameter value that maximises the likelihood:

Θ = max! 𝐿 𝜃:𝐷 	

However, one of the drawbacks of the MLE method is, for example, if we run an

experiment of the thumbtack problem and obtain 3 heads out of 10 (the chances of

seeing 3/10 heads). In this example we want to determine 𝜃, the probability of

obtaining a result of heads of this coin.

Background	
 	
 39	

𝑑𝐿(𝜃)
𝑑𝜃 = (1− 𝜃)! 3𝜃! − 𝜃! 7(1− 𝜃)!

= 𝜃! 1− 𝜃 ![3 1− 𝜃 − 7𝜃]

if !"(!)
!"

= 0, then

3− 10𝜃 = 0

𝜃 = !
!"
= 0.3

𝐿 𝜃 ∝ 𝜃! (1− 𝜃)!

	

In other words, 0.3 leads to the highest probability of observing 3 heads out of 10

tosses. However, if we conduct another experiment where we obtain 300 heads out of

10,000 then, there will be a difference between the experiments because we have

more confidence in the last experiment.

	

	

2.4.4 Bayesian	
 Estimation	

	

The Bayesian approach applies a prior distribution over the parameters. In addition,

we express our uncertainty about the value of a parameter by placing a prior

distribution over possible values of 𝜃. Using Bayes' theorem to calculate the posterior

distribution given the observed data:

	

P 𝜃 D =
𝑃(𝐷|𝜃)𝑃(𝜃)

𝑃(𝐷) 	

Where 𝑃(𝜃) 	
 is	
 the	
 prior	
 distribution,	
 	
 𝑃 𝐷 	
 is	
 the	
 marginal	
 likelihood/	

normalising	
 constant,	
 and	
 𝑃(𝐷|𝜃)	
 is	
 the	
 likelihood	
 function.	
 	

	

Furthermore, (Heckerman, 1996) shows that in the Bayesian approach we can express

our uncertainty about the structure 𝐺 by stating the discrete variables that are likely to

Background	
 	
 40	

make it the optimal structure. The probability of estimating the next case from

observed data 𝐷 is:

𝑃 𝑥!!! 𝐷 = 𝐺 𝐷 𝑃 𝑥!!! 𝜃,𝐺 𝑃 𝜃 𝐷,𝐺 𝑑𝜃
!

	

	

The computation 𝑃 𝜃 𝐷,𝐺 is done by making the assumptions that the data are fully

observed, and that we have parameter independence:

 𝑃 𝜃 𝐷,𝐺 = 𝑝(𝜃!"
!!
!!!

!
!!! |𝐷,𝐺)

Here 𝜃!"is the multinomial parameter and 𝑞! is the number of configurations of the

variable 𝑥 corresponding to the parents. We also make the assumption that the

parameters vector 𝜃!" is independent and is a Dirichlet prior distribution. From

Bayes’ theorem:

𝑃 𝐺 𝐷 =
𝑃 𝐺 𝑃(𝐷|𝐺)

𝑃(𝐷) 	

𝑃(𝐷) is a normalising constant that does not help to make a distinction between

structures, so it can be omitted. The marginal 𝑃(𝐷|𝐺) of data conditioned on the

structure can be written as:

	

𝑃 𝐷 𝐺 = 𝑃 𝐷 𝜃,𝐺 𝑃(𝜃|𝐺) dθ	

Here 𝑃 𝐷 𝜃,𝐺 is the likelihood of data given network structure and parameters.

𝑃(𝜃|𝐺) is the parameter priors given network structure. The structure prior 𝑃 𝐺

defines a probability over each network structures. One of the simplest methods for

placing a prior on a structure is to make the assumption that every structure has the

same probability. The drawback in this assumption is that it can be incorrect and is

usually used for the ease of the choice. A more complex prior is for the user to rule

out some structures, and then execute the rest of the structures as a uniform prior.

Background	
 	
 41	

	

Works	
 for	
 CPT	
 	

	

	

As shown in the section 2.2, for each node in a Bayesian network we consider each

entry in its CPT. Each node Xi has a conditional probability distribution P(Xi |

Parents(Xi)). For each entry in the CPT, there is a prior Dirichlet or Beta distribution

over its values. This distribution is updated based on the relevant data points, which

are those that were approved on the conditional probability for the parents that

correspond with this CPT entry. Also, the score that used in the developed algorithm

is based on Dirichlet distribution.

In this chapter, the necessary background of graphical models and probability theory

was presented. In addition, the two main representations of graphical models:

Bayesian networks and Markov networks were discussed. Then, the two main

methods for handling the problem of parameter estimation for Bayesian networks, the

maximum likelihood estimation (MLE) and the Bayesian approach, were discussed.

However, what if we do not know the structure? The following chapter will discuss

the problems of learning both parameters and structures that are based on fully

observed data.

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 42	

	

	

3 Approaches To Bayesian Network Structure

Learning
	

This chapter covers the problems of learning both parameters and structures that are

based on fully observed data. Section 3.1 discusses the three main approaches for

Bayesian structure learning: constraint-based, score-based, and the Bayesian model

averaging approach. Section 3.2 introduces prior knowledge and explains why it is

important to study this area. Section 3.3 presents a discussion about related work on

Bayesian structure learning approaches, along with different approaches that have

considered some form of prior knowledge. Existing applications for Bayesian network

learning are discussed in section 3.4, and the theoretical limits of learning Bayesian

networks are examined in section 3.5.

	

 Bayesian Structure Learning 3.1
	

The previous chapter explains the problem concerning learning the parameters of

Bayesian networks based on fully observed data. An assumption was made that the

network structure was fixed. But what if we do not know the structure? In this section,

we will consider the problems of learning both parameters and structures that are also

based on fully observed data. This section discusses the three main approaches for

Bayesian structure learning; constraint-based, score-based, and the Bayesian model

averaging approach.

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 43	

3.1.1. Constraint-­‐Based	
 Approach	
 	
 	
 	

Given the set of conditional independencies in a probability distribution, the

constraint-based approach attempts to find a DAG for which the Markov condition

requires all those conditional independencies. From the dataset, we assume that the

conditional independencies 𝐼𝑁𝐷! can be estimated in a probability distribution 𝑃. The

aim of this approach is to find a DAG whose d-separations are the same as 𝐼𝑁𝐷!. The

conditional independencies represented by d-separation are faithful to the network

structure if all the conditional independencies hold the d-separation in the structure, so

that all the network structures are Markov equivalent to the network structure

(Richard E. Neapolitan, 2004).

	

In the constraint-based approach, d-separation is given to the learning algorithm and

the main goal is to learn a Bayesian network that satisfies these constraints. The PC

algorithm is an example of using the constraint-based approach to focus on local

independence questions. Constraint-based approaches require a statistical test of the

conditional dependence and independence in the data. The problem with this

approach is that the answer is not very accurate. Mistakes can be made when checking

for conditional independencies; for example, maybe A and B are really dependent, but

in the data it looks as if they are independent because we do not have enough data

(Jensen & Nielsen, 2007). Overall, constraint-based approaches offer the Bayesian

network as a representation of independence. This approach tries to find the best

network structure to explain the dependencies and independencies by making use of

some testing for conditional dependence and independence in the data. The drawback

of these approaches is that they can be sensitive to the failure of individual tests for

independence (Koller, Friedman, Getoor, & Taskar, 2007).

	

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 44	

3.1.2. Score-­‐Based	
 Approach	
 	
 	
 	

	

Score-based approaches are where each possible network structure is assessed by a

score, which measures how well the network structure fits the data (Markowetz &

Spang, 2007). To start with, this approach defines a search space that consists of a set

of possible network structures from the domain of interest. Then, it scores possible

network structures using a scoring function. It is necessary to define a search

procedure in order to search within the search space and return the network structure

with the highest score.

There are three principal issues with using the score-based approach for Bayesian

network structure learning: the structure space, the scoring function and the search

procedure. In the score based approach, a neighbourhood relation (connectivity) of the

search space is typically defined by some operation to move from one point of the

search space to another. Generally, the search space results from defining the

neighbourhood relation on network structure learning by the shift between

neighbourhood structures if they differ by one edge. The difference between

neighbouring structures is either the absence of an edge in one of them, adding an

edge, or the reversal of an edge.

A scoring function measures how well the network structure fits the data. It is not

clear how it finds the highest-scoring network, but it can find the optimal network in

some situations. Therefore, the drawback of score-based approaches is that there is no

guarantee that they will find the optimal network. Nevertheless, the computational

issue is to find the highest-scoring network, as the space of a Bayesian network

structure contains a superexponential number of network structures 2! !! (Koller et

al., 2007). In most cases the problem is NP-hard, and we will discuss this in detail in

section 3.5.

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 45	

An example of methods that combine a constraint-based approach and score-based

approach is discussed by Tsamardinos, Brown, and Aliferis (2006). They represent

the max-min hill-climbing (MMHC) algorithm, which combines both the score-based

and constraint-based approach into a single hybrid algorithm. The first phase of the

MMHC identifies the parent and children sets of each variable, and then the hill-

climbing algorithm is applied. The second phase of the MMHC is used to choose

which edges will be in the final network and to orient the edge directions based on the

network structure identified in phase one.

 Scoring Function 3.1.2.1.

In Bayesian network structure learning, a scoring function assesses how well a given

structure fits the data. Then, it finds the best Bayesian network that maximises this

scoring function.

One of the choices for the scoring-based method is the maximum likelihood, which

attempts to pick the best network structure that fits the data. The maximum likelihood

score is given by:

𝑆𝑐𝑜𝑟𝑒 𝑀𝐿 𝐺 = 𝑚𝑎𝑥! 𝑃(𝐷|𝐺,𝜃)

This attempts to maximise 𝑃 (𝐷|𝐺,𝜃); the likelihood of data conditioned on structure

and parameter from the local distribution. The disadvantage of this method is

overfitting, as this means that it may not be suitable to choose the best structure. One

way to overcome this is by restricting the likelihood with regards to the complexity of

structure. Overfitting occurs when a model attempts to fit the data. It is usually a

problem in structural learning, as more complex models will offer a better fit to the

data compared to simpler models. In statistics, one approach to overfitting avoidance

is the use of a penalty that penalises the number of parameters; for example, the

number of unknown parameters. However, there is no need for penalties in the

Bayesian approach because it penalises the model complexity naturally (Berger et al.,

2001).

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 46	

Therefore, a penalty in the scoring function for the complexity of the Bayesian

network structure is needed. (Friedman, K. Murphy, & Russell, 1998) describe a

scoring method that is derived from the posterior distribution of a Bayesian network

structure. When fitting models, overfitting is more likely to occur because it is

possible to increase the likelihood by adding parameters. The Bayesian information

criterion (BIC) resolves this drawback by including a penalty term for the number of

parameters in the model. However, it can be difficult to state the parameter priors and

evaluate the integral 𝑃(𝐷|𝐺). Therefore, BIC avoids the integration computation

of 𝑃(𝐷|𝐺). The BIC score is used to rank possible network structures:

𝐵𝐼𝐶 𝑠𝑐𝑜𝑟𝑒 = logPr 𝐷 𝐺, Θ!)−
log𝑁
2

 Θ! is the parameter configuration of the network structure 𝐺 that maximises the

likelihood function, where 𝑁 is the number data instances.

Minimum description length (MDL) is another scoring approach used in Bayesian

structure learning, and is based on finding the network structure that gives the best

compression of the dataset (Friedman, 1996). The MDL principle helps to avoid

overfitting, and the MDL scoring function of network structure 𝐵 given dataset 𝐷 is:

𝑀𝐷𝐿 𝐵 𝐷) =
1
2 log𝑁 𝐵 − 𝐿𝐿(𝐵 |𝐷)

𝐵 is the number of the parameters in the network, which denotes the network

complexity. 𝐿𝐿 𝐵 𝐷 is the log-likelihood of the network’s structure given data,

which is the log probability of the generated data given the network’s structure. The

first part sums how many bits are needed to encode the network 𝐵. log𝑁 is the bits

for each parameter. The second part measures how many bits are needed for the

representation of 𝐷.

𝐿𝐿 𝐵 𝐷 = 𝑁 𝑃!! 𝑥! ,𝜋!! log (𝜃!!|!!!)
!!!!!!

Where 𝜃!!|!!!
 is the parameters for each possible value of 𝑥!, given the value for

parents set 𝜋!!.

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 47	

(Heckerman, 1996) describes the Bayesian-Dirichlet (BD) score (a special case of

marginal likelihood), which is based on the following assumptions. The first

assumption is that the dataset is a multinomial sample determined by parameters Θ!"#,

which is the probability of variable 𝑖 having value 𝑘, given the 𝑗!! configuration of the

parents. Another assumption is parameter independence. Given a Bayesian network

structure 𝐺, then:

• 𝑃 Θ! 𝐺 = 𝑃 Θ! 𝐺!
!!!

Where the vector of parameters is defined as follows: Θ! is the parameters of a

Bayesian network with underlying DAG. Θ! is the parameters concerning only the

variable 𝑥! in 𝐺. Parameters associated with every variable in the network structure

are independent; this assumption is called Global parameter independence.

• 𝑃 Θ! 𝐺 = 𝑃 Θ!" 𝐺 !!
!!! 𝑓𝑜𝑟 𝑖 = 1,… ,𝑛

The vector of parameters Θ!" is the parameters for variable 𝑥! in 𝐺 , given

the 𝑗!! configuration of the parents. Parameters associated with every instance of the

parents in the network structure are also independent. This assumption is called Local

parameter independence.

Also, the parameter modularity assumption relies on the assumption that if there are

two Bayesian network structures 𝐺! and 𝐺!, and a variable has the same parents in

both graph, then it should have the same distribution of the variable of conditional

probabilities.

𝑃(Θ!"|𝐺!)= 𝑃(Θ!"|𝐺!) for 𝑗 = 1,… , 𝑞!

Another accepted assumption is that parameters have a Dirichlet distribution; “given a

network structure 𝐺 such that 𝑃 𝐺 > 0, 𝑃(Θ!"|𝐺!) is Dirichlet for all Θ!" ⊆ Θ!” such

that the exponents 𝛼!"#depending on 𝐺 satisfy:

𝑃 Θ!" 𝐺! = 𝑐. 𝜃!"#
∝!"#!!

! where c is the normalising constant.

The last assumption is that the data are fully observed. These assumptions are used

together to drive 𝑃 𝐺 𝐷 . Then, the Bayesian Dirichlet (BD) scoring function is

defined as follows:

𝑝 𝐷 𝐺 ∝
Γ(𝛼!")

Γ(𝛼!" + 𝑁!")

!!

!!!

!

!!!

 .
Γ(𝛼!"# + 𝑁!"#)

𝛼!"#

!!

!!!

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 48	

 𝛼!"# is the Dirichlet exponent of 𝜃!"#from the Dirichlet assumption, and 𝑁!"# is the

number of cases in the data where variable 𝑥! = 𝑘 and the configuration of parent

𝜋! = 𝑗, and 𝑁!" = 𝑁!"#
!!
!!! , and 𝛼!" = 𝛼!"#

!!
!!! .

When combined with the previous assumptions, the likelihood equivalence hypothesis

presents the following result. Two network structures 𝐺! and 𝐺!are equivalent if they

can encode the same joint probability distributions. Moreover, assuming two network

structures 𝐺! and 𝐺!such that 𝑃 𝐺! > 0 and 𝑃 𝐺! > 0; if 𝐺! and 𝐺!are equivalent

then 𝑃 𝜃 𝐺! = 𝑃(𝜃|𝐺!). This assumption is called likelihood equivalence. All of the

previous assumptions are used in likelihood equivalence to derive the BDe (Bayesian

Dirichlet likelihood equivalence): where 𝛼!"# = 𝛼. 𝑃(𝑥! = 𝑘,𝜋! = 𝑗|𝐺) is the

number of cases in a dataset where 𝑥! = 𝑘 and 𝜋! = 𝑗 . Here 𝛼 is the user’s

equivalent sample size for the 𝑃(𝜃|𝐺!).

Similarly to the BD score, the BDe entails knowing 𝑃 𝑥! = 𝑘,𝜋! = 𝑗 𝐺 for all

𝑖, 𝑗 and 𝑘. A particular case of BDe appears when

𝑃 𝑥! = 𝑘,𝜋! = 𝑗 𝐺 =
1
𝑟! 𝑞!

The prior network assigns a uniform probability to each configuration of 𝑥! . The

resulting score is called BDeu (“u” stands for uniform joint distribution).

Silander, et al. (2007) note that BDeu’s marginal likelihood score is commonly used

in learning network structures. In order to gain the BDeu score, we need to have the

parameter value of 𝛼 (the equivalent sample size) in order to state the strength of our

prior belief in the uniform prior distribution of the network. The authors claim that

there is no method to choose the best parameter value for 𝛼. They also claim that the

obtained network structure is “highly sensitive to the chosen 𝛼 parameter value”

(Silander, Kontkanen, & Myllymäki, 2007). In addition, we get different optimal

graphs depending on the value of 𝛼, as we do not know the value of 𝛼. If we have a

prior distribution for the value of 𝛼, we can then average over the different possible

values of 𝛼 and choose the best model that way.

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 49	

Koller, et al. (2007) state that typically “An important property of the scores that

affects the efficiency of search is their decomposability. A score is decomposable if

we can write the score of a network structure 𝑔”

𝑠𝑐𝑜𝑟𝑒 𝑔 ∶ 𝐷 = 𝐹𝑎𝑚𝑆𝑐𝑜𝑟𝑒(𝑋! ,
!

𝑃𝑎!
! ∶ 𝐷)

However, if a network structure 𝑔 is independence-equivalent to another network

structure𝑔!, then each of the scores is score equivalence.

𝑠𝑐𝑜𝑟𝑒 𝑔 ∶ 𝐷 = 𝑠𝑐𝑜𝑟𝑒 𝑔! ∶ 𝐷

	

3.1.3. The	
 Bayesian	
 Model	
 Averaging	
 Approach	

	

Another approach in structure learning is where many potential network structures are

generated, instead of just learning a single network structure. This approach attempts

to average all the potential network structures. Basically, we cannot learn a single

network structure from data in order to represent different network structures.

Bayesian learning enables us to estimate the strength from the data that implies the

presence/absence of a particular feature. Thus, we can estimate the posterior

probability given the data for some feature 𝑓 𝐺 over all possible graphs 𝐺; for

example, the presence of an edge is likely conditioned on the data.

𝑃 𝑓 𝐷) = 𝑓 𝐺 𝑃 𝐺 𝐷)!

Unfortunately, the number of the potential network structures is superexponential

2!(!! !"#!), 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠.

One of the methods used to overcome and decrease this number is to make a

restriction on the network structure 𝐺, so that for each node there is a bound 𝐾 for the

number of parents. The next section will discuss the Bayesian model averaging

approach further (N. Friedman & Koller, 2003).

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 50	

 Informative parameter Prior And Non-Informative 3.2

parameter Prior
	

	

Recall that the marginal likelihood 𝑃 𝐷 𝐺 is the main component of the Bayesian

scoring approach. It is the full structure likelihood averaged over parameters of local

probability distributions.

𝑃 𝐷 𝐺 = 𝑝 𝐷 𝐺,𝜃 𝑝 𝜃 𝐺 𝑑Θ

!

Computation of 𝑃 𝐷 𝐺 relies on the choice of local probability distributions and

local priors in the Bayesian network structure. However, in order to compute 𝑃 𝐷 𝐺 ,

the prior 𝑝 𝜃 𝐺 must correspond to the likelihood 𝑝 𝐷 𝐺,𝜃 . This correspondence is

called conjugacy. If the posterior probability has the same form as the prior

distribution, then this prior distribution is conjugate to 𝑝 𝐷 𝐺,𝜃 (Markowetz &

Spang, 2007).

(Cooper & Herskovits, 1992) discuss the marginal likelihood 𝑃 𝐷 𝐺 for discrete

Bayesian networks. For simplicity, they assume that all network structures are

considered equally likely, a priori.

The prior distribution can be represented by a set of possible parameter values, stating

our uncertainty about 𝜃. The binomial distribution 𝐵𝑖𝑛 𝑚 𝑁,𝜃 , gives the probability

for any number of successes regarding the observation of observing that, for a

sequence of n independent trails success/failure and where the data is denoted by m,

“we have seen that the uniform prior distribution for 𝜃 implies that prior predictive

distribution for m (given n) is uniform on the discrete set {0,…,n} given an equal

probability to the n+1 possible value” (Gelman, Carlin, Stern, & Rubin, 2003).

It is important to state a prior distribution for 𝜃 in a binomial model in order to carry

out Bayesian inference. Thus, so far, making the assumption that 𝜃 has a prior

uniform distribution within the intervals [0,1]. Generally, we are uncertain about 𝜃, or

know nothing and, therefore, uniform prior is appropriate here. If the posterior

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 51	

distribution has the same parameter quantity as the prior distribution, then it is called

conjugacy. One of the benefits of a conjugate prior distribution is that it is suitable for

the computational issue of being interpretable extra information.

In spite of the example of population, it is difficult to construct the prior distribution if

it has no base in the actual population. Therefore, the prior distribution should have

little effect on the posterior distribution, so that the inferences have no influence, and

the prior density should be flat or non-informative. However, ignoring useful

information is a bad idea, as an informative prior expresses certain information about

a variable; for example, is a prior distribution for the temperature at tomorrow's

temperature.

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 52	

	

 Bayesian Structure Learning along with the 3.3

Approaches to Assigning Priors Information

This section goes into detail about Bayesian structure learning approaches, and

follows this up with the approaches that incorporate prior information. A considerable

number of search algorithms are used in the search space to obtain the best network

structure. A simple and fast, but still powerful, approach to learn structure is a hill

climbing algorithm, which explores local moves in the search space. It chooses an

initial network structure in the search space to start from: the empty graph in this case.

Then, it continually applies a local move to the current network structure by adding an

edge, which leads to the best scoring network. This is repeated until no local

alteration of the current structure improves the graph score. Finally, if there is no

graph in the neighbourhood that has a better score than the current graph, the search

procedure stops because the local optimum has been reached. This method finds local

maxima of the Bayesian network (Markowetz & Spang, 2007).

	

Another approach is presented by (Nir Friedman, 1999), who introduced the Sparse

Candidate Algorithm. Basically, this algorithm obtains a fast performance in learning

by restricting the search space. It searches for pairs of nodes that are highly dependent

in order to restrict the number of candidate parents for every individual node.

(Koller et al., 2007) discuss the strategies that are used to improve the network

returned by a greedy search algorithm. One of these improvements is the random

restart: when an algorithm is stuck at a local maximum we restart the search again

with different random restarts. As a result of restarting the greedy search, we will

eventually discover an optimal network. Another improvement is to avoid all

structures in a list of 𝐾 most visited network structures, this is called a TABU search.

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 53	

Cooper and Herskovits (1992) propose a search procedure, the k2 algorithm, which

assumes that there is an ordering on the nodes. The k2 procedure is one of the

approaches for maximising 𝑃(𝐺,𝐷). As a starting point, a hypothesis is made that

there is an ordering on the nodes, and that all the network structures are equally likely.

Another hypothesis is also formed: that a node has no parents. Then, we keep adding

a parent until no single parent can increase the probability. We shall use the following

function:

𝑔 𝑖,𝜋! =
(𝑟! − 1)!

(𝑁!" + 𝑟! − 1)!

!!

!!!

𝑁!"#!
!!

!!!

	

Where 𝑟 is the number of values for the variable 𝑖. 𝑁!"# is the number of instances in

dataset D; 𝑁!" = 𝑁!"#
!!
!!! . However, the assumption is made that the prior

probability 𝑃(𝐺) can be computed as 𝑃 𝐺 = 𝑃(𝜋! ⟶ 𝑥!)!!!!! . Therefore, “for

all distinct pairs of variables 𝑥!and 𝑥!, our belief about 𝑥! having some set of parents

is independent of our belief about 𝑥!having some set of parents”. Moreover, the

probability 𝑃(𝜋! ⟶ 𝑥!) can be derived by some other method and can also be

measured explicitly so that “one method would be to assume that the presence of an

arc in 𝜋! ⟶ 𝑥! is independent of the presence of the other arcs there; if the probability

of each arc in 𝜋! ⟶ 𝑥! is specified, we then can compute 𝑃(𝜋! ⟶ 𝑥!) ” (Cooper &

Herskovits, 1992).

	

(Russell & Norvig, 2010) describe a Markov Chain Monte Carlo (MCMC) algorithm.

This procedure creates a movement from one state to another, according to a

transition probability. In the state space, let 𝑞 𝑥 ⇢ 𝑥! be the probability that a

movement is made from one state 𝑥 to another 𝑥! . This transition probability

describes the term Markov chain. The procedure is repeated until the chain converges

to the stationary distribution. Assuming that the chain runs for 𝑡 steps, 𝜋!(𝑥) is the

probability of being in state 𝑥 at time 𝑡. Let 𝜋!!!be the probability of being in state

𝑥!at time 𝑡 + 1. We can say that the chain has reached its stationary distribution if

𝜋! = 𝜋!!!;

𝜋 𝑥! = 𝜋 𝑥 𝑞 𝑥 → 𝑥! 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥!! 	
 	

	

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 54	

Friedman and Koller (2003) demonstrate the use of an MCMC algorithm. However,

this approach is executed by searching amongst orders of nodes instead of amongst

the network structure. They argue that “the space of orders is smaller and more

regular than the space of structures, and has a much smoother posterior” (N. Friedman

& Koller, 2003). There are 𝑛! possible orders; making a uniform prior over orders ≺ .

In addition, a Markov chain ℳ is defined through a space that contains all 𝑛! possible

orders. The Markov chain is designed to ensure it has a stationary distribution

𝑃(≺ |𝐷). Then, a simulation is made allowing ℳto gain a series of orders sampling

 ≺!,… ,≺! The Metropolis algorithm is used to make sure that the chain is reversible

so that 𝑃 ≺→≺` = 𝑃 ≺`→≺ , and the stationary distribution is a posterior

distribution 𝑃 ≺ 𝐷 . Furthermore, for every single order ≺ , we identify the

probability which will propose a movement from ≺ 𝑡𝑜 ≺` which this function called a

proposal probability 𝑞 ≺` | ≺ . This movement can be accepted by a probability:

min [! ≺`|! ! ≺|≺`

 ! ≺|! ! ≺`|≺
, 1]	
 	

Furthermore, the authors claim that “the Markov chain over orders mixes much faster

and more reliably than the chain over network structures” (N. Friedman & Koller,

2003).

	

It is possible to conduct MCMC directly over structures, as described by (Koller &

Friedman, 2009). This is done by defining a Markov chain using a space of potential

network structures whose stationary distribution is the posterior distribution 𝑃(𝐺|𝐷).

In this approach, a set of possible network structures is generated by performing some

random walks in this Markov chain, and this is repeated until it reaches its stationary

distribution. The algorithm considers some local operations to move from one

structure to another: these operations are adding, deleting, or reversing an edge. The

Metropolis algorithm accepting procedure is used; in which the movement can be

accepted by a probability:

min [! !`,! ! !`→!
 ! !,! ! !→!`

, 1]	

However, there are some problems that possibly limit its efficiency for large domains;

for example, including many variables, as the space of the network grows

superexponentially in this situation.

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 55	

Friedman and Koller (2003) described the effect of a structure prior by testing the

sensitivity of a Bayesian model averaging approach on the choices of the prior. They

compared the results between using a prior over structure—MCMC 𝑃(𝐺) and using a

prior over ordering—MCMC 𝑃(≺). Friedman and Koller defined a uniform prior

over ordering 𝑃(≺) and also need to define 𝑃(𝐺| ≺). Every graph consistent with a

particular order is equally likely. For example, the empty graph is consistent with all

orders: 𝑃 𝐸𝑚𝑝𝑡𝑦 𝑔𝑟𝑎𝑝ℎ = 𝑃 𝐸𝑚𝑝𝑡𝑦 𝑔𝑟𝑎𝑝ℎ| ≺ ≺ .

The prior over possible structure requires restricting the bound of the number of

possible parents, so that a node 𝑋! has 𝐾 parents; therefore, there are !!!
! potential

parent sets. In addition, assuming a uniform prior:

𝑃(𝐺) ∝
𝑛 − 1

|𝑃𝑎! 𝑋! |

!!!

!!!

However, with uniform prior over orders, sparse graphs have prior probability than

with uniform prior on structure.

The results of a structure learning algorithm are sensitive to the structure prior, and

priors can lead to very different results. Moreover, the authors claim that “Given that

the choice of prior is often somewhat arbitrary, there is no reason to assume that our

order-based prior is less reasonable than any other” (Friedman & Koller, 2003).

Network structure is consistent, in that more orderings are more likely. Priors over

network structures are used for practical purposes and are easy to work with and

simple.

A number of methods and applications have been presented to address relationship

identification problems. (Sheehan & Egeland, 2007) show how prior information can

be incorporated into this problem. In both human and non-human populations,

reconstructing the pedigree of related families and the amount of inbreeding from

genetic data is important within a species. An example of the problem of

reconstructing pedigrees is found in mass-grave tragedies in which the remains of

many individuals are found and can only be recognised by DNA. If G is the pedigree

Bayesian network structure that contains a set of nodes V and a directed edge set E,

then each node in the pedigree Bayesian network structure represents the genotype of

an individual and has one of three possible parent configurations:

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 56	

• An individual that has only one parent identified in the pedigree, if there is one

incoming arrow.

• An individual that has two parents identified in the pedigree, if there are two

incoming arrows.

• If there are no incoming arrows, the individual is a founder in the pedigree.

A Bayesian approach is used to include prior knowledge, which is expressed by

assigning a prior probability over the space of pedigree samples. The likelihood

function here is computed based on DNA datasets for every single pedigree, and this

data is updated along with prior probability in order to discover the posterior

distribution using Bayes' theorem. Basically, prior knowledge helped rule out some

possibilities. They also demonstrate the difference between hard and soft prior

information. Hard prior information is a piece of information that the user definitely

knows, whilst soft prior information is where the user writes down some probabilistic

equation. However, the global prior information in the relationship identification

problem is the general knowledge about the population (for example, information

about mating behaviour), and the local prior information is that related to particular

parts of the pedigree. Therefore, hard, local and global information is combined to

rule out a number of possibilities. Afterwards, the prior function Pr (𝑔) is used to

assign a prior probability to every pedigree in the sample space for 𝑛 individuals:

Pr 𝑔 = 𝑐 𝑀!
!!(!)!

!!! 𝑅!"
!!"(!)!

!,!!!
!!!

 𝑤ℎ𝑒𝑟𝑒 𝑐 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	
 	

Where 𝑀!,… ,𝑀!are the global parameters that enable pedigrees based on 𝑠,

particular information to be weighted. If 𝑀! set to:

	

𝑀! =
0, 𝑖𝑓 𝑏!(𝑔) > 0
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 	

	

Where 𝑏!(𝑔) is the integer exponent, which corresponds to 𝑀! that offers a specific

measure of an individual pedigree 𝑔, and, therefore, provides the degree of the

relative weightings of different pedigrees for the 𝑖 individual. Just pedigrees with

𝑏! 𝑔 = 0 are accepted (similar to setting 𝑀! = 0). Whilst if 𝑀! = 1 , then this

amounts to locating a flat prior. Assigning values between 0 and 1 will increase the

probability.

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 57	

𝑅!" is the local parameters. Setting 𝑅!" = 0 will exclude the pedigrees presenting 𝑗

from being a parent of 𝑘. If 𝑅!" > 1, then this will favour a pedigree with specific

characteristics. However, there is no general form for choosing the values for 𝑅 and

𝑀. The decision for choosing them is sensitive and should be investigated for a

specific domain. The prior function Pr 𝑔 is simple to interpret and modify.

	

Angelopoulos and Cussens (2005) discuss a technique for specifying informative

priors applied to classification and regression tree (C&RT) models. Basically, C&RT

is a method used to classify data into different classes. The authors decided to use a

Bayesian approach, so that there is a prior for every possible tree. Then, they used an

approximate sample for the observed data. Bayes' theorem is used to approximate the

posterior distribution of the trees. The authors state that “the goal of including prior

knowledge is to improve decision making under uncertainty” (Angelopoulos &

Cussens, 2005). However, the drawback of assigning a prior to each possible tree is

that this is very difficult when you have a large number of possible trees. So, in this

particular case they took a novel approach to defining a prior using a sampling

algorithm, a stochastic logic program (SLP). An SLP can be used to define a prior

over a given space of statistical models. In addition to this, the SLP will generate a

tree each time, which specifies the prior implicitly. This approach is proposed instead

of using a closed-form expression, which defines a prior by writing down some

equation. They used an MCMC algorithm to take approximate samples from the

posterior probability over all C&RT models. The MCMC proposal distribution is

based on the prior.

	

The same SLP approach can be used to effect a Bayesian approach to Bayesian

network learning (Angelopoulos & Cussens, 2009). Once the model spaces have been

defined using logic programs, then the SLP is used to define an informative prior on

the Bayesian network structure over model spaces. They demonstrate that learning

Bayesian networks with priors achieves a robust result, and an informative prior

increases the quality of the results a lot. The way hard information is represented in a

prior distribution is by reducing some network structures to zero probability, which

sets the posterior probability to zero regardless of the data. Also, they discuss the

important use of Markov equivalence classes for setting priors. Moreover, the authors

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 58	

also claim that “If we consider working in a model space of Markov equivalence

classes there is no inconsistency: the prior probability of a Markov equivalence class

of BNs can be defined to be the sum of the priors of the BNs in that class. There

seems no reason why these Bayesian network priors need be equal. Of course, it may

be more convenient to define a prior directly on the Markov equivalence class: this is

a knowledge engineering issue” (Angelopoulos & Cussens, 2009).

However, there are often huge practical difficulties with the application of Bayesian

analysis. Moreover, formalising prior knowledge requires a representation language in

order to bridge the gap between the prior information in an individual's brain and that

stated by a probability distribution. Also, one of the difficulties with the Bayesian

approach is getting hold of the posterior. Therefore, a conjugate prior distribution is

typically used to simplify the computation of the posterior distribution and its

representation.

	

(Castelo & Siebes, 1998) discuss how a user can assign a prior probability to each

DAG. In this approach, a user has to specify partial prior knowledge, which is

completed later to create full prior knowledge over all possible Bayesian networks. A

degree of belief over the dependency between two variables is coupled with the nature

of the models they try to induce. The approximation of the full prior knowledge is

done using directed graphs. They assume that the user’s prior belief is coherent.

Moreover, the user's prior knowledge over the three possible links between two

variables must obey a probability distribution. For example, let 𝑎 and 𝑏 be nodes in a

Bayesian network and let 𝑃(𝑎 → 𝑏)be the probability for an edge, 𝑃(𝑎 ← 𝑏) be the

probability for the other direction, and P(𝑎… 𝑏)be the probability that there is no

edge; then:

𝑃 𝑎 → 𝑏 + 𝑃 𝑎 ← 𝑏 +P(𝑎… 𝑏) = 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	

The	
 priors	
 for	
 all	
 the	
 potential	
 network	
 structures	
 sum	
 to	
 one.	
 However,	
 when	

considering	
 two	
 options	
 for	
 a	
 normalising	
 constant,	
 the	
 distribution	
 would	
 then	

be:	
 	

	
 𝑃 𝑔 = 𝑐 + 𝑃 𝑣!, ⇋ 𝑣!!!,,!!∈!
!!!

	

Or	

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 59	

𝑃 𝑔 = 𝑐 𝑃 𝑣!, ⇋ 𝑣!
!!,,!!∈!
!!!

	

	

Also, (Koller & Friedman, 2009) illustrate the advantages of making the assumption

that a structure prior satisfies structure modularity, where the prior structure 𝑃 𝑔 is

proportional to multiplying the terms (𝑃𝑎!! = 𝑃𝑎!!
!), which represent locating the

prior probability to choose a set of parents 𝑋!. It is represented as:

𝑃 𝑔 ∝ 𝑃(𝑃𝑎!!! = 𝑃𝑎!!
!)	

	

(Buntine, 1991) demonstrates the use of incorporating expert knowledge into

learning, and how the information is converted into a prior on Bayesian networks. The

author assumes that we know the variable ordering and that we have expert

knowledge 𝐸. The expert specifies the total ordering ≺ for the variables, in which the

parents of a variable must be less than the variable. In other words, for instance, if

𝑦 ∈ 𝜋! then 𝑦 ≺ 𝑥. If we have 𝑥,𝑦 ∈ 𝑋, in which 𝑦 ≺ 𝑥, then the prior probability of

𝑦 being a parent of 𝑥 is represented as Pr 𝜋 ≺,𝐸 . As we have the ordering, the prior

probability for a particular graph is:

Pr 𝜋 ≺,𝐸 = Pr 𝜋! ≺,𝐸 ,
!∈!

	

𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝜋 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑤𝑖𝑡ℎ ≺,𝑤ℎ𝑒𝑟𝑒 	

Pr 𝜋! ≺,𝐸 = Pr 𝑦 → 𝑥 ≺,𝐸
!∈!!

. Pr 𝑦 → 𝑥 ≺,𝐸
!∉!!

	

	

In addition, the expert specifies the total number of variables ≺. Along with a prior

probability for every possible parents set 𝐸, this combined information is represented

as Sample; Pr 𝜋 𝑆𝑎𝑚𝑝𝑙𝑒 ,≺,𝐸 . The structure posterior is computed as:

Pr 𝜋 𝑆𝑎𝑚𝑝𝑙𝑒 ,≺,𝐸 = Pr 𝜋! 𝑆𝑎𝑚𝑝𝑙𝑒 ,≺,𝐸
!!∈!! ∧!∈!!

	

Where	
 𝑃!	
 is	
 parent	
 structure.	

	

	

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 60	

(Tsamardinos, Brown, & Aliferis, 2006) also discuss the max-min hill-climbing

(MMHC) algorithm, which combines both the score-based and constraint-based

approach into a single hybrid algorithm. Conditional independence is assessed using a

statistical test on the data. This test assumes independence and does not consider the

null hypothesis when two variables are conditionally dependent. The first phase of the

MMHC identifies the parents and children set of each variable, and then the hill-

climbing algorithm is applied. The second phase of the MMHC is used to choose

which edges will be in the final network, and also to orient the edge directions based

on the network structure identified in phase one.

Another approach to incorporating prior information is introduced by (Borboudakis &

Tsamardinos, 2012), who present algorithms for incorporating path constraints to

Partially Directed Acyclic Graphs (PDAGs) and Partially Oriented Ancestral Graphs

(PAGs). This path constraint is about the presence or absence of (possibly indirect)

causal relations in a causal model. Moreover, the incorporation of causal knowledge

into a PDAG (PAG) forces the orientation of certain edges, which results in a

corresponding PC-PDAG with fewer structural uncertainties.

Also, (Campos, Zeng, & Ji, 2009) present a novel algorithm for the exact learning of

Bayesian network structure from data that incorporates an expert's knowledge, which

is based on (decomposable) score functions. It combines structural and parameter

constraints with data through a branch-and- bound (B&B) approach to ensure global

optimality with respect to the score function.

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 61	

(Mansinghka, Kemp, Tenenbaum, & Griffiths, 2006) provide a Bayesian hierarchical

framework that incorporates edge priors, using MCMC for sampling networks, and

therefore improves the structure of the network recovery. Their approach is built on

nonparametric, hierarchical Bayesian models that finds graph regularities in terms of

node classes. Meanwhile, (Werhli & Husmeier, 2007)), used a different form of

incorporating prior knowledge using MCMC for sampling networks. A Bayesian

approach is adopted to incorporate various sources of prior knowledge in terms of an

energy function. From this function a prior distribution over structures is found in the

form of a Gibbs distribution, from which the penalty on a particular edge can be

determined.

	

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 62	

 Existing Tools for Bayesian Network Learning 3.4
	

In this section, the existing tools to learn Bayesian networks from the data are

examined. Kevin Murphy’s website lists a lot of software packages for graphical

models. I went through most of them and found that some of them work fine, whilst

others do not (as a result of broken links, etc.). This section gives an overview of

some of the existing tools that I checked.

To begin with, UnBBayes (k2 for structure learning) is a probabilistic network

framework with a graphical user interface to enable a user to perform sampling,

learning, and evaluation. UnBBayes supports Bayesian networks, structures, and

parameters, and shows the efficacy of probabilistic reasoning. It represents user

degrees of certainty; for example, it can predict whether a statement is more likely to

be true or false. UnBBayes is a flexible tool that enables users to manipulate and build

a Bayesian network based on a knowledge domain. The software allows the creation

of a Bayesian network from scratch, which also allows the user to add nodes and

edges, and edit CPTs. Moreover, UnBBayes uses a junction tree algorithm to perform

Bayesian inferences.

GOBNILP (Globally Optimal Bayesian Network learning using Integer Linear

Programming) learns Bayesian networks from complete discrete data or from local

scores. GOBNILP is a free, publicly available Bayesian network structure-learning

package. Also, GOBNILP can find the optimal network, given a constraint on the

maximum number of parents, which is 3 by default. In this research, GOBNILP is

used to find the optimal networks, and in some experiments prior knowledge is

consistent with the optimal network.

Banjo is software for static and dynamic Bayesian structure learning. It performs

structural inference in Bayesian networks using a BDe score for discrete variables.

The search procedure is based on simulated annealing and greedy algorithms. A

search algorithm in Banjo consists of a set of main components that suggest a new

network, or number of networks, and then checks the suggested networks for cycles,

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 63	

computes the score of the suggested network, and determines whether the suggested

network is accepted or not.

B-Course, which is represented by U. Helsinki, is a web application tool for Bayesian

modelling. The software has two main options. The first consists of dependency

models that allow a user to go through clear steps of Bayesian modelling and

inference. The second option is classification modelling, which uses Naive Bayes

Networks. A user can either use their own data, or example datasets provided by the

website. The network is run on B-Course’s server and the results are viewed on their

website. They use both a simple and a greedy random search, and a BDe score.

Finally, bnlearn is an R package that includes several algorithms for Bayesian

networks structure learning, with either discrete or continuous variables. Furthermore,

bnlearn also allows users to use either a constraint-based approach or score-based

algorithms with different scoring functions. A user can incorporate prior information

in the data by means of the blacklist and whitelist arguments.

	
 	

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 64	

	

 The Complexity of Bayesian Network Learning 3.5
	

This section discusses the theoretical limits of learning Bayesian networks. Learning

the structure of a Bayesian network is an NP-hard problem. It is difficult to search all

possible Bayesian networks for different sets of variables. The number of graphs

grows exponentially with the number of variables. This problem also exists with a

small number of variables, as there are many DAGs to consider in the search space

and it is difficult to search for a high scoring network that fits with the data.

(Cormen, Leiserson, Rivest, & Stein, 2009) explain computational complexity.

Consider a particular algorithm which takes the graph that is input and checks

whether there is a Hamiltonian cycle or not, and returns a yes/no answer. The

Hamiltonian cycle of an undirected graph is a simple cycle that contains each vertex.

The Hamiltonian cycle problem can be defined as “Does graph G have a Hamiltonian

cycle?”. A graph that does have a Hamiltonian cycle is called Hamiltonian, and if not

then it is called nonhamiltonian. So the formal language is represented as:

𝐻𝐴𝑀 − 𝐶𝑌𝐶𝐿𝐸 = {< G > : G is a Hamiltonian graph}
The algorithm is difficult because deciding whether there is a Hamiltonian cycle or

not takes a long time. Algorithms that are NP are those that give you a yes/no

solution, which is known as a decision problem. Generally, the length of time it takes

for an algorithm to run depends on how big the input is. In Bayesian learning, we are

trying to find the highest score in a Bayesian network. So, in cases where the dataset

consists of two variables, the algorithm runs very quickly. However, as the number of

the variables increases, the problem gets harder. A Polynomial time algorithm has a

run time based on an input of size 𝑛 for the worst situation running time 𝑂(𝑛!)for

some constant 𝑘. However, not all problems can be solved in Polynomial time.

In addition, if an algorithm takes a Polynomial time to finish, it would appear to be a

quick algorithm. On the other hand, if we are using an algorithm where the answer is

yes/no, and the Hamiltonian for checking a possible solution and whether there is a

correct solution that will take a Polynomial amount of time, then the problem is

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 65	

known as an NP-problem. An NP-problem is one way of reaching a decision in cases

when the time to solve the original problem could be very long. However, checking

for verification is easy; this is known as Polynomial Time Verification. In addition,

“the complexity class NP is the class of languages that can be verified by a

Polynomial time algorithm. More precisely, a language 𝐿 belongs to NP if and only if

there exists a two-input Polynomial time algorithm 𝐴 and constant 𝑐 such that:

𝐿 = {𝑥 ∈ {0,1}: 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑐𝑒𝑟𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑒 𝑦 𝑤𝑖𝑡ℎ 𝑦 = 𝑂(𝑋 !)

We say that algorithm 𝐴 verifies language 𝐿 in Polynomial time” (Cormen et al.,

2009). Therefore, 𝐻𝐴𝑀 − 𝐶𝑌𝐶𝐿𝐸 ∈ 𝑁𝑃 if there is a Polynomial time algorithm to

choose 𝐿 . This algorithm can easily be transformed to a two argument input

verification algorithm by accepting the exact string that is defined in 𝐿 .

Therefore, 𝑃 ⊆ 𝑁𝑃 . Where P problems are considered easy to solve, NP problems

are easy to check.

According to Cooper (1990), the computation of the probability of a particular

variable of interest, given other variables, is called probabilistic inference. The author

assumes that the nodes represent propositional variable 𝑌, which would have an

assigned value of either true (𝑇) or false (F). The probabilistic inference of a Bayesian

network is used to mean the computation of 𝑃(𝑆!|𝑆!), where 𝑆!is either a single

assigned value or a combination assigned value. While 𝑆! is the combination assigned

value, and the computation of the probabilistic inference in the case that no explicit

conditioned information (𝑌 = 𝑇) is NP-hard. Furthermore, Cooper illustrates that

probabilistic inference using Bayesian networks is NP-hard. Thus, “it seems unlikely

that an exact algorithm can be developed to perform probabilistic inference efficiently

over all classes of belief networks” (Cooper, 1990).

(David Chickering, Heckerman, & Meek, 2003) explain the problem of finding the

best Bayesian network structure in which each node has at most 𝑘 parents, for 𝑘 ≥ 3.

Therefore, finding the highest scoring network structure is NP-hard. However, many

Bayesian network learning algorithms do not guarantee to return the high scoring

network.

	

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 66	

As discussed earlier, a number of approaches for learning a Bayesian network are

based on two main elements. One of these is defining the score metric, such as the

BDe metric, which calculates a score for each possible network structure. These

scores indicate how the network structure fits with the data. The other element is that

the search procedure attempts to yield the highest score amongst all the possible

network structures that are computed by the score matrix (D. Chickering, Geiger, &

Heckerman, 1995). However, the authors discuss the problem of finding the highest

scoring network from all the possible network structures so that every node has no

more than 𝑘 parents. Consequently, the main drawback is where every node has at

most 𝑘 parents; which is NP-hard for 𝑘 > 1. For the general case K-LEARN:

“INSTANCE: Set of variables 𝑈, database 𝐷 = 𝐶!,… ,𝐶! ,, where each 𝐶! is an

instance of all variables in 𝑈, scoring metric 𝑀 𝐷,𝐺 and real value 𝑝”.

“QUESTION: does there exist a network structure 𝐺 defined over the variables in 𝑈,

where each node in 𝐺 has at most 𝑘 parents, such that 𝑀 𝐷,𝐺 ≥ 𝑝?” (D. Chickering

et al., 1995).

In addition, one of the approaches demonstrates that K-LEARN is NP-complete for

𝑘 > 1 in the case when using BD metric.

Algorithms are used to solve a number of problems that also have different

complexities (Koller & Friedman, 2009). In optimisation problems, the target is to

maximise a problem for a potential solution ℴ in a given solution space ∑ .

Additionally, the evaluation of the value of every possible solution is done by an

objective function 𝑓: ∑ → ℝ. The main target is to obtain a solution that yields the

maximum score:

ℴ∗ = arg𝑚𝑎𝑥ℴ∈∑ 𝑓(ℴ)

In an optimisation problem, where the solution space contains discrete hypothesis, the

number grows exponentially in most cases, related to the size of the problem for the

number of the solution space ∑. Therefore, we cannot enumerate in order to obtain

the best solution.

Approaches	
 To	
 Bayesian	
 Network	
 Structure	
 Learning	
 	
 67	

A decision problem is a problem with a "yes" or "no" answer. The complexities of

decision problems are basically harder than those that can be answered by a

nondeterministic Turing machine in polynomial time. When a decision about a

combinatorial optimisation problem is shown to NP-complete problems, the

subsequent optimisation is NP-hard (Atallah & Blanton, 2009).

In this chapter, the problems of learning both parameters and structures that are also

based on fully observed data were considered. The three main approaches for

Bayesian structure learning—constraint-based, score-based, and the Bayesian model

averaging approach—were discussed. This chapter demonstrated why it is important

to study prior knowledge and reviewed the several approaches that have been

considered. Different related work on Bayesian structure learning approaches were

highlighted and some existing applications for Bayesian network learning were

examined. Finally, the theoretical limits of learning Bayesian networks were

presented.

	

	

.	

	

	

	

	

Learning	
 algorithms	
 that	
 use	
 prior	
 knowledge	
 	
 68	

	

	

4 Learning algorithms that use prior

knowledge
	

This chapter presents an algorithm to learn Bayesian networks from data. It

demonstrates Cowell's (2009) approach to the exact learning of the maximum

likelihood Bayesian network. Then, it goes into detail about the developed heuristic

search-learning algorithm (based on a hill-climbing algorithm) and shows how the

directed acyclic graph (DAG) is represented. It also describes how cycle checking and

the scoring function are used in the developed learning algorithm. Finally, it presents

a detailed discussion about the search procedure in the hill-climbing algorithm.

	

 Introduction 4.1
	

Finding the Bayesian network that maximises a score function is described as

structure learning. Most work about Bayesian network learning has focused on

heuristic searches, where there is no guarantee that the optimal network will be found.

However, there is an increasing trend towards the work on exact Bayesian network

structure learning. One approach is to use dynamic programming, which has been

used successfully, as long as there is a limit on parent set sizes. This chapter aims to

develop a Bayesian network learning algorithm that can be used to incorporate prior

information. Overall, there are three approaches: the score-based approach, the

constraint-based approach and the model-averaging approach. People typically use a

non-Bayesian method in the constraint-based approach, which requires a statistical

test of the conditional dependence and independence in the data. Another reason why

the constraint-based approach does not normally use the Bayesian approach is

because it uses hard information. The model-averaging approach considers several

possible networks. Therefore, it is not possible to choose the best network, as you

cannot be sure which is the correct one.

Learning	
 algorithms	
 that	
 use	
 prior	
 knowledge	
 	
 69	

	

Some Bayesian learning algorithms are heuristic search algorithms, which attempt to

maximise a score using some data. Our current experimental work uses a hill-

climbing algorithm (a heuristic search) that makes local moves, which lead to a local

score-maximal Bayesian network. Score-based approaches employ different scores,

and devote the most effort to maximising scores without much consideration of prior

information. This thesis investigates the score-based approach.

	
 The main reason for working on this exact dynamic programming algorithm is

because it is commonly used. It is also an exact learning approach that always finds

the optimal network, which makes it easy to validate whether things work.

Nevertheless, it is not clear what else can be done to incorporate any prior knowledge

when using the exact dynamic programming dynamic programming algorithm, so I

conducted research regarding this question. There is some motivation to extend the

exact dynamic programming (2009) approach towards exact learning in order to

incorporate different sorts of prior knowledge and investigate the effect of the prior

knowledge on the dynamic programming algorithm.

The structure learning of Bayesian networks is an NP-Hard optimisation problem

since the number of structures grows exponentially with the number of variables. As

learning Bayesian networks are NP-hard and these exact learning approaches will not

scale to bigger datasets, exact leaning approaches are not the answer to every problem

due to scalability issues. Thus, we have to use a greedy approach, such as the hill-

climbing approach. Consequently, we need to explore improvements to the hill-

climbing approach. The high cardinality of the search spaces of heuristic approaches

have been shown to be effective and efficient; therefore, I researched this question. As

a result, there is some motivation for designing an algorithm that uses prior

knowledge as input data, while simultaneously dealing with bigger problems.

	

	
 	

Learning	
 algorithms	
 that	
 use	
 prior	
 knowledge	
 	
 70	

	

 Dynamic Programming 4.2

As a starting point for this thesis, I used Cowell's (2009) approach to the exact

learning of the maximum likelihood Bayesian network. The main reason for working

on this dynamic programming algorithm is because it is commonly used. It is also an

exact learning approach that always finds the optimal network, which makes it easy to

check whether things work. However, it is not clear what else can be done to

incorporate any prior knowledge when using the exact dynamic programming

algorithm. A user provides some prior information, in addition to the dataset, and the

goal is to find the most likely network that fits the user’s prior knowledge.

(Cowell, 2009) demonstrates that reconstructing the pedigree of related families using

genotype data is an important task. Learning a pedigree is like learning Bayesian

networks from data, as each node denotes the genotype of an individual. Cowell uses

an algorithm (proposed by Silander & Myllymäki, 2006) to obtain a maximum

likelihood pedigree using fully observed data gained from the genotype data of related

family samples.

	

This exact dynamic programming is an attempt to search for a pedigree of up to 31

individuals (approximately). Given a pedigree on 𝑛 nodes in a set V the dynamic

programming algorithm approach is used to find the set of local scores of possible

parent configurations for each individual 𝑖. This approach tries to find the best sinks

for any subset of variables, where sinks are variables that have no children. The basic

idea here is to find the sinks for bigger subsets by using the sinks for small subsets.

Then, it identifies the best ordering of the best sinks. The dynamic programming

attempts to find the best sink 𝑖 for 𝑉, and subsequently the best sink for 𝑉\{𝑖} and so

on. In this way, we can find the best sink for the entire set of all vertices. The entire

best parent set for that sink is the one with highest scores. Any Bayesian network has

one or more total ordering. The last variable in that total ordering will always has the

best possible parent set to choose from, which has a high score.

Learning	
 algorithms	
 that	
 use	
 prior	
 knowledge	
 	
 71	

The algorithm consists of four main steps. The first step of the reconstruction

technique is where we search a list Λ!for the possible set of parent combinations (j, k)

for each individual i ∈ V. Every Λ! for the corresponding local scores for parent

configurations α i j, k) is sorted in decreasing order:

-­‐ Find the Local scores 𝛼 𝑖 𝑗, 𝑘)

-­‐ Order the local scores in a decreasing order.

In the second step, we find the best score and the best sink for each subset of 𝑉. To

begin with, we need to generate a subset 𝑊 from the set of all variables 𝑉 so that for

every subset there is a score and a sink. If we want to get the score for a particular

subset, we go through each member of 𝒊 and remove it to get 𝑼 then we find the best

parent sets for 𝒊. We make sure that we compute this beforehand, as this is just a

looking-up procedure.

	

-­‐ Generates	
 𝑊	
 from	
 𝑉	

-­‐ 	
 For	
 every	
 𝑊 ⊆ 𝑉	
 in	
 order	
 Do	

Ø 	
 𝑆𝑐𝑜𝑟𝑒𝑠[𝑊] ← 0.0	

Ø 𝑠𝑖𝑛𝑘𝑠 𝑊 ← −1	

-­‐ Loop	
 for	
 all	
 𝑖 ∈𝑊	
 Do	

Ø 𝑈 ←𝑊 ∖ {𝑖}	

Ø 𝑠𝑘𝑜𝑟𝑒 ← 𝐵𝐿𝑆 𝑖,𝑈 + 𝑠𝑐𝑜𝑟𝑒𝑠[𝑈]	

// 𝐵𝐿𝑆 𝑖𝑠	
 best Local Score 	

§ 𝑖𝑓 (𝑠𝑖𝑛𝑘𝑠 𝑊 = −1 𝑜𝑟 𝑠𝑘𝑜𝑟𝑒 > 𝑠𝑐𝑜𝑟𝑒𝑠[𝑊]	
)	
 Do	

o 𝑆𝑐𝑜𝑟𝑒𝑠[𝑊] ← 𝑠𝑘𝑜𝑟𝑒	

o Sinks[W] ← 𝑖	

In the third step, if element 𝑖 was a sink for 𝑊, then we look for the parent set that
will work best.
	

-­‐ 	
 𝑙𝑒𝑓𝑡 = |𝑉|	

-­‐ For	
 i=|𝑉|	
 to	
 1	
 Do	

Ø 𝑜𝑟𝑑[𝑖] ← 𝑠𝑖𝑛𝑘𝑠[𝑙𝑒𝑓𝑡]	

Ø 𝑙𝑒𝑓𝑡 ← 𝑙𝑒𝑓𝑡 ∖ {𝑜𝑟𝑑 𝑖 }	

	

Learning	
 algorithms	
 that	
 use	
 prior	
 knowledge	
 	
 72	

	

	

Finally,	
 we	
 simply	
 recall	
 the	
 best	
 sink	
 and	
 score	
 for	
 each	
 subset.	

	

-­‐ 𝑝𝑟𝑒𝑑𝑒𝑐𝑠 ← ∅	

-­‐ For	
 	
 i=1	
 to	
 1	
 to	
 |V|	
 DO	

Ø 𝑝𝑎𝑟𝑒𝑛𝑡 𝑜𝑟𝑑 𝑖 ← 𝐵𝑝𝑠𝑒𝑡 𝑜𝑟𝑑 𝑖 ,𝑝𝑟𝑒𝑑𝑒𝑠 	

//	
 𝐵𝑝𝑠𝑒𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑝𝑎𝑟𝑒𝑛𝑡 𝑠𝑒𝑡𝑠	

Ø 	
 𝑝𝑟𝑒𝑑𝑒𝑐𝑠 ← 𝑝𝑟𝑒𝑑𝑒𝑐𝑠 ∪ {𝑜𝑟𝑑 𝑖 }	

	

Learning	
 algorithms	
 that	
 use	
 prior	
 knowledge	
 	
 73	

	

	

	

 A Hill Climbing Algorithm with Prior Knowledge 4.3

(HCPK)
A simple and fast approach in a heuristic search for structure learning is hill climbing,

which explores local moves in the search space. It chooses an initial network structure

in a search space to start from; an empty graph was used in this research. Then, the

algorithm continually applies a local move to the current network structure by adding

an edge, if that leads to a better score. This is repeated until no local moves applied to

the current structure improve the graph score. Finally, if there is no graph in the

neighbourhood that has a better score than the current graph, the search procedure

stops because a local optimum has been reached. This method finds local maxima of

the Bayesian scoring metric. In this research, we aimed to keep the hill-climbing as

simple as possible. If we start with empty graph, then it is possible to construct any

Bayesian network by adding edges. In this research, we explored the difference

between this particular algorithm and the same algorithm with prior knowledge.

 Representation	
 of	
 DAG	
 4.3.1
Recall that the structure of a Bayesian network is a directed acyclic graph (DAG), in

which nodes represent the random variables and edges represent probabilistic

dependence among variables. Here, a DAG is represented by specifying the parent set

for each vertex; for example, if variables 𝐵 and 𝐶 are parents for child 𝐴, this is

represented as 𝐴 ← [𝐵,𝐶].

 Cycle	
 Checking	
 4.3.2
Since DAGs are acyclic, each time our hill-climbing algorithm makes a change it

must be checked for a cycle. A list of current ancestors for each node is maintained,

which allows for the fast checking of cycles.

Learning	
 algorithms	
 that	
 use	
 prior	
 knowledge	
 	
 74	

 BDe	
 Score	
 4.3.3

There are a number of different methods of scoring. In this learning algorithm, the

Bayesian Dirichlet likelihood equivalence (BDe) scoring method is used. Each

variable in a BDe score is reviewed in order to discover which parents it has in the

graph. The BDe score is the (marginal) probability of the observed data conditional

on the graph structure, assuming a Dirichlet parameter prior (Heckerman &

Chickering, 1995).

 Search	
 Procedure	
 4.3.4
The local moves in this algorithm are the addition of an edge. In this HCPK, we chose

an empty graph as a starting point in the search space. Basically, the algorithm

computes the local BDe Score for each child and its possible parent sets, and chooses

the one with the highest score. This process is repeated until no graph has a larger

score than the current graph. The details are as follows (Algorithm 1):

The algorithm shown takes all of the variables V = {𝑥!, 𝑥!,… , 𝑥!} from the dataset D

and places them in an arbitrary order V. Each child x! is selected from the ordered set

V. The remainder of the variables, not just those who are earlier in the order, are the

possible parents PP!(x), and can be added as parents in any move. The objective is to

examine each variable and find the best possible parent sets.

When choosing a parent set for x!, the algorithm works by adding one parent P! x at

a time. The number of possible parents that may be added is limited to a certain,

adjustable number. Therefore, the user needs to set a parameter in order to establish

that limit.

The variable earliest in the order has the best possible parent sets to choose from,

whilst it is more difficult to arrive at a good parent set for the variables later in the

order because it is harder to avoid cycles.

The algorithm computes the local score of the possible parent sets for each child.

Since the BDe score is decomposable into local scores, this is all that needs to be

computed after each local move. The algorithm performs some checks, as there are

some sequences concerning the early decisions that the algorithm needs to make if we

do not have prior knowledge.

Learning	
 algorithms	
 that	
 use	
 prior	
 knowledge	
 	
 75	

Before computing the local score for the possible parents, we have to check that the

current possible parent does not violate any constraints at line 11. If 𝑋 has been

previously chosen as a parent of 𝑌, then 𝑌 will be excluded when we choose a parent

for 𝑋.

The algorithm considers all of the possible sets and chooses the one with highest

score. In addition, if any given local score is better than the best score, the set is

assigned to the best score. Then, the algorithm adds edges from parents to children

and updates the ancestor relation. Since DAGs are acyclic, each time our HCPK

algorithm makes a change it must be checked for a cycle, which entails an additional

step. A list of current ancestors for each node is maintained, which allows for the fast

checking of cycles. However, if there is prior knowledge, Algorithm 1 checks whether

this is satisfied by using an extra check at line 11.

Learning	
 algorithms	
 that	
 use	
 prior	
 knowledge	
 	
 76	

Algorithm 1: HCPK algorithm

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

V ← allVariables

g ← empty

𝐅𝐨𝐫 i = 0 to length V 𝐃𝐨

BP!(x) ← [] // Best Parents Combination

x ← V[i] // child

PP!(x) ← V − x // Possible parents

bestLocalScore ← Score(x,BP!(x))

𝐅𝐨𝐫 j = 1 to length(PP!(x)) Do

P!(x) ← PP!(x)[j]

BP!(x). add[P!(x)]

IF CheckPriorKnowledge(P!(x)) == FALSE

Continue

END IF

localScore ← Score(x,BP!(x)) {Using BDe score}

𝐈𝐅 bestLocalScore < localScore AND checkCyclicMap g , x,BP!(x) 𝐓𝐡𝐞𝐧

bestLocalScore ← localScore

 g. update x,BP!(x)

 {See explanation in section 4.3.2}

ELSE

BP!(x).Remove[P!(x)]

END IF

END FOR

END FOR

Return g

Learning	
 algorithms	
 that	
 use	
 prior	
 knowledge	
 	
 77	

 Hill	
 Climbing	
 with	
 Random	
 Restart	
 4.3.5

This algorithm cannot guarantee that it will find the optimal network because it may

become stuck at a local maximum, of which there could be many. One run is not

enough in HCPK. In this situation, it is best to start the search again. Therefore, we

run HCPK several times with different random orderings V of the variables to

partially compensate for the myopia of hill climbing. Different random orderings give

different scores. Hence, the variable earliest in the order has the best possible parent

set to choose from, whilst it is more difficult to arrive at a good parent set for the last

variable in the ordering. Many choices of high-scoring parent sets will not be

possible, as choosing them would lead to a cycle.

However, the best total score of the ordering is kept. If a new iteration of HCPK

produces a better total score, the new score replaces the previous best total score and

returns the network with the highest score.

Algorithm 2: HCPK algorithm with random restarts

	

1.

2.

3.

4.

5.

6.

7.

8.

9.

i ← 0

V ← allVariables

BestScore ← −∞

While(i < NumberRuns)

V ← RandomOrdering(V)

BN ← HillClimbing

If (Score BN < BestScore)

BestScore ← Score BN

i + +

Learning	
 algorithms	
 that	
 use	
 prior	
 knowledge	
 	
 78	

	

This chapter proposed an algorithm to learn Bayesian networks from data. It

presented the exact learning of the maximum likelihood Bayesian network. Also, it

presented the developed learning algorithm, which is a hill-climbing algorithm prior

knowledge (HCPK). Finally, it gave a detailed discussion of the search procedure in

the HCPK. While, in the following chapter show how can we incorporate different

types of prior to these developed algorithms.

Incorporating	
 Prior	
 Knowledge	
 	
 79	

	

	

5 Incorporating Prior Knowledge
	

This chapter introduces the main contribution of this thesis; presenting an algorithm

that can incorporate different types of prior into the developed algorithm. This section

discusses prior information, and highlights the differences between hard and soft prior

information. It then describes how different sorts of prior knowledge are incorporated

into the developed learning algorithms.

	

 Introduction 5.1
	

Prior information is any information people have, in addition to the data, that helps to

obtain a good model. Hard information reduces the probability of some network

structures to zero. In other words, in order to use prior information you have to take

hard information and (perhaps implicitly) express it in the prior distribution to give

certain networks zero probability. If the prior probability is zero then the posterior

probability will still be zero, no matter what sort of data is available. In contrast, soft

prior information gives nonzero prior probability to some possible network structures,

and some will achieve higher probabilities than others. However, even if we set a

prior probability to a small number, if there is enough supporting data then the

posterior probability could be large. Uniform prior knowledge can be used if we do

not have any information because it represents a lack of information, which means

that each structure has an equal prior probability of being true.

The learning algorithm is intended to enable users to express their knowledge of a

variety of problems in a straightforward manner. The main objective of this section is

to investigate whether incorporating prior knowledge leads to significantly better

results, and to evaluate its effect on learning speed. This section discusses the many

experiments conducted during the development process in order to generate numerous

results. In this work, we aimed to develop learning algorithms using different datasets

and types of prior knowledge. There are many types of prior knowledge, including the

Incorporating	
 Prior	
 Knowledge	
 	
 80	

knowledge of whether or not node A is a parent of node B and known topological

ordering. The most challenging type of prior knowledge (and the main subject of this

research) is known ancestor relations and conditional independence. However, the

main issue is that more complicated prior knowledge cannot be incorporated into

local score. In addition to this, once we have complicated prior knowledge, simply

using hill climbing without changing it will fail because it will constantly generate

networks that are not allowed. Therefore, we need to add some intelligence.

Incorporating	
 Prior	
 Knowledge	
 	
 81	

	

 Dynamic Programming 5.2
	

Looking back at the dynamic programming algorithm described in section 4.2. Here,

we extend Cowell's (2009) approach towards the exact learning in order to

incorporate different sorts of prior knowledge. The exact dynamic programming

dynamic programming algorithm is an exact learning approach that always finds the

optimal network, and this makes it useful for checking whether things work. In this

section, we investigate the effect of the prior knowledge on the dynamic programming

algorithm.

There are a lot of different types of prior knowledge, which might be, for example, 𝐴

has to be the parent of 𝐵, or 𝐴 must not be the parent of 𝐵. For this reason, we allow

the user to say that a certain arrow has to be there. Another type of prior knowledge is

the statement that 𝐴 has to be an ancestor of 𝐵 (𝐵 cannot be a descendent). Therefore,

the algorithm incorporates different types of users’ prior knowledge and drops the

assumption that there are two parents at most as follows:

 Arrows	
 which	
 must	
 be	
 absent	
 𝑨 ↚ 𝑩	
 5.2.1

The user can specify the prior knowledge that variable 2 must not be a parent of 0.

This is a hard constraint, and it is straightforward to incorporate this prior knowledge

by removing all the choices of the parents’ set from the datasets. Thus, ruling out the

parents’ set does not fit with this prior knowledge. Moreover, each variable has a

choice of parents from the dataset and one that does not fit with the prior knowledge

can be ruled out.

Incorporating	
 Prior	
 Knowledge	
 	
 82	

 Arrows	
 which	
 have	
 to	
 be	
 there	
 𝐀 ← 𝐁	
 5.2.2
	

Given a Bayesian network on 𝑛 nodes in a set V, for each individual i ∈ V, we search

for the valid set of parent combinations in a list Λ!. We also find the corresponding

local scores for parent configuration. Moreover, in the exact dynamic programming

algorithm each list Λ! always has at least one element corresponding to having no

parents, and it treats 𝑖 as a founder. However, if we have prior knowledge, this will

rule out the choice of no parents and, as a result, will produce a wrong network.

On the other hand, suppose the user's prior knowledge is 0 ← 2, where 2 must be a

parent of 0, and the aim is to find the maximum likelihood network where that is true.

If we consider 𝑊 = {0,2,3}, where the sink is 0 and 2 is an element of the set 𝑢 is

considered 𝑖 = 0 & 2 ∈ 𝑢 . Although this will always return a network satisfying the

respective constraint, it cannot guarantee that it will produce a network with a high

score, as the best sink could be 3(3 ← 0 ← 2). As a result, it is not necessary to

consider whether there is a particular arrow or not when we are choosing the best

sink. However, we have not examined the case where 2 ← 0 (i=2 & u={0,3}), and the

rest of the scores need consideration ((i=0 & u={2,3}) and (i=3 & u={0,2})). A

constraint is needed to help obtain a network that meets this prior knowledge:

1. Suppose user prior knowledge is 0 ← 2 and 0,2 ⊆𝑊

𝑇ℎ𝑒𝑛, 2 𝑛𝑜𝑡 𝑡ℎ𝑒 𝑠𝑖𝑛𝑘 𝑤ℎ𝑒𝑛 0 ∈ 𝑈	

2. 𝑖𝑓 𝑖 = 0 && 2 ∈ 𝑈 	

Then	
 	

BLS(i, U) only returns the parent set that contains 2.

Incorporating	
 Prior	
 Knowledge	
 	
 83	

Therefore, from the dynamic programming algorithm, step 2: finding the best sinks

Prior! = 0
Prior! = 2

-­‐ For	
 every	
 𝑊 ⊆ 𝑉	
 in	
 order	
 Do	

Ø 	
 𝑆𝑐𝑜𝑟𝑒𝑠[𝑊] ← 0.0	

Ø 𝑠𝑖𝑛𝑘𝑠 𝑊 ← −1	

-­‐ Loop	
 for	
 all	
 𝑖 ∈𝑊	
 Do	

Ø 𝑈 ←𝑊 ∖ {𝑖}	

Ø 𝐵𝐿𝑆 𝑖,𝑈 +only	
 returns	
 the	
 parent	
 set	
 that	
 contains	
 .Prior!

Ø 𝑠𝑐𝑜𝑟𝑒 ← 𝐵𝐿𝑆 𝑖,𝑈 + 𝑠𝑐𝑜𝑟𝑒𝑠[𝑈]	

§ 𝑖𝑓 (𝑠𝑖𝑛𝑘𝑠 𝑊 = −1 𝑜𝑟 𝑠𝑘𝑜𝑟𝑒 > 𝑠𝑐𝑜𝑟𝑒𝑠[𝑊]	
)	

&&	

𝑖𝑓(𝑁𝑂𝑇 (𝑖 == Prior!) &&(Prior! ∈ 𝑈))	

	
 Do	

o 𝑆𝑐𝑜𝑟𝑒𝑠[𝑊] ← 𝑠𝑐𝑜𝑟𝑒	

o Sinks[W] ← 𝑖	

	
 	

Incorporating	
 Prior	
 Knowledge	
 	
 84	

	

 Known	
 ordering	
 	
 5.2.3
The dynamic programming algorithm attempts to find the best ordering and after it

finds it, the rest is easy. If we knew the ordering then most of the algorithm would not

happen. For example, suppose a Bayesian network and the variables are [0,1,2,3]. If

we know that [1,3,2,0] is the right ordering, then it is easy.

However, suppose we only knew that 0 has to come before 2 (0 < 2), and did not

know anything else. The aim is to check whether it is possible for the exact dynamic

programming algorithm to find the best network so that an ordering respects 0 < 2.

	

v 0<2	
 	
 (2	
 cannot	
 come	
 earlier	
 0)	

Suppose user's prior knowledge is 0 < 2 and 0,2 ⊆𝑊

𝑇ℎ𝑒𝑛, 0 𝑛𝑜𝑡 𝑡ℎ𝑒 𝑠𝑖𝑛𝑘𝑠 𝑤ℎ𝑒𝑛 2 ∈ 𝑈.

Therefore, from the dynamic programming algorithm, step 2: finding the best sinks

Prior! = 0
Prior! = 2

-­‐ For	
 every	
 𝑊 ⊆ 𝑉	
 in	
 order	
 Do	

Ø 	
 𝑆𝑐𝑜𝑟𝑒𝑠[𝑊] ← 0.0	

Ø 𝑠𝑖𝑛𝑘𝑠 𝑊 ← −1	

-­‐ Loop	
 for	
 all	
 𝑖 ∈𝑊	
 Do	

Ø 𝑈 ←𝑊 ∖ {𝑖}	

Ø 𝐵𝐿𝑆 𝑖,𝑈 +	
 only	
 return	
 the	
 parent	
 set	
 that	
 contains	
 Prior!	

Ø 𝑠𝑘𝑜𝑟𝑒 ← 𝐵𝐿𝑆 𝑖,𝑈 + 𝑠𝑐𝑜𝑟𝑒𝑠[𝑈]	

§ 𝑖𝑓 (𝑠𝑖𝑛𝑘𝑠 𝑊 = −1 𝑜𝑟 𝑠𝑘𝑜𝑟𝑒 > 𝑠𝑐𝑜𝑟𝑒𝑠[𝑊]	
)	

&&	

 𝑖𝑓 𝑁𝑂𝑇 (𝑖 == Prior!) && (Prior! ∈ 𝑈) 	
 Do	

o 𝑆𝑐𝑜𝑟𝑒𝑠[𝑊] ← 𝑠𝑘𝑜𝑟𝑒	

o Sinks[W] ← 𝑖	

	

	

	

	

	

	

	

	

Incorporating	
 Prior	
 Knowledge	
 	
 85	

	

 Hill Climbing with Prior Knowledge Algorithm 5.3

(HCPK)
	

This research describes how different sorts of prior knowledge are incorporated into

the developed learning algorithms. There are many types of prior knowledge,

including the knowledge of whether or not node A is a parent of node B and known

topological ordering. The most challenging type of prior knowledge, and the main

subject of this research, is known ancestor relations and conditional independence.

However, the main issue is that more complicated prior knowledge cannot be

incorporated into local score. In addition to this, once we have complicated prior

knowledge, simply using hill climbing without changing it will fail because it will

constantly generate networks that are not allowed. Therefore, we need to add some

intelligence.

	

	

 Arrows	
 which	
 must	
 be	
 absent	
 𝑨 ↚ 𝑩	
 5.3.1
	

The user can specify 𝐴 ↚ 𝐵 to represent the prior knowledge that 𝐵 must not be a

parent of 𝐴. This hard constraint can easily be incorporated as prior knowledge by

eliminating all violating parent sets. Therefore, this rule out situations where the

parent set does not fit with this prior knowledge.

Incorporating	
 Prior	
 Knowledge	
 	
 86	

 Arrows	
 which	
 have	
 to	
 be	
 there	
 𝑨 ← 𝑩	
 5.3.2
	

With this prior knowledge, an arrow can be added to a particular child based on the

given parents. A child is selected first, and then a decision is made in terms of which

parents to add. The HCPK algorithm allows the network for many possible parents to

be learnt. For example, take 𝐴 ← 𝐵, where 𝐵 must be a parent of 𝐴. Assume that 𝐴 is

the child specified by the user and that 𝐵 is the parent specified by the user. In

Algorithm 1 line 11, a constraint is needed to help obtain a network that meets this

prior knowledge.

• Users can specify either entire parent sets or just part of a parent set. If users

specify part of a parent set, then if the score is high, more possible parents are

added. But, if users specify the entire parent sets, then only the specified

parents are considered.

• The algorithm needs to ensure that 𝐴 cannot be the ancestor of 𝐵.

Figure 12 and Figure 13 show the results of applying HCPK with random restarts to

different learning problems for synthetic data generated by the insurance network.

The score of the best network found so far was plotted against the number of restarts.

In Figure 12, we see that adding prior knowledge leads to a better result. However,

when we have more prior knowledge (as shown in Figure 13) the optimal network is

found at 159. We used GOBNILP to find the optimal networks, and all prior

knowledge is consistent with the optimal network (Cussens, 2011).

Incorporating	
 Prior	
 Knowledge	
 	
 87	

	

	

Figure 12: Arrows which have to be there.

The figure shows some runs without prior knowledge and the result of incorporating

user's prior knowledge. Here the user specified the parent set 𝟐𝟑 ← 𝟏𝟏,𝟐𝟐 or each of

the1,000 restarts.

	

	

Figure 13: More prior knowledge.

User prior knowledge 𝟏𝟕 ← 𝟕,𝟏𝟔 ; 𝟐𝟒 ← 𝟏𝟓 ; 𝟐𝟓 ← 𝟏𝟒,𝟐𝟎 ; 𝟐𝟔 ← 𝟑,𝟐𝟏,𝟐𝟒

for 1,000 restarts. More Prior knowledge has more effect in the learning algorithm,

which sometimes get to the optimal.

Incorporating	
 Prior	
 Knowledge	
 	
 88	

 Ancestor	
 Relation	
 5.3.3
Sometimes, a network that does not meet a user's prior knowledge is generated by an

algorithm. This network does not present a problem if the user's prior knowledge is

simple, like deleting or adding edges. Algorithm 1 is used here to obtain a network

that satisfies the constraint. However, if the prior knowledge deals with an ancestor

relation, the impossibility of creating a legal network can go undetected until

extremely late in the process, which creates problems. The algorithm works by

considering a number of possibilities at various points. The algorithm does not

consider every possible network; instead, it makes several choices and sticks with

them. Overall, it is not hard to check whether a particular ancestor relation is there.

However, it is difficult to ensure that the graph we are building will satisfy a given

ancestor relation.

5.3.3.1 Backtrack	
 Approach	

	

The primary challenge is to decide what action to take when a branch of the search

fails or reaches a dead end. The backtrack approach overcomes this issue by returning

to an earlier point that might fix the problem (Russell & Norvig, 2010). Therefore, if

the generated network does not meet the user's prior knowledge, Algorithm 3 will

perform backtracking. If the generated network is inconsistent with the user's prior

knowledge, then Algorithm 4 backtracks to a node in the search tree. Only ancestor

relations are considered when the algorithm selects a random variable to backtrack.

This random variable is selected from the ancestor of the child specified by the user,

and then a new parent set is chosen. The algorithm keeps track of the parent sets that

have previously been selected with respect to the backtrack point in order to avoid

selecting them again and reducing the structure space. However, a limited portion of

the most selected parent sets is retained. When the algorithm reaches the limited

number of the most selected parent set, it starts the search again with a new random

ordering in order to avoid an infinite loop.

Incorporating	
 Prior	
 Knowledge	
 	
 89	

If no legal value for parent sets can be found for the child variable, this will produce

an illegal network structure. As a result, the algorithm backtracks to the beginning of

the network structure: the first child variable for the particular ordering V.

5.3.3.2 Restarts	
 And	
 Backtrack	
 Approach	

	

In this method, we employ a greedy search until we hit a local maximum. Then, we

randomly change the ordering of the variable of the network structure and repeat the

process for a certain number of iterations. In addition to this, using several random

restarts may be a better strategy if the number of nodes is large and the optimisation is

more likely to be complex. In contrast, backtracking is often suitable when a network

structure is inconsistent with a constraint. One of the goals of backtracking is to

backtrack to the most recent point that might solve the problem and then attempt to

find different values. For any single random restart, a backtrack method is applied if

the produced network is inconsistent with a user's prior knowledge. Figure 14 shows

the results of applying HCPK with random restarts to different learning problems

when we plot the score of the best network found so far against the number of restarts.

For example, take the prior knowledge 𝐵 ⇠ 𝐴 which indicates that 𝐴 must be an

ancestor of 𝐵. Assume that 𝐵 is the specified child by the user and that 𝐴 is the

specified ancestor by the user. If there is an ancestor relation algorithm 3 checks that

it is satisfied by an extra check at line 12. These constraints are needed to generate a

network that meets this prior knowledge.

• Variable 𝐵 cannot have an empty parent set

• The algorithm needs to ensure that 𝐵 cannot be ancestor of 𝐴

If these constraints are true, we denote this by:

 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝐴,𝐵) = 𝑇𝑟𝑢𝑒

Incorporating	
 Prior	
 Knowledge	
 	
 90	

	

	

Figure 14: Ancestor relation prior knowledge.

The figure shows some runs without and some with user prior knowledge 𝟔 ⇠23,

which indicates that 23 must be an ancestor of 6. It shows the results of applying

HCPK with random restarts to different learning problems for synthetic data

generated by the insurance network. The score of the best network found so far was

plotted against the number of restarts.

	

	

	

	
 	

Incorporating	
 Prior	
 Knowledge	
 	
 91	

	

Algorithm 3: Restart and backtrack.

	
 	

	
 	

	
 	

1.	

2.	

3.	

4.	

5.	

6.	

7.	

8.	

9.	

10.	

11.	

12.	

13.	

14.	

15.	

16.	

	
 	

	
 	

17.	

18.	

19.	

20.	

21.	

22.	

23.	

24.	

25.	

26.	

27.	

28.	

29.	

30.	

31.	

32.	

33.	

34.	

35.	

36.	

37.	

REQUIRE:RemovingList Contains all the children with most visited parents 	

REQUIRE {Parameter number to limited number of the most visited parent sets}	

REQUIRE g {a graph}	

For i = 0 to length V Do	

BP!(x) ← []	
 	
 // Best Parents Combination	

x ← V[i]	
 //	
 child	

 if not RemovingList. contains x then	

continue	

end if	

PP!(x) ← V − x	
 //	
 Possible	
 parents	
 	
 	

bestLocalScore ← Score(x,BP!(x))	
 	
 	

For j = 1 to length(PP!(x)) 	
 Do	

P!(x) ← possibleParents[j]	

BP!(x). add[P!(x)]	
 	

IF	
 CheckThatParentIsOk(P!(x))	
 ==	
 FALSE	
 then	
 	
 	

Continue	

END	
 IF	

localScore ← Score(x,BP!(x))	
 {Using	
 BDe	
 score}	

IF bestLocalScore <
localScore AND checkCyclicMap g , x,BP! x AND constraint apply 	

AND disjoint RemovingList. get x ,BP! x 	

Then	

bestLocalScore ← localScore 	
 	
 	
 	
 	
 	
 	

 g. update x,BP!(x) 	
 	

ELSE	
 	

BP!(x).Remove[P!(x)]	

END	
 IF	

list ← RemovingList. get(x)	

if {list == null or list. size() > P)	

then	

 RemovingList. put(x,BP!(x))	

else	

list. addAll(BP!(x))
RemovingList. put(x, list)	

end if	

end	
 for	

end	
 for	

if illegal g then	

 ancestorRelation/conditional independence(V, true)
 else
 ancestorRelation/conditional independence(V, false)	

end if	

Incorporating	
 Prior	
 Knowledge	
 	
 92	

Algorithm 4: Ancestor relation

	
 	

	
 	

	
 	

1.	

2.	

3.	

4.	

5.	

7.	

8.	

9.	

10.	

11.	

12.	

13.	

14.	

15.	

	
 	

16.	

17.	

𝐑𝐄𝐐𝐔𝐈𝐑𝐄: ordered variables	

𝐑𝐄𝐐𝐔𝐈𝐑𝐄: user′s prior knowledge about the child	

𝐑𝐄𝐐𝐔𝐈𝐑𝐄 ∶ fromStart,	
 True	
 or	
 False	

position ← 0	

 removingListMap ← [] 	

𝐢𝐟 checkAncestorRelationisok(child user′s knowledge) == True	
 𝐭𝐡𝐞𝐧	

return	

𝒆𝐧𝐝 𝐢𝐟	

𝐈𝐅 not formStart 𝐭𝐡𝐞𝐧	

 Backtrack ← ancestor child .Random	

𝒆𝒍𝒔𝒆{ 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔}	

𝐵𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 ← 𝑎𝑙𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝𝑜𝑠𝑡𝑖𝑜𝑛 	

end	
 if	

SelectedBacktrack ← allVariables. indexOf Backtrack 	

𝐟𝐨𝐫 i ← SelectedBacktrack To allVariables. size() 𝐝𝐨

removingListMap. add(i)
ancestor. remove i {ancestor, contains a list of all the children	

 with their ancestors } 	

𝐞𝐧𝐝 𝐟𝐨𝐫
Restarts and Backtrack allVariables,RemovingList 	

	

Incorporating	
 Prior	
 Knowledge	
 	
 93	

Let us take the prior knowledge that 6 ⇠ 7, which indicates 7 must be an

ancestor of 6. Assuming that 6 is the child specified by the user and that 7 is the

ancestor specified by the user, then the following constraints are needed to generate a

network that meets this prior knowledge:

• Variable 6 cannot have an empty parent set.

• The algorithm must ensure that 6 cannot be an ancestor of 7.

The result of applying HCPK ancestor relations, for synthetic data generated by the

Asia 100, is shown in Figure 1:

Figure 15: The generated network from HCPK.

The generated network is inconsistent with the user's prior knowledge, and we need to

perform backtracking again. The current ancestors of the child specified by the user

are [4], as only ancestor relations are considered when the algorithm selects a random

variable to backtrack. In this example, Node 4 is selected from the ancestor of the

child specified by the user and then a new parent set is chosen. If the score is high,

more parents that are possible are added. For Child 4, the parent sets that have

previously been selected will not be parents again, as the HCPK algorithm keeps track

of the parent sets that have previously been selected with respect to the backtrack

point. The generated network is shown in Figure 16.

0	

1	

1	
 2	

1	

4	

1	

5	

1	

7	

1	

3	

1	

6	

1	

Incorporating	
 Prior	
 Knowledge	
 	
 94	

Figure 16: The generated network from HCPK after backtracking.

	

The generated network is consistent with the user's prior knowledge, and we do not

need to perform backtracking. The total score is -248.02. We run several iterations of

the HCPK algorithm with different random orderings of the variables to compensate

partially for the myopia of hill climbing. Different random orderings result in

different scores. Therefore, after a few iterations, the HCPK algorithm found a high

scoring network at -245.64.

Generally, when adding prior knowledge, it is consistent with the optimal network, or

the true network helps the algorithm to generate a more accurate network. However, it

is not necessary the true network have a high scoring network. Adding prior

knowledge gives us slightly fewer arrows. Occasionally, the algorithm performs

worse without prior knowledge. The HCPK algorithm deals with bigger problems,

can incorporate different sorts of prior knowledge, and always returns a network that

satisfies user prior knowledge regardless of whether it achieves a high score or not.

Such a randomised restart ensures that the best scoring network that is consistent with

the constraints will eventually be produced. However, the use of backtracking (as

opposed to a pure random-restart approach) adds intelligence to the search and greatly

increases the chances of generating a good network on each iteration.

0	

1	

1	
 2	

1	

4	

1	

5	

1	

7	

1	

3	

1	

6	

1	

Incorporating	
 Prior	
 Knowledge	
 	
 95	

Overall, when the HCPK algorithm performs backtracking, it keeps track of the

parent sets that have previously been selected with respect to the backtrack point to

avoid selecting them again, reducing the structure space. Additionally, a limited

portion of the most-selected parent sets is retained, and it starts the search again with

a new random ordering when it reaches the limit.

Recall that there are two backtrack points (see Section 5.3.3.1 for more details); if the

generated network is inconsistent with the user's prior knowledge, then Algorithm 4

backtracks to the following:

- A node in the search tree: Only ancestor relations are considered when the algorithm

selects a random variable to backtrack.

- The beginning of the network structure: The first child variable for the particular

ordering V if no legal value for parent sets can be found for the child variable.

In addition, the constraints in Section 5.3.3.2 play a big role in the HCPK algorithm to

facilitate generating a network that meets the user’s prior knowledge and ensures that

the graph will satisfy a given ancestor relation. These constraints are needed to

generate a network that satisfies a user’s prior knowledge and reduces the structure

space. Therefore,

 (user’s Prior knowledge) ×(HCPK) × (Dataset) ≈ a network that satisfied user’s

prior knowledge .

	
 	

Incorporating	
 Prior	
 Knowledge	
 	
 96	

	

 	
 Conditional	
 Independence	
 5.3.4

Dependencies and independencies are the main issues in a probability distribution.

Local independencies in Bayesian networks are where each node is independent of its

non-descendants, given its parents. Global independencies are derived from d-

separation, which helps to ensure that specific sets of independencies (𝐴 ⊥ 𝐵 | 𝑍) hold

in a distribution, so that a variable 𝐴 is conditionally independent of a particular

variable 𝐵, given its variable 𝑍. In other words, the observation of 𝐴 changes the

belief about 𝐵, in the presence of evidence about 𝑍. D-separation is one of the ways

of detecting conditional independence relations. In d-separation, Koller and Friedman

(2009) demonstrate that there are three main patterns that illustrate whether two

variables are independent in the presence of evidence.

In this section, we investigate incorporating the conditional independence prior

knowledge into the developed learning algorithm using two different approaches.

5.3.4.1 Restarts	
 and	
 Backtrack	
 Approach	

Intelligent backtracking often applies when a network structure is inconsistent with a

constraint. For any single random restart, an algorithm checks for conditional

independence. For example, take (𝐴 ⊥ 𝐵 | 𝑍) as the conditional independence prior

knowledge specified by the user, where 𝐴 is a conditional independent of 𝐵 given 𝑍.

The algorithm uses the d-Separation algorithm to check for conditional independence,

and discovers the nodes reachable from 𝐴 given 𝑍 via active trails. If the generated

network does not meet the user's prior knowledge of conditional independence, the

backtrack method is applied.

In Algorithms 5 and 3, if the current network does not meet the user's prior

knowledge then the algorithm backtracks to a node in the search tree. Only

conditional independence active trails are considered when the algorithm selects a

random variable to backtrack (see Algorithm 5's pseudo-code for details). Meanwhile,

if no legal value for parent sets can be found for the child variable, this will generate

Incorporating	
 Prior	
 Knowledge	
 	
 97	

an illegal network structure. As a result, the algorithm backtracks to the beginning of

the network structure: the first child variable for the particular ordering . In Algorithm

2, a constraint is needed to help obtain a network that meets this prior.

• If 𝑍 is current child then {𝐴,𝐵} ⊄ 𝑃! 𝑍

Algorithm 5: Conditional independence

	
 	

	
 	

	
 	

1.	

2.	

3.	

4.	

5.	

	
 	
 	

6.	

7.	

8.	

	
 	
 	

9.	

10.	

11.	

12.	

13.	

14.	

15.	

16.	

17.	

𝐑𝐄𝐐𝐔𝐈𝐑𝐄: ordered variables	

𝐑𝐄𝐐𝐔𝐈𝐑𝐄: user′s prior knowledge about the child	

𝐑𝐄𝐐𝐔𝐈𝐑𝐄 ∶ fromStart,	
 True	
 or	
 False	

position ← 0	

 removingListMap ← [] 	

 R = FindReachable(A, Z)
𝐢𝐟 { R == True}

return { R is DSeparation algorithm for finding nodes reachable 	

from A given Z via active trails }	

𝒆𝐧𝐝 𝐢𝐟	

𝐈𝐅 not formStart 𝐭𝐡𝐞𝐧	

 Backtrack ← R List .Random 	

{R is returned list of active trails from D − Separation }

𝒆𝒍𝒔𝒆{ 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔}	

𝐵𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 ← 𝑎𝑙𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝𝑜𝑠𝑡𝑖𝑜𝑛 	

end	
 if	

SelectedBacktrack ← allVariables. indexOf Backtrack 	

𝐟𝐨𝐫 i ← SelectedBacktrack To allVariables. size() 𝐝𝐨

removingListMap. add(i)
ancestor. remove i ancestor, contains a list of all the children with their ancestors 	

𝐞𝐧𝐝 𝐟𝐨𝐫
Restarts and Backtrack allVariables,RemovingList 	

	

Incorporating	
 Prior	
 Knowledge	
 	
 98	

5.3.4.2 Conditional	
 Independence	
 Checks

To investigate the effect of including conditional independence prior knowledge, we

used a d-Separation algorithm for each move in the HCPK algorithm. For example,

take (𝐴 ⊥ 𝐵 | 𝑍) as the conditional independence prior knowledge specified by the

user, where 𝐴 is a conditional independent of 𝐵 given 𝑍.

Therefore, for each additional move, the algorithm creates a temporary graph that

contains the current graph and the possible parent set. It then checks this temporary

graph for conditional independence. If the possible parent sets do not satisfy the

conditional independence checks, it is not considered. Using this approach, we

continue to build the graph by conducting these early checks and, eventually, end up

with a network that meets the user's prior knowledge. As shown in Figure 15, adding

the prior knowledge has a positive effect on the learning. In Algorithm 1, a constraint

is needed to help obtain a network that meets this prior knowledge.

• If 𝑍 is current child then {𝐴,𝐵} ⊄ 𝑃! 𝑍

• For each additional move, the algorithm checks the current graph for

conditional independence; checking that 𝐵 is not reachable from 𝐴 given 𝑍 via

active trails.

((𝐴 ⊥ 𝐵 | 𝑍),𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦𝐺𝑟𝑎𝑝ℎ) == 𝑇𝑟𝑢𝑒)

Incorporating	
 Prior	
 Knowledge	
 	
 99	

	

	

Figure 17: Conditional independence prior knowledge.

The figure shows some runs without prior knowledge and some with user prior

knowledge (𝟏𝟏 ⊥ 𝟏𝟒 | 𝟔). We plotted the results of the best network found so far

against the number of restarts. As shown, adding prior knowledge leads to a better

result: the best network was found at 600, and then a better network was found at 617.

	

In this chapter, we presented an algorithm that can incorporate different types of

priors to the developed algorithm. This chapter introduced prior information and

highlighted the differences between hard and soft prior information. Then, how

different sorts of prior knowledge are incorporated into the developed learning

algorithms were described. The results of applying the dynamic programming and

HCPK with prior knowledge to different learning problems are given in the following

chapter.

	

	

	

	

	

	

	

Results	
 And	
 Evaluation	
 	
 100	

	

	

	

6 Results And Evaluation
	

This chapter presents experiments conducted using a developed algorithm on

Dynamic Programming and HCPK, with and without prior knowledge. Here is the

main contribution of this thesis: presenting an algorithm that can incorporate different

types of prior knowledge to the developed algorithm. Section 6.1 describes the results

of applying the dynamic programming with prior knowledge to different learning

problems. Section 6.2 investigates whether our current algorithm can result in a high

score without prior knowledge and compare it to other existing applications. It then

describes how different sorts of prior knowledge are incorporated into the developed

learning algorithms (HCPK).

In these experiments, we have used different datasets and a random number of runs.

We have used the datasets available at http://www.cs.york.ac.uk/aig/sw/gobnilp/data.

In this research, GOBNILP is used to find the optimal networks, and all prior

knowledge is consistent with the optimal network.

We have implemented the algorithms described in this thesis and our implementation

is written in Java programming language. The experiments to be described next were

run under Windows on an ordinary desktop PC with a 2.4GHz Pentium processor and

2.0GB of memory.

	
 	

Results	
 And	
 Evaluation	
 	
 101	

 Dynamic Programming Algorithm 6.1

Evaluation of the accuracy of a structure-learning algorithm for this experiment is

based on a comparison between the output produced by the developed algorithm of

the dynamic programming and GOBNILP. In this research, GOBNILP is used to find

the optimal networks, and all prior knowledge is consistent with the optimal network.

The next section include full details of the result of incorporating different types of

prior knowledge to the dynamic programming algorithm.

In reference to efficiency, the dynamic programming algorithm was efficient and the

speed was acceptable because the local scores were sorted in a decreasing order. In

addition, with prior knowledge, one can often speed up the algorithm. When we do

the main loop to find the best sinks for sets, if we have prior knowledge, it speeds up

the algorithm a bit. However, the step involved with finding the best sinks has the

greatest computational complexity: 𝐵𝐿𝑆 𝑖,𝑈 has complexity 𝑂(𝑛!) . In this

algorithm, the 𝑓𝑜𝑟 loop for a given 𝑊 ⊂ 𝑉 is called 1 ≤ |𝑊| ≤ 𝑛 times and for each

of the 2! subsets of 𝑉. Moreover, each 𝑓𝑜𝑟 loop call also has complexity 𝑂(𝑛!).

Therefore, the computational complexity of the algorithm is, at worst,𝑂(𝑛!2!).

The dynamic programming algorithm is a good one because if	
 it	
 terminates,	
 it	
 will	

return	
 the	
 optimal	
 network. Moreover, if users wish, they can input prior

knowledge; if they do not have prior knowledge, the algorithm still works. However,

the problem is that the algorithm has certain limitations by itself. The algorithm is

limited by the amount of memory, which has to be used. This algorithm is an attempt

to search for a pedigree of up to approximately 31 individuals. The dynamic

programming algorithm approach will fail if we have too many variables because it

will just run out of memory. Another problem is that, in the dynamic programming

algorithm, we have to compute all of the local scores first, but, if we have many

variables and we allow variable possibilities in terms of having too many parents,

then computing the score does not work because there are too many of them. 	

Results	
 And	
 Evaluation	
 	
 102	

Here, we show the results of incorporating prior knowledge to the dynamic

programming to different learning problems. In these experiments, we have used

different datasets. The results of applying the dynamic programming to different

learning problems for synthetic data generated by the Asia (8 variables) and Kredit

(18 variables) networks. For variables more than 30, the execution has stopped

because the program has run out of available memory. The score found by the

developed dynamic programming in Figures 16 to 25.

Results	
 And	
 Evaluation	
 	
 103	

	

	

Figure 18:The results of applying the dynamic programming with prior knowledge

consistent with GOBNILP, arrows which have to be there and known ordering, for

synthetic data generated by the Asia 100.

	

Figure 19: The results of applying the dynamic programming with prior knowledge

inconsistent with GOBNILP, arrows which have to be there, for synthetic data

generated by the Asia 100.

Results	
 And	
 Evaluation	
 	
 104	

	

Figure	
 20:	
 The results of applying the dynamic programming with prior knowledge
inconsistent with GOBNILP, known ordering, for synthetic data generated by the
Asia 100.	

	

	

Figure	
 21:	
 The results of applying the dynamic programming with prior knowledge
consistent with GOBNILP, arrows which have to be there and known ordering, for
synthetic data generated by the Asia 1000.

Results	
 And	
 Evaluation	
 	
 105	

	

Figure	
 22: The results of applying the dynamic programming with prior knowledge
inconsistent with GOBNILP, arrows which have to be there, for synthetic data
generated by the Asia 1000.

	

	

Figure	
 23:	
 The results of applying the dynamic programming with prior knowledge
inconsistent with GOBNILP, known ordering, for synthetic data generated by the
Asia 1000.	
 	

Results	
 And	
 Evaluation	
 	
 106	

	

	

	

Figure	
 24:	
 The results of applying the dynamic programming with prior knowledge
consistent with GOBNILP, arrows which have to be there and known ordering, for
synthetic data generated by the Asia 10000.

	

Figure	
 25:	
 The results of applying the dynamic programming with prior knowledge
inconsistent with GOBNILP, arrows which have to be there, for synthetic data
generated by the Asia 10000.

Results	
 And	
 Evaluation	
 	
 107	

	

	

Figure	
 26:	
 The results of applying the dynamic programming with prior knowledge
inconsistent with GOBNILP, known ordering, for synthetic data generated by the
Asia 10000.

	

Results	
 And	
 Evaluation	
 	
 108	

	

Figure	
 27:	
 The results of applying the dynamic programming with prior knowledge
consistent with GOBNILP, arrows which have to be there and known ordering, for
synthetic data generated by the Kredit 10000.

	

Figure	
 28:	
 The results of applying the dynamic programming with prior knowledge
inconsistent with GOBNILP, arrows which have to be there and known ordering, for
synthetic data generated by the Kredit 10000.

	

	

Results	
 And	
 Evaluation	
 	
 109	

The results of applying the dynamic programming with prior knowledge to different

learning problems for synthetic data were generated by the Asia, Kredit, insurance,

Alarm, Carpo, and Diabetes networks. The score of the best network found so far

against the number of restarts as shown in Figures 16, 19, 22. It shows the results of

incorporating prior knowledge arrows, which have to be there. With this prior

knowledge, an arrow can be added to a particular child based on the given parents.

For datasets, aisa100, asia1000, and aisa10000 (8 variables), it always found the

optimal network (Please see details in Appendix-A).

Figure 25 shows the results for the dataset Kredit 10000 (18 variables) wherein the

optimal network was also always found. It also shows the results of incorporating

prior knowledge arrows, which have to be there, as well as knowing ordering.

In dynamic programming, prior knowledge consistent with GOBNILP always results

in the optimal network. Inconsistent prior knowledge has quite a negative effect on

the learning. As the result shows that if we incorporate inconsistent prior knowledge,

we get a consistently worse score as shown in Figures 17,18, 20, 21 23, 24, and 26.

However, if we have inconsistent prior knowledge, sometimes we got a worse

network. There’s a Bayesian network, which is a Markov equivalent in which the

GOBNILP found to be consistent with this order. For most networks, there are several

orderings we can have, and most networks have some Markov equivalent wherein

they have different ordering. Thus, it is not a big surprise that we can change the

constraints in the ordering and still get the same score. But, if we specify an ordering

or parent set that is not in a v-structure, then this will not have beneficial effect on

learning. For example, from GOBNILP 10→17←16 was a v-structure in a Kredit

dataset, and if we specify a parent set of a variable where there was not a v-structure,

then we get a low score. For example, pk9 when a user specifies an ordering 17<10,

which is 17 comes earlier than 10, then we have a worse score, as it shown in figure

26.

Nevertheless, variables more than 30 (insurance, Alarm, Carpo, and Diabetes), the

execution has stopped because the program has run out of available memory.

	

	
 	

Results	
 And	
 Evaluation	
 	
 110	

 HCPK 6.2
	

	

In this section, we show the results of applying HCPK with random restarts to

different learning problems for synthetic data. In these experiments, we have used

different datasets and a random number of runs. We have used the datasets available

at http://www.cs.york.ac.uk/aig/sw/gobnilp/data. In this research, GOBNILP is used

to find the optimal networks, and all prior knowledge is consistent with the optimal

network. In these experiments, Bayesian networks score are averages. The averages

were taken over four different runs.

	

The results of applying HCPK with random restarts to different learning problems

results in synthetic data generated by the Asia, Kredit, insurance, Alarm, Carpo

networks, as well as the score of the best network found so far against the number of

restarts. For datasets, Asia 100, Asia 1000, and Asia 10000 (8 variables), it always

found the optimal network. Also, for the dataset Kredit 10000 (18 variables), the

optimal network was always found.

	

To investigate whether our current algorithm can get a high score without prior

knowledge and compare it to other existing application, we ran three freely available

programs on nine different datasets. Table 1 shows the comparison between different

applications, where '1' is the HCPK algorithm restricted to a maximum of three

parents per node , '2' is the HCPK algorithm with no restriction on the number of

parents, 'B8a' is Banjo (Greedy) restricted to a maximum of eight parents, 'B3a' is

Banjo (Greedy) restricted to a maximum of three parents, 'B8s' is Banjo (SimAnneal)

restricted to a maximum of eight parents, and ' B3s ' is Banjo (SimAnneal) restricted

to a maximum of three parents. Also, GOBNILP was restricted to a maximum of

three parents. However, - indicates the maximum number of states that a variable can

assume, limited to 7, and * indicates that execution has stopped because the program

has run out of available memory. 	

	

For many cases, simple HCPK gets quite close to the optimal network. Table 1 shows

that the current algorithm without prior knowledge is generally slightly worse than

Results	
 And	
 Evaluation	
 	
 111	

Banjo. Also, although GOBNILP can find optimal networks on these small examples,

it will have problems due to the fact that, for example, nodes can have many parents.

However, our current algorithm does not have this problem and can incorporate

different sorts of prior knowledge and more complicated knowledge such as ancestor

information and conditional independence, which cannot be incorporated into local

scores, thereby leading to a much better network. For bigger datasets, including a

sample size of 10000 generated from this network, which contains more then 400

discrete variables (with 10 to 20 levels each) it was hard to use Bnlearn as it requires

the levels for each variable to be written manually.

Table 1: Comparison software

 Gobnilp 1 2 B8a B3a B8s B3s Bnlearn
Alarm_37 -1345.5 -1380.1 -1376.2 -1370.9 -1378.1 -1344.4 -1348.2 -1431.7
Insurance-27 -1667.9 -1678.2 -1677.1 -1679.1 -1678.6 -1670.7 -1674.9 -1730.4
Mildew_35 -5968.3 -6420.1 -6420.1 - - - - -6532.8
Asia_8 -243.6 -243.6 -243.6 -243.6 -243.6 -243.6 -243.6 -248.97
Carpo_60 -1825.7 -1856.0 -1844.6 -1971.3 -1975.7 -1851.1 -1858.5 -1933.1
Hailfinder-56 -6019.4 -6021.4 -6019.8 - - - - -6222.5
kredit -16694.3 -16694.3 -16694.3 - - - - -16804.2
Pigs-441 * -41980.9 -42003.4 * * * * -43112.5
Diabetes-413 * -59695.4 -56230.1 - - - -
	
 	

	

	

	

	

	

	

	

	

	

	

	
 	

Results	
 And	
 Evaluation	
 	
 112	

	

Restarts	
 averaging	

	

In this section, we show the results of applying HC without incorporating prior

knowledge, with random restarts to different learning problems for synthetic data.

	

Figure 29: Alarm network without prior knowledge

Figure 27 shows the results of applying HC without prior knowledge with random

restarts for synthetic data generated by the alarm network when we plot the score of

the best network found so far against the number of restarts. Each run has 1,000

random restarts.

Results	
 And	
 Evaluation	
 	
 113	

Figure	
 30:	
 Insurance	
 network	
 without	
 prior	
 knowledge.	

Figure 28 shows the results of applying HC without prior knowledge with random

restarts for synthetic data generated by the Insurance network when we plot the score

of the best network found so far against the number of restarts. Each run has 1,000

random restarts.	

	

	

	

	

Results	
 And	
 Evaluation	
 	
 114	

	

Figure 31: Mildew network without prior knowledge

	

	

Figure 29 shows the results of applying HC without prior knowledge for synthetic

data generated by the Mildew network when we plot the score of the best network

found so far against the number of restarts and each run has 1,000 random restarts. As

shown, HC without incorporating prior knowledge always found the same network.

This is mainly explained by the fact that local scores of different parent sets tend to be

very similar.

	

	

	

	

	

	

	

	

	
 	

	

	

	

	

	

	
 	

Results	
 And	
 Evaluation	
 	
 115	

	

Figure 32: Carpo network without prior knowledge.

	

Figure 30 shows the results of applying HC without prior knowledge for synthetic

data generated by the Carpo network. We plotted the results of the best network found

so far against the number of restarts. As shown, HC without incorporating prior

knowledge: the best network was found at 53, and then a better network was found at

488.

	

Results	
 And	
 Evaluation	
 	
 116	

 Arrows	
 Which	
 Have	
 To	
 Be	
 There	
 𝑨 ← 𝑩	
 6.2.1
	

	
 	

With this prior knowledge, an arrow can be added to a particular child based on the

given parents. A child is selected first, and then a decision is made in terms of which

parents to add. The HCPK algorithm allows the network for many possible parents to

be learnt. For example, take 𝐴 ← 𝐵, where 𝐵 must be a parent of 𝐴. Assume that 𝐴 is

the child specified by the user and that 𝐵 is the parent specified by the user

knowledge (discussed in section 5.3.2).

With entire parent sets specified, * indicates the child variable where there are v-

structures (Please see Appendix-B for further details). BDe scores of learned

Bayesian network are mapped against items of prior knowledge. BDe scores of the

network of our algorithm are found with prior knowledge and without. Adding more

prior knowledge will have a greater effect on the learning algorithm, which can

sometimes achieve an optimal network. Also, in terms of the effect of prior

knowledge for bigger dataset sizes, if users specify the entire parent set, as shown,

prior knowledge has typically an effect on the learning.

	

	

Results	
 And	
 Evaluation	
 	
 117	

	

Figure	
 33:	
 The results of applying HCPK, arrows which have to be there, for
synthetic data generated by the Insurance100.

	

Figure	
 34: The results of applying HCPK, arrows which have to be there, for
synthetic data generated by the Insurance 1000.

Results	
 And	
 Evaluation	
 	
 118	

	

Figure	
 35:	
 The results of applying HCPK, arrows which have to be there, for
synthetic data generated by the Insurance 10000.	

	

	

	

	

	

	

	

	

Results	
 And	
 Evaluation	
 	
 119	

Figure	
 36:	
 The results of applying HCPK, arrows which have to be there, for
synthetic data generated by the Mildew 100.	

	

Figure	
 37:	
 The results of applying HCPK, arrows which have to be there, for
synthetic data generated by the Mildew 1000.

	

	

	

	

	

Results	
 And	
 Evaluation	
 	
 120	

	

Figure	
 38:	
 The results of applying HCPK, arrows which have to be there, for
synthetic data generated by the Mildew 10000.	

	

Results	
 And	
 Evaluation	
 	
 121	

Figure	
 39:	
 The results of applying HCPK, arrows which have to be there, for
synthetic data generated by the Alarm 100.

	

Figure	
 40:	
 The results of applying HCPK, arrows which have to be there, for
synthetic data generated by the Alarm 1000.

Results	
 And	
 Evaluation	
 	
 122	

	

Figure	
 41:	
 The results of applying HCPK, arrows which have to be there, for
synthetic data generated by the Alarm 10000.	

	

Results	
 And	
 Evaluation	
 	
 123	

Figure	
 42:	
 The results of applying HCPK, arrows which have to be there, for
synthetic data generated by the Carpo 100.

	

Figure	
 43: The results of applying HCPK, arrows which have to be there, for
synthetic data generated by the Carpo 1000.

Results	
 And	
 Evaluation	
 	
 124	

	

Figure	
 44:	
 The results of applying HCPK, arrows which have to be there, for
synthetic data generated by the Carpo 10000.

	

Results	
 And	
 Evaluation	
 	
 125	

For prior knowledge, users can specify entire parent sets, or part of them, with the

appropriate arrows. If users specify entire parent sets, this has a greater effect on

learning. It is also interesting to note that specifying a parent set of a variable where

there was a v-structure had a beneficial effect on learning. If we add more prior

knowledge, this has a greater effect on the learning algorithm, which sometimes

achieves the optimal network.

 Even for larger dataset sizes, if users specify the entire parent set, then prior

knowledge has an effect on the learning. However, the effect of prior knowledge if

users specify part of a parent set is similar to the result seen when users specify the

entire parent set.

Results	
 And	
 Evaluation	
 	
 126	

 Ancestor	
 Relation	
 6.2.2
	

This section shows the results of incorporating ancestor relation prior knowledge. For

example, take the prior knowledge 𝐵 ⇠ 𝐴 which indicates that 𝐴 must be an ancestor

of 𝐵. Assume that 𝐵 is the specified child by the user and that 𝐴 is the specified

ancestor by the user (discussed in section 5.3.3).

	

Figure	
 45: The results of applying HCPK, ancestors relation, for synthetic data
generated by the Insurance 100.

Results	
 And	
 Evaluation	
 	
 127	

	

Figure	
 46: The results of applying HCPK, ancestors relation, for synthetic data
generated by the Insurance 1000.

	

Figure	
 47:	
 The results of applying HCPK, ancestors relation, for synthetic data
generated by the Insurance 10000.	

Results	
 And	
 Evaluation	
 	
 128	

	

Figure	
 48:	
 The results of applying HCPK, ancestors relation, for synthetic data
generated by the Alarm 100.	

	

Figure	
 49:	
 The results of applying HCPK, ancestors relation, for synthetic data
generated by the Alarm 1000.

Results	
 And	
 Evaluation	
 	
 129	

	

Figure	
 50:	
 The results of applying HCPK, ancestors relation, for synthetic data
generated by the Alarm 10000.

	
 	

Results	
 And	
 Evaluation	
 	
 130	

	

Figure	
 51:	
 The results of applying HCPK, ancestors relation, for synthetic data
generated by the Mildew 100.

	

Figure	
 52:	
 The results of applying HCPK, ancestors relation, for synthetic data
generated by the Mildew 1000.

Results	
 And	
 Evaluation	
 	
 131	

	

Figure	
 53:	
 The results of applying HCPK, ancestors relation, for synthetic data
generated by the Mildew 10000.

Results	
 And	
 Evaluation	
 	
 132	

	

	

Figure	
 54:	
 The results of applying HCPK, ancestors relation, for synthetic data
generated by the Carpo 100.

Results	
 And	
 Evaluation	
 	
 133	

	

Figure	
 55:	
 The results of applying HCPK, ancestors relation, for synthetic data
generated by the Carpo 1000.

	

Figure	
 56:	
 The results of applying HCPK, ancestors relation, for synthetic data
generated by the Carpo 10000.	

Results	
 And	
 Evaluation	
 	
 134	

	

With respect to ancestor relation, these tables show that prior knowledge typically has

an effect on learning a Bayesian network (Please see details in Appendix-C).

However, the algorithm retains records of the selected parent sets for any single

restart in order to avoid repetition later in the search. Therefore, there is a trade-off

between the highest scoring network and a network consistent with the user's prior

knowledge. As a result, it should be noted that learning is less affected by prior

knowledge for some datasets.

 In Figure 49, we noticed that ancestor information that is usually beneficial turned

out not to be in this case. This is primarily explained by the fact that local scores of

different parent sets tend to be very similar. However, it is more difficult for prior

knowledge to help us obtain a high-scoring network in any file where the local scores

tend to be quite similar to each other, such as, for example, mildew datasets.

Results	
 And	
 Evaluation	
 	
 135	

	

 Conditional	
 Independence	
 6.2.3
	

Dependencies and independencies are the main issues in a probability distribution as

discussed in section 5.3.4. Local independencies in Bayesian networks are where each

node is independent of its non-descendants, given its parents. Global independencies

are derived from d-separation, which helps to ensure that specific sets of

independencies (𝐴 ⊥ 𝐵 | 𝑍) hold in a distribution, so that a variable 𝐴 is conditionally

independent of a particular variable 𝐵, given its variable 𝑍. In this section, we show

the result of incorporating the conditional independence prior knowledge into the

developed learning algorithm using two different approaches.

	

	

	

6.2.3.1 Conditional	
 independence	
 checks	
 approach	

	

In this section we show the effect of including conditional independence prior

knowledge, we used a d-Separation algorithm for each move in the HCPK algorithm.

Therefore, for each additional move, the algorithm creates a temporary graph that

contains the current graph and the possible parent set. It then checks this temporary

graph for conditional independence. If the possible parent sets do not satisfy the

conditional independence checks, it is not considered. Using this approach, we

continue to build the graph by conducting these early checks and, eventually, end up

with a network that meets the user's prior knowledge (discussed in section 5.3.4.2,

algorithm 4).

	

	

	

	

Results	
 And	
 Evaluation	
 	
 136	

	

Figure	
 57:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Insurance 100.

	

Figure	
 58:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Insurance 1000.

	

Results	
 And	
 Evaluation	
 	
 137	

	

	

Figure	
 59: The results of applying HCPK, conditional independence, for synthetic
data generated by the Insurance 10000.

Results	
 And	
 Evaluation	
 	
 138	

	

Figure	
 60:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Alarm 100.

	

Figure	
 61:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Alarm 1000.

Results	
 And	
 Evaluation	
 	
 139	

	

Figure	
 62:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Alarm 10000.	
 	

	

Results	
 And	
 Evaluation	
 	
 140	

	

Figure	
 63:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Mildew 100.

	

Figure	
 64: The results of applying HCPK, conditional independence, for synthetic
data generated by the Mildew 1000.

	

	

	

	

	

	

Results	
 And	
 Evaluation	
 	
 141	

	

Figure	
 65:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Mildew 10000.	

Results	
 And	
 Evaluation	
 	
 142	

	

Figure	
 66:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Carpo 100.

	

Figure	
 67:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Carpo 1000.	

Results	
 And	
 Evaluation	
 	
 143	

	

	

Figure	
 68:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Carpo 10000.

Results	
 And	
 Evaluation	
 	
 144	

6.2.3.2 Backtrack	
 approach	
 	

	

Intelligent backtracking often applies when a network structure is inconsistent with a

constraint. For any single random restart, an algorithm checks for conditional

independence. For example, take (𝐴 ⊥ 𝐵 | 𝑍) as the conditional independence prior

knowledge specified by the user, where 𝐴 is a conditional independent of 𝐵 given 𝑍.

The algorithm uses the d-Separation algorithm to check for conditional independence,

and discovers the nodes reachable from 𝐴 given 𝑍 via active trails. If the generated

network does not meet the user's prior knowledge of conditional independence, the

backtrack method is applied (discussed in section 5.3.4.1, algorithm 3).

Results	
 And	
 Evaluation	
 	
 145	

	

Figure	
 69:	
 	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Insurance 100.

	

Figure	
 70:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Insurance 1000.	

Results	
 And	
 Evaluation	
 	
 146	

	

	

Figure	
 71:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Insurance 10000.

Results	
 And	
 Evaluation	
 	
 147	

Figure	
 72:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Alarm 100.

	

Figure	
 73:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Alarm 1000.	

Results	
 And	
 Evaluation	
 	
 148	

	

Figure	
 74:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Alarm 10000.

	

	

	

	

	
 	

Results	
 And	
 Evaluation	
 	
 149	

	

	

	

Figure	
 75:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Mildew 100.	

	

Figure	
 76:	
 	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Mildew 1000.

	

	

	

	

Results	
 And	
 Evaluation	
 	
 150	

	

Figure	
 77:	
 The results of applying HCPK, conditional independence, for synthetic
data generated by the Mildew 10000.

	
 	

Results	
 And	
 Evaluation	
 	
 151	

	

	

	

The results of incorporating conditional independence prior knowledge, using the

conditional independence checks approach, are presented in Figures from 55 to 66.

The results of incorporating conditional independence prior knowledge, using the

backtrack approach, are presented in Figures from 67 to 75. These results show that

the effects of prior knowledge when users specify conditional independence

knowledge, using a backtrack approach and a conditional independence checks

approach, typically have a positive effect on the learning (Please see Appendix-D for

further details).

However, using a dataset where the local scores tend to be quite similar to each other,

such as mildew datasets for size 100, demonstrates that the conditional independence

prior knowledge has less effect on the learning in both approaches.

For larger dataset sizes, the conditional independence prior knowledge also has a

positive effect on the learning in both approaches.

Results	
 And	
 Evaluation	
 	
 152	

 Inconsistent	
 Prior	
 Knowledge	
 6.2.4
	

In this research, GOBNILP was used to find the optimal networks, and all prior

knowledge was consistent with the optimal network. It has demonstrated that

consistent prior knowledge typically has a positive beneficial effect on the learning

algorithm, but inconsistent prior knowledge has quite a negative effect on the

learning.

 The result shows that if we incorporate inconsistent prior knowledge, we get a

consistently worse score. Each time we incorporate inconsistent prior knowledge we

make the search space smaller, and it becomes more difficult for HCPK to find a

high-score network because the really good high-score networks are ruled out.

	

	

Figure	
 78: The results of applying HCPK, inconsistent prior knowledge, for
synthetic data generated by the Insurance 100.	

	

	

Results	
 And	
 Evaluation	
 	
 153	

	

Figure	
 79:	
 The results of applying HCPK, inconsistent prior knowledge, for
synthetic data generated by the Insurance 1000.

	

Figure	
 80:	
 The results of applying HCPK, inconsistent prior knowledge, for
synthetic data generated by the Insurance 10000.	

Results	
 And	
 Evaluation	
 	
 154	

	

Figure	
 81: The results of applying HCPK, inconsistent prior knowledge, for
synthetic data generated by the Alarm 100.

	

Figure	
 82:	
 The results of applying HCPK, inconsistent prior knowledge, for
synthetic data generated by the Alarm 1000.	

	

Results	
 And	
 Evaluation	
 	
 155	

	

Figure	
 83:	
 The results of applying HCPK, inconsistent prior knowledge, for
synthetic data generated by the Alarm 10000.

Results	
 And	
 Evaluation	
 	
 156	

	

Figure	
 84:	
 The results of applying HCPK, inconsistent prior knowledge, for
synthetic data generated by the Mildew 100.

	

Figure	
 85:	
 	
 The results of applying HCPK, inconsistent prior knowledge, for
synthetic data generated by the Mildew 1000.

Results	
 And	
 Evaluation	
 	
 157	

	

Figure	
 86:	
 The results of applying HCPK, inconsistent prior knowledge, for
synthetic data generated by the Mildew 10000.	

	

	
 	

Results	
 And	
 Evaluation	
 	
 158	

 Learning	
 Bigger	
 problems	
 	
 6.2.5
	

In section 6.2, we compared our current algorithm to other existing applications,

running three freely available programs on nine different datasets. Table 1 shows the

comparison between different applications such as Banjo, GOBNILP and Bnlearn, to

HCPK.

However, for bigger problems such as Diabetes and Pigs datasets, the applications

execution has stopped that, mainly because the maximum number of states that a

variable can assume is limited to 7, or it runs out of available memory. While, our

current algorithm without prior knowledge for bigger problems has been solved, for

many cases, the simple HCPK gets quite close to the optimal network.

Also, although some applications can find optimal networks on these small examples,

it will have problems due to the fact that, for example nodes can have many parents’

sets. However, HCPK does not have this problem and can incorporate different sorts

of prior knowledge and more complicated knowledge, such as ancestor information

and conditional independence, which cannot be incorporated into local scores, thereby

leading to a much better network, as it shown in Figures 85 to 90.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Results	
 And	
 Evaluation	
 	
 159	

	

	

Figure	
 87:	
 The results of applying HCPK, arrows which have to be there, for
synthetic data generated by the Diabetes.	

	

Figure	
 88:	
 The results of applying HCPK, ancestor relation, for synthetic data
generated by the Diabetes.	

Results	
 And	
 Evaluation	
 	
 160	

	

 	

	

Figure	
 89:	
 	
 The results of applying HCPK, conditional independence checks, for
synthetic data generated by the Diabetes.	

	

	

Figure	
 90:	
 The results of applying HCPK, arrows which have to be there, for
synthetic data generated by the Pigs.

Results	
 And	
 Evaluation	
 	
 161	

	

Figure	
 91:	
 The results of applying HCPK, ancestor relation, for synthetic data
generated by the Pigs.

	

Figure	
 92:	
 The results of applying HCPK, conditional independence checks, for
synthetic data generated by the Pigs.

Results	
 And	
 Evaluation	
 	
 162	

 The execution of HCPK 6.2.1

A summary of the timing results of the execution of HCPK algorithm is in Table 2.

We summarise the time of HCPK algorithm, which shown in '100', '1000', and '10000'

columns and displays the time in seconds.

We summarise the time of HCPK algorithm using different sorts of prior knowledge,

which shown in Tables 3, 4 and 5, and displays the time in seconds.

	

Table 2: Time of HCPK algorithm

Datasets Number
of
variables

 100 1000 10000

Asia 8 0 0 2
Insurance 27 1 5 43
Water 32 2 8 68
Mildew 35 2 10 96
Alarm 37 2 12 92
Hailfinder 56 5 30 277
Carpo 60 8 44 359
Diabetes 413 2420 >6 Hours >6 Hours
Pigs 441 2567 >6 Hours >6 Hours
	

	
 	

Results	
 And	
 Evaluation	
 	
 163	

	

Table	
 3:	
 Time of HCPK algorithm, using prior knowledge, for synthetic data
generated by the insurance.	

	

	

Insurance_100 Insurance_1000 Insurance_10000
Pk 1 arrows which have to
be there

1 Pk 1 arrows which have to
be there

4 Pk 3 arrows which have to
be there

40

Pk 2 arrows which have to
be there

1 Pk 2 arrows which have to
be there

4 Pk 4 arrows which have to
be there

40

Pk 3 arrows which have to
be there

1 Pk 4 arrows which have to
be there

4 Pk 5 arrows which have to
be there

40

Pk 4 arrows which have to
be there

1 Pk 5 arrows which have to
be there

4 Pk 1 arrows which have to
be there

41

Pk 5 arrows which have to
be there

1 Pk 5 ancestor relation 4 Pk 2 arrows which have to
be there

42

Pk1 ancestor relation 1 Pk 3 arrows which have to
be there

5 Pk 1 ancestor relation 42

Pk3 ancestor relation 1 Pk 1 ancestor relation 5 Pk 2 ancestor relation 42
Pk1 backtrack approach 1 Pk 2 ancestor relation 5 Pk 4 ancestor relation 42
Pk2 backtrack approach 1 Pk 3 ancestor relation 5 Pk 5 ancestor relation 42
Pk3 backtrack approach 1 Pk 4 ancestor relation 5 Without 43
Pk4 backtrack approach 1 Pk1 backtrack approach 5 Pk1 backtrack approach 46

Pk5 backtrack approach 1 Pk2 backtrack approach 5	
 Pk 1 conditional
independence checks

46

Pk 1 conditional
independence checks

1	
 Pk3 backtrack approach 5	
 Pk3 backtrack approach 47

Pk2 conditional
independence checks

1	
 Pk4 backtrack approach 5	
 Pk4 backtrack approach 47

Pk2 conditional
independence checks

1	
 Pk5 backtrack approach 5	
 Pk5 backtrack approach 47

Pk3conditional
independence checks

1	
 Pk 1 conditional
independence checks

5	
 Pk2 conditional
independence checks

47

Pk4 conditional
independence checks	

1	
 Pk2 conditional
independence checks	

5	
 Pk2 conditional
independence checks	

47

Pk5 conditional
independence checks	

1	
 Pk2 conditional
independence checks	

5	
 Pk3conditional
independence checks	

47

Pk2 ancestor relation	
 2	
 Pk3conditional
independence checks	

5	
 Pk5 conditional
independence checks	

47

Pk4 ancestor relation	
 2	
 Pk4 conditional
independence checks	

5	
 Pk2 backtrack approach	
 48

Pk5 ancestor relation	
 2	
 Pk5 conditional
independence checks	

5	
 Pk4 conditional
independence checks	

48

Without 1 Without 5 Pk 3 ancestor relation 74

Results	
 And	
 Evaluation	
 	
 164	

	
 	

Table	
 4:	
 Time of HCPK algorithm, using prior knowledge, for synthetic data
generated by the Mildew.	

Mildew _100 Mildew _1000 Mildew _10000
Pk 1 arrows which have to
be there

2

Pk 5 arrows which have to
be there

 Pk 3 arrows which have to
be there

 90

Pk 2 arrows which have to
be there

2

Pk 1 arrows which have to
be there

 9 Pk 5 arrows which have to
be there

 91

Pk 3 arrows which have to
be there

2

Pk 2 arrows which have to
be there

 9 Pk 4 arrows which have to
be there

 92

Pk 4 arrows which have to
be there

2

Pk 3 arrows which have to
be there

 9 Pk 1 arrows which have to
be there

 93

Pk 5 arrows which have to
be there

2

Pk 4 arrows which have to
be there

 9 Pk 2 arrows which have to
be there

 93

Pk4 ancestor relation 2 Pk3 conditional
independence checks

9 Pk 1 conditional
independence checks

93

Pk1 backtrack approach 2 Pk4 conditional
independence checks

9 Pk3 conditional
independence checks

93

Pk2 backtrack approach 2 Pk2 ancestor relation
10

Pk4 conditional
independence checks

93

Pk3 backtrack approach 2 Pk3 ancestor relation
10

Pk5 conditional
independence checks

93

Pk4 backtrack approach 2 Pk2 backtrack approach
10

Pk1 backtrack approach 94

Pk5 backtrack approach 2 Pk3 backtrack approach
10

Pk2 backtrack approach 94

Pk 1 conditional
independence checks

2 Pk4 backtrack approach
10	

Pk3 backtrack approach 94

Pk2 conditional
independence checks

2	
 Pk5 backtrack approach
10	

Pk4 backtrack approach 94

Pk3 conditional
independence checks

2	
 Pk 1 conditional
independence checks

10	
 Pk1 ancestor relation 96

Pk4 conditional
independence checks

2	
 Pk2 conditional
independence checks

10	
 Pk2 ancestor relation 96

Pk5 conditional
independence checks

2	
 Pk5 conditional
independence checks

10	
 Pk3 ancestor relation 96

Without	
 2 	
 Without	

10	

Pk4 ancestor relation	
 96

Pk3 ancestor relation	
 6	
 Pk1 backtrack approach	

11	

Pk5 backtrack approach	
 96

Pk1 ancestor relation	

7	

Pk1 ancestor relation	
 20	
 Pk2 conditional
independence checks	

96

Pk2 ancestor relation	

7	

Pk4 ancestor relation	
 21	
 Without	
 96

Pk5 ancestor relation 7 Pk5 ancestor relation 22 Pk5 ancestor relation 177

Results	
 And	
 Evaluation	
 	
 165	

Table	
 5:	
 Time of HCPK algorithm, using prior knowledge, for synthetic data
generated by the Alarm.	

	

Alarm_100 Alarm_1000 Alarm_10000
Pk 1 arrows which have to
be there

2 Pk 1 arrows which have to
be there

11

Pk 1 arrows which have to
be there

 87

Pk 2 arrows which have to
be there

2

Pk 2 arrows which have to
be there

11

Pk2 ancestor relation 88

Pk 3 arrows which have to
be there

2 Pk 3 arrows which have to
be there

11

Pk 3 arrows which have to
be there

 90

Pk 4 arrows which have to
be there

2

Pk 4 arrows which have to
be there

11

Pk 5 arrows which have to
be there

 90

Pk 5 arrows which have to
be there

2 Pk 5 arrows which have to
be there

11

Pk 2 arrows which have to
be there

 91

Pk1 ancestor relation 2 Pk4 ancestor relation
11

Pk 4 arrows which have to
be there

 91

Pk3 ancestor relation
2

Pk5 ancestor relation
11

Without 92

Pk4 ancestor relation
2

Pk1 backtrack approach
12

Pk1 ancestor relation 93

Pk1 backtrack approach 2 Pk2 backtrack approach
12

Pk3 ancestor relation 93

Pk2 backtrack approach
2

Pk3 backtrack approach
12

Pk3 backtrack approach
100

Pk3 backtrack approach 2 Pk4 backtrack approach
12

Pk4 backtrack approach

100

Pk4 backtrack approach
2

Without 12	
 Pk5 backtrack approach 100

Pk5 backtrack approach 2 	
 Pk5 backtrack approach 13	
 Pk 1 conditional
independence checks

100

Pk 1 conditional
independence checks

2	
 Pk 1 conditional
independence checks

13	
 Pk1 backtrack approach 101

Pk2 conditional
independence checks

2 	
 Pk2 conditional
independence checks

13	
 Pk2 backtrack approach 101

Pk3 conditional
independence checks

2	
 Pk3 conditional
independence checks

13	
 Pk2 conditional
independence checks

103

Pk4 conditional
independence checks	

2 	
 Pk4 conditional
independence checks	

13	
 Pk3 conditional
independence checks	

103

Pk5 conditional
independence checks	

2	
 Pk5 conditional
independence checks	

13	
 Pk5 conditional
independence checks	

103

Without	
 3	
 Pk1 ancestor relation	
 19	
 Pk4 conditional
independence checks	

104

Pk2 ancestor relation	
 4	
 Pk3 ancestor relation	
 20	
 Pk4 ancestor relation	
 180

Pk5 ancestor relation 4 Pk2 ancestor relation 26 Pk5 ancestor relation 190

Results	
 And	
 Evaluation	
 	
 166	

When users specify the parent set, prior knowledge typically has a positive effect on

the learning by achieving a high-scoring network and speeds up the learning process.

For example, recall the timing execution of HC without prior knowledge in Table 1

for Insurance 1000 dataset, it is 5 seconds. In contrast, when the user specifies the

parent sets with prior knowledge 21←2,12 for Insurance 1000 dataset, the timing

results of the execution of HCPK is 4 seconds.

In the backtrack approach for a single restart, we backtrack until the user's prior

knowledge is satisfied. HCPK constraints are given to generate a network that meets

this prior knowledge (as discussed in section 5.3.3.2). Therefore, sometimes HCPK

does not need to backtrack as it generates a network that meets this prior knowledge.

However, if backtracking is preformed, then the timing of the execution can

sometimes take longer than without prior knowledge, as we need to backtrack to a

node in the search tree.

For example, when the user specifies the ancestor relation prior knowledge 11⇠22 for

Insurance 1000 dataset, the timing results of the execution of HCPK algorithm using

the backtrack approach is 8 seconds. Although the timing of the execution can

sometimes take longer than without prior knowledge (5 seconds), it satisfies the user’s

prior knowledge. Whilst it is not difficult to check whether a particular ancestor

relation is there, it is difficult to ensure that the graph we are building will satisfy a

given ancestor relation. Ancestor relation prior knowledge typically has a positive

effect on learning a Bayesian network.

Results	
 And	
 Evaluation	
 	
 167	

	

In the conditional independence checks approach for a signal restart, we continue to

build the graph by conducting these early checks for conditional independence and,

eventually, end up with a network that satisfies the user's prior knowledge. While

using the backtrack approach for a signal restart, we backtrack until the user's prior

knowledge is satisfied. For example, when the user specifies the conditional

independence prior knowledge 18⊥ 16| 15 for Insurance 1000 dataset, the timing

results of the execution of HCPK algorithm, using the conditional independence

checks approach, is 5 seconds, whereas, the timing results of the execution of the

HCPK algorithm, using the backtrack approach, is 8 seconds.

Therefore, the conditional independence checks approach achieved faster

performance than the backtrack approach so in bigger problems in this thesis, we used

the conditional independence checks approach.

Results	
 And	
 Evaluation	
 	
 168	

	

	

	

 True	
 network	
 6.2.2
	

In this section we compare the structure of the generated network by HCPK and the

true networks. We measure the edges’ differences between the true network and the

learned network using the structural hamming distance (SHD) algorithm. Moreover, it

computes the SHD between two network structures, which is the minimal number of

edge additions, edge deletions, and edges reversals required to convert one network

structure to another network structure. In this experiment, we used SHD from Bnlearn

to compare two different Bayesian networks. In this approach each DAG is converted

to a partially directed graph (PDAG), which represents the Markov equivalence class

for the DAG. The SHD is then computed on the PDAGs not the original DAGs.

Tsamardinos defined SHD as, ‘Algorithms that return a DAG are converted to the

corresponding PDAG before calculating this measure’ (Tsamardinos et al., 2006). See

algorithm 6 for computing the SHD.

.

Algorithm 6: SHD Algorithm

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

SHD(Learned PDAG H,True PDAG G)

Shd = 0

𝐟𝐨𝐫 every edge E diferent in H than G 𝐃𝐨

𝐢𝐟 E is missing in H 𝐭𝐡𝐞𝐧

shd+= 1

end if

𝐢𝐟 E is extra in H 𝐭𝐡𝐞𝐧

shd+= 1

end if

𝐢𝐟 E is incorrectly oriented in H 𝐭𝐡𝐞𝐧

shd+= 1

end if

end for

Results	
 And	
 Evaluation	
 	
 169	

Tables 6, 7 and 8 shows the comparison between the structure of the generated

network by HCPK and the true networks. The symbol + indicates that prior

knowledge is consistent with the true network, While symbol * indicates that prior

knowledge is inconsistent with the true network but consistent with the optimal

network.

Table 6: The comparison between the structure of the generated network by HCPK
and the true networks synthetic data generated by the Insurance.

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 	

Insurance_100 Insurance_1000 Insurance_10000

+19⇠17 35 Optimal 30 Optimal 12

*1←24 36 +23⇠4 33 +4 ⊥ 5 | ∅ 28

+23←11,22 36 +13⇠0 33 +13←12,2 31

*4←7 36 +21←2,12 34 +14←4,6 32

+13←2,12 37 *11⇢22 36 +11 ⊥ 21 | 1 33

+23⇠6 37 +23←11,22 37 +10 ⊥ {4,6} | 9 33

+8⇠1 37 +22 ⊥ 20| 1 37 + 23←11,22 35

+18⇠15 38 +3⊥ 26| 15 37 +26←15 36

+17←7,16 39 +16←11,15 38 +17←7,10,16 37

*24←15 39 + 16⇠15 38 *10 ⇠ 9 37

*0←3,25 39 *1⊥ {2,12}| 4 39 +21⇠0 39

+14←4,6 39 +6←1 39 * 0←1,25 40

+7⇠6 39 +14←4,6 40 +7⇠1 40

*5⊥7|26 39 +13←2,12 40 *24⇠5 40

*13 ⊥ 21 |12 39 *0⇠4 41 +24←15,23 41

*1 ⊥ 11 | 6 39 *5←7 43 *25 ⊥ 5 | 6 41

Optimal 42 *18⊥ 16| 15 44 *12 ⊥ 15| 13 41

+ 5 ⊥ 10 | ∅ 45 *14⊥ 16| 10 44 +8←1,2 42

*11 ⊥ 14 | 6 46 +9←1,2 45 +5 ⊥ 6 | ∅ 45

*16 ⊥18,20|15 46 Without 45 *26⇠15 46

Without 48 *11←6,22 46 Without 46

Results	
 And	
 Evaluation	
 	
 170	

Table 7: The comparison between the structure of the generated network by HCPK
and the true networks synthetic data generated by the Alarm.

Alarm_100 Alarm_1000 Alarm_10000
+15←10 39 Optimal 18 Optimal 2
+ 25⊥36 | 24 39 + 0 ⊥ 15 | 10 29 +24←22,23 32

+ 1 ⊥ 3 | 0 40 +32⇠18 30 +28←17,27 33

+13←9,12,23 41 +8←2,3,7 32 -21←10,11 33
+17←16+ 41 +0 ⊥ 7 | 2 32 + 1←0 36
* 6⇠7 41 +7←5,6 33 +24⇠23 36

+13⇠10 41 +18⇠10 34 +26⇠23 36

+{26,6} ⊥ 34 | 23 41 *2⇠3 34 +{8,7} ⊥ 9 | 3 37

Optimal 42 +17⇠16 35 +10←3,8 38

*6←5,7,27 42 +10 ⊥ 11 | ∅ 36 *9←0,3 41
+31 ⊥ 1 | 0 42 +8 ⊥ {25,14} | 2 36 +10⇠3 41

* 8 ⊥ 31|7 42 +27←19,26 37 +15←10 46
+33←3,8 43 +0←1 37 +9 ⊥ 1 | 0 46
+36⇠24 43 +35←19,20 37 +34 ⊥ {24,26} | 23 46

+35←19,20 44 +13←9,12 37 +5 ⊥ 6 | ∅ 46
* 22⇠16 44 +31 ⊥ 24 | 25 37 +17⇠16 47

+ 33⇠8 44 +3 ⊥ 7 | ∅ 37 +27←19,26 49

+35 ⊥ 24 | 25 44 +3 ⊥ {12,14} | 10 39 +4⇠5 49

* 26⊥16 | ∅ 44 +19←18,34 40 +17 ⊥ 15 | ∅ 49

* 23←24,26 45 +{2,3} ⊥ 11 | ∅ 40 +12←10,11 50
+12←10,20,21 46 +29←8,15 42 +18⇠10 50

* 2←16,28, 46 *20⇠3 42 +19 ⊥ 29 | 18 52

*3←0,9 46 +25 ⊥ 23 | 24 42 +0 ⊥ 3 | ∅ 54
+25⇠24 46 +10⇠7 43 *4←5 56

+{16,14}⊥3 | 9 46 *21⇠34 43 +28⇠27 56

*22⇠24 47 +6 ⊥ 31 | 7 43 Without 57

*29⇠8 48 *20←9 46 +31⇠3 57

Without 49 Without 49 +7 ⊥ 4 | 5 57
	

	

Results	
 And	
 Evaluation	
 	
 171	

	

	

Table 8: The comparison between the structure of the generated network by HCPK
and the true networks synthetic data generated by the Mildew.

Mildew _100 Mildew _1000 Mildew _10000

+33←23,27,32 42 +33⇠31 32 Optimal 24

+27←23,24,26 43 *0←11 33 +21←20 29

+14←9 44 +3←1,2 33 +13 ← 8, 12 30

+30←13,29 44 +20⇠1 33 +21⇠20 30

+31←14 44 +9⇠1 33 +24⇠20 31

+32←31 44 +1⊥2 | φ 33 +32←28,31 32

*23⊥{26, 24} | φ 44 *15←17 34 +8←2,4 34

*0⇠11 44 +9←3 34 +20←3,19 35

*3⇠9 44 Optimal 36 +1⊥25 | 9 35

+34⇠33 44 +23←9 36 *34←14 36

+31⇠14 44 +17⇠15 41 +27⇠9 36

+32⇠31 44 +2⊥26 | 14 42 *5←7 37

+ 19⊥15 | 17 44 *30←13,29 43 +30⇠12 38

 +14⊥32 | 31 44 +26←14 43 +{1,3}⊥{25,26} | 14 38

*14⊥21 | 9 44 +8←2,4 43 +28⊥31 | φ 38

Without 44 +13⊥29 | φ 43 +9 ← 3, 8 39

*4←8,27,34 46 +1⊥20 | 3 43 +30 ← 13, 29 39

*4←8,27,34 46 Without 44 Without 39

+ 1⊥6 | φ 46 *4⇠31 44 +8⊥12 | φ 39

+ 22⊥3 | 9 46 *8⇠13 45 +33⇠14 40

*2←20,26,33 47 *{3,9}⊥22 | 23 45 *0⊥10 | 11 40

+33⇠32 49 *27←14 46 *16⊥15 | 17 41

Optimal 63 *0⊥10 | 11 46 *10⇠11 47

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Results	
 And	
 Evaluation	
 	
 172	

	

	

	

We measure the edges’ difference between the true network and the learned network

using the SHD algorithm. The optimal network and the true network are quite close,

but not quite the same, which helps our algorithm to get close to the true network.

However, it is not surprising that, as the amount of data increases, the optimal

network is closer to the true network. We learn the Bayesian network model from the

data, and, as we have more data, there is a better chance of finding the true network.

Moreover, if we do not have much data, it is challenging to learn what the true

network is. Usually, adding prior knowledge gives us slightly fewer arrows.

Occasionally, the algorithm performs worse without prior knowledge. Interestingly,

with bigger datasets, we get bad results without prior knowledge but better ones with

prior knowledge. Such consistent prior knowledge, working with the optimal network,

which itself is quite close to, but not the same as, the true network, also achieves a

better result. For the dataset 100, adding prior knowledge typically has a greater effect

on the learning algorithm, as it gets closer to the true network than the optimal.

Generally, when adding prior knowledge, either it is consistent with the optimal

network or the true network helps the algorithm to generate a more accurate network.

Circumstances in which the number of data points has increased have become more

prevalent.

In terms of GOBNILP, when the data are not too large, GOBNILP finds the optimal

network, but for bigger datasets, it will fail. For large problems, learning the Bayesian

network model from data is NP-hard. We know that, if the problem is too large, there

is difficulty in finding the optimal network. Therefore, we had to look for an

alternative approach for big cases, and hill-climbing is a good place to start from.

Although on these particular datasets, GOBNILP finds the optimal networks, there are

other datasets where it cannot work. Also, in previous cases, where GOBNILP limited

the parents to three, it worked well, as the true network had three parents as well.

However, if we have a problem where variables have, for example 10 parents,

GOBNILP will not find them. Adding prior knowledge to HCPK is helpful, but it still

cannot find an accurate network as GOPNILP, and this is primarily because of the

greedy nature of the hill-climbing approach. Additionally, there is not enough data to

identify the true network.

Results	
 And	
 Evaluation	
 	
 173	

As learning Bayesian networks is NP-hard and these exact learning approaches will

not scale to bigger datasets, GOBNILP is not the answer to all problems because of

scalability issues. Thus, we have to use an approximate approach and a greedy

approach such as hill climbing. Consequently, we need to explore improvements to

hill climbing. Our current HCPK deals with bigger problems.

In these experiments, we measure the edges’ difference between the true network and

the learned network, using the SHD algorithm for 1,000 restarts. For example, in

Table 6 for Insurance 100 datasets with prior knowledge 23←11,22, the Bayesian

network score is -1700.83, and for the first restart, the difference between the true

network and the learned network is 53. After 10 restarts, a better score was found -

1700.83, with the difference here being 46. After 1000 restarts, the Bayesian network

score was -1691.65 and the difference between the true network and the learned

network is 36. Finding the optimal solution thus becomes a question of using enough

iteration on the data as we get close to the true network.

This chapter reviewed the research thesis objectives and results. The contributions

that this research has made were emphasised, and experiments conducted using the

developed algorithm on dynamic programming and HCPK were presented, with and

without prior knowledge, while future work is given in the following chapter.

Conclusions	
 and	
 future	
 work	
 	
 174	

7 Conclusions and future work
	

	

This chapter summarises the content of this thesis and highlights its main

contributions. It also points out the different directions that could be followed in order

to extend these contributions.

The thesis started by providing the necessary background for graphical models.

Bayesian networks and Markov networks were then explained, and the Bayesian

estimation of a probabilities approach was also described. Thereafter, Bayesian

structure learning was then introduced. Firstly, the constraint-based, score-based, and

Bayesian model averaging approaches were explained. Then, the thesis went into

detail about Bayesian structure learning approaches and applications, following this

with approaches that incorporate prior information. The theoretical limits of learning

Bayesian networks were discussed.

The thesis proposed algorithms for Bayesian network structure learning, which is

described as an optimisation problem. A search-and-score approach was followed,

which built upon a hill-climbing algorithm and using the Bayesian Dirichlet

likelihood equivalence (BDe) as a scoring metric. This thesis presented a hill-

climbing algorithm with prior knowledge (HCPK), a heuristic search, which makes

local moves that lead to a locally scored-maximal Bayesian network. The HCPK

algorithm is intended to enable users to express their knowledge of a variety of

problems in a straightforward manner.

The direction taken by this thesis was the combination of ideas from both the

backtrack approach and HC. We demonstrated how to investigate the effect of

including ancestor relations prior knowledge via combining the backtrack approach

with the HCPK algorithm. In addition to this, we investigated how to develop an

approach that builds upon a hill-climbing algorithm and d-Separation algorithm,

which was used to investigate the effect of including conditional independence prior

knowledge (aside from the backtrack approach). We also showed a comparison of the

effects of prior knowledge when users specify conditional independence knowledge,

Conclusions	
 and	
 future	
 work	
 	
 175	

using the backtrack approach and the developed conditional independence checks

approach.

The results of these studies point the way to further directions that could be pursued.

For instance, to incorporate conditional independence prior knowledge, we used the

backtrack approach. The algorithm uses the d-Separation algorithm to check for

conditional independence, and discovers the nodes reachable from given active trails.

If the generated network does not meet the user's prior knowledge of conditional

independence, the backtrack method is applied. Only conditional independence active

trails are considered when the algorithm selects a random variable to backtrack.

A further direction could be taken using the approach suggested by Tian, Paz and

Pearl (1998), who noted the problem of finding a minimal separator in Bayesian

networks. Therefore, in the future, we should investigate this interesting direction

with a view to finding a set of nodes that separates a given pair of nodes such that no

suitable subset separates that pair.

In this research, we aimed to keep the hill-climbing as simple as possible to

investigate the effect of different sorts of prior knowledge. If we start with an empty

graph, then it is possible to construct any Bayesian network by adding edges.

Moreover, in this research, we explored the difference between this particular

algorithm and the same algorithm with prior knowledge. The local moves in this

algorithm are the addition of an edge. Thus, in future work, we will also examine in

more detail the results of prior knowledge in a less greedy search approach by adding,

deleting and reversing an edge. In addition, another possible direction for future work

is adopting a simulated annealing approach, which finds a good solution to an

optimization problem where we can avoid getting stuck at local maxima. However,

while these solutions tend to be better than any others nearby, they are typically not

optimal.

Conclusions	
 and	
 future	
 work	
 	
 176	

Hill climbing does not have computational space issues as it looks only at the current

state. Hill climbing’s main source of computational complexity emerges from the

time required to explore the problem space. HCPK with Random-restart can, in

theory, reach optimal solutions within polynomial time for most problem spaces.

However, for some NP-complete problems, the number of local maxima can be the

cause of exponential computational time to find an optimal solution. Hence, further

investigation needs to be carried out to increase the performance of HCPK, which

finds a good solution to an optimization problem.

Appendix	
 A	
 	
 177	

Appendix A

Table 9: The results of applying the dynamic programming with prior knowledge,
arrows which have to be there, for synthetic data generated by the Asia.

Asia_100 Asia _1000 Asia _10000
Optimal -245.64 Optimal -2317.41 Optimal -22466.39
Without -245.64 Without -2317.41 Without -22466.39

Prior knowledge consistent with GOBNILP
0←2 -245.64 0←2 -2317.41 0←2 -22466.39
1←0,4 -245.64 1←0 -2317.41 1←0 -22466.39
3←4 -245.64 4←0,3 -2317.41 3←4 -22466.39
5←1,4 -245.64 4←0 -2317.41 5←1 -22466.39
6←1 -245.64 4←3 -2317.41 6<-5 -22466.39
7←2 -245.64 7←2 -2317.41 7<-2 -22466.39

Inconsistent prior knowledge with GOBNILP
1←6 -245.65 1←5 -2318.53 5←0 -22472.05
5←6 -245.65 5←6 -2318.53 4←0,5 -22474.39
5←6,4 -245.65 5←0 -2319.45 7←4 -22475.19
1←6 -245.65 4←6 -2319.92 7←1 -22475.19
4←5 -245.65 0←6 -2322.29 5←2 -22476.64
4←1,5 -245.79 6←0 -2322.29 0←6 -22477.27
0←1,7 -247.28 5←2,7 -2324.43 5←2,7 -22477.60
0←6 -247.74 6←7 -2329.05 1←2,5 -22478.55
1←0,6 -247.74 1←7,6 -2333.12 2←6,7 -22479.91
5←0,6 -247.74 0←7 -2335.26 6←7 -22481.51
6←0 -247.74 0←7,5 -2335.26 1←7 -22484.05
7←0 -248.51 2←7,0 -2335.26 0←7 -22495.82
	
 	

Appendix	
 A	
 	
 178	

	

Table 10: The results of applying the dynamic programming with prior knowledge,
known ordering, for synthetic data generated by the Asia.

Asia_100 Asia _1000 Asia _10000
Optimal -245.64 Optimal -2317.41 Optimal -22466.39
Without -245.64 Without -2317.41 Without -22466.39

Prior knowledge consistent with GOBNILP
2<0 -245.64 3<5 -2317.41 5<6 -22466.39
0<1 -245.64 2<7 -2317.41 0<5 -22466.39
1<6 -245.64 0<7 -2317.41 2<7 -22466.39
5<6 -245.64 1<5 -2317.41 0<7 -22466.39
2<7 -245.64 3<6 -2317.41 1<6 -22466.39
0<5 -245.64 2<1 -2317.41 2<0 -22466.39

Inconsistent prior knowledge with GOBNILP
1<4 -245.65 4<0 -2317.66 5<4 22468.53
1<0 -245.65 6<1 -2318.53 5<1 -22468.53
5<0 -245.65 6<5 -2318.53 6<1 -22468.53
6<0 -245.65 6<4 -2318.53 6<5 22468.53
6<4 -245.65 7<5 -2322.58 7<0 -22473.62
5<4 -245.65 7<2 -2323.56 7<5 -22475.19
5<7 -245.64 6<7 -2317.41 6<7 -22466.39
3<2 -245.64 2<5 -2317.41 2<0 -22466.39
6<7 -245.64 4<1 -2317.41 4<3 -22466.39
3<1 -245.64 3<2 -2317.41 0<5 -22466.39
	
 	

Appendix	
 A	
 	
 179	

	

Table 11: The results of applying the dynamic programming with priors knowledge,
known ordering and arrows which have to be there, for synthetic data generated by
the Kredit.

	

	

	

	

	

	

	

	

	

	

	
 	

Kredit 10000
Prior knowledge consistent with GOBNILP

Arrows which have to
be there

Arrows which have to
be there

 Ordering BNs score

0←4 0←12 13<0 -16695.66
1←10,17 1←0 12<1 -16695.66
2←15 2←0 15<9 -16695.66
4←14 4←0 14<11 -16695.66
5←4 5←14 16<17 -16695.66
8←5 8←17 6<10 -16695.66
9←15 9←5 0<12 -16695.66
10←7 10←12 5<14 -16695.66
11←14 11←2 8<4 -16695.66
12←0 12←9 4<1 -16695.66
14←13 14←16 9<5 -16695.66
15←14 15←7 3<5 -16695.66
17←4 17←10,16 11<1 -16695.66

Inconsistent prior knowledge with GOBNILP
Arrows which have to
be there

 BNs score Ordering BNs score

10←8 -16696.48 15<12 -16695.66
1←10 -16697.11 14<10 -16695.66
17←15 -16697.36 12<15 -16695.66
10←17 -16698.00 10<8 -16695.66
17←12 -16701.41 7<12 -16695.66
16←17 -16701.89 16<17 -16695.66
14←10 -16709.24 11<6 -16695.66
15←12 -16710.25 9<12 -16695.66
12←15 -16710.25 17<16 -16697.36
10←16 -16714.73 17<10 -16698.00

Appendix	
 B	
 	
 180	

Appendix B
	

	

Table 12: The results of applying HCPK, arrows which have to be there, for synthetic
data generated by the Insurance.

	

	

	

	

	

	

Insurance_100 Insurance_1000 Insurance_10000
Optimal -1686.22 Optimal -13887.35 Optimal -132968.57
1←24 -1691.65 *21←2,12 -13966.04 *13←12,2 -133655.01

*17←7,16 -1691.65 *19←17,18 -13972.82 * 23←11,22 -133657.64
24←15 -1691.65 *7←4,6 -13973.29 * 19←17,18 -133732.17

*23←11,22 -1691.65 *14←4,6 -13983.54 *17←7,10,16 133744.11

*13←2,12 -1691.67 23←11,22 -13986.19 *21←2,12 -133825.48

25←14,20 -1693.52 11←6,22 -13987.26 *8←1,2 -133828.22
*0←3,25 -1693.73 *16←11,15 -13992.23 *24←15,23 -133898.14

*14←4,6 -1693.73 *9←1,2 -14002.44 *15←5,13 -133941.81

6←1 -1694.60 2←0,3 -14014.37 6←1 -133959.36

*9←1,2 -1695.34 6←1 -14017.12 *14←4,6 -133962.48
11←6 -1695.42 *8←1,2 -14018.59 *7←4,5,6 -134028.62

*8←1,2 -1695.49 *13←2,12 -14018.95 *16←11,15 -134075.60

4←7 -1695.60 10←4 -14021.98 3←0,2 -134100.02

7←6 -1695.76 *0←3,10 -14022.36 *22←4,6 -134106.98
20←1 -1695.76 5←7 -14022.76 0←1,25 -134156.58

21←12 -1695.78 *22←4,6 -14025.06 26←15 -134182.02

15←13 -1695.88 *17←7,10,16 -14025.66 Without -134474.33

3←2 -1696.07 26←15 -14033.05 12←0,3 -134490.17
19←17,18 -1696.52 Without -14038.33 4←1 -140288.41
Without -1697.81 25←0 -14262.08 25←20,9 -140660.06

Appendix	
 B	
 	
 181	

Table 13: The results of applying HCPK, arrows which have to be there, for synthetic
data generated by the Mildew.

Mildew _100 Mildew _1000 Mildew _10000

Optimal -6380.72 Optimal -52258.85 Optimal -454894.40

*33←23,27,32 -6543.71 23←9 -52258.85 *13 ← 8, 12 -455746.79

*27←23,24,26 -6586.02 0←11 -52264.28 21←20 ��� -455801.10

*2←20,26,33 -6633.54 15←17 -52291.72 *9 ← 3, 8 -455834.56

*4←8,27,34 -6646.04 10←11 -52292.33 *8←2,4 -455846.98

*12←20,28,33 -6647.73 13←31 -52292.33 *30 ← 13, 29 -455861.47

*11←12,27,29 -6648.03 19←20 -52292.33 *20←3,19 -455987.05

*29←3,27,34 -6648.43 33←34 -52292.33 34←14 -456050.35

*21←22,24,27 -6651.99 27←14 -52292.33 *32←28,31 -456154.28

*17←19,24,34 -6652.01 4←13 -52292.33 0←11 -456167.67

9←21,24,27 -6652.26 *8←2,4 -52297.75 16←17 -456220.68

*7←12,23,27 -6652.51 *30←13,29 -52297.75 5←7 -456243.40

Without -6658.16 22←23 -52297.75 *24 ← 21, 23 -456285.25

20←21 -6658.16 34←31 -52304.02 *23←9,22 -456320.52

*30←13,29 -6658.16 9←3 -52307.13 27←14 -456491.04

31←14 -6658.16 12←13 -52307.60 *14←9,13 -456632.90

5←7 -6658.16 31←14 -52307.60 *26←14,25 -456656.59

14←9 -6658.16 *3←1,2 -52318.82 *3←4,5 -456879.13

15←17 -6658.16 26←14 -52318.92 Without -457258.64

32←31 -6658.16 Without -52510.18 4←8,9 -457951.11

Appendix	
 B	
 	
 182	

Table 14: The results of applying HCPK, arrows which have to be there, for synthetic
data generated by the Alarm.

Alarm_100 Alarm_1000 Alarm_10000
Optimal -1349.22 Optimal -11240.34 Optimal -105226.51
*13←9,12,23 -1373.17 *27←19,26 -11399.58 *28←17,27 -105850.61

*12←10,20,21 -1376.28 *8←2,3,7 -11413.76 15←10 -105869.75

25←24 -1376.32 20←9 -11414.01 *26←22,23 -105899.20

*33←3,8 -1377.382 *29←8,15 -11416.55 *27←19,26 -105969.99

*2←16,28, -1378.15 0←1 -11419.20 *21←10,11 -106083.38

3←0,9 -1378.44 *19←18,34 -11422.43 *12←10,11 -106098.35

*0←7,9 -1379.44 36←24 -11423.77 1←0 -106106.34

*35←19,20 -1379.48 *35←19,20 -11427.70 *24←22,23 -106131.71

15←10 -1380.02 *7←5,6 -11427.82 10←3,8 -106152.00

11←20 -1380.31 *13←9,12 -11429.52 34←23 -106167.89

17←16 -1380.54 15←10 -11439.95 *29←8,15 -106190.31

*23←24,26 -1380.71 22←23,24 -11441.57 *9←0,3 -106193.67

21←2,19 -1381.51 *9←0,3 -11447.16 *32←19,30 -106219.26

*4←5,12,22 -1381.96 *21←19,20 -11450.40 *35←19,20 -106300.84

*6←5,7,27 -1382.29 *1←2,11 -11450.66 *8←2,3,7 -106334.40

*10←0,3,8 -1382.51 26←22,23 -11452.63 4←5 -106345.22

*18←0,15,17 -1382.53 10←3,8 -11456.17 *31←2,3,7 -106353.83

*22←16,26,35 -1382.58 *31←3,7 -11465.51 *18←15,17 -106398.84

*20←18,21 -1383.15 *18←15,17 -11466.51 19←18 -106464.83
Without -1384.68 Without -11467.32 Without -106496.20
8←7 -1387.51 23←22,24 -11470.89 33←3,8 -106536.36

Appendix	
 B	
 	
 183	

	

Table 15: The results of applying HCPK, arrows which have to be there, for synthetic
data generated by the Carpo.

Carpo_100 Carpo_1000 Carpo_10000

Optimal -1829.30 Optimal -17718.94 Optimal -174130.56

*11←40,46,52 -1854.83 *27←0,22,24 -17855.22 52← 6 -175364.94

*2←35,49 -1856.71 *16←11,12,15 -17856.72 *16←11,14,15 -175393.50

*10←3,12,26 -1857.71 *47←12,24 -17860.41 *30←0,6,20 -175669.97

*33←20,24 -1857.97 *58←0,22,53 -17871.78 *47←8,24 -175755.71

*40←17,18 -1858.50 *36←15,51,53 -17875.23 *33←6,20,24 -175822.23

4*←13,32,43 -1858.52 40←16 -17876.11 *25←20,24,33 -175826.03

*24←1,37 -1858.81 *49←25,35 -17879.82 *7←6,8 -175830.59

21←20 -1859.48 *4←3,6,13 -17882.18 12←11,16 -175881.79

*38←0,24,59 -1859.70 *50←0,8,59 -17883.44 *20←11,19 -175902.89

*55←2,20,59 -1860.02 *23←9,22 -17885.38 *44←0,20,22 -175912.76

*0←2,24,35 -1860.06 29←24,25 -17894.00 *6←4,5 -175946.62

*7←6,19,37 -1860.71 39←22 -17895.44 *34←10,36 -175984.94

*53←9,34,54 -1861.32 *10←5,27,58 -17899.47 *9←8,13 -176040.59

*44←20,22,42 -1861.37 *42←0,6,51 -17901.33 *27←0,22,24 -176061.64

*59←6,25 -1862.25 6←13 -17901.85 59←25 -176073.28

12←43 -1862.25 *38←0,6,24 -17902.48 *50←0,8 -176143.16

5←12 -1862.51 *53←3,34,56 -17907.16 31←24,25 -176176.78

*17←14,50,58 -1862.70 *8←5,9,14 -17908.33 *38←6,24,25 -176356.19

56←36 -1862.82 *2←0,49 -17908.99 Without -176357.80

Without -1893.34 Without -17916.95 24←32 -177147.85

Appendix	
 C	
 	
 184	

Appendix C
	

Table 16: The results of applying HCPK, ancestors relation, for synthetic data
generated by the Insurance.

Insurance_100 Insurance_1000 Insurance_10000

Optimal -1686.22 Optimal -13887.35 Optimal -132968.57

25⇠ 4 -1691.67 11⇠22 -13973.78 0⇠25 -133689.72

23⇠6 -1691.67 8⇠3 -13978.52 10 ⇠ 9 -133710.57

18⇠13 -1693.71 2⇠3 -13979.52 24⇠5 -133714.13

16⇠13 -1694.28

12⇠3 -13986.60 13⇠2 -133793.24

7⇠6 -1695.01 14⇠1 -14005.63 2⇠25 -133834.40

18⇠15 -1695.07 21⇠3 -14011.25 26⇠15 -133852.04

15⇠13 -1695.34 0⇠4 -14011.47 11⇠6 -133870.28

19⇠17 -1695.42 16⇠15 -14022.36 22⇠1 -133879.29

22⇠4 -1695.44 17⇠4 -14023.35 19⇠7 -133902.66

24⇠15 -1695.49 14⇠6 -14025.36 7⇠ 1 -133950.60

20⇠1 -1695.49 10⇠4 -14029.36 23⇠22 -133972.61

19⇠7 -1695.50 Without -14038.33 21⇠0 -133995.45

14⇠4 -1695.59 19⇠7 -14038.80 3⇠1 -134089.53

8⇠1 -1695.62 13⇠0 -14040.36 9⇠0 -134118.60

11⇠6 -1695.76 5⇠4 -14042.59 3⇠0 -134218.05

9⇢ 1 -1695.76 23⇠4 -14135.83 8⇠2 -134239.28

23⇠11 -1695.86 24⇠11 -14234.17 13⇠3 -134286.54

Without -1697.81 25⇠0 -14294.73 Without -134474.33

26⇠3 -1698.78 20⇠1 -14316.69 1 ⇠ 25 -134883.54

17⇠7 -1699.72 22⇠6 -14390.39 6 ⇠25 -136688.28

Appendix	
 C	
 	
 185	

	

Table 17: The results of applying HCPK, ancestors relation, for synthetic data
generated by the Alarm.

Alarm_100 Alarm_1000 Alarm_10000

Optimal -1349.22 Optimal -11240.34 Optimal -105226.51

25⇠24 -1374.67 10⇠7 -11403.12 4⇠5 -105973.18

22⇠24 -1377.11 21⇠34 -11403.12 17⇠16 -106052.34

36⇠24 -1378.48 32⇠18 -11410.48 10⇠3 -106074.86

6⇠7 -1379.44 28⇠27 -11415.09 24⇠23 -106093.55

22⇠16 -1379.70 18⇠10 -11428.23 26⇠23 -106192.09

13⇠10 -1380.30 2⇠3 -11431.55 28⇠27 -106202.46

33⇠8 -1380.51 20⇠3 -11433.07 18⇠10 -106218.86

29⇠8 -1381.10 17⇠16 -11434.60 31⇠3 -106276.17

32⇠30 -1382.16 2⇠7 -11435.07 7⇠6 -106298.34

23⇠24 -1383.34 35⇠20 -11435.33 29⇠2 -106316.37

34⇠23 -1383.61 12⇠3 -11443.31 36⇠22 -106339.11

35⇠19 -1383.66 15⇠8 -11444.11 36⇠22 -106339.11

4⇠7 -1383.83 33⇠2 -11457.36 27⇠22 -106346.77

28⇠17 -1383.88 5⇠4 -11462.96 Without -106496.20

Without -1384.68 Without -11467.32 33⇠2 -106473.40

19⇠0 -1384.97 9⇠1 -11474.42 33⇠2 -106473.40

27⇠19 -1385.26 0⇠11 -11484.00 21⇠18 -106478.67

3⇠9 -1385.57 25⇠2 -11486.64 12⇠8 -106509.12

11⇠18 -1386.64 36⇠25 -11496.21 32⇠18 -106546.94

12⇠0 -1387.08 22⇠25 -11499.25 15⇠8 -106669.29

	
 	

Appendix	
 C	
 	
 186	

Table 18: The results of applying HCPK, ancestors relation, for synthetic data
generated by the Mildew.

Mildew _100 Mildew _1000 Mildew _10000

Optimal -6380.72 Optimal -52258.85 Optimal -454894.40

27⇠26 -6579.86 20⇠1 -52264.28 21⇠20 -455394.63

27⇠23 -6585.10 33⇠31 -52285.45 24⇠20 -455414.84

2⇠21 -6592.21 22⇠9 -52292.33 33⇠14 -456072.11

7⇠20 -6620.00 12⇠31 -52303.90 30⇠13 -456190.16

33⇠32 -6643.30 9⇠1 -52312.53 27⇠9 -456259.62

Without -6658.16 3⇠27 -52399.22 30⇠12 -456308.54

0⇠11 -6658.16 4⇠31 -52422.01 32⇠31 -456589.06

3⇠9 -6658.16 5⇠7 -52423.05 3⇠2 -456701.36

34⇠33 -6658.16 8⇠13 -52432.93 5⇠8 -457011.69

32⇠14 -6658.160 17⇠15 -52443.92 16⇠17 -457028.32

31⇠14 -6658.16 21⇠3 -52471.87 6⇠8 -457053.18

32⇠31 -6658.16 34⇠14 -52475.47 20⇠3 -457180.48

14⇠9 -6658.16 Without -52510.18 10⇠11 -457479.49

4⇠34 -6670.78 23⇠3 -52524.10 14⇠3 -458237.48

15⇠0 -6670.78 19⇠3 -52524.10 13⇠4 -458284.12

15⇠3 -6671.80 26⇠9 -52313.50 26⇠9 -458294.89

17⇠19 -6672.05 9⇠2 -52340.85 23⇠8 -458727.85

29⇠9 -6674.17 27⇠9 -52292.33 27⇠13 -459361.27

0⇠12 -6691.10 14⇠3 -52344.47 Without -459642.31

4⇠34 -6700.28 13⇠14 -52297.75 21⇠3 -460949.90

	

	

	

	
 	

Appendix	
 C	
 	
 187	

Table 19: The results of applying HCPK, ancestors relation, for synthetic data
generated by the Carpo.

Carpo_100 Carpo_1000 Carpo_10000

Optimal -1829.30 Optimal -17718.94 Optimal -174130.56

54⇠4 -1853.74 53⇠0 -17807.83 1⇠24 -175438.70

11⇠17 -1857.04 27⇠6 -17813.72 27⇠38 -175449.54

9⇠0 -1857.07 48⇠14 -17824.20 50⇠24 -175484.91

41⇠13 -1858.26 5⇠16 -17824.88 38⇠4 -175684.80

14⇠35 -1858.38 14⇠16 -17828.84 52⇠6 -175758.50

0⇠35 -1859.22 41⇠34 -17831.81 37⇠32 -175886.53

20⇠13 -1859.51 18⇠5 -17840.14 13⇠16 -176006.31

26⇠4 -1860.42 16⇠20 -17840.57 45⇠34 -176055.59

21⇠34 -1860.50 19⇠12 -17842.66 21⇠11 -176060.13

55⇠35 -1860.68 0⇠13 -17844.01 18⇠19 -176074.25

53⇠3 -1860.74 30⇠13 -17845.99 17⇠11 -176108.39

49⇠33 -1860.84 10⇠12 -17849.95 44⇠26 -176158.73

3⇠24 -1861.45 44⇠33 -17852.52 57⇠11 -176178.40

59⇠0 -1862.63 24⇠12 -17853.11 16⇠6 -176209.82

30⇠2 -1862.97 13⇠14 -17854.83 58⇠0 -176275.47

5⇠43 -1864.16 59⇠24 -17870.56 29⇠20 -176355.47

29⇠1 -1864.40 37⇠32 -17888.63 Without -176357.80

17⇠0 -1864.84 50⇠5 -17892.01 9⇠12 -176438.38

45⇠ 35 -1866.74 58⇠32 -17892.87 33⇠11 -176658.93

Without -1893.34 Without -17916.95 0⇠32 -176761.21

	

	

Appendix	
 D	
 	
 188	

	

Appendix D
	

Conditional independence checks approach
	

	

Table 20: The results of applying HCPK, conditional independence, for synthetic
data generated by the Insurance.

Insurance_100 Insurance_1000 Insurance_10000

Optimal -1686.22 Optimal -13887.35 Optimal -132968.57

{3,10} ⊥ 13 | 2 -1693.19 22 ⊥ 20| 1 -13970.8 10 ⊥ {4,6} | 9 -133635.10

5⊥7|26 -1693.73 3⊥ 7| ∅ -13992.87 25 ⊥ 5 | 6 -133640.68

11 ⊥ 14 | 6 -1694.62 1⊥ {2,12}| 4 -13997.25 12 ⊥ 15| 13 -133810.38

16 ⊥18,20|15 -1694.62 3⊥ 26| 15 -14000.51 11 ⊥ 21 | 1 -133834.78

13 ⊥ 21 |12 -1694.70 17 ⊥ 5 | 7 -14002.64 {9,8} ⊥ 14 | 1 -133861.81

12 ⊥ {19,23} | 13 -1695.49 8⊥ 6| 1 -14007.62 5 ⊥ 6 | ∅ -133866.53

 6⊥ 9| 1 -1695.52 {5,1} ⊥ 24 | 16 -14010.52 21 ⊥ 22 | 0 -133891.00

5 ⊥ 10 | ∅ -1695.62 3⊥ 10| 4 -14016.64 {2,0} ⊥ 10 | 9 -133910.24

13 ⊥ 14 |15 -1695.76 3 ⊥ {22,11} | 4 -14019.42 20 ⊥ 5 | 12 -133968.49

1 ⊥ 11 | 6 -1695.86 20 ⊥ 24 | 16 -14030.33 25 ⊥ 6 | 1 -133969.31

10 ⊥ 12 | ∅ -1696.42 11⊥ 12| 4 -14034.82 24 ⊥ 26 | 15 -133974.57

7 ⊥ 22 | 4 -1696.52 Without -14038.33 5 ⊥ 13 | ∅ -133977.21

2⊥ 12| ∅ -1696.76 15 ⊥ 24 | 16 -14040.12 0 ⊥ 15 | 13 -133983.46

3 ⊥ 21 | ∅ -1696.78 18⊥ 16| 15 -14042.80 4 ⊥ 20 | 1 -134057.24

15 ⊥ 20 | 1 -1696.78 {21,8} ⊥ 26 | 15 -14047.01 4 ⊥ 5 | ∅ -134188.78

16⊥ 18| 15 -1696.82 {9,2,}⊥ 6| 1 -14053.93 3 ⊥ 10 | 9 -134261.52

12 ⊥ 17 | 13 -1697.57 22 ⊥ 3 | ∅ -14055.88 1 ⊥ 12 | 0 -134291.56

Without -1697.81 12 ⊥ 10 | ∅ -14066.43 {9,2} ⊥ 6 | 1 -134301.84

26 ⊥ 10 | 21 -1699.41 3 ⊥ 10 | ∅ -14074.55 Without -134474.33

{8,10} ⊥ 6 | 1 -1701.61 14⊥ 16| 10 -14076.14 21,12 ⊥ {22,7} | 0 -134702.23

	

	
 	

Appendix	
 D	
 	
 189	

Table 21: The results of applying HCPK, conditional independence, for synthetic
data generated by the Alarm.

Alarm_100 Alarm_1000 Alarm_10000
Optimal -1349.22 Optimal -11240.34 Optimal -105226.51
31 ⊥ 1 | 0

-1373.52 0 ⊥ 15 | 10 -11384.56 19 ⊥ 26 | ∅

-105857.61

 1 ⊥ 3 | 0

 -1375.14 3 ⊥ {12,14} | 10

-11411.59 16 ⊥ 21 | 19

-105941.51

{16,14}⊥3 | 9 -1377.07 0 ⊥ 7 | 2

-11420.83 2 ⊥ 3 | ∅

-106106.84

{26,6} ⊥ 34 | 23 -1379.02 14 ⊥ 2 | 33 -11421.83 6 ⊥ 29 | 7

-106126.18

35 ⊥ 24 | 25

-1380.15 1 ⊥ 30 | 0 -11431.38 31 ⊥ 9 | 3

-106130.97

32 ⊥ 27 | 19

-1380.80 3 ⊥ 12 | 10 -11432.22 34 ⊥ {24,26} | 23

-106208.56

26⊥16 | ∅ -1381.83 10 ⊥ 11 | ∅ -11432.35 17 ⊥ 15 | ∅

-106267.41

24 ⊥ {35,26 }|22

-1382.01 8 ⊥ {25,14} | 2 -11436.23 6,14 ⊥ {29,15} | 7

-106313.33

25⊥36 | 24 -1382.07 6 ⊥ 31 | 7 -11444.39 0 ⊥ 3 | ∅

-106352.21

9 ⊥ 7 | ∅

-1382.21 25 ⊥ 23 | 24 -11447.10 19 ⊥ 20 | ∅

-106427.13

17⊥9 | 16 -1382.95 10 ⊥ 22 | 2 -11450.03 16 ⊥ {28,27} | 17

-106474.39

24 ⊥ 34 | 23

-1383.20 15 ⊥ 12 | 10 -11450.35 Without -106496.20

28 ⊥ 25 | 22

-1383.31 {23,34} ⊥ 36 | 24 -11452.67 9 ⊥ 1 | 0

-106529.75

8 ⊥ 31|7 -1383.83 6,3 ⊥ {1,25} | 2 -11453.78 0,1 ⊥ {8,6} | 3

-106549.80

14 ⊥ 17 | ∅ -1383.90 30 ⊥ 9 | 0

-11463.15 0 ⊥ 8 | 19

-106563.69

0 ⊥ 19 | 18

-1383.97 {17,16} ⊥ 3 | 10 -11463.65 29 ⊥ 0 |12

-106572.44

Without -1384.68 Without -11467.32 7 ⊥ 4 | 5

-106635.78

16 ⊥ 7 | 1

-1385.19 {2,3} ⊥ 11 | ∅ -11467.57 {8,7} ⊥ 9 | 3

-106637.25

{18,19} ⊥ 25 | 24 -1385.34 31 ⊥ 24 | 25 -11470.19 19 ⊥ 29 | 18

-106653.91

1 ⊥ 17 | ∅

-1385.86 3 ⊥ 7 | ∅

-11471.48 5 ⊥ 6 | ∅

-107342.07

	

	

	

	

Appendix	
 D	
 	
 190	

Table 22: The results of applying HCPK, conditional independence, for synthetic
data generated by the Mildew.

Mildew _100 Mildew _1000 Mildew _10000
Optimal -6380.72 Optimal -52258.85 Optimal -454894.40
Without -6658.16 0⊥10 | 11 -52292.33 {1,3}⊥{25,26} | 14 -455587.36

23⊥{26, 24} | φ -6658.16 6⊥5 | 7 -52292.33 28⊥31 | φ -455653.01

27⊥7 | 23 -6658.16 30⊥4 | 13 -52292.33 1⊥25 | 9 -455849.04

13⊥20 | 12 -6658.16 31⊥26 | 14 -52292.33 16⊥15 | 17 -455868.95

12⊥{27, 29} | 11 -6658.16 12⊥4 | 13 -52292.33 8⊥12 | φ -456028.60

30⊥34 | φ -6658.16 13⊥29 | φ -52297.75 14⊥25 | φ -456201.06

14⊥21 | 9 -6658.16 {2,3}⊥{26,27} |
14

-52297.75 7⊥13 | 8 -456312.73

22⊥24 | φ -6658.16 1⊥20 | 3 -52297.75 3⊥26 | 14 -456362.77

19⊥15 | 17 -6658.16 21⊥19 | 20 -52297.75 13⊥34 | 14 -456379.62

14⊥32 | 31 -6658.16 {2,9}⊥21 | 20 -52304.02 6⊥5 | 7 -456503.22

23⊥5 | 7 -6658.16 3⊥23 | 9 -52304.02 0⊥{16,18} | φ -456564.09

34 ⊥ 8 | 27

-6658.16 16⊥15 | 17 -52307.60 9⊥20 | 3 -456611.20

{1,6}⊥{16,18} | φ -6662.71 {16,18}⊥{15,25} |
17

-52307.60 0⊥10 | 11

-456642.36

23⊥24 | φ -6665.10 2⊥26 | 14 -52312.21 6⊥{5,31} | 7 -457044.02

22⊥3 | 9 -6665.10 18⊥24 | φ

-52312.21 {12,18}⊥{33,34} |
14

-457147.47

 28⊥0 | 11 -6665.10 3⊥34 | 9 -52313.50 {19,18}⊥8 | 3 -457160.45

9⊥31 | 14

-6665.10 {3,9}⊥22 | 23 -52322.06 2⊥5 | 8 -457542.56

9 ⊥ 32 | 31

-6665.10 1⊥2 | φ -52325.98 29⊥22 | 30 -457799.43

 1⊥6 | φ -6665.10 14⊥4 | 31 -52357.31 4⊥2 | φ -458315.63

13⊥20 | 31

-6665.10 Without -52510.18 Without -459642.31

Appendix	
 D	
 	
 191	

Table 23: The results of applying HCPK, conditional independence, for synthetic
data generated by the Carpo.

Carpo_100 Carpo_1000 Carpo_10000
Optimal -1829.30 Optimal -17718.94 Optimal -174130.56
18⊥35 | 12 -1857.66 46⊥40 | φ -17803.26 {30,3}⊥{2,58} | 0 -175154.78

43⊥13 | 12 -1857.72 12⊥15 | φ -17811.24 {48, 34 }⊥4 | 35 -175211.78

14⊥58 | 0 -1859.97 52⊥38 | 6 -17819.98 24⊥8 | φ -175349.54

5⊥43 | 12 -1860.41 1⊥ {44,38} | 0 -17824.69 34 ⊥4 | 35 -175351.80

34⊥21 | 20 -1860.65 {39,55}⊥54 | 22 -17825.13 2 ⊥3 | 0 -175411.19

21⊥1 | 20 -1860.78 56⊥28 | 20 -17826.58 6⊥24 | φ -175526.15

13⊥35 | φ -1860.92 48⊥23 | 34 -17830.17 11 ⊥39 | 20 -175542.47

35⊥18 | φ -1861.31 14⊥40 | 16 -17830.28 10⊥36 | φ -175572.90

18⊥34 | 13 -1861.84 55⊥54 | 22 -17830.73 35⊥4 | 45 -175673.73

3⊥33 | 0 -1862.04 7⊥48 | 34 -17832.27 30⊥2 | 0 -175687.69

13⊥18 | φ -1862.17 1⊥44 | 0 -17841.24 {29, 32 }⊥37 | 24 -175691.73

{18,35}⊥36 | 34 -1862.40 32⊥37 | 24 -17841.39 {1,46} ⊥58 | 0 -175702.74

{58,3}⊥2 | 0 -1862.76 47⊥37 | 24 -17842.08 1 ⊥58 | 0 -175716.66

24⊥3 | 0 -1862.89 {11,58}⊥57 | 20 -17843.05 18⊥29 | 19 -175924.69

10⊥36 | φ -1863.01 57⊥33 | 20 -17844.96 37⊥33 | 24 -175948.52

36⊥57 | 56 -1863.19 10⊥18 | 19 -17858.55 20⊥16 | 11 -175983.38

18⊥36 | 34 -1863.59 11⊥12 | φ -17861.97 6⊥12 | 14 -176082.25

{13,35}⊥18 | φ -1869.13 1⊥38 | 0 -17882.78 {14,11}⊥15 | φ -176210.61

20⊥23 | 33 -1872.09 15⊥11 | φ -17887.52 11⊥14 | φ -176224.26

Without -1893.34 Without -17916.95 Without -176357.80

Appendix	
 D	
 	
 192	

Backtrack approach
	

Table 24: The results of applying HCPK, conditional independence, for synthetic
data generated by the Insurance.

Insurance_100 Insurance_1000 Insurance_10000

Optimal -1686.22 Optimal -13887.35 Optimal -132968.57

11 ⊥ 14 | 6 -1691.65 3⊥ 26| 15 -13961.60 1 ⊥ 12 | 0 -133706.43

3 ⊥ 21 | ∅ -1694.62 11⊥ 12| 4 -13967.58 0 ⊥ 15 | 13 -133717.48

13 ⊥ 21 |12 -1694.72 3⊥ 7| ∅ -13978.71 20 ⊥ 5 | 12 -133800.31

16 ⊥18,20|15 -1695.32 18⊥ 16| 15 -13999.65 5 ⊥ 13 | ∅ -133812.14

12 ⊥ {19,23} | 13 -1695.34 22 ⊥ 3 | ∅ -14001.24 10 ⊥ {4,6} | 9 -133827.87

10 ⊥ 12 | ∅ -1695.44 {21,8} ⊥ 26 | 15 -14011.20 3 ⊥ 10 | 9 -133849.94

2⊥ 12| ∅ -1695.49 20 ⊥ 24 | 16 -14011.49 4 ⊥ 20 | 1 -133855.60

 6⊥ 9| 1 -1695.50 {5,1} ⊥ 24 | 16 -14013.06 21 ⊥ 22 | 0 -133864.14

15 ⊥ 20 | 1 -1695.50 14⊥ 16| 10 -14014.60 {9,8} ⊥ 14 | 1 -133907.63

16⊥ 18| 15 -1695.52 15 ⊥ 24 | 16 -14020.57 25 ⊥ 6 | 1 -133935.88

 5⊥7| 26 -1695.59 22 ⊥ 20| 1 -14022.39 25 ⊥ 5 | 6 -133935.88

 5 ⊥ 10 | ∅ -1695.59 3 ⊥ 10 | ∅ -14023.12 12 ⊥ 15| 13 -133975.39

26 ⊥ 10 | 21 -1695.76 3⊥ 10| 4 -14023.16 11 ⊥ 21 | 1 -134011.44

{3,10} ⊥ 13 | 2 -1695.76 8⊥ 6| 1 -14025.73 4 ⊥ 5 | ∅ -134063.19

1 ⊥ 11 | 6 -1695.86 1⊥ {2,12}| 4 -14026.38 21,12 ⊥ {22,7} | 0 -134105.09

12 ⊥ 17 | 13 -1697.26 17 ⊥ 5 | 7 -14029.44 24 ⊥ 26 | 15 -134127.88

13 ⊥ 14 |15 -1697.49 Without -14038.33 5 ⊥ 6 | ∅ -134175.76

Without -1697.81 3 ⊥ {22,11} | 4 -14042.36 {2,0} ⊥ 10 | 9 -134324.92

{8,10} ⊥ 6 | 1 -1702.40 {9,2,}⊥ 6| 1 -14054.60 {9,2} ⊥ 6 | 1 -134437.74

7 ⊥ 22 | 4 -1706.62 12 ⊥ 10 | ∅ -14059.09 Without -134474.33

Appendix	
 D	
 	
 193	

Table 25: The results of applying HCPK, conditional independence, for synthetic
data generated by the Alarm.

Alarm_100 Alarm_1000 Alarm_10000

Optimal -1349.22 Optimal -11240.34 Optimal -105226.51

25⊥36 | 24 -1374.55 3 ⊥ {12,14} | 10 -11380.49 34 ⊥ {24,26} | 23 -105893.03

8 ⊥ 31|7 -1376.04 6,3 ⊥ {1,25} | 2 -11401.14 5 ⊥ 6 | ∅ -105907.83

14 ⊥ 17 | ∅ -1378.69 25 ⊥ 23 | 24 -11405.91 0 ⊥ 8 | 19 -105948.84

{16,14}⊥3 | 9 -1380.23 17,16 ⊥ 3 | 10 -11412.46 11 ⊥ 10 | ∅ -106030.56

{26,6} ⊥ 34 | 23 -1380.43 10 ⊥ 11 | ∅ -11412.60 19 ⊥ 26 | ∅ -106102.35

24 ⊥ {35,26 }|22 -1380.62 30 ⊥ 9 | 0 -11420.60 19 ⊥ 29 | 18 -106175.85

16 ⊥ 7 | 1 -1380.78 6 ⊥ 31 | 7 -11421.98 7 ⊥ 4 | 5 -106177.47

9 ⊥ 7 | ∅ -1381.84 0 ⊥ 7 | 2 -11423.43 16 ⊥ {28,27} | 17 -106230.54

14 ⊥ 5 | 16 -1381.84 10 ⊥ 22 | 2 -11431.22 2 ⊥ 3 | ∅ -106234.82

31 ⊥ 1 | 0 -1383.04 14 ⊥ 2 | 33 -11432.35 16 ⊥ 21 | 19 -106235.67

35 ⊥ 24 | 25 -1383.16 3 ⊥ 12 | 10 -11435.66 9 ⊥ 1 | 0 -106265.50

26⊥16 | ∅ -1383.37 15 ⊥ 12 | 10 -11439.40 6 ⊥ 29 | 7 -106278.46

17⊥9 | 16 -1383.67 31 ⊥ 24 | 25 -11442.60 0 ⊥ 3 | ∅ -106285.84

Without -1384.68 0 ⊥ 15 | 10 -11445.44 6,14 ⊥ {29,15} | 7 -106289.23

1 ⊥ 3 | 0 -1385.34 5 ⊥ 6 | ∅ -11447.34 29 ⊥ 0 |12 -106289.66

32 ⊥ 27 | 19 -1385.36 8 ⊥ {25,14} | 2 -11454.67 0,1 ⊥ {8,6} | 3 -106295.53

24 ⊥ 34 | 23 -1385.87 1 ⊥ 30 | 0 -11456.61 17 ⊥ 15 | ∅ -106314.16

{18,19} ⊥ 25 | 24 -1385.95 {2,3} ⊥ 11 | ∅ -11462.93 Without -106496.20

28 ⊥ 25 | 22 -1385.98 Without -11467.32 31 ⊥ 9 | 3 -106590.23

0 ⊥ 19 | 18 -1388.70 {23,34} ⊥ 36 | 24 -11474.42 {8,7} ⊥ 9 | 3 -106602.64

1 ⊥ 17 | ∅ -1389.75 3 ⊥ 7 | ∅ -11476.70 19 ⊥ 20 | ∅ -106685.48

	

	

	

	

	

	

	

	

	

Appendix	
 D	
 	
 194	

Table 26: The results of applying HCPK, conditional independence, for synthetic
data generated by the Mildew.

Mildew _100 Mildew _1000 Mildew _10000

Optimal -6380.72 Optimal -52258.85 Optimal -454894.40

Without -6658.16 0⊥10 | 11 -52292.33 {1,3}⊥{25,26} | 14 -455587.36

23⊥{26, 24} | φ -6658.16 6⊥5 | 7 -52292.33 28⊥31 | φ -455653.01

27⊥7 | 23 -6658.16 30⊥4 | 13 -52292.33 1⊥25 | 9 -455849.04

13⊥20 | 12 -6658.16 31⊥26 | 14 -52292.33 16⊥15 | 17 -455868.95

12⊥{27, 29} | 11 -6658.16 {2,9}⊥21 | 20 -52292.33 8⊥12 | φ -456028.60

30⊥34 | φ -6658.16 12⊥4 | 13 -52292.33 14⊥25 | φ -456201.06

14⊥21 | 9 -6658.16 13⊥29 | φ -52297.75 7⊥13 | 8 -456312.73

22⊥24 | φ -6658.16 {2,3}⊥{26,27} | 14 -52297.75 3⊥26 | 14 -456362.77

19⊥15 | 17 -6658.16 1⊥20 | 3 -52297.75 13⊥34 | 14 -456379.62

14⊥32 | 31 -6658.16 21⊥19 | 20 -52297.75 6⊥5 | 7 -456503.22

23⊥5 | 7 -6658.16 3⊥23 | 9 -52304.02 0⊥{16,18} | φ -456564.09

34 ⊥ 8 | 27 -6658.16 16⊥15 | 17 -52307.60 9⊥20 | 3 -456611.20

{1,6}⊥{16,18} | φ -6662.71 {16,18}⊥{15,25} |

17

-52307.60 0⊥10 | 11

-456642.36

23⊥24 | φ -6665.10 2⊥26 | 14 -52312.21 6⊥{5,31} | 7 -457044.02

22⊥3 | 9 -6665.10 3⊥34 | 9 -52313.50 {12,18}⊥{33,34} | 14 -457147.47

 28⊥0 | 11 -6665.10 {3,9}⊥22 | 23 -52322.06 {19,18}⊥8 | 3 -457160.45

 9⊥31 | 14 -6665.10 1⊥2 | φ -52325.98 2⊥5 | 8 -457542.56

 9 ⊥ 32 | 31 -6665.10 14⊥4 | 31 -52357.31 29⊥22 | 30 -457799.43

 1⊥6 | φ -6665.10 14⊥{4,13} | 31 -52360.22 4⊥2 | φ -458315.63

13⊥20 | 31 -6665.10 Without -52510.18 Without -459642.31

	

	

	

	

	

	

	

	

	

	

	

	

Appendix	
 E	
 	
 195	

Appendix E
	

Table	
 27: The results of applying HCPK, inconsistent prior knowledge, for synthetic
data generated by the Insurance.	

Insurance_100 Insurance_1000 Insurance_10000

Optimal -1686.22 Optimal -13887.35 Optimal -132968.57

Without -1697.81 Without -14038.33 8 ⊥ 10| 7 -134175.69

 12⇠13 -1697.81

20 ⊥ 13 | ∅ -14269.85 Without -134474.33

13 ⊥ {21,24} | 26 -1700.52 4⇠22 -14279.55 5⇠7 -137956.77

 18⇠19 -1701.94

10⇠17 -14332.42 26⇢16

-138946.45

 22⇠23 -1702.79

11←16 -14365.53 0⇠3 -140432.56

 26←5 -1702.83 3←0,2 -14368.29 26←21,7 -141171.52

 10⇠13 -1702.95 2←1,8 -14368.79 {15,8} ⊥ 18| 19 -141318.94

 0 ⊥ 2 | 26

-1703.01 14 ⊥ 15 | 3 -14387.19 5⇠1,3 -142031.43

10 ⊥ {21,26} | 0

-1704.97

22 ⊥ 26 | 16 -14435.432 10←0 -142134.12

 4 ⊥ 13 | ∅

-1721.12 0⇠25 -14487.30 1⇠4 -142176.65

 13 ← 22,9 -1721.42 25 ⊥ {12,11} | 6 -14498.98 0 ⊥ 15| 12 -142571.83

 7 ← 22,13 -1737.38 11⇠23 -14611.14 5←15,13 -143289.97

0ß26,9,4 -1746.95 17←3,7,1 -14733.58 {17,6} ⊥ 13 | 2

-144445.43

	

Appendix	
 E	
 	
 196	

Table 28: The results of applying HCPK, inconsistent prior knowledge, for synthetic
data generated by the Alarm.

Alarm_100 Alarm_1000 Alarm_10000

Optimal -1349.22 Optimal -11240.34 Optimal -105226.51

10⇠12 -1384.23 11←2,1 -11458.50 Without -106376.13

Without -1384.68 Without -11467.32 {7,11}⊥3| 35 -113744.13

10⊥{21,20}|∅ -1386.69 3 ← 6 -11467.61 26←19,27 -114776.71

2←14 -1389.06 20←19,21 -11475.40 20⇠35 -115153.53

24⇠36 -1389.11 3⇠30 -11490.28 30⇠32 -115642.70

3⊥13| 9 -1389.89 14⇠30 -11514.29 2⇠31 -115939.97

7 ⊥ 4 | 5 -1390.74 31⇠2 -11525.48 15⊥9| 27 -117195.50

14⇠28 -1391.50 11⇠31 -11526.02 23 ⊥ {25,17} | 22 -117439.74

7⇠30 -1394.72 27←17,28 -11670.61 9←13,12 -117853.31

 6←33,9 -1395.36 33⊥1| 16 -12065.96 24←36 -117909.42

35←0,7,33 -1405.77 30⊥6| ∅ -12221.95 11⇠12 -118255.05

15←5,12,22 -1411.10 22⊥20| 16 -12371.76 3←0,9 -118387.56

{13,20} ⊥ 30 | 7 -1468.11 2⊥{12,4}| 16 -12500.21 20⊥21| 27 -118456.34

Appendix	
 E	
 	
 197	

Table 29: The results of applying HCPK, inconsistent prior knowledge, for synthetic
data generated by the Mildew.

Mildew _100 Mildew _1000 Mildew _10000

Optimal -6380.72 Optimal -52258.85 Optimal -454894.40

34 ⇠4 -6605.61 6⊥7 | 5 -52333.38 1⇠3 -455959.98

27 ← 8,9,34 -6623.89 30⊥27 | ∅ -52337.50 19⇠20 -456768.16

Without -6658.16 3←5 -52348.57 3← 4,5 -456879.13

27 ← 7 -6658.16 22⊥20 | 16 -52367.27 20⊥6 | 21 -456937.74

20⊥26 | 2 -6658.16 {4,8}⊥31 | 13 -52423.58 33⊥12 | ∅ -457328.70

23⊥{7, 27} | 12 -6658.16 24⇠5 -52495.74 29⊥4 | 30 -457905.55

{ 34,26}⊥{19,5} | 3 -6658.16 Without -52510.18 3⇠14 -457942.74

27⊥11 | 29 -6658.16 2⇠12 -52624.50 4← 8,9 -457951.11

32 ⇠33 -6662.86 14⇠26 -52634.89 {1,3}⊥27 | 9 -457973.62

19 ⇠17 -6672.05 22←30,2 -52654.26 8⇠13 -458002.35

23⇠4 -6677.38 7⇠12 -52716.42 4⇠8 -458107.37

2 ← 0,2,34 -6750.20 30←2,3 -52846.96 30← 32,1 -459603.47

33 ← 12, 13 -6876.71 8←20,1 -53779.44 Without -459642.31

	

	
 	

Appendix	
 F	
 	
 198	

Appendix F
	

	

Table 30: The results of applying HCPK for synthetic data generated by the Diabetes.

Diabetes

Arrows
which
have to be
there

BNs score

Ancestor
relation

BNs

Conditional
independence checks

BNs score

59←57,58 58192.49 11⇠8 -58206.53 391 ⊥ 388 | 389 -58198.89

358←357,54 -58046.47 312⇠304 -58206.53 {9,2} ⊥ 6 | 1 -58206.53

199←45,198 -58054.52 401⇠394 -58211.55 90 ⊥ 9 | 10 -58206.53

373←368,372 -58083.91 344⇠343 -58218.09 2 ⊥ 1 | ∅ -58206.53

397←57,396 -58109.54 230⇠228 -58231.35 228 ⊥ 254 | ∅ -58206.53

409←392,408 -58109.84 12⇠10 -58234.26 404 ⊥ 412 | 410 -58206.53

81←68,80 -58156.93 209⇠2758 -58265.46 379 ⊥ 402 | 380 -58206.53

401←395,400 -58186.88 91⇠14 -58476.69 307 ⊥ 310 | 164 -58206.53

148←147,144 -58192.98 393⇠391 -58635.04 55 ⊥ 241 | 30 -58206.53

302←287,288 -58205.88 410⇠402 -58733.17 204 ⊥ 202 | 205 -58206.53

120←107,119 -58206.42 165⇠162 -58877.96 176 ⊥ 177 | 175 -58215.17

410←404,405 -58211.44 52⇠0 -58877.96 43 ⊥ 46 | 44 -58218.34

277←275 -58214.05 377⇠359 -58877.96 175 ⊥ 195 | 188 -58225.77

319←317,318 -58230.24 187⇠42 -59483.24 324 ⊥ 310 | ∅ -58292.40

171←170,169 -58230.28 355⇠331 -59506.82 {263,247} ⊥ 279 | 57 -58326.58

135←130 -58242.94 20-6 -59508.72 306 ⊥ 307 | ∅ -58340.79

70←68 -58248.32 261⇠259 -59543.73 58 ⊥ 57 | ∅ -58357.53

300←299,298 -58292.40 101⇠99 -59683.41 216 ⊥ 232 | 57 -58764.96

282←275,280 -58303.33 41⇠40 -59888.84 40 ⊥ 39 | ∅ -58877.96

250←243,248 -58318.47 180⇠57 -60150.23 57 ⊥ 167 | ∅ -58877.96

Without -59695.4 Without -62506.72 Without -59695.4

	

	

Bibliography	
 	
 199	

Bibliography

 Angelopoulos, N., & Cussens, J. (2005). Exploiting Informative Priors for Bayesian

Classification and Regression Trees. In Proceedings of the Nineteenth

International Joint Conference on Artificial Intelligence (IJCAI-05), pages 641-

646, Edinburgh

Angelopoulos, N., & Cussens, J. (2009). Bayesian learning of Bayesian networks with

informative priors. Annals of Mathematics and Artificial Intelligence, 54(1-3),

53–98. doi:10.1007/s10472-009-9133-x

Atallah, M., & Blanton, M. (Eds.). (2009). Algorithms and Theory of Computation

Handbook (Second Edi., Vol. 4). Chapman and Hall/CRC.

doi:10.1201/9781584888215

Berger, J. O., Pericchi, L. R., Ghosh, J., Samanta, T., De Santis, F., Berger, J., &

Pericchi, L. (2001). Objective Bayesian methods for model selection:

introduction and comparison. Lecture Notes-Monograph Series, 38(2001), 135–

207.

Bishop, C. M. (2007). Pattern Recognition and Machine Learning (Information

Science and Statistics) (p. 740). Springer.

Borboudakis, G., & Tsamardinos, I. (2012). Incorporating Causal Prior Knowledge as

Path-Constraints in Bayesian Networks and Maximal Ancestral Graphs. arXiv

Preprint arXiv:1206.6390.

Buntine, W. (1991). Theory refinement on Bayesian networks. In Proceedings of the

Seventh Conference on Uncertainty in Artificial Intelligence (Vol. 91).

Campos, C. De, Zeng, Z., & Ji, Q. (2009). Structure learning of Bayesian networks

using constraints. Conference on Machine Learning.

Castelo, R. V., & Siebes, A. (1998). Priors on network structures. Biasing the search

for Bayesian networks. , International Journal of Approximate Reasoning, 24 (1), pp.

39-57

Bibliography	
 	
 200	

Chickering, D., Geiger, D., & Heckerman, D. (1995). Learning Bayesian networks:

Search methods and experimental results. In Proceedings of Fifth Conference on

Artificial Intelligence and Statistics (pp. 112–128).

Chickering, D., Heckerman, D., & Meek, C. (2003). Large-sample learning of

Bayesian networks is NP-hard. Of Machine Learning, 5, 1287–1330.

Chickering, D. M. (2002). Learning equivalence classes of Bayesian-network

structures. The Journal of Machine Learning Research, 2, 445–498.

Cooper, G. F. (1990). The computational complexity of probabilistic inference using

bayesian belief networks. Artificial Intelligence, 42(2-3), 393–405.

doi:10.1016/0004-3702(90)90060-D

Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of

probabilistic networks from data. Machine Learning, 9(4), 309–347.

doi:10.1007/BF00994110

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to

Algorithms (p. 1312). MIT Press; 3rd Revised edition edition.

Cowell, R. G. (2009). Efficient maximum likelihood pedigree reconstruction.

Theoretical Population Biology, 76(4), 285–291. doi:10.1016/j.tpb.2009.09.002

Cussens, J. (2011). Bayesian network learning with cutting planes.

Friedman, N. (1996). Building classifiers using Bayesian networks. Proceedings of

the National Conference on, 1277–1284.

Friedman, N. (1999). Learning Bayesian Network Structure from Massive Datasets  :

The “ Sparse Candidate ” Algorithm. Science, 206–215.

Friedman, N., & Koller, D. (2003). Being Bayesian about network structure. A

Bayesian approach to structure discovery in Bayesian networks. Machine

Learning, 50(1), 95–125.

Bibliography	
 	
 201	

Friedman, N., Murphy, K., & Russell, S. (1998). Learning the Structure of Dynamic

Probabilistic Networks. Science, 139–147.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2003). Bayesian Data

Analysis (Chapman & Hall/CRC Texts in Statistical Science) (p. 696). Chapman

and Hall/CRC.

Getoor, L., & Taskar, B. (2007). Introduction to Statistical Relational Learning (p.

796). MIT Press.

Gillispie, S. B., & Perlman, M. D. (2001). Enumerating Markov equivalence classes

of acyclic digraph models. In Proceedings of the 17th Conference in Uncertainty

in Artificial Intelligence (pp. 171–177). Morgan Kaufmann Publishers Inc.

Heckerman, D. (1996). A Tutorial on Learning With Bayesian Networks,

1995(November).

Heckerman, D., & Chickering, D. M. (1995). Learning Bayesian Networks  : The

Combination of Knowledge and Statistical Data Metrics for Belief Networks.

Machine Learning 20.

Jensen, F. V, & Nielsen, T. D. (2007). Bayesian networks and decision graphs.

Statistics for engineering and information science (second.). Springer Verlag.

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and

techniques.

Koller, D., Friedman, N., Getoor, L., & Taskar, B. (2007). Graphical Models in a

Nutshell. Graphical Models.

Korb, K. B., & Ann E. Nicholson. (2003). Introducing Bayesian Networks. Bayesian

Artificial Intelligence, 29–54.

Krause, P. J. (1998). Learning probabilistic networks. Engineering, 13(1994).

Bibliography	
 	
 202	

Mansinghka, V. K., Kemp, C., Tenenbaum, J. B., & Griffiths, T. L. (2006). Structured

Priors for Structure Learning. In Proceedings of the Twenty-Second Conference

on Uncertainty in Artificial Intelligence (UAI).

Markowetz, F., & Spang, R. (2007). Inferring cellular networks--a review. BMC

Bioinformatics, 8 Suppl 6, S5. doi:10.1186/1471-2105-8-S6-S5

Murphy, K. P. (2001). An introduction to graphical models, (May), 1–19.

Nilsson, N. J. (2005). INTRODUCTION TO MACHINE LEARNING AN EARLY

DRAFT OF A PROPOSED TEXTBOOK Department of Computer Science.

Machine Learning.

Richard E. Neapolitan. (2004). Learning Bayesian Networks.

Russell, S., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach (third

edit.). prentice hell.

Sheehan, N. A., & Egeland, T. (2007). Structured Incorporation of Prior Information

in Relationship Identification Problems. Annals of Human Genetics, 71(4), 501–

518.

Silander, T., Kontkanen, P., & Myllymäki, P. (2007). On sensitivity of the MAP

Bayesian network structure to the equivalent sample size parameter. In

Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence (pp.

360–367). Citeseer.

Silander, T., & Myllymäki, P. (2006). A simple approach for finding the globally

optimal Bayesian network structure. Networks.

Tsamardinos, I., Brown, L. E., & Aliferis, C. F. (2006). The max-min hill-climbing

Bayesian network structure learning algorithm. Machine Learning, 65(1), 31–78.

doi:10.1007/s10994-006-6889-7

Bibliography	
 	
 203	

Werhli, A., & Husmeier, D. (2007). Reconstructing gene regulatory networks with

Bayesian networks by combining expression data with multiple sources of prior

knowledge. Statistical Applications in Genetics and Molecular Biology, 6(1),

Art. 15.

