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Abstract

This thesis involves the development of a technique to improve our understanding of

the impact of global effects on linear microinstabilities. The technique combines local

ballooning solutions with higher order theory to reconstruct the global eigenmode

structure and associated global eigenvalue. In this work, the theory of 2D ballooning

eigenmodes has been extended beyond the two limits of highly unstable isolated

modes, which often sit on the outboard mid-plane, and less unstable general modes

that peak on the top or bottom of the tokamak. Our generalised solutions can

account for global modes with arbitrary poloidal positions which, in turn, enables us

to explore experimentally relevant regimes with arbitrary equilibria.

Furthermore, using a generally applicable gyrokinetic plasma model, the global

mode structures of the ion temperature gradient (ITG) driven microinstability have

been reconstructed directly from the local gyrokinetic code, GS2. Using CYCLONE

base case parameters with the circular Miller equilibrium model we benchmark our

calculation against direct global gyrokinetic simulations. Introducing a radially vary-

ing profile for the mode drive that peaks about a reference rational surface xs = 0,

while holding other profiles constant, leads to a highly unstable isolated mode. The

effect of the other equilibrium profiles is found to be stabilising. However, rota-

tional flow shear introduced via a Doppler shift in the real local frequency, i.e

ω0 → ω0 + nq′γExs, where n is the toroidal mode number and γE represents the

strength of the flow shear, can cancel the influence of the other profile variations

and, for a critical value of flow shear, a highly unstable isolated mode can be cap-

tured again.

Finally, for an equilibrium that exhibits an isolated mode, we have also inves-

tigated the effect of the flux surface shaping through elongation κ̄ and triangularity

δ̄. Our simulations indicate that, depending on the value of κ̄ and δ̄, the effect of

shaping can be both stabilising and destabilising.
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Chapter 1

Introduction

The main purpose behind the fusion energy programme is to provide a safe, reliable

and clean source of energy. Fusion is a nuclear process where light nuclei combine to

produce heavier nuclei, releasing a large amount of energy. One of the main challenges

for fusion is the issue of confinement. There are two main approaches to confining

hot plasma in the laboratory; inertial and magnetic confinement. Here we will con-

centrate on magnetic confinement fusion (MCF). Owing to its high reaction rate and

the fact that it takes place at a relatively low temperature, the deuterium-tritium

(D − T ) reaction is currently the most favourable reaction for energy production in

laboratories. The main goal of MCF is to confine hot fusion plasma for a sufficiently

long enough time to achieve an energy gain. The condition to achieve this goal has

been obtained by Lawson in the 1950’s [1]. For the D − T reaction at the optimal

temperature, in the range 10− 20 keV, the ignition condition reads [2]:

npTτE > 3× 1021m−3 keVs, (1.1)

where np, T and τE are the plasma density, temperature and confinement time, re-

spectively. It should be noted that, for a typicalD−T tokamak plasma, n ≈ 1020m−3

and T ≈ 10 keV, it follows from Eq. (1.1) that to achieve ignition the plasma needs

to have a confinement time of ∼ few seconds. This confinement time is controlled by

diffusion of heat and particles across flux surfaces. There are different mechanisms
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for this transport, but the main contribution is typically due to turbulent transport.

This transport impacts the minimum size of fusion reactors, ITER and DEMO for

example [3], which in turn is a key factor in achieving the important goal of ignition.

Low frequency, fine scale microinstabilities, driven by gradients in the equilibrium

plasma parameters like density and temperature are believed to be the main source

for the turbulent transport. The so-called “drift” modes are known to be the dom-

inant type of microinstability in typical MCF experiments [2, 4] and hence, it is

crucial to understand these modes and find a way to reduce their effects. In spite

of the fact that our understanding of turbulent transport from experimental, com-

putational and theoretical points of view has been greatly improved over the past

few decades, there are still unsolved problems in this area. Among the most inter-

esting subjects, which have attracted the attention of the MCF community, are the

impact of global effects, such as plasma profile variations. Previous theoretical and

numerical studies have shown that flow shear can suppress the drift waves or even

stabilise them completely [5–11]. However, the flow shear, combined with the effect

of the radial plasma profile variations, can also provide destabilising effects [12, 13].

This thesis is mainly devoted to improving our understanding of the global effects on

linear microinstabilities. However, the linear aspect of the microinstabilities alone

is not sufficient and cannot provide a complete picture of the physical mechanisms

involved in turbulent transport. For example, the saturation of microinstabilities at

a finite amplitude is a non-linear phenomenon. Nevertheless, linear physics plays a

significant role in the development of many simplified, yet valuable plasma models,

e.g. quasilinear turbulent transport models in tokamaks [14]. It is, therefore, of con-

siderable importance to understand the stability and structure of linear instabilities.

There exist many different models to investigate microinstabilities numerically, but

here we mainly rely on the gyrokinetic equation [15–17]. Its solution can involve

several different approaches, which we now discuss.

For an axisymmetric tokamak plasma, the gyrokinetic equation describing linear

microinstabilities is usually reduced to a 2D eigenmode equation in radius, r, and

poloidal angle, θ. A full solution to this 2D problem corresponds to a global solution
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which provides the global mode structure, φ̃(r, θ) with associated global eigenvalue,

Ω. However, for high toroidal mode numbers, n � 1, the distance between neigh-

bouring rational surfaces, ∆r, becomes very small compared to the equilibrium scale

length, L. Exploiting the small parameter ∆r/L � 1, one can expand, using a

WKB perturbation technique, to reduce the 2D global eigenmode into a sequence of

an infinite number of solutions. The leading order solutions correspond to the local

or ballooning theory [18–21]. At this order adjacent rational flux surfaces experience

approximately the same equilibrium quantities and the problem exhibits a so-called

translational invariant (or ballooning) symmetry. Local codes, like the gyrokinetic

GS2 code [21, 22], take advantage of this ballooning symmetry to transform the

intrinsic 2D problem to 1D in the extended ballooning coordinate, η, along the mag-

netic field lines. Local codes only provide the local mode structure, ξ(r, p, θ) with

associated local eigenvalue, Ω0(r, p), where, both r and ballooning angle, p, are free

parameters at this order. However, taking into account the higher order terms in the

∆r/L expansion, the eigenfunction’s dependence on r and p is constrained and one

can reconstruct both φ̃(r, θ) and Ω. Exploiting the higher order ballooning theory

to investigate the global properties, for a simplified fluid model of ion temperature

gradient (ITG) modes, has been previously employed and used in Ref [5]. This thesis

extends this to demonstrate that the formalism can be applied to study more realistic

gyrokinetic plasma models.

An important result from previously studied higher order ballooning theory

calculations is that for a very special set of plasma equilibrium profiles a highly

unstable isolated mode can exist at a particular rational surface on which Ω0(r, p)

is stationary [19]. This type of mode was originally studied in the context of ideal

MHD theory [23, 24] and often sits on the outboard mid-plane, where θ = 0 [5].

The associated global complex mode frequency, Ω, is related to Ω0(r, p) according to

Ω = Max[Ω0(r, p)] +O(1/n), which includes an O(1/n) correction to the local value

evaluated at the maximally unstable r and p. A second class of mode, known as

the “general mode”, has also been predicted from the higher order ballooning theory

[18, 19, 25, 26]. These modes are usually peaked at the top or bottom of the plasma
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and have a reduced growth rate compared to the isolated mode. More usually in

realistic experimental situations, the global modes can sit anywhere in the poloidal

plane [13, 27, 28]. To account for these modes, in this thesis the analytical solutions

have been extended beyond these two limits, such that both isolated and general

modes can be considered as two special limits of our new generalised solution. We

also point out that local gyrokinetic simulations alone cannot distinguish between

isolated and non-isolated modes, but, taking into account the radial variation of

equilibrium profiles, both type of modes can be captured in global gyrokinetic sim-

ulations. For example, global simulations of linear electrostatic ITG modes in both

ASDEX Upgrade (AUG) plasmas [29] and the CYCLONE base case [12, 13], are

found to be poloidaly shifted with respect to the outboard mid-plane. The method-

ology and analytical theory presented in this work can provide greater insight into

the mechanisms underlying the symmetry breaking associated with the generalised

modes. Such poloidal symmetry breaking is important and could be very helpful in

generating flow shear in tokamaks [27, 30–32], especially in a machine like ITER for

which the external torque is small.

Furthermore, shaping of the magnetic flux surfaces, specified by the elonga-

tion κ̄ and triangularity δ̄, can provide stabilising effects on the microinstabilities.

However, this is a topic of current research and has not yet been well understood.

For example, in the TCV experiment with L-mode confinement, the electron heat

transport decreases with negative triangularity [33]. This trend is reversed in the

H-mode confinement in AUG and JET tokamaks, where increasing positive trian-

gularity improves the confinement [34, 35]. On the other hand, the elongation has

both stabilising and destabilising effects on the linear ITG modes [36–38], depend-

ing on plasma parameters. In addition, non-linear gyrokinetic simulations have also

reported the stabilising effects of the elongation on the edge turbulent electron trans-

port in tokamaks [39] and on the electron and ion heat fluxes [38]. In this thesis,

considering the highly unstable isolated modes, the combined effect of both κ̄ and δ̄

on the linear electrostatic ITG modes in tokamak plasmas has been investigated and

both stabilising and destabilising trends have been observed. Finally, we note that
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while non-linear simulations are necessary for a complete understanding of turbu-

lence and flows in plasmas, linear theory provides a picture of the important physical

mechanisms. The technique we present here is an alternative approach to full global

simulations that uses an efficient formalism to shed light on the key linear physics.

This work is organised as follows. In Chapter 2 we discuss the basics of magnetic

confinement fusion and shed light on different mechanisms that lead to cross-field

transport of both particle and energy towards the outside of the confinement region.

In Chapter 3, different models, often used to investigate drift waves, are introduced

and used to gain some insight into the physics of both the electron drift wave and

ion temperature gradient mode. This Chapter ends with the gyrokinetic model

and briefly presents the local and global approaches used to solve the gyrokinetic

equations. Chapter 4 is devoted to discussing ballooning theory, together with the

theoretical formalism on which this thesis is based. This formalism describes how to

obtain the global mode structure from solutions to the local equation by combining

them with the higher order ballooning theory. In Chapter 5, in addition to previously

available analytical solutions, we present new generalised analytic solutions. Chapter

6 is dedicated to applying the local gyrokinetic code, GS2, along with the higher order

ballooning theory, to investigate the effects of profile variations and flux surface

shaping on the global properties of ITG modes in tokamaks and benchmark our

results against global gyrokinetic simulations. Finally, Chapter 7 summarises our

conclusions, and plans for future work.
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Chapter 2

Magnetic Confinement Fusion

The worldwide demand for a new and clean source of energy is increasing at an

alarming rate. Fusion energy is among the best candidates for this role. Despite the

fact that significant progress has been made from both theoretical and experimental

points of view over the last few decades, there are still challenges that scientists have

to face on their way to achieve their ultimate goal. The scientific research in fusion

laboratories is divided into two main categories: Inertial and magnetic confinement

fusion. In this chapter we will discuss different magnetic confinement geometries

together with the various transport mechanisms responsible for the loss of particles

and energy.

2.1 The Global Energy Crisis

Energy is a fundamental quantity that exists throughout the entire universe. Energy

can be simply defined as ability to do work; no energy means no work, therefore the

world of economy completely depends on energy. According to the first law of ther-

modynamics, energy, can neither be created nor destroyed, but can be transformed

from one form to another. This law, however, does not account for the fact that all

the natural processes take place with a preferred direction, for example heat readily

goes from warm bodies to cold ones, but the reverse cannot happen spontaneously.

27



This leads to a so-called second law of thermodynamics. It states that a complete

conversion of heat energy to work is impossible, or equivalently there is no machine

that could work with 100% efficiency. Formulation and understanding of these laws

of thermodynamics, especially recognising heat as a form of energy, marked a new

era and start of technological development, driving the industrial revolution, and,

to some extent, revolutionising the history of mankind on the planet [40]. Since

then we have started using different forms of energy resource, at an ever accelerating

rate. For example car engines convert chemical energy into kinetic energy; poten-

tial energy stored in water behind dams can be transformed into electrical energy,

etc. In general the energy resources available on our planet, can be divided into the

following main forms [41]:

1. Non-renewable sources: “Fossil fuels”, like coal, oil, gas, etc.

2. Renewable sources: Solar, wind, tides, waves, geothermal, etc.

3. Nuclear sources: Fission and Fusion.

Burning fossil fuels usually releases carbon and sulphur dioxide into the atmosphere,

polluting the environment and causing so called global warming [42] and acid rain,

respectively. These type of resources are not renewable and will finally get exhausted.

In contrast, renewable energy is sustainable and, therefore, it will never become fully

exhausted. They do not contribute to global warming or greenhouse effects. How-

ever, it is difficult to produce the same amount of electrical energy compared to

that generated by conventional fossil fuel generators. In addition, the weather is a

major source for renewable energy and therefore it cannot be predictable and con-

sistent. As a result the current renewable energy technology is far more expensive

compared to conventional fossil fuel power generation. For these reasons, most de-

veloped countries still depend mainly on “fossil fuels”, especially oil, gas and coal,

for their energy needs. Furthermore, due to the current size and dramatic growth

of the world population, the consumption of the current energy resources together

with the demand for more energy production are increasing at an alarming rate. The
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Figure 2.1: The global energy consumption, in unit of KTWh per year, for different
energy resources [43]. Each colour corresponds to a particular energy resource. Note
that the most consumed energy resources are mainly due to “fossil fuel” and especially
coal, gas or oil.

energy crisis, once we run out of our current energy resources, will soon, regardless of

our origins and political views, become an unavoidable challenge for each and every

single country in the entire globe. Figure 2.1 shows the global energy consumption,

in terms of kilo-tera Watt hours per year, for various energy sources. It delivers a

simple message, which we all know - the end of our current energy resources may

lead to the collapse of our industrial civilization.

If we are serious and concerned about the accumulation of atmospheric carbon

dioxide, climate change, the end of “fossil fuels” resources, and want to fulfil the

energy needs of our industrial civilization as well as meet the aspirations of developing

countries, we must then encourage and accelerate the development of alternative

sources of energy. Renewable energy sources, e.g solar and wind, should be advanced,

but unfortunately they can only partially contribute to the energy needs of a growing

economic and industrial civilization. Both fission and fusion nuclear reactions could

provide reliable and clean sources of energy that we can exploit to address the energy

crisis. Although, due to the confinement problem, we have not yet been able to build

a commercial fusion reactor. Nevertheless, as we will discuss in the following section,
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Figure 2.2: The average binding energy per nucleon (MeV ) as a function of atomic
mass number, A [44, 45]. Iron 56

26Fe is the most stable nucleus. The larger nuclei,
like 238

92 U , split into smaller ones and release energy via nuclear fission. Lighter nuclei,
like hydrogen isotopes deuterium 2

1H and tritium 3
2H, can combine together to make a

heavier helium, 4
2He, nucleus with a neutron, and releasing a huge amount of energy

through the process of nuclear fusion.

there are some crucial points that make fusion an attractive option.

2.2 Nuclear Fusion vs Nuclear Fission

Nuclear fission and fusion are two complementary processes, in which huge amounts

of energy are released. Fission can be defined as the process of splitting a large

atomic nucleus into smaller nuclei. Fusion on the other hand takes place by fusing

two or more small atomic nuclei to produce bigger ones. In both cases we end up with

a little bit less mass than we started with. That missing mass, M , is converted to

energy according to Einstein’s famous energy-mass relation, En = Mc2. Figure 2.2

shows the binding energy for some nuclei as a function of mass number, A. The
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higher the binding energy per nucleon the more stable the correspond nucleus is.

The medium size iron, 56
26Fe, nucleus is the most stable. It is clear from the figure

that the nuclei can go toward iron by releasing some of their binding energy.

Using fission to produce energy in power stations is free of carbon dioxide, but

this does not mean it is a completely clean source of energy. There are long-lived,

undesirable radioactive waste products associated with nuclear fission. In addition,

fission reactors require active safety systems to avoid accidents like Chernobyl and

Fukushima. In contrast, fusion is a better source of energy. It is free of carbon dioxide

and does not produce any long lived radioactive waste. It is safe, has compact power

units and has effectively inexhaustible fuel [46, 47]. Therefore, fusion is a promising

and sustainable solution to address the future energy crisis. But, unfortunately fusion

is very hard to achieve. We have pursued economic fusion power for more than a

half century and despite the fact that we have made remarkable progresses, we do

not yet have an operational fusion reactor. The fusion reaction is the fundamental

source of energy that powers the stars throughout the entire universe. It is the same

reaction that continuously provides us with an enormous amount of energy from the

sun. The strong gravitation force in the sun creates a very high pressure in the

core and raises its temperature to about 15 million degrees Celsius. This creates the

conditions required to fuse hydrogen nuclei together, producing helium and releasing

energy. A different approach to fusion on earth must be adopted. This is to heat a

relatively low density fusion fuel to the optimum temperature of about 150 million

degrees Celsius. The possible candidate reactions for fusion energy on earth are the

following [2, 48, 49]:

2
1H + 2

1H −→3
2He+

1
0n+ 3.27MeV (50%)

or 3
1H + 1

1p+ 4.03MeV (50%)

(2.1)

2
1H + 3

2He −→ 4
2He+

1
1p+ 18.35MeV (2.2)

2
1H + 3

1H −→ 4
2He+

1
0n+ 17.59MeV (2.3)
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where 1
1p and 1

0n refer to proton and neutron, respectively. Currently, the most

favorable and efficient reaction in laboratories is the fusion between two hydrogen

isotopes Deuterium, D or 2
1H, and tritium, T or 3

1H. As can be seen in Figure 2.3, this

reaction has a higher reaction rate and occurs at a relatively lower temperature, com-

pared to other reactions like Deuterium-Deuterium, D−D, and Deuterium-Helium3,

D − He3. Deuterium is a safe, widely available and virtually inexhaustible fusion

fuel. It can be recovered easily from all forms of water. Tritium, on the other hand,

is a fast-decaying radioactive isotope of Hydrogen, which decays to helium3, 3
2He,

an electron, 0
−1e, and an electron-neutrino, 0

0νe, according to the following β-decay:

3
1H −→ 3

2He+
0

−1e+
0
0νe (2.4)

It has a half-life of about 12 years and only occurs in very small quantities in nature.

However, tritium can be produced via interaction of the neutrons that escape from

the D − T reaction in Eq. (2.3) with lithium contained in a breeding blanket of the

fusion reactor:

1
0n+ 6Li −→ 4

2He+
3
1H + 4.8MeV (2.5)

1
0n+ 7Li −→ 4

2He+
3
1H + 1

0n− 2.5MeV (2.6)

It should be noted that, due to the production of a secondary neutron, reaction 2.6

is practically more preferable. It does not consume neutrons and can be used as a

self-sufficient reaction for tritium production in the blanket wall of fusion reactors.

In order to achieve nuclear fusion in laboratories, we first need to overcome the

electrostatic or Coulomb repulsion between the positively charged protons inside the

nuclei. To do that both nuclei are accelerated to a very large speed. We know that,

at thermal equilibrium, the average speed of the constituent particles of any medium

is directly proportional to the square root of the temperature of that medium. Thus,

for nuclear fusion to take place, for example for the D − T reaction, a very high

temperature of about 100 million degrees Celsius is required. It is clear that at this

temperature the atoms are stripped of their electrons; a new state is produced that
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Figure 2.3: Reaction rate for three different fusion reactions between hydrogen iso-
topes as a function of temperature [50]. Note that, the D−T curve peaks at relatively
lower temperature with higher reaction rate compared to the other reactions.

contains both negatively and positively charged particles, which is called plasma.

In general there are two main obstacles that make fusion energy costly and

challenging to achieve:

1. Achieving the high temperature at which the fusion reaction takes place

2. Containing the hot plasma (fusion medium)

Obtaining the high temperatures is challenging but feasible. There are three main

heating mechanisms that can be employed on fusion reactors [51–53]. These are,

ohmic heating, electromagnetic waves (Electron Cyclotron Resonance Heating ECRH

and Ion Cyclotron Resonance Heating ICRH), and finally neutral beam injection

NBI. Each of these methods can be used simultaneously in a complementary manner

to achieve the desired temperature. However, unfortunately, any contact between the

material wall of the container and the hot plasma can cause damage to the container

and introduces impurities into the plasma that extinguish the fusion reaction. In the

following we discuss different magnetic geometries that can be used to hold the hot
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plasma away from the material wall.

2.3 Plasma inside Electromagnetic Fields

Plasma is a collection of positively and negatively charged particles. Therefore, it

can support electric currents and interact with electromagnetic fields. The equation

of motion for a charged particle under the influence of electric E(r, t) and magnetic

B(r, t) fields, with charge qj, mass Mj and velocity v, is governed by the Lorentz

equation:

r̈ = v̇ =
qj
Mj

(E(r, t) + v ×B(r, t)) (2.7)

where r refers to the particle’s position vector. Here, the subscript j = e, i corre-

sponds to the electron, e, and ion, i, species, respectively. In the following we shall

use this equation to investigate the behaviour of a test charge particle in given ex-

ternal electromagnetic fields. This provides important insights into the physics of

magnetic confinement fusion. Let us start with the simplest possible case, which is

to assume that E = 0 and B is constant. It then follows from Eq. (2.7) that the

component of the Lorentz force parallel to the background magnetic field is zero;

therefore, the particle moves at constant speed along the magnetic field lines. The

perpendicular velocity component, however, restricts the particle motion to a heli-

cal path about the magnetic field lines with a particular frequency ωcj (called the

cyclotron frequency) and radius ρcj (called the gyro or Larmor radius):

ωcj =
qjB

Mj

b̂ (2.8)

ρ
cj
=

Mj

qjB

(
v × b̂

)
(2.9)

where b̂ is a unit vector along the magnetic field lines and B = |B|. However, taking

into account the effect of other forces, such as F = qjE in Eq. (2.7), in general,

leads to the so-called drift of the charged particles across the magnetic field lines.

Decomposing the particle position r into the gyroradius vector ρ
cj

and the guiding
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centre position Rc, then solving Eq. (2.7) for Rc we have [54–57]:

Ṙc = v||b̂+
F⊥ ×B

qjB2
(2.10)

The first term on the right hand side leads to a parallel flow without any acceleration.

The second term, however, describes a perpendicular particle drift that, in general,

depends on both mass and charge of the particles. If the force is independent of

charge, this leads to opposing drifts for unlike charged particles and in turn a net

current inside the plasma. However, for a constant electric field we have F = qjE

and the perpendicular drift is reduced to

vE×B =
E⊥ ×B

B2
(2.11)

This is called the E × B drift. It does not depend on mass or the charge of the

particles. Therefore, it has the same direction and magnitude for both ions and

electrons, such that it generates a net plasma flow but not a current. Based on this

simple picture of charged particle interactions with the electromagnetic fields, it can

be easily seen that magnetic fields in a particular shape or geometry, can be used to

confine hot fusion plasmas and avoid contact with the wall of the container. It should

be noted that the plasma confinement inside a bounded volume can be achieved only

inside inhomogeneous magnetic fields. In the following, different magnetic geometries

to confine plasmas and the associated drifts that come about due to magnetic field

inhomogeneities, are considered.

2.3.1 Linear Confinement: Particle Trapping

In a slowly varying magnetic field, such that the gyroradius is small compared to the

magnetic field inhomogeneity scale length, the so-called magnetic moment,

µj =
Mjv

2
⊥

2B
(2.12)

is a conserved quantity of the particle motion. This plays an important role in one

of the first schemes for plasma confinement, namely the magnetic mirror [55]. A

magnetic mirror occurs in an inhomogeneous field whose magnitude varies parallel
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to the field direction. Such a magnetic field configuration is depicted in Figure 2.4

(a). The physical consequence for such a field is a parallel force which is given by

F || = −µj∇||B (2.13)

This force does not change the particle total energy, En, so that

En =
Mjv

2

2
=
Mjv

2
||

2
+
Mjv

2
⊥

2
(2.14)

is also a conserved quantity, but this conservation mean v|| is converted to v⊥ and

it can reflect particles when v|| is reduced to 0. It is possible for a charged particle,

that is introduced into the central region of the mirror, to be reflected at the ends

where the magnetic field is stronger. If we assume that B` and Bh are the magnetic

fields at the centre and the throats of the mirror, respectively, from Eq. (2.14) we

have

v||h = ±
√
v2||` + v2⊥` − v2⊥h (2.15)

where, v|| and v⊥, respectively, refer to the parallel and perpendicular components of

the velocity vector v with respect to the magnetic field B. Eq. (2.15) indicates that

in regions where v2||` + v2⊥` > v2⊥h the charged particles can drift in either directions

parallel or anti-parallel with respect to the magnetic field lines. In contrast, in regions

where v2||` + v2⊥` < v2⊥h the particle velocity is imaginary and, hence, the particles

must reverse their directions. Thus, from Eq. (2.15) we have confinement when

v2||` + v2⊥` ≤ v2⊥h (2.16)

since v2||h = 0 at or before the mirror throat, and the particle is reflected back towards

the centre. Here, the location where v2||h = 0 corresponds to the mirror (or bounce)

point. Turning now to Eq. (2.12), conservation of the magnetic moment yields

v2⊥h = v2⊥`
Bh

B`

(2.17)
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Figure 2.4: (a) The mirror magnetic configuration and (b) the associated loss cone
distribution

Upon substituting this equation into Eq. (2.16), it follows that particles are only

confined by the magnetic mirror when the following condition is satisfied.

v||` ≤ v⊥`

√
Bh

B`

− 1 (2.18)

This defines a cone in velocity space such as that shown in Figure 2.4 (b). Those

particles that fall into the loss cone are not trapped and can escape from both ends

of the mirror. If the interactions between particles is disregarded the rest of the

charged particles would be trapped. However, certain types of plasma instabilities,

as well as Coulomb collisions between the charged particles, can scatter the initially

trapped particles into the loss cone region and in turn all of the plasma eventually

escapes. Therefore, magnetic mirror machines are not particularly successful devices

for plasma confinement. A solution to this problem is to connect both ends to form a

closed toroidal magnetic geometry, which is the subject of the following subsection.

2.3.2 Toroidal Confinement

The problem of end losses in magnetic mirror configurations can be overcome by

connecting both ends to form a closed geometry in so-called toroidal systems. In

such configurations, the magnetic field lines are curved and the magnetic field is

stronger on the inboard side compared to the outboard side such that the magnetic

gradient points towards the axis of the torus (see Figure 2.5). The curvature of the

field lines together with the magnetic field gradient leads to a particle drift across
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Figure 2.5: Particle drift inside a pure toroidal magnetic field

the magnetic field lines according to the following formula [55]:

vcr + v∇B =
Mj

qjB3

(
v2|| +

1

2
v2⊥

)
B ×∇B (2.19)

It should be noted that this gives rise to drifts that are in opposite directions for

oppositely charged particles. The ions and electrons drift upward and downward,

respectively, such that a space charge electric field attempts to build inside the

system. This creates a vertical electric field which in turn, according to the E×B of

Eq. (2.11), pushes all of the particles toward the outside of the confinement region.

Therefore, confinement in pure toroidal fields is not sufficient for fusion.

The way around the problem of cross-field drifts is to introduce a poloidal com-

ponent to the magnetic field. The resultant magnetic field is now twisted around

the minor axis to follow helical paths and map out surfaces called magnetic flux sur-

faces. A charged particle that follows these helical field lines has no net cross-field

drift and in turn averages out the vertical electric field that otherwise causes loss

of confinement. The poloidal field component can be created in two different ways;

either through a set of external helical coils such as in stellarators [58, 59], or by

inducing a toroidal electric current through the plasma which leads to a so-called

tokamak [2, 58, 60]. They both have advantages and disadvantages over each other.

For example, due to the absence of toroidally induced currents, steady state opera-

tion is readily possible in stellarators and current-driven instabilities can be reduced.

On the other hand, the magnetic topology in stellarators are inherently three dimen-

sional and technical complications in the construction of coil systems is among the
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Figure 2.6: Magnetic configuration and field strength for a tokamak in a cylindrical
polar coordinate system (R, Z, ϕ), introducing some key geometrical variables.

disadvantages of stellarators compared to the axisymmetric tokamaks. Stellarators

are beyond the scope of this thesis, but more details on stellarators can be found in

Refs [58, 59]. Currently, tokamaks are the main approach in which most effort has

been invested. For example the next generation of fusion devices, such as ITER, are

planned based on the tokamak principles, although there is a large stellarator, Wen-

delstein 7-X, approaching completion in Germany [61, and the references therein].

In tokamaks, the pitch angle of the magnetic field lines is defined by a quantity

called the safety factor q. A useful description of their magnetic topology, as shown

in Figure 2.6, is provided by the cylindrical polar coordinates (R, Z, ϕ), in which

the pitch angle can be represented by:

d`ϕ
d`θ

=
Rdϕ

rdθ
=
Bϕ

Bθ

(2.20)

where, d` = d`θêθ + d`ϕêϕ is an incremental distance along the magnetic field line

and êθ and êϕ are the poloidal and toroidal unit vectors, respectively. We can now

rearrange Eq. (2.20) to get:

dϕ

dθ
=
rBϕ

RBθ

= q(r) (2.21)
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Upon integrating we find

θ =
1

q(r)
ϕ+ θ̄ (2.22)

where θ̄ represents the constant of integration. From Eq. (2.22), it is obvious that

for a single toroidal turn, i.e. ϕ = 2π, a field line undergoes 1/q poloidal turns.

Based on the above definition for the safety factor, two different types of magnetic

flux surfaces can be identified, namely rational and irrational flux surfaces. On the

rational surfaces, the safety factor has rational values, i.e. q = m/n, and the field

lines are closed upon themselves after m toroidal and n poloidal turns. Contrary

to this, field lines on irrational surfaces never close upon themselves and eventually

cover the whole toroidal magnetic flux surface. The safety factor, in general, varies

from one flux surface to the next, such that its radial variation is characterized by

the magnetic shear:

ŝ =
r

q

dq

dr
(2.23)

We now turn to discuss the particle drifts. As shown in Figure 2.6 the magnetic

field is stronger in the inboard side compared to the outboard side, which leads to a

magnetic field variation approximately of the form

B ∝ 1

R
(2.24)

where R is the major radius coordinate which is related to the minor radius r and

the major radius R0 of a toroidal flux surface according to

R = R0(1 + ε cos θ) (2.25)

with, ε = r/R0 is called the inverse aspect ratio. Substituting Eq. (2.25) into

Eq. (2.24), assuming that ε� 1, a binomial expansion to leading order in ε gives

B ≈ B̄

(
1− ε cos θ

1− ε

)
(2.26)

where, the normalisation is chosen such that B̄ corresponds to the minimum value of

the field strength on the outboard mid-plane (θ = 0). Similar to the magnetic mirror

discussed in the previous subsection, a particle that enters at θ = 0 on the low field
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side of the tokamak can be reflected when moving towards the inboard side of the

tokamak where the field is stronger. Substituting Eq. (2.26) into Eq. (2.17), assuming

that B̄ = B` at θ = 0, and then substituting Eq. (2.17) back into Eq. (2.14), we

finally have

v2||
v2

= 1− v2⊥`
v2

(
1− ε cos θ

1− ε

)
(2.27)

where v⊥` is the perpendicular particle speed at θ = 0. We can further simplify this

equation by binomial expansion of 1/(1− ε) to leading order in ε:

v2||
v2

= 1− v2⊥`
v2

[1 + ε(1− cos θ)] (2.28)

It follows from this equation that, a particle is said to be trapped if v2|| ≤ 0 at θ = π.

This in turn leads to the following condition for the trapped particles;

v2⊥`
v2

[1 + 2ε] ≥ 1 (2.29)

At this point we apply conservation of energy to write v2 = v2||` + v2⊥`. Substituting

this into Eq. (2.29) we get

v||`
v⊥`

≤
√
2ε (2.30)

From this equation we can also determine the fraction of the trapped particles ft as

follows

ft =
√
2ε (2.31)

Finally, it should be noted that trapped particles cannot complete a full turn

all the way around the torus, but rather oscillate back and forth between the mirror

(or bounce) points. Furthermore, due to the magnetic gradient and curvature drifts,

these particles do not stay on the flux surface, but drift across the flux surface such

that, as can be seen in Figure 2.6, the poloidal cross-section of their orbit is called

a banana orbit. The study of the consequence of these special orbits leads to the

neoclassical theory [62, 63], which is important in explaining the baseline energy and

particle cross field transport.
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2.4 Plasma Cross-field Transport

Confinement in toroidal devices is not perfect. There are different mechanisms by

which energy and particles can transport across the magnetic flux surfaces and out

of the confinement region. Transport in toroidal systems can be divided into three

major types; classical, neoclassical and anomalous (or turbulent) transport [2, 52,

62–64]. In classical theory, the collisions between the charged particles via the long

range Coulomb force is considered to be the mechanism for energy and particle

transport. To quantify the Coulomb collision effects, we consider a so-called Lorentz

model, in which we assume the motion of light “electrons” through a “background” of

infinitely massive ions. Without going into the calculation, the collisional frequency

νei is calculated and written as follow [55]:

νei =
πnee

4

(4πε0)2
√
Me

√
(kBTe)3

ln Λ (2.32)

where, ne,Me, Te and kB are the electron density, electron mass, electron temperature

and Boltzmann constant, respectively. Finally, the “Coulomb logarithm” contains,

the factor, Λ, where

Λ = 12πneλ
3
D (2.33)

This is attributed to the so called Debye shielding that cuts off the electric field of

the interacting particles over a distance that is long compared to the Debye length

λD =
√

ε0kBTe
nee2

. The above discussion of Coulomb collisions is sufficient for our

purpose, but for a more realistic model, in which the background ions are also allowed

to move, Refs [63, 65] provide more details. Moreover, for a high temperature fusion

plasma charged particles do not usually suffer large angle scatterings between two

particle collisions. Instead, a charged particle is gradually deflected by the long range

Coulomb-force collectively generated by the background charged particles. These

collisions lead to the transport of electrons and ions across the magnetic field lines.

If we now treat this cross-field transport of an electron as a random walk process,
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we then see that after N̄ steps the electron has moved [66, 67]

d =
√
N̄ρce =

√
t

τei
ρce =

√
ρ2ce
τei
t =

√
Dc`t (2.34)

where, τei = 1/νei and t are the time between collisions after one and after N̄

collisions, respectively. The classical diffusion coefficient Dc` is given by

Dc` =
ρ2ce
τei

(2.35)

Here, the electron Larmor radius ρce is considered to be the diffusion step size. Based

on this simple theory, an order of magnitude estimate can then be performed to cal-

culate how far an electron can travel across the field lines in one second. To do that,

we start by recalling from Eq. (2.9) and assume that v = vth ∼
√

kBTe
Me

, where vth is

the thermal speed of the electron. For np = 1020m−3, B = 1 Tesla and Te = 10KeV ,

after one second a typical electron can travel a distance d ∼ 1− 2cm. We also know

that due to the so-called ambipolar nature of the diffusion in plasmas, ions move the

same distance as electrons1. It should be also noted that the particles carry energy

as they are transported. Due to their large mass compared to electrons, ion-ion

collisions are considered as the main classical mechanism for the energy cross-field

transport. Considering the ion-ion collisions in the above calculations, it can be

easily calculated that, in one second energy can be transported by approximately

10 − 20 cm. Based on this simple picture of the particle collisions, it then follows

from Eq. (1.1) that, using the above values for np and T , a fusion reactor of few ×10

cm in diameter can achieve ignition, which led to an early design for a fusion reactor

[68].

However, the level of transport that has been measured in laboratory devices

was found to be larger by orders of magnitude than predicted by classical theory. We

can understand this if we first consider the effect of the toroidal magnetic geometry

in confining a group of particles (trapped particles) to the low magnetic field regions

on the outboard side of the tokamak plasmas. The study of these particles leads

to neoclassical theory. As we have seen in the previous section, the projection of

1Note that, collisions between identical particles do not contribute to particle transport.
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the trapped particle trajectories onto the poloidal cross section forms a banana like

orbit. Here, the radial step size for the particle diffusion is the width of the banana

orbits δb [59, 69],

δb ∼
q√
ε
ρc (2.36)

which is larger than the Larmor radius ρc. The corresponding diffusion coefficient

Db in the low collisionality (or banana) regime is estimated to be

Db ∼ q2ε−
3
2
ρ2c
τ

(2.37)

Note that we have dropped the subscript e, such that the above two equations can

be used for both electron and ion species. It follows from Eq. (2.37) that, the level

of particle transport is larger by a factor of q2ε−
3
2 than that presented in Eq. (2.35)

which is based on the classical theory. This in turn implies that, in order to satisfy

Eq. (1.1), we need to build larger fusion reactors compared to those based solely on

the predictions of classical theory.

Finally, even neoclassical theory cannot account for the high transport losses

observed in toroidal devices [70, 71]. The major contribution to this transport is

due to turbulent fluctuations in plasma parameters such as density, temperature,

magnetic and electrostatic field. The associated transport is called anomalous (or

turbulent) transport. The main source for this transport is believed to be due to the

microinstabilities [2, 72]. These are fine scale instabilities that involve the growth

of small-scale waves, such that they do not generate a bulk motion of the plasmas,

but degrade the plasma confinement by enhancing the level of the fluctuations which

in turn increases the diffusion of heat and particles across the magnetic field lines.

Therefore, it is of great importance to understand the driving mechanisms underlying

the microinstabilities and find a way to suppress or eliminate them completely. This

would allow the development of more efficient fusion reactors. The research described

in this thesis aims to advance our understanding of microinstabilities in tokamak

plasmas, which is a key ingredient in understanding turbulent transport.
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Chapter 3

Theoretical Background:

Microinstabilities

The main source of turbulent transport is believed to be due to fine scale instabilities,

namely microinstabilities [2, 72]. It is also well known that the drift-waves [4, 72, 73]

driven unstable by free energy associated with temperature and density gradients

are often the dominant tokamak microinstabilities. To investigate the structure and

stability of drift waves one needs to couple Maxwell’s equations for the evolution

of the electromagnetic fields to the evolution of charge and current densities, for

which a plasma model is required. There exist many different plasma models. In

the following section the general kinetic equation is briefly discussed, from which

different plasma models such as two fluid and gyrokinetic models can be derived, as

discussed in subsequent subsections.

3.1 Kinetic Equation

Kinetic theory can be used to investigate neutral gas and plasma by describing their

constituent particle motions. Due to the presence of a large number of particles, it is

impossible (except for simple systems) to follow single particle trajectories, instead

a statistical description in terms of the particle distribution function, fj(r, v, t) is
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typically used. Recall from the previous chapter that the subscript j = e, i corre-

sponds to the electron, e, and ion, i, species. The three coordinates r, v, and t refer

to space, velocity and time, respectively. The distribution function contains infor-

mation about the probability to find a particle in a single point of phase space at a

given instant of time. The evolution of fj, is governed by the following equation:

∂fj
∂t

+ v · ∇rfj + a · ∇vfj = C(fj) (3.1)

where, ∇r and ∇v are gradient operators in spatial and velocity spaces, respectively.

This equation is the general kinetic equation that includes physics on all time and

spatial scales of interest to most problems. The left hand side of this equation

describes physics processes that vary smoothly in (r, v) space and is not sensitive to

the discrete-particle nature of the plasma, while the term C(fj) on the right hand

side represents the collisional effects. There are different models commonly adopted

for the collision operator, but none are exact. However, for fully ionized plasmas

where only binary Coulomb collisions are important, the most useful version of the

collisional operator is obtained as follow:

C(fj) = −
∑
α

∂

∂vα
(〈4vα〉fj) +

1

2

∑
α,β

∂2

∂vα∂vβ
(〈4vα 4 vβ〉fj) (3.2)

This is the Fokker-Planck collision operator. Here, 〈4vα〉 is known as the coefficient

of the dynamic friction and 〈4vα 4 vβ〉 is called the diffusion tensor. In a plasma,

the motion of the constituent charged particles is governed by the electromagnetic

fields, such that the acceleration, a = dv/dt, is driven by the Lorentz force Eq. (2.7):

a =
qj
Mj

(E(r, t) + v ×B(r, t)),

Substituting this into equation Eq. (3.1) yields the following equation:

∂fj
∂t

+ v · ∂fj
∂r

+
qj
Mj

(E(r, t) + v ×B(r, t)) · ∂fj
∂v

= C(fj) (3.3)

This equation describes the evolution of fj in the six dimensional phase space, which

depends on the electric field E and magnetic field B, self-consistently modified by
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the plasma particles, and are described by the following set of Maxwell’s equations

∇ · E(r, t) =
ρ(r, t)

ε0
(3.4)

∇ ·B(r, t) = 0 (3.5)

∇× E(r, t) = −∂B(r, t)

∂t
(3.6)

∇×B(r, t) = µ0J(r, t) +
∂E(r, t)

c2∂t
(3.7)

Here, ε0 and µ0 are the electric and magnetic permeabilities of free space, respectively.

The electric charge density, ρ, and current density, J , which are the sources for the

electromagnetic fields, are determined from the distribution functions

ρ(r, t) =
∑
j

qj

∫
fj(r, v, t)dv

J(r, t) =
∑
j

qj

∫
vfj(r, v, t)dv

(3.8)

where, dv = dvxdvydvz represents a volume element in velocity space.

Whilst, Eq. (3.3) describes a set of particles in a six dimensional phase space with

velocity v and location r, it is very hard to solve in most circumstances. Therefore,

more tractable, reduced plasma models have been derived from the kinetic equation

by employing various approximations and this is the subject of the following sections.

3.2 Two Fluid Model: Basic Mechanisms of the

Drift Waves

Drift waves exist, in general, in a magnetised plasma with inhomogeneous equilib-

rium profiles [4, 72, 73]. They are characterised by their long parallel wave lengths

compared to the perpendicular wavelengths with respect to the equilibrium magnetic

field, i.e λ||/λ⊥ � 1. To understand the basics of drift waves we employ a simplified

version of the two fluid model, in which the electrons and ions are treated as two

separate fluids. According to this model, neglecting collisional effects, C(fj) = 0,

the continuity and momentum equations are [55]:

∂nj
∂t

+∇ · (njV j) = 0 (3.9)
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and

Mjnj

[
∂V j

∂t
+ (V j · ∇)V j

]
= −∇Pj + qjnj

(
E + V j ×B

)
(3.10)

These equations are simply the first two velocity moments of the kinetic equation

(Eq. (3.3)). Here, Mj, nj, V j and Pj, correspond to the mass, density, fluid velocity

and scalar pressure of a given species, respectively 1. In the following subsections, us-

ing this model, the basic physics underlying electron drift waves and ion temperature

gradient (ITG) microinstabilities are discussed.

3.2.1 Electron Drift Waves

In the following, for simplicity, we consider a slab of plasma and employ an orthogonal

(x, y, z) coordinate system inside a shear-less uniform magnetic field (see for example

Figure 3.2). Here, the coordinate system is chosen such that the equilibrium magnetic

field is parallel to z and we have a density gradient along x. Now suppose that we

are only interested in those waves which are slow compared to the electron thermal

speed, vth,e, parallel to the magnetic field lines, i.e. Ω/kz � vth,e, where Ω and kz

are the wave characteristic frequency and wave vector parallel to the equilibrium

magnetic, respectively. This also implies that the electrons stream rapidly along the

magnetic field lines compared to the ions and establish an equilibrium parallel to the

magnetic field lines by generating a parallel electric field E|| to balance the electron

pressure gradient. The momentum equation for the electrons (from Eq. (3.10)) is

then

neE|| +∇||Pe = 0 (3.11)

We further assume that the waves are slow compared to the Alfven speed VA, i.e.

Ω/kz � VA, there is no equilibrium flow and the equilibrium quantities are constant

along the magnetic field lines. To proceed we shall decompose the physical quantities

according to

G = G0 + G̃ (3.12)

1The pressure Pj , in general, is a tensor quantity, but for simplicity, in this section, is assumed
to be scalar.
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where, G0 and G̃ refer to the equilibrium and perturbed fluctuating quantities for

a given plasma parameter, such that G̃/G0 � 1. Linearising Eq. (3.11), limiting

ourselves to electrostatic perturbations, i.e. B = B0 and E = Ẽ = −∇φ̃, leads to

the following relation between the perturbed electron density ñe and the electrostatic

potential φ̃

ñe
ne

=
eφ̃

Te
(3.13)

where, ne and Te are the electron equilibrium density and temperature, respectively.

Eq. (3.13) is called the adiabatic or Boltzmann response. To obtain the wave dis-

persion relation, we now turn to the ion dynamics. We assume a perturbation of the

following form:

G̃ ∼ eikyy+ikzz−iΩt (3.14)

where, ky is the perpendicular component of the wave vector with respect to the

equilibrium magnetic field B0. Using this equation, we can transform the time and

gradient operators into the Fourier space as, −iΩ and ik = i(kyêy+kz êz), respectively.

Here, êy and êz are unit vectors along the y and z coordinates, respectively. Now

employing a cold ion approximation, i.e. Ti ∼ 0 (or equivalently Pi ∼ 0), and

linearising the continuity and momentum equations for ions in turn leads to the

following equations:

− iΩñi + inik · Ṽ i + Ṽix
dni
dx

= 0 (3.15)

and

− iΩṼ i =
qi
Mi

(
−ikφ̃+ Ṽ i ×B0

)
(3.16)

Decomposing Eq. (3.16) into its x, y and z components we have(
1− Ω2

ω2
ci

)
Ṽix = −iky

B0

φ̃, (3.17)

Ṽiy = − iΩ

ωci
Ṽix (3.18)
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and

Ṽiz =
ωcikz
ΩB0

φ̃, (3.19)

respectively, where ωci = qiB0/Mi is the ion cyclotron frequency. For the modes with

small characteristic frequency compared to the cyclotron frequency, i.e. Ω/ωci � 1,

Eq. (3.17) and Eq. (3.18) are, respectively, reduced to

Ṽix ≈ − iky
B0

φ̃ (3.20)

and

Ṽiy ≈ 0 (3.21)

This indicates that the ion dynamics in the perpendicular direction are dominated

by the x component. Using this approximation, we can calculate k · Ṽ i to obtain

k · Ṽ i =
qik

2
z

MiΩ
φ̃ (3.22)

After substituting both Eq. (3.20) and Eq. (3.22) back into Eq. (3.15), we obtain

ñi
ni

=

[
kyV?e
Ω

+
k2zV

2
s

Ω2

]
eφ̃

Te
(3.23)

where,

V?e = − Te
eB0

1

ni

dni
dx

(3.24)

and

Vs =

√
Te
Mi

(3.25)

are the electron diamagnetic drift speed and the ion sound speed, respectively.

Finally, using the electron adiabatic response from Eq. (3.13) together with the

quasineutrality condition ñi

ni
= ñe

ne
, Eq. (3.23) leads to the following dispersion rela-

tion

Ω2 − Ωωn?e − k2zV
2
s = 0 (3.26)
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where, ωn?e = kyV?e is the electron diamagnetic drift frequency. Eq. (3.26) has the

following general solutions

Ω =
ωn?e
2

± 1

2

√
(ωn?e)

2 + 4k2zV
2
s (3.27)

Let us now analyse this equation and describe the solutions in two special limits;

assuming constant density, corresponding to ωn?e = 0, we have

Ω = ±kzVs (3.28)

This is the usual ion sound wave that propagates parallel to the magnetic field lines.

On the other hand if we assume that kz → 0, we then obtain

Ω = 0 or ωn?e (3.29)

The solution Ω = ωn?e corresponds to a wave which propagates in the direction of

the electron diamagnetic drift and, for this reason, is called the electron drift wave.

Assuming Vs/V?e = 1.0, Figure 3.1 presents the full solution to Eq. (3.27); namely

the plot of Ω/ωn?e as a function of kz/ky. The physics associated with electron drift

waves in a slab geometry in the limit of kz/ky � 1 is shown in Figure 3.2. The rapid

flow of electrons along the magnetic field lines leads to the accumulation of positive

and negative charges in the region of positive and negative density perturbations,

respectively. The resulting charge separation creates a perturbed electric field Ey in

the y direction, which in turn leads to a cross field Ey×Bz drift. For instantaneously

responding electrons (or adiabatic electrons) in the above example, the density and

drift velocity perturbations are out of phase by 90◦. For this simplified example, as

can be seen from Eq. (3.27), the drift wave neither damps nor grows. However, it can

become unstable by taking into account various kinetic corrections that can provide

destabilising effects. For instance electron dissipation either through collisions or

in a collisionless plasma through a so-called inverse Landau damping can drive the

wave unstable.
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Figure 3.1: Shows the plot of Ω/ωn?e as function of kz/ky taken from Eq. (3.26).
Note that we have assumed that Vs/V?e = 1.0 and the two dashed lines corresponds
to constant density limits, i.e ωn?e = 0.

Figure 3.2: Drift Waves in a slab geometry. The equilibrium magnetic field B0 is
parallel to z, the density gradient ∇n is assumed to be along radial direction, x, and
y represents the second perpendicular direction.

3.2.2 The ITG modes

This instability is driven by the ion temperature gradient and is often believed to

be responsible for the turbulent transport in the core of tokamaks [26, 74, 75]. In

the following, to understand the basic physics underlying the ITG mode the two

fluid model is adopted. Here, we shall relax the cold ion assumption of the previous

subsection and allow for significant ion temperatures such that the ion pressure is

not zero, i.e. Pi 6= 0. Furthermore, for the ITG modes one requires dTi/dx 6= 0 and
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to describe the pressure fluctuations we assume the adiabatic equation of state:

d

dt
(Pin

−Γ
i ) = 0 (3.30)

where, Γ is the ratio of specific heats. Using the ion continuity equation, to eliminate

the density in the above equation, we get:

∂Pi
∂t

+ (V i · ∇)Pi + ΓPi∇ · V i = 0 (3.31)

Now assuming a perturbation of the form previously presented in Eq. (3.14), we

linearise the ion continuity equation to obtain:

− iΩñi + inik · Ṽ i + Ṽix
dni
dx

= 0 (3.32)

The velocity fluctuation can be calculated from the linearised ion momentum equa-

tion,

− iMiniΩṼ i = −ikP̃i − iniqikφ̃+ niqiṼ i ×B0 (3.33)

Taking the parallel and perpendicular components, respectively, leads to

Ṽ i|| = Ṽ iz =

(
kz
MiΩ

)[
qiφ̃+

P̃i
ni

]
êz (3.34)

and

Ṽix = −ωci
iΩ
Ṽiy (3.35)

such that

Ṽ i⊥ = Ṽ ix + Ṽ iy = Ṽix

(
− iΩ

ωci
êy + êx

)
(3.36)

Note that we are only interested in low frequency waves, such that Ω/ωci � 1. This

implies that Ṽ i⊥ is dominated by the radial component along x, which then leads to

Ṽ i ≈ Ṽixêx + Ṽiz êz = Ṽixêx +

(
kz
MiΩ

)[
qiφ̃+

P̃i
ni

]
êz (3.37)

Finally, we take the y component of Eq. (3.33) to get

Ṽiy =
ky
MiΩ

[
qiφ̃+

P̃i
ni

]
− iωci

Ω
Ṽix (3.38)
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By substituting Ṽix from Eq. (3.35) into this equation, to the lowest order in Ω/ωci

we have

Ṽix ≈ − iky
qiB0

[
qiφ̃+

P̃i
ni

]
(3.39)

The first term on the right hand side corresponds to the familiar E ×B drift whilst

the second term is the diamagnetic drift from the pressure gradient. It is worth men-

tioning that, in the above calculations we have assumed a scalar pressure, however,

if we consider a more rigorous approach in which we treat the pressure as a tensor

quantity, the diamagnetic component can then be cancelled [76, 77], which is known

as gyroviscous cancellation. Eq. (3.39) in turn reduces to

Ṽix ≈ − iky
B0

φ̃ (3.40)

Taking the scalar product of Eq. (3.37) with the wave vector k = kyêy + kz êz we get

k · Ṽ i =

(
k2z
MiΩ

)[
qiφ̃+

P̃i
ni

]
=

(
ω2
s

ΩTe

)[
qiφ̃+

P̃i
ni

]
(3.41)

where, ωs = kzVs is the ion sound frequency and Vs is defined in Eq. (3.25). Upon

substituting Eq. (3.40) and Eq. (3.41) back into Eq. (3.32), using the electron adia-

batic response from Eq. (3.13) and the quasineutrality condition ñi

ni
= ñe

ne
to write ñi

in terms of φ̃ we finally have

[
Ω2 − Ωωn?e − ω2

s

]
qiniφ̃ = ω2

s P̃i (3.42)

Note that we have one equation with two different fluctuating quantities, therefore,

we need one more equation to solve for the final dispersion relation. We can ob-

tain the second equation if we apply an identical procedure to the ion pressure in

Eq. (3.31), which yields[
Ω2 − Γω2

s

T̄

]
P̃i =

[
Γω2

s

T̄
− ΩωP?

]
qiniφ̃ (3.43)

where T̄ = Te/Ti is the species temperature ratio and the pressure diamagnetic

frequency is defined as:

ωP? =
kyTi
qiB0Pi

dPi
dx

(3.44)
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Finally, by substituting Eq. (3.42) into Eq. (3.43) we obtain the dispersion relation:

Ω3 − Ω2ωn?e − Ωω2
s

(
1 +

Γ

T̄

)
+ ω2

s

(
ωP? +

Γ

T̄
ωn?e

)
= 0 (3.45)

This is a cubic equation that can support growing solutions corresponding to positive

imaginary roots. However, in order to investigate the effect of temperature and

density gradients, separately, is more convenient to write the above equation in

terms of ωT?i and ω
n
?e, where the ion temperature diamagnetic frequency

ωT?i =
ky
qiB0

dTi
dx

(3.46)

and note that ωP? = ωT?e − ωn?e/T̄ , such that Eq. (3.45) reduces to the following one:

Ω3 − Ω2ωn?e − Ωω2
s

(
1 +

Γ

T̄

)
+ ω2

s

(
ωT?i +

(
Γ− 1

T̄

)
ωn?e

)
= 0 (3.47)

Let us now analyse this equation, starting by considering cold ions such that 1/T̄ →

0, dTi/dx = 0 and assuming ωs → 0 such that Ω = ωn?e. This is the electron drift

wave dispersion relation which we previously obtained in Eq. (3.29). It should be

noted that a general cubic equation a1x
3 + a2x

2 + a3x+ a4 = 0, where a1, a2, a3 and

a4 are in general assumed to be real numbers, has at least one complex root if Θ < 0

with Θ = 18a1a2a3a4 − 4a32a4 + a22a
2
3 − 4a1a

3
3 − 27a21a

2
4. In the limit of dni/dx = 0

and assuming that Γ = T̄ = 1, this leads to ITG instability if ωT?i > 1.18ωs. This

indicates that it is possible to support a small temperature gradient for which an ITG

mode is stable, however, it becomes unstable once a critical temperature gradient

is exceeded. Taking into account the effect of the density gradient influences the

critical value of the temperature gradient. Figure 3.3 shows the boundary between

stable and unstable regions as function of ωn?e/ωs and ω
T
?i/ωs.

In conclusion, we have used a simplified two fluid model in a shear-less slab

geometry inside a uniform magnetic field, to obtain a dispersion relation describing

various types of waves with their associated instabilities. However, this neglected

some important effects. For example, magnetic shear in slab geometry has a stabilis-

ing effect [78], but this shear damping can be suppressed in a more realistic toroidal

geometry [79], and taking into account plasma flows can also have important ef-
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Figure 3.3: The dispersion relation for a two fluid ITG mode in slab geometry as a
function of ωn?e/ωs and ω

T
?i/ωs under the assumption Γ = 1 and T̄ = 1. Note that this

plot has been reproduced from [81] with permission.

fects [12, 13, 80]. In addition, to investigate turbulent transport we need to take

into account the saturation mechanisms associated with non-linear effects. These

together with other kinetic effects like Landau damping and finite ion Larmor radius

can modify the stability picture for drift waves. For this reason, a more general and

realistic kinetic model, from which the two fluid model is obtained as a limit, should

be considered to capture all these important effects. The following section is devoted

to a description of the gyrokinetic model.

3.3 The Gyrokinetic Model

The drift mode examples described in the previous section for a slab geometry only

cover the very basics of the actual physical process. To capture all the important

characteristics that are involved in the physics of the drift waves, one has to solve the

full non-linear kinetic equation Eq. (3.3) together with the Maxwell’s equations for

the electromagnetic fields. Unfortunately, due to the number of variables involved, as

well as the large range of time scales associated with different plasma processes, slow

ion drift and fast electron gyromotion for instance, which have to be resolved simul-

taneously, it is not possible to solve this set of equations with current computational

resources, except in a few special cases. Therefore, to overcome this problem in the

56



plasma conditions of interest, this system of equations can be reduced to develop a

so-called gyrokinetic model. A full gyrokinetic model incorporates features such as

non-linear and non-uniform plasma effects in an arbitrary magnetic geometry [82].

Historically, the first gyrokinetic formalism was originally developed to only treat the

linear aspects of the electrostatic perturbations [15, 16]. Electromagnetic effects have

since been added [83, 84]. Finally, the model has been further extended to include

the study of turbulent transport by taking into account the non-linear terms [17]. In

this section we follow the approach presented in Ref [17]. Without going through the

mathematical details, we briefly outline the derivation of the collisionless gyrokinetic

equation 2.

We start from Eq. (3.3) and ignore the collision term, i.e. C(fj) = 0. Omitting

the species label j for convenience, we write the Vlasov equation

∂f

∂t
+ v · ∂f

∂r
+

q

M
(E + v ×B) · ∂f

∂v
= 0 (3.48)

In gyrokinetic models, the calculations are usually carried out in the guiding centre

phase space (Rc, U) rather than the particle phase space (r, v). These two sets of

coordinate systems are related by the following relations:

Rc = r +
v⊥ × b̂

ωc

U = U(En, µ, ϑ),

(3.49)

where, En = Mv2/2 + qφ0 and µ = Mv2⊥/2B0 are the particle energy and guiding

centre magnetic moments, respectively. The gyroangle, ϑ, together with En and µ

represent the three velocity coordinates. The parallel, v||, and perpendicular, v⊥,

velocity components are defined as:

v|| = v||b̂

v⊥ = v⊥(ê1 cosϑ+ ê2 sinϑ) = v⊥ê⊥

(3.50)

where, ê1, ê2 and b̂ = B0/B0, are three orthogonal unit vectors such that ê1 × ê2 =

b̂. The motivation for the above transformation is that for low frequency waves

2The collisionless kinetic equation is called the Vlasov equation. Note that, for simplicity we
neglect the effect of collisions throughout this section, but a generic and undefined form of the
collision operator can be later reintroduced into the final equation.
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compared to the cyclotron frequency, i.e. Ω/ωc � 1, we can decompose the particle

movement into three components; the extremely rapid particle gyromotion in a plane

perpendicular to b̂, the fast parallel motion and slow perpendicular guiding centre

drift with respect to B0. Taking advantage of this approximation, we can average

variables over the fast cyclotron motion. This averaging eliminates the coordinate

ϑ from the equations, which basically describes the instantaneous position of the

particles on a gyro-ring, and in turn reduces the dimensionality of the problem from

6D to 5D, which in turn describes the evolution of an ensemble of rings of charge.

Furthermore, to obtain the gyrokinetic equations, we firstly employ the above

approximation to derive a hierarchical set of equations by expanding the distribution

function as f = F0 + f̃ + .... if the following gyrokinetic ordering assumptions are

fulfilled:

Ω

ωc
∼ ρc
L

∼ f̃

F0

∼ qφ̃

T
∼
B̃||

B0

∼
Ã||

ρcB0

≡ λ� 1

k||L ∼ k⊥ρc ∼ O(1)

(3.51)

where F0 is the equilibrium distribution function and f̃ is the perturbed part of

the distribution function, φ̃, Ã|| and B̃|| are the perturbed parts of the electrostatic

potential, parallel magnetic vector potential and the parallel magnetic field, respec-

tively, such that B̃⊥ = b̂ × ∇⊥Ã||, L represents the equilibrium scale length of the

density, temperature or magnetic field and k⊥ and k|| are the characteristic perpen-

dicular and parallel wave vectors with respect to B0. The above gyrokinetic ordering

greatly simplifies the problem, but still keeps intact the relevant physics, especially

the essential properties of the drift waves, for example small gyroradius compared to

the long equilibrium scale lengths, perturbations with small amplitudes, and finally

the anisotropic nature of the perturbations of interest, i.e. slow variation along the

equilibrium magnetic field lines compared to the rapid variation in the perpendicular

direction.

Solving the hierarchical equations in the expansion up to O(λ2), and after anal-

ysis and manipulation one can obtain the electromagnetic non-linear gyrokinetic
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equation which describes the evolution of the gyroangle independent part of the

distribution function f̃ such that [17]

f̃ =
qφ̃

m

∂F0

∂En
+ h̃, (3.52)

where, the first term on right hand side corresponds to adiabatic response while the

second term, h̃, represents the non-adiabatic response. The gyrokinetic equation is

written as follows:

∂h̃

∂t
+ U||b̂ · ∇h̃+ UD · ∇⊥h̃ = −

[
q

m

∂F0

∂En

∂

∂t
+

∇F0

B0

· b̂×∇⊥ +Rnl

]
〈L̃〉ϑ (3.53)

where,

〈L̃〉ϑ =
1

2π

∮
L̃dϑ (3.54)

represents the average over a period in ϑ. In the following we explain different terms

in Eq. (3.53).

Using the gyrokinetic ordering expansion, the solutions for the equilibrium dis-

tribution function F0, provides

F0 = F0(En, Rc) (3.55)

where, F0 does not depend on the gyrophase angle ϑ and b̂ · ∇F0 = 0. Note that

we have further assumed that F0 does not depend on µ, i.e. ∂F0/∂µ = 0. This is

reasonable for the objective of this work as we shall not consider the interaction of

the plasma with the external sources. The parameter L̃ represents the self consistent

electromagnetic field perturbations and is defined as follows:

L̃ = φ̃− v · Ã (3.56)

The convective derivative terms are due to the fast motion parallel to the magnetic

field lines described by the U||b̂ · ∇ term and the particle drifts across the magnetic

field lines are described by the UD term (including the familiar E×B0 drift together

with the combined magnetic curvature and ∇B0 drifts). The term Rnl contains the
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non-linear interactions that couple perpendicular modes and is given by

Rnl =
∇⊥h̃

B0

· b̂×∇⊥ (3.57)

This non-linear term leads to additional complications to the solutions of Eq. (3.53)

compared to its linear formalism, but provides important effects, such as the satura-

tion of the microinstabilities, which is required for quantitative calculations of both

particle and heat transport. However, this thesis is devoted to improving our under-

standing of the impact of the global effects on linear microinstabilities. Therefore,

in what follows, we shall neglect Rnl. Note also that we shall limit ourselves to the

electrostatic approximation for which the small fluctuations of the magnetic field are

neglected, such that from Eq. (3.56) we have L̃ = φ̃.

Finally, it should be noted that, there are two methods of solving the gyroki-

netic equations numerically, namely the global and the local approximations. In the

former, the radial variations of the equilibrium profiles are taken into account, such

that the simulations cover many flux surfaces over a substantial radial extent. In

contrast to this, if the characteristic radial size of the instability, is much smaller than

the equilibrium scale length L, one can then simplify the gyrokinetic equation and

exploit the so-called “ballooning transformation” [19, 20, 24] to remove the radial

dimension from the problem (or more precisely, treat it as a parameter). This leads

to the local gyrokinetic approximation. In this approximation, the problem exploits

translational symmetry such that the equilibrium parameters are approximately con-

stant over the radial extent of the instability. In axisymmetric tokamak plasmas, the

toroidal angle ϕ is an ignorable coordinate, and, hence, the spatial component of

the global gyrokinetic model that describes the drift waves is usually reduced to a

2D eigenvalue problem in radius, r, and poloidal angle, θ. Applying the ballooning

transformation reduces this intrinsic 2D global problem to 1D in the extended bal-

looning coordinate, η, which is aligned with magnetic field lines. Local gyrokinetic

codes solve the gyrokinetic equations along flux tubes lying on a single flux surface

and are not capable of providing the radial mode structures directly. Instead they

provide the local mode structure along the magnetic field lines together with their
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local eigenvalues Ω0(r, p), where p can be interpreted as the poloidal location about

which the mode peaks, and is a free parameter at this order. However, as we shall

see, the global eigenmode structure can be reconstructed purely from solutions of

the local gyrokinetic equations by proceeding to consider the higher order theory

[5, 13]. In this approach, the solutions from a local gyrokinetic code, for instance

GS2 [21, 22], are combined with the higher order theory to reconstruct the global

properties, and this is the subject of the rest of this thesis.
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Chapter 4

Ballooning Theory

Ballooning theory [24, 85–87] is a very powerful technique to investigate high toroidal

mode number, n, instabilities. For this type of mode, the distance between the ratio-

nal surfaces become very small compared to the equilibrium scale length. Therefore,

one can exploit this separation between these two scale lengths and employ the so-

called WKB expansion method to transform the calculations and develop an infinite

series of solutions. The lowest order in 1/n corresponds to the local ballooning

solutions that provide both the local mode structures along field lines with their

associated local mode frequencies. However, taking into account the higher order

terms provides constraints to the local solutions which determine the global (radial)

mode structures with their global mode frequencies. In this thesis we reconstruct the

global properties for the microinstabilities in tokamak plasmas from the solutions to

the local ballooning equations combined with the higher order theory. This chapter

introduces the mathematical theory underlying the ballooning transformation and

its extension to higher orders.

4.1 Useful Geometrical Identities and Operators

The magnetic topology of tokamaks is usually assumed to be toroidally symmetric.

Plasma equilibrium properties are typically approximately constant along the mag-
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netic field lines on each magnetic flux surface. A general divergence free equilibrium

magnetic field, B, in an orthogonal coordinate system (ψ, θ, ϕ), is given by [88]:

B = I(ψ)∇ϕ−∇ψ ×∇ϕ = Bϕêϕ +Bθêθ (4.1)

where ψ is the poloidal flux within a magnetic surface and represents the radial

direction, I(ψ) is a prescribed function which is constant on a magnetic flux surface,

θ is an angle like variable in the poloidal direction, and ϕ the toroidal angle. The

Jacobian, J , for this magnetic coordinate system is written as:

J = [∇ψ · ∇θ ×∇ϕ]−1 (4.2)

and the gradient operator ∇ is given by

∇ = ∇ψ ∂

∂ψ
+∇θ ∂

∂θ
+∇ϕ ∂

∂ϕ
(4.3)

with,

∇ψ = |∇ψ| êψ (4.4)

∇θ = |∇θ| êθ (4.5)

∇ϕ = |∇ϕ| êϕ (4.6)

where, êψ, êθ and êϕ are the orthogonal unit vectors in the radial, poloidal and

toroidal direction, respectively. The three coefficients |∇ψ|, |∇θ| and |∇ϕ| can be

determined, as follows. Firstly, we introduce a cylindrical coordinate system which

is based on the major axis of the torus, to write

|∇ϕ| = 1

R
(4.7)

After substituting Eq. (4.6) and Eq. (4.7) into Eq. (4.1) and taking the toroidal

component of the equilibrium magnetic field, i.e B · êϕ, we get

I(ψ) = RBϕ (4.8)
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We then consider the poloidal component of the magnetic field, i.e. Bθ = B · êθ, and

after using Eq. (4.4) and Eq. (4.5), from Eq. (4.1) we have

|∇ψ| |∇ϕ| êψ × êϕ = −Bθêθ (4.9)

Knowing that êψ × êϕ = −êθ, after we substitute |∇ϕ| from Eq. (4.7), we finally get

|∇ψ| = RBθ (4.10)

Furthermore, after we substitute |∇ϕ| and |∇ψ| from both Eq. (4.7) and Eq. (4.10),

respectively, back into Eq. (4.2), and knowing that êψ ·
(
êθ × êϕ

)
= 1, we finally get:

|∇θ| = 1

JBθ

(4.11)

Upon substituting Eq. (4.7), Eq. (4.10) and Eq. (4.11) back into Eq. (4.3), the

gradient operator ∇ is then rewritten as follows:

∇ = êψRBθ
∂

∂ψ
+ êθ

1

JBθ

∂

∂θ
+ êϕ

1

R

∂

∂ϕ
(4.12)

This is a very useful geometric operator that will be used in the subsequent sections.

Finally, the line and volume elements are given by

(d`)2 =
(dψ)2

(RBθ)2
+ (JBθ)

2(dθ)2 +R2(dϕ)2 (4.13)

and

dV = Jdψdθdϕ (4.14)

respectively. In the following section, we shall discuss how the instabilities are lo-

calised about the rational surfaces as well as how the coupling between poloidal

harmonics leads to unstable modes inside non-uniform sheared magnetic fields.

4.2 Toroidal Coupling

For an axisymmetric toroidal plasma, the toroidal symmetry means that the toroidal

dependence of linear fluctuations can be written as exp [inϕ], where n is the toroidal

mode number. Throughout this section we will consider a single independent

toroidal mode number. The linear fluctuating quantities, e.g. electrostatic potential
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φ̃(ψ, θ, ϕ), are periodic in θ and ϕ such that

φ̃(ψ, θ, ϕ) = φ̃(ψ, θ + 2π, ϕ+ 2π) = φ̃(ψ, θ, ϕ+ 2π) = φ̃(ψ, θ + 2π, ϕ). (4.15)

which then allows us to Fourier expand φ̃(ψ, θ, ϕ) into its individual Fourier modes

as follows:

φ̃(ψ, θ, ϕ) = exp [inϕ]φ̃(ψ, θ) = exp [inϕ]
∑
m

φ̃m(ψ) exp [−imθ] (4.16)

where m is the poloidal mode number. Here, both n and m are integers so that

the periodicity condition in Eq. (4.15) is satisfied. Note that one aspect of toroidal

geometry is that equilibrium parameters depend on poloidal angle, θ, and this leads

to coupling of poloidal Fourier harmonics labelled by m.

In the axisymmetric tokamaks the most unstable modes are associated with

perturbations that have a long wave length along magnetic field lines but short wave

length across them, i.e k||/k⊥ � 1. This can be understood as follows. For large

k||, the phase velocity of the wave, vph = ω/k||, becomes small such that a larger

number of slower particles can be in resonance with the wave. This in turn leads to

stabilisation through Landau damping (for a more complete description of Landau

damping see Refs [55, 89, 90]). Therefore, perturbations tend to minimise k|| while

the perpendicular wave length is typically comparable to the ion Larmor radius, or

less.

Furthermore, because the magnetic field line pitch varies across surfaces, the

most unstable modes are localized about the rational flux surfaces where k|| is small.

To understand this, we write φ̃(ψ, θ, ϕ) ∼ exp [ik · r], where r is a position vector,

and taking its gradient along the magnetic field lines we have

B · ∇φ̃(ψ, θ, ϕ) = ik||Bφ̃(ψ, θ, ϕ), (4.17)

Using Eq. (4.12) for the gradient operator ∇, after substituting φ̃(ψ, θ, ϕ) from
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Eq. (4.16) into Eq. (4.17) we get

ik||Bφ̃(ψ, θ, ϕ) =
∑
m

φ̃m(ψ)

[
1

J

∂

∂θ
exp [inϕ− imθ] +

Bϕ

R

∂

∂ϕ
exp [inϕ− imθ]

]
=

[
−im
J

+
inBϕ

R

]
φ̃(ψ, θ, ϕ)

(4.18)

Now we can rearrange this equation to get

k|| =
n

JB

[
q̂(ψ, θ)− m

n

]
(4.19)

where the local quantity

q̂(ψ, θ) =
JBϕ

R
(4.20)

is related to the “safety factor” q(ψ) by

q(ψ) =
1

2π

∮
q̂(ψ, θ)dθ (4.21)

In the cylindrical limit, corresponding to ε = 0 in Eq. (2.26), B does not vary with θ,

such that q̂ is constant on a magnetic flux surface. Thus, on the rational flux surface

we can write q̂ = m/n which leads to k|| = 0. As one moves away from the rational

surface where ψ = ψ0, we have

k|| ≈
n

JB

∂q̂

∂ψ
[ψ − ψ0] (4.22)

Thus k|| becomes very large as one moves far from the rational surface. However, in

a toroidal plasma, because different m are coupled, the mode switches from one m

to the next as one moves across rational surfaces. This leads to a so-called “twisted

slice” [91] such that the mode structure twists to stay aligned with the field lines

even out to quite large distances. Thus in toroidal geometry, many Fourier modes,

m, are coupled, but each is highly localised about its rational surface. To understand

the essential features of toroidal coupling, we may consider a simplified high aspect

ratio toroidal plasma for which the magnetic field is defined by Eq. (2.26):

B ∼ (1− ε cos θ)

The cos θ term incorporates the variation of the magnetic field around the flux sur-

faces. After multiplying Eq. (4.16) by cos θ = exp [iθ]+exp [−iθ]
2

, and integrating over a
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Figure 4.1: Radial separation between rational surfaces about which individual
Fourier harmonics of instabilities are localised

period in θ, we get

1

2π

∮
cos θφ̃(ψ, θ, ϕ)dθ =

1

2π

∑
m

φ̃m(ψ)

∮ [
eiθ + e−iθ

2

]
einϕ−imθdθ

=
1

4π

∮ ∑
m

φ̃m(ψ)
[
e−i(m−1)θ + e−i(m+1)θ

]
einϕdθ

=
1

2
[ϕ̃+1(ψ) + ϕ̃−1(ψ)] exp [inϕ]

(4.23)

Thus, poloidal variation in the equilibrium provide a coupling between the poloidal

harmonics and results in two dimensional unstable modes that extend both poloidally

and radially across multiple rational surfaces [79].

4.3 High Toroidal Mode Number Instabilities:

Shear vs Periodicity

As discussed in the previous section, the poloidal Fourier harmonics are radially

localised around the rational surfaces with k|| = 0. The radial separation between

two neighbouring rational flux surfaces can be related to the toroidal mode number,

n, through the following formula:

∆r =
1

nq′
(4.24)

68



where q′ is the derivative of the safety factor with respect to ψ. For high n the

rational surfaces are closely packed (see Figure 4.1) and there exist two separate

scale lengths: the distance between rational surfaces, ∆r, and the equilibrium scale

length, L. They satisfy the following gyrokinetic ordering:

∆r

L
∼ O(

1

n
) � 1 (4.25)

It is this separation between scale lengths that can be exploited to represent the

perturbations in axisymmetric toroidal plasmas in an Eikonal form, which reads:

φ̃(ψ, θ, ϕ) = F̂ (ψ, θ) exp
[
inŜ(ψ, θ, ϕ)

]
(4.26)

where, F̂ (x, θ) incorporates slow variation whilst the exponential incorporates the

rapid variation across the magnetic field lines. This representation, however, conflicts

with the periodicity requirement in θ. To see this, we start by substituting Eq. (4.26)

into Eq. (4.17) to get:

iBk||φ̃(ψ, θ, ϕ) =
(
B · ∇F̂ (ψ, θ) + inF̂ (ψ, θ)B · ∇Ŝ(ψ, θ, ϕ)

)
× exp

[
inŜ(ψ, θ, ϕ)

] (4.27)

In the limit n� 1, the first term inside the bracket remains finite and small compared

to the second term. As we are interested in the most unstable modes which are

elongated along the magnetic field lines with small k||, Eq. (4.27) requires

B · ∇Ŝ(ψ, θ, ϕ) = 0 (4.28)

This implies that Ŝ(ψ, θ, ϕ) is constant along the magnetic field lines such that the

perpendicular wave vector is approximately given by k⊥ ∼ n∇Ŝ(ψ, θ, ϕ). We also

know that for axisymmetric tokamaks the ϕ dependence can be separated as a single

Fourier mode ∼ exp [inϕ]. This in turn allows us to write Ŝ(ψ, θ, ϕ) in the form:

Ŝ(ψ, θ, ϕ) = ϕ+ Ŷ (ψ, θ) (4.29)

Upon substituting this equation back into Eq. (4.28) and using Eq. (4.12) for the

gradient operator ∇, we find that:

Ŷ (ψ, θ) = −
∫ θ

q̂(ψ, θ)dθ (4.30)
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where q̂ is defined in Eq. (4.20). Finally, using Ŷ (ψ, θ) from Eq. (4.30), and substi-

tuting Eq. (4.29) back into Eq. (4.26), we get:

φ̃(ψ, θ, ϕ) = F̂ (ψ, θ) exp

[
in

(
ϕ−

∫ θ

q̂(ψ, θ)dθ

)]
(4.31)

For φ̃(ψ, θ, ϕ) to be periodic, assuming that F̂ (ψ, θ) is periodic, we require

exp
[
inŶ (ψ, θ)

]
to be periodic, which in turn requires

nŶ (ψ, θ + 2π) = nŶ (ψ, θ) + 2πm (4.32)

or equivalently

n

∮
q̂(ψ, θ)dθ = 2πm (4.33)

Using the definition of the safety factor from Eq. (4.21), Eq. (4.33) also implies

1

2π

∮
q̂(ψ, θ)dθ = q(ψ) =

m

n
(4.34)

This indicates that on a magnetic flux surface, for which q(ψ) is a rational number,

namely on a rational flux surface, the eikonal form in Eq. (4.31) satisfies the peri-

odicity condition. Everywhere else, it does not. Let us now examine the periodicity

condition for a small distance away from the rational surface of interest at ψ = ψ0.

We employ a Taylor series expansion about ψ = ψ0 to get:

nŶ (ψ, θ) ≈ n

∫ θ

q̂(ψ0, θ)dθ + n(ψ − ψ0)

∫ θ ∂q̂(ψ, θ)

∂ψ

∣∣∣∣
ψ=ψ0

dθ (4.35)

Using the periodicity constraint of Eq. (4.32), this reduces to [92]

n
(
Ŷ (ψ, θ + 2π)− Ŷ (ψ, θ)

)
≈ 2πnq(ψ) = 2πm+ 2πn(ψ − ψ0)

dq(ψ)

dψ

∣∣∣∣
ψ=ψ0

(4.36)

where q(ψ) = m/n. It is then quite clear that for n � 1 even when ψ − ψ0 � 1, so

long as magnetic shear is not zero, i.e. dq/dψ|ψ=ψ0
6= 0, the perturbation φ̃(ψ, θ, ϕ)

using the eikonal form of Eq. (4.31) is not periodic under the transformation θ →

θ + 2π. To reconcile this conflict between the magnetic shear and periodicity, one

should transform the problem from the periodic domain into an infinite one along

the magnetic field lines. This is called the ballooning transformation, which we now

introduce.
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4.4 Ballooning Transformation and Translational

Invariance

The aforementioned conflict between periodicity and magnetic shear can be resolved

by transforming the solutions from the periodic domain, 0 < θ < 2π, into an infinite

one −∞ < η < +∞ via the ballooning transformation [24]. This transformation

includes the Fourier transformation of the coefficient φ̃m(ψ) in Eq. (4.16) as follows:

φ̃m(ψ) =
1

2π

∫ +∞

−∞
exp [−imη]f̂(ψ, η)dη (4.37)

where, η is the extended ballooning angle along the magnetic field lines. Note that

the periodicity condition is replaced by the boundary condition at infinity such that

f̂(ψ, η) goes to zero as η → ±∞. One can understand the meaning of this boundary

condition as follows. If f̂(ψ, η) does not go to zero as |η| → ∞ then the integral

will not converge and so φ̃m(ψ) would be undefined or infinite. Now substituting

Eq. (4.37) into Eq. (4.16) to get1:

φ̃(ψ, θ) =
∑
m

exp [−imθ] 1
2π

∫ +∞

−∞
exp [−imη]f̂(ψ, η)dη

=

∫ +∞

−∞

1

2π

∑
m

exp [−im(θ + η)]f̂(ψ, η)dη (4.38)

We then have Poisson’s summation formula identity, which reads

1

2π

∑
m

exp [−im(θ + η)] =
∑
N

δ(θ + η − 2πN) (4.39)

where, δ is the Dirac delta function and N is an integer. Substituting this identity

back into Eq. (4.38) we get

φ̃(ψ, θ) =

∫ +∞

−∞

∑
N

δ(θ + η − 2πN)f̂(ψ, η)dη

=
∑
N

f̂(ψ, θ − 2πN). (4.40)

1Note also that, as we have mentioned earlier, the ϕ dependence has been dropped. This is
because the toroidal behaviour is described solely by the toroidal mode number, n, and can be
recovered by multiplying the solution by exp [inϕ]. Therefore in what follows we only focus on the
two dimensional problem in ψ-θ space.
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It can be seen from this equation that, by summing infinite copies of a non periodic

function f̂ , a periodic function φ̃ can be reconstructed. Furthermore, using the

ballooning transformation of Eq. (4.38) allows us to map the original two dimensional

eigenvalue problem in ψ − θ space, described by

L(ψ, θ)φ̃(ψ, θ) = Ωφ̃(ψ, θ) (4.41)

to the following one in ψ − η space:

L(ψ, η)f̂(ψ, η) = Ωf̂(ψ, η) (4.42)

It is important to note that, Eq. (4.42) generates the same periodic solution of

Eq. (4.41) with the same eigenvalue Ω. The advantage of the ballooning trans-

formation is that the requirement for periodicity is guaranteed allowing an eikonal

representation of the following form to be adopted

f̂(ψ, η) = Â(ψ, η) exp
[
−inq′(ψη − Ŝ(ψ))

]
(4.43)

where Â(ψ, η) is slowly varying, Ŝ(ψ) (defined in Eq. (4.29)) is constant along the

magnetic field lines and varies slowly with ψ, but such that exp
[
inq′Ŝ(ψ)

]
varies

rapidly across the magnetic field lines. This incorporates the important characteristic

k||/k⊥ � 1.

For high n instabilities, the eigenvalue problem can be solved by expanding

in the small parameter ∆r/L ∼ 1/n. To lowest order, the poloidal Fourier modes

φ̃m, φ̃m−1, φ̃m+1, ..., experience the same equilibrium parameters, because (a) they

are centred on their mode rational surfaces, and (b) the distance between rational

surfaces goes to zero as n→ ∞. Thus, we may expect them to have the same mode

structure and write (see also figure 4.1):

φ̃m(ψ) ≈ φ̃m−1(ψ) ≈ φ̃m+1(ψ) ≈ .... (4.44)

This indicates that the problem possesses translational invariance and therefore it is

appropriate to seek a solution of the following form:

φ̃m(ψ) = φ̃0(nq −m) exp [imp] (4.45)
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Here q is assumed to provide a suitable radial coordinate and p is a free parameter

called the ballooning phase angle which contains the relative phases of each poloidal

mode. By substituting this back into equation Eq. (4.16), one can derive

φ̃(ψ, θ) =
∑
m

φ̃0(nq −m) exp [−im(θ − p)] (4.46)

It is obvious from Eq. (4.46) that the perturbation φ̃(ψ, θ) peaks at θ = p where there

is constructive interference between the Fourier modes. Now the transformation from

periodic domain, 0 < θ < 2π, into an infinite domain, −∞ < η < +∞ can be carried

out by Fourier transforming φ̃0(nq −m);

φ̃0(nq −m) =
1

2π

∫ +∞

−∞
ξ(η) exp [−i(nq −m)η]dη, (4.47)

and substituting Eq. (4.47) back into Eq. (4.46) to yield

φ̃(ψ, θ) =
1

2π

∑
m

exp [−im(θ − p)]

∫ +∞

−∞
ξ(η) exp [−i(nq −m)η]dη (4.48)

Finally, using this equation, one can transform the original two dimensional problem

of Eq. (4.41) in ψ − θ space into the following one dimensional one in η space

L0(η;ψ, p)ξ(η) = Ω0(ψ, p)ξ(η) (4.49)

This is a local eigenvalue equation obtained for the lowest order expansion in 1/n.

Here, L0 is a differential operator in η, with ψ and p as parameters. From this

equation we can get both the local mode structure, ξ(η), and the associated local

eigenvalue Ω0(ψ, p). Here both radius ψ and ballooning angle p are free parameters,

but their choice is constrained in the higher order theory. In the next section we

discuss the higher order treatment which determines ψ and p and shows how to

reconstruct the global solution from the local model.

4.5 From Local to Global Ballooning Analysis:

The Formalism

In this section the theoretical formalism on which this thesis is based is presented.

The methodology we implement here has been previously used, for example in
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Ref [81]. This section builds on Ref [25, 26, 81] and improves the technique and

method to provide a rigorous mathematical framework. Our procedure is quite gen-

eral and can be used with any local code, gyrokinetic or MHD local code. In this

thesis we have particularly focused on gyrokinetic models. In particular, we have em-

ployed the local gyrokinetic code, GS2 [21, 22], to solve the leading order linearised

gyrokinetic equation [15, 17] numerically. From GS2 we can obtain both the local

mode structure along a given magnetic field line ξ(xs, p, η), in the infinite domain in

η, together with associated local eigenvalue, Ω0(xs, p). Here, xs = (r − r0)/a is the

normalised radial distance from the reference surface r0 and a is the minor radius

of the last closed flux surface2. It should be noted that the independent variable

xs in the argument of ξ incorporates the slow variations of the equilibrium profiles

and, together with p, are free parameters in this order. To reconstruct the linear

global mode properties from these local modes, rather than using the ballooning

transformation, we employ the related Fourier-Ballooning (FB) representation [87]:

φ̃(xs, θ, t) =

∫ ∞

−∞
ξ(xs, p, θ, t) exp [−inqθ] exp [inq′xsp]A(p)dp (4.50)

where φ̃(xs, θ, t) corresponds to the global mode structure for fluctuations in the

electrostatic potential, and we have Taylor expanded

q(xs) ≈ q0 + q′xs = q0 +
dq

dxs

∣∣∣∣
xs=0

xs (4.51)

Here q0 and q
′ refer to the safety factor and its radial derivative at xs = 0, respectively.

Note that, unlike the conventional ballooning transformation, in Eq. (4.50) we have

the periodic poloidal angle θ instead of the infinite domain in η. However, the

mapping from η to θ is possible and can be performed via the following symmetry

property

ξ(xs, p+ 2`π, θ + 2`π) = ξ(xs, p, θ) (4.52)

where ` is an integer. It is worth mentioning that the time dependence in both the

linear global modes, φ̃(xs, θ, t) and ξ(xs, p, θ, t) can be separated from the spatial

2Note that in what follows, for the rest of this thesis, we shall replace ψ with xs to represent
the radial distance from a reference rational surface at xs = 0
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dependence, which then allows us to write

φ̃(xs, θ, t) = φ̃(xs, θ) exp [−iΩt] (4.53)

and

ξ(xs, p, θ, t) = ξ(xs, p, θ) exp [−iΩ0(xs, p)t] (4.54)

where Ω and Ω0(xs, p) are the global and local complex linear eigenmode frequencies,

respectively. Furthermore, we note from Eq. (4.50) that, to find the global mode

structure, φ̃(xs, θ, t), one needs to first calculate the envelope A(p), for which we

need to employ the higher order theory which we now turn to discuss. We start by

taking the time derivative of Eq. (4.53) which provides a global eigenmode satisfying

∂φ̃(xs, θ, t)

∂t
= −iΩφ̃(xs, θ, t) (4.55)

where Ω = ω + iγ, with ω and γ the global frequency and growth rate, respectively.

Substituting Eq. (4.50) into Eq. (4.55) we obtain

− iΩφ̃(xs, θ, t) =

∫ ∞

−∞

[
∂ξ(xs, p, θ, t)

∂t

]
exp [−inqθ] exp [inq′xsp]A(p)dp (4.56)

where ∂ξ(xs, p, θ, t)/∂t can be evaluated from Eq. (4.54), which provides

∂ξ(xs, p, θ, t)

∂t
= −iΩ0(xs, p)ξ(xs, p, θ, t) (4.57)

Substituting Eq. (4.57) into Eq. (4.56), using Eq. (4.50) for φ̃, we have∫ ∞

−∞
[Ω− Ω0(xs, p)] ξ(xs, p, θ, t) exp [−inqθ] exp [inq′xsp]A(p)dp = 0 (4.58)

In the limit of n � 1, exploited by the local codes, we expect the radial extent of

the reconstructed global modes to be very small compared to the equilibrium scale

lengths. Therefore, we may Taylor expand Ω0 to second order in xs about xs = 0 to

write:

Ω0(xs, p) = f(p) + S(p)xs +R(p)x2s (4.59)

where the three functions f(p) = Ω0(xs = 0, p), S(p) = ∂Ω0(xs,p)
∂xs

|xs=0 and R(p) =

1
2
∂2Ω0(xs,p)

∂x2s
|xs=0 are, in general, complex and periodic in p. Substituting Eq. (4.59)
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into Eq. (4.58), we get∫ ∞

−∞

[
Ω−

(
f(p) + S(p)xs +R(p)x2s

)]
A(p)ξ(xs, p, θ, t)

exp [−inqθ] exp [inq′xsp]dp = 0.

(4.60)

We note that nq′p is a radial wave number, and assuming A(p) varies much more

rapidly than ξ with p, we can use Eq. (4.50), integrating by parts, to derive the

following relation

(xs)
`A(p) →

(
i

nq′

)`
d`A(p)

dp`
(4.61)

for any positive integer `, which in turn transforms Eq. (4.60) into the following:∫ ∞

−∞

[
ΩA(p)−

(
f(p) +

iS(p)

nq′
d

dp
− R(p)

(nq′)2
d2

dp2

)
A(p)

]
× ξ(xs, p, θ, t) exp [−inqθ] exp [inq′xsp]dp = 0.

(4.62)

The integration in Eq. (4.62) must vanish for all values of θ, and this in turn leads

to the following second order linear differential equation for A(p):

R(p)

(nq′)2
d2A(p)

dp2
− iS(p)

nq′
dA(p)

dp
+ [Ω− f(p)]A(p) = 0 (4.63)

Knowing that φ̃(xs, θ, t) is periodic in θ, from Eq. (4.50) this requires that A(p) must

also be periodic in p. Therefore, we solve Eq. (4.63), imposing periodic boundary

conditions, to evaluate both A(p) with its associated eigenvalue Ω. This solution of

A(p), can be used along with ξ(xs, p, θ, t) from a local code, for example GS2, to

reconstruct the full global mode structure, φ̃(xs, θ, t), from Eq. (4.50).

Finally, it is important to mention that, in what follows, in the rest of this

thesis, the explicit t dependence will be dropped and, in turn, φ̃(xs, θ) and ξ(xs, p, θ)

will be used to represent the spatial dependence. The following section is devoted to

providing a technique to solve Eq. (4.63) numerically.

4.6 Numerical Solutions

We solve the eigenvalue problem of Eq. (4.63) numerically using finite differences to

transform the governing differential equation into a system of simultaneous linear
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algebraic equations. We first approximate the derivatives A′ and A′′ at each node j

via 2nd order central differences

A′ =
Aj+1 − Aj−1

2∆p
(4.64)

A′′ =
Aj+1 − 2Aj + Aj−1

(∆p)2
(4.65)

where the step size ∆p = pj+1−pj is the (uniform) distance between two consecutive

mesh points. Substituting these back into Eq. (4.63), we obtain

αjAj+1 + βjAj + µjAj−1 = Γ̄Aj (4.66)

where the coefficients αj, βj and µj, in general, depend on p and represent the

coefficients of the equation acting respectively at the j +1, j and j − 1 mesh points.

They are defined as follows:

αj = Rj −
inq′∆p

2
Sj

βj = −2Rj − (nq′∆p)2fj

µj = Rj +
inq′∆p

2
Sj

(4.67)

Equation (4.66) defines a system of simultaneous linear algebraic equations with m̄

unknown eigenvalues Γ̄ = −(nq′∆p)2Ω with their associated eigenfunctions A. Here,

m̄ is the total number of p-mesh points. It can be written in matrix form as follows:

β1 α1 0 0 · · · µ1

µ2 β2 α2 0 · · · 0

0 µ3 β3 α3 · · · ...

...
...

. . . . . . . . . 0

0 0 0 µm̄−1 βm̄−1 αm̄−1

αm̄ 0 · · · 0 µm̄ βm̄





A1

A2

A3

...

Am̄−1

Am̄


= Γ̄



A1

A2

A3

...

Am̄−1

Am̄


(4.68)

Note that we have applied the periodic boundary condition at both ends of the

intervals, i.e. µ1Am̄ = µ1A0 and αm̄Am̄+1 = αm̄A1. This in turn has replaced the

zeros in the last element of the first row with µ1 and the first element of the last

row with αm̄, respectively. To solve this equation we firstly write it down in a short
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matrix notation

m̄∑
j=1

(
Qij − Γ̄Iij

)
Aj = 0 (4.69)

For all i in the range 1 ≤ i ≤ m̄. Here I is the identity matrix and Qij represents

the elements of a square, complex, non-symmetric, almost tridiagonal, matrix. This

system is suitable to be solved via the so called QR algorithm. For this reason,

to compute all eigenvalues Γ and non trivial eigenvectors A 6= 0 for Q, we have

employed the LA EIGENPROBLEM IDL built in function. This function uses the

QR algorithm [93] and is based on the LAPACK library that provides routines for

solving systems of simultaneous linear equations.

4.7 Isolated and General Modes: Two Special An-

alytic Limits

Equation (4.63) has been already solved analytically in two limits [5, 18, 19, 25]:

either S(p) = 0 or R(p) = 0. These lead to two different eigenmode classes, referred

to as “isolated modes” when S(p) = 0 and “general modes” when S(p) 6= 0, but

R(p) = 0.

4.7.1 Pure Isolated Modes

This class of eigenmode was originally studied in the context of ideal MHD [23, 24].

They can only be observed for a special set of the equilibrium parameters, where

Ω0(xs, p) is stationary at xs = 0, i.e. S(p) = ∂Ω0/∂xs|xs=0 = 0. As we discuss in

the following, this leads to a highly unstable mode that usually sits on the outboard

mid-plane, radially centred about xs = 0 [5, 19].

For isolated modes, where S(p) = 0, Eq. (4.63) reduces to

R(p)

(nq′)2
d2A

dp2
+ [Ω− f(p)]A = 0 (4.70)

This equation is still hard to solve exactly. However as we are only interested in the

nq′ � 1 limit, the solutions for A(p) are highly localised in p. Therefore, assuming
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an up-down symmetric equilibrium, we may apply the Taylor series expansion to

expand about p = 0 and replace R(p) and f(p) with R(0)+ R′′(0)
2
p2 and f(0)+ f ′′(0)

2
p2,

respectively. This leads to a Hermite equation which has a ground state solution,

called the fundamental mode, of the form

A(p) = e−χp
2

(4.71)

where, χ is a constant that can be determined after we substitute Eq. (4.71) into

Eq. (4.70) and collect coefficients:(
2R′′(0)χ2

n2q′2

)
p4 +

(
χ2R(0)

n2q′2
− χR′′(0)

n2q′2
− f ′′(0)

2

)
p2

+

(
Ω− f(0)− 2χR(0)

n2q′2

)
p0 = 0

(4.72)

Considering powers of p separately (neglecting p4 which is small); from the coefficient

in front of p0 we obtain the global complex mode frequency in terms of a, which reads;

Ω = f(0) +
2χR(0)

n2q′2
(4.73)

From the coefficient in front of p2, a non-trivial solution for χ can be easily obtained

χ =
R′′(0)

8R(0)
± nq′

√(
R′′(0)
nq′

)2
+ 8R(0)f ′′(0)

8R(0)
≈

n→∞
±nq′

√
f ′′(0)

8R(0)
(4.74)

Note that the sign of the square root is chosen such that A(p) is localized in p space.

Moreover, as a necessary localization condition the real component of χ, namely χr,

should be finite and positive, i.e. χr > 0. In the limit of nq′ → ∞, the eigenvalue

Ω approaches the local complex mode frequency evaluated at the stationary point,

here assumed to be xs = 0, and p = 0, i.e. Ω = Max[Ω0(xs, p)] = f(0). Thus one

selects the maximally unstable value of xs and p.

Now to reconstruct the global mode structure and calculate its radial width, we

substitute A(p) = exp (−χp2) into Eq. (4.50), completing the square in p, to obtain

φ̃(xs, θ) = exp

[
−inqθ − n2q′2x2s

4χ

] ∫ +∞

−∞
ξ(xs, p, θ)

× exp

[
−χ
(
p− inq′xs

2χ

)2
]
dp

(4.75)
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Assuming that the local mode structure ξ(xs, p, θ) varies slowly with p compared to

A(p) and applying the so-called stationary phase approximation, from Eq. (4.75) we

obtain:

φ̃(xs, θ) ≈ ξ(xs, p = 0, θ) exp

[
−inqθ − n2q′2x2s

4χ

]
×
∫ +∞

−∞
exp

[
−χ
(
p− inq′xs

2χ

)2
]
dp

(4.76)

Here, ξ(xs, p = 0, θ) determines the poloidal extent of the global mode and p = 0

corresponds to where A(p) peaks in p space. Finally, the integration on the right

side is a Gaussian integral with a complex shift inq′xs
2χ

. We can change variables,

p → ṕ + inq′xs
2χ

, such that the integral transforms to the normal Gaussian and the

result is [94, pp. 121 and 95, pp. 413-414]3∫ +∞

−∞
exp

[
−χ
(
p− inq′xs

2χ

)2
]
dp =

∫ +∞+ inq′xs
2χ

−∞+ inq′xs
2χ

exp
[
−χ (ṕ)2

]
dṕ =

√
π

χ
(4.77)

This leads to an analytic approximation for the reconstructed global mode structure;

φ̃(xs, θ) ≈ ξ(xs, p = 0, θ) exp [−inqθ] exp
[
−n

2q′2x2s
4χ

]
(4.78)

It is important to note that for purely imaginary χ, the function A(p) is not localized

in p; hence the solution for φ̃ is oscillatory in that situation. However, in general,

for complex χ, we evaluate the magnitude of φ̃ to get:

|φ̃(xs, θ)| ∼ exp

[
−n2|q′2χr|

x2s
4|χ|2

]
(4.79)

From this equation it is obvious that the mode peaks about xs = 0, and extends over

a small radial region with width:

∆x =
4
√
log(2)|χ|

n|q′|
√

|χr|
≈

n→∞

4
√
log(2)√
n |q′|

∣∣∣ f ′′(0)8R(0)

∣∣∣√∣∣∣(√ f ′′(0)
8R(0)

)
r

∣∣∣ (4.80)

Note that, this provides a narrow mode width ∆x ∝ 1/
√
n.

3Eq. (4.77) is a well known complex Gaussian integral that does not have poles, for a long time
people did not know how to calculate it using contour integration. It was only around the middle
of last century several contour integral solutions were proposed. Here, we do not show how to
calculate Eq. (4.77), but its calculation detail can be found for example in references [94, pp. 121
and 95, pp. 413-414] or online documents [96, 97].
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To validate our calculations, we reproduce the results presented in [5, 81].

Firstly, Fourier expand in p, retaining only two Fourier modes, to write R(p) = R0

and f(p) = f0 + f1 cos(p). Where, R0, f0 and f1 are, in general, complex and are

the coefficients of the Fourier expansion. This corresponds to R(0) = R0, R
′′(0) = 0,

f(0) = f0 and f ′′(0) = −f1, respectively. In this limit, the corresponding equations

for A(p) (from Eq. (4.71)), Ω (from Eq. (4.73)), φ̃ (from Eq. (4.78)), and ∆x (from

Eq. (4.80)) are, respectively, reduced to the following forms:

A(p) = exp
[
−inq′βp2

]
(4.81)

Ω =
2iR0

nq′
β + f0 + f1 (4.82)

φ̃(xs, θ) ≈ ξ(xs, p = 0, θ) exp [−inqθ] exp
[
inq′

x2s
4β

]
(4.83)

∆x = 4
√
log(2)

√
|β|2
n|q′βi|

, (4.84)

where, β = ±
√

f1
8R0

and its sign is chosen such that A(p) is localised in p.

4.7.2 General Modes

This class of eigenmode can be obtained if we assume that R(p) = 0 [18, 25]. For

this case Eq. (4.63) is simplified to:

iS(p)

nq′
dA

dp
− [Ω− f(p)]A = 0 (4.85)

This is a first order linear differential equation and its exact solution is easily ob-

tained:

A(p) = exp

[
−inq′

∫ p(Ω− f(p)

S(p)

)
dp

]
(4.86)

The condition that A(p) is periodic in p leads to the constraint∮ [
Ω− f(p)

S(p)

]
dp =

2`π

nq′
(4.87)
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with ` integer. This equation describes the existence of a set of separate eigenmode

solutions, each corresponding to a different value of `. For ` = 0 the eigenvalue Ω

can be calculated as

Ω =

∮ [ f(p)
S(p)

]
dp∮

[S(p)]−1 dp
(4.88)

Having obtained the solutions for A(p) and Ω, we may now reconstruct the global

mode structure from the Fourier Ballooning representation of Eq. (4.50). For conve-

nience, we Fourier expand to approximate S(p) = S0 and f(p) = f0+f1 cos(p), where

only two Fourier modes have been retained. This simplification reduces Eq. (4.88)

to:

Ω = f0 (4.89)

This represents the average of the local complex mode frequency over 2π in p, eval-

uated at xs = 0, i.e Ω = 〈Ω0(xs = 0, p)〉p. This provides an exact analytic solution

for A(p) from Eq. (4.86)

A(p) = exp [inq′δ sin(p)] (4.90)

where δ = f1
S0
, and δ must be complex for A(p) to be localised in p. Furthermore, for

this model, the envelope A(p) peaks at p = ±π
2
, with + and − signs corresponding

to the top (for δi < 0) and bottom (for δi > 0) of the tokamak plasmas, respectively.

The appropriate choice of solution depends on the sign of q′δ. Substituting A(p) from

Eq. (4.90) back into Eq. (4.50), knowing the fact that A(p) has the fastest variation

in p compared to ξ(xs, p, θ), and again using the stationary phase approximation

for the integral in Eq. (4.50), one can obtain an analytic approximation for the

reconstructed global mode structure [19]:

φ̃(xs, θ) ∼ exp

[
inq′

(
xscos

−1
(xs
δ

)
± δ

(
1− x2s

δ2

) 1
2

)]
exp [−inqθ] (4.91)

The sign is chosen such that φ̃ decays for large xs. The mode is again radially

localised about xs = 0, corresponding to a pure general mode, and its radial width
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can be calculated if we expand Eq. (4.91) for small xs to get∣∣∣φ̃∣∣∣ ∼ exp

[
−n |q′δi|
2 |δ|2

x2s

]
(4.92)

This is a Gaussian with radial mode width, ∆x;

∆x = 2
√
2 log 2

√
|δ|2

n |q′δi|
(4.93)

We therefore again find that the mode width ∆x ∝ 1/
√
n.

In the next chapter, we extend the analytic solution of Eq. (4.63) to account for

more general cases. This allows us to investigate more realistic situations for which

an eigenmode can sit somewhere between the outboard mid-plane and the top or

bottom of the tokamak plasma.
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Chapter 5

Extended Analytical Solutions

In the previous chapter we described two previously published analytic solutions of

Eq. (4.63). Those solutions correspond to the highly unstable “isolated” modes and

relatively less unstable “general” modes that, respectively, peak on the outboard

mid-plane and the top (or bottom) of the tokamak plasmas [5, 18, 19, 25]. For more

realistic experimental profiles, it is more likely that the eigenmode will, in general,

sit at an arbitrary poloidal position and undergo radial shifts with respect to the

reference surface at xs = 0. In this chapter, to account for these modes we have

extended the analytical solutions, such that those previously considered limits can

be considered as two special limits from our new solutions. In addition, we have used

these analytic approaches to investigate the influence of rotational flow shear on the

stability and structures of the global ballooning eigenmode in tokamak plasmas. We

have also shed light on the mechanisms underlying poloidal and radial symmetry

breaking. Note also that we introduce the terminology “pure” and “shifted” global

modes to define the mode peaking at xs = 0 and away from this point, respectively.
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5.1 Fundamental Modes with Small Poloidal

Shifts

As a first step we consider an eigenmode that undergoes a small poloidal shift with

respect to the outboard mid-plane1. Isolated modes can be considered as a special

limit of these new solutions. However, these new analytical solutions cannot account

for the general modes.

5.1.1 The Envelope A(p) and Global Eigenvalue Ω

We start with Eq. (4.63) and seek localised modes with the following solution for

A(p):

A(p) = exp
[
−χp2

]
exp [bp] (5.1)

where χ and b are, in general, complex numbers. As we shall see in the following,

the first exponential term on the right hand side represents a mode that sits on

the outboard mid-plane at θ = 0, while the second term incorporates the effect

of S(p), and can introduce both a radial shift away from xs = 0 and a poloidal

shift with respect to the outboard mid-plane. Recalling that nq′ � 1, and we are

only considering solutions that undergo small poloidal shifts with respect to the

outboard mid-plane, we Taylor expand about p = 0 and replace R(p), S(p) and

f(p) with R(0) + R′′(0)
2
p2, S(0) + S′′(0)

2
p2 and f(0) + f ′′(0)

2
p2, respectively. We restrict

ourselves to up-down symmetric equilibria so first derivatives are zero at p = 0.

After substituting A(p) from Eq. (5.1), collecting coefficients with like powers of p,

Eq. (4.63) reduces to the following algebraic equations:

p2 :
4χ2R(0)

n2q′2
+

(b2 − 2χ)R′′(0)

2n2q′2
− ibS ′′(0)

2nq′
− f ′′(0)

2
= 0 (5.2)

1In this section only fundamental modes with small poloidal shifts are investigated, but the
technique that we present here enable us to take into account the finite corrections due to the p
dependence of the R(p) coefficient in Eq. (4.63). For this reason we have separated these solutions
from the generalised solutions that are presented in section 5.4 in which the non-fundamental modes,
with arbitrary poloidal shifts, are also included, but R(p) is assumed to be constant.

86



p1 : −4χbR(0)

n2q′2
+

2iχS(0)

nq′
= 0 (5.3)

p0 : Ω− f(0) +
(b2 − 2χ)R(0)

n2q′2
− ibS(0)

nq′
= 0 (5.4)

From these equations we can determine the unknown parameters, namely χ, b and

Ω. Note that we still assume solutions localised in the vicinity of p = 0, and therefore

neglect the terms in p3 and p4. Solving the first two equations, corresponding to the

coefficients of p1 and p2, simultaneously, we obtain χ, b as follows:

b = inq′
S(0)

2R(0)
= −inq′x0 = nq′ (x0,i − ix0,r) (5.5)

where x0 = −S(0)/2R(0) is a complex number and the subscripts r and i refer to

the real and imaginary components, respectively. We will see later in this section

that x0 is related to the physical radial shift of the mode. In addition

χ =
R′′(0)

8R(0)
± nq′

√
8R(0)f ′′(0) + (R

′′(0)
nq′

)2 + 8x0R(0)S ′′(0) + 8x20R(0)R
′′(0)

8R(0)
(5.6)

and finally, from Eq. (5.4), using Eq. (5.5) to write b in terms of x0, we obtain the

following solution for the global eigenvalue Ω2:

Ω = f(0)− x20R(0) +
2χ

(nq′)2
R(0) (5.7)

Furthermore, using Eq. (5.1), taking the first derivative of A(p) at p = p0 and

equating it to zero, i.e. dA/dp|p=p0 = 0, we see that A(p) peaks on

p = p0 =
b

2χ
(5.8)

where p0 is called the ballooning phase angle and is, in general, complex [98, 99]

(our p0 corresponds to θ0 in [98] and λ in [99]). Decomposing p0 into its real and

2Note that section 5.3 is devoted to investigating how Ω and other global parameters, such
as mode radial width ∆x etc., scale with n. For example how the finite n correction due to p
dependence of R(p) affects this scaling. Therefore, in this section we merely derive the general
formula and do not discuss how the global parameters scale with n.
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imaginary components, i.e. p0 = p0,r + ip0,i, we get:

p0,r =
brχr + biχi

2|χ|2

p0,i =
biχr − brχi

2|χ|2

(5.9)

If we now substitute χ = χr + iχi and b = br + ibi into Eq. (5.1) we may decompose

A(p) into its magnitude and oscillatory parts to get;

A(p) = A0 exp
[
−χr(p− pm)

2
]
exp

[
−iχi(p− pp)

2
]

(5.10)

where the constant A0 = exp[χrp
2
m + iχip

2
p] is complex and determines the arbitrary

amplitude and phase of A(p). Note that, the parameters pm and pp are both real

and are defined as follows:

pm =
br
2χr

= nq′
x0,i
2χr

pp =
bi
2χi

= −nq′x0,r
2χi

(5.11)

Here, Eq. (5.5) is used to relate br and bi to x0,i and x0,r, respectively. The first

exponential on the right hand side of Eq. (5.10) is proportional to the magnitude

of A(p), i.e. |A(p)|, while the second exponential is oscillatory and can be thought

of as A(p)/|A(p)|. The function |A(p)| peaks and is symmetric about a line that

goes through p = pm, but A(p)/|A(p)| is symmetric about an axis that goes through

p = pp. The resultant A(p) can only be symmetric if and only if these two lines

of symmetry coincide, which happens when pm = pp. We shall see later in section

5.2 that this symmetry breaking leads to a physical radial shift in the reconstructed

global mode structure with respect to xs = 0.

Having obtained solutions for the envelope A(p) with its associated eigenvalue Ω

we are now ready to derive an analytic formula for the global mode structure φ̃(xs, θ)

which is the subject of the following subsection.

5.1.2 The Global Eigenmode Structures φ̃(xs, θ)

To reconstruct the global mode structure and calculate its radial width, we shall

follow the same procedure and steps that have been used in the previous chapter
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(see section 4.7.1). We first substitute A(p) = exp (−χp2 + bp) from Eq. (5.1) into

the Fourier ballooning representation in Eq. (4.50), and knowing that ξ(xs, θ, p)

varies slowly with p compared to A(p), we can then apply the stationary phase

approximation to the integral in Eq. (4.50). To lowest order we derive:

φ̃(xs, θ) ≈ ξ(xs, p = pm, θ) exp
[
−inqθ + χx21

] ∫ +∞

−∞
exp

[
−χ (p− x1)

2] dp (5.12)

where, x1 = [inq′/2χ] (xs − x0) and ξ(xs, p = pm, θ) determines the poloidal exten-

sion of the global mode. The parameter pm is defined in Eq. (5.11) and determines

where |A(p)| peaks in p space, which in turn leads to a global mode that peaks at

θ = pm. The result of the integration on the right side is equal to
√
π/χ3. This

provides an analytic formula for the reconstructed global mode structure, which is

represented by the following equation:

φ̃(xs, θ) ≈ ξ(xs, p = pm, θ) exp [−inqθ] exp
[
χx21
]

(5.13)

Note that, from the last exponential term on the right hand side we can see that

the global mode radially peaks at xs = x0. This indicates that the parameter x0,

previously defined in Eq. (5.5), can be thought of as a radial shift of the reconstructed

global mode in the complex plane. It is important to note that for purely imaginary

χ, the function A(p) is not localised in p; hence the solution for φ̃ is oscillatory. In

general, for a complex χ, we find

|φ̃(xs, θ)| ∼ exp

[
−n2|q′2χr|

(xs − xm)
2

4|χ|2

]
(5.14)

where

xm = x0,r +
χi
χr
x0,i =

1

nq′

[
−bi +

χi
χr
br

]
= −1

2

[(
S(0)

R(0)

)
r

+
χi
χr

(
S(0)

R(0)

)
i

]
(5.15)

is real and represents a physical radial shift away from xs = 0. As we can see, xm

is a consequence of a finite value of the part of Ω0(xs, p) that is linear in xs, S(0).

Note, therefore, that our Taylor expansion of Ω0(xs, p) about xs = 0 requires us to

restrict consideration to those equilibria for which this shift is small.

Finally, the mode’s radial width is determined from the full width at half max-

3For more details see subsection 4.7.1 − second to the last paragraph.
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imum (FWHM) of the Gaussian Eq. (5.14)

∆x =
4
√
log(2)|χ|

n|q′|
√
|χr|

, (5.16)

Having obtained solutions for the global mode structure φ̃(xs, θ) and its eigenvalue

Ω, we are able to recapture the so-called isolated type of modes in the limit S(p) → 0.

More generally, the isolated mode is recovered when x0 is purely real−in that case the

term involving S(p) can be transformed away by simply transforming xs → xs + x0.

This is the origin of the radial shift, but otherwise the mode structure is unaffected.

When x0 is complex, however, both the radial and poloidal structure are affected, as

we now discuss in more detail.

5.2 Radial and Poloidal Symmetry Breaking

In the analytical calculation that has been developed in section 5.1, two different

classes of symmetry breaking can be identified; radial symmetry breaking associated

with the radial shift with respect to xs = 0, i.e. φ̃(xs, θ) 6= φ̃(−xs, θ), and poloidal

symmetry breaking associated with the mode’s poloidal shift with respect to the

outboard mid-plane, i.e φ̃(xs, θ) 6= φ̃(xs,−θ). To understand the mechanisms under-

lying this symmetry breaking we start by anticipating a symmetric A(p), assuming

that pm = pp, from Eq. (5.11) we get the following constraint:

biχr = brχi (5.17)

or equivalently,

x0,r = −χi
χr
x0,i (5.18)

Upon substituting Eq. (5.17) and Eq. (5.18) into Eq. (5.9) and Eq. (5.15), respec-

tively, we have

p0,i = xm = 0 (5.19)

It is quite clear that the function A(p) is symmetric only when p0,i = 0 which then

provides a radially centred reconstructed global mode that peaks about a reference
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flux surface xs = 04. In this case, p0,r = br
2χr

= pm, or p0,r = bi
2χi

= pp and this in

turn implies that the two lines of symmetry always coincide at p = p0,r. However,

a symmetric A(p), does not, in general, imply a poloidally symmetric reconstructed

global mode. Only Isolated modes preserve poloidal symmetry with respect to the

outboard mid-plane at θ = pm = 0. This can be seen from Eq. (5.11), which states

that if pm = 0, then

br = x0,i = 0 (5.20)

Thus, pm = 0 requires x0,i = 0, which therefore means x0 is real5. Recalling that

xs = x0 corresponds to the position where ∂Ω0(xs, p)/∂xs = 0, then transforming

xs → xs + x0 recovers the isolated mode. Substituting x0,i = 0 into Eq. (5.15) we

have

xm = x0,r (5.21)

and from Eq. (5.14) we see that the mode is localised at the position where

∂Ω0(xs, p)/∂xs = 0.

5.2.1 Shifted Isolated Modes: Regular Radial Symmetry

Breaking

To illustrate the radial symmetry breaking that is associated with the shifted isolated

modes, we shall examine a simple problem. We start with Fourier expansion and

write R(p) = R0, S(p) = S0 and f(p) = f0 + f1 cos p, respectively, and consider the

following model coefficients given in [81]:

f0 = −0.1183 + 0.2571i

f1 = 0.1257 + 0.0831i

R0 = 12.61− 15.90i

S0 = 0

(5.22)

4p0,i 6= 0 → A(p) 6= A(−p) → radial shift xm 6= 0 → radial symmetry breaking φ̃(xs, θ) 6=
φ̃(−xs, θ).

5x0,i 6= 0 → poloidal shift pm 6= 0 → poloidal symmetry breaking φ̃(xs, θ) 6= φ̃(xs,−θ).
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These coefficients are obtained from a simplified fluid model for a so-called ITG

mode in a circular tokamak and lead to R(0) = R0, S(0) = S0 = 0, f(0) = f0,

R′′(0) = 0, S ′′(0) = 0 and f ′′(0) = −f1, respectively. Here, we have assumed n = 50

and q′ = 10, respectively, and as S0 = 0 we find a pure type of isolated mode that

peaks at xs = 0. Let us now consider a different S0 = 0.4000−i0.5044. From Eq. (5.5)

we see that x0 is then purely real. Specifically; x0 = x0,r+ix0,i = −0.01586+i0. This

corresponds to a local mode frequency Ω0(xs, p) = ω0(xs, p)+ iγ0(xs, p) that exhibits

a stationary point at xs = x0,r = −0.01586 and therefore is susceptible to an isolated

mode that sits on the outboard mid-plane at θ = 0. The calculated values for both

Ω (from Eq. (5.7)) and ∆x (from Eq. (5.16)) are 0.00384 + i0.34176 and 0.03162,

respectively. Solving equation Eq. (4.63) numerically provides the function A(p) and

its eigenvalue Ω = 0.00384 + i0.34175. Using this A(p), numerical integration of

equation Eq. (4.50) provides the reconstructed global mode structure φ̃(xs, θ) with

radial width ∆x = 0.0315. The local real frequency ω0(xs, p = 0) and the local

growth rate γ0(xs, p = 0) are both shown in Figure 5.1(top row). In the middle

row, the envelope A(p) (obtained from Eq. (5.1) with χ = 10.2962 − i11.2263 and

b = 0.0000+i7.9302), its magnitude |A(p)| and the oscillatory componentA(p)/|A(p)|

are shown. Finally, the bottom row of the same figure, presents the associated

magnitude of the reconstructed eigenmode structure |φ̃(xs, θ = 0)|, obtained from

Eq. (5.14)), as function of xs. The solid lines and plus symbols correspond to the

solutions, derived from the analytic (Eq. (5.1)) and numerical (solution of Eq. (4.63))

forms for A(p), respectively. As we can see perfect agreement between the analytical

and numerical solutions is found. Moreover, for the model parameters considered

here, the calculated ballooning phase angle, p0 = −0.0611 + i0.0560, has a non zero

imaginary component. Consequently, the symmetric axis of |A(p)|, which is located

at pm = 0, is shifted with respect to the symmetric axis of A(p)/|A(p)|, which is

located at pp = −0.1124. This in turn, as expected for an isolated mode, leads

to an envelope A(p) that still peaks at pm = 0, but it is not symmetric under the

transformation p → −p. It is this symmetry breaking that eventually leads to the

radial shift in the global mode with respect to xs = 0. The global mode sits at the
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Figure 5.1: An isolated mode in nonshifted radial coordinate system xs. The top row
from left to right presents the radial variation of both local frequency ω0(xs, p = 0)
and local growth rate γ0(xs, p = 0), respectively. The middle row shows the envelope
A(p) [right] with both its magnitude |A(p)| and oscillatory A(p)/|A(p)| components
[left]. Finally, the bottom row presents the magnitude of the reconstructed global mode
structure |φ̃(xs, θ = 0)|. The analytic solutions are represented by solid lines while the
plus symbols correspond to the numerical solutions. Note that the local frequency
Ω0(xs, p) is stationary at xs = xm = −0.01586. This provides a non zero imaginary
component for the ballooning phase angle, i.e. p0,i 6= 0, which also implies that the line
of symmetry for A(p)/|A(p)| is shifted with respect to the line of symmetry of |A(p)|.
This introduces asymmetry in the resultant A(p) about p = 0, which in turn leads to
a radially shifted global eigenmode that, for the example considered here, peaks about
xs = xm = −0.01586.
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Figure 5.2: A pure isolated mode in shifted radial coordinate system x̄s. The top
row from left to right presents the radial variation of both local frequency ω0(x̄s, p = 0)
and local growth rate γ0(x̄s, p = 0), respectively. The middle row shows the envelope
Ā(p) [right] with both its magnitude, |Ā(p)|, and oscillatory, Ā(p)/|Ā(p)|, components
[left]. Finally, the bottom row presents the magnitude of the reconstructed global mode
structure |φ̃(x̄s, θ = 0)|. The analytic solutions are represented by solid lines while the
plus symbols correspond to the numerical solutions. Note that, the local frequency
Ω0(x̄s, p = 0) is stationary at x̄s = 0. This provides a real ballooning phase angle,
i.e. p0,i = 0, which also implies that, the two lines of symmetry that, respectively,
corresponds to the functions A(p)/|A(p)| and |A(p)| should coincide. The resultant
A(p) is then symmetric about p = 0, which in turn leads to a radially centred global
eigenmode that peaks about x̄s = 0.
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point where Ω0(xs, p) is stationary, i.e. xs = xm = x0,r = −0.01586.

From the above analysis we can deduce the fact that so long as x0,i = 0, the

symmetry breaking can always be regulated by transforming the radial coordinate

into a new one, x̄s, such that the complex mode frequency is stationary at x̄s = 0.

Figure 5.2 shows the solution obtained by repeating the above analysis, but in the

radial coordinate x̄s = xs+x0, so that the local complex mode frequency is stationary

at x̄s = 0. This is the case considered in subsection 4.7.1. Although the form for

A(p) differs to that found in Figure 5.1, the physical potential φ̃(xs, θ) is identical

and we recover the same global eigenmode, Ω = 0.00384 + i0.34175.

5.2.2 Poloidal Symmetry Breaking: An Example

We now turn to the more general case, where x0,i 6= 0, in which case the global

mode sits slightly away from the outboard mid-plane. The poloidal shift, in general,

can be caused by shear in the equilibrium profiles [13, 27], which can have very

important physical consequences. For example it can lead to flow generation in

axisymmetric tokamaks [27, 30–32] which is important for a machine like ITER for

which the external torque is small. To illustrate the poloidal symmetry breaking

that is associated with these classes of eigenmode solutions, we consider the model

parameters from Eq. (5.22) with an additional effect from a purely real linear term

S0 = 0.6. This set of model coefficients leads to x0,i 6= 0. This corresponds to a local

complex mode frequency Ω0(xs, p) that does not exhibit a stationary point on the real

axis which in turn, according to Eq. (5.11) leads to pm 6= 0 and provides a global mode

that poloidally shifts with respect to the outboard mid plane. Figure 5.3 presents

the local complex mode frequency Ω0(xs, p = 0) = ω0(xs, p = 0) + iγ0(xs, p = 0),

the envelope function A(p) and the associated reconstructed global mode structure

φ̃(xs, θ). Note that we have assumed the local mode structure ξ(xs, θ, p) to vary

with θ and p according to e−(θ−p)2 . The global parameters for this model are; b =

−5.7913 + i4.5930 (from Eq. (5.5)), χ = 10.2962 − i11.2263 (from Eq. (5.6)), the

global mode frequency Ω = 0.00425 + i0.3343 (from Eq. (5.7)), complex ballooning
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Figure 5.3: The local complex mode frequency Ω0(xs, p = 0) = ω0(xs, p = 0) +
iγ0(xs, p = 0) (a,b), the function A(p) (c) and poloidal cross-section for the global
mode structure φ̃(xs, θ) (d). Note that, the local mode structure is assumed to be
Gaussian with respect to θ and p, namely ξ(xs, p, θ) ∼ e−(θ−p)2 . The model coefficients
are taken from Eq. (5.22) with S0 = 0.6 + i0 in addition. For the function A(p), the
analytic solution is represented by a solid line, while plus symbols refer to the numerical
solution of Eq. (4.63). Note that, Ω0(xs, p = 0) does not have a stationary point on
the real axis. This, in turn, leads to a non-isolated type of mode that shifts slightly
downward with respect to the outboard mid-plane.

phase angle p0 = −0.07626− i0.01216 (from Eq. (5.8)), mode poloidal position pm =

−0.08952π (from Eq. (5.11)), complex radial parameter x0 = ib/nq′ = −0.009186−

i0.01158, mode radial position xm = 0.003443 (from Eq. (5.15)) and finally the mode

radial width ∆x = 0.03162 (from Eq. (5.16)). The corresponding values derived

from a numerical solution of Eq. (4.63) are; Ω = 0.00425 + i0.3343, pm = −0.09π,

xm = 0.0035 and finally ∆x = 0.0314. Note that, excellent agreement between the

analytical and numerical solutions is found.

Furthermore, we can see from Figure 5.3 that the local growth rate γ0(xs, 0) still

peaks at xs = 0, which is expected because S0,i = 0. However, the local frequency
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ω0(xs, 0) has a minimum at xs 6= 0. The calculated value for this radial position

where ∂ω0/∂xs|xs=xω0
= 0 is xω0 = − [S(0)]r

2[R(0)]r
= − S0,r

2R0,r
= −0.024. Note that, the

envelope function A(p) is not symmetric (corresponds to p0,i 6= 0) and also peaks at

p = pm 6= 0 (corresponds to x0,i 6= 0). This in turn leads to a global mode that shifts

slightly downward with respect to the outboard mid-plane and does not peak at the

centre of the domain, i.e. xm 6= 0. Both the radial and the poloidal symmetries are

broken, i.e. φ̃(xs, θ) 6= φ̃(−xs, θ) and φ̃(xs, θ) 6= φ̃(xs,−θ), respectively6.

5.3 Scaling with Toroidal Mode Number: Small

Poloidal Shifts

Having derived the analytical equations for the fundamental modes with small

poloidal shifts, we are now in a position to investigate how the global parameters

scale with toroidal mode number n. We consider a general case and take into account

the finite n correction due to the p dependence of the coefficient R(p), i.e. where

R′′(0) 6= 0. However, in this section we will also look at a few limits. For example

the limit with R′′(0) = 0 as well as the effect of toroidal rotational flow on the scaling

laws. In the limit of nq′ � 1 we can assume that (R
′′(0)
nq′

)2 is negligible7, and this

allow us to rewrite χ from Eq. (5.6) in the following form8;

χ ≈ χ0 ± nq′χ1 (5.23)

where,

χ0 =
R′′(0)

8R(0)

χ1 =

√
8R(0)f ′′(0) + 8x0R(0)S ′′(0) + 8x20R(0)R

′′(0)

8R(0)
,

(5.24)

6Recall that the radial symmetry breaking considered with respect to xs = 0, while the poloidal
symmetry breaking corresponds to up-down asymmetry with respect to θ = 0.

7Note that, taking into account the effect of (R
′′(0)
nq′ )2 only contributes to the higher order terms

in the the scaling of the global parameters with n. For example the correction would be of order
O(1/n3) for both pm and Ω, therefore we can neglect this term in the limit of nq′ � 1.

8Note that, for convenient, we have introduced the extra terms χ0 and χ1 solely to simplify the
calculations.
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Substituting χ from Eq. (5.23) into Eq. (5.11) and employing the Binomial expansion

with nq′ � 1, we get

pm =
x0,i
2χ1,r

[
1− χ0,r

nq′χ1,r

+O(
1

n2q′2
) + .....

]
(5.25)

Note that, if we are particularly interested in the first two terms on the right hand

side then the fact that we have assumed (R
′′(0)
nq′

)2 = 0 does not have any effect on

the result. However it does contribute to the coefficients of the higher order terms.

It is important to note that the global modes tend to finite poloidal positions in the

limit of nq′ → ∞ (i.e. pm is finite) and those positions depend on the equilibrium

profiles through the x0,i and χ1,r parameters. We now compare our predictions

against previously published results, for example Ref [27]. According to [27, Eq.27]

pm (or θ0 in their notation) scales with n according to θ0 ∼ 1/ 3
√
n. However, our

result indicates that the scaling presented in Ref [27] is not correct for small poloidal

shifts. Therefore, it can not be considered as a universal scaling law. Similarly, the

global mode frequency Ω (from Eq. (5.7)), scales as:

Ω = f(0)− x20R(0) +
2χ1R(0)

nq′
+

2χ0R(0)

n2q′2
(5.26)

The mode radial position xm (from Eq. (5.15)) is found to scale with n as follows:

xm = x0,r + x0,i

[
χ1,i

χ1,r

+
χ0,iχ1,r − χ0,rχ1,i

(χ1,r)2nq′
− χ0,rχ0,iχ1,r − (χ0,r)

2χ1,i

(χ1,r)3n2q′2

]
+O(

1

n3q′3
) + .....

(5.27)

Finally, the mode’s radial width ∆x (from Eq. (5.16)) scales as:

∆x =
4|χ1|

√
log(2)√

|nq′χ1,r|
+

2
√

|χ1,r| log(2)
|χ1|3

√
|nq′|3

[
−|χ0,r||χ1|2

|χ1,r|2
+

2χ0,rχ1,r + χ0,iχ1,i

|χ1,r|

]
+O(

1√
|nq′|5

) + .....

(5.28)

From the preceding discussion it appears that assuming R′′(0) 6= 0 (or equivalently

R(p) varies with p) has the effect of finite n corrections of different orders for differ-

ent global parameters. To the leading order, the corrections are of order O(1/nq′)

for both pm and xm, but O(1/n
2q′2) and O(1/

√
(nq′)3) corrections to Ω and ∆x,
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respectively9.

If we now take the limit of R′′(0) = 0 (or assuming that R(p) is constant), from

Eq. (5.24) we have

χ0 = 0

χ1 =

√
8R(0)f ′′(0) + 8x0R(0)S ′′(0)

8R(0)
,

(5.29)

such that the scalings with n for the above global parameters are, respectively, re-

duced to the following ones:

pm =
x0,i
2χ1,r

, (5.30)

Ω = f(0)− x20R(0) +
2χ1R(0)

nq′
, (5.31)

xm = x0,r +

[
χ1,i

χ1,r

]
x0,i, (5.32)

and finally,

∆x = 4
√

log(2)

[
|χ1|√
|nq′χ1,r|

]
(5.33)

where, for pm = xm = 0, these last four equations recapture the ordering for a

so-called conventional ballooning mode, namely a pure isolated mode, in which we

have an O(1/n) correction to Ω with respect to the maximum of the local complex

mode frequency Ω0(xs, p), i.e. Ω = Max[Ω0(xs, p)] + O(1/n) and the radial mode

width ∼ O(1/
√
nq′).

Finally, let us take a second limit for which in addition to R′′(0) = 0 we also

assume that S ′′(0) = 0. This reduces χ1 from Eq. (5.29) to

χ1 =

√
f ′′(0)

8R(0)
(5.34)

If we now consider a special case and assume that S(0) = nq′γE, where γE corre-

sponds to a constant rotational flow shear. This additional nq′ in S(0) changes the

9It is important to mention that, the effect of p dependence of R(p) (or equivalently where
R′′(0) 6= 0) on the magnitude of global parameters pm, Ω, xm and ∆x is embodied in both χ0 and
χ1 coefficients.
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scaling of the global parameters with n. Substituting S(0) = nq′γE into Eq. (5.5) we

have:

x0 = −nq′γE
2R(0)

∼ O(nq′)

this in turn leads to pm ∼ O(nq′) and xm ∼ O(nq′) from both Eq. (5.30) and

Eq. (5.32), respectively, but the ordering for the mode radial width from Eq. (5.33)

does not change and we still have ∆x ∼ O(1/
√
nq′). Finally, from Eq. (5.31) Ω scales

as follow:

Ω = ω + iγ = f(0)− n2q′2γ2E
4R(0)

+

√
8R(0)f ′′(0)

4nq′
, (5.35)

where, ω and γ are the global frequency and global growth rate, respectively.

Eq. (5.35) points to the fact that, in contrast to stationary plasmas for which the

most unstable mode is associated with the largest n, in rotating plasmas the most

unstable mode occurs at some intermediate n whose value depends on γE. This is

in agreement with Ref [80] (see their Figure 4). Figure 5.4, using the parameters

of Eq. (5.22) but with flow shear S(0) = nq′γE, shows how γ varies as a function

of n at different values of γE. As we can see, the analytical solutions (solid lines)

agree with the numerical solutions (symbols) for small values of flow shear, namely

for |nq′γE| < 12.

In conclusion, our analytical treatment can only provide accurate results for

a mode that sits close to the outboard mid-plane. Parameter regimes with large

poloidal shifts cannot be covered in the context of this analytical treatment. In

addition, we have only addressed the fundamental modes and for large poloidal shifts,

the scaling laws governing the variation of the global parameters with n might be

quite different from what we have presented so far. For these reasons, the following

section is devoted to extending the analytical works beyond those limits that have

been addressed so far. This new approach can account for large poloidal shifts and

the stability of other harmonics in addition to the fundamental modes.
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Figure 5.4: Growth rate, γ, as function of toroidal mode number, n, for different
values of rotational flow, q′γE , where q

′ = 10. The analytic solutions (obtained from
equation Eq. (5.35)) are represented by solid lines, while the symbols correspond to the
numerical solutions. The model coefficients are taken from Eq. (5.22) with additional
effect from S(0) = S0 = nq′γE . Note that only for γE = 0 does the most unstable
mode correspond to the largest n.
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5.4 Generalised Analytic Solutions

The analytical solutions that we have developed so far are not suitable to describe

all experimentally relevant situations. For example, with realistic experimental equi-

libria it is possible that one might find a mode that sits somewhere between the

outboard mid plane and the top (or bottom) of the plasma or even sits on the in-

board side in the good curvature region [28]10. Thus, in order to be able to describe

these types of modes analytically, in this section we have generalised our analytical

solutions beyond those limits that have been discussed so far.

Furthermore, in the previous sections, we have only focused on the highly lo-

calised fundamental harmonic eigenmodes, but these may not be the only important

modes of the system. Therefore, the results that we derive in this section can also

be used to investigate the non-fundamental modes.

5.4.1 Calculating the Envelope A(p) and its Eigenvalue Ω

We start our new analytic solutions by keeping both S(p) and f(p) as two general

complex function of p whilst assuming that R(p) = R, where R is a constant. This

assumption avoids the introduction of singularities and poles into the problem and

in turn we can rewrite Eq. (4.63) as follows:

R

(nq′)2
d2A

dp2
− iS(p)

nq′
dA

dp
+ [Ω− f(p)]A = 0 (5.36)

This equation is a linear second order differential equation of a general form. It can

always be reduced to a normal/standard form if we make the following substitution:

A(p) = g(p) exp

[
inq′

2R

∫
p

S(p)dp

]
(5.37)

10In the literature, a mode that sits on the outboard mid-plane is either known as isolated mode
or conventional ballooning mode or ballooning mode of a first kind (BMI). On the other hand, a
mode that sits on the top or bottom of the plasma is called general mode or ballooning mode of a
second kind (BMII). Furthermore, a mode that sits at an arbitrary poloidal angle on the outboard
side (bad curvature region) is called unconventional ballooning mode. Finally, anti-ballooning mode
refers to a mode that balloons on the inboard side in the good curvature region.
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which reduces Eq. (5.36) to

d2g(p)

dp2
+

[
(nq′)2

R
(Ω− f(p)) +

inq′

2R
S ′(p) +

(
nq′

2R

)2

S2(p)

]
g(p) = 0 (5.38)

This equation is, in general, complicated to solve analytically. But, recalling that

nq′ � 1, the solutions are highly localised in p about p = p0, for example. We can

then Taylor expand in p to give:

f(p) ≈ f(p0) + f ′(p0)(p− p0) +
f ′′(p0)

2!
(p− p0)

2

S(p) ≈ S(p0) + S ′(p0)(p− p0) +
S ′′(p0)

2!
(p− p0)

2

S ′(p) ≈ S ′(p0) + S ′′(p0)(p− p0) +
S ′′′(p0)

2!
(p− p0)

2

S2(p) ≈ S2(p0) + 2S(p0)S
′(p0)(p− p0) +

(
S ′2(p0) + S(p0)S

′′(p0)
)
(p− p0)

2

(5.39)

where, we have retained up to the second order terms in p−p0 and recall from section

5.1 that p0 is the complex ballooning phase angle. Substituting the above back into

Eq. (5.38), rearranging and collecting terms in powers of p− p0, we get

d2g(p)

dp2
−
(
(nq′)2f ′′(p0)Lc2

2R

)(
p− p0 +

f ′(p0)Lc1

f ′′(p0)Lc2

)2

g(p)

+

(
(nq′)2

R

)[
Ω− f(p0) +

f ′2(p0)L
2
c1

2f ′′(p0)Lc2

+
(S(p0)

2
)2

R
+
iS ′(p0)

2nq′

]
g(p) = 0

(5.40)

Here, the variation of S(p) with p is incorporated through S ′(p0) and the “coupling

parameters” Lc1 and Lc1, which are:

Lc1 = 1− iS ′′(p0)

2nq′f ′(p0)
− 1

2Rf ′(p0)
[S(p0)S

′(p0)]

Lc2 = 1− iS ′′′(p0)

2nq′f ′′(p0)
− 1

2Rf ′′(p0)

[
S ′2(p0) + S(p0)S

′′(p0)
] (5.41)

It follows that, for constant S(p) we have Lc1 = Lc2 = 1.

For the sake of further simplification we introduce the following transformation:

p− p0 +
f ′(p0)Lc1

f ′′(p0)Lc2

= εy (5.42)

where ε is an arbitrary parameter. We substitute this equation into Eq. (5.40) to
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obtain

d2g(y)

dy2
−
(
ε4(nq′)2f ′′(p0)Lc2

2R

)
y2g(y)

+

(
ε2(nq′)2

R

)[
Ω− f(p0) +

f ′2(p0)L
2
c1

2f ′′(p0)Lc2

+
(S(p0)

2
)2

R
+
iS ′(p0)

2nq′

]
g(y) = 0

(5.43)

We can then choose ε, such that ε4 (nq
′)2f ′′(p0)Lc2

2R
= 1 or similarly ε2 = 1

nq′

√
2R

f ′′(p0)Lc2
.

This gives;

y2 = nq′
√
f ′′(p0)Lc2

2R

(
p− p0 +

f ′(p0)Lc1

f ′′(p0)Lc2

)2

(5.44)

and substituting this into Eq. (5.43) we get

d2g(y)

dy2
+
(
µ̄− y2

)
g(y) = 0 (5.45)

where

µ̄ = nq′

√
2

Rf ′′(p0)Lc2

[
Ω− f(p0) +

f ′2(p0)L
2
c1

2f ′′(p0)Lc2

+
(S(p0)

2
)2

R
+
iS ′(p0)

2nq′

]
(5.46)

and Eq. (5.45) is known as the Weber-Hermite differential equation and is closely

related to the Hermite differential equation. If we substitute,

g(y) = H(y) exp

[
−y2

2

]
(5.47)

into Eq. (5.45), after some algebra we obtain the following differential equation:

d2H(y)

dy2
− 2y

dH(y)

dy
+ (µ̄− 1)H(y) = 0 (5.48)

This is a general Hermite equation of index µ̄. In order to solve Eq. (5.45), we must

first seek the solutions for Eq. (5.48). It is important to note that µ̄ is in general

complex. As we are looking for physical solutions, solutions to Eq. (5.48) must lead

to localised A(p), which implies that we are looking for solutions which do not grow

faster than exp(y
2

2
) as y → ∞. This condition can be satisfied only if, µ̄ = 2N + 1,

where N is a non negative integer [100, 101]. Therefore, using Eq. (5.44) to transform

from y space back into p space, the solution for Eq. (5.45) is readily given as

gN(p) = HN(p) exp

[
inq′σ

(
p− p0 +

f ′(p0)Lc1

f ′′(p0)Lc2

)2
]

(5.49)
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This is the Weber-Hermite function of order N , where

σ = ±i
√
f ′′(p0)Lc2

8R
(5.50)

and the Hermite polynomials HN(p) are given by

HN(p) = (−1)N
(

i

2nq′σ

)N
2

exp

[
−2inq′σ

(
p− p0 +

f ′(p0)Lc1

f ′′(p0)Lc2

)2
]

×
(
dN

dpN

)
exp

[
2inq′σ

(
p− p0 +

f ′(p0)Lc1

f ′′(p0)Lc2

)2
] (5.51)

Substituting Eq. (5.49) back into Eq. (5.37) we derive the final solution for the

envelope function AN(p);

AN(p) = HN(p) exp

[
inq′σ

(
p− p0 +

f ′(p0)Lc1

f ′′(p0)Lc2

)2
]
exp

[
inq′

2R
Ψ(p)

]
(5.52)

where the sign of σ is chosen such that AN(p) is localised. Here, Ψ(p) =
∫
p
S(p)dp

which also implies that S(p) = Ψ′(p). Taylor expanding Ψ(p) to the second order

about p = p0, leads to:

inq′

2R
Ψ(p) ≈ inq′Ψ(p0)

2R
+
inq′Ψ′(p0)

2R
(p− p0) +

inq′Ψ′′(p0)

4R
(p− p0)

2

= inq′α + inq′λ(p− p0) + inq′ν(p− p0)
2

(5.53)

with

α =
Ψ(p0)

2R

λ =
Ψ′(p0)

2R
≡ S(p0)

2R

ν =
Ψ′′(p0)

4R
≡ S ′(p0)

4R

(5.54)

Substituting Eq. (5.53) into Eq. (5.52) we get;

AN(p) = HN(p) exp

[
inq′σ

(
p− p0 +

f ′(p0)Lc1

f ′′(p0)Lc2

)2
]

× exp
[
inq′α + inq′λ(p− p0) + inq′ν(p− p0)

2
] (5.55)

To understand how p0 is related to R, S(p) and f(p), we shall take the first derivative
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of AN(p) at p = p0 and equating it to zero, i.e dAN (p)
dp

|p=p0 = 0. This leads to:

f ′(p0)Lc1√
2f ′′(p0)Lc2

=

(√
R

nq′

)(
H ′
N(p0)

HN(p0)

)
+

iS(p0)
2√
R
,

or equivalently:(
f ′(p0)Lc1√
2f ′′(p0)Lc2

)2

=

(
R

n2q′2

)(
H ′
N(p0)

HN(p0)

)2

− S(p0)
2

4R
+
iS(p0)

nq′

(
H ′
N(p0)

HN(p0)

)
and

2σf ′(p0)Lc1

f ′′(p0)Lc2

=

(
i√
R

)(
f ′(p0)Lc1√
2f ′′(p0)Lc2

)
= −S(p0)

2R
+

i

nq′

(
H ′
N(p0)

HN(p0)

)
(5.56)

For given S(p) this equation controls how the envelope A(p) moves in p space.

Eq. (5.56) is at the heart of our calculations, from which subsequent constraints

emerge. We may use either of these relations throughout this section whenever they

are needed. Furthermore, except for the very special case of the shifted isolated

modes (i.e. when x0 is real), for non zero S(p) the reconstructed global mode sits

away from the outboard mid-plane, which in turn leads to poloidal symmetry break-

ing with respect to the outboard mid plane. It is important to note that, from

this equation, we can understand how, and under what circumstances, the balloon-

ing phase angle p0 shifts into the complex plane which, as discussed in section 5.2,

pushes the global mode away from xs = 0.

Finally, we substitute µ̄ = 2N + 1 into Eq. (5.46) and using Eq. (5.56) to

eliminate
f ′2(p0)L2

c1

2f ′′(p0)Lc2
we derive;

ΩN = f(p0)−
i

nq′

[
2Rσ(2N + 1) +

(
S ′(p0)

2
+
H ′
N(p0)

HN(p0)
S(p0)

)]
− R

(nq′)2

(
H ′
N(p0)

HN(p0)

)2 (5.57)

Recalling the analytical treatment of section 5.1, we have assumed that the funda-

mental mode (i.e. N = 0) is the most unstable mode of the system. However, from

Eq. (5.57), it is important to note that the fundamental mode may not always be

the most unstable mode of the system. This finding is consistent with results that
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were presented in Ref [28]11.

In experiments we do not usually measure p0, but rather a poloidal position

about which the magnitude of A(p) peaks in real p space, i.e at p = pm, where pm is

real and measures the physical poloidal position of the reconstructed global modes.

To extract information about pm, and to know how it is related to p0, we shall first

rewrite Eq. (5.55) by collecting terms with like powers of p, to get

AN(p) = HN(p) exp
[
inq′ (σ + ν) p2

]︸ ︷︷ ︸
I

exp [inq′Πp]︸ ︷︷ ︸
II

exp [inq′τ ]︸ ︷︷ ︸
III

, (5.58)

where

Π = σ
2f ′(p0)Lc1

f ′′(p0)Lc2

+ λ− 2p0 (σ + ν)

τ = α− λp0 + νp20 + σ

(
p0 −

f ′(p0)Lc1

f ′′(p0)Lc2

)2 (5.59)

Note that, the first term (I) is the envelope that gives rise to the localisation of the

mode in p space. This term alone describes a pure isolated mode, if we assume S(p) =

0. The second term (II), is responsible for both radial and poloidal asymmetries

under the influence of S(p). Finally, the third term (III) does not depend on p, but

depends on p0. Therefore, it can be simply considered as a normalization factor that

scales the phase of A(p).

Decomposing Eq. (5.58) into real and imaginary components and completing

the square in p, we get

ĀN(p) = HN(p) exp

[
−nq′ (σ + ν)i

(
p+

Πi

2 (σ + ν)i

)2
]

︸ ︷︷ ︸
The envelope

× exp

[
inq′ (σ + ν)r

(
p+

Πr

2 (σ + ν)r

)2
]

︸ ︷︷ ︸
Oscillatory part

(5.60)

11In Ref [28] they found that for weak gradient (L-mode) parameter regime the most unstable
mode is the fundamental mode which corresponds to an isolated mode that sits on the outboard
mid-plane. However, for a parameter regime that corresponds to strong gradient (H-mode) the
mode sits at an arbitrary poloidal position and the most unstable solutions are not usually the
fundamental modes.
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where we have normalised AN(p) such that

AN(p) = ĀN(p) exp

[
nq′

(
iτ +

(
Πi

2

)2

(σ + ν)(−1)
i − i

(
Πr

2

)2

(σ + ν)(−1)
r

)]
Here, the second exponential term on the right hand side of Eq. (5.60) is an oscillatory

function, but the first term (the envelope) gives rise to the localisation in p space

about p = pm which is calculated as follow:

pm = − Πi

2 (σ + ν)i
= −

(
σ 2f ′(p0)Lc1

f ′′(p0)Lc2
+ λ− 2p0 (σ + ν)

)
i

2 (σ + ν)i
(5.61)

We then divide p0 into its real and imaginary components and rearrange to get:

pm =

(
p0,r +

(σ + ν)r
(σ + ν)i

p0,i

)
−


(
σf ′(p0)Lc1

f ′′(p0)Lc2

)
i

(σ + ν)i
+

λi
2 (σ + ν)i

 (5.62)

We can now use the constraint of Eq. (5.56), knowing that λ = S(p0)
2R

, to eliminate(
σf ′(p0)Lc1

f ′′(p0)Lc2

)
i
, and then to obtain the final equation for pm, which reads

pm = p0,r +
(σ + ν)r
(σ + ν)i

p0,i −
(

1

2nq′

) (H′
N (p0)

HN (p0)

)
r

(σ + ν)i
(5.63)

One can use this equation to understand how both real and imaginary components of

p0 contribute to the physical poloidal position of the global mode under the influence

of terms associated with S(p). In addition, the last term on the right hand side of

Eq. (5.63) contributes an O( 1
nq′

) correction for harmonics with N > 0. Finally,

comparing the envelope part of Eq. (5.60) with a Gaussian function, allow us to

calculate the width of A(p) in p space, ∆p, which is defined to be the full width at

half maximum (FWHM) of the Gaussian, and has the following form:

∆p ∼ (n|q′(σ + ν)i|)−
1
2 (5.64)

As n increases ∆p decreases, such that for nq′ � 1 |A(p)| is highly localised about

p = pm.
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5.4.2 The two Dimensional Eigenmode Structures φ̃(xs, θ)

We have solved the eigenmode problem of Eq. (5.36) for both A(p) and the associated

eigenvalue Ω under the assumption R(p) = R, where R is constant. We are now in

a position to provide an analytic description for the global eigenmode, φ̃(xs, θ). We

start by substituting Eq. (5.58) into (4.50), to obtain

φ̃(xs, θ) = exp [−inqθ + inq′τ ]

∫ +∞

−∞
ξ(xs, p, θ)HN(p)

× exp

[
inq′ (σ + ν)

(
p2 +

xs +Π

σ + ν
p

)]
dp

(5.65)

We have factored out those terms that do not depend on p. Knowing that ξ(xs, p, θ)

is a slowly varying function of p compared to A(p), the stationary phase method to

the lowest order is employed to simplify Eq. (5.65) to obtain the following result12:

φ̃(xs, θ) ≈ ξ(xs, p = pm, θ)HN(pm) exp [−inqθ + inq′τ ]

×
∫ +∞

−∞
exp

[
inq′ (σ + ν)

(
p2 +

xs +Π

σ + ν
p

)]
dp

(5.66)

In order to evaluate the integral, we first complete the square in p, to obtain∫ +∞

−∞
exp

[
inq′ (σ + ν)

(
p2 +

xs +Π

σ + ν
p

)]
dp = exp

[
−inq′κ2

4(σ + ν)

]
×
∫ +∞

−∞
exp

[
inq′ (σ + ν)

(
p+

κ

2(σ + ν)

)2
]
dp

(5.67)

where,

κ = xs +Π = xs + λ− 2p0(σ + ν) +
2σf ′(p0)Lc1

f ′′(p0)Lc2

(5.68)

The integral is a Gaussian which can be solved analytically and it is equal to√
[iπ]/[nq′(σ + ν)]13. Hence, Eq. (5.67) reduces to the following:∫ +∞

−∞
exp

[
inq′ (σ + ν)

(
p2 +

xs +Π

σ + ν
p

)]
dp =

√
iπ

nq′(σ + ν)
exp

[
−inq′κ2

4(σ + ν)

]
(5.69)

This equation yields the expected result that the Fourier transformation of a Gaus-

sian in p space is also a Gaussian in the κ or xs space. Substituting Eq. (5.69) into

12We can see from Eq. (5.60) that for nq′ � 1 the envelope part of AN (p) is highly localised
about p = pm. We have expand both ξ(xs, p, θ) and HN (p) about p = pm and to the lowest order
we write ξ(xs, p, θ) ≈ ξ(xs, p = pm, θ) and HN (p) ≈ HN (pm), respectively.

13For more details see subsection 4.7.1 − second to the last paragraph.
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Eq. (5.66), we derive the final form for the 2D eigenmode φ̃(xs, θ) in tokamaks:

φ̃(xs, θ) ≈ ξ(xs, p = pm, θ)HN(pm) exp

[
inq′

(
τ − κ2

4(σ + ν)

)]
exp [−inqθ] (5.70)

From Eq. (5.70) it can be seen that the exponential term on the right hand side

peaks at κ = 0 or equivalently at xs = x0, where the radial parameter x0 is complex

and is defined as follows:

x0 = −Π = 2p0(σ + ν)− λ− 2σf ′(p0)Lc1

f ′′(p0)Lc2

(5.71)

By using Eq. (5.56) to eliminate σf ′(p0)Lc1

f ′′(p0)Lc2
, we can reduce Eq. (5.71) to:

x0 = −Π = 2p0 (σ + ν)−
(

i

nq′

)(
H ′
N(p0)

HN(p0)

)
(5.72)

The real and imaginary components of x0 are:

x0,r = −Πr = 2p0,r (σ + ν)r − 2p0,i (σ + ν)i +

(
1

nq′

)(
H ′
N(p0)

HN(p0)

)
i

x0,i = −Πi = 2p0,r (σ + ν)i + 2p0,i (σ + ν)r −
(

1

nq′

)(
H ′
N(p0)

HN(p0)

)
r

(5.73)

The correction for the higher order harmonics with N > 0, is of order ∼ O( 1
nq′

).

Having obtained a formula for x0, we may note the similarity to Eq. (5.63) to

provide

pm =
x0,i

2(σ + ν)i
(5.74)

This shows that the mode’s poloidal shift is a direct consequence of x0,i
14. For a given

equilibrium, if the complex mode frequency Ω0(xs, p) does not have a stationary point

on the real axis, x0 enters into the complex plane, which forces the mode to shift

in the poloidal plane away from the outboard mid-plane. This has an impact on

both its structure and stability. Furthermore, Eq. (5.74) also sheds light on another

important point. It predicts that different harmonics with N ≥ 0 are initially peaked

on the outboard mid-plane for x0,i = 0. However, as can be seen from Eq. (5.73), they

exihibit slightly different poloidal shifts seperated by order O(1/nq′) for equilibria

with x0,i 6= 0.

14Note that, the magnitude of A(p) is highly localised about p = pm. This leads to a reconstructed
global mode φ̃(xs, θ) that peaks at θ = pm.
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It is important to mention again that the reconstructed global mode, in gen-

eral, undergoes a radial shift with respect to xs = 0. To quantify this radial shift

we decompose φ̃(xs, θ) in Eq. (5.70) into its amplitude and oscillatory parts. The

magnitude of φ̃(xs, θ) is

|φ̃| ∼ exp

[
−n|q′(σ + ν)i|

4|σ + ν|2
(xs − xm)

2

]
(5.75)

We can clearly see that the localisation condition demands that (σ+ν)i must not be

zero. Here, the parameter xm represents the radial shift in real space and is defined

as:

xm = −Πr +
(σ + ν)r
(σ + ν)i

Πi (5.76)

Using Eq. (5.73), xm can be related to x0 as follow:

xm = x0,r −
(σ + ν)r
(σ + ν)i

x0,i (5.77)

This equation describes how the reconstructed global mode shifts radially in real

space. It is worth mentioning that this shift is not simply the real part of the complex

shift x0, but rather a combination of both its real and imaginary components. Upon

substituting both x0,r and x0,i from Eq. (5.73), Eq. (5.77) can be rewritten as:

xm = −2p0,i(σ + ν)i

[
1 +

(
(σ + ν)r
(σ + ν)i

)2
]

+
1

nq′

[(
H ′
N(p0)

HN(p0)

)
i

+
(σ + ν)r
(σ + ν)i

(
H ′
N(p0)

HN(p0)

)
r

] (5.78)

This equation sheds light on the mechanism behind the radial shift away from xs =

xm = 0. By considering only the fundamental harmonic with N = 0, Eq. (5.78) tells

us that the mode’s radial shift is a direct consequence of the imaginary component

of p0,i. This is consistent with the analysis of section 5.2. From Eq. (5.78) we

can highlight another crucial point. Even though the fundamental mode is radially

centred with p0,i = 0, it is possible that the other harmonics still undergo an O(1/nq′)

radial shift. In what follows and throughout the rest of this thesis we shall focus on

the theory of fundamental modes.

The global mode extends over a region with a radial width ∆x that can be
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obtained from Eq. (5.75):

∆x = 4
√

log(2)

√
|σ + ν|2

n|q′(σ + ν)i|
, (5.79)

where ∆x scales inversely with the square root of nq′.

Finally, we comment on the validity of our analytic solutions. It is important to

remember that in obtaining Eq. (4.63) we have Taylor expanded the local complex

mode frequency about xs = 0; our solutions are only valid if the mode is confined

radially near this point. But as we have shown in the above calculations it is possible

for the mode to undergo large radial shifts (independent of n) that can lead to the

breakdown of the theory. Therefore, it is crucial to understand how the radial shift is

related to the coefficients that we obtained for the model fitted to the local complex

mode frequency Ω0(xs, p). We seek a constraint that limits the mode’s radial shift

to a small region about xm = 0. In general, we may allow small radial shifts of order

of the mode radial width and write our constraint as follows;

0 ≤ |xm| ≤ ∆x (5.80)

In contrast to direct global solutions, this constraint provides a limitation to our

analytical calculations and hence to the formalism on which this thesis is based.

This will be further clarified after we apply our calculations to ITG modes in circular

tokamaks in section 5.6.

5.5 Validation of Analytical Solutions: The Fun-

damental Modes

In this section, considering the fundamental modes for simplicity, the generalised

analytical solutions are validated by considering two special limits, namely the iso-

lated and general modes. The analytic solutions in this chapter can account for a

mode that sits somewhere between the outboard mid-plane and the top or bottom of

the tokamak plasma with different stability and structures compared to the isolated

and general mode limits. In addition, we also consider the so-called anti-ballooning
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modes that sit on the inboard side of the tokamaks [28]. In our terminology, we would

like to distinguish these type of modes and call them generalised modes. We proceed

with our analysis, assuming up-down symmetric equilibria, and Fourier expand the

three functions f(p), S(p) and R(p) to obtain

R(p) = R0

S(p) = S0

f(p) = f0 + f1 cos p

(5.81)

where, for simplicity, only two Fourier modes are retained. Here, R0, S0 , f0 and f1

are the Fourier coefficients, which are evaluated at p = p0. For this set of param-

eters, we have R = R0, S(p0) = S0, S
′(p0) = S ′′(p0) = 0, f(p0) = f0 + f1 cos p0,

f ′(p0) = −f1 sin p0 and f ′′(p0) = −f1 cos p0, respectively. Using Eq. (5.81), the an-

alytical solutions for p0 (Eq. (5.56)), A(p) (Eq. (5.55)), Ω (Eq. (5.57)) and φ̃(xs, θ)

(Eq. (5.70)), become:

1. p0 from Eq. (5.56):

The constraint that relates p0 to the model parameter S0, and tells how the gener-

alised modes shift both radially and poloidally, is reduced to the following form:

tan p0 =
−λ
2σ

, (5.82)

where

λ =
S0

2R0

σ = −β√cos p0

β =

√
f1
8R0

(5.83)

Note that, the fact that S(p) = S0 does not vary with p, forces Lc1 = Lc2 = 1.

2. A(p) from Eq. (5.55)

A(p) = exp
[
inq′σ (p− p0 + tan p0)

2 + inq′λp
]

(5.84)
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Using Eq. (5.82) this formula can be also rewritten in the following form:

A(p) = exp
[
inq′σ (p− p0)

2] exp [inq′λ
2

(2p0 − tan p0)

]
(5.85)

From Eq. (5.73) and Eq. (5.74),

pm =
x0,i
2σi

= − Πi

2σi
= p0,r +

σr
σi
p0,i (5.86)

where, we have used ν = ( 1
4R0

dS(p)
dp

|p=p0) = 0, which is true as S(p) is constant.

3. Ω from Eq. (5.57)

Ω =
i

nq′
[2R0β

√
cos p0] + f0 + f1 cos p0 (5.87)

4. φ̃(xs, θ) from Eq. (5.70)

φ̃(xs, θ) ≈ ξ(xs, p = pm, θ) exp

[
inq′

(
τ − κ2

4σ

)]
exp [−inqθ] (5.88)

where τ and κ are defined as

τ = α− λp0 + σ (p0 − tan p0)
2

κ = xs +Π = xs − 2σp0

(5.89)

The complex radial parameter x0 (from Eq. (5.72)), can be now written as

x0 = −Π = 2σp0 (5.90)

Furthermore, the mode radial shift in real space, xm, (from Eq. (5.77)), reduces to:

xm = x0,r −
σr
σi
x0,i = −2σip0,i

[
1 +

(
σr
σi

)2
]

(5.91)

Finally, the mode radial width, ∆x from Eq. (5.79), is given by:

∆x = 4
√

log(2)

√
|σ|2

n|q′σi|
(5.92)

Having obtained the important equations for the fundamental modes, we con-

sider a few limits of these solutions. We start by solving Eq. (5.82) for p0 to explore

how it depends on the model coefficients of Eq. (5.81). To do that, we write Eq. (5.82)
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in the form:

sin2 p0 = %2 cos p0 (5.93)

where

% =
λ

2β
=

S0√
2f1R0

(5.94)

Here, Eq. (5.83) is used to write both λ and β in terms of the model coefficients.

Using the trigonometric relation (sin2 p0 = 1− cos2 p0), substituting Z for cos p0 for

simplification, we rearrange Eq. (5.93) to get;

Z2 + %2Z − 1 = 0 (5.95)

Solving this equation for Z leads to the following solutions:

Z =
−%2 ±

√
%4 + 4

2

and,

p0 = cos−1 Z

(5.96)

where ± signs correspond to two different branches of the eigenmode solutions. If

we now decompose both Z and p0 into their real and imaginary components we get

Zr = cos p0,r cosh p0,i

Zi = − sin p0,r sinh p0,i

(5.97)

This is the main equation that we use in the following to describe and understand the

stability and structure of the global modes that belong to each of the above branches

of eigenmode solutions. We now discuss the constraints on the model coefficients to

avoid large radial shifts, which would otherwise invalidate the Taylor expansion of

Ω0(xs, p) in xs.
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5.5.1 Radial Shift: Constraint on the Model Coefficients

To understand the radial shift, we decompose %2 (from Eq. (5.94)) into its real and

imaginary components to get:

(%2)r =

(
S2
0,r − S2

0,i

)
[f1,rR0,r − f1,iR0,i]− 2S0,rS0,i (f1,iR0,r + f1,rR0,i)

2|f1R0|2

(%2)i =

(
S2
0,r − S2

0,i

)
[f1,iR0,r + f1,rR0,i] + 2S0,rS0,i (f1,rR0,r − f1,iR0,i)

2|f1R0|2

(5.98)

Considering the case (%2)i = 0 (or %2 = (%2)r)
15, which also implies Zi = 0 for all

S0 6= 016, we obtain the following constraint on the model coefficients:

(
S2
0,r − S2

0,i

)
[f1,iR0,r + f1,rR0,i] = −2S0,rS0,i (f1,rR0,r − f1,iR0,i) (5.99)

For a particular set of equilibrium parameters, this constraint provides a solution

that leads to a radially centred global mode. While it is straight forward to keep S0

as an arbitrary complex number, for convenience, in what follow we consider either

S0 real or imaginary.

5.5.2 Profile Shearing: A Linear Variation in the Local Fre-

quency

We start with a pure isolated type of mode and investigate how it evolves under

the effect of S0 = S0,r. This may arise as rotational flow shear is introduced, if we

assume that S0 = nq′γE, which corresponds to a Doppler shift in the local frequency

ω0(xs, p). This introduces a radial shift in the local frequency ω0(xs, p) with respect

to the local growth rate γ0(xs, p), which, in turn, removes the stationary point from

the local complex mode frequency Ω0(xs, p). This allows the mode to shift poloidally

with respect to the outboard mid-plane17. For this particular choice of S0, Eq. (5.99)

reduces to the following equation;

f1,rR0,i + f1,iR0,r = 0 (5.100)

15In what follow, for the rest of this section, whenever %2 appears it means (%2)r
16For S0 = 0, there is no constraint on the model coefficients. This special case corresponds to a

pure isolated mode that peaks at xs = 0.
17Recall from section 5.2 that, if Ω0 is not stationary, implying that x0,i is not zero, the recon-

structed global mode in turn shifts poloidally with respect to the outboard mid-plane.
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This equation shows that one of the four coefficients should have opposite sign com-

pared to the other ones. This in turn implies that, if the local frequency ω0(xs, p) has

a maximum at xs = 0, then the associated growth rate γ0(xs, p) should be minimum

here, or vice versa18. For a set of the model coefficients that satisfy this equation,

Eq. (5.97) is simplified to:

Zr = cos p0,r cosh p0,i

Zi = − sin p0,r sinh p0,i = 0

(5.101)

We can then solve these two simultaneous equations for the two branches of

Eq. (5.96). In the following we explore these two solutions separately.

5.5.2.1 Solutions on the Outboard Mid-plane

As we shall see, these solutions correspond to the branch in Eq. (5.96) with the +

sign. If Eq. (5.100) is satisfied, from Eq. (5.96) we have:

Z+
r =

−%2 +
√
%4 + 4

2

Z+
i = 0

(5.102)

The easiest starting point to understand how this class of eigenmode responds to

the effect of S0,r, is to consider the solutions in two limits, namely |S0,r| � 1 and

|S0,r| � 1, to get

Z+
r =


1, if |S0,r| � 1.

0, if |S0,r| � 1.

Z+
i = 0

(5.103)

Substituting these back into Eq. (5.101) we obtain:

1 ≥ Z+
r = cos p+0,r cosh p

+
0,i ≥ 0 (5.104)

18This finding is in agreement with Ref [5] (see their Fig.1 panels a and b). They found that the
global mode peaks very close to xs = 0 for all values of γE (see their Fig.2 and Fig.3). However,
the set of equilibrium parameters that they have used do not exactly satisfy our Eq. (5.100), which
in turn leads to a small radial shift for intermediate values of γE and this is discussed in section
5.6.
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and

Z+
i = − sin p+0,r sinh p

+
0,i = 0 (5.105)

Note that, we have further assumed that %2 = (%2)r > 0, such that from Eq. (5.98) we

have f1,rR0,r > f1,iR0,i. As we will see later, this is not considered to be a constraint,

in the sense that we can also assume that %2 = (%2)r < 0 and still get a solution

that leads to a radially centred global mode19. Examining Eq. (5.105), we can see

that either sinh p+0,i = 0 (or equivalently p+0,i = 0) or sin p+0,r = 0 (or equivalently

p+0,r = ±`π) for all values of S0,r. Considering the solution with p+0,r = ±`π from

Eq. (5.104) we have −1 ≤ cosh p+0,i ≤ 1 which is never satisfied. Hence, the correct

solution is p+0,i = 0 and this provides the following global solutions:

p+0,r = cos−1 Z+
r

p+0,i = 0

(5.106)

Substituting this into Eq. (5.86) we get:

p+m = p+0,r = cos−1 Z+
r (5.107)

Recalling from Eq. (5.103) that 0 ≤ Z+
r ≤ 1, where the two limits 0 and 1 correspond

to |S0,r| = ∞ and |S0,r| = 0, respectively, Eq. (5.107) shows that p+m = 0 for S0,r = 0

and then increases with S0,r, according to p+m = cos−1 Z+
r , and eventually, depending

on the sign of S0,r, approaches ±π
2
asymptotically as S0,r goes to ±∞. Note that,

these eigenmodes can only exist on the bad curvature regions and do not explore

the good curvature regions on the inboard side of the tokamak. As p+0,i = 0, these

eigenmode solutions are classified as a pure type of generalised modes for which the

function A(p) is symmetric about p = p+m. This in turn, from Eq. (5.91), leads to the

reconstructed global modes that are radially confined to the centre of the domain

and peaks about a reference surface xs = x+m = 0.

In the following, we consider two limits of these classes of generalised modes,

19From Eq. (5.98) we can see that %2 = (%2)r < 0 in two cases; either S0 = S0,r for f1,rR0,r <
f1,iR0,i or S0 = iS0,i for f1,rR0,r > f1,iR0,i. Switching between different signs of %2 simply switches
the highly localised solutions about xs = 0 between the outboard side and the inboard side of the
tokamaks. Therefore, we keep %2 = (%2)r > 0 here, but we shall see the solutions with %2 = (%2)r < 0
that corresponds to S0 = iS0,i later in section 5.5.3.
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namely a pure isolated and general type of modes which are, respectively, obtained

in the S0,r = 0 and S0,r = ±∞ limits.

A Pure Isolated Mode

This type of eigenmode is obtained in the limit of S0 = 0 (or equivalently Z+
r = 1).

Using Eq. (5.107), we have p+0,r = p+m = 0, and the correspond analytical solutions

for Ω (from Eq. (5.87)), A(p) (from Eq. (5.85)), φ̃(xs, θ) (from Eq. (5.88)) and ∆x

(from Eq. (5.92)), are respectively reduced to the following forms:

Ω(0) =
2iR0

nq′
β + f0 + f1

A(0)(p) = exp
[
−inq′βp2

]
φ̃(0)(xs, θ) ≈ ξ(xs, p = 0, θ) exp

[
inq′x2s
4β

]
exp [−inqθ]

∆(0)
x = 4

√
log(2)

√
|β|2

n|q′βi|
,

where, the superscript (0) corresponds to p = pm = 0. Note that these solutions are

exactly what we have obtained for a pure isolated mode in section 4.7.1 that sits on

the outboard mid-plane. Having recaptured the same solutions that were presented

in last paragraph of subsection 4.7.1 for this isolated mode in the limit S0 = 0 from

the generalised analytical solutions, we gain confidence in the correctness of our

calculations.

A Pure General Mode

Here, the behaviour of a pure generalised mode is investigated in the limit of |S0| � 1

(or equivalently Z+
r � 1), which corresponds to a mode that sits near to the top

or bottom of the tokamak plasmas. We now want to prove that whether the mode

that sits at p+m ≈ ±π/2 as S0 goes to ±∞ has exactly the same eigenvalue and

eigenfunction as a pure general mode. We start by expanding Z+
r in Eq. (5.102) for

%2 � 1 (from Eq. (5.94) this also implies |S0,r| � 1), and then substitute the result
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into Eq. (5.107) and rearrange to get

cos p+m = Z+
r ≈ 1

%2
=

4β2

λ2
, (5.108)

where, Eq. (5.94) is used to write %2 in terms of β and λ. By substituting this

equation into Eq. (5.87), the global mode frequency Ω reduces to:

Ω =
i2R0β

nq′%
+ f0 +

f1
%2

(5.109)

In the limit S0,r goes to ±∞ (or equivalently %2 goes to ±∞) we obtain

Ω ≈ f0 (5.110)

This indicates that, our mode has the same eigenvalue as a pure general mode that

we considered in 4.7.2 (see Eq. (4.89)). This is necessary but not sufficient to see

whether it is exactly the same general mode. We proceed further and try to see

whether they have exactly the same eigenfunctions as well. Using the expansion of

Eq. (5.108) we may rewrite σ from Eq. (5.83) as follows:

σ ≈ −β
√

cos p+m = −2β2

λ
= − f1

2S0

, (5.111)

where Eq. (5.83) is used to write β and λ in terms of the coefficients S0, R0 and

f1. Finally, substituting Eq. (5.111) back into Eq. (5.85), and after multiplying and

dividing by a constant factor exp[inq′δ], the eigenfunction A(p) takes the following

form:

A(p) = exp

[
inq′δ

(
1− (p− p+m)

2

2

)]
exp

[
inq′(λp+m − δ)

]
× exp

[
−inq

′

2
λ tan p+m

]
,

(5.112)

where δ = f1
S0

and the last two exponential term on the right hand side are just

constants that scale the phase and amplitude of A(p). Knowing that p+m goes to

±π/2 as S0 goes to ±∞, the term (1− (p−p+m)2

2
) in the exponent of the first term can

be in turn approximated by (1− (p−π/2)2
2

) and this simply represents the expansion

of sin p about p = π
2
, such that Eq. (5.112) can be rewritten as

A(p) ≈ exp [inq′δ sin p] exp
[
inq′(λp+m − δ)

]
exp

[
−inq

′

2
λ tan p+m

]
(5.113)
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The first exponential term on the right hand side resembles that of a pure general

mode obtained in section 4.7.2 (see Eq. (4.90)). However, in our generalised ap-

proach, the mode only asymptotically approaches the top or bottom of the plasma

as S0,r is increased, and cannot exactly sit there. This can be easily seen for example

from the last exponential term on the right hand side; as p+m goes to ±π/2 we have

λ tan p+m goes to ∞, this leads to A(p) ≈ 0 and in turn does not allow the mode to

sit at p+m = ±π/2. Nevertheless, in what follows, to a very good approximation, we

shall consider our pure generalised type of mode, to sit close to the top or bottom of

the plasma as a pure general mode.

5.5.2.2 Solutions on the Inboard Mid-plane

This class of eigenmode solution is associated with the Z− branch, for which, provided

that Eq. (5.100) is satisfied, from Eq. (5.96) we get:

Z−
r =

−%2 −
√
%4 + 4

2

Z−
i = 0

(5.114)

The solutions for the two limits |S0,r| � 1 and |S0,r| � 1 are as follow;

Z−
r =


−1, if |S0,r| � 1.

−%2, if |S0,r| � 1.

Z−
i = 0

(5.115)

Upon substituting these solutions back into Eq. (5.101) we get:

− %2 ≤ Z−
r = cos p−0,r cosh p

−
0,i ≤ −1 (5.116)

and

Z−
i = sin p−0,r sinh p

−
0,i = 0 (5.117)

The global solutions for these two simultaneous equations can be easily obtained.

If we first examine Eq. (5.117) we can see that either sinh p−0,i = 0 (or equivalently

p−0,i = 0) or sin p−0,r = 0 (or equivalently p−0,r = ±`π, for any positive integer `) for

121



all values of S0,r. Considering the solution with p−0,i = 0 from Eq. (5.116) we have

−%2 ≤ cos p−0,r ≤ −1 which is not valid, because cos p−0,r can not have values smaller

than −1 for any values of p−0,r. Therefore, we take p−0,r = ±`π as our solution. It

should be noted also that for even values of ` we have −%2 ≤ cosh p−0,i ≤ −1, but

cosh p−0,i ≥ 1 for all values of p−0,i. Hence, only odd values of ` can lead to acceptable

solutions which then provide the following global solutions:

p−0,r = ±(2`+ 1)π (5.118)

p−0,i = cosh−1(−Z−
r ) (5.119)

such that ` can be either odd or even. Note that, the only solution that provides

a mode that peaks at xs = 0, corresponding to p−0,i = 0 (or Z−
r = −1), is obtained

for S0,r = 0. This mode sits in the good curvature region at pm = p0,r = ±π.

This indicates that, in addition to a pure isolated mode that sits on the outboard

side, there is yet another class of mode that sits on the inboard mid-plane of the

tokamak plasma. Let us call this a pure anti-isolated mode. The global properties,

Ω (from Eq. (5.87)), A(p) (from Eq. (5.85)), φ̃(xs, θ) (from Eq. (5.88)) and ∆x (from

Eq. (5.92)), for this type of mode, assuming that p0 = ±π, are characterised by the

following set of equations:

Ω(±) =
−2R0

nq′
β + f0 − f1

A(±)(p) = exp
[
nq′β (p± π)2

]
φ̃(±)(xs, θ) ≈ ξ(xs, p = ±π, θ) exp

[
inq′

(
τ +

iκ2

4β

)]
exp [−inqθ]

∆(±)
x = 4

√
log(2)

√
|β|2

n|q′βr|
,

where τ = −iβπ2, κ = xs + 2iβ(±π) and ± signs correspond to p±m = p±0,r = ±π.

The complex radial parameter is obtained to be x0 = −2iβ(±π), whose imaginary

component provides a poloidal shift of ±π into the inboard side of the tokamak

plasma with respect to the outboard mid-plane.

Let us now compare the stability of this pure anti-isolated mode with a pure
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isolated mode that sits on the outboard mid-plane, using the model coefficients

presented in Eq. (5.22) with n = 50 and q′ = 10. For the mode that peaks on the

outboard side, i.e p
(0)
m = 0, we have Ω(0) = 0.0070 + 0.3477i, x

(0)
0 = x

(0)
m = 0 and

∆
(0)
x = 0.0316. However, for the mode that sits on the inboard side, i.e. p±m = ±π, we

have Ω(±) = −0.2464+0.1744i, x
(±)
0 = 0.2588− 0.2821i, x

(±)
m = 0 and ∆

(±)
x = 0.0303.

It should be noted that the global mode frequency for both modes can be thought

of as the local mode frequency evaluated at xs = 0 and p = pm, i.e. Ω = Ω0(0, p =

pm) + O(1/n). The correction factor for both cases is of order O( 1
n
). Moreover, the

mode on the outboard side has a higher growth rate compared to the one that peaks

on the inboard side. This is expected as the mode on the inboard side corresponds

to the good curvature region, whilst the one on the outboard side corresponds to the

bad curvature region.

In conclusion, in the situation that S0 is real (eg. as provided by a toroidal flow

shear), from Eq. (5.118) and Eq. (5.119) we can see that in general the global modes

that correspond to Z
(−)
r can be radially confined close to xs = 0 only for |S0,r| � 1.

Otherwise, the global modes undergo large radial shifts with respect to xs = 0.

However, as we have seen in the above calculations, the solutions on the outboard

side associated with Z
(+)
r are acceptable solutions as they provide global modes that

peak very close to xs = 0 for all values of S0,r. Furthermore, these solutions can be

obtained only for a set of model coefficients for which Eq. (5.100) is satisfied. Finally,

in the following a second case for which S0 is assumed to be imaginary is considered.

5.5.3 Profile Shearing: A Linear Variation in the Local

Growth Rate

In subsection 5.5.2, we assumed that S0 = S0,r, arising from toroidal flow shear

for example, for which two different classes of eigenmode, corresponding to Z+ and

Z− branches, have emerged. Here, the effect of S0 = iS0,i is considered. This

corresponds to a radial shift in γ0(xs, p) with respect to ω0(xs, p). In what follows,

we only consider a set of equilibrium parameters for which Eq. (5.100) is satisfied,
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such that (%2)i = Z±
i = 0. Note that we are still assuming that f1,rR0,r > f1,iR0,i in

Eq. (5.98), such that %2 is negative now. As a consequence, the parameter %2 is now

replaced with −%2 and from Eq. (5.96) we have

Z+
r =

%2 +
√
%4 + 4

2

Z+
i = 0

(5.120)

and

Z−
r =

%2 −
√
%4 + 4

2

Z−
i = 0

(5.121)

To obtain the global solutions for both Z+ and Z− branches, we apply the same pro-

cedure that we used in subsection 5.5.2 and without going through the calculations,

we directly present the results. For Z+ we have

p+0,r = ±2π`

p+0,i = cosh−1(Z+
r )

(5.122)

From Eq. (5.120) we can see that Z+
r depends on % which is proportional to S0,i.

Hence, Eq. (5.122) shows that p+0,i increases with S0,i; this, eventually, leads to a

mode that radially shifts away from xs = 0. These solutions are equivalent to the

Z− branch that we considered in the previous subsection for S0 real, but now on the

outboard rather than on the inboard side of the tokamak plasmas.

Furthermore, the solutions that correspond to Z− branch are as follows:

p−0,r = cos−1(Z−
r )

p−0,i = 0

(5.123)

where, the fact that p−0,i = 0 indicates that p−m = p−0,r and the mode is radially

confined about xs = 0 for all values of S0,i. Moreover, for S0,i = 0 (or Z−
r = −1), the

mode sits on the inboard side of the tokamak with p−m = ±π. But as |S0,i| → ±∞

(or Z−
r → 0 according to Eq. (5.121)) we have pm → ±π/2 and a pure general type

of mode is captured. This indicates that the mode asymptotically approaches the

top or bottom of the plasma as S0,i increases from 0 to ±∞. These solutions are
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again equivalent to the Z+
r branch that has been previously considered for S0 real,

but now on the inboard side rather than the outboard side of the tokamak plasma.

Finally, acceptable solutions that lead to a radially centred global mode with

p0,i = 0, correspond to the Z+ branch on the outboard side and Z− branch on

the inboard side of the tokamak for S0 = S0,r and S0 = iS0,i, respectively. It is

important to also mention that, these solutions will be reversed between these two

cases if we now assume that f1,rR0,r < f1,iR0,i instead of f1,rR0,r > f1,iR0,i which in

turn points to the fact that, as is explained earlier, this relation can not be considered

as a constraint on the model coefficients20. Finally, from our analysis for the above

two limits, we can readily generalise the solutions and allow S0 to be any complex

number. Note that, as long as Eq. (5.99) is satisfied, we can always obtain a solution

that leads to a global mode that peaks at xs = 0 for all values of S0.

In conclusion, the analytical solutions can be used to analyse and understand

the structure and stability of the global modes that sit at an arbitrary poloidal

position with respect to the outboard mid-plane21. In the following section, our gen-

eralised solutions are used to investigate ITG modes in circular tokamaks, especially

to explain the result of global numerical solutions presented in Ref [5].

5.6 Isolated to General Inter-mode Transition:

ITG Modes in Circular Tokamaks

In the previous sections we have derived the analytic dispersion relation for the global

complex mode frequency Ω with the associated global mode structures φ̃(xs, θ). In

the following, we use the model coefficients from Eq. (5.22), assuming n = 50 and

q′ = 10, and benchmark our analytical solutions against the numerical ones. These

20Note that replacing f1,rR0,r < f1,iR0,i with f1,rR0,r > f1,iR0,i is equivalent to replacing
%2 = (%2)r with −%2 = −(%2)r. This switch between ± sign can transform for example Eq. (5.120)
and Eq. (5.121), which correspond to S0 = iS0,i, back into Eq. (5.102) and Eq. (5.114), respectively,
which correspond to S0 = S0,r. This indicates that, switching the sign of %2 switches between the
solutions that correspond to S0 real and S0 imaginary, respectively.

21It is worth mentioning the limitations of our calculations again; R(p) is assumed to be constant
with p and to avoid big radial shifts we have put a constraint on the model coefficients (see subsection
5.5.1).
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coefficients correspond to a simplified model of ITGmodes in circular tokamaks which

are taken from Ref [5]. This in turn allows us to also benchmark our analytical

solutions against their global numerical simulations. In addition to the effect of

rotational flow shear that is considered in Ref [5], we also look at a case where S0 is

imaginary. To do this, we introduce a linear radial variation into both local frequency

and local growth rate as follows:

Ω0(xs, p) → Ω0(xs, p) + S0xs

= [ω0(xs, p) + iγ0(xs, p)] + [nq′(1−Υ)γE + iΥS0,i]xs

= [ω0(xs, p) + nq′(1−Υ)γExs] + i [γ0(xs, p) + ΥS0,ixs]

(5.124)

where the parameter Υ controls the relative strength of the real and imaginary com-

ponents of S0. For Υ = 0 we have S0 = nq′γE, which introduces a linear radial

variation term into ω0(xs, p). In contrast, Υ = 1 leads to S0 = iS0,i, which corre-

sponds to a linear radial variation in γ0(xs, p). Note that, γE = dΩϕ

dq
is constant,

with Ωϕ corresponding to the rotational flow shear. Flow shears, in general, are

often invoked as the cause of transport barriers in magnetic confinement devices.

Transport barriers, which are very important to improve plasma confinement, are

generated through the suppression, or even a complete elimination, of the underly-

ing microinstabilities and their associated particle and energy turbulent transport

[6–11, 102]. There are various mechanisms by which flow shear can be produced; for

example through Neutral Beam Injection (NBI) [11], through flows self-generated by

turbulence [7], or through the so-called intrinsic rotation [7, 8]. It is worth mention-

ing that the direction of the flow shear is mainly toroidal, due to the fact that the

poloidal flow is collisionally damped [103, 104]. The toroidal component can then

be decomposed into perpendicular and parallel components with respect to the equi-

librium magnetic field. The shear in the perpendicular flow has a stabilising effect,

while the parallel component is destabilising and can lead to the parallel velocity

gradient (PVG) instability [105, 106].

For a simplified drift wave model in circular tokamaks, it has been shown in

both global gyrokinetic simulations [5] and using higher order ballooning analytic
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calculations [6, 20] that rotation shear smoothly evolves isolated modes into general

ones. This shows that the flow shear can indeed stablize the underlying linear mode

that is believed to be the drive for the turbulence. However, there is an exceptional

situation where the rotation shear precisely compensates the effect of the profile

variations and for a critical value of flow shear it is possible to capture a highly

unstable isolated mode again [12, 13].

Figure 5.5 presents the parameter Z and ballooning phase angle p0 as a function

of S0 = nq′γE (Υ= 0 in Eq. (5.124)). The Z+ (blue curves) and Z− (black curves)

branches respectively correspond to the eigenmode solutions on the outboard and

inboard side of the plasma. We can see that, Z− = −1 for S0,r = 0, but both its

real and imaginary components decrease as |S0,r| increases. In contrast, Z+ = 1

for S0,r = 0, and its real component decreases monotonically and tends to zero in

the limit |S0,r| � 1, while, its imaginary component, initially decreases and, for an

intermediate value with |S0,r| ≈ 3, reaches its maximum deviation from zero, before

it increases to zero for the other limit when |S0,r| � 1. It is worth mentioning that,

even though this set of model coefficients does not exactly satisfy the constraint of

Eq. (5.100), nevertheless Z+
i = 0 in the two limits S0,r � 1 and |S0,r| � 1. To

understand this, using S0,i = 0, we can write %2 from Eq. (5.98) as;

%2 = (%2)r + i(%2)i = S2
0,r(u+ iw) (5.125)

where,

u =
f1,rR0,r − f1,iR0,i

2|f1R0|2

w =
f1,iR0,r + f1,rR0,i

2|f1R0|2

(5.126)

Upon substituting %2 from Eq. (5.125) back into Eq. (5.96) we can write Z as;

Z± =
−S2

0,r

2
(u+ iw)±

S2
0,ru

2

√
(1− w2

u2
) +

2iw

u
+

4

u2S4
0,r

(5.127)

where, ± signs correspond to Z+ and Z− branches, respectively. Note that, for the

model considered here w/u ≈ 0.3, such that in the limit |S0,r| � 1, we can make the

approximation 1 − w2

u2
+ 4

u2S4
0,r

≈ 1. After recognising w/u as our small parameter,
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Figure 5.5: The parameter Z and ballooning phase angle p0 as a function of S0,r =
nq′γE with n = 50 and q′ = 10, for the model coefficients presented in Eq. (5.22). Here,
p0 is measured in units of π. The blue curves correspond to the solutions associated
with the Z+ branch eigenmode solutions, while the solutions associated with Z− branch
are represented by black curves. Note that, the real and imaginary components for
each branch corresponds to the solid and dotted lines, respectively.
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Figure 5.6: The global parameters as a function of S0,r = nq′γE with n = 50
and q′ = 10, corresponding to the eigenmode branches (Z+ and Z−) of Figure 5.5.
From top to bottom, the mode’s radial shift xm, the mode’s poloidal position pm (in
units of π), the real frequency ω, the growth rate γ and finally the radial width ∆x.
Note that, for the Z− branch only analytical solutions are presented. For the Z+

branch, in addition to the generalised analytical solutions (blue lines), the associated
full numerical solutions (crosses) and the analytical solutions previously developed in
section 5.1 (see Eq. (5.7), Eq. (5.11), Eq. (5.15) and Eq. (5.16)) for small poloidal shifts
(red lines) are also presented.
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we apply the Binomial expansion to Eq. (5.127) to get:

Z± ≈
S2
0,r

2
(−u− iw ± u± iw) (5.128)

From this equation, we can see that, for Z− branch the real and imaginary compo-

nents decrease with out bound as S0,r goes to ±∞ according to Z− ≈ S2
0,r(−u− iw).

In contrast, for Z+ branch, both real and imaginary components tend to zero as S0,r

goes to ±∞. The ballooning phase angle p+0 that corresponds to Z+ is not real for

all values of S0,r, but it has a small imaginary component, p+0,i 6= 0, whose value

reaches its maximum deviation from zero at |S0,r| ≈ 3 and goes to zero at both the

limits S0,r = 0 and |S0,r| � 1, respectively. However, the real component p+0,r is zero

at S0,r = 0, but tends to ±π/2 as S0,r goes to ∓∞. On the other hand, for the Z−

branch, p−0,i = 0 at S0,r = 0, but increases without bound as S0,r goes to ±∞. In

contrast, p−0,r = ±π at S0,r = 0 and tends to 1.1π and 0.9π as S0,r goes to −∞ and

+∞, respectively.

Figure 5.6 presents the global parameters corresponding to branches Z+ and

Z− of Figure 5.5, comparing full numerical solutions with our new analytic solution

derived in this chapter. Note that, for the Z− branch only those regions indicated by

the shaded area corresponding to small radial shifts xm ≤ ∆x are considered to be

acceptable solutions. The solutions associated with Z+ lead to a global mode that

always stays very close to xs = 0 for our chosen parameters (Eq. (5.22)). The max-

imum radial shift, corresponding to the maximum deviation of Z+
i (or equivalently

pi,+0 ) into the complex plane, occurs at |S0,r| ≈ 3. This maximum value of the radial

shift is still smaller than the radial mode width measured at the same value of S0,r.

Therefore, this set of eigenmode solutions, corresponding to the outboard mid plane,

are acceptable for all values of S0,r from −∞ to ∞. For this branch, the generalised

analytical solutions are indicated by blue lines, while the crosses represent the full

numerical solutions. In addition, for comparison, the analytical solutions that we

developed in section 5.1 for small poloidal shifts are also presented and are indicated

by red lines. As expected, the analytical solutions with small poloidal shifts are only

valid for small values of flow shear, namely |S0,r| ≤ 2. In what follows for the rest
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of this chapter, whenever analytical solutions are mentioned, this corresponds to the

generalised analytical solutions of section 5.4.

We can see that, a pure isolated mode that initially sits on the outboard mid-

plane at pm = 0 (or θ = 0) with Ω = f0+ f1+O(1/n), shifts poloidally as flow shear

increases from zero until it eventually reaches the top or bottom of the plasma as S0,r

goes to −∞ and +∞, respectively. This is a pure type of general mode with Ω ≈ f0,

and as we expected, it is less unstable than the isolated mode. It is worth mentioning

that overall very good agreement between the analytical and numerical solutions is

found for all values of S0,r. A slight discrepancy is observed for intermediate values

of S0,r corresponding to those values for which the global mode undergoes maximum

radial shifts. This might be attributed to the fact that the analytical solutions are

obtained by employing Taylor series expansion in p and only the first two terms are

retained.

Let us now consider S0 = iS0,i (Υ = 1 in Eq. (5.124)). This corresponds to a

radial shift in γ0(xs, p) with respect to ω0(xs, p). Figure 5.7 presents the parameter Z

and the associated ballooning phase angle p0. The curves that correspond to different

branches of Z can be thought of as the mirror image of the similar solutions previously

presented in Figure 5.5 for real S0 = nq′γE, but here the solutions between the two

branches are switched. Figure 5.8 presents the variation of the global parameters as

functions of S0,i. As we can see, the Z− branch, that corresponds to the inboard side

of the tokamak plasma, provides acceptable solutions, i.e. xm ≤ ∆x, for all values of

S0,i. In contrast, the solutions on the outboard side of the tokamak plasmas, which

are associated with Z+ branch, are acceptable only for small values of S0,i (indicated

by the shaded regions in the figure). For the Z+ branch, the effect of S0 = iS0,i is

destabilising and in turn increases the mode’s radial width. However, for the Z−

branch, even though the effect is destabilising, the radial mode width nevertheless

decreases. The mode that initially sits on the inboard side of the tokamak at pm = ±π

eventually approaches the top or bottom of the tokamak plasma, i.e. ±π/2, as

S0,i → ∓∞. The mode that finally sits close to ±π/2 is a pure type of general mode,
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Figure 5.7: The parameter Z and ballooning phase angle p0 as a function of S0,i (for
S0 = iS0,i), for the model coefficients presented in Eq. (5.22). Here, p0 is measured
in units of π. The curves correspond to the solutions associated with the Z− branch
eigenmode solutions, while the solutions associated with Z+ branch are represented by
black curves. Note that, the real and imaginary components for each branch correspond
to the solid and dotted lines, respectively.
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Figure 5.8: The global parameters as a function of S0,i (for S0 = iS0,i), correspond to
the two branches Z+ and Z− of Figure 5.7. From top to bottom, the mode radial shift
xm, the mode poloidal position pm (in units of π), the real frequency ω, the growth
rate γ and finally the mode radial width ∆x.
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and is found to be the most unstable mode for the Z+ branch.

In conclusion, we have discussed the effect of S0 in two limits; either S0 = nq′γE

or S0 = iS0,i. The former corresponds to rotational flow shear and leads to localised

solutions about xs = 0 for which the global modes only explore the bad curvature

region on the outboard side of the tokamak plasmas. The latter provides localised

solutions close to xs = 0 that can only explore the good curvature region on the

inboard side of the tokamak. Finally, before this chapter is closed, in the following

we investigate how the global parameters, for examples pm and Ω, scale with n,

especially at large values of S0.

5.7 Scaling with Toroidal Mode Number: High

Flow Shear Limit

In our previous analytical calculations for small poloidal shifts, we showed how dif-

ferent parameters scale with toroidal mode number n (see section 5.3). But this

treatment is only valid for small values of S0 (see Figure 5.4). To extend this, in

the light of the generalised analytical solutions, we investigate how the global pa-

rameters, scale with n in the limit |S0| � 1. Anticipating that a pure general mode

is captured at pm ≈ ±π/2 as S0 goes to ±∞, which also implies that p0,i = 0 (or

equivalently Zi = 0) and pm = p0,r, we rewrite Eq. (5.108) to get;

pm ≈ cos−1(
1

%2
) (5.129)

As S0 goes to infinity, 1/%2 goes to zero. In this limit Taylor expansion of pm to the

first order about 1/%2 = 0, reduces Eq. (5.129) to

pm ≈ ±π
2
− 1

%2
= ±π

2
− 2f1R0

S2
0

(5.130)

where Eq. (5.94) is used to write % in terms of the model coefficients. This equation

does not depend on n, but if we consider a special case and assume that S0 = nq′γE,
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we can then calculate how pm scales with n as follows

pm ≈ ±π
2
− 1

%2
= ±π

2
− 1

n2q′2
2f1R0

γ2E
(5.131)

This equation indicates that for non-zero flow shear, |γE| > 0, all the global modes

sit close to the top or bottom of the plasma as n goes to ∞. Similarly, substituting√
f1
8R0

for β and using %2 from Eq. (5.94), from Eq. (5.109) the global frequency scales

with n according to

Ω = f0 +

(
f1R0

n2q′2

)(
iγE + 2f1

γ2E

)
(5.132)

This equation again indicates that, providing γE 6= 0, a pure general mode with

Ω ≈ f0 is captured as n goes to ∞.

Using the model coefficients in Eq. (5.22), Figure 5.9 presents how γ and pm

scale with n for different values of rotational flow shear. The generalised analytical

solutions for both pm and γ are indicated by black curves, and are respectively

obtained from Eq. (5.86) and Eq. (5.87). The blue curves correspond to the solutions

obtained for small poloidal shifts away from the outboard mid-plane for which both

pm and γ are calculated from Eq. (5.11) and Eq. (5.7), respectively. It can be seen

that for |nq′γE| < 12 excellent agreement between both solutions is found. This

limit was analysed in section 5.3. In this limit, assuming that q′γE 6= 0, pm scales

linearly with n, but γ scales according to Eq. (5.35). In the presence of flow, the

most unstable modes are associated with intermediate values of n. However, for a

pure isolated mode, q′γE = 0, the most unstable mode is associated with the largest

n. This mode always sits on the outboard mid-plane, pm = 0, for all values of n.

Furthermore, the solutions with small poloidal shifts are not correct for large

values of nq′γE. Therefore, in this limit we only consider those solutions that have

been obtained from the generalised analytical calculations. As we can see, for the

curves that correspond to rotating plasmas, we find both pm and γ tend to a constant

value as n goes to infinity. This is consistent with the above calculations presented

in Eq. (5.131) and Eq. (5.132) for both pm and Ω, respectively.
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Figure 5.9: The growth rate γ and offset in the poloidal angle pm as func-
tion of toroidal mode number n for different values of flow shear, namely q′γE =
0.00,−0.02,−0.04 and −0.08 where q′ = 10. The solutions from the generalised an-
alytical solutions are represented by black curves. For comparison, the analytical
solutions for small poloidal shifts (blue curves) are also presented.
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In conclusion, we can note that for small values of nq′γE where the mode sits

close to the outboard mid-plane the scaling of the global parameters with n are

different compared to the large values of nq′γE where the mode sits close to the top

or bottom of the plasma. For example for small values of nq′γE, pm scales linearly

with n, but for large values of nq′γE it tends towards π/2 with a correction that

scales as 1/n2. This indicates that the scaling of different global parameters depends

on the details of the profile shearing and in turn on the equilibrium profiles.

5.8 Summary and Conclusion

In this chapter analytical solutions for the two dimensional ballooning eigenmode in

tokamak plasmas have been presented. The solutions have been extended beyond

the two limits previously discussed in literature; “isolated” and “general” modes.

The isolated mode sits on the outboard mid-plane and exists for a particular set

of the equilibrium profiles such that the local complex mode frequency Ω0(xs, p) is

stationary at some radius, xs = xm. On the contrary, the less unstable general mode,

which balloons on the top or bottom of the plasmas, arises when Ω0(xs, p) does not

exhibit a stationary point.

In realistic experimental cases, the global eigenmode can, in general, sit any-

where between the outboard mid-plane and the top or bottom of the tokamak plasma

depending on the radial profiles of the equilibrium. Therefore, as a first step, the the-

ory of isolated modes has been extended to account for the radial shift with respect

to xs = 0 as well as small poloidal shifts with respect to the outboard mid-plane.

We found that the radial shift is a direct consequence of the imaginary component of

the ballooning phase angle, i.e. where p0,i 6= 0. A radial shift parameter x0 has been

identified. When x0 is purely real a transformation of the radial coordinate recov-

ers the isolated mode. However when x0 has a non zero imaginary component this

corresponds to situation where Ω0(xs, p) has no stationary point. This introduces a

poloidal shift relative to the outboard midplane and, in turn, leads to poloidal sym-

metry breaking. Using these calculations, we have also discussed how different global
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parameters, such as global frequency Ω and the offset in the poloidal angle pm scale

with the toroidal mode number n. Our first study considered small poloidal shifts

and can only be applied to the fundamental modes which are not, in general, the only

important modes of the system. To account for these points, in our second step, we

have generalised the analytical solutions beyond these limits. For a simplified fluid

model of an ITG mode in circular tokamaks [5], we have predicted that under the

effect of rotational flow shear an isolated mode that initially sits on the outboard

mid-plane can be smoothly converted to a general mode at the top or bottom of the

plasmas. We have also found that the scaling of the global parameters, like Ω and

pm, with n depends on the details of the equilibrium profiles.

It should be noted that, for convenience, we have limited the applications here to

only consider a simplified fluid model for ITG modes in circular tokamaks. However,

the procedure and analytical solutions presented in this chapter are more general,

and can be used to investigate, for instance, experimentally relevant simulations

with more realistic plasma models. In the following chapter, we explore a full gy-

rokinetic model to demonstrate that the approach can be used with a state of art

local gyrokinetic code, GS2.
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Chapter 6

Numerical Simulations and

Analysis

Using a simplified fluid model of ITG modes, it has been shown that global mode

structures can be accurately constructed from local ballooning results for given radial

profiles [5, 81]. The technique and theoretical formalisms underlying this approach

have been discussed in section 4.5. The procedure is to combine numerical solutions

from a local code with the higher order analytical theory [19] to reconstruct the global

eigenmode properties. This chapter demonstrates that this approach can be used

with a state of the art local gyrokinetic code (GS2) and in turn to extend the approach

beyond the simplified fluid model of ITG modes that was presented in Ref [5]. As a

first illustration of using this method with GS2, we have investigated a simple and

familiar example of electrostatic ITG modes in the circular s− α equilibrium model

[23, 107], assuming that the electron response is adiabatic. Then in section 6.2, we

extend this to consider the circular Miller equilibrium model [108], and investigate

the stability of ITG modes for the so-called CYCLONE base parameters which then

helps us to understand the results from global simulations for this case, presented in

Ref [12]. Finally, some initial investigations into the effects of shaping on the global

mode properties are presented in section 6.3.
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Table 6.1: The model parameters used with s− α equilibrium model.

Parameter Value Parameter Value
ŝ 1.5 r0(m) 0.306
q0 1.4 β 0.0

R/LT 17 nq′ ≈350
R/Ln 2.2 νiiR/vth 0.8

kyρci 0.45 Ti
Te

1.0

a(m) 0.612 ρci(m) 0.0007
R(m) 1.70 ρ? =

ρci
a

0.0012

6.1 Demonstrating the Numerical Technique: Ini-

tial Results

In the previous chapter, we have shown that the radial shift of the reconstructed

global mode with respect to xs = 0 depends on the choice of equilibrium parameters

and this shift is caused by the linear terms associated with the function S(p). There-

fore, in our first simulations we have chosen a set of parameters that avoids large

radial shifts and can capture both isolated and general modes1. In this section we

also demonstrate how to use a local gyrokinetic code, GS2, to obtain global results2.

The equilibrium parameters are presented in Table 6.1, which is analysed for lin-

ear electrostatic ITG modes with adiabatic electrons, employing the so-called s− α

model [23, 107], in which a large aspect ratio and circular magnetic flux surfaces

have been assumed. These modes are strongly unstable for these parameters such

that, as we shall see in the following, both isolated and general modes are unstable.

Furthermore, modes are confined within the radial simulation domain.

Figure 6.1 shows the local real frequency, ω0, and growth rate, γ0, obtained from

GS2 as functions of normalised binormal wave number, kyρci, for the dominant modes

with p = xs = 0, together with the local mode structure ξ. The most unstable mode

is found at kyρci = 0.45, which corresponds to toroidal mode number n = 50. In the

1We shall see in section 6.2 that using different sets of equilibrium parameters can lead to a
weakly unstable global mode which becomes stable before it gets to the top or bottom of the
plasma. In addition, the general modes cannot be confined close to xs = 0. Therefore, using this
set of equilibrium parameters is a good initial step to investigate both isolated and general modes.

2The technique developed in this thesis is not limited to gyrokinetic simulations, but can be
used in parallel with any local code, MHD local codes for example, to investigate global properties.
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Figure 6.1: The variation of (a) real frequency, ω0, (b) linear growth rate, γ0, with
kyρci, for the dominant modes at p = xs = 0; (c) shows the local mode structure,
ξ(xs = 0, η, p = 0), for the most unstable mode with collisions at kyρci = 0.45, as a
function of ballooning coordinate η along the magnetic field line. Note that both ω0

and γ0 are measured in units of (vth/R) and these local simulations have been carried
out at mid-radius, i.e. xs = 0 (or equivalently r = r0 = a/2).

following we shall reconstruct the global properties for the most unstable mode.

6.1.1 Quadratic and Linear ηi Profiles

To proceed with the global calculations, we have introduced two different radial

R/LT profiles, namely linear and quadratic profiles, which are, respectively, defined

by the following equations;

R/LT = 17− 150xs (6.1)

R/LT = 17− 1500x2s (6.2)

We assume all other equilibrium parameters to be independent of xs. Here, xs

measures the distance from a reference rational surface at xs = 0 and is normalised

to the minor radius a. Note that the drive for the ITG mode is characterised by

ηi = Ln/LT , where LT and Ln are temperature and density scale lengths, respectively.

Here, we have held R/Ln = 2.2 constant such that R/LT = 2.2ηi can be considered

as a drive for the mode. We have then scanned the local flux tube gyrokinetic code,

GS2, many times over a range of xs and ballooning phase angle, −π ≤ p ≤ π,

to map out the local complex mode frequency Ω0(xs, p) and the associated local

mode structure ξ(xs, p, η). Note that instead of ξ(xs, p, η) in Eq. (4.50) we require

ξ(xs, p, θ) where −π ≤ θ ≤ π and p is on the infinite domain. However, a mapping

from the infinite η domain to the poloidal angle θ is possible because of the symmetry
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property ξ(xs, p+2π`, θ+2π`) = ξ(xs, p, θ) for any integer `. For the profiles that we

have considered in this chapter, we can model Ω0(xs, p) by using Taylor and Fourier

expansion in xs and p, respectively. Knowing that Ω0(xs, p) is periodic in p, we may

Fourier expand the three coefficients R(p), S(p) and f(p), respectively, to get

R(p) =

Nk∑
k=0

Rk cos(kp)

S(p) =

Nk∑
k=0

Sk cos(kp)

f(p) =

Nk∑
k=0

fk cos(kp)

(6.3)

such that

R(0) =

Nk∑
k=0

Rk, R
′′(0) = −

Nk∑
k=0

k2Rk

S(0) =

Nk∑
k=0

Sk, S
′′(0) = −

Nk∑
k=0

k2Sk

f(0) =

Nk∑
k=0

fk, f
′′(0) = −

Nk∑
k=0

k2fk

(6.4)

where, Nk is the number of Fourier modes retained. Note that, for the up-down

symmetric equilibrium profiles considered here, Ω0(xs, p) is symmetric about p = 0.

Therefore, the coefficients with sin(kp) components all vanish and f ′(0) = S ′(0) =

R′(0) = 0. Substituting Eq. (6.3) back into Eq. (4.59), the parametrisation for

Ω0(xs, p) is reduced to:

Ω0(xs, p) =

Nk∑
k=0

fk cos(kp) +

Nk∑
k=0

Sk cos(kp)xs +

Nk∑
k=0

Rk cos(kp)x
2
s (6.5)

Figure 6.2 shows the contour for Ω0(xs, p) as function of xs and p obtained

from GS2 compared to the fit using the parametrisation given in Eq. (6.5). For the

quadratic ηi profile (see panel (a) in Figure 6.2) Ω0(xs, p) is stationary at xs = p = 0,

i.e. both ω0(xs, p) and γ0(xs, p) peak here. The coefficients resulting from the fit

are presented in Table 6.2, the coefficients associated with S(p) are 0. Using these

coefficients we can first obtain the analytic solutions and then benchmark these
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Figure 6.2: The local complex mode frequency Ω0(xs, p) = ω0(xs, p) + iγ0(xs, p) de-
termined by GS2 along with the fitted model for two different ηi profiles; (a) quadratic
ηi profile and (b) linear ηi profile. Here, ω0 and γ0 are, respectively, the real frequency
and growth rate and are measured in units of vth/R. The ? symbols correspond to the
boundary of the marginal stability where γ0(xs, p) = 0.

against numerical ones3. From Eq. (5.5) we have b = 0 (or equivalently x0 = 0),

which leads to p0 = 0 and pm = 0 from Eq. (5.8) and Eq. (5.11), respectively,

and, from Eq. (5.6), χ = 31.517 − i15.28. As we shall see in the following, this

corresponds to a pure isolated type of mode that preserves both radial and poloidal

symmetries. Substituting χ and b into Eq. (5.1) and Eq. (5.7) provides the analytical

solutions for both the envelope A(p) and the associated global eigenvalue, Ω =

1.1044 + i0.4656. Furthermore, from Eq. (5.13) and Eq. (5.16) we can calculate the

global mode structure φ̃(xs, θ) and its radial width ∆x = 0.0594. The corresponding

numerical solution provides Ω = 1.1044+i0.4656 and ∆x = 0.0597. Here, to evaluate

the numerical value for ∆x, we have substituted the numerical data for A(p), obtained

from the numerical solutions to Eq. (4.63), into the Fourier-ballooning representation

3In this chapter, due to the p dependence of the coefficient R(p), we limit ourselves to the
analytical solutions of section 5.1 which are developed under the assumption of small poloidal
shifts with respect to the outboard mid-plane.
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Table 6.2: The model coefficients, fk and Rk, with eight Fourier modes for the
quadratic ηi(xs) profile. The real and imaginary components contribute to the real
frequency, ω0, and linear growth rate, γ0, respectively. Note that Sk = 0 for all values
of k.

k fk Rk

0 0.6419 + 0.1333 i -6.6495 - 4.2772 i
1 0.3369 + 0.3710 i 1.6021 - 3.1212 i
2 0.1298 + 0.0154 i -0.6344 - 0.7085 i
3 0.0200 - 0.0455 i -0.1835 + 0.2488 i
4 -0.0150 - 0.0142 i 0.1210 + 0.0023 i
5 -0.0090 + 0.0039 i -0.0458 - 0.0184 i
6 0.0012 + 0.0055 i 0.0510 + 0.0272 i
7 0.0035 - 0.0011 i -0.0100 - 0.0663 i

in Eq. (4.50). We then performed a numerical integration to obtain φ̃(xs, θ). Finally,

we have fitted a Gaussian function to the magnitude of φ̃ on the outboard mid-plane,

i.e. |φ̃(xs, θ = 0)|. The radial mode width is then calculated from the full width at

half maximum of the Gaussian.

Figure 6.3 presents both the envelope A(p) and a colour contour plot of the

associated global mode structure φ̃(xs, θ) in the poloidal plane. As we can see from

panel (a), |A(p)| peaks at p = pm = 0 and shares the same line of symmetry with

A(p)/|A(p)|, i.e. pm = pp = 0. The function A(p) in turn is symmetric about p = 0

(see panel (b)). This leads to a reconstructed global mode that sits on the outboard

mid-plane (panel (c)) and is radially peaked about xs = 0 (see panel (d)). This is

the pure isolated mode identified in section 4.7.1. Finally, from the above analysis

and Figure 6.3 we found excellent agreement between the analytic and numerical

solutions.

Let us now consider the linear R/LT profile (or equivalently linear ηi profile) and

examine how this affects the global properties of the reconstructed mode compared

to the above quadratic profile. The model coefficients corresponding to this case are

presented in Table 6.3. The numerical data for Ω0(xs, p) obtained from the local

code GS2 together with the corresponding fit using the model from Eq. (6.5) are

both depicted in Figure 6.2−b. As expected, for a linear ηi(xs) profile, we have

Rk = 0 for all k. This corresponds to Ω0(xs, p) without stationary points. This in
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Figure 6.3: The envelope A(p) and the associated reconstructed global mode struc-
ture φ̃(xs, θ) for a quadratic ηi profile. (a) presents |A(p)| together with A(p)/|A(p)|
and (b) shows the resultant envelope A(p). The colour contour plot of φ̃(xs, θ) in the
poloidal cross-section is shown in (c) and finally (d) presents |φ̃(xs, 0)| as function of
xs, which is evaluated on the outboard mid-plane at θ = pm = 0. Note that crosses
correspond to the numerical solutions while the full curves represent the corresponding
analytical solutions.

turn, according to section 5.2, leads to a radial parameter x0 with non-zero imaginary

component, generating a global mode which does not sit on the outboard mid-plane.

Using the coefficients from Table 6.3, numerical solutions of Eq. (4.86),

Eq. (4.88) and Eq. (4.50) provide A(p), Ω = 0.6891 + i0.0546 and φ̃(xs, θ), re-

spectively. Figure 6.4 shows the envelope A(p) and the reconstructed global mode

structure, φ̃(xs, θ), in the poloidal cross section. The mode sits close to the top of the

plasma at θ = pm = 0.59π. As we can see |A(p)| is symmetric about p = pm = 0.59π,

while the function A(p)/|A(p)| is symmetric about p = pp = 0.43π. This corresponds

to pm−pp = 0.16, leading to an envelope A(p) that peaks at p = pm = 0.59 and is not

symmetric about this point. It is this symmetry breaking that eventually leads to the
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Table 6.3: The model coefficients, fk and Sk, with eight Fourier modes for the linear
ηi(xs) profile. The real and imaginary components contribute to the real frequency,
ω0, and linear growth rate, γ0, respectively. Note that Rk = 0 for all values of k.

k fk Sk
0 0.6342 + 0.1263 i -1.7408 - 1.0909 i
1 0.3386 + 0.3649 i 0.4201 - 0.7844 i
2 0.1282 + 0.0134 i -0.1546 - 0.1684 i
3 0.0197 - 0.0447 i -0.0468 + 0.0580 i
4 -0.0146 - 0.0145 i 0.0295 + 0.0050 i
5 -0.0093 + 0.0042 i -0.0089 - 0.0095 i
6 0.0018 + 0.0053 i 0.0064 + 0.0094 i
7 0.0030 - 0.0015 i 0.0028 - 0.0131 i

radial shift in the reconstructed global mode with respect to xs = 0, and in turn to a

so-called radial symmetry breaking with respect to xs = 0, i.e. φ̃(xs, θ) 6= φ̃(−xs, θ).

For our example here, φ̃(xs, θ) sits at xs = xm = −0.09 and has the radial width

∆x = 0.051. It should be noted that, compared to the isolated mode corresponding

to the quadratic ηi profile, the mode we have captured here is less unstable. We clas-

sify this mode as a shifted class of general modes. We have learnt from the previous

chapter that the imaginary component of the ballooning phase angle, i.e. p0,i, causes

radial shifts, but, in addition to this radial shift, we also want to understand why

the general mode of Figure 6.4 undergoes a poloidal shift relative to the top of the

plasma. To investigate this we start by considering Eq. (4.86), differentiating A(p)

at p = p0 and equating it to zero, i.e. dA(p)/dp|p=p0 = 0, to obtain

Ω−
Nk∑
k=0

fk cos(kp0) = 0 (6.6)

This is a constraint from which we can determine p0 in terms of Ω, where Ω is

calculated from Eq. (4.88). For simplicity, we now examine three simple cases for

which we can solve Eq. (6.6) exactly. For the first example we assume that fk = 0

for k ≥ 2 and Sk = 0 for k ≥ 1 such that from Eq. (4.89) we have Ω = f0. This in

turn reduces Eq. (6.6) to

cos(p0) = 0 (6.7)

This equation has solutions with p0 = ±(2` + 1)π/2. This corresponds to a mode

that peaks at the top or bottom of the plasma and because p0,i = 0, the mode
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Figure 6.4: The numerical solutions for the envelope A(p) and the associated recon-
structed global mode structure φ̃(xs, θ) for a linear ηi(xs) profile. (a) presents |A(p)|
together with A(p)/|A(p)| and (b) shows the resultant envelope A(p). The poloidal
cross-section of φ̃(xs, θ) is shown in (c) and finally (d) presents |φ̃(xs, 0)| as a function
of xs, which is evaluated at θ = pm = 0.59π. Note that A(p) is not symmetric under
p→ −p transformation. The global mode in turn is shifted with respect to xs = 0.

peaks at xs = 0. We call this a pure general mode [5, 18] (see also section 4.7.2

for more detail). However, in addition to f0, f1 and S0, taking the effect of higher

Fourier harmonics into account leads to a radial shift in the reconstructed global

mode with respect to xs = 0. To demonstrate this, we shall consider the effect of

the S1 and f2 coefficients separately. The former corresponds to f(p) = f0 + f1 cos p

and S(p) = S0 + S1 cos p. Here, for this set of parameters, from Eq. (4.88) we have

Ω 6= f0. Solving Eq. (6.6) for p0 we have

p0 = cos−1

(
Ω− f0
f1

)
(6.8)

However, the latter corresponds to f(p) = f0 + f1 cos p+ f2 cos 2p and S(p) = S0 for

which Ω = f0 and Eq. (6.6) reduces to

f1 cos(p0)− f2 cos(2p0) = 0 (6.9)
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This equation has the following solutions:

p0 = cos−1

−( f1
4f2

)
±

√(
f1
4f2

)2

+
1

2

 (6.10)

From Eq. (6.8) and Eq. (6.10) we can see that, unlike the case of a pure general mode,

p0 can be complex, which causes a radial shift away from xs = 0. Furthermore, for

p0,i 6= 0, we have pm 6= p0,r, but from the previous chapter we know that pm is

determined from a combination of both p0,r and p0,i. This, in general, may lead

to a general mode that shifts poloidally with respect to the top or bottom of the

plasma, i.e. pm 6= ±π/2. From this argument we can conclude that due to the effect

of higher Fourier harmonics, i.e. when fk 6= 0 for k > 1 or Sk 6= 0 for k > 0, we

have captured a shifted general type of mode in our simulations. As we can see

from Figure 6.4 the mode shifts slightly towards the good curvature region into the

inboard side of the plasma and some authors have recently classified these type of

modes as anti-ballooning modes [28].

In the following section we extend our s − α study to consider the so-called

CYCLONE base case parameters employing the circular Miller equilibrium model.

This allows us to benchmark against global gyrokinetic simulations that have been

used to study this case.

6.2 Effect of Equilibrium Profiles: CYCLONE

Base Case

The variation of the equilibrium profiles can have important effects on the eigenmode

structures and their stability. For example, linear global gyrokinetic simulations

of both ASDEX Upgrade (AUG) and MAST plasmas point to the fact that the

electrostatic ITG modes are shifted with respect to the outboard mid-plane [12, 29].

This shift corresponds to a poloidal symmetry breaking which can be very important

in providing a mechanism for flow generation in tokamaks [27, 30–32] especially in

next-step fusion machines like ITER for which the external torque is expected to
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be small. Local gyrokinetic codes alone cannot determine when these shifted modes

occur, rather than isolated modes that typically peak on the outboard mid-plane.

However, using our technique, which combines the numerical results from a local

gyrokinetic code, GS2, with the higher order ballooning theory, has enabled us to

capture the global properties of the linear 2D eigenmode structures. This in turn

has allowed us to understand the mechanisms underlying the poloidal symmetry

breaking and provides more physical details behind the mode structures and their

stability for interpreting the direct global gyrokinetic simulations.

In this section we investigate the effect of both rotational flow shear and the

equilibrium profiles and, again, focus on electrostatic ITG modes with adiabatic

electrons, but here we adopt the CYCLONE parameters [109, 110] for a Miller equi-

librium with circular flux surfaces. This in turn has allowed us to benchmark our

calculations against intriguing results from global gyrokinetic simulations that were

presented in Ref [12] for the same equilibrium. It is worth mentioning that the s−α

and the circular Miller equilibrium models are not equivalent [107], except for ε = 0,

where ε = r/R is the inverse aspect ratio.

The radial equilibrium profiles used in this section, namely safety factor q, mag-

netic shear ŝ, temperature T , density ne, temperature a/LT and density a/Ln gradi-

ents, are chosen to match Ref [12]. They are, respectively, defined according to the

following equations:

q = 0.84 + 2.24(r/a)2 (6.11)

ŝ = 2

(
1− 0.84

q

)
(6.12)

T

Tref
= exp

[
−∆T

(
a

LT

)
tanh(

xs
∆T

)

]
(6.13)

ne
nref

= exp

[
−∆n

(
a

Ln

)
tanh(

xs
∆n

)

]
(6.14)

a

LT
=

(
a

LT

)
0

(
cosh(

xs
∆T

)
)−2

(6.15)
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Table 6.4: CYCLONE equilibrium parameters on our reference flux surface, where
r = a/2.

Parameter Value Parameter Value
ŝ 0.8 r0(m) 0.313
q0 1.4 β 0.0

a/LT 2.54 nq′ 144
a/Ln 0.81 νiia/Vs 0.28

kyρci 0.58 Ti
Te

1.0

a(m) 0.625 ρci(m) 0.003384
R(m) 1.70 ρ? =

ρci
a

0.005415

a

Ln
=

(
a

Ln

)
0

(
cosh(

xs
∆n

)
)−2

(6.16)

where, ∆T = ∆n = 0.208, the values of Tref and nref are chosen such that T/Tref =

n/nref = 1 on the reference surface at xs = 0 (or r = r0), where xs = (r−r0)/a. Here

(a/LT )0 = 2.54 and (a/Ln)0 = 0.81 corresponding to the values of the temperature

and density gradients, respectively, evaluated at xs = 0. The above radial profiles

are all plotted in Figure 6.5. Note that the horizontal dashed lines represents the

value of a particular quantity at xs = 0 (i.e. where r = a/2).

Before considering the global calculations, we first describe the local ballooning

analysis. The model parameters are given in Table 6.4. Figure 6.6 shows the local

real frequency, ω0, and growth rate, γ0, obtained from GS2 as functions of normalised

binormal wave number, kyρci, for the dominant modes with xs = p = 0, together with

the local mode structure, ξ. The results for a normalised ion-ion collision frequency

of νiia/Vs = 0.28 are found to be very similar to those for a collisionless plasma

when p = 0. We use this finite collision frequency in the remaining calculations as

it helps damp non-physical modes found by GS2 at values of p close to marginal

stability, and yet gives local eigenmode result similar to the collisionless case. The

most unstable mode is found at kyρci = 0.58 which corresponds to toroidal mode

number n = 39. Now we apply the technique presented in Section 4.5 to reconstruct

the global structure for the most unstable mode.
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Figure 6.5: The radial profiles taken from Eq. (6.11) − Eq. (6.16): (a) Safety factor
and magnetic shear and (b) temperature and density and finally (c) The temperature
and density gradients.
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Figure 6.6: From left to right: The variation of (a) real frequency, ω0, (b) linear
growth rate, γ0, with kyρci, for the dominant modes at xs = p = 0 for two values
of the normalised ion collision frequency, νiia/Vs = 0 (solid line) and νiia/Vs = 0.28
(solid line with ∗ symbols); (c) shows the local mode structure, ξ(xs = 0, η, p = 0),
for the most unstable mode with collisions at kyρci = 0.58, as a function of ballooning
coordinate η along the magnetic field line. Note that both ω0 and γ0 are measured in
units of (Vs/a) and these local simulations have been carried out at mid-radius, i.e.
r = r0 = a/2.

Table 6.5: The model coefficients, fk and Rk, with ten Fourier modes. The real
and imaginary components contribute to the real frequency, ω0, and growth rate, γ0,
respectively. Note that Sk = 0 for all k for this special case where only profiles in a/LT
and a/Ln are retained (and are symmetric about xs = 0).

k fk Rk

0 0.1177 - 0.0680 i -1.5689 - 1.9352 i
1 0.1804 + 0.1221 i 1.3347 - 2.2466 i
2 0.0462 + 0.0461 i 0.0825 - 0.8734 i
3 0.0229 + 0.0231 i -0.0015 - 0.2477 i
4 0.0068 + 0.0098 i -0.1007 - 0.0227 i
5 0.0012 + 0.0078 i -0.1090 + 0.1078 i
6 -0.0022 + 0.0045 i -0.1134 + 0.1240 i
7 -0.0033 + 0.0023 i -0.0861 + 0.0856 i
8 -0.0035 - 0.0000 i -0.0461 + 0.0105 i
9 -0.0026 - 0.0018 i 0.0111 - 0.0525 i

6.2.1 Global Calculations with Flat ηi Profile

For our first investigation using the CYCLONE parameters, we have assumed ra-

dially varying a/LT and a/Ln profiles from Eq. (6.15) and Eq. (6.16), respectively,

which corresponds to a flat profile in ηi = Ln/LT (see also Figure 6.5c). The other

equilibrium profiles are held constant (i.e. independent of xs) at those values given

in Table 6.4 (and are indicated by dashed lines in Figure 6.5−a and b)4. We then

performed local gyrokinetic GS2 calculations for the range of interest in xs and a

full period in ballooning angle −π ≤ p ≤ π. This provides the local mode structure

4Their profile effects are considered in the next subsection.
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Figure 6.7: Contour plots of real and imaginary parts of the local complex mode
frequency, measured in unit of (Vs/a), as functions of radius, xs, and ballooning phase
angle, p, for parabolic LT and Ln radial profiles (see Figure 6.5c), while excluding other
profile variations. (a) and (b) are, respectively, the frequency and growth rate obtained
from the local gyrokinetic code, GS2. The corresponding frequency and growth rate
from the fitted model, using Eq. (6.5), are presented in (c) and (d) respectively. The
? symbols indicate the marginal stability contour where γ0(xs, p) = 0.

ξ(xs, p, θ) with associated local complex mode frequency Ω0(xs, p). Figure 6.7 shows

Ω0(xs, p) from GS2, compared to the fit using the parameterisation given in Eq. (6.5).

The coefficients resulting from the fit are given in Table 6.5. As expected, because

the linear drive profiles, namely a/LT and a/Ln profiles, peak and are symmetric

about xs = 0, we have Sk = 0 for all k. Figure 6.7 shows that for this particular

choice of the equilibrium profiles Ω0(xs, p) has a stationary point at xs = 0, p = 0.

Using the values of fk and Rk in Table 6.5 we solve Eq. (4.63) numerically

to obtain A(p) and the associated eigenvalue Ω = 0.3623 + 0.1353i. Substitut-

ing this numerical solution for A(p) together with ξ(xs, p, θ) obtained from GS2,

the numerical solution of Eq. (4.50) in turn provides the global mode structure,

φ̃(xs, θ) with its radial width ∆x = 0.1123. The corresponding analytical solutions

are χ = 22.9821 + i1.3012 (from Eq. (4.74)) and after substituting this value back

into Eq. (4.71) we obtain A(p). We also obtain Ω = 0.3629+i0.1352 and ∆x = 0.1110

from Eq. (4.73) and Eq. (4.80), respectively. We note that excellent agreement is
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Figure 6.8: A pure isolated mode for which profile variations other than LT and Ln
are excluded: (a) and (b), respectively, present |A(p)|, A(p)/|A(p)| and the envelope
function, A(p) as a function of ballooning phase angle, p, (c) shows the reconstructed
global mode structure, φ̃(xs, θ), in the poloidal plane, where the two solid concentric
circles indicate the radial domain of the calculation, and finally (d) presents |φ̃(xs, θ =
0)|. Note that, the cross symbols and full curves correspond to the numerical and
analytical solutions, respectively.

found between the numerical and analytical solutions. Figure 6.8 shows our solutions

for A(p) and the corresponding solution for φ̃(xs, θ) in the poloidal cross-section. We

see that both |A(p)| and A(p)/|A(p)| are symmetric about p = 0. This leads to an

envelope A(p) which is symmetric under the transformation p → −p and is highly

localised about p = 0, as is required for the procedure to be accurate (recall, we

assumed A(p) varies rapidly with p compared to ξ(xs, p, θ) to derive Eq. (4.63)). As

shown in Figure 6.8, this leads to a mode that balloons on the outboard mid-plane

at θ = 0 and radially peaks about xs = 0. This is a pure isolated (or conventional

ballooning) mode which has been previously identified in [5, 19, 20] (see also section

4.7.1 for more detail). However, radial variation of the other equilibrium profiles can

introduce significant deviation from these pure isolated modes as we discuss in the

following subsection.
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Figure 6.9: The reconstructed electrostatic potential global mode structure, φ̃(xs, θ),
for n = 39, in the poloidal plane for different radial profile variations taken from
Figure 6.5: (a) LT , Ln and r(xs) vary, here both temperature T and density ne are
assumed to be constant, (b) LT , Ln, q and ŝ vary (c) LT , Ln, r(xs), q and ŝ vary and
finally (d) full profile variation in which LT , T , Ln, ne, r(xs), q and ŝ all vary.

6.2.2 Global Calculations with Profile Variations

It has been found in the linear global gyrokinetic simulations that the radial variation

in the equilibrium profiles can tilt the global mode structures poloidally with respect

to the outboard mid-plane [12, 27, 111] and this, in general, reduces the global

growth rate of the mode compared to the highly unstable isolated modes. In this

subsection, we repeat the analysis of the previous subsections and, in addition to both

a/LT and a/Ln equilibrium profiles, we take into account the influence of the other

profile variations such as q, ŝ, T and ne; these are defined in Eq. (6.11) − Eq. (6.14)

(see also Figure 6.5). From our new methodological perspective, these equilibrium

profiles vary over the radial scale of the instability and introduce additional linear

radial variation in Ω0(xs, p), such that the Sk terms in Eq. (6.5) become significant.

These extra linear terms impact ω0(xs, p) and γ0(xs, p) differently and give rise to

a shift in the relative positions where ω0(xs, p) and γ0(xs, p) are maximum; this in
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turn moves the stationary point of Ω0(xs, p) off the real xs−axis. This leads to a

constraint on the poloidal position of the reconstructed global mode such that the

mode is now shifted poloidally with respect to the outboard mid-plane. This in turn

influences both its structure and linear growth rate.

Figure 6.9 presents the reconstructed global mode structure in the poloidal cross-

section, φ̃(xs, θ), for a number of cases where we introduce different profiles. Intro-

ducing the effect of variation in radius r(xs) itself, which impacts physics such as the

trapped fraction, shifts the mode slightly downward with respect to the outboard

mid-plane as shown in panel (a). In contrast to this, taking into account the impact

of both q and ŝ profile variations results in a mode that undergoes a small upward

poloidal shift (see panel b). On the other hand, combining the influences from the

above profile variations presented in both (a) and (b) leads to a mode that peaks

very close to the outboard mide-plane (see panel c). This points to the fact that for

this particular case the effect of different profiles are competing and almost cancel.

Nevertheless, the result is slightly in favor of the r(xs) variation, leading to a slight

net downward poloidal shift with respect to the outboard mid-plane. Finally, in

panel (d), in addition to the profiles considered in (c), we include radial variations

in the T and ne profiles. The reconstructed global mode is then shifted poloidally

downward with respect to the outboard mid-plane, breaking the up-down poloidal

symmetry. This reduces the growth rate compared to the pure isolated mode consid-

ered in subsection 6.2.1. Furthermore, considering the full profile variation in case

(d) we find Ω = 0.363 + i0.118 and as we see the mode structure is tilted on the

outboard mid-plane. This finding is in a good qualitative agreement with the full

global simulations of linear ITG modes that published in Ref [12]. Note that the

growth rate is reduced by 20% compared to the pure isolated mode case considered

in section 6.2.1.
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6.2.3 Calculations with Profile Variations and Sheared

Toroidal Flow

In this subsection we investigate the influence of toroidal flow shear on the recon-

structed mode structures and their stability. Here, due to this flow shear, different

rational surfaces rotate at different speeds relative to each other, and this influences

the toroidal coupling that provides the global mode structure [112]. We choose to

work in a frame of reference rotating toroidally with the plasma such that there is

no flow at xs = 0, neglecting any centrifugal or Coriolis force effects. The domi-

nate physics we retain is the Doppler shift in Ω0(xs, p), which can be obtained from

Eq. (5.124) by assuming Υ = 0 and rewrite it as follows5:

Ω0(xs, p) → Ω0(xs, p)− nq′γExs = [ω0(xs, p)− nq′γExs] + iγ0(xs, p), (6.17)

where the flow shear Ω′
ϕ = q′γExs is normalised to Vs/a and represents the toroidal

rotational frequency of the magnetic flux surfaces with respect to the rational surface

at xs = 0. Note that γE = dΩϕ/dq is constant and sets the flow shearing rate. For

the set of equilibrium parameters that we have considered here, as the flow shear

is increased the reconstructed global modes undergo increasing radial shifts away

from xs = 0. To keep the modes within our computational domain, we have limited

ourselves to a small toroidal flow shear in the range −0.02 ≤ γE ≤ +0.02. Note also

that, the poloidal flows are expected to be damped in tokamak plasmas [103, 104],

and hence we have assumed the flow shear to be purely toroidal. Furthermore, if

we compare Eq. (6.17) with Eq. (6.5), it is clear that flow shear only influences the

Sk coefficients. This indicates that both flow shear and profile shearing can have

similar impacts on the properties of the reconstructed global modes, which we will

now quantify.

Figure 6.10 presents the variation of the growth rate as a function of flow shear

for the different radially varying equilibrium profiles that we considered earlier in

5While this method can in principle handle an arbitrary experimental profile of toroidal rotation,
for the simple example here we assume that the toroidal flow varies linearly in xs.
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Figure 6.10: The linear growth rate, γ, as a function of flow shear, γE , calculated
for the most unstable mode with kyρci = 0.58. Note that both γ and γE are measured
in units of (Vs/a), the toroidal mode number, n = 39 and q′ ≈ 3.6. For curve (e) the
radial variations of the profiles other than LT and Ln are excluded, while the other
curves correspond to the profile variations of Figure 6.9(a-d) respectively.

figures 6.8 and 6.9. For the isolated mode of Figure 6.8, for which the effect of the

equilibrium profiles other than a/LT and a/Ln profiles are excluded, the growth rate

spectrum is symmetric about γE = 0 and this corresponds to curve (e) of Figure 6.10.

Considering this special case, at γE = 0 the mode is radially aligned on the outboard

mid-plane (see panel (c) of Figure 6.8), but for γE 6= 0 depending on the sign of

the flow shear the mode shifts poloidally downward or upward with respect to the

outboard mid-plane, tilting the mode structure, and reducing its linear growth rate.

Taking the effect of the other radially varying equilibrium profiles into account leads

to an asymmetry in the spectrum of γ with respect to γE = 0. Moreover, there is a

critical value for flow shear at which the growth rate is maximised, as illustrated in

Figure 6.10 (for curves a− d). Note that this maximum value is independent of the

profiles. To explain these results a new analytical theory is developed which we now

discuss in the following.

For the above mentioned critical value of γE we expect an isolated mode to

exist and when this happens both ω0(xs, p) and γ0(xs, p) are stationary at the same

radial position, let us assume at xs = x0, for which the Sk coefficients satisfy certain

criteria, as we now turn to explain. From symmetry we anticipate that ∂ω0/∂p|p=0 =
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∂γ0/∂p|p=0 = 0, so let us consider p = 0. Then introducing the effect of flow shear

into our expression of Ω0(xs, p) in Eq. (4.59) we have

Ω0(xs, 0) = f(0) + (S(0)− nq′γE)xs +R(0)x2s (6.18)

Now we complete the square in xs and rewrite Eq. (6.18) to obtain

Ω0(xs, 0) = f(0)− x20R(0) + (xs − x0)
2R(0), (6.19)

where,

x0 =
nq′γE − S(0)

2R(0)
, (6.20)

For an isolated mode, we require Ω0(xs, p) to have a stationary point on the real

xs−axis, which in turn requires x0 to be real. This provides the following constraint:

([S(0)]r − nq′γE) [R(0)]i = [S(0)]i[R(0)]r (6.21)

as well as an expression for the radial position about which the mode is localised:

x0,r =
nq′γE − [S(0)]r

2[R(0)]r
= − [S(0)]i

2[R(0)]i
(6.22)

where the subscripts r and i indicate the real and imaginary component respectively.

Let us now use our analytic results to interpret the numerical results of this

section. First, let us consider the situation without flow shear, γE = 0. Eq. (6.21)

then provides the condition for an isolated mode to exist:

[S(0)]r =
[S(0)]i[R(0)]r

[R(0)]i
(6.23)

If the profiles are such that this expression is satisfied, then an isolated mode exists

at the radial position xs = x0,r = −[S(0)]r/2[R(0)]r = −[S(0)]i/2[R(0)]i. This is

(almost) the situation in case (c) of Figure 6.10 where the profiles combine such that

Eq. (6.23) is satisfied. More generally, the isolated mode exists for a critical value of

flow shear which, from Eq. (6.21) is given by

γmE =
1

nq′

(
[S(0)]r −

[S(0)]i[R(0)]r
[R(0)]i

)
(6.24)

Thus, we expect the maximally unstable isolated mode to exist for this critical shear-

159



Figure 6.11: The numerical solutions (crosses) benchmarked against the analyti-
cal solutions (dotted line) for the global growth rate, γ, as a function of flow shear,
γE , for the full equilibrium profile variation from Figure 6.10 curve (d) (see also Fig-
ure 6.9 panel d for the global mode structure that corresponds to γE = 0). The
reconstructed global mode structure, φ̃, in a small region of the poloidal cross-section
at the outboard mid-plane are also presented at four different points that correspond
to γE = −0.0110,−0.0047, 0.0000 and 0.0050, respectively. For γE = 0, the mode is
already tilted, due to the profile variation effect, while a critical value of flow shear,
occurs at γE ≈ −0.0047, which cancels out the effect of profile variation and, once
again, the mode structure is aligned radially (as for a conventional ballooning mode)
and this is the maximally unstable flow shear.

ing rate, γE = γmE , but centered on xs = x0,r rather than xs = 0. It is also obvious

that γmE scales inversely with n.

To compare our flow shear results with the global gyrokinetic simulations pre-

sented in Ref [12] and also to benchmark the numerical solutions against the analyt-

ical theory developed in the previous chapter, we shall now consider the full profile

variation case in a little more detail (curve-d in Figure 6.10). The associated model

coefficients are presented in Table 6.6 [Note, in the notation above, f(0) =
∑Nk

k=0 fk;

S(0) =
∑Nk

k=0 Sk and R(0) =
∑Nk

k=0Rk]. Figure 6.11 presents the global linear growth

rate γ as function of γE. The numerical and analytical solutions correspond to the
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Table 6.6: The model coefficients, fk, Sk and Rk corresponding to the full profile
variation case (Figure 6.11).

k fk Sk Rk

0 0.1226 - 0.0686 i -0.6409 + 0.3054 i -3.0422 - 2.5486 i
1 0.1728 + 0.1216 i -0.1554 - 0.0292 i 6.8274 - 1.5667 i
2 0.0566 + 0.0453 i -0.3002 - 0.0788 i -4.3586 - 0.3931 i
3 0.0177 + 0.0240 i 0.2293 - 0.0363 i 3.0658 - 0.6156 i
4 0.0123 + 0.0101 i -0.0553 + 0.0167 i -3.6445 - 0.6267 i
5 -0.0042 + 0.0086 i 0.2126 - 0.0093 i 1.2683 - 0.5595 i
6 -0.0027 + 0.0046 i 0.0427 + 0.0300 i -1.5755 - 0.3859 i
7 -0.0036 + 0.0012 i 0.0777 + 0.0319 i 0.0000 - 0.0000 i

cross symbols and the dotted curve, respectively. Note that the analytical solutions

are obtained from Eq. (5.7) while the numerical solutions from Eq. (4.63) (see sec-

tion 4.6). For the range of flow shear studied here very good agreement between

the two solutions is found. In Figure 6.11 we have also illustrated how the afore-

mentioned asymmetry in the growth rate spectrum affects the reconstructed global

mode structures. For γE = 0 the structure is already tilted, but increasing flow

shear in the negative direction acts to re-align the mode radially and for a critical

value of flow shear γmE = −0.0047, the effect of the profile variation is completely

compensated, allowing an isolated mode again to form with largest growth rate,

γ =Max[γ0(xs, p)]. This is as we expect from our analysis above. For the coeffi-

cients presented in Table 6.6 we have f(0) =
∑

k Sk = −0.58894 + i0.23036 and

R(0) =
∑

k Rk = −1.45931 − i6.69606. Substituting this into Eq. (6.24) provides

γmE = −0.0046, which is in excellent agreement with the above numerical result.

Note also that at this value of γE the mode is radially shifted slightly relative to

xs = 0 with a growth rate of γ = 0.137, which is ∼ 10% higher than the growth

rate for zero flow shear (γ = 0.118). This is a shifted isolated mode, and the radial

shift can be calculated from Eq. (6.22) which provides x0,r = 0.0017, while the cor-

responding numerical solution is xm ≈ 0.0018 and again we have good agreement

between these two solutions. We note that increasing flow shear even further, beyond

the critical value, tilts the mode structure in the opposite direction and lowers its

linear growth rate again. These results, obtained purely from solutions of GS2 and

the higher order theory, are in good qualitative agreement with global calculations
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of linear electrostatic ITG modes presented in Ref [12]. Direct comparison of our

flow shear results with the global simulations performed in Ref [12] is complicated as

we employ a toroidal flow, while the simulations of Ref [12] employ an E ×B flow,

which is almost poloidal. Nevertheless, if parallel flows have a negligible impact, the

two can be related by a geometric factor. We can factor out this geometric factor by

considering the ratio of the flow shear which maximises the growth rate to the value

required to stabilise the mode. Our result of ≈ −0.40 is then in excellent agreement

with that of Ref [12], which is ≈ −0.39.

To summarise, for realistic and experimentally relevant cases where we take the

profile variations into account, we do not in general expect to find isolated modes.

Isolated modes can form only in special radial locations where the equilibrium pro-

files produce a stationary point in Ω0(xs, p). However, making adjustments to one

equilibrium profile while the others are fixed, can produce the required stationary

point and lead to the onset of the isolated mode, as arises in the above example

for a critical toroidal flow shear equal to γmE . It is also important to mention that,

our results show that the isolated mode tends towards the general mode as linear

profiles are introduced (e.g. the flow shear plots of Figure 6.10 and Figure 6.11),

with reducing growth rates and poloidal shifting of the mode off the mid-plane as

the flow is increased. However, as seen in Figure 6.11, the mode is fully stabilised

for a flow shear of ≈ 0.008, and at this stage it is still far from a general mode which

would be located at the top or bottom of the plasma. For the equilibrium that we

have considered here the general modes are expected to be stable. Therefore, we

have not included these in our simulations.

6.3 Effect of Shaping: Modified CYCLONE Base

Case

One of the main obstacles in MCF research is to understand the turbulent transport

of both heat and particles and seek a way to reduce its effect. Although substantial

progress has been made, there are still some unsolved issues remaining. One of the
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important issues is the influence of the magnetic flux surface shape. In this section,

we employ the so-called Miller equilibrium model and investigate the effect of shaping

on the electrostatic ITG modes in tokamaks.

We have seen from the previous section that the set of equilibrium parameters

corresponding to the CYCLONE base case leads to weakly unstable global modes

and, due to some numerical issues associated with the marginally unstable modes,

it was challenging to explore the impact of non-circular magnetic flux surfaces for

these parameters. To overcome this issue we have modified the equilibrium profile

a/LT in Eq. (6.15) and replaced it with the following one

a

LT
= 5.0 + 2.54 cosh−2(

xs
0.208

) (6.25)

This in turn leads to strongly driven global modes which then allowed us to investi-

gate a series of magnetic configurations with varying elongation 0.8 ≤ κ̄ ≤ 1.2 and

triangularity −0.2 ≤ δ̄ ≤ 0.2. With this modification, performing the local balloon-

ing analysis for the circular magnetic flux surface with κ̄ = 1.0 and δ̄ = 0.0, the most

unstable local mode is found at kyρci = 0.68 and this corresponds to n = 46. For this

most unstable mode, we have then performed our global analysis, considering only

the isolated mode that arises with a flat ηi profile. Thus, only a/LT and a/Ln vary

with xs and other equilibrium profiles are held constant at their values represented

by the dashed lines in Figure 6.56.

Figure 6.12 shows the influence of shaping on the global growth rate γ. The

numerical and analytical solutions correspond to squares and crosses, respectively.

The global mode structures in the poloidal cross-section are also plotted for four of

the shapes. These shapes are obtained from the Miller flux surface approach which

is given by the following analytical formula [113]:

R(r, θ) = R0(r) + r cos[θ + δ̄ sin θ]

Z(r, θ) = κ̄r sin θ

(6.26)

6The model coefficients that we have used in this section, which are obtained from the fit of
Ω0(xs, p) to the model in Eq. (6.5), are all presented in Appendix A. Note also that the numerical
solutions are obtained from Eq. (4.63) (see section 4.6) while the analytical solutions from Eq. (5.7)
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Figure 6.12: The global growth rate, γ, as a function of magnetic flux surface shaping.
(a) presents the impact of triangularity on γ at fix elongation κ̄ = 1.0 while (b) shows
the effect of elongation on γ at fixed triangularity δ̄ = 0.0. The poloidal cross-section of
the reconstructed global modes are also shown for four different configurations, namely
for (κ̄, δ̄) = (1.0,−0.2), (1.0, 0.2), (0.80, 0.00) and (1.2, 0.0), respectively. Note that the
squares and crosses correspond to the numerical and analytic solutions, respectively.

where r and R0 are minor and major radii of the toroidal flux surface, respectively.

Note that the modes are radially peaked at xs = 0 and the green shaded regions

represent the simulation domain which is extended from xs = −0.10 to xs = 0.10.

Keeping κ̄ = 1.0 constant and changing δ̄ (see Figure 6.12 - a), we find that the mode

becomes more unstable as δ̄ increases. The effect of configurations with δ̄ < 0.0

and δ̄ > 0.0 are stabilising and destabilising, respectively, compared to circular

magnetic flux surfaces. This favourable effect of negative triangularity captured in

our simulations is very important and even though the physics is different, the trend

here is similar to that presented in Ref [33] (see their figure 7) in which they have

investigated the effect of shaping on the electron heat transport in TCV L-mode

plasmas. Our understanding is that for δ̄ < 0 the global mode is poloidaly extended

over a bad curvature region which is smaller compared to the case with δ̄ > 0.
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Figure 6.13: The contour plot of the global growth rate γ as function of κ̄ and δ̄. (a)
presents the numerical solutions and (b) shows the associated analytical solutions.

Turning to the effect of elongation, we keep δ̄ = 0.0 constant and change κ̄ (see

Figure 6.12 - b). We find that the vertical elongation with κ̄ > 1.0 is stabilising.

This trend is similar to the effect of vertical elongation on the linear gyrokinetic ITG

growth rates found in [37, figure 1 and 38, figure 3] for the same value of δ̄ = 0.

A similar trend has been also reported for the edge turbulent electron transport in

tokamaks [39] (see their figure 3). Moreover, for horizontal elongation with κ̄ < 1.0

the effect is initially weakly destabilising at κ̄ = 0.9, but below this value at κ̄ = 0.8

the mode again becomes less unstable compared to κ̄ = 1.0.

The combined effects of both elongation 0.8 ≤ κ̄ ≤ 1.2 and triangularity −0.2 ≤

δ̄ ≤ 0.2 have also been investigated. Figure 6.13 shows both numerical (a) and

analytical (b) values for the global growth rate γ as function of κ̄ and δ̄. As can be

seen, for the parameter regime studied here, the most unstable mode corresponds

to the configuration with κ̄ = 1.00 and δ̄ = 0.2. The maximum value of growth
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rate shifts slightly towards the lower values of κ̄ as δ̄ decreases. This indicates

that whether the effect of κ̄ (δ̄) is stabilising or not depends on the value of δ̄

(κ̄). We can also see that, for the parameters with vertical elongations, i.e. κ̄ >

1.0, the mode becomes more stable as δ̄ decreases. However, for the horizontal

elongation, i.e. κ̄ < 1.0, this trend is gradually reversed and the most unstable mode

is found at some intermediate values of δ̄, until eventually for κ̄ = 0.8 the effect is

reversed; here the most stable mode corresponds to the region with δ̄ > 0 rather

than δ̄ < 0. This reversed trend of the stabilising effects of positive triangularity

has also been observed, for example, for H-mode discharges in both JET and AUG

tokamaks [34], where the confinement improves with increasing positive triangularity.

In addition, as we increase the effect of shaping towards the blue regions on the

contour plots, corresponding to the vertical elongation κ̄ > 1.0 with δ̄ < 0 and

horizontal elongation κ̄ < 1.0 with δ̄ > 0, we can see that the mode is stabilised

compared to the configuration with circular flux surfaces and the least unstable

mode is found at κ̄ = 1.20 and δ̄ = −0.2. Finally, our finding here points to the

fact that the magnetic flux surface shaping can be either stabilising or destabilising,

and the values of κ̄ and δ̄ can be optimised to provide a favorable stabilising effects

on the underlying linear microinstabilities, with a corresponding reduction in the

associated turbulent transport.

6.4 Summary and Conclusion

In this chapter a local gyrokinetic code, GS2, has been used to investigate the global

properties of a linear electrostatic ITG mode in tokamak plasmas. Simulations pre-

sented here are divided into two parts. First, a so-called s−α equilibrium model has

been employed in which circular magnetic flux surfaces with high aspect ratio has

been assumed. Here we have used a set of equilibrium parameters which is strongly

unstable, such that we are able to identify both isolated and general modes, which

are radially confined close to the centre of our simulation domain. The effect of

equilibrium variations other than the ηi profile were excluded. We found that the

local mode frequency Ω0(xs, p) is stationary for a case with a quadratic ηi variation
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and this is a special case that leads to a highly unstable isolated mode that usually

balloons on the outboard mid-plane. In contrast, using a linear ηi profile, Ω0(xs, p)

does not have stationary points, which in turn generates a relatively less unstable

general mode that peaks on the top of the plasma.

Furthermore, in our second step, in order to benchmark against global gyroki-

netic simulations, we have studied the CYCLONE base case and employed the so-

called Miller equilibrium model with circular magnetic flux surfaces. Here, again,

we started with a radially peaked profile for the mode drive centred about xs = 0,

and held other equilibrium profiles constant. This again provides an isolated mode.

We have also investigated the effect of other equilibrium profiles as well as the rota-

tional flow shear that was introduced through a Doppler shift in the local frequency

Ω0(xs, p) such that Ω0(xs, p) → Ω0(xs, p) − nq′γExs. For a set of parameters that

generate an isolated mode, we found that the growth rate spectrum as a function

of flow shear is symmetric about γE = 0. Taking the effect of the other equilibrium

profiles into account leads to a mode that shifts away from the outboard mid-plane

with reduced growth rate compared to the isolated modes. The profile variation in-

troduces asymmetry into the spectrum of the growth rate as a function of flow shear.

For a critical value of flow shear, i.e. γE = γmE , we recapture an isolated mode even

with arbitrary profiles, which is in good qualitative agreement with global gyroki-

netic calculations presented in Ref [12]. Moreover, we have also derived an analytic

theory to calculate the value of the critical flow shear for which the growth rate

has a maximum, and this is found to be in excellent agreement with the numerical

solutions. In addition to the above results, we have presented some initial results

about the effect of shaping on the global properties of the ITG modes. Here, we

have only considered the highly unstable isolated modes and found that the shapes

of the magnetic flux surfaces, controlled via elongation κ̄ and triangularity δ̄, can be

either stabilising or destabilising.

In the following chapter we summarise the work presented in this thesis and

present the plans for further future research.
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Chapter 7

Summary, Conclusion and Future

Work

The dominant transport mechanism in magnetically confined plasmas for both heat

and particles is due to the turbulent fluctuations in the plasma parameters. These

fluctuations are believed to originate from microinstabilities, especially low frequency

drift modes. These fine scale instabilities, driven by free energy in the confined

plasma associated with density and temperature gradients, can be a serious problem

for effective confinement. Therefore, it is important to study, for example, the effect

of possible magnetic configurations and plasma conditions and determine relevant

criteria that could help control the instabilities and even to suppress or eliminate

them completely. Theoretical investigation of turbulent transport associated with

microinstabilities is usually performed via numerical simulations of the gyrokinetic

equation. There are two main approaches, namely global and local. The former one

takes into account the effect of the radial variation of the equilibrium profiles, but

at relatively high computational cost. In contrast, the local approach exploits the

separation between the equilibrium scale length and the characteristic radial size of

the instability to simplify the problem to the local system.

This thesis is devoted to improving our understanding of the impact of the global
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effects on linear microinstabilities. In this work, instead of using a direct global

solution, we have reconstructed the 2D global mode structure and the global growth

rate for linear electrostatic ITG modes, using local solutions from a gyrokinetic code

(GS2) and higher order ballooning theory. There are two main advantages of using

local results to build up global mode structures:

1. They are computationally less intensive than full global simulations, largely

because the calculations of Ω0(xs, p) are trivially parallellised across the xs and

p meshes.

2. They allow one to probe the physics behind the global mode structures in more

detail.

Our focus has been more on the latter, comparing with global simulations in the

literature to interpret, for example, why modes do not always sit at the outboard

mid-plane. The greater efficiency is a benefit, but it would be difficult to quantify

without running equivalent global and flux tube simulations side by side for a range

of parameters. This is a significant piece of work that we have not considered in this

thesis, but it is likely to be useful to consider in the future.

Our approach has provided additional insight into the physics of global simu-

lations of linear microinstabilities in tokamak plasmas. We began by extending the

analytic theory of 2D ballooning modes in tokamaks beyond the two special limits

of isolated and general modes previously considered in the literature. The former,

which often sit on the outboard mid-plane, only occurs for a particular set of equilib-

rium parameters for which Ω0(xs, p) is stationary at some radial point. On the other

hand, for the general mode Ω0(xs, p) is not stationary and this leads to a mode that

either sits on the top or bottom of the plasmas with reduced growth rate compared

to the isolated mode. The theoretical extensions developed in this work can account

for a global mode that sits anywhere in the poloidal plane (generalised modes in our

terminology). This is a quite important and profound theory and can basically im-

prove our understanding of the microinstabilities for realistic experimental regimes.
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For experimentally relevant equilibria the magnetic configurations do not, in general,

have circular cross-section and one typically also needs to take the effect of the radial

variations of the equilibrium profiles into account. This in turn might lead to a gen-

eralised type of modes rather than the above mentioned isolated or general modes.

The theory can also provide explanations for the mechanisms behind both radial

and poloidal symmetry breaking with respect to xs = 0 and θ = 0, respectively. We

found that the imaginary components of the ballooning phase angle p0 and the radial

parameter x0 result in radial and poloidal asymmetries, respectively.

It is important to mention that the approach and analysis that has been used in

this thesis only works in linear regimes. Nevertheless, the transport associated with

microturbulence is frequently modelled successfully using quasi-linear theory, which

is based on the assumption that the saturated turbulence continues to resemble the

linear modes. Linear theory of microinstabilities underlies other widely used models

where the limiting of steep gradients can be associated with the onset of particular

linear instabilities: e.g. the EPED model of the tokamak H-mode pedestal infers

marginal stability of the kinetic ballooning mode. Our global linear calculations are

of value because they improve on the local description of the linear modes, shedding

light on the physics underlying the results of global simulations. Even though, the

linear modes must be nonlinearly saturated/broken up by zonal flows in the turbulent

state, the initial linear instability frequency and mode structure remain of interest.

While the method and techniques that have been implemented here were pre-

viously described and used in [5], this thesis (i) improves on the description of the

method, (ii) makes the rather significant advance of demonstrating that the approach

can be used with a state-of-the-art local gyrokinetic code (GS2), and (iii) has allowed

us to benchmark this new method against global GK simulations in [12]. As a first

illustration of using the method with GS2 we have chosen the simple and familiar

example of electrostatic ITG instabilities in the s−α equilibrium, assuming that the

electron response is adiabatic. Here, our first investigations used radial profiles for

the mode drive, ηi, that were peaked and symmetric about xs = 0, and we held all
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other equilibrium profiles constant; this results in the local complex mode frequency,

Ω0(xs, p), having a stationary point at xs = 0. This condition produces a special

class of mode, known as the “isolated mode”, that peaks at the outboard mid-plane

with a large growth rate, γ ∼Max[γ0(xs, p)]. These results are in very good qualita-

tive agreement with the simplified fluid model of ITG modes presented in Ref [5]. In

addition, introducing a linearly varying radial ηi profile removes the stationary point

from Ω0(xs, p) and leads to a general mode that sits close to the top of the plasma

and does not preserve either the radial or the poloidal symmetries.

Furthermore, we have also investigated the circular CYCLONE base case equi-

librium, which has allowed us to benchmark our calculations against results from

global gyrokinetic simulations that were presented in [12] for the same equilibrium.

In addition to the radial profile for the mode drive that was peaked and symmetric

about xs = 0, we have introduced a radial variation into other equilibrium profiles.

This leads to a shift in radial position of the stationary points in both local frequency,

ω0, and growth rate, γ0, with respect to each other. In this case, the reconstructed

global mode becomes less unstable and shifts poloidally away from the outboard

mid-plane. Toroidal flow shear, introduced as a Doppler shift in the real frequency,

also influences the global mode. Starting from the conditions of an isolated mode,

with drive profiles peaked and symmetric about xs = 0 and with no other profile

variations, adding a constant flow shear is always found to be stabilising. When

other profile variations are included, flow shear can be destabilising when the flow

shear counteracts the tilting of the mode structure at the outboard mid-plane that is

induced by the other profile variations. This results in an asymmetry in the growth

rate as a function of flow shear about γE = 0, which is in qualitative agreement with

previous global gyrokinetic calculations [12]. Moreover, flow shear is also found to

shift the mode radially. For a critical flow shear (or a critical toroidal mode num-

ber for a given flow shear – see Eq. (6.24)) the isolated mode can exist even with

arbitrary profiles. In our final step, using the Miller equilibrium model, we have

presented some initial results on the effects of the magnetic flux surface shapes and

for convenience we have limited ourselves to highly unstable isolated modes. The
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shaping effects were controlled via the elongation κ̄ and triangularity δ̄. For our

parameters, we found that the combined effects of κ̄ and δ̄ can be both stabilising

or destabilising depending on the conditions.

Finally, it is worth mentioning that the methodology utilised in this thesis is

truly general and can be applied to investigate instabilities for experimentally rele-

vant tokamak equilibria, incorporating electromagnetic effects, kinetic electrons and

non-circular toroidal magnetic geometries. For example, the procedure exploited

here is being used to explore the global properties of a particular type of microin-

stability called kinetic ballooning modes (KBMs). This is extremely topical and

forms a current European research project to construct a new model for ELMs and

the pedestal structure. For MAST pedestal parameters, KBMs are found to have

Ω0(xs, p) with very strong p dependence, peaking very sharply about p = 0. This

might indicate that the isolated KBM mode is highly unstable, but the general KBM

mode is close to marginal. Moreover, in the relatively high collisionality regime of the

MAST pedestal, KBMs were found to be locally unstable [114], but close to marginal,

while in a lower collisionality JET case it is locally strongly stable [115, 116]. A key

question is whether the associated global modes are stable. We have seen in this

thesis that the global effects are, in general, stabilising. If the local result is close to

marginal stability (or even stable) then incorporating global effects is likely to result

in stability, which would be inconsistent with EPED model. Work is ongoing to

extend our study to explore this in the future. Furthermore, it is important to note

that our procedure is robust, requiring that the magnetic shear length is not much

larger than the equilibrium scale length, such that the equilibrium quantities vary

slowly across rational surfaces, and only works in linear regimes. It will be interesting

to consider whether a non-linear approach can be developed based on this method,

but this will be challenging and it is not clear yet how to achieve this. We also note

that whilst the computational approach to calculating the global structure from local

simulations has significant advantages over a direct global simulation, there are some

technical difficulties that can arise. For example, using the initial value GS2 code,

there is a spectrum of linear modes at a particular n, xs and p; as p and xs are varied
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it is necessary to track a single branch, which can be challenging for some equilibrium

parameters where different branches cross one another. To address this, one might

filter the result, by using a starting point closer to the eigenmode of interest, which

one can identify by using the eigenmode of the previous p/xs point as initial guess

for the next. Despite these difficulties we have demonstrated that this approach is a

powerful tool for studying global physics which offers benefits in both computation

and interpretation.
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Appendices

A Shaping Effect-Isolated Modes: The Model Co-

efficients

The model coefficients, fk and Rk, with twelve Fourier modes for the shaping effect,

with varying elongation κ̄ and triangularity δ̄, presented in section 6.3. These coef-

ficients are obtained from the fit using the parametrisation given in Eq. (6.5). The

real and imaginary components contribute to the real frequency, ω0, and growth rate,

γ0, respectively. Here, Sk = 0 for all k as only pure isolated modes are considered.

Table 1: κ̄ = 0.80 and δ̄ = −0.20.

k fk Rk

0 0.68309082+0.042677016 i -2.0554813-1.4755869 i
1 0.10114897+0.042677016 i 3.3363627-1.4755869 i
2 0.095072343+0.087128198 i -1.7957588-1.3800766 i
3 0.06752043+0.03132025 i 0.73010457+0.53626528 i
4 0.03295838+0.00328530 i -0.82296302-0.41029634 i
5 -0.00329566+0.00661760 i 0.39154485+0.17307158 i
6 0.0012446598+0.0091394702 i -0.012336610-0.041714520 i
7 -0.00357769+0.00202733 -0.37247055-0.15798101 i
8 -0.00497097+0.00325872 i 0.77433010+0.29724648 i
9 -0.00083070-0.00008747 i -1.0786408-0.43488034 i
10 -0.00371363+0.00078696 i 1.3341999+0.53024498 i
11 -0.00006952-0.00084135 i -1.4461732-0.58712975 i
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Table 2: κ̄ = 0.80 and δ̄ = −0.10.

k fk Rk

0 0.67893964+0.050847068 i -1.1645625-1.1818178 i
1 0.10240479+0.30233751 i 1.7098600-1.4107264 i
2 0.09090867+0.09471214 i -0.28474462-0.78493390 i
3 0.06554877+0.02621109 i -0.40056665+0.04278513 i
4 0.02800509-0.00109717 i -0.04388113+0.00802085 i
5 0.00275931+0.00242268 i -0.01907365-0.02344083 i
6 0.00090366+0.00555991 i -0.04627431+0.00862854 i
7 0.00024663+0.00197121 i 0.01157460+0.00297086 i
8 -0.00135111+0.00222066 i 0.00268747+0.00297086 i
9 -0.00105377+0.00096174 i -0.03899579-0.00589229 i
10 -0.00005943+0.00096174 i 0.05001108-0.00440295 i
11 -0.00126510-0.00014104 i -0.04499669-0.01141441 i

Table 3: κ̄ = 0.80 and δ̄ = 0.00.

k fk Rk

0 0.67584453+0.05838062 i -1.1214270-1.2156466 i
1 0.10341179+0.30346486 i 1.7020352-1.4653336 i
2 0.08747687+0.09985999 i -0.20166826-0.75346542 i
3 0.06327799+0.01755421 i -0.43201937+0.04589801 i
4 0.02911570-0.00618468 i -0.05922889+0.06552281 i
5 0.00676393-0.00184823 i -0.04253470-0.02637668 i
6 0.00350407+0.00403779 i -0.07661257+0.01064867 i
7 0.00294472+0.00260984 i 0.02136977-0.01010066 i
8 0.00032567+0.00173006 i -0.03414125-0.00129801 i
9 0.00006626+0.00219463 i -0.02207919-0.00189223 i
10 0.00058054+0.00118589 i 0.03046667-0.01108000 i
11 -0.00094082+0.00049878 i -0.050533620.00874585 i

Table 4: κ̄ = 0.80 and δ̄ = 0.10.

k fk Rk

0 0.67470750+0.064352179 i -1.0977440-1.2664329 i
1 0.10362821+0.30354918 i 1.7141457-1.4756864 i
2 0.08435286+0.10192469 i -0.12833931-0.71242124 i
3 0.06287021+0.00802377 i -0.49779220+0.02816935 i
4 0.03208551-0.01166903 i -0.06456055+0.15043588 i
5 0.01094396-0.00438198 i -0.07635908-0.06058080 i
6 0.00557810+0.00323495 i -0.09408417+0.00478311 i
7 0.00438400+0.00298395 i 0.03262861+0.03418313 i
8 0.00199229+0.00150662 i -0.06975095-0.05182336 i
9 0.00062650+0.00254634 i -0.00510611+0.03251567 i
10 0.00125574+0.00158540 i 0.01731460-0.00969928 i
11 -0.00011656+0.00087893 i -0.06674908-0.04376952 i
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Table 5: κ̄ = 0.80 and δ̄ = 0.20.

k fk Rk

0 0.67412582+0.06867411 i -1.0473479-1.2715934 i
1 0.10401295+0.30355645 i 1.6854257-1.5314451 i
2 0.08154999+0.10137871 i -0.07029064-0.65689425 i
3 0.06412347-0.00220004 i -0.51379718+0.06250245 i
4 0.03629996-0.01723659 i -0.15925530+0.15688144 i
5 0.01427110-0.00586003 i -0.04320473-0.04641969 i
6 0.00695540+0.00275007 i -0.10833086-0.00387205 i
7 0.00561013+0.00277709 i -0.01623776+0.03044762 i
8 0.00314847+0.00120472 i -0.01305499-0.02962231 i
9 0.00151051+0.00232561 i -0.05482246+0.01780875 i
10 0.00213858+0.00191099 i 0.00710175-0.00524589 i
11 0.00056788+0.00126758 i -0.02552410-0.03325254 i

Table 6: κ̄ = 0.90 and δ̄ = −0.20.

k fk Rk

0 0.57364600+0.07130641 i 2.8342775-1.9676974 i
1 0.10684759+0.27951523 i 1.3115367-0.49432044 i
2 0.08094551+0.09310512 i 0.36341384-0.76442895 i
3 0.03966512+0.03135422 i 0.91333516+0.08761602 i
4 0.00310504+0.01022116 i 0.80480919-0.26142543 i
5 -0.00684855+0.00745449 i 0.14774214+0.10796674 i
6 -0.00699813+0.00203064 i 0.22114699+0.20451131 i
7 -0.00531951-0.00021748 i 0.00212702+0.15201002 i
8 -0.00284577-0.00256050 i -0.05963106+0.11742257 i
9 -0.00115923-0.00199294 i -0.10645356+0.10096874 i
10 0.00083397-0.00239535 i -0.05823940-0.01915222 i
11 0.00055644-0.00109508 i -0.13038081-0.01672778 i

Table 7: κ̄ = 0.90 and δ̄ = −0.10.

k fk Rk

0 0.60196824+0.06588277 i -0.81682027-1.1827237 i
1 0.10158109+0.28689052 i 1.4814265-1.3401863 i
2 0.08172810+0.10060787 i -0.21350495-0.71927214 i
3 0.04859927+0.03038195 i -0.22526818-0.01215104 i
4 0.01289562+0.00647971 i 0.04110096+0.02219467 i
5 -0.00122628+0.00598444 i -0.00792490-0.05175593 i
6 -0.00235547+0.00362824 i -0.02416009+0.03097903 i
7 -0.00284275+0.00187776 i 0.03235759+0.00204170 i
8 -0.00189041+0.00014377 i -0.02289855-0.02924280 i
9 -0.00177650+0.00008548 i 0.00005323+0.03679472 i
10 -0.00013090-0.0007260 i 0.01761269-0.03779095 i
11 -0.00085916-0.0007655 i -0.02951724+0.01246694 i
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Table 8: κ̄ = 0.90 and δ̄ = 0.00.

k fk Rk

0 0.59709057+0.06637358 i -0.79032121-1.1832297 i
1 0.09802457+0.28547121 i 1.4798583-1.3649035 i
2 0.07552045+0.10758639 i -0.08538693-0.70920170 i
3 0.04786383+0.02736105 i -0.25700539-0.02552909 i
4 0.01745254+0.00385149 i 0.00202824+0.06332597 i
5 0.00315306+0.00398245 i -0.01571181-0.04844439 i
6 0.00076713+0.00415569 i -0.05816854+0.01596669 i
7 -0.00058078+0.00292219 i 0.01814994+0.00982183 i
8 -0.00088413+0.00167780 i -0.02351918-0.03500065 i
9 -0.00139590+0.00125908 i -0.01749711+0.01861665 i
10 -0.00054350-0.00054350 i 0.02222734-0.02244055 i
11 -0.00104530-0.00012575 i -0.02925464-0.01325887 i

Table 9: κ̄ = 0.90 and δ̄ = 0.10.

k fk Rk

0 0.59416726+0.06651830 i -0.77745213-1.1833859 i
1 0.09560810+0.28371681 i 1.4862405-1.3850933 i
2 0.06982965+0.11218707 i 0.02956159-0.68794431 i
3 0.04769710+0.02405940 i -0.28649381-0.03524398 i
4 0.02158127+0.00103142 i -0.04530747+0.09942274 i
5 0.00724954+0.00252467 i -0.02038018-0.04524776 i
6 0.00351177+0.00446482 i -0.08495573-0.00174498 i
7 0.00128321+0.00385370 i -0.00302255+0.02052571 i
8 0.00012819+0.00270849 i -0.01584547-0.04235147 i
9 -0.00093946+0.00213882 i -0.03497603+0.00649764 i
10 -0.00052298+0.00139157 i 0.01751035-0.01113255 i
11 -0.00100069+0.00055675 i -0.02044590-0.03107717 i

Table 10: κ̄ = 0.90 and δ̄ = 0.20.

k fk Rk

0 0.59301558+0.06518668 i -0.85384253-1.2882959 i
1 0.09275267+0.28089023 i 1.6519458-1.5361811 i
2 0.06450078+0.11563429 i 0.15870691-0.72842568 i
3 0.04827834+0.02006130 i -0.36438741-0.03671710 i
4 0.02656793-0.00136722 i -0.09682354+0.12211292 i
5 0.01127394+0.00204690 i -0.02566529-0.04106594 i
6 0.00554228+0.00507229 i -0.10946482-0.01841179 i
7 0.00279603+0.00467458 i -0.02886808+0.02767046 i
8 0.00105755+0.00346033 i -0.01193420-0.03836110 i
9 -0.00045517+0.00291987 i -0.04908395-0.01036785 i
10 -0.00033347+0.00220288 i 0.00180247-0.00165773 i
11 -0.00087781+0.00128968 i -0.01313105-0.04036707 i
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Table 11: κ̄ = 1.00 and δ̄ = −0.20.

k fk Rk

0 0.54920060+0.07648522 i -0.58492016-1.1576665 i
1 0.10829748+0.27411081 i 1.2648883-1.3102113 i
2 0.07620979+0.09324556 i -0.26832825-0.61208598 i
3 0.03206187+0.03097919 i -0.05475149-0.00390135 i
4 -0.00163564+0.01156682 i 0.09796883-0.04764725 i
5 -0.00792710+0.00650804 i 0.03053605-0.01791133 i
6 -0.00827229+0.00079542 i 0.03307587+0.03799815 i
7 -0.00503783-0.00123866 i 0.04277371+0.00233198 i
8 -0.00255637-0.00337049 i -0.02141669+0.01673760 i
9 -0.00029529-0.00243892 i 0.01817408+0.02716148 i
10 0.00125859-0.00242919 i -0.01917576-0.01126388 i
11 0.00121090-0.00077086 i -0.00842067+0.02284728 i

Table 12: κ̄ = 1.00 and δ̄ = −0.10.

k fk Rk

0 0.54215064+0.07383058 i -1.5769914-1.4567166 i
1 0.10204435+0.27190204 i 1.5804775-1.5827751 i
2 0.07010139+0.10196138 i -0.14403172-0.78234367 i
3 0.03286441+0.03287973 i -0.11570256-0.03814616 i
4 0.00307721+0.01175473 i 0.09081553+0.00168397 i
5 -0.00462597+0.00650920 i 0.01611046+-0.04113959 i
6 -0.00582617+0.00217108 i -0.00580035+0.04453802 i
7 -0.00422202+0.00042790 i 0.04283299-0.00644119 i
8 -0.00246869-0.00163567 i -0.03553981-0.00722991 i
9 -0.00132951-0.00140336 i 0.01931608+0.02636926 i
10 0.00027754-0.00170434 i -0.00376019-0.02883817 i
11 0.00021560-0.00108886 i -0.01111862+0.01962562 i

Table 13: κ̄ = 1.00 and δ̄ = 0.00.

k fk Rk

0 0.53583345+0.06967184 i -0.56447467-1.1338439 i
1 0.09702579+0.26836327 i 1.2949608-1.2939132 i
2 0.06395216+0.10939624 i 0.00526190-0.64009955 i
3 0.03399172+0.03363123 i -0.13104653-0.04892770 i
4 0.00803476+0.01149309 i 0.04200016+0.03580184 i
5 -0.00117162+0.00713908 i 0.00301616+-0.04354944 i
6 -0.00335087+0.00385418 i -0.03975030+0.01808688 i
7 -0.00352990+0.00217540 i 0.02367670+0.00346569 i
8 -0.00248025+0.00014328 i -0.01978643-0.03268625 i
9 -0.00216969-0.00045805 i -0.00483928+0.01546880 i
10 -0.00074532-0.00098057 i 0.01867079-0.02242693 i
11 -0.00057812-0.00117006 i -0.01322231-0.00482972 i
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Table 14: κ̄ = 1.00 and δ̄ = 0.10.

k fk Rk

0 0.53234397+0.06518217 i -0.56977839-1.1174672 i
1 0.09280987+0.26371427 i 1.3034203-1.2872696 i
2 0.05795526+0.11559553 i 0.13737919-0.63981117 i
3 0.03481970+0.03389782 i -0.16688040-0.06243597 i
4 0.01262512+0.01084043 i 0.00217934+0.06516132 i
5 0.00243009+0.00772217 i -0.00206252-0.04400970 i
6 -0.00086329+0.00540898 i -0.06886601-0.00353278 i
7 -0.00254681+0.00386039 i 0.00313953+0.01002802 i
8 -0.00231843+0.00189445 i -0.01192955-0.04762429 i
9 -0.00263974+0.00064545 i -0.02253565-0.00149919 i
10 -0.00165102-0.00009497 i 0.02354811-0.017013508 i
11 -0.00130228-0.00082263 i -0.00568808-0.02566074 i

Table 15: κ̄ = 1.00 and δ̄ = 0.20.

k fk Rk

0 0.53090087+0.05983713 i -0.59037057-1.0943654 i
1 0.08986900+0.25844299 i 1.3149640-1.2875424 i
2 0.05261136+0.11965455 i 0.25754998-0.63411303 i
3 0.03553700+0.03393565 i -0.19787660-0.06978570 i
4 0.01694613+0.01112699 i -0.03305754+0.07946528 i
5 0.00564013+0.00897689 i -0.00573833-0.03769001 i
6 0.00086200+0.00720957 i -0.088218710.01760196 i
7 -0.00177529+0.00541017 i -0.02152585+0.01053451 i
8 -0.00233940+0.00338654 i -0.00950625-0.05196743 i
9 -0.00310664+0.00174368 i -0.03311383-0.02035621 i
10 -0.00248698+0.00065248 i 0.01651141-0.01527036 i
11 -0.00206579-0.00041068 i 0.00377008-0.03898771 i

Table 16: κ̄ = 1.10 and δ̄ = −0.20.

k fk Rk

0 0.50158508+0.08322103 i -0.39778798-1.1389426 i
1 0.11050266+0.26146493 i 1.0937941-1.2795177 i
2 0.06305430+0.09106918 i -0.17443713-0.51604046 i
3 0.01646901+0.03111112 i 0.05267837-0.02426131 i
4 -0.00837373+0.01260441 i 0.11204100-0.03469267 i
5 -0.01083539+0.00296142 i 0.04629589+0.00643403 i
6 -0.00908825-0.00152455 i 0.04218090+0.05019216 i
7 -0.00378305-0.00404714 i 0.02101623+0.00788376 i
8 -0.00081114-0.00435897 i -0.02247707+0.03580977 i
9 0.00167400-0.00275982 i 0.00266747+0.01026806 i
10 0.00246402-0.00143021 i -0.02924233-0.00090125 i
11 0.00193363+0.00047637 i -0.00468014+0.00200412 i
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Table 17: κ̄ = 1.10 and δ̄ = −0.10.

k fk Rk

0 0.49394616+0.07750607 i -0.40894496-1.1211521 i
1 0.10311735+0.25782615 i 1.1230906-1.2545795 i
2 0.05834331+0.10046936 i -0.04929348-0.55311365 i
3 0.01931302+0.03436812 i 0.000735390.04044874 i
4 -0.00383490+0.01436990 i 0.09563084-0.00687048 i
5 -0.00827840+0.00508397 i 0.02552339-0.01970363 i
6 -0.00821311+0.00039794 i 0.01410776+0.04330575 i
7 -0.00464206-0.00199093 i 0.02941864-0.00383443 i
8 -0.00202577-0.00351373 i -0.02343603+0.01111322 i
9 -0.00005860-0.00267528 i 0.01297885+0.01646187 i
10 0.00154986-0.00208726 i -0.01099703-0.01067769 i
11 0.00142509-0.00074704 i -0.00599526+0.01318723 i

Table 18: κ̄ = 1.10 and δ̄ = 0.00.

k fk Rk

0 0.48800082+0.07041183 i -0.47756400-1.1144484 i
1 0.09710822+0.25276349 i 1.1579438-1.2444070 i
2 0.05313754+0.10889924 i 0.08138731-0.58447546 i
3 0.02179016+0.03714963 i -0.04953151-0.05961755 i
4 0.00049883+0.01599147 i 0.07287902+0.01931331 i
5 -0.00559032+0.00767030 i 0.01609931-0.04077122 i
6 -0.00713940+0.00259955 i -0.01737909+0.02551554 i
7 -0.00547950+0.00016261 i 0.03219740-0.00398771 i
8 -0.00322769-0.00228573 i -0.01833295-0.01841520 i
9 -0.00183475-0.00248930 i 0.00893033+0.01729848 i
10 0.00027436-0.00238963 i 0.01174394-0.01656898 i
11 0.00075979-0.00181879 i -0.00761870+0.00752775 i

Table 19: κ̄ = 1.10 and δ̄ = 0.10.

k fk Rk

0 0.48375451+0.06208485 i -0.43050608-1.0608961 i
1 0.09282680+0.24591603 i 1.1517870-1.2029898 i
2 0.04809278+0.11535711 i 0.20254326-0.58787152 i
3 0.02369131+0.04025968 i -0.08504971-0.07614989 i
4 0.00458575+0.01787607 i 0.03764584+0.03885374 i
5 -0.00309363+0.01045284 i 0.01157210-0.04603044 i
6 -0.00605163+0.00508712 i -0.04663345+0.00223477 i
7 -0.00619323+0.00224253 i 0.01759140-0.00010198 i
8 -0.00443253-0.00073741 i -0.00861352-0.04118309 i
9 -0.00343738-0.00211484 i -0.00238907+0.00403696 i
10 -0.00128389-0.00254991 i 0.02914919-0.01506421 i
11 -0.00013349-0.00268195 i 0.00431334-0.00898841 i
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Table 20: κ̄ = 1.10 and δ̄ = 0.20.

k fk Rk

0 0.48250488 + 0.05400098 i -0.46601972-1.03117980 i
1 0.09015626 + 0.23907075 i 1.14601910 -1.19138230 i
2 0.04338279 + 0.12118213 i 0.31862749 -0.59621880 i
3 0.02463542 + 0.04317015 i -0.11507688-0.08729447 i
4 0.00791044 + 0.01980512 i 0.00065834 +0.05217681 i
5 -0.00093305+ 0.01331432 i 0.01471385 -0.04028228 i
6 -0.00525144+0.007647228 i -0.05926982-0.01436183 i
7 -0.00680151+0.003987887 i 0.00395562 +0.00619534 i
8 -0.00566844+0.000540155 i 0.01025577 -0.04911688 i
9 -0.00499132-0.001843332 i -0.00246420-0.01522543 i
10 -0.00302894-0.002892220 i 0.03940932 -0.01402472 i
11 -0.00136737-0.003493643 i 0.02371301 -0.02726136 i

Table 21: κ̄ = 1.20 and δ̄ = −0.20.

k fk Rk

0 0.45765811+0.08466596 i 0.38378365-0.87758218 i
1 0.11260236+0.24735578 i 0.77846688-1.0167712 i
2 0.04991837+0.08703062 i -0.07054082-0.34952899 i
3 0.00463918+0.03012197 i 0.10702962-0.02546904 i
4 -0.01225506+0.01110224 i 0.09741840-0.00577455 i
5 -0.01270576-0.00039937 i 0.05152567+0.02877147 i
6 -0.00793063-0.00374401 i 0.03036897+0.04936514 i
7 -0.00200827-0.00581434 i -0.00523270+0.01976254 i
8 0.00136514-0.00437805 i -0.02394581+0.02969699 i
9 0.00320046-0.00200565 i -0.01819113-0.00055244 i
10 0.00295222+0.00006881 i -0.02202125-0.00656254 i
11 0.00166184+0.00178172 i -0.00330469-0.01423263 i

Table 22: κ̄ = 1.20 and δ̄ = −0.10.

k fk Rk

0 0.45135680+0.07746869 i 0.30747649-0.87286184 i
1 0.10468762+0.24356349 i 0.82333280-1.0068211 i
2 0.04692888+0.09682253 i 0.01367682-0.39178065 i
3 0.00832415+0.03469223 i 0.05824972-0.03873910 i
4 -0.00863030+0.01452375 i 0.09127168-0.00171464 i
5 -0.01136033+0.00262406 i 0.03432300+0.00339957 i
6 -0.00910157-0.00188737 i 0.02556237+0.04199897 i
7 -0.00404376-0.00453818 i 0.01251001+0.00797132 i
8 -0.00067495-0.00487517 i -0.01733708+0.02231205 i
9 0.00181142-0.00305972 i -0.00231126+0.00928301 i
10 0.00290008-0.00150544 i -0.01793693-0.00349197 i
11 0.00231041+0.00053336 i -0.00738612+0.00022071 i
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Table 23: κ̄ = 1.20 and δ̄ = 0.00.

k fk Rk

0 0.44848861+0.06913138 i -0.29989568-1.0525205 i
1 0.09792792+0.23852962 i 1.0126560-1.1621228 i
2 0.04306391+0.10646038 i 0.13279173-0.51358283 i
3 0.01117208+0.03934990 i 0.01086411-0.06388957 i
4 -0.00562935+0.01811797 i 0.09316910+0.00582331 i
5 -0.00987723+0.00648480 i 0.02442170-0.02751769 i
6 -0.00990538+0.00043114 i 0.00803632+0.03420706 i
7 -0.00617456-0.00279780 i 0.02992002-0.00041335 i
8 -0.00270964-0.00497654 i -0.01384184+0.00662822 i
9 -0.00010270-0.00426576 i 0.01194124+0.02014165 i
10 0.00227731-0.00323384 i -0.00099889-0.00388767 i
11 0.00253924-0.00145289 i -0.00673898+0.01275323 i

Table 24: κ̄ = 1.20 and δ̄ = 0.10.

k fk Rk

0 0.54207359+0.07018493 i -1.9566178-0.70824433
1 0.16299503+0.25860727 i 1.7629234-2.1106117 i
2 -0.05946903+0.11136536 i 2.3282440-0.44794162 i
3 -0.09263188+0.01318097 i -1.6334974+1.0398760 i
4 -0.03501446+0.00165250 i -0.22702845-0.50932270 i
5 0.01923667+0.00076926 i 1.4387224+0.060140406 i
6 0.02572709+0.01448085 i -0.25345868-0.16851772 i
7 0.00170531+0.01171258 i -0.87362612+0.12951789 i
8 -0.00630028-0.00158848 i 0.15934858+0.18245285 i
9 0.00091826-0.00328335 i 0.77745966-0.53939143 i
10 0.00726971-0.00873729 i -0.21971203+0.30942040 i
11 0.00461637-0.00009001 i -0.71917686-0.04351483 i

Table 25: κ̄ = 1.20 and δ̄ = 0.20.

k fk Rk

0 0.55307287+0.06313760 i -0.64110188-1.6848641 i
1 0.16175416+0.26456763 i 0.86014798-0.95202373 i
2 -0.07998028+0.12331589 i 0.45634331-0.19244083 i
3 -0.08808530+0.00058320 i 0.19458346+0.12894088 i
4 -0.02432487-0.00140464 i 0.28390001+0.25703508 i
5 0.01055687+0.00518220 i -0.03765351-0.55356523 i
6 0.01565620+0.01166997 i -0.02768630+0.49402597 i
7 0.00528172+0.01357402 i -0.05900644-0.29141453 i
8 0.00018655-0.00390116 i 0.02647444-0.01344938 i
9 -0.00535825+0.00094461 i 0.17151819+0.20666680 i
10 -0.00193757-0.00587756 i -0.10087706-0.49189440 i
11 0.01119458-0.00457094 i -0.07175891+0.51818779 i
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Lists of Symbols and

Abbreviations

T̄ Electron to Ion Temperature Ratio

x̄s A Shifted Radial Coordinate which is related to xs according to x̄s → xs+xm

χ A Complex Parameter that controls the Localisation of A(p) in p Space as well

as φ̃(xs, θ) in xs Space

δb Width of a Banana Orbit

∆p The Width of A(p) in p Space

∆r Distance between Rational Surfaces

∆x The Radial Width of the Reconstructed Global Mode φ̃(xs, θ) in xs Space

ε Inverse Aspect Ratio

ε0 Electric Permeability of Free Space

η Extended Ballooning Angle Coordinate along the Magnetic Field Lines

ηi The Drive for ITG Modes which is defined as a Ratio of Density to Tempera-

ture Scale Length, i.e. ηi = Ln/LT

Γ The Specific Heat Ratio

γ Global Growth Rate

γ0 Local Growth Rate

γE Related to the Rotational Flow Shear Ωϕ according to γE = dΩϕ/dq

γmE A Critical Value of Flow Shear that Maximises the Global Growth Rate γ for

a Given Set of Plasma Equilibrium Profiles

Â Incorporates the Slow Variation Part of the Global Electrostatic Perturbations

φ̃(ψ, η) in the the WKB Expansion Method

F̂ Incorporates the Slow Variation Part of the Global Electrostatic Perturbations

φ̃(ψ, θ) in the the WKB Expansion Method

q̂ Local Safety Factor

Ŝ Eikonal Function
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ŝ Magnetic Shear

Ŷ Toroidal Angle Independent Part of the Eikonal Function Ŝ

λ⊥ Wave Length perpendicular to the Magnetic Field Lines

λD Debye Length

lnΛ Coulomb Logarithm Factor

µ Magnetic Moment

µ0 Magnetic Permeability of Free Space

νei Electron-Ion Collisional Frequency

νie Ion-Electron Collisional Frequency

νii Ion-Ion Collisional Frequency

Ω Global Complex Mode Frequency

ω Global Real Frequency

Ω0 Local Complex Mode Frequency

ω0 Local Real Frequency

ωn?e Electron Density Diamagnetic Drift Frequency

ωT?i Ion Temperature Diamagnetic Frequency

ωP? Pressure Diamagnetic Frequency

Ωϕ Rotational Flow Shear

ωce Electron Cyclotron Frequency

ωci Ion Cyclotron Frequency

ωc Cyclotron Frequency

ωs Ion Sound Frequency

ψ Poloidal Flux within a Magnetic Surface

q′ Radial Derivative of the Safety Factor at xs = 0

ρ Charge Density

ρce Electron Gyroradius

ρci Ion Gyroradius

ρc Gyro or Larmor Radius

τei Electron-Ion Collision Mean Free Time

τE Plasma Confinement Time

τie Ion-Electron Collision Mean Free Time

τii Ion-Ion Collision Mean Free Time
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θ Poloidal Angle

L̃ Electromagnetic Field Perturbation

φ̃ Electrostatic Global Mode Structure

f̃ Fluctuating Distribution Function

G̃ Fluctuating Physical Quantities

h̃ Non-adiabatic Part of the Fluctuating Distribution Function

ñe Electron Fluctuating Density

ñi Ion Fluctuating Density

b̂ Unit Vector along The Magnetic Field Lines

êψ Radial Unit Vector

êθ Poloidal Unit Vector

êϕ Toroidal Unit Vector

∇ Gradient Operator

∇⊥ Gradient Operator perpendicular to the Magnetic Field Lines

∇r Gradient Operator in Spatial Space

∇v Gradient Operator in Velocity Space

B̃ Fluctuating Magnetic Field

Ṽ e Fluctuating Electron Fluid Velocity

Ṽ i Fluctuating Ion Fluid Velocity

a Acceleration

B Magnetic Field

B0 Equilibrium Magnetic Field

D Electric Displacement Field

E Electric Field

E⊥ Component of E perpendicular to the Magnetic Field Lines

F Lorentz Force

F⊥ Component of F perpendicular to the Magnetic Field Lines

J Current Density

k Wave Vector

r Position Vector

Rc Guiding Centre Position Vector

U Guiding Centre Velocity
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UD Guiding Centre Particle Drift

V Fluid Velocity

v Particle Velocity

v∇B Magnetic Gradient Drift Velocity

v⊥ Component of v perpendicular to the Magnetic Field Lines

vcr Magnetic Curvature Drift Velocity

vE×B E ×B Drift Velocity

V e Electron Fluid Velocity

V i Ion Fluid Velocity

ϕ Toroidal Angle

ξ Local Mode Structure

A(p) The Envelope Function that determines the Radial Structure for the Recon-

structed Global Mode φ̃(xs, θ)

c Speed of Light

C(f) Collision Operator

d` Incremental Distance along the Magnetic Field Lines

d`θ Incremental Distance along the Poloidal Direction

d`ϕ Incremental Distance along the Toroidal Direction

Db Neoclassical Diffusion Coefficient

Dcl Classical Diffusion Coefficient

dl Differential Line Element

dV Differential Volume Element

dv Volume Element in Velocity Space

En Energy

f(0) Coefficient of the Zeroth Order Term in the Taylor Expansion of f(p) about

p = 0

f(p) Coefficient of the Zeroth Order Term in the Taylor Expansion of the Local

Complex Mode Frequency Ω0(xs, p) about xs = 0

f(p0) Coefficient of the Zeroth Order Term in the Taylor Expansion of f(p) about

p = p0

f ′′(0) Coefficient of the Second Order Term in the Taylor Expansion of f(p) about

p = 0

f ′′(p0) Coefficient of the Second Order Term in the Taylor Expansion of f(p) about

p = p0
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f ′(0) Coefficient of the First Order Term in the Taylor Expansion of f(p) about

p = 0

f ′(p0) Coefficient of the First Order Term in the Taylor Expansion of f(p) about

p = p0

F0 Equilibrium Distribution Function

fe Electron Distribution Function

fi Ion Distribution Function

fk Coefficients in the Fourier Expansion f(p) =
∑Nk

k fk cos kp

ft Fraction of Trapped Particles

G Represents the Physical Quantities

G0 Represents the Equilibrium Part of the Physical Quantity G

gN Webber-Hermite Polynomial of Degree N

HN Hermite Polynomial of Degree N

I Identity Matrix

J Jacobian

k⊥ Wave Vector perpendicular to the Magnetic Field Lines

kB Boltzmann Constant

kyρci Normalised Binormal Wave number

keV Kilo-Electron Volt

L Equilibrium Scale Length

Ln Equilibrium Density Scale Length

LT Equilibrium Temperature Scale Length

M Mass

Me Electron Mass

Mi Ion Mass

MeV Mega Electron Volt

n Toroidal Mode Number

n0 Plasma Equilibrium Density

ne Electron Density

ni Ion Density

Nk Number of the Fourier Coefficients Retained in the Expansion Ω0(xs, p) =∑Nk

k

[
fk cos kp+ xsSk cos kp+ x2sRk cos kp

]
np Plasma Density
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nref Plasma Density on a Rational Surface at xs = 0

p Ballooning Angle Coordinate

p0 The Complex Ballooning Phase Angle

Pe Electron Pressure

Pi Ion Pressure

Q Square Complex Non-symmetric almost Tridiagonal Matrix

q Global Safety Factor

q0 Safety Factor at xs = 0

qe Electron Charge

qi Ion Charge

qj Electric Charge

R Major Radius Coordinate

r Minor Radius of the Toroidal Flux Surface

R(0) Coefficient of the Zeroth Order Term in the Taylor Expansion of R(p) about

p = 0

R(p) Coefficient of the Second Order Term in the Taylor Expansion of the Local

Complex Mode Frequency Ω0(xs, p) about xs = 0

R(p0) Coefficient of the Zeroth Order Term in the Taylor Expansion of R(p) about

p = p0

R′′(0) Coefficient of the Second Order Term in the Taylor Expansion of R(p) about

p = 0

R′′(p0) Coefficient of the Second Order Term in the Taylor Expansion of R(p) about

p = p0

R′(0) Coefficient of the First Order Term in the Taylor Expansion of R(p) about

p = 0

R′(p0) Coefficient of the First Order Term in the Taylor Expansion of R(p) about

p = p0

R0 Major Radius of the Toroidal Flux Surface

Rk Coefficients in the Fourier Expansion R(p) =
∑Nk

k Rk cos kp

Rnl Non-linear Component of The Gyrokinetic Equation

S(0) Coefficient of the Zeroth Order Term in the Taylor Expansion of S(p) about

p = 0

S(p) Coefficient of the First Order Term in the Taylor Expansion of the Local

Complex Mode Frequency Ω0(xs, p) about xs = 0

S(p0) Coefficient of the Zeroth Order Term in the Taylor Expansion of S(p) about

p = p0
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S′′(0) Coefficient of the Second Order Term in the Taylor Expansion of S(p) about

p = 0

S′′(p0) Coefficient of the Second Order Term in the Taylor Expansion of S(p) about

p = p0

S′(0) Coefficient of the First Order Term in the Taylor Expansion of S(p) about

p = 0

S′(p0) Coefficient of the First Order Term in the Taylor Expansion of S(p) about

p = p0

Sk Coefficients in the Fourier Expansion S(p) =
∑Nk

k Sk cos kp

T Plasma Temperature

t Time

Te Electron Temperature

Ti Ion Temperature

Tref Plasma Temperature on a Rational Surface at xs = 0

V?e Electric Diamagnetic Drift Speed

Vs Ion Sound Speed

vth Thermal Speed

x0 Complex Radial Parameter

xm Determines the Physical Radial Shift of the Reconstructed Global Mode Struc-

tures φ̃(xs, θ) with Respect to xs = 0

xs Measures Distance from a Reference Rational Surface at xs = 0

6Li Lithium

0
−1e Electron

0
0νe Electron-Neutrino

2
1H Deuterium

56
26Fe Iron

3
2H Tritium

4
2H Helium

238
91 U Uranium

1D One Dimensional

2D Two Dimensional

AUG ASDEX Upgrade

DEMO DEMOnstration Power Plant

ECRH Electron Cyclotron Resonance Heating

191



ECRH Neutral Beam Injection

H-Mode High Confinement Mode

ICF Inertial Confinement Fusion

ICRH Ion Cyclotron Resonance Heating

ITER International Thermonuclear Experimental Reactor

ITG Ion Temperature Gradient Mode

JET Joint European Torus

L-Mode Low Confinement Mode

MAST Mega Amp Spherical Tokamak

MCF Magnetic Confinement Fusion

TCV Tokamak Configuration Variable

WKB Wentzel Kramers Brillouin
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