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Abstract

In this thesis, we investigate dynamics of many-body atomic systems
coupled to electromagnetic fields. We find that collective effects present
in cavity-mediated laser cooling and high temperatures of bubble in
sonoluminescence can be explainedusing a two-stagemodelwhich com-
bines quantum-optical models and thermodynamical processes. We
show how the collective processes are strongly dependent on mutual
atomic coherences and how these coherences need to be recreated for
the continous collective processes to take place.

e model mechanism behind both cavity-mediated laser cooling and
sonoluminescence heating is alternating periods of thermalisation with
cooling or heating cycles. e thermalisation stage is characterised by
relatively weak interactions between the atomic system and its environ-
ment, while allowing the system to thermalise and to create phonon and
electronic coherences necessary for the next stage. e second stage,
when cooling or heating occurs, marks strong interactions of the atomic
system with the surrounding radiation field, which renders interactions
between the particles negligible. During this stage, the atomic coher-
ences created earlier fuel the cooling or heating process, allowing the
system to reach a more beneficial stationary state.

For cavity-mediated laser cooling of an atomic gas, we show that dis-
persing cooling pulses with periods of thermalisation in an asymmetric
potential can result in very low temperatures of the atomic gas. By ap-
plying this to atomic interactions of sonoluminescence, we can describe
different parts of the lifecycle of the cavitating bubble and how very high
temperatures arise inside of it.
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Chapter 1

Introduction

Laser cooling of atomic systems has been of interest for quite some time. It is a very
prominent technique that allows to cool an atomic system to very low temperatures.
A laser-cooled single atom provides an excellent way to obtain a quantum system
which is close to theoretical models in quantum optics (cf. Neuhauser et al. (1978)).
ismakes a single trapped and laser-cooled atom the preferred subject for ultrahigh
precision experiments, which test the foundations of quantum physics. e applica-
tions of laser cooling range from quantum metrology to quantum computing.

Powerful as it is, laser cooling is not very effective for simultaneous cooling of
multiple particles (cf. Maunz et al. (2004)). Cooling of many body systems, such
as atomic gases or condensates, is however essential for gaining insights in ultracold
atomic physics, condensed matter physics and quantum optics. Experiments with
ultracold atoms are important for studying and understanding quantum phenomena
such as quantumphase transition, Bose-Einstein condensation, quantummagnetism
or bosonic superfluidity (cf. Madison et al. (2013)). Such experiments require a
proper technique that would yield very low temperatures and relatively fast cooling
rates.

Coupling an atomic system to a quantised mode in an optical cavity was pro-
posed as a solution for effective cooling of a many-body system. First indications of
successful cavity-mediated laser cooling were first found in Vigneron (1995). Later
on, it was repeatedly demonstrated that addition of an optical cavity can greatly en-
hance the cooling process for both single andmulti-particle systems (cf. Maunz et al.
(2004);McKeever et al. (2003); Nußmann et al. (2005)). One of the remarkable prop-
erties of cooling of many-body systems was the collective effect of the cooling pro-
cess, where the cooling rate scales positively with the number of atoms in the system
(cf. Domokos & Ritsch (2002)).
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1. INTRODUCTION

However, theoretical description of the cavity-mediated cooling process formany-
body systems remains challenging. Many semiclassical approaches have been made
to provide a qualitative description, but even full quantum mechanical models have
trouble explaining the collective character that the cavity-mediated cooling possesses
and the extremely low phonon numbers that it makes possible to obtain. In this the-
sis, we will present a radically different model which combines the quantum optics
models together with framework of thermodynamics. By considering simultane-
ous coupling between atomic vibrational states, electronic states and the cavity field
mode, we show that the cooling process reaches very low temperature when allowing
the system to thermalise between cooling pulses. We demonstrate that the change in
the temperature of the system originates in the fact that the phonon coherence ζ,
which represents energy exchange between the atoms, attains a positive value. To
maintain ζ above zero and continue the cooling process indefinitely, we introduce
thermalisation periods between the cooling pulses, where we let the system evolve
into a thermal state in an asymmetric potential without a cooling laser. We show
how not only does such a thermal state revive the phonon coherence ζ, but also that
thermalising the system is an exemplary method for doing this since it doesn’t com-
promise the temperature of the system. Dispersing cooling pulses with periods of
thermalisation therefore constitutes a continuous cooling cycle which results in very
low temperatures.

Applying the same two-stage approach to model the phenomenon of sonolumi-
nescence results in the theoretical description of heating processes and mechanisms
behind them. As the lifecycle of the single bubble in sonoluminescence closely re-
sembles the two-stage process of many-body cooling in an optical cavity, modelling
it with thermalisation and atom-cavity-phonon interaction, as we did earlier, pro-
vides a relevant picture and identifies main properties of the process, with heating
replacing cooling.

e design of thismodel for cooling and heatingmany particles collectively is the
main result of this thesis. In addition, we also studied a single atom in the similar
setup as a backdrop to many-body interactions. In the next section, we outline the
full content of the thesis.

1.1 Our treatment of cooling of an atomic system

In this thesis, wemodel the cavity-mediated sideband cooling using the full quantum-
mechanical description. We assume the dipole interaction between a system of har-
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1.1 Our treatment of cooling of an atomic system

monically confined two-level atoms and a single-mode standing wave light field.
Given such a scenario, we use the Jaynes-Cummings model as the starting point.
e theory of quantum harmonic oscillators and of quantum electromagnetic field
theory is given in chapters 2 and 3.

1.1.1 Cooling of a single particle

Using the master equation approach introduced in Cirac et al. (1993), we obtain a
set of rate equations which describe the evolution of the mean vibrational energy. In
chapter 4, we first treat cooling of a trapped single atom to show how our method
applies to a simpler system and how it can be used to reproduce the already known
results. For cooling a single atom, we find that the stationary state of the mean vi-
brational energy exhibits three sharp minima. e first minimum is located at the
red sideband, which agrees with previous findings. e other two previously undis-
covered minima are located to the either side of the sideband, separated from it by
the amount equal to the Rabi frequency of the laser. e three resonances therefore
resemble a Mollow triplet (cf. Mollow (1969)). e results of chapter 4 has been
published in Kim & Beige (2013).

1.1.2 Cooling of an atomic gas

For cooling of a one-dimensional atomic gas in chapter 5, we apply the same master
equation approach as for the single trapped atom. e rate equations demonstrate
that the cooling process is collective and the mean vibrational energy of the system
quickly reaches the stationary state with the cooling rate that scales positively with
the number of atoms in the gas. As mentioned earlier, during the cooling process,
the vibrational energy is decreased by the amount that is equal to the initial value of
a phonon coherence ζ, which is destroyed later in the cooling process. By reviving
this phonon coherence, the cooling process can be continued even aer the atomic
system reaches the stationary state. We demonstrate that an excellent method to
achieve this is by alternating cooling and displacement stages. e purpose of the
displacement stage is for the system to evolve into the thermal statewhere the phonon
coherence ζ acquires a non-zero value. During the displacement stage, the atoms
are aligned in an anharmonic, asymmetric trap with the purpose of drawing them
away from the trap centre. As will be shown later, this results in a non-zero phonon
coherence, needed for cooling, without compromising the temperature of the system.

3



1. INTRODUCTION

1.2 Origin of cavity-mediated laser cooling

e predecessor of cavity-mediated laser cooling — free space laser cooling — was
first proposed by Wineland & Dehmelt (1975), which marked the onset of theo-
retical and experimental investigations of laser cooling. Of the particular interest
was the study of a trapped atom which allows to confine its wave function on small
length scales and to greatly enhance its interactions with the electromagnetic field.
Laser cooling of trapped atoms has been successfully demonstrated experimentally
by Neuhauser et al. (1978) and Diedrich et al. (1989), and its theory was very well
outlined in Stenholm (1986).

For laser cooling of a single atom, twomajor regimes have been identified. In the
weak-binding limit, where the trap frequency ν is smaller than the natural linewidth
Γ of the optical transition of the atom, the final temperature is limited by T = ~Γ

kB .
is is commonly known as the Doppler cooling limit. On the other hand, in the
strong-binding limit, the frequency of the trap is larger than the natural linewidth
of the optical transition, and the atom develops well-resolved absorption sidebands.
In this case, the cooling laser can be tuned to one of the sidebands and the atom can
be cooled to its lowest vibrational state. is is referred to as sideband cooling. Both
the Doppler and the sideband cooling limits have been seen experimentally and well
agree with the theoretical predictions (cf. Diedrich et al. (1989)).

Due to its ability to cool a single atom to very low temperatures, laser sideband
cooling has been a promiment technique in many quantum optics experiments. Un-
fortunately, as mentioned earlier, it also has certain drawbacks, such as inability to
efficiently cool large numbers of atoms simultaneously or to cool particles with a
complex level structures, such as molecules (cf. Lev et al. (2008)). Alternative tech-
niques have been proposed. One of suggestions involves working in the sideband
regimewhile confining the atomic system in an optical cavity. is strongly enhances
the interaction between the system and the surrounding radiation field. In addition,
cavity-mediated cooling does not rely on spontaneous emission of the atoms and can
be manipulated by cavity geometries.

1.3 Experimental and theoretical advances

First indications of cavity-mediated laser cooling of atomic systems were found in
Vigneron (1995). Successfull cooling and trapping of single cesium atoms was re-
ported by McKeever et al. (2003). In Maunz et al. (2004), it was shown that the
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cooling mechanism results in extended storage times and improved localisation of
the atoms. It was estimated that the observed cooling rate is at least five times larger
than that in free space cooling, for comparable excitation of the atom. Nußmann
et al. (2005) demonstrated that orthogonal configuration of cooling laser, trapping
laser and cavity-axis result in high cooling efficiency, low temperatures and relatively
long trapping times. Wolke et al. (2012) reported an atom-cavity system with a cav-
ity bandwidth below the recoil limit and cooling at densities and temperatures in-
compatible with conventional laser cooling. Cooling at two-photon resonance was
observed in Kampschulte et al. (2010) for a single atom in an optical cavity with
electromagnetically induced transparency. In Chuah et al. (2013), dynamics of cav-
ity cooling of a single ion beyond the Lamb-Dicke regime was investigated, where a
cooling limit below the Doppler temperature was demonstrated.

e theory for cavity-mediated laser cooling of single atomswas first discussed in
Mossberg et al. (1991) and Zaugg et al. (1993), which confirmed that atomic cooling
can be significantly enhanced using an optical resonator. Later on, using the semi-
classical approach, Domokos & Ritsch (2003) identified weak and strong coupling
regimes, and highlighted the importance of correlations between particles. Hem-
merling & Robb (2011) demonstrated cooling using a blue-detuned driving light.
Moreover, the number of atoms enhanced the cooling rate in the atom-pump con-
figuration while having no effect in the cavity-pump configuration. Murr (2006)
showed that addition of a cavity leads to modification of the Doppler force in the
Doppler limit. A laser cooling method for atoms at low saturation and large detun-
ing was proposed by Vuletić & Chu (2000).

While the semiclassical approach can be used to describe many phenomena of
cavity-mediated laser cooling, the master equation approach introduced in Cirac
et al. (1993) allows for a fully quantum mechanical description of the cooling pro-
cess. is is particularly practical for cavity cooling, which allows to cool particles
to very low temperatures where quantum effects dominate the time evolution of the
system and semiclassical models no longer apply (cf. Domokos & Ritsch (2003)). In
addition, the precision of master equation calculations is easier to control than the
precision of semiclassical calculations.

Subsequently, the master equation approach has been employed by many au-
thors. Bad-cavity and low saturation limits were treated byCirac et al. (1995) to show
that an atom can be cooled to the ground state of the trap even in the strong confine-
ment regime. A mechanism for the collective cooling of a large number of trapped
particles was proposed by Beige et al. (2005), where the particles were coupled to the
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1. INTRODUCTION

quantised field of an optical cavity and driven by a red-detuned laser field. Zippilli &
Morigi (2005) presented cooling and heating rates of motion of a single driven atom
in an optical resonator. e motion was critically affected by quantum correlations
induced by the mechanical coupling with the resonator. e cavity-mediated laser
cooling was compared with ordinary sideband laser cooling in Blake et al. (2011a)
and Blake et al. (2012). Within the validity range of the Lamb-Dicke approximation,
it was shown that both techniques display striking similarities. For example, the
mean phonon number stationary states obtain the same expression in the weak and
strong confinement regimes. An efficient ground state cooling was demonstrated
in Bienert & Morigi (2012) by using electromagnetically induced transparency. A
good review on cavity-mediated laser cooling of a single atom is given by Ritsch
et al. (2013).

Compared to single particles, cooling of many-body systems in an optical cavity
exhibits a much richer and more complicated dynamics. Subsequently, much less of
it is identified or understood. Multiple systematic experimental studies have been
reported. Schleier-Smith et al. (2011) demonstrated cooling of a single collective vi-
brational mode of an atomic ensemble down to two phonons which was in a good
agreement with an optomechanical model. e cooling rate was proportional to the
total photon scattering rate by the ensemble, which demonstrated the collective char-
acter of the light-induced cooling process. Pulsed cooling was used in Gibbons et al.
(2008) to obtain very long lifetimes of a one-dimensional optical lattice. Black et al.
(2003) demonstrated that emission-induced self-organisation of two-level atoms can
lead to strong cooling of vibrational motion of the atoms.

Lately, multiple different models for theoretical description for cooling of many-
body systems have been suggested. Morigi & Eschner (2001) investigated Doppler
cooling of a Coulomb crystal in a linear ion trap, where they were able to derive the
semiclassical limit and the Lamb-Dicke limit of the cooling dynamics. In addition,
they found a Fokker-Planck equation for the total mechanical energy of the system.
Mishina (2014) showed that cooling of a one-dimensional atomic array in harmonic
traps can be affected by trap inhomogeneities. e rate equations approach was used
by Beige et al. (2005) to obtain low temperatures using red-detuned fields.

1.4 Sonoluminescence

When it comes to heating of a many-body atomic system, sonoluminescence is an
intriguing phenomenon of strong light flashes from tiny bubbles in a liquid (cf. Bren-
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1.4 Sonoluminescence

ner et al. (2002); Lohse (2002)). e bubbles are driven by an ultrasonic wave and
need to be filled with atomic species. Moss (1997) showed that the time dependence
of the bubble radius is in good agreement with the laws of classical physics, since
the bubble radius increases isothermally for most of the cycle. However, each ex-
pansion phase is followed by a rapid collapse phase. e accelerating bubble wall
becomes so fast that the bubble becomes thermally isolated from the liquid. Close
to its minimum radius of about . μm, a rapid increase of the energy density of the
particles inside the bubble occurs which is accompanied by the sudden emission of
light. Aerwards a re-expansion phase begins in which the bubble oscillates around
its equilibrium radius until it regains its stability.

Measuring the spectra of the picosecond light flash at the end of the collapse and
associating the continuum underlying these sonoluminescence spectra with black-
body or Bremsstrahlung radiation indicates temperatures of at least – K inside
the bubble (cf. Barber & Putterman (1991); Didenko et al. (2000); Suslick & Flan-
nigan (2008)). It is even possible to observe light emission in the ultraviolet regime
which hints at temperatures of about  K, as was shown by Camara et al. (2004).
Noteworthy is the discovery of sharp emission lines in the optical regime (cf. Brenner
et al. (2002); Flannigan & Suslick (2007); Suslick & Flannigan (2008)), which indi-
cate the population of highly excited energy eigenstates of noble gas andmetal atoms
that cannot be populated thermally but indicate the presence of a dense plasma.

Although sonoluminescence has been studied extensively, the origin of the sud-
den energy concentration during the final stage of the bubble collapse phase remains
a mystery (cf. Putterman et al. (2001); Suslick & Flannigan (2008)). A valid theo-
retical model needs to include a mechanism for the formation of a plasma as well
as a mechanism which can increase the temperature of the plasma even further by
at least one order of magnitude. is mechanism needs to be able to operate in a
solid state-like environment and on the very small length scale given by the radius of
the bubble. e goal of chapter 6 is to identify cavity-mediated collective quantum
effects on which such a heating mechanism might be based.
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Chapter 2

Theory of quantum harmonic

oscillators

In this chapter we revisit the theory of harmonic oscillators. In Section 2.1, we begin
by quantising a harmonic oscillator and present the description of its eigenstates, so-
called number states, and energy levels in the second quantisation. Number states
will be used to describe the states of vibrational states of the trapped particles and
cavity radiation modes in the later chapters.

In Section 2.2, we present the theory for harmonic oscillators in the thermal state.
Since the thermal state of a harmonic oscillator is amixed state, it can be described by
a canonical density operator. As we will see later, analytical treatment of the phonon
coherence ζ of an atomic gas requires calculating thermal averages in the number
state basis. Using the density operator, we calculate thermal averages of the number
operator and the squared number operator, and relate them to the vibrational energy
of the system.

2.1 Quantisation of a harmonic oscillator

Recall that a single one-dimensional oscillator of mass M in a harmonic trap of fre-
quency ν can be described by the following Hamiltonian (cf. Loudon (1992)),

H =
p

M
+



Mνx , (2.1)

where its momentum operator p and position operator x obey the usual commutator
relation,

[x, p] = i~ . (2.2)

9



2. THEORY OF QUANTUMHARMONIC OSCILLATORS

If the exact form of the wave function of harmonic oscillator is not important,
we can employ the second quantisation and introduce ladder operators,

b =

√
Mν
~

(
x+ i

Mν
p
)

,

b† =
√

Mν
~

(
x− i

Mν
p
)

. (2.3)

is means that operators b and b† follow the bosonic relation,

[b, b†] =  . (2.4)

Using Eqs. (2.3), the Hamiltonian (2.1) is transformed to

H = ~ν
(
b†b+ 



)
. (2.5)

To solve the Schroedinger equation, consider an arbitrary eigenstate |m⟩ with a
corresponding eigenvalue Em. e Schroedinger equation then reads,

H|m⟩ = ~ν
(
b†b+ 



)
|m⟩ = Em|m⟩ . (2.6)

Multiplying both sides from the le by b† yields

~ν
(
b†b†b+ 


b†
)
|m⟩ = Emb†|m⟩ (2.7)

~ν
(
b†bb† − 


b†
)
|m⟩ = Emb†|m⟩ (2.8)

~ν
(
b†b+ 



)
b†|m⟩ = (Em + ~ν) b†|m⟩ . (2.9)

e last equation is also a form of an energy eigenvalue equation with the eigenstate

|m+ ⟩ = b†|m⟩ (2.10)

and the eigenvalue Em+ = Em+~ν. is shows that for a given energy level Em, there
exists another level higher than the first by the amount ~ν. e energy levels form
an equally-spaced ladder without an upper limit, as illustrated in Fig. 2.1. Applying
the so-called creation operator b† shis the energy level upwards.

Similarly, applying the destruction operator b shis the energy level downwards,

Hb|m⟩ = (Em − ~ν) b|m⟩ , (2.11)

10



2.1 Quantisation of a harmonic oscillator

E1 = 1/2 ћν

E0 = 0

E2 = 3/2 ћν

En

En-1

En+1 

b†

b

Figure 2.1: Energy-level diagram for the quantum-mechanical harmonic oscil-
lator. Applying the creation operators b† and the destruction operators b results
in adding and subtracting an amount ~ν, respectively.

to the state

|m− ⟩ = b|m⟩ (2.12)

with the eigenvalue Em− = Em − ~ν. ere is, however, a lower bound, because
kinetic and potential energies are positive quantities and the eigenvalues are not al-
lowed to become negative. We can denote the lowest state, or the ground state, as |⟩
and assume that the only consistent solution to Hb|⟩ = (Em − ~ν)b|⟩ is

b|⟩ =  , (2.13)

since there are no lower eigenstates then the ground state. In this case, the Schroedinger
equation reads,

~ν
(
b†b+ 



)
|⟩ = 


~ν|⟩ = E|⟩ , (2.14)

which shows that the energy of the ground state |⟩ is E = 
~ν. erefore the full

spectrum of energies follows,

Em = ~ν
(
m+




)
, (2.15)
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2. THEORY OF QUANTUMHARMONIC OSCILLATORS

where m is zero or a positive integer. e quantum number m therefore denotes
the energy level of the harmonic oscillator or, in other words, the number of en-
ergy quanta that it possesses. roughout the remainder of the thesis, we will refer
to the energy quanta as phonons, if the harmonic oscillator is used to describe the
vibrational energy of a particle, or as photons, if the harmonic oscillator is used to
describe the energy of an electromagnetic field mode.

Fig. 2.1 shows the role of the ladder operators b and b† in shiing the energy
of the system by the amount of ~ν. e eigenstates of the Hamiltonian (2.5) are
simultaneous eigenstates to the number operator b†b and it is evident from the Eqs.
(2.5) and (2.15) that they satisfy

b†b|m⟩ = m|m⟩ . (2.16)

e states |m⟩ are called number states or Fock states. It is preferrable to normalise
the eigenstates so that

⟨m|m⟩ =  . (2.17)

When the states are normalised, the relations between them need to be modified.
We can generalise Eq. (2.12) to

b|m⟩ = C|m− ⟩ , (2.18)

where C is an arbitrary constant. If we take the Hermitian conjugate of both sides,
this implies that

⟨m|b† = ⟨m− |C . (2.19)

Multipling Eqs. (2.18) and (2.19) shows that

⟨m|b†b|m⟩ = C⟨m− |m− ⟩ ,

m = C . (2.20)

e phase of the normalisation constant is conventionally taken to be zero and Eq.
(2.18) becomes

b|m⟩ =
√
m|m− ⟩ . (2.21)

Similarly, we can show that

b†|m⟩ =
√
m+ |m+ ⟩ . (2.22)
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2.2ermal properties of harmonic oscillators

Note that the ground state condition (2.13) is included as a special case in
Eq. (2.21). Eqs. (2.21) and (2.22) are always more preferrable to use than Eqs. (2.10)
and (2.12) because of the normalisation. e different energy eigenstates are orthog-
onal, so that the only non-vanishing matrix elements of operators b and b† are those
of the form

⟨m− |b|m⟩ =
√
m ,

⟨m+ |b†|m⟩ =
√
m+  . (2.23)

Together with Eq. (2.17), this shows that the eigenstates obey the orthonormality
condition

⟨m|n⟩ = δmn , (2.24)

where δmn is the Kronecker delta. From Eqs. (2.23), we can see immediately that
operators b and b† are not Hermitian, since every Hermitian operator A satisfies

⟨i|A|j⟩ = ⟨j|A|i⟩∗ , (2.25)

for arbitrary states |i⟩ and |j⟩. erefore, the operators b and b† cannot represent
physically observable quantities. However, the convenience of the algebra of lad-
der operators and their representation of transfer between quantum energy levels is
greatly appreciated in many areas of quantum mechanics.

2.2 Thermal properties of harmonic oscillators

When aharmonic oscillator is placed in a heat bath of constant temperature, its quan-
tum state is no longer pure and therefore cannot be described by a single number
state. Instead, the quantum harmonic oscillator will be in a mixed state, which is a
statistical ensemble of pure states. Its exact energy will be unknown but would be
a probabilistic mixture of energies of different states governed by the temperature
of the surroundings. In this section, we derive expressions for thermal averages of
different operators that will be used later in this thesis.

2.2.1 Average energy of the Hamiltonian

Consider a harmonic oscillator in a heat bath, where it cannot exchange energy with
the neighbourhood so that it remains constant. Since the thermal mixed state of the
harmonic oscillator cannot be represented by a single state, it is instead described by

13



2. THEORY OF QUANTUMHARMONIC OSCILLATORS

its associated canonical density operator ρ, defined as (cf. Blaise & Henri-Rousseau
(2011))

ρ =

Z
e−βH , (2.26)

where Z is the partition function,

Z = tr
(
e−βH) , (2.27)

β is the thermal Lagrange parameter related to temperature T as

β =


kBT
, (2.28)

and H is the Hamiltonian of the harmonic oscillator.
emean thermal average energy of a quantumharmonic oscillator is the average

of the Hamiltonian over the canonical density operator,

⟨H⟩ = tr (ρH) = 
Z

tr
(
e−βHH

)
= − 

Z
tr
(
∂e−βH

∂β

)
. (2.29)

e operations of trace and of partial differentiation commute and therefore,

⟨H⟩ = − 
Z

∂

∂β
tr
(
e−βH) = − 

Z
∂Z
∂β

= −∂ lnZ
∂β

. (2.30)

2.2.2 Canonical density operator

For a harmonic oscillator, the Hamiltonian is given by the Eq. (2.5),

H = ~ν
(
b†b+ 



)
, (2.31)

and Eqs. (2.26) and (2.27) become

ρ =

Z

(
e−β~ν(b†b+ 

)
)
, (2.32)

and

Z = e−

 β~ν tr

(
e−β~νb†b

)
, (2.33)

respectively. To perform the trace, it is convenient to use the basis of eigenstates
of the number operator b†b, |m⟩, described in the previous section, which have the
orthonormality property (2.24),

⟨m|n⟩ = δmn , (2.34)

14



2.2ermal properties of harmonic oscillators

is results in

Z = e−

 β~ν

∑
m

⟨m|e−β~νb†b|m⟩ . (2.35)

Expanding the exponential in the Taylor series and noting that(
b†b
)k |m⟩ = mk|m⟩ (2.36)

yields

Z = e−

 β~ν

∑
m

∞∑
k=

⟨m|(−β~νb†b)k

k!
|m⟩ (2.37)

= e−

 β~ν

∑
m

∞∑
k=

⟨m|(−β~νm)k

k!
|m⟩ . (2.38)

Now we can combine the Taylor series back into the exponential to obtain

Z = e−

 β~ν

∑
m

⟨m|e−β~νm|m⟩ = e−

 β~ν

∑
m

e−β~νm , (2.39)

where we have used the orthonormality property of the eigenstates.
In case of strong trapping and relatively low temperatures, the inequality

~ν > kBT (2.40)

is satisfied, so that

e−β~ν <  . (2.41)

In this case, the geometric series in Eq. (2.39) converges, and the full expression
becomes

Z =
e− 

 β~ν

 − e−β~ν =


 sinh
( 

β~ν
) . (2.42)

Moreover, the canonical density operator (2.26) can be written as

ρ =
(
 − e−β~ν

)
e−β~νb†b . (2.43)

2.2.3 Thermal averages

Combining Eqs. (2.30) and (2.42) results in the expression for the thermal average
energy of a harmonic oscillator,

⟨H⟩ = −∂ lnZ
∂β

= ~ν
(


eβ~ν− +




)
. (2.44)
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We can use this together with the Eq. (2.29) to find out the average of the number
operator b†b. Recall that

⟨H⟩ = tr (ρH) = tr
(
ρ~ν

(
b†b+ 



))
= ~ν

(
tr
(
ρb†b

)
+




)
= ~ν

(
⟨b†b⟩+ 



)
. (2.45)

Combining Eqs. (2.44) and (2.45) now yields an expression for the average of the
number operator,

⟨b†b⟩ = 
eβ~ν − 

. (2.46)

Similarly to the Eq. (2.29), we can find out the thermal average of ⟨H⟩,

⟨H⟩ = 
Z

tr
(
e−βHH) = 

Z
tr
(
∂e−βH

∂β

)
. (2.47)

Again, we use the fact that the trace operation commutes with the differentiation
operation and rewrite this as

⟨H⟩ = 
Z

∂

∂β tr
(
e−βH) = 

Z
∂Z
∂β . (2.48)

Now, observe that, using the product rule, we can show that

∂

∂β

(

Z
∂Z
∂β

)
=

(
∂

∂β

Z

)
∂Z
∂β

+

Z
∂Z
∂β = − 

Z

(
∂Z
∂β

)

+

Z
∂Z
∂β , (2.49)

which leads to


Z
∂Z
∂β =

∂

∂β

(

Z
∂Z
∂β

)
+


Z

(
∂Z
∂β

)

. (2.50)

Combining this with Eq. (2.48), and using Eq. (2.30), yields

⟨H⟩ = ∂

∂β

(

Z
∂Z
∂β

)
+


Z

(
∂Z
∂β

)

= −∂⟨H⟩
∂β

+ ⟨H⟩ . (2.51)

For a harmonic oscillator, this can be rewritten as

⟨
(
b†b+ 



)

⟩ = − 
~ν

(
∂

∂β
⟨b†b+ 


⟩
)
+ ⟨b†b+ 


⟩ (2.52)

or

⟨
(
b†b
)⟩ = − 

~ν
∂⟨b†b⟩
∂β

+ ⟨b†b⟩ . (2.53)
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Using the last expression together with Eq. (2.46) results in full expression for the
thermal average of the operator

(
b†b
),

⟨
(
b†b
)⟩ = − 

~ν
∂

∂β

(


eβ~ν − 

)
+

(


eβ~ν − 

)

=
eβ~ν + 

(eβ~ν − )
. (2.54)

e derivation of the thermal averages ⟨b†b⟩ and ⟨
(
b†b
)⟩ is the main result of

this section. As we will see later, analytical treatment of the thermalisation process of
an atomic gas requires calculating thermal averages in the number state basis. Using
Eqs. (2.46) and (2.54), we can relate the thermal averages to the temperature of the
system and therefore to its vibrational energy.

2.3 Conclusions

In this chapter, we outlined the theory of a harmonic oscillator in the second quati-
sation. e eigenstates of the system are represented by number states |m⟩ and the
energy transfer between the states is represented by ladder operators b and b†. Us-
ing this formalism, the treatment of a harmonic oscillator becomes relatively simple
and straight-forward. e harmonic oscillator is used to describe the vibrational en-
ergy levels of trapped particles, in which case they are referred to as phonons, and
the energy levels of a radiation mode, in which case they are referred to as photons.
We will use these descriptions heavily when treating trapped atomic systems in both
cavity-mediated cooling and sonoluminescence.

In addition to the theory of harmonic oscillator eigenstates, we looked at the
mixed states which arise when a harmonic oscillator is placed in a thermal equi-
librium. By considering the canonical density operator, we derived the expressions
for thermal averages of the number operator b†b and the squared number operator(
b†b
). ese will later be used to treat the atomic gas under thermalisation and to

derive its phonon coherence ζ.
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Chapter 3

Quantum theory of light-matter

interactions

etheory of cavity-mediated laser cooling is based on the Jaynes-Cummingsmodel,
which describes the systemof a two-level atom interactingwith a standingwave radi-
ation mode. In a nutshell, it consists of quantised radiation mode, quantised energy
of a two-level atom and the interaction between the two. In this chapter, we show
how each of these terms is obtained and put together under the Jaynes-Cummings
model. We develop the quantised models for a free radiation field, starting from
the Maxwell equations, and for a two-level atom. We obtain expressions for opera-
tors that can be used to completely describe our system and examine some of their
properties. e atom-light interaction is modelled as the dipole interaction and rep-
resents the coupling between the atomic excited states and the ladder states of the
quantised radiation field mode. e Hamiltonian of the atomic-radiation system is
expressed completely in terms of quantum mechanical operators.

is chapter consists of three sections. In the first section, we show that free
radiation can be expressed as a collection of harmonic oscillators, each representing
a mode. e second section describes quantisation of a two-level atom in terms of
projection operators. Lastly, in the third section we select a single radiation mode
and model its interaction with the atom in the dipole approximation.
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3. QUANTUM THEORY OF LIGHT-MATTER INTERACTIONS

3.1 Electromagnetic field theory

3.1.1 Maxwell equations

Quantisation of the radiation field is based on the canonical transition from clas-
sical theory, where we replace field modes by corresponding quantum mechanical
operators. In order to do that, we first rewrite the classical equations in a form appro-
priate for the conversion. We start with the treatment of the microscopic Maxwell
equations for electric field E and magnetic field B,

∇× E = −∂B
∂t

,


μ
∇× B = ε

∂E
∂t

+ J ,

ε∇ · E = σ ,

∇ · B =  , (3.1)

with σ and J are the charge and current densities, respectively. ese equations can
be reformulated in terms of a vector potential A and a scalar potential φ, which are
defined as

E = −∇φ − ∂A
∂t

, (3.2)

B = ∇× A . (3.3)

Eqs. (3.1) become

∇ (∇ · A)−∇A+

c

∂

∂t
∇φ +


c
∂A
∂t

= μJ , (3.4)

−ε
(
∇φ +∇ · ∂A

∂t

)
= σ . (3.5)

Equations (3.4) and (3.5) are called the field equations.
e field equations are quite complicated due to the mixtures of terms involving

A and φ. However, physical fields obtained from Eqs. (3.2) and (3.3) are the same
for pairs {A, φ} and {A′, φ′} that are related by the gauge transformation

A = A′ −∇Ξ , (3.6)

φ = φ′ +
∂Ξ
∂t

, (3.7)

where the gauge function Ξ is an arbitrary function of position r and time t. We
can therefore impose conditions on A and φ that can be realised by a gauge trans-
formation from an arbitrary pair of A and φ, therefore specifying a gauge for the
electromagnetic field.
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3.1 Electromagnetic field theory

Gauge that is commonly used in electrodynamics is the so-calledCoulomb gauge,

∇ · A =  . (3.8)

is simplifies the field equations (3.9) and (3.10) to

−∇A+

c

∂

∂t
∇φ +


c
∂A
∂t

= μJ , (3.9)

−∇φ =
σ
ε

. (3.10)

ese are further simplified by employing Helmholtz’ theorem (cf. Aren et al.
(2012)), according towhich any vector field can be rewritten as a sumof its transverse
component with zero divergence and longitudinal component with zero curl. is
yields

E = ET + EL , (3.11)

J = JT + JL . (3.12)

Using these and the condition of theCoulombgauge (3.8), we arrive at (cf. Loudon
(1992))

−∇A+

c
∂A
∂t

= μJT , (3.13)


c

∂

∂t
∇φ = μJL , (3.14)

as well as

ET = −∂A
∂t

, (3.15)

EL = −∇φ . (3.16)

We see that, in general, transverse variables are associatedwith the vector potentialA
while longitudinal variables are associated with the scalar potential φ. e Maxwell
equations can be written as

∇× ET = −∂B
∂t

, (3.17)


μ
∇× B = ε

∂E
∂t

+ JT , (3.18)

∇ · ET =  , (3.19)

∇ · B =  . (3.20)
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ese transverse equations describe electromagnetic waves. In addition to this, we
have

∇ · EL =
σ
ε

, (3.21)

JL = −ε
∂EL

∂t
. (3.22)

ese longitudinal equations describe electric fields that arise from charge densities.

3.1.2 Field modes

Consider now radiation field in a region of free space,

JT =  . (3.23)

We regard this region as a cube of side L and consider running wave solutions, also
known as modes, with periodic boundary conditions. e vector potential is ex-
panded as a sum of contributions from different modes,

A(r, t) =
∑
kλ

ekλAkλ(t)(r, t) , (3.24)

where the modal components are taken as

Akλ(t)(r, t) = Akλ(t)eik·r + A∗
kλ(t)e−ik·r . (3.25)

e wavevector k carries two modes, λ =  and λ = , and its components take
values

kμ =
πnμ
L

, (3.26)

where μ denotes dimension, μ ∈ {x, y, z}, and nμ are zeros or integers. e ekλ are
unit polarisation vectors and under the Coulomb gauge they satisfy

ekλ · k =  , (3.27)

ek · ek = δλ,λ′ , (3.28)

where δλ,λ′ is the Kronecker delta.
e modal components Akλ(r, t) of the vector potential are independent and for

each of them, Eq. (3.13) leads to a harmonic equation of motion

Äkλ(t) + ω
kAkλ(t) =  , (3.29)
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3.1 Electromagnetic field theory

where we defined themode angular frequency ωk = ck. To calculate the field energy,
we notice that the solution to Eq. (3.29) takes the form of (cf. Loudon (1992))

Akλ(t) = Akλe−iωkt (3.30)

and the full modal component to the vector potential in Eq. (3.25) becomes

Akλ(t)(r, t) = Akλe−iωkt+ik·r + A∗
kλeiωkt−ik·r . (3.31)

If we insert this into Eq. (3.24), we obtain the full expression for the vector po-
tential A(r, t). is allows us to calculated the tranverse electric field in Eq. (3.15),

ET(r, t) =
∑
kλ

ekλEkλ(t)(r, t) (3.32)

with

Ekλ(t)(r, t) = iωk
(
Akλ(t)e−iωkt+ik·r − A∗

kλ(t)eiωkt−ik·r) , (3.33)

and the magnetic field in Eq. (3.3),

B(r, t) =
∑
kλ


k
k× ekλBkλ(t)(r, t) (3.34)

with

Bkλ(t)(r, t) = ik
(
Akλ(t)e−iωkt+ik·r − A∗

kλ(t)eiωkt−ik·r) . (3.35)

e total energy of the radiation field is given by

ER =



∫
cavity

dV
(
εET(r, t) · ET(r, t) +


μ
B(r, t) · B(r, t)

)
, (3.36)

which is calculated to be (cf. Loudon (1992))

ER =
∑
kλ

Ekλ (3.37)

with

Ekλ = εVω
k (AkλA∗

kλ + A∗
kλAkλ) . (3.38)
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3.2 Canonical quantisation

We see that the Eq. (3.38) for the energy of radiation field mode is very similar to
the expression for the energy of a quantum harmonic oscillator,

Hkλ =


~ωk

(
ckλc†kλ + c†kλckλ

)
, (3.39)

where ckλ and c†kλ are annihilation and creation operators for the mode kλ, respec-
tively. We now carry out canonical transition, where we replace classical vector po-
tential amplitudes with quantum mechanical operators,

Akλ →
√

~
εVωk

ckλ , (3.40)

A∗
kλ →

√
~

εVωk
c†kλ . (3.41)

With these subtitutions, the classical vector potential now becomes an operator,

A(r, t) =
∑
kλ

ekλAkλ(t)(r, t) (3.42)

with

Akλ(t)(r, t) =
√

~
εVωk

(
ckλe−iωkt+ik·r + c†kλe

iωkt−ik·r
)
, (3.43)

which leads to the full expressions for the electric and the magnetic field operators,

ET(r, t) = i
∑
kλ

ekλ
√

~ωk

εV

(
ckλe−iωkt+ik·r − c†kλe

iωkt−ik·r
)
, (3.44)

B(r, t) = i
∑
kλ

k× ekλ
√

~
εVωk

(
ckλe−iωkt+ik·r − c†kλe

iωkt−ik·r
)
. (3.45)

Calculating now the energy of the radiation field using these quantum mechanical
operators yields

H =



∫
cavity

dV
(
εET(r, t) · ET(r, t) +


μ
B(r, t) · B(r, t)

)
(3.46)

=
∑
kλ

~ωk

(
c†kλckλ +




)
, (3.47)

which is analogous to a collection of quantum harmonic oscillators. Each of these
harmonic oscillators represents a different light mode, and their energies follow an
equally spaced ladder, described in the previous chapter. e energy of a light mode
harmonic oscillator is referred to in terms of the energy level that it occupies, or the
number of photons.
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3.3 Quantisation of atomic Hamiltonian

Similarly to a radiation field, we can quantise the electronic energy of an atom. Let
|i⟩ be an energy eigenstate with eigenvalue ~ωi, which leads to

H|i⟩ = ~ωi|i⟩ . (3.48)

We can use the closure theorem ∑
i

|i⟩⟨i| =  (3.49)

and the orthonormality of the eigenstates to show that

⟨i|H|j⟩ = ~ωiδij , (3.50)

where δij is the Kronecker delta. e Hamiltonian in Eq. (3.48) is reduced to

H =
∑
i

~ωi|i⟩⟨i| . (3.51)

Suppose now that operator |i⟩⟨j| is applied to an arbitrary state |k⟩. e orthonor-
mality of the eigenstates leads to

|i⟩⟨j|k⟩ = |i⟩δjk . (3.52)

Operator |i⟩⟨j| therefore acts as a projection operator, which turns state |j⟩ into state
|i⟩ and anything else into zero. For a two-level atomwith levels |⟩ and |⟩, and energy
difference ~ω between them, we can introduce operators

σ+ = |⟩⟨| and σ− = |⟩⟨| . (3.53)

We see that σ+ shis the atom from its ground state to its excited state and σ− does
the reverse, with

σ+|⟩ = |⟩ and σ−|⟩ = |⟩ (3.54)

and

σ+|⟩ =  and σ−|⟩ =  . (3.55)

Other properties of the projection operators can be obtained from definitions, lead-
ing to

σ−σ+ = |⟩⟨|⟩⟨| = |⟩⟨| (3.56)
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and similarly

σ+σ− = |⟩⟨|⟩⟨| = |⟩⟨| . (3.57)

ese operators represent probabilities of finding an atom in its ground and excited
state, respectively. e closure theorem also implies that

σ+σ− + σ−σ+ =  , (3.58)

and the Hamiltonian in Eq. (3.51) takes the form

H = ~ωσ+σ− . (3.59)

3.4 Atom-field interaction and the Jaynes-Cummings

model

In general, a free atom interacts with an infinite number of radiation modes. How-
ever, an optical cavity allows us to isolate only single mode for interaction with the
atom. We consider a single mode in one dimension. In the Schroedinger picture,
Eq. (3.44) loses its time dependence and becomes

E(x) = i
√

~ωk

εV
(
ceikx − c†e−ikx) . (3.60)

Since we are free to choose the phase of the field, we shi it by π
 to obtain a simpler

expression,

E(x) = i
√

~ωk

εV

(
cei(kx−

π
 ) − c†e−i(kx− π

 )
)

=

√
~ωk

εV
(
ceikx + c†e−ikx) . (3.61)

Under the dipole approximation (cf. Gerry & Knight (2004)), the spatial variation
of the field over the dimensions of the atom is considered negligible,

λ
π

=

k
≫ xatom (3.62)

where xatom is a characteristic length scale of the atom. Under this condition,

e±ikx ≈  ± ikx (3.63)

and the exponential in the Eq. (3.61) can be replaced by unity, yielding

E(x) =
√

~ωk

εV
(
c+ c†

)
. (3.64)
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In an optical cavity, the electric field forms a standing wave, and its expression in Eq.
(3.64) is modified to

E(x) =
√

~ωk

εV
(
c+ c†

)
sin(kx) , (3.65)

with the energy given by Eq. (3.46) as

H = ~ωc†c , (3.66)

where we dropped the zero-point energy constant.
In the Coulomb gauge, the dipole atom-field interaction is represented by

H = D · E =

√
~ωk

εV
D sin(kx)(c+ c†) , (3.67)

where D is the projection of the atomic dipole moment D in the direction of the
cavity,

D = D · x̂ , (3.68)

with x̂ being the unit vector of the cavity axis. For a two-level atom,D can be written
in terms of atomic operators Eq. (3.53), as

D = |⟩⟨|D|⟩⟨|+ |⟩⟨|D|⟩⟨| ,

= D|⟩⟨|+ D|⟩⟨| = D
(
σ− + σ+

)
, (3.69)

where D = ⟨|D|⟩ = ⟨|D|⟩ is a constant. e interaction Hamiltonian (3.67)
therefore becomes

H = ~G
(
σ+ + σ−

) (
c+ c†

)
, (3.70)

with

G =

√
ωk

~εV
D sin(kx) . (3.71)

Furthermore, under the rotating wave approximation, non-energy conserving terms
σ+c† and σ−c are dropped, leading to Eq. (3.70) taking the form

H = ~G
(
σ+c+ σ−c†

)
. (3.72)

Putting this interaction term together with the energy of the radiation mode (3.66)
and the electronic energy of the interacting atom (3.59) yields the infamous Jaynes-
Cummings model

H = ~ωc†c+ ~ωσ+σ− + ~G
(
σ+c+ σ−c†

)
. (3.73)
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3.5 Conclusions

e Jaynes-Cummings model describes the interaction between a two-level atom
and a single radiation mode. It was therefore chosen as a starting point for our treat-
ment of a trapped atomic system in both cavity-mediated cooling and sonolumi-
nescence. In this chapter, we described the theory behind each term in the Jaynes-
Cummings model. We started with canonical quantisation of the free radiation field
and showed how it can be represented by a bath of harmonic oscillators. Similarly,
the electronic state of a two-level atom was quantised using the raising and lowering
operators. Finally, the interaction term between the two-level atom and the radi-
ation mode was developed. In later chapters, the Jaynes-Cummings model will be
used as a core and modified according to the system being examined.
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Chapter 4

Cooling of a single particle

e main purpose of this chapter is to introduce the methodology for treatment of
cavity-mediated laser cooling and prepare the reader for the material that follows,
where we study the process of cooling of a many-body system. Cooling of a single
particle is well studied and effectively executed using the laser sideband technique
(cf. Stenholm (1986)). However, it falls short when it comes to cooling particles
with a complex level structure or cooling multiple particles simultaneously.

Cavity-mediated laser cooling has been proposed as an alternative technique and
multiple indications of its effectiveness were later found (cf. Black et al. (2003);
Chuah et al. (2013); Gibbons et al. (2008); Kampschulte et al. (2010); Maunz et al.
(2004);McKeever et al. (2003); Nußmann et al. (2005); Vigneron (1995);Wolke et al.
(2012)). In this and the next chapter, we show how use of an optical cavity can aid
the problem of cooling multiple particles. e current chapter is dedicated to out-
lining the methodology for treating the cooling process and applying the model to a
single atom.

In general, cooling is achieved by coupling atomic and motional degrees of free-
dom. Since the atom is trapped, it can be spatially localized to dimensions much
smaller than an optical wavelength. is is referred to as Lamb-Dicke limit. In-
ternal dynamics of a two-level atom can be appropriately described by the Jaynes-
Cummings model. As the atom is strongly coupled to the cavity, the external laser
facilitates the transition

|m, n⟩ → |m− , n+ ⟩ (4.1)

or

|m, n⟩ → |m+ , n+ ⟩ , (4.2)
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m, n

m-1, n+1

κ

κ

m-1, n

m+1, n+1

m+1, n

Figure 4.1: Diagrammatic representation of the cooling scheme. Here a generic
state is denotes by |m, n⟩, wherem is the number of phonons and n is the num-
ber of cavity photons. During cooling, the atom is detuned in such way that
its phonon is converted into a cavity photon (shown as middle-to-le process).
On the other hand, under heating detunings, an extra phonon is created (shown
as middle-to-right process). e cavity returns to its original state through the
cavity decay κ.

depending on the detuning of the laser, as shown in Fig. 4.1. is is in contrast with
the free space laser cooling, where the atom is excited instead of cavity. e cavity
mode then relaxes into its original state via the decay channel,

|m± , n+ ⟩ → |m± , n⟩ . (4.3)

If the cooling laser is properly detuned to cooling resonances, then the atom will
undergo the downward transition along the ladder of the vibrational energy states
|m⟩.

In our setup, we deal with a one-dimensional system, where the atom is confined
in the direction of the cavity axis, as indicated in Fig. 4.2. Since we are in the Lamb-
Dicke limit, we can localise the atom in different positions along the standing wave,
and, formaximal effect, we choose the node of the standing wave. e atom is driven
from the side by an external laser resonant to the electronic transition.

By applying the master equation to this setup, we can identify the parameter
regimes that facilitate cooling of the confined atom. Moreover, we will show that
there exists a triplet of resonances that are particularly beneficial for cooling, one of
which includes the infamous red sideband from the free space laser sideband cool-
ing. e other two have not been reported before and therefore constitute a new
result. e three resonances are separated by the laser Rabi frequency and therefore
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κ
g

Γ

Ω

Figure 4.2: Schematic view of the experimental setup, consisting of a resonantly
driven atom which is externally confined in the node of an optical resonator.

resemble the Mollow triplet. e results of this chapter were published in Kim &
Beige (2013).

is chapter is structured as follows. In Section 4.1, we introduce the Hamilto-
nian for our system, which will be used in the master equation later on. In Section
4.2, we go into the interaction picture with respect to free energy, to show the emer-
gence of the cooling resonances which will consitute the main result of this chap-
ter. In Sections 4.3 and 4.4, we use the master equation to derive and study a set
of differential equations, so-called rate equations, which describe the dynamics of
our system. ese equations again yield the cooling resonances, properties of which
are very dependent on experimental parameters, such as trap frequency, cavity-laser
detuning and so on. ese dependencies are investigated in Section 4.5. Finally,
conclusions are drawn in Section 4.6.

4.1 The Hamiltonian

esystem that we are going to examine is shown in Fig. 4.2. It consists of vibrational
energy of the trapped atomic particle Hvib, its free electronic energy Hel, the free
energy of the cavity radiation field Hcav, interaction of the atom with the cavity field
Hint and interaction of the atom with the driving laser HL. Our model is developed
as an extension to the Jaynes-Cummings model outlined in chapter 3, to which we
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add the vibrational energy of the atom and its interaction with the driving laser.
When an atom of mass M is confined in a harmonic trap of frequency ν, its mo-

tion is described by a harmonic oscillator,

Hvib =
p

M
+



Mνx , (4.4)

where p and x aremomentum and position of the atom, respectively, along the cavity
axis. is energy can be quantised with discrete energy levels or phonons, as was
shown in chapter 2, and the change of the phonon number is modelled by creation
and annhilation operators b and b†,

b =

√
Mν
~

(
x+ i

Mν
p
)

,

b† =
√

Mν
~

(
x− i

Mν
p
)

, (4.5)

with the standard bosonic commutator relations,

[b, b†] =  . (4.6)

e energy of the harmonic oscillator, and hence of the trapped atom, is given (up
to a constant) by

Hvib = ~ν b†b . (4.7)

e cooling process therefore strives tominimize this vibrational energy by bringing
the atom to the lowest possible state.

e Hamiltonian for the electronic energy of a two-level atom was described in
Section 3.3. Given an atom with the ground state |⟩, the excited state |⟩ and the
transition frequency ω, it has the form

Hel = ~ω σ+σ− , (4.8)

where σ+ and σ− are electronic raising and lowering operators, respectively.
e cavity in our system is assumed to be populated only by a single mode of

frequency ω, in which case its energy is given (up to a constant) by Eq. (3.66) as

Hcav = ~ω c†c , (4.9)

where c† and c are creation and annihilation operators for thismode. ese operators
have the same commutator relations as the phonon operators,

[c, c†] =  . (4.10)
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e population of the mode will be referred to as cavity photons.
e atom-laser interaction ismodelled semiclassically, where the quantised atom

interacts with a classical electric field,

HL = D · EL =
(
Dσ− + D∗

σ−
)(

Ee−iωLt + E∗ eiωLt
)
, (4.11)

where we used the result of Eq. (3.69). To maximize the effect, the laser is tuned in
resonance to the electronic transition of the atom, so that

ωL = ω . (4.12)

Lastly, themost important termof theHamiltonian is the atom-cavity interaction
Hint. is term is the origin of the cooling dynamics and, aswe shall see, describes the
coupling between phonon and photons of the system via atomic excitations. Recall
from the Jaynes-Cummings model (cf. Section 3.4) that the strength of the interac-
tion G in Eq. (3.71) is, in general, dependent on the position of the atom,

G = G(r) = g sin
(
kr
)
. (4.13)

Overall, the absolute position of the atom r can be written as

r = R+ x , (4.14)

where R is the absolute position of the trap centre and x is the position operator,
which represents the atomic deviation from the trap centre. We canfix the trap centre
at the node of the cavity field, which allows us to write

G = G(x) = g sin
(
kx
)
. (4.15)

Since the atom in our model is confined along the cavity radiation mode, we will
have to take the position of the atom into account. In the strong confinement regime,
oscillations of the atom about the centre of the trapping potential will be small, so
that we can keep only the first term of the Taylor expansion of G(x),

G(x) ≈ gkx . (4.16)

We can now express the atomic position operator in terms of atomic phonon opera-
tors b and b† (cf. Eq. 4.5), arriving at the atom-phonon-photon interaction

Hint = η g
(
b+ b†

) (
cσ+ + c†σ−

)
, (4.17)
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which represents the coupling between the vibrational motion of the atom, its elec-
tronic excitation and the light mode of the cavity. Here

η =

√
~k

Mν
(4.18)

is the so-called Lamb-Dicke parameter which signifies strength of the trapping po-
tential. In the strong trapping regime, we have η ≪ . As we shall see later, the term
(4.17) is the essential source of cooling in our theoretical model.

Combining all terms together, we have the full Hamiltonian,

H = ~ω σ+σ− + ~ν b†b+ ~ω c†c

+
(
Dσ− + D∗

σ+
)(

Ee−iωt + E∗ eiωt
)

+η g
(
b+ b†

)
cσ+ + H.c. (4.19)

Since our Hamiltonian is time-dependent, the standard procedure is to look at
the system in a frame rotating with the driving laser frequency, in our case ω. Going
into the interaction picture with respect to

H = ~ω(σ+σ− + c†c) , (4.20)

we obtain the interaction Hamiltonian

HI = ~ν b†b+ ~δ c†c+ 

~Ω (σ− + σ+)

+~ηg (b+ b†)(σ+c+ σ−c†) . (4.21)

Here we have applied the rotating wave approximation to the atom-laser interaction
term. Terms rotating at frequencies of ω oscillate very rapidly compared with the
remaining terms and therefore can be dropped. We also introduced the cavity-laser
frequency detuning,

δ = ω − ω , (4.22)

and the Rabi frequency

Ω =
D∗ E

~
, (4.23)

which is associated with the strength of the semiclassical atom-laser interaction.
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4.2 Second interaction picture

Before we proceed with the master equation approach, we can gain some insight by
going into yet another interaction picture with respect to free energies. First, we
diagonalise the laser driving operator

Σ = σ− + σ+ , (4.24)

where we find its eigenstates to be

|λ±⟩ =
√

(
|⟩ ± |⟩

)
, (4.25)

with the corresponding eigenvalues

λ± = ± . (4.26)

Using this notation, electronic transition operators can be written as

σ± =


(
|λ+⟩⟨λ+| − |λ−⟩⟨λ−| ± |λ+⟩⟨λ−| ∓ |λ−⟩⟨λ+|

)
. (4.27)

Consequently, the Hamiltonian HI in Eq. (4.21) can be written as

HI = ~ν b†b+ ~δ c†c+ 

~Ω (|λ+⟩⟨λ+| − |λ−⟩⟨λ−|)

+


~ηg (b+ b†)(c+ c†)

(
|λ+⟩⟨λ+| − |λ−⟩⟨λ−|

)
,

+


~ηg (b+ b†)(c− c†)

(
|λ+⟩⟨λ−| − H.c.

)
. (4.28)

Going into the interaction picture with respect to

H̃ = ~ν b†b+ ~δ c†c+ 

~Ω (|λ+⟩⟨λ+| − |λ−⟩⟨λ−|) , (4.29)

yields

H̃I =


~ηg

[
e−i(δ+ν)t bc+ e−i(δ−ν)t bc† + H.c.

]
×
(
|λ+⟩⟨λ+| − |λ−⟩⟨λ−|

)
+



~ηg

[
e−i(δ+ν)t bc− e−i(δ−ν)t bc† − H.c.

]
×
(
eiΩt |λ+⟩⟨λ−| − H.c.

)
. (4.30)

We can therefore identify six resonances for four different operators, bc†, b†c, b†c†

and bc. Operators bc† and b†c are Hermitian conjugates and represent reverse oper-
ations of tranferring between states |m+, n⟩ and |m, n+⟩, wherem and n represent
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m+1,n+1

m+1,n

m,n+1

m,n

bc†

b†cκ

m+1,n+1
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Figure 4.3: Role of operators bc† and b†c as cooling and heating operators. e
Hermitian conjugates of these operators represent the process of annihilation
of a cavity photon which competes with the cavity decay κ. e operators bc†

and b†c therefore dominate over their respective Hermitian conjugates.

the number of phonons and the number of cavity photons, respectively. However,
in addition to the operator b†c, a cavity photon can also disappear through the cav-
ity decay channel κ, as indicated in Fig. 4.3 (top). is means that operator bc†

dominates over operator b†c and, since it involves transitioning down the ladder of
phonon states, we treat it as a cooling operator. Similarly, operator b†c† dominates
over operator bc and is treated as a heating operator, as shown in Fig. 4.3 (bottom).

Expanding Eq. (4.30), we obtain

H̃I =


~ηg

(
e−i(δ−ν)t bc† + ei(δ+ν)t b†c† + . . .

)(
|λ+⟩⟨λ+| − |λ−⟩⟨λ−|

)
+



~ηg

(
e−i(δ−ν)te−iΩt |λ−⟩⟨λ+|bc† − e−i(δ−ν)teiΩt |λ+⟩⟨λ−|bc†

+ei(δ+ν)teiΩt |λ+⟩⟨λ−|b†c† − ei(δ+ν)te−iΩt |λ−⟩⟨λ+|b†c† + . . .
)
. (4.31)

e coefficients of bc† include

e−i(δ−ν)t and e−i(δ−ν±Ω)t , (4.32)

36



4.3 Master equation

while the coefficients of b†c† include

ei(δ+ν)t and ei(δ+ν±Ω)t . (4.33)

e resonant condition occurs when the exponents vanish. is means that detun-
ings

δ ≡ ν δ± ≡ ν ± Ω (4.34)

comprise the cooling resonances for the cooling operator bc† and detunings

μ ≡ −ν μ± ≡ −ν ± Ω (4.35)

comprise the heating resonances for the heating operator b†c†. In the later chapters,
we will see how these resonances emerge from the rate equations and their role in
cavity-mediated cooling.

4.3 Master equation

e main difference between free-space sideband cooling and cavity-mediated laser
cooling is that, in cavity-mediated laser cooling, the vibrational energy of the system
is dissipated into free space via the light mode of the cavity, instead of the atomic
excitation. is makes the spontaneous atomic decay rate Γ far less crucial in the
cavity-mediated cooling. Instead, the cooling efficiency depends strongly on the
spontaneous cavity decay rate κ in addition to the spontaneous atomic decay rate
Γ. To model this, the quantum optical master equation reads (cf. Cirac et al. (1993))

ρ̇ = − i
~
[HI, ρ] +



κ
(
cρc† − c†cρ − ρc†c

)
+



Γ
(
σ−ρσ+ − σ+σ−ρ − ρσ+σ−

)
. (4.36)

e results of the previous section tell us what to expect as long as the sponta-
neous decay rates κ and Γ remain relatively small. To learn more about the cooling
process and to study the effect of relatively large spontaneous decay rates, we employ
the master equation to show that the time evolution of the expectation value of an
arbitrary operator A is given by

⟨Ȧ⟩ = − i
~
⟨[A,HI]⟩+



κ
⟨
c†Ac− Ac†c− c†cA

⟩
+



Γ
⟨
σ+Aσ− − Aσ+σ− − σ+σ−A

⟩
. (4.37)
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4. COOLING OF A SINGLE PARTICLE

is expression will be used to derive a closed set of rate equations that govern the
time evolution of the average vibrational energy of the system, or the mean phonon
number

m ≡ ⟨b†b⟩ . (4.38)

e average vibrational energy of the system is themeasure of the temperature of the
atomic system.

4.4 The relevant expectation values

In order to obtain a closed set of cooling equations, we need to consider the expec-
tation values of certain mixed operators Xijk of the form

Xijk ≡ BiΣjCk (4.39)

with the B, Σ, and C operators defined as

(B, Σ,C) ≡ (, , ) ,

(B, Σ,C) ≡ (b†b, σ+σ−, c†c) ,

(B, Σ,C) ≡ (b+ b†, σ− + σ+, c+ c†) ,

(B, Σ,C) ≡ i(b− b†, σ− − σ+, c− c†) ,

(B,C) ≡ (b + b†, c + c†) ,

(B,C) ≡ i(b − b†, c − c†) . (4.40)

Using these operators, the Hamiltonian HI in Eq. (4.21) becomes

HI = ~ν B + ~δ C +


~Ω Σ +



~ηg B(ΣC + ΣC) . (4.41)

In the following, we use this representation of the Hamiltonian, since the X opera-
tors obey relatively simple commutator relations. In particular, using commutator
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4.4e relevant expectation values

relations for phonon, photon and electronic operators, one can show that

[Σ, Σ] = iΣ ,

[Σ, Σ] = −iΣ ,

[Σ, Σ] = i (Σ − ) ,

[B,B] = iB ,

[B,B] = −iB ,

[B,B] = −i ,

[C,C] = iC ,

[C,C] = −iC ,

[C,C] = −i . (4.42)

Moreover, we denote expectation values of the X operators by

xijk ≡ ⟨Xijk⟩ . (4.43)

Since all the operatorsXijk are Hermitian, the variables xijk are all real. To distinguish
terms in different orders in η more easily, we adopt the notation

xijk ≡ x()ijk + x()ijk + ... (4.44)

while the mean phonon number m is written as

m ≡ m() +m() + ... (4.45)

and so on. e superscripts indicate the scaling of the contribution of the respective
variable in η.

4.4.1 Time evolution in zeroth order in η

First we have a look at the η =  case. is means, we assume that there is no
coupling between phonon, photon, and electronic states. In the absence of cavity
pumping, the cavity will remain in its vacuum state, with

⟨Ck⟩() =  (4.46)

for all k. Analogously, or by using Eqs. (4.37) and (4.41), one can show that

ṁ() =  . (4.47)

39



4. COOLING OF A SINGLE PARTICLE

is tells us that there is no cooling in zeroth order in η. Moreover we find that

⟨Ḃ⟩() = −ν ⟨B⟩() ,

⟨Ḃ⟩() = ν ⟨B⟩() ,

⟨Ḃ⟩() = −ν ⟨B⟩() ,

⟨Ḃ⟩() = ν ⟨B⟩() . (4.48)

When solving these rate equations, we find that the phonon coherences ⟨B⟩() to
⟨B⟩() oscillate around zero on time scales given by the phonon frequency ν. When
analysing the cavity-mediated cooling process on amuch longer time scale, the above
phonon coherences can be adiabatically eliminated from the system dynamics. Set-
ting their time derivatives in Eq. (4.48) equal to zero yields

⟨Bi⟩() ≡  , i = , . . . ,  . (4.49)

Notice that we only use this equation to analyse the cooling dynamics of our sys-
tem. In this case, Eq. (4.49) is well justified, since the effective cooling rate γc of the
experimental setup, which we will consider here, scales as η.

Similarly, denoting

sj ≡ ⟨Σj⟩() (4.50)

for expectation values of the electronic states of the trapped particle, one can show
that

ṡ =


Ω s − Γ s ,

ṡ = − 

Γ s ,

ṡ = Ω ( − s)−


Γ s (4.51)

in zeroth order in η. ese expectation values reach a stationary state relatively
quickly. When analysing processes on the time scale given by the cooling rate γc,
these too can be adiabatically eliminated and approximated by their stationary state
solutions,

s =
Ω

Γ + Ω ,

s =  ,

s =
ΓΩ

Γ + Ω . (4.52)
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Before using these results to derive an effective cooling equation for themeanphonon
number m, we notice that

x()ijk = ⟨Bi⟩()⟨Σj⟩()⟨Ck⟩() (4.53)

when η = , since all three subsystems evolve independently in this case.

4.4.2 Time evolution in first order in η

Let us now have a closer look at the differential equations which describe the time
evolution of m and the xijk variables in first order in η. Using Eqs. (4.37) and (4.41)
we find that

ṁ() =


ηg
(
x() + x()

)
. (4.54)

Unfortunately, Eq. (4.53) implies x() = x() =  which yields

ṁ() =  . (4.55)

As in other laser cooling schemes of atomic particles, the mean phonon number m
changes only on the very slow time scale given by η. As we shall see below, we obtain
a non-zero time derivative of m, when we calculate x and x up to first order in
η. erefore, we now have a closer look at these expectation values.

Taking the results in Eqs. (4.46), (4.49), (4.52), and (4.53) into account, one can
show that

ẋ() = −ν x() − δ x() − ηg
(
 + m()) s − 


γ x

()
 ,

ẋ() = −ν x() + δ x() + ηg
(
 + m()) s − 


γ x

()


ẋ() = ν x() − δ x() + ηg s −


γ x

()


ẋ() = ν x() + δ x() + ηg s −


γ x

()
 , (4.56)

and

ẋ() = −ν x() − δ x() +


Ω x() −



γ x

()
 ,

ẋ() = −ν x() + δ x() +


Ω x() −



γ x

()
 ,

ẋ = ν x() − δ x() +


Ω x() −



γ x

()
 ,

ẋ() = ν x() + δ x() +


Ω x() −



γ x

()
 . (4.57)
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Moreover, one can show that

ẋ() = −ν x() − δ x() −


γ x

()
 ,

ẋ() = −ν x() + δ x() + ηg
(
 + m()) s − 


γ x

()
 ,

ẋ() = ν x() − δ x() + ηg s −


γ x

()
 ,

ẋ() = ν x() + δ x() −


γ x

()
 , (4.58)

and

ẋ() = −ν x() − δ x() + Ω
(
x() − x()

)
− ηg

(
 + m()) s − 


γ x

()
 ,

ẋ() = −ν x() + δ x() + Ω
(
x() − x()

)
− 


γ x

()
 ,

ẋ() = ν x() − δ x() + Ω
(
x() − x()

)
− 


γ x

()
 ,

ẋ() = ν x() + δ x() + Ω
(
x() − x()

)
+ ηg s −



γ x

()
 . (4.59)

Here the effective spontaneous decay rates γn are defined as

γn ≡ κ + n Γ . (4.60)

Combined with the differential equation for the time evolution of the mean phonon
number m, these equations constitute a closed set of rate equations in second order
in η.

4.4.3 An effective cooling equation

eprevious two subsections have shown that there is no time evolution of themean
phonon number m in zeroth and first order in η (cf. Eqs. (4.47) and (4.55)). Going
an order higher in η and using again Eqs. (4.37) and (4.41) yields

ṁ() =


ηg
(
x() + x()

)
. (4.61)

Wenowassume that the atom-phonon-photon interaction constant ηg is eithermuch
smaller than the atom-cavity detuning δ, the cavity decay rate κ, or the phonon fre-
quency ν,

ηg ≪ δ, κ, or ν . (4.62)

is condition guarantees that themeanphononnumberm evolves on amuch slower
time scale than all other expectation values, which are involved in the cooling pro-
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cess. is allows us to calculate the coherences x()ijk in Eqs. (4.56)-(4.59) via an adia-
batic elimination. Doing so and setting their derivatives equal to zero, we find that

ṁ() =
(
 +m()) ηgΩ

Γ + Ω

(
γ

γ
 + ξ+

(4.63)

+

(
γγγ + γ−ξ


+

) (
γ
 + ξ+

)
+ Ω (γγ

 + γξ

+

)(
γ
 + ξ+

) [(
γ
 + ξ+

) (
γ
 + ξ+

)
+ Ω (γγ − ξ+

)
+ Ω]

)

−m() ηgΩ

Γ + Ω

(
γ

γ
 + ξ−

+

(
γγγ + γ−ξ


−
) (

γ
 + ξ−

)
+ Ω (γγ

 + γξ

−
)(

γ
 + ξ−

) [(
γ
 + ξ−

) (
γ
 + ξ−

)
+ Ω (γγ − ξ−

)
+ Ω]

)
with the parameter ξ± defined as

ξ± ≡ (δ ± ν) (4.64)

and with the γn defined as in Eq. (4.60).
Setting the time derivative ṁ() in Eq. (4.63) equal to zero yields an analytical

expression for the stationary state phonon numbermss of the proposed cooling pro-
cess in zeroth order in η. Unfortunately, this expression is relatively complex and
looking at it does not yield much insight into the considered cavity-mediated laser
cooling process. In the following, we therefore only notice that the time evolution of
the mean phonon number m is to a very good approximation given by a differential
equations of the form

ṁ = −γc m+ c , (4.65)

where γc is an effective cooling rate and where c is a constant. Taking Eqs. (4.47)
and (4.55) into account and comparing Eq. (4.65) with Eq. (4.63) confirms that both
γc and c scale as η. e comparison also yields analytical expressions for γ()c and
c(). In the following, we discuss the dependence of γ()c and of the stationary state
phonon number m()

ss ,

m()
ss =

c()

γ()c
, (4.66)

on the different experimental parameters of the atom-cavity system in Fig. 4.2.

4.4.4 Confirmation of the expected cooling and heating resonances

Before doing so, let us have a closer look at Eq. (4.63). Suppose that the laser driving
is so weak that all the Ω terms in Eq. (4.63) become negligible. In this case, we find
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that

m()
ss =

κ + (δ − ν)

δν
. (4.67)

is stationary state phononnumber is exactly the same as the stationary state phonon
number for laser sideband cooling of a trapped particle in free space (cf. Blake et al.
(2011b); Leibfried et al. (2003); Wineland & Dehmelt (1975)) but with Γ replaced by
κ. For relatively small cavity decay rates κ, it assumes itsminimumwhen δ = δ with
δ defined as in Eq. (4.34). Looking only at the case of weak laser driving, one might
indeed conclude that there is only a single cooling resonance and a very close analogy
between laser sideband and cavity-mediated laser cooling. Instead, this work illus-
trates that atom-phonon-cavity systems can exhibit a much richer inner dynamics
than systems with only atom-phonon interactions.

Another interesting parameter regime is the one where Ω, ξ± ≫ κ , Γ. In this
case, Eq. (4.63) simplifies to

ṁ() = ηg
(

γ

ξ+
+

γ−ξ

+ + γΩ



ξ+ − Ωξ+ + Ω

)(
 +m())

−ηg
(

γ

ξ−
+

γ−ξ

− + γΩ



ξ− − Ωξ− + Ω

)
m() . (4.68)

e corresponding stationary state phonon number m()
ss equals zero when ξ− =

Ω, ie. when δ equals either δ− or δ+ in Eq. (4.34). is simple analysis confirms the
presence of the two additional laser-Rabi frequency dependent cooling resonances
δ±. However, notice that the above constraint ξ− ≫ κ , Γ excludes the case where
δ = ν. Hence this simple calculation returns only two of the three cooling reso-
nances.

We now return to Eq. (4.63) and use it to calculate the stationary state phonon
numberm()

ss for the experimental setup in Fig. 4.2 for concrete experimental param-
eters. Fig. 4.4 shows m()

ss as a function of the atom-cavity detuning δ for a relatively
wide range of parameters. To illustrate that the predictions in Section 4.2 apply,
even for relatively large spontaneous decay rates, we choose κ and Γ to be of about
the same order of magnitude as the phonon frequency ν and the atom-cavity detun-
ing δ. For relatively large laser Rabi frequencies Ω, we indeed observe three distinct
cooling resonances with sharp local minima of the stationary state phonon number
mss. ese are the atom-cavity detunings δ and δ± which we defined in Eq. (4.34).
In contrast to this and in good agreement with the discussion in Section 4.2, the sta-
tionary state phonon numberm()

ss increases significantly, when δ approaches one of
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the three heating resonances μ and μ± in Eqs. (4.35). Only, when Ω becomes much
smaller than ν, then the cooling resonances and the heating resonances, respectively,
become all the same. In this case, cooling occurs only for δ = ν and extreme heating
occurs for δ = −ν.

4.5 A comparison of the three cooling resonances

e emergence of the three resonances, δ, δ+ and δ−, shows that cavity-mediated
laser cooling could exhibit more complicated dynamics than free space sideband
laser cooling. e δ resonance is the widely used red sideband in the free space
cooling and was oen shown to be the most optimal resonance in terms of both the
stationary state phonon number and the cooling rate. However, for a wide range
of experimental parameters, such as the trapping frequency or the laser Rabi fre-
quency, a lower stationary state phonon number can be reached when using the δ+
resonance. In these cases, we believe that driving the system on the δ+ resonance
could be more beneficial if the lowest possible temperature is the goal of the study.

e difference between the δ and the δ+ resonance is due to the fact that the
δ resonance is accompanied by the electronic |⟩ → |⟩ or a |⟩ → |⟩ transition,
while the δ+ resonance is accompanied by the |λ+⟩ → |λ−⟩ transition. e creation
of the |λ+⟩ states by the cooling laser is suspected to be more dominant for a range
of parameters and therefore yields a lower stationary state phonon number. On the
other hand, the |λ−⟩ states remain less populated, and the δ− resonance always shows
worse performance.

To find out how to best cool a trapped particle when using the experimental setup
in Fig. 4.2, we now compare the stationary state phonon numbers m()

ss and the ef-
fective cooling rates γ()c of the three cooling resonances δ and δ± with each other.
When comparing the expressions for ṁ() in Eqs. (4.63) and (4.65), we find that γ()c

becomes independent of η and g when dividing it by (ηg). e following results
therefore apply for any values of these two parameters, as long as they fulfill the con-
dition which we specified in Eq. (4.62).

Dependence on the laser Rabi frequency

Fig. 4.5 shows the stationary state phonon numberm()
ss and the cooling rate γ()c as a

function of the laser Rabi frequency Ω. As suggested by Eq. (4.63), we find that there
is no effective cooling, when the laser Rabi frequency Ω becomes very small. In the
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Figure 4.4: Logarithmic plot of the stationary state phonon number m()
ss as a

function of the atom-cavity detuning δ for three different Rabi frequencies Ω
and ν = Γ, while κ = Γ (upper figure) and κ =  Γ (lower figure). is figure
has been obtained fromEq. (4.63) by setting ṁ() equal to zero and clearly illus-
trates the presence of the cooling and heating resonances which we identified
in Eqs. (4.34) and (4.35).
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limit Ω → , the cooling rate γ()c tends for all three cooling resonances to zero.
Although the stationary state phonon number m()

ss might be relatively small, this
case is of no interest, since the stationary state is reached only aer a very long time.
When Ω increases, also the cooling rate γ()c increases rapidly. Naively one might
expect that increasing the laser Rabi frequency Ω further and further also increases
the cooling rate further. However, this is not the case and, as shown in Fig. 4.5, the
cooling process saturates relatively quickly and the stationary state phonon number
remains more or less constant for very large Ω.

When comparing all three cooling resonances, we see that the atom-cavity de-
tuning δ− yields the highest values of m()

ss and is therefore of no practical interest.
One reason for this can be found in Eqs. (4.34) and (4.35). For δ = δ−, there is al-
ways a heating resonance relatively close by, which compensates some of the effects
of the resonant cooling transition. Another reason for the relatively high values of
m()

ss for δ = δ− is that the applied laser field creates a relatively large population
in the state |λ+⟩ of the trapped particle, while the state |λ−⟩ remains less populated
(cf. Eq. (4.52)). As one can see from Eq. (4.30), for δ = δ−, the resonant annihila-
tion of a phonon and the creation of a cavity photon is accompanied by an atomic
transition from the state |λ−⟩ into |λ+⟩. When the average population in the state
|λ−⟩ is relatively low, the atom is not well prepared to assist the cooling process when
δ = δ−.

In contrast to this, the system is in general well detuned from all heating transi-
tions, when the atom-cavity detuning equals either δ or δ+. Moreover, for δ = δ+
and for δ = δ, resonant cooling transitions are accompanied by a |λ+⟩ → |λ−⟩ and
by a |⟩ → |⟩ or a |⟩ → |⟩ transition, respectively. Since the average population
in the state |λ+⟩ and in the atomic states |⟩ and |⟩, respectively, is relatively large
(cf. Eq. (4.52)), the laser driving prepares the trapped particle well to facilitate the
annihilation of a phonon and to assist the cooling process when δ = δ+ or δ = δ.
Indeed, Fig. 4.5 shows that the atom-cavity detuning δ+ yields the lowest stationary
state photon numberm()

ss for a relatively wide range of laser Rabi frequencies Ω. For
the concrete parameters in Fig. 4.5, this applies when Ω lies roughly between 2 and
 Γ. For larger values of Ω, we obtain the lowest stationary state phonon number
when choosing δ = δ (sideband cooling case).
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4. COOLING OF A SINGLE PARTICLE

Figure 4.5: Logarithmic plot of the stationary state phonon number m()
ss and

the cooling rate γ()c as a function of the laser Rabi frequency Ω, while ν = κ =

Γ.

48
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Dependence on the phonon frequency

Let us nowhave a closer look at the dependence of the cooling process on the phonon
frequency ν. To do so, we consider a relatively small and a relatively large value of
Ω, while keeping all other system parameters comparable to previous experimental
parameters. As suggested by Fig. 4.5, we choose Ω =  Γ (cf. Fig. 4.6) and Ω =

 Γ (cf. Fig. 4.7). In Fig. 4.7, we can easily identify two phonon frequencies ν for
which certain cooling resonances (eg. δ−) becomes identical to one of the heating
resonances in Eq. (4.35). When this applies, the cooling rate γ()c becomes very small
(in some cases it even becomes negative which implies heating) and m()

ss tends to
infinity. Moreover, in both figures, the atom-cavity detuning δ− yields the highest
stationary state phonon numbers and is therefore of less practical interest than δ and
δ+. For relatively small phonon frequencies ν, the lowest stationary state phonon
number is achieved, when the atom-cavity detuning equals δ+. For very strongly
confined particles, it is better to choose δ = δ (sideband cooling case). As one
would expect, we notice that higher phonon frequencies allow to cool the trapped
particle to significantly lower temperatures.

Dependence on the spontaneous cavity decay rate

Finally, we discuss the dependence of m()
ss and γ()c on the spontaneous cavity decay

rate κ. As in the previous subsection, we choose Ω =  Γ (cf. Fig. 4.8) and Ω =  Γ
(cf. Fig. 4.9). For a relatively wide range of experimental parameters, we find that the
detuning δ+ yields the lowest stationary state phonon number (cf. Figs. 4.8 and 4.9).
is is especially the case, when the spontaneous cavity decay rate κ is relatively large.
Although this is not illustrated here, we would like to add that the cooling transitions
become over-damped when κ becomes too large. In this case, the cooling becomes
very inefficient and the stationary state phonon number m()

ss increases rapidly.

4.6 Conclusions

In this chapter, we analysed cavity-mediated laser cooling for a single atom with ex-
ternal confinement in the direction of the cavity axis (cf. Fig. 4.2). e Hamiltonian
HI of this system contains an atom-phonon-photon interaction term, which gives
rise to three sharp resonances with a minimum stationary state phonon number.
For a wide range of experimental parameters, one should choose the atom-cavity de-
tuning δ equal to δ+ in Eq. (4.34) in order to minimise the stationary state phonon
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4. COOLING OF A SINGLE PARTICLE

Figure 4.6: Logarithmic plot of the stationary state phonon number m()
ss and

the cooling rate γ()c as a function of the phonon frequency ν for Ω =  Γ and
κ = Γ.
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Figure 4.7: Logarithmic plot of the stationary state phonon number m()
ss and

the cooling rate γ()c as a function of the phonon frequency ν for Ω =  Γ and
κ = Γ.
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4. COOLING OF A SINGLE PARTICLE

Figure 4.8: Logarithmic plot of the stationary state phonon number m()
ss and

the cooling rate γ()c as a function of the spontaneous cavity decay rate κ for
Ω =  Γ and ν = Γ.
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4.6 Conclusions

Figure 4.9: Logarithmic plot of the stationary state phonon number m()
ss and

the cooling rate γ()c as a function of the spontaneous cavity decay rate κ for
Ω =  Γ and ν = Γ.
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4. COOLING OF A SINGLE PARTICLE

numbermss (cf. Figs. 4.5–4.9). is resonance depends on the laser Rabi frequencyΩ
and is different from the usually considered resonance δ for laser-sideband cooling.

To obtain an effective cooling rate γc and an analytical expression for the sta-
tionary state phonon number mss for the experimental setup which we consider in
this chapter (cf. Eq. (4.63)), we proceed as in Blake et al. (2011a,b, 2012). Starting
from the standard quantum optical master equation, we derive linear differential
equations — so-called rate or cooling equations — for the time evolution of differ-
ent expectation values. When taking a large enough number of expectation values
into account, we obtain a closed set of equations, which can be used to analyse the
time evolution of the mean phonon numberm on a time scale given by η. e only
assumptionmade in our calculations is that the atom-cavity coupling constant gmul-
tiplied with the Lamb-Dicke η is much smaller than at least one other experimental
parameters (cf. Eq. (4.62)). e condition in Eq. (4.62) guarantees that the mean
phonon number m evolves on a much slower time scale than all the other relevant
expectation values and allows us to obtain Eq. (4.63) via an adiabatic elimination.

Achieving very low stationary state phonon numbers for a single trapped particle
requires a relatively large phonon frequency ν, while very large spontaneous decay
rates κ and Γ need to be avoided. Achieving relatively large cooling rates moreover
requires a relatively large atom-cavity coupling constant g, since γc is proportional
to (ηg)/Γ. To overcome this problem, it might be interesting to study the cooling
process of the experimental setup in Fig. 4.2 when it containsmany trapped particles.
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Chapter 5

Cooling of a many-body system

e cooling dynamics of many-body systems is much richer and complicated than
that of a single particle. As mentioned earlier, laser sideband cooling is not very
efficient for cooling multiple atoms simultaneously and an optical cavity became
one of the proposed techniques to aid this process. However, non-cavity methods
have also been reported (cf. e.g. Morigi & Eschner (2001)). In general, even non-
interacting atoms in a cavity exhibit very rich behaviour, involving self-trapping and
self-organisation (cf. Baumann et al. (2010); Domokos & Ritsch (2002)). In this
chapter, we address the problem of cooling a large number of atomic particles col-
lectively and show how an optical cavity can be used to facilitate this process. We
investigate a one-dimensional non-interacting atomic gas strongly confined in the
direction of the cavity axis and driven by a resonant laser. e experimental setup is
very similar to the setup described in Chapter 4 and is shown in Fig. 5.1. e single
trapped atom that was treated earlier is now replaced by a homogeneous atomic gas
of N particles.

By applying the optical master equation to our system, we find that the station-
ary state of the mean phonon number is reduced during the cooling process by the
amount governed by a certain phonon coherence ζ, which itself is destroyed in the
process. Moreover, we find that the cooling process is collective, where the cool-
ing rate scales positively with the number of atoms in the system. e phonon co-
herence ζ is associated with the phonon exchange between the particles and, under
the assumption of non-interacting atoms, can be expressed in terms of mean devia-
tion of the particles from the trap centre. Using the thermodynamical framework of
canonical density operator, we demonstrate that thermalising the atomic system in
an anharmonic, asymmetric potential is an effectivemethod for reviving the phonon
coherence ζ without increasing the mean phonon number. ermal states therefore
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trap

cavity field

cooling laser

N atoms

cavity decay

Figure 5.1: Schematic view of the experimental setup, consisting of a resonantly
driven atomic gas which is externally confined at the node of an optical res-
onator.

provide practical pathways for continuous cooling without compromising the tem-
perature of the system. e entire process is split into two stages, where the cooling
pulses are alternated with periods of thermalisation, and shown in Fig. (5.2). Do-
ing so, the system is expected to reach very low temperatures very fast, due to the
collective cooling rate during cooling pulses.

5.1 Theoretical background

Armed with the model of the single particle cavity cooling, we can now use the same
methodology to study a many-body system. For a non-interacting gas of N atoms,
the Hamiltonian has a similar form as in Eq. (4.19), with the operator subsitutions

b →
∑
i

bi ,

b† →
∑
i

b†i ,

σ− →
∑
i

σ−i ,

σ+ →
∑
i

σ+i . (5.1)
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t

m(t)

ζ(t)

Ω(t)cooling stage

thermalisation
 stage

Figure 5.2: Timeline of the proposed cooling process which consists of cool-
ing stages interspersed with displacement stages. During the first stage, a
short laser pulse with Rabi frequency Ω is applied, which translates a collec-
tive phonon coherence ζ into a reduction of the mean number of phonons m
of the trapped particles. e purpose of the second stage is the build up of ζ
without increasing m. When repeating both stages many times, the particles
are expected to reach a very low temperature.

Here, the behaviour of each atom i is described by a separate operator with index i,
where operators with different indices commute, since the atoms do not interact with
each other. In addition, we assume that each particle experiences the same trapping
potential, which leads to the vibrational Hamiltonian of the form

Hvib =
N∑
i=

~ν b†i bi , (5.2)

up to a constant.
Similarly, the electronic energy of the system is described by the electronicHamil-

tonian,

Hel =
N∑
i=

~ω σ+i σ−i , (5.3)

with σ+i = |⟩ii⟨| and σ−i = |⟩ii⟨|. e states |⟩i and |⟩i denote the ground and
the excited state of atom i and have the same properties as for the single atom.

e single-mode cavity is the same as in the previous chapter, and the Hamilto-
nian for its energy remains unchanged,

Hcav = ~ω c†c . (5.4)
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5. COOLING OF AMANY-BODY SYSTEM

Each atom will interact with the cavity mode independently from the other atoms,
with the interaction term written as

Hint =
N∑
i=

~Gi(x) cσ+i + H.c. , (5.5)

where Gi(x) is interaction strength constant for atom i. Similarly, each atom will
interact with the resonant driving laser independently from the other atoms,

HL =
N∑
i=



~Ω σ+i e−iωt + H.c. . (5.6)

erefore, replacing the single trapped atom with a non-interacting atomic gas
is equivalent to replacing the phonon and electronic operators in Eq. (4.19) with
their indexed counterparts and summing over all N particles. e full Hamiltonian
becomes

H = ~ω c†c+
N∑
i=

(
~ν b†i bi + ~ω σ+i σ−i + ~Gi(x) cσ+i

+


~Ω σ+i e−iωt + H.c.

)
(5.7)

in the usual dipole and rotating wave approximation. Assuming the strong confine-
ment regime, all of the atoms will be located at the node of the cavity field. is leads
to Gi(x) having the similar form as in chapter 4, and in the interaction picture the
Hamiltonian becomes

HI = ~δ c†c+
N∑
i=

~ν b†i bi +
N∑
i=



~Ω (σ−i + σ+i )

+
N∑
i=

~ηg (bi + b†i )(σ+i c+ σ−i c†) , (5.8)

where

δ = ω − ω (5.9)

is the cavity-laser detuning. e crucial atom-phonon-photon interaction is ex-
pressed by the last term of the Hamiltonian and shows the existing cross-talk of the
non-interactive particles via the cavity mode. As we will see later, the atom-phonon-
photon interaction is essential for collective cooling of the atomic gas.

As mentioned earlier, the entire cooling process is composed of two different
stages. During the first stage, the atomic gas is coupled to an optical cavity while
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5.2 Cooling stage

being driven by an external laser and its dynamics can be described by the Hamil-
tonian (5.8) above. Since the system is open, spontaneous photon emission is taken
into account by the quantum optical many-body master equation

ρ̇I = − i
~
[HI, ρI] +



κ
(
cρIc

† − c†cρI − ρIc
†c
)

+


Γ
∑
i

(
σ−i ρIσ

+
i − σ+i σ−i ρI − ρIσ

+
i σ−i

)
, (5.10)

where ρI denotes the density matrix of the atom-phonon-photon system in the in-
teraction picture, κ is the cavity decay rate and Γ is the atomic decay rate.

5.2 Cooling stage

Let us first outline several conditions that will be used in the analysis of the cooling
dynamics. Since we are especially interested in the cooling of a relatively large gas of
atoms, the number of atoms N will be large,

N ≫  . (5.11)

As we shall see, the terms which dominate the time evolution of the relevant expec-
tation value are either zeroth or first order in η, while assuming that terms which
scale as Nη are zeroth-order terms. In the following, we analyse both of these time
scales separately. e calculations in the next subsections are valid as long as

ν, Ω, Γ, κ ≫ ηg . (5.12)

To see that this is indeed the case, we need to have a closer look at the rate equations
in the following two subsections.

5.2.1 The relevant expectation values

Analogous to the previous chapter, we first introduce the expectation values of cer-
tain operators necessary to obtain a closed set of cooling equations, including one
for the time evolution of the average mean phonon number. ese operators have
the form

X(i,j)
abc ≡ B(i)

a Σ(j)
b Cc (5.13)
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with the B, Σ, and C operators defined such that

(B(i)
 , Σ(i)

 ,C) ≡ (, , ) ,

(B(i)
 , Σ(i)

 ,C) ≡ (b†i bi, σ+i σ−i , c†c) ,

(B(i)
 , Σ(i)

 ,C) ≡ (bi + b†i , σ−i + σ+i , c+ c†) ,

(B(i)
 , Σ(i)

 ,C) ≡ i(bi − b†i , σ−i − σ+i , c− c†) , (5.14)

while

B(i)
 ≡ b

i + b†i ,

B(i)
 ≡ i(b

i − b†i ) . (5.15)

ese operators follow simple commutators relations,[
Σ(i)

 , Σ(i)


]
= iΣ(i)

 ,[
Σ(i)

 , Σ(i)


]
= −iΣ(i)

 ,[
Σ(i)

 , Σ(i)


]
= −i

(
 − Σ(i)



)
,[

B(i)
 ,B(i)



]
= iB(i)

 ,[
B(i)

 ,B(i)


]
= −iB(i)

 ,[
B(i)

 ,B(i)


]
= −i ,

[C,C] = iC ,

[C,C] = −iC ,

[C,C] = −i , (5.16)

while [
A(i)

 ,A(j)


]
=  (5.17)

for arbitrary operators A(i)
 and A(j)

 with i ̸= j.
In the following, we denote the expectation values of the X(i,j)

abc operators by

x(i,j)abc ≡ ⟨X(i,j)
abc ⟩ . (5.18)

As we shall see below, we also need to take phonon coherences of the form

y(i,j)ab ≡ ⟨B(i)
a B(j)

b ⟩ (5.19)

into account. Since the operators X(i,j)
abc and B(i)

a B(j)
b are all Hermitian, the variables

x(i,j)abc and y(i,j)ab are all real. Notice also that for i = j, they become single-particle
expectation values from chapter 4.
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5.2 Cooling stage

e quantity we are interested in is the average mean phonon number m, rede-
fined now as

m ≡ 
N

N∑
i=

mi , (5.20)

with

mi = ⟨b†i bi⟩ . (5.21)

In addition, we consider in the following the single-particle averaged expectation
values xabc,

xabc ≡

N

N∑
i=

x(i,i)abc , (5.22)

and the two-particle averaged correlations x̃abc and yab,

x̃abc ≡ 
N(N− )

N∑
i=

∑
j̸=i

x(i,j)abc ,

yab ≡ 
N(N− )

N∑
i=

∑
j̸=i

y(i,j)ab . (5.23)

Using the definitions above, it can be easily shown that, for ex-
ample,

xac = x̃ac and yab = yba , (5.24)

for all a, b and c.

e normalisation of the definitions has been chosen such that they are effec-
tively single-particle measures and to a good approximation independent of the ex-
act number N.

Using the notation that we introduced, the relevant Hamiltonian HI in Eq. (5.8)
can be rewritten as

HI = ~δ C +
N∑
i=

~νB(i)
 +

N∑
i=



~ΩΣ(i)



+
N∑
i=



~ηgB(i)



(
Σ(i)

 C + Σ(i)
 C

)
. (5.25)
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5.2.2 Time evolution of m and y’s

Using Eq. (5.10), one can show that the time evolution of the expectation values of
an arbitrary operator AI in the interaction picture is given by

⟨ȦI⟩ = − i
~
⟨[AI,HI]⟩

+


Γ
∑
i

⟨
σ+i AIσ−i − AIσ+i σ−i − σ+i σ−i AI

⟩
+



κ
⟨
c†AIc− AIc†c− c†cAI

⟩
. (5.26)

We nowhave a closer look at the time evolution of the relevant expectation values
of the atom-cavity-phonon system in first order in η. Using Eq. (5.26), one can show
that the average mean phonon number evolves according to

ṁ = 
ηg (x + x) . (5.27)

Taking into account that Eq. (5.24) implies y = y, we obtain the following time
derivatives of the two-particle phonon coherences yab,

ẏ = −ν y ,

ẏ = ẏ = ν (y − y) + ηg (x̃ + x̃) ,

ẏ = ν y + ηg (x̃ + x̃) (5.28)

without neglecting any terms. As pointed out in the beginning of this section (cf. Eq.
(5.12)), our analysis assumes that the phonon frequency ν is much larger than the
reduced cavity coupling ηg. Separating the time evolution of the above expectation
values on these two time scales, we now introduce the new variables

ζ ≡ 

(y + y)

y− ≡ 

(y − y) . (5.29)

From Eq. (5.28) we see that the time derivative of y− and of y equal

ẏ− = −ν y −


ηg (x̃ + x̃) ,

ẏ = ν y− + ηg (x̃ + x̃) . (5.30)

Solving these equations via an adiabatic elimination, one immediately sees that

y− = y = O
(ηg
ν

)
(5.31)
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to a very good approximation. ismeans that both two-particle phonon coherences
oscillate rapidly in time around a relatively small value and remain negligible during
the cooling stage.

In the followingwe are only interested in the time evolution of the slowly evolving
variables ζ and m. Proceeding as above and combining again Eqs. (5.28) and (5.29),
we moreover obtain the differential equation

ζ̇ =


ηg (x̃ + x̃) . (5.32)

is means, the average mean phonon number m (cf. Eq. (5.27)) and the phonon
coherence ζ both evolve on the relatively slow time scale given by η.

As we shall see below, the phonon coherence ζ plays a crucial role in cooling of
the many-body system. Let us emphasize that ζ can only be defined when there are
at least two particles in the trap. is is why the cooling process which we describe
here is qualitatively different from cavity-mediated laser-cooling of a single particle.

5.2.3 Time evolution of the x-coherences

To analyse the dynamics for m and ζ, we now need to have a closer look at the ex-
pectation values x, x, x̃, and x̃. Starting with the single-particle expectation
values x and x, these are equal to zero in zeroth order in η. However, when there
are many particles, such that N ≫ , then ηN is effectively a term in zeroth order in
η. Taking this into account and neglecting higher order terms, we can use Eq. (5.26)
together with Eq. (5.25) to show that the expectation values xabc evolve according to

ẋ = −νx − δx − Nηgz −


γx ,

ẋ = −νx + δx + Nηgz −


γx ,

ẋ = νx − δx − Nηgz −


γx ,

ẋ = νx + δx + Nηgz −


γx , (5.33)

and

ẋ = −νx − δx +


Ωx − Nηgz −



γx ,

ẋ = −νx + δx +


Ωx + Nηgz −



γx ,

ẋ = νx − δx +


Ωx − Nηgz −



γx ,

ẋ = νx + δx +


Ωx + Nηgz −



γx . (5.34)
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Moreover, we have

ẋ = −νx − δx − Nηgz −


γx ,

ẋ = −νx + δx + Nηgz −


γx ,

ẋ = νx − δx − Nηgz −


γx ,

ẋ = νx + δx + Nηgz −


γx . (5.35)

and

ẋ = −νx − δx + Ω (x − x)− Nηgz −


γx ,

ẋ = −νx + δx + Ω (x − x) + Nηgz −


γx ,

ẋ = νx − δx + Ω (x − x)− Nηgz −


γx ,

ẋ = νx + δx + Ω (x − x) + Nηgz −


γx . (5.36)

Here we used a short hand notation

γn ≡ κ + nΓ (5.37)

for combined spontaneous photon decay rates and defined the two-particle expec-
tation values zabcd such that

zabcd ≡ 
N(N− )

N∑
i=

∑
j̸=i

⟨B(i)
a B(j)

b Σ(i)
c Σ(j)

d ⟩ . (5.38)

Again, these are normalised by the number N(N − ) of particle pairs in the trap.
is means, these correlations are not expected to depend strongly on N, as long as
N is sufficiently large.

Calculating x̃abc, we find that these evolve in the same way as the xabc expectation
values with the same indices but with the xabc and zabcd on the right hand side of
Eqs. (5.33)–(5.36) replaced by x̃abc and z̃abcd, respectively. Here z̃abcd has been defined
such that

z̃abcd ≡ 
N(N− )(N− )

N∑
i=

∑
j̸=i

∑
k̸=i,j

⟨B(i)
a B(k)

b Σ(j)
c Σ(k)

d ⟩ . (5.39)

As we shall see in the next subsection, these correlations are essentially the same as
the two-particle correlations zabcd in Eq. (5.38).
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5.2.4 Time evolution of the z-coherences

Whenderiving the rate equations for the above z-coherences, we do not get any terms
which scale as Nηg. e reason for this is that these are particle-only expectation
values. e corresponding operators do not contain any cavity photon operators.
Effectively, the z-coherences evolve as if the interaction Hamiltonian HI in Eq. (5.8)
does not contain any interaction between the atoms, phonons and cavity photons
in the system. All three subsystems evolve independently. Moreover, due to the
presence of the spontaneous atomic decay rate Γ, the electronic states of the trapped
particles evolve rapidly, i.e. on the time scale given by /Ω and /Γ, into a stationary
state. Taking this into account, we find that

zabcd = z̃abcd = yab sssc sssd , (5.40)

where the sssa are the stationary state values of the expectation values for the operators
Σa,

sa ≡ ⟨Σ(i)
a ⟩ , (5.41)

which are the same for all particles. To calculate the sa, we use Eq. (5.26)and obtain
the rate equations

ṡ =


Ω s − Γ s ,

ṡ = − 

Γ s ,

ṡ = Ω ( − s)−


Γ s . (5.42)

e stationary state values of the expectation values sa are obtained by setting the
right hand sides of these three equations equals to zero. Doing so, we find that

sss =
Ω

Γ + Ω ,

sss =  ,

sss =
ΓΩ

Γ + Ω . (5.43)

In Section 5.2.2, we have seen that y− and y oscillate rapidly around zero. Hence,
there are only a few non-zero two-particle coherences which have to be taken into
account. Taking the definitions of ζ and y− into account, we are le with

zcd = z̃cd = ζ sssc sssd ,

zcd = z̃cd =  , (5.44)

with c and d being either equal to 0, 1 or 3.
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5.2.5 Adiabatic elimination of the x-coherences

e main purpose of this subsection is to obtain an effective cooling equation for the
cooling stage. To do so, we calculate the x- and the x̃-expectation values via an adi-
abatic elimination. Doing so is well justified by the time scale separation, which we
introduced in Eq. (5.12). But before doing so, we notice that the results in the previ-
ous section imply that the x- and the x̃-expectation values obey exactly the same rate
equations. When calculating these two-particle coherences with the help of adiabatic
elimination, we hence find that

xabc = x̃abc . (5.45)

As shown earlier, the same applied for the s-expectation values (cf. Eq. (5.44)). is
allows us to neglect all tildes from now on.

Performing the adiabatic elimination, setting the right hand sides of Eq. (5.35)
equal to zero, and using the results of the previous subsection, we find that

x =  ,

x = − 
ηg

AN ζ , (5.46)

with AN given by

AN =
N(ηgΩΓ)νκδ(

κ + (δ − ν) + κ(δ + ν)
)
(Γ + Ω)

. (5.47)

As we will see later, ζ cannot be negative for non-interacting particles and cooling
therefore occur for positive values ofAN. As onewould intuitively expect, this applies
whenever δ is positive.

Although the cavity-mediated laser-cooling process which we analyse in here is
different from single-particle laser-cooling schemes, there is a common resonance.
For δ = ν, the above effective cooling rate AN assumes its maximum and simplifies
to

AN =
N(ηgΩΓν)

κ(κ + ν)(Γ + Ω)
. (5.48)

is means, for the cooling process which we analyse in here, we observe exactly the
same detuning as in laser sideband cooling. As expected, the cooling process is most
efficient, when the conversion of phonon into a cavity photon becomes resonant.

e factor N in Eqs. (5.47) and (5.48) shows that the time evolution of the mean
phonon number m is collectively enhanced compared to the single-particle case. If
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N is sufficiently large, the cooling happens on a very short time scale. is cooling
process takes advantage of the simultaneous coupling of all N trapped particles to
the same cavity photon mode.

5.2.6 Final state of the cooling stage

Substituting Eqs. (5.46) into Eq. (5.32) and combining the rate equations for the
slowly evolving variables in Eqs. (5.27) and (5.32) with Eq. (5.45), we obtain

ṁ = ζ̇ = −ANζ . (5.49)

with AN defined as in the previous subsection. For cooling, we assume that the pa-
rameter AN is always positive, which means that any initial ζ coherence is damped
away to zero during cooling. Taking this into account and solving Eq. (5.49) for times
t which are much larger than /AN, we find that

m(t) = m()− ζ() ,

ζ(t) =  . (5.50)

e time independence of the right hand sides of these two equations on t shows
that the average mean phonon numberm and the average phonon coherence ζ both
assume a quasi-stationary state at the end of the cooling stage.

e reduction of the average mean phonon number m hence only occurs if the
phonon coherence ζ is positive at the beginning of the cooling process. Both average
mean phonon number m and the phonon coherence ζ then experience exponential
reduction during the cooling process withAN being the corresponding damping rate.
Since the damping rate scales asN, this process happens in general on a relatively fast
time scale. However, as soon as ζ reaches zero, the cooling stops. e important issue
is therefore to find a way for keeping ζ positive throughout the cooling process.

5.3 Thermalisation stage

As shown earlier, the phonon coherence ζ is destroyed during the cooling stage.
However, since the damping rate AN can be very large due to the large number of
atomic particles N, the duration of the cooling stage can be kept very short. In this
section, we demonstrate how decoupling the trapped atomic system from the cavity
and letting it evolve into a thermal state in an anharmonic, asymmetric potential can
revive the phonon coherence ζ without compromising the temperature of the atomic
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5. COOLING OF AMANY-BODY SYSTEM

gas. During the second stage, the atoms are displaced away from the trap centre and
we can show that this results in a positive thermal average value for the ζ.

5.3.1 Theoretical model

Substituting definitions in Eqs. (5.15) and (5.19) into Eq. (5.23), and combining it
with Eq. (5.29) shows that

ζ = 
N(N− )

N∑
i=

∑
j̸=i

⟨b†i bj⟩ . (5.51)

Going back to the position-momentum space with variable substitutions, defined in
chapter 2,

bi ≡
√

Mν
~

xi + i
√


~Mν

pi ,

b†i ≡
√

Mν
~

xi − i
√


~Mν

pi , (5.52)

we observe that

ζ = 
N(N− )

N∑
i=

∑
j̸=i

(
Mν
~

⟨xixj⟩+


~Mν
⟨pipj⟩

)
. (5.53)

Since there are no interactions between the particles and their confinement is so
strong that there is effectively no flux of atoms out of the trap, the particles move
independently and their motion can be described by product states with

⟨xixj⟩ = ⟨xi⟩⟨xj⟩ = ⟨xi⟩ ,

⟨pipj⟩ = ⟨pi⟩⟨pj⟩ =  . (5.54)

Combining this observation with the Eq. (5.53) yields

ζ =
Mν
~

⟨x⟩ , (5.55)

where ⟨x⟩ is the mean distance of the atoms from the trap center. Variable ζ is now
independent of N and it suffices only to consider a single non-interacting particle.

e main aim of the thermalisation stage is to build a non-zero displacement of
the atoms from the trap centre. For this purpose, we consider a slightly anharmonic,
asymmetric trap. Moreover, we decouple the atomic system from the optical cavity
and switch off the cooling laser, so that the vibrational state of the system would
evolve independently. To give a concrete example of a physical process which results
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in a positive phonon expectation value ζ, we assume now that every atom relaxes
into a thermal equilibrium with respect to the surrounding atoms via slow coherent
and incoherent processes. At the end of this thermalisation, the density matrix of
the confined particles equals

ρ =

Z

e−βHvib , (5.56)

where

Z = Tr
(
e−βHvib

)
(5.57)

is a partition function. e thermal parameter β in this equation depends only on
the temperature of the system, i.e. the mean energy ⟨Hvib⟩ of the trapped atoms at
the end of the cooling stage.

To show that this state indeed corresponds to a positive phonon expectation value
ζ and to get a feeling for how ζ depends on the mean phonon number m of the
trapped particles, we assume that each non-interacting particle obeys the Hamil-
tonian of the form,

Hvib = ~ν
(
b†b+ 



)
+ ~μ (b+ b†) , (5.58)

where μ is a constant that measures the magnitude of anharmonicity.

5.3.2 Thermal averages of the trapped atomic gas

In order to obtain an analytical expression for ζ, we assume that

μ ≪ ν , (5.59)

and carry out calculations up to second order in μ/ν. DenotingHvib = H+H, with

H ≡ ~ν
(
b†b+ 



)
,

H ≡ ~μ
(
b+ b†

)
, (5.60)

we can use the Baker-Campbell-Hausdorff formula and Taylor expansion to show
that

ρ =

Z
e−βH

(
 − βH − 

β
 [H,H]

)
+ . . . . (5.61)
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Combining Eqs. (5.52) and (5.55), we can show that

ζ = Mν
~

⟨x⟩

=


⟨b+ b†⟩

=



[
Tr
(


Z
e−βH

(
 − βH − 

β
[H,H]

) (
b+ b†

))]

. (5.62)

where b and b† are single-particle destruction and creation operators, respectively.
Performing the trace operation in the number state basis, this phonon variable sim-
plifies to

ζ =

(


β~μ

)(
 (k +m) +  +



β~ν (m + )

)

, (5.63)

where the expectation values

m ≡ ⟨b†b⟩ (5.64)

and

k ≡ ⟨
(
b†b
)⟩ (5.65)

belong to the thermal state of a single harmonic oscillator with Hamiltonian H.
ese are well-known and are given by (cf. Blaise & Henri-Rousseau (2011))

m =


eβ~ν − 
and k =

eβ~ν + 
(eβ~ν − )

(5.66)

for e−β~ν < . Combining these two expressions with the Eq. (5.63) yields the explicit
dependence of ζ on m,

ζ =

[
μ
ν

(m+ ) ln
(
 +


m

)(
m+  +



ln
(
 +


m

))]

. (5.67)

Fig. 5.3 compares Eq. (5.67) with the numerically obtained dependence of ζ on the
mean phonon number m of the trapped particles. As expected, ζ is non-zero and
positive unless m tends to zero (as m reaches zero, the assumptions of Eq. (5.61)
break down and the analytical expression (5.67) for ζ is no longer valid). Moreover,
ζ increases rapidly as the vibrational energy of the particles increases. e hotter the
atoms, the further away they accumulate from the trap center.

e expression (5.67) shows that letting the atomic gas thermalise during the
thermalisation stage increases the value of the phonon coherence ζ and therefore re-
vives it aer being damped away during the cooling stage. e vibrational energy
of the atomic system remains unchanged during thermalisation, since the system is
isolated and there is no net flux of particles. We can alternate cooling and thermali-
sation stages, as shown on Fig. (5.2), to cool the atomic gas to very low temperatures.
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Figure 5.3: Logarithmic plot of the dependence of the phonon variable ζ on the
mean phonon number m for μ = . ν (a) and μ = . ν (b). e dashed
lines show the analytical result in Eq. (5.67). e solid lines are the result of a
numerical analysis of the thermal states in Eq. (5.56) for different β.

5.4 Conclusions

In this chapter, we developed a two-stage model for cooling of an atomic gas of non-
interacting particles. Each atom is strongly coupled to a common cavity radiation
mode, which enables a cross-talk between them and is confined in a common trap-
ping potential. When driven by a cooling laser, the average mean phonon number
is expected to decrease exponentially, where its total change is dependent on the
phonon coherence ζ, which represents phonon exchange between the atoms.

As outlined in this chapter, m and ζ experience a high damping rate, propor-
tional to the number of atoms in the system (cf. Eq. (5.49)), during the cooling stage.
To be able to nevertheless take advantage of the collective effects, we propose to pro-
ceed as suggested in Fig. 5.2 and to alternate short cooling pulses with relatively long
thermalisation stages.

During the cooling stage, the atomic gas reaches the stationary state which de-
pends on the phonon coherence ζ, which itself is damped away to zero. To revive the
phonon coherence ζ without compromising the temperature of the system, we pro-
pose decoupling the gas for the cavity radiation field by switching off the cooling laser
and thermalising it in an anharmonic, asymmetric trapping potential. We show that
during each thermalisation stage the atoms accumulate ζ without increasing their vi-
brational energy. If ζ is continuously restored to its thermal state value, the cooling
process described above continues until the particles reach a very low temperature.
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is is illustrated in Fig. 5.4 which shows how the mean phonon number m would
evolve, if ζ would remain at its thermal-state level (cf. e.g. Eq. (5.67)).
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Figure 5.4: Time evolution ofm and ζ form() = , μ = . ν (green), and
μ = . ν (blue), if intermittent thermalisation stages (which are not shown
here) keep ζ effectively at its thermal state value. e dashed lines are based on
Eq. (5.67), while the solid lines use a more exact numerical solution for ζ(m).

Overall, the proposed two-stage process is expected to cool the many-body sys-
tem to very low temperature. Since the cooling rate is collective, the duration of the
cooling pulses can be kept very short. e consequent thermalisation stages prepare
the system for the next cooling pulse by reviving the phonon coherence ζ. Onlywhen
the vibrational energy of the particles tends to zero (cf. Fig. 5.3), ζ becomes too small
and the cooling of the particles slows down. Eventually heating mechanisms which
are not taken into account in this model dominate the dynamics of the atoms and
limit their final temperature.
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Chapter 6

Quantum sonoluminescence

In this chapter, we apply the two-stage collective model developed earlier to de-
scribe the mechanism of sonoluminescence. Sonoluminescence is a phenomenon
of strong light emission from a gas bubble that is acoustically suspended and peri-
odically driven in a liquid by ultrasonic frequencies (cf. Brenner et al. (2002)). A
typical single-bubble sonoluminescence cycle is shown in Fig. 6.1. As the bubble
expands, it reaches a critical radius, aer which point the bubble rapidly collapses.
e collapse is accompanied by the sudden emission of light which is indicative of
very high temperatures inside the bubble. Aerwards, the bubble oscillates around
its equilibrium radius until it regains its stability.

Sonoluminescencewas first reported inGaitan (1990) andGaitan&Crum(1990).
Aerwards, Barber & Putterman (1991) measured the width of the light pulse to be
less than 50 ps. Such result suggested that in the single-bubble sonoluminescence,
the light emission is decoupled from the bubble dynamics. While the radius of the
bubble can be explained by the classical Rayleigh-Plesset equation, the mechanism
of the light emission remains unclear. e discover of sharp emission lines in the
optical regime (cf. Brenner et al. (2002); Flannigan & Suslick (2007); Suslick & Flan-
nigan (2008)) indicate the population of highly excited energy eigenstates and the
presence of a dense plasma. In addition, a sensitive dependence of the light emis-
sion on the type of gas within the cavity was found (cf. Brenner et al. (2002); Hiller
et al. (1994)). A valid theoretical model needs to be able to account for both of these
phenomena, which cannot yet be explained classically.

In this chapter, we develop a two-stage quantum toy model to treat the dynamics
of the atomic gas inside the bubble. e atomic system trapped inside the cavitat-
ing bubble is treated similarly to the atomic gas in the previous chapter, while the
electromagnetic field inside the bubble is quantised in the same way as cavity ra-
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ditation field. Since the evolution of the bubble exhibits distinct phases of growth
and collapse, we model these phases in terms of thermal states and strong-coupling
states, as was described in chapter 5. During the thermalisation stage, the atomic
gas thermalises with energy being redistributed amongst the particles. e atomic
system is decoupled from the radiation field inside the bubble and evolves indepen-
dently. However, during the collapse, the bubble becomes opaque and the atomic
gas strongly couples to the single standing-wave mode of the bubble. Given the re-
semblance of this system to the atom-cavity-phonon system seen earlier, we treat it
in a similar way, while studying heating instead of cooling. e latter stage is referred
to as the heating stage.

As wewill see later, our quantum two-stagemodel describes heatingmechanisms
present in sonoluminescence and explains the observed temperature changes, as well
as main attributes of the phenomenon, such as dependence on atomic structures,
radius of the bubble and presence of plasma. Using ourmodel, we identify additional
heating due to quantum effects and explain final temperatures in sonoluminescence
experiments.

6.1 Introduction

Fig. 6.1 shows a typical single-bubble sonoluminescence cycle and indicates the rel-
evant time scales. e collapse phase begins at point A, when the bubble becomes
thermally isolated from the surroundings. is is accompanied by rapid heating and
a light flash between points B and C.

When the bubble reaches its minimum radius, we assume that the electromag-
netic field inside becomes quantised. is means, the atomic particles suddenly be-
have as if placed inside an optical cavity. e walls of the cavity are formed by the
walls of the collapsing bubble. As before, we quantise the motion of the atomic sys-
tem inside the bubble. During the expansion phase, however, the particles constantly
remain in a thermal state which only depends on their current temperature. If the
particles are sufficiently hot and a plasma is formed, collisions result in correlations
between the particles. During a subsequent collapse phase, these correlations can
fuel a cavity-mediated collective heating process, similarly to what has been seen in
the previous chapter. As shown in chapters 4 and 5, the interplay between the elec-
tronic and vibrational degrees of freedom of the trapped particles combined with the
spontaneous emission of photons can result in significant changes of the tempera-
ture of a quantum system. If repeated over many cycles, such a heating mechanism
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Figure 6.1: Time dependence of the driving sound pressure and of the bubble
radius in a typical single-bubble sonoluminescence cycle. Point A marks the
beginning of the collapse phase inwhich the bubble becomes thermally isolated
from the liquid. At point B, the temperature within the bubble is significantly
increased and a strong light flash occurs. Point C denotes the beginning of the
expansion phase in which the bubble oscillates around its equilibrium radius
until it regains its stability.

could have a significant effect.

6.2 Theoretical model

In this section, we introduce a quantum optical model for the description of the
atomic particles trapped inside a sonoluminescing bubble which applies during the
thermalisation and during the bubble collapse phase. Several degrees of freedom
need to be taken into account. Once the atoms are tightly confined, their motion be-
comes quantised and the vibrational states of the particles play a crucial role in their
dynamics. Moreover, there are the electronic degrees of freedom of the trapped par-
ticles. At high enough temperatures, the atoms might be either in their electronic
ground state or in a highly excited state. For simplicity, only two atomic state are
considered. During the thermalisation stage, the dynamics of the system is domi-
nated by collisions.

During the collapse phase, the bubble radius becomes comparable to the wave-
length of the corresponding atomic transition. If the bubble walls become opaque
and the water dipole molecules arrange as if part of a metallic surface, the electro-
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magnetic field inside the bubble too becomes quantised. e atomic particles couple
effectively to a standing-wave radiation mode. Consequently, the dynamics of the
system is dominated by the sudden presence of an optical cavity with a mode fre-
quency close to the atomic transition frequency. e result is an atom-cavity-phonon
coupling with the spontaneous emission of photons at a relatively high rate. During
this stage, the collisions between the particles become negligible.

6.2.1 Thermalisation stage

During the thermalisation stage, the total Hamiltonian of the atom-phonon-photon
system can be written as

H = Hel +Hvib +Hcol (6.1)

in the Schroedinger picture. e first two terms in this equation are the free energy
of the vibrational and the electronic states of the trapped particles. e third term
models elastic collisions between the particles inside the bubble. Spontaneous emis-
sion from the atoms remains negligible. In this regime, the system evolves thermally
and thermodynamicalmodels can be used to describe its behaviour. In the following,
we have a closer look at the terms in Eq. (6.1).

Electronic degrees of freedom

If we denote the ground state of atom i by |⟩i and its excited state by |⟩i, respectively,
the atomic Hamiltonian Hel can be written as

Hel =
N∑
i=

~ω σ+i σ−i , (6.2)

where ~ω is the energy difference between electronic states. Moreover, σ+i ≡ |⟩ii⟨|
and σ−i ≡ |⟩ii⟨| are atomic raising and lowering operators with the commutator
relation

[σ+i , σ−i ] = σi , (6.3)

where σi is as usual the Pauli operator defined by

σi =


(|⟩ii⟨| − |⟩ii⟨|) . (6.4)
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Vibrational degrees of freedom

e presence of the bubble walls confines the position of the atomic particles in gen-
eral so strongly that they do remain inside the bubble at all times. When the bubble
radius approaches itsminimum, the situation of the atomic particles becomes similar
to the situation of ions inside an ion trap: their vibrational degrees of freedom need
to be quantised. Approximating the trapping potential by a harmonic oscillator, the
Hamiltonian for the vibrational energy of the atoms can simply be written as

Hvib =
N∑
i=

p
i

M
+



Mνx

i , (6.5)

where M is the mass of a single atom and ν denotes the respective trap frequency.
Moreover, pi is the momentum of particle i in the direction of the cavity axis and xi
denotes the distance of particle i from the centre of the trap.

To write the above Hamiltonian Hvib in a more compact form, we now intro-
duce the single-particle phonon destruction and creation operators bi and b†i with
the bosonic commutator relation

[bi, b†i ] =  (6.6)

such that

pi = i
√

~Mν


(
b†i − bi

)
,

xi =

√
~

Mν

(
bi + b†i

)
. (6.7)

When substituting these operators into equation into Eq. (6.5), it simplifies to

Hvib =
N∑
i=

~ν
(
b†i bi +




)
. (6.8)

e assumption of only a single harmonic trapping potential is valid as long as the
particles are well localised around their equilibrium position. During the bubble col-
lapse phase, it is known that the atoms form a so-called van der Waals crystal. ey
are not only trapped by the presence of the bubble walls but also by complex interac-
tions with their surrounding particles. We therefore think that the above description
of the motion of the particles is well justified.

Atomic collisions

e onset of sonoluminescence requires that the bubble is hot enough for the par-
ticles inside the bubble to form a plasma. is means, although strongly confined,
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collisions between particles which result into an exchange of phonons and electronic
excitations are no longer negligible. To take this into account, we assume in the fol-
lowing that we have elastic collisions between the particles. An additional term in
the Hamiltonian Hcol which describes these to a very good approximation is given
by

Hcol =
∑
⟨i,j⟩

~Ωvib b†i bj + ~Ωel σ+i σ−j . (6.9)

In the following, this Hamiltonian is taken into account during the thermalisation
stage of the sonoluminescing bubble. On the other hand, Ωvib and Ωel remain neg-
ligible during the heating stage, as long as they are much smaller than the effective
heating rate of the trapped particles. e sum in the above Hamiltonian is over all
pairs ⟨i, j⟩ of next neighbours. In one dimension, their number scales as the number
of atoms N in the trap.

6.2.2 Heating stage

During the heating stage, the Hamiltonian in Eq. (6.1) no longer applies. Additional
terms due to the sudden presence of an almost resonant optical cavity have to be
taken into account. e total Hamiltonian of the atom-phonon-photon system in
the Schroedinger picture is now of the form

H = Hel +Hvib +Hcav +Hint (6.10)

withHel andHvib being the same free energies as in the previous subsection. Nowwe
are interested in a much shorter time scale on which collisions between the particles
remain negligible. Instead the possible transfer of energy from the atoms into the
cavity field, which changes the vibrational degrees of freedomof the system, has to be
taken into account. e term Hcav describes the free energy of the quantised cavity
field. e final term in Eq. (6.10) represents the atom-cavity-photon interaction.
ese two terms are explained below.

Cavity degrees of freedom

In the following, we describe the energy of the electromagnetic field between the
bubble walls by the single-mode cavity Hamiltonian

Hcav = ~ω c†c , (6.11)
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where ω denotes the frequency of the photon mode. is frequency depends on
the radius of the bubble which constantly changes in time. Moreover c is the cavity
photon annihilation operator with

[c, c†] =  . (6.12)

e photon mode which we are interested in is the one with frequency ω that is the
closest to the atomic transition frequency ω in Eq. (6.2). Such mode is the cavity
photonmode whose wavelength equals the bubble diameter, and its frequency ω will
therefore will be dependent on the radius of the bubble λ.

Atom-phonon-photon interactions

In addition to the cavity energy, we need to account for the possible conversion of
atomic excitation into cavity photons and vice versa. As before, we write the cor-
responding interaction Hamiltonian Hint in the usual dipole and rotating wave ap-
proximation,

Hint =
N∑
i=

~g sin
(
kri
)
σ+i c+ H.c. , (6.13)

where ri denotes the absolute position of particle i within the resonator. Hence ri is
the sum of the equilibrium position Ri of the respective particle and its displacement
xi from the trap center such that

ri = Ri + xi . (6.14)

Moreover g denotes the atom-cavity coupling constant and k is the wave vector of
the standing-wave cavity field mode. Without restrictions, we can assume that g is
real by absorbing any potential phase factor into the definition of the respective σ−i
operator.

Suppose, the atomic particles accumulate predominantly in the center of the bub-
ble during the bubble collapse phase. en the equilibrium positions Ri of the con-
fined particles coincide with the center of the bubble, which coincides with the node
of the resonator field. Taking this into account, we find that

g sin
(
kri
)
= ηg (bi + b†i ) + O(η) (6.15)

to a very good approximation, where the Lamb-Dicke parameter η is a measure for
the strength of the external trapping potential defined earlier. For strongly confined
particles, we have

η ≪  (6.16)
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and higher order terms in η become negligible.

Spontaneous photon emission

Taking the results of the previous subsections into accountwhen substitutingEq. (6.15)
into Eq. (6.13) and introducing the interaction picturewith respect to the freeHamil-
tonian

H = Hel + ~ω c†c , (6.17)

we finally obtain the interaction Hamiltonian

HI = −~Δ c†c+
N∑
i=

~ν b†i bi +
N∑
i=

~ηg (bi + b†i ) σ+i c+ H.c. (6.18)

with the detuning Δ defined as the difference between the atomic and the cavity
frequency,

Δ ≡ ω − ω . (6.19)

A closer look at Eq. (6.18) shows that the presence of the cavity again results in an
atom-phonon-photon interaction. As we shall see below, this interaction has the
potential to significantly heat the atomic particles, even on a very short time scale.

In the following, we assume that the atomic particles are in general well shielded
from the free radiation field surrounding the sonoluminescing bubble. During the
thermalisation stage, the atomic density is relatively high and almost all atoms are
fully surrounded by other particles. During the heating stage, the atomic particles
are moreover surrounded by cavity mirrors so that there is effectively no coupling to
the free radiation field outside the bubble. We therefore neglect direct spontaneous
emission from the excited atomic states. e possible spontaneous photon emission
of cavity photons into the surrounding liquid during the heating stage is in the fol-
lowing taken into account by the quantum optical master equation

ρ̇I = − i
~
[HI, ρI] + κ

(
cρIc

† − 
c

†cρI −

ρIc

†c
)
, (6.20)

where κ is the cavity decay rate and where ρI denotes the density matrix of the atom-
phonon-photon system in the interaction picture.
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6.2.3 Notation

To simplify the following calculation, we now proceed as in chapter 5 and define the
B, Σ, and C operators(

B(i)
 , Σ(i)

 ,C

)
≡ (, , ) ,(

B(i)
 , Σ(i)

 ,C

)
≡

(
b†i bi, σ+i σ−i , c†c

)
,(

B(i)
 , Σ(i)

 ,C

)
≡

(
bi + b†i , σ−i + σ+i , c+ c†

)
,(

B(i)
 , Σ(i)

 ,C

)
≡ i

(
bi − b†i , σ−i − σ+i , c− c†

)
. (6.21)

To calculate the time derivatives of expectation values, we need to derive commuta-
tors of their respective operators and of all the operators in the Hamiltonian. Using
Eqs. (6.3), (6.6), and (6.12) one can show that[

Σ(i)
 , Σ(i)



]
= iΣ(i)

 ,[
Σ(i)

 , Σ(i)


]
= −iΣ(i)

 ,[
Σ(i)

 , Σ(i)


]
= −i

(
 − Σ(i)



)
,[

B(i)
 ,B(i)



]
= iB(i)

 ,[
B(i)

 ,B(i)


]
= −iB(i)

 ,[
B(i)

 ,B(i)


]
= −i ,

[C,C] = iC ,

[C,C] = −iC ,

[C,C] = −i , (6.22)

while [
A(i)

 ,A(j)


]
=  (6.23)

for arbitrary operators A(i)
 and A(j)

 with i ̸= j. Since the operators in Eq. (6.21) obey
relatively straight-forward commutator relations, we now introduce the short-hand-
notation

Mvib ≡ 

~Ωvib

∑
⟨i,j⟩

(
B(i)

 B(j)
 + B(i)

 B(j)


)
Mel ≡ 


~Ωel

∑
⟨i,j⟩

(
Σ(i)

 Σ(j)
 + Σ(i)

 Σ(j)


)
(6.24)
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and write the interaction Hamiltonian HI in Eq. (6.18) in the following as

HI =
N∑
i=



~ηg B(i)



(
Σ(i)

 C + Σ(i)
 C

)
+

N∑
i=

~ν B(i)
 − ~ΔC (6.25)

to simplify the derivation of effective rate equations for the heating stage.

6.3 Thermalisation stage

In this chapter, we distinguish between two different stages in the dynamics of a
sonoluminescing bubble. As long as the bubble radius is relatively large and the walls
of the bubble remain transparent, there is effectively no cavity field and the atomic
particles evolve on a relatively slow time scale. We refer to this stage in the following
as the thermalisation stage. Indeed, it has been found that the time evolution of the
bubble is very well described by the laws of classical thermodynamics. is only
changes, when the bubble radius collapses. We refer to this stage in the following as
the heating stage and analyse its dynamics in detail in Section 6.4. But before doing
so, let us have a look at the thermalisation stage.

In this section, we assume that the time evolution of the electronic and the vibra-
tional degrees of freedom of the particles inside the bubble is governed by thermal
processes. For simplicity, we assume that there is effectively no exchange of energy
with the surrounding liquid. e energy within the bubble is simply redistributed
among the different degrees of freedom, while each particle reaches a thermal equi-
librium state with respect to the surrounding particles. Since there are no interac-
tions between phonons and atomic excitations, the density matrix ρ of the atomic
particles at the end of the thermalisation stage can be written as

ρ = ρvib ⊗ ρel . (6.26)

As we shall see in the next section, heating of the atomic particles inside the bubble
requires the presence of certain non-zero expectation values. In the remainer of this
section, we calculate those expectation values for the density matrix in Eq. (6.26).

6.3.1 Relevant expectation values

ese include the mean phonon number averaged over all particles which is given
by

m ≡ 
N

N∑
i=

⟨B(i)
 ⟩ . (6.27)
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Here m is normalised such that it does not change considerably, when atomic par-
ticles are either removed from or added to the trap. Another phonon expectation
value which plays a crucial role during the heating stage is the phonon coherence

ζ ≡ 
N(N− )

N∑
i=

∑
j̸=i

⟨b†i bj⟩ . (6.28)

Both operators, the one corresponding to m and the one corresponding to ζ, com-
mute with the free energy of the phonons given by Hvib. As we shall see below, they
hence evolve on a relatively slow time scale during the heating stage.

Moreover, we shall see in the next section, that the mean population in excited
atomic states plays a crucial role in the heating dynamics of the atomic particles in-
side the sonoluminescing bubble. In analogy tom in Eq. (6.27), we hence now define

s ≡ 
N

N∑
i=

⟨Σ(i)
 ⟩ . (6.29)

Moreover we need to consider the expectation values

μab ≡ 
N(N− )

N∑
i=

∑
j̸=i

⟨Σ(i)
a Σ(j)

b ⟩ (6.30)

with a, b = ,  and with μab ≡ μba by definition.

6.3.2 Electronic degrees of freedom

In the following, we neglect spontaneous emission from the excited states of the
atomic particles. Instead we assume that the processes which excite the atoms due
to thermal interactions dominate the time evolution of the particles. In this case,
the density matrix ρel of the thermal state of the electronic degrees of freedom of the
trapped particles equals

ρel =

Zel

e−βH (6.31)

with Zel = Tr
(
e−βH) being a partition function and with the relevant interaction

Hamiltonian given by

H = Hel +Mel . (6.32)

Using Eq. (6.2) and setting Ωel = , yields

ρel =
|⟩⟨|+ e−β~ω |⟩⟨|

 + e−β~ω
(6.33)
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which implies

s =
e−β~ω

 + e−β~ω
(6.34)

in zeroth order in Ωel. e constant β in this equation is the same as in Eq. (6.40).
For relatively hot particles, a non-negligible amount of population accumulates in
the excited atomic state.

To calculate μ and μ with collisions taken into account, we split the Hamilto-
nian into the non-interacting and interacting part,

H = Hel +Mel = ~ω
∑
i

σ+i σ−i + ~Ωel
∑
⟨i,j⟩

σ+i σ−j . (6.35)

Using theTaylor expansion and theBaker-Campbell-Hausdorff formula, we can show
that

e−βH = e−β(Hel+Mel) = e−βHel

(
 − βMel −



β[Hel,Mel]

)
+ . . . . (6.36)

e commutator on the right vanishes and we can write

μ =


N(N− )

Z

N∑
i=

∑
j̸=i

tr
(
e−βHel ( − βMel) (σ−i + σ+i )(σ−j + σ+j )

)
. (6.37)

Taking the trace in the basis of atomic states |⟩ and |⟩ means that only a few terms
remain,

μ = − β~Ωel

N(N− )

N∑
i=

∑
j̸=i

⟨σ+i σ−i σ−j σ+j ⟩

= β~Ωel
(
s − s

)
= μ (6.38)

In addition to these, we find that

μ = μ =  . (6.39)

6.3.3 Vibrational degrees of freedom

e density matrix ρvib of the thermal state of the vibrational degrees of freedom of
the trapped particles equals

ρvib =


Zvib
e−βH , (6.40)
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where the HamiltonianH describes the motional degrees of freedom. Using the no-
tation introduced in Section 6.2.3, it equals

H = Hvib +Mvib . (6.41)

Moreover, Zvib = Tr
(
e−βH) is a partition function and β is the thermal parameter

which depends on the total energy of the trapped atoms at the beginning of the ther-
malisation stage. In the absence of any collisions (Ωvib = ), the expectation value
for the mean number of excitations in this thermal state of a single harmonic oscil-
lator with Hamiltonian Hvib is well known and equals (cf. Blaise & Henri-Rousseau
(2011))

m =


eβ~ν − 
(6.42)

for eβ~ν < . To calculate ζ for the case where Ωvib = , we notice that there are no
interactions between the particles and that there is no flux of particles out of the trap.
Hence the above thermal state is a product state with

⟨xixj⟩ = ⟨xi⟩⟨xj⟩ (6.43)

and

⟨pipj⟩ = ⟨pi⟩⟨pj⟩ =  (6.44)

for all particles i and j. Combining this observation with Eqs. (6.7) and (6.28) yields

ζ = Mν
~

⟨x⟩ (6.45)

without any approximations, where ⟨x⟩ is the mean distance of the atoms from the
trap center. Hence ζ =  for a perfectly symmetric trap when Ωvib = .

However, this no longer applies for Ωvib ̸= . Using Eq. (6.41) together with Eq.
(6.36), we can calculate the expectation value ζ as

ζ = − β~Ωvib

N(N− )

N∑
i=

∑
j̸=i

⟨b†i bi(b
†
j bj + )⟩

= −β~Ωvibm(m+ ) . (6.46)

As we will see later, evolution of this coherence during the heating stage translates
into the change in temperature, and Eq. (6.46) shows that it only vanishes form = .
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6.3.4 Cavity degrees of freedom

During the thermalisation phase, the bubble walls remain transparent and there is no
need to quantise the light inside the bubble. At the end of the thermalisation phase,
when the walls of the bubble become opaque, this situation changes. However, we
can safely assume that the cavity field is at this stage in its vacuum state, although the
characteristic frequencies of the atoms and the cavity are of comparable size. Instead
of thermalising, the cavity field interacts with the atoms, as described in the next
section.

6.4 Heating stage

e heating phase begins, when the walls of the sonoluminescing bubble become
opaque. is is when the electromagnetic field inside the bubble becomes quantised
and the interaction between the atoms, the phonons and the cavity photons inside the
bubble is no longer negligible. To describe their dynamics, we make in the following
extensive use of Eqs. (6.18) and (6.20). For example, Eq. (6.20) can be used to show
that any expectation value of a time-independent observable AI in the interaction
picture evolves according to the differential equation

⟨ȦI⟩ = − i
~
⟨[AI,HI]⟩+ κ

⟨
c†AIc− 

AIc†c− 
c

†cAI
⟩
. (6.47)

In the following, we refer to equations of this form as rate equations.
e calculations in the following section rely on several quantum optical stan-

dard approximations. For example, we assume that

ν, κ ≫ ηg . (6.48)

Another approximation which we use below is the so-called Lamb-Dicke approxi-
mation based on Eq. (6.16). Moreover we are especially interested in the heating of
a relatively large cloud of atomic particles,

N ≫  . (6.49)

Subsequently, we only take terms which dominate the heating process into account.
As we shall see below, these terms scale as Nη.

6.4.1 Additional expectation values

As we shall see below, to obtain a closed set of rate equations, including one for
the mean phonon number m, we need to consider the time evolution of the single-
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particle expectation values xabc and the two-particle expectation values x̃abc given by

xabc ≡ 
N

N∑
i=

⟨
B(i)
a Σ(i)

b Cc

⟩
,

x̃abc ≡ 
N(N− )

N∑
i=

∑
j̸=i

⟨
B(i)
a Σ(j)

b Cc

⟩
,

x̂abcd ≡ 
N(N− )

N∑
i=

∑
j̸=i

⟨
B(i)
a Σ(i)

b Σ(j)
c Cd

⟩
. (6.50)

All of the above expectation values correspond to operators which contain a non-
trivial cavity photon component. ey hence evolve on the relatively fast time scales
given by the cavity decay rate κ and the collective cavity coupling constant Nηg. In
addition we need to consider the two and three particle atom-phonon expectation
values yabcd, ỹabcd, and ŷabcde defined as

yabcd ≡ 
N(N− )

N∑
i=

∑
j̸=i

⟨B(i)
a B(j)

b Σ(i)
c Σ(j)

d ⟩,

ỹabcd ≡ 
N(N− )(N− )

N∑
i=

∑
j̸=i

∑
k ̸=i,j

⟨B(i)
a B(k)

b Σ(j)
c Σ(k)

d ⟩,

ŷabcde ≡ 
N(N− )(N− )

N∑
i=

∑
j̸=i

∑
k ̸=i,j

⟨B(i)
a B(k)

b Σ(i)
c Σ(j)

d Σ(k)
e ⟩. (6.51)

e normalisation of the right hand sides of these equations has again been cho-
sen such that they are effectively single-particle measures and therefore in general
independent of the exact number N of atoms in the trap.

6.4.2 Time evolution in first order in η

e purpose of this section is to analyse the time evolution of the average mean
phonon number m during the heating stage. Before doing so, we emphasize again
that we are only interested in very tightly confined particles (cf. Eq. (6.48)). Hence
the expectation values of phonon operators evolve in general on the time scale given
by the phonon frequency ν. is means, they oscillate effectively around zero and
can be neglected. e only exception are the variables defined in Eqs. (6.27) and
(6.28). Using Eqs. (6.25) and (6.47) and neglecting collisions between the particles,
one can show that m and ζ both evolve on a relatively slow time scale. eir time
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derivatives are given by

ṁ =


ηg (x + x) ,

ζ̇ =


ηg (x̃ + x̃) (6.52)

without any approximations other thanΩvib = Ωel = . In addition, we need to have
a closer look at the atomic variables defined in Section 6.3.1. Proceeding as above,
one can show that these evolve according to

μ̇ = −ηg x̃ + ηg x̂ ,

μ̇ = ηg (x̃ − x̃)− ηg (x̂ − x̂) ,

μ̇ = ηg x̃ + ηg x̂ , (6.53)

again without any approximations other than neglecting collisions. To analyse the
dynamics of the above rate equations, we now have a closer look at the rate equations
of the x-expectation values and their tilde counterparts.

6.4.3 Relevant time evolution in zeroth order in η

All of the single-particle x-expectation values are equal to zero in zeroth order in η.
However, when the number of confined particles N is large (cf. Eq. (6.49)), then ηN
is effectively a term in zeroth order in η. Taking this into account, one can show that
the expectation values xabc with a, c = ,  evolve according to

ẋb = −ν xb + Δ xb − Nηg yb −


κ xb ,

ẋb = −ν xb − Δ xb + Nηg yb −


κ xb ,

ẋb = ν xb + Δ xb − Nηg yb −


κ xb ,

ẋb = ν xb − Δ xb + Nηg yb −


κ xb (6.54)

in zeroth order in η. Here we discarded all relatively small terms which scale as ηg
due to the time scale separation introduced earlier in Eq. (6.48). Analogously, one
can show that

˙̃xb = −ν x̃b + Δ x̃b − Nηg ỹb −


κ x̃b ,

˙̃xb = −ν x̃b − Δ x̃b + Nηg ỹb −


κ x̃b ,

˙̃xb = ν x̃b + Δ x̃b − Nηg ỹb −


κ x̃b ,

˙̃xb = ν x̃b − Δ x̃b + Nηg ỹb −


κ x̃b (6.55)
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in zeroth order in η. ese equations are the same as in Eq. (6.54) but with the
x-variables replaced by x̃-expectation values and the y-variables replaced by their
respective three-particle expectation values ỹ. Analogously, one can show that the
xabcd-expectation values evolve according to the differential equations

˙̂x = −ν x̂ + Δ x̂ − Nηg ŷ −


κ x̂ ,

˙̂x = −ν x̂ − Δ x̂ + Nηg ŷ −


κ x̂ ,

˙̂x = −ν x̂ + Δ x̂ − Nηg ŷ −


κ x̂ ,

˙̂x = −ν x̂ − Δ x̂ + Nηg ŷ −


κ x̂ ,

(6.56)

while

˙̂x = ν x̂ + Δ x̂ − Nηg ŷ −


κ x̂ ,

˙̂x = ν x̂ − Δ x̂ + Nηg ŷ −


κ x̂ ,

˙̂x = ν x̂ + Δ x̂ − Nηg ŷ −


κ x̂ ,

˙̂x = ν x̂ − Δ x̂ + Nηg ŷ −


κ x̂ . (6.57)

We now need to have a closer look at the y-expectation values in Eqs. (6.54)–(6.57).
As long as we are only interested in the time evolution of themean phonon num-

berm on the relatively slow time scale given by ηg, the dynamics of the x-expectation
values needs to be analysed only in zeroth order in η. Doing so, we notice that none
of the time derivatives of the y expectation values scales as Nηg. e interactions
between the different particles during the heating stage play no role in their time
evolution. Hence, the y-expectation values in Eq. (6.51) are to a very good approxi-
mation given by

yabcd =


N(N− )

N∑
i=

∑
j̸=i

⟨B(i)
a B(j)

b ⟩⟨Σ(i)
c Σ(j)

d ⟩

ỹabcd =


N(N− )(N− )

N∑
i=

∑
j̸=i

∑
k ̸=i,j

⟨B(i)
a B(k)

b ⟩⟨Σ(j)
c Σ(k)

d ⟩,

ŷabcde =


N(N− )(N− )

N∑
i=

∑
j̸=i

∑
k ̸=i,j

⟨B(i)
a B(k)

b ⟩⟨Σ(i)
c ⟩⟨Σ(j)

d Σ(k)
e ⟩. (6.58)
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6.4.4 Weak-excitations regime

e two-particle correlations in the above equations come from the thermal state
which has previously been created during the thermalisation stage. In the following,
we assume that the expectation value of Σ(i)

 , i.e. the variable s, is in general very
small (s ≪ ). Moreover, one can show that most phonon expectation values evolve
rapidly on the time scale given by the phonon frequency ν with m and ζ being the
only exceptions. Taking this into account and replacing the above expectation values
by their respective particle averages, we find that

ycd = ỹcd = ζ μcd ,

ycd = ỹcd = ŷde = ŷde =  . (6.59)

Moreover, due to the above mentioned time scale separation, the rate equations of
the x-coherences can be solved via an adiabatic evolution. is yields

xb =
Nηg
K

[
Δ(κ − ν + Δ)μb − κ(κ + ν + Δ)μb

]
ζ ,

xb =
Nηg
K

[
κ(κ + ν + Δ)μb + Δ(κ − ν + Δ)μb

]
ζ ,

xb =
Nηgν

K
[
κΔ μb − (κ + ν − Δ)μb

]
ζ ,

xb =
Nηgν

K
[
(κ + ν − Δ)μb + κΔ μb

]
ζ (6.60)

with the constant K defined as

K ≡ κ + (Δ − ν) + κ(Δ + ν) . (6.61)

Exactly the same equations apply for the respective x̃-xpectation values. Moreover,
we find that

x̂cd =  (6.62)

to a very good approximation. Substituting these x-variables into Eqs. (6.52) and
(6.53) yields a closed set of five effective heating equations.

6.4.5 Effective heating equations

We get effective heating equations, when substituting the results of the adiabatic
elimination in the previous subsection into Eqs. (6.52) and (6.53). ese are given
by

ṁ = ζ̇ =
NηgνκΔ

K
(
μ + μ

)
ζ (6.63)
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and

μ̇ = −Nηg

K
[
κ(κ + ν + Δ)μ − Δ(κ − ν + Δ)μ

]
ζ ,

μ̇ =
Nηg

K
[
Δ(κ − ν + Δ)

(
μ − μ

)
− κ(κ + ν + Δ)μ

]
ζ ,

μ̇ = −Nηg

K
[
−Δ(κ − ν + Δ)μ + κ(κ + ν + Δ)μ

]
ζ , (6.64)

since μ and μ are exactly the same.
When having a closer look at the above equations, we notice that μ does not

evolve in time, as long as μ =  and μ = μ. Since this is the case at the beginning
of the heating stage, as was outlined in the previous section, the above equations
simplify effectively to only three equations

ṁ = ζ̇ ,

ζ̇ =
Nηgκ

K
νΔ μζ ,

μ̇ = −Nηgκ
K

(κ + ν + Δ) μζ , (6.65)

aer introducing the new variable μ as

μ ≡ μ + μ . (6.66)

As long as the detuning Δ (cf. Eq. (6.19)) is positive, and μ and ζ both have the same
sign, as it is in general the case during the phase of the bubble collapse, the average
mean phonon number m and the phonon expectation value ζ increase rapidly in
time at the expense of the electronic expectation value μ. As mentioned already in
the introduction, the thermalisation stage creates a resource, namely μ, which fuels
a collectively-enhanced heating process during the bubble collapse phase.

e analysis of Eqs. (6.65) shows that

ṁ = ζ̇

ζ̇ = C (C − Cζ) ζ ,

μ̇ = −CΔ(C − μ)μ (6.67)

where

C =
Nηgκν

K
, C =

κ + ν + Δ

ν
, (6.68)

which are positive, and

C = Δμ + Cζ . (6.69)
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Eqs. (6.67) have the solutions

ζ(t) = Cζ
e−CCνt(C − Cζ) + Cζ

,

μ(t) =
Cμ

eCCΔt(C − μ) + μ
, (6.70)

where

ζ = ζ() ,

μ = ζ() (6.71)

are the initial values of the atomic coherences at the beginning of the heating stage.
We immediately see that for ζ = , the coherence ζ(t) remains zero during the
entire process, and it follows from Eq. (6.67) that ṁ = , and no heating occurs. For
ζ ̸= , the coherence ζ(t) approaches the stationary state

lim
t→∞

ζ(t) = ζ +
Δμ
C

, (6.72)

which means that the total change in ζ, and hence in m, is

dm = dζ =
Δνμ

κ + ν + Δ . (6.73)

erefore, we need both atomic coherences to maintain the heating process. Solu-
tions in Eqs. (6.70) are plotted in Fig. 6.2 which shows that the evolution of ζ(t) is
strongly dependent on the evolution of μ(t). As the electronic coherence μ(t) decays
to zero, the growth of ζ(t) stops and heating no longer occurs.

6.5 Discussion

Asmentioned earlier, the model in the chapter is a toymodel and provides the quan-
tum description of the heating mechanism of sonoluminescence. Fig. 6.2 shows that
the system of time-dependent differential equations in Eq. (6.67) describes an in-
creasing average mean phonon number of the atomic system and that this increase
is strongly dependent on existence of electronic excitations of the atoms, which are
characterised by μ(t).

In addition, we would like to remark on how luminous intensity of the single
bubble sonoluminescence translates into temperature of different atomic systems.
Eq. (6.42) relates the average mean phonon number m to the eigenfrequency of the
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Figure 6.2: e evolution of the phonon coherence ζ(t) and the electronic co-
herence μ(t) during the heating stage, as described by Eqs. (6.70). Eqs. (6.67)
show, that the change in the average mean phonon number is equal to the
change in the phonon coherence ζ(t). Both are fueled by the electronic coher-
ence μ(t), which vanishes during the heating stage, at which point the heating
stops.

atomic motion ν. e eigenfrequency is given in terms of atomic position deviation
x as

ν =
~

Mx . (6.74)

Assuming that the particles occupy a fraction f of the total bubble volume, the posi-
tion x is related to the dimensions of the bubble as

Nx =


fπλ , (6.75)

where λ is the radius of the bubble. erefore, the increase in the average mean
phonon number dm in Eq. (6.73) can be linked to change in temperature dT via
Eq. (6.42), which results in

Δνμ
κ + ν + Δ =



e
~ν

kB(T+dT) − 
− 

e
~ν
T − 

, (6.76)

93



6. QUANTUM SONOLUMINESCENCE

where T is the initial temperature, ν follows Eq. (6.74) and μ follows Eq. (6.38).
Assuming the number of excited atomsNs follows the luminous intensity of the radi-
ating bubble, we can solve Eq. (6.76) for the temperature increase dT. Fig. 6.3 shows
that our model predicts the temperature difference to be higher for already brighter,
and hence hotter, noble gases, which occurs as we go down the periodic table.
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Figure 6.3: Dependence of the temperature rise on the atomic species in the ra-
diating bubble. Noble gases with large atomicmasses produce light with higher
intensity and undergo stronger heating.

6.6 Conclusions

In this chapter, we identified major heating properties of sonoluminescence of single
cavitating bubbles. We showed how a two-stage quantum model, which implements
processes of thermalisation and quantum optical approaches, can explain the col-
lective heating effect of sonoluminescence. e collective heating occurs during the
collapse phase of the bubble lifecycle, which is preceded by a growth phase, during
which the radius of the bubble gradually increases. In our model, we showed that
strong collective heating strongly depends on atomic coherenceswhich are generated
beforehand by the thermalisation of the growth phase. erefore, the thermalisation
stage and the heating stage are closely connected and both are necessary to explain
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the sonoluminescence cycle. In addition, we demonstrated how creation of plasma
is necessary for heating by taking atomic collisions into account and how the final
temperature is dependent on the atomic species present in the bubble. Overall, our
many-body toy model identifies main additional heating mechanisms of sonolumi-
nescence and provides a relatively simple theoretical description.
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Chapter 7

Conclusions

In this thesis, we developed and analysed a quantum-mechanicalmodel for collective
cooling and heating of a many-body atomic system. Our model consists of a two-
stage process, where we employ quantum-optical models together with the frame-
work of thermodynamics. e entire process is split into a thermalisation stage,
where necessary coherences betweenmultiple particles are being created, and a cool-
ing or heating stage, where the coherences mentioned above fuel the cooling or heat-
ing process and create a new stationary state. e symbiosis of the two stages results
in suitable description of collective dynamics of the many-body atomic system.

e cooling stage of the full framework was first applied to a single atom con-
fined within an optical resonator. e quantum-optical cooling model is based on
applying themaster equation to the atomic system strongly coupled to a single-mode
optical cavity. e Jaynes-Cummings model serves as the foundation of the theoret-
ical picture used to describe the atomic system. e rate equations obtained using
the master equation were solved to show that the single-atom system reaches a sta-
tionary state where the final temperature is minimised for three distinct resonances.

e triplet of resonances consist of the well-known red sideband of free space
laser cooling as well as two additional resonances separated from the red sideband
by the laser Rabi frequency, and therefore resembles the free space Mollow triplet.
It was shown that for a wide range of experimental parameters, one of the newly
found resonances yields the lowestmean phononnumber stationary state of all three.
erefore, driving the system on that resonance instead of the red sideband can pro-
vide a better alternative if the lowest possible mean phonon number is the goal of
the experiment. ese findings have been published in Kim & Beige (2013).

e full two-stage model was first applied to a one-dimensional atomic gas con-
fined in a single-mode resonator. We found that alternating cooling pulses with peri-
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ods of thermalisation can result in very low temperatures of the atomic gas. e sta-
tionary state of the cooling stage was shown to be strongly dependent on the phonon
coherence ζ which is associated with the phonon exchange between the atoms. e
phonon coherence ζ itself would decay to zero during the cooling stage. e cool-
ing rate during the cooling stage was shown to be collective, i.e. increasing with the
number of particle in the atomic gas. erefore, to take advantage of the collec-
tive cooling rate, we proposed to introduce an additional thermalisation stage which
would revive the phonon coherence without compromising the temperature of the
atomic gas and prepare the system for the next cooling stage.

e full two-stage model therefore consists of combining both stages in succes-
sion for successfull collective cooling of themany-body atomic gas. Since the cooling
rate is collective, the duration of the cooling pulses can be kept very short. Overall,
when alternating cooling and thermalisation stages, the system is expected to reach
very low temperatures.

We then applied our two-stage model to describe the mechanism of sonolumi-
nescence. e collapse of the bubble during sonoluminescence occurs aer a period
of bubble radius growth and is accompanied by rapid temperature increase of the
gas within the bubble. During the collapse, the bubble wall becomes opaque and
the radiation field inside strongly resembles that of an optical cavity. We treated the
atomic system trapped inside the bubble as being heated in an optical cavity, while
the collapse was being modeled using the quantum optical approach. Alternating
now thermalisation stages with heating stages results in description of growth and
collapse phases of the bubble lifecycle. We show how the thermalisation stage cre-
ates atomic coherences necessary to explain the heating mechanism of the heating
stage and how it accounts for the creation of plasma. We also identify heating reso-
nances of the atomic gas inside the cavitating bubble and show how its temperature
grows during the collapse, as well as how the type of the atomic species influences
this growth.

Overall, we showhowour two-stagemodel combines quantummechanicalmod-
els together with the framework of thermodynamics to describe the observed phe-
nomena within many-body collective cooling and single-bubble sonoluminescence.
Alternating twophysically distinct stages could provide a viable approachwhen treat-
ing vibrational and electronic energies of many-body atomic systems.
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