
Deep Gaussian Processes
and Variational Propagation of

Uncertainty

Andreas Damianou
Department of Neuroscience

University of Sheffield

This dissertation is submitted for the degree of

Doctor of Philosophy

February 2015

I dedicate this thesis to my family.

Acknowledgements

I would like to thank my supervisor, Prof. Neil Lawrence, for his invaluable guidance, endless

support and patience during my studies; for making sure that I focus on the journey, not

only on the destination. Neil trusted me with his many great ideas and, at the same time,

encouraged me to confidently further develop and explore them in my own ways, always

while offering invaluable advice. Overall, he has inspired me both as an academic and as a

person and, therefore, I feel very privileged to have worked under his supervision.

I am very grateful to Dr Michalis Titsias, who was always keen to discuss matters ranging

from high level ideas to small mathematical details. Our close collaboration in the early days

of my studies and in the material of Chapter 3 of this thesis meant a lot for the rest of my

trajectory. I would like to thank Prof. Carl Henrik Ek; our initial work in material related

to Chapter 5 evolved in a miscellany of ideas and an ongoing collaboration and friendship.

Thanks to Dr James Hensman for the literally dozens of useful discussions, on matters related

to this thesis and not only, throughout the whole period of my studies. Thanks to Prof. Magnus

Rattray and to my mentor in Microsoft Research, Dr Ashish Kapoor, for useful discussions.

I am grateful to the funding bodies that enabled me to pursue my studies, offering me

a scholarship each: the Greek State Scholarships Foundation (IKY) and the University of

Sheffield / Moody Endowment Fund.

I feel lucky to be part of a motivating group in Sheffield within the unique environment

of SITraN. A big thanks to all of my current and past lab mates, too many to mention each

separately; they all made this an unforgettable experience in so many ways. A special thanks

to those who helped in particular ways (discussions, proofreading sections) with the devel-

opment of this thesis. Alphabetically: Zhenwen Dai, Nicoló Fusi, Alfredo Kalaitzis, Ricardo

Andrade Pacheco, Alan Saul, Max Zwiessele.

A big thanks to my family, for sending their love and support from miles away and for

being the first teachers of my life. This thesis is dedicated to them: my parents, Babis and

Ritsa, my brother, Lefteris, my grandmother “γιαγιá Eλϵ́νη”; also to the memory of my

loving grandfather, “παππoύς Λϵυτ ϵ́ρης”, who always inspired me to be a better person.

Last but certainly not least, a big thanks to Alessandra, for being by my side and reminding

me that happiness is in the simple things.

Abstract

Uncertainty propagation across components of complex probabilistic models is vital
for improving regularisation. Unfortunately, for many interesting models based on
non-linear Gaussian processes (GPs), straightforward propagation of uncertainty is
computationally and mathematically intractable. This thesis is concerned with solv-
ing this problem through developing novel variational inference approaches.

From a modelling perspective, a key contribution of the thesis is the development
of deep Gaussian processes (deep GPs). Deep GPs generalise several interesting
GP-based models and, hence, motivate the development of uncertainty propagation
techniques. In a deep GP, each layer is modelled as the output of a multivariate GP,
whose inputs are governed by another GP. The resulting model is no longer a GP but,
instead, can learn much more complex interactions between data. In contrast to other
deep models, all the uncertainty in parameters and latent variables is marginalised out
and both supervised and unsupervised learning is handled.

Two important special cases of a deep GP can equivalently be seen as its build-
ing components and, historically, were developed as such. Firstly, the variational

GP-LVM is concerned with propagating uncertainty in Gaussian process latent vari-
able models. Any observed inputs (e.g. temporal) can also be used to correlate the
latent space posteriors. Secondly, this thesis develops manifold relevance determina-

tion (MRD) which considers a common latent space for multiple views. An adapted
variational framework allows for strong model regularisation, resulting in rich latent
space representations to be learned. The developed models are also equipped with al-

gorithms that maximise the information communicated between their different stages
using uncertainty propagation, to achieve improved learning when partially observed

values are present.
The developed methods are demonstrated in experiments with simulated and real

data. The results show that the developed variational methodologies improve practical
applicability by enabling automatic capacity control in the models, even when data
are scarce.

Contents

List of Figures xiii

List of Tables xvii

Notation 1

1 Introduction 3
1.1 Outline of the Thesis . 4

1.2 Associated Publications and Software 6

2 Gaussian processes 9
2.1 Preliminary . 9

2.1.1 From Gaussian Distributions to Gaussian Processes 10

2.1.2 From Bayesian Regression to Gaussian Processes 14

2.1.3 Covariance Functions . 15

2.1.4 Latent Inputs . 17

2.1.5 Uncertain Inputs . 20

2.2 Sparse Gaussian Processes . 20

2.3 Variational Sparse Gaussian Processes - a Unified View 23

2.3.1 The Preliminary Variational Bound L ≤ log p(Y|U,X) . . . 25

2.3.2 Marginalisation of the Inducing Outputs 27

2.3.3 Collapsing the Inducing Variational Distribution 29

2.3.4 Comparison of the Sparse Methods 30

2.4 Discussion . 32

3 Variational Marginalisation of Latent Variables in Gaussian Process Mod-
els 35
3.1 Background . 36

3.2 Gaussian Processes with Latent Variables as Inputs 41

x Contents

3.2.1 Different Latent Space Priors and GP-LVM Variants 41

3.2.2 Drawbacks of the MAP Training Procedure 42

3.3 Variational Gaussian Process Latent Variable Models 44

3.3.1 Standard Variational Bayesian Inference 44

3.3.2 Standard Mean Field is Challenging for GP-LVM 45

3.3.3 Tractable Lower Bound by Introducing Auxiliary Variables . . 47

3.3.4 Collapsing the Inducing Variational Distribution 52

3.3.5 Discussion on the Different Forms of The Variational Bound . 54

3.3.6 Applying the Variational Framework to Different GP-LVM
Variants . 56

3.3.7 Time Complexity and Very High Dimensional Data 60

3.4 Predictions with the Variational GP-LVM 61

3.4.1 Predictions with the Standard Variational GP-LVM 61

3.4.2 Predictions in the Dynamical Model 64

3.5 Demonstration of the Variational Framework 65

3.5.1 Covariance Functions . 66

3.5.2 Visualisation Tasks . 66

3.5.3 Human Motion Capture Data 67

3.5.4 Modeling Raw High Dimensional Video Sequences 70

3.5.5 Class Conditional Density Estimation 73

3.5.6 Big Data . 75

3.6 Discussion . 76

4 Uncertain Inputs in Variational Gaussian Processes 85
4.1 Background . 86

4.2 Uncertain Inputs Reformulation of GP Models 88

4.2.1 Variational (Back)-Constraint 89

4.3 Gaussian Process Learning with Missing Values 91

4.3.1 Semi-described Learning . 92

4.3.2 Auto-regressive Gaussian Processes 96

4.3.3 Semi-supervised Learning 99

4.4 Discussion and Future Work . 102

5 Manifold Relevance Determination 103
5.1 Background . 104

5.2 Model . 105

5.2.1 Manifold Relevance Determination 106

Contents xi

5.2.2 Bayesian Training . 108

5.2.3 Generalisation to Many Views and Optimization 109

5.2.4 Inference . 110

5.3 Experiments . 111

5.3.1 Toy data . 112

5.3.2 Yale Faces . 112

5.3.3 Pose Estimation and Ambiguity Modelling 117

5.3.4 Classification . 119

5.3.5 Multiview Models and Data Exploration 121

5.3.6 Automatic Correlation Learning of Output Dimensions 126

5.4 Conclusions . 128

6 Deep Learning with Gaussian Processes 131
6.1 Background . 133

6.1.1 Function Composition for Deep Learning 134

6.1.2 Process Composition . 136

6.1.3 Inference Challenges and Expressiveness 137

6.1.4 Model Capacity and Regularization in Deep GPs 139

6.1.5 Unsupervised Deep Learning 141

6.2 Deep Gaussian Processes . 142

6.2.1 Probabilistic Definition . 143

6.2.2 Variational Inference in Deep GPs Within a Layer 145

6.2.3 Variational Inference in Deep GPs Across Layers 147

6.2.4 Supervised Learning . 150

6.2.5 Autoencoders . 151

6.3 Experiments . 152

6.3.1 Toy data . 153

6.3.2 Unsupervised Learning . 159

6.3.3 Autoencoders . 162

6.4 Conclusion and Future Work . 165

7 Conclusions and Discussion 169
7.1 Summary of Contributions . 169

7.2 Future Work . 170

References 173

xii Contents

Appendix A Useful Identities 187
A.1 Gaussian Identities . 187
A.2 Matrix Identities . 188
A.3 Useful Formulae for Derivative . 188

Appendix B Variational GP-LVM 191
B.1 Further Details About the Variational Bound 192

B.1.1 Calculating the Explicit Form of q(uj) 192
B.1.2 Detailed Derivation of F̂j(q(X)) in Equation (3.23) 193

B.2 Calculating the {ξ,Ψ,Φ} Quantities 194
B.3 Derivatives of the Variational Bound for the Dynamical Variational

GP-LVM . 195
B.3.1 Derivatives w.r.t the Variational Parameters 196
B.3.2 Derivatives w.r.t θ = (θf ,θx) and β 197

B.4 Variational Lower Bound for Partially Observed Test Data 198
B.4.1 The Variational Bound in the Test Phase and Computational

Issues . 198
B.4.2 Calculation of the Posterior q(FU

∗ |X∗) of Equation (3.4.1) . . 200

Appendix C Deep Gaussian Processes 201
C.1 Bound on the marginal likelihood 201

C.1.1 The preliminary bound for the deep GP 202
C.1.2 The Final Form of the Bound 203

List of Figures

1.1 Example graph representing a probabilistic model. 4

2.1 GP fit example . 13
2.2 One dimensional samples drawn from different covariance functions. . 17
2.3 2D samples drawn from a EQ plus EQ-periodic cov. function. 18
2.4 GPs and inducing variable GPs. 31

3.1 A Gaussian distribution propagated through a non-linear mapping. . . 37
3.2 Manifold mapping illustration: 2D to 3D. 38
3.3 GP-LVM and variational GP-LVM graphical models. 48
3.4 Left: The squared inverse lengthscales found by applying the varia-

tional GP-LVM with ARD EQ kernel on the oil flow data. Right: Re-
sults obtained for the standard GP-LVM with q = 10. These results
demonstrate the ability of the variational GP-LVM to perform a “soft”
automatic dimensionality selection. The inverse lengthscale for each
dimension is associated with the expected number of the function’s
upcrossings in that particular direction (dimension); smaller values
denote a more linear behaviour, whereas values close to zero denote
an irrelevant dimension. For the variational GP-LVM, figure (a) sug-
gests that the non-linearity is captured by dimension 2, as also con-
firmed by figure 3.5a. On the other hand, figure (b) demonstrates the
overfitting problem of the GP-LVM which is trained with MAP. . . . 68

3.5 Var. GP-LVM, oil data experiment: latent spaces. 68
3.6 Var. GP-LVM, mocap experiment: discovered latent spaces. 70
3.7 Var. GP-LVM, mocap experiment: lengthscales 71
3.8 Var. GP-LVM, mocap experiment: predictions visualisation example. 72
3.9 Dyn. var. GP-LVM, video reconstruction example 1 (“Missa” data). . 74
3.10 Dyn. var. GP-LVM, video reconstruction example 2 (“Missa” data). . 78
3.11 Dyn. var. GP-LVM, video reconstruction example 3 (“Ocean” data). . 79
3.12 Dyn. var. GP-LVM, video reconstruction example 4 (“dog” data). . . 80

xiv List of Figures

3.13 Dyn. var. GP-LVM, “dog data” experiment: lengthscales. 81
3.14 Dyn. var. GP-LVM, video extrapolation example (“dog” data). 82
3.15 Stochastic var. GP-LVM: adaptive steplength (big data). 83
3.16 Stochastic var. GP-LVM: latent space projections (big data). 83

4.1 Graphical models for uncertain and partially observed inputs; semi-
supervised and variational (back)-constraint approaches. 89

4.2 Semi-described GP: partially missing inputs experiment. 94
4.3 Semi-described GP: partially missing inputs experiment. 95
4.4 [Auto-regressive GPs: Iterative prediction for a chaotic timeseries. . . 98
4.5 Semi-supervised GP: partially missing outputs experiment. 100

5.1 Manifold Relevance Determination graphical model, compared with
older approaches. 107

5.2 MRD applied to toy data. 113
5.3 “Yale Faces” data generation procedure. 114
5.4 MRD: Relevance weights for the Yale faces experiment. 114
5.5 MRD: Latent projections for the Yale faces experiment. 115
5.6 Variational GP-LVM applied to one of the views of the Yale faces

data: ARD weights and latent projections. 115
5.7 MRD, Yale Faces experiment: novel outputs obtained after structured

sampling of the latent space. 116
5.8 MRD, Yale Faces experiment: correspondence problem solution. . . . 117
5.9 MRD, human pose epxeriment: ambiguity example. 118
5.10 MRD, human pose experiment: predictions examples. 120
5.11 Accuracy obtained after using MRD as a generative classifier. 122
5.12 Latent space projection and weights for the MRD classification ex-

periment. 123
5.13 Two example frames of the AVletters dataset. 123
5.14 MRD, “AVletters” experiment 1 (16 views): optimised ARD weights. 124
5.15 MRD, “AVletters” experiment 2 (3 views): optimised ARD weights. . 125
5.16 Fully independent MRD experiment. 128

6.1 A deep Gaussian process with two hidden layers (compact depiction). 137
6.2 Samples from a deep GP showing the generation of features. 139
6.3 Samples from a deep GP shown for each of the 3 stacked layers. . . . 144
6.4 Deep GP graphical model . 146
6.5 Deep GP, step function demo: posterior visualisation. 154
6.6 Deep GP, step function demo: sample path visualisation. 155

List of Figures xv

6.7 Deep GP, step function demo: warping functions. 156
6.8 Deep GP: toy regression demo. 157
6.9 Deep GP: Toy manifold discovery problem. 158
6.10 Deep GP: Digits experiment (ARD weights). 160
6.11 Deep GP: Digits experiment (manifold). 161
6.12 Deep GP: Digits experiment (samples). 162
6.13 Deep GP: motion capture experiment (model and ARD weights). . . . 163
6.14 Deep GP: motion capture experiment (latent space projections). . . . 164
6.15 Visualisation of autoencoders’ results. 167

List of Tables

3.1 Variational GP-LVM: Results for the mocap experiment. 73
3.2 Dynamical var. GP-LVM: Results for the video experiment 73
3.3 The test error made in the whole set of 2007 test points by the varia-

tional GP-LVM, 1-vs-all Logistic Regression, SVM classification and
two types of GP classification. 75

4.1 Mean squared and mean absolute error obtained when extrapolating
in the chaotic time-series data. GPuncert refers to the basic (moment
matching) method of Girard et al. [2003] and the “naive” autoregres-
sive GP approach is the one which does not propagate uncertainties. . 99

5.1 MRD, human pose experiment: MSE and comparisons. 121
5.2 View/row split for the first ‘AVletters’ experiment. 124
5.3 View/row split for the second ‘AVletters’ experiment. 125
5.4 RMSE for test predictions on “AVletters”: MRD and comparisons. . . 126

6.1 Qualitative analysis of autoencoders. 165

Notation

Indexing

Vectors: A vector t ∈ ℜn is indexed as: t = [t1, t2, · · · , tn]⊤.

Random Variables in Matrices
Let X ∈ ℜn×q be a matrix
containing random variable in-
stantiations. We represent:
· The ith row as a vector xi,:

· The jth column as a vector xj

· The scalar element in ith row
and jth column as xi,j

X=



x1,1 · · · x1,j · · · x1,q

...
. . .

... . .
. ...

xi,1 · · · xi,j · · · xi,q

... . .
. ...

. . .
...

xn,1 · · · xn,j · · · xn,q


x⊤
i,:

xj

General Matrices and Gram Matrices

In the case of a general matrix (or
a Gram matrix), the indexing is as
above but the upper case is main-
tained.

A=



A1,1 · · · A1,j · · · A1,q

...
. . .

... . .
. ...

Ai,1 · · · Ai,j · · · Ai,q

... . .
. ...

. . .
...

An,1 · · · An,j · · · An,q


A⊤

i,:

Aj

3D Tensors

A single index specifies the order of the
2D matrix (slice) within the tensor. Sub-
sequent indexing within a selected 2D
slice is done as for general matrices.

2 Notation

Random Variables in Deep Models
Indexing is done exactly as in the
cases mentioned above. How-
ever, all subscripts are turned
into superscripts. This conven-
tion is made so that the sub-
script is now used to reference a
specific layer of the deep model
(e.g. Hℓ is the collection of in-
stantiations for the ℓth layer).

Hℓ =



h
(1,1)
ℓ · · · h

(1,j)
ℓ · · · h

(1,q)
ℓ

...
. . .

... . .
. ...

h
(i,1)
ℓ · · · h

(i,j)
ℓ · · · h

(i,q)
ℓ

... . .
. ...

. . .
...

h
(n,1)
ℓ · · · h

(n,j)
ℓ · · · h

(n,q)
ℓ


(h

(i,:)
ℓ)⊤

h
(j)
ℓ

Graphical models

Node style Associated with a distribution Observed instantiations exist

Xu × ×
t ×
X ×
Y

Chapter 1

Introduction

For decades, significant advances in the field of computer science were associated
with algorithms which memorised data and executed pre-defined commands. In con-
trast, the field of modern artificial intelligence seeks solutions that allow machines
to “understand” and “learn”. In the field of machine learning, these challenges are
often solved using probabilistic models. In a probabilistic framework, data under-
standing is achieved by separating signal from noise and by removing redundancies
in complex and noisy data. To further achieve learning, the probabilistic model is
required to generalise beyond the observations, that is, allow the machine to “reason”
about novel data.

The concepts of uncertainty and noise are fundamental in probabilistic modelling.
Computational constraints restrict us to define probabilistic models that are only a
crude simplification of the complex reality. Therefore, uncertainty is introduced by
our specific modelling assumptions. For example, the graph of figure 1.1 (modi-
fied from Lawrence [2013]) represents only one of many possible ways of modelling
populations’ health1. Imperfect data collection also introduces uncertainty into the
learning framework. Indeed, real-world data are noisy and potentially censored, as
can be seen in the example of figure 1.1.

Motivation: Uncertainty Propagation and Regularisation

This thesis focuses on probabilistic approaches that solve the data understanding and
generalisation challenges within the same model, so that uncertainty is handled in a
coherent and principled way. The unknowns included in the probabilistic models of
interest are treated in a Bayesian manner, according to which priors are employed

1It is highlighted that this graph only constitutes a running example for motivating this section and
is not associated with the applications carried out in the thesis.

4 Introduction

time environment(epi)genomics

gene
expresssion

survival
analysis

social
network

data
clinical

measurements
& treatments

biopsy x-ray

fully observed

unobserved (latent)

partially observed

observed but uncertain
(approximate observation)

blood test

Fig. 1.1: Example graph representing a probabilistic model. Arrows represent (potentially)
causal directions (probabilistic mappings) and circles represent random variables.

to weight all possible outcomes. The resulting posterior distributions encode the un-
certainty in our estimates. Gaussian processes, as distributions over functions, use
this mechanism together with observed data to learn functional relationships between
variables. However, in complex models two main issues hinder the application of
principled uncertainty handling: firstly, propagating probabilities (rather than point
estimates) through non-linear functions is intractable for the most interesting cases.
For example, the uncertainty associated with our estimate of the missing values of
(epi)genotype, in figure 1.1 cannot be analytically propagated towards the leaf nodes
of the graph if non-linear Gaussian processes govern the intermediate layers’ map-
pings. Secondly, regularisation issues arise. Out of all the possible solutions to learn
for the unknowns, we wish to obtain one that generalises well while being strongly
supported by observations. A well regularised model avoids parameter explosion and
overfitting.

1.1 Outline of the Thesis

From a modelling perspective, the main contribution of the thesis is to define prob-
abilistic structures that allow for learning rich representations from observed data
in both, supervised and unsupervised learning. The models consider random vari-
ables that can be latent or associated with (potentially partial) observations. Gaussian
process (GP) mappings are employed to learn the variables’ interactions in a data-
driven, non-parametric and Bayesian fashion. Specifically, Chapter 3 is concerned
with single layered latent variable models for dimensionality reduction. These mod-
els are extended for dynamical systems’ modelling (Chapter 3), for semi-described
and semi-supervised learning (Chapter 4) and for multi-view learning (Chapter 5).

1.1 Outline of the Thesis 5

Although these models are useful in their own right, in Chapter 6 they are further
extended and combined to form a generic, nested Gaussian process model. We call
the resulting model a deep Gaussian process. The previously discussed models can
then be seen as special cases of a deep Gaussian process.

From a technical perspective, this thesis provides the mathematical framework
(based on variational inference) and algorithms that allow for efficient learning and
regularisation in the considered probabilistic constructions. This is essential, because
uncertainty is required to be propagated across the different nodes of the probabilis-
tic models and across the different stages of the developed algorithms. However,
straightforward uncertainty propagation in the considered models is computationally
and mathematically intractable, due to the non-linear relationships between variables.
In detail, the rest of the thesis is structured as follows:

• Chapter 2 constitutes a brief introduction to Gaussian processes. A special focus
and a unifying view is given for a set of variational approaches in the context of
sparse Gaussian processes.

• Chapter 3 considers the case where the inputs to a GP are latent variables, as in
the GP-LVM [Lawrence, 2005]. Starting from the Bayesian GP-LVM [Titsias and
Lawrence, 2010; Damianou et al., 2015], this chapter is concerned with deriving
the variational inference framework that allows for approximate marginalisation of
the latent variables. The resulting variational bound is examined carefully. A uni-
fied model is then presented and referred to as variational GP-LVM. This model
can additionally account for correlated posteriors over the latent space. Dynami-
cal, warped or autoencoder models can then be obtained as special cases. Auto-
matic relevance determination techniques are shown to enable automatic capacity
control in the model. In the context of the running example of figure 1.1, this
mechanism corresponds to switching off nodes that are irrelevant to the next layer.

• Chapter 4 has two objectives: firstly, to define a new type of learning, referred to as
semi-described learning, where the inputs to a Gaussian process regression prob-
lem are partially observed. This comes in contrast to the more traditional semi-
supervised learning task, where the missing values occur in outputs. Secondly,
this chapter aims to extend the variational framework and develop algorithms that
allow for semi-described and semi-supervised learning with Gaussian processes.
An auto-regressive Gaussian process is also defined as a special case.

• Chapter 5 defines manifold relevance determination (MRD), a latent variable model
which incorporates observations from several views. A Bayesian training frame-

6 Introduction

work penalises information redundancy in the latent space, so that the latent space
is automatically segmented into parts that are private to subsets, or relevant to all
views. This mechanism corresponds to switching off connections in a graphical
model like the one shown in figure 1.1. MRD can be used as a data exploration
tool, e.g. to discover signal that is common in heterogeneous but related data, such
as biopsy and x-ray. MRD can also be used as an inference tool, since information
can be transferred between views through the structured latent space.

• Chapter 6 defines and examines deep Gaussian processes (deep GPs). Deep GPs
consider layers of random variables, as illustrated in figure 1.1, and structurally
resemble deep neural networks. However, deep GPs are formed by nested process
(rather than function) composition, rendering them non-parametric. For example,
in a five layer model we have f(X) = g5(g4(g3(g2(g1(X))))), where each gi(·) is a
draw from a Gaussian process. This results in a powerful class of models that is no
longer equivalent to a Gaussian process. In contrast to other deep models all the
uncertainty in parameters and latent variables is marginalised out. This is achieved
by extending the variational methodology to allow for uncertainty propagation
between layers. When combined with the structure learning methods described in
previous chapters (e.g. MRD, semi-described learning, autoencoders), deep GPs
have the potential to learn very complex, non-linear interactions between data in
both, supervised and unsupervised learning tasks.

• Chapter 7 summarizes the key contributions of the thesis and discusses ideas for
future work.

1.2 Associated Publications and Software

The work presented in Chapter 3 borrows text from [Damianou et al., 2011] and
[Damianou et al., 2015], both authored by A. Damianou, M. Titsias (joint first author
in the latter) and N. Lawrence. The ideas presented in the latter paper constitute an
evolution of the initial publication of Titsias and Lawrence [2010]. The paper of Dai
et al. [2014] is co-authored by myself and related to Chapter 3, but text from it was not
used in this thesis. The methodology and experiment related to big data, in Chapter
3, correspond to work carried out by J. Hensman, A. Damianou and N. Lawrence and
appears in [Hensman et al., 2014a].

The work presented in Chapter 4 is based on two papers: [Damianou and Lawrence,
2015, 2014], both by A. Damianou and N. Lawrence.

1.2 Associated Publications and Software 7

The work presented in Chapter 5 is based on: a) [Damianou et al., 2012], by A.
Damianou, C. H. Ek, M. Titsias and N. Lawrence b) on a paper by Damianou, Ek and
Lawrence, which is in preparation at the time of writing this thesis.

The work presented in Chapter 6 is based on a paper by Damianou and Lawrence
[2013]. A more extended publication is in preparation at the time of writing this
thesis, and constitutes a collaboration between A. Damianou, J. Hensman and N.
Lawrence.

Finally, two publications [Vasisht et al., 2014; Zhang et al., 2013] co-authored by
myself are not discussed in this thesis since, although relevant to the general research
area, they do not fit with the thesis’ theme.

The software developed to accompany the methods described in chapters 3, 4 and
5 is publicly available under a unified repository at https://github.com/SheffieldML/v
argplvm and it is based on N. Lawrence’s GPmat repository. The software developed
for deep GPs (Chapter 6) is also publicly available at https://github.com/SheffieldML
/deepGP. The above two repositories are managed primarily by myself; all authors’
contributions are shown in the corresponding copyright notes. Besides, the code for
the experiment of Section 3.5.6 used GPy (https://github.com/SheffieldML/GPy).

Illustrative summaries and demonstrations for part of this thesis can be found at:
http://git.io/A3Uv and http://git.io/A51g.

https://github.com/SheffieldML/vargplvm
https://github.com/SheffieldML/vargplvm
https://github.com/SheffieldML/deepGP
https://github.com/SheffieldML/deepGP
https://github.com/SheffieldML/GPy
http://git.io/A3Uv
http://git.io/A51g

Chapter 2

Gaussian processes

A Gaussian process (GP) can be seen as a distribution over functions. Numerous
problems in the domain of regression, classification, dimensionality reduction and
more involve learning unknown functions, f , which are often expressed as mappings.
A particular interpretation of the “no free lunch theorem” states that in most typical
scenarios we can only do inference after first making some, even general, assumptions
regarding the nature of the function f . These assumptions can be encoded in a GP

prior which, coupled with an optimisation procedure, will result in a posterior process
associated with a function that best “fits” the data. Certain tractability properties of
GPs mean that the optimisation procedure can be incorporated in a Bayesian frame-
work and, hence, enjoy automatic complexity control where unnecessarily complex
solutions are penalised.

In Section 2.1 we introduce Gaussian processes more formally. Due to computa-
tional reasons, in practice sparse GPs are usually used, and the associated methods
are reviewed in Section 2.2. A particular subclass of sparse GP approaches revolve
around variational inference. Since these approaches are key to the development of
much of the methodology associated with this thesis, they are discussed separately, in
Section 2.3.

2.1 Preliminary

This section will introduce Gaussian processes, firstly from the perspective of taking
the limit of a multivariate Gaussian distribution to infinite dimensions (Section 2.1.1)
and then from the Bayesian regression perspective (Section 2.1.2). Section 2.1.3 dis-
cusses covariance functions and Sections 2.1.4 and 2.1.5 discuss the special cases
where the GP inputs are not fully observed.

10 Gaussian processes

2.1.1 From Gaussian Distributions to Gaussian Processes

Gaussian distributions constitute very popular machine learning tools. This is not
only due to their natural emergence in real life statistical scenarios (e.g. central limit
theorem) but also due to their intuitiveness and the fact that they are equipped with
properties that render their mathematical manipulation tractable and easy. For ex-
ample, consider a set of n random variables with a Gaussian joint distribution: f =

{fi}i∈X ∼ N (µ,K), where X is a sorted set of indices with |X | = n and fi is the
value of the variable indexed by xi. The random variable fi can represent the con-
centration of a particular substance measured by placing the measuring instrument
at depth xi from a given location of the surface of a lake. Correlating these mea-
surements under the Gaussian assumption means that the concentration measured at
nearby depths xi−1 and xi+1 should be similar and this strong correlation should be
reflected in the Ki,i+1 and Ki,i−1 entries of the covariance matrix.

The marginalisation property of the normal distribution says that, for two subsets
XA,XB ⊆ X , the marginals are also Gaussian:

p(fA) =

∫
fB

p(fA, fB)dfB = N (fA|µA,KAA)

p(fB) =

∫
fA

p(fA, fB)dfA = N (fB|µB,KBB) ,

where fA and fB are vectors and we used the decomposition

µ =

[
µA

µB

]
and K =

[
KAA KAB

KBA KBB

]
.

Conveniently, the conditional densities are also Gaussian:

fA|fB ∼ N
(
µA +KABK

−1
BB(fB − µB),KAA −KABK

−1
BBKBA

)
fB|fA ∼ N

(
µB +KBAK

−1
AA(fA − µA),KBB −KBAK

−1
AAKAB

)
.

(2.1)

In the lake example given before, the second conditional density of equation (2.1)
could be used so that the substance concentration is inferred in locations XB if we
have only collected measurements in locations XA. The covariance function allows us
to perform a “sophisticated” interpolation on the measurements, based on the close-
ness of the locations contained in sets XA and XB. In a real world modelling scenario,
however, instead of pre-selecting a discrete set of input locations, X , we would rather
prefer to take into account the whole input domain. Gaussian processes can be used
for this purpose.

2.1 Preliminary 11

A Gaussian process (GP) is a generalisation of the multivariate Gaussian distri-
bution to an infinite number of dimensions (random variables). A sample from a GP
is a random function, by extension to how a sample from a n-dimensional Gaussian
distribution is a n-dimensional vector. A Gaussian distribution is fully specified by
its (finite dimensional) mean vector µ and covariance matrix K evaluated on inputs
indexed by a finite set X ; similarly, a GP is fully specified by its mean and covariance
functions, µ(x) and kf (x, x

′) respectively, which can be evaluated at any position of
an infinite input domain (e.g. X := ℜ).

The expressive power of Gaussian processes as distributions over functions is con-
veniently coupled with tractability, as the marginalisation property of Gaussian distri-
butions allows us to only work with the finite set of function instantiations f = f(x) =

[f(x1), f(x2), · · · , f(xn)] which constitute our observed data and jointly follow a
marginal Gaussian distribution. This definition directly implies that all other (pos-
sibly infinite) function values corresponding to unseen inputs are just marginalised.
More formally:

Definition 1. A Gaussian process is a collection of random variables, any finite num-

ber of which have a joint Gaussian distribution.

We write:

f ∼ GP(µ(x), kf (x,x
′))

µ(x) = E [f(x)]

kf (x,x
′) = E [(f(x)− µ(x)) (f(x′)− µ(x′))] .

But what about the mean and covariance function of the above GP? In the modelling
scenarios discussed throughout this thesis it is safe to select µ(x) = 0, unless oth-
erwise stated. This is a typical choice in many stationary modelling scenarios1 that
allows the process to be described solely by its second order statistics, i.e. the co-
variance function. The covariance function can be selected to have a parametric form
which depends on a set of parameters θf . This covariance function can map arbitrary
inputs from the input domain to the corresponding entry in the covariance function.
More intuition and details on covariance functions is given in section 2.1.3.

In a realistic modeling scenario one needs to only evaluate the covariance func-
tion on a finite set of inputs. Then, this inherently infinite model specifies a finite
Gaussian distribution for the training data, immediately assuming that the rest of the

1This is without loss of generality, since a constant GP mean can equivalently be incorporated by
simply shifting the data.

12 Gaussian processes

input domain is marginalised out. The covariance matrix is built by evaluating the
covariance function on the finite set of n inputs, so that we can write:

p(f |x) = N (f |0,Kff) = (2π)−
n
2 |Kff |−

1
2 exp

(
−1

2
f⊤K−1

ff f

)
, (2.2)

where Kff = kf (x,x) is found by evaluating the covariance function on the n train-
ing inputs. Notice that, for clarity, we have dropped the dependence on the kernel
parameters θf from p(f |x,θf) and this simplification will be carried on in the rest of
the thesis.

Using Gaussian processes to model our previously described hypothetical sce-
nario would allow us to consider a finite set of training inputs and outputs (measure-
ments), x and f respectively, and then use equation (2.1) to infer the concentration f∗

of the substance at any depth x∗. In real world applications it is typical to assume that
we can only observe noisy measurements y of the true value f , according to:

y = f(x) + ϵ, ϵ ∼ N
(
0, β−1I

)
. (2.3)

This induces the likelihood:

p(y|f) = N
(
y|f , β−1I

)
(2.4)

that turns the function values f into latent variables for which the posterior distri-
bution can be straightforwardly computed. The above form also gives rise to the
predictive distribution for a collection of n∗ test inputs x∗:

p(f∗|y,x,x∗) = N (f∗|Ly,K∗∗ − LKf∗) , where: L = K∗f
(
Kff + β−1I

)−1
,

which comes directly from the Gaussian conditional distribution of equation (2.1)
with the incorporation of noise. Here, K∗∗ = kf (x∗,x∗) is the covariance between
the test targets (computed at test inputs), K∗f = kf (x∗,x) is the cross-covariance
between the training and test targets and Kf∗ = K⊤

∗f .

The usefulness of Gaussian processes in practical scenarios comes from the tractabil-
ity of the marginal likelihood of the observed outputs given the observed inputs:

p(y|x) =
∫

p(y|f)p(f |x)df = N
(
y|0,Kff + β−1I

)
. (2.5)

The above marginalisation results in a modelling setting where a whole family of
functions are simultaneously considered. The selected covariance function kf defines

2.1 Preliminary 13

(a) Samples from the prior (b) Samples from the posterior

(c) Same as (b) but with larger noise
variance β−1

(d) Samples from the posterior when
more points are observed

Fig. 2.1: A GP fitting the observed data (x’s). The GP mean is represented as a black curve
and 2 standard deviations are shown as gray shading. Samples from this GP are plotted with
various colors. Notice that even when the mean reverts to zero away from observations, the
samples still fluctuate.

the properties (such as smoothness) and not a parametric form of f . In this setting,
the Gaussian process can be used as a prior over the latent function f . Conditioning
this prior on observed data results in a posterior that “fits” the data. This procedure
is illustrated in figure 2.1. In a realistic modelling scenario one seeks to improve the
data fit by optimising the objective function (2.5) with respect to θf and β, following
the standard maximum likelihood procedure. The parameters θf of the covariance
function are referred to as hyperparameters with respect to the noise model. By
expanding the marginal distribution as:

p(y|x) = (2π)−
n
2

∣∣Kff + β−1I
∣∣− 1

2 exp

(
−1

2
y⊤(Kff + β−1I)−1y

)
we identify the dual purpose of this objective function: the determinant penalizes
complex models, hence guarding against overfitting, whereas the exponential pro-
motes a good fit to the data.

14 Gaussian processes

2.1.2 From Bayesian Regression to Gaussian Processes

Gaussian processes can also be considered as the non-parametric variant of Bayesian
parametric regression. The standard parametric model for regression specifies:

y = ϕ(x)⊤w + ϵ,

where ϕ(x) is a vector of basis functions which maps the inputs nonlinearly to a fea-
ture space. For example ϕ(x) =

(
1, x, x2, · · · , xk

)⊤ maps the inputs to the curve
of a k degree polynomial, while ϕ(x) = x recovers linear regression. The vector w
constitutes a set of weight parameters that are sought to be adjusted to fit the data. As
is standard in the Bayesian methodology, rather than finding a maximum a posteriori
(MAP) solution for w, we wish to place a prior over these parameters and integrate
them out, essentially weighting the contribution of every possible set of parameters
according to our prior. Considering Gaussian noise ϵ with variance β−1 and a conju-
gate Gaussian prior for w, allows us to perform the integration analytically:

p(y|x) =
∫

p(y|w, ϕ(x))p(w)dw

=

∫
N
(
y|ϕ(x)⊤w, β−1I

)
N (w|0,Σw) dw.

This is exactly analogous to the Gaussian process approach discussed earlier, for
which the marginal likelihood is shown in equation (2.5). The difference is that
Bayesian parametric regression considers a parametric form ϕ(x)⊤w for the model
and places a prior on the parameters. In contrast, a GP approach specifies a prior for
the function directly. This results in richer and more flexible models, since the GP
prior only implies constraints for the properties of the modelled functions, while their
form emerges probabilistically from the data and our assumptions, which are encoded
in the choice of a covariance function. Notice that if we were to describe the above
Bayesian regression framework using the function space view (to explore the simi-
larity with the GP approach), we would find that the covariance function Kff (x,x

′)

implied is the inner product ϕ(x)⊤Σwϕ(x
′). More details and intuition regarding co-

variance functions is provided in the next section. For a more thorough explanation of
Gaussian processes, the reader is redirected to the books of Rasmussen and Williams
[2006]; Bishop [2006]; MacKay [2003], which were used as main sources for the
current and following chapter of this thesis.

2.1 Preliminary 15

2.1.3 Covariance Functions

As was discussed in the previous section, the covariance function (sometimes sim-
ply referred to as kernel) plays a key role in Gaussian process modelling. A co-
variance function k is a function that maps pairs of inputs, xi,: and xk,:, into a real
value kf (xi,:,xk,:) and it is a positive semi-definite function over the space of all
possible input pairs. Here we have taken the general case where the inputs are multi-
dimensional, i.e. xi,:,xk,: ∈ ℜq, as this will be instructive for later sections.

The choice of a particular form for the covariance function encodes our prior as-
sumptions about the function to be modelled, f . The parameters associated with it,
θf , constitute a means of obtaining a good fit to the observed data, leading to better
posterior and predictive distributions. Figure 2.2 illustrates these concepts graphically
by showing samples from different covariance functions and with different parame-
terisations. The three plots on the first line correspond to samples drawn from an
exponentiated quadratic (EQ) covariance function, also known as RBF or squared ex-
ponential. This covariance function is infinitely differentiable (hence, appropriate for
modelling very smooth functions) and takes the following form:

kf(EQ) (xi,:,xk,:) = σ2
EQ exp

(
− 1

2ℓ2

q∑
j=1

(xi,j − xk,j)
2

)
. (2.6)

It has a variance parameter, σ2
EQ, and a characteristic lengthscale parameter, ℓ. In

particular, the lengthscale is related to the expected number of upcrossings of the
function, effectively controlling how fast its value changes with respect to changes in
its input. In the first line of figure 2.2, a EQ covariance function with large length-
scale results in samples which are almost linear. The EQ covariance function can be
extended to have as many lengthscales as input dimensions. For convenience, we will
denote wj = 1/ℓ2j and refer to this parameter either as a “weight” or as a “squared
inverse lengthscale”. We can now write this covariance function as:

kf(ARD) (xi,:,xk,:) = σ2
ARD exp

(
−1

2

q∑
j=1

wj (xi,j − xk,j)
2

)
. (2.7)

This form allows for an automatic relevance determination (ARD) procedure to take
place during learning [MacKay, 1994; Neal, 1996; Rasmussen and Williams, 2006].
Informally, the directions j of the input x that are associated with very small “rel-
evant” variance (in terms of corresponding correlation in the function values) are
naturally assigned a very large lengthscale and, thus, small weight wj . This provides

16 Gaussian processes

a means of automatically assessing the “relevance” of every input feature. The linear
ARD covariance function takes the form:

kf(lin) (xi,:,xk,:) = σ2
lin x

⊤
i,:Cxk,: , (2.8)

where C is a diagonal matrix involving the ARD weights. Another covariance func-
tion that will be used is the Matérn 3/2. Compared to the EQ covariance function, the
Matérn 3/2 results in “rougher” samples, due to being only once differentiable.

kf(mat) (xi,:,xk,:) = σ2
mat

(
1 +

√
3|xi,: − xk,:|

ℓ

)
exp

(
−
√
3|xi,: − xk,:|

ℓ

)
. (2.9)

A valid covariance function can be obtained by manipulating existing covariance
functions in various ways. In the simplest case, one can create a compound covariance
function by adding two or more existing ones together. We will see such a use later.
Further, we can obtain a valid covariance function by first passing its inputs through
another function. MacKay [1998] considered such a construction by mapping single
dimensional inputs to a circle, before passing them to a EQ covariance function. We
name the resulting covariance function as “EQ-periodic” and its form is given by:

kf(per) (xi, xj) = σ2
per exp

(
− 1

ℓ2
2 sin2

(π
T
|xi − xj|

))
, (2.10)

where T denotes the period parameter. As can be seen in figure 2.2(e), this covariance
function produces samples that are repeated exactly every period. On the other hand,
one can obtain a covariance function which exhibits approximate periodicity, in the
sense that a drift away from the periodic pattern can be taken into account. One way
to achieve this, is to multiply the periodic covariance function described above with a
EQ one. Here, we will consider a simpler case where we just add them. This allows
us to control the relative effect of the EQ or the EQ-periodic covariance function by
fixing the ratio of their variances to the desired value. The effect of this ratio in the
above construction is graphically explained in figure 2.3.

It is a typical policy to consider a white noise covariance function as part of a
compound one: kf + kwhite, with:

kwhite(xi,:,xk,:) = θwhiteδi,k, (2.11)

where δi,k is the Kronecker delta function. This guards against overfitting, by incor-
porating our prior assumption that, in real world data, random fluctuations can occur

2.1 Preliminary 17

(a) Exp. Quadratic, 1/l2 = 0.2 (b) Exp. Quadratic, 1/l2 = 1 (c) Exp. Quadratic, 1/l2 = 12

(d) Matérn 3/2 (e) EQ-Periodic (f) EQ plus EQ-Periodic

Fig. 2.2: One dimensional samples drawn for different kernels with their associated covari-
ance matrices.

even in very smooth underlying functions, especially since finite data are used for
learning. Further, the incorporation of this term ensures positive definite covariance
matrices in computer implementations where numerical problems arise. Similarly,
one can also include a bias term θbias1.

2.1.4 Latent Inputs

Gaussian processes have also been used in unsupervised learning and dimensionality
reduction scenarios. These scenarios are typically associated with multivariate vari-
ables where the output dimensionality p can even be much larger than n. Throughout
this thesis, multi-dimensional variables will be collected in matrices where rows cor-
respond to instances and columns correspond to dimensions (or features). Therefore,
Y ∈ ℜn×p, F ∈ ℜn×p and X ∈ ℜn×q denote the collection of outputs, function eval-
uations and inputs respectively. xi,:, xj and xi,j refer respectively to the ith row, the

18 Gaussian processes

f2(x)

f1(x)

(a) Large r

f2(x)

f1(x)

(b) Intermediate r

f2(x)

f1(x)

(c) Small r

Fig. 2.3: Two-dimensional samples from a EQ plus EQ-periodic covariance function. The
relative “contribution” of each covariance is controlled by fixing the ratio of their variances,
r = σ2

EQ/σ2
EQ−per.

jth column and the (i, j)th element of Y (and analogously for the other matrices).

The main challenge in the unsupervised GP problems is that the input data X

are not directly observed. The Gaussian process latent variable model (GP-LVM)
[Lawrence, 2005, 2004] provides an elegant solution to this problem by treating the
unobserved inputs as latent variables, while employing a product of p independent
GPs as prior for the latent mapping: f(X) = (f1(X), . . . , fp(X)) so that,

fj(X) ∼ GP(0, kf (X,X′)), j = 1, . . . , p. (2.12)

Here, the individual components of f(X) are taken to be independent draws from
a Gaussian process with covariance function kf (X,X′). As shown in [Lawrence,
2005] the use of a linear covariance function makes GP-LVM equivalent to tradi-
tional PPCA. On the the other hand, when nonlinear covariance functions are con-
sidered the model is able to perform non-linear dimensionality reduction. The above
formulations allows us to re-write the generative procedure of equation (2.3) as:

yi,j = fj(xi,:) + ϵi,j, ϵi,j ∼ N
(
0, β−1

)
.

The above independence assumptions allow us to write the likelihood of the data
given the inputs as:

2.1 Preliminary 19

p(Y|X) =

∫
p(Y|F)p(F|X)dF

=

∫ p∏
j=1

n∏
i=1

p(yi,j|fi,j)
p∏

j=1

p(fj|X)dF

=

p∏
j=1

N
(
yj|0,Kff + β−1I

)
, (2.13)

where we made use of equations (2.4) and (2.2) for the distributions appearing in the
second line. The factors inside the product in the last line have similar form to that
obtained in (2.5) when we assumed single-dimensional variables, but Kff is now built
by evaluating the covariance function on multivariate inputs, i.e. Kff = kf (X,X).
However, these inputs now constitute latent rather than observed random variables
and they follow a prior distribution p(X) ≜ p(X|θx) with hyperparameters θx. The
structure of this prior can depend on the application at hand, such as whether the
observed data are i.i.d. or have a sequential dependence. Methods for eliciting the
prior from expert beliefs also exist [see e.g. Oakley, 2002]. For the moment we shall
leave p(X) unspecified to keep our discussion general, while specific forms for it will
be given in Section 3.2.1 .

As will be discussed in detail in Section 3.3.2, the interplay of the latent vari-
ables (i.e. the latent input matrix X and the latent function instantiations F) makes
inference very challenging. However, when fixing X we can treat F analytically
and marginalise it out to obtain p(Y|X)p(X). This partial tractability of the model
gives rise to a straightforward MAP training procedure where the latent inputs X are
selected according to

XMAP = argmax
X

p(Y|X)p(X).

This is the approach suggested by Lawrence [2005, 2006] and subsequently followed
by other authors [Urtasun and Darrell, 2007; Ek et al., 2008b; Ferris et al., 2007;
Wang et al., 2008; Ko and Fox, 2009; Fusi et al., 2013; Lu and Tang, 2014]. Point
estimates over the hyperparameters θ = {θf ,θx, β} can also be found by maximising
the same objective function.

However, a MAP training procedure for the latent points means that their uncer-
tainty cannot be propagated through the GP mapping; the distribution of X is col-
lapsed to a delta function after passing through the mapping. This severely hinders
the definition of deep or, in general, complicated networks of latent variables. Section
3.2.2 gives more insight into the problems arising from this kind of MAP optimisa-
tion. This thesis focuses on techniques that allow for approximate marginalisation

20 Gaussian processes

of the latent space, thus simultaneously providing an approximation to the posterior
distribution p(X|Y). A unified approximation framework of this kind is described in
Chapter 3 and it is further extended in Chapters 5 and 6 for the case of more complex
latent variable structures. In essence, the methodology developed in this thesis allows
for treating the inputs to a Gaussian process as stochastic processes, rather than just
points or distributions. This will be made clearer in Chapters 3 and 6.

2.1.5 Uncertain Inputs

In many real-world applications it is unrealistic to consider the inputs to a regression
model as absolutely certain. For example, when the inputs are measurements coming
from noisy sensors, or when the inputs are coming from bootstrapping or extrapolat-
ing from a trained regressor. In the general setting, we assume that the actual inputs
to the regression model are not observed; instead, we only observe their noisy ver-
sions. In this case, the GP methodology cannot be trivially extended to account for
the variance associated with the input space [Dellaportas and Stephens, 1995; Girard
et al., 2003; Oakley and O’Hagan, 2002; Quiñonero-Candela et al., 2003; Oakley,
1999, 2004; McHutchon and Rasmussen, 2011]. This problem is also closely related
to the field of heteroscedastic Gaussian process regression, where the uncertainty in
the noise levels is modelled in the output space as a function of the inputs [Kersting
et al., 2007; Goldberg et al., 1998; Lázaro-Gredilla and Titsias, 2011].

This thesis tackles the above problem by treating the unobserved inputs as latent
variables. Further, marginalising these variables allows for specifying an (approx-
imate) posterior over a full distribution over the inputs. Clearly this relates to the
latent variable modelling with GPs discussed in the previous section. In Chapter 4
it will be shown how latent, partially missing and uncertain input modelling can all
be unified under a common framework and further define semi-described (a newly
introduced term), semi-supervised and auto-regressive GPs as a special case.

2.2 Sparse Gaussian Processes

The way in which Gaussian processes are formulated as non-parametric data driven
approaches is responsible for their flexibility but also for their memory and compu-
tational limitations. Specifically, the need to invert a n × n covariance matrix Kff

means that a GP has a computational complexity of O(n3), making its application to
datasets with more than a few thousand datapoints prohibitive. The main line of work
in the literature attempting to overcome this limitation is related to sparse approxima-

2.2 Sparse Gaussian Processes 21

tions [Csató and Opper, 2002; Seeger et al., 2003; Snelson and Ghahramani, 2006;
Quiñonero Candela and Rasmussen, 2005; Lawrence, 2007b; Titsias, 2009] that are
associated with a computational cost of O(nm2), m ≪ n. The key idea behind such
approaches is to expand the probability space with m pairs of auxiliary (or induc-
ing) input - output pairs of variables, denoted as (xu)i,: and ui,: respectively. These
variables are collected in matrices Xu ∈ ℜm×q and U ∈ ℜm×p. Then, the original co-
variance matrix Kff is replaced with a low-rank approximation which only requires
the inversion of a smaller, m × m covariance matrix. The goal is then to define a
good low-rank approximation to the full covariance Kff and to select a good set of
inducing inputs. A common approach is to allow the inducing inputs to lie anywhere
in the input domain (rather than constrain them to be a subset of the training inputs)
and determine their location with some form of optimisation, as suggested by Snelson
and Ghahramani [2006].

The assumed relationship between the variables Xu,U,X and F can give rise to
powerful approaches specific to a particular problem at hand [see e.g. Álvarez et al.,
2009]. Here, we consider the case where the inducing points Xu and U are assumed
to be related in the same way and with the same GP prior as the training instances
X and F. Further making use of the factorisation of the GP mapping with respect to
dimensions (see equation (2.12)) allows us to write:

p(fj,uj|Xu,X) = N

([
fj

uj

]
| 0,

[
Kff Kfu

Kuf Kuu

])
,

where Kff is constructed by evaluating the covariance function on all available inputs
X, Kuu is built by evaluating the covariance function on the inducing inputs Xu, Kfu

is the cross-covariance between X and Xu, and Kuf = K⊤
fu. The above expression

comes directly from the marginalisation and consistency properties stated in the GP
definition 1 and allows us to further write the marginal GP prior over the inducing
variables p(U|Xu) =

∏p
j=1 p(uj|Xu) and the conditional GP prior p(F|U,X,Xu) =∏p

j=1 p(fj|uj,X,Xu) using:

p(uj|Xu) = N (uj|0,Kuu) (2.14)

p(fj|uj,X,Xu) = N (fj|aj, K̃), where (2.15)

K̃ = Kff −KfuK
−1
uuKuf and (2.16)

aj = KfuK
−1
uuuj. (2.17)

Identifying the conditional independencies above lets us drop the conditioning on Xu

22 Gaussian processes

for the remainder of this section. Further, by making use of the factorisation of the
likelihood with respect to dimensions (as shown in equation (2.13)), we can continue
with our analysis by only considering a specific output dimension j.

Notice that, since the inducing variables were introduced as auxiliary variables,
one can marginalise them out and return to the original probability space. Quiñonero
Candela and Rasmussen [2005] recognise that in order to obtain an approximation
which induces sparsity, one can consider an approximation q(fj|uj,X) to the true
conditional p(fj|uj,X). Several sparse approaches in the literature can then be unified
under this interpretation, by identifying that each approach is effectively implying
different assumptions for q(fj|uj,X), while maintaining the exact p(yj|fj) and p(uj).
To make this clearer, let us consider the exact case, where q(fj|uj,X) = p(fj|uj,X).
Then, by using the Gaussian identity (A.1) and equations (2.14),(2.15) we can find
the marginal:

p(fj|X) =

∫
p(fj|uj,X)p(uj)duj

= N (fj|KfuK
−1
uu0,Kff −KfuK

−1
uuKuf︸ ︷︷ ︸

Qff

+KfuK
−1
uuKuf︸ ︷︷ ︸

Qff

)

= N (fj|0,Kff) , (2.18)

where Qff denotes Nyström approximation of the true covariance Kff . The above
calculation, as expected, matches exactly equation (2.2). In the non-exact case, we
will in general have an approximate posterior

q(fj|uj,X) = N
(
fj|aj, Q̃

)
, with Q̃ ̸= K̃

and aj given in equation (2.17). By using again the Gaussian identity (A.1) and
equation (2.14) we can marginalise out the inducing outputs to obtain:

q(fj|X) =

∫
q(fj|uj,X)p(uj)duj = N

(
fj|0, Q̃+Qff

)
. (2.19)

Similarly, by taking into account the noise term we can obtain the approximate like-
lihood:

q(yj|X) =

∫
p(yj|fj)q(fj,X)dfj = N

(
yj|0, Q̃+Qff + β−1I

)
. (2.20)

Even though the approximate covariance term Q̃ was so far left unspecified, equa-

2.3 Variational Sparse Gaussian Processes - a Unified View 23

tion (2.20) still refers to a Gaussian distribution with a covariance matrix of size n×n

(because of the term Qff). Therefore, the computational cost of the above expression
does not immediately seem to decrease with the inclusion of inducing points. How-
ever, for specific selections of Q̃, one can use the Woodbury matrix identity and
the matrix determinant lemma (equations (A.3) and (A.4) respectively) and obtain
expressions that depend on the inversion of a matrix of size m × m. In particu-
lar, the deterministic training conditional (DTC) approximation [Csató and Opper,
2002; Seeger et al., 2003] assumes that Q̃ = 0, implying a deterministic approxima-
tion q(fj|uj,X) = N (fj|aj,0). By marginalising out the inducing outputs and then
taking into account the noise (according to equations (2.19) and (2.20)), we obtain
respectively:

qDTC(fj|X) = N (fj|0,Qff) (2.21)

qDTC(yj|X) = N
(
yj|0,Qff + β−1I

)
. (2.22)

By contrasting equation (2.21) with the exact expression (2.18), we see that the DTC
method is equivalent to modifying the GP prior under the assumption that the co-
variance matrix equals its Nyström approximation Qff . However, the Woodbury and
Matrix Determinant Lemma can now be applied to obtain an expression that is cheap
to evaluate. Specifically, the logarithm of the marginal likelihood can be written as:

log qDTC(yj|X) = −n

2
log(2π) + log

βn/2 |Kuu|
1/2

|Kuu + βKufKfu|
1/2

− 1

2
y⊤
j Wyj ,

where: W = βI− β2Kfu (Kuu + βKufKfu)
−1Kuf .

(2.23)

As can be seen, the above expression requires the inversion of a m × m matrix,
considerably speeding up computations since, typically, m ≪ n.

Another sparse GP approximation, dubbed the “the fully independent training
conditional (FITC)” [Snelson and Ghahramani, 2006], similarly assumes that the off-
diagonal elements of Kff equal those of Qff but additionally corrects the diagonal
to be exact, hence Q̃ = Qff − diag(Qff −Kff).

2.3 Variational Sparse Gaussian Processes - a Unified
View

As discussed in the previous section and also pointed out by Titsias [2009], the afore-
mentioned unified sparse GP framework essentially modifies the GP prior. This im-

24 Gaussian processes

plies that the inducing points act as additional kernel hyperparameters that have to
be optimised, hence increasing the danger of overfitting. Instead, in the approach
suggested by Titsias [2009] the approximate marginal likelihood q(yj|X) is formu-
lated as a variational lower bound to the exact likelihood p(yj|X). Now the in-
ducing inputs are turned into variational parameters and maximisation of the vari-
ational lower bound with respect to them is equivalent to minimising the KL diver-
gence KL (q(fj,uj|X) ∥ p(fj,uj|X,yj)). Specifically, we can write log p(yj|X) =

log
∫
p(yj|fj)p(fj|uj,X)p(uj)dfjduj from which we multiply with q(fj |uj ,X)q(uj)

q(fj |uj ,X)q(uj)
in-

side the integral and apply Jensen’s inequality to obtain:

log p(yj|X) ≥ Fj =

∫
q(fj|uj,X)q(uj) log

p(yj|fj)p(fj|uj,X)p(uj)

q(fj|uj,X)q(uj)
dfjduj,

(2.24)
so that:

log p(Y|X) =

p∑
j=1

log p(yj|X) ≥
p∑

j=1

Fj.

As can be seen, this variational approach differs from the sparse approaches which
directly replace the covariance matrix with a low-rank approximation through as-
sumptions in q(fj|uj,X) and, therefore, modify the GP prior. Instead, the variational
approach in general considers a free q(uj) and the approximation is explicitly made
with respect to the true posterior, according to:

q(F|U,X)q(U) =

p∏
j=1

q(fj|uj,X)q(uj) ≈
p∏

j=1

p(fj|uj,X,yj)p(uj|yj). (2.25)

Different possible assumptions behind the forms of the variational distributions q(uj)

and q(fj|uj,X) as well as their treatment inside the variational bound can lead to dif-
ferent model variants. These variants constitute the basis for much of the methodol-
ogy developed in this thesis and, therefore, will be explained in detail in the following
sections. For a clearer explanation we begin, in Section 2.3.1, with an approximation
where U appears in the conditioning set. Therefore, we are able to elaborate on the
form of q(fj|uj,X) and, conveniently, leave p(uj) and q(uj) out of the discussion.
Then, in Section 2.3.2, we discuss the results obtained by additionally integrating out
the inducing outputs uj .

2.3 Variational Sparse Gaussian Processes - a Unified View 25

2.3.1 The Preliminary Variational Bound L ≤ log p(Y|U,X)

To start with, we elaborate on the form of q(fj|uj,X) in the variational sparse GP
method. Titsias [2009] argues that under the assumption of uj being a sufficient statis-
tic for fj , it holds that p(fj|uj,X) = p(fj|uj,X,yj), since fj is just a noise-free ver-
sion of yj . Thus, under the same assumption, an optimal form for q(fj|uj,X) is to set
q(fj|uj,X) = p(fj|uj,X), so that the overall approximation will be p(fj|uj,X)q(uj),
matching the true posterior in the first factor (see equation (2.25)). Since the suffi-
cient statistics assumption does not hold in practice, we will in general have q(uj) ̸=
p(uj|yj) which, as we will see in the next section, will allow us to reach a solution
where uj is as informative as possible about fj . Importantly, the above choice for
q(fj|uj,X) allows us to marginalise out the GP mapping f by using Jensen’s inequal-
ity and obtain a cancellation inside the resulting lower bound as follows:

log p(yj|uj,X) = log

∫
q(fj|uj,X)

q(fj|uj,X)
p(yj|fj)p(fj|uj,X)dfj

≥
∫

q(fj|uj,X) log
p(yj|fj)p(fj|uj,X)

q(fj|uj,X)
dfj

=

∫
p(fj|uj,X) log

p(yj|fj)������p(fj|uj,X)

������p(fj|uj,X)
dfj

= ⟨log p(yj|fj)⟩p(fj |uj ,X) = Lj, (2.26)

where ⟨g(·)⟩p(·) denotes the expectation of a function g(·) with respect to a distribution
p(·). The above derivation is instructive, but the approximation made involves no
variational parameters. Therefore, the same result can be obtained if we by-pass
the need to explicitly define a variational distribution and apply Jensen’s inequality
directly as follows:

log p(yj|uj,X) = log

∫
p(yj|fj)p(fj|uj,X)dfj

≥
∫

p(fj|uj,X) log p(yj|fj)dfj = Lj.

The above expression becomes an equality if KL (p(fj|uj,X) ∥ p(fj|uj,X,yj)) is
zero, i.e. when m = n and uj = fj . This relates to the previous discussion regarding
seeking a solution where U constitute a sufficient statistic for F.

We refer to the resulting bound Lj as a “preliminary bound” because the variables
uj are still not marginalised out. This bound has an analytic form, which we compute

26 Gaussian processes

below while temporarily using the notation ⟨·⟩ = ⟨·⟩p(fj |uj ,X) :

⟨log p(yj|fj)⟩
eq. (2.4)
=

〈
logN

(
yj|fj, β−1Ip

)〉
=− n

2
log(2π)− 1

2
log |β−1Ip| −

β

2
tr
(
yjy

⊤
j − 2yj

〈
f⊤j
〉
+
〈
fjf

⊤
j

〉)
eq. (2.15)
= Z − β

2
tr
(
yjy

⊤
j − 2yja

⊤
j + aja

⊤
j + K̃

)
,

where Z denotes a set of constants and (aj , K̃) are given in equations (2.17) and
(2.16) respectively. By completing the square in the above expression we find:

Lj = ⟨log p(yj|fj)⟩p(fj |uj ,X) = logN
(
yj|aj, β

−1Ip
)
− β

2
tr
(
Kff −KfuK

−1
uuKuf

)
eq. (2.16)
= logN

(
yj|aj, β

−1Ip
)
− β

2
tr
(
K̃
)
. (2.27)

By inspecting equation (2.27) more carefully, we can gain some intuition regard-
ing the form of the variational lower bound and the requirements for it to be “tight”.
Specifically, Hensman and Lawrence [2014] examine the trace term as follows; for a
tight lower bound Lj , the trace term must be small. But a small trace term also implies
a small log. determinant2. If we now notice that the conditional entropy or expected
information value of fj given uj is given by 1

2
log |K̃| (because of equation (2.15)),

then we conclude that a tight lower bound Lj also implies that uj is very informative
for fj . Hensman and Lawrence [2014] thus refer to this idea as “variational com-
pression”. Finally, writing the conditional entropy as −KL (p(fj|uj)p(uj) ∥ p(uj))

reveals that for a tight variational lower bound, p(fj|uj) is required to be narrow.

Notice that the preliminary variational bound is fully decomposable, that is:

log p(Y|U,X) ≥ L =

p∑
j=1

Lj =
n∑

i=1

p∑
j=1

Li,j (2.28)

where Lj is given in equation (2.27) and

Li,j = logN
(
yi,j|ai,j, β−1

)
− β

2
k̃i,:, where:

ai,j = (Kfu)i,:K
−1
uuuj and

k̃i,: = (Kff)i,i − (Kfu)i,:K
−1
uu (Kfu)

⊤
i,:.

(2.29)

In the above, (Kfu)i,: denotes the ith row of the covariance matrix Kfu and (Kff)i,i

2This holds because, since K̃ is a positive definite matrix, tr
(
K̃
)
≥ log |K̃|.

2.3 Variational Sparse Gaussian Processes - a Unified View 27

denotes the ith diagonal element of K̃.

The above factorisation is obtained thanks to the natural decoupling of the la-
tent variables {fi,:}ni=1 associated with the observations. This decoupling is achieved
through the conditional independencies given the inducing outputs {ui,:}mi=1. Al-
though this decoupling was initially introduced as a means of speeding up Gaussian
processes through low rank covariance approximations, it can also be exploited to
induce tractability in certain model extensions as well as in on-line GPs. More details
are given in the following section and in Chapter 3.

2.3.2 Marginalisation of the Inducing Outputs

The previous section discussed how a preliminary variational bound on the quantity
log p(yj|uj,X) can be obtained by setting q(fj|uj,X) = p(fj|uj,X). However, to
obtain an approximation to the full marginal likelihood one needs to additionally
marginalise out the inducing outputs uj using a variational distribution q(uj), as can
be seen in equation (2.24). A straight-forward approach is to consider a Gaussian
form for the distribution q(uj), so that a subsequent variational treatment is feasible
due to the self-conjugacy of the Gaussian distribution. Specifically, we consider:

q(U) =

p∏
j=1

q(uj) with: q(uj) = N (uj|(µu)j, (Σu)j) , (2.30)

where (µu)j is a m−dimensional vector and (Σu)j is a m × m matrix. Then, the
marginal log. likelihood is found as:

log p(yj|X) = log

∫
p(yj|uj,X)p(uj)duj = log

∫
q(uj)

q(uj)
p(yj|uj,X)p(uj)duj.

We now make use of Jensen’s inequality:

log p(yj|X) ≥
∫

q(uj) log
p(yj|uj,X)p(uj)

q(uj)
duj =

=

∫
q(uj) log p(yj|uj,X)duj − KL (q(uj) ∥ p(uj)) =

= ⟨log p(yj|uj,X)⟩q(uj)
− KL (q(uj) ∥ p(uj))

eq. (2.26)
≥ ⟨Lj⟩q(uj)

− KL (q(uj) ∥ p(uj))

≜ Gj − KL (q(uj) ∥ p(uj)) , (2.31)

where we made use of the preliminary variational bound in the last line. Due to

28 Gaussian processes

having selected the variational distribution q(uj) to be in the exponential family, the
above bound on the marginal likelihood can be easily computed. Specifically, the
KL term is tractable (since both involved distributions are Gaussians) according to
equation (A.2), and the term Gj is found by taking the expectation of equation (2.27)
with respect to q(uj). Notice that the distribution q(uj) does not depend on the data
and, therefore, by marginalising out the inducing outputs we obtain a new variational
lower bound that still factorises with respect to data points and dimensions, as was
pointed out by Hensman et al. [2013a]. We can then write:

log p(Y|X) ≥
p∑

j=1

(
n∑

i=1

Gi,j − KL (q(uj) ∥ p(uj))

)
, (2.32)

where:

Gi,j =− 1

2
log(2πβ−1)− β

2
y2i,j + βyi,j(Kfu)i,:K

−1
uu (µu)j

− β

2
tr
(
K−1

uu

[
(µu)j(µu)

⊤
j + (Σu)j

]
K−1

uu (Kuf)i,:(Kuf)
⊤
i,:

)
− β

2
k̃i,:,

where (Kuf)i,: and k̃i,: are given in equation (2.29) and (µu)j, (Σu)j are the parame-
ters of the variational distribution q(uj), as given in equation (2.30). The variational
lower bound, given in equation (2.32) can now be optimised with respect to the co-
variance function parameters, θf , and to the variational parameters. Specifically, the
variational parameters are the inducing points Xu (which are dropped from our ex-
pressions) and the parameters of q(U), henceforth denoted by θq(U). Hensman et al.
[2013a] recognises that directly optimising θq(U) jointly with the rest of the parame-
ters can be problematic, as they are defined in a non-Euclidean space where each point
is a distribution and distances are measured using the Kullback–Leibler divergence.
Proper optimisation of θq(U) is also crucial because of the large size of this parameter
vector: we have to optimise the p vectors (µu)j of size m and the p covariances (Σu)j

of size m×m, a total of pm(m+1) parameters. Borrowing ideas from Hoffman et al.
[2012] one can specify a Stochastic Variational Inference (SVI) procedure according
to which the variational parameters θq(U) are optimised in the natural gradient space.
The details of this approach are given in [Hensman et al., 2013a]. Interestingly, one
can show that a unit step in the natural gradient direction is equivalent to performing
one update in the Variational Bayes Expectation Maximisation (VB-EM) framework
[Hensman et al., 2012; Hoffman et al., 2012].

2.3 Variational Sparse Gaussian Processes - a Unified View 29

2.3.3 Collapsing the Inducing Variational Distribution

As can be seen from the derivation leading to equation (2.31), the variational lower
bound outlined in the previous section is quite “loose”, since we make use of an
inequality twice. However, one can obtain a tighter bound by optimally eliminating
the variational distribution q(U), recovering the original approach of Titsias [2009].
In more detail, we can start from equation (2.31), replace Lj (given in equation (2.27))
inside Gj and expand the KL term. This allows us to collect all terms that contain uj

together. Specifically, we have:

log p(yj|X) ≥
∫

q(uj) logN
(
yj|aj, β

−1I
)

duj −
β

2
tr
(
K̃
)

+

∫
q(uj) log

p(uj)

q(uj)
duj

=

∫
q(uj) log

N (yj|aj, β
−1I) p(uj)

q(uj)
duj −

β

2
tr
(
K̃
)
.

One can now differentiate the above functional with respect to q(uj) so as to obtain
the optimal value for this distribution and reinsert it into the variational bound.

Titsias [2009] points out that we can equivalently obtain a variational lower bound
that does not depend on q(uj), by reversing Jensen’s inequality (see also [King and
Lawrence, 2006] for this trick):

log p(yj|X) ≥ log

∫
���q(uj)

���q(uj)
N
(
yj|aj, β

−1I
)
p(uj)duj −

β

2
tr
(
K̃
)
.

By making use of equation (A.1) once again we can compute the above integral
which, interestingly, turns out to exactly match the logarithm of the approximate DTC
distribution log qDTC(yj|X) of equation (2.22). That is, the final form of the variational
bound is:

log p(Y|X) =

p∑
j=1

p(yj|X) ≥
p∑

j=1

G̃j = G̃,

where

G̃j = logN
(
yj|0, β−1I+KfuK

−1
uuKuf

)
− β

2
tr
(
K̃
)

= log qDTC(yj|X)− β

2
tr
(
K̃
)
.

(2.33)

The trace term −β
2
tr
(
K̃
)

that differentiates the above variational bound with the

30 Gaussian processes

sparse DTC approximation also appears in the SVI GP bound of equation (2.32)
and plays an important role. This role, as well as other comparisons between the
aforementioned sparse GP methods, is explained in the next section. By expanding
equation (2.33) we obtain the final expression for G̃j:

G̃j = log
βn/2 |Kuu|

1/2

(2π)n/2
∣∣∣Kuu + βΦ̃

∣∣∣1/2 −
β

2
y⊤
j yj

+
β2

2
y⊤
j Kfu(βΦ̃+Kuu)

−1K⊤
fuyj −

βξ̃

2
+

β

2
tr
(
K−1

uu Φ̃
)
,

where ξ̃ = tr (Kff) and Φ̃ = K⊤
fuKfu. To obtain the final variational bound, we

compute G̃ by summing all individual G̃j terms.
As pointed out by Gal et al. [2014]; Dai et al. [2014], this final bound is not fac-

torised with respect to datapoints; however, it is still distributable, since all expensive
computations can be parallelised (in the form of partial sums) and returned to a cen-
tral node in each optimisation step. To demonstrate this, we additionally introduce a
term Ψ̃ and re-write the final variational bound including all possible factorisations
with respect to datapoints as:

G̃ = p log
βn/2 |Kuu|

1/2

(2π)n/2
∣∣∣Kuu + βΦ̃

∣∣∣1/2 −
β

2

n∑
i=1

yi,:y
⊤
i,:

+
β2

2
Ψ̃⊤(βΦ̃+Kuu)

−1Ψ̃− βpξ̃

2
+

βp

2
tr
(
K−1

uu Φ̃
)
,

(2.34)

while noticing that:

ξ̃ =
n∑

i=1

kf (xi,:,xi,:), Ψ̃ =
n∑

i=1

(Kfu)
⊤
i,:yi,:, Φ̃ =

n∑
i=1

(Kfu)
⊤
i,:(Kfu)i,:. (2.35)

Here, (Kfu)i,: is an m−dimensional vector with its ith element given by
kf (xi,:, (xu)i,:). As can be seen, the term (Kuu + βKufKfu)

−1 (which also appears
in the DTC bound of equation (2.23)) is forbidding a full factorisation of the bound.

2.3.4 Comparison of the Sparse Methods

After having described the different ways of obtaining sparse GP approximations, we
now proceed by commenting and highlighting the properties and similarities of each
method. To start with, we comment on the advantages of treating sparse GPs through
a variational formulation. As was shown in the end of the previous section, the varia-
tional lower bound obtained differs with the deterministic sparse approximation only

2.3 Variational Sparse Gaussian Processes - a Unified View 31

X

yj

j = 1 . . . p

(a) Standard
Gaussian process

X

fjuj yj

Xu

j = 1 . . . p

(b) Augmented Gaussian process,
with latent function shown

xi,:

yi,juj

Xu

j = 1 . . . p

i = 1 . . . n

(c) Variational augmented
Gaussian process

Fig. 2.4: Directed graphical models corresponding to (a) a standard Gaussian Process model,
after marginalising out the latent function values f . (b) A GP augmented with inducing vari-
ables Xu,U, and with the noise dependency p(Y |F) shown. (c) Illustration of the condi-
tional dependencies in the conditional variational bound. Shaded nodes represent observed
variables; smaller circles represent quantities which do not have a distribution (black color for
parameters, gray for observed).

by a trace term. This trace term acts as a regulariser and guards against overfitting
in two ways; firstly, as noted in [Titsias, 2009], this term corresponds to the squared
error of predicting the training latent values f from the inducing variables u, and
thus facilitates the discovery of a good set of inducing inputs xu. Indeed, Smola and
Schölkopf [2000]; Lawrence et al. [2003] have used similar criteria for selecting the
inducing points in sparse GP methods. Secondly, the trace term regularises the co-
variance function parameters as well as the model noise parameter β. As explained in
[Titsias, 2009], by taking the variational bound and solving for the optimal value for
β reveals that this value is penalised to be smaller when the selected set of inducing
points cannot predict well the training latent function values f .

We now discuss the differences in the treatment of q(uj) in the variational ap-
proaches. As we saw, by not collapsing the variational distribution q(uj) we manage
to maintain a fully factorised lower bound. As noted in [Hensman et al., 2013a], this
can be intuitively explained by interpreting the inducing outputs uj as global vari-

ables, through which information is passed to the rest of the graphical model’s nodes.
In other words, the graphical model of this approach satisfies the necessary condi-
tions for applying stochastic variational inference, as identified by Hoffman et al.
[2012] in the case of LDA. An important advantage of the SVI GP is that it does not
scale with the number of data points (in fact, it can be cast as an on-line optimisa-
tion problem) and can be massively parallelised. Hensman et al. [2013a] identifies
that the optimisation of the inducing inputs can be challenging in this case, but sug-
gests that using a large fixed set (e.g. a fine grid) can work in most scenarios, since
the reduced computational complexity means that one can use more inducing points

32 Gaussian processes

compared to traditional sparse GP methods. On the other hand, the collapsed version
of the variational bound re-introduces the coupling in the data points fi,:. However,
as shown in equation (2.34), these bounds are still distributable. This observation
was made firstly by Gal et al. [2014] and also exploited by Dai et al. [2014]; these
works defined efficient distributable algorithms that allow the variational framework
to be applied to many thousands of datapoints. Concerning the quality of the approx-
imations, the SVI GP bound of equation (2.32) is less tight than the corresponding
collapsed bound of equation (2.33), since the variational distribution q(uj) is not op-
timally eliminated. Regarding optimisation, in SVI GP there is a need for optimising
a much larger number of parameters, namely θq(U); optimisation in the natural gradi-
ent space can ameliorate, to some extent, this problem but introduces the burden of
having to carefully adjust the steplength of the stochastic procedure.

2.4 Discussion

This chapter discussed the basics of Gaussian processes and sparse Gaussian pro-
cesses. The discussion was limited to a specific family of sparse approaches which
seek low rank approximations to the covariance, although recently there has been a
lot of effort in providing even faster solutions by embedding sparse approaches in
more sophisticated algorithms, e.g. by Meier et al. [2014]; Bui and Turner [2014];
Deisenroth and Ng [2015]. Here, special attention was given to the variational sparse
GP methods, for which a unifying view was also developed.

The variational interpretation of inducing points is used in the rest of this thesis
for purposes that go much further than just providing low-rank approximations for
the covariance. Firstly, by exploiting the fact that the data become independent given
the inducing points one can obtain tractability in GP-based Bayesian latent variable
models, as was firstly shown by Titsias and Lawrence [2010]. This thesis is concerned
with mathematically describing the variational framework which results in tractable
marginalisation of the latent or other kinds of GP inputs as well as with imposing rich
structure in the latent space, such as dynamics [Damianou et al., 2011], segmentation
coming from multiple observation views [Damianou et al., 2012], class information
etc. Finally, the interpretation of inducing points as variational rather than model
parameters facilitates the construction of deep GP structures without the danger of
overfitting.

2.4 Discussion 33

Note on chapter’s contributions

Since this introductory chapter mostly contained a review of previous work, I will clarify my contribu-

tions in this paragraph, and summarise the contributors of the main ideas discussed. Firstly, the review

of Gaussian and sparse Gaussian processes drew inspiration mainly from Williams and Rasmussen

[1996]; Bishop [2006]; Quiñonero Candela and Rasmussen [2005]; Titsias [2009]. Secondly, the pio-

neering variational GP approach where I placed particular emphasis was developed by Titsias [2009].

In this chapter I provided a unifying review, which highlights the connections of past sparse GP ap-

proaches, Titsias’ variational approach and recent variational GP developments. Specifically, I firstly

discussed the extension of Hensman et al. [2013a] for obtaining a fully factorised bound. Secondly,

I discussed a way of distributing the computations of the GP. This comes from the work of Gal et al.

[2014], which was later revisited by Dai et al. [2014] (a paper where I appear as second author). Dis-

cussing all these works with a common notation and within a common framework will be useful later

in the thesis, when I will describe how to further extend and combine these ideas to obtain powerful

new latent variable models.

Chapter 3

Variational Marginalisation of Latent
Variables in Gaussian Process Models

A major problem in probabilistic generative modelling is propagating uncertainties
through non-linearities. This chapter considers the case where the inputs to a GP are
latent variables, as in the GP-LVM [Lawrence, 2005], and thus associated with uncer-
tainty. Starting from the Bayesian GP-LVM [Titsias and Lawrence, 2010; Damianou
et al., 2015], this chapter is concerned with deriving in detail the variational infer-
ence methodology that allows for approximate uncertainty propagation. This is then
taken one step further, by defining a unifying framework allowing us to consider non-
parametric priors on the latent space and, thus, to obtain structured (e.g. correlated)
approximate posteriors. A detailed study is presented, for the resulting variational
bound and the way in which structure learning emerges naturally through the combi-
nation of the Bayesian framework and automatic relevance determination techniques.

Specifically, the roadmap of this chapter is as follows. The background section 3.1
motivates this chapter from a more general viewpoint, outlining previous approaches
based on propagating distributions through non-linear functions and associated ap-
proximations to tackle the intractability. Then, Section 3.2, focuses on a particular in-
stance of this kind of approaches where the non-linear function is non-parametrically
modelled with Gaussian processes, as was briefly outlined in Sections 2.1.4 and 2.1.5.
The intractability introduced by such an approach is solved via a non-standard vari-
ational approximation described in detail in Section 3.3. This approximation is in-
spired by the variational treatment of inducing points in sparse GPs, as was discussed
in the previous chapter. Although the current chapter is concerned with propagat-
ing the uncertainty of latent inputs in GPs, a generalisation is discussed in Chapter
4. Importantly, the developed variational framework additionally allows for treating

36 Variational Marginalisation of Latent Variables in Gaussian Process Models

the inputs to a GP as stochastic processes, rather than points or distributions, signif-
icantly increasing flexibility and expressiveness. This chapter focuses on dynamical
processes, but in Chapter 6 more general constructions are described.

3.1 Background

Consider a non linear function f(x). A very general class of probability densities
can be recovered by mapping a simpler density through the non linear function. For
example, we might decide that x should be drawn from a Gaussian density,

x ∼ N (0, 1) ,

and we observe y, which is given by passing samples from x through a non-linear
function, perhaps with some corrupting Gaussian noise, according to the generative
procedure of equation (2.3):

y = f(x) + ϵ, ϵ ∼ N (µ, β−1) .

Whilst the resulting density can now have a very general form, inference in this kind
of models presents particular problems in terms of tractability. For example, let us
consider the non-linear function f to be an RBF network with 100 centers and ℓ =

0.1. The resulting likelihood function p(y|x) ≜ p(y|f, x) is plotted in figure 3.1(a).
From Bayes’ rule, we can obtain the posterior as:

p(x|y) = p(y|x)p(x)
p(y)

.

However, this density can be complicated and difficult to normalise, as can be seen in
figures 3.1(b) and 3.1(c). In other words, propagating a Gaussian density through a
non-linear function is a challenging task, in terms of analytic inference.

Models of this form appear in several domains. They can be used for autoregres-
sive prediction in time series [see e.g. Girard et al., 2003] or prediction of a regres-
sion model output when the input is uncertain [see e.g. Oakley and O’Hagan, 2002].
MacKay [1995b] considered the same form for dimensionality reduction where sev-
eral latent variables, x = {xj}qj=1 are used to represent a high dimensional vector
y = {yj}pj=1 and we normally have p > q, y = f(x). In Section 2.1.4 it was shown
that the GP-LVM is a particular instance of this approach, based on GPs. Adding a
dynamical component to these non-linear dimensionality reduction approaches leads

3.1 Background 37

0

0.2

0.4

−4.8

−0.1

4.6

0

0.5

1

(a) The likelihood plotted as a function of y and x.
y is obtained through a non-linear function plus
noise. Red line is for fixing x to some value x̂.

0

0.2

0.4
−4.8

−0.1

4.6

(b) Unnormalised posterior plotted as a function
of x and y. Red line is for a fixed y and blue line
is p(x).

(c) Propagating the Gaussian density p(x) through a non-linear mapping.

Fig. 3.1: A Gaussian distribution propagated through a non-linear mapping. Figures (a) and
(b) show the likelihood and unnormalised posterior respectively. The posterior density (plot-
ted for given data using a red line in figure (b) and on the right in figure (c)) is multimodal
and difficult to normalise.

to non-linear state space models [Särkkä, 2013], where the states often have a physical
interpretation and are propagated through time in an autoregressive manner,

xt = g(xt−1),

where g(·) is a vector valued function. The outputs are then observed through a
separate non-linear vector valued function,

yt = f(xt) + ϵ.

In the context of GP-LVM this approach has been followed by Wang et al. [2006] and
Damianou et al. [2011].

The intractabilities of mapping a distribution through a non-linear function have
resulted in a range of different approaches. In density networks sampling was pro-
posed; in particular, in [MacKay, 1995b] importance sampling was used. When ex-

38 Variational Marginalisation of Latent Variables in Gaussian Process Models

Fig. 3.2: A three dimensional manifold formed by mapping from a two dimensional space to
a three dimensional space.

tending importance samplers dynamically, the degeneracy in the weights needs to be
avoided, thus leading to the resampling approach suggested for the bootstrap particle
filter of Gordon et al. [1993]. Other approaches in non-linear state space models in-
clude the Laplace approximation, as used in extended Kalman filters, and unscented
and ensemble transforms [see Särkkä, 2013]. In dimensionality reduction the gener-
ative topographic mapping [GTM Bishop et al., 1998] reinterpreted the importance
sampling approach of MacKay [1995b] as a mixture of Gaussians model, using a
discrete representation of the latent space.

In the current chapter of this thesis a variational approach is suggested to dealing
with input uncertainty that can be applied to Gaussian process models. The initial
focus will be application of Gaussian process models in the context of dimensionality
reduction, where GP inputs are latent. In dimensionality reduction we assume that our
high dimensional data set is really the result of some low dimensional control signals
which are, perhaps, non-linearly related to our observed functions. In other words we
assume that our data, Y ∈ ℜn×p, can be approximated by a lower dimensional matrix
of latent variables, X ∈ ℜn×q through a vector valued function where each row, yi,:

of Y represents an observed data point and is approximated through

yi,: = f(xi,:) + ϵi,:, (3.1)

so that the data is a lower dimensional subspace immersed in the original, high dimen-
sional space. If the mapping is linear, e.g. f(xi,:) = W⊤xi,: with W ∈ ℜq×p, methods
like principal component analysis, factor analysis and (for non-Gaussian p(xi,:)) in-
dependent component analysis [Hyvärinen et al., 2001] follow. For Gaussian p(xi,:)

the marginalization of the latent variable in these cases is tractable because placing a
Gaussian density through an affine transformation retains the Gaussianity of the data
density, p(yi,:). However, the linear assumption is very restrictive so it is natural to
look to go beyond it through a non linear mapping.

3.1 Background 39

In the context of dimensionality reduction, a range of approaches have been sug-
gested that consider neighborhood structures or the preservation of local distances to
find a low dimensional representation. In the machine learning community, spectral
methods such as isomap [Tenenbaum et al., 2000], locally linear embeddings [LLE,
Roweis and Saul, 2000] and Laplacian eigenmaps [Belkin and Niyogi, 2003] have
attracted a lot of attention. These spectral approaches are all closely related to ker-
nel PCA [Schölkopf et al., 1998] and classical multi-dimensional scaling (MDS) [see
e.g. Mardia et al., 1979]. These methods do have a probabilistic interpretation as
described by Lawrence [2012], but it does not explicitly include an assumption of
underlying reduced data dimensionality. Other iterative methods such as metric and
non-metric approaches to MDS [Mardia et al., 1979], Sammon mappings [Sammon,
1969] and t-SNE [van der Maaten and Hinton, 2008] also lack an underlying genera-
tive model.

Probabilistic approaches, such as the generative topographic mapping [GTM,
Bishop et al., 1998] and density networks [MacKay, 1995b] view the dimensional-
ity reduction problem from a different perspective, since they seek a mapping from a
low-dimensional latent space to the observed data space (as illustrated in figure 3.2),
and come with certain advantages. More precisely, their generative nature and the
forward mapping that they define allow them to be extended more easily in various
ways (e.g. with additional dynamics modelling), to be incorporated into a Bayesian
framework for parameter learning and to handle missing data more naturally. This
approach to dimensionality reduction provides a useful archetype for the algorithmic
solutions we are providing in this chapter, as they require approximations that allow
latent variables to be propagated through a non-linear function.

The framework described here takes the generative approach prescribed by den-
sity networks and then non-linear variants of Kalman filters one step further. Because,
rather than considering a specific function, f(·), to map from the latent variables to
the data space, we will consider an entire family of functions: one that subsumes the
more restricted class of either Gauss Markov processes (such as the linear Kalman
filter/smoother) and Bayesian basis function models (such as the RBF network used
in the GTM, with a Gaussian prior over the basis function weights). These models
can all be cast within the framework of Gaussian processes. The GP covariance spec-
ifies a distribution over functions that subsumes the special cases mentioned above
alongside the more general case of probabilistic methods with more basis functions.

The Gaussian process latent variable model [GP-LVM, Lawrence, 2005] is a more
recent probabilistic dimensionality reduction method which has been proven to be
very robust for high dimensional problems [Lawrence, 2007a; Damianou et al., 2011].

40 Variational Marginalisation of Latent Variables in Gaussian Process Models

As outlined in Section 2.1.4, the GP-LVM can be seen as a non-linear generalisation
of probabilistic PCA which also has a Bayesian interpretation [Bishop, 1999]. In
contrast to PPCA, the non-linear mapping of GP-LVM makes a Bayesian treatment
much more challenging.

Titsias and Lawrence [2010]; Damianou et al. [2015] show how such a Bayesian
treatment can be obtained using approximations stemming from the variational sparse
GP framework described in Section 2.2. In the current section, we formally derive
this method in detail and place it in the context of a unified variational inference
framework which allows us to propagate uncertainty through a Gaussian process and
obtain a rigorous lower bound on the marginal likelihood of the resulting model. The
resulting unified framework allows for straightforwardly considering structure in the
latent space, even if this is coming from a higher level stochastic process. Therefore,
multiple scenarios can be accommodated; for example, if we treat the latent points
as noisy measurements of given inputs we obtain a method for Gaussian process re-
gression with uncertain inputs [Girard et al., 2003] or, in the limit of zero noise, with
partially observed inputs. This case is examined separately in the next chapter. On the
other hand, considering a latent space prior that depends on a time vector, allows us to
obtain a Bayesian model for dynamical systems [Damianou et al., 2011] that signifi-
cantly extends classical Kalman filter models with a non-linear relationship between
the state space, X, and the observed data Y, along with non-Markov assumptions in
the latent space which can be based on continuous time observations. This is achieved
by placing a Gaussian process prior on the latent space, X which is itself a function
of time, t. For better intuition we will focus our analysis on temporal processes, but
if we replace the time dependency of the prior for the latent space with a spatial de-
pendency, or a dependency over an arbitrary number of high dimensional inputs our
analysis and derivations still hold. As long as a valid covariance function1 can be de-
rived (this is also possible for strings and graphs). This leads to a Bayesian approach
for warped Gaussian process regression [Snelson et al., 2004; Lázaro-Gredilla, 2012].

The next section reviews the main prior work on dealing with latent variables in
the context of Gaussian processes and describe how the model was extended with a
dynamical component. The variational framework and Bayesian training procedure
is then introduced in Section 3.3. Section 3.4 describes how the variational approach
is applied to a range of predictive tasks and this is demonstrated with experiments
conducted on simulated and real world datasets in Section 3.5. Finally, based on the
theoretical and experimental results of our work, the final conclusions are presented

1The constraints for a valid covariance function are the same as those for a Mercer kernel. It must
be a positive (semi-)definite function over the space of all possible input pairs.

3.2 Gaussian Processes with Latent Variables as Inputs 41

in Section 3.6.

3.2 Gaussian Processes with Latent Variables as In-
puts

We wish to model the interaction of input and output collections of points, X and
Y respectively, via the generative procedure of equation (3.1) and by assuming a GP
prior for f . By treating this general modelling scenario as a Gaussian process latent
variable model (GP-LVM, Section 2.1.4), we can obtain all possible cases of inter-
est. For example, we can perform standard GP regression, latent variable modelling
(and dimensionality reduction) or semi-supervised modelling if we treat the inputs to
the GP-LVM as fixed, free and partially fixed parameters respectively. However, in
contrast to standard GP-LVM modelling, here we are also interested in modelling the
uncertainty associated with the inputs. Later in this chapter an approach which makes
this possible (dubbed the “variational GP-LVM”) is developed.

This section provides background material on current approaches for learning us-
ing Gaussian process latent variable models (GP-LVMs). Specifically, Section 3.2.1
reviews the standard GP-LVM for i.i.d. data as well as dynamic extensions suitable
for sequence data. Section 3.2.2 discusses the drawbacks of MAP estimation over the
latent variables, which is currently the mainstream way to train GP-LVMs and does
not allow for propagating the uncertainty of the inputs.

3.2.1 Different Latent Space Priors and GP-LVM Variants

Different GP-LVM algorithms can result by varying the structure of the prior distribu-
tion p(X) over the latent inputs. The simplest case, which is suitable for i.i.d. observa-
tions, is obtained by selecting a fully factorized (across data points and dimemsions)
latent space prior:

p(X) =
n∏

i=1

N (xi,:|0, Iq) =
n∏

i=1

q∏
j=1

N (xi,j|0, 1) . (3.2)

More structured latent space priors can also be used to incorporate available informa-
tion about the problem at hand. For example, Urtasun and Darrell [2007] add discrim-
inative properties to the GP-LVM by considering priors which encapsulate class-label
information. Other existing approaches in the literature seek to constrain the latent
space via a smooth dynamical prior p(X) so as to obtain a model for dynamical sys-

42 Variational Marginalisation of Latent Variables in Gaussian Process Models

tems. For example, Wang et al. [2006, 2008] extend GP-LVM with a temporal prior
which encapsulates the Markov property, resulting in an auto-regressive model. Ko
and Fox [2009, 2011] further extend these models for Bayesian filtering in a robotics
setting, whereas Urtasun et al. [2006] consider this idea for tracking. In a similar
direction, Lawrence and Moore [2007] consider an additional temporal model which
employs a GP prior that is able to generate smooth paths in the latent space.

In this chapter we shall focus on dynamical variants where the dynamics are re-
gressive, as in [Lawrence and Moore, 2007]. In this setting, the data are assumed
to be a multivariate timeseries {yi,:, ti,:}ni=1 where ti,: ∈ ℜ+ is the time at which the
datapoint yi,: is observed. A GP-LVM dynamical model is obtained by defining a
temporal latent function x(t) = (x1(t), . . . , xq(t)) where the individual components
are taken to be independent draws from a Gaussian process,

xj(t) ∼ GP(0, kx(t, t
′)), k = 1, . . . , q,

where kx(t, t
′) is the covariance function. The datapoint yi,: is assumed to be pro-

duced via the latent vector xi,: = x(ti,:), as shown in figure 3.3(c). All these latent
vectors can be stored in the matrix X (exactly as in the i.i.d. data case) which now
follows the correlated prior distribution,

p(X|t) =
q∏

j=1

p(xj|t) =
q∏

j=1

N (xj|0,Kx) , (3.3)

where Kx = kx(t, t) is the covariance matrix obtained by evaluating the covariance
function kx on the observed times t. In contrast to the fully factorized prior in (3.2),
the above prior couples all elements in each row of X. The covariance function kx

has parameters θx and determines the properties of each temporal function xk(t). For
instance, the use of an Ornstein-Uhlbeck covariance function yields a Gauss-Markov
process for xk(t), while the exponentiated quadratic covariance function gives rise to
very smooth and non-Markovian process.

3.2.2 Drawbacks of the MAP Training Procedure

GP-LVM based models found in the literature typically rely on MAP training proce-
dures for optimising the latent inputs and the hyperparameters, see Section 2.1.4.
However, this approach has several drawbacks. Firstly, the fact that it does not
marginalise out the latent inputs implies that it is sensitive to overfitting. Further, the
MAP objective function cannot provide any insight for selecting the optimal number

3.2 Gaussian Processes with Latent Variables as Inputs 43

of latent dimensions, since it typically increases when more dimensions are added.
This is why most GP-LVM algorithms found in the literature require the latent di-
mensionality to be either set by hand or selected with cross-validation. The latter
case renders the whole training computationally slow and, in practice, only a very
limited subset of models can be explored in a reasonable time.

As another consequence of the above, the current GP-LVMs employ simple co-
variance functions (typically having a common lengthscale over the latent input di-
mensions as the one in equation (2.6)), while more complex covariance functions, that
could help to automatically select the latent dimensionality, are not popular. For ex-
ample, the exponentiated quadratic with multiple lengthscales covariance function of
equation (2.7) could allow an automatic relevance determination (ARD) procedure to
take place, during which unnecessary dimensions of the latent space X are assigned
a weight wk with value almost zero. However, with the standard MAP training ap-
proach the benefits of Bayesian shrinkage using the ARD covariance function cannot
be realised, as typically overfitting will occur; this is later demonstrated in Figure 3.4.
This is the reason why standard GP-LVM approaches in the literature avoid the ARD
covariance function and are sensitive to the selection of q.

On the other hand, the fully Bayesian framework allows for a “soft” model se-
lection mechanism [Tipping, 2000; Bishop, 1999], stemming from the different role
played by q. Specifically, in such an approach q can be seen as an “initial conserva-
tive guess” for the effective dimensionality of the latent space; subsequent optimisa-
tion renders unnecessary dimensions almost irrelevant by driving the corresponding
inverse lengthscales close to zero. Notice, however, that no threshold needs to be
employed. Indeed, in the predictive equations all q latent dimensions are used, but
the lengthscales automatically weight the contribution of each. In fact, typically the
selection for q is not crucial, as long as it is large enough to capture the effective
dimensionality of the data. That is, if r > q is used instead, then the extra r − q

dimensions will only slightly affect any predictions, given that they will be assigned
an almost zero weight. This was indeed observed in our initial experiments. An al-
ternative to the ARD shrinkage principle employed in this paper is the spike and slab
principle [Mitchell and Beauchamp, 1988], which provides “hard” shrinkage so that
unnecessary dimensions are assigned a weight exactly equal to zero. This alternative
constitutes a promising direction for future research in the context of GP-LVMs.

Another major problem with MAP training procedures is that this approach severely
hinders the development of more complicated models and, in particular, deep Gaus-
sian processes. Indeed, an approach which treats all hidden layers of a deep model
as “standard” parameters does not allow for learning any structure and suffers from

44 Variational Marginalisation of Latent Variables in Gaussian Process Models

severe overfitting problems. This is further discussed in Chapter 6, as the current
chapter keeps the discussion more general.

Given the above, it is clear that the development of more fully Bayesian ap-
proaches for training GP-LVMs could make these models more reliable and provide
rigorous solutions to the limitations of MAP training. The variational method pre-
sented in the next section is such an approach that, as demonstrated in the experi-
ments, shows great ability in avoiding overfitting and permits automatic selection of
the latent dimensionality.

3.3 Variational Gaussian Process Latent Variable Mod-
els

This section describes in detail the proposed method which is based on a non-standard
variational approximation that utilises auxiliary variables. The resulting class of train-
ing algorithms will be referred to as variational Gaussian process latent variable

models, or simply variational GP-LVMs.

We start with Section 3.3.1 which briefly describes standard variational Bayesian
inference and Section 3.3.2 which explains the obstacles we need to overcome when
applying variational methods to the GP-LVM and specifically why the standard mean
field approach is not immediately tractable. Section 3.3.3 shows how the use of aux-
iliary variables together with a certain variational distribution results in a tractable
approximation. Finally, Section 3.3.6 gives specific details about how to apply the
developed framework to the two different GP-LVM variants that this chapter is con-
cerned with: the standard GP-LVM and the dynamical/warped one.

3.3.1 Standard Variational Bayesian Inference

Given a set of observations Y, we assume that these data can be generated by a
family of models p(Y,Θ), where Θ is a set of unknown random variables upon
which the models depend. Maximum likelihood approaches seek to find the best
model by maximizing the likelihood p(Y|Θ) with respect the Θ to find a single point
estimate for the variables Θ. On the other hand, Bayesian methods seek to compute
the logarithm of the marginal likelihood (or evidence) p(Y) according to:

log p(Y) = log

∫
p(Y,Θ)dΘ = log

∫
p(Y|Θ)p(Θ)dΘ.

3.3 Variational Gaussian Process Latent Variable Models 45

This approach is advantageous because all possible settings for Θ are averaged out
while we obtain a posterior distribution p(Θ|Y) for the unknown variables, some-
thing which leads to an automatic Occam’s razor which penalizes complex models
and prevents overfitting [Jefferys and Berger, 1992; MacKay, 1995a]. However, for
most interesting models the above integral is intractable, and variational methods are
often employed for approximating this quantity [Bishop, 2007; Beal, 2003]. These
approaches seek to lower bound the logarithm of the model evidence with a functional
F (q(Θ)) which depends on a variational distribution q(Θ). Notice that, in general,
there might still be model hyperparameters θ to be optimized but, as in the rest of this
thesis, the conditioning on θ is dropped for clarity, i.e. we will write p(Y,Θ) instead
of p(Y,Θ|θ) and F (q(Θ)) instead of F (q(Θ),θ). The lower bound F is obtained
by applying Jensen’s inequality:

log p(Y) = log

∫
p(Y,Θ)dΘ = log

∫
q(Θ)

p(Y,Θ)

q(Θ)
dΘ

≥
∫

q(Θ) log
p(Y,Θ)

q(Θ)
dΘ = F (q(Θ)) .

The bound becomes exact when q(Θ) = p(Θ|Y). However, if the true posterior is
intractable or very complicated, the variational distribution q(Θ) has to be somehow
constrained and, therefore, only provide an approximation to the true posterior. In the
standard Bayesian variational methodology, one obtains tractability by constraining
q(Θ) to either be of a specific form or to factorise with respect to groups of elements
belonging to the parameter set Θ, something which is also known as the mean field
approximation. In any case, the functional F(q(Θ)) is then variationally optimised
with respect to q(Θ) so that the variational distribution approximates the true poste-
rior p(Θ|Y) as the bound becomes tighter, i.e. as F (q(Θ)) → log p(Y).

In the following section we attempt to apply the standard variational methodology
described above for treating the GP-LVM in a Bayesian manner. We will explain why
this standard approach is inadequate and will introduce further approximations which
lead to an analytical lower bound on the marginal likelihood.

3.3.2 Standard Mean Field is Challenging for GP-LVM

A Bayesian treatment of the GP-LVM requires the computation of the log marginal
likelihood. Both sets of unknown random variables have to be marginalised out:
the mapping values F (as in the standard model) and the latent space X. Thus, the

46 Variational Marginalisation of Latent Variables in Gaussian Process Models

required integral is written as,

log p(Y) = log

∫
p(Y,F,X)dXdF = log

∫
p(Y|F)p(F|X)p(X)dXdF (3.4)

= log

∫
p(Y|F)

(∫
p(F|X)p(X)dX

)
dF, (3.5)

where all probabilities appearing above are given in Chapter 2.

The key difficulty with this Bayesian approach is propagating the prior density
p(X) through the non-linear mapping. Indeed, the nested integral in equation (3.5)
can be written as: ∫

p(X)

p∏
j=1

p(fj|X)dX

where each term p(fj|X), given by equation (2.2), is proportional to:

|Kff |−
1
2 exp

(
−1

2
f⊤j K

−1
ff fj

)
.

Clearly, the inputs X of the kernel matrix Kff are contained in the above term in a
rather very complex non-linear manner and therefore analytical integration over X is
infeasible.

To make progress we can invoke the standard variational Bayesian methodology,
outlined in the previous section, to approximate the marginal likelihood of equation
(3.4) with a variational lower bound. Specifically, we introduce a factorised varia-
tional distribution over the unknown random variables,

q(F,X) = q(F)q(X),

which aims at approximating the true posterior p(F|Y,X)p(X|Y). Based on Jensen’s
inequality, we can obtain the standard variational lower bound on the log marginal
likelihood,

log p(Y) ≥
∫

q(F)q(X) log
p(Y|F)p(F|X)p(X)

q(F)q(X)
dFdX. (3.6)

Nevertheless, this standard mean field approach remains problematic because the
lower bound above is still intractable to compute. To isolate the intractable term,

3.3 Variational Gaussian Process Latent Variable Models 47

observe that (3.6) can be written as

log p(Y) ≥
∫

q(F)q(X) log p(F|X)dFdX+

∫
q(F)q(X) log

p(Y|F)p(X)

q(F)q(X)
dFdX,

where the first term of the above equation contains the expectation of log p(F|X)

under the distribution q(X). This requires an integration over X which appears non-
linearly in K−1

ff and log |Kff | and cannot be done analytically. This means that stan-
dard mean field variational methodologies do not lead to an analytically tractable
variational lower bound.

3.3.3 Tractable Lower Bound by Introducing Auxiliary Variables

In contrast, the framework presented here allows us to compute a closed-form Jensen’s
lower bound by applying variational inference after expanding the GP prior so as to
include auxiliary inducing variables. Originally, inducing variables were introduced
for computational speed ups in GP regression models. In our approach, these extra
variables will be used within the variational sparse GP framework of Titsias [2009]
that was outlined in Section 2.2.

More specifically, we expand the joint probability model by including m extra
samples (inducing points) of the GP latent mapping f(x), so that ui,: ∈ Rp is such
a sample. The inducing points are collected in a matrix U ∈ Rm×p and constitute
latent function evaluations at a set of pseudo-inputs Xu ∈ Rm×q. The augmented
joint probability density takes the form,

p(Y,F,U,X) =p(Y|F)p(F|U,X)p(U)p(X)

=

(
p∏

j=1

p(yj|fj)p(fj|uj,X)p(uj)

)
p(X). (3.7)

The probabilities appearing above are given in Section 2.2 but rewritten here for com-
pleteness (recall that, for clarity, the Xu is dropped from the conditioning set):

p(fj|uj,X) = N
(
fj|aj, K̃

)
with: (3.8)

aj = KfuK
−1
uuuj and K̃ = Kff −KfuK

−1
uuKuf

and
p(uj) = N (uj|0,Kuu). (3.9)

48 Variational Marginalisation of Latent Variables in Gaussian Process Models

Recall that Kuu denotes the covariance matrix constructed by evaluating the covari-
ance function on the inducing points, Kuf is the cross-covariance between the in-
ducing and the latent points and Kfu = K⊤

uf . Figure 3.3b graphically illustrates the
augmented probability model.

Y

F

X

(a)

Y

F

X

U

Xu

(b)

Y

F

X

U

Xu

t

(c)

Fig. 3.3: The graphical model for the GP-LVM (a) is augmented with auxiliary variables to
obtain the variational GP-LVM model (b) and its dynamical version (c). In general, the top
level input in (c) can be arbitrary, depending on the application.

Similarly to the variational sparse GP case, to compute a variational lower bound
by working in the augmented probability space, we need to introduce a variational
distribution q(U) which factorises with respect to output dimensions j, as shown in
equation (2.30). Since we now wish to integrate out the latent space, we additionally
introduce a variational distribution q(X). This distribution can be chosen to factorise
across latent dimensions or datapoints and, as will be discussed in Section 3.3.6, this
choice will depend on the form of the prior distribution p(X). For the time being,
however, we shall proceed by only assuming that this distribution is Gaussian:

q(X) = N (X|M,S) , (3.10)

where calligraphic notation is used for the parameters to emphasize that possible fac-
torisations might exist.

3.3 Variational Gaussian Process Latent Variable Models 49

The lower bound can now be found as follows:

log p(Y) = log

∫
p(Y|U,X)p(U)p(X)dXdU

≥
∫

q(X)q(U) log
p(Y|U,X)p(U)p(X)

q(X)q(U)
dXdU

=

∫
q(X)q(U) log p(Y|U,X)− KL (q(U) ∥ p(U))− KL (q(X) ∥ p(X))

≥ ⟨L⟩q(U)q(X) − KL (q(U) ∥ p(U))− KL (q(X) ∥ p(X))

= F̂ (q(X), q(U))− KL (q(X) ∥ p(X))

= F (q(X), q(U)) (3.11)

where we used the preliminary bound of equation (2.28) and defined:

F̂(q(X), q(U)) = ⟨L⟩q(U)q(X) − KL (q(U) ∥ p(U)) .

Following the discussion in the variational sparse GP section, instead of using the
preliminary bound we could here introduce a variational distribution which includes
the exact term p(F|U,X). Overall, the form of the variational distribution is:

q(F,U,X) = q(X)

p∏
j=1

p(fj|uj,X)q(uj) (3.12)

and gives us the same bound after applying Jensen’s inequality. Specifically, we have:

log p(Y) ≥
∫

q(F,U,X) log
p(Y,F,U,X)

q(F,U,X)
dFdUdX

from where the factors p(fj|uj,X) cancel out if we expand the joint and the varia-
tional distribution. It is now clear that we explicitly assume a variational distribution
which approximates the true posterior written below:

p(F,U,X|Y) = p(F|U,Y,X)p(U|Y,X)p(X|Y). (3.13)

Notice that the variational lower bound of equation (3.11) factorises with respect
to dimensions j, since L and q(U) both factorise accordingly. Additionally, if we
select q(X) to factorise with respect to data points, then F is a fully factorised bound.

The computation of the expectation ⟨L⟩q(U)q(X) is analytically tractable (depend-
ing on the form of the covariance function – this will be explained later). First we

50 Variational Marginalisation of Latent Variables in Gaussian Process Models

will consider the expectation with respect to q(X):

⟨L⟩q(X) =
n∑

i=1

p∑
j=1

⟨Li,j⟩q(X) , and from equation (2.29) we have:

⟨Li,j⟩q(X) = −1

2
log(2πβ−1)− β

2
y2i,j + βtr (yi,jΨi,:K

−1

uuuj)

− β

2
tr
(
K−1

uuuju
⊤
j K

−1

uuΦ̂i

)
− β

2

(
ξ̂i − tr

(
Φ̂iK

−1

uu

))
, (3.14)

where, in a similar fashion to equation (2.35), we introduced the notation of {ξ,Ψ,Φ}
statistics, which is explained below. We have:

ξ = ⟨tr (Kff)⟩q(X) =
n∑

i=1

ξ̂i

Ψ = ⟨Kfu⟩q(X) = {Ψi,:}ni=1

Φ = ⟨KufKfu⟩q(X) =
n∑

i=1

Φ̂i.

(3.15)

These statistics are computed in a decomposable way, since the covariance ma-
trices appearing in them are evaluated in pairs of inputs xi,: and (xu)i,: taken from
X and Xu respectively. In particular, the statistics ξ and Φ are written as sums of
independent terms where each term is associated with a data point and similarly each
column of the matrix Ψ is associated with only one data point. This decomposition is
useful when a new data vector is inserted into the model and can also help to speed up
computations during test time as discussed in Section 3.4. It can also allow for paral-
lelization in the computations as suggested by [Gal et al., 2014; Dai et al., 2014] and
shown in equation (2.34). Therefore, the averages of the covariance matrices over
q(X) in equation (3.15) of the {Φ,Ψ, ξ} statistics can be computed separately for
each marginal q(xi,:) = N (xi,:|µi,:,Si) taken from the full q(X) of equation (3.10).
We can, thus, write that ξ =

∑n
i=1 ξ̂i where

ξ̂i =

∫
kf (xi,:,xi,:)N (xi,:|µi,:,Si) dxi,:. (3.16)

Further, Ψ is an n×m matrix with rows {Ψi,:}ni=1, such that

Ψi,k =

∫
kf (xi,:, (xu)k,:)N (xi,:|µi,:,Si) dxi,:. (3.17)

Φ is an m × m matrix which is written as Φ =
∑n

i=1 Φ̂i where each Φ̂i is itself an

3.3 Variational Gaussian Process Latent Variable Models 51

m×m matrix such that

(Φ̂i)k,k′ =

∫
kf (xi,:, (xu)k,:)kf ((xu)k′,:,xi,:)N (xi,:|µi,:,Si) dxi,:. (3.18)

Notice that these statistics constitute convolutions of the covariance function kf

with Gaussian densities and are tractable for many standard covariance functions,
such as the ARD exponentiated quadratic or the linear one. The analytic forms of the
{ξ,Ψ,Φ} statistics for these covariance functions are given in Appendix B.2.

Returning back to the expression for the variational bound of equation (3.14), we
can get further intuition by completing the square:

⟨Li,j⟩q(X) = N (yi,j|Ψi,:K
−1

uuuj, β
−1)

− β

2
tr
(
K−1

uuuju
⊤
j K

−1

uu

(
Φ̂i −Ψ⊤

i,:Ψi,:

))
− β

2

(
ξ̂i − tr

(
Φ̂iK

−1

uu

))
.

Finally, we take a further expectation (with respect to q(U), given in equation (2.30))
of the variational lower bound of equation (3.14):〈

⟨Li,j⟩q(X)

〉
q(U)

= −1

2
log(2πβ−1)− β

2
y2i,j + βtr (yi,jΨi,:K

−1

uu(µu)j)

− β

2
tr
(
K−1

uu

(
(µu)j(µu)

⊤
j + (Σu)j

)
K−1

uuΦ̂i

)
− β

2

(
ξ̂i − tr

(
Φ̂iK

−1

uu

))
.

(3.19)

The final form of the variational lower bound F (q(X), q(U)) can now be ob-
tained by summing the above expression over i, j and replacing back in equation
(3.11). By choosing q(X) to be factorised w.r.t datapoints, the whole variational
bound is then fully factorised.

Stochastic Optimisation and Big Data Challenges

Optimising the above form of the bound involves the model parameters θ and vari-
ational parameters Θ, where Θ consists of the inducing inputs Xu as well as the
parameters of the distributions q(X) and q(U). The optimisation can proceed by op-
timising all of these parameters jointly using a gradient based method, but this can
be challenging due to their inter-dependencies and large number. Specifically, the
variational distribution q(U) is associated with full covariance matrices; the varia-
tional distribution q(X) is associated with diagonal covariance matrices, but in big
data scenarios it can also become problematic, since every datapoint is associated
with a marginal q(xi,:).

52 Variational Marginalisation of Latent Variables in Gaussian Process Models

Optimising q(U) and q(X) using natural gradients could result in an improved
stochastic optimisation procedure. The implementation developed as part of this the-
sis experimented with a hybrid approach where only q(U) is optimised in the natural
gradient space. Essentially, this approach constitutes the unsupervised extension of
the GP stochastic variational inference approach of Hensman et al. [2013a], where
data minibatches are considered to update the gradient estimate in each iteration.
In the GP case, each optimisation step concerns only “global” parameters, i.e. pa-
rameters that are shared between datapoints. However, in the unsupervised scenario
every minibatch B of observations {yb,:}b∈B is accompanied with a different set of
variational parameters, corresponding to the marginal {q(xb,:)}b∈B. Optimising these
variational parameters is challenging, since the data minibatch is considered only
once and then discarded. As we explain in [Hensman et al., 2014a], one solution is
to define an iterative training scheme which estimates the approximate posterior of
q(xb,:) once a batch b is observed and subsequently take steps in the (natural) gradient
direction of the global parameters U.

Although this solution is viable, our experiments (see Section 3.5.6) showed that
the corresponding optimisation procedure is very unstable because certain data batches
can cause bifurcation-like effects. These effects are attributed to the complicated in-
terplay between the parameters to be learned and they add a significant burden in
calibrating the learning rates during optimisation. Another promising direction is to
resort to recognition models [see e.g. Stuhlmüller et al., 2013; Rezende et al., 2014]
which approximate (through a learned mapping) the posteriors q(xb,:) directly from
their corresponding yb,:.

3.3.4 Collapsing the Inducing Variational Distribution

In contrast to explicitly representing the variational distribution q(U) in the final ex-
pression for the lower bound, one can obtain a tighter bound:

F (q(X)) ≥ F (q(X), q(U))

by collapsing q(U) as discussed for the sparse GP case in Section 2.3.3. In this case,
we do not need to specify a specific distribution for q(uj), but will instead leave it be
a free form distribution which will be optimally set. To achieve this, we go back to
equation (3.11) and, since collapsing q(U) reintroduces coupling in the data points,

3.3 Variational Gaussian Process Latent Variable Models 53

we will write the factorisation only with respect to dimensions:

F (q(X), q(U)) =

p∑
j=1

F̂j (q(X), q(uj))− KL (q(X) ∥ p(X)) . (3.20)

In eq. (3.11) we saw how the F̂j (q(X), q(uj)) term can be written as a function
of the preliminary variational bound Lj . We therefore use equation (2.27) and collect
all terms containing q(uj), so that the F̂j (q(X), q(uj)) term of the bound becomes:

F̂j (q(X), q(uj)) =

∫
q(uj) ⟨Lj⟩q(X) duj +

∫
q(uj) log

p(uj)

q(uj)
duj

=

∫
q(uj) log e

⟨logN(yj |aj ,β
−1Ip)⟩

q(X)duj +

∫
q(uj) log

p(uj)

q(uj)
duj −A

=

∫
q(uj) log

e
⟨logN(yj |aj ,β

−1Ip)⟩
q(X)p(uj)

q(uj)
duj −A (3.21)

where A =
〈

β
2
tr
(
K̃
)〉

q(X)
= βξ

2
+ β

2
tr (K−1

uuΦ).

The expression in (3.21) is a KL-like quantity and, therefore, q(uj) is optimally
set to be proportional to the numerator inside the logarithm of the above equation, i.e.

q(uj) ∝ e
⟨logN(yj |aj ,β

−1In)⟩
q(X)p(uj), (3.22)

which is just a Gaussian distribution (see Appendix B.1 for an explicit form).

We can now re-insert the optimal value for q(uj) back into F̂j (q(X), q(uj)), to
obtain:

F̂j (q(X)) = log

∫
e
⟨logN(yj |aj ,β

−1In)⟩
q(X)p(uj)duj −A (3.23)

= log

∫ n∏
i=1

e
⟨logN (yi,j |ai,j ,σ2)− 1

2σ2 (kf (xi,:,xi,:)−kf (xi,:,Xu)K
−1
uukf (Xu,xi,:))⟩

q(xi,:)p(u:,j)du:,j

(3.24)

where the second expression uses the factorisation of the Gaussian likelihood across
data points and it implies that independently of how complex the overall variational
distribution q(X) could be, F̂j will depend only on the marginals q(xi,:)s over the
latent variables associated with different observations. Furthermore, notice that the
above trick of finding the optimal factor q(u:,j) and placing it back into the bound
(firstly proposed in [King and Lawrence, 2006]) can be informally explained as re-

versing Jensen’s inequality (i.e. moving the log outside of the integral) in the initial

54 Variational Marginalisation of Latent Variables in Gaussian Process Models

bound from (3.21), as pointed out by Titsias [2009].

Notice that the expectation appearing in equation (3.23) is a standard Gaussian
integral and can be calculated in closed form (for specific choices of covariance func-
tion – this is discussed below). This turns out to be (see Appendix B.1.2 for details):

F̂j (q(X)) = log

[
β

n
2 |Kuu|

1
2

(2π)
n
2 |βΦ+Kuu|

1
2

e−
1
2
y⊤
j Wyj

]
− βξ

2
+

β

2
tr
(
K−1

uuΦ
)

(3.25)

where W = βIn − β2Ψ(βΦ+Kuu)
−1Ψ⊤.

The computation of F̂j (q(X)) only requires computation of matrix inverses and
determinants which involve Kuu instead of Kff , something which is tractable since
Kuu does not depend on X. Therefore, this expression is straightforward to compute,
as long as the covariance function kf is selected so that the {Φ,Ψ, ξ} quantities of
equation (3.15) can be computed analytically.

To summarize, the final form of the variational lower bound on the marginal like-
lihood p(Y) is written as

F (q(X)) = F̂ (q(X))− KL (q(X) ∥ p(X))

=

p∑
j=1

F̂j (q(X))− KL (q(X) ∥ p(X)) , (3.26)

which is exactly as equation (3.20) but the F terms do not depend on q(U).

It will be instructive for later sections notice that the above framework is, in
essence, computing the following approximation analytically,

F̂ (q(X)) ≤
∫

q(X) log p(Y|X)dX. (3.27)

3.3.5 Discussion on the Different Forms of The Variational Bound

We have seen two forms of a variational lower bound on the marginal log. likelihood
log p(Y). The obtained variational lower bounds closely resemble the corresponding
bounds obtained by applying the method of Titsias [2009] and Hensman et al. [2013a]
in standard sparse GP regression, which were discussed in Section 2.3. The difference
is that now X is marginalized out so that the terms containing X, i.e. the kernel quan-
tities tr (Kff), Kfu and KfuKuf , are transformed into averages (i.e. the {Φ,Ψ, ξ}
quantities in (3.15)) with respect to the variational distribution q(X). Similarly to
the variational sparse GP framework, the approximations were made tractable by us-
ing a set of inducing points. The inducing inputs, Xu, are variational parameters, so

3.3 Variational Gaussian Process Latent Variable Models 55

that optimisation over them simply improves the approximation. Analogously to the
sparse GP framework, the variational GP-LVM bounds presented above differentiate
depending on the way that the inducing output distribution q(U) is treated.

Firstly, we can obtain a variational lower bound F (q(X), q(U)), given in equation
(3.11), which depends on a variational distributions q(U)q(X). This form depends on
an expectation ⟨L⟩q(U)q(X) which is given in equation (3.19) and is fully factorised,
as well as on two KL terms that can also be factorised. Therefore, the overall bound
is fully factorised, across datapoints and across output dimensions. In the end of Sec-
tion 3.3.3 we saw that the large number of parameters associated with this approach
introduces new optimisation challenges.

We now contrast to the second form of the variational lower bound, summarised
in equation (3.26). This formulation is obtained by collapsing q(U), resulting in
an expression that can be jointly optimised over the remaining variational and model
parameters. The induced optimisation procedure is then similar to the optimization of
the MAP objective function employed in the standard GP-LVM, the main difference
being that instead of optimizing the random variables X, we now optimize a set of
variational parameters which govern the approximate posterior mean and variance
for X. Given the similarity of the variational GP-LVM with the variational sparse
GP framework, the same comparison (see Section 2.3.4) concerning bound quality
and parallelisation holds here too. In short, the collapsed bound is “tighter” and
distributable, but the uncollapsed bound is fully parallelisable.

In both versions of the variational lower bound we make certain assumptions
about the form and factorisation of the variational distribution. To explore these as-
sumptions, contrast the variational distribution of equation (3.12) to the true posterior
of equation (3.13). Firstly, we see that the variables U and X are decoupled in a
mean field manner. This might be suboptimal, and developing variational approx-
imations which consider correlations between these variables is an interesting path
for future research. Secondly, selecting a Gaussian q(X) is only an approximation,
since the true posterior p(X|Y) is expected to be a more complicated and potentially
multi-modal density, as illustrated in figure 3.1. Thirdly, a key ingredient of the vari-
ational distribution is that it contains the exact conditional GP prior term p(F|U,X)

which appears in the joint density in equation (3.7). As was shown, this crucially
leads to cancellation of difficult terms (involving inverses and determinants over ker-
nel matrices on X) and allows us to compute a closed-form variational lower bound.
Furthermore, under this choice the conditional GP prior term p(F|U,X) attempts to
approximate the corresponding exact posterior term p(F|U,Y,X). This promotes
the inducing variables U to become sufficient statistics so that the optimisation of

56 Variational Marginalisation of Latent Variables in Gaussian Process Models

the variational distribution over the inducing inputs Xu attempts to construct U so
that F approximately becomes conditionally independent from the data Y given U.
To achieve exact conditional independence we might need to use a large number of
inducing variables so that p(F|U,X) becomes very sharply picked (a delta func-
tion). In practice, however, the number of inducing variables must be chosen so that
to balance between computational complexity (see Section 3.3.7) and approximation
accuracy where the latter deteriorates as m becomes smaller.

Similarly to the standard GP-LVM, the non-convexity of the optimisation surface
means that local optima can pose a problem and, therefore, sensible initialisations
have to be made. In contrast to the standard GP-LVM, in the variational GP-LVM
the choice of a covariance function is limited to the class of kernels that render the
{Φ,Ψ, ξ} statistics tractable. Improving on these areas (non-convex optimisation and
choice of covariance function) is, thus, an interesting direction for future research.

Finally, notice that the application of the variational method developed in this
chapter is not restricted to the set of latent points. As in [Titsias and Lázaro-Gredilla,
2013], a fully Bayesian approach can be obtained by additionally placing priors on
the kernel parameters and, subsequently, integrating them out variationally with the
methodology that we described in this section.

3.3.6 Applying the Variational Framework to Different GP-LVM
Variants

Unless otherwise specified, from now on we adopt the collapsed variational formu-

lation for the models presented in this chapter, as well as for the relevant extensions

described in the rest of this thesis. Under this formulation, different variational GP-
LVM algorithms can be obtained by varying the form of the latent space prior p(X)

which so far has been left unspecified. One useful property of the variational lower
bound (equation (3.26)) is that p(X) appears only in the separate KL divergence term,
which can be tractably computed when p(X) is Gaussian. This allows our framework
to easily accommodate different Gaussian forms for p(X) which give rise to differ-
ent GP-LVM variants. In particular, incorporating a specific prior mainly requires to
specify a suitable factorisation for q(X) and to compute the corresponding KL term.
In contrast, the general structure of the more complicated F̂ (q(X)) term remains
unaffected. Next we demonstrate these ideas by giving further details about how to
apply the variational method to the two GP-LVM variants discussed in Section 3.2.1.
For both cases we follow the recipe that the factorisation of the variational distribution
q(X) resembles the factorisation of the prior p(X).

3.3 Variational Gaussian Process Latent Variable Models 57

The Standard Variational GP-LVM for i.i.d. Data

In the simplest case, the latent space prior is just a standard normal density, fully fac-
torised across datapoints and latent dimensions, as shown in (3.2). This is the typical
assumption in latent variable models, such as factor analysis and PPCA [Bartholomew,
1987; Basilevsky, 1994; Tipping and Bishop, 1999]. We choose a variational distri-
bution q(X) that follows the factorisation of the prior,

q(X) =
n∏

i=1

N (xi,:|µi,:,Si) , (3.28)

where each covariance matrix Si is diagonal. Notice that this variational distribution
depends on 2nq free parameters. The corresponding KL quantity appearing in (3.26)
takes the explicit form

KL (q(X) ∥ p(X)) =
1

2

n∑
i=1

tr
(
µi,:µ

⊤
i,: + Si − logSi

)
− nq

2
,

where logSi denotes the diagonal matrix resulting from Si by taking the logarithm of
its diagonal elements. To train the model we simply need to substitute the above term
in the final form of the variational lower bound in (3.26) and follow the gradient-based
optimisation procedure.

The resulting variational GP-LVM can be seen as a non-linear version of Bayesian
probabilistic PCA [Bishop, 1999; Minka, 2001]. In the experiments, we consider this
model for non-linear dimensionality reduction and demonstrate its ability to automat-
ically select the latent dimensionality.

The Dynamical Variational GP-LVM for Sequence Data

We now turn into the second model discussed in Section 3.2.1, which is suitable for
sequence data. Again we define a variational distribution q(X) so that it matches the
factorisation of the prior, i.e.

q(X) =

q∏
j=1

N (xj|µj,Sj) ,

58 Variational Marginalisation of Latent Variables in Gaussian Process Models

where Sj is a n × n full covariance matrix. By recalling the form of p(X|t) from
equation (3.3), we find the following form for the corresponding KL term:

KL (q(X) ∥ p(X|t))

=
1

2

q∑
j=1

[
tr
(
K−1

x Sj +K−1
x µjµ

⊤
j

)
+ log |Kx| − log |Sj|

]
− nq

2
. (3.29)

This term can be substituted into the final form of the variational lower bound in
equation (3.26) and allow training using a gradient-based optimisation procedure. If
implemented naively, such a procedure, will require too many parameters to tune
since the variational distribution depends on nq + n(n+1)

2
q free parameters. However,

by applying the reparametrisation trick suggested by Opper and Archambeau [2009]
we can reduce the number of parameters in the variational distribution to just 2nq.
Specifically, the stationary conditions obtained by setting to zero the first derivatives
of the variational bound w.r.t. Sj and µj take the form,

Sj =
(
K−1

x + λj

)−1 and µj = Kxµ̄j, (3.30)

where

Λj = −2
∂F̂ (q(X))

∂Sj

and µ̄:,j =
∂F̂ (q(X))

∂µ:,j

. (3.31)

Here, Λj is a n× n diagonal positive definite matrix and µ̄:,j is a n−dimensional
vector. Notice that the fact that the gradients of F̂ (q(X)) with respect to a full (cou-
pled across data points) matrix Sj reduce to a diagonal matrix is because only the
diagonal elements of Sj appear in F̂ (q(X)). This fact is a consequence of the fac-
torisation of the likelihood across data points, which results the term F̂ (q(X)) to
depend only on marginals of the full variational distribution, as it was pointed by the
general expression in equation (3.24).

The above stationary conditions tell us that, since Sj depends on a diagonal matrix
Λj , we can reparametrise it using only the diagonal elements of that matrix, denoted
by the n−dimensional vector λj . Notice that with this reparameterisation, and if we
consider the pair (λj , µ̄:,j) as the set of free parameters, the bound property is retained
because any such pair defines a valid Gaussian distribution q(X) based on which the
corresponding (always valid) lower bound is computed. Then, we can optimise the
2qn parameters (λj , µ̄j); after finding some values for those, we then obtain the
original parameters using the transformation in (3.30).

There are two optimisation strategies, depending on the way we choose to treat

3.3 Variational Gaussian Process Latent Variable Models 59

the newly introduced parameters λj and µ̄j . Firstly, inspired by Opper and Archam-
beau [2009] we can construct an iterative optimisation scheme. More precisely, the
variational bound F in equation (3.26) depends on the actual variational parameters
µj and Sj of q(X), which through equation (3.30) depend on the newly introduced
quantities µ̄j and λj which, in turn, are associated with F through equation (3.31).
These observations can lead to an EM-style algorithm which alternates between esti-
mating one of the parameter sets {θ,Xu} and {M,S} by keeping the other set fixed.
An alternative approach, which is the one we use in our implementation, is to treat
the new parameters λj and µ̄j as completely free ones so that equation (3.31) is never
used. In this case, the variational parameters are optimised directly with a gradient
based optimiser, jointly with the model hyperparameters and the inducing inputs.

Overall, the above reparameterisation is appealing not only because of compu-
tational complexity, but also because of optimisation robustness. Indeed, equation
(3.30) confirms that the original variational parameters are coupled via Kx, which is
a full-rank covariance matrix. By reparametrising according to equation (3.30) and
treating the new parameters as free ones, we manage to approximately break this
coupling and apply our optimisation algorithm on a set of less correlated parameters.

Furthermore, the methodology described above can be readily applied to model
dependencies of a different nature (e.g. spatial rather than temporal), as any kind
of high dimensional input variable can replace the temporal inputs of the graphical
model in fig. 3.3(c). Therefore, by simply replacing the input t with any other kind
of observed input Z we trivially obtain a Bayesian framework for warped GP regres-
sion [Snelson et al., 2004; Lázaro-Gredilla, 2012] for which we can predict the latent
function values in new inputs Z∗ through a non-linear, latent warping layer, using
exactly the same architecture and equations described in this section and in Section
3.4.2. Similarly, if the observed inputs of the top layer are taken to be the outputs
themselves, then we obtain a probabilistic variational auto-encoder [e.g. Kingma and
Welling, 2013] which is non-parametric and based on Gaussian processes.

Finally, the dynamical variational GP-LVM can be easily extended to deal with
datasets consisting of multiple independent sequences (perhaps of different length)
such as those arising in human motion capture applications. Let, for example, the
dataset be a group of S independent sequences

(
Y(1), ...,Y(S)

)
. We would like the

dynamical version of our model to capture the underlying commonality of these data.
We handle this by allowing a different temporal latent function for each of the inde-
pendent sequences, so that X(i) is the set of latent variables corresponding to sequence
i. These sets are a priori assumed to be independent since they correspond to separate
sequences, i.e. p

(
X(1),X(2), ...,X(S)

)
=
∏S

i=1 p(X
(i)). This factorisation leads to a

60 Variational Marginalisation of Latent Variables in Gaussian Process Models

block-diagonal structure for the time covariance matrix Kx, where each block corre-
sponds to one sequence. In this setting, each block of observations Y(i) is generated
from its corresponding X(i) according to Y(i) = F(i) + ϵ, where the latent function
which governs this mapping is shared across all sequences and ϵ is Gaussian noise.

3.3.7 Time Complexity and Very High Dimensional Data

The developed variational framework makes use of inducing point representations
which provide low-rank approximations to the covariance Kff . For the standard vari-
ational GP-LVM, this allows us to avoid the typical cubic complexity of Gaussian
processes, reducing the computational cost to O(nm2) for the variational approxi-
mation using the collapsed bound. Since we typically select a small set of inducing
points, m ≪ n, the variational GP-LVM can handle relatively large training sets
(thousands of points, n). However, even if m is user defined, for good results in very
large datasets we need to select m to be relatively large. Therefore, application of the
collapsed variational framework to big data is difficult. On the other hand, the un-
collapsed version of the framework allows considering batches of datapoints, thereby
enabling its application to big data. The computation of a local q(X) has to be com-
puted for every batch, but this can be further parallelised since q(X) factorises across
data points. The dynamical variational GP-LVM, however, still requires the inversion
of the covariance matrix Kx of size n× n, as can be seen in equation (3.30), thereby
inducing a computational cost of O(n3). This prohibits its application to big data.
The next chapter introduces a variational constraint framework which relaxes the full
coupling of the data in the input layer.

Further, the models scale only linearly with the number of dimensions p. Specifi-
cally, the number of dimensions only matters when performing calculations involving
the data matrix Y. In the final form of the lower bound (and consequently in all of the
derived quantities, such as gradients) this matrix only appears in the form YY⊤ which
can be precomputed. This means that, when n ≪ p, we can calculate YY⊤ only once
and then substitute Y with the SVD (or Cholesky decomposition) of YY⊤. In this
way, we can work with an n×n instead of an n× p matrix. Practically speaking, this
allows us to work with data sets involving millions of features. In our experiments
we model directly the pixels of HD quality video, exploiting this trick.

3.4 Predictions with the Variational GP-LVM 61

3.4 Predictions with the Variational GP-LVM

This section explains how the proposed Bayesian models can accomplish various
kinds of prediction tasks. We will use a star (∗) to denote test quantities, e.g. a test
data matrix will be denoted by Y∗ ∈ ℜn∗×p while test row and column vectors of
such a matrix will be denoted by yi,∗ and y∗,j .

The first type of inference we are interested in is the calculation of the probability
density p(Y∗|Y). The computation of this quantity can allow us to use the model as a
density estimator which, for instance, can represent the class conditional distribution
in a generative based classification system. We will exploit such a use in Section 3.5.5.
Secondly, we discuss how from a test data matrix Y∗ = (YU

∗ ,Y
O
∗), we can probabilis-

tically reconstruct the unobserved part YU
∗ based on the observed part YO

∗ and where
U and O denote non-overlapping sets of indices such that their union is {1, . . . , p}.
For this second problem the missing dimensions are reconstructed by approximating
the mean and the covariance of the Bayesian predictive density p(YU

∗ |YO
∗ ,Y).

Section 3.4.1 discusses how to solve the above tasks in the standard variational
GP-LVM case while Section 3.4.2 discusses the dynamical case. Furthermore, for the
dynamical case the test points Y∗ are accompanied by their corresponding timestamps
t∗ based on which we can perform an additional forecasting prediction task, where we
are given only a test time vector t∗ and we wish to predict the corresponding outputs.

3.4.1 Predictions with the Standard Variational GP-LVM

We first discuss how to approximate the density p(Y∗|Y). By introducing the latent
variables X (corresponding to the training outputs Y) and the new test latent vari-
ables X∗ ∈ ℜn∗×q, we can write the density of interest as the ratio of two marginal
likelihoods,

p(Y∗|Y) =
p(Y∗,Y)

p(Y)
=

∫
p(Y∗,Y|X,X∗)p(X,X∗)dXdX∗∫

p(Y|X)p(X)dX
. (3.32)

In the denominator we have the marginal likelihood of the GP-LVM for which we
have already computed a variational lower bound. The numerator is another marginal
likelihood that is obtained by augmenting the training data Y with the test points Y∗

and integrating out both X and the newly inserted latent variable X∗. In the following,
we explain in more detail how to approximate the density p(Y∗|Y) of equation (3.32)
through constructing a ratio of lower bounds.

The quantity
∫
p(Y|X)p(X)dX appearing in the denominator of equation (3.32)

is approximated by the lower bound eF(q(X)) where F(q(X)) is the variational lower

62 Variational Marginalisation of Latent Variables in Gaussian Process Models

bound as computed in Section 3.3.3 and is given in equation (3.26). The maxi-
mization of this lower bound specifies the variational distribution q(X) over the la-
tent variables in the training data. Then, this distribution remains fixed during test
time. The quantity

∫
p(Y∗,Y|X,X∗)p(X,X∗)dXdX∗ appearing in the numerator

of equation (3.32) is approximated by the lower bound eF(q(X,X∗)) which has exactly
analogous form to (3.26). This optimisation is fast, because the factorisation im-
posed for the variational distribution in equation (3.28) means that q(X,X∗) is also
a fully factorised distribution so that we can write q(X,X∗) = q(X)q(X∗). Then,
q(X) is held fixed during test time and we only need to optimise with respect to the
2n∗q parameters of the variational Gaussian distribution q(X∗) =

∏n∗
i=1 q(xi,∗) =∏n∗

i=1N (µi,∗,Si,∗) (where Si,∗ is a diagonal matrix). Further, since the {ξ,Ψ,Φ}
statistics decompose across data, during test time we can re-use the already estimated
statistics corresponding to the averages over q(X) and only need to compute the ex-
tra average terms associated with q(X∗). Note that optimization of the parameters
(µi,∗,Si,∗) of q(xi,∗) are subject to local minima. However, sensible initializations
of µ∗ can be employed based on the mean of the variational distributions associated
with the nearest neighbours of each test point yi,∗ in the training data Y. Given the
above, the approximation of p(Y∗|Y) is given by rewriting equation (3.32) as,

p(Y∗|Y) ≈ eF(q(X,X∗))−F(q(X)). (3.33)

Notice that the above quantity does not constitute a bound, but only an approxi-
mation to the predictive density.

We now discuss the second prediction problem where a set of partially observed
test points Y∗ = (YU

∗ ,Y
O
∗) are given and we wish to reconstruct the missing part YU

∗ .
The predictive density is, thus, p(YU

∗ |YO
∗ ,Y). Notice that YU

∗ is totally unobserved
and, therefore, we cannot apply the methodology described previously. Instead, our
objective now is to just approximate the moments of the predictive density. To achieve
this, we will first need to introduce the underlying latent function values FU

∗ (the
noisy-free version of YU

∗) and the latent variables X∗ so that we can decompose the
exact predictive density as follows,

p(YU
∗ |YO

∗ ,Y) =

∫
p(YU

∗ |FU
∗)p(F

U
∗ |X∗,Y

O
∗ ,Y)p(X∗|YO

∗ ,Y)dFU
∗dX∗.

Then, we can introduce the approximation coming from the variational distribution

3.4 Predictions with the Variational GP-LVM 63

so that

p(YU
∗ |YO

∗ ,Y) ≈ q(YU
∗ |YO

∗ ,Y) =

∫
p(YU

∗ |FU
∗)q(F

U
∗ |X∗)q(X∗)dFU

∗dX∗ ,(3.34)

based on which we wish to predict YU
∗ by estimating its mean E(YU

∗) and covari-
ance Cov(YU

∗). This problem takes the form of GP prediction with uncertain inputs
similar to [Girard et al., 2003; Oakley and O’Hagan, 2002], where the distribution
q(X∗) expresses the uncertainty over these inputs. The first term of the above integral
comes from the Gaussian likelihood, so YU

∗ is just a noisy version of FU
∗ , as shown

in equation (2.4). The remaining two terms together q(FU
∗ |X∗)q(X∗) are obtained by

applying the variational methodology to optimise a variational lower bound on the
following log marginal likelihood:

log p(YO
∗ ,Y) = log

∫
p(YO

∗ ,Y|X∗,X)p(X∗,X)dX∗dX

= log

∫
p(YU |X)p(YO

∗ ,Y
O|X∗,X)p(X∗,X)dX∗dX, (3.35)

which is associated with the total set of observations (YO
∗ ,Y). By following exactly

Section 3.3, we can construct and optimise a lower bound F(q(X,X∗)) on the above
quantity, which along the way allows us to compute a Gaussian variational distribu-
tion q(F,FU

∗ ,X,X∗) from which q(FU
∗ |X∗)q(X∗) is just a marginal. Further details

about the form of the variational lower bound and how q(FU
∗ |X∗) is computed are

given in the Appendix B.4.

In fact, the explicit form of q(FU
∗ |X∗) is a factorised Gaussian:

q(FU
∗ |X∗) =

p∏
j=1

p(fU
∗,j|uj,X∗)

where each factor takes the form of the projected process predictive distribution from
sparse GPs [Csató and Opper, 2002; Seeger et al., 2003; Rasmussen and Williams,
2006]:

q(f∗,j|X∗) = N
(
f∗,j|K∗uB,K∗∗ −K∗u

(
K−1

uu + (Kuu + βΦ)−1Ku∗
))

with B = β(Kuu + βΦ)−1Ψ⊤yj , K∗∗ = kf (X∗,X∗) and K∗u = kf (X∗,Xu).

However, by marginalising the latent variables, as required by equation 3.34, the
dimensions of each point becomes coupled, producing a non-Gaussian, multivariate
density. However, based on the results of Girard et al. [2003], we can still compute

64 Variational Marginalisation of Latent Variables in Gaussian Process Models

the moments of this density analytically, if the covariance function is selected so that
the {ξ,Ψ,Φ} quantities are tractable. Therefore, the predictive density of equation
3.34 corresponds to a set of marginals, each referring to a test instance and having the
following moments:

E(fU
i,∗) = B⊤ψ∗

Cov(fU
i,∗) = B⊤ (Φ∗ −ψ∗ψ

⊤
∗
)
B+ ξ∗I− tr

((
K−1

uu − (Kuu + βΦ)−1)Φ∗
)
I,

where ξ∗ = ⟨kf (x∗,x∗)⟩, ψ∗ = ⟨Ku∗⟩ and Φ∗ =
〈
Ku∗K

⊤
u∗
〉
. All expectations are

taken w.r.t. q(x∗) and can be calculated analytically for several kernel functions as
explained in Section 3.3.3 and Appendix B.2. Using the above expressions and the
Gaussian noise model of equation (2.4), we have:

E
[
yU
i,∗
]
= E

[
fU
i,∗
]

and Cov(yU
i,∗) = Cov(fU

i,∗) + β−1I. (3.36)

3.4.2 Predictions in the Dynamical Model

The two prediction tasks described in the previous section for the standard varia-
tional GP-LVM can also be solved for the dynamical variant in a very similar fashion.
Specifically, the two predictive approximate densities take exactly the same form as
those in equations (3.33) and (3.34) while again the whole approximation relies on
the maximisation of a variational lower bound F(q(X,X∗)). However, in the dynam-
ical case where the inputs (X,X∗) are a priori correlated, the variational distribution
q(X,X∗) does not factorise across X and X∗. This makes the optimisation of this
distribution computationally more challenging, as it has to be optimised with respect
to its all 2(n+ n∗)q parameters. This issue is further explained in Appendix B.4.1.

Finally, we shall discuss how to solve the forecasting problem with our dynamical
model. This problem is similar to the second predictive task described in Section
3.4.1, but now the observed set is empty. We can therefore write the predictive density
similarly to equation (3.34) as follows,

p(Y∗|Y) ≈
∫

p(Y∗|F∗)q(F∗|X∗)q(X∗)dX∗dF∗.

The inference procedure then follows exactly as before, using equations (3.34) and
(3.36). The only difference is that the computation of q(X∗) (associated with a fully
unobserved Y∗) is obtained from standard GP prediction and does not require opti-

3.5 Demonstration of the Variational Framework 65

misation, i.e.,

q(X∗) =

∫
p(X∗|X)q(X)dX =

q∏
j=1

∫
p(x∗,j|xj)q(xj)dxj,

where p(x∗,j|xj) is a Gaussian found from the conditional GP prior (see Rasmussen
and Williams [2006]). Since q(X) is Gaussian, the above is also a Gaussian with
mean and variance given by,

µx∗,j = K∗f µ̄j

var(x∗,j) = K∗∗ −K∗f (Kx + λ
−1
j)−1Kf∗,

where K∗f = kx(t∗, t), K∗f = K⊤
∗f and K∗∗ = kx(t∗, t∗). Notice that these equa-

tions have exactly the same form as found in standard GP regression problems.

3.5 Demonstration of the Variational Framework

This section investigates the performance of the variational GP-LVM and its dynam-
ical extension. The variational GP-LVM allows us to handle very high dimensional
data and, using ARD, to determine the underlying low dimensional subspace size au-
tomatically. The generative construction allows us to impute missing values when
presented with only a partial observation.

The models’ performance is evaluated in a variety of tasks, namely visualisa-
tion, prediction, reconstruction, generation of data or timeseries and class-conditional
density estimation. Matlab source code for repeating the following experiments is
available on-line from: https://github.com/SheffieldML/vargplvm and supplementary
videos from: http://git.io/A3t5.

The experiments section is structured as follows; Section 3.5.1 outlines the covari-
ance functions used for the experiments. Section 3.5.2 demonstrates the developed
method in a standard visualisation benchmark. Section 3.5.3 is concerned with testing
both the standard and dynamical variant of the method in a real-world motion capture
dataset. Section 3.5.4 illustrates how the developed model is able to handle a very
large number of dimensions by working directly with the raw pixel values of high
resolution videos. Additionally, it is shown how the dynamical model can interpolate
and also extrapolate in certain scenarios. Section 3.5.5 considers a classification task
on a standard benchmark, exploiting the fact that our framework gives access to the
model evidence, thus enabling Bayesian classification.

https://github.com/SheffieldML/vargplvm
http://git.io/A3t5

66 Variational Marginalisation of Latent Variables in Gaussian Process Models

3.5.1 Covariance Functions

Before proceeding to the actual evaluation of our method, we first review and give
the forms of the covariance functions that will be used for our experiments. The
mapping between the input and output spaces X and Y is non-linear and, thus, we
use the ARD covariance function of equation (2.7) which also allows simultaneous
model selection within our framework. In experiments where we use our method to
also model dynamics, apart from the infinitely differentiable exponentiated quadratic
covariance function defined in equation (2.6), we will also consider for the dynamical
component the Matérn 3/2 covariance function which is only once differentiable,
and a periodic one [Rasmussen and Williams, 2006; MacKay, 1998] which can be
used when data exhibit strong periodicity. These covariance functions are given in
equations (2.9) and (2.10) respectively.

Introducing a separate GP model for the dynamics is a very convenient way of
incorporating any prior information we may have about the nature of the data in a
nonparametric and flexible manner. In particular, more sophisticated covariance func-
tions can be constructed by combining or modifying existing ones. For example, in
our experiments we consider a compound covariance function, kx(per) + kx(rbf) which
is suitable for dynamical systems that are known to be only approximately periodic.
The first term captures the periodicity of the dynamics whereas the second one cor-
rects for the divergence from the periodic pattern by enforcing the datapoints to form
smooth trajectories in time. By fixing the two variances, σ2

per and σ2
rbf to particular

ratios, we are able to control the relative effect of each kernel. Example sample paths
drawn from this compound covariance function are shown in figure 2.3.

For our experiments we additionally include a noise (equation (2.11)) and a bias
covariance function θbias1.

3.5.2 Visualisation Tasks

Given a dataset with known structure, we can apply our algorithm and evaluate its
performance in a simple and intuitive way, by checking if the form of the discovered
low dimensional manifold agrees with our prior knowledge.

The method is illustrated in the oil flow data [Bishop and James, 1993] that con-
sists of n = 1, 000, p = 12 dimensional observations to be stored in a matrix Y

and belonging to three known classes corresponding to different phases of oil flow.
Figure 3.5 shows the results for these data obtained by applying the variational GP-
LVM with 10 latent dimensions using the exponentiated quadratic ARD kernel. The

3.5 Demonstration of the Variational Framework 67

means of the variational distribution were initialized using PCA, while the variances
in the variational distribution were initialized to neutral values around 0.5. As shown
in figure 3.4, the algorithm switches off 8 out of q = 10 latent dimensions by mak-
ing their inverse lengthscales almost zero. Therefore, the two-dimensional nature of
this dataset is automatically revealed. Figure 3.5a shows the visualization obtained
for the latent space X by keeping only the dominant latent directions which are the
dimensions 2 and 3. Notice that the algorithm does not know the datapoint labels,
but we will use them to assess the clustering emerging after performing unsupervised
learning. The results of figure 3.5a constitute a remarkably high quality two dimen-
sional visualization of this data. For comparison, Figure 3.5b shows the visualization
provided by the standard sparse GP-LVM that runs by a priori assuming only 2 latent
dimensions. Both models use 50 inducing variables, while the latent variables X op-
timized in the standard GP-LVM are initialized based on PCA. Note that if we were
to run the standard GP-LVM with 10 latent dimensions, the model would overfit the
data, it would not reduce the dimensionality in the manner achieved by the variational
GP-LVM. The quality of the class separation in the two-dimensional space can also
be quantified in terms of the nearest neighbour error; the total error equals the number
of training points whose closest neighbour in the latent space corresponds to a data
point of a different class (phase of oil flow). The number of nearest neighbour errors
made when finding the latent embedding with the standard sparse GP-LVM was 26

out of 1000 points, whereas the variational GP-LVM resulted in only one error.

3.5.3 Human Motion Capture Data

In this section we consider a data set associated with temporal information, as the
primary focus of this experiment is on evaluating the dynamical version of the varia-
tional GP-LVM. We followed Taylor et al. [2007]; Lawrence [2007a] in considering
motion capture data of walks and runs taken from subject 35 in the CMU motion
capture database. We used the dynamical version of our model and treated each mo-
tion as an independent sequence. The data set was constructed and preprocessed as
described in [Lawrence, 2007a]. This results in 2613 separate 59-dimensional frames
split into 31 training sequences with an average length of 84 frames each. All these
frames are stored by rows in the n× p matrix Y. Our model does not require explicit
timestamp information, since we know a priori that there is a constant time delay be-
tween poses and the model can construct equivalent covariance matrices given any
vector of equidistant time points, e.g. for every sequence s containing n(s) frames, we
use some scaled version of t = (1, 2, ..., n(s))⊤.

68 Variational Marginalisation of Latent Variables in Gaussian Process Models

wj

j

(a) Variational GP-LVM
1 2 3 4 5 6 7 8 9 10

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

wj

j

(b) GP-LVM

Fig. 3.4: Left: The squared inverse lengthscales found by applying the variational GP-LVM
with ARD EQ kernel on the oil flow data. Right: Results obtained for the standard GP-LVM
with q = 10. These results demonstrate the ability of the variational GP-LVM to perform
a “soft” automatic dimensionality selection. The inverse lengthscale for each dimension is
associated with the expected number of the function’s upcrossings in that particular direction
(dimension); smaller values denote a more linear behaviour, whereas values close to zero
denote an irrelevant dimension. For the variational GP-LVM, figure (a) suggests that the non-
linearity is captured by dimension 2, as also confirmed by figure 3.5a. On the other hand,
figure (b) demonstrates the overfitting problem of the GP-LVM which is trained with MAP.

−3 −2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x2

x3(a)
−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5x2

x3(b)

Fig. 3.5: Panel 3.5a shows the means of the variational posterior q(X) for the variational GP-
LVM, projected on the two dominant latent dimensions. Here the dominant latent dimensions
are 2 and 3. Dimension 2 is plotted on the y-axis and 3 and on the x-axis. The plotted pro-
jection of a latent point xi,: is assigned a colour according to the label of the corresponding
output vector xi,:. The greyscale intensities of the background are proportional to the pre-
dicted variance of the GP mapping, if the corresponding locations were given as inputs. Plot
3.5b shows the visualisation found by standard sparse GP-LVM initialised with a two dimen-
sional latent space. The nearest neighbour error count for the variational GP-LVM is one. For
the standard sparse GP-LVM it is 26, for the full GP-LVM with ARD kernel the error is 8 and
for the full GP-LVM with EQ kernel the error is 2. Note that selecting q = 2 for the standard
GP-LVM models is equivalent to a priori revealing the true dimensionality of the data .

3.5 Demonstration of the Variational Framework 69

The model is jointly trained, as explained in the last paragraph of Section 3.3.6,
on both walks and runs, i.e. the algorithm learns a common latent space for these
motions. At test time we investigate the ability of the model to reconstruct test data
from a previously unseen sequence given partial information for the test targets. This
is tested once by providing only the dimensions which correspond to the body of the
subject and once by providing those that correspond to the legs. We compare with
results in [Lawrence, 2007a], which used MAP approximations for the dynamical
models, and against nearest neighbour. We can also indirectly compare with the bi-
nary latent variable model (BLV) of Taylor et al. [2007] which used a slightly different
data preprocessing. Furthermore, we additionally tested the non-dynamical version
of our model, to explore the structure of the distribution found for the latent space.
In this case, the notion of sequences or sub-motions is not modelled explicitly, as
the non-dynamical approach does not model correlations between datapoints. How-
ever, as will be shown below, the model manages to discover the dynamical nature of
the data and this is reflected in both the structure of the latent space and the results
obtained on test data.

The performance of each method is assessed by using the cumulative error per
joint in the scaled space defined in [Taylor et al., 2007] and by the root mean square
error in the angle space suggested by Lawrence [2007a]. Our models were initialized
with nine latent dimensions. For the dynamical version, we performed two runs,
once using the Matérn covariance function for the dynamical prior and once using the
exponentiated quadratic.

The appropriate latent space dimensionality for the data was automatically in-
ferred by our models. The non-dynamical model selected a 5-dimensional latent
space. The model which employed the Matérn covariance to govern the dynamics
retained four dimensions, whereas the model that used the exponentiated quadratic
kept only three. The other latent dimensions were completely switched off by the
ARD parameters.

From Table 3.1 we see that the dynamical variational GP-LVM considerably out-
performs the other approaches. The best performance for the legs and the body recon-
struction was achieved by our dynamical model that used the Matérn and the exponen-
tiated quadratic covariance function respectively. This is perhaps an intuitive result,
since the smoother body movements might be expected to be better modelled using
the infinitely differentiable exponentiated quadratic covariance function, whereas the
Matérn one could provide a better fit to the rougher leg motion. However, although
it is important to take into account any available information about the nature of the
data, the fact that both models outperform significantly other approaches shows that

70 Variational Marginalisation of Latent Variables in Gaussian Process Models

the Bayesian training manages successfully to fit the covariance function parameters
to the data in any case. Furthermore, the non-dynamical variational GP-LVM, not
only manages to discover a latent space with a dynamical structure, as can be seen
in figure 3.6a, but is also proven to be very robust when making predictions. Indeed,
Table 3.1 shows that the non-dynamical variational GP-LVM typically outperforms
nearest neighbor and its performance is comparable to the GP-LVM which explicitly
models dynamics using MAP approximations. Finally, it is worth highlighting the
intuition gained by investigating Figure 3.6. As can be seen, all models split the en-
coding for the “walk” and “run” regimes into two subspaces. Further, we notice that
the smoother the latent space is constrained to be, the less “circular” is the shape of the
“run” regime latent space encoding. This can be explained by noticing the “outliers”
in the top left and bottom positions of plot (a). These latent points correspond to train-
ing positions that are very dissimilar to the rest of the training set but, nevertheless, a
temporally constrained model is forced to accommodate them in a smooth path. The
above intuitions can be confirmed by interacting with the model in real time graphi-
cally, as is presented in the supplementary video (http://youtu.be/fHDWloJtgk8).

(a) (b) (c)

Fig. 3.6: The latent space discovered by our models, projected into its three principle dimen-
sions. The latent space found by the non-dynamical variational GP-LVM is shown in (a), by
the dynamical model which uses the Matérn in (b) and by the dynamical model which uses
the exponentiated quadratic in (c).

3.5.4 Modeling Raw High Dimensional Video Sequences

For this set of experiments we considered video sequences (see supplementary videos
at http://git.io/A3t5). Such sequences are typically preprocessed before modeling to
extract informative features and reduce the dimensionality of the problem. Here we
work directly with the raw pixel values to demonstrate the ability of the dynamical
variational GP-LVM to model data with a vast number of features. This also allows
us to directly sample video from the learned model. Notice that the images presented

http://youtu.be/fHDWloJtgk8
http://git.io/A3t5

3.5 Demonstration of the Variational Framework 71

wj

j

(a)

wj

j

(b)

Fig. 3.7: The values of the scales of the ARD kernel after training on the motion capture
dataset using the exponentiated quadratic (fig: (a)) and the Matérn (fig: (b)) kernel to model
the dynamics for dynamical variational GP-LVM. The scales that have zero value “switch
off” the corresponding dimension of the latent space. The latent space is, therefore, 3-D for
(a) and 4-D for (b). Note that the scales were initialized with very similar values.

in this section are scaled to fit the page; the original images (frames) with which our

model worked had a much higher dimensionality (number of pixels).

Firstly, we used the model to reconstruct partially observed frames from test video
sequences 2. For the first video discussed here we gave as partial information approx-
imately 50% of the pixels while for the other two we gave approximately 40% of
the pixels on each frame. The mean squared error per pixel was measured to com-
pare with the k−nearest neighbour (NN) method, for k ∈ (1, .., 5) (we only present
the error achieved for the best choice of k in each case). The datasets considered
are the following: firstly, the ‘Missa’ dataset, a standard benchmark used in image
processing. This is a 103,680-dimensional video, showing a woman talking for 150
frames. The data is challenging as there are translations in the pixel space. We also
considered an HD video of dimensionality 9 × 105 that shows an artificially created
scene of ocean waves as well as a 230, 400−dimensional video showing a dog run-
ning for 60 frames. The later is approximately periodic in nature, containing several
paces from the dog. For the first two videos we used the Matérn and exponentiated
quadratic covariance functions respectively to model the dynamics and interpolated to
reconstruct blocks of frames chosen from the whole sequence. For the ‘dog’ dataset
we constructed a compound kernel kx = kx(rbf) + kx(per) presented in section 3.5.1,
where the exponentiated quadratic (RBF) term is employed to capture any divergence

2‘Missa’ dataset: cipr.rpi.edu. ‘Ocean’: cogfilms.com (thanks to Colin Litster). ‘Dog’: fit-
furlife.com (thanks to “Fit Fur Life”). See details in supplementary (http://git.io/A3t5). The logo
appearing in the ‘dog’ images in the experiments that follow, has been added with post-processing of
the video (after the experiments) to acknowledge the source.

http://git.io/A3t5

72 Variational Marginalisation of Latent Variables in Gaussian Process Models

(a) (b)

Fig. 3.8: The prediction for two of the test angles for the body (fig: 3.8a) and for the legs part
(fig: 3.8a). Continuous line is the original test data, dotted line is nearest neighbour in scaled
space, dashed line is dynamical variational GP-LVM (using the exponentiated quadratic ker-
nel for the body reconstruction and the Matérn for the legs).

from the approximately periodic pattern. We then used our model to reconstruct the
last 7 frames extrapolating beyond the original video. As can be seen in Table 3.2,
our method outperformed NN in all cases. The results are also demonstrated visually
in Figures 3.9, 3.10, 3.11 and 3.12 and the reconstructed videos are available in the
supplementary material.

As can be seen in figures 3.9, 3.10 and 3.11, the dynamical variational GP-LVM
predicts pixels which are smoothly connected with the observed part of the image,
whereas the NN method cannot fit the predicted pixels in the overall context. Figure
3.9(c) focuses on this specific problem with NN, but it can be seen more evidently in
the corresponding video files.

As a second task, we used our generative model to create new samples and gen-
erate a new video sequence. This is most effective for the ‘dog’ video as the train-
ing examples were approximately periodic in nature. The model was trained on 60
frames (time-stamps [t1, t60]) and we generated new frames which correspond to the
next 40 time points in the future. The only input given for this generation of future
frames was the time-stamp vector, [t61, t100]. The results show a smooth transition
from training to test and amongst the test video frames. The resulting video of the
dog continuing to run is sharp and high quality. This experiment demonstrates the
ability of the model to reconstruct massively high dimensional images without blur-
ring. Frames from the result are shown in Figure 3.14. The full video is available
on-line (http://youtu.be/mUY1XHPnoCU).

http://youtu.be/mUY1XHPnoCU

3.5 Demonstration of the Variational Framework 73

Table 3.1: Errors obtained for the motion capture dataset considering nearest neighbour in
the angle space (NN) and in the scaled space (NN sc.), GP-LVM, BLV, variational GP-LVM
(VGP-LVM) and dynamical VGP-LVM (Dyn. VGP-LVM). CL / CB are the leg and body
data sets as preprocessed in [Taylor et al., 2007], L and B the corresponding datasets from
Lawrence [2007a]. SC corresponds to the error in the scaled space, as in Taylor et al. while
RA is the error in the angle space. The best error per column is in bold.

Data CL CB L L B B
Error Type SC SC SC RA SC RA

BLV 11.7 8.8 - - - -
NN sc. 22.2 20.5 - - - -

GPLVM (Q = 3) - - 11.4 3.40 16.9 2.49
GPLVM (Q = 4) - - 9.7 3.38 20.7 2.72
GPLVM (Q = 5) - - 13.4 4.25 23.4 2.78

NN sc. - - 13.5 4.44 20.8 2.62
NN - - 14.0 4.11 30.9 3.20

VGP-LVM - - 14.22 5.09 18.79 2.79
Dyn. VGP-LVM (Exp. Quadr.) - - 7.76 3.28 11.95 1.90
Dyn. VGP-LVM (Matérn 3/2) - - 6.84 2.94 13.93 2.24

Table 3.2: The mean squared error per pixel for the dynamical variational GP-LVM and
nearest neighbor for the three datasets (measured only in the missing inputs). The number of
latent dimensions automatically selected by our model is in parenthesis.

Missa Ocean Dog
Dyn. VGP-LVM 2.52 (Q = 12) 9.36 (Q = 9) 4.01 (Q = 6)

NN 2.63 9.53 4.15

3.5.5 Class Conditional Density Estimation

Here we demonstrate the utility of the variational GP-LVM as a generative classi-
fier. We considered the task of handwritten digit recognition through the well known
USPS digits dataset [Hull, 1994]. This dataset consists of 16 × 16 images for all 10
digits and it is divided into 7, 291 training and 2, 007 test instances. 10 variational
GP-LVMs were run in total, one for each digit. That is, for each class c, we con-
structed a training matrix Y(c) containing only the digit instances belonging to class
c and trained with this matrix a separate model which we refer to as M(c). 10 latent
dimensions and 50 inducing variables were used for each model. This allowed us to
build a probabilistic generative model for each digit so that we can compute Bayesian

74 Variational Marginalisation of Latent Variables in Gaussian Process Models

(a) Reconstruction by Dyn. var. GP-LVM. (b) Ground truth.

(c) Reconstruction by nearest neighbour.

Fig. 3.9: (a) and (c) show the reconstruction achieved by the dyn. var. GP-LVM and nearest
neighbour (NN) respectively for one of the most challenging frames (b) of the ‘missa’ video,
i.e. when translation occurs. In contrast to NN, which works in the whole high dimensional
pixel space, our method reconstructed the images using a 12-dimensional compression.

class conditional densities in the test data having the form p(Y∗|Y(c),M(c)). These
class conditional densities are approximated through the ratio of lower bounds in eq.
(3.33) as described in Section 3.4. The whole approach allows us to classify new dig-
its by determining the class labels for test data based on the highest class conditional
density value and using a uniform prior over class labels. The following comparisons
were used: firstly, a logistic classification approach. Secondly, a vanilla SVM from
scikit-learn [Pedregosa et al., 2011], for which the error parameter C was selected
with 5−fold cross validation. Thirdly, a GP classification approach with EP approx-
imation from GPy [authors, 2014]. Lastly, the recent variational inference based GP
classification approach of Hensman et al. [2014b], referred to as “GP classification
with VI” and taken from the GPy [authors, 2014] implementation. All of these meth-
ods operated in a 1-vs-all setting. The results of our experiments are shown in Table
3.3. In addition to the standard baselines reported here, more sophisticated schemes

3.5 Demonstration of the Variational Framework 75

(many of which result in better performance) have been tried in this dataset by other
researchers; a summary of previously published results can be found in [Keysers et al.,
2002].

Table 3.3: The test error made in the whole set of 2007 test points by the variational GP-LVM,
1-vs-all Logistic Regression, SVM classification and two types of GP classification.

misclassified error (%)
variational GP-LVM (m = 50) 95 4.73 %

1-vs-all Logistic Regression 283 14.10 %
1-vs-all GP classification with VI (m = 50) 100 4.98 %
1-vs-all GP classification with VI (m = 150) 100 4.98 %
1-vs-all GP classification with VI (m = 250) 99 4.93 %
1-vs-all GP classification with EP (m = 50) 139 6.93 %
1-vs-all GP classification with EP (m = 150) 128 6.38 %
1-vs-all GP classification with EP (m = 250) 126 6.28 %

1-vs-all SVM 119 5.92 %

3.5.6 Big Data

In this preliminary experiment we considered 20, 000 motion capture examples taken
from the CMU motion capture database. The examples correspond to 12 different
subjects and 95 different motions (representing actions like walking, dancing, etc).
The aim of this experiment was to learn the concept of “human motion”, given the
very diverse set of instances. We applied the stochastic optimisation procedure de-
scribed in the end of Section 3.3.3, with m = 100, q = 20, batchsize equal to 100

and exponentiated quadratic ARD covariance function. We found that the optimisa-
tion was very sensitive to the policy for adapting the learning rate. Therefore, we
used the improved policy of Hensman et al. [2014a]. The trace of the learning rate is
plotted in figure 3.15. Further, figure 3.16 illustrates the learned latent spaces, i.e. the
variational means for every marginal q(xi,:) are projected (in pairs) on the three most
dominant dimensions (according to the ARD prior). As can be seen, the first pair of
latent dimensions (figure 3.16a) seems to encode global motion characteristics; notice
the ‘ξ’ shaped path representing the continuity and periodicity of the motions (i.e. it is
a feature shared across all motions). In contrast, the second pair of latent dimensions
(figure 3.16b) seems to encode more “local” characteristics, since they are grouped in
various clusters (i.e. features that are private to subsets of motions).

76 Variational Marginalisation of Latent Variables in Gaussian Process Models

We quantitatively evaluated the method by measuring the error in reconstructing
the upper body given information corresponding to the lower body and taken from
novel motions. This was achieved by using the output reconstruction framework de-
scribed in Section 3.4.1. For comparison, we trained a regular, collapsed variational
GP-LVM in subsets of the data and averaged the error. Further, we trained a sparse GP
on the full dataset, formulated so that lower body features of the examples constituted
inputs and the upper body constituted outputs. The stochastic method outperformed
the collapsed variational GP-LVM, signifying that the method is able to successfully
learn from all available information. However, the sparse GP outperformed both of
the GP-LVM based approaches. This perhaps signifies that compressing a massive
dataset in a small latent space is suboptimal and, potentially, points towards the di-
rection of scalable deep Gaussian processes.

3.6 Discussion

This chapter introduced an approximation to the marginal likelihood of the Gaussian
process latent variable model in the form of a variational lower bound. This pro-
vides a Bayesian training procedure which is robust to overfitting and allows for the
appropriate dimensionality of the latent space to be automatically determined. The
framework was extended for the case where the observed data constitute multivariate
timeseries and, therefore, this gave rise to a very generic method for dynamical sys-
tems modelling able to capture complex, non-linear correlations. This chapter also
demonstrated the advantages of the rigorous lower bound defined in our framework
on a range of disparate real world data sets. This also emphasized the ability of the
model to handle vast dimensionalities.

The above approach can be easily extended to be applied to training Gaussian pro-
cesses with uncertain or partially observed inputs where these inputs have Gaussian
prior densities. This is examined in the next chapter, where it is also shown how an
auto-regressive and a semi-supervised GP variant of our model emerge. Promising
future research includes several other extensions that become computationally fea-
sible using the same set of methodologies discussed in this chapter. In particular,
propagation of uncertain inputs through the Gaussian process allows Bayes filtering
[Ko and Fox, 2009; Deisenroth et al., 2012; Frigola et al., 2014] applications to be
carried out through variational bounds. Bayes filters are non-linear dynamical sys-
tems where time is discrete and the observed data yt at time point t, is non-linearly

3.6 Discussion 77

related to some unobserved latent state, xt,

yt = f(xt)

which itself has a non-linear autoregressive relationship with past latent states:

xt = g(xt−1)

where both g(·) and f(·) are assumed to be Gaussian processes. Propagation of the
uncertainty through both processes can be achieved through our variational lower
bound allowing fast efficient approximations to Gaussian process dynamical models.

The variational methodology also constitutes a key ingredient of the deep Gaus-
sian process framework that will be presented in Chapter 6. In a deep Gaussian pro-
cess the idea of placing a temporal prior over the inputs to a GP is further extended
by hierarchical application.

Note on chapter’s contributions

Since this chapter did not solely include developments associated with new contributions of this thesis,

I will clarify my contributions in this paragraph. To start with, the idea and extension of the variational

GP approach [Titsias, 2009] to the GP-LVM was originally proposed by Titsias and Lawrence [2010]

(a paper where I do not appear as an author). The journal version of that paper is [Damianou et al.,

2015], where myself and Titsias appear as joint first authors. That version lent text to this chapter, and

adds many more details about the properties of the method and the inference method followed during

test time, detailed equations for the derivations and gradients (often rewritten for improved numerical

stability), extension to vast dimensionalities and extra experiments. More importantly, it also contains

the extension of the framework to the case of coupled latent inputs, with the corresponding conference

publication [Damianou et al., 2011] containing myself as first author. Finally, in this chapter I demon-

strated how recent developments in the variational GP approximation ([Hensman et al., 2013a; Gal

et al., 2014; Dai et al., 2014]) can be incorporated in the overall framework. In particular, the stochas-

tic variational inference extension has been published in [Hensman et al., 2014a] where I appear as a

second author and the distributed computations framework has been published in [Dai et al., 2014],

where I also appear as a second author.

78 Variational Marginalisation of Latent Variables in Gaussian Process Models

(a) Given test image with partially observed pixels.

(b) Reconstructed test image.

Fig. 3.10: Another example of the reconstruction achieved by the dynamical variational GP-
LVM given the partially observed image.

3.6 Discussion 79

(a) Dyn. VGP-LVM reconstruction.

(b) Nearest neighbour reconstruction.

(c) Close-up of the
problematic discon-
tinuity occuring in
the nearest neighbour
reconstruction.

Fig. 3.11: (a) (Dyn. VGP-LVM) and (b) (NN) depict the reconstruction achieved for a frame
of the ‘ocean’ dataset (60% missing pixels). Notice that in both of the datasets, our method
recovers a smooth image, in contrast to the simple NN (a close up of this problem with NN
for the ‘ocean’ video is shown in figure (c)). VGP-LVM reconstructed the ocean images using
a 9-dimensional compression for the video.

80 Variational Marginalisation of Latent Variables in Gaussian Process Models

(a) Test image (with 60% missing pixels) presented to the model.

(b) Reconstruction achieved by the dynamical variational GP-LVM.

Fig. 3.12: An example for the reconstruction achieved for the ‘dog’ dataset, where 60% of
the test image’s pixels were missing. Reconstruction was achieved based on temporal as well
as present pixel information.

3.6 Discussion 81

wj

j

(a)

wj

j

(b)

Fig. 3.13: Here, we also demonstrate the ability of the model to automatically select the latent
dimensionality by showing the initial lengthscales (fig: (a)) of the ARD covariance function
and the values obtained after training (fig: (b)) on the ‘dog’ data set.

82 Variational Marginalisation of Latent Variables in Gaussian Process Models

(a) Last frame of the training video.

(b) First frame of the generated video.

(c) A subsequent generated frame.

Fig. 3.14: The last frame of the training video (a) is smoothly followed by the first frame (b)
of the generated video. A subsequent generated frame can be seen in (c).

3.6 Discussion 83

0 500 1500 2500 3500

0.002

0.004

0.006

0.008

Fig. 3.15: Stochastic optimisation for the uncollapsed variational GP-LVM: adaptive
steplength trace for the big data, motion capture experiment.

(a) Latent dimensions 1 vs 2. (b) Latent dimensions 3 vs 6.

Fig. 3.16: Latent space projections for the uncollapsed variational GP-LVM which was
stochastically optimised on 20K motion capture instances.

Chapter 4

Uncertain Inputs in Variational
Gaussian Processes

In the previous chapter we considered the typical dimensionality reduction scenario
where, given high-dimensional outputs, we seek to find a low-dimensional latent rep-
resentation in an unsupervised manner. For the dynamical variational GP-LVM we
have additional temporal information, but the input space X from where we propagate
the uncertainty is still treated as fully unobserved. However, our framework for prop-
agating input uncertainty through GP mappings is applicable to the full spectrum of
cases, ranging from fully unobserved (i.e. latent) to fully observed inputs with known
or unknown amount of uncertainty per input. This observation gives rise to a more
general variational framework for GP training and prediction with uncertain inputs.

This section analyses this framework and, further, discusses three special cases:
firstly, an auto-regressive GP algorithm for iterative future state simulation (Section
4.3.2). Secondly, a semi-supervised GP algorithm (Section 4.3.3) for classification
when the class labels (outputs) are only partially observed. We show how a particular
interpretation of this case as a data imputation problem allows us to solve it by using
intermediate latent variable representations. Thirdly, we introduce and propose a GP
approach for a type of learning that we “christen” semi-described learning (Section
4.3.1). We define semi-described learning to be the scenario where missing values
occur in the inputs, rather than in the outputs. This scenario has not been much stud-
ied in the context of GPs due to challenges arising from handling input uncertainty.
Previous approaches to uncertain input GPs cannot be straightforwardly applied to
semi-described learning, since they only consider input uncertainty at test time.

In all three scenarios listed above, our solutions rely on combining our uncertain
inputs GP framework with algorithms that probabilistically impute missing values

86 Uncertain Inputs in Variational Gaussian Processes

while propagating the uncertainty in the next step of the learning procedure.

4.1 Background

Gaussian processes have been used extensively and with great success in a variety
of regression tasks. In the most common setting we are given a dataset of observed
input-output pairs, collected in matrices1 Z and Y respectively, and we wish to in-
fer the unknown outputs Y∗ corresponding to some novel given inputs Z∗. In many
real-world applications the outputs can contain missing values, something which is
known as semi-supervised learning. For example, consider the task of learning to
classify images where the labelled set is much smaller than the total set. Similarly
to Kingma et al. [2014] we recognise the semi-supervised problem as a data imputa-
tion problem where unlabelled data are not ignored but, rather, exploited through an
intermediate latent representation. This latent representation is compact, less noisy
and semantically richer (since it encapsulates information also from unlabelled data).
Associating uncertainty with this representation is crucial, as this would allow us to
sample from it and populate the training set in a principled manner.

However, another often encountered problem in regression has to do with miss-
ing values in the input features (e.g. missing pixels in input images). This situation
can arise during data collection, for example when measurements come from noisy
sensors, e.g. microarray analysis [Liu et al., 2006]. In contrast to semi-supervised
learning, this case has not been studied in the context of Gaussian processes, due to
the challenge of handling the input uncertainty. In this chapter we introduce the notion
of semi-described learning to refer to this scenario. Our aim is then to develop a gen-
eral framework that solves the semi-supervised and semi-described learning. We also
consider the related forecasting regression problem, which is seen as a pipeline where
predictions are obtained iteratively in an auto-regressive manner, while propagating
the uncertainty across the predictive sequence, as in [Girard et al., 2003; Quiñonero-
Candela et al., 2003]. Here, we cast the auto-regressive GP learning as a particular
type of semi-described learning where future input instances are wholly missing.

To achieve our goals we need two methodological tools. Firstly, we need a frame-
work allowing us to consider and communicate uncertainty between the inputs and the
outputs of a generative model. For this, we build on the variational approach of Titsias
and Lawrence [2010]; Damianou et al. [2015] which was presented as part of the pre-

1In this chapter we consider both, observed and latent inputs. Therefore, we reserve X to denote
the latent (or partially observed) inputs and Z to denote the fully observed ones.

4.1 Background 87

vious chapter. The resulting representation is particularly advantageous, because the
whole input domain is now coherently associated with posterior distributions. We can
then sample from the input space in a principled manner so as to populate small initial
labelled sets in semi-supervised learning scenarios. In that way, we avoid heuristic
self-training methods [Rosenberg et al., 2005] that rely on boot-strapping and present
problems due to over-confidence. Previously suggested approaches for modelling in-
put uncertainty in GPs also lack the feature of considering an explicit input distribu-
tion for both training and test instances. Specifically, [Girard et al., 2003; Quiñonero-
Candela et al., 2003] consider the case of input uncertainty only at test time. Prop-
agating the test input uncertainty through a non-linear GP results in a non-Gaussian
predictive density, but Girard et al. [2003]; Quiñonero-Candela et al. [2003] rely on
moment matching to obtain the predictive mean and covariance. On the other hand,
[Oakley and O’Hagan, 2002] do not derive analytic expressions but, rather, develop a
scheme based on simulations. And, finally, McHutchon and Rasmussen [2011] rely
on local approximations inside the latent mapping function, rather than modelling
the approximate posterior densities directly. Another advantage of our framework is
that it allows us to consider different levels of input uncertainty per point and per di-
mension without, in principle, increasing the danger of under/overfitting, since input
uncertainty is modelled through a set of variational rather than model parameters.
This is in contrast to approaches suggested in the related field of heteroscedastic GP
regression [Goldberg et al., 1998; Kersting et al., 2007; Lázaro-Gredilla and Titsias,
2011]. In this domain, any input noise is referred to the output, and the output noise
is then modelled as a random variable or a stochastic process.

The second methodological tool needed to achieve our goals, has to do with the
need to incorporate partial or uncertain observations into the variational framework.
For this, we develop a variational constraint mechanism which constrains the dis-
tribution of the input space given the observed noisy values. This approach is fast,
and the whole framework can be incorporated into a parallel inference algorithm [Gal
et al., 2014; Dai et al., 2014]. In contrast, Damianou et al. [2011, 2015] consider
a separate process for modelling the input variance. However, that approach cannot
easily be extended for the data imputation purposes that concern us, since we cannot
consider different uncertainty levels per input and per dimension and, additionally,
computation scales cubicly with the number of datapoints, even within sparse GP
frameworks. The constraints framework that we propose is interesting not only as an
inference tool but also as a modelling approach: if the inputs are constrained with the
outputs, then we obtain the Bayesian version of the back-constraints framework of
Lawrence and Quiñonero Candela [2006]; Ek et al. [2008a]. However, in contrast to

88 Uncertain Inputs in Variational Gaussian Processes

these approaches, the constraint defined here is a variational one, and operates upon
a distribution, rather than single points.

Our contributions in this chapter are the following; firstly, by building on the
variational GP-LVM and developing a simple variational constraint mechanism we
demonstrate how uncertain GP inputs can be explicitly represented as distributions
during both training and test time. Secondly, our framework is automatically turned
into a non-parametric variational autoencoder [Kingma and Welling, 2013] when the
constraint becomes a back-constraint [Lawrence and Quiñonero Candela, 2006], al-
though we study this case separately in Section 6.2.5 in the context of deep models.
Our third contribution has to do with coupling our variational methodology with al-
gorithms that allow us to solve problems associated with partial or uncertain obser-
vations: semi-supervised learning, auto-regressive iterative forecasting and, finally, a
newly studied type of learning which we call semi-described learning. We show how
these applications can be cast as learning pipelines which rely on correct propagation
of uncertainty between each stage.

4.2 Uncertain Inputs Reformulation of GP Models

To account for input uncertainty, we start with the usual generative GP model, shown
in equation (2.3), and additionally incorporate input noise:

yi,j = fj(xi,:) + (ϵf)i,j, (ϵf)i,j ∼ N
(
0, β−1

)
xi,: = zi,: + (ϵx)i,:, (ϵx)i,: ∼ N (0,Σx) ,

where the vectors {zi,:}ni=1 denote the observed (noise corrupted) inputs and are col-
lected in a matrix Z ∈ ℜn×q whereas {xi,:}ni=1 denote latent variables. There are two
ways in which uncertain inputs can be taken into account within the variational GP-
LVM framework. Firstly, we may directly assume a prior distribution for the latent
inputs that depend on noisy observations:

p(X|Z) =
n∏

i=1

N (xi,:|zi,:,Σx) .

This prior can be incorporated in the variational GP-LVM by replacing the spheri-
cal prior appearing in the KL term of equation (3.26). The variational bound now
becomes F ≤ log p(Y|Z), with:

F = ⟨log p(Y|X)⟩q(X) − KL (q(X) ∥ p(X|Z)) , (4.1)

4.2 Uncertain Inputs Reformulation of GP Models 89

YZ

X

f

(a)

YZ

X

f

(b)

Z Y

f

X X

(c)

Fig. 4.1: Incorporating observed noisy inputs Z in GPs through an intermediate uncertain
input space X by considering: (a) an additional GP prior on X, centered on Z and (b) a
(back)-constraint (dashed line) on the approximation to p(X|Y,Z). For our semi-described
learning algorithm (Section 4.3.1) we used the second approach. Figure (c) represents the
two-stage approach to semi-supervised learning for classification (Section 4.3.3), where the
dotted line represents a discriminative mapping. Further, in figure (c), Y,X and Z are all
associated with distributions and shaded nodes represent variables for which we also have
observed instantiations.

where the new KL term is again tractable. This formulation corresponds to the graph-
ical model of Figure 4.1(a).

However, with the above approach one needs to additionally estimate the noise
parameters Σx, something which poses two optimisation-related problems; firstly,
this introduces several additional parameters, especially if Σx is a non-diagonal co-
variance matrix. Secondly, there is an interplay between the noise parameters Σx of
the prior and the variational noise parameters {Si}ni=1 of the approximate posterior
q(X). Therefore, in our implementation we considered an alternative solution which,
in initial ad-hoc experiments, resulted in a better performance. This is explained in
the next section.

4.2.1 Variational (Back)-Constraint

In contrast to incorporating uncertain inputs through latent space priors, we followed
an alternative approach. Specifically, we introduce a variational constraint to encode
the input uncertainty directly in the approximate posterior, which is now written as
q(X|Z) to highlight its dependence on Z. Similarly to [Lawrence and Quiñonero
Candela, 2006; Ek et al., 2008a], this constraint does not constitute a probabilistic
mapping and might not be optimal in terms of the resulting approximation to the
posterior. However, it allows us to encode the input noise directly in the approximate
posterior without having to specify additional noise parameters or sacrifice scalability.

In the typical scenario of GP regression with uncertain inputs, the variational con-
straint approach results in the approximation q(X|Z) =

∏n
i=1N (xi,:|zi,:,Si) for the

90 Uncertain Inputs in Variational Gaussian Processes

posterior. The parameters of the diagonal covariance matrices Si can then be op-
timised, unless the input noise level is known. In the general case, namely having
inputs that are only partially observed, we can define a similar constraint which spec-
ifies a variational distribution as a mix of Gaussian and Dirac delta distributions. No-
tationally we consider data to be split into fully and partially observed subsets, e.g.
Z = (ZO,ZU), where O and U denote fully and partially observed sets respectively.
The features missing in ZU can appear in different dimension(s) for each individual
point zU

i,:, but for notational clarity U will index rows containing at least one missing
dimension. In this case, the variational distribution is constrained to have the form

q(X|Z, {O, U}) = q(XO|ZO) q(XU |ZU)

=
∏
i∈O

δ(zi,: − xi,:)
∏
i∈U

N (xi,:|µi,:,Si) ,
(4.2)

where δ(·) denotes the Dirac delta function. The delta functions are a means of re-
moving variational parameters for the parts where we are certain about, since these
parameters do not provide any information about the noise in the mapping from Z.
Given the above, as well as a spherical Gaussian prior for p(X), the required in-
tractable density log p(Y|Z) is approximated with a variational lower bound:

F = ⟨log p(Y|X)⟩q(X|Z) − KL (q(X|Z) ∥ p(X)) ,

where for clarity we dropped the dependency on {O, U} from our expressions. The δ

functions appearing inside the variational distribution of equation (4.2) can be approx-
imated with sharply peaked Gaussians of the form N

(
xO
i,:|zO

i,:, εI
)
, with ε → 0. With

this selection for q(X|Z), the variational bound of equation (4.1) can be computed in
exactly the same manner as the variational GP-LVM bound of equation (3.26).

Notice that a vector zU
i,: can also be only partially unobserved. In this case, the

elements µi,j (of eq. (4.2)) corresponding to observed dimensions zU
i,j are no longer

free parameters but, instead, are set to match the corresponding observed elements
zU
i,j . Similarly, the corresponding diagonal elements (Si)j,j are set to ε → 0. The rest

of the parameters of q(XU |ZU) are subject to optimisation.

For the rest of this chapter, the variational constraint is only used in the form
q(X|Z), that is, for constraining the variational distribution with the inputs Z. How-
ever, the formulation is generic and allows for constraining the input distribution
with any available observation from (Z,Y). Therefore, if instead, we constrain the
variational distribution with the outputs Y by defining q(X|Y), then we obtain a
form of variational auto-encoder [Kingma and Welling, 2013] or, equivalently, a

4.3 Gaussian Process Learning with Missing Values 91

Bayesian version of the back-constrained framework of Lawrence and Quiñonero
Candela [2006]; Ek et al. [2008a]. We explore this idea in Section 6.2.5 in the context
of deep Gaussian processes. Therefore, for the moment we don’t consider it further.

4.3 Gaussian Process Learning with Missing Values

In semi-supervised learning we are provided with a portion of the data that is labelled
and a (normally much larger) portion that is unlabelled. The aim is to incorporate the
unlabelled data in making predictions. In this section we generalise the idea of learn-
ing with missing values to consider the case where the inputs may also be only par-
tially observed. We refer to this type of learning as semi-described learning. We for-
mulate both, the semi-described and semi-supervised learning as particular instances
of learning a mapping function where the inputs are associated with uncertainty. Our
approach for semi-described and semi-supervised learning is depicted in figures 4.1b
and 4.1c respectively, which make clear that in both cases a GP with uncertain inputs
is employed. Specifically, in the first case, input uncertainty is naturally occurring due
to the missing input values that have to be imputed probabilistically. In the second
case, input uncertainty is occurring due to viewing the semi-supervised problem as a
particular data imputation problem which is solved in two steps using an intermediate
latent space. This space is assumed to be the generating manifold for the labelled and
unlabelled data, and is associated with uncertainty. Concerning algorithms, in both
semi-described and semi-supervised learning, we devise a two-step strategy, based on
our uncertain input GP framework, which allows to efficiently take into account the
partial information in the given datasets to improve the predictive performance.

Regarding notation and conventions in semi-described learning, we assume a set
of observed outputs Y that correspond to fully observed inputs ZO and partially ob-
served inputs ZU , so that Z = (ZO,ZU). To make the correspondence clearer, we also
split the observed outputs according to the sets {O, U}, so that Y = (YO,YU), but
notice that both sets of outputs are fully observed. We are then interested in learning
a regression function from Z to Y by using all available information.

Regarding notation and conventions in semi-supervised learning, we assume a
fully observed set of inputs, Z, and a partially observed set of outputs. This scenario
is typically encountered in classification settings, which is also the task of interest in
this section. Therefore, the outputs constitute the set of labels corresponding to the
inputs. Since we are interested in multi-label problems, each output row is encoded
in 1-of-K encoding, so that yi,: is a p−dimensional vector. In contrast to the semi-

92 Uncertain Inputs in Variational Gaussian Processes

described learning case, here we assume that a row of Y is either fully observed or
fully unobserved. This assumption is made only for simplicity, and our model can
also handle the general case. Therefore, we introduce two sets that index the labelled

and missing (unlabelled) rows of Y, denoted by L and M respectively. Accordingly,
the dataset is split so that Z = (ZL,ZM) and Y = (YL,YM). The task is then to
devise a method that improves classification performance by using both labelled and
unlabelled data.

In the rest of this section we describe in more detail our approach for semi-
described learning with GPs in Section 4.3.1, we show how auto-regressive GPs are
cast as a particular semi-described learning problem in Section 4.3.2 and, finally, dis-
cuss our approach to solve the more “traditional” semi-supervised learning problem
in Section 4.3.3.

4.3.1 Semi-described Learning

A standard GP regression model cannot deal with partially observed inputs. In con-
trast, in the (back)-constrained formulation presented in Section 4.2 we model the
joint distribution between Z and Y, obviating this issue. Specifically, since in our
formulation the inputs are replaced by distributions q(XO|ZO) and q(XU |ZU), the
uncertainty over ZU can be taken into account naturally through this variational dis-
tribution. In this context, we formulate a data imputation-based approach which is
inspired by self-training methods; nevertheless, it is more principled in the handling
of uncertainty. Specifically, the algorithm has two stages:

Step 1 - Train on the fully observed data (ZO,YO) and then impute (initial)
values for the missing elements of ZU:
We use the fully observed data subset (ZO,YO) to train an initial variational
GP-LVM model which encapsulates the sharply peaked variational distribution
q(XO|ZO) given in equation (4.2). Given this model, we can then use YU to
estimate the predictive posterior q(XU |ZU) in the missing locations of ZU (for
the observed locations we match the mean with the observations in a sharply
peaked marginal, as for ZO). Essentially, we replace the missing locations of
the variational means µU

i,: and variances SU
i of q(XU |ZU) with the predictive

mean and variance obtained through the self-training step. This selection for
{µU

i,:,S
U
i } can be seen as an initialisation step. In the next step, these parameters

are further optimised together with the fully observed data.

Step 2 - Train on the full set ((ZO,ZU), (YO,YU)) by propagating the un-

4.3 Gaussian Process Learning with Missing Values 93

Algorithm 1 Semi-described learning with uncertain input GPs.
1: Given: Fully observed inputs ZO and partially observed inputs ZU , corresponding

respectively to fully observed outputs YO and YU .

2: Construct q(XO|ZO) =
∏n

i=1N
(
xO
i,:|zO

i,:, εI
)
,where: ε → 0

3: Fix q(XO|ZO) in the optimiser # (i.e. q(XO|ZO) has no free parameters)

4: Train a variational GP-LVM model MO with inputs q(XO|ZO) and outputs YO

5: for i = 1, · · · , |YU | do
6: Predict the distribution N

(
xU
i,:|µ̂U

i,:, Ŝ
U
i

)
≈ p(xU

i,:|yU
i,:,MO) from the approxi-

mate posterior of model MO (see Section 3.4.1)

7: Initialise parameters {µU
i,:,S

U
i } of q(xU

i,:|zU
i,:) = N

(
xU
i,:|µU

i,:,S
U
i

)
as follows:

8: for j = 1, · · · , q do
9: if zU

i,j is observed then
10: µU

i,j = zU
i,j and (SU

i)j,j = ε,where: ε → 0
11: Fix µU

i,j, (S
U
i)j,j in the optimiser # (i.e. they don’t constitute parameters)

12: else
13: µU

i,j = µ̂U
i,j and (SU

i)j,j = (ŜU
i)j,j

14: Train a variational GP-LVM model MO,U with inputs q(X{O,U}|Z{O,U}) and out-
puts (YO,YU). The input distribution q(X{O,U}|Z{O,U}) = q(XO|ZO)q(XU |ZU)
is constructed in steps 2, 5-13 and further optimised in the non-fixed locations.

15: Model MO,U now constitutes the semi-described GP and can be used for all re-
quired prediction tasks.

certainty of the imputed elements of ZU (from step 1) as input uncertainty:
After initializing q(X|Z) = q(XO,XU |Z) as explained in step 1, we pro-
ceed to train a variational GP-LVM model on the full (extended) training set
((ZO,ZU) , (YO,YU)), which contains fully and partially observed inputs.

Algorithm 1 outlines the approach in more detail. This formulation defines a semi-

described GP model which naturally incorporates fully and partially observed exam-
ples by communicating the uncertainty throughout the relevant parts of the model in
a principled way. Indeed, the predictive uncertainty obtained when imputing miss-
ing values in the first step of the pipeline, is incorporated as input uncertainty in the
second step of the pipeline. In extreme cases resulting in very non-confident predic-
tions, for example presence of outliers, the corresponding locations will simply be
ignored automatically due to the large uncertainty. This mechanism, together with
the subsequent optimisation of the parameters of q(XU |ZU) in stage 2, guards against
reinforcing bad predictions when imputing missing values based on a smaller training
set. The model includes GP regression and the GP-LVM as special cases. In particu-
lar, in the limit of having no observed values our semi-described GP is equivalent to

94 Uncertain Inputs in Variational Gaussian Processes

0 20 40 60 80
0.05

0.1

0.15

0.2

0.25

0.3

M
S

E

SD−GP GP NN GPLVM

Toy data

0 20 40 60 80
0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
S

E

Motion capture data

% missing features% missing features

Fig. 4.2: MSE for predictions obtained by different methods on semi-described learning.
GP cannot handle partial observations, thus the uncertainty (2σ) is constant; for clarity, the
errorbar is plotted separately on the right of the dashed vertical line (for nonsensical x values).
The results for simulated data are obtained from 4 trials. For clarity, the limits on the y−axis
are fixed, so when the errors become too big for certain methods they get off the chart. The
errorbars for the GPLVM-based approach are also too large and not plotted. The full picture
is given in figure 4.3.

the GP-LVM and when there are no missing values it is equivalent to GP regression.

There are some similarities to traditional self-training [Rosenberg et al., 2005],
but as there are no straightforward mechanisms to propagate uncertainty in that do-
main, they typically rely on boot-strapping followed by thresholding “bad” samples,
to prevent model over-confidence. In our framework, the predictions made by the ini-
tial model only constitute initialisations which are later optimised along with model
parameters and, hence, we refer to this step as partial self-training. Further, the pre-
dictive uncertainty is not used as a hard measure of discarding unconfident predic-
tions; instead, we allow all values to contribute according to an optimised uncertainty
measure, that is, the input variances Si. Therefore, the way in which uncertainty is
handled makes the self-training part of our algorithm principled compared to many
bootstrap-based approaches.

Demonstration

We considered simulated and real-world data to demonstrate our semi-described GP
algorithm. The simulated data were created by sampling inputs Z from a GP (which
was unknown to the competing models) and then giving these samples as input to
another unknown GP, to obtain corresponding outputs Y. For the real-world data
demonstration we considered a motion capture dataset taken from subject 35 in the
CMU motion capture database. We selected a subset of walk and run motions of a

4.3 Gaussian Process Learning with Missing Values 95

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1 M
S

E

% missing features

Toy data

SD−GP GP MLR NN GPLVM Mean

0 20 40 60 80
0.2

0.4

0.6

0.8

1

1.2

% missing features

Motion capture data

M
S

E

Fig. 4.3: MSE for predictions obtained by different methods on semi-described learning (full
version of figure 4.2). Comparing our method (SD-GP), the standard GP method, multiple
linear regression (MLR), nearest neighbour regression on the input space (NN), the data-
imputation method based on GP-LVM and the mean predictor (mean). The results for sim-
ulated data are obtained from 4 trials. The GP method cannot handle partial observations,
thus the uncertainty (2σ) is constant; for clarity, the errorbar is plotted separately on the right
of the dashed vertical line (for nonsensical x values). The GP-LVM method produced huge
errorbars (about 3.5 times larger than thos of MLR), thus we don’t plot them here, for clarity.

human body represented as a set of 59 joint locations. We formulated a regression
problem where the first 20 dimensions of the original data are used as targets and
the remaining 39 as inputs. That is, given a partial joint representation of the human
body, the task is to infer the rest of the representation. For both datasets, simulated
and motion capture, we selected a portion of the training inputs, denoted as ZU , to
have randomly missing features. The extended dataset ((ZO,ZU) , (YO,YU)) was
used to train: a) our method, referred to as semi-described GP (SD-GP) b) multiple
linear regression (MLR) c) regression by performing nearest neighbour (NN) search
between the test and training instances, in the observed input locations d) performing
data imputation using the standard GP-LVM. Not taking into account the predictive
uncertainty during imputation was found to have catastrophic results in the simulated
data, as the training set was not robust against bad predictions. Therefore, the “GP-
LVM” variant was not considered in the real data experiment. We also considered:
e) a standard GP which cannot handle missing inputs straightforwardly and so was
trained only on the observed data (ZO,YO). The goal was to reconstruct test outputs
Y∗ given fully observed test inputs Z∗. For the simulated data we used the following
sizes: |ZO| = 40, |ZU | = 60 and |Z∗| = 100. The dimensionality of the inputs is
q = 15 and of the outputs is p = 5. For the motion capture data we used |ZO| = 50,

96 Uncertain Inputs in Variational Gaussian Processes

|ZU | = 80 and |Z∗| = 200. In fig. 4.2 we plot the MSE obtained by the competing
methods for a varying percentage of missing features in ZU . For the simulated data
experiment, each of the points in the plot is an average of 4 runs which considered
different random seeds. For clarity, the y−axis limit is fixed in figure 4.2, because
some methods produced huge errors. The full picture is in figure 4.3.

As can be seen in the figures, the semi-described GP is able to handle the extra
data and make much better predictions, even if a very large portion is missing. Indeed,
its performance starts to converge to that of a standard GP when there are 90% missing
values in ZU and performs identically to the standard GP when 100% of the values are
missing. Therefore, the semi-described GP is very efficient in taking into account the
extra, partially observed input set ZU . On the other hand, nearest neighbour runs into
difficulties when real data are considered and, even worse, produces huge errors when
more than 60% of the features are missing in ZU . Finally, the baseline which uses the
standard GP-LVM as a means of imputing missing values produces bad results, in fact
worse compared to if the extra set ZU is just ignored (i.e. the GP baseline). This is
because the baseline using GP-LVM treats the input space as single point estimates;
by not incorporating (and optimising jointly) the uncertainty for each input location,
the model has no way of ignoring “bad” imputed values.

4.3.2 Auto-regressive Gaussian Processes

Gaussian processes have been studied as expressive priors for state-space models
[Turner, 2010; Turner and Sahani, 2011; Deisenroth et al., 2012]. Having a method
which implicitly models the uncertainty in the inputs of a GP also enables performing
predictions in an autoregressive manner [Oakley and O’Hagan, 2002] while propagat-
ing the uncertainty through the predictive sequence [Girard et al., 2003; Quiñonero-
Candela et al., 2003]. Specifically, assuming that the given data Y constitute a multi-
variate timeseries where the observed time vector t is equally spaced, we can reformat
the data Y into input-output collections of pairs Ẑ and Ŷ. For example, if we have an
auto-regressive time window of length τ , then to modify the model for autoregressive
use the first input to the model, ẑ1,:, will be given by the stacked vector [y1,:, ...,yτ,:]

and the first output, ŷ1,:, will be given by yτ+1,: and similarly for the other data in Ẑ

4.3 Gaussian Process Learning with Missing Values 97

and Ŷ, so that:

[ẑ1,:, ẑ2,:, ..., ẑn−τ,:] =
[
[y1,:,y2,:, ...,yτ,:] , [y2,:,y3,:, ...,yτ+1,:] ,

..., [yn−τ,:,yn−τ+1,:, ...,yn−1,:]
]
,

[ŷ1,:, ŷ2,:, ..., ŷn−τ,:] = [yτ+1,:,yτ+2,:, ...,yn,:].

To perform extrapolation we first train the model on the modified dataset (Ẑ, Ŷ).
By referring to the semi-described formulation described in the beginning of Section
4.3, we assign all training inputs to the observed set O. After training, we can perform
iterative k-step ahead prediction to find a future sequence Ẑ∗ := [yn+1,:,yn+2,:, ...]

where, similarly to the approach taken by Girard et al. [2003], the predictive variance
in each step is accounted for and propagated in the subsequent predictions. For exam-
ple, if k = 1 the algorithm will make iterative 1-step predictions in the future; initially,
the output ẑ1,∗ := yn+1,: will be predicted (given the training set) with predictive vari-
ance Ŝ∗;1. In the next step, the input set will be augmented to include our distribution
of predictions over yn+1,:, by defining q(xn+1,:|ẑ1,∗) = N

(
xn+1,:|ẑ∗,1, Ŝ∗;1

)
, and so

on. This simulation process can be seen as constructing a predictive sequence step
by step, i.e. the newly inserted input points constitute parts of the (test) predictive
sequence and not training points. Therefore, this procedure can be seen as an iterative
version of semi-described learning.

Note that it is straightforward to extend this model by applying this auto-regressive
mechanism in a latent space of a stacked model constructed as shown in Section 3.2.1
or, more generally, as a deep GP (which will be discussed in Chapter 6). By addition-
ally introducing functions that map from this latent space nonlinearly to an observa-
tion space, we obtain a fully nonlinear state space model in the manner of Deisenroth
et al. [2012]. For our model, uncertainty is encoded in both the states and the nonlin-
ear transition functions. Correct propagation of uncertainty is vital in well calibrated
models of future system behavior and automatic determination of the structure of the
model (for example the size of the window) can be informative in describing the order
of the underlying dynamical system.

Demonstration: Iterative k−step Ahead Forecasting

Here we demonstrate our framework in the simulation of a state space model. We
consider the Mackey-Glass chaotic time series, a standard benchmark which was also
considered by Girard et al. [2003]. The data is one-dimensional so that the timeseries

98 Uncertain Inputs in Variational Gaussian Processes

−2

−1

0

1

−2

−1

0

1

−2

−1

0

1

100 200 300 400 500 600 700 800 900 1000 1100
0

0.05

0.1

Fig. 4.4: Chaotic timeseries: forecasting 1110 steps ahead by iterative prediction. The top
3 plots show the values obtained in each predictive step for each of the compared methods;
the plot on the bottom shows the corresponding predictive uncertainties (2σ). GPuncert refers
to the basic (moment matching) method of Girard et al. [2003] and the GP is the “naive”
autoregressive GP which does not propagate uncertainties.

can be represented as pairs of values {y, t}, t = 1, 2, · · · , n and simulates the process:

dζ(t)
dt

= −bζ(t) + α ζ(t−T)
1+ζ(t−T)10

, (α, b, T) = (0.2, 0.1, 17).

Obviously the generating process is very non-linear, rendering this dataset chal-
lenging. We trained the autoregressive model on data from this series, where the
modified dataset {ẑ, ŷ} was created with τ = 18 and we used the first 4τ = 72 points
to train the model and predicted the subsequent 1110 points through iterative free
simulation.

We compared our method with a “naive autoregressive” GP model where the
input-output pairs were given by the autoregressive modification of the dataset {ẑ, ŷ}.

4.3 Gaussian Process Learning with Missing Values 99

For that model, the predictions are made iteratively and the predicted values after
each predictive step are added to the “observation” set. However, this standard GP
model has no straight forward way of incorporating/propagating the uncertainty and,
therefore, the input uncertainty is zero for every step of the iterative predictions. We
also compared against the method of Girard et al. [2003]2, denoted in the plots as
“GPuncert”. Figure 4.4 shows the results of the full free simulation (1110−step ahead
forecasting).

As can be seen in the variances plot, both our method and GPuncert are more ro-
bust in handling the uncertainty throughout the predictions; the “naive” GP method
underestimates the uncertainty. Consequently, as can be seen in figure 4.4, in the first
few predictions all methods give the same answer. However, once the predictions
of the “naive” method diverge a little by the true values, the error is carried on and
amplified due to underestimating the uncertainty. On the other hand, GPuncert perhaps
overestimates the uncertainty and, therefore, is more conservative in its predictions,
resulting in higher errors. Quantification of the error is shown in Table 4.1.

Table 4.1: Mean squared and mean absolute error obtained when extrapolating in the chaotic
time-series data. GPuncert refers to the basic (moment matching) method of Girard et al. [2003]
and the “naive” autoregressive GP approach is the one which does not propagate uncertainties.

Method MAE MSE
ours 0.529 0.550

GPuncert 0.700 0.914
“naive” GP approach 0.799 1.157

4.3.3 Semi-supervised Learning

In this section we consider the semi-supervised learning setting where a set of fully
observed inputs Z = (ZL,ZM) corresponds to a set of fully observed and a set of fully
unobserved labels, YL and YM respectively. Previous work in this area involved the
cluster assumption [Lawrence and Jordan, 2005] for semi-supervised GP classifica-
tion. Our approach makes use of the manifold assumption [Chapelle et al., 2006]
which assumes that the high dimensional data are really generated by a lower dimen-
sional latent space. Inspired by Kingma et al. [2014] we define a semi-supervised
GP framework where features are extracted from all available information and, sub-

2We implemented the basic moment matching approach, although in the original paper the authors
use additional approximations, namely Taylor expansion around the predictive moments.

100 Uncertain Inputs in Variational Gaussian Processes

100 200 300 400 500 600

30

40

50

60

70

80

90

100

Observed

E

rr
or

s

Digits data

Semi−supervised (using sampling)

Bayesian GP−LVM

PCA

20 40 60 80 100 120 140 160

20

40

60

80

100

120

Observed

E

rr
or

s

Oil data

Semi−supervised (using sampling)

PCA

Fig. 4.5: Plots of the number of incorrectly classified test points as a function of |ZL|. Mul-
tiple trials were performed, but the resulting errorbars are shown at one standard deviation.
In small training sets large errorbars are expected because, occasionally, very challenging in-
stances/outliers can be included and result in high error rates (for all methods) that affect the
overall standard deviation. The Bayesian GP-LVM baseline struggled with small training sets
and performed very badly in the oil dataset; thus, it is not plotted for clarity.

sequently, are given as inputs to a discriminative classifier. Specifically, using the
whole input space Z, we learn a low-dimensional latent space X through an approx-
imate posterior q(X) ≈ p(X|Z). Obviously, this specific case where the input space
is uncertain but totally unobserved (i.e. a latent space) just reduces to the variational
GP-LVM model. Notice that the posterior q(X) is no longer constrained with Z

but, rather, directly approximates p(X|Z), since we now have a forward probabilistic

mapping from X to Z and Z is treated as a random variable with p(Z|X) being a
Gaussian distribution, i.e. exactly the same setting used in the GP-LVM. This proce-
dure corresponds to the left part of the graphical model depicted in Figure 4.1c. Since
there is one-to-one correspondence between X, Z and Y, we can notationally write
X = (XL,XM). Further, since we assume that q(X) is factorised across datapoints,
we can write q(X) = q(XL)q(XM).

In the second step of our semi-supervised algorithm, we train a discriminative
classifier from q(XL) to the observed labelled space, YL. The main idea is that, by
including the inputs ZM in the first learning step, we manage to define a better latent
embedding from which we can extract a more useful set of features for the discrimi-
native classifier. Notice that what we would ideally use as input to the discriminative

4.3 Gaussian Process Learning with Missing Values 101

classifier is a whole distribution, rather than single point estimates. Therefore, we
wish to take advantage of the associated uncertainty; in specific, we can populate the
labelled set by sampling from the distribution q(XL). For example, if a latent point
xL
i,: corresponds to the input-output pair (zL

i,:,y
L
i,:), then a sample from q(xL

i,:) will be
assigned the label yL

i,:.

The two inference steps described above are graphically depicted in Figure 4.1c.
This is exactly the same setting suggested by Kingma et al. [2014], but here we wish
to investigate its applicability in a non-parametric, Gaussian process based frame-
work. The very encouraging results reported below point towards the future direction
of applying this technique in the framework of deep Gaussian processes and deep
Gaussian process autoencoders, so as to be able to compare to [Kingma et al., 2014]
who considered deep, generative (but nevertheless parametric) models.

Demonstration

To evaluate our method we considered two datasets: firstly, we considered 2,000
examples from the USPS handwritten digit database [Hull, 1994]. These examples
contained the digits {0, 2, 4, 6} and were split so that 800 instances were used as
a test set. From the remaining 1,200 instances, we selected various portions to be
labelled and the rest to be unlabelled. The experiment was repeated 8 times (each
time involving different subsets due to different random seeds), so that we can include
errorbars in our plots. Secondly, we considered the oil flow data [Bishop and James,
1993] that consist of 1,000, 12 dimensional observations belonging to three known
classes corresponding to different phases of oil flow. In each of the 10 performed
trials, 700 instances were used as a test set whereas the rest were split to different
proportions of labelled/unlabelled sets.

Our method learned a low-dimensional embedding q(X) from all available in-
puts, and a logistic regression classifier was then trained from the relevant parts of
the embedding to the corresponding class space. We experimented with taking dif-
ferent numbers of samples from q(XL) to use for the classifier; the difference after
increasing over 6 samples was minimal. Also, when using only the mean of q(XL) (as
opposed to using multiple samples) we obtained worse results (especially in the digits
data), but this method still outperformed the baselines. We compared with training
the classifier on features learned by (a) a standard variational GP-LVM and (b) PCA,
both applied in ZL. Both of the baselines do not take ZM into account, nor do they
populate small training sets using sampling. Figure 4.5 presents results suggesting
that our approach manages to effectively take into account unlabelled data. The gain

102 Uncertain Inputs in Variational Gaussian Processes

in performance is significant, and our method copes very well even when labelled data
is extremely scarce. Notice that all methods would perform better if a more robust
classifier was used, but logistic regression was a convenient choice for performing
multiple trials fast. Therefore, our conclusions can be safely drawn from the obtained
relative errors, since all methods were compared on equal footing.

4.4 Discussion and Future Work

This chapter defined semi-described learning as the scenario where missing values
occur in the inputs. The approach taken is to consider semi-described problems to be
part of a general class of missing value problems that also includes semi-supervised
learning and auto-regressive future state simulation. A principled method for includ-
ing input uncertainty in Gaussian process models was also introduced in this chapter.
This uncertainty is explicitly representedas approximate posterior distributions which
are variationally constrained. This allowed us to further define algorithms for casting
the missing value problems as particular instances of learning pipelines which use our
uncertain input formulation as building block. Our algorithms resulted in significant
performance improvement in forecasting, regression and classification. We believe
that our contribution paves the way for considering the application of our uncertainty
propagation algorithms in deep models (discussed in Chapter 6) which use relevance
determination techniques (discussed in Chapter 5) to automatically consolidate fea-
tures (e.g. raw pixels and SIFT) in a hierarchical manner. We plan to investigate
the application of these models in settings where control [Deisenroth et al., 2014] or
robotic systems learn by simulating future states in an auto-regressive manner and by
using incomplete data with minimal human intervention. Finally, we see promise in
using the back-constrained model resulting from our framework (see end of Section
4.2.1) as a non-parametric variational auto-encoder [Kingma and Welling, 2013]; this
is further investigated in Section 6.2.5.

Chapter 5

Manifold Relevance Determination

Until now we have assumed that observed data come in a single view, also referred
to as “modality” or “information source”. It is often the case, however, that data con-
tain observations from several different and possibly diverse modalities: for example
depth cameras provide colour and depth images from the same scene, or a meet-
ing might be represented by both an audio and a video feed. Extracting knowledge
from many different sources constitutes the focus of the multi-view learning domain.
Xu et al. [2013] identifies three main lines of work within multi-view learning: co-
training, multiple kernel learning and subspace learning.

In this thesis we are concerned with multi-view subspace learning which assumes
that a possibly segmented latent space is responsible for generating the views. In
particular, the presence of multiple modalities motivates latent variable models which
align the different views by assuming that a portion of the data variance is shared

between the modalities, whilst explaining the remaining variance with latent spaces
that are private to each modality. This model structure allows inference when only
a subset of the modalities is available and, because the observation spaces have been
aligned, it is possible to transfer information between modalities by conditioning the
model through the underlying concept. This chapter presents such an approach; in
specific, a single latent space is “softly” segmented (i.e. separated or clustered) to
represent shared and private information from multiple views of the data. By incorpo-
rating this approach in the variational Bayesian framework described in the previous
chapter, we allow for the dimensionality and segmentation of the latent space to be
found automatically from the data using automatic relevance determination covari-
ance functions.

104 Manifold Relevance Determination

5.1 Background

One line of work related to multi-view learning aims to find a low-dimensional rep-
resentation of the observations by seeking a transformation of each view. Different
approaches exploit different characteristics of the data such as, correlation [Kuss and
Graepel, 2003; Ham et al., 2005], or mutual information [Memisevic et al., 2011].
However, these methods only aim to encode the shared variance and do not provide a
probabilistic model. To address these shortcomings different generative models have
been suggested. In particular, approaches formulated as Gaussian Processes Latent
Variable Models (GP-LVMs) have been especially successful [Shon et al., 2006; Ek
et al., 2008b]. However, these models assume that a single latent variable is capa-
ble of representing each modality, implying that the modalities can be fully aligned.
To overcome this, the idea of a segmented latent space was presented in [Ek et al.,
2008a] where each view is associated with an additional private space, representing
the variance which cannot be aligned, in addition to the shared space [Ek, 2009], an
idea independently suggested by Klami and Kaski [2006]. The main challenge for the
applicability of the proposed models is that the segmentation of the latent variable is
a structural and essentially discrete property of the model, making it very challenging
to learn. Salzmann et al. [2010] introduced a set of regularisers allowing the dimen-
sionality of the segmentation to be learned. However, the regularisers were motivated
out of necessity rather than principle and introduced several additional parameters to
the model.

This chapter presents a new principled approach to learning a segmented (clus-
tered) latent variable representation of multiple observation spaces. We introduce a
relaxation of the structural segmentation of the model from the original hard discrete
representation, where each latent variable is either associated with a private space or
a shared space, to a smooth continuous representation, where a latent variable may
be more important to the shared space than the private space. In contrast to previous
approaches the model is fully Bayesian, allowing estimation of both the dimension-
ality and the structure of the latent representation to be done automatically. This
Bayesian framework is enabled by exploiting the variational approximations devel-
oped in the previous chapter. By learning data set commonalities in a principled way,
the resulting approach can be used as a powerful predictive model for regression and
classification (where one of the views is the class labels). Our approach can also be
seen as a data exploration / feature representation method, with application to dimen-
sionality reduction, feature consolidation and ambiguity modelling. This is illustrated
with experiments in simulated and real-world data.

5.2 Model 105

5.2 Model

We wish to relate multiple views of a dataset within the same model. For simplic-
ity and without loss of generality we make the analysis by considering only two
views, YA ∈ ℜn×pA and YB ∈ ℜn×pB . We assume the existence of a single la-
tent variable X ∈ ℜn×q which, through the mappings {fA

j }
pA
j=1 : X 7→ YA and

{fB
j }pBj=1 : X 7→ YB (q < pA, pB), gives a low dimensional representation of the data.

Our assumption is that the data is generated from a low dimensional manifold and cor-
rupted by additive Gaussian noise ϵA ∼ N

(
0, (βA

ϵ)
−1I)

)
and ϵB ∼ N

(
0, (βB

ϵ)
−1I)

)
,

yi,j = fA
d (xi,:) + ϵAi,j

zi,j = fB
d (xi,:) + ϵBi,j.

This leads to the likelihood under the model, p(YA,YB|X,θ), where θ = {θA,θB}
collectively denotes the parameters of the mapping functions and the noise variances
(βA

ϵ)
−1, (βB

ϵ)
−1. In a GP-LVM approach, each generative mapping would be mod-

elled as a product of independent GPs parametrized by a (typically shared) covariance
function kAB. However, this approach assumes similar statistical properties in YA

and YB, which is rarely the case. Therefore, we opt for separate covariance func-
tions per view, kA and kB. By evaluating them on the latent variable X we obtain the
corresponding covariance matrices KA and KB, involved in an expression:

p(FA|X,θA) =

pA∏
j=1

N (fAj |0,KA),

where FA = {fAj }
pA
j=1 with fA

i,j = fAj (xi,:), and similarly for FB. Similarly to the
single-view GP-LVM version, one can analytically integrate out the mappings to ob-
tain the likelihood:

p(YA,YB|X,θ) =
∏

V={A,B}

∫
p(YV |FV)p(FV |X,θV)dFV . (5.1)

A fully Bayesian treatment requires integration over the latent variable X in equation
(5.1) which is intractable, as X appears non-linearly in the inverse of the covariance
matrices KA and KB of the GP priors for fA and fB. In practice, a maximum a
posteriori solution [Shon et al., 2006; Ek et al., 2007; Salzmann et al., 2010] was
often used. Instead, here we approximate the Bayesian solution by building on the
variational framework described in the previous chapter. The Bayesian framework
allows us to tackle the multi-view learning problem through the use of automatic

106 Manifold Relevance Determination

relevance determination (ARD) priors so that each view of the data is allowed to
estimate a separate vector of ARD parameters. This allows the views to determine
which of the emerging private and shared latent spaces are relevant to them. We
refer to this idea as manifold relevance determination (MRD). In MRD, we also
get for free the “usual” advantages that accompany Bayesian methods: robustness to
overfitting, automatic dimensionality detection for the latent space(s) and estimation
of the posterior distribution.

5.2.1 Manifold Relevance Determination

We wish to recover a segmented latent representation such that the variance shared be-
tween different observation spaces can be aligned and separated from variance that is
specific (private) to the separate views. In manifold relevance determination (MRD)
the notion of a hard separation between private and shared spaces is relaxed to a
continuous setting. The model is allowed to (and indeed often does) completely al-
locate a latent dimension to private or shared spaces, but may also choose to endow
a shared latent dimension with more or less relevance for a particular data-view. Im-
portantly, this segmentation is learned from data by maximizing a variational lower
bound on the model evidence, rather than through construction of bespoke regularis-
ers to achieve the same effect. The model we propose can be seen as a generalisation
of the traditional approach to manifold learning; we still assume the existence of a
low-dimensional representation encoding the underlying phenomenon, but the vari-
ance contained in an observation space is not necessarily governed by the full mani-
fold, as traditionally assumed, nor by a subspace geometrically orthogonal to that, as
assumed in [Salzmann et al., 2010].

The expressive power of our model comes from the ability to consider non-linear
mappings within a Bayesian framework. Specifically, our pA latent functions fA

j

are selected to be independent draws of a zero-mean GP with an ARD covariance
function. This function was introduced in equation (2.7), and is rewritten here with
the view-dependent parameters made explicit:

kA (xi,xj) = (σA
ard)

2e−
1
2

∑Q
q=1 w

A
q (xi,q−xj,q)

2

,

and similarly for fB. Accordingly, we can learn a common latent space1 but we allow
the two sets of ARD weights wA = {wA

j }
q
j=1 and wB = {wB

j }
q
j=1 to automatically

infer the responsibility of each latent dimension for generating points in the YA and

1More correctly stated, we learn a common distribution of latent points.

5.2 Model 107

θ

YAB

X

(a)

YA YB

θA θB

X

(b)

YA YB

θA θB

X

(c)

YA YB

θA θB

XA XAB XB

(d)

Fig. 5.1: Evolution of the structure of GP-LVM model variants. (a) standard GP-LVM, where
a single latent variable X is used to represent the observed data Y. Evolved shared models
then assume firstly, that all of the variance in the observations was shared [Shon et al., 2006]
(Fig. (b)). Secondly, Ek et al. [2008a] introduced private latent spaces to explain variance
specific to one of the views through back-constraints (represented as a dashed line) (Fig.
(c)). MAP estimates used in this model meant the structure of the latent space could not be
automatically determined. Figure (d) shows the model we propose in this chapter. In this
model, the kernel parameters θ include the ARD weights w which, thanks to the Bayesian
framework, define an automatic factorisation for the latent space (shown as patterned plates).

YB spaces respectively. We can then automatically recover a segmentation of the
latent space X =

(
XA,XAB,XB

)
, where XAB ∈ Rn×qAB is the shared subspace,

defined by the set of dimensions j ∈ [1, ..., q] for which wA
j , w

B
j > δ, with δ being

a number close to zero and qAB ≤ q. This equips the model with further flexibility,
because it allows for a “softly” shared latent space, if the two sets of weights are both
greater than δ but dissimilar, in general. As for the two private spaces, XA and XB,
they are also being inferred automatically along with their dimensionalities 2 qA and
qB. More precisely:

XA = {xj}qAj=1 : xj ∈ X, wA
j > δ, wB

j < δ

and analogously for XB. As in previous chapters, xj denotes columns of X, while we
assume that data are stored by rows. All of the above are summarised in the graphical
model of figure 5.1.

2In general, there will also be dimensions of the initial latent space which are considered unneces-
sary by both sets of weights.

108 Manifold Relevance Determination

5.2.2 Bayesian Training

We assume a general prior p(X) for the latent space. Then, the fully Bayesian train-
ing procedure requires maximisation of the logarithm of the joint marginal likelihood
p(YA,YB) =

∫
p(YA,YB|X)p(X)dX. Here, as for the remainder of this chapter,

we omit the conditioning on model (hyper)parameters for clarity of notation. This
setting is exactly the same as the one described in the previous chapter, but instead
of a single observation view we now have many. Therefore, we can easily extend the
variational GP-LVM framework for the multi-view case. Indeed, we firstly introduce
a variational distribution q(X) which can factorise across data points or across di-
mensions, exactly as explained in the previous section. Then, we factorise the model
likelihood across views to make clear the use of different GP mappings fA and fB:

p(YA,YB|X) = p(YA|X)p(YB|X).

We then apply Jensen’s inequality on the marginal log likelihood to obtain a varia-
tional lower bound:

logp(YA,YB) ≥
∫

q(X) log
p(YA|X)p(YB|X)p(X)

q(X)
dX

=

∫
q(X) log p(YA|X)dX+

∫
q(X) log p(YB|X)dX− KL (q(X) ∥ p(X)) .

In the previous chapter it was explained how the KL term can be computed for
different choices of latent space priors, including the nested GP case where the latent
space is a set of temporal latent functions. Moreover, it was shown how each of the
data-involving terms can be approximated through equation (3.27). Specifically:

F̂A (q(X)) ≤
∫

q(X) log p(YA|X)dX

F̂B (q(X)) ≤
∫

q(X) log p(YB|X)dX.

(5.2)

To obtain the above approximations, we need to augment the probability space
with auxiliary variables following the variational GP-LVM framework. Specifically,
we introduce m extra samples UA and UB of the latent functions fA and fB evaluated
at a set of inducing points XA

u and XB
u respectively. Here, UA ∈ RmA×pA , UB ∈

RmB×pB , XA
u ∈ RmA×q, XB

u ∈ RmB×q and m = mA +mB. For each view YV , the

5.2 Model 109

auxiliary variables are incorporated in the likelihood term

p(YV |X) =

∫
p(YV |FV)p(FV |UV ,X)p(UV)dFV dUV

where the dependency on the inducing inputs was dropped from the expressions. Fur-
ther, the auxiliary variables augment the variational distribution, which now becomes:

q(X, {UV }V ∈{A,B}) = q(X)
∏

V ∈{A,B}

q(ΘV) = q(X)
∏

V ∈{A,B}

q(UV)p(FV |UV ,X).

We can now obtain the approximations of equation (5.2) by firstly computing a vari-
ational lower bound in the augmented space to obtain:

F̂V
(
q(X), q(UV)

)
≤
∫

q(X)q(ΘV) log
p(YV |X)

q(ΘV)
dXdUV .

from where we can then collapse q(UV) to obtain an analytic expression for equation
(5.2). These expressions have exactly the same form as in equation (3.25) where YA

is now replaced with the view index YV .

5.2.3 Generalisation to Many Views and Optimization

After laying the foundation for specifying and performing tractable inference in MRD,
we now generalise the notation to incorporate multiple views. We denote the total set

of view indexes by V , and notationally denote all instantiations belonging to the |V|
different views as YV ≜ {YV }V ∈V . Then, the joint distribution factorises as:

p(YV ,X) = p(X)
∏
V ∈V

p(YV |X)

and the variational lower bound becomes:

p(YV) ≥
∑
V ∈V

F̂V (q(X))− KL (q(X) ∥ p(X)) . (5.3)

This function is jointly maximised with respect to the model parameters, includ-
ing the weights {wV }V ∈V , as well as the variational parameters {µi,:,Si,:}ni=1 and
{XV

u }V ∈V , where we assumed the simplest case where q(X) is a standard normal dis-
tribution. As can be seen, MRD scales computationally similarly to the variational
GP-LVM presented in the previous chapter, with an extra linear factor depending on
the number of views. The Bayesian optimisation gives, as a by-product, an approxi-

110 Manifold Relevance Determination

mation of p(X|YV) by q(X), i.e. we obtain a distribution over the latent space. Notice
that before optimization, the model requires the variational distribution q(X) to be ini-
tialised from the observations V . A simple way of initialising the means of q(X), is
to concatenate all views into a matrix and then projected it to q dimensions through
PCA. The variational covariances can all be initialised around 0.5. Alternatively, one
can project each view through PCA onto low dimensional spaces, and then concate-
nate these projections to obtain the initial variational means. The second approach is
a more reasonable one if the different views have very different dimensionalities.

In the presence of many views, private and shared spaces can emerge in any possi-
ble combination of subsets. For example, a part of the latent space might be relevant
for more than one view, but irrelevant to another subset of the views. Despite this
segmentation, there might still exist a common underlying process responsible for
generating the latent space, e.g. a temporal process. This prior belief can be accom-
modated by a Gaussian process prior on X, exactly as for the case of the dynamical
variational GP-LVM.

5.2.4 Inference

Assume a model which is trained to jointly represent multiple output spaces V with
a common but segmented input space X. Assume also that the total set of views
is split as V = {A,B} where we use calligraphic notation to denote sets of views.
Finally, assume that our task at test time is to generate a new (or infer a training)
set of outputs YB

∗ given a set of (potentially partially) observed test points YA
∗ . The

inference proceeds by predicting (the distribution over) the set of latent points X∗ ∈
Rn∗×q which is most likely to have generated YA

∗ . For this, we use the approximate
posterior q(X,X∗) ≈ p(X,X∗|YA,YA

∗), which has analogous form and is found
in analogous way as for the variational GP-LVM model. That is, to find q(X,X∗)

we optimise a variational lower bound on the marginal likelihood p(YA,YA
∗) which

has analogous form with the training objective function. Specifically, the training
objective function is given in equation (5.3) and, in turn, depends on equation (5.2).
To find q(X,X∗) we use these equations but now the data is (YA,YA

∗) and the latent
space is (X,X∗). After finding q(X,X∗), we can then find a distribution of the
outputs YB

∗ by taking the expectation of the likelihood p(YB|X) under the marginal
q(X∗), using equation (3.36).

Notice that the above described way of finding the posterior q(X∗) based on a
subset of views YA

∗ means that the latent dimensions that are private for YB
∗ are taken

directly from the prior, since the views in YA can tell us nothing about the private

5.3 Experiments 111

Algorithm 2 Inference heuristic in MRD, assuming two views YA and YB

1: Given: MRD model trained on data (YA,YB) to obtain X = (XA,XAB,XB).

2: Given: A test point yA
∗ .

3: Optimise q(X,x∗) ≈ p(X,x∗|YA,yA
∗).

4: Get the marginal q(x∗) with mean x∗ = (xA
∗ ,x

AB
∗ ,xB

∗).

5: Find K points x̃(k) from a K−nearest neigbour search between xAB
∗ and XAB.

6: for k = 1, · · · , K do
7: Generate x̃(k),∗ = (xA

∗ ,x
AB
∗ , x̃B

(k)) by combining x̃(k) and x∗ appropriately.
8: Generate yB

(k),∗ from the likelihood p(yB|x̃(k),∗).

9: Most likely predictions are obtained for k = 1. We only use k > 1 if we are
interested in finding correspondences in the training set (see Section 5.3.2).

10: In the dynamical MRD version, all test points YA
∗ are considered together, so that

the variational distribution q(X,X∗) of state 3 will form a timeseries.

information in YB. This is not necessarily problematic, but in certain cases we might
want to “force” the private latent space XB to take values that are closer to those
found in the training set; for example when we want to generate sharp images. For
this scenario, a simple heuristic is suggested. Specifically, after optimising q(X∗)

based on YA
∗ as was described above, we perform a nearest neighbour search to find

the training latent points X̃ which are closest to the mean of q(X∗) in the projection
to the dimensions that are shared between the views in YA and in YB. We then create
a test latent vector X̃∗ which matches the mean of q(X∗) in the shared and in the
A-specific dimensions and matches X̃ in the B-specific dimensions. YB

∗ can then be
predicted through the likelihood p(YB|X̃∗). This heuristic, summarised in Algorithm
2, is used for our experiments. If YA

∗ = YA, then X̃ is in essence used as a means
of finding correspondences between two sets of views through a simpler latent space.
This case is demonstrated in Section 5.3.2.

5.3 Experiments

The manifold relevance determination (MRD) model is evaluated and demonstrated
in this section. To demonstrate the flexibility of the model, we apply it to several dif-
ferent types of data sets, with different number of views and associated with a wide
range of different tasks. In particular, we consider the following tasks: view con-
solidation, information transferring between views, classification, data exploration /
generation / visualisation and, finally, inference of correlations in output dimensions.

112 Manifold Relevance Determination

Supplementary videos for these experiments can be found at: http://git.io/A3qo.

5.3.1 Toy data

As a first experiment we will use an intuitive toy example similar to the one that was
proposed in [Salzmann et al., 2010]. We generate three separate signals, a cosine
and a sine which will be our private signal generators and a squared cosine as shared
signal. We then independently draw three separate random matrices which map the
two private signals to 10 dimensions and the shared to 5. The two sets of observations
YA and YB consist of the concatenation of one of the private and the shared data with
added isotropic Gaussian noise. Using a GP prior with a linear covariance function the
model should be able to learn a latent representation of the two datasets by recovering
the three generating signals, a sine and a cosine as private and the squared cosine as
shared. In figure 5.2 the results of the experiment is shown. The model learns the
correct dimensionality of the data and is able to recover the factorization used for
generating the data. We also experimented with adding a temporal prior on the latent
space. In this case, the recovered signals are forced to be smooth, and almost exactly
match the true ones (and therefore these results are not plotted in figure 5.2). We
will therefore now proceed to apply the model to more challenging data where the
generating parameters and their segmented structure are truly unobserved.

5.3.2 Yale Faces

The Yale face database B [Georghiades et al., 2001] is a collection of images depict-
ing different individuals in different poses under controlled lighting conditions. The
dataset contains 10 individuals in 9 different poses each lighted from 64 different di-
rections. The different lighting directions are positions on a half sphere as can be seen
in figure 5.3. The images for a specific pose is captured in rapid procession such that
the variations in the image for a specific person and pose should mainly be generated
by the light direction. This makes the data interesting from a dimensionality reduc-
tion point of view, as the representation is very high-dimensional, 192×168 = 32256

pixels, while the generating parameters, i.e. the lighting directions and pose parame-
ters, are very low dimensional. There are several different ways of using this data in
the MRD framework, depending on which correspondence aspect of the data is used
to align the different views. We chose to use all illuminations for a single pose. We
generate two separate datasets YA and YB by splitting the images into two sets such
that the two views contain three different subjects each. The order of the data was

http://git.io/A3qo

5.3 Experiments 113

9 11 13 151 3 5 70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Eigenspectrum of observed data

1 2 3 4 5 6 7 80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Learned ARD scales

0 10 20 30 40 50 60 70 80 90 100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) Shared signal
0 10 20 30 40 50 60 70 80 90 100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) Private signal for view YA

0 10 20 30 40 50 60 70 80 90 100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(e) Private signal for view YB

Fig. 5.2: MRD on a toy data set. Initialized with 8 latent dimensions the model switched
off all dimensions except for three: one private for each observation space and one shared,
which corresponds well to the eigenspectrum of the data that clearly shows three variables.
The numbers on the y−axis are normalised so that the maximum is 1. The second row depicts
the recovered latent signals in red and the generating signals in blue. For easier interpretation,
they have been post-processed to remove the scale degree of freedom such that the learned
latent space matches the generating signals. Note that no temporal information was given (i.e.
all points were treated as independent). When the temporal information was given through a
prior p(X|t), the recovered signals were smooth and matched almost exactly the true ones.

such that the lighting direction of each yi,: matched that of yB
i,: while the subject iden-

tity was random, such that no correspondence was induced between different faces.
As such, the model should learn a latent structure segmented into lighting parameters
(a point on a half-sphere) and subject parameters where the first are shared and the
latter private to each observation space.

The optimized relevance weights {wA,wB} are visualized as bar graphs in fig-
ure 5.4. The latent space is clearly segmented into a shared part, consisting of dimen-
sions indexed3 as 1,2 and 3, two private and an irrelevant part (dimension 9). The two
data views correspond to approximately equal weights for the shared latent dimen-
sions. Projections onto these dimensions are visualised in figures 5.5(a) and 5.5(b).
Even though not immediately obvious from these two-dimensional projections, inter-

3Dimension 6 also encodes shared information, but of almost negligible amount (wA
6 ,w

B
6 ≈ 0).

114 Manifold Relevance Determination

Fig. 5.3: The mechanism used to generate the Yale Faces dataset [Georghiades et al., 2001].

wA
j

j
(a) The scale vector wA

wB
j

j
(b) The scale vector wB

Fig. 5.4: The relevance weights for the faces data. Despite allowing for soft sharing, the first
3 dimensions are switched on with approximately the same weight for both views of the data.
Most of the remaining dimensions are used to explain private variance.

action with the shared latent space reveals that it actually has the structure of a half
sphere, recovering the shape of the space defined by the fixed locations of the light
source shown in figure 5.3.

By projecting the latent space onto the dimensions corresponding to the private
spaces, we essentially factor out the variations generated by the light direction. As can
be seen in figure 5.5(c), the model then separately represents the face characteristics
of each of the subjects. This indicates that the shared space successfully encodes
the information about the position of the light source and not the face characteristics.
This indication is enhanced by the results found when we performed dimensionality
reduction with the variational GP-LVM for pictures corresponding to all illumination
conditions of a single face (i.e. a dataset with one modality). Specifically, the latent
space discovered by the variational GP-LVM and the shared subspace discovered by
MRD have the same dimensionality and similar structure, as can be seen in figure 5.6.
As for the private manifolds discovered by MRD, these correspond to subspaces for

5.3 Experiments 115

x1

x2(a)

x1

x3(b)

x5

x14(c)

Fig. 5.5: Projection of the shared latent space into dimensions {1, 2} and {1, 3} (figures (a)
and (b)) and projection of the YA−private dimensions {5, 14} (figure (c)). Red x’s represent
(projected) locations of latent points that correspond to the training data. The greyscale inten-
sities of the background are proportional to the predicted variance of the GP mapping, if the
corresponding locations were given as inputs. The MRD segmented the latent space so that
the latent points in figure (c) form three clusters, each responsible for modelling one of the
three faces in YA.

wj

j
(a)

x2

x1(b)

x2

x3(c)

Fig. 5.6: Latent space learned by the standard variational GP-LVM for a single face view. The
weight set w associated with the learned latent space is shown in (a). In figures (b) and (c)
we plotted pairs of the 3 dominant latent dimensions against each other. Dimensions 4, 5 and
6 have a very small but not negligible weight and represent other minor differences between
pictures of the same face, as the subjects often blink, smile etc.

disambiguating between faces of the same view. Indeed, plotting the largest two
dimensions of the first latent private subspace against each other reveals three clusters,
corresponding to the three different faces within the dataset. Similarly to the standard
variational GP-LVM applied to a single face, here the private dimensions with very
small weight model slight changes across faces of the same subject (blinking etc).

We can also confirm visually the subspaces’ properties by sampling a set of novel
inputs Xsamp from each subspace and then mapping back to the observed data space
using the likelihoods p(YA|Xsamp) or p(YB|Xsamp), thus obtaining novel outputs (im-
ages). To better understand what kind of information is encoded in each of the dimen-
sions of the shared or private spaces, we sampled new latent points by varying only
one dimension at a time, while keeping the rest fixed. The first two rows of figure 5.7

116 Manifold Relevance Determination

Fig. 5.7: Sampling inputs to produce novel outputs. First row shows interpolation between
positions of the light source in the x coordinate and second row in the y coordinate (elevation).
Last row shows interpolation between face characteristics to produce a morphing effect. Note
that these images are presented scaled here, the original size is 192× 198 pixels.

show some of the outputs obtained after sampling across each of the shared dimen-
sions 1 and 3 respectively, which clearly encode the coordinates of the light source,
whereas dimension 2 was found to model the overall brightness. The sampling proce-
dure can intuitively be thought as a walk in the space shown in figure 5.5(b) from left
to right and from the bottom to the top. Although the set of learned latent inputs is dis-
crete, the corresponding latent subspace is continuous, and we can interpolate images
in new illumination conditions by sampling from areas where there are no training
inputs (i.e. in between the red crosses shown in figure 5.5). Similarly, we can sample
from the private subspaces and obtain novel outputs which interpolate the non-shared
characteristics of the involved data. This results in a morphing effect across different
faces, which is shown in the last row of figure 5.7. The two interpolation effects can
be combined. Specifically, we can interactively obtain a set of shared dimensions
corresponding to a specific lighting direction, and by fixing these dimensions we can
then sample in the private dimensions, effectively obtaining interpolations between
faces under the desired lighting condition. This demonstration, and the rest of the
results, are illustrated in the online videos (http://git.io/A3qo).

As a final test, we confirm the efficient segmentation of the latent space into pri-
vate and shared parts by automatically recovering all the illumination similarities
found in the training set. More specifically, given a datapoint yA

i,: from the first view,
we search the whole space of training inputs X to find the 6 nearest neigbours to the
latent representation xi,: of yA

i,:, based only on the shared dimensions. From these
latent points, we can then obtain points in the output space of the second view, by

http://git.io/A3qo

5.3 Experiments 117

Fig. 5.8: Given the images of the first column, the model searches only in the shared latent
space to find the pictures of the opposite view which have the same illumination condition.
The images found, are sorted in columns 2 - 7 by relevance.

using the likelihood p(YB|X). This procedure is a special case of Algorithm 2 where
the test point given is already in the training set. As can be seen in figure 5.8, the
model returns images with matching illumination condition. Moreover, the fact that,
typically, the first neighbours of each given point correspond to outputs belonging to
different faces, indicates that the shared latent space is “pure”, and is not polluted by
information that encodes the face appearance.

5.3.3 Pose Estimation and Ambiguity Modelling

For our next experiment, we consider a set of 3D human poses and associated sil-
houettes, coming from the dataset of Agarwal and Triggs [2006]. We used a subset
of 5 sequences, totaling 649 frames, corresponding to walking motions in various di-
rections and patterns. A separate walking sequence of 158 frames was used as a test
set. Each pose is represented by a 63−dimensional vector of joint locations and each
silhouette is represented by a 100−dimensional vector of HoG (histogram of oriented
gradients) features. Given the test silhouette features {yA

i,∗}n∗
i=1, we used our model

118 Manifold Relevance Determination

to generate the corresponding poses {yB
i,∗}n∗

i=1. This is challenging, as the data are
multi-modal and ambiguous, i.e. a silhouette representation may be generated from
more than one pose (e.g. figure 5.9).

Fig. 5.9: Although the two poses in the second column are very dissimilar, they correspond
to resembling silhouettes that have similar feature vectors. This happens because the 3D
information is lost in the silhouette space, as can also be seen in the third column, depicting
the same poses from the silhouettes’ viewpoint.

The inference procedure proceeds as described in Algorithm 2. Specifically, given
a test point yA

i,∗ we firstly estimate the corresponding latent point xi,∗. Since this point
contains no information about the YB modality, to fill in the B-specific dimensions
we find a series of K candidate initial training inputs {x̃(k)}Kk=1, sorted according to
their similarity to the estimated xi,∗. This nearest neighbour search only takes into
account the shared latent dimensions, i.e. xAB

i,∗ and XAB. Before proceeding to pre-
dicting in the output space, it is interesting to investigate which latent points x̃(k) are
returned by the nearest neighbour search, as this will reveal properties of the shared
latent space. While exploring this aspect, we found that the training points suggested
as most similar in the shared space typically correspond to silhouettes (outputs) sim-
ilar to the given test one, yA

i,∗. This confirms that the segmentation of the latent space
is efficient in representing the correct kind of information in each subspace. How-
ever, when ambiguities arise, as the example shown in figure 5.9, the non-dynamical
version of our model has no way of selecting the correct input, since all points of the
test sequence are treated independently. Intuitively, this means that two very similar
test givens (yA

i,∗,y
A
i+1,∗) can be mapped to generated latent vectors (x̃i,∗, x̃(i+1),∗) from

which predictions (yB
i,∗,y

B
i+1,∗) in the other modality can be drastically different. But

when the dynamical version is employed, the model forces the whole set of training

5.3 Experiments 119

and test inputs (and, therefore, also the test outputs) to form smooth paths. In other
words, the dynamics disambiguate the model.

Therefore, given a test silhouette yA
i,∗, the temporal posterior q(xi,∗) will be cen-

tered on an input xi,∗ which is temporally correlated with the other points. This also
results in a temporally correlated point x̃i,: returned by the nearest neigbour search
performed to fill in the B-specific dimensions (in state 5 of Algorithm 2). This tempo-
ral disambiguation effect is demonstrated in figure 5.10. As can be seen, our method
is forced to select a training input x̃i,: which does not necessarily correspond to the
training silhouette that is most similar to the test one (i.e. the silhouette that we obtain
if we perform nearest neighbour search between yA

i,∗ and YA). Instead, it takes into
account the temporal correlation of the whole generated sequence. What is more, if
we assume that the test pose yB

i,∗ is known and look for its nearest training neighbour
in the pose space, we find that the corresponding silhouette is very similar to the one
found by our model, which is only given information in the silhouette space. This
proves that the discovered latent point x̃i,: used to impute the information for the pose
modality is selected correctly, thanks to taking temporal information into account.

After the above analysis regarding the properties of the latent space, we now pro-
ceed to evaluate the next step, that is, the generation of test poses yB

∗ . Figure 5.10
shows one encouraging example of this result. To more reliably quantify the results,
we compare our method with linear and Gaussian process regression and with near-
est neighbour in the silhouette space. We also compared against the shared GP-LVM
[Ek, 2009] which optimises the latent points using MAP and, thus, requires an initial
segmentation of the inputs to be given a priori. Finally, we compared to a dynamical
version of nearest neighbour where we kept multiple nearest neighbours and selected
the coherent ones over a sequence. The errors shown in table 5.1 as well as the on-line
videos show that MRD performs better than the other methods in this task.

5.3.4 Classification

We will now look at a classification task. The training dataset was created such that
a matrix YA contained the actual observations and a matrix YB the corresponding
class labels in 1-of-K encoding. This experimental setting is quite different from the
ones considered so far, since the two views contain very diverse types of data; in
particular, the class-label view contains discrete, low dimensional features. Further,
these features are noise-free and very informative for the task at hand and, therefore,
applying MRD in this dataset can be seen as a form of supervised dimensionality
reduction. The challenge for the model is to successfully cope with the different levels

120 Manifold Relevance Determination

Given MRD
NN

(sil. space)
NN

(pose space)

Fig. 5.10: Given the HoG features yA
i,∗ for the test silhouette in column one, we predict the

corresponding pose yB
i,∗ using the dynamical version of MRD and nearest neighbour (NN) in

the silhouette space obtaining the results in the first row, columns 2 and 3 respectively. The
last row is the same as the first one, but the poses are rotated to highlight the ambiguities.
Notice that the silhouette shown in the second row for MRD does not correspond exactly to
the pose of the first row, as the model generates a novel pose given a test silhouette. Instead,
it is the training silhouette found by performing NN in the shared latent space to obtain x̃i,:.
As some form of “ground truth”, in column 4 we plot the NN of the training pose yA

i,: given
the test pose yB

i,∗ (which is normally unknown during the test phase).

of noise in the views, while managing to recover a shared latent space from two very
diverse information sources. In particular, we would ideally expect to obtain a shared
latent space which encodes class information and a nonexistent private space for the
class-label modality.

To test our hypotheses, we used the ‘oil’ database which was introduces in Sec-
tion 3.5.2 and contains 1000 12−dimensional examples split in 3 classes. We se-
lected 10 random subsets of the data with increasing number of training examples
and compared to the nearest neighbor (NN) method in the data space. The label
yB
i,: = [yBi,1, y

B
i,2, y

B
i,3]

⊤ corresponding to the training instance yA
i,: was encoded so that

yBi,j = −1 if yA
i,: does not belong to class j, and yBi,j = 1 otherwise. Given a test in-

stance yA
i,∗, we predict the corresponding label vector yB

i,∗ as before. Since this vector
contains continuous values, we use 0 as a threshold to obtain values yBi,j ∈ {−1, 1}.
With this technique, we can perform multiclass and multilabel classification, where an

5.3 Experiments 121

Error
Mean Training Pose 6.16
Linear Regression 5.86
GP Regression 4.27
Nearest Neighbour (sil. space) 4.88
Nearest Neighbour with sequences (sil. space) 4.04
Nearest Neighbour (pose space) 2.08
Shared GP-LVM 5.13
MRD without Dynamics 4.67
MRD with Dynamics 2.94

Table 5.1: The mean of the Euclidean distances of the joint locations between the predicted
and the true poses. The Nearest Neighbour in the pose space is not a fair comparison, but
is reported here as it provides some insight about the lower bound on the error that can be
achieved for this task.

instance can belong to more than one classes. The specific dataset considered in this
section, however, is not multilabel. To evaluate this technique, we computed the clas-
sification accuracy as a proportion of correctly classified instances. As can be seen in
Figure 5.11, MRD successfully determines the shared information between the data
and the label space and outperforms NN. This result suggests that MRD manages to
factor out the non class-specific information found in YA and perform classification
based on more informative features (i.e. the shared latent space).

It is worth mentioning that, as expected, the models trained in each experimental
trial defined a latent space segmentation where there is no private space for the label
view, whereas the shared space is one or two dimensional and is composed of three
clusters (corresponding to the three distinct labels). Therefore, by segmenting out
signal in YA that is irrelevant to the classification task, we manage to obtain a better
classification accuracy. The above are confirmed in figure 5.12, where we plot the
shared latent space and the relevance weights for the model trained on the full dataset.

5.3.5 Multiview Models and Data Exploration

We have so far demonstrated MRD in datasets with two modalities. However, there
is no theoretical constraint on the number of modalities that can be handled by MRD.
In this section we will use the AVletters database [Matthews et al., 2002] to generate
multiple views of data. This audio-visual dataset was generated by recording the
audio and visual signals of 10 speakers that uttered the letters A to Z three times
each (i.e. three trials). The audio signal was processed to obtain a 299− dimensional
vector per utterance. The video signal per utterance is a sequence of 24 frames, each

122 Manifold Relevance Determination

Fig. 5.11: Accuracy obtained after testing MRD and NN on the full test set of the ‘oil’ dataset.

being represented by the raw values of the 60 × 80 pixels around the lips, as can be
seen in figure 5.13. Thus, a single instance of the video modality of this dataset is a
115200− dimensional vector.

Data Exploration

Depending on the desired predictive or exploratory task, different subsets of the data
can be split across different views. To explore the connections and commonalities
in the information encoded in different subjects, letters and type of signal (video
or audio), we first performed data exploration by considering the following generic
setting: we created a dataset where the modalities were split across all subjects and
across type of signal. We only considered 8 of the subjects. Thus, we ended up with
16 different modalities, where modalities i, i+1 contained the video and audio signal
respectively for the i−th subject. The alignment was therefore made with respect to
the different letters. We used all three available trials but letters “B”, “M” and “T”
were left out of the training set completely. For each modality, we thus had 69 rows
(23 letters × 3 trials). The split across instances and modalities is summarised in
Table 5.2. In the test set, each modality had only 9 rows (3 letters × 3 trials). Notice
that this is a rather extreme scenario: the number of training instances is only 4.3
times larger than the number of modalities. We applied MRD to reveal the strength
of commonality between signal corresponding to different subjects and to different
recording type (video/audio). The visualisation of the ARD weights can be seen in
figure 5.14.

This figure shows that similar weights are typically found for modalities 1, 3, 5, ...,
i.e. for the ones that correspond to the video signal. This means that if, for example,
one would like to predict the lip movements in a test scenario, the other pieces of

5.3 Experiments 123

1 2 3 4 5 6 7

Data
view

Labels
view

(a) Relevance weights (b) Shared latent space.

Fig. 5.12: Results from testing the MRD as a classifier on the full “oil flow” dataset, where
one of the views was the data and one the class labels. Three important observations can
be made: firstly, both views “agree” on using dimensions 6 and 7 (and the data view even
switches off one other dimension). Secondly, the labels’ view has no private space. Thirdly,
the shared latent space projection clearly clusters the data according to their class label.

Fig. 5.13: Two example frames of the AVletters dataset.

information that can help the most in predicting is the lip movements of the rest of
the subjects. We can also draw other sorts of conclusions from this kind of data
exploration. For example, we can see that the subject number 3 is the one that has the
best variance alignment (according to the trained model) between the video and audio
signal. This can be understood by observing that the 5th and 6th row of the matrix in
figure 5.14 share some weights (highlighted with a green box), i.e. modality 5 and 6

share a latent subspace.

Generation Task

Given the above analysis, we attempted to recover the lip movements of subject 3
for uttering the three test letters “B”, “M”, “T”. The given information was the audio
signal of this subject as well as the video signal of all the rest (corresponding to the
same letters). The RMSE error for MRD was 0.3 while for NN it was 0.35.

124 Manifold Relevance Determination

view 1 view 2 · · · view 15 view 16
(subj.1, video) (subj.1, audio) (subj.8, video) (subj.8, audio)

1 ‘A’ trial 1
2 ‘A’ trial 2
3 ‘A’ trial 3
... · · ·

n=69 ‘Z’ trial 3

Table 5.2: View/row split for the first ‘AVletters’ experiment.

latent dimensions

vi
ew

s

5 10 15 20 25 30 35 40

2

4

6

8

10

12

14

16

Fig. 5.14: The optimised weights for the first version of the AVletters experiment represented
as a heat-map. “Warm” (red) colors on column i, j indicate a large weight for latent dimension
j and modality i. Notice that for visualisation of these weights we normalized them to be
between 0 and 1 and used a threshold so that wi,j < ε (with ε → 0) was set to zero. The
green box highlights a shared latent space (dimension 26) for views 5 and 6 (subject 3).

Incorporating Labels

We subsequently considered a different scenario for modelling the AVletters data base
in which we also wanted to include some sort of label information. Specifically, we
selected the utterances of the first three subjects for the first two trials and for letters
A to Q and constructed three views as follows; view 1 contained the audio signal by
stacking the relevant information for all considered subjects, trials and letters. Sim-
ilarly, view 2 contained the video signal. Each row in views 1 and 2 corresponds to
one of three subjects, and to encode this information we use a third view. Thus, view
3 contains the discrete labels C ∈ {000, 010, 100} which specify the subject identity.
This construction resulted in a training set of 102 datapoints per view (3 subjects ×
17 letters × 2 trials) and is summarised in Table 5.3. Therefore, the subject identity
is directly encoded by a single view containing discrete labels corresponding to each
row of all the other views. This comes in contrast to the representation described in
the previous paragraph, where the subject identity was implicitly encoded by having

5.3 Experiments 125

a separate views per subject. The ordering of the rows in the three views does not
matter, as long as the same permutation is applied to all three views. With the above

View 1 View 2 View 3
1 subj 1, ‘A’, trial 1 audio video 001
2 subj 1, ‘A’, trial 2 audio video 001
... · · · · · · · · · · · ·

34 subj 1, ‘Q’, trial 2 audio video 001
35 subj 2, ‘A’, trial 1 audio video 010
... · · · · · · · · · · · ·

n=102 subj 3, ‘Q’, trial 2 audio video 100

Table 5.3: View/row split for the second ‘AVletters’ experiment.

setting we are, thus, interested in modelling the commonality between the two types
of signal for each person with regards to global characteristics, like accent, voice, lip
movement and shape. This is because the data were aligned across modalities so that
audio and video utterances were matched irrespective of the pronounced letter. The
segmentation learned by MRD is shown by the optimised weights in figure 5.15.

Fig. 5.15: The optimised weights for the second version of the AVletters experiment repre-
sented as a heat-map which has the same format as for figure 5.14

As can be seen, in this scenario the video and audio signals only share one latent
dimension (4) while the subject identifier modality shares weights with both of the
other two signals. This means that, given this small training set, MRD manages to
reveal the commonality between the audio and video signals and, at the same time,
learn to differentiate between subjects in both the video and the audio domain. To
further confirm this hypothesis, we attempted to transfer information between views.
To do that, we created a test set in a similar way as for the training one but for the third
trial of the recordings. From this test dataset we attempted to predict the video signal
in two ways: firstly by giving only the corresponding audio signal and, secondly,
by giving both the audio and subject identity information. For comparison, we used
nearest neighbour and standard Gaussian process regression, as can be seen in Table
5.4 which presents the corresponding RMSE.

Notice that the model could also end up with a completely separate space for the
third modality (labels); the fact that it didn’t means that the way in which video and

126 Manifold Relevance Determination

Table 5.4: RMSE of predicting the video information of test data, given only the audio or the
audio and subject id information.

Given Predicted MRD NN GP
audio video 0.498 0.485 0.494

audio, labels video 0.434 0.485 0.472

audio are associated in this dataset is also dependent on the subject, something which
is expected, especially since two of the subjects are females and one is male. One can
see from Table 5.4 that when MRD is given the label information, it can disambiguate
better in the prediction phase and produce smaller error.

Finally, we tested the model in the opposite direction: specifically, we presented
the video and audio signal of the test (third) trial of the recordings to the model and
tried to recover the identity of the subject. To make this more challenging, we ran-
domly erased 50% of the information from each of the given views. The vast di-
mensionality of the given space did not allow us to compare against a standard GP
regression model, so we only compared against nearest neighbour. The result was an
F-measure4 of 0.92 for MRD compared to 0.76 for NN.

5.3.6 Automatic Correlation Learning of Output Dimensions

The GP-LVM makes the assumption that all dimensions of the latent space, {xj}qj=1,
affect all output dimensions, {yj}pj=1, since a single GP mapping is used5. In MRD
we make conditional independence assumptions for subspaces of X, so that different
views are generated by different GP mappings. In this section, we consider the ex-
treme case where we want to learn automatically all conditional independencies of a
multivariate dataset’s dimensions. In some sense, this is a means of simultaneously
performing graphical model learning (learn conditional independencies) and manifold
learning (learn manifolds). To achieve this goal, we reformulate the observed dataset
Y ∈ ℜn×p so that each dimension yj ∈ ℜn constitutes a separate view of the data.
Then, following the MRD formulation, we consider a single latent space X which
encapsulates output correlations through the p sets of ARD weights. These weights
constitute the hyperparameters of p separate, independent Gaussian processes.

The above formulation, from now on referred to as fully independent MRD (FI-

MRD), allows us to discover correlations of the output dimensions via the latent space.

4The F-measure is given by F1 = 2 · precision·recall
precision+recall =

2 · true positives
2 · true positives + false negatives + false positives .

5More precisely, multiple GP mappings with shared parameters are used.

5.3 Experiments 127

We have already seen examples of this task in figure 5.7, where we sampled from spe-
cific latent dimensions and observed the obtained variance in the outputs. A similar
task could be achieved with the motion capture dataset of figure 5.9. For example, we
might observe that a specific latent dimension is responsible for encoding the variance
in both legs’ movements. In this section we are interested in discovering this kind of
effect automatically (without the need to sample) and also by considering all possi-
ble subsets of latent dimensions at the same time. This task reminds the objectives
of multi-output Gaussian process inference [see e.g. Álvarez et al., 2010], accord-
ing to which the GP output function correlations are sought to be modelled explicitly
by defining special covariance funtions. However, in our framework the inputs to
the covariance functions are latent, and the output correlations are rather captured by
defining a special noise model.

To test this model, we considered again the motion capture dataset introduced in
Section 5.3.3 (without the silhouette views). We used a smaller subset of 120 frames
that represent 4 distinct walking motions (two facing to the North, one facing to the
South, and a semi-circular motion). In this motion capture dataset, the human subjects
are represented in the 3D coordinate space. That is, each of the 21 body joints is
represented as a 3 dimensional vector, corresponding to the degrees of freedom along
the (x, y, z) axes. Therefore, we have p = 63 columns in the original dataset which
we use to form 63 single-dimensional views. The motion is centered with respect
to the root node, so that the subject moves in place. Each view has its own set of
ARD weights, but since every 3 views (and thus every 3 sets of weights) correspond
to the same joint (for different degrees of freedom), we can group these 63 weight
sets as w

(j)
xyz = [w

(j)
x w

(j)
y w

(j)
z], j = 1, · · · , 21. Notice, however, that each of the 63

sets of weights is a priori independent and learned separately, we just group them by
3 according to their corresponding joints after optimisation, just for performing our
data analysis more easily. For the data analysis, we perform k-means clustering on
the 21 vectors w

(j)
xyz, j = 1, ..., 21, where each vector has dimensionality 3q × 1. In

this way, we can investigate which parts of the latent space are operating together to
control a particular joint.

The q = 10 dimensional latent space was not constrained with dynamics, and was
initialised by performing PCA on the whole Y dataset. As can be seen in figure 5.16
the model uncovers intuitive correlations in the joints of the body, via the cluster
assignments. For example, the model tends to represent the head with a separate
latent subspace, whereas joints belonging to the same limb typically share parts of
the latent space. Moreover, the discovered clusters are similar (but not identical) to
the ones obtained if we directly cluster the output dimensions corresponding to each

128 Manifold Relevance Determination

Fig. 5.16: In the fully independent MRD experiment we have 21 joints × 3 degrees of freedom
(x,y,z coordinates) = 63 one-dimensional views. The 3 sets of ARD weights for each joint
are clustered in k clusters. The figure shows the cluster assignments for each joint, for k = 3
(far left) to k = 10 (far right). Each cluster is represented as a separate combination of
symbol/color and corresponds to output dimensions controlled by similar latent subspaces.

joint (after we group them by 3, aggregating information for the x, y, z coordinates).
Therefore, the fully independent MRD formulation manages to maintain and uncover
the cluster related properties of the original dataset in the efficiently segmented latent
space. Achieving this via a low-dimensional latent space is important, since very
high-dimensional output spaces might not be easily clustered in the high-dimensional
Euclidean space. Further, the MRD formulation allows us to transfer information
between output dimensions (which here constitute separate views), a task which is
typically solved (in supervised learning) using multi-output GPs.

5.4 Conclusions

This chapter presented manifold relevance determination (MRD), a new segmented
latent variable model for multi-view data. The model automatically segments the
signal in the data using variables representing variance that exists in each view sepa-
rately from variance being specific to a particular view. We introduced a relaxation to
the discrete segmentation of the latent representation and allow for a “softly” shared
latent space. To be able to perform tractable inference, we extended the variational
framework presented in Chapter 3. Therefore, the attractive Bayesian properties of the
variational GP-LVM were transferred to MRD as well. Recall that the variational GP-
LVM automatically discovers an effective latent space dimensionality for one dataset
(view) by “switching off” weights corresponding to irrelevant dimensions. Simi-
larly, the MRD discovers an effective latent space segmentation for multiple views,
by switching on and off weights according to variance alignment between views.
The Bayesian automatic Occam’s razor penalises redundancy in the latent space and,
therefore, shared subspaces naturally emerge without having to incorporate bespoke

5.4 Conclusions 129

regularisers or heuristic constraints.
We demonstrated the power of MRD as a generic tool for probabilistic inference.

The approach is very effective in modelling ambiguous views and, if needed, is able to
incorporate prior information (e.g. temporal continuity) to disambiguate predictions.
Simple extensions (or rather, model constructions) allowed us to use MRD for struc-
tured generation of novel data, data exploration, visualisation, multi-label classifica-
tion and inference of correlations in output dimensions. Similarly to the variational
GP-LVM, the model can be scaled up computationally using parallel and, possibly,
stochastic inference. We leave this extension as future work. Another interesting
path to investigate is to use MRD as a generic feature consolidation and denoiser.
For example, given a set of different trials of the same biological experiment, we can
use MRD to factor out the irrelevant environmental noise corrupting our data. MRD
has already been extended to non-Gaussian likelihoods by Andrade-Pacheco et al.
[2014], who incorporated an expectation propagation approximation. The MRD al-
gorithm was also adapted by Zhang et al. [2013] for the purpose of learning factorised
topic models.

A current limitation of the model, is that the latent space segmentation relies on
the alignment of the views. This requirement can be unrealistic for some data collec-
tion protocols. For example, we might perform measurements at different frequencies
to represent different views of the same underlying temporal process. One possible
way to tackle this problem is to allow for approximate alignments by treating the ob-
servation spaces as distributions. The fact that the segmentation of the latent space is
“soft” can be seen as both a good feature and a limitation. Indeed, in certain applica-
tions a spike-and-slab type of behaviour is more desirable.

Chapter 6

Deep Learning with Gaussian
Processes

Gaussian process models provide flexible, non-parametric, probabilistic approaches
to function estimation in an analytically tractable manner. However, their tractabil-
ity comes at a price: they can only represent a restricted class of functions. Indeed,
even though sophisticated definitions and combinations of covariance functions can
lead to powerful models [Durrande et al., 2011; Gönen and Alpaydin, 2011; Hensman
et al., 2013b; Duvenaud et al., 2013; Wilson and Adams, 2013], the assumption about
joint normal distribution of instantiations of the latent function remains; this limits
the applicability of the models. Transformed representations [see e.g. Turner, 2010]
have been used as a workaround. Another line of recent research to address this lim-
itation focused on function composition [Snelson et al., 2004; Calandra et al., 2014]
or process composition [Lawrence and Moore, 2007; Damianou et al., 2011; Lázaro-
Gredilla, 2012; Damianou and Lawrence, 2013; Duvenaud et al., 2014; Hensman and
Lawrence, 2014]. In this chapter, we consider the particular process composition case
resulting from nesting Gaussian processes, thereby introducing the term deep Gaus-

sian processes (deep GPs) due to the relationship between these models and deep
neural network models.

In a deep GP, the data is modeled as the output of a multivariate GP whose inputs
are governed by another GP; the overall model is no longer a GP. By recursing this
procedure we form multiple layers. Even though full Bayesian inference is tractable
for standard GPs, this is not the case for deep Gaussian processes. However, work
presented in the previous chapters of this thesis laid the foundation for developing a
tractable variational approximation framework for deep Gaussian processes. Specif-
ically, the variables of every layer in the deep hierarchy can be treated as latent vari-

132 Deep Learning with Gaussian Processes

ables; this enables extension of the variational methodology of the previous chapters
in the hierarchical setting, so as to approximately integrate out the latent variables
in arbitrarily deep models. In this way, we obtain a deep, non-parametric generative
model for unsupervised learning. The extension to the supervised scenario comes
from constraining the whole hierarchy according to observed inputs, incorporated
with the same mechanism presented in Chapter 3 for temporal inputs.

Therefore, the main contributions of this chapter are:

• Characterising the nature and properties of deep Gaussian processes for super-
vised and unsupervised learning.

• Extending the mechanisms for uncertainty propagation in (“shallow”) GP-based
graphical models presented in the previous chapters to the nested process com-
position case. It is shown that the developed variational framework allows for
efficient regularisation, as well as automatic complexity control and structure
discovery in deep Gaussian process models. It is demonstrated how a deep
hierarchy of Gaussian processes can be obtained by marginalising out the la-
tent variables in the structure, obtaining an approximation to the fully Bayesian
training procedure and a variational approximation to the true posterior of the
latent variables given the outputs.

• The final contribution is to demonstrate the applicability of deep models even
when data are scarce. The Bayesian training framework provides an automatic
Occam’s razor, so that hidden spaces with increasing levels of concept abstrac-
tion are discovered without overfitting. Further, the statistical effects associ-
ated with learning from small sample sizes are counteracted by the reliability
estimates provided by the Bayesian framework. The other extreme case, i.e.
learning from very large datasets, is also discussed; incorporating the big data
methodologies of Hensman et al. [2013a]; Gal et al. [2014]; Dai et al. [2014]
seems like a plausible direction.

• Several existing models can be implemented as specific instances of a deep
GP, such as deep autoencoders [Kingma and Welling, 2013] of non-parametric
nature and Bayesian warped Gaussian processes [Snelson et al., 2004; Lázaro-
Gredilla, 2012]. This chapter focuses especially on the development of non-

parametric variational autoencoders.

Overall, the resulting deep Gaussian process model is very flexible and should open
up a range of applications for deep structures.

6.1 Background 133

6.1 Background

Probabilistic modelling with neural network architectures constitute a well studied
area of machine learning. The recent advances in the domain of deep learning [Hin-
ton et al., 2006; Bengio et al., 2012] have brought this kind of models back in popu-
larity. Empirically, deep models seem to have structural advantages that can improve
the quality of learning in complicated data sets associated with abstract information
[Bengio, 2009].

The traditional approach to deep learning is based around hierarchical architec-
tures such as neural networks or restricted Boltzmann machines (RBMs) [Hinton,
2010]. In particular, many of the early successes of model based deep learning are
associated with the typical RBM version which uses binary latent variables. The
emergence of the Boltzmann machine (BM) at the core of one of the most interest-
ing approaches to modern machine learning was very much a case of a the field going
back to the future: BMs rose to prominence in the early 1980s, but the practical impli-
cations associated with their training led to their neglect until families of algorithms
were developed for the RBM model with its reintroduction as a product of experts in
the late nineties [Hinton, 1999].

The computational intractabilities of Boltzmann machines led to other families of
methods, in particular kernel methods such as the support vector machine (SVM), to
be considered for the domain of data classification. Almost contemporaneously to the
SVM, Gaussian process models were introduced as a fully probabilistic substitute for
the multilayer perceptron (MLP). The relationship of standard GPs with single layer
neural networks was firstly investigated by Radford Neal, whose PhD thesis (later
published as a book [Neal, 1996]) inspired Rasmussen and Williams to consider GPs
as a tool for regression, triggering the use of GPs in machine learning. At the time
there was still a great deal of interest in the result that a neural network with a single
layer and an infinite number of hidden units was a universal approximator [Hornik
et al., 1989], but Neal was able to show that in such a limit the model became a
Gaussian process with a particular covariance function (the form of the covariance
function was later derived by Williams [1998]).

Both Neal [1996] and MacKay [1998] pointed out some of the limitations of priors
that ensure joint Gaussianity across observations; this has inspired work in moving
beyond Gaussian processes, as was outlined in the beginning of this chapter. How-
ever, all GP-based approaches considered so far do not lead to a principled way of ob-
taining truly deep architectures and, to date, the field of deep learning remains mainly
associated with older, parametric, hierarchical structures based on neural networks or

134 Deep Learning with Gaussian Processes

RBMs.

This chapter introduces deep Gaussian processes as a flexible non-parametric ap-
proach for deep learning. The structure of the remainder of this chapter is as follows.
Firstly, the remainder of Section 6.1 gradually introduces deep GPs from the main-
stream function composition approach to the nested process composition scenario. It
additionally highlights the similarities and differences between the discussed lines of
work. Section 6.2 is mainly concerned with the development of the variational frame-
work enabling learning and inference in deep GPs. This framework follows a more
formal probabilistic definition of deep GPs. Section 6.3 demonstrates the deep GP
framework in a variety of toy and real-world data, for supervised and unsupervised
learning. Finally, Section 6.4 concludes the discussion on the proposed model and
highlights possible future directions of this line of work.

Notation

Throughout this chapter variables mainly need to be referenced according to their
layer index. For this reason, we temporarily switch to notation which is clearer for
these needs; specifically, subscripts are used to specify the layer associated with a
variable, e.g. hℓ (or Hℓ in the multivariate case) is the set of hidden variables cor-
responding to the ℓth layer. Specific elements within a layer are indexed as in the
previous chapter, but the subscripts are now turned into superscripts. For example, in
the single dimensional case, the scalar h(i)

ℓ denotes the ith element (one-dimensional
datapoint) of the vector hℓ ∈ ℜnℓ , and in the multivariate case h

(i,:)
ℓ and h

(j)
ℓ denote

the ith row and jth column respectively of the matrix Hℓ ∈ ℜnℓ×qℓ .

6.1.1 Function Composition for Deep Learning

Activation functions employed in neural networks are vector valued functions ϕ(·) of
an adjustable basis, which are controlled by a parameter matrix U. In a similar way to
generalised linear models, the final activation g(x) for a single layer neural network
and input x is obtained by linearly weighting the bases using a matrix V:

g(x) = V⊤ϕ(Ux). (6.1)

Deep neural networks then take the form of a functional composition of the basis
functions,

g(x) = V⊤
LϕL(ULgL−1(. . .U2g1(x))), (6.2)

6.1 Background 135

where L denotes the total number of layers and we represent the overall composition
with the unindexed notation g(·). We can alternatively re-write the above expression
by using equation (6.1) to replace all gℓ(·) terms:

g(x) = V⊤
LϕL(WL−1ϕL−1(. . .W2ϕ1(U1x))),

where Wℓ is the matrix mapping between each set of basis functions and is typi-
cally treated as a parameter to be learned. A serious challenge for deep networks,
when trained in a feed-forward manner, is overfitting. As the number of layers and
the number of basis functions per layer increases, a very powerful but also highly
parametrised representation is formed. The matrix Wℓ has size kℓ× kℓ−1, where kℓ is
the number of basis functions in the ℓth layer. In practice, networks containing some-
times thousands of basis functions can be used, leading to a parameter explosion.

Weight Matrix Factorisation

One approach to dealing with the many parameters contained in the matrices Wℓ, is
to replace them with a lower rank form. This draws inspiration from the first function
composition formulation shown in equation (6.2), but now the low rank decomposi-
tion is now made explicit and clear. We select rℓ < kℓ, kℓ−1 so as to obtain:

Wℓ = UℓV
⊤
ℓ−1,

where Uℓ ∈ ℜkℓ×rℓ and Vℓ−1 ∈ ℜkℓ−1×rℓ .

Whilst this idea hasn’t yet, to our knowledge, been pursued in the deep neural
network community, Denil et al. [2013] have empirically shown that trained neural
networks might be well approximated by low rank matrices as evidenced by the ability
to predict one set of part of the weight matrix given by another. The approach of
“dropout” [Srivastava et al., 2014] is also widely applied to control the complexity
of the model implying the models are over parameterised. Substituting the low rank
form into the compositional structure for the deep network we have

g(x) = V⊤
LϕL(ULV

⊤
L−1ϕL−1(. . .U2V

⊤
1 ϕ1(U1x))).

We can now identify the following form inside the functional decomposition,

fℓ(z) = V⊤
ℓ ϕℓ(Uℓz)

136 Deep Learning with Gaussian Processes

and once again obtain a functional composition,

g(x) = fL(fℓ−1(. . . f1(x))). (6.3)

The standard deep network is recovered when we set rℓ = min(kℓ, kℓ−1).

6.1.2 Process Composition

To obtain a deep Gaussian process we consider a nested structure as shown above
with equation (6.3). The deep Gaussian process is recovered by keeping rℓ finite and
allowing kℓ → ∞ for all layers. Of course, the mappings in the Gaussian process
are treated probabilistically and integrated out1, rather than optimised, so despite the
increase in layer size the parameters in the resulting model are many times fewer
than those in a standard deep neural network. Further, Duvenaud et al. [2014] have
shown that dropout on the hidden layers is already being applied through this form of
regularisation.

To generalise a Gaussian process to the deep domain, rather than assuming that
a data observation, y, is a draw from a noise corrupted Gaussian process prior, we
instead make use of a functional composition,

y = f1:L + ϵ

= fL(fℓ−1(. . . f1(x))) + ϵ.
(6.4)

This is the same form as for standard neural networks, shown in equation (6.3), but
now each function in the composition, fℓ(·), is a draw from a Gaussian process. How-
ever, the overall prior f1:L is no longer a Gaussian process. In the above equation, ϵ
represents the noise, and we can introduce Gaussian noise in every layer. In this case,
we can collect the noise corrupted function instantiations (corresponding to n data
points) into a vector for each layer, so that we get the following recursive definition:

hℓ = fℓ(hℓ−1) + ϵℓ. (6.5)

From this recursive definition, we obtain the whole hierarchical construction if we de-
note y ≜ hL+1 and x ≜ h0. The corresponding graphical model for a deep Gaussian
process is illustrated in Figure 6.1. As can be seen, the generative procedure defined
by the function f1:L can be represented in a graphical model as a deep architecture

1If the mappings are instead fixed, then we obtain a standard (shallow) GP with a hierarchical
covariance function, as noted and investigated by Duvenaud et al. [2014].

6.1 Background 137

x h1

f1 ∼ GP
h2

f2 ∼ GP
y

f3 ∼ GP

Fig. 6.1: A deep Gaussian process with two hidden layers (compact depiction).

where each layer corresponds to a generative procedure associated with a function fℓ.

Given equation (6.4), it is clear that this chapter develops a full probabilistic model
through process composition. Process composition has the appealing property of re-
taining the theoretical qualities of the underlying stochastic process (such as Kol-
mogorov consistency) whilst providing a richer class of process priors. For example,
for deep Gaussian processes Duvenaud et al. [2014] have shown that, for particular
assumptions of covariance function parameters, the derivatives of functions sampled
from the process have a marginal distribution that is heavier tailed than a Gaussian. In
contrast, it is known that in a standard Gaussian process the derivatives of functions
sampled from the process are jointly Gaussian with the original function. In the next
section we compare the properties of deep Gaussian processes with the properties of
traditional deep learning methods.

6.1.3 Inference Challenges and Expressiveness

A very popular approach to deep learning is to construct deep belief networks by
stacking RBM models. Various approximate inference techniques (such as contrastive
divergence) are then used for estimating model parameters. A significant amount of
work has then to be done with annealed importance sampling if even the likelihood2

of a data set under the RBM model is to be estimated [Salakhutdinov and Murray,
2008]. When deeper hierarchies are considered, the estimate is only of a lower bound
on the data likelihood. By considering sigmoidal activation functions, σ(z) = (1 +

exp(−z))−1, we obtain the conditional probability of a single hidden unit in a deep
belief network given its parents as

p(y|x) = σ(Ux)y(1− σ(Ux))(1−y).

The conditional density of the output y depends only on a linear weighted sum of
the inputs x. The representational power of a Gaussian process in the same role is
significantly greater than that of an RBM. For the GP the corresponding likelihood is

2Emphasis is used to clarify we are referring to the model likelihood, not the marginal likelihood
required in Bayesian model selection.

138 Deep Learning with Gaussian Processes

over a continuous variable, but it is a nonlinear function of the inputs,

p(y|x) = N
(
y|f(x), β−1

)
.

In this case the likelihood is dependent on a mapping function, f(·), rather than a
set of intermediate parameters, U. By placing a GP prior we can analytically inte-
grate out the mappings. In the RBM, instead, the model likelihood is estimated and
maximized with respect to the parameters, U. For the RBM, marginalizing U is not
analytically tractable. Note that the two approaches can be mixed if

p(y|x) = σ(f(x))y(1− σ(f(x))(1−y),

which recovers a GP classification model. Analytic integration is no longer possible
though, and a common approach to approximate inference is the expectation propa-
gation algorithm [see e.g. Rasmussen and Williams, 2006]. However, this idea is not
further considered in this thesis.

Inference in deep models requires marginalization of the stacked input spaces,
denoted as {hℓ}Lℓ=1 in equation (6.5). These intermediate spaces are typically treated
as latent variables3, which in the case of the RBM are binary variables. The number
of the terms in the sum scales exponentially with the input dimension rendering it
intractable for anything but the smallest models. In practice, sampling and, in partic-
ular, the contrastive divergence algorithm, are used for training. Similarly, marginal-
izing the intermediate, latent spaces in the deep GP is analytically intractable; indeed,
as was discussed in Section 3.1, despite the simplicity of the Gaussian density its
propagation through non-linear mappings is challenging. For this reason, the hierar-
chical GP-LVM [Lawrence and Moore, 2007], which constituted the first approach to
stacking GPs, was defined within a maximum a posteriori (MAP) framework where
the latent variables were maximised rather than marginalised out. For this MAP ap-
proach to work, however, a strong prior is required on the top level of the hierarchy.
Further, MAP learning prohibits model selection because no estimate of the marginal
likelihood is available.

Most deep algorithms require a large amount of data to perform learning. Fit-
ting such models to smaller data sets and using Bayesian approaches to deal with the
complexity seems completely futile when faced with the associated computational in-
tractabilities. However, we know that humans are able to perform inductive reasoning

3Some of the variables can also be treated as observed, e.g. in the upper most layer of the hierarchy
where we might include the data label or inputs for regression.

6.1 Background 139

Fig. 6.2: Samples from a deep GP showing the generation of features. The upper plot shows
the successive non-linear warping of a two-dimensional input space. The red circles corre-
spond to specific locations in the input space for which a feature (a “loop”) is created in layer
1. As can be seen, as we traverse the hierarchy towards the right, this feature is maintained
in the next layers and is potentially further transformed. The bottom plot is similar as the
upper plot, but a linear covariance function is used (equivalent to performing stacked PCA for
training given observed data). As can be seen, linear transformations seem nonsensical in this
setting, since multiplying an input by two matrices (two linear transformations) is equivalent
to multiplying the input with a single combined matrix (one linear transformation).

(equivalent to concept generalization) with only a few examples [Tenenbaum et al.,
2006]. This provokes the question as to whether deep structures and the learning of
abstract structure can be undertaken in smaller data sets. For smaller data sets, ques-
tions of generalization arise: to demonstrate such structures are justified it is useful
to have an objective measure of the model’s applicability. This chapter demonstrates
the ability of deep Gaussian processes to learn even from small training sets. This
property can be attributed to their fully Bayesian nature.

6.1.4 Model Capacity and Regularization in Deep GPs

In the previous sections it was assumed, for simplicity, that all variables are single
dimensional. This section will consider the general multi-dimensional case. It will
then be possible to provide an analysis with respect to the number and dimensionality
of the hidden layers which, jointly, define the model capacity.

To start with, we discuss the regularization benefits and tool availability arising
from the deep GP Bayesian framework which aims at integrating out the hidden lay-
ers. Specifically, we can equip the Gaussian process prior of each layer with an ARD
covariance function of the form given in equation (2.7). Similarly to the variational
GP-LVM presented in Chapter 3, the ARD weights of this function automatically de-

140 Deep Learning with Gaussian Processes

fine an effective dimensionality for each layer. Further, the MRD method discussed
in Chapter 5 can be incorporated to consider multi-view data or to induce conditional
independencies between nodes in the hidden layers, thus incorporating potential a
priori known structure. Notice that, in this context, the ARD weights w resemble the
weight parameters of standard multilayer neural networks. Despite the structural sim-
ilarity, the role of w is distinct in deep GPs. Firstly, thanks to the Bayesian training
their optimisation follows an automatic Occam’s razor, as explained above. Secondly,
compared to standard neural network approaches, a deep GP can achieve similar rep-
resentational capacity per layer by using many fewer parameters. This is thanks to
the non-parametric, continuous-valued and non-linear properties of the GP backbone.

It has been argued that deep networks have more representational power compared
to “shallow” ones. Intuitive illustrations are given in figures 6.3 and 6.6 which show
that a deep architecture is able to discover long range dependencies in data. The same
effect from a different viewpoint is also demonstrated in figure 6.12, which shows
that the deep structure is able to decompose the data into a hierarchy of features with
increasing levels of abstraction. This has been shown to facilitate learning [Bengio
et al., 2012]. By generalising, this provokes the question as to whether considering
more hidden layers will always result in a better model (ignoring, for the moment,
overfitting or parameter explosion problems). Duvenaud et al. [2014] argue that an
extreme expression of this effect can result in a pathology and, therefore, very deep
networks are not always preferable. Specifically, it is shown that a deep network
with a very large number of hidden layers tends to focus all of its representational
power on a very small set of input directions, effectively becoming invariant in the
rest of the directions. Intuitively, this happens because the repetitive warping of the
input through a very large number of successive layers tends to force the whole input
domain to be associated with function values that are tightly clustered around a few
centers. However, the effect of creating this kind of “knots” in the space of learned
features is much more improbable in high dimensions and it only occurs for certain
parameter values.

For the Gaussian processes case, the simulations in [Duvenaud et al., 2014] reveal
that the “pathology” does not arise in the kind of architectures employed in practice.
In particular, it is shown that, as long as relatively wide networks are used (in terms
of dimensionality), problems could arise only in structures with more than several
hundreds of layers. Further, equipping a deep GP with a Bayesian training procedure
is expected to guard, to some degree, against this degeneracy, in the sense that the
model evidence will reject unnecessarily complex model structures. Since the satura-
tion of the hidden units is easily avoided in practical settings, we can actually interpret

6.1 Background 141

the above analysis as an insight to an advantageous aspect of deep GPs. Specifically,
since the derivatives of functions sampled from the process have a marginal distribu-
tion that is heavier tailed than a Gaussian (for particular assumptions of covariance
function parameters), deep GPs constitute a richer prior compared to a GP. Further,
the above discussion reveals the mechanism with which useful features are learned
in each layer. Consider the case where we sample from a deep GP layer by layer.
When a feature is created in layer ℓ (e.g. a “knot”) then this feature is maintained
in layers ℓ′ > ℓ. This is demonstrated in figure 6.3 and also in figure 6.2. During
training, this mechanism is used so that each layer creates a new transformation of
the features discovered for the previous layers, thereby learning increasingly abstract
representations.

As a final note, notice that the computational complexity of a deep GP only grows
linearly with the number of layers and hidden dimensions, and it remains almost
unaffected by the number of output dimensions p. This allows us to model very high
dimensional data.

6.1.5 Unsupervised Deep Learning

Although deep learning has achieved remarkable results in supervised learning tasks
(e.g. image classification), deep unsupervised learning seems to currently face more
challenges. The main problem behind these challenges is that a single objective func-
tion for unsupervised learning cannot be easily derived for the traditional deep learn-
ing structures. For example, deep neural networks rely on alternating between for-
ward and backward passes, making it difficult to use this regime without supervision
on the top layer; stacked RBMs constitute undirected graphical models for which even
the likelihood of the data is not easily computed. However, recent research towards
bypassing the above problems has produced promising results. This section will out-
line only some of the most commonly used ideas for performing deep unsupervised
learning.

One successful strand of work in unsupervised deep learning, comes from the
work of Hinton et al. [2006] which is now considered as a breakthrough. In this
work, the authors suggest a greedy, layer-wise pre-training of deep belief networks
without the presence of data labels. This idea allows to perform unsupervised learn-
ing at one level at a time. This produces for each layer a new transformation of the
features learned in the previous ones. Lee et al. [2008] further extend deep belief
networks in the sparse setting, as an alternative to hierarchical sparse coding. An
idea similar to layer-wise pre-training was later studied by Bengio et al. [2007] who

142 Deep Learning with Gaussian Processes

also studied it in the context of autoencoders (see also [Hinton and Salakhutdinov,
2006]). An autoencoder is a particular type of deep network which achieves unsu-
pervised learning by defining a supervised structure where the inputs are the same
as the outputs. The original proposal of the above mentioned greedy, layer-wise pre-
training trick was to use it only as an initialisation step. After this step was completed,
one can fine tune the parameters of all layers together. To achieve this, Hinton and
Salakhutdinov [2006] suggest proceeding with further unsupervised learning using
the wake-sleep algorithm [Hinton et al., 1995]; or one can proceed with supervised
learning, by adding an extra layer which contains observed inputs and performing
gradient descent to optimise the supervised training criterion [Bengio et al., 2007].

Coming back to the discussion about autoencoders, there currently exist multiple
variants. These include: the sparse autoencoder [see e.g. Ranzato et al., 2008], the
denoising autoencoder [Vincent et al., 2008] and the contracive autoencoders [Rifai
et al., 2011]. More recently, [Kingma and Welling, 2013] have proposed the auto-
encoding variational Bayes, a stochastic variational inference algorithm to learn au-
toencoders in directed probabilistic models with continuous variables. This approach
employs a recognition model to approximate the intractable posterior, in a similar
manner to Rezende et al. [2014] who interpret their recognition model as a stochastic
encoder in the denoising autoencoder setting.

The deep Gaussian processes developed in this thesis aims at solving unsupervised
learning tasks in a fully Bayesian, non-parametric fashion and without the need to
rely on layer-wise training or on creating autoencoder structures. The deep GP can be
trained in an unsupervised manner by simply writing down the analytic approximation
to the objective function and performing gradient descent. Of course, both the layer-
wise training and autoencoder techniques are optionally available to use in the deep
GP framework. In fact, a layer-wise training seems to be a good initialisation option,
and an autoencoder construction can potentially lead to better performance in certain
tasks, as discussed in Section 6.2.5.

6.2 Deep Gaussian Processes

This section describes the deep GP framework in more detail, initially focusing on
unsupervised learning. Section 6.2.1 provides a more formal probabilistic defini-
tion. Subsequently, the variational training procedure for training and inference is
described. Specifically, Section 6.2.2 is concerned with the variational inference part
used within each layer for marginalising out the latent mappings; then, Section 6.2.3

6.2 Deep Gaussian Processes 143

is concerned with the next variational inference stage, which enables marginalisation
of variables that are “non-local”, namely inducing outputs (which can act as global
parameters in a special case) and hidden variables (each set being associated with two
layers). Finally, the supervised learning case is separately discussed in Section 6.2.4.

6.2.1 Probabilistic Definition

The deep Gaussian process class of probabilistic models is now formally described.
To do so, single-dimensional variables will again be considered, although it is un-
derlined that this is only for simplicity and without loss of generality. Further, the
analysis is made by firstly considering the unsupervised learning scenario, where a
hierarchy of latent spaces is assumed to generate observed outputs.

The deep GP consists of a cascade of L hidden layers of latent variables, {hℓ}Lℓ=1

with the observed outputs being placed in the leaves of the hierarchy. An intermediate
node hℓ ∈ ℜn associated with layer ℓ constitutes the output of that layer and acts
as an input for the generative procedure of the subsequent layer, ℓ + 1. Gaussian
processes govern the mappings between the layers. Each mapping corresponds to a
separate GP, having covariance function kℓ and hyperparameters θℓ. Further, every
set of latent variables hℓ is obtained from the functional output of the previous layer
with the addition of Gaussian noise ϵℓ ∼ N (0, β−1

ℓ I). Therefore, a single layer of
the deep GP is effectively a GP-LVM, just as a single layer of a regular deep model
is typically an RBM. The joint distribution of a deep GP model with L hidden layers
can be written as:

p(y, {hℓ}Lℓ=1) = p(y|hL)p(hL|hL−1) · · · p(h2|h1)p(h1), (6.6)

where p(h1) = N (h1|0, I). As for the conditional probabilities, they can be ex-
panded as:

p(hℓ|hℓ−1) =

∫
p(hℓ|fℓ)p(fℓ|hℓ−1)dfℓ, (6.7)

where the first and second factor inside the integral are given in equations (2.4) and
(2.2) respectively, with the obvious substitution in the variable names. The observa-
tions are included in this recursive formulation by considering the special notation
hL+1 ≜ y.

Figure 6.3 shows examples of samples drawn from the deep GP architecture,
where the top layer was chosen deterministically. This figure makes evident that
deep GPs constitute much more powerful priors compared to traditional GPs (ob-
serve, for example, the long range correlations in the samples). However, although

144 Deep Learning with Gaussian Processes

0.0 0.2 0.4 0.6 0.8 1.0
2

1

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0
3
2
1
0
1
2
3

0.0 0.2 0.4 0.6 0.8 1.0
2

1

0

1

2

3

f1(x)

f2(f1)

f3(f2)

x

Fig. 6.3: Samples from a deep Gaussian process with three dimensional hidden and output
nodes. A linear input x (not depicted) was propagated through two hidden layers (top and
middle plot) to the output layer (bottom plot).

sampling from a deep GP is easy, the real challenge is training it. Indeed, Lawrence
and Moore [2007] showed that the straightforward (GP-LVM style) MAP optimisa-
tion for {hl}Ll=1 is challenging. Intuitively, the problem arises from the fact that MAP
optimisation turns all hidden nodes into extra model parameters. This can create a
huge regularization problem even for relatively “shallow” architectures, as was dis-
cussed in Section 6.1.4. Instead, this thesis aims to marginalise out all hidden layers
in a Bayesian paradigm. The regularization benefits of such an approach are two fold:
firstly, the number of parameters is drastically reduced because each additional layer
mainly contributes with variational rather than model parameters. Secondly, we are
able to automatically infer the structure of the deep network by making use of an
approximation to the model evidence and by using the automatic relevance determi-
nation (ARD) techniques discussed in section 6.1.4.

However, the nonlinearities introduced by the GP covariance functions make the
Bayesian treatment of this model challenging. To demonstrate this, consider a deep
GP with two hidden layers. Then, the marginal likelihood can be written as:

p(y) =

∫
p(y|h2)

(∫
p(h2|h1)p(h1)dh1

)
dh2.

The nested integral can be written according to equation (6.7) as:

p(h2) =

∫
p(h2|f2)p(f2|h1)p(h1)dh1df2 = ⟨p(h2|h1)⟩p(h1)

(6.8)

and is intractable, because the density p(h1) cannot be propagated through the func-
tion p(f2|h1) which is constructed by a nonlinear covariance function k1(h1,h1).

6.2 Deep Gaussian Processes 145

A similar situation arises in every layer when deeper architectures are employed.
That is, if there was an additional layer we would have to compute the expectation
⟨p(h3|h2)⟩p̃(h2)

, where p̃(h2) = ⟨p(h2|h1)⟩p(h1)
is coming from equation (6.8). We

can, thus, formalise the problem by writing the recursive definition

p̃(hℓ) = ⟨p(hℓ|hℓ−1)⟩p̃(hℓ−1)

of the densities required for the calculation of the marginal likelihood and observing
that all required expectations are intractable, as demonstrated for the two hidden layer
architecture above. In the next section we develop variational methodologies which
solve this intractability.

6.2.2 Variational Inference in Deep GPs Within a Layer

Consider the intractable integral of equation (6.8). Similarly to the variational GP-
LVM discussed in Chapter 3, we seek to obtain tractability by first augmenting the
probability space of every layer with auxiliary variables (xu)ℓ and uℓ. The incor-
poration of auxiliary variables expands every factor p(hℓ|hℓ−1) of the joint distri-
bution of equation (6.6) into a quantity p(hℓ|hℓ−1,uℓ) which depends on additional
function values uℓ =

[
u
(1)
ℓ , u

(2)
ℓ , · · · , u(mℓ)

ℓ

]
evaluated at pseudo-inputs (xu)ℓ−1 =[

(xu)
(1)
ℓ−1, (xu)

(2)
ℓ−1, · · · , (xu)

(mℓ)
ℓ−1

]
, where ℓ = 2, · · · , L + 1. Figure 6.4 demonstrates

this construction. The inducing inputs xu will be omitted from our expressions for the
rest of the chapter, since they always appear in the conditioning set of any probability
involving u. Throughout this chapter we will assume that the number of inducing
points mℓ is fixed for every layer, i.e. mℓ = m,∀ℓ, although this simplification is just
for clarity and not actually used in our implementation. Similarly to equation (6.7),
we can now write:

p(hℓ|uℓ,hℓ−1) =

∫
p(hℓ|fℓ)p(fℓ|uℓ,hℓ−1)dfℓ,

where p(hℓ|fℓ) = N
(
hℓ|fℓ, β−1

ℓ I
)
. As in equations (2.15), (2.16), (2.17), we have:

p(fℓ|uℓ,hℓ−1) = N
(
fℓ|aℓ, K̃ℓ

)
, (6.9)

where:
aℓ = Kfℓ−1uℓ−1

K−1

uℓ−1uℓ−1
uℓ

K̃ℓ = Kfℓ−1fℓ−1
−Kfℓ−1uℓ−1

K−1

uℓ−1uℓ−1
Kuℓ−1fℓ−1

(6.10)

146 Deep Learning with Gaussian Processes

h
(i)
1

(xu)1

h
(i)
2

u2

f2

(xu)2

y(i)u3

f3

i = 1...n

(a)

x(i)

h
(i)
1

f1

(xu)1

h
(i)
2

u2

f2

(xu)2

y(i)u3

f3

i = 1...n

(b)

Fig. 6.4: A graphical model representation of: (a) the unsupervised and (b) the supervised
deep GP structure with inducing variables and L = 2 hidden layers. Nodes arranged horizon-
tally form part of the same layer.

The expanded with inducing points probability p(fℓ|uℓ,hℓ−1) of equation (6.9)
is still problematic; we are still unable to propagate a density of hℓ−1 coming from
a subsequent layer. However, we can employ the same trick as in variational GP-
LVM, where a preliminary (in the sense that it still includes inducing outputs) varia-
tional bound is further bounded after marginalising the inducing outputs, giving us a
tractable approximation. Specifically, we can obtain a preliminary variational bound
on the logarithm of the augmented form of equation (6.6) as follows:

log p(y, {hℓ}Lℓ=1|{uℓ}L+1
ℓ=2) = log p(y|hL,uL+1) +

L∑
ℓ=2

log p(hℓ|hℓ−1,uℓ) + log p(h1)

≥ L = log p(h1) +
L+1∑
ℓ=2

Lℓ, (6.11)

where LL+1 lower bounds log p(y|hL,uL+1) while for the rest of the terms we have
Lℓ ≤ log p(hℓ|uℓ,hℓ−1). By following the methodology described in Section 2.3.1,
each term Lℓ is found analytically as:

Lℓ = logN
(
hℓ|aℓ, β

−1
ℓ I
)
− βℓ

2
tr
(
K̃ℓ

)
. (6.12)

6.2 Deep Gaussian Processes 147

Given the inducing function values u, the latent function values f are no longer
coupled, meaning that the variatinal bound of equation (6.11) is factorised across
datapoints. For our so far derivations single dimensional data were assumed, but if
more dimensions are considered, then the bound also factorises across dimensions
(and layers). Therefore, this bound is fully factorised. This is further illustrated in
Appendix C, which also includes an analytic expression for L. The dependencies of
this expression are represented in figure 6.4. Finally, the above formulation allows us
to further marginalise out the latent spaces h and inducing outputs u from equation
(6.11). This is explained in detail in the next section.

6.2.3 Variational Inference in Deep GPs Across Layers

In the previous section we used the variational sparse GP trick to integrate out the
latent mappings fℓ within each layer, thus obtaining the preliminary lower bound of
equation (6.11). In this section we begin with that bound and aim at further integrating
out the latent variables h across layers, as well as the inducing function values u. The
variational methodology described here closely resembles the one used in Chapter
3, and follows from the fact that we view the deep GP as a stack of variational GP-
LVMs.

Our aim is to approximate the logarithm of the marginal likelihood:

log p(y) = log

∫
p(y, {hℓ}|{uℓ})

L+1∏
ℓ=2

p(uℓ)d{hℓ}d{uℓ},

where we denote {hℓ} = {hℓ}Lℓ=1 and similarly {uℓ} = {uℓ}L+1
ℓ=2 . To compute the

above integral we will introduce a variational distribution

Q =
L∏

ℓ=1

q(uℓ+1)q(hℓ). (6.13)

Notice that factorising the variational distribution q({hℓ}Lℓ=1) across layers is not the
optimal choice, but only a mean-field approximation. The factorisation for the vari-
ational distribution on u is optimal, however, as is clear from the graphical model
in figure 6.4. Given our choice for the variational distribution, we can make use of

148 Deep Learning with Gaussian Processes

Jensen’s inequality, so as to get a bound F ≤ log p(y), with:

F =

∫
Q log

p(y, {hℓ}|{uℓ})
∏L+1

ℓ=2 p(uℓ)

Q
d{hℓ}d{uℓ}

= ⟨log p(y, {hℓ}|{uℓ})⟩Q︸ ︷︷ ︸
≥⟨L⟩Q

−
L+1∑
ℓ=2

KL (q(uℓ) ∥ p(uℓ)) +
L∑

ℓ=1

H (q(hℓ)) (6.14)

where H (·) denotes the entropy of a distribution and we made use of inequality (6.11)
for L. Since all of the p(·) distributions above are Gaussian, we can restrict the class
of variational distributions q(hℓ) and q(uℓ) to also be Gaussian, so that all of the terms
in equation (6.14) are tractable due to conjugacy and due to easy calculation of the
entropies. So we rewrite equation (6.13) with the specific form:

Q = q({hℓ})q({uℓ}) =
L∏

ℓ=1

(N (hℓ|mℓ,Sℓ)N (uℓ+1|µℓ+1,Σℓ+1))

=
L∏

ℓ=1

(
N (uℓ+1|µℓ+1,Σℓ+1)

n∏
i=1

N
(
h
(i)
ℓ |m(i)

ℓ , s
(i)
ℓ

))
.

(6.15)
If qℓ > 1, variational distribution takes the fully factorised form:

Q = q({Hℓ})q({Uℓ}) =
L∏

ℓ=1

(
qℓ+1∏
j=1

N
(
u
(j)
ℓ+1|µ

(j)
ℓ+1,Σ

(j)
ℓ+1

) n∏
i=1

N
(
h
(i,:)
ℓ |m(i,:)

ℓ ,S
(i)
ℓ

))
.

(6.16)
Notice that S(i)

ℓ are diagonal qℓ× qℓ matrices whereas Σ(j)
ℓ are full mℓ×mℓ matrices.

By using the above form for Q and equation (6.11), we can now derive the first
term of the bound shown in equation (6.14):

⟨L⟩Q = ⟨log p(h1)⟩q(h1)
+

L+1∑
ℓ=2

⟨Lℓ⟩q(hℓ−1)q(hℓ)q(uℓ)
, (6.17)

where we also identified the dependencies in the variables to take the needed expec-
tations. The first expectation above can be combined with the entropy term H(q(h1))

of equation (6.14) to form a KL term. Further, now that we have identified the rel-
evant expectations from the whole Q, the sum appearing in equation (6.17) can be
easily computed with the aid of equation (6.12). Overall, the final form of the bound

6.2 Deep Gaussian Processes 149

F ≤ log p(y) is written as:

F =
L+1∑
ℓ=2

(〈
logN

(
hℓ|aℓ, β

−1
ℓ I
)〉

q(hℓ−1)q(hℓ)q(uℓ)
− βℓ

2

〈
tr
(
K̃ℓ

)〉
q(hℓ−1)

)

− KL (q(h1) ∥ p(h1))−
L+1∑
ℓ=2

KL (q(uℓ) ∥ p(uℓ)) +
L∑

ℓ=2

H (q(hℓ)) ,

(6.18)

where we recall that hL+1 ≜ y. All the terms of the above bound are tractable.
Specifically, the KL and entropy terms are straightforward. As for the first line of
the formula, it can be found by expanding the Gaussian forms; then, the expectations
with respect to the q(h) terms turn the covariance matrices into {ξ, Ψ, Φ} statistics
(see equation 3.15) for every layer. Therefore, the tractability of equation (6.18)
depends on the same conditions as for the variational GP-LVM, that is, the covariance
functions selected should be feasibly convoluted with the Gaussian density q(h).

More details on the derivation of the above lower bound and a complete form
which shows its factorisation with respect to data points and features can be found in
Appendix C. A gradient based optimisation routine can be employed to maximise the
final form of the variational lower bound with respect to:

model parameters: {βℓ, θf ;ℓ}L+1
ℓ=2 and

variational parameters:
{
(xu)ℓ, mℓ, {diag(S(i)

ℓ), µℓ+1, Σℓ+1}ni=1

}L

ℓ=1
.

Collapsed Bound Versus Big Data Extensions

As with the variational GP-LVM, out of the two variational distributions appearing in
a layer, the one can be collapsed with respect to the other. To describe this procedure,
we will again consider the general case where all observed and hidden spaces are
multivariate. Firstly, instead of taking the expectation with respect to q(Uℓ) for every
term Lℓ, we collect from the bound all terms (per layer) that involve q(Uℓ); we can
then determine the optimal form of q(Uℓ), i.e. the form it would take (as a function
of q(Hℓ)) if a stationary point was reached in the optimisation. Then, one can replace
q(Uℓ) with its optimal form in the approximation and obtain a tighter bound. In other
words, for every layer we repeat exactly the same procedure that one has to follow
for the variational GP-LVM case, which is described in detail in Appendix B.1.1.

150 Deep Learning with Gaussian Processes

Therefore, we can write the collapsed variational bound for the deep GP as:

F =

p∑
j=1

F̂ (j)
L+1 +

L∑
ℓ=2

(
qℓ∑
j=1

F̂ (j)
ℓ +H (q(Hℓ))

)
− KL (q(H1) ∥ p(H1)) .

Here, the terms F̂ (j)
L+1 are given directly by equation (3.25). As for the terms F̂ (j)

ℓ ,
ℓ = 2, . . . , L, they are again given by equation (3.25) but the term YY⊤ appearing
there is now substituted with the term:

〈
Hℓ−1H

⊤
ℓ−1

〉
q(Hℓ−1)

=

qℓ−1∑
j=1

[
µ

(j)
ℓ−1(µ

(j)
ℓ−1)

⊤ + S
(j)
ℓ−1

]
.

The collapsed variational bound no longer depends on the variational distributions

q(U), so that the many parameters
{{
µ

(j)
ℓ , Σ

(j)
ℓ

}qℓ

j=1

}L+1

ℓ=2

disappear. However, this

marginalisation re-introduces the coupling in the data, since the involved terms, F̂ (j)
ℓ ,

do not factorise in n, as can be seen in equation (3.25). The implementation developed
for this thesis follows the collapsed variational bound approach; for smaller training
sets this is a better approach, because of the tighter bound and the reduced size of the
parameters. For larger training sets, there are two promising extensions that are left
as future work. Firstly, we can use the collapsed variational bound and incorporate
the parallel training algorithm of Gal et al. [2014]; Dai et al. [2014]. Secondly, we
can use the factorised, non-collapsed version of the variational bound and incorporate
the stochastic variational inference framework of Hensman et al. [2013a, 2014a].

6.2.4 Supervised Learning

One advantage of being able to write down the full joint probability of a deep model
(rather than stacking individual models) is that the supervised and unsupervised case
are naturally handled within the same generative framework. In the previous sections,
we demonstrated the variational framework for the unsupervised learning scenario.
However, the supervised version, depicted graphically in figure 6.4(b), can be ob-
tained by following a very similar methodology. Specifically, the joint distribution is
now conditioned on the observed inputs x, placed on the top layer of the graphical
model. These observed variables now appear in the conditioning set of all proba-
bilities involving h1, i.e. p(h1) is now written as p(h1|x). Similarly to the rest of
the layers, we can consider a function f1 with a GP prior that maps from x to h1.
However, since x is deterministic, propagating it through the non-linear mapping f1

6.2 Deep Gaussian Processes 151

is feasible, so that we can analytically compute the Gaussian p(h1|x). Therefore,
the data augmentation trick is not required here and no inducing variables need to
be introduced for the top warping layer. Consequently, the derivations presented in
the previous chapter also hold for the supervised learning case, after introducing the
conditioning on x where appropriate. Therefore, although the supervised deep GP
uses one more warping function to accommodate the observed inputs, by convention
we will not refer to the top warping layer as a hidden layer. That is, both deep GPs
illustrated in figures 6.4a and 6.4b are said to have 2 hidden layers.

Given our so far mathematical description for deep GPs, the only difference be-
tween the supervised and the unsupervised case comes from the variational distri-
bution considered for h1. Specifically, we explicitly model correlations in the input
space through the approximate posterior q(h1); this is achieved by following the for-
mulation discussed in Section 3.3.6 for the variational GP-LVM. In other words, for
the supervised learning scenario the full variational distribution, Q, would be as in
equation (6.16) but the latent space distribution would factorise as:

q({Hℓ}) =
q1∏
j=1

N
(
h
(j)
1 |m(j)

1 ,S
(j)
1

) L∏
ℓ=2

n∏
i=1

N
(
h
(i,:)
ℓ |m(i,:)

ℓ ,S
(i)
ℓ

)
,

where S
(j)
1 is a full n× n matrix.

6.2.5 Autoencoders

An autoencoder is a hierarchical model comprising an encoder, mapping the obser-
vation to the latent space, and a decoder, mapping the latent to the observation space.
Deep autoencoders can also be formed. In the context of deep GPs, all mappings are
taken to be non-parametric with GP priors. In this setting, to form an autoencoder we
just need to consider a supervised deep GP where the top level inputs are the same as
the outputs. In this way, the latent space posterior q(X1) of the top layer is correlated
across points x(i,:)

1 and through a prior p(X1|Y).

A second way to obtain a deep GP autoencoder is to make use of the variational
back-constraints developed in Section 4.2.1. Rather than coupling the top layer pos-
terior, we define a factorised prior and variational distribution but constrain each
q(x

(i,:)
1) to be a Gaussian centered around y(i,:). This requires q1 = p. Bengio et al.

[2007] showed that, in terms of modelling, even choosing q1 > p is sensible. Con-
cerning the variances of q(x(i,:)

1), there are three ways in which they can be set. Firstly,
we can set them to ϵ → 0. However, this strong constraint was found to make the
model prone to “switching off” the top layer by explaining it with noise. Secondly,

152 Deep Learning with Gaussian Processes

the variances can be freely optimised. However, this can be problematic when p (and,
hence, q1) is large. Finally, the variances can be fixed to a small value. This approach
was found to be the best. Intuitively, it allows for flexibility in the encoder and re-
minds the denoising autoencoder trick, where the top layer inputs constitute a noisy
version of the true outputs. Since our framework allows for propagating variances,
the noise is here taken to be Gaussian, rather than considering ad-hoc corruptions of
the input.

There are two main motivations to study autoencoders. Firstly, because the topo-
logical constraint applied on the latent space can result in richer latent representations,
as was also observed by Lawrence and Quiñonero Candela [2006]. Secondly, because
during test time, given a test point y∗ we can find directly and almost immediately its
(approximate) latent representation q(x∗) using the encoder. This comes in contrast
to the unsupervised learning scenario where the latent representation is found after
optimising a new variational bound. This optimisation not only requires a sensible
initialisation to kick-off, but is also prone to local minima. Therefore, one advantage
of directly using the encoder is that it is potentially more robust. Another advantage
is that it is much faster during test time, making it a very useful approach in real-time
applications as well as big data or stochastic optimisation scenarios.

6.3 Experiments

This section evaluates the approach in toy and real data for supervised and unsuper-
vised learning. The main goals with this demonstration are the following: firstly, to
demonstrate the representation learning ability of the method, which can model ob-
served data by decomposing them into a hierarchy of meaningful features. To this
end, this section shows results from unsupervised learning experiments, as well as
results obtained through a generative autoencoder reformulation that is derived from
the developed framework. Secondly, we wish to show that the Bayesian training
paradigm allows for automatically finding an effective structure for the deep architec-
ture, by learning conditional independencies among the nodes and by switching off
irrelevant nodes. Thirdly, this section investigates the effectiveness of deep Gaussian
processes as a means of obtaining better discrimination in the latent space and smaller
error in regression tasks.

6.3 Experiments 153

6.3.1 Toy data

Step function

We first attempt to fit a (supervised) deep GP in a simulated step function [Rasmussen
and Williams, 2006], following the experimental setting of Hensman and Lawrence
[2014]; Calandra et al. [2014]. n = 40 equidistant training inputs {x(i,:)}ni=1 were
generated in the interval [0, 1]. As for the outputs, we set y(i,:) = 1 if x(i,:) < 0.5

and 0 otherwise, plus the addition of Gaussian noise with standard deviation 0.02.
Therefore, the output space is very “flat” but broken by a big discontinuity (step), thus
making the application of a standard GP very challenging. In contrast, a deep GP as
a generative model is able to capture this extreme non-stationarity and bimodality by
making use of the available intermediate layers that gradually “push” the points in
the two extrema. The results presented below confirm this, and they are very similar
to those of Hensman and Lawrence [2014] who used a deep GP variant with nested
variational compression.

Indeed, figure 6.5 shows 300 sample paths from the posterior obtained by a stan-
dard GP with exponentiated quadratic cov. function (figure 6.5a) and a deep GP with
one (figure 6.5b) and three (figure 6.5c) hidden layers. Each of the paths corresponds
to the discretization of the interval [−1, 2] in 500 points. The figure demonstrates
how even a 1 hidden layer deep GP is able to easily operate in a regime which seems
bimodal. A deeper architecture (figure 6.5c) fits in this regime even better, with fewer
samples falling between the two extrema. It is interesting to examine the locations
of these samples: they seem to cover uniformly and very sparsely the area between
the “modes”. Further, this kind of samples are only obtained away from the interval
[0, 1], signifying that a “jump” is expected to happen (although with extremely low
probability) in regions away from the data. On the other hand, away from the data the
standard GP produces many samples corresponding to y values that are too far form
the training points. Furthermore, the GP is even forced to underfit the data; there are
no samples falling in the region close to the “jump” even if two training points (one
up and one down) exist there while, at the same time, the variance around the training
data is too large.

To confirm the above intuitions, as well as to draw further conclusions, in fig-
ure 6.6 we plot whole sample paths from the deep and the standard GP. For the deep
GP, figure 6.6a shows the samples’ successive warping through the deep hierarchy,
which gradually “pushes” them towards the bimodal regime. As can be seen, the
samples (especially in the middle layers) are smooth, and are probabilistically as-
signed to one of the two modes. Jumps can occur but are rare, perhaps because only

154 Deep Learning with Gaussian Processes

| | | | | | |

y

| | | | | | |

y

| | | | | | |

y

x

Fig. 6.5: Samples drawn from the posterior of a standard GP (top), a deep GP with 1 hid-
den layer (middle) and a deep GP with three hidden layers (bottom). As in [Hensman and
Lawrence, 2014], for better visualisation the sampled points are drawn as small, red semi-
transparent squares, whereas the training points are plotted as black opaque x’s.

one jump exists in the training data. The interpolation suggests that the deep GP inter-
prets the differences of the points within each cluster mostly as noise, which matches
the actual toy data generation. Finally, figure 6.7 also depicts sample paths, but there
each plot shows the sample output signal in every layer versus its corresponding input

signal – in contrast to figure 6.6 where the x−axis is the input x. As can be seen in
figure 6.7, each layer’s warping function is learned to have a sigmoidal shape, so as
to successively “push” the top layer’s samples into the bi-modal regime.

6.3 Experiments 155

−1 −0.5 0 0.5 1 1.5 2

−1 −0.5 0 0.5 1 1.5 2−1 −0.5 0 0.5 1 1.5 2

−1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

(a) Deep GP with three hidden plus one warping layer.

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

(b) Standard GP

Fig. 6.6: (a) Successive warping of sample paths drawn from a deep GP, gradually “pushing”
them towards a bimodal regime. (b) Sample paths drawn from a standard GP. In this figure,
each sample is drawn versus the initial input x. Instead, figure 6.7 shows a plot of each layer’s
output signal versus its input signal.

156 Deep Learning with Gaussian Processes

−1 0 1 2

−1

0

1

−1 0 1 2

−1

0

1

−1 0 1 2
−1

0
1
2

−1 0 1
−2

0

2

−1 0 1
−2

0

2

−1 0 1 2
−2

0

2

−2 −1 0 1 2
−2

0

2

−2 −1 0 1 2
−2

0

2

−2 −1 0 1 2
−2

0

2

−2 −1 0 1 2
0

0.5

1

−2 −1 0 1 2
0

0.5

1

−2 −1 0 1 2
0

0.5

1

Fig. 6.7: Plotting the input versus the output sample signals of every layer in the deep GP.
This reveals sigmoidal warping functions which successively “push” the top layer’s samples
into the bi-modal regime. In the axis labels, the subscript denotes the sample number and the
subscript denotes the layer number.

Toy Regression Problem

To quantify the performance of the model in supervised learning, a toy regression
problem was used for testing. For this simple example a toy data set was created by
stacking two Gaussian processes as follows: the first Gaussian process employed a
covariance function which was the sum of a linear and an exponentiated quadratic
kernel and received as input an equally spaced vector of 120 points. 1-dimensional
samples were generated from the first GP and used them as input for the second GP,
which employed a exponentiated quadratic kernel. Finally, 10-dimensional samples
were generated with the second GP, thus overall simulating a warped process. The
final data set was created by simply ignoring the intermediate layer (the samples from
the first GP) and presenting to the tested methods only the continuous equally spaced
input given to the first GP and the output of the second GP. To make the data set more
challenging, only 25 datapoints were randomly selected for the training set and the
rest were left for the test set.

Figure 6.8 nicely illustrates the effects of sampling through two GP models, non-
stationarity and long range dependencies across the input space become prevalent.
A data set of this form would be challenging for traditional approaches because of

6.3 Experiments 157

f1(x)

x

f2(f1)

x

(a)
1 2 3 4 5 6 7 8 9 10

1

1.5

2

2.5

3

3.5

4
GP
deepGP

experiment #

M
S

E

(b)

Fig. 6.8: Figure (a) shows the toy data created for the regression experiment. The top plot
shows the (hidden) warping function and bottom plot shows the final (observed) output. Fig-
ure (b) shows the results obtained over each experiment repetition.

these long range dependencies, similarly to the above step function demonstration.
Another way of thinking of data like this is as a nonlinear warping of the input space
to the GP. Because this type of deep GP only contains one hidden layer, it is identical
to the the dynamical variational GP-LVM [Damianou et al., 2011]. With the deep GP
models described in this chapter the aim is to provide a more complex deep hierarchy,
but still learn the underlying representation correctly. To this end, a standard GP (1
layer less than the actual process that generated the data) and a deep GP with two
hidden layers (1 layer more than the actual generating process) were applied. The
experiment was repeated 10 times, each time obtaining different samples from the
simulated warped process and different random training splits. The results show that
the deep GP predicted better the unseen data, as can be seen in figure 6.8(b). The
results, therefore, suggest that the deep model can at the same time be flexible enough
to model difficult data as well as robust, when modelling data that is less complex than
that representable by the hierarchy. It can be presumed that these characteristics are
due to the Bayesian learning approach that deals with capacity control automatically.

Toy Manifold Learning Problem

As a final demonstration on toy data, a hierarchy of signals was created by sampling
from a three-level stack of GPs. Figure 6.9 (a) depicts the true hierarchy: from the
top latent layer two intermediate latent signals are generated. These, in turn, together

158 Deep Learning with Gaussian Processes

(a) Real data. (b) Deep GP reconstruction.

(c) Stacked Isomap reconstruction. (d) Stacked PCA reconstruction.

Fig. 6.9: Attempts to reconstruct the real data (fig. (a)) with our model (b), stacked Isomap
(c) and stacked PCA (d). Our model can also find the correct dimensionalities automatically.

generate 10-dimensional observations (not depicted) through sampling of another GP.
These observations are then used to train the following models: a deep GP, a simple
stacked Isomap [Tenenbaum et al., 2000] and a stacked PCA method, the results of
which are shown in figures 6.9 (b, c, d) respectively. From these models, only the
deep GP marginalises the latent spaces and, in contrast to the other two, it is not given
any information about the dimensionality of each true signal in the hierarchy; instead,
this is learned automatically through ARD. As can be seen in figure 6.9, the deep GP
finds the correct dimensionality for each hidden layer, but it also discovers latent
signals which are closer to the real ones. This result is encouraging, as it indicates
that the model can recover the ground truth when samples from it are taken, and gives
confidence in the variational learning procedure.

6.3 Experiments 159

6.3.2 Unsupervised Learning

USPS Digits

For the first experiment in unsupervised learning we demonstrate the ability of our
model to learn latent features of increasing abstraction and we demonstrate the use-
fulness of an analytic bound on the model evidence as a means of evaluating the
quality of the model fit for different choices of the overall depth of the hierarchy.
Many deep learning approaches are applied to large digit data sets such as MNIST.
Given the Bayesian formulation of our model, our specific intention is to explore the
utility of deep hierarchies when the digit data set is small. We subsampled a data set
consisting of 50 examples for each of the digits {0, 1, 6} taken from the USPS hand-
written digit database [Hull, 1994]. Each digit is represented as an image in 16 × 16

pixels. We experimented with deep GP models of depth ranging from 1 (equivalent
to Bayesian GP-LVM) to 5 hidden layers and evaluated each model by measuring
the nearest neighbour error in the latent features discovered in each hierarchy. We
found that the quality of the model in terms of nearest neighbour errors increased
as we added layers. Indeed, the single-layer model made 5 mistakes even though it
automatically decided to use 10 latent dimensions and the quality of the trained mod-
els was increasing with the number of hidden layers. Finally, only one point had a
nearest neighbour of a different class in the 4−dimensional top level’s feature space
of a model with depth 5. A 2D projection of this space is plotted in figure 6.11. The
ARD weights for this model are depicted in figure 6.10. Deeper models were also
tried, but numerical instabilities arose because of the large n/L ratio. Therefore, the
experiments with even deeper GPs were more ad-hoc and very careful initialisation
had to be provided. Deep GPs with more than 5 layers tended to switch off the extra
layers by inflating the noise parameter βℓ.

Our final goal is to demonstrate that, as we rise in the hierarchy, features of in-
creasing abstraction are accounted for. To this end, we generated outputs by sampling
from each hidden layer. The samples are shown in figure 6.12. There, it can be seen
that the lower levels encode local features whereas the higher ones encode more ab-
stract information.

Motion Capture Data

Here it is shown that deep GPs can not only learn meaningful latent spaces as well
as the hierarchical GP-LVM [Lawrence and Moore, 2007] but, importantly, they do
not suffer from the strong limitation that the segmentation and dimensionality of the

160 Deep Learning with Gaussian Processes

layer 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15...

layer 4

1 2 3 4 5 6 7 8 9 10 11 12...

layer 3

1 2 3 4 5 6 7 8 9 10...

layer 2

1 2 3 4 5 6 7 8... 1 2 3 4 5 6...

layer 1

Fig. 6.10: The ARD weights of a deep GP with 5 hidden layers as learned for the digits exper-
iment. The layer which is closest to the data is using many dimensions, somehow performing
“feature expansion” in order to learn very low-level features. The highest the layer in the hier-
archy, the fewer weights it seems to use. This is because upper layers work with increasingly
rich and abstract features, created in the lower layers. Furthermore, the upper layers seem to
better decompose the signals into a more diverse mix of very linear (small weight) and very
non-linear dimensions. Note that when we ran a shallow deep GP with a single layer, then that
layer used fewer weights compared to the left-most panel shown here. This confirms the idea
that having a deep architecture promotes a kind of “feature expansion” in the lowest layers.

latent space must be given a priori. To this end, a motion capture data experiment
from Lawrence and Moore [2007] was recreated. They used data from the CMU
MOCAP database representing two subjects walking towards each other and per-
forming a ‘high-five’. The data contains 78 frames of motion and each character has
62 dimensions, leading to 124 dimensions in total (i.e. more dimensions than data).
To account for the correlated motions of the subjects we applied our method with a
two-level hierarchy where the two observation sets were taken to be conditionally in-
dependent given their parent latent layer. In the layer closest to the data we associated
each GP-LVM with a different set of ARD parameters, allowing the layer above to
be used in different ways for each character. In this approach we are inspired by the
MRD structure presented in Chapter 5 which is designed to model loosely correlated
data sets within the same model. The end result was that we obtained three optimised
sets of ARD parameters: one for each modality of the bottom layer (fig. 6.13(b)),
and one for the top node (fig. 6.13(c)). Our model discovered a common subspace in
the intermediate layer, since for dimensions 2 and 6 both ARD sets have a non-zero
value. This is expected in a well trained model, as the two subjects perform very
similar motions with opposite directions. The ARD weights are also a means of auto-
matically selecting the dimensionality of each layer and subspace. This flexibility in
modelling is impossible for a MAP method like the hierarchical GP-LVM [Lawrence
and Moore, 2007], which requires the exact latent structure to be given a priori. Given
the true latent structure, the hierarchical GP-LVM learned a latent space which is plot-
ted in figure 6.14 (d,e,f), where fig. (d) corresponds to the top latent space and each

6.3 Experiments 161

Fig. 6.11: The nearest neighbour class separation test on a deep GP model with depth 5. This
plot shows the top layer’s latent space projection on its two principal dimensions (5 and 6).
The output images corresponding to the top layer’s training inputs are superimposed on the
plot (some instances resulting in occlusions were removed). This demonstrates the robust
separation learned by the deep model in a completely unsupervised manner (i.e. no class
labels were given to it). It is interesting to notice the digits on the border of the clusters. For
exampe, the zeros that are close to the cluster of ones are very elongated and those that are
further are very round.

of the other two encodes information for each of the two interacting subjects. Our
method is not constrained to two dimensional spaces, so for comparison we plot two-
dimensional projections of the dominant dimensions of each subspace in figure 6.14
(a,b,c). The similarity of the latent spaces is obvious. In contrast to Lawrence and
Moore [2007], we did not have to constrain the latent space with dynamics in order
to obtain results of good quality.

Further, we can sample from these spaces to see what kind of information they
encode. Indeed, we observed that the top layer generates outputs which correspond
to different variations of the whole sequence, while when sampling from the first layer
we obtain outputs which only differ in a small subset of the output dimensions, e.g.
those corresponding to the subject’s hand.

162 Deep Learning with Gaussian Processes

Fig. 6.12: Outputs obtained when sampling from this model. The first two rows (top-down),
which were sampled from layers 5 and 4 respectively, encode very local features, e.g. explain-
ing if a zero is a closed circle or not, or how big the circle of a 6 is. We discovered many more
local features when we sampled from different dimensions. Conversely, when we sampled
from the two dominant dimensions of the parent latent node (two rows in the bottom) we
obtained much more varying outputs, i.e. the higher levels indeed encode much more abstract
information.

6.3.3 Autoencoders

The deep GP autoencoders are evaluated qualitatively by showing the learned repre-
sentations, and quantitatively by using them as feature extractors. We consider the
following methods and naming abbreviations:

• M1: Unsupervised learning with the variational GP-LVM (see Chapter 3).

• M2: An autoencoder obtained by using a prior conditioned on Y and correlat-
ing all points x(i,:) in the posterior.

• M3: An autoencoder obtained by using a variational back-constraint.

Visualisation

To get a first flavor of the manifolds learned by the autoencoder we considered again
the oil flow dataset. Also, we considered the Frey faces dataset [Frey et al., 1998]
that was also used in a similar context by Kingma and Welling [2013]; Hensman and
Lawrence [2014]. It constitutes a video of 1965 frames, each in 20× 28 pixels, from
which we only used every other frame. The video is a recording of a man’s face in
various grimaces and expressions. For the oil flow data we used model M1 with only
one, 10 dimensional layer, so that we match the experimental setting of Section 3.5.2.
Due to the large dimensionality of the Frey faces data, we used model M2 in that case,
but experimented with a deep autoencoder (3 layers with dimensionality 3,2,2).

6.3 Experiments 163

YA YB

HAB
2HA

2 HB
2

H1

(a) A multi-view deep
GP model.

(b) ARD weights for the two
views of the bottom layer.

(c) ARD weights for the top
latent layer.

Fig. 6.13: Figure (a) shows the (multi-view) deep GP model employed. Figure (b) shows the
ARD weights for the bottom layer’s mappings fA

2 (blue/wider bins) and fB
2 (red/thinner bins).

Dimensions 2 and 6 form the shared space. Figure (c) shows the ARD weights for the top
layer’s mappings, f1.

Figure 6.15 depicts the results by showing the projection on the most dominant
dimensions of the top layer’s latent space. As can be seen, although the models were
not given the temporal information for the video data and the label information for
the oil flow data, they managed to discover latent spaces that encapsulate this infor-
mation naturally. In particular, concerning the oil flow data, the nearest neighbour
error in the projection is 0, meaning that all points are clustered very well in relation
to their label. This figure can be compared to the unsupervised learning case of fig-
ure 3.5a. The ARD weights were very similar to those of figure 3.4. Notice that the
latent points represented as red crosses form an “L” shape with those of the class cor-
responding to green circles in a third dimension (not visualised), perpendicular to the
page. Figure 6.15c shows the Frey faces data outputs centered on their correspond-
ing latent locations (only a small subset is shown due to removing overlaps). Many
aspects of this high-dimensional data was captured on only two dimensions. Firstly,
the outliers (e.g. top image and low, far left) were placed away from the rest of the
points. Other quite peculiar grimaces are also clustered together (winking, tongue out
etc). Secondly, we see multiple levels of separation: moving top-down on the y−axis,
the faces gradually change rotation from looking on the (subject’s) right to the left.
Further, “happy” faces are placed on the left and “sad” and then “angry” faces are
placed on the right.

164 Deep Learning with Gaussian Processes

(a) (b) (c)

(d) (e) (f)

Fig. 6.14: Up (a,b,c): projections of the latent spaces discovered by our model, Down (d,e,f):
the full latent space learned for the model of Lawrence and Moore [2007].

Evaluating the Compression Quantitatively

To evaluate the quality of the compression achieved by the autoencoders, we applied
the models on data associated with labels (not given to the model) and used the dis-
covered latent space (means of the variational distributions) as features for a discrim-
inative classifier. We used the oil flow dataset (1000 training and 1000 test instances)
and the USPS digit data subset that was considered in Section 6.3.2 (150 training and
150 test examples). We compared models M1, M2 and M3 in both, the “shallow” and
the deep setting. However, the deeper models produced similar results to the shallow
ones but with an extra optimisation burden. Therefore, in the rest of the analysis we
restrict our attention to the shallow models.

To increase the reliability of the results we tried two different classifiers: a vanilla
support vector machine (SVM) and multiple logistic regression (MLR). The results
are summarised in Table 6.1. As can be seen, the autoencoders result in better perfor-
mance. On the other hand, optimising an autoencoder during the training phase is, in
general, more challenging due to the increased number of parameters. In a few cases
we needed to restart the optimisation due to getting stuck in local minima, although
for the unsupervised learning model this was generally not needed. Another observa-
tion from our experiments is that the autoencoder M2 requires much more iterations to
converge, possibly because of the correlated structure in the posterior. In conclusion,
the important result to keep from these experiments is that the autoencoders perform
at least as well as the unsupervised equivalent but are much faster at test time.

6.4 Conclusion and Future Work 165

Table 6.1: Accuracy obtained by using each of the considered models as feature generators
for multiple logistic regression (MLR) and an SVM for classification. Best method per group
is shown in bold. K refers to the number of inducing points used in the models.

Dataset Method K MLR SVM
Usps3Class M1 70 96.00% 96.00%
Usps3Class M2 70 98.00% 97.33%
Usps3Class M3 70 94.00% 96.00%
Usps3Class M1 150 94.00% 95.33%
Usps3Class M2 150 98.00% 98.67%
Usps3Class M3 150 96.67% 97.33%

Oil Flow M1 50 96.20% 99.30%
Oil Flow M2 50 98.50% 99.20%
Oil Flow M3 50 99.00% 99.70%

6.4 Conclusion and Future Work

This chapter has introduced a framework for efficient Bayesian training of nested
Gaussian process mappings. The defined approach approximately marginalises out
the latent space, thus allowing for automatic structure discovery in the hierarchy. The
method was able to successfully learn hierarchical feature representations for a variety
of supervised and unsupervised tasks which describe natural human motion and the
pixels of handwritten digits. Persuasive evidence was given that deep GP models are
powerful enough to encode abstract information even for smaller data sets. Further
exploration could include testing the model on other inference tasks, such as class
conditional density estimation, to further validate the ideas. The developed method
can also be used to improve existing deep algorithms, something which can be further
investigated by incorporating ideas from past approaches. Indeed, previous efforts
to combine GPs with deep structures were successful at unsupervised pre-training
[Erhan et al., 2010] or guiding [Snoek et al., 2012] of traditional deep models.

Although the experiments presented here considered only up to 5 layers in the hi-
erarchy, the methodology is directly applicable to deeper architectures. The marginal-
isation of the latent space allows for such an expansion with simultaneous regulari-
sation. Preliminary ad-hoc experiments suggest that deeper structures can be consid-
ered, but were not supported by the specific datasets considered in this chapter. In
the digits experiment, for example, for deep GPs with more than 5 hidden layers the
unsupervised learning was switching off layers 6 and above by inflating the noise.
Despite the Bayesian nature of the framework, when very deep architectures were

166 Deep Learning with Gaussian Processes

considered in combination with small datasets, optimisation instabilities are naturally
likely to arise.

Initialising deep GPs is another aspect of the training framework which it is hoped
that future research will improve. The main initialisation burden of the model is
associated with the variational distributions q(h) of every hidden layer. Literature in
traditional deep learning approaches has taught us that smart initialisations have the
potential to greatly improve the overall performance of the model.

The deep hierarchy proposed in this chapter can also be used with inputs govern-
ing the top layer of the hierarchy, leading to a powerful model for regression based on
Gaussian processes, but which is not itself a Gaussian process. A promising future di-
rection is to test this model for applications in multitask learning (where intermediate
layers could learn representations shared across the tasks) and in modelling real-world
non-stationary data or data involving jumps, such as financial data. These are both
areas where a single layer GP struggles and the step function experiment showed that
the deep GP is very promising alternative to consider.

A remaining challenge is to extend the developed methodologies to very large
data sets. A very promising approach would be to apply stochastic variational infer-

ence [Hoffman et al., 2012]. Hensman et al. [2013a] have shown that the standard
variational GP and GP-LVM can be made to fit within this formalism, as was also
discussed in Chapter 3. An even more straightforward approach would be to take ad-
vantage of algorithms which parallelise the optimisation procedure in multiple com-
putational cores [Gal et al., 2014; Dai et al., 2014]. The next step for deep GPs will
be to incorporate these large scale variational learning algorithms.

6.4 Conclusion and Future Work 167

(a) Frey faces: The latent space with col-
ors denoting the position of the frame in the
video.

(b) Oil data: Projection onto the two princi-
pal directions.

(c) Frey faces: Sample images placed at the location of their corresponding latent points.

Fig. 6.15: Visualisation of autoencoders’ results for the Frey faces and the oil dataset.

Chapter 7

Conclusions and Discussion

This thesis considered probabilistic models built using latent and/or partially observed
variables connected with Gaussian process mappings. The objective of optimising
these models is to learn rich structure in their components while carefully incorpo-
rating any available prior information. However, such flexible models are associated
with many degrees of freedom and, hence, are challenging to regularise. Therefore,
this thesis was concerned with developing the mathematical framework and algo-
rithms that allow for uncertainty propagation between the different model components
and optimisation stages. Variational methods were developed to allow for principled
uncertainty handling, and were shown to enable automatic capacity control (i.e. regu-
larisation) even when data is scarce. The developed variational methodology enabled
the definition and development of powerful Bayesian models, all of which can be
seen as special cases of the most general model introduced in this thesis: the deep
Gaussian process.

This chapter summarizes the key ideas, contributions and results of this thesis.
Ideas for further research are also discussed.

7.1 Summary of Contributions

• Chapter 2 provided a unifying view of existing approximations for sparse Gaus-
sian processes, with a particular focus on variational approaches.

• In Chapter 3 a variational framework was developed, that allows for learning ap-
proximate posteriors (rather than just point estimates) of latent variables that act
as inputs to a GP. Within this Bayesian framework, the use of automatic relevance
determination covariance functions is shown to enable automatic capacity control.

• In the same chapter, the variational framework was extended to allow for corre-

170 Conclusions and Discussion

lating the latent space posteriors given additional prior information, for example
temporal inputs. Bayesian warped Gaussian processes and autoencoders can then
be seen as special cases.

• Chapter 4 introduced semi-described learning as a new type of learning with GPs
where the inputs are partially observed. Variational constraints were introduced
to account for the partial information in the context of the developed variational
methods.

• In the same chapter, algorithmics were developed to generalise the variational GP
framework to semi-supervised learning. Auto-regressive GPs is a special case
which was also studied.

• Chapter 5 extended the variational framework to the multi-view case. This allowed
for discovering conditional (in)dependencies in the latent space which, in contrast
to past approaches like [Ek, 2009], is automatically segmented in a “soft” manner.
The resulting model can be seen as a non-linear, non-parametric, Bayesian variant
of inter-battery factor analysis [Tucker, 1958]. In this context, our method is one
of the first to be successfully demonstrated on truly large modality sets.

• Chapter 6 introduced deep Gaussian processes (deep GPs). Their relation to more
traditional deep learning approaches was studied and a variational framework that
allowed for optimising them in a principled Bayesian manner was developed. En-
couraging results in supervised and unsupervised learning were demonstrated.

• In the same chapter, it was shown that even when the data is scarce, deep models
are still able to learn a hierarchy of latent features with increasing abstraction, i.e.
to successfully perform representation learning.

7.2 Future Work

Promising paths for future work involve approaches to solving current limitations of
the presented methods and further extensions of the developed methodologies. In par-
ticular, a common limitation of the developed methods is difficulty in scaling them up.
The discussed factorised variational bounds seem to be a promising direction, but the
algorithmics to optimising them have to be improved. Further, the variational frame-
works developed here make specific assumptions about the choices of the variational
distributions. Milder assumptions could lead to better approximations. Finally, Gaus-
sian likelihoods were used throughout the thesis. Extension to non-Gaussian likeli-
hoods could enable application of the methods to new domains. After summarising

7.2 Future Work 171

the current limitations of the developed methods, it is useful to outline below in more
detail the most promising paths for future research.

Big data. An increasing amount of machine learning research is lately focused on big
data. The main modelling contributions defined in this thesis (variational GP-LVM,
MRD, deep GPs) were associated with objective functions which are distributable
and/or fully factorised. Thus, a natural future direction of research is to exploit recent
advances in the algorithmics of stochastic or distributed optimisation [Hensman et al.,
2013a; Gal et al., 2014; Dai et al., 2014] to be able to apply the models developed here
to big data. Promising results towards this direction were shown in Section 3.5.6 and
by [Gal et al., 2014; Dai et al., 2014]. Furthermore, there is the potential of exploiting
recent advances in speeding up GPs using sophisticated algorithmic structures, e.g.
[Meier et al., 2014; Bui and Turner, 2014; Deisenroth and Ng, 2015].

Comparing to / complementing traditional deep learning methods. Scaling up
deep Gaussian processes to large datasets would also allow us to more directly com-
pare their performance to that of traditional (parametric) deep learning approaches.
Since traditional deep learning approaches struggle with unsupervised learning, it
would be interesting to see whether they can be complemented by or even combined
with deep Gaussian processes. Indeed, previous efforts to combine GPs with deep
structures were successful at unsupervised pretraining [Erhan et al., 2010] or guiding
[Snoek et al., 2012] of traditional deep models.

Improving the algorithmics. Conversely, it would be interesting to explore how
the algorithmics of the models developed here can accommodate elements from the
methodology being developed in the field of deep learning. Although ideally we
would prefer as much automation as possible in optimising our models, the domain
of deep learning has taught us that putting effort in improving the initialisation and
calibration of our methods can drastically improve performance. There is still a lot
of ground to be covered in improving the algorithmics of the models developed in
this thesis. Better convergence rates can potentially be achieved through better in-
ference procedures, e.g. by optimising the latent variables separately in an EM-like
algorithm. Stochastic optimisation can be improved with better momentum and learn-
ing rate adaptation policies. Further, although for the experiments carried out in this
thesis a simple initialisation for the latent space was used, such as PCA, it is worth
exploring more sophisticated alternatives. In particular, application-driven initialisa-
tion can be considered, e.g. when the latent space corresponds to that of a dynamical

172 Conclusions and Discussion

model, it is natural to seek initial solutions that correspond to latent time-series.

Representation and generic feature learning. The models developed in this thesis
aim to learn a highly structured and compressed latent space from observations. A
natural direction for future research would be to investigate the applicability of these
models as generic feature extractors. A flavour of this functionality was given in the
discussion for semi-supervised learning and for autoencoders. Additionally, it would
be interesting to use MRD for consolidating heterogeneous features in order to im-
prove upon existing feature extractors. For example, using as new features the shared
space discovered by an MRD model which is given edge descriptors, color descrip-
tors and raw pixels as separate views. Taking the feature extraction ideas one step
further, a promising future direction would be to pursue research in using the devel-
oped models for representation learning, e.g. transfer learning.

Applications. Although the methodology developed in this thesis was not particularly
application-driven, it is possible that combining it with application-specific engineer-
ing into a higher-level learning algorithm might provide unique solutions. For exam-
ple, Lu and Tang [2014] have been able to achieve remarkable face recognition rates
with an algorithm based on the GP-LVM. Apart from the domain of computer vision,
robotics is another very promising application area for the models developed here.
The intuitive and highly structured latent spaces learned through semi-described and
semi-supervised learning can act as the perception module of an autonomous robot.
System constraints (e.g. torque limits) can be accommodated through priors. Scarce
data often encountered in robotics can be handled well by the developed Bayesian
models. Additionally, decision making mechanisms can be added as a separate com-
ponent, in the manner of Deisenroth et al. [2014]. Computational biology is another
field where the models developed here can prove useful, e.g. MRD can be used to
consolidate experimental results.

Recognition models. This thesis was concerned with generative models which con-
sider the likelihood of the outputs given the latent spaces (and potential inputs). Given
novel outputs, an approximate posterior of the latent points is obtained through op-
timisation. A promising direction for future research is to use recognition models to
directly model this inverse mapping. This constitutes a more sophisticated solution
with regards to the variational constraints developed in Chapter 4. Recognition mod-
els have been shown to not only speed up inference at test time, but also to improve
convergence during training [Stuhlmüller et al., 2013; Rezende et al., 2014].

References

Ankur Agarwal and Bill Triggs. Recovering 3D human pose from monocular images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1), 2006. doi:
10.1109/TPAMI.2006.21. (page 117)

Mauricio A. Álvarez, David Luengo, Michalis K. Titsias, and Neil D. Lawrence. Vari-
ational inducing kernels for sparse convolved multiple output Gaussian processes.
Technical report, University of Manchester, 2009. (page 21)

Mauricio A. Álvarez, David Luengo, Michalis K. Titsias, and Neil D. Lawrence.
Efficient multioutput Gaussian processes through variational inducing kernels. In
Teh and Titterington [2010], pages 25–32. (page 127)

Ricardo Andrade-Pacheco, James Hensman, and Neil D. Lawrence. Hybrid
discriminative-generative approaches with Gaussian processes. In Kaski and
Corander [2014]. (page 129)

The GPy authors. GPy: A Gaussian process framework in Python. 2014. URL
https://github.com/SheffieldML/GPy. (page 74)

David J. Bartholomew. Latent Variable Models and Factor Analysis. Charles Griffin
& Co. Ltd, London, 1987. (page 57)

Alexander Basilevsky. Statistical Factor Analysis and Related Methods. Wiley, New
York, 1994. (page 57)

Matthew James Beal. Variational algorithms for approximate Bayesian inference.
PhD thesis, University of London, 2003. (page 45)

Sue Becker, Sebastian Thrun, and Klaus Obermayer, editors. Advances in Neural
Information Processing Systems, volume 15, Cambridge, MA, 2003. MIT Press.

(pages 177 and 180)

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduc-
tion and data representation. Neural Computation, 15(6):1373–1396, 2003. doi:
10.1162/089976603321780317. (page 39)

Yoshua Bengio. Learning Deep Architectures for AI. Found. Trends Mach. Learn., 2
(1):1–127, January 2009. ISSN 1935-8237. doi: 10.1561/2200000006. (page 133)

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-
wise training of deep networks. In In NIPS. MIT Press, 2007.

(pages 141, 142, and 151)

https://github.com/SheffieldML/GPy

174 References

Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Unsupervised feature learn-
ing and deep learning: A review and new perspectives. CoRR, abs/1206.5538,
2012. (pages 133 and 140)

Christopher M. Bishop. Bayesian PCA. In Michael J. Kearns, Sara A. Solla, and
David A. Cohn, editors, Advances in Neural Information Processing Systems, vol-
ume 11, pages 482–388, Cambridge, MA, 1999. MIT Press. (pages 40, 43, and 57)

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag,
2006. ISBN 0387310738. (pages 14 and 33)

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer, 1st ed. 2006. corr. 2nd printing edition, October
2007. ISBN 0387310738. (page 45)

Christopher M. Bishop and Gwilym D. James. Analysis of multiphase flows us-
ing dual-energy gamma densitometry and neural networks. Nuclear Instruments
and Methods in Physics Research, A327:580–593, 1993. doi: 10.1016/0168-
9002(93)90728-Z. (pages 66 and 101)

Christopher M. Bishop, Marcus Svensén, and Christopher K. I. Williams. GTM:
the Generative Topographic Mapping. Neural Computation, 10(1):215–234, 1998.
doi: 10.1162/089976698300017953. (pages 38 and 39)

M Brookes. The matrix reference manual, 2011. URL http://www.ee.imperial.ac.uk/
hp/staff/dmb/matrix/intro.html. (page 188)

Thang Bui and Richard E. Turner. Tree-structured Gaussian process approximations.
In Ghahramani, Welling, Weinberger, Lawrence, and Cortes, editors, Advances in
Neural Information Processing Systems, volume 26, 2014. (pages 32 and 171)

Roberto Calandra, Jan Peters, Carl Edward Rasmussen, and Marc Peter Deisenroth.
Manifold gaussian processes for regression. arXiv preprint arXiv:1402.5876, 2014.

(pages 131 and 153)

Olivier Chapelle, Bernhard Schölkopf, and Alex Zien, editors. Semi-supervised
Learning. MIT Press, Cambridge, MA, 2006. (page 99)

Lehel Csató and Manfred Opper. Sparse on-line Gaussian processes. Neural Compu-
tation, 14(3):641–668, 2002. (pages 21, 23, 63, and 200)

Zhenwen Dai, Andreas Damianou, James Hensman, and Neil Lawrence. Gaussian
process models with parallelization and GPU acceleration. arXiv:1410.4984, NIPS
workshop on Software Engineering for Machine Learning, 2014.

(pages 6, 30, 32, 33, 50, 77, 87, 132, 150, 166, and 171)

Andreas Damianou and Neil Lawrence. Uncertainty propagation in Gaussian process
pipelines. NIPS workshop on modern non-parametrics, 2014. (page 6)

Andreas Damianou and Neil Lawrence. Semi-described and semi-supervised learning
with Gaussian processes. In 31st Conference on Uncertainty in Artificial Intelli-
gence (UAI), 2015. (page 6)

http://www.ee.imperial.ac.uk/hp/staff/dmb/matrix/intro.html
http://www.ee.imperial.ac.uk/hp/staff/dmb/matrix/intro.html

References 175

Andreas Damianou and Neil D. Lawrence. Deep Gaussian processes. In Carlos Car-
valho and Pradeep Ravikumar, editors, Proceedings of the Sixteenth International
Workshop on Artificial Intelligence and Statistics, volume 31, AZ, USA, 2013.
JMLR W&CP 31. (pages 7 and 131)

Andreas Damianou, Michalis K. Titsias, and Neil D. Lawrence. Variational Gaussian
process dynamical systems. In Peter Bartlett, Fernando Peirrera, Chris Williams,
and John Lafferty, editors, Advances in Neural Information Processing Systems,
volume 24, Cambridge, MA, 2011. MIT Press.

(pages 6, 32, 37, 39, 40, 77, 87, 131, and 157)

Andreas Damianou, Carl Henrik Ek, Michalis K. Titsias, and Neil D. Lawrence. Man-
ifold relevance determination. In John Langford and Joelle Pineau, editors, Pro-
ceedings of the International Conference in Machine Learning, volume 29, San
Francisco, CA, 2012. Morgan Kauffman. (pages 7 and 32)

Andreas Damianou, Michalis K., Titsias, and Neil D. Lawrence. Variational inference
for latent variables and uncertain inputs in Gaussian processes. Journal of Machine
Learning Research (in press), 2015. (pages 5, 6, 35, 40, 77, 86, and 87)

Sanjoy Dasgupta and David McAllester, editors. Proceedings of the 30th Interna-
tional Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21
June 2013, volume 28 of JMLR Proceedings, 2013. JMLR.org.

(pages 175 and 185)

Marc P. Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian processes
for data-efficient learning in robotics and control. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 99:1, 2014. ISSN 0162-8828.

(pages 102 and 172)

Marc Peter Deisenroth and Jun Wei Ng. Distributed Gaussian processes. arXiv
preprint arXiv:1502.02843, 2015. (pages 32 and 171)

Marc Peter Deisenroth, Ryan Darby Turner, Marco F Huber, Uwe D Hanebeck, and
Carl Edward Rasmussen. Robust filtering and smoothing with Gaussian processes.
Automatic Control, IEEE Transactions on, 57(7):1865–1871, 2012.

(pages 76, 96, and 97)

Petros Dellaportas and David A Stephens. Bayesian analysis of errors-in-variables
regression models. Biometrics, pages 1085–1095, 1995. (page 20)

Misha Denil, Babak Shakibi, Laurent Dinh, Nando de Freitas, et al. Predicting pa-
rameters in deep learning. In Advances in Neural Information Processing Systems,
pages 2148–2156, 2013. (page 135)

N Durrande, D Ginsbourger, and O Roustant. Additive kernels for Gaussian process
modeling. ArXiv e-prints 1103.4023, 2011. (page 131)

David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B. Tenenbaum, and
Zoubin Ghahramani. Structure discovery in nonparametric regression through
compositional kernel search. In Dasgupta and McAllester [2013], pages 1166–
1174. (page 131)

176 References

David Duvenaud, Oren Rippel, Ryan Adams, and Zoubin Ghahramani. Avoiding
pathologies in very deep networks. In Kaski and Corander [2014].

(pages 131, 136, 137, and 140)

Carl Henrik Ek. Shared Gaussian Process Latent Variable Models. PhD Thesis, 2009.
(pages 104, 119, and 170)

Carl Henrik Ek, Phil Torr, and Neil Lawrence. Gaussian process latent variable mod-
els for human pose estimation. Proceedings of the 4th international conference on
Machine learning for multimodal interaction, 2007. (page 105)

Carl Henrik Ek, Jon Rihan, Philip Torr, Gregory Rogez, and Neil D. Lawrence. Ambi-
guity modeling in latent spaces. In Andrei Popescu-Belis and Rainer Stiefelhagen,
editors, Machine Learning for Multimodal Interaction (MLMI 2008), LNCS, pages
62–73. Springer-Verlag, 28–30 June 2008a. (pages 87, 89, 91, 104, and 107)

Carl Henrik Ek, Philip H.S. Torr, and Neil D. Lawrence. Gaussian process latent vari-
able models for human pose estimation. In Andrei Popescu-Belis, Steve Renals,
and Hervé Bourlard, editors, Machine Learning for Multimodal Interaction (MLMI
2007), volume 4892 of LNCS, pages 132–143, Brno, Czech Republic, 2008b.
Springer-Verlag. doi: 10.1007/978-3-540-78155-4_12. (pages 19 and 104)

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pas-
cal Vincent, and Samy Bengio. Why does unsupervised pre-training help deep
learning? J. Mach. Learn. Res., 11:625–660, March 2010. ISSN 1532-4435.

(pages 165 and 171)

Brian D. Ferris, Dieter Fox, and Neil D. Lawrence. WiFi-SLAM using Gaussian
process latent variable models. In Manuela M. Veloso, editor, Proceedings of the
20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pages
2480–2485, 2007. (page 19)

Brendan J Frey, Antonio Colmenarez, and Thomas S Huang. Mixtures of local linear
subspaces for face recognition. In Computer Vision and Pattern Recognition, 1998.
Proceedings. 1998 IEEE Computer Society Conference on, pages 32–37. IEEE,
1998. (page 162)

Roger Frigola, Fredrik Lindsten, Thomas B Schön, and Carl E Rasmussen. Identifica-
tion of Gaussian process state-space models with particle stochastic approximation
em. In 19th World Congress of the International Federation of Automatic Control
(IFAC), Cape Town, South Africa, 2014. (page 76)

Nicoló Fusi, Christoph Lippert, Karsten Borgwardt, Neil D. Lawrence, and Oliver
Stegle. Detecting regulatory gene-environment interactions with unmeasured en-
vironmental factors. Bioinformatics, 2013. doi: 10.1093/bioinformatics/btt148.

(page 19)

Yarin Gal, Mark van der Wilk, and Carl E. Rasmussen. Distributed variational
inference in sparse Gaussian process regression and latent variable models.
arXiv:1402.1389, 2014. (pages 30, 32, 33, 50, 77, 87, 132, 150, 166, and 171)

References 177

Athinodoros Georghiades, Peter Belhumeur, and David Kriegman. From few to
many: Illumination cone models for face recognition under variable lighting and
pose. IEEE Trans. Pattern Anal. Mach. Intelligence, 23(6), 2001.

(pages 112 and 114)

Zoubin Ghahramani, editor. Proceedings of the International Conference in Machine
Learning, volume 24, 2007. Omnipress. ISBN 1-59593-793-3.

(pages 180 and 185)

Agathe Girard, Carl Edward Rasmussen, Joaquin Quiñonero Candela, and Roder-
ick Murray-Smith. Gaussian process priors with uncertain inputs—application to
multiple-step ahead time series forecasting. In Becker et al. [2003], pages 529–536.

(pages xvii, 20, 36, 40, 63, 86, 87, 96, 97, 98, and 99)

Paul W. Goldberg, Christopher K. I. Williams, and Christopher M. Bishop. Regres-
sion with input-dependent noise: A Gaussian process treatment. In Michael I.
Jordan, Michael J. Kearns, and Sara A. Solla, editors, Advances in Neural Infor-
mation Processing Systems, volume 10, pages 493–499, Cambridge, MA, 1998.
MIT Press. (pages 20 and 87)

Mehmet Gönen and Ethem Alpaydin. Multiple kernel learning algorithms. Journal
of Machine Learning Research, 12:2211–2268, Jul 2011. (page 131)

Neil J. Gordon, David J. Salmond, and Adrian F. M. Smith. Novel approach to
nonlinear/non-gaussian bayesian state estimation. IEE Proceedings F Radar and
Signal Processing, 140(2), 1993. (page 38)

J Ham, D Lee, and Lawrence K Saul. Semisupervised alignment of manifolds. In
Annual Conference on Uncertainty in Artificial Intelligence, 2005. (page 104)

James Hensman and Neil D Lawrence. Nested variational compression in deep Gaus-
sian processes. arXiv preprint arXiv:1412.1370, 2014.

(pages 26, 131, 153, 154, and 162)

James Hensman, Magnus Rattray, and Neil D. Lawrence. Fast variational inference
in the conjugate exponential family. In Peter L. Bartlett, Fernando C. N. Pereira,
Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems, volume 25, Cambridge, MA,
2012. (page 28)

James Hensman, Nicoló Fusi, and Neil D. Lawrence. Gaussian processes for big
data. In Ann Nicholson and Padhraic Smyth, editors, Uncertainty in Artificial
Intelligence, volume 29. AUAI Press, 2013a.

(pages 28, 31, 33, 52, 54, 77, 132, 150, 166, and 171)

James Hensman, Neil D. Lawrence, and Magnus Rattray. Hierarchical Bayesian mod-
elling of gene expression time series across irregularly sampled replicates and clus-
ters. BMC Bioinformatics, 14(252), 2013b. doi: doi:10.1186/1471-2105-14-252.

(page 131)

James Hensman, Andreas Damianou, and Neil Lawrence. Deep Gaussian processes
for large datasets. AISTATS, Late Breaking Poster, 2014a. URL http://tinyurl.com
/deepGPsLargeData. (pages 6, 52, 75, 77, and 150)

http://tinyurl.com/deepGPsLargeData
http://tinyurl.com/deepGPsLargeData

178 References

James Hensman, Alex Matthews, and Zoubin Ghahramani. Scalable variational Gaus-
sian process classification. arXiv preprint arXiv:1411.2005, 2014b. (page 74)

Geoffrey E. Hinton. Products of experts. In ICANN 99: Ninth international con-
ference on artificial neural networks, volume 1, pages 1–6. IEE Press, 1999.

(page 133)

Geoffrey E. Hinton. A Practical Guide to Training Restricted Boltzmann Machines.
Technical report, 2010. (page 133)

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507, 2006. (page 142)

Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, and Radford M. Neal. The wake-
sleep algorithm for unsupervised neural networks. Science, 268:1158–1161, 1995.

(page 142)

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

(pages 133 and 141)

Matthew Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic varia-
tional inference. arXiv preprint arXiv:1206.7051, 2012. (pages 28, 31, and 166)

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366, 1989.

(page 133)

J. J. Hull. A database for handwritten text recognition research. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 16:550–554, 1994.

(pages 73, 101, and 159)

Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent Component Analysis.
John Wiley and Sons, 2001. ISBN 978-0-471-40540-5. (page 38)

William H Jefferys and James O Berger. Ockham’s razor and bayesian analysis.
American Scientist, pages 64–72, 1992. (page 45)

Sami Kaski and Jukka Corander, editors. Artificial Intelligence and Statistics, vol-
ume 33, Iceland, 2014. JMLR W&CP 33. (pages 173 and 176)

Kristian Kersting, Christian Plagemann, Patrick Pfaff, and Wolfram Burgard. Most
likely heteroscedastic gaussian process regression. In Proceedings of the 24th
international conference on Machine learning, ICML ’07, pages 393–400, New
York, NY, USA, 2007. ACM. ISBN 978-1-59593-793-3. doi: 10.1145/
1273496.1273546. (pages 20 and 87)

Daniel Keysers, Roberto Paredes, Hermann Ney, and Enrique Vidal. Combina-
tion of tangent vectors and local representations for handwritten digit recogni-
tion. In Structural, Syntactic, and Statistical Pattern Recognition, pages 538–547.
Springer, 2002. (page 75)

References 179

Nathaniel J. King and Neil D. Lawrence. Fast variational inference for Gaussian
Process models through KL-correction. In ECML, Berlin, 2006, Lecture Notes in
Computer Science, pages 270–281, Berlin, 2006. Springer-Verlag.

(pages 29 and 53)

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013. (pages 59, 88, 90, 102, 132, 142, and 162)

Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, and Max Welling. Semi-
supervised learning with deep generative models. CoRR, abs/1406.5298, 2014.

(pages 86, 99, and 101)

Arto Klami and Samuel Kaski. Generative models that discover dependencies be-
tween data sets. In Proceedings of MLSP’06, IEEE International Workshop on
Machine Learning for Signal Processing, pages 123–128, 2006. (page 104)

Jonathan Ko and Dieter Fox. GP-BayesFilters: Bayesian filtering using Gaussian
process prediction and observation models. Autonomous Robots, 27:75–90, July
2009. ISSN 0929-5593. doi: 10.1007/s10514-009-9119-x. (pages 19, 42, and 76)

Jonathan Ko and Dieter Fox. Learning GP-Bayesfilters via Gaussian process la-
tent variable models. Autonomous Robots, 30:3–23, 2011. ISSN 0929-5593.
10.1007/s10514-010-9213-0. (page 42)

Malte Kuss and Thore Graepel. The Geometry Of Kernel Canonical Correlation
Analysis. 2003. (page 104)

Neil D. Lawrence. Gaussian process models for visualisation of high dimensional
data. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Ad-
vances in Neural Information Processing Systems, volume 16, pages 329–336,
Cambridge, MA, 2004. MIT Press. (page 18)

Neil D. Lawrence. Probabilistic non-linear principal component analysis with Gaus-
sian process latent variable models. Journal of Machine Learning Research, 6:
1783–1816, 11 2005. (pages 5, 18, 19, 35, and 39)

Neil D. Lawrence. The Gaussian process latent variable model. Technical Report
CS-06-03, The University of Sheffield, Department of Computer Science, 2006.

(page 19)

Neil D. Lawrence. Learning for larger datasets with the Gaussian process latent vari-
able model. In Marina Meila and Xiaotong Shen, editors, Proceedings of the
Eleventh International Workshop on Artificial Intelligence and Statistics, pages
243–250, San Juan, Puerto Rico, 21-24 March 2007a. Omnipress.

(pages 39, 67, 69, and 73)

Neil D. Lawrence. Fast sparse Gaussian process methods: The informative vector
machine, 7 2007b. (page 21)

Neil D. Lawrence. A unifying probabilistic perspective for spectral dimensionality
reduction: Insights and new models. Journal of Machine Learning Research, 13,
2012. URL http://jmlr.csail.mit.edu/papers/v13/lawrence12a.html. (page 39)

http://jmlr.csail.mit.edu/papers/v13/lawrence12a.html

180 References

Neil D. Lawrence. Personalized health with Gaussian processes, 11 2013.
URL http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/talks/personalized_healt
h_leahurst13.pdf. Presented at the Disease Mapping Workshop, Leahurst. (page 3)

Neil D. Lawrence and Michael I. Jordan. Semi-supervised learning via Gaussian
processes. In Lawrence Saul, Yair Weiss, and Léon Bouttou, editors, Advances in
Neural Information Processing Systems, volume 17, pages 753–760, Cambridge,
MA, 2005. MIT Press. (page 99)

Neil D. Lawrence and Andrew J. Moore. Hierarchical Gaussian process latent vari-
able models. In Ghahramani [2007], pages 481–488. ISBN 1-59593-793-3.

(pages 42, 131, 138, 144, 159, 160, 161, and 164)

Neil D. Lawrence and Joaquin Quiñonero Candela. Local distance preservation in the
gp-lvm through back constraints. In Proceedings of the 23rd international confer-
ence on Machine learning, ICML ’06, pages 513–520, New York, NY, USA, 2006.
ACM. ISBN 1-59593-383-2. doi: http://doi.acm.org/10.1145/1143844.1143909.

(pages 88 and 152)

Neil D. Lawrence and Joaquin Quiñonero Candela. Local distance preservation in
the GP-LVM through back constraints. In William Cohen and Andrew Moore,
editors, Proceedings of the International Conference in Machine Learning, vol-
ume 23, pages 513–520. Omnipress, 2006. ISBN 1-59593-383-2. doi: 10.1145/
1143844.1143909. (pages 87, 89, and 91)

Neil D. Lawrence, Matthias Seeger, and Ralf Herbrich. Fast sparse Gaussian process
methods: The informative vector machine. In Becker et al. [2003], pages 625–632.

(page 31)

Miguel Lázaro-Gredilla. Bayesian warped Gaussian processes. In Advances in Neural
Information Processing Systems, pages 1619–1627, 2012.

(pages 40, 59, 131, and 132)

Miguel Lázaro-Gredilla and Michalis K. Titsias. Variational heteroscedastic gaus-
sian process regression. In In 28th International Conference on Machine Learning
(ICML-11, pages 841–848. ACM, 2011. (pages 20 and 87)

Honglak Lee, Chaitanya Ekanadham, and Andrew Y Ng. Sparse deep belief net
model for visual area v2. In Advances in neural information processing systems,
pages 873–880, 2008. (page 141)

Xuejun Liu, Marta Milo, Neil D. Lawrence, and Magnus Rattray. Probe-level mea-
surement error improves accuracy in detecting differential gene expression. Bioin-
formatics, 22(17):2107–2113, 2006. doi: 10.1093/bioinformatics/btl361.

(page 86)

Chaochao Lu and Xiaoou Tang. Surpassing human-level face verification perfor-
mance on lfw with gaussianface. CoRR, abs/1404.3840, 2014. (pages 19 and 172)

David J. C. MacKay. Hyperparameters: optimise or integrate out? In G. Heidbreder,
editor, Maximum Entropy and Bayesian Methods, Santa Barbara 1993, Dordrecht,
The Netherlands, 1994. Kluwer. (page 15)

http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/talks/personalized_health_leahurst13.pdf
http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/talks/personalized_health_leahurst13.pdf

References 181

David J. C. MacKay. Probable networks and plausible predictions – a review of prac-
tical Bayesian methods for supervised neural networks. Network: Computation in
Neural Systems, 6(3):469–505, 1995a. (page 45)

David J. C. MacKay. Bayesian neural networks and density networks. Nuclear
Instruments and Methods in Physics Research, A, 354(1):73–80, 1995b. doi:
10.1016/0168-9002(94)00931-7. (pages 36, 37, 38, and 39)

David J. C. MacKay. Introduction to Gaussian processes. In C. M. Bishop, edi-
tor, Neural Networks and Machine Learning, NATO ASI Series, pages 133–166.
Kluwer Academic Press, 1998. (page 66)

David J. C. MacKay. Introduction to Gaussian Processes. In Christopher M. Bishop,
editor, Neural Networks and Machine Learning, volume 168 of Series F: Computer
and Systems Sciences, pages 133–166. Springer-Verlag, Berlin, 1998.

(pages 16 and 133)

David J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cam-
bridge University Press, Cambridge, U.K., 2003. ISBN 0-52164-298-1. (page 14)

Kantilal V. Mardia, John T. Kent, and John M. Bibby. Multivariate analysis. Aca-
demic Press, London, 1979. ISBN 0-12-471252-5. (page 39)

Iain Matthews, Tim Cootes, Andrew Bangham, Stephen Cox, and Richard Harvey.
Extraction of visual features for lipreading. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 24(2):198–213, 2002. (page 121)

Andrew McHutchon and Carl Edward Rasmussen. Gaussian process training with
input noise. In NIPS’11, pages 1341–1349, 2011. (pages 20 and 87)

Franziska Meier, Philipp Hennig, and Stefan Schaal. Incremental local Gaussian
regression. In 28th Annual Conference on Neural Information Processing Systems
(NIPS 2014), 2014. (pages 32 and 171)

Roland Memisevic, Leonid Sigal, and David J Fleet. Shared Kernel Information
Embedding for Discriminative Inference. Transactions on Pattern Analysis and
Machine Intelligence, 2011. (page 104)

Thomas P. Minka. Automatic choice of dimensionality for PCA. In Todd K. Leen,
Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural Informa-
tion Processing Systems, volume 13, pages 598–604, Cambridge, MA, 2001. MIT
Press. (page 57)

Toby J Mitchell and John J Beauchamp. Bayesian variable selection in linear regres-
sion. Journal of the American Statistical Association, 83(404):1023–1032, 1988.

(page 43)

Radford M. Neal. Bayesian Learning for Neural Networks. Springer, 1996. Lecture
Notes in Statistics 118. (pages 15 and 133)

Jeremey Oakley and Anthony O’Hagan. Bayesian inference for the uncertainty dis-
tribution of computer model outputs. Biometrika, 89(4):769–784, 2002.

(pages 20, 36, 63, 87, and 96)

182 References

Jeremy Oakley. Bayesian uncertainty analysis for complex computer codes. PhD
thesis, University of Sheffield, 1999. (page 20)

Jeremy Oakley. Eliciting Gaussian process priors for complex computer codes. Jour-
nal of the Royal Statistical Society: Series D (The Statistician), 51(1):81–97, 2002.

(page 19)

Jeremy Oakley. Estimating percentiles of uncertain computer code outputs. Journal
of the Royal Statistical Society: Series C (Applied Statistics), 53(1):83–93, 2004.

(page 20)

Manfred Opper and Cédric Archambeau. The variational Gaussian approximation
revisited. Neural Computation, 21(3):786–792, 2009. (pages 58, 59, and 196)

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. The Journal of Machine
Learning Research, 12:2825–2830, 2011. (page 74)

Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Tech-
nical University of Denmark, 450:7–15, 2008. (page 188)

Joaquin Quiñonero Candela and Carl Edward Rasmussen. A unifying view of sparse
approximate Gaussian process regression. Journal of Machine Learning Research,
6:1939–1959, 2005. (pages 21, 22, and 33)

Joaquin Quiñonero-Candela, Agathe Girard, Jan Larsen, and Carl Edward Ras-
mussen. Propagation of uncertainty in bayesian kernel models-application to
multiple-step ahead forecasting. In Acoustics, Speech, and Signal Processing,
2003. Proceedings.(ICASSP’03). 2003 IEEE International Conference on, vol-
ume 2, pages II–701. IEEE, 2003. (pages 20, 86, 87, and 96)

Marc-Aurelio Ranzato, Lan Boureau, and Yann LeCun. Sparse feature learning for
deep belief networks. In Advances in neural information processing systems, pages
1185–1192, 2008. (page 142)

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. MIT Press, Cambridge, MA, 2006. ISBN 0-262-18253-X.

(pages 14, 15, 63, 65, 66, 138, 153, 198, and 200)

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-
propagation and variational inference in deep latent gaussian models. arXiv
preprint arXiv:1401.4082, 2014. (pages 52, 142, and 172)

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Con-
tractive auto-encoders: Explicit invariance during feature extraction. In Proceed-
ings of the 28th International Conference on Machine Learning (ICML-11), pages
833–840, 2011. (page 142)

Chuck Rosenberg, Martial Hebert, and Henry Schneiderman. Semi-supervised self-
training of object detection models. In Application of Computer Vision, 2005.
WACV/MOTIONS ’05 Volume 1. Seventh IEEE Workshops on, volume 1, pages
29–36, Jan 2005. doi: 10.1109/ACVMOT.2005.107. (pages 87 and 94)

References 183

Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by lo-
cally linear embedding. Science, 290(5500):2323–2326, 2000. doi: 10.1126/scie
nce.290.5500.2323. (page 39)

Ruslan Salakhutdinov and Iain Murray. On the quantitative analysis of deep belief
networks. In Sam Roweis and Andrew McCallum, editors, Proceedings of the
International Conference in Machine Learning, volume 25, pages 872–879. Om-
nipress, 2008. (page 137)

Mathieu Salzmann, Carl Henrik Ek, Raquel Urtasun, and Trevor Darrell. Factorized
Orthogonal Latent Spaces. International Conference on Artificial Intelligence and
Statistics, 2010. (pages 104, 105, 106, and 112)

John W. Sammon. A nonlinear mapping for data structure analysis. IEEE Trans-
actions on Computers, C-18(5):401–409, 1969. doi: 10.1109/T-C.1969.222678.

(page 39)

Simo Särkkä. Bayesian Filtering and Smoothing. Cambridge University Press, 2013.
ISBN 9781107619289. (pages 37 and 38)

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear compo-
nent analysis as a kernel eigenvalue problem. Neural Computation, 10:1299–1319,
1998. doi: 10.1162/089976698300017467. (page 39)

Matthias Seeger, Christopher K. I. Williams, and Neil D. Lawrence. Fast forward
selection to speed up sparse Gaussian process regression. In Christopher M. Bishop
and Brendan J. Frey, editors, Proceedings of the Ninth International Workshop on
Artificial Intelligence and Statistics, Key West, FL, 3–6 Jan 2003.

(pages 21, 23, 63, and 200)

Aaron Shon, Keith Grochow, Aaron Hertzmann, and Rajesh Rao. Learning shared
latent structure for image synthesis and robotic imitation. In Neural Information
Processing Systems, 2006. (pages 104, 105, and 107)

Alex J. Smola and Bernhard Schölkopf. Sparse greedy matrix approximation for
machine learning. In Pat Langley, editor, Proceedings of the International Confer-
ence in Machine Learning, volume 17, pages 911–918, San Francisco, CA, 2000.
Morgan Kauffman. (page 31)

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-
inputs. In Weiss et al. [2006]. (pages 21 and 23)

Edward Snelson, Carl Edward Rasmussen, and Zoubin Ghahramani. Warped gaus-
sian processes. Advances in neural information processing systems, 16:337–344,
2004. (pages 40, 59, 131, and 132)

Jasper Snoek, Ryan Prescott Adams, and Hugo Larochelle. On nonparametric guid-
ance for learning autoencoder representations. In Fifteenth International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), 2012. (pages 165 and 171)

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from over-
fitting. Journal of Machine Learning Research, 15:1929–1958, 2014. URL
http://jmlr.org/papers/v15/srivastava14a.html. (page 135)

http://jmlr.org/papers/v15/srivastava14a.html

184 References

Andreas Stuhlmüller, Jacob Taylor, and Noah Goodman. Learning stochastic in-
verses. In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 26, pages
3048–3056. Curran Associates, Inc., 2013. (pages 52 and 172)

Graham W. Taylor, Geoffrey E. Hinton, and Sam Roweis. Modeling human mo-
tion using binary latent variables. In Bernhard Schölkopf, John C. Platt, and
Thomas Hofmann, editors, Advances in Neural Information Processing Systems,
volume 19, Cambridge, MA, 2007. MIT Press. (pages 67, 69, and 73)

Yee Whye Teh and D. Michael Titterington, editors. Artificial Intelligence and
Statistics, volume 9, Chia Laguna Resort, Sardinia, Italy, 13-16 May 2010. JMLR
W&CP 9. (pages 173 and 184)

Johsua B. Tenenbaum, Thomas L. Griffiths, and Charles Kemp. Theory-based
bayesian models of inductive learning and reasoning. Trends in Cognitive Sciences,
10(7):309–318, 2006. doi: 10.1016/j.tics.2006.05.009. (page 139)

Joshua B. Tenenbaum, Virginia de Silva, and John C. Langford. A global geomet-
ric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–
2323, 2000. doi: 10.1126/science.290.5500.2319. (pages 39 and 158)

Michael E. Tipping. The relevance vector machine. In Sara A. Solla, Todd K. Leen,
and Klaus-Robert Müller, editors, Advances in Neural Information Processing Sys-
tems, volume 12, pages 652–658, Cambridge, MA, 2000. MIT Press. (page 43)

Michael E. Tipping and Christopher M. Bishop. Probabilistic principal component
analysis. Journal of the Royal Statistical Society, B, 6(3):611–622, 1999. doi:
doi:10.1111/1467-9868.00196. (page 57)

Michalis Titsias and Miguel Lázaro-Gredilla. Variational inference for mahalanobis
distance metrics in Gaussian process regression. In C.J.C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 26, pages 279–287. Curran Associates, Inc., 2013.

(page 56)

Michalis K. Titsias. Variational learning of inducing variables in sparse Gaussian
processes. In David van Dyk and Max Welling, editors, Proceedings of the Twelfth
International Workshop on Artificial Intelligence and Statistics, volume 5, pages
567–574, Clearwater Beach, FL, 16-18 April 2009. JMLR W&CP 5.

(pages 21, 23, 24, 25, 29, 31, 33, 47, 54, and 77)

Michalis K. Titsias and Neil D. Lawrence. Bayesian Gaussian process latent variable
model. In Teh and Titterington [2010], pages 844–851.

(pages 5, 6, 32, 35, 40, 77, and 86)

Ledyard R. Tucker. An inter-battery method of factor analysis. Psychometrika, 23
(2):111–136, 1958. (page 170)

Richard Turner and Maneesh Sahani. Probabilistic amplitude and frequency demod-
ulation. In J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, and K.Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 24, pages 981–
989. Curran Associates, Inc., 2011. (page 96)

References 185

Richard E Turner. Statistical models for natural sounds. PhD thesis, UCL (University
College London), 2010. (pages 96 and 131)

Raquel Urtasun and Trevor Darrell. Discriminative Gaussian process latent variable
model for classification. In Ghahramani [2007]. ISBN 1-59593-793-3.

(pages 19 and 41)

Raquel Urtasun, David J. Fleet, and Pascal Fua. 3D people tracking with Gaus-
sian process dynamical models. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 238–245, New
York, U.S.A., 17–22 Jun. 2006. IEEE Computer Society Press. doi: 10.1109/CV
PR.2006.15. (page 42)

Larens J. P. van der Maaten and Geoffrey E. Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9:2579–2605, 2008. (page 39)

Deepak Vasisht, Andreas Damianou, Manik Varma, and Ashish Kapoor. Active learn-
ing for sparse bayesian multilabel classification. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
472–481. ACM, 2014. (page 7)

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-
tracting and composing robust features with denoising autoencoders. In Proceed-
ings of the 25th international conference on Machine learning, pages 1096–1103.
ACM, 2008. (page 142)

Jack M. Wang, David J. Fleet, and Aaron Hertzmann. Gaussian process dynamical
models. In Weiss et al. [2006]. (pages 37 and 42)

Jack M. Wang, David J. Fleet, and Aaron Hertzmann. Gaussian process dynami-
cal models for human motion. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 30(2):283–298, 2008. ISSN 0162-8828. doi: 10.1109/TPAM
I.2007.1167. (pages 19 and 42)

Yair Weiss, Bernhard Schölkopf, and John C. Platt, editors. Advances in Neural
Information Processing Systems, volume 18, Cambridge, MA, 2006. MIT Press.

(pages 183 and 185)

Christopher K. I. Williams. Computation with infinite neural networks. Neural Com-
putation, 10(5):1203–1216, 1998. (page 133)

Christopher K. I. Williams and Carl E. Rasmussen. Gaussian processes for regression.
In David Touretzky, Michael Mozer, and Mark Hasselmo, editors, Advances in
Neural Information Processing Systems, volume 8, pages 514–520, Cambridge,
MA, 1996. MIT Press. (page 33)

Andrew Gordon Wilson and Ryan Prescott Adams. Gaussian process kernels for
pattern discovery and extrapolation. In Dasgupta and McAllester [2013], pages
1067–1075. (page 131)

Chang Xu, Dacheng Tao, and Chao Xu. A survey on multi-view learning. arXiv
preprint arXiv:1304.5634, 2013. (page 103)

Cheng Zhang, Carl Henrik Ek, Andreas Damianou, and Hedvig Kjellström. Factor-
ized topic models. CoRR, abs/1301.3461, 2013. (pages 7 and 129)

Appendix A

Useful Identities

This thesis contains a large amount of mathematical computations involving Gaus-
sian random variables and matrices. This appendix defines a few equations deemed
convenient for the derivations but, perhaps, not immediately obvious.

A.1 Gaussian Identities

Marginalisation and conditioning in Gaussian distributions is facilitated thanks to the
easy manipulation of the Gaussian form inside integrals. Here we define some short-
hands that can be very useful and save the effort of explicitly having to compute inte-
grals. The defined equations are used explicitly or implicitly almost in every technical
chapter of this thesis.

Marginal and Conditional Distributions:

If we have a marginal Gaussian distribution for u and a conditional Gaussian
distribution for f given u in the form:

p(f |u) = N (f |Mu+m,Σf)

p(u) = N (u|µu,Σu)

then the marginal distribution of f and the conditional distribution of u given f are
given by:

p(f) = N
(
f |Mµu +m,Σf +MΣuM

⊤) (A.1)

p(u|f) = N
(
u|L

(
M⊤Σ−1

f (f −m) +Σ−1

u µu

)
,L
)
,

188 Useful Identities

where L = (Σ−1
u +M⊤Σ−1

f M⊤)−1.

The Kullback–Leibler Divergence Between Two Multivariate Gaussians:

Assume a random variable X ∈ ℜn×q. For two continuous distributions q(X) and
p(X), the Kullback-Leibler divergence of p(X) from q(X) is written as:

KL (q(X) ∥ p(X)) =

∫
q(X) log

qX

p(X)
dX = −

[
⟨log p(X)⟩q(X) +Hq(X)

]
,

where Hq(X) denotes the entropy of the distribution. For the case of two multivariate
Gaussian distributions: q(X) =

∏q
j=1 N (xj|mj,Sj) and p(X) =

∏q
j=1N (xj|µj,Σ)

(i.e. Σj = Σ, ∀j), we have:

KL (q(X) ∥ p(X)) =
q

2
log |Σ|+ 1

2

q∑
j=1

tr
[
Σ−1Sj + (µj −mj)

⊤Σ−1(µj −mj)
]

− 1

2

q∑
j=1

log |Sj| −
nq

2
. (A.2)

A.2 Matrix Identities

In this section we use the following notation: A is an invertible matrix of size n× n,
U and V are matrices of size n×m and W is an invertible matrix of size m×m.

The Woodbury matrix identity:

(
A+UWV⊤)−1

= A−1 −A−1U
(
W−1 +V⊤A−1U

)−1
V⊤A−1, (A.3)

The matrix determinant lemma:

∣∣A+UWV⊤∣∣ = ∣∣W−1 +V⊤A−1U
∣∣ |W| |A| , (A.4)

where |·| denotes the determinant of a matrix.

A.3 Useful Formulae for Derivative

Great help in computing derivatives can be obtained by studying Brookes [2011] and
Petersen et al. [2008]. Here I have summarised some identities that are the most

A.3 Useful Formulae for Derivative 189

useful in the context of this thesis.
Notation: Capital, bold font letters denote matrices. Small, non-bold font letters
denote scalars. |X| denotes the determinant of the matrix.

∂(XY)

∂θ
= X

∂Y

∂θ
+

∂X

∂θ
Y

∂K−1

∂θ
= −K−1∂K

∂θ
K−1

∂tr(X)

∂X
= I

∂ log |K|
∂θ

= tr
(
K−1∂K

∂θ

)
∂tr(f(X))

∂θ
= tr

(
∂f(X)

∂θ

)
∂tr(XA)

∂X
= A⊤

∂tr(AXB)

∂X
= A⊤B⊤

∂|X|
∂X

= |X|X−1

∂ log |X|
∂X

=
1

|X|
|X|X−1 = X−1

Appendix B

Variational GP-LVM

This appendix concerns the variational GP-LVM framework developed in Chapter 3
and which is used as a backbone for the methodology developed in the rest of the
chapters. The details of this appendix aim at providing a useful reference for the
implementation of the software, or for extending the method.

In summary, the variational GP-LVM framework aims at defining a variational
lower bound for the logarithm of the marginal likelihood:

F ≤ log p(Y) = log

∫
p(Y|X)p(X)dX,

where Y ∈ ℜn×p constitute the output data and X ∈ ℜn×q are the latent inputs. The
developed variational approximation overcomes associated intractabilities by work-
ing in an augmented probability space, where the function values F are accompanied
with pseudo-outputs U evaluated at pseudo-inputs Xu.

Section B.1 provides more mathematical details concerning the derivation of the
variational lower bound, firstly discussed in Section 3.3.3, where the variational dis-
tributions q(X) and q(U) are introduce to achieve the approximation. In 3.3.4 one
of the two variational distributions is “collapsed”. Section B.2 shows the computa-
tion of the type of statistics appearing in the bound due to taking the expectation of
the covariance with respect to the variational distribution of the inputs. Section B.3
shows the analytic calculation of all the derivatives needed for the dynamical version
of the variational GP-LVM. The derivatives are quite complicated due to the repa-
rameterisation introduced in Section 3.3.6, and this appendix might provide useful in
understanding that technique.

192 Variational GP-LVM

B.1 Further Details About the Variational Bound

This appendix section contains supplementary details for deriving some mathematical
formulae related to the calculation of the final expression of the variational lower
bound for the training phase.

Since many derivations require completing the square to recognize a Gaussian,
we will use the following notation throughout the Appendix:

Z = the collection of all constants for the specific line in equation,

where the definition of a constant depends on the derivation at hand.

B.1.1 Calculating the Explicit Form of q(uj)

Recall that in section 3.3.4 the variational lower bound was collapsed to optimally
eliminate its dependence on the variational distribution q(U). To obtain the collapsed
bound, one needs to firstly find the optimal form of the variational distribution and
then to replace it back to the bound to eliminate it. The optimal form was expressed
in equation (3.22), and here we compute it in more detail. From equation (3.22), we
have:

log q(uj) = const +
〈
logN

(
yj|aj, β

−1In
)〉

q(X)
+ log p(uj). (B.1)

All the involved distributions are Gaussian and, hence, we only need to compute
the r.h.s of the above equation and complete the square in order to get the posterior
Gaussian distribution for q(uj). The expectation appearing in the above equation is
easily just by summing the relevant terms over the n outputs in equation (3.14):

〈
logN

(
yj|aj, β

−1In
)〉

q(X)
= const − β

2
tr
(
yjy

⊤
j − 2yju

⊤
j K

−1
uuΨ

⊤

+ u⊤
j K

−1
uuΦK−1

uuuj

)
. (B.2)

We can now easily find equation (B.1) by combining equations (B.2) and (3.9):

B.1 Further Details About the Variational Bound 193

log q(uj) ∝
〈
logN

(
yj|aj, β

−1In
)〉

q(X)
+ log p(uj)

= Z − 1

2β−1
tr
(
yjy

⊤
j − 2yju

⊤
j K

−1
uuΨ

⊤ + u⊤
j K

−1
uuΦK−1

uuuj

)
− 1

2
tr
(
K−1

uuuju
⊤
j

)
= Z − 1

2
tr
(
u⊤
j

(
βK−1

uuΦK−1
uu +K−1

uu

)
uj

+ βyjy
⊤
j − 2βK−1

uuΨ
⊤yju

⊤
j

)
. (B.3)

We can now complete the square again and recognize that q(uj) = N (uj|µu,Σu),
where:

Σu =
(
βK−1

uuΦK−1
uu +K−1

uu

)−1 and

µu = βΣuK
−1
uuΨ

⊤yj.

By “pulling” the Kuu matrices out of the inverse and after simple manipulations we
get the final form of q(uj):

q(uj) = N (uj|µu,Σu) where

µu = Kuu

(
β−1Kuu +Φ

)−1
Ψ⊤yj

Σu = β−1Kuu

(
β−1Kuu +Φ

)−1
Kuu.

(B.4)

B.1.2 Detailed Derivation of F̂j(q(X)) in Equation (3.23)

In this section we derive the first term of the collapsed variational bound, denoted
as F̂j(q(X)), in more detail. A preliminary expression for this bound is given in
equation (3.23). We rewrite this equation here for completeness:

F̂j (q(X)) = log

∫
e
⟨logN(yj |aj ,β

−1In)⟩
q(X)p(uj)duj −A.

Part of the r.h.s of this expresson has already been computed in the previous appendix,
in equation (B.3). To use this result, we rewrote equation (B.3) as a function of the
optimal q(uj) found in equation (B.4) by completing the constant terms:

〈
logN

(
yj|aj, β

−1In
)〉

q(X)
+ log p(uj) = B + logN (uj|µu,Σu) (B.5)

where we have defined:

194 Variational GP-LVM

B = −n

2
log(2π)− 1

2
log |β−1In|−

1

2
log |Kuu|−

β

2
y⊤
j yj+

1

2
µ⊤

uΣ
−1
u µu+

1

2
log |Σu|.

(B.6)

We can now obtain the final expression for (3.23) by simply putting the quantity of
(B.5) on the exponent and integrating. By doing so, we get:∫

e⟨logN (yj |aj ,βIn)⟩q(X)p(uj)duj =

∫
eBelogN (uj |µu,Σu)duj = eB

eq. (B.6)
= (2π)−

n
2 β

n
2 |Kuu|−

1
2 e−

β
2
y⊤
j yj |Σu|

1
2 e

1
2
µ⊤

u Σ−1
u µu . (B.7)

By using equation (B.4) and some straightforward algebraic manipulations, we can
replace in the above µ⊤

uΣ
−1
u µu with:

µ⊤
uΣ

−1
u µu = y⊤

j β2Ψ(βΦ+Kuu)
−1Ψ⊤︸ ︷︷ ︸

W′

yj. (B.8)

Finally, using equation (B.4) to replace Σu with its equal, as well as equation (B.8),
we can write the integral of equation (B.7) as:

∫
e⟨logN (yj |ad,βId)⟩q(X)p(uj)duj =

β
n
2 |Kuu|−

1
2 |Kuu|e−

β
2
y⊤
j yj

(2π)n/2|βΦ+Kuu|
1
2

e
1
2
y⊤
j W′yj . (B.9)

We can now obtain the final form for the variational bound by replacing equation
(B.9) in equation (3.23), as well as replacing the term A with its equal and defining
W = βIn −W′. By doing the above, we get exactly the final form of the bound of
equation (3.25).

B.2 Calculating the {ξ,Ψ,Φ} Quantities

Here we explain how one can compute the {ξ,Ψ,Φ} quantities (introduced in Section
3.3.3) for two standard choices for the GP mapping. For completeness, we start by
rewriting the equations (3.16), (3.17) and (3.18):

ξ =
n∑

i=1

ξ̂i, with ξ̂i =

∫
kf (xi,:,xi,:)N (xi,:|µi,:,Si) dxi,:.

Ψi,k =

∫
kf (xi,:, (xu)k,:)N (xi,:|µi,:,Si) dxi,:.

Φ =
n∑

i=1

Φ̂i with (Φ̂i)k,k′ =

∫
kf (xi,:, (xu)k,:)kf ((xu)k′,:,xi,:)N (xi,:|µi,:,Si) dxi,:

B.3 Derivatives of the Variational Bound for the Dynamical Variational GP-LVM195

The above computations involve convolutions of the covariance function with a Gaus-
sian density. For some standard kernels such the ARD exponentiated quadratic (RBF)
covariance and the linear covariance function these statistics are obtained analytically.
In particular for the ARD exponentiated quadratic kernel of equation (2.7) we have:

ξ = nσ2
f

Ψi,k = σ2
f

q∏
j=1

exp
(
−1

2

wj(µi,j−(xu)k,j)
2

wj(Si)j,j+1

)
(wj(Si)j,j + 1)

1
2

(Φ̂i)k,k′ = σ4
f

q∏
j=1

exp
(
−wj((xu)k,j−(xu)k′,j)

2

4
− wj(µi,j−(x̄u)j)

2

2wj(Si)j,j+1

)
(2wj(Si)j,j + 1)

1
2

,

where (x̄u)j =
(xu)k,j+(xu)k′,j

2
. This gives us all the components we need to compute

the variational lower bound for the ARD exponentiated quadratic kernel.
For the linear covariance function given in equation (2.8) the integrals are also

tractable:

ξ̂i = tr
(
C(µi,:µ

⊤
i,: + Si)

)
(Ψ)i,k = µ

⊤
i,:C(xu)k,:

(Φ̂i)k,k′ = (xu)
⊤
k,:C(µi,:µ

⊤
i,: + Si)C(xu)k′,:.

B.3 Derivatives of the Variational Bound for the Dy-
namical Variational GP-LVM

Before giving the expressions for the derivatives of the variational bound (3.6), it
should be reminded that the variational parameters µj and Sj (for all js) have been
reparametrised as

Sj =
(
K−1

x +Λj

)−1 and µj = Kxµ̄j,

For clarity, in this section we denote the main diagonal of Sj as sj and the main
diagonal of Λj as λj . Given the above, the set of the parameters to be optimised is:

(θf ,θx, {µ̄j,λj}qj=1,Xu).

The gradient w.r.t the inducing points Xu, however, has exactly the same form as for
θf and, therefore, is not presented here.

All gradients are computed for the collapsed variational bound which is used as

196 Variational GP-LVM

objective function during optimisation. The expression of this bound is given in equa-
tion (3.26) and rewritten here for completeness:

F = F̂ − KL (q(X) ∥ p(X))

=

p∑
j=1

F̂j − KL (q(X) ∥ p(X|t)) ,

where we used the shorthand F = F(q(X)) and F̂ = F̂(q(X)) and considered the
dynamical formulation for the KL term. Further, recall that F is given in equation
(3.25) while the KL term is given in equation (3.29).

B.3.1 Derivatives w.r.t the Variational Parameters

Given the objective function (lower bound), the derivatives can be found after doing
some calculations. Since the derivatives have to be taken w.r.t the new parameters
(resulting after the reparametrisation), our approach to computing them is to use the
chain rule so as to express them as functions of the derivatives for the standard vari-
ational GP-LVM. This approach draws inspiration from [Opper and Archambeau,
2009].

∂F
∂µ̄j

= Kx

(
∂F̂
∂µj

− µ̄j

)
and

∂F
∂λj

= −(Sj ◦ Sj)

(
∂F̂
∂sj

+
1

2
λj

)
.

where we use ◦ to denote the Hadammard (or element-wise) product of two matrices.
The partial derivatives appearing above are given by:

F̂
∂µj

= −βp

2

∂ξ

∂µj

+ βtr
(
∂Ψ⊤

∂µj

YY⊤ΨA−1

)
+

β

2
tr
(
∂Φ

∂µj

(
pK−1

uu − β−1pA−1 −A−1Ψ⊤YY⊤ΨA−1
))

∂F̂
∂(Sj)k,l

= − p

2β−1

∂ξ

∂(Sj)k,l
+ βtr

(
∂Ψ⊤

∂(Sj)k,l
YY⊤ΨA−1

)
+

β

2
tr
(

∂Φ

∂(Sj)k,l

(
pK−1

uu − β−1pA−1 −A−1Ψ⊤YY⊤ΨA−1
))

with A = β−1Kuu +Φ.

B.3 Derivatives of the Variational Bound for the Dynamical Variational GP-LVM197

B.3.2 Derivatives w.r.t θ = (θf ,θx) and β

This section is concerned with the derivatives of the variational lower bound with
respect to the hyperparameters of the mapping covariance function θf , the hyperpa-
rameters of the temporal GP prior, θx and the inverse variance parameter of the noise
model, β. Note that the variance parameter β−1 could instead be used as a parameter
to be presented to the optimiser, but this was found to be less numerically stable in
practice.

Given that the KL term involves only the temporal prior, its gradient w.r.t the
parameters θf is zero. Therefore:

∂F
∂θf

=
∂F̂
∂θf

with:

∂F̂
∂θf

= const − βp

2

∂ξ

∂θf
+ βtr

(
∂Ψ⊤

∂θf
YY⊤ΨA−1

)
+

1

2
tr
(
∂Kuu

∂θf

(
pK−1

uu − β−1pA−1 −A−1Ψ⊤YY⊤ΨA−1 − βpK−1
uuΦK−1

uu

))
+

β

2
tr
(
∂Φ

∂θf

(
pK−1

uu − β−1pA−1 −A−1Ψ⊤YY⊤ΨA−1
))

The expression above is identical for the derivatives w.r.t the inducing points. For the
gradients w.r.t the β term, we have a similar expression:

∂F̂
∂β

=
1

2

[
p
(
tr
(
K−1

uuΦ
)
+ (n−m)β−1 − ξ

)
− tr

(
YY⊤)+ tr

(
A−1Ψ⊤YY⊤Ψ

)
+β−2p tr

(
KuuA

−1
)
+ β−1tr

(
KuuA

−1Ψ⊤YY⊤ΨA−1
)]

.

In contrast to the above, the term F̂ does involve parameters θx, because it involves
the variational parameters that are now reparametrised with Kx, which in turn de-
pends on θx. To demonstrate that, we will forget for a moment the reparametrisation
of Sj and express the bound as F(θx, µj(θx)) (where µj(θx) = Kxµ̄j) so as to show
explicitly the dependency on the variational mean which is now a function of θx. Our

calculations must now take into account the term
(

∂F̂(µj)

∂µj

)⊤
∂µj(θx)

∂θx
that is what we

198 Variational GP-LVM

“miss” when we consider µj(θx) = µj:

∂F(θx, µj(θx))

∂θx
=

∂F(θx,µj)

∂θx
+

(
∂F̂(µj)

∂µj

)⊤
∂µj(θx)

∂θx

=
�
�
�
��∂F̂(µj)

∂θx
+

∂(−KL)(θx,µj(θx))

∂θx
+

(
∂F̂(µj)

∂µj

)⊤
∂µj(θx)

∂θx
.

We do the same for Sj and then take the resulting equations and replace µj and Sj

with their equals so as to take the final expression which only contains µ̄j and λj:

∂F(θx, µj(θx),Sj(θx))

∂θx
= tr

[[
− 1

2

(
B̂jKxB̂j + µ̄jµ̄

⊤
j

)
+
(
I− B̂jKx

)
diag

(
∂F̂
∂sj

)(
I− B̂jKx

)⊤]∂Kx

∂θx

]

+

(
∂F̂(µj)

∂µj

)⊤
∂Kx

∂θx
µ̄j

where B̂j = Λ
1
2
j B̃

−1
j Λ

1
2
j . and B̃j = I + Λ

1
2
j KxΛ

1
2
j . Note that by using this B̃j

matrix (which has eigenvalues bounded below by one) we have an expression which,
when implemented, leads to more numerically stable computations, as explained in
Rasmussen and Williams [2006] page 45-46.

B.4 Variational Lower Bound for Partially Observed
Test Data

This section provides some more details related to the task of doing predictions based
on partially observed test data YU

∗ . Specifically, section B.4.1 explains in more detail
the form of the variational lower bound for the aforementioned prediction scenario
and illustrates how this gives rise to certain computational differences for the standard
and the dynamical variational GP-LVM. Section B.4.2 gives some more details for the
mathematical formulae associated with the above prediction task.

B.4.1 The Variational Bound in the Test Phase and Computa-
tional Issues

As discussed in Section 3.4.1, when doing predictions based on partially observed
outputs with the variational GP-LVM, one needs to construct a variational lower

B.4 Variational Lower Bound for Partially Observed Test Data 199

bound as for the training phase. However, this now needs to be associated with the
full set of observations (Y,YU

∗). Specifically, we need to lower bound the marginal
likelihood given in equation (3.35) with a variational bound that takes the form:

log p(YO
∗ ,Y) ≥

∫
q(X∗,X) log

p(YU |X)p(YO
∗ ,Y

O|X∗,X)p(X∗,X)

q(X∗,X)
dX∗dX.

(B.10)
For the standard variational GP-LVM, we can further expand the above equation by
noticing that the distributions q(X,X∗) and p(X,X∗) are fully factorised as:

q(X,X∗) =
n∏

i=1

q(xi,:)
n∗∏
i=1

q(xi,∗).

Therefore, equation (B.10) can be written as:

log p(YO
∗ ,Y) ≥

∫
q(X) log p(YU |X)dX

+

∫
q(X∗,X) log p(YO

∗ ,Y
O|X∗,X)dX∗dX

− KL (q(X) ∥ p(X))− KL (q(X∗) ∥ p(X∗)) . (B.11)

Recalling equation (3.27), we see that an approximation for the first term above can
be obtained as the sum

∑
j∈U F̂j (q(X)) where each of the involved terms is given

by equation (3.25) and is already computed during the training phase and, therefore,
can be held fixed during test time. Similarly, the third term of equation (B.11) is also
held fixed during test time. As for the second and fourth term, they can be optimised
exactly as the bound computed for the training phase with the difference that now
the data are augmented with test observations and only the observed dimensions are
accounted for.

In contrast, the dynamical version of our model requires the full set of latent vari-
ables (X,X∗) to be fully coupled in the variational distribution q(X,X∗), as they
together form a timeseries. Consequently, the expansion of equation (B.11) cannot
be applied here, meaning that in this case no precomputations can be used from the
training phase. However, one could apply the approximation q(X,X∗) = q(X)q(X∗)

to speed up the test phase. In this case, each set of latent variables is still correlated,
but the two sets are not. However, this approximation was not used in our implemen-
tation as it is only expected to speed up the predictions phase if the training set is very
big, which is not the case for our experiments.

200 Variational GP-LVM

B.4.2 Calculation of the Posterior q(FU
∗ |X∗) of Equation (3.4.1)

Optimisation based on the variational bound constructed for the test phase with par-
tially observed outputs, as explained in Section 3.4.1, gives rise to the posterior
q(FU

∗ ,U,X∗), as exactly happens in the training phase. Therefore, according to equa-
tion (3.12) we can write:

q(FU
∗ ,U,X∗) =

(
p∏

j=1

p(fU
∗,j|uj,X∗)q(uj)

)
q(X∗).

The marginal q(FU
∗ |X∗) is then simply found as

∏
j∈U

∫
p(fU

∗,j|uj,X∗)q(uj)duj . The
integrals inside the product are easy to compute since both types of densities appear-
ing there are Gaussian, according to equations (3.8) and (B.4). In fact, each factor
takes the form of a projected process predictive distribution from sparse GPs [Csató
and Opper, 2002; Seeger et al., 2003; Rasmussen and Williams, 2006].

We will show the analytic derivation for the general case where. all dimensions
are observed. Specifically, we want to compute:

q(f∗,j|X∗) =

∫
p(f∗,j|uj,X∗)q(uj)duj.

For this calculation we use the Gaussian identity of equation (A.1), so that:

q(f∗,j|X∗) = N
(
f∗,j|K∗uB,K∗∗ −K∗u

(
K−1

uu + (Kuu + βΦ)−1Ku∗
))

with B = β(Kuu + βΦ)−1Ψ⊤yj . In the above calculations we also used the simpli-
fication:

β−1
(
β−1Kuu +Φ

)−1
= (Kuu + βΦ)−1 .

Summary
This extensive appendix discussed in depth the mathematical derivations leading to
the variational lower bound and derivatives for the (dynamical) variational GP-LVM.
Further, the appendix elaborated on the coupling introduced by the reparametrisation
technique applied to the parameters of the variational Gaussian approximation of the
original paramerameters for the dynamical variational GP-LVM. This coupling makes
the computation of the derivatives quite challenging. Therefore, this section could po-
tentially be a useful reference for tackling this kind of problems. In summary, I hope
that sharing the detailed derivations contained in this appendix will help the interested
reader gain insight into the method, facilitate future extensions or implementations,
but also help new PhD students familiarise with some mathematical “tricks”.

Appendix C

Deep Gaussian Processes

This appendix concerns the variational approximation developed in the context of
deep Gaussian processes, introduced in Chapter 6. The additional information con-
tained in this appendix, compared to the main thesis, is: firstly more analytic com-
putations of expressions relating to the variational bound. Secondly, expressions that
explicitly show the form of the bound in the multivariate case (because in the main
chapter the assumption about single-dimensional variables was often made for clar-
ity).

Recall that the

The road-map of this appendix is as follows: Section C.1

Derivatives with respect to the model parameters are not derived here, but this
derivation is straight-forward given the extensive material of Appendix B. The deriva-
tives for the deep GP consist of repeated application of the formulae developed for
the variational GP-LVM derivatives with the additional consideration of the fact that
each latent variable, h is now affecting two layers: one as an input and one as an
output.

C.1 Bound on the marginal likelihood

This section provides some more mathematical details for obtaining the variational
lower bound for the deep GP. Specifically, we rewrite the expressions for the case
where the observed and hidden spaces are multivariate. We start by deriving in more
detail the preliminary bound L, where we only consider marginalisation of the latent
mappings fℓ. Then, we proceed to give more details for obtaining the final form of the
bound, where we additionally integrate over all hℓ and uℓ terms. We only consider the
unsupervised learning case, as the supervised extension trivially comes by modifying

202 Deep Gaussian Processes

the top layer according to the methodology of Chapter 3, as explained in the main
part of the thesis.

C.1.1 The preliminary bound for the deep GP

The partial approximations Lℓ of equation (6.12) can be combined to form the full
variational bound:

L ≤ log p(H1) + log p(Y, {Hℓ}Lℓ=2|{Uℓ}L+1
ℓ=2),

according to equation (6.11):

L = log p(H1) +

p∑
j=1

logN
(
y(j)|a(j)

L+1, β
−1
L+1I

)
− βL+1

2
tr
(
K̃L+1

)
+

L∑
ℓ=2

(
qℓ∑
j=1

logN
(
h
(j)
ℓ |a(j)

ℓ , β−1
ℓ I
)
− βℓ

2
tr
(
K̃ℓ

))
+

q1∑
j=1

logN
(
h
(j)
1 |0, I

)
,

with the required quantities being given in equation (6.10). Notice that this bound
further factorises with respect to datapoints; indeed, we can write it as:

L =
n∑

i=1

[
p∑

j=1

logN
(
y(i,j)|k(i,:)

L K−1

uLuL
u
(j)
L+1, β

−1
L+1

)
− βL+1

2
k̃
(i,:)
L+1

+
L∑

ℓ=2

(
qℓ∑
j=1

logN
(
h
(i,j)
ℓ |k(i,:)

ℓ−1K
−1

uℓ−1uℓ−1
u
(j)
ℓ , β−1

ℓ I
)
− βℓ

2
k̃
(i,:)
ℓ

)

+

q1∑
j=1

logN
(
h
(i,j)
1 |0, 1

)]
, (C.1)

where k
(i,:)
ℓ denotes the ith row of Kfℓ,uℓ

and k̃
(i,:)
ℓ denotes the ith diagonal element

of K̃ℓ. That is, the quantities k
(i,:)
ℓ and k̃

(i,:)
ℓ are associated with a single data-point.

To make the factorisation more obvious we will write the bound as:

L =
n∑

i=1

(
p∑

j=1

L(i,j)
L+1 +

L∑
ℓ=2

qℓ∑
j=1

L(i,j)
ℓ +

q1∑
j=1

logN
(
h
(i,j)
1 |0, 1

))
.

C.1 Bound on the marginal likelihood 203

C.1.2 The Final Form of the Bound

We start as in section 6.2, assuming single dimensional variables and the variational
distribution of equation (6.16) and denoting {hℓ} = {hℓ}Lℓ=1 and {uℓ} = {uℓ}L+1

ℓ=2 :

log p(y) = log

∫
Q
Q
p(y, {hℓ}|{uℓ})

L+1∏
ℓ=2

p(uℓ) d{hℓ,uℓ}

≥
∫

Q log
p(y, {hℓ}|{uℓ})

∏L+1
ℓ=2 p(uℓ)∏L

ℓ=1 q(uℓ+1)q(hℓ)
d{hℓ,uℓ},

where we used Jensen’s inequality and replaced Q with its equal on the denominator
inside the logarithm. We then break the logarithm and use inequality (6.11):

log p(y) ≥
∫

Q

(
log p(y, {hℓ}|{uℓ}) +

L+1∑
ℓ=2

log
p(uℓ)

q(uℓ)
+

L∑
ℓ=1

log
1

p(hℓ)

)
d{hℓ,uℓ}

=

∫
Q log p(y, {hℓ}|{uℓ},x)d{hℓ,uℓ}+

L+1∑
ℓ=2

∫
q(uℓ) log

p(uℓ)

q(uℓ)
duℓ

+
L∑

ℓ=1

∫
hℓ

q(hℓ) log
1

q(hℓ)

≥ ⟨L⟩Q −
L+1∑
ℓ=2

KL (q(uℓ) ∥ p(uℓ)) +
L∑

ℓ=1

H (q(hℓ)) . (C.2)

By using equation (6.11) while identifying the dependencies in the variables, we have:

⟨L⟩Q = ⟨log p(h1)⟩q(h1)
+

L+1∑
ℓ=2

⟨Lℓ⟩q(hℓ−1)q(hℓ)q(uℓ)
.

The first expectation above can be combined with the entropy term H(q(h1)) of equa-
tion (C.2), so that we get the final form of the bound F ≤ log p(y), where:

F =
L+1∑
ℓ=2

⟨Lℓ⟩Q − KL (q(h1) ∥ p(h1))−
L+1∑
ℓ=2

KL (q(uℓ) ∥ p(uℓ)) +
L∑

ℓ=2

H (q(hℓ)) .

(C.3)

The entropy and KL terms are straightforward to compute. Specifically, due to
equation (6.15), the entropy term can be written as:

H (q(hℓ)) =
1

2

n∑
i=1

qℓ∑
j=1

(
log(2π) + 1 + log(S

(i)
ℓ)(j,j)

)
, (C.4)

204 Deep Gaussian Processes

where (S
(i)
ℓ)(j,j) denotes the j−th element in the diagonal of S(i)

ℓ . What remains is
to show the computations for the first group of terms appearing above. This will be
shown below for the general, multivariate case.

We notice that by firstly taking the expectation ⟨Lℓ⟩q(Hℓ−1)
, we obtain an expres-

sion similar to the second line of equation (C.1) with the covariance matrices turned
into the following statistics:

ξℓ = ⟨tr (Kfℓfℓ)⟩q(Hℓ)
, Ψℓ = ⟨Kfℓuℓ

⟩q(Hℓ)
, Φℓ = ⟨Kfℓuℓ

Kuℓfℓ⟩q(Hℓ)
.

These quantities are exactly analogous to equation (3.15), so they are factorised with
respect to n. Specifically, the rows Ψ(i,:)

ℓ of Ψℓ are computed in a decomposed way
while ξℓ =

∑n
i=1 ξ̂

(i)
ℓ and Φℓ =

∑n
i=1 Φ̂

(i)
ℓ . Hence, ξ̂(i)ℓ ,Ψ

(i,:)
ℓ , Φ̂

(i)
ℓ are obtained by

evaluating the above expressions using a single data point h(i,:)
ℓ . We therefore have,

for ℓ = 1, . . . :

⟨Lℓ⟩q(Hℓ−1)
= ⟨Lℓ+1⟩q(Hℓ)

=
n∑

i=1

qℓ+1∑
j=1

〈
L(i,j)

ℓ+1

〉
q(h

(i,:)
ℓ)

,with:

〈
L(i,j)

ℓ+1

〉
q(h

(i,:)
ℓ)

= −1

2
log(2πβ−1

ℓ+1) +
βℓ+1

2
(h

(i,j)
ℓ+1)

2 − βℓ+1tr
(
h
(i,j)
ℓ+1Ψ

(i,:)
ℓ K−1

uℓuℓ
u
(j)
ℓ+1

)
− βℓ+1

2
tr
(
K−1

uℓuℓ
u
(j)
ℓ+1(u

(j)
ℓ+1)

⊤K−1

uℓuℓ
Φ

(i)
ℓ

)
− βℓ+1

2

(
ξ̂
(i)
ℓ − tr

(
Φ

(i)
ℓ K−1

uℓuℓ

))
.

After computing the terms ⟨Lℓ+1⟩q(Hℓ)
, we now further take the expectations of Lℓ+1

with respect to q(Hℓ+1) and q(Uℓ) to obtain the expectation of the preliminary bound
with respect to the full variational distribution Q:〈

L(i,j)
ℓ+1

〉
Q
= −1

2
log(2πβ−1

ℓ+1) +
βℓ+1

2
tr
(
(m

(i,j)
ℓ+1)

2 + (S
(i)
ℓ+1)

(j,j)
)

− βℓ+1tr
(
m

(i,j)
ℓ+1Ψ

(i,:)
ℓ K−1

uℓuℓ
µ
(j)
ℓ+1

)
− βℓ+1

2

(
ξ̂
(i)
ℓ − tr

(
Φ

(i)
ℓ K−1

uℓuℓ

))
− βℓ+1

2
tr
(
K−1

uℓuℓ

(
µ
(j)
ℓ+1(µ

(j)
ℓ+1)

⊤ +Σℓ+1

)
K−1

uℓuℓ
Φ

(i)
ℓ

)
, (C.5)

We can now use equations (C.4) (generalised for the multivariate case) and (C.5)

C.1 Bound on the marginal likelihood 205

into the equation (C.3) for the bound, to obtain the final expression:

F =
n∑

i=1

(
p∑

j=1

〈
L(i,j)

L+1

〉
Q
+

L∑
ℓ=2

qℓ∑
j=1

〈
L(i,j)

ℓ

〉
Q
− KL

(
q(h

(i,:)
1) ∥ p(h(i,:)

1)
)

+
1

2

L∑
ℓ=1

qℓ∑
j=1

(
log(2π) + 1 + log(S

(i)
ℓ)(j,j)

))
−

L+1∑
ℓ=1

qℓ∑
j=1

KL
(
q(u

(j)
ℓ) ∥ p(u(j)

ℓ)
)
.

	Contents
	List of Figures
	List of Tables
	Notation
	1 Introduction
	1.1 Outline of the Thesis
	1.2 Associated Publications and Software

	2 Gaussian processes
	2.1 Preliminary
	2.1.1 From Gaussian Distributions to Gaussian Processes
	2.1.2 From Bayesian Regression to Gaussian Processes
	2.1.3 Covariance Functions
	2.1.4 Latent Inputs
	2.1.5 Uncertain Inputs

	2.2 Sparse Gaussian Processes
	2.3 Variational Sparse Gaussian Processes - a Unified View
	2.3.1 The Preliminary Variational Bound L <= log p(Y | U, X)
	2.3.2 Marginalisation of the Inducing Outputs
	2.3.3 Collapsing the Inducing Variational Distribution
	2.3.4 Comparison of the Sparse Methods

	2.4 Discussion

	3 Variational Marginalisation of Latent Variables in Gaussian Process Models
	3.1 Background
	3.2 Gaussian Processes with Latent Variables as Inputs
	3.2.1 Different Latent Space Priors and GP-LVM Variants
	3.2.2 Drawbacks of the MAP Training Procedure

	3.3 Variational Gaussian Process Latent Variable Models
	3.3.1 Standard Variational Bayesian Inference
	3.3.2 Standard Mean Field is Challenging for GP-LVM
	3.3.3 Tractable Lower Bound by Introducing Auxiliary Variables
	3.3.4 Collapsing the Inducing Variational Distribution
	3.3.5 Discussion on the Different Forms of The Variational Bound
	3.3.6 Applying the Variational Framework to Different GP-LVM Variants
	3.3.7 Time Complexity and Very High Dimensional Data

	3.4 Predictions with the Variational GP-LVM
	3.4.1 Predictions with the Standard Variational GP-LVM
	3.4.2 Predictions in the Dynamical Model

	3.5 Demonstration of the Variational Framework
	3.5.1 Covariance Functions
	3.5.2 Visualisation Tasks
	3.5.3 Human Motion Capture Data
	3.5.4 Modeling Raw High Dimensional Video Sequences
	3.5.5 Class Conditional Density Estimation
	3.5.6 Big Data

	3.6 Discussion

	4 Uncertain Inputs in Variational Gaussian Processes
	4.1 Background
	4.2 Uncertain Inputs Reformulation of GP Models
	4.2.1 Variational (Back)-Constraint

	4.3 Gaussian Process Learning with Missing Values
	4.3.1 Semi-described Learning
	4.3.2 Auto-regressive Gaussian Processes
	4.3.3 Semi-supervised Learning

	4.4 Discussion and Future Work

	5 Manifold Relevance Determination
	5.1 Background
	5.2 Model
	5.2.1 Manifold Relevance Determination
	5.2.2 Bayesian Training
	5.2.3 Generalisation to Many Views and Optimization
	5.2.4 Inference

	5.3 Experiments
	5.3.1 Toy data
	5.3.2 Yale Faces
	5.3.3 Pose Estimation and Ambiguity Modelling
	5.3.4 Classification
	5.3.5 Multiview Models and Data Exploration
	5.3.6 Automatic Correlation Learning of Output Dimensions

	5.4 Conclusions

	6 Deep Learning with Gaussian Processes
	6.1 Background
	6.1.1 Function Composition for Deep Learning
	6.1.2 Process Composition
	6.1.3 Inference Challenges and Expressiveness
	6.1.4 Model Capacity and Regularization in Deep GPs
	6.1.5 Unsupervised Deep Learning

	6.2 Deep Gaussian Processes
	6.2.1 Probabilistic Definition
	6.2.2 Variational Inference in Deep GPs Within a Layer
	6.2.3 Variational Inference in Deep GPs Across Layers
	6.2.4 Supervised Learning
	6.2.5 Autoencoders

	6.3 Experiments
	6.3.1 Toy data
	6.3.2 Unsupervised Learning
	6.3.3 Autoencoders

	6.4 Conclusion and Future Work

	7 Conclusions and Discussion
	7.1 Summary of Contributions
	7.2 Future Work

	References
	Appendix A Useful Identities
	A.1 Gaussian Identities
	A.2 Matrix Identities
	A.3 Useful Formulae for Derivative

	Appendix B Variational GP-LVM
	B.1 Further Details About the Variational Bound
	B.1.1 Calculating the Explicit Form of q(u)
	B.1.2 Detailed Derivation of the bound in Equation (3.23)

	B.2 Calculating the phi and psi Quantities
	B.3 Derivatives of the Variational Bound for the Dynamical Variational GP-LVM
	B.3.1 Derivatives w.r.t the Variational Parameters
	B.3.2 Derivatives w.r.t theta and beta

	B.4 Variational Lower Bound for Partially Observed Test Data
	B.4.1 The Variational Bound in the Test Phase and Computational Issues
	B.4.2 Calculation of the Posterior for the test phase of Equation (3.4.1)

	Appendix C Deep Gaussian Processes
	C.1 Bound on the marginal likelihood
	C.1.1 The preliminary bound for the deep GP
	C.1.2 The Final Form of the Bound

