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Abstract 

The amount of music available for digital archival and analysis increases steadily and 

swiftly. As more people listen to more music it is increasingly useful to reconsider aspects 

of the tools used to playback this audio. 
One of these aspects is that of navigating around a music track. I propose to enhance 

the user experimence of audio playback software by providing with any musical audio 
track played a visual depiction of the contents in such a way that it may be utilised with 

a minimum of effort. 
The amount of computation power for the processing of these musical audio signals is 

also increasing. On modern hardware, techniques for creating images from audio content 

may realistically utilise modern signal processing and machine-learning techniques. I pro- 

pose a number of novel visualisation techniques drawing from state-of-the-art musical-audio 

signal analysis techniques. 
By way of proving the thesis I prototype a number of methods to do this content-based 

depiction and integrate them into a common piece of software for personal music playback. 
I show empirically how usage of the novel visuals differs to both typical playback software 

with no visuals and the traditional amplitudal representation of audio. 
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Chapter 1 

Introduction 

I don't know anything about music. In my line you don't have to. " 

-Elvis Presley (1935-1977) 

1.1 Overview 

The last quarter-century has seen the digital representation of music, and in particular 

music recordings, grow to become the most popular distribution format. From the en- 

gineering novelty of the Compact Disc by, among others, Doi and Immink (1998) it has 

progressed to the Internet distribution of MPEG-compressed audio (e. g. MP3 files) and 
the growth of portable players for this media (e. g. the Apple iPod). 

One difference between previous formats of media and MP3 files is, like the transition 
from tape to disc for secondary computer storage, simultaneous digital random access-1 A 

number of points in the music can be accessed and processed at once with no perceivable 
performance degradation; this functionality has not existed in any mainstream media 
before and throws open the door to a multitude of uses, one of which the present work 
addresses. 

With the increased popularity, fixed-function playback hardware has been largely re- 
placed with far more flexible playback software or (upgradable) firmware. People are 
becoming increasingly comfortable with-and reliant upon-this software for music play- 
back. Therefore, even modest improvements in the design of such software would have a 

cumulatively large beneficial effect when considered in a worldwide scope. 
Until recently, intra-track music navigation was limited due to the serialised nature 

of the playback medium (e. g. compact cassette). Navigation was limited to operations 

of rewinding and fast-forwarding still commonplace on CD-players and video cassette 

'Compact Discs do allow a restricted kind of random access though only for a single read-stream and 
this would typically be hidden from the user. 
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recorders or difficult random access with the needle of a gramophone player. Other contrib- 

utory factors, such as a limited visual interface and minimal numerical processing power 
had conspired to prevent any significant improvement in navigation facilities. 

With the exception of the addition of a basic random-access interface, popular music 

playback software still has a relatively simplistic interface for in-track navigation. This 

thesis posits that these interfaces are sub-optimal, and that with the current technology 

superior interfaces can be devised that better allow navigation within a piece of musical 

audio. 

1.1.1 Title Definitions 

I will now discuss exactly what I mean by the given title. First by defining the terms 

properly then second by identifying driving factors and related fields. 

Music 

Discussed in the literature by for example Terhardt (1982), there are three different classes 

of representation of music, which indeed may be thought of as different meanings for the 

noun itself. These are auditory, concerned with our perception of the phenomenon, acoustic 

concerned with the objective observations that can be made from the sound and symbolic 

concerned with the music theoretic ideas such as notes, idealised timing relationships and 

so forth. By utilising only the acoustic data and foregoing any meta-data such as the score 

or annotated timeline, the present work focuses concretely on the former two aspects. In 

essence, we take music to mean music recordings rather than music compositions. 

Visualisation 

According to the Oxford English Dictionary, `visualisation' is: 

"1. trans. To form a mental vision, image, or picture of (something not 

visible or present to the sight, or of an abstraction); to make visible to the 

mind or imagination. 

2. absol. or intr. To form a mental picture of something not visible or 

present, or of an abstract thing, etc.; to construct a visual image or images in 

the mind. 
3. trans. To render visible. "-Simpson et al. (1989) 

Literally we will take meaning 3; "to render visible a musical audio recording". However 

it is clear from the other definitions that the general meaning of visualise has to do with 
the perceiver rather than the perceived-the mind's representation over any physical form. 
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These definitions are helpful in describing the true goal towards which this work is 

merely a small step. It is an attempt, in part, to work towards a systematic method of 
creating an image which, when seen, is perceived as being the same `thing' as the sound 
when heard. In this work we wish to create this image from the pulse-code modulation 
information only. Exactly what it means for a sonic-based perception to be `the same 
thing' as a visual perception is an interesting question in itself and is alluded to by Spence 
(2001). 

Navigation 

This thesis is concerned with how such a thing helps one to navigate around a piece of 
musical audio media. For the word `navigate', we once again defer to the OED (using the 
only term not about some form of transport): 

"The action or process of moving around a file, file system, website, etc. "- 
Simpson et al. (1989) 

Thus, by aiding navigation, the aim is to help the action of moving around within a 
musical recording (generally while being played back). This being an empirical study, I 

attempt to quantify the amount of help given in several ways, but typically with respect 
to some particular task to be completed. 

Common 

The term common navigation is used in order to distance the present work from the arenas 
of professional navigational aids and/or scientific visualisation. This work is concerned with 
aspects of navigation as used by people whilst listening to music in the most general sense. 
Though this work may be of interest and use in other, more niche, areas I do not seek to 

address them explicitly. The assumptions, requirements and metrics used, especially with 
regard to the user interface and expected tasks, vary considerably. 

1.1.2 Driving Factors 

A improvement in the navigation facilities of common music playback systems is desirable 
for practical reasons alone. In addition to providing such practical benefit, this work aims 
to further our understanding of musical audio information extraction by determining the 

characteristics of music that become apparent with a variety of audio processing methods. 
Such an understanding may help further work not just in terms of musical audio visualisa- 
tion, but also in other fields of music and audio information retrieval where it is important 
to understand exactly what is being represented by the information at hand. 
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While the Self-Organising Map has been proposed for several music and audio-related 
tasks (see section 4.2.2), it has not yet been used to provide a simple representation of a 

single piece of music. As such this work provides ideas, information and empirical observa- 
tions concerning the preprocessing, parameters and outcome of using such dimensionality 

reductions on musical audio data, as a method of decoding the intrinsic musical informa- 

tion. Related areas that will therefore benefit from this work include intra- and inter-track 

similarity measures. 
There is a large body of work on empirical studies of navigation within audio documents 

in the context of speech but almost none for musical documents. The small empirical study 

of real and current user behaviour documents a basic understanding of humans' search and 

retrieval approaches. Furthermore the comparison of various performance metrics between 

different visualisation aids helps to understand how humans react to different annotations 

and exactly how these annotations manifest improved performance. Further understanding 

of these HCI phenomena is advantageous for continued improvements in the field. 

1.1.3 Disciplines 

Several disciplines are involved in the present work; I will briefly document the subset of 
disciplines and how they interrelate. 

Computer Science 

The discipline of computer science forms the backbone to this work. The fields of computer 

audition, information visualisation, human computer interaction and neural networks (NN) 

are all important areas that the present work draws on and in some cases contributes to. 

Audio-content navigation, generally focusing on speech data, is a related field; in par- 

ticular the What You See Is What You Hear (WYSIWYH) system of visually annotating 

a voice audio timeline is a proposal by Hirschberg et al. (1999) in spoken-word audio sim- 
ilar to that in the present work. Usage of content-based information on audio recordings 

provided visually in the user-interface of a (real world) playback device dates back to the 

nineties, with the work of Roy and Schmandt (1996). 

Human-Computer Interaction (HCI) is perhaps the field in which, as a whole, the 

present work primarily belongs. Concerning itself with our understanding of how we, as 
humans, interact with machines, HCI can be seen as the field encompassing user interface- 

design engineering. Being concerned with the actions of humans to certain conditions, it 

is heavily related to the field of psychology. HCI is drawn upon and contributed to in the 

present work mostly with chapter 2 where in-track navigation is considered empirically. 
Neural networks (NN) may as a whole be considered a discrete discipline in the field of 

computer science. Though there are many varieties of NN, they are generally inspired by 

our limited understanding of the brain. Typically, a neural network is considered a `black 
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box' non-linear transformation taking some set of inputs and providing a set of more useful 

outputs. Before working properly they must first go through a'training phase' whereby the 

context of the data is learned; the parameters of this phase will make the difference between 

a useful and useless end result. They may be denominated into two types; supervised 

networks where prototype mappings of inputs to outputs are given in the training phase 

and unsupervised where such mappings are not provided. The present work proposes the 

adoption of a particular unsupervised neural network, the Self-Organising Map, to help 

generate helpful visualisations. 

Information Visualisation 

Information visualisation, which is in essence the present work's proposal to aid navigation, 
is itself a rich, inter-disciplinary field with many heavily context-based avenues. Spence 
(2001) argues that exploration, presentation and indeed the navigation of data are each 
intrinsically linked to visualisation. 

One should not ignore more philosophical streams of thought on visualisation such as 
those of Wittgenstein (2004) and in particular the arguments of Biggs (2002) and Sterrett 

(2004) concerning it. The representation of an abstract object or event had been, until 
Wittgenstein, largely a non-issue. An idea or event typically had a canonical physical 
form; an example might be the symbolic score for a piece of music or the script for a play. 
With the advent of a reusable, distributable physical form of representation for a piece of 

music, it becomes clearer to see how Wittgenstein's ideas came to form. 

One of the key insights that Wittgenstein lends us, and which the present work im- 

plicitly draws upon, is the concept of multiple representations of the same intrinsic article, 

and that transformations exist in order to change from one to the other. 

"There is a general rule by means of which the musician can obtain the sym- 

phony from the score, and which makes it possible to derive the symphony from 

the groove on the gramophone record, and using the first rule, to derive the 

score again. That is what constitutes the inner similarity between these things 

which seem to be constructed in such entirely different ways. "-Wittgenstein 

(2004), 4.0141. 

Unlike Wittgenstein, however, the present work is concerned with the transformation 

between the acoustic "groove" and a second representation which may be considered more 

useful. Wright (1994) also offers more esoteric thoughts on visualisation. He concludes 

visualisations "become a focus for conceptualism, as tools for thinking. ... The scientific 
image can `objectify' knowledge into visible form, but at the same time `situating' it with 

respect to the forms of subjectivity implied in its reading". While the context of this work 
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is science and mathematics2, it nonetheless concludes that visualisation is a useful means 
of dissemination of knowledge to the public. 

Psychology 

Psychology and psychoacoustics play an important role in providing systems and theories 

with which working models of our appreciation of musical audio may be created and 
developed. Psychoacoustics improve our understanding of the brain's representation of 

sound, and thus how it may be optimally represented for a knowledge-based or general 

signal-processing system. Psychology and (more importantly) music psychology can help 

us to understand how music is different from other sounds; a key idea if the overall aim is 

to be achieved. 
Since the present work concentrates on mainly low-level aspects of the musical au- 

dio, psychology plays only a small role with psychoacoustics permeating through each of 
the proposals. Our analysis and evaluation of the navigation aids is largely grounded in 

statistical tests heavily related to and used within the field of psychology. 

Electronics and Music Technology 

Signal processing and the general field of informatics plays a most important part in 

extracting useful information from the incredibly dense data source of a sound-recording. 
These disciplines, together with psychoacoustics, provide a pool of understanding and 
knowledge which is important to consider when thinking about processing sound signals. 
Thus music technology, and audio engineering in general, provide a solid base from which 
the present work advances. 

Music Information Retrieval 

Music information retrieval (MIR) is a very multidisciplinary field drawing people from 

subjects as diverse as computer science and musicology together with librarians and music- 
technologists. It may be viewed as being in a similar field to computer vision as it shares 

many of its premises; i. e. information retrieval from source signal, high-level feature 

extraction and search for invariant measurements. It may also be seen as a complement 
to information-retrieval and dynamic-library-searching, in a similar field to the currently 

popular topic of data-mining. Within the fields of MIR there are several on-going research 

avenues including segmentation of music, classification of music, methods for browsing 

large music archives, and music search and retrieval. 
Much of the related work discussed in chapters 3 and 4 is published within the MIR 

community, as indeed are portions of the present work. As such MIR contributes possibly 

2using chaos imagery as its main example 
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more than any other discipline to the basis of the present work. Self-similarity matrices 

were presented as an MIR device (for visualisation), and much of the utilisation of a 
Self-Organising Map for music visualisation is inspired by the Islands of Music work, also 
largely a MIR-grounded project. 

Music Theory 

In defining our aim as including content-based visuals, the natural source of information 
for the visuals is not the music notation but rather the audio signal data that is heard by 
the listener. I consider the application of theory such as that in Lerdahl and Jackendoff 
(1983) to such a low-level form of data out of the scope of this work. Though signal to 

notation transcription systems do exist-and indeed have improved throughout the course 
of this research-they do not yet perform appropriately robust or accurate. 

By addressing the playback of media files, the present work is concerned with perfor- 
mances as opposed to compositions. With western classical music, performers will typically 
try to play the piece exactly as the composer intended (though subtle variations in perfor- 
mance may be analysed and visualised with techniques such as those described by Dixon 

et al., 2002a). This is in stark contrast to jazz, especially Dixieland jazz and early folk 

blues music, where performances will generally attempt to create a new interpretation of 
the composition by varying the melody, harmonies and even time-signature. 

Other idioms of music, for instance electronic art music and various forms of electronica 
(in the modern sense of the word meaning `experimental dance music') including IDM3 

and post-rock, may use a particular recording as the only definitive "specification" of 

a given piece. 4 This results either from it being unnecessary or simply impossible to 

describe it in a substantial way notationally; Middleton (1990) writes "in most Western 

popular music since rock and roll ... `non-notable' parameters are of great and often 

predominant importance. ". Music which relies heavily on sampling or real-time alteration 
(e. g. turntablism, the art of creating music through phonograph turntables, using it in the 

spirit of an instrument) or whose exact composition is left undefined (e. g. indeterminate 

and aleatoric music) are all examples of idioms where using notation for description of a 

piece is troublesome. Other forms of notation have been introduced to address some of 
these concerns e. g. graphical and prosaic notation. Nonetheless, the limitations of common 

music notation mean that much of the music composed in the present-day is notated only 
in the form of a digital recording. 

3a widely accepted, though often criticised term, being an acronym for intelligent dance music 
4This may be seen as a blurring of the boundary between composition and performance. It seems to us 

a reasonable result of the culture of artists by-and-large being the only performers of their work, a trend 
surely following from the widespread ownership of performance playback devices (i. e. record players and 
their modern counterparts). 
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1.2 Argument 

I believe that inclusion of a content-based visual in popular playback navigation interfaces 

speeds up certain common tasks by complementing the navigation interface. I will argue 
this by showing that it is easy to implement via a modern signal processing framework 

and furthermore very fast to compute, that it does not provide a distraction and that its 

appearance is not considered unattractive (a concern technically less than rigorous but 

of great practical importance). I will first demonstrate how it intuitively shows musi- 

cally important information such as hierarchical structure and secondly conduct several 

moderately sized user studies in order to test this empirically. 

1.2.1 Aims and Objectives 

The previous section presented a brief discussion of the motivation for carrying out this 

project. It explained the need for the work, and where the work fits in to the general 
discipline. The concrete objectives I aim to achieve with this work are: 

" Propose a basic working theory of users' music playback navigation in terms of 

purpose and strategy. 

" Determine methods of automatically generating visuals from musical audio which 

aid the user in determining the content of the track for navigation purposes. 

" Demonstrate such methods working on a mainstream popular music player with 

commodity hardware. 

To achieve these aims, the following intermediate steps were taken: 

"I reviewed the current state of the art of music track navigation aids, including the 

HCI technology, their current usage and the reasons for usage. 

"I reviewed the current state of the art for visualising musical audio. 

"I designed several techniques to project small portions of audio content (audio texture 

windows) into a colour. 

"I designed a trial framework for determining how useful the proposed navigation aids 

were. 

"I determined the degree of objectivity of certain characteristics of music in order to 

validate the trial framework. 

"I conducted trials under this and another task-based framework, and used statistical 

models on the results to evaluate the techniques and make conclusions. 
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1.2.2 Thesis Outline 

Chapter 2 concerns the nature of music track navigation in playback and its history, I 
discuss exactly what it is used for, and detail a case study into the real usage a typical 

navigation system. 
Chapter 3 discusses the techniques that have been in wide use for generating visuals 

of musical audio. I then propose several novel techniques for generating content-based 
visuals, in particular techniques for transforming small blocks of audio directly to colour. 
I illustrate and discuss these techniques with both real-world musical audio and portions 
of audio created specifically to test certain aspects of visualisation. 

Chapter 4 continues from chapter 3 by discussing the use of dimension-reduction tech- 

niques, in particular the Kohonen Self-Organising Map neural network, in order to produce 
a perceptually topologically correct mapping between audio blocks and colours. I propose 
a novel use of the SOM for projecting audio data into colour by mapping the audio onto a 
pre-set hue plane. A similar version of the technique using principal component analysis 
rather than the SOM is also proposed. The techniques are discussed as in chapter 3. 

Chapter 5 discusses the trial framework devised to test the navigation aids. I propose 
two methods; a simple question-answer task list and a time-limited `boundary' search. 
For the second, I discuss and present empirical evidence of objective boundaries in music. 
The results found by conducting the trials are then presented and discussed together with 

statistically significant statements that may be made. 
The thesis concludes with chapter 6 which discusses the contributions made by this 

body of work, the empirical evidence collected and statements that may be taken from it. 

I go on to discuss future directions for this work in terms of HCI, visualisation and signal 

processing. 

1.2.3 Thesis Summary 

Proposals Time-to-space mapped visualisations of music facilitate navigation 
through audio recordings; visualisations are automatically generated 

using a self-organising map. 

Goals " Determine how useful (if at all) a visual navigational aid is to have 

in common audio playback tools. 

" Determine from the musical audio visualisation methods discussed 

which is most useful, and the reasons why this is the case. 

Contributions " Data on, and analysis of, humans' use of intra-track navigation. 

" Collection of data on and analysis of actual usage characteristics of 
humans doing antra-track navigation for task completion. 
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" Development of novel methods for creating visuals from musical au- 
dio, specifically by projecting discrete audio chunks into a colour: 

- RGB-mapped bandwise magnitude. 

- RGB-mapped bandwise rhythm magnitude. 

- PCA-projected histogram features. 

- SOM-projected histogram features. 

" Comprehensive evaluation of techniques for use by humans on track 

navigation. 

Conclusions " People are able to effectively take cues from automatically-generated 
visuals and utilise them effectively to summarise and navigate 
thioXIg&i 8. xo data. 

" Psycho-acoustic preprocessing on the audio signal results in percep- 
tually more meaningful visuals. 

. The SOM is able to generate a visually simpler image with no loss of 
performance over other more direct methods. 

"A traditional loudness waveform envelope visual gives a less useful 
representation than other texture or SOM-based methods. 

. Rhythmic qualities of a music audio signal lend themselves less to a 
useful visualisation than basic spectral surface qualities. 

" Absolute meaning in terms of colour is not a prerequisite to a useful 
audio visualisation; relative meaning is enough to provide a helpful 
image. 

1.3 Chapter summary 

This chapter has presented an introduction to the work of this project. It has introduced 
the principal topics of research and discussed the motivation for the investigation of these 

particular areas. The discussion of the problem resolved into a statement of the aims 
and objectives of the work, and how these relate to the specific requirements to be met. 
Following the presentation of the motivation and central themes of the thesis, an outline 
of the thesis as a whole has been given. 



Chapter 2 

Music Playback Navigation 

"I see my path, but I don't know where it leads. Not knowing where I'm 

going is what inspires me to travel it. " 

-Rosalia de Castro (1837-1885) 

2.1 Introduction 

I begin this chapter by introducing the concept of navigation within a musical audio 

recording. This is important to the content of the thesis to make the reader aware of the 

specific reasons for navigating at all, the variety of navigation mechanisms proposed and 

popularly used and the difficulties that they present the user. 

Chapter Summary 

Following the present introduction, the chapter will begin with a review of the literature 

most directly concerning musical audio track navigation. I cover the popular navigation 
bar UI mechanism evident in all mainstream musical audio playback software. I review 

other techniques of navigating through musical audio such as the Link Player and the 

rhythm-metadata enabled navigation. The review is the broadened to include techniques 

proposed for navigation audio generally, and then in particular spoken-word audio such as 
voicemail processing. 

By the end of the literature review I will have discussed the current state of the art 
in musical audio navigation. I will have demonstrated that though there is a considerable 
body of work dedicated to understanding user usage patterns in spoken word recording 
information retrieval, little has been done specifically in usage patterns of navigation for 

musical audio information retrieval. 
The chapter continues with two studies conducted in order to better develop under- 

standing of common aims in musical audio recording information retrieval; I describe the 

11 
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questionnaire and interviews with users of musical audio playback software conducted in 

order to determine the sorts of tasks they think they require. I then analyse and discuss 

the actual actions taken by users of the random-access navigation bar when attempting to 

carry out a set of tasks designed around the results of the prior investigation. 
By the end of the chapter the reader will have some understanding of the concept and 

usage of the navigation bar when used as a popular navigation aid. 

Contributions 

1. I present empirical data and a discussion on the uses of intra-track navigation for 

musical audio. 

2.1 present in-depth traces of the listener's experience documenting actual usage char- 

acteristics for reference task completion. 

2.2 Related Work 

The mature, mainstream literature (by which is meant a full volume with commentary and 

reference) on HCI e. g. Dix et al. (2004) and Preece et al. (1994), when considering musical 

audio navigation interfaces, has not progressed much further than a fairly superficial com- 

mentary on the video recorder metaphor (play/stop/fast-forward/rewind). On reflection 
this should not be especially surprising; PC-based musical audio playback software has not 
been in common use for more than around ten years, essentially since MP3 became popular 
through its ability to be decoded on commodity hardware. Moreover such software has 

only started gaining popular acceptance (i. e. outside of computer and music enthusiasts) 

acceptance in the time period over which the present work was produced with the advent 

of services like iThnes and Napster. 
Musical audio (and, largely, audio) navigation interfaces can be largely broken down 

into two types; those that present an overall sequential and continuous metaphor, and those 

which provide a discretised and possibly nonlinear `hyper-linked' metaphor. Examples 

of the former would be the common navigation bar and the classic fast-forward/rewind 

interfaces found on cassette recorders; examples of the latter would include the work by 

Kosonen and Eronen (2006) and ESPACE2 presented by Sawhney and Murphy (1996). 

2.2.1 Navigation Bar 

An early communication by Aigrain et al. (1995) gives a reasonable definition of the term 

navigation bar: 

"A scrollbar with a cursor indicating the "present" position in the document 

and one can directly access some relative position in the document duration 
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[sic] by positioning this cursor. "-Aigrain et al. (1995) 

Though even comprehensive HCI literature such as the volume by Dix et al. (2004) 
does not explicitly analyse it, it seems likely that the popular audio navigation bar stems 
from two well understood user interface (UI) primitives; the scroll bar and the progress 
bar. The progress bar is a read-only indicator of completeness. A typical example would 
be a download window in a modern Internet browser which will represent the amount of a 
file downloaded. The scroll bar is typically associated with some sort of windowed view; it 
is a control interface allowing the user to change (and query) which portion of a document 
is currently being viewed. Typically they are used because the document being viewed 
is larger than the limited screen space in which to view it. An example would be the 

scroll-bar to the right side of a web browser window, when the web page being viewed is 
too big to fit on screen at once. 

The navigation bar combines these two to form, depending on which UI primitive 
you assume as parent, either a scroll bar which progresses automatically or a progress 
bar whose progress may be reset as desired and to which no graphical view is attached. 
Several examples of musical audio navigation bars may be seen in figure 2.1. One particular 
function that the navigation provides over the older video recorder inspired bars, is the 

ability to have random access into the musical audio recording, by providing a one-to-one 

mapping between points on the horizontal of the bar to moments in time of the music. 
This concept is essential for the subject material of the present work, which theorises that 

certain augmentations to this basic metaphor will significantly increase the utility of the 
UI. We will now discuss the navigation bar in more detail. 

The navigation bar gives the user a visual cue, which may help to imagine (or visualise) 

where in the music certain events are, and where they are listening currently. This is 

missing from conventional playback devices such as a CD' and cassette recorder. 

2.2.2 Musical Audio Navigation 

The earliest system suggesting navigation of specifically musical audio recording is that 

proposed by Aigrain et al. (1995). The interface includes several representation `strips' of 
the musical audio which correspond to segmentation results. Multiple segmentations are 
created from different feature sets including dynamics, frequencies, meter and stereo effects. 
The presentation of these features is somewhat cryptic and is evidently designed for the 
trained viewer. Navigation is performed using the familiar random access navigation-bar 

metaphor. 
The authors value discrete representation above continuous, suggesting that a timeline 

la display of the current time through the track is not enough (on its own) to give an idea of how far 
through playing it is 
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(a+) a rnaroN v«"r, ion I I. riinning , r, I i, untu Linux ! b) Microsoft Windows Media Player version 
7.0. f{ rnr Wirr ri Ali, n.,,, ft \\ inriutcs 2000. 

Figure 2.1: Three examples of the audio navigation bar in popular musical audio playback 

applications. The navigation bar of the interface has been highlighted over the original 
image. 

of "pre-organized selectable objects" are more manipulable than a continuous representa- 

tion. 

One of the earliest proposed systems explicitly designed for content-based navigation 

of musical audio is the Link Player, detailed by Blackburn and DeRoure (1998). It utilises 

melodic pitch-contours with a database of points where contours are found in songs. The 

user may ask to be directed to a different point in a different audio document matched 

according to the contour. As such this is not navigation between points in a track per 

se, but rather navigation between points in all tracks. They conclude that melodic pitch 

contours typically do not work especially well for this task, suggesting that information of 

aspects such as rhythm might be better suited. 

A rhythm-metadata enabled browser was recently proposed by Kosonen and Eronen 
(2006). Designed for popular use on mobile devices, it allows the listener to augment the 

music being listened to by means of its section-skipping interface. Once in the interface, the 

current section will repeat seamlessly, utilising segmentation and beat-tracking technology. 
The user may continue playing the track from that point onwards or may move forward 

or backward into the neighbouring sections, replaying it until a further decision is made. 

(c) Nullsoft WinA\MP version . 5. running on Microsoft 
Windows XP. 
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This approach is well suited to the mobile-device platform, where summary and repre- 
sentation methods cannot necessarily be relied upon due to the limited space for visuals. 
Other possible uses aside from navigation are given; users could, for instance, automat- 
ically loop their favourite parts of a track. That said, there is no significant reason to 
believe this form of navigation would be of popular use in a desktop environment; aside 
from the relatively weak discussion of the implementation the authors provide no further 

argument. Evidence that people would indeed utilise its functionality (e. g. a questionnaire 

or user study), would significantly contribute to the value of the proposal. 
Aigrain (2001) was one of the first to publish a commentary explicitly referring to 

systems for navigation of musical audio utilising static content-based visual representations 

of the audio. He argues that the optimum representation-based approach would be a visual 

annotation that could present the content in various levels of abstraction from the acoustic 
to the notational: 

"But [a representation-based browser] faces the extreme difficulty of au- 
tomatic transcription and also suffers from the fact that the representation 
hides some important features of the content (for instance, voices for speech or 

performance for music). Static representations of audio content take all their 

value when they can be presented at different scales and levels of abstraction 

and directly associated with sound production. "-Aigrain (2001) 

The present work does not attempt such an all-encompassing navigation aid for two 

main reasons. Firstly, and as Aigrain points out, content-based transcription is a tremen- 

dously difficult task and only applicable for relevant music. Secondly, it is an open question 

as to how to provide a compact interface to such information. The present work aims to 

provide an interface readily comprehensible and adaptable to popular playback software. 

2.2.3 General Audio Browsing 

General audio browsing interfaces do not restrict themselves to any particular audio con- 
tent. Typically this is an easier problem to solve than information retrieval in any one 

particular context since the features to identify and differentiate are coarser (e. g. music 
from speech rather than rock from jazz). Since computation power (and general under- 

standing of the problems involved) is forever increasing, there is a significant amount of 

relatively early literature dedicated to this subject. 
Kimber and Wilcox (1996) present an early example of attempting to augment a basic 

random-access navigation system for general audio (film soundtracks is the example given) 

with automatic index generation from content-segmentation. The latter technology is 

described at length in section 3.2.3. The browser interface presents several timelines of 

each of the `voices' (speakers, songs, applause etc. ), which the user may utilise to direct 
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the random-access navigation. This would have several drawbacks for musical audio; in 

many types of musical audio there is not a well-defined (or usefully small, at any rate) 

number of voices. Furthermore, having multiple timelines takes a significant amount of the 

user-interface; only a far more compact representation of the content would be acceptable 
for a popular playback application. 

Tzanetakis and Cook (1999) presented a prototype implementation of an audio 
browser which includes basic segment boundaries together with a CD-player like navi- 

gation interface of fast-forward/rewind along with next/previous segment. The display 

is representation-based giving the user an image of the audio portrayed as a basic wave- 
form. An informal user-study suggests that automatic content-based segmentation can 
help with navigation through the audio document. A comparison of different persons' 

manual segmentation of musical audio reveals common parts labelled as segment bound- 

aries, suggestive of an underlying `objective' ground truth segmentation. 
Comparatively, the present work explores a different approach giving the user more 

freedom in their control method (random-access rather than sequential jumping), though 
both approaches appear quite valid for ultimately easing navigation for the typical users 

of popular playback software. 
Tzanetakis and Cook (2000b) present some follow-up work to the above. A small user 

study suggests once again that there is reason to expect some degree of objectivity in 

segmentation of musical audio, with around 70-80% of segment boundaries being agreed 

on by the majority of participants. The content segmented includes both musical audio 

and music/speech audio; no figures are given for musical audio alone. 
SATIE is a piece of interactive software for expert use intended to guide the viewing 

of, and navigation within, musical recordings presented by Lepain (1997). In order to aid 
interpretation, understanding and navigation within the musical track, it presents multiple 

content-based and manually populated representations of the track. The navigation is a 

simple random access metaphor similar to the navigation bar concept previously described. 

At the time of publication, only the two basic representations, waveform and spectrogram, 
had been implemented though plans for more ambitious representations were proposed. 
Although founded in a somewhat different context (SATIE being developed primarily for 

an expert audience), this work does share the notion of providing aid for random-access 

navigation, though presently I will provide a more thorough investigation. 

Another interesting outlook on the audio navigation problem is ESPACE2, as presented 
by Sawhney and Murphy (1996). Aiming to provide an accessible system for visually 
impaired users, it is an audio-only user interface which provides a hierarchical and spatial 
interface through the concept of moving in and out of virtual `rooms' (in a similar way to 

the work presented by Kobayashi and Schmandt, 1997, mentioned later). 

These approaches, while ambitious and possibly useful to a minority, are hardly appro- 
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priate for a mainstream application due to, amongst other things, extra costly equipment 

required (multiple speakers), the deterioration of listening experience and the training 

required for a relatively unfamiliar interface. 

2.2.4 Speech Audio Browsing 

Speech audio browsing is another form of audio navigation. The content of the audio is 

that of spoken-word and applications tend to focus on recordings of either single speakers 
(e. g. voicemail) or multiple speakers (e. g. diarization). The challenges faced when making 
a good speech audio browsing interface share a considerable amount in common with those 
focusing entirely on musical audio. The solution, argues Kimber et al. (1995), is similar 
to that proposed in the present work: 

"It is difficult to find specifics in audio recordings because it is necessary 
to listen sequentially... Although it is possible to fast forward or skip around 
[using a random access interface], it is difficult to know exactly where to stop 

and listen. For this reason, effective audio browsing requires the use of indices 

providing some structure to the recording... These [indices] can be displayed 

graphically as a navigational aid in browsing. "-Kimber et al. (1995) 

The interface proposed and prototyped by Kimber et al. is similar to the other audio 

system being proposed at the time by Kimber and Wilcox (1996), both focusing on multiple 
timelines depicting the onset of various voices. 

Kobayashi and Schmandt (1997) suggest utilising people's natural spatial-awareness 
to aid the navigation of audio by mapping the time of the audio document to a spatial 

metaphor: 

"The motion of the sound sources maps temporal position within the audio 
into spatial location, so that listeners can use their memory of the spatial 
location to find a specific topic. "-Kobayashi and Schmandt (1997) 

The NewsComm system described by Schmandt and Roy (1996); Roy and Schmandt 
(1996), proposes and prototypes a device capable of aiding the browsing of audio recordings 

of the news. It relies upon the segmentation of the audio into one of a number of speakers 
or silence in order to give a discrete representation of the audio and to aid users with a 
next/previous speaker interface similar to that described in Tzanetakis and Cook (1999). 

The Dynamic Soundscape project, a follow-up work to News Comm, spatialises several 

streams of audio at various points throughout a recording (spoken word) so that they have 

the effect of apparently coming from various points around the user. They will naturally 

use the `cocktail party effect' to listen to all streams and, when appropriate, `home-in' on 
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a stream of interest by stopping all but a single stream of audio which corresponds to a 

section of the document in question. 
The work of Hirschberg et al. (1999), Hirschberg and Choi (1998) and Nakatani et al. 

(1998) is particularly interesting to us at present since it details a system proposal together 

with empirical data about usage characteristics concerning random-access navigation of 

voicemail documents with visual annotation. The studies suggest, in the field of voicemail 
information retrieval, that random-access navigation on its own is far from optimal: "users 

often lose track of the current audio context, and being unable to determine the sequence 
and structure of different elements of the audio record". Furthermore: 

"obvious signposts such as topic/message boundaries may be less helpful 

than users expect them to be and perhaps even counter-productive to users 

acquiring a basic understanding of the data. Given this result, we are explor- 
ing alternatives to simple topic markers including... acoustic segmentation, 
particularly as a means of enhancing users' ability to extract the information 

they seek from the audio data that has been presented to them. "-Hirschberg 

and Choi (1998) 

We may take this as a (weak, since the context is somewhat different) indication that 

annotation from simple high-level boundaries may not be the best method to approach 
the problem of aiding navigation of musical audio. An acoustic-based representation could 

yet prove more useful in terms of usability, as indeed the present work postulates. 

2.3 Analysis of the Navigation Bar 

Due to the relatively sparse collection of literature explicitly addressing the real-world usage 

characteristics of the navigation bar for musical audio navigation, I conducted two small 
investigations; in the first I solicited information from users of musical audio playback 

software as to how they utilise the (random-access) navigation facilities. In the second 
I devised a set of reference tasks for eight users to carry out; the tasks were largely 

representative of the typical usage of navigation bars. The results and analysis of five of 

these tasks are given in the second section. 

2.3.1 User Study 

I conducted a small user study, soliciting answers from 16 potential users of the navigation 

system from a questionnaire. The aim was to find out: 

" What sort of tasks the navigation interface would be used for. 
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" If the tasks were for information-retrieval purposes, what sort of information would 
he retrieved. 

This initial questionnaire soliciting views from users is in line with typical I [Cl method- 

ology of determining an objective method for evaluating the benefit of one interface over 

another. The reference task agenda proposed by Whittaker et al. (2000) was used as a 
broad guideline when forming this pilot study. To determine the options in the question- 

naire, I included both my own expectations of usage as well as the thoughts of others I 

solicited informally. A copy of the questionnaire given is available in appendix C. 

Content of vocals 

Instrument onsets 

Repetitions & variations 

Limits of verse/bridge/chorus 

Onset of vocals 

Overall structure 

Breaks & pauses 

End of song 

02468 

Number of votes 

Figure 2.2: A bar plot of the results frone the questionnaire given to a number of potential 

users asking what they utilise a navigation interface for. 

The results are plotted in figure 2.2. It is reasonably clear to see frone the small study 

that navigation is used typically to find the content of vocals in presumably popular music. 
Attempting to find overall structure in the music was apparently not it significant priority 
for navigation, suggesting some users imagine they would already have some idea of the 

broad content of the track before attempting to navigate. Finding the end of the song (i. e. 

the outro) and any breaks and pauses inside the track appeared similarly unneeded. Each 

of the other possibilities suggested appear roughly similar in popularity. 

2.3.2 Task Trace Analysis 

In this section I will discuss and analyse the actions taken by candidates asked to perform 

tasks broadly representative of those classes resulting frone the previous section. This will 

not be considered a pure HCl experiment and as such I will not begin by building it model; 

this chapter aims to provide the reader with well-presented data and it discussion noting 

any clear trends. It is from this overview that I will consider the actions to be taken for 

improvement and thereby build a hypothesis proper. 
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Although 23 tasks were given in total, through discarding those tasks whose entire set 

of participants failed to answer correctly, only 22 are left. Five of these will be presented 
here and discussed, but the interested reader may refer to Appendix B for traces relating 
the other 17 tasks. Four of the tasks were finding the time of a particular onset (of either 

a section, instrument or vocals), and one was collecting information about the structure 

of the entire recording. 
In all cases, the participant was alone when carrying out the task. They were told they 

should complete the task as quickly as possible, but that they should take every effort to 

ensure they gave the correct answer. They were given six minutes to practise and become 

familiar with the user interface and were told that the navigation bar should be used to 

reduce the time taken. After completing a task and entering an answer, they were not told 

if they answered correctly. 

Vocals Search 

Figure 2.3 shows the rock-electronica track What I Miss the Most by The Aloof. The 

candidates attempted to find the initial onset of vocals in the track. 

When is start of vocals? 
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Figure 2.3: Candidates were asked to find the start of the vocals in What I Miss the Most 

by The Aloof. (a) marks this point. 

Of all participants, only one (hollow circle) appeared to follow an effective systematic 

approach using random-access navigation. She made three large jumps of around 15-20 

u: uu 1 : VN 
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seconds each, listening for only a few seconds between each until she arrived in a vocal 

section; what is essentially a trinary chop search delivered her at the required point. 
A second participant (filled circle) seemed to be comfortable utilising the random-access 

potential of the UI, but her search is less than efficient; she overshoots, undershoots and 

reviews several portions of the track in quick succession. Interestingly she never actually 
listens to the onset itself, apparently guessing correctly by picking a point somewhere 
between the vocals and instrumental sections. 

Three participants (the upright triangles and diamond) did not utilise the random 

access nature of the navigation bar at all, deciding to listen through almost a minute 

without interruption. It seems unlikely that all three actually liked the music so much to 

abandon usage of the navigation bar, so it seems likely they took this course of action due 

to the absence of clues as to where the vocals might begin (except that they should be 

near the beginning). Another (upturned triangle) jumped a small way into the track and 

essentially listened through, possibly under a similar reasoning. 
One participant (the square) found the correct onset point within 15 seconds, faster 

than any other. However, rather than stopping their search they instead appeared to verify 
it was indeed the initial onset by listening to a larger portion before it (0: 40 to 0: 50), and 
then skipping even further back to 0: 22 and listening for another 10 seconds. This theme 

of requiring multiple runs for verification continues throughout the task traces. 

In conclusion, it seems most participants either thought they were unable to use the nav- 
igation bar without more immediate information to the contents (and so listened through 

large portions of the song) or, despite trying, found it difficult to make particularly effective 

use of it. 

Structure Assessment 

As a follow up task to be carried out directly after the previous task, participants were 

asked how many choruses the song had. This required two key facts; firstly they needed 
to assess the song and find the portion representative of the verse. Secondly they had to 

determine on how many separate occasions this part of the music was played. 
Figure 2.4 shows the trace of the six participants who correctly answered the task 13'. 

Each of the three choruses are shown, notably there is a bridge following the third verse 
(i. e. where one might expect a third chorus to be) between (b) and (c) at around 3: 30-4: 00. 

Three participants (upturned triangle, square and diamond) utilised the random access to 

review this portion of the track presumably to check that it was not another chorus. 
In general, three of the six participants (triangles and square) tended to use the random 

access to effect a sort of fast-forward-like mechanism, quickly building a series of repre- 

sentative blocks (around five seconds each) of the song by skipping around ten seconds 
between them. This is a reasonable usage for random access given that the question covers 
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How many times is chorus played? 

a) 1: 22-1: 39 (b) 2 28-2 45 (c) 4 22-4: 39 
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Figure 2.4: Continuing in the same track from figure 2.3, candidates were asked how many 
times the chorus was played in total. (a), (b) and (c) each mark the chorus sections. 

the whole song and no further information is given. 

Two participants (diamond and hollow circle) listened through the entire track, du- 

plicating the approach shown by three in the previous task. One of then does however 

briefly review two sections (the aforementioned bridge and the final verse). This suggests 

usage of the random access for verification. 

One of the candidates (filled circle) skipped through the track by about 30 seconds 

each time, listening for around five. After getting to the end of the track, she reversed 
direction until finding the first chorus, then the second. It seems she aimed to get a broad 

overview as quickly as possible, listening to only very short sections and making large 

jumps between them. Unlike the other participant (upturned triangle), she apparently 

required verification of the middle structure before making the final answer. 

Overall trends in this task seem to be very suggestive of utilising the navigation bar 

to skip around large sections quickly for gaining a long-term summary and verification of 
suppositions for the structure. This `whole track canvassing' appears to play a consistent 
role throughout the task traces. 
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Instrument Introduction 

23 

We move on to another piece of music now, this time the classical track Warm Air com- 

posed by Mike Batt and performed by Royal Philharmonic Orchestra with "child prodigy" 
Vanessa Mae taking a lead role on the violin. 

When is bass instrument onset? 

0 0 

o Co 
N 

NQ 
y 

ß 

o 

0 
N 

0 

Figure 2.5: Candidates were asked to find the onset of the bass instrument in Warn, Air 

(Vanessa Mae). 

The participant to finish the task first (diamond), aside from several jumps at the 

beginning to apparently check she hadn't passed it around 10 seconds in, finds it very 

simply through skipping forward and apparently making a lucky guess at how much before 

the destination of her penultimate jump it starts. A second participant (circle) had a similar 

approach, though maintains a roughly equal skip-listen ratio (about 6-7 each time). She, 

however, overshot by considerably more (around eight seconds past) and was very close at 

the point of the jump before, so while almost making a perfect binary search it still took 

her several jumps to locate the onset. Nonetheless, her trace demonstrates an effective 

and systematic search. 
The third participant to complete the task correctly (square) skips to exactly the point 

of onset after around 25 seconds. Presumably suspecting this, she reviews the previous 15 

seconds. Her performance would he similar to the other two were she not then to continue 

listening through almost another minute of the track. I would advance two possible reasons 

for this; either she neglected the directives for the task and simply wanted to enjoy the 

V: W 1: VV 



24 CHAPTER 2. MUSIC PLAYBACK NAVIGATION 

music at the cost of a quick completion, or she was unsure about whether the onset she 
heard was the appropriate one. In any case she then reviewed the onset twice more before 

recording her answer, undershooting herself by around ten seconds with the initial jump 

back. 

This task demonstrates an efficient use of random access in searching. but through a 
lack of information overshooting and undershooting known points for reviewing content 

appears to be an issue. 

Vocals Search 2 

Candidates were again asked to determine the time of initial introduction of the vocalist. 
The music used in this occasion is the reggae track Money, written by Pink Floyd and 

arranged and performed by The Easy Star All-Stars. 

When is start of vocals? 
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Figure 2.6: Candidates were asked to find the start of the vocals in Money by The Easy 

Star All-Stars. This point is marked (a). 

The two participants who took the longest time to complete the task (diamond and 

hollow triangle) listen through the track without skipping until the vocals start. A third 

participant (square), though clearly hearing a long run up to the vocals (0: 32 to 0: 46), opts 

to replay the same portion of the track once again; the only explanation for this course of 

action I can offer is that they felt the need to become comfortable with the early contents 

of the track before committing to an answer. 

V; VV I; w 
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The two fastest-completing participants (filled circle and inverted triangle) skip around 
fairly radically listening to about 2 seconds before skipping about 10 seconds. When they 
inevitably overshoot they reverse direction eventually arriving at the correct point. No- 

tably, one of the two (inverted triangle) reviews the onset point before answering correctly. 
Despite having already found where vocals start, one participant (hollow circle) can- 

vasses a significant portion of the track (up to around 1: 15) before navigating backwards. 
They again overshoot into the instrumental part, but again appear to want a `broader 

view' of the track since they jump further back (to 0: 27), reviewing the early portion again 
before skipping forwards and correctly arriving at the onset. 

The final participant (filled triangle) is played the onset of vocals three whole times 

after canvassing the beginning and finding a perfect excerpt. Despite listening to the 

same period before the onset three times she navigates back to 0: 18, almost 30 seconds 
backwards, presumably to verify that it is the first onset point. 

The overriding theme here is one of verification; three participants found the correct 

point before skipping backwards through the track, suggesting they were not confident 
that they had not missed an earlier onset. Canvassing also seems to be a recurring theme, 

whereby participants make long sweeps, skipping significant portions and listening for only 

a few seconds at a time. I would expect this is in order to get a broader view of the track 

possibly to back up their mental image of its structure. 

The Beginning of the End 

The final task I will review here is a search for the outro of the rock track Can't Get 

Enough by Suede. The task was phrased to give participants the knowledge that the outro 
had novocals and comprised the singer singing a recognisable `aaah'. This,, ýnlike other 

searches, gave them a solid search strategy (i. e. find the transition between vocals and 
`aaah'), once vocals had been found, the transition may be located efficiently through a 
binary chop search with the end of the track. 

One participant apparently realises this premise and acts accordingly; she skips us- 
ing a reasonably precise binary chop with the end, listening for around 3-4 seconds per 
jump. On hearing `aaah' first time (4: 02), she retraces her steps. Interestingly, another 
participant (triangle) answered correctly first; she employed a similar strategy, though was 
more aggressive, skipping far more of the song initially. Having listened to a portion of 
the `aaah', she notably decided to jump forwards again, listening for another five seconds 
before retracing and arriving at the transition. A further participant exhibited similar 
behaviour, apparently requiring a broader context of the `aaah' section before being happy 

to retrace. 
The participant to finish penultimately, actually managed an almost perfect first jump, 

overshooting the transition by only five seconds. Having listened to the `aaah' of the outro 

OF YORýt 
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When is beginning of outro? 

0 
Co 

0 
Co 

0 

V 

N 

tu o 
av 
a> 
E 
I- 

0 
N 

0 

Figure 2.7: Candidates were asked to find the beginning of the outro of rock track Can't 
Get Enough by Suede (a), being informed it started with and consisted of a vocal `aaah'. 

for around three seconds, she then skipped back a small amount and actually heard the 

start of the transition. Despite this she skipped backwards, further into the vocals several 
times over, before eventually allowing the end of the track to play through to the transition 

point. This is again suggestive of the lack of confidence the participants have in a 3-5 second 
context. 

The participant finishing last (inverted triangle) canvassed slowly for around 30 seconds 
before jumping to within around ten seconds of the transition point and, finding only 

vocals, retraces her steps twice. Having arrived two seconds into the outro, she again 
jumps further in, before retracing and finding the transition point. This behaviour is once 

again suggestive of an unwillingness to trust the logical combination of a single sampling 

with information pertaining to the location of the point in question. Because of this, it 

costs several more jumps and seconds of listening before the search can continue properly 

and the point found. 

2.4 Conclusions 

I reviewed the current state of the art of popular music track navigation aids, including 
the HCI technology, their current usage and the reasons for usage. I conducted a study 
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resulting in a histogram of task types that are commonly found among users of audio 

playback software. Given this I created a set of reference tasks of which five I analysed the 
behaviour of various users when carrying out. From this I can make two main conclusions 

concerning the behaviour of users while utilising the random-access navigation bar. 

Firstly, of those that gave the correct answer, those who used the random access to 

actively search out an answer generally did better than those who did not, letting the 

content play without interruption or jump. In absence of any other information, I would 

suggest the reluctance to use the random access properties of the bar is due to a lack of 

confidence that they would not skip something important. Thus I favour the idea that 

giving an indication, where possible, that they would not skip anything important would 
lead to users being more confident with using the bar for random access. 

Secondly, when users managed to use random-access properly and skip to the right 

place, there is a tendency that if the skip destination is within about three seconds of 
the very point they are attempting to locate, they will skip further backwards by several 

seconds. This suggests they are unhappy having found an apparent "local optimum" and 

require a review of the point in a wider scope to make sure it is in fact correct. Where 

prudent, reinforcing the idea (perhaps by visual indication) that the content is relatively 

constant around the apparent "local optimum" may help them avoid any unnecessary 

skipping and listening for a wide-area review. 
This concludes the review of musical audio navigation technology. In the next chapter 

I will focus on techniques for visualisation of musical audio, in order to determine how 

best the navigation bar user-interface metaphor can be augmented in order to provide 
`visual indications' that I would argue can improve the utility of the navigation bar for the 

reference tasks. 
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Chapter 3 

Musical Audio Visualisation 

"We have to remember that what we observe is not nature herself, but nature 
exposed to our method of questioning. " 

-Werner Heisenberg (1901-1976) 

3.1 Introduction 

Thus far in my argument, I have shown that people find navigation within a musical track 

useful. I will demonstrate that the mechanism used for popular audio navigation can 
be augmented with a visual generated directly from the audio signal. At the end of this 

chapter I hope to have shown that these images are, by and large, reasonable visualisations 

of the musical content of the audio signal, in so much as they are representative of the 
kinds of aspects we would want to identify. 

Chapter Summary 

Following the present introduction, the chapter will begin with a review of the literature 

most directly concerning musical audio visualisation. Relatively basic methods like the 

amplitude graph and the spectrogram are covered. More involved techniques such as self- 
similarity matrices and timbregrams follow. Techniques meant for performance analysis 
(e. g. the performance worm) and for browsing and selection (e. g. music icons) are then 

reviewed. Also covered are techniques meant for professional analysis used in various 
software packages as well as techniques developed primarily for their aesthetic value and 
not for representative content. 

General analysis techniques are then reviewed which, though not explicitly proposed 

as visualisations, appear to be potential candidates for the refinement process nonetheless 
(e. g. segmentation, novelty). A brief review is made of the literature not directly connected 

29 
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with musical audio visualisation, but concerning the visualisation of music generally; the 

problem of representing musical content. 
By the end of the literature review I will have demonstrated that a technique accom- 

plishing exactly the sort of visualisation I would want for the navigation metaphor has 

not yet been proposed' though several techniques might, with modification, be possible 

candidates. I also hope to have demonstrated the challenges of reducing such a complex 

entity as a musical recording to a representative image, both in terms of meaning and in 

more practical terms of generation from content. 
I then propose a general methodology of creating content-based visuals for popular 

navigation, which relies on a 1-dimensional series of colours to represent the content of the 

music as the recording plays through. I propose several methods to generate those colours, 

which I term chromatic projection of the audio. I demonstrate each method before making 

an example-by-example comparison between methods over various genres together with a 
few contrived `test tones'. 

By the end of the chapter the reader will understand the strengths and weaknesses of 

each of the methods over several types of music. 

Contributions 

"A formalisation of a general technique for generating visualisations together with 

three novel concrete techniques. 

" Discussion of these techniques, their advantages and problems and the relations to 

existing techniques. 

3.2 Related Work 

I will break down the various visualisations into five groups: 

Traditional signal visualisation A field review would not be complete without the tra- 

ditional and widely adopted methods for visualising not just musical audio but audio 

and signals in general. 

Self-similarity The self-similarity matrix is perhaps the purest piece of work related to 

musical signal visualisation. It was introduced as a method specifically for visualising 

musical audio and has spawned several techniques based upon it. 

Structure extraction This field concerns work in music thumbnailing, fingerprinting 

and segmentation. Having such a high-level refinement of the data is clearly ad- 

'or, perhaps more accurately, had not been proposed when the initial survey was made 
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vantageous for visualisation from the sample graphics in the publications from this 
field. 

Visualisation and representation of music composition I conduct a brief study on 
the thoughts and currents running through the field of music notation. This is not 
particularly practical in terms of musical audio visualisation, but does give insight 
into the sorts of representations (aside from traditional music notation) that have 
been proposed. 

ad hoc visuals in software The most practical pieces of work in this field survey; I 

review a selection of common and niche audio and music software packages to discuss 

the extent of their visualisations. 

For an overview of musical audio signal processing generally, I would refer the reader 
to the thesis of Hainsworth (2004), who spends most of the document going into far more 
depth then is required presently. 

A Note on Information Visualisation 

Spence (2001) tells us that visualisation can be broken down into several discrete processes, 
however it is useful to define visualisation in terms of two of these in particular, since it 

will be the two that I concentrate most on in this work: 

Visualisation = Data refinement + Data presentation 

Refinement is the stripping and transformation of the initial data into a usually but 

not necessarily smaller data set. It is in this process that aspects of what the viewer wishes 
to see from the data is extracted. The efficacy of a refinement might be illustrated in loose 

terms of precision and recall; a good refinement will contain as much of the data relating 
to the information to visualise as possible (recall) and as little data as such unrelated 
(precision). As such this stage is entirely context dependent, since no decisions can be 

made about what data to be cast aside or amalgamated unless one knows what the data 

means and thus how it relates to the information contained within. 
Data presentation relates largely to putting this extracted data into a view most be- 

fitting the situation, which comprises at least the phenomenon to be visualised and the 

expected viewer. As such, data presentation is less dependent on the context of the data, 

and is more dependent on human factors. The use of positions, colours, sizes, dimensions, 

layout, topology and symbols play a large part in this stage. It is the responsibility of this 

stage to present the refined data as clearly as possible to the viewer. 
In terms of musical audio signals this becomes: 
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Musical audio visual = (Signal preprocessing + Audio analysis) + Visual con- 
struction 

Signal processing goes largely understated in music visualisation techniques. It will 
typically be of the general form of conversion to some frequency-domain representation 
with some psychoacoustic processing typically either MFCC or critical banding and some 

perceptual loudness scale. 

A Note on Formal Description of Visualisations 

For each explicit method of visualisation, I will consider the type of visual construction it 

generates. I describe this by formally describing its space-time dimensionality; I denote 

this by writing a single S for each space dimension and aT if the visualisation is time- 
based (i. e. animated). I also denote the degrees of freedom for each component making 
the visual; generally this will be either 1 (monochromatic/linear scaling) or 3 (full colour), 
though (as will be demonstrated in the next chapter) could conceivably be 2. I will define 

0 to mean a purely binary value. A spectrogram, for instance is denoted SS-1 since it has 

two spacial dimensions but is viewed statically (i. e. unchanging through time) and each 

point in space is represented as a linear value. A static waveform, by contrast would be 

SS-0, meaning it is still represented as a 2-dimension image, but that each point in the 

image may either be part of the waveform graphic or not. 

3.2.1 Traditional Audio Visualisation 

Here I review the two main visualisation techniques which can be used on musical audio 

signals (and, indeed, any signal) which are widespread but relatively simple; the waveform 

and the spectrogram. 

Waveform 

The waveform is the single most canonical method of viewing audio. It is essentially a 
time-amplitude graph of the displacement wave which gives rise to the sound. In terms 

of a method, it is nothing but a visual construction from the source audio data (hence 

canonical). Unlike any of the other approaches here it needs no signal preprocessing or 

analysis. The visualisation's formal form is SS-0, though it may be seen in an animated 
form where short excerpts from the signal are visualised at a time (this is often found in 

real-time applications such as the screen of an oscilloscope). In this case the visualisation 
becomes extruded through time, formally making it SST-0.2 

21 would note with a small amount of humour, the spiral groove of a vinyl record could be considered 

an SSS-O 'visualisation'-or perhaps actualisation-of the waveform. 



3.2. RELATED WORK 33 

Variations on this visualisation method generally involve a change of scale or meaning 

of amplitude. A common variant is to use the RMS (root mean-squared) amplitude of the 

wave. Another is to use a logarithmic scale of amplitude to construct the visualisation; 
both of these are utilised in the Audacity sound editor (Mazzoni and Dannenberg, 2005). 

Figure 3.1: An example of a amplitude waveform (top) and the same audio on a dB 

scale (bottom). The audio for Prague Radio by Plaid was visualised. While the blue 

area is taken up by the wave itself, the light blue areas represent the RMS of the wave. 
Constructed using the Audacity sound editor. 

When used to visualise musical audio, a rather uninspiring image is found. Certain 

aspects of the audio such as large changes in dynamics or spectral content may possibly 
be visible, but the visualisation is difficult for anyone but an expert to understand. 3 Due 

to its ubiquity and simplicity this representation is used as a baseline against which other 
techniques may be compared. 

Basic amplitude has some bearing on perceptual loudness but psychoacoustic methods 

are much more accurate, and smoothing through time helps to give the viewer a clearer 

idea of mid and long-term changes by reducing the apparency of short-term dynamics. 

The visualisation is still limited in a musical sense; timbral, melodic and harmonic content 

are largely invisible. Manually created diagrams such as those proposed by Brinkman and 
Mesiti (1991) use the basic concept of a time-loudness plot to demonstrate the dynamics 

progression throughout an orchestral piece for each of the instruments. As such, short and 

medium-term `noise' is never introduced; the result being a diagram showing only the most 
long-term and (according to the author of any particular diagram) subjectively-important 

changes to the dynamics. 

Spectrograms 

The spectrogram is a time-frequency image of an audio signal. It is related, but not 

equivalent, to a Fourier transform of a signal. Spectrograms show the power or magnitude 

of a particular frequency of sinusoid at a particular time in the signal, whereas the Fourier 

spectrum of a signal shows the magnitude of a given frequency of sinusoid throughout 

'An example of such an expert might be Arthur G. Lintgen who, according to Holland (19 November 

1981), is able to `read' vinyl records from the patterns of grooves. 
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the signal; since the advent of the Fast Fourier Transform (FFT), finding the Fourier 

series (as well as other related transforms such as the Discrete Cosine Transform) has been 

computationally cheap. 
The spectrogram is therefore a 2-dimensional spatial representation of a piece of musical 

audio; each component of the figure may take only a linear value (i. e. the magnitude) and so 
O formally declare it SS-1. Figure 3.2 shows a spectrogram. The `dancing bars' animated 

visuals often seen with electronic audio playback systems, which formally I would call a 

spectrum analyser, is directly connected to this visualisation method in that is an SST-O 

projection of otherwise the same basic data. 

Figure 3.2: An example of a spectrogram (top) and the same audio on a Phon scale 
(bottom). The audio for Prague Radio by Plaid was visualised. Constructed using the 

Geddei Nite audio analysis tool. 

In terms of the visualisation stages, spectrograms will typically have no analysis stage; 
the signal will be preprocessed by some time to frequency-domain transform and it is this 

data which will be used to construct the image directly. 

In practice, the FFT is used to calculate the spectrogram using the process of window- 
ing, whereby the signal is split into multiple portions and each portion's Fourier series is 

calculated separately. The process of constructing a time-frequency structure in this way 
in known as the Short-Time Fourier Transform, or STFT. Special windowing functions are 

applied to each portion in turn in order to reduce edge effects or distortions of the Fourier 

series caused by having a finite `audio block' as a signal. Common window functions used 

are Hamming and von Hann4. There is an introductory text on this subject by Hamming 

(1998) himself. 

The process of STFT is very typical in the audio analysis literature, though rela- 

tively recently a newer form of spectral analysis has gained some popularity, known as 

the Continuous Wavelet Transform (CWT). The STFT has one fundamental problem; the 

window-size is fixed for all frequencies, despite higher frequencies being able to be analysed 

4often confused and inaccurately called `Hanning' 
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with certainty within far smaller windows. The CWT circumvents this problem by varying 
(dilating) the window size for different frequencies. The outcome (a time-frequency graph) 
remains largely unchanged, but higher frequencies will generally have better time resolu- 
tion and the overall frequency resolution is higher. Due to the dilation characteristics, the 
frequency axis for the CWT is naturally logarithmic. An concise description together with 
mathematical definition and some discussion as to how it relates to music can be found by 
Alm and Walker (2002). 

There are several variations on basic spectrogram which still remain true to the time- 
frequency graph; the frequency resolution may be scaled differently in order to make certain 
varieties of sound or aspects of music more accessible. Scalograms have their frequency 

axis rescaled logarithmically (as mentioned above), and displayed using an octave-based 
scale, similar to the well-tempered piano scale but of higher frequency resolution. 

The frequency resolution may also be broken down through summation into the criti- 
cal bands of human hearing in the Bark Scale as described by Scharf (1970) and as found 

throughout the literature on psychoacoustics. These are a set of empirically derived fre- 

quency ranges to which the human auditory system has particular sensitivity. Another 

example of a psychoacoustic scale would be the mel scale, used in the popular MFCC 

transform, discussed later. 

Other variations include changing the magnitude scale; a logarithmic scale (dB) gives 
a simplistic loudness-like scale allowing much more of the content to be seen immediately. 
More perceptually accurate scales include the Phon scale, which gives a constant logarith- 

mic loudness scale over all pure-tone frequencies, and the Sone scale, a metric that scales 
linearly with perceptual magnitude. A short description of these techniques can be found 

by Guessford et al. (2004). 

Time-frequency plots are not necessarily limited to determining frequencies of sinusoids 
at particular times; there are techniques to find frequencies of beats or rhythms over time; 

such plots might be called beat-spectrographs. This concept will be discussed more fully in 

section 3.2.2. Other variations on the concept of the spectrograph include the simplified 
score rendition described by Brinkman and Mesiti (1991), whereby a time-frequency graph 
is used once more but the data used to populate it is taken from the score itself; this work 
is closely related to that of the music animation machine detailed by Malinowski (2001) 

and discussed later in this section. 
Using spectrograms directly for music analysis is not uncommon and there is a con- 

siderable amount of literature devoted to it. Don and Walker (2006) demonstrate that 

music can be analysed directly with scalograms in a spirit reminiscent of that proposed by 

Lerdahl and Jackendoff (1983). Cogan (1984) dedicates an entire volume to the analysis of 
the spectrograms of the performances of a wide range of music. In her PhD thesis on the 

subject of short-time Fourier transforms of musical audio, Dorfier (2002) states "diagrams 
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resulting from time-frequency analysis ... can even be interpreted as a generalised musical 

notation". 
While the comprehensiveness of using spectrograms to visualise music and the utility 

c>1 such graphics to experts is beyond doubt, they are not without faults; they are exceed- 
ingly complex to analyse in even the best of circumstances, and they suffer from other 

representations by being too general; like wave form graphics they can describe speech, 

noise and non-musical sounds as generally and precisely as music. In this respect they 

suffer from information overload which makes them difficult to understand and interpret 

directly. 

As such, the main issue with using spectrograms for a visualisation aid to music nav- 
igation is clear; they are too cryptic for a casual or novice user to become proficient in 

easily. 

3.2.2 Self-Similarity Visualisation 

There are two basic methods for visualisation of data by self-similarity in the literature; 

the self-similarity matrix and recurrence plots. Recurrence plots, discussed by Eckmann 

et, al. (1987), are an older form of numerical analysis technique used in analysis of fractals 

and chaotic systems. They could be said to be a specialisation of a self-similarity matrix, 

though this goes imuoted in the literature pertaining to self-similarity matrices. Self- 

Similarity visualisations generally present the viewer with a square image; in the case of 

the self-similarity matrix the visualisation is formally SS-1, whereas the recurrence plot, 

presently discussed gives an SS-0 image. 

h'igiure 3.3: A recurrence plot of an auto-regressive process. Original image constructed 

by N. i\larwau, used with 1wrinission. 

It1'curreuc e plots rail be expressed formally as the Boolean matrix R such that: 
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= 6(e - ýýý(i) - ý(9) ýý)+ x(i) E Rm, i, = 1, ... , N, (3.1) 

where N is the number of signal states (i. e. samples) x(i), e is a relatively small 
threshold distance, 11 " li the Euclidean norm and 9(. ) the Heaviside step function. 

This Boolean matrix which may be expressed visually as a bitmap will have a mark at 
any two times where the samples are roughly (at most e apart) similar. Figure 3.3 shows 
an example of this construction. 

The Self-Similarity Matrix 

Self-similarity analysis is a transformation on a signal that generates a self-similarity matrix 
(SSM), a two-dimensional representation of the signal over time. Foote (1999b) proposes 
this transformation as a useful visualisation when the signal is that of musical audio. He 

argues this representation makes directly visible aspects of the audio signal such as verse 
and chorus repetition, thematic repetitions and variations, note transitions, on-going beats 

and points of novelty. 
The approach prescribed by Foote (1999b) (the seminal work in this field) involves 

extraction of some feature-vectors on a frame-by-frame analysis of the audio. Foote used 
the STFT with 50% windowing and a Hamming function to reduce edge effects. On the 

resultant spectra he uses the mel-frequency cepstrum coefficients (MFCC) transformation, 
though different transformations may be applied in order to view the similarity of other 
aspects of the musical audio, for example chroma, loudness and so forth. 

The basic SSM is defined by Foote (1999b) as being the matrix S: 

Si,. i = s.. (Fi, Fj), i, j = 1,..., N (3.2) 

where N is the number of signal states (i. e. audio feature vectors), F is the series of 
audio feature vectors and s(i, j) is the similarity function. 

The key difference between the construction of the SSM and the recurrence plot is that 
the similarity function of the SSM is left undefined. In order to view phase differences, the 

recurrence plot defines a Boolean similarity function as the value equality (within limits). 
The example of the self-similarity matrix in figure 3.4 may be used to see the form that 
the two share. 

The basic similarity function is defined as being the Cosine distance between the feature- 

vectors of the two audio blocks. Foote suggests using either the basic frequency spectrum 
from an STFT of the signal or the MFCC features of the signal. 

ti 

sw(Sxrv) = 
Sx 0 Sy (3.3) 

Ilsxll Ilsvll 
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Figure 3.4: A self-similarity gnat rix at an excerpt from Plaid's Prague Radio. Formed using 

the Cosine-distance similarity function on the Bark critical band summations as feature 

vectors. 

As such the matrix is calculated through the cross combination of the array of feature- 

vectors by some `similarity' function. He also advocates an improvement to the similarity 
function which uses several sequential vectors to give the (correct) ordering of the "sound" 

vectors a (positive) influence over the similarity. There is no mention of any other similarity 

measures testeds or otherwise consulted. There is potential for further work here to test the 

efficacy of the dot product similarity measure, or even whether other similarity measures 

can make the matrix useful for extracting or representing any other signal phenomena. 

Foote postulates that retrieval could not only be made by acoustic similarity (how a 

piece sounds) and what appears to be the staple of the associated literature (work by 

Tzanetakis et at., 2001, Logan and Salomon, 2001 and Pampalk et al.. 2002), but by 

structural similarity. This means that potentially it could match the same piece of music 

played with a different instrument. 

The self-similarity matrix therefore has several advantages over other (musical) signal 

analysis techniques put forward. It has no need for user-specified cut-offs or other parame- 

ters. It does not rely upon absolute musical events (e. g. note onsets) to generate feedback 

but rather relative events (e. g. periods of lag-correlation), and thus is highly generalised. 

Unfortunately, identifying discrete `events' in the matrix tends to be somewhat more 
involved due to the increased amount of data to look at. Like the spectrogram it has a 

complex forth to get accustomed to using and, perhaps more importantly it is a planar 

rather than linear representation of time. The matrix can give an enlightening view oil the 

data though as it stands, (in(, to its complexity, it is probably best left to specific expert 

"`tested' being a rather invalid term here, since he makes no quantitative measure of his experiments 
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tasks rather than general use. 
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Furthermore, as with many signal-based visualisations, it is clear that it works far 

better on monophonic music than on more complex polyphonic music. Music in general, 
however, tends to be realised with multiple instruments, presenting the grave difficulty of 
the matrix becoming so "cluttered" with features that it would make it hard to read easily. 
In a purely practical and aesthetic concern, integrating a naturally square visualisation into 

a metaphor that favours linearity and therefore a rectangular image may also be reason 
for concern. 

Analyses on the Matrix 

Though not presented as visualisations, there are two graphs from the SSM one can make 

which are of interest to us as potential visualisation tools; a graph measuring audio novelty 

and the beat spectrum. The progression of novelty over a signal is given as the sum of a 
Gaussian-tapered checkerboard kernel when multiplied, element-wise, by subsequent sub- 

matrices falling on the SSM's main diagonal and summed. The kernel matrix is given by 

the function K: 

K(x, y) = 
G(x, y), (x > 0) = (y > 0) 

(3.4) 

-G(x, y), (x > 0) # (y > 0) 

where 

G(x, y) _ Gaussian(II 
(23 

, 
sy) II) (3.5) 

where x and y both fall in the range [-2,2] and the kernel matrix is of width s. 
The novelty score becomes high when the submatrix is centred around a point before 

and after which the signal is self-similar, but around which is dissimilar. Foote (2000a) 

showed this can be used to segment audio and it has later been used for segmentation of 

music tracks which I discuss in section 3.2.3. 
The beat spectrum is formed by summing the contents of the super-diagonals across 

the matrix; these sums form a series of lag-correlation scores for a number of lag times 
from the distance between successive feature vectors to the Nyquist, which here is given 
by half the total length of the matrix. Formally it can be described as the series S: 

a-l 

S(1) -E M(k, k+ 1) (3.6) 
k=0 

where M is the self-similarity matrix over which the best spectrum is to be found. 

There are many techniques to extract a beat or rhythm spectrum throughout the 

literature, especially in the time over which the present work was taking place. For a 
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comprehensive review of each of them the reader may refer to Hainsworth (2004). Foote 

argues that conventional methods of tempo/beat extraction must rely upon some sort of 
trigger, an audio characteristic signalling the onset of a beat. Using self-similarity allows a 
far more general method for detecting repetitive patterns. This is because the only audio 

characteristic necessary is that the signal must be "similar to itself", and the similarity 

must be periodic. This is a prerequisite for a beat to be present, similar to some of the 

rules regarding rhythmic well-formedness declared by Lerdahl and Jackendoff (1983) in 

their Generative Theory of Tonal Music. 

Though not mentioned in the literature, subsequent matrices may be windowed and 

overlapped in order to form a beat spectrogram, an example of which can be seen in figure 

3.5. 

Figure 3.5: A rhythm spectrogram of an excerpt from Plaid's Prague Radio. Formed using 
the Cosine-distance similarity function on the Bark critical band summations as feature 

vectors. Rhythm strength varies from red (highest) through blue to green. 

3.2.3 Visualisation from Segmentation 

Iii this section I discuss briefly the techniques for automatic content-based structure ex- 

traction from musical audio. Structural extraction from music attempts to determine a 
(possibly hierarchical, possibly labeled) description regarding the perceived structure of 

the underlying music. Determining exactly what the structure of any given piece music 
is and how one might systematically approach it is a musicological quandary, which aside 
from referring the reader to Lerdahl and Jackendoff (1983) I will defer until given concrete 

examples later in this chapter. Most researchers in the field are happy to forgo the theory 

and appeal to a popular opinion by comparing their results to those of humans given a 

similar task. 

Though not explicitly proposed in the literature as visualisation methods (and thus 

missing the latter stage of the visualisation pipeline), they are so well suited to visualisation 
that authors, in describing the results of their segmentation algorithms, tend to accidentally 

provide visualisations of the audio tracks. I will use this accidental visualisation as my 
definition of the latter stage here and thus formally label it S-16. 

65-0.5 may be a slightly more precise labelling, since there are typically very few segment types, and 
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Visualisations from segmentations are advantageous in one particular way shared by 

no other content-based visualisation; they give a high-level overview to the structure of the 

song easily with the clear and precise visual cues provided (assuming the colours chosen 
for the segments contrast well). Figure 3.6 is an example of such a visualisation. 

Figure 3.6: A simple segmentation visualisation created from What I Miss The Most by 

The Aloof. Formed using the algorithm detailed by Abdallah et al. (2006). Time runs 

along the x axis; segments of the same colour should represent multiple repetitions or 

variations on the musical theme. 

There are however problems with this naive way of visualising. The colours have no 

meaning for what they represent; only that a difference in colours represents a difference 

in segment type. Furthermore segments whose content is more similar than others' will 

not be represented. As Lerdahl and Jackendoff (1983) state and as noted by Paulus and 
Klapuri (2006), musical structure is typically best represented as a hierarchy giving rise 

to multiple levels of segmentation; typical audio segmentation approaches return a single 
level of segmentation only. This is likely due to the evaluation methods which typically 

require only a single set of segments for any track. 

The above paragraph may be seen not so much as criticisms but as ideas for arriving, 

given segmentation technology, at a useful visualisation. The present work, however, does 

not follow this particular route, though I discuss it as a future direction in the conclusions. 

Currents in Segmentation 

Early work in the field of thumbnailing by Bartsch and Wakefield (2001) and largely 

reported again by Bartsch and Wakefield (2005) used a chroma-based self-similarity matrix 

to generate a lag-correlation matrix. This could he used to determine and retrieve the 

repetitive parts of the audio; given some structural assumptions on the audio (such as a 

verse-chorus structure) they used it to determine a representative portion on the song. 
This technique did not recover structure as such, but was a first step to solving a problem 

that would later by attempted though more thorough analysis and extraction. 

Logan and Chu (2000) report of basic clustering clearly outperforming HMMs. Notably, 

the HMMs could not be shown to be better than random in their early attempts at structure 

extraction. 
General audio segmentation techniques and musical audio structural analysis are heav- 

ily linked fields. Early work such as that by Tzanetakis and Cook (1999) was used for 

thus any given time, in belonging to only one segment type, will take one of a very limited finite range of 

values. 
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audio segmentation, such as annotating boundaries between music and speech in radio 
broadcasts. This is useful as it can be done automatically by the application, ahead of 
listening. In their augmented sound editor, users may supplement automatic segmentation 
with their own notes. 

Other work such as that by Foote (2000a), Raphael (1999) and Logan and Chu (2000) 

show the roots from which modern music structural analysis has grown. It is a large 
field with many applications; Aucouturier and Sandler (2001) have used the approach of 
segmentation to advance early work by Foote (2000b) in search and retrieval and numerous. 
Burges et al. (2005) use it for duplicate detection. Other uses include thumbnail generation 
(determining a representative excerpt), video synchronisation (compiling transition points 
and fitting them to a video stream) and section alignment. 

I will briefly discuss three approaches to segmentation aimed towards the application 
of thumbnailing (either explicitly or apparently); the work of Foote (2000a) & Foote and 
Cooper (2003) and the related work of Cooper and Foote (2003) together with the work of 
Abdallah et at. (2005) and of Chai and Vercoe (2003b), Logan and Chu (2000) & Paulus 

and Klapuri (2006). 

Maximising Cross-Dissimilarity 

The approach proposed by Foote (2000a) uses the novelty measure described in section 
3.2.2 to determine the segmentation boundaries. In later work, Foote and Cooper (2003) 

propose using a spectral clustering method to group the similar segments, creating a system 

of similar purpose and scope to others described. No quantitative results comparative with 

other techniques were presented, making it difficult to ascertain exactly how effective these 

techniques were. 
Cooper and Foote (2003) attempt to determine segment boundaries in a similar manner 

through the novelty graph, though determines the labels for the segments through a further 

self-similarity matrix of each of the segments themselves. The similarity measure for this 

new matrix is calculated from the Kullback-Leibler distance. Singular value decomposition 
is used to determine the final labels while ignoring fine or unrepeated structures. The 

results published are brief but promising, though no further analysis of the technique has 

since been published. 

Repetition Detection 

Chaff and Vercoe (2003b) use dynamic programming in order to deduce small segments 
(around 4.5 seconds) which repeat throughout a track most often and most precisely. The 

repeating segments that the dynamic programming are typically smaller then the musical 

phrase they belong to (which is what is `really' repeating), and thus a further step is taken 
to merge them into fully-fledged sections. 
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The dynamic programming algorithm can be viewed as doing a similar job to a lag- 

correlation matrix determined from the self-similarity matrix as used by Bartsch and 
Wakefield (2001). In both cases a distance measure is used and in both cases the output 
is aa likelihood of repetition of data given a specific period. Two distance measures were 
compared in this work, concluding that a slightly modified spectral cosine-distance measure 
(almost identical to that used by Foote, 1999a) was generally better than a slightly more 
musically-orientated pitch-distance measure. 

Further results of this technique are reported by Chai and Vercoe (2003a) using a 
chroma-based similarity measure much like that proposed by Bartsch and Wakefield (2001) 

on a different evaluation corpus. The results show chroma being consistently worse than 
the original two similarity measures. The spectral similarity measure again generally 
performed best. 

Texture-Cluster Grouping 

The most widespread approach for thumbnailing is to preprocess the audio into some 
relatively low-dimensionality series of `texture' tuples. A limited set of texture `prototypes' 
is generated such that each texture tuple may be classified as a prototype. Segments are 
sequences of texture tuples that share the same prototype classification. The key problems 
are finding the limited number of texture prototypes to describe the audio best (roughly 

known as the dissimilarity) and to reduce the number of segments in the classification to 

only those that are significant (known as minimising complexity and unlabeled segments). 
The approaches vary in their exact implementation; typically the audio is transformed 

to a series of frames of some perceptually significant acoustic quality. Aucouturier and 
Sandler (2001) used the mel-scaled frequency cepstrum coefficients, whereas Abdallah et al. 
(2005) used the first 20 principal components of the frequency spectrum. 

One approach used by Logan and Chu (2000) clusters the features directly. Other 

approaches use a Hidden Markov Model trained with the series of frames with Viterbi 
decoding to determine the prototype textures. While Aucouturier and Sandler (2001) and 
Logan and Chu (2000) classified segments directly with these textures, Abdallah et al. 
(2005) used them as the input to capture features over a longer time-scale by taking his- 

tograms of texture types over successive frames with a moving window. The histograms are 
then clustered with a version of the soft k-means algorithm modified to favour neighbouring 
histograms to share classification. Importantly, they have observed that it is the effecting 

of a longer time scale (they use seven beats) which produces good data for clustering rather 
than their particular approach with histograms of the frames' texture classifications. 

Work summarised by Rhodes et al. (2006) and reported fully by Abdallah et al. (2006) 

advances this approach with the use of segment duration priors in a modified version of 
the Wolff algorithm, which affect the fitness of a given segmentation by incorporating an 
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expectation to the length of a segment. The authors concluded that by introducing such 
a prior, the problem of segment fragmentation, whereby rapidly changing portions of the 

audio are themselves segmented, is solved. Of course the prior is entirely `artificial' and 
must be experimentally determined. However the authors found that a "suitably broad 

prior" was able to generate a realistically wide range of segment lengths. 
Paulus and Klapuri (2006) presented a system with an interactive cost function allowing 

the fitness of segmentations to be dictated by varying relative values of the segmentation's 
complexity (total number of segments), unlabeled segments (number of textures that are 
not satisfactorily classed as any texture prototype) and dissimilarity (variance of textures 

classified to the same texture prototype). By varying this fitness function, the "efficient" 

segmentation algorithm favours differing segmentations. The interactivity allows an indi- 

vidual to play with the cost function to determine an optimum for any given recording. 
Exactly why this level of interactivity is of any use is left unexplained, and the accuracy 
and precision of segmentations are not benchmarked against other systems. 

3.2.4 Visualisation of Tonality 

Tonality visualisation as described by Gomez and Bonada (2005) is a method of music 

visualisation for analysing the various aspects of tonality. The musical key of an audio 
block is estimated from the audio signal by combining several low-level spectral features 

with a (presumably music-theory-based) tonal model. Gomez provides several involved 

visualisations for analysing a given piece of music. 
This work is clearly meant for musicians since the content of the visualisations is 

analytic and fairly complex; though the authors do note that a foreseen use would be 

in studying the musical content of multiple tracks at once. One particularly interesting 

visualisation he presents is the KeyScape, which is an SS-1 visualisation plotting the key as 

a hue in a time-locality space. This is similar to the earlier work of Sapp (2001). The long 

term key (i. e. over the whole track) determines the colour of the top of the image; the next 

row down is split into two portions whose keys are self-similar and coloured according to 

the keys found in either. This splitting and colouring continues on down the y-axis, with 
the time-scale getting gradually smaller and thus locality getting greater. The bottom of 
the image denotes the keys of the individual chords of the track. The use of the y-axis as 

a time-scale dimension is reminiscent of the tree visualisation for structural decomposition 

in Lerdahl and Jackendoff (1983). 

3.2.5 Visualisation for Content-Indication 

The current of work pertaining to the visualisation of audio for indications of that content 

of a track started with the Timbregrams of Tzanetakis and Cook (2000c). Timbregrams 

are a small part of a larger body of work known collectively as Marsyas; the software 
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and systems which Tzanetakis reported on for his PhD, and which formed a considerable 

part of the initial body of work of the field now known as music information retrieval. 
Tzanetakis introduced Timbregrams noting that being a content-based visual they could 

give the viewer a cue of whether the audio in question was speech or music; this later 

included telling apart certain genres of music such as classical and rock. 
With the Timbregram, the audio is depicted through a reduction of the data from a 

small number of features extracted. These features are several simple statistics based upon 
the spectrum, together with several other values describing aspects of the rhythm. The 

latter values are derived from a beat-histogram, which is formed by counting successive 

values of lag found to have the greatest autocorrelation in each of the spectral bands. A 

basic dimensionality reduction technique known as Principle Component Analysis (PCA) 

is used to reduce the dimensionality to the three dimensions, in a rotation of the feature 

space that best encompasses the variance of the dataset (the dataset being the music 
track). These three features are normalised and used as the three components in a colour, 

either red/green/blue or hue/saturation/value. This process is done for each second of 
the audio signal. The resultant series colours are compiled into a vertically striped image 

where time runs from left to right. As such the visualisation is formally S-3. 

A small and informal user study done on the timbregrams supported the suggestion 
that the descriptive icons could be used to give the user an idea of what audio the cor- 

responding track contains. No further work was openly published on this technology, 

however the concept of automatically generating images representative of the content has 

been continued: 
Kolhoff et al. (2006) present a system capable of generating visually attractive graphic 

"blooms" varying in form according to the content of musical audio tracks. Figure 3.7 

has an example of such blooms. This is integrated with the operating system in order to 

augment the native browsing interface. The blooms vary in form, size and colour (an SS-3 

visualisation) according to the output of back-propagated multi-layer perceptron neural 

network. The supervised network is trained by humans selecting tracks and image combi- 

nations; the data from all tracks is then fed back into the trained network for calculating 

the icon parameters for each track. 

Figure 3.7: Examples of Kolhoff's blooms generated according to the content of audio and 
training parameters given by the user. 

Unlike the Timbregram, the colours are determined with the training of the user; this 
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of course means more effort on the part of the user, but should result in icons that are 

easier to interpret. The use of the bloom shape is not only more visually enticing than 

the stripey rectangular bar but it also fits within the square space that an icon should 
inhabit far more naturally. A small user study found that the system had very respectable 

real-world results, with visual similarity of icons and audible similarity of music content 

agreeing around 70% of the time. 
Other work in this area would include that of Hiraga and Matsuda (2004a), who 

presented a system capable of extracting information from audio to produce a rectangle 

of colours (thereby an SS-3 visualisation) designed to capture and visualise the mood of 
the track. Their work stems from that in performance visualisation which I discuss next. 

3.2.6 Animated Visualisations 

Performance Visualisation 

Performance visualisation attempts to visualise the particulars of expressive music perfor- 

mance over any other aspects of the musical content of the audio. Hiraga (2006) writes 

performance visualisation is used to: 

9 "Share understanding of a performance between co-players. " 

" "Compare expressions of performances. " 

" "Understand musical intent of performer. " 

" "Data-mining through the mood of performance. " 

Typically the analysis of performance revolves around qualities that tend to be varied 
from a strict interpretation of the score in classical music. Other genres of music, such as 
jazz, may be somewhat trickier to visualise effectively, due to the wide array of deviance 

from the score that performances may make. 
Due to the concentration on classical music, these aspects visualised are typically 

limited to the relative dynamics and relative tempo of a piece. Characteristics such as 

timbre, absolute tempo & loudness, key and melody are essentially ignored. Assumptions 

such as the relations of onset intervals (such as in Dixon et al., 2003), or that a precise 
MIDI-encoded version of the performance is available, (such as in Hiraga's work) may be 

made in order to ease analysis. 
Several methods for visualising performance exist; there are two main currents-the 

work done by Hiraga et al. (described by Hiraga et al., 2002a, Hiraga et al., 2002b 

and Hiraga and Matsuda, 2004b) and that of Dixon et al. A particular visualisation 

recently proposed by Hiraga and Matsuda (2004b) is one of form SS-3, comprising a series 
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of rectangles organised as a horizontal series. The axes of the visualisation are time- 
loudness. The rectangles' horizontal spacing denotes relative articulation in the music and 
their relative size denotes relative tempo. Absolute tempo is not shown. A user study 
gave mixed results for this visualisation, suggesting that except where the differences are 
extremely pronounced (in terms of deviation from regularity) it may not adequately reflect 
the viewer impression. The implementation also relied upon an accurate MIDI rendition 
of the performance, implementing it to use an audio signal may be non-trivial. 

The visualisation proposed by Dixon et al. (2002b), called the performance worm, is 
based upon a tempo-loudness graph with the curve on it extending through the time of the 

piece in question. The visualisation was designed to be viewed in an animated fashion in 

real time (making it SST-0), though the animation can be folded down to a single image, 

plotting the entire track's trajectory on a single graph, making it an SS-0 visualisation. 
The implementation uses a smoothed series of inter-onset-intervals (IOIs) to determine 

the trajectory of the curve (which in the real-time visualisation appears as a `blob with a 
tail'). To do this they make an assumption as to the underlying regularity of the music 
that is being played which, for the body of classical pieces they have tested, is reported to 

work well. The authors imagine it to extend well into non-classical and non-tonal music, 
though no empirical tests have been reported to strengthen this claim. 

A general and recent overview of performance analysis techniques and literature review 
is made by Widmer and Goebl (2004), and for further information the reader may find 

this useful. 

Non-analytic Visualisations 

There are several interesting though not directly relevant methods of visualising music 
information. Many assume MIDI data is available and generate event-based 3D words 
to view the music in a discrete manner; an early proposal by Smith and Williams (1997) 

would be an example of this, which generates an SSST-3 type visualisation. The CAVE 
Automatic Virtual Environment was a somewhat grander scheme, to generate a similar type 

of visualisation again from score data in an immersive environment (the Cave), presented 
by Kaper (1998). 

Malinowski (2001) describes his Music Animation Machine (MAM). This is an SST-1 

visualisation synchronised to the music performance, which uses the MIDI data of the 

performance to visualise the music on a time-pitch graph which itself rolls through time. 
It shares some similarities to a usual piano roll which finds itself in time-pitch space. 
Different instruments are plotted on the same stave, with individual colours to separate 
them. One interesting point is that unlike other time-pitch-based visualisations, it rescales 
the pitch axis for each instrument; this makes only relative melodic movements important 

and, through sacrificing the ability to compare pitch between instruments, simplifies the 
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view. 

In a similar vein to the MAM and the tonal visualisations is the work presented by 

Chew and Francois (2003) called MuSA. RT. It displays an animated 3D spiral projection 

of chroma (SST-3), with each quarter revolution being equal to a Major Third (i. e. a 
frequency ratio of about 1.1892). This again uses MIDI data to animate the visual. The 

3D spiral view has the advantage of clearly displaying triads as triangles, though it appears 
be be restricted to monophonic display and does not visualise aspects of the music such 

as timbre or rhythm. 

Projects such as ImproViz by Snydal and Hearst (2005) show the utility of visual aids 
in music software, though it is a niche tool for jazz players and not a general purpose tool; 

it works only on monophonic MIDI data. 

A quick search on the World Wide Web with Google (2007) reveals several popular 

pieces of software which attempt content-based musical audio visuals, some of which are 

quite sophisticated. sndpeek and Armadillo both give large analytical views of the audio 

using 3D to give visualisations; such as spectrograms of varying dimensionality, waveforms, 

and text noting certain statistical values. 

Lillie's Music Visualisation 

Lillie (2007) has proposed some as yet unpublished but nonetheless interesting work at 

MIT on visualising music. The form of the visualisation is SST-2, though it can also 

be amalgamated to SS-2. The visualisation is formed from a time-tone graph, with the 

y-axis being ciiscretised into the 12 semitones of the equal-tempered scale. Two images are 

provided as an example in figure 3.8. 

Figure 3.8: Beethoven's Moonlight Sonata (left) and Daft Punk's Superheroes (right) with 
Anita Lillie's music visualisation. Reproduced with permission. 

The colour spanning any given column of the graph is determined by some timbrel 

characteristics of the signal, whereas the relative loudness of each semi-tone is given by the 

brightness. Chords are visible as repetitive combinations of loudness in particular rows. 
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3.2.7 Scientific and Professional Applications 

There are several scientific, professional, and otherwise niche audio playback and editing 
tools that include musical audio visualisation components. Some follow a multi-pane ap- 
proach where the time is once again presented horizontally and whereby various features 

are drawn accordingly, each on their own subsection of the y-axis. The CLAM Music 
Annotator presented by Amatriain et al. (2005), WaveSurfer presented by Sjölander and 
Beskow (2000) and the newer Sonic Visualiser presented by Cannam et al. (2006) are each 
examples of this. Each incorporate various visualisations of the same signal; Sonic Visu- 

aliser is a particularly interesting project with its extensible plugin architecture, allowing 
future music signal analysis techniques to be extended into its interface. The relevant 
techniques used to visualise the audio have, however, been discussed elsewhere in this 

section. 

Variations2 

Other visualisation tools, such as Variations2, as reported by Isaacson (2003), addresses 
the problem of visualising music content through synchronisation of various analytical 
views with performance playback. These views might take the form of music notation, 
having been analysed in a manner proposed by Schenker; a number of arbitrary text labels 

at specific points through the music, or an attractive hierarchical construction of segments, 
populated perhaps, after the rules proposed by Lerdahl and Jackendoff (1983). Notably 

all such views would have to be made manually; none of the visualisation is content-based. 

Augmented Sound Editor 

As part of the Marsyas project, Tzanetakis and Cook (2000b) discuss the Marsyas Aug- 

mented Sound Editor; it functions as a standard sound editor, where an audio file is 
depicted in the usual waveform graphic with time mapped from left to right. However, 
the wave is actively coloured dependant on the audio at that particular point, making it 

an SS-1 visualisation rather than the normal SS-0. Aside from this niche application, the 
technology never progressed any further, implying either the lack of utility or an opportu- 
nity missed. 

3.2.8 Representation Issues 

As I noted in the introduction, the representation of music does not end at the common 
music notation. In many ways for many tasks, common music notation is simply not the 

right tool. It is cumbersome, limiting or impossible to note aspects such as hierarchy 
(Lerdahl and Jackendoff in their work on music theory opted for a tree representation 
to better analyse motific portions score), timbre, rhythm, pitch nuance and gradation. 
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Because of this we see various attempts at creating other methods of representing music 
e. g. the map-based notation of Weyde (2005) and Weyde and Wissmann (2004) which 
visualises music structure where linear and even hierarchical methods will not suffice. 

Couprie (2004) gives an interesting discussion on possible intuitive graphical represen- 
tations of music. He contends that electroacoustic music, not being score-based, has more 
problems with analysis than, for example, classical music. He argues that spectrograms 
are too complex to ease analysis and that some other form is necessary. The display com- 
prises multiple discrete but iconic elements, with each element having a continuous form. 
This display has attributes of a symbolic notation (such as common music notation with 
multiple discrete elements), but also of a continuous visualisation (such as a spectrogram). 
He argues that navigational aids are helpful in numerous situations, with the final sound 
bite "the creation of the visual provokes an enrichment of the listening". 

Isaacson (2005) reviews techniques to visualise music from a music theoretic point of 
view, pointing out that good visualisation techniques should be backed up with accepted 
music theory. Middleton (1990) argues quite persuasively that music theory is a "less than 

useful resource" for popular music. In agreement, many scholars in the area of content- 
based visualisation and musical audio analysis, when dealing with popular music, typically 
take a more relaxed and empirical approach, opting to collect evidence not through an 
explicit appeal to music theory but rather through empirical experiments. The present 
work attempts to take an approach respecting both views; empirical evidence will be 

sought, but I will discuss the visualisations features with regard to the relevant aspects of 
texts such as Lerdahl and Jackendoff (1983). 

Isaacson writes that there are "many facets of music to be visualised". Unfortunately, 
he does not go into the specifics of how each of these facets might be useful; in particular 
there is no mention of the music navigation metaphor and how the visualisations might fit 

into this, despite navigation being an immediate and obvious use for visualisation (enough 

for Spence, 2001 to devote an entire chapter of his book to it). 
Dannenberg (1992) tackles the de facto standard in digital music composition repre- 

sentation, Musical Instrument Digital Interface or MIDI. He notes that while being the 

standard and doing its initial job adequately (it was designed as an interface between 
digital music equipment in order to transfer such information as note onsets), it hardly 
fulfils a need for the representation of higher-level features such as structural depictions of 
music. 

3.2.9 Colour 

The primary defintion of colour is: 

"The quality or attribute in virtue of which objects present different ap- 
pearances to the eye, when considered with regard only to the kind of light 
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reflected from their surfaces. "-Simpson et al. (1989) 

We can therefore see that colour, in a similar manner to visualisation, is a term con- 
cerning our perception. Colour arises, like sound, from our interpretation of a wave. Like 

sound, a spectrogram can be drawn of this wave; giving the intensities of the various fre- 

quencies which make it up. Similarly, these frequencies are typically limited to the range 
to which humans are sensitive; this is called the visible spectrum. Whereas sound runs from 

roughly 20 Hz to 20 KHz (for the average human child), colour runs from approximately 
1.4 MHz (700 nm, `red') to 2.5 MHz (400 nm, `violet'). 

The visible spectrum is not an accurate representation of the degrees of freedom our 
perception has however. In fact, with regard to colour, humans have only three degrees of 
freedom; colour-sensitive (cone) cells in the retina are sensitive to (roughly) the blue (.:: 445 

nm), green (; z: s 535 mn) and orange (: r 575 nm) areas of the spectrum. The perception 
of the `colour' of the visible spectrum comes from the ratios of these three quantities. 7 

Since the visible spectrum may be made up of any combination of strengths of frequencies, 
humans perceive many different combinations of spectral light as being equivalent; for 

example a single frequency of orange light could easily appear indistinguishable from two 
frequencies of light which would, on their own, be perceived as yellow and red. This 

contrasts to sound, where two pure tones would rarely be indistinguishable from a single 
tone of their average frequencies. 

The collection of colours which humans can perceive is called the human gamut. Figure 
4.6 gives an illustration of the human gamut; it is bounded by the visible spectrum. On 
the gamut the intensity of the colour (i. e. how dark or light it is) is ignored, providing a 2- 
dimensional (i. e. planar) representation of colour. Much of the gamut can be emcompassed 
by carefully selecting a number of colour points (primaries) on the visible spectrum and 
combining them to form a composite colour. A systematic combination to synthesise a 
colour is called a colour model. 

Colour models in themselves do not properly define colours, since they describe only 
the basic methodology of creating a colour rather than the specifics. Examples of 
colour models include red/green/blue (RGB, a colour is created by combining differing 

amount of red, green and blue light), hue/saturation/value (HSV a colour is defined by 

where it falls in the visible spectrum, its brightness, and how `faded' it appears) and 
cyan/magenta/yellow/black (CMYK, commonly used in printing; a colour is defined by 
how much of four colours of paint should be combined). Modern computer systems often 
use the RGB model, making it convenient for transmission to visual display units which 
synthesise colour by mixing these three primaries. 

7There is actually a fourth cell in the retina for perceiving light (a rod cell), though it is sensitive only 
to the intensity of light rather than individual frequencies, and is used by the eye for accurate judgement 

of brightness as well as periphery vision, where accurate colour perception is less important. 
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For accurate specification of a colour, a colour space must be utilised. A colour space 

encompasses a coluor model and extends it by defining the parameters properly (e. g. 
the wavelengths of the primaries). Examples of colour spaces include CIE 1931 XYZ (a 

perceptually motivated space, discussed later) and sRGB, an industry-dominant, properly 
defined version of the RGB colour space. Since our system will be evaluated on basic 

consumer hardware only, this colour space was chosen to best represent our RGB colours. 
Exactly what colours are presented on the display device depends on a wide array of 
factors (e. g. the individual device's characteristics , contrast/brightness settings on the 

device itself, hardware drivers of the graphics display software (e. g. X-Windows), gamma 

correction in the system software). As such it is unlikely that the sRGB colour will be 

reproduced accurately, but it does at least give a theoretical stationary target. 

3.3 Proposed Visualisation Methods 

3.3.1 Visual Construction Method 

In at least one piece of work (that by Tzanetakis and Cook, 2000a), a visualisation of a 

music recording has been created by colouring the points of a plane according to the point 
in the recording analogous to the horizontal position of the given point. Indeed, this is 

done almost by accident when depicting a segmentation of musical audio, as was shown in 

the last section. 
When combined with linear progress-bar style GUI navigation widget, however, the 

colours afforded by this visualisation method become an obvious metaphor for the music. 
Colours on the y axis are constant and therefore it seems clear that the graphic is linear, 

and reasonably obvious that it is a 1-1 mapping from time to the x axis. This might be 

contrasted to the spectrogram where both axes change; novice and casual users may not 

see this directly. 

This technique may be formalised by naming a function P, such that it converts from 

the domain of audio blocks to that of colours. For convenience, we will define the audio 
block c in terms of our common signal preprocessing. In all instances, the signal's spectra 

were first calculated by using a series of STFTs over the audio recording. The window size 

used was 1024 samples, with a 50% overlap. With the input signal being the CD standard 
44100 11z, this puts the lowest frequency to be detected at around 43 Hz, with windows 

around 11 ms apart. The stereo signals were first downmixed into mono, to prevent any 

problematic stereo separation effects. 

c=_P(b) (3.7) 

where bE the set of all frequency spectra as output by the above STFT and cE the 

set of all colours. 
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Some techniques naturally rely upon multiple audio blocks to create a colour (perhaps 

in order to build a context); projection function is therefore extended to P': 

v =_ P'(c, b) (3.8) 

Where b is a series of spectra. 
For convenience and relying upon the fact colours can be determined through three 

values, one for each of three primaries, the chroma-projection is defined instead in terms 

of a two-parameter function P": 

v-P"(c, b) (3.9) 

such that 

C6RGB(Pl'(0, b), P"(1, b), P"(2, b)) - P'(b) (3.10) 

where bE the set of all audio blocks and cE0,1,2. For c, 0 represents the red 

channel, 1 green and 2 blue of the sRGB colour space. The colour space function CsRGB 

simply converts from the three primary colour intensities (red, green and blue) to the 

corresponding element in the set of all colours. This conversion, though likely rendered 
inaccurate by the hardware, is a precisely defined colour space, and is a convenient form, 

used implicitly in most computer video systems. Thus P converts from audio blocks and 

colour channels to an intensity of the given channel. 
With the projection function defined, the visualisation technique may be defined as. 

the planar shader S, which maps the points of any given plane (in x, y coordinates where 
both are bounded between 0 and 1): 

S(x, Y) - P, (Bt... t+w), t- x(1- w) (3.11) 

where B is the audio track's series of spectra, l is the length of the audio track in 

spectra and I1.., t is the vector containing the ith to jth elements of z7. See figure 3.9 for an 
illustration. 

I call this general method an audio-colour projection (ACP), with P' being the ACP 

function. As such, different individual techniques need only to define their particular 

projection function to be completely defined as a visualisation method. 

Formally, the ACP method is of type S-3, though if a projection function neglects the 

c parameter it becomes of type S-1. Although it cannot ever formally be S-2 or S-0, it 

may still be useful to consider projection functions that restrict themselves to only two 

dimensions of colour. 



54 CHAPTER 3. MUSICAL AUDIO VISUALISATION 

Figure 3.9: An illustration of the core visualisation method. 

3.3.2 Signal Postprocessing 

In order to utilise the full gamut of colour, a quantile stretch of the data is done into the 
full colour space. A 90% quantile stretch was used, given by v': 

V, _ 
(v - qo. 95) 

qo. 95 - go. os 

where q, ti gives the nth quantile of the dataset of values v. This particular normalisa- 
tion technique was used above others to reduce any extreme outliers affecting the distribu- 

tion of brightness adversely, which can be a problem with other methods (e. g. max-min, 

mean/normalisation) when the distribution is heavily skewed or not normal. 

3.3.3 Psychoacoustics 

In order to help generate a perceptually accurate image, the audio is preprocessed with 

certain psychoacoustic transforms, designed to account for the process that sounds must 

go through to reach the brain. These transforms are derived from empirical data collected 

on humans. In particular three transforms are used; equal-loudness contours for phon 

scaling, critical-hand summation, and specific loudness sensation for sone scaling. 

Bark 

The Bark scale is a non-linear scale of `critical' frequency hands, between which we have a 

similar perception of frequency difference. They are based upon the inner ear, which can 
be considered as a complex set of band-pass filters; each of the centre frequencies of the 

Bark bands are related to said filters. Figure 3.10 illustrates the edges of each critical band. 

As can be seen, the bands increase monotonically between 100 and 500 Hz, showing the 

human ear's sensitivity to changes in this part of the spectrum. The width of the bands 

then rises sharply after this, denoting the ear's indifference to small changes at higher 

frequencies. 



3.3. PROPOSED VISUALISATION METHODS 55 

0 
N 

10 

Üo 

f0 
m 

Lf) 

0 
oýýO 

o---o oý 
° 

° o. 
0 

0 
0 

0.1 1.08 2 2.7 3.7 5.3 6.4 7.7 9.5 12 15.5 

Frequency (KHz) 

Figure 3.10: The Bark critical bands and where they fall on the audio spectrum. 

Summing a basic power spectrum into a Bark critical banded spectrum has several 
benefits; aside from being a perceptually motivated frequency scaling, it drastically reduces 
the amount of data it is necessary to process; typically up to two orders of magnitude. 
Formally, I define the function Bark(s) as the bark spectrum s of 20 bands si, 0<i< 21 

where: 

Si - >- xi (3.12) 

where bi is the frequency of the ith critical band, f, is the frequency of the ith band of 
the spectrum x and b0 = 0. The band of any given frequency may be estimated with the 

function Zbark, proposed by 

ZI,,, rk(fk! I, ) -- 13fan 1(0.76 f) + 3.5tant 1(f /7.5)2 (: 3.1: 3) 

Decibel 

The level of sound may be objectively measured as a ratio between the pressure of the 

signal in question compared to some agreed base line pressure; the unit of pressure is 

the Pascal (Pa). Since ratios of levels tend to vary both very little and very greatly, a 
logarithmic scaling is used to represent the ratio, decibels (dB), which is defined as being 

the ten tines the 10th logarithm of the ratio of value a to base line b thus: 

_ adB-b = 1010910( a 
b) (3.14) 

Typically in audio processing, it is useful to agree upon a standard baseline to minimise 

confusion between parties. The absolute level 20 jtPa, is used as such, which is considered 
to be the lowest possible amount of sound pressure that the human ear can sense. If a 
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logarithmic ratio is given with this level as the baseline, then the meta-unit dBSPL is used 
to mean decibels (Sound Pressure Level). Unfortunately, this presents a problem for musical 
audio signal processing, in that recordings typically do not denote where on the amplitude 
scale 20pPa falls. Without this information, there is no way to transform accurately the 

raw audio spectral data into dBSPL and psychoacoustic scales based thereon. 
For the present work, I arbitrarily set the levels such that the maximum level within a 

piece of music is 90 dBsPL; any levels falling below zero were raised to zero. This should 
mimic a listener playing back the music at the highest healthy level. Thus I define dB, 

which operates on a power spectrum of values in positive unity range, as: 

dB(x) __ d, where di, 0<i<n: d2 = 10loglo(x; ) + 90 (3.15) 

where x; is the ith band of x and n is the total number of bands in x. 

Phon 

Humans perceive tones of differing frequencies at differing levels of loudness and are most 
sensitive to frequencies around 3 KHz. The phon scale is a scale of frequency-independent 
loudness. Any pure tone of loudness p phon is defined as being perceptually as loud as 

a tone of 1 KHz at p dBSPL. To transform (approximately), one linearly interpolates 
between the equal-loudness curves given by Pampalk (2001). Figure 3.11 illustrates these 

curves. 

Sone 

The sone is a scale of specific loudness sensation. It is designed to give a linear rise with 

respect to perceived loudness, unlike decibels which give a well spaced a scale for many 
different uses. Thus a doubling in the scale of sone should represent a doubling of perceived 
loudness. If it operates upon the phon scale, it is a frequency-independent measure. As 

such this represents the final stage in the present work's psychoacoustic processing chain. 
Formally, I define the equation Sone(p), taken from Bladon and Lindblom (1981): 

I240vb0, 
p> 40 

Sone(p) _ (3.16) 
(40)Z"642, otherwise 

Figure 3.12 illustrates the scale; notice that until around 30 phon it grows slowly; after 
this it increases in sone at a much faster rate. 

We may therefore define the Loudness function L, which operates on a spectrum x to 

give the first 20 Bark critical bands on a specific loudness sensation scale: 

L(x) = Sone(Phon(Bark(dB(x)))) (3.17) 
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Figure 3.11: The equal-loudness curves. Each curve denotes a constant level of perceived 
loudness for all frequencies. 

3.3.4 Bandwise Loudness Magnitude 

Definition 

Initially, the spectrum is processed with a psychoacoustic pipeline: The spectrum is con- 

verted to use a perceptual loudness scale Phon, which gives a frequency-independent scale 

of loudness. After this it is summed into the critical hands on the Bark scale. This sig- 

nificantly cuts down on the computation cost in many areas, since the 512 bands of the 
FFT output is reduced to only 24 critical bands, and it also gives a good frequency scale 

which can be easily split into three portions later. The final bands of the Bark scale are 
then converted to a perceptually linear scale, Sone. 

A windowing technique is then used; as supposed by Abdallah et al. (2005), we found 

that a moving window mean over the signal was most helpful in refining the output to 
become musically relevant. The exact window width we used was an experimentally- 
determined three seconds, with it being moved one second between successive windows. 
The bandwise mean is taken over the window of spectra. 

Each perceptual spectrum of 24 critical bands is then split into three separate chan- 
nels for red, green and blue respectively. Each sub-spectrum is then used as an eight- 
dimensional vector to which the magnitude is calculated (as the Euclidean distance from 
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Figure 3.12: The sone scale in terms of phons. 

zero). Formally, I define PBLSM: 

PaLshM(c, b) -- JIL(6)8c... 8c+811 
(3.18) 

where cc {0,1,2} and represents the colour channel (either red, green or blue respec- 
tively) and b is a vector of three seconds of spectra. 

figure ; 3.13: An activity flow chart of the bandwis(' loudness smoothed magnitude (BLSM) 

te'chnique. 

Figure 3.1'3 gives a data-flow representation of the technique, which (hircctly corresponds 
to a network graph in the audio analysis framework I used. 

Expectations and Discussion 

Figure : 3.1 1 gives an illustration of the various processing stages while preprocessing the 

track Clubbed to Death. Starting with the basic waveform of the audio, the basic spectral 

representation is shown followed by the critical-hand spectrum in units of dB, Phon and 
Son(-. The bottom graph shows the BLSM intensities in each of the three bands (red 

corresponding to the lower Bark bands, blue to the higher and green in the mid-range). 
'I'Iie final visualisation for this track is shown in 3.16. 
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Figure 3.14: A depiction of the track Clubbed to Death at the various stages of the BLSM 

transform. 



60 CHAPTER 3. MUSICAL AUDIO VISUALISATION 

This is primarily a timbre-based refinement. Colours should be very descriptive in 

timbrel terms. Music where the timbre is very important benefits from this representation 

e. g. electronica and rock, but other types where aspects such as rhythm, harmony and 

melody weigh more such as classical, hip-hop and jazz music, will have their `meaning' 

represented poorly. 
The hue of the colour should be an indication of the relative "brightness" of the sound. 

A redder hue will denote more power in the low frequency portion. A greener hue denotes 

more mid-range content and a bluer hue would denote high-range. The lightness denotes 

overall relative power, as in the standard spectral magnitude measurement. Clear large- 

scale dynamics will be represented by clear banding of dark and light areas, whereas tracks 

whose power changes little will be more uniform in appearance. Finally the saturation of 

the colour would denote the relative balance of power in the spectrum. A spectrum that 

contains much of its power in a particular place should give rise to a very saturated colour, 

since it is likely that the power will be engulfed into one of the three subspectra. 
Because of this, it should depict the spectral surface changes, such as the onset of 

instruments, and dynamics changes (e. g. crescendos) clearly. Other aspects of the music 

such as tempo changes, and more generally rhythm, we would expect to be less obvious. 
Similar colours should arise from certain combinations of instruments in particular keys. 

As such, repetitions and small variations should be visible as portions of similar colour. 

Demonstration 

Wave 

BLSM 

OOmÖNN 
tOJ ON Position 

0: 00 1: 00 2: 00 

Figure : 3.15: Altitnnde (Red Square Reprise) by Hybrid visualised as a basic wave (Wave) 

and with bandwise loudness smoothed magnitude (BLSM). 

hybrid's Altitude & Rob Dougan's Clubbed To Death are both electronic/classical hy- 

brid pieces incorporating aspects of both musical styles. Clubbed contains a short excerpt 

from the Theme (Andante) of Elgar's Variations on an Original Theme for orchestra, Op. 

36 ("Enigma"). In addition to two main sections of strings and drums with various DSP 

effects and samples, there are two more piano parts, largely reminiscent of Variations 1 and 

12 of Enigma, but composed entirely by Dougan himself. Altitude is a simple string theme 

mixed with breakbeat, with both the dynamics and the rhythm building to a crescendo 

and holding briefly before dying away. 

In Altitude (figure 3.15), it is clear to see the crescendo at 1: 28 repeating its figure 

ý: 
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four times until 1: 53, before reducing and fading. More interestingly the visualisation 
depicts the general brightness of the sound on its way through the track. It starts (until 

around 0: 24) with some non-tonal sampled content with a high-pass filter, restricting it 

to the treble region of the spectrum. This is represented by the blue hue. The track then 

introduces some quiet strings with a high-pass filter on, which get progressively louder 

and whose filter gets progressively more relaxed. This is visible as the red (denoting bass 

content) fades into murky brown, cream and eventually white. 

Wave 

BLSM 
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Figure 3.16: Clubbed to Death (Kurayamino Mix) by Rob D visualised as a basic wave 
(Wave) and with bandwise loudness smoothed magnitude(BLSM). 

Figure 3.16 shows the BLSM image for Clubbed to Death. The piano parts are clear to 

see as two portions of green. The blue at the very beginning marks the Elgar's "Enigma" 

Theme used as the introduction. The red parts which fade into purple show the portion 

of percussion (red) fading to pale blue as other voices are added (taking over the mid and 

high-ranges and eventually reducing the apparency of the percussion). The large shift in 

loudness from a multitude of instrumentation to a single piano is clear at 2: 55 and again 

at 5: 52. 

Banding between pink and gray is visible at 3.58 which continues to 4: 17. This repre- 

sents the addition of a parametric EQ filter (most likely a bandpass or notch), sweeping 

through the frequency spectrum and changing the timbre of the various sounds. 

Without Colour 

Here I will compare the main method to the basic non-bandwise version. The only dif- 

ference is that the magnitude of the entire psychoacoustic spectrum is taken, rather than 

splitting it into three parts. We may define this formally as PI Stil: 

PLSAf(C, b) -- IIL(6)11 (3.19) 

where cE {0,1,2} and represents the colour channel (either red, green or blue respec- 

tively), and 
b is a vector of three seconds of spectra. 

The well known jazz track Green Onions is shown in figure 3.17. The imprint of the 

funk guitar between 1: 10 and 1: 50 is visible on both images as a bright spot. Half-way 

through (at 1: 30), the funk guitar steps up a key; this is clearly visible on the SBL image as 
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Figure 3.17: The track Green Onions by Booker T. and the MG"s displayed with bandwise 

loudness smoothed magnitude (BLSM) compared to loudness smoothed magnitude (LSM). 
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Figure 3.18: Takl by Plaid displayed with bandwise loudness smoothed magnitude 

(BLSM) compared to bandwise loudness magnitude (BLM). 

a change of hue from pink/yellow (denote mid-pitch sounds) to blue (denoting high-pitch 

sounds); however it appears as a constant white tone on the SL image. 

Without Smoothing 

We now compare the main method to the unsmoothed version. More formally, the bandwise 

loudness magnitude, PBLAM is defined as: 

PBLAf(c, b) = IIL(b)s,... ac+a (3.20) 

where cc {0,1,2} and represents the colour channel (either red, green or blue respec- 

tively) and b is a spectrum. 
Tak I is a short track by electronic music artists Plaid, which is visualised in figure 

3.113. It contains several short repetitive figures, played on an organ-like instrument that 

progress into a lower overall key throughout, with a chaotic drum heat in the background. 

In the fourth figure, another, louder, organ-like voice is introduced with a higher key that 

gets higher-pitched in the final two figures. 

It is a good example of where reduction of short-term features (such as individual 

onsets) makes medium-term progression much clearer. In the unsmoothed version, the 

`shape' of the individual figures can be seen in terms of note onsets. The smoothed version 
does not have this, but better shows the changes between the figures as they progress 
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Figure 3.19: Zala by Plaid displayed with bandwise loudness smoothed magnitude (BLSM) 

compared to bandwise Bark smoothed magnitude (BBSM). 

through the track, with colour slowly changing throughout to denote the progress and the 
introduction of instruments. 

Without Psychoacoustics 

If we remove the psychoacoustic loudness scaling from the method, using just the basic 

magnitude from the spectrum, we see, crucially for visualisation, the relative dynamic 

ranges of the three channels decrease. This gives a smaller range of hues than before. We 

formally define this variant as PBBSM: 

PRSSm(c, b) -- II Bark(b)8c... 8C+8I1 (3.21) 

where ce {0,1,2} and represents the colour channel (either red, green or blue respec- 
tively), and b is a vector of three seconds of spectra. 

From the addition of the psychoacoustic loudness scaling, a significantly greater role 
is taken by the blue channel takes in defining the artefacts in the visualisations. With- 

out psychoacoustic scaling, blue tends to stay at a roughly constant level throughout, or 
be covariant with the red channel. The frequency-dependent loudness scale appears to 

distribute the channels values far more evenly. To illustrate this, we look at a piece of 

electronic music by the abstract electronic artist, Plaid. 

Both images look remarkably similar, and both identify roughly the same aspects in 

a similar way. However in the BBSM image, the red and blue components of the image 

are largely covariant, resulting in an image dominated by purple. Whereas in the BLSM 

image there is a slightly better use of hue with portions of light green, blue, pink and dark 

indigo. A far more important criticism, however, is the lack of differentiation between the 

portion of 3: 30-3: 52 and much of the first half, due to the sharing the hue. This is in 

marked contrast to the BLSM image, which colours the two sections entirely differently 

(pink versus varying shaded of blue). This turns out to be musically important. The latter 

portion has a clear bass component, and there is no instrumentation in the higher key of 

the first half. 
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Comparison to Mel-Frequency Cepstrum Version 

Another common method of psychoacoustic audio preprocessing is the extraction of the 

cepstrum co-efficients from the mel-scaled spectrum. Mel-scaling, as proposed by Stevens 

and Volkmann (1940), is similar in concept to the Bark scale, whereby the log-amplitudes 

of the spectrum are mapped according to empirical experiments on the human perception 

of tone change. The cepstrum co-efficients (of which only approximately the first twenty 

are taken), are simply the first amplitudes of the discrete cosine transform, when mel-scaled 

spectrum is treated as a discrete signal. 
This was visualised as before, except with the substitution of the critical banding 

and psychoacoustic loudness scaling for the first 24 mel-frequency cepstrum coefficients 
(MFCC). As with the 24 critical bands, these were split into three subsets, the magnitude 

was taken as the Euclidean distance from zero, and the three colour channels were valued 

accordingly. Formally, the colour projection function is PBMsM where: 

PBMSM(Crb) = JIMFCCo... 23(b)ac... 8C+811 
(3.22) 

where cE {0,1,2} and represents the colour channel (either red, green or blue respec- 
tively), and b is a vector of three seconds of spectra. 

Generally, the use of three subsets of the MFCCs seems to give a reasonably useful 

visualisation, with images noticeably matching those from the spectral version of the algo- 

rithm. However, there are two key points that seem to burden the MFCC variant, making 
it on the whole less useful for visualisation of music: Firstly, while the brightness of the 

signal represents the loudness, it is not quite as detached from the hue as it is in the 

spectral visualisation. Secondly, the distribution of hues and their brightnesses implied 

from the MFCC data results in a less informative visualisation, due to fewer artefacts. 
To illustrate the first point, we use the rock track Moving by British indie rock band 

Supergrass. The track features a fairly typical AAB AAB A verse/chorus structure. How- 

ever the sets of verses ('A's) get increasingly louder, with increasing instrumentation and 

more emphatic vocals. Importantly, this loudening is barely noticeable over the general 

theme. 
Figure 3.20 shows the smoothed bandwise loudness and smoothed bandwise cepstral 

magnitude, both with amplitude outlines. In both, the choruses are instantly recognisable 

as the two bright white blocks in the middle. In both (though less obvious in the MFCC 

version), each verse is noticeably a single theme repeated. In the smoothed bandwise 

loudness visualisation it is, however, quite clear to see that the second pair of verses are 

repetitions of the first pair, but only louder (brighter, but same orange-green-black-red 
pattern), the third verse (the outro? ) being of the same quality, but perhaps louder still. 
In the MFCC variant, with a far more complex set of colours to denote the verse, and 

with the colours apparently far more noisy from set to set, it is very difficult to extract 
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Figure 3.20: Moving by Supergrass displayed with bandwise loudness smoothed magnitude 
(BLSM) compared to bandwise mel-frequency cepstral smoothed magnitude (BMSM). 
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Figure 3.21: Gabriel's Oboe by Ennio Morricone displayed with bandwise loudness 

smoothed magnitude (BLSM) compared to bandwise mel-frequency cepstral smoothed 

magnitude (BMSM). 

the same information. 

We can see the visualisations of Cabriel's Oboe by Ennio Morricone in figure 3.21. The 

structure of the song is essentially AB-AB-A'B'I with the A' having an extra somewhat 
bassy instrument present compared to the As, and the B' being slightly augmented from 

the Bs to form an outro. The MFCC visualisation presents this well, though the different 

A' from A goes entirely ignored. Very little textural information within the B portions of 
the song is apparent, with them being mostly white. 

Conversely, the loudness version clearly shows the B portions being comprised of 
two distinct smaller parts, corresponding to two distinct themes, the second including 

a mandolin-like instrument. The stripes between red and yellow in the first part of the Bs 

correspond to the playing and silence of the oboe. However, where the loudness variant's 

visualisation becomes somewhat questionable is in the third A, running from 3: 27-3: 58. 

Due to the extra spectral content from the extra instrument, it becomes brown rather than 

green followed by red. 
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3.3.5 Bandwise Loudness Rhythm Magnitude 

Definition 

The rhythm magnitude is a novel technique to deliver the `rhythmicity' of audio at a 

particular point. It is calculated by using the rhythm spectrum (also known as beat 

spectrum) as a vector, and taking its magnitude. We use the algorithm by Foote (1999a) 

for calculating the rhythm spectra, which involves populating a self-similarity matrix and 

summing across the super-diagonals. Section 3.2.2 gives a full definition of the technique. 

As before, this is an extension to the standard rhythm magnitude technique done to 

provide colour. The output of the critical banding is split into three subspectra, a rhythm 

magnitude for each one is found. Each are normalised individually, and used as their 

corresponding red/green/blue component in the final colour. The technique may be more 
formally defined as the projection function PBLRM: 

PBLRM(C, b) = IIRhy(L(b))tc.. tc+týý, t=6 (3.23) 

where cE {0,1,2} and represents the colour channel (either red, green or blue respec- 
tively) and b is a vector of 128 spectra (approximately 1.5 seconds). 

s-l 
Rhy(X)t =E MX(k, k+ 1), 0: 51! 5 2 (3.24) 

k=0 

where s is the size of the self-similarity matrix M and MM is determined from the series 

of spectra x. Figure 3.22 shows the process as a dataflow pipeline. 
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Figure 3.22: An activity flow chart of the bandwise loudness rhythm magnitude (BLRM) 

technique. 

Expectations and Discussion 

This is a rhythm-timbre based refinement; it should benefit music whose short-term auto- 

correlative properties change with regard to different voices over time. As such, more 

rhythmic music should benefit, such as hip-hop and dance, whose timbre may stay roughly 
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constant throughout, but whose rhythmic properties (perhaps with regard to different 

voices) changes. 
The brightness of the colour relates to the strength of the rhythm at that point (i. e. 

how self-similar the signal is over a short period of time), whereas the hue describes where 
in the spectrum that simplicity lies. If there is little correlation, or if it is compromised 
between two successive and unique rhythms, however, then it should have a lower overall 
power and thus be darker in shade. 

If the rhythmicity is mostly in voices in the upper part of the frequency spectrum, 
the hue will be cooler (blue/cyan/green). If in the lower part, the hue will be warmer 
(yellow/orange/red). Hues would therefore change whenever there is a shift in the relative 
lag-correlation of the three sub-spectra. As different portions of the total spectrum change 
in their self-similarity (perhaps by introduction, removal or interruption of voices), a greater 
shift in hue would be expected. 

The number of spectra used, and thus the imprecision of the metric, is equivalent to 
the number of bands of the rhythm spectrum (or the cardinality of the vector we measure). 
Determining the optimum size of the spectrum is rather a black art; a smaller size results 
in better time precision and less processing. A larger size gives less noise and allows higher- 
level features to be captured; I settled on a window of around 1.5 seconds, which gave a 
generally reasonable output. 

Demonstration 

Rounds, an album by Kieran Hebden (released under the moniker Four Tet), is considered 
(e. g. by Clarke, 2003) as being a prime and largely seminal example of a genre called 'folk- 

tronica'. This is a fusion between the abstract electronic and folk music genres. And They 

All Look Broken Hearted ('Broken') is a track from this album which focuses on chaotic 
drumming and a repetitive harp melody, underlined with slow bass chord progressions, 
with other relatively soft `instrumentation' progressing through the track. Unspoken is 

another track from the album, again featuring a repetitive melody (this time piano) and 
a clear progression, though with more esoteric sounds creeping in. Figure 3.23 shows the 
tracks under the BLRM visualisation. 

In Broken, we can see that despite the instrumentation and loudness being relatively 
similar, the visualisation clearly differentiates the repetitive melody of the harp (1: 25-2: 30) 
from its `chorus' theme (2: 30-2: 55). It also disambiguates between the solo harp and the 
harp with bass and drums which transitions at 1: 45. The repetition of the section 1: 45-2: 55 

at 3: 17-4: 27 is also clear to see, despite the addition of an extra, rather loud, bass drum. 

Unspoken, like Broken focuses largely on repetition. It progresses throughout by adding 

and removing instruments8. Particularly notable in this visualisation is how the addition 

8'instruments' is used loosely here; many of the sounds not only are not recognisable instruments, but 
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Figure 3.23: Four Tet's And They All Look Broken Hearted (top) and Unspoken (bottom) 

visualised as a basic wave (Wave) and with bandwise loudness rhythm magnitude (BLRM). 

of a loud drum (6: 11) to the much quieter bass, and later (6: 14) the piano, makes very little 

difference to the blue stripes of the visualisation. This is despite changing the dynamics 

significantly. What the visualisation clearly shows is the addition of chaotic sounds (5: 00), 

similar to a feedback loop one would expect to hear from a microphone being moved close 

to a loud speaker amplifying its signal. The change from blue to a pink/white hue at 

3: 40 seems to be caused by the `dirtying' of the rhythm, with the addition of an extra 

bass sound and subtle string-like theme. Interestingly the removal of the primary melodic 

instrument, the piano, at 3: 06 causes no significant change on the colour. 
With these two tracks, the effects of visualising through rhythm are relatively notica- 

ble; despite changes in timbre, the visuals remain largely unaffected due to the extreme 

similarity of rhythm. 

Without Colour 

A basic version of the the rhythm magnitude ignores the per-channel aspect of the original 

method, and ºnerely notes the lag-correlation evident in the entire spectrum. The formal 

definition is given by PLRM: 

ýý, ýý1(ý, e) = IIRhy(L(b))II, t=6 (3.25) 

Figure 3.24 depicts the classical track Sabre Dance, a highly rhythmic fast-paced or- 

chestral track whose rhythm is maintained by strings throughout. Woodwind and brass 

give the main melodic content, whose playing affects the rhythm magnitude by disrupting 

it and by reducing the brightness of some primary colours. 
The basic LRM visualisation does not clearly denote the point where the loud brass 

instrumentation exits the foreground at 0: 50; the BLRM in contrast changes hue from pink 

are not even immediately recognisable as being tonal at all 
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Figure 3.24: The track Sabre Dance by Aram Khachaturian visualised with bandwise 

loudness rhythm magnitude (BLRM) and loudness rhythm magnitude (LRMI). 

to cyan/yellow. The point at which the woodwind melody is introduced at 1: 07 is also 

clearly marked with a change of hue, again to blue/red, denoting disruption to mid-range's 

overall rhythm strength. This change, in the context of the entire spectrum, is subtle and 
difficult to identify clearly. 

Without Psychoacoustics 

Removing the psychoacoustic loudness scaling from the method has the effect of reducing 
the relative dynamic ranges of the three channels, giving a smaller range of lilies. The 

formal definition is given by PBBRM: 

PBBRM(c, b) = IIRhy(13ark(b))t,... t, +tll, t-s (3.26) 
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Figure : 3.25: The track Without Me by Erninem visualised with bandwise loudness rhythm 

magnitude (BLRM) and bandwise Bark rhythm magnitude (BBRN1). 

To illustrate this, we use a rap track by Marshall Mathers, also known by the. name 
Eminem. Figure 3.25 shows the track Without Me. In the BLRM image, we can see it is 

far clearer to find the intro, verse and chorus changes; the outro is also clearly visible. Blue 

appears due to Mathers' vocals being the rhythmic element which changes throughout the 

track; other rhythmic voices contributing to the spectral loudness, such as the drums, tend 

to be constant throughout, thereby having no effect on the colour balance. The white 

appears due to the self-similarity of the whole sound; the spectrum is far `fuller' from more 

instruments being introduced, all with a simple repetitive theme. 
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Figure 3.26: The track Time is the Enemy by Quantic visualised with bandwise loudness 

rhythm magnitude (BLRNI) and bandwise Bark rhythm magnitude (BBRINI). 

As a poignant counter-example to the usage of psychoacoustics here, we can look at 
the excellent visualisation afforded by the Bark-based rhythm spectrum in figure 3.26. 

The track is Time is the Enemy by Will Holland (released under the moniker Quantic), 

a multi-talented musician who often plays lead duty on guitars, bass, double bass, piano, 

organ saxophone and percussion. In the figure, the waveform makes visible only the two 

large sections to the track, with the gap at 1: 56 to 2: 01. Aside from the start and finish, 

little else is visible. 
In the BBRM image, we can see the very clear sectioning of the track. The introduction 

is given by the blue/red stripes at the beginning, the first repeating theme with red-yellow- 

red striping, and the second repeating theme with green-yellow-green striping. The gaps 

with loud noisy guitar notes played are white. The first theme is just a repeating high- 

note arpeggio on the piano, the second incorporates a second theme, as well as having a 
lower-key and very quiet repeating arpeggio. The red-yellow striping of the first theme 

is produced by the difference between the piano with the drums (red since the piano is 

not immediately lag-correlative), and yellow with only the drums (since the piano is not 

introducing the decorrelation). The green-yellow banding of the second theme is caused 
by the relatively low-key tlienie, again spoiling the otherwise correlating drums. 

The BLRM image, by contrast, is fairly nondescript and barely better than the included 

(non-bandwise) LRM image, showing that each section is in fact two subsections. In 

particular, the stressed purple marks at 1: 53 and 3: 17, each of which represents a loud and 

unexpected guitar riff, is far clearer in the BBRM image than in either of the others. 

3.3.6 Novelty Score 

Definition 

The novelty score was introduced by Foote (1999a). It provides a value determined by 

the cross dissimilarity of the portions of signal both before and after the moment in time. 

Like the rhythm spectrum, it relies upon a prior abstraction of the signal known as a 
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self-similarity matrix, which is calculated simply by evaluating the similarity of the signal 
to itself at varying intervals (given by x- y). Section 3.2.2 gives a full defintion of the 
technique. Formally, we define the colour-projection function PNovetty 

PNovelty(C, b) = IN(L(b))I (3.27) 

where cE {O, 1,2} and represents the colour channel (either red, green or blue respec- 
tively), and b is a vector of spectra preprocessed from the signal. Futhermore, we define 
the function N: 

1<8 j<8 

N(x) _E Mj(i, j)K(i, j) (3.28) 
s=o j=o 

Mg is the self-similarity matrix determined from the series of spectra z (both of size 
s), and K is the Gaussian kernel function given in section 3.2.2. Figure 3.27 shows the 

process as a pipeline in a canonical fashion. 

Window f 

-q 
FVWV Sum Crlucal Convert ConwR 

SIFT Bands to Phon fo Sone 

Self SimiIarf Checker- Normallee Groy 
Matrix board Sum 

Figure 3.27: An activity flow chart of the bandwise loudness rhythm magnitude (Novelty) 

technique. 

The size of the self-similarity matrix and accompanying checkerboard kernel were ex- 

perimented with and qualitatively evaluated. I found that a value of around 128 spectra 
(1.49 seconds) provided a good balance between time precision and larger scale feature 

presentation. 

Demonstration 

Figure 3.28 shows a visualisation of the well-known James Bond theme, which will suffice 
to illustrate the form of visualisation that a novelty score produces. The novelty output is 

visibly different to the spectral magnitude, since it is one level of indirection away. Rather 
than showing the track directly, and allowing the user to determine when the metric changes 
enough to denote a feature, it instead shows the changes directly, essentially providing a 
differential view. 

It is clear to see the main orchestral figure plays four times between 0: 40 and 1: 00. 

This is despite slightly different sets of instruments and slight variations on the figure. 

The repetition of the guitar theme, twice at the beginning and twice at the end, is also 

visible as several gray lines followed by a block of black. The main orchestral climax after 
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Figure 3.28: James Bond Theme by John Barry visualised as a basic wave (Wave) and 

with the novelty score (Novelty). 

the figures, which runs from 1: 06 to 1: 16 is not discernable as being any different from the 

guitar themes after it. This illustrates the main drawback of this method; the refinement 

is so high that too little information can be made from visual inspection of the output. We 

will nevertheless consider it, since it may yet show musical properties that other methods 

are unable to show. 

3.4 Discussion of Methods 

We will now discuss the strengths of weaknesses of each of the t(, (hni(1uPPs proposed. We 

will do so by means of a side-by-side comparison of these techniques, over several pieces of 

music from a broad range of genres, including jazz, classical, rock and rap. We will, where 

possible, base the critique on musical aspects of the audio such as long-term structure, 

variation and rhythm. The techniques for comparison will be the three previously proposed: 

" Baudwise loudness smoothed magnitude (BLSM). 

" [3ruidwise mel-frequency cepstral magnitude (13NISMI). 

" Bandwise loudness rhythm magnitude (BLRMVI). 

" Novelty score (Novelty). 

These will be compared alongside two variations without colour: 

9I oucitness smoothed magnitude (LSM). 

" Loudness rliythin magnitude (Riff). 

We will also provide the amplitude projected as height, with a one second moving 

average (Wave). I consider this type of visualisation of musical audio as canonical and a 

reasonable baseline. 

'[lie specific tracks used do affect the content and conclusions of the critique, even 

within reasonably well-bounded genre categories. The selection criteria used for a track 

were two. Firstly, the track should be representative of the genre. Secondly it should 
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properly represent how the genre's facets manifest themselves within the visualisations. 
The selection given in this section is small, but is enough to illustrate the main differences 

between genres in terms of a particular visualisation method. 

3.4.1 Test Tone 

We begin by comparing visualisations with a manually-generated test tone; a series of 

synthetic `plucks' with a simple ADSR (attack-decay-sustain-release) envelope modulating 

a pure tone. The plucks are at a constant frequency of 880 Hz but change in tempo in 

three blocks (70 bpm, 105bpm, 158bpm). A further amplitude envelope is applied over 
the audio in order to keep perceived loudness constant. Figure 3.29 shows the generated 

images of this audio. 
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Figure 3.29: Several visualisations of the test tone `plucks'. 

The first thing to notice is the lack of a visualisation for the loudness spectral magnitude; 

the loudness stayed so constant throughout, that the normalisation stage reduced the 

image to complete darkness! This contrasts to the handwise variant (BLSM), which, 
through purely incidental interference effects, differentiates the tempos by frequency bands. 

Of course the colours it produces are quite arbitrary. The MFCC based visualisation 

apparently benefited in the same manner through the interference. 

The self-similarity matrix based visualisations (Novelty, LRM & BLRM), also distin- 

guish the first far better than the latter two. The novelty shows the boundaries fairly well 

with the tempos being largely indistinguishable. 
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3.4.2 Trip-Hop 

The discussion of actual musical audio begins with the trip-hop track by Josh Levis 

Stem/Long Stem. This is tremendously rhythm and timbre based, with both a great 

amount and a broad range of samples. 
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Figure 3.30: Several visualisations of the track Stem/Long Stem by D. 1 Shadow 

In the first half of the track, dominated with a foreground melody of a guitar, each 

of the spectral magnitude based versions denote the thematic variations well, either with 

contrasting intensities (LSM), patterns (wave) or hue and intensity (BLSM). The latter is 

particularly effective with the fairly subtle thematic variations of this track; we can clearly 

see transitions at 1: 20,1: 40,2: 40 and 3: 00 corresponding to extra instruments, changes 

in intensity and speed. A string crescendo is visible around 3: 19 in both the bandwise 

versions as a bright blue stripe, and a pipe organ sample at 3: 40-4: 05 is recognisable as a 

green-blue patch of increasing brightness. 

A large brass-dominated section (5: 14 onwards) in the second half is coloured green- 

yellow in BLSM and is simply brighter in LSM. Notably, however, in the wave image, the 

same portion is not noticeably different from the textures found elsewhere in the track, 

though the textures can clearly be seen to change. The change at 5: 58 represents the end 

of a guitar part, and the texture introduced at 6: 26 represents the return of the guitar 

melody although at a lower tempo. At 7: 06 the guitar is removed permanently, leaving 

only the brass. 

The BMSM image proves around as useful as the other spectral magnitude versions for 

the first half, alternating around green, gray and white for the various different variations. 
Colours are representative of the overall timbre of the music; e. g. green represents the 

playing of a string instrument in pizzicato. The red block fading in at 4: 08 represents the 

M 
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aforementioned pipe organ. The second half of the track is less clear overall; the only clear 
artifact is the ending of the guitar at 7: 06. 

The LRM image discriminates well at 1: 02 with the onset of drums, and again at 1: 20 

with a more regular and frequent percussion. The break and subsequent theme repeat are 
visualised appropriately as a black bar and with a texture similar to the initial portion 
of the track. The loud and regular percussion portion between 2: 40 and 3: 20 is visible as 
a large bright patch. The break following the crescendo at 3: 23 has only a single black 
line to disambiguate it from the silence which follows. The lag-correlation of the silence 
is apparently similar to that of the percussion. In the second half of the track, the main 
feature that is noted is the introduction of the occasional brass note in the background at 
5: 12. The following texture finishes with the end of the infrequent (but regular) percussion 
at 5: 57. The further melodic progression and instrumentation goes largely unrepresented. 

The BLRM image denotes significantly more information than RM; the silence following 

the crescendo of 3: 23 is now covered cyan. This a clear if non-obvious clue to the content. 
The following organ fade-in is represented in a similar way to the spectral magnitude 
methods. Two portions of the track at the beginning are separated and coloured distinctly 
differently (orange until 0: 28, purple until 1: 01); the musical difference being the lack of 
bass in the second portion. This goes largely unnoticed on all other methods. The purple 
hue is used once more in the LRM version, where similar instruments and no bass is once 
again apparent at 2: 02. The second half of the song is still relatively featureless, being 

mostly bright white. 
The novelty method is once again somewhat difficult to decipher. The build up to 

the percussion at 1: 03 is made visible, though the proper introduction of the percussion 
itself is not represented. The removal of percussion at 1: 44 is represented as a change from 

black to white, it flips again when the percussion restarts at 2: 41, before a large white 
band denotes the climax. The black block after this (3: 23 to 4: 05), encompasses silence, an 
organ fading in, and the onset of a high-pitched xylophone-like sample. The texture change 
and reduction in intensity corresponds to the removal of a (non-self-similar) sample of a 
man complaining. Subsequent changes in the track, both in terms of melody, instruments 

and speed, go without representation. 
In conclusion, either the BLSM or the simple wave are the best overall visualisations; 

the wave providing more textual information, especially with regard to the end of the track 

and the BLSM providing a clearer overall picture with its use of hue. 

3.4.3 Rap 

A piece of rap music, by artist Andrew Turner, named The Force is now for consideration. 
Figure 3.31 depicts the visualisations of it. 

The constant intensity and rhythm of this rap track is immediately noticeable in the 
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Figure 3.31: Several visualisations of the rap track The Force by Aim (featuring Q'n'C). 

basic wave display, which gives little away about the musical content. 

With the more advanced psychoacoustic preprocessing of LSM, the three choruses are 

immediately more recognisable at 1: 15,2: 12 and 3: 28. The inclusion of colour with BLSM 

gives a slightly more informative view; choruses are blocks of four light and dark-blue 

bands. Verses of pink and orange striped blocks represent the voices of the first and second 

rapper respectively. Each of the other visible combinations of colour similarly represent an 

instrument or voice. The BMSM method presents similar information to BLSM, though 

somewhat less clear, with the intensity distribution seeming to he heavily biased to the 

bright end. 

The three self-similarity based methods each make an impressive visualisation on this 

track, though the novelty is still a last place, with cues for structure taking the form of 

"more white lines" in the case of choruses. The LRM image is probably the clearest of 

all methods, and certainly the clearest of the monochrome methods. The general form of 

the track is immediately visible as a set of roughly equal length blocks, each containing 

four repetitions of a basic figure. Each of the blocks containing different voices are visibly 

differently shaded. 

The addition of colour in the BLRIN1 image allows the recognition of the piano at 2: 30 

with the yellow stripes, and of the rappers' voices as blue and green. However the initial 

onset of rapping at 0: 38 is not represented especially well, with confusing pink stripes 

introduced and a highly variant colour. The red in the break at 3: 09 does not denote the 

same as the red at the beginning of the track; both have a large bass content, though the 

red of the break does actually have some (rather minimal) green content representing four 

wails. Though the colour is slightly more instructive to the content, it seems in terms of 

ra 
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a clear expression that the non-bandwise variant, RM, performs better. 

3.4.4 Jazz 

The jazz track Take Five, performed here by the Dave Brubeck Quartet will he considered 

now. 
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Figure 3.32: Several visualisations of the jazz track Take Five by Dave Bruteck. 

The Novelty visualisation is once again quite noisy, the areas of lightness that it does 

have correspond to the saxophone playing. 
BLRM has a yellow portion for the part of the track without saxophone, and notes 

the small counter-melody with the clear and dark red and blue stripes at 0: 36 to 0: 49, 

and again with the lighter stripes at 4: 37 to 4: 50. The drum and piano duet denoted by 

the yellow hue has a significant amount of texture change on it; whiter parts correspond 

rarely to visible a more regular and frequent drumming style; darker and stripey parts 

correspond to infrequent drumming and, specifically, in the quick runs of molto crescendo. 
The primary melody (made up of a repetition of another smaller melody) is reasonably 

clear in the LRM image as a double white bar at 0: 23,0: 50,4: 25 and 4: 54. 

The BMSM clearly shows the end of the first saxophone portion, with the change to 

green at 1: 52. The change to a lighter green denotes a somewhat small change of the ride 

cymbal being used less frequently; the change to black is representative of the end of the 

ride cymbal to dictate rhythm. The subtle light portion around 3: 19 represents the poco 

crescendo of the piano. The BMSM does not make clear any of the changes of melodies, 

and for the most part the representation is noisy and difficult to discern. 

The wave gives a basic overview to the song's structure but little else is discernible; 

slightly louder (larger) portions are visible at the beginning and end, but other than that 
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little is clear. 
The LSM, with the psychoacoustic loudness measure, clearly marks the aforementioned 

piano poco crescendo (3: 16 to 3: 24) and drumming introduction (2: 10), with clear changes 
in brightness. The saxophone playing is clearly denoted with the bright regions at the 

beginning and end of the track. Its repetitive nature, however, is not made clear. With 

colour, in the BLSM image, the repetition becomes the clearest yet, with a green band 

followed by a longer pink/red hand repeated (at 0: 23,0: 50,4: 25 and 4: 54). This shows the 

nature of the smaller melody being repeated to make a single main melody, which itself 

is repeated four times. The period of minimal drumming between 1: 49 and 2: 10 is clearly 

marked as a dark patch; less clear is where the cymbal stops. As with the LSM method, 

the piano crescendo is a clear light patch. 

On the whole, the BLSM is the clear winner, depicting the musical aspects of the track 

more clearly than the others. I would note, however, that the visualisation of the variation 

of the small counter-melody with the BLRM is unmatched in the other images. 

3.4.5 Classical 

For the classical track, we defer to the Nachtmusik Allegro by Wolfgang Amadeus Mozart. 
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Figure 3.33: Several visualisations of the classical track Nacht7nusik Allegro by Wolfgang 

Amadeus Mozart. 

With this track, and indeed much classical music, what is immediately noticeable is 

the difficulty of seeing overall structure. I see this as most likely caused by the greater 

tendency of classical ºnusic's structure to stem frone "higher level" musical aspects, such as 

harmony and (counter-)melody, rather than "low-level" aspects, readily analysable from 
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the signal of the performance (e. g. timbre)9. This would happen naturally through its 

tendency to separate composition from performance. 
The overall view of structure is improved somewhat by the techniques that use medium- 

term windowing (BLSM, LSM & BMSM). The wave depiction suffers from clutter due to 

the large amount of short-term dynamics. With the exception of the particularly cluttered 
BLRM method, the slower, quieter portion of strings between 2: 30 to 2: 56 is readily 

recognisable. 
Though having a limited palette, the BMSM method seems to give the best overall 

presentation in terms of information. Repetitions are relatively clear and unambiguous, 

with the first minute largely resembling the second and the start of the third. Aside from 

the aforementioned portion of strings, colours seem to have little obvious connection with 

the figures of the theme, apparently being caused by occasional notes reaching a critical 

band threshold. 

Of all genres, classical is the one which these direct signal-based visualisations have 

the most difficulty presenting. 

3.4.6 Downtempo/Electronic 

The Dining Rooms, an Italian downtempo electro-acoustic jazz band provide the next 

track, Occhi Neri. 
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Figure 3.34: Several visualisations of the downtempo track Occhi Nerz by The Dining 

Rooms. 

With downtempo music the visualisations are usually fairly easy to spot; tracks are 

typically clearly segmented and use a range of colour. The regular texture of the segments 

9Middleton (1990) makes a similar observation 
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also tends to be visible. 
The structure and content of the music is easily visible with each of the basic magnitude 

methods. There is clear break from 2: 45 to 3: 20, and the track gets progressively louder 

until that break. With the bandwise methods, we can see the change in colour resulting 
from the loss of a mid-range voice (a background guitar); this manifests itself as pale- 

green-yellow to purple in the BLSM image and yellow to pale-purple in the BMSM image. 

The rhythm magnitude measures appear somewhat less obvious; the LRM method's 

regular texture represents the regular beat in the music, though the brightness has very 
little obvious musical relevance here. The colour of the BLRM[ image provides similar 
information to that of the BLSM though is paler and more faded. 

3.4.7 Pop/Rock/Metal 

The Foo Fighters' rock ballad Generator will be commented on now. 
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Figure 3.35: Several visualisations of the rock ballad Generator by Foo Fighters. 

In it manner similar to that of the rap track by Aim, Generator has a largely consistent 

amplitude throughout, giving a wave image largely devoid of artefacts. Contrast this to the 

LSM image which, from its better loudness scaling, presents us with information readily 

relating to the music's dynamics. The two repeating choruses are visible as two dark blocks 

separated with a bright band. Left unclear are the relations between the rest of the track; 

in fact it follows a roughly A-B-A'-B'-C-B'-C-D-C-C structure, with the A' being similar 

to A but without vocals and B' being similar to B but with a clear guitar riff in the middle 

as well as at the end. 
The BLSM image has bright and contrasting cues which depict the structure clearly; 

the two B' choruses are clear, this time as red blocks with blue in the middle. A (start to 

-a: 
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0: 19) could perhaps be identified as a faded and slightly dark version of A' (0: 44 to 0: 56), 

and we can see that vocal parts are denoted with red, guitar as light blue/cyan, and both 

as pink/gray. The initial guitar solo is deep blue; the vocal dominated verses are a clear 
red, with a cream band for the distinctive guitar riff. The small guitar solo (D) sandwiched 
between choruses (C), is also visible on close inspection between 2: 38 and 2: 55. Repetition 

of the choruses (C) is also visible as gradients from white to cyan. 
The BMSM image is no better; vocals are denoted by darker faded green; the guitar riff 

is a faded purple. The rest of the track is largely featureless, the few faint artefacts have 

no musical meaning. Unlike with BLSM, the combination of vocals and guitar appears no 
different to guitars alone. 

The novelty visualisation gives a reasonable monochromatic display of the track; verses 
with the guitar riff are visible as four white lines, with the centre two being closer together 
(the start and end of the riff). A faint pattern of several closely spaced lines of increasing 
intensity at 2: 58 and again at 3: 26, are neither especially musically significant nor repeti- 
tions. The LRM image does a reasonable job of showing the central B'-C-B'-C structure 
between 1: 00 and 2: 38. Quiet vocal parts are typically darker, though there appears to be 
little more clear information. This is improved again by the BLRM image, which seems to 

show the same structural information as BLSM except with more noise, less precision, and 
vocals not clearly corresponding to any particular hue. Pale yellow-green denotes vocals 
with no major guitar proportion around 0: 25,1: 04 and 2: 00, but cyan denotes the vocals 
when mixed with guitars throughout the choruses at 1: 24,2: 27 and 3: 05. The entire guitar 
solo and the starts and end of the various features are not clearly marked either. 

3.4.8 Dance/Classical Fusion 

Finally, the high-dynamic range track Clubbed to Death by Rob Dougan will be reviewed. 
The main structure of the track changes between strings (to 0: 23), percus- 

sion/bass/samples/strings (to 2: 53), piano (to 4: 00), percussion/bass/strings with a 
sweep filter (to 4: 38), percussion/bass/samples/piano (to 5: 53), bass/piano (to 6: 20) and 
finally piano/strings. This is noticeable on the wave image through the small (percussion) 

and large (classical) patches, with the transitions of 4: 38,5: 53 and 6: 20 being somewhat 
more subtle. Aside from this only one other artifact is clear; a darker patch at 1: 59 signals 
the end of the foreground strings. 

The LSM image gives a far clearer image of the track with the superior relative in- 
tensities throughout, noticable when compared to the waveform image. Despite being 

monochrome, not only are all aforementioned sections of the track visible, but so, too, is 

the repetition of the strings in the background of the classical regions (3: 28 to 3: 58,6: 20 

to end) as four lighter bands. 

The colour of the BLSM reinforces the above structure to the eye. the strings at the 
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Figure 3.36: Several visualisations of the dance/classical track Clubbed to Death by Rob 

D. 

beginning are noticeably blue, though throughout the track a blue tint and strings do not 

seeni to correspond robustly. the bass (as always with BLSM) is marked as a deep and dark 

red, most evident in between the green of the piano figures at 5: 53 to 6: 20. Overall, the 

subtle changes in colours in the percussion portions largely represent voices being added 

and removed well. As the hue changes from a red tint to a cyan tint, more mid-range voices 

such as the sauºples, strings and piano take precedent in the sound over the bass. The 

uºarcato of the piano during the classical portion, between 2: 53 and 4: 00, is distinguishable 

as the flecks of green getting brighter. Furthermore, the use of sweep filters to change the 

tone of the sound is reasonably visible before the strings get added, between 4: 00 and 4: 19, 

ºIs a transition between red and gray. This effect becomes subtler, representing the sound 
to Sohle degree, in the 20 seconds following when the strings are added. 

Using MFCCs for the preprocessing gives a somewhat less informative image; the classi- 

cal sections are noisy and overall texture is difficult to make out. Texture and hue changes 
in the percussion portions do give rise to musical changes; the change from cyan into 

pink at 1: 02 denotes the introduction of a foreground sample; the important introduction 

of strings at 1: 20 goes without visual artifact. Movement of strings from foreground to 

background and removal of the sampled voice is denoted by a change to white. In all, the 

visual changes are subtle, non-exhaustive, and not immediately representative. 

The self-similarity based measures perform, on the whole, poorly. Novelty notes many 

useful changes in the timbre space of the track with a single, precisely located, bright white 
line. In particular, the transition points at 0: 24,2: 55,3: 28,4: 00 and 5: 53. However, points 

within sections are either entirely without feature (generally in the percussive portions), or 
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laden with details that are of no immediate musical importance (in the classical portions). 
The LRM image suffers in much the same way, though the transition between bass/piano 

to piano/strings at 6: 20 is perhaps a little clearer. Use of colour in BLRM has less clarity 
in the classical portions with a generally noisy use of all colours. On closer inspection, 
the repetition of the theme at 3: 27 again at 6: 20 is denoted through the use of the same 
(complicated) pattern of colours; as a nice touch the same theme played once more at 6: 58 
in marcato is denoted as the same pattern once more but in a lighter shade. 

3.4.9 Summary 

Each of the proposed methods of visualising music audio signals perform sensibly with 
certain types of music, and typically outperform the trivial wave representation, despite 
being comparable in terms of screen space required. Notable points include: 

" Generally, bandwise loudness magnitude performs either the best or not much worse 
than the best. 

. For rap music and in some manners jazz too, the bandwise rhythm-spectrum method 
typically performs best. 

" Classical music tends to be for more difficult to visualise than other genres for these 

methods. 

9 With few exceptions, the addition of colour through the bandwise step improves the 

visualisation. 

3.5 Conclusions 

I have provided a thorough review of literature concerning the visualisation of musical audio 
signals. I have proposed two novel and efficient methods for visualising musical audio. Each 

of the proposed methods are single-stage audio-analysis methods not employing complex 
machine learning algorithms or multi-stage pipelines. They produce a simple visualisation 
of form S-3 making them good for usage on a popular navigation system. 

I have discussed and provided examples for each non-obvious step in creation of the 

visualisation methods. I then discussed the aspects of music that each visualisation method 
depicted over a number of tracks from a board range of genres. I finished by summarising 
the findings from that informal inspection. 

In the next chapter I will consider one particular path for improving the simplicity and 
legibility of the image; the use of more advanced dimensionality reduction techniques in 

order to project an audio block into a colour. In particular, principal component analysis 
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(PCA) and the self-organising map (SOM) will be utilised as methods to project an audio 
block onto a chromaticity plane. 



Chapter 4 

Chromaticity Plane Trajectories 

"The painting has a life of its own. I try to let it come through. " 

-Jackson Pollock (1912-1956) 

4.1 Introduction 

In this chapter I propose and discuss a novel music audio visualisation technique, de- 

signed to utilise the topology-preserving dimensionality-reduction capabilities of the Self- 
Organising Map. 

4.1.1 Chapter Summary 

I begin by reviewing work related to that presented here; dimensionality reduction methods 
and examples of their usage in music and musical audio signal processing. I then detail 
the proposed visualisation technique able to utilise linear and non-linear dimensionality 

reduction methods; first giving an overview and then detailing and defining each stage. 
This is followed by demonstrations of the technique in action. Finally I review each of 
the proposed variations on the technique, using the same pieces of musical audio in the 
previous chapter. 

4.1.2 Contributions 

"A formalisation of a dimensionality-reduction-based core technique, drawing upon 
the earlier visual creation technique, together with two novel concrete visualisation 
methods. 

" Discussion of these techniques, their advantages and problems, and their relations 
to existing techniques. 

85 
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4.2 Related Work 

The self-organising map together with principal component analysis are two common meth- 
ods for visualising high-dimensional data. This is essentially the problem which the chroma- 
projection function must solve. 

4.2.1 The Self-Organising Topographic Map 

Introduced by Kohonen (1982), and later described by Kohonen (1990), there is a large 

amount of literature describing the Self-Organising Map (SOM) and its various applica- 
tions. Oja et al. (2003) compiled a bibliography of all its various uses, fittingly illustrated 
by a SOM visualisation of the types of subjects covered. Notably, music is one of the 
few areas without a large amount of attention. It is regarded as a general-purpose unsu- 
pervised neural network, and as such is covered in overview and reference texts including 
those by Skapura (1996), Fausett (1994), and Callan (1999). `Neural networks' are a set of 
biologically-inspired methods and techniques for recognising patterns, typically through a 
connectionist paradigm. 

There are several variations on the SOM algorithm. Kohonen (2007a) gives a good 
starting point. The underlying concept in all of them is to have a set of model vectors, 
each of which represents a point in input data space. These model vectors are then 

organised in some form of topology, typically a quadrangle, though various alternatives to 

planar and indeed Euclidean geometry have their uses (Ritter, 1999 goes into more detail 

about this). The topology is important to the algorithm in one way only; it helps define 

the neighbourhood function. This determines how the reinforcement of one node will affect 
each of the other nodes. Of course this topology plays an important part when the SOM is 
inspected, but that is not part of the algorithm per se. Once properly trained, nodes that 
lie close to each other on the grid have relatively similar model vectors, and thus represent 
similar data. 

Perhaps the most archetypal use for the SOM is the classification of Finnish phonemes. 
A map is trained to decode the low-level audio features of various Finnish phonemes into 

points on its planar surface. Figure 4.1 illustrates the trained map together with the 

phoneme represented. Spoken audio may then be visualised as trajectories in the SOM 

space. 

Definition 

Formally, we may define the SOM as a topologically defined set of model vectors m, as 
ICohonen (1990) does. Each model vector defines a point in high-dimensional (input) 

space and has an implicit position in the lower-dimension (output) space. It thus acts as 
a point-to-point mapping between spaces. An input point may therefore be mapped to a 
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Figure 4.1: An illustration of a fully trained SON! on Finnish phonemes. Left are the 
low-level spectral data, right are the phonemes represented by the data. /(eprodticed fromm 

article on Scholaipedia by Kohonen (2007a), according to the licence. (Jo njri. ght remains 
with the original author. 

corresponding output point by determining the model vector that most closely snatches it. 

Formally, the point in output space of input vector x is equivalent to the implicit position 

of node i where: 

III 
i 
in{jjx - mill) (4.1) 

The SOM may be trained by an iterative learning process, where each step of time 

may be denoted by: 

in7(t+ 1) = mi(t) +tz, i(t)[X(t) - Ini] (4.2) 

It, is it neighbourhood function to determine the size of structure enforced; this de- 

creases to zero throughout training and is typically implemented as it Gaussian-centered 

distribution: 

%lr1 a(t)e-llr, -r, Ij2/°(t)2 (44.3) 

where ( and a are decreasing functions over time. 

The initialisation of the model vectors is of lesser importance to the definition of Ilhe 
SOM, and is discussed fully in the description of our particular algorithm (section . 1.3.1). 

4.2.2 The SOM with Musical Audio 

The SOM has had several applications in the field of musical audio infortnatiott retrieval. 
The three typical uses are as a means of a similarity `proxy' of musical audio, as a method 
in itself for visualisation of data concerning music and as a classifier. 
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For Visualisation 

The SOM has been instrumental in a wide range of visualisation tools, and is by no means 
limited to music. However in the various fields concerning music it has seen use as a 
preprocessor to a self-similarity matrix of tonal content by Toiviainen (2005); a method 
of visualizing melodic data from a symbolic format for comparative analysis of folk music 
by Toiviainen and Eerola (2001). It is also heavily used as a visualisation aid in mu- 
sic collections; Lubbers (2005) use it for combining visualisation with "auralization" for 

a multi-media collection browser. Morchen et al. (2005) uses it to visualise collections 
according to perceptual distance, in a similar manner to the original Islands of Music 
by Pampalk (2001); Rauber et al. (2002); Rauber and Frühwirth (2001); Pampalk et al. 
(2002): 

Islands of Music is a project spanning several research avenues. It is centred around 
the utilisation of a SOM to navigate around a collection. It works by appealing to a 
visualisation representing clusters of music on a plane as islands and mountains. Several 

concepts are trialed, including feature vectors for SOMs (which we use in the present work), 
and utilising SOMs as a dimensionality reduction method for a large audio feature vector 
to generate 'meta-features' (an idea adapted for use in the present chapter). 

For a Similarity Proxy 

The SOM has also seen considerable use in the field of music analysis algorithms as what 

we will term a `similarity proxy'. We use this term to mean `a spacial mapping using the 

topology preservation characteristics in order to give a more efficient, and perhaps effective, 
measure of similarity between two feature vectors'. Vembu and Baumann (2004) use tags 

generated from online descriptions, (in this case from the retailer arnazon. com), to train 

the SOM. Artists can then be recommended according to where they fall on the resultant 

map, rather than comparing the given tags directly. Aside from being more efficient, this 

can make queries more effective, since `neighbourhoods' of artists can form where several 
tags are shared between artists. This allows artists to be grouped together that do not 

necessarily share the same tags, but have close associates that do. 
Dittenbach et al. (2003) presents PlaySOM which, stemming in part from the Islands 

of Music project, allows an interface for hierarchical navigation (`drilling down' in data- 

mining slang), and area selection for playlist generation. This again relies on the topology 

preserving characteristics of the feature space, and on the feature space being reasonably 

representative of the perceived qualities of the music. Toiviainen and Eerola (2002) use 
the SOM to determine melodic similarity; trained on many high-level vectors modelling 
melodies, the SOM functions as an effective alternative to string-matching. 

Finally Wood and O'Keefe (2003) describe some basic work attempting to utilise the 
SOM as a measure of similarity for musical pieces. They attempt to predict whether two 



4.2. RELATED WORK 89 

pieces share the same album by their distribution of transformed points on the map. 

For Classification of Musical Audio 

SOMs have had uses in musical audio feature classification. With genre classification being 

a popular challenge in the field of music information retrieval, SOMs have been used as 
a pattern classification tool. Knees et al. (2006) utilise the SOM to project music onto a 
2-dimension `map' of genres. Reminiscent of the Islands of Music work, the various genres 
of music may be visualised as portions of the map segregated by a learned viewer, or as in 
this instance, a web-based artist-tag retrieval system. Some 66,000 different features were 
extracted for this task, being reduced to the 20 that most accurately described genre-splits 
with Pareto-Density Estimation. Ponce de Le6n and Inesta (2002,2003) also attempt 
to identify musical style but in a more limited sense; to discriminate between jazz and 
classical. The SOM is utilised as a feature space partitioning tool, the features here being 
derived from symbolic data. 

Rather than classifying music from symbolic data, Cemgil and Gärgen (1997) attempt 
to use the SOM to classify instruments from audio data. They discuss several types of 
neural network with respect to the problem of instrument sound classification. They find 
that SOM did not perform as well as the other networks. However they found that the 
SOM proved more useful for being able to see what the network was doing and how it was 
ordering the data internally. 

4.2.3 Principle Components Analysis 

Principle Components Analysis (PCA) is a technique used in statistics typically for sim- 
plifying a dataset, reducing it to a lower dimensionality (perhaps for visualisation). This 

may be done by ignoring high-order components in favour of lower-order, thus retaining as 
much of the variance of the original dataset as possible, with as few dimensions as possible. 
Indeed, PCA is the optimal linear transformation to determine the subspace of the largest 

variance. 
Introduced by Pearson (1901), and described in depth by Jolliffe (2002), the principle 

component of a set of n-dimensional vectors is the n-dimensional vector which describes 

the projection giving the greatest variance over the dataset. Formally, we can describe the 

principle component on a zero-mean dataset x as wl where: 

wl = arg max var{wTx} (4.4) 
IIWII=1 

If the dataset is projected by this vector (i. e. the variance is removed), the principle 
component of the new dataset is the second principal component of the original dataset. 
Each principle component is naturally orthogonal to all others. Thus the full set of n 
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principal components can said to be an n-dimensional rotation, which, when applied to 
the dataset, orders the dimensions in terms of maximum covariance. We may call this the 

result of Principal Components Analysis. Formally, we can describe the k-th component 
as wk where: 

wk = arg 
Ilml 

x var{wTkk_1} (4.5) 

where 

k-1 

Rk-1 =X wiwTX (4.6) 
i=1 

PCA is typically implemented by: 

1. Subtracting the mean from the dataset. 

2. Determining the covariance matrix of the dataset. 

3. Determining the eigenvectors and eigenvalues of this matrix. 

4. Sorting the eigenvectors in terms of corresponding eigenvalues. 

The eigenvectors represent the principle components of the dataset. 

In Musical Audio IR 

Being a conceptually simple, effective, well-understood and accessible technique, PCA is 

used in a wide variety of situations throughout numerical processing, to reduce the amount 

of data by discarding that which is statistically most redundant. An example of its use 
in the processing of musical audio, which serves us well since it was directly adapted for 

use in the present work, would be that of Pampalk et al. (2004,2003) who utilised PCA 

to reduce two high-dimensionality feature vectors (around 1000-dimension) to just tens of 
dimensions, with very little loss of quality in the resulting visualisation. 

4.3 Proposed Visualisation Methods 

In this section, I discuss a visualisation method which we term chromaticity-plane trajec- 

tories. This method builds on the core visual construction method in the last chapter. In 

particular, this method reduces a block of the musical audio to a two-dimensional 'posi- 

tion' representative of its content. A particular two-dimensional colour-space is used to 

decode this position into a colour. This colour is considered representative of the musical 

audio. Therefore, as the positions determined by the audio blocks change, a trajectory 

forms though the colour space. 
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This technique can be considered in three distinct parts; (1) perceptual-audio feature 

extraction, (2) vector projection and (3) perceptual colour encoding. Since no contextual 
information of the colour is available to part (2), the performance of this technique (is 

partly) contingent on users not caring about an absolute colour-feature mapping, but only 

about the inter-relationship of colours. This is unlike many of the visualisations in the 

previous chapter, which mapped fairly absolute elements of the audio (e. g. loudness and 
spectral-ratio) to colours. 

The two proposed methods share in common most of the technique as a whole; the 

only difference being the `projection' method. Figure 4.2 shows a diagram of the three 

transforms that the data goes through. A large feature vector of the song is created. It 

is then projected down with a dimensionality reduction technique. This portion of the 

method is based largely on the Islands of Music work. After a low-dimensionality position 
has been attained, it is transformed by way of a colour-space into a single colour. This 

technique therefore fits well into the audio-colour projection framework devised in section 
3.3.1. 

Audio Block Feature Featureset Dimensionality Position Colourspace Colour 
Extraction Reduction Projection 

00*0 06. 
- 

L-S Lobw 

av Figure 4.2: The stages and intermediate data types required for the general CPT colour- 

projection method. 

In particular, perceptual differences in audio should be well represented in the first 

refinement, and perceptual differences in colour should be approximately linear from the 
latter stage. Thus by assuming a linear mapping in the middle stage, the results is a mnap- 

ping between audio and colour that to some degree preserves perceptually-proportionality. 
These attributes are discussed in more detail in the relevant sections. 

We can not directly map a high-dimensionality perceptual audio feature vector to a 

planar surface trivially, so we propose two methods. Firstly, we preserve linearity at the 

cost of discarding some of the information, by discarding low-variance dimensions in a 

variance-ordering rotation of the input space with PCA. Secondly, we propose sacrificing 

proper linearity with a non-linear but topologically-correct mapping, in order to represent 
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all the information. The latter method also has the advantage of providing a natural 

method for content-based (i. e. not necessarily linear) quantisation of the output. 
Initially I describe the feature vector preprocessing method. Secondly I discuss colour 

spaces. I finish with two forms of dimensionality reduction; a linear method using PCA 

and a non-linear method using the SOM. 

4.3.1 Feature Vector Processing 

Following the work of Pampalk et al. (2004), I used the spectrum histogram featureset 

(SP) to model the perceptually motivated audio feature space. SP, although it does not 

model aspects of timbre such as instrument onsets, has been found by Pampalk et al. 
(2003) to significantly outperform other feature extraction techniques in grouping tasks. 

When compared to several other more complicated and computationally intense methods, 
it outperformed each of them at distancing musical audio of differing style, artist, genre 

and album. Though this is no guarantee that it will deliver a useful space for disam- 

biguating musical features in an individual piece, it is encouraging. Using Bark `critical 

band' summation as well as specific loudness scaling, SP is a psychoacoustically robust 

preprocessing method. 
Furthermore SP, unlike e. g. rhythm-based techniques, takes only a small amount of 

signal to collate a feature vector. The amount of signal to collate a robust rhythm-based 
feature vector is typically significantly more (e. g. the periodicity histogram rhythm-based 
feature takes 12-seconds to collate). Furthermore, it is not clear how a rhythm-based 
feature vector would describe the sorts of aspects of music that users typically wish to 

have visualised. 
The two other techniques evaluated as performing worse at disambiguating objective 

music attributes by Pampalk et al. (2003). These, named after their proposers, Aucouturier 

and Pachet (AP) and Logan and Saloman (LS) notably used mel-frequency cepstrum-based 

signal preprocessing (i. e. MFCC features). Although this has never been clearly shown as 

being a worse method of preprocessing music signals than the Bark/Sone preprocessing, 

this work would support that theory. For all these reasons, I adopted the spectral histogram 

as the algorithm, with no major changes from that proposed originally. 

The Algorithm 

Figure 4.4 shows the process as a dataflow pipeline. More formally, the basic form of the 

feature extraction method is: 

1. Take a window of STFT spectra; I used three seconds worth of spectra which ap- 
peered to deliver good results. 
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Figure 4.3: The full set of histograms for the track Lebanese Blonde by Thievery Cotpo- 

ration. 

2. Modify each spectrum to a critical-banded Sons; scaled psychoacoustic spectrum, as 
described in section 3.3.3: 

(a) Rescale axes logarithmically to c113-SPL. 

(b) Sutra into first 20 critical bands according to the Bark scale. 

(c) Scale each frequency band to pliou units by interpolating equal lo lidness curves 
(Phon). 

(d) Scale each band into specific loudness solle units (sore). 



9.1 CHAPTER 4. CIIROMATICITY PLANE TRAJECTORIES 

3. Rescale so maximum loudness over the piece equals 1 sone. 

4. Sum a spectrum histogram matrix H with each spectrum s: 

1,, s>> Utl( p =_ YO- (4.7) 
s 

to, otherwise 

5. Scale the histogram so that the maximum value contained is 1. 

H' __ H= max(Hf, i) (4.8) 

This gives a 1000-dimension perceptually-based audio `timbre' feature-vector, which I 

use as a model for human perception of the musical audio. Figure 4.3 illustrates the track 
Lebanese Blonde as 280 distinct histograms. 

The eigenvalues may be inspected to reveal the internal dimensionality in figure 4.5. 
In almost all cases, 90% of the total variation of the datasets is captured in just the first 
two principle components. This serves as an initial validation of the argument to project 
the data onto a 2-dimensional plane. In the next section, I will consider the perceptually- 
opposite notion of turning such a 2-dimensional coordinate into a colour. After this, I will 
discuss two methods of reducing the high-dimension feature space in order to `project' the 

audio features Into a colour. 

4.3.2 Colour Space 

In this section, I will discuss colour spaces, In particular the mapping from a position to 

a colour. 
In most colour spaces, chrominance (chromal) subspace, (which I will define here as 

being the aspect of colour which does not change with the amount of light received by 

the viewer, i. e. non-luminosity dependent), are naturally representable with 2 dimensions. 
Brightness Is Ignored for two main reasons; firstly over concern that it would be of greater 
apparency over chroma. As such, it may mislead the viewer to identify it with some partic- 
ular aspect of the sound (e. g. spectral brightness, loudness). Secondly, at the extremities, 
luminosity naturally folds all colours down to one (i. e. white or black), making the other 
dimensions Indistinguishable. 

ichro, na actually has at least two meanings; together with being a shortened form of the word chromi- 
nanr, it has a more traditional meaning, which I will not use in the present work, that makes it synonymous 
with saturation or purity of a tone. 

Wind" Sum Criocd Convert Convert 
BTFT Bonds b Phon to Sons ý 

Normýlla Histogram 

Figure 4.4: An activity flow chart of the CPT preprocessing technique. 
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Figure 4.5: Each of 8 tracks' eigenvalues (Lebanese Blonde, classical, rock, fusion, down- 

tempo, trip-hop, jazz, rap). The dashed red line denotes the 10% cutoff for the sum of the 

eigenvalues. 

An advantageous quality of a colour space would be to use as much colour (i. e. as 

wide a gamut) as possible, in order to better aid an onlooker in distinguishing features. A 

further related quality would be to capitalise, where possible, on the primary colours of 
the colour model RGB, since they will naturally be the best defined on the display system 

used. 2 

Three planar chroma subspaces are depicted in figure 4.7. 

Perceptual Similarity of Colour 

In addition to the consideration of gamut, there is a second question of distribution by 

perceptual similarity. This was addressed with an experiment by MacAdam (1942) on the 

subjective similarity of colours. 
In a manner analogous to the Bark critical banding of frequencies (see section 3.2.1), a 

large number of human experiments were carried out to form a general view of how people 

perceive colour and changes therein. MacAdam experimented by asking people to match a 

pure spectral colour, (i. e. one that can be denoted perfectly by only a single frequency of 
light), to a composite colour of which they had control over two chroma parameters; x and 

y (the luminosity was fixed). He found that the values chosen for x and y varied between 

subjects, but that over the course of the experiment formed an ellipsoid distribution on 
the x-y colour plane. These ellipses (one for each colour tested) became known as the 

MacAdam Ellipses, each denoting a `region of indifference' in human perception of colour. 
It is useful to define a (theoretical) space where differences in the position are propor- 

tional to differences in the perceived colour. Formally, I define a perceptually euclidean 

colour space as function S which maps a colour to a point. The apparent change in colour 

2Unfortunately for this document, this is at ends with the ink-based printing system. 

Principe Components Principle Components Principle Components Prlnclple Components 
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is I)rupurt i(, nal tu the 491(1i(1(901 distance between cudpoints of the change: 

I>((*I, Q) A IIS(ei) - S(r2)11 (4.9) 

whore !' is it (unI't iun defining list eivecI linear (Iiffcrcucc betwccu two colours. 

Simple Spaces 

( )ne sil Iv colcmr space is I»wcct around the hue and saturation portions of the IISV colour 

nutclel. Since thc cnttput, is the satire for all Imes at zero saturation, I use it polar coordinate 

systcnt for the splice rat 111 I tIinn it CartesituI system. We cleli11 V the spaces thus: 

(fan 5) 7r 10.5 
t '("t', 

. 4) ('list'( --- 27r , 
(aý 0.5)z -f- (y -- 0.5)2,1) (4.10) 

On inspection, it, is clear tct tics tIirve aspects of non-linearity in the perceptual colour 
Mist rilnitiuei; firstly, the e"e"eete"r provides far too small a jump in quality whe"u compared to 

Ow e"elge s. tie"e'e, eully, flit- changes in Ieue" are far greater aroiuni the secondary colours (i. e. 

Yellow, IIinge"nta and e"ynee) than aromiel the primaries (reel, grce"te amt blue). Finally, as 
is ufte"n flit, o'o se", Olt- sI>iu"e given to green Imes lams far fewer changes in colour to that of 

of he"r hues. 
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Figure 4.7: Three simple chrominance colour planes. Note: The colour reproduction is 

almost certainly inaccurate and should be taken as a demonstration and not a reference. 

YUV and YIQ (top middle and right of figure 4.7) are both used for the transmission of 
analogue television signals; they are designed to map colours in such a way as to minimise 
obvious degradation when noise is introduced. They represent exactly the same colour 
space except with a rotation of 30°. Though interesting since they encode the chroma- 
information explicitly as 2-dimensions, neither of these proved a particularly good mapping 

space due to excessive concentration of the same colour over a wide area. 

CIE Spaces 

As described by Kasson and Plouffe (1992), CIE (Commission Internationale d'Eclaiiage) 

XYZ colour space (CIEXYZ, bottom left of figure 4.8 with a fixed luminosity Y) was 

one of the first mathematically defined colour spaces. It is particularly special since it 

is based on perceptual experiments done on the human eye by Wright (1929); figure 4.6 
depicts the famous chromaticity diagram derived from his experiments. As such, CIEXYZ 

is designed to encompass all distinguishable chrotnaticities in the human gamut, each as 
a single point3. As such, it forms the basis for many colour spaces which encompass all 
visible colours. 

CIEXYZ can be translated into the sRGB colour space by: 

Riinear 3.2410 -1.5374 -0.4986 X 

Glinear -- -0.9692 1.8760 0.0416 Y 
Blinear 0.0556 -0.2040 1.0570 Z 

'doing so without guaranteeing each colour mapped to only one point is trivial; one simply uses a 
histogram of the visible portion of the EM spectrum 

YUV Colour Space where Y=0.5 YIO Colour Space where V-0.5 
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1 inure 4. ti: Three CIE-specified cliroiuiuance colour planes. Note: The colour reproduction 
is almost certainly inaccurate and should be taken as a demonstration and not a reference. 
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sir <=0.0031308 
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1(l f ýtýý IiýLCf1r a, Clinear > 0.0031308 

where a 0.055 and takes the values of Riinear, Giineari Biinear in turn to make 

the t. ril)Iu1, ('. Ir(: It" 

For the i«: I3 space, I assume sR. C: 13, it widely adopted standard, and common on 

uºnitlstreatill computer systems. sR( 13 is it practical colour space; most light imaging 

systº'iiis furºu colours from the three primaries red, green and blue, and as such it is 

advnntligeuuti Fur software to store colours in such terms. 'T'hese however do not accurately 

model Immun vision, which for it perceptual system is desirable. 

The ('II; 1976 I, *; º*I>* (('II; LA13) colour space, depicted middle of figure 4.8, is a 

perceptually motivated colour space. I3aseci on CIEXYZ, it is well-defined and encompwises 

all c"oloitrs in the hiuuun gai iiit. Its three parameters, like most outer colour spaces, 

correspond to it single luminosity value and two chroma values (`a*', `h*'). It is 

c"umi>Itre I the most, complete colour model used conventionally to describe all the colours 

Visible to the hiunmui eye, and furthermore was designed largely as a perceptually linear 

colour space. It inaiy he converted to ('I EXYZ space by: 

Iý (V + 16)/i16 (. 1.1:; ) 
f, 

__ 
fy + a'/500 (4.14) 

f= = fy - b'/200 (. 1.15) 

{fi;, fd >6 (4.16) 
(fl, l (i/ 11(i)3d2Y,, otherwise 

I 

-100 -50 0 50 100 
u. 
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X 
fXnfx3e fx >8 (4.17) 

(fx - 16/116)3b2Xn otherwise 

Z= 
JZnfz' fz >8 

(4.18) 
(fz -16/116)3ö2Zn otherwise 

The systematic perceptual linearity of CIELAB is determined from the MacAdam 

ellipses (see section 3.2.9). The CIELAB colour space uses these to warp the CIEXYZ space 
in order to better preserve human perceptual linearity. The space is designed so that the 

euclidean distances between points in it are proportional to those given in the Munsell book 

of colour, a seminal text on colour notation by Munsell (1912). CIE 1976 L*u*v* (CIELUV) 
is a similarly perceptually motivated system, but whose colour differences present different 

values, smaller than those in the Munsell book of colour. Of the two, I found visually 
better results from CIELAB. 

CIELAB has, in some manners, been superseded by the CIECAM97c, and later 
CIECAM02. These spaces however have several drawbacks for this situation. Firstly, 

unlike the a*b* and u*v* subspaces of CIELAB/CIELUV, they do not provide a clear 
planar subspace. Furthermore, they are high-dimensional colour spaces; CIECAM02 uses 
seven parameters (lightness, brightness, colourfulness, saturation, hue quadrature, chroma 
and hue), not including whitepoint adjustment and surround correction. 

Proposed Colour Plane 

On the video equipment available, I found the CIE space simply far too non-linear. Because 

of this, a colour plane was devised manually which can be seen as a modified red-green 

colour plane; a blue component is added which takes the value of the maximum of the red 
and green value subtracted from unity. Formally, I define CRGb, a function which maps 
positions on an x/y plane to colours: 

C! RGb(X, Y) = CSRGB(X0.3+ry, y0. Tt7, (1 - max(x, 1/))0.4+7) (4.19) 

where 

max(a, b) a, a>b (4.20) 
b, otherwise 

I found y had to be varied between 0 and 0.2 depending on the characteristics of the 

visual display unit. 
From inspection of figure 4.9, one may see that the plane is reasonably uniform in terms 

of perceived changes of colours. Although not perfect (e. g. the outer perimeter generally 
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Figure X1.9: 'I'lle proposed I M. 1) colour plane. Note: The colour reproduction is almost 

certainly j L( ('iu"ate and skimild be taken as it demonstration and not a reference. 

htº. v is higher degree of change than thy internals), it is at least as perceptually uniform on 

typical commodity video equipment as any other spaces discussed. Furthermore, it makes 

good use of all primaries, its well as supporting a wide range of hues. 

4.3.3 PCA Projection 

In t. Iiis section, I will describe and illustrate it basic linear approach for reducing the audio 
fcaturv vectors to the 2-dimensional position vector for mapping to it colour. Tue process 

will be illustrated with examples of the final visualisation, together with demonstrations 

of how t. l1v filial vitiwclisactioie is determined. 

Definition 

The approach caul he Sill 1111 I by taking the two greatest principle components of the 

(Iittii., et. All either information is (Iiscar(lecl; dills although this is it linear approach to 

projection, it small nntotutt of information is ignored entirely. Initially, the two eigenvec- 

tors are fotuul which have the highest eigenvalues of all the data in the dataset X. To 

t. rnnsfurtn it given feature vector x, into it position vector pi it should be projected into the 

snl>space defined I>y those two eigenvectors. After projection, the position vector should 
be ntn"nucliseci by tne>ut-sul>tra ctiou told (T-division, calculated frone the distribution of all 

position vectors tear the track. l"ortnally, at position projection function p' is defined stich 

t. hnt. /' (xc) p, where: 

(xý z)V -- J (4. 'll) Pt 
a(P) 

Where j> and v(p) are respectively the Iueau and standard deviation of position vectors 

of the track, e is is c"liunping function and V is the 1000x2 matrix containing the two 

r 
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eigenvectors (e) of highest corresponding eigenvalues (e): 

V- e1J, Vn, 0<n<1000: en>e�+1 (4.22) 
Lea 

As has been shown in section 4.2.3, the two principle components account for around 
90% of the total variance of the dataset, thus less than 10% of the statistically significant 
information content is discarded. It should be noted, however, that the clamping does 

discard more information. 

The visualisation is finalised by correcting the position and mapping it into the chro- 

maticity plane to get a colour: 

a, 
wcA(Xi) 

-- 
CRGb(0.5 + 0.51_i, 1 (P (Xi))), la, b(X) = b, 

Illustration 

x<a 

x>b (4.23) 

otherwise 

Figure 4.10: The first two principle components of the spectral histograms for Lebanese 

Blonde by Thievery Corporation. 

Figure 4.10 illustrates the two most significant principle components of Lebanese 

Blonde; it is the features represented by these two components and only these which 

are accounted for by the visualisation. Since principle components are vectors in the data 

space they can be negative; cyan is to be considered zero and thus the component being 

agnostic to that particular dimension. The first component can be seen to cover what 
is essentially the DC component, in that it has only a positive effect on the loudness. 

Notably, the low and mid-levels of loudness of the bass are weighted more than the rest of 
the track. 

The second component represents the weighting of the higher-frequencies over the 
bass; while the bass (especially the mid-levels of loudness) is excessively negative, much of 
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the the higher frequencies are positive, especially mid-levels of loudness around the mid- 

rcnt; e frectucucieti, . cud ctuieter levels in the treble. This component would therefore likely 

represent, the presence of speech in the music, or lack thereof. 

Topological Trajectory (PCA) 
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(it) Reel through yu Ilow, t; mrn, blue and back to rcul. (b) Black to white, with the chromaticity plane in the 

background. 

Figure "L 11: A demonstration of the trajectories followed by Lebanese Blonde according 

tu I he I'('A mapping; the beginning of the track is at the bottom right, with the ending 

iu, ºI/1X'd t� the (op right. The line's width is increased for smaller distances moved, and the 

colour monotonically changes through the playing time of the track. Small diamonds are 

plot tecl ('very 15 seconds of tinge in t he uutnic along the locus; euch minute is denoted by a 

Iiirper diamond. For vase of viewing, the trajectories are smoothed by a fintr-sample-wide 

moving average, and a Small ath ouut of Gaiissiat1 noise is added. 

Figure 'l. II (it) Shows t he trajectory ruapl)cci tor the dowutcurpo track Lebanese Blonde 

Iw 'l'l(u I, t .y CUT7)O1'(L16UN. 'I'Ire t. iurc of the track is mapped its a trajectory around the 

IiIrrn(-. 'I'le line is uuule thinner when tue point's are spaced farther apart with respect to 

the playing tinge of t. h(' track. This gives an image not unlike that of it can of paint heim; 

held directly nlwve it flat. calivas, wit Ii the paint drizzled according to the timbre playing. If 

the track stays wit Ii it t. irnlrre for an exteu(k'cI period, it large amount of paint is dispersed; 

if f he t itnlrn' c"hnuges nlrrul)i ly and iftcrn, it. proves around the canvas accordingly, forming 

thin streaks of Irreim.. 

'I'irnce i, (1e11(, t('ci in two ways here; firstly by cycling the colour of the proverbial 'paint' 

t. ht"urigh the Irucx of' the visible spectrum, starting with red and ending similarly. Secondly, 

diamonds are (Irawir at, every 15 seconds through the track, whereby it larger one represents 

Topological Trajectory (PCA) 

O 
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the passing of a minute. The rainbow colours are changed to levels of gray (starting at 
black) and RGb chromaticity plane added as a background, one may visualise how colours 

are picked for the creation of the navigation aid. Figure 4.11(b) illustrates this. 

One may now imagine a streak of colours on a linear time scale which correspond 

exactly to where the paint has fallen on the chromaticity plane. 

Demonstration 

Figure 4.12 shows the principle-components-based chroma-projection (known henceforth as 
PCP) of Lebanese Blonde. The colours may (with some effort) be matched to those under 
the trajectory of figure 4.11(b). Clearly, the PCP visualisation is far more information- 

rich than that of the wave-based method. The fluctuating texture found throughout the 

track is a typical trait of PCP. A fairly clear `top-level' segmentation of the track can be 

seen as it starts red/purple/green/orange/green, then blue/orange/purple/violet finishing 

green/blue/gray/yellow. Fluctuation patterns stemming from rhythmic variance of the 

timbre are also visible. 

Wave 

PCP 

0000o0000o000ooäoN cý 
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Figure 4.12: Thievery Corporation's Lebanese Blonde visualised as a basic wave (Wave) 

and with PCA chrorna-projection. 

With vibrant, heavy use of colours, no underlying structure seems especially apparent. 
The variance-preserving projection misses the mean values, being expanded to the edges 
before clamping. This is not a trivially fixable trait; informal experimentation showed that 

e. g. normalising to within 2c made the majority of the visual appear faded and difficult 

to interpret; only relatively unimportant outliers had vibrant colours. In the next section, 

we will propose and discuss a non-linear projection method, utilising the self-organising 

map in an attempt to overcome this issue. 

4.3.4 SOM Projection 

In this section, I will introduce the method I constructed for a non-linear feature-to-2D 

vector mapping. The SOM algorithm used and the initialisation method will be described, 

together with a discussion and illustration of the map size, the training process and the 

generated output. 
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Description of Algorithm 

The set of model vectors m are defined to have their positions on a square grid of size mxn. 
For direct visualisation, a hexagonal grid is typically preferable, however as the SOM is 
being utilised in order to map directly onto a square plane, the slightly simpler square 
grid Is used. The initialisation phase (discussed and described in the following section) is 

completed before training In earnest. 
The Datch Map variant of the SOM algorithm, described by Kohonen (1999), was used 

which was found to have similar results to the traditional incremental-learning method, 
but taking under half the time (with the same number of 'iterations'4) for the equivalent 
training. The Batch Map learning algorithm used may be defined in terms of the set of 
model vectors mp (p Is a pair), the dataset x, and parameter or by the following equation: 

dp : m. _Ek 
h(c(k), p)Xk (4.24) 

p Ek h(c(k), p) 

where c(k) denotes the position (as a pair) of the model vector which most closely 

represents the input vector k in the mapping: 

c(k) = arg min 11 xk - mp112 (4.25) 

and h(a, b) defines the neighbourhood function on two map coordinates, which can be 

described as a Gaussian-modulated proximity measure: 

o-e 2 (aj-bt)3+(ai-bi)2 
h(a, b) __ ae .= ae Vom (4.26) 

I Implemented this by first calculating the sum of all vectors in a Voronoi5 set V1, then 

using them to calculate the weighted average, thus: 

Vi = {xiIc(i) = j} (4.27) 

af-E x{ (4.28) 

xievi 

dp : m. __ 
Ek h(c(k), p)sa (4.29) p Ek h(c(k), p)lVkI 

A further parameter, k denotes how the former parameter o should be changed for 

each iteration: 

4Technically, the Batch SOM's iterations are in groups spanning the entire training data, so iterations 

are only comparable if one considers an entire round of training data in the incremental method a single 
Iteration. 

'for an overview see the Voronol reference by Okabe et al. (2000) 
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v" -- ve-k ('1.30) 

As such there are three parameters to determine; the number of codes . s2, the learning 

rate k and the initial neighbourhood radius a. Determining the latter two parameters is 
difficult; with extensive experimentation I had reliably good results from k 0.01 and 
v= s/4. The training halts on the first iteration where the model vectors have no more 

significant changes applied, which was determined by: 

arg max II inl*, mn11 < 0.001 (1.31) 
p 

ýt- ý-- ýt ý- k Imý ý- im- 1M 

6R LL ihL w- wob. - m- W 

00 04 01 
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Figure 4.13: An example of an 8x8 SOMV1 trained on the track Lebaiirse ljlonde. 

Figure 4.13 illustrates a trained SOM. Notice how similar feature vectors are grouped 

near to each other, but also the non-linearity of the map. The model vectors representing 

a consistently high degree of low bass and mid-range are found along the top of the neap. 
Vectors representing quiet portions are found towards the lower right, with silence found at 
the bottom right hand corner. On the right hand side, vectors sporting a heavily stippled 

effect throughout the mid-high range bands; this represents the high-pitched strings at 

the start of the fourth minute of the track. Vectors on the bottom and middle left hand 
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sides represent temporally inconsistent, but generally loud, parts of the track through most 
critical bands; musically, these correspond to periodic notes from the brass instuments. 

Initialisation 

It has been suggested by Attik et al. (2005); Kohonen (2007b) that the training of the 
SOM may be optimised by initialising the nodes' vectors as a plane through the subspace 
of the first two principle components. More formally, the initialisation may be defined: 

2j 
ini j_ (2i m- 1)eoeo + (n - 1)e1el +x (4.32) 

where the map in is of size mxn and x Is the mean of all input vectors over the dataset. 
On and en are respectively the nth unit eigenvector and value ordered with decreasing 
cigenvalucs, i. e. satisfying: 

en > en+t (4.33) 

Vn : IIe,, Il =1 (4.34) 

Despite extensive attempts, I could not find a set of training parameters which provided 
a significantly faster training mechanism with such an initialisation than without. This 

method was therefore used for initialisation only when generating different sizes of SOM 

to compare against each other (since the final mapping is more likely to be similar). An 

lnitlaliser where all dimensions of all vectors were set to a pseudo-random was used for the 

general case: 

Vd : mi, j (d) = r, o <= r <= 1 (4.35) 

where v(d) Is the dth clement of the vector v, r Is a value chosen at random. 

Input Vector PCA 

PCA (discussed In section 4.3.3) is a method of calculating a linear projection such that a 

number of dimensions may be omitted from the data with minimal loss In total variance 
of the dataset. This can therefore be used as a data compression mechanism, reducing the 
high dimensionality of the Input vector space. 

Although conducting PCA on such a high dimensionality of data Is computationally 
Intensive and omits some details from the dataset, its advantages are significant. It has 

a dramatic effect on speeding the training for maps with a large number of nodes, and 
algorithms that rely on random values for clustering are more likely to have consistent 
outcomes over multiple runs, since the number of possible solutions and variables that 

need to be determined are reduced significantly. 
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Inspection of the output revealed no apparent differences between training with the 

original 1000 dimension vectors and only the 20 most principle components (typically 

containing around 99% of the dataset's total variation). As such, input vectors put through 
PCA are prefered on two conditions: 

1. PCA has already been conducted anyway. In the case of many of my experiments I 

compared the results of PCA and the SOM, thus using PCA came at no computa- 
tional cost. 

2. The training time for the SOM at 1000 dimension input vectors is greater than the 
PCA computation time. This is generally the case at a map size of n2 = 25. 

Figure 4.14 illustrates the first 20 principle components of the track Lebanese Blonde. 

As in the previous section, cyan is to be considered agnostic to that particular dimension. 

One may see that the first component represents a varying bassline together with a level of 

general loudness in the music. The fourth conversely represents the varying of a signifcant 

amount of loudness centred around the 600 Hz bands. 

2 
ýý r ý3 

4 

: ý. M" 

Figure 4.14: The first 20 principle components of the spectral histograms for Lebanese 

Blonde. 

Size of SOM 

The topology of the SOM is the final parameter to determine prior to training. The 

number of nodes used varies the degree of quantisation in the lower-dimensionality space. 
A lower level of quantisation allows subtler differences in the high-level dimensionality to 
be denoted by changes in colour, however this comes at a significant cost of computation. 
The SOM algorithm scales approximately with O(n2) where n is the number of nodes, 

thus the difference in training time when the size of a map is doubled from a 4x4 map to 

an 8x8 map is around a factor of 16. 
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As we have a relatively small quantity of data, one concern is that the SOM might 
overfit data, causing a uniform distribution of points over colour plane. Instead all the 
large-scale features would be captured (with their distance on the map corresponding to 
their perceptual distance), but intra-cluster distances would be left smaller. This would 
have the effect of keeping a reasonable mapping between perceptual audio difference and 
the perceptual chromatic difference. Clearly, this cannot happen when the number of 
nodes Is significantly smaller than the quantity of data, so from this point of view the 4x4 
SOM Is favoured. 

A higher-level of quantisation gives a simpler visual with a more consistent mapping of 
low-dimensionality variation to high-dimensionality variation, since reducing the number of 
possible states 'flattens' the degree of possible separation between those states. Generally, 
there should be fewer nodes than items in the dataset. Since there is one datum per second 
of audio In a track, and many popular music tracks are between three and five minutes 
long, this would suggest an upper limit of the map size of 12x12; in this section I discuss 

the results of 2x2,4x4,8x8 and 16x16 maps. The visualisations are called SOM2, SOM4, 
SOM8, SOM16 respectively. 

Demonstration 

Figure 4.15 shows the trajectory of Lebanese Blonde by Thievery Corporation through the 
RGb colour plane, as projected by four sizes of SOM. Since the line width is increased 

when the trajectory moves a relatively small amount over the running time of the track, it 

may be Identified as paint dribbling from a brush held aloft. Notably, the image of the 2x2 
SOM demonstrates that all transitions are between neighbouring nodes. This suggests a 
track without relatively abrupt changes in timbre; something not wholly unexpected from 

a downtempo (`chillout') track. 
From the SOM4 through to the SOM16 mapping, it is clear to see that the main form 

of the initialisation from the two principle components has been preserved through the 

training process. This suggests that the main advantages to using the SOM should be that 

of having a natural quantization technique (in the lower map sizes), and that of finding 

and better expressing substructure (in the higher map sizes). 
Figure 4.16 shows the final SOM-based visualisations for the same track. The varying 

sizes of SOM demonstrate the varying simplicity of the visualisations; the 4-node SOM2 

representation essentially segments the track into four portions. On inspection, these 

segments correspond to: 

Blue Tabla playing only. 

Red Tabla with drums/bass. 

Yellow Drums/bass with vocals/keyboards. 
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Figure 4.15: A demonstration of the trajectories followed by Lebanese Blonde according 
to six sizes of SOM. The line's width is increased for smaller distances moved, and mono- 
tonically changes from black to white throughout the playing time of the track. Small 

diamonds are plotted every 15 seconds of time in the music along the locus; each minute 
is denoted by a larger diamond. For ease of viewing, the trajectories are smoothed by a 
four-sample-wide moving average, and a small amount of Gaussian noise is added. 

Green Drums only or with quiet keyboards. 

The onset of brass instruments go unrepresented in the yellow sections, as does the 
break in drums in the green section. 

The 3x3 and 4x4 SOM representations have an overall structure similar to that of the 
2x2 SOM, although they increasingly add detail to the monotonic blocks. The change 
from scatting to singing at 1: 12 is hinted at with the change in the shades of green. The 

introduction of a brass accompaniment is denoted by the change from green to yellow at 
2: 24. Both of these changes are also visible in the higher sizes of SOMs. Flecks in the 

visualisation, visible as thin `dribbles' on the paint drizzle, begin to show; the green/yellow 
bar at 4: 09 corresponds to a quiet tabla note in the background. 
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Figur . 1.16: 7711r urry Corporatimi.. 'ti Lc, hafl('S(' /3londc visualised ALS a I) LSic Wave (wave) 

Itu I With aL 2x2 tiOM, lx"l SOM, 8x8 SON1 and 16x16 SOM. 

AS Ihce SO? I's sirre iucrc'a>svs to (ix(i and 8x8, an increasingly textured and noisy iinage 

may be svvu, but, with ftu"ther details shown ahcntt the track; in particular the introduction 

of t lu (hunts over Ihce bass at, 0: 21 becomes readily visible its it change from blue to purple. 

Texturing added to the' first, yellow block of the SOM2 visualisation makes the internal 

, truc"ttil e clear, while still maintaining the overall orange hue to denote its col>esivcuess 

and dissimilarity with surroundings. 'l'Ite change from scatting to vocals is again clear, 

but I lie twc> rhyming Iinvs of vocals are also clear as it pair of (lark/light orange blocks: 

(I: 13 Ids rk orimp, j) 'Rx) low to find my wary, 
(l: Ili IIigIit ornugej) too high to wonclar why. / I've seeti this place before, 

siuniner ill allotlivi. Hille. 

(I: 23 dark uruugeJ) Now I (,; ill hear the sound, 
(1: 26 (light orango'j) orals drifting through the blinds. /I have a million 

t'hought's, / all flowing through lily tnincl. 

Finally, in ºtII but thc" two lower sires of SUM, it is clear to see four blocks of colour 
Icc"tmeel (I III(I 3: 115 and 3: 55. ('liis c"ulcmr changes a small : womit from block to block; 

c". g. in tiONI'1, it, starts nti gray, c"hall es to hoIVcl blue-); rVVu, thou to blue, and finally to 

Iºurl>Iv. '1114-se it'erat'ive changes are reflected ill the ºuusic iLs the timbre niakeup changes 
by IL Iºc-rc"c"1ºt. unlly sºnnll Imt, significant, ºuºuººnºt.. In this case, the first transition is of the 

ºnuiu drains stopping, leaving strings and bongos, the second is the introduction of the 

t. ºthlit and I he third, the re-int. rucluc"ticm of the- clrcuus and removal of the strings. 

p 
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Effects of Training 

111 

The effects of training are quite pronounced; the SOMs are initialised with the two principle 

components of the dataset (which itself has been reduced through PCA to 20 dimensions). 

The visualisation performed on Lebanese Blonde by the 4x4 SOM with this set of model 
vectors is given by i=0 in figure 4.17. With each iteration of the Batch-Map SOM training 

algorithm, one may see that the map gets increasingly compressed, better fitting the data, 

as indicated by the colours becoming more vibrant. 
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Figure 4.17: Thievery Corporation's Lebanese Blonde in the various stages of training an 
8x8 SOM. i denotes the number of iterations of the learning phase. 

In particular, the musically important break in the drums and keyboards becomes 

increasingly evident at 2: 05. A one-off, quiet, but nonetheless perceptible, collection of 
bongo beats in the background at 2: 50 also becomes increasingly noticeable through the 

training algorithm. Furthermore, the previously mentioned break from scatting to singing 

at around 1: 10 becomes clear. 

4.4 Discussion of Methods 

I will now conduct a brief qualitative evaluation of four of the variants of visualisations 

proposed in this chapter. I will do so by discussing their generated visuals for the same 
test tone and seven pieces of music from the discussion of the previous chapter. 
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4.4.1 Test Tone 

The test tone consisting of several plucks in three blocks of differing tempos is visualised 
in figure 4.18. There is little of significance to discuss here; each of the methods presents a 
fairly good visual interpretation of the audio. SOM2 is clearly the best, which is somewhat 
to he expected, since the states of the audio in this simplistic example may be directly 

represented by the uwdel vectors of the map. Notably, with PCP, the colours used to 
describe the three states are the secondary colours, found not at the extremities of the 

colour-space but in the centre of the edges. In general, however, it performs about as well 

as the Other two SOMs. 
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PosiUOn o000 

M 

WavO 

SOM2 

SOM4 

some 

PCA 

Position 
0: 00 

Figtire 4.18: Several visualisations of the test tone `plucks'. 

'I'lle higher sires of SOM become warped slightly as they attempt to give some sub- 

structure to the interference effects of the audio windowing. This perhaps highlights an 

eclge-cnuV of t he preprocessing method made worse by the SUMS' attempts to account for 

it. 

4.4.2 'I)"il)-llop 

I begin tue nwvic evaluation with the trip-hop track Stun/Long Stem. This is a fairly 

complex, irregular (i. e. wit Ii no repetitive structure), subtle (changes are often graduni) and 
diverse piece of ºuusic. The t rack has two main crescendos preceded by similar progressions, 

the first, smaller one at. 1: 4t), the second at 3: 23. After this it changes style somewhat, 

reºnoving Hit, originally quite important percussion altogether and changing the ensemble. 
The SOh12's depiction of the overall structure of the track is niediocre; crescendos are 

telºre, vntecI clearly in blue, and red denotes dominant samples of brass instruments in the 

foregruiuul. However, the SON12 misrepresents the change in style with it yellow block 

at, 3: 24, suggesting it repeat of the start of the track. Iºº general, the yellow represents 

simpler, clnieter uºutiic of the saue basic style to that of green. Unfortunately, applying 
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Figure 4.19: Several visualisations of the track Stem/Long Stern by DJ Shadow 

such a boundary does not adequately represent its diverse content. 
The SOM4 utilises a significantly greater palette to construct its image, with the SOM8 

presenting an image with more detail, noise, and only a few significant changes. The rose 
block at the beginning (around 0: 30) represents a note from a string instrument, most 
likely a double bass, in the background. The change to dark green represents the onset of 

erratic drums, and light green to sustained percussion and the crescendo. With the SOM2, 

the following change to gray does not clearly show that the content is a variation of that 

at the beginning. The SOM4 and SOM8 represent the variation reasonably well, depicting 

it as faded yellow/yellow/dark faded green, and finally a longer crescendo of bright green 
(rather than yellow/rose/yellow/dark green/light green). 

The brightness of green denoting the veracity of percussion is also a reasonable analogue. 
However like the SOM2, SOM4 and SOM8 suffer from reusing yellow in the second half 

(at 3: 23), which, aside from being on the whole quieter, does not share much in common 

with the beginning. The use of orange (at 3: 43) for the organ is reasonable, however it is 

depicted as a clear block in the SOM4, and a gradient from yellow in the SOMS; the latter 

is a better representation of the gradual fade-in of the organ. 
Between 4: 08 and 5: 12, the track becomes relatively similar to the beginning (yellow 

blocks), although speech apparently sampled from a film as well as some other instruments 

are mixed over the top; as such, the mild orange and pink hue changes may be considered 

warranted. Following this, the two higher SOMs improve on the large red block of the 
SOM2 by introducing some substructure; loud brass notes are consistently represented as 

red and purple blocks; red being for the higher notes (there are only three main notes). 
On initial inspection, the PCP image is visually pleasing. In particular, the gradient 

between 3: 24 and 4: 05 is largely reflective of the approaching organ. However, like the 

other methods, it suffers from being the same general hue as other portions of the track 

(not least that which follows it directly) which are musically different. The end portion of 
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t he I nick with 1)1,1v and reel Imes are somewhat less clear than tue banding of SOJI4 and 
tiO, \IH. Wit le tIu P CI), with the blue-purple striping are barely (listinguishiible f'roin the 
Inne; the Iirnss nute,, ill the iuusic are readily so. 

In general, the 1'('l' provides no more information that the SONN or SO1MI8, both 

of, Which are clearer images. The SON12 seems unable to represent the diversity of the 
track properly with its minimalist palette; the clarity lost by the SOIVIH over the SOIVH is 

arguably tx great ei price to pay for the small . einoiint of extra information. 

4.1.3 Hap 

Figure "1.20 'i/o Forrr, 'tan's rite track. All four of the visualisation methods al pear to 

work excellently on this tincl)ne-dominated track of roughly constant intensity. 
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Figtirc . 1.20: Several visualisations of tli rap track The Force by Aim, (featuring Q'n'C). 

Iic>1I> tluv I'('1' and I Ii SON 12 do a very rvnsuuahlc' top-level visual representation of the 

track; the other two ii>tre>ciuee it little more tiubstreu"teu"e. An introduction is visible (blue 

ill the tiOMs and yellow in Hie 1'('1'), its ate t. I>me repetitious of the chorus (yellow/green 

in t. lu. SONIs nt)el I>Iwe/reel iu I he I'(: 1'), and two repet. il. ic>ns of fluý verse (red iu the SON Is 

and green in the I'('1'). SON H and SONIM clearly show that the initial chorus is a variation 

oil the following versions, wit Ii it slightly different coloured section (green/cream in SON H 

Einei gray/c r ºm in SOMS). All four visualisations represent the chorus substructure its 
fuur neI)Vtit ions of nutuiPs(rif)l, vocals. 

S( )iNI2 misrvllr vents t he sect ion sta i tilig 3: II anti loving identical to tlºe first section; 

nlt. licwgl1 ho t. h ion. cluic't the first is purely prrcvtision and the latter purely nondescript 

Vocals. Iluwe ver, nsicle Il-oll that, SON12's tic heule is generally robust. Grenu represents 

percussion, with Yellow and reef repº'ese"nting the vocals of the ti'ºn8ln and male respectively. 
'I'lle striped portions clouc/tc' broken vocals over it bac"kgrcnnul of percussion. 

The other SUM visualisations largely build on the simplicity of SOM2, with SONIM 

rý 
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removing some advantageous quantisation of colour. The main contribution of SOM4 

is to split the vocals between each vocalist into two clear sections, one purple-red and 
the other a perceptually similar-but noticeably different-orange. SOM8 removes the 

misrepresentation of the apparent repetition of the first section at 3: 11, but does so at 
the cost of a significant amount of noise added throughout, and a less clear demarcation 

between vocals and non-vocals. 
Although close, SOMV12 and SOM4 arguably perform best overall. PCP tends to provide 

similar information to SOM2 as does SOM8 to SOM4, but in both cases it is simply 
less clear. Selecting between SOM2 and SOM4 would depend upon whether clarity and 

simplicity should be prioritised over substructural information. 

4.4.4 Jazz 

Figure 4.21 depicts Dave Brubeck's jazz classic Take Five. The complexity of each image 

is immediately noticeable. 
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Figure 4.21: Several visualisations of the jazz track Take Five by Dave Brubeck. 

In terms of a top-level overview, the track has three main portions; an initial theme 

with each of the instruments (until 1: 52), a central percussion-dominated section (until 

4: 23), and the reprise of the theme in the last section. This structure is broadly noticeable 

in each visualisation; SOM2 segregates the track into red/blue and green/yellow, the other 
SOMs into cooler colours green/blue and the warner red/orange/yellow, while the PCP 

separates similarly but with the opposite meaning. 
Events in the track are also depicted commonly; each of the SOMs makes visible 

the consistent and relatively quiet percussion and piano between 1: 52 and 2: 10 when the 

percussion becomes dominant. This is not quite so clear in the PCP, but is discernible 

with the faint green tinting. Notably, both PCP and SOM2 misrepresent a section of loud 

percussion around 3: 15 as a block pertaining to the main theme; presumably this is an 
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linac"cunntecl-for entt. lier of the distribution. 

In terntti of substructure, the two SOMIs reveal the gradual crescendo achieved by the 

cirutus by it similarly graudual change in lute: From orange to pale orange through grey, 
yellow with bale green, yellow with grey specks (representing loud and irregular drumming) 

and finally tuiltntken yellow. The PCP and SOiMI2 are less instructive here, however in terms 

of repetition and Variation of the nto-tin figure of the saxophone, they perform significantly 
Itet. Irr than the codier ntet. hcxis. The theme is clearly visible ill the PCP as two bold violet. 
Itnrs on a yellow backing repeated; the reprise of the theme at 4: 24 is clearly recognisable, 
despite the bars being reel denoting a slightly louder accompaniment of instruments. The 

two larger SOhIs (it) show this information (but gis double green/grey bars), and a't stich 
it, is entirely possible t hat, the clearer vitictals is siutply clue to an unfortunate rotation of 
the culuiu space. 

4.4.5 Classical 

Figtiru . 1.22 slows various representation', of 1110- -art's Nachtmusik Allegro, a classical string 
track; ininircliatcd, y uot. iepnl)Iv is t Ile difficulty of extracting structure from such music with 

f)urcly t iinl)rc'l information. 
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Figure "1.22: tiewral visualisations of the classical track Nachtimisik Allegrn by Wolfqutey 

:1 nlnrlrus h10'(01. 

'I'Iii complex series of primary colour ntripus of the SOM2 visual does not appear to be 

etil4ev"ially intit. ruc"t. iVP its to t. Iiv content of' the track; the large blue portion at around 2: 31) 

ele"neºte, Ole ctuiet twill', performed without. it second set of strings in the background, 

giving t114 t r, u"k its fntit-paced rlryt. hm. On close inspection, we can see that the track, 

It tu IIu. IºIue port ion, comprises it single t10911v plºryv(I twice at they beginning and again 

. 
lust, aft. the first, minute'. It ºwiy lxs seen that, ºº variation of this tii iio' is plikyed Once 

more, directly nfte'r they blue' portion, at 2: 56. 
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With a slightly better packed gamut, the SOM4 and SOM8 visualisations make the 

above facts slightly easier to spot, especially as the non-repeated theme before the blue 

section at 2: 06 is of a different colour. However, this is not reflective of the music, which 
is, at that point, a similar motif played in a lower key. Despite considerable detail, no 

substructure is apparent. 
The PCP visualisation makes a similar amount of information apparent as the first 

two, although the quiet break between 2: 30 and 2: 55 is not as apparent,, with oranges and 
reds used, which are flecks elsewhere in the track. 

Although none performed especially well, the SOM4 visualisation seemed the best 

suited to provide as clear a picture of the track as possible under the circumstances. 

4.4.6 Downtempo/Electronic 

Figure 4.23 shows the visuals generated for Occhi Neri, an electronic downtempo track by 

The Dining Rooms. 
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Figure 4.23: Several visualisations of the downtempo track Occhi Neri by The Dining 

Rooms. 

Completely unclear on both the PCP and Wave visualisations is that the music does 

not start until 0: 15. All three SOM visualisations are sensitive to this fact, with clear and 

accurately abrupt colour changes. A further aspect largely missed in both the SO\12 and 
PCP visuals is the very noticeable start of percussion at 0: 48. Although there is at slight 

change of tint in the PCP image around this time, it is undeservingly subtle and barely 

noticeable. The quite important introduction of bass at around 1: 05 is well represented in 

each SOM image, but once again unclear with the PCP. 

For the rest of the track, each of the visualisations performs roughly equivalently, each 

presenting some sub-structure between 3: 50 and 4: 20. The PCP image delivers the most 

subtle substructure, giving very blurred stripes between blue-purple and purple. Arguably, 
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this could be considered this the most accurate the music at this point is a stable run 

of percussion with samples merged over the top. Conversely, however, the track is very 

similar to this throughout; as such there is an argument for 'norrnalising' actually small but 

relativelg lart ov cliE£ece\Wce., : rý t1. e to eqýiwaX X' lange visual featUtes. Fuitherniore 

ax"loxigh the stripes may not denote particularly significant timbrel features, they do 

represent well the repetition of a figure, and so may be considered as musically important. 
The end of the track is a run of percussion ending at around 4: 40 (clear on the SOM4 

and SOM8), with fairly quiet samples of chatter mixed. This appears to disrupt the 
SON12 and PCP algorithms, which result in an unclear combination of colours for the last 
25 seconds. 

SOM4 and SOM8, except for the smoothing, are especially similar in this track; SOM8 

provides it subtle cue to the equally subtle change in the loudness and the addition of an 

extra periodic sample at 3: 35. For this track, the SOM2 representation underperformed 
slightly with its harsh segmentation noting points of lesser significance in the music, and 

presenting it slightly confused image in the latter half. 

4.4.7 Pop/Rock/Metal 

Our penultiinate piece of music to consider is the rock ballad Generator. This is a relatively 

simple rock track with a verse/bridge/chorus structure, and is well-represented on an 

overall structural level by each image, shown in figure 4.24. 
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Figure 1.24: Several visualisations of the rock ballad Generator by the Foo Fighters. 

The e leºu" segmentation afforded by SOM2 gives the viewer an instant idea of the 

structure of the track. After the introduction, the three verses are clearly depicted in red, 

with the abrupt, guitar riff of the latter two depicted with an abrupt green stripe in the 

middle. 131ue appears to be used essentially as a waypoint between red and green here, 

occurring at houiularies between the two with no apparent equivalent in the music. Unlike 
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SOM4, which clearly defines the three keys of the chorus (dark green/grey, light green and 

yellow), the lack of colours available to the SOM2 algorithm prevents any such substructure 
from becoming apparent. This is particularly noticeable after the bridge between 2: 38 and 
2: 57, after which the SOM2 remains green until the outro. 

The SOM4 and SOM8 once again build upon the SOM2 representation, but blur it 

slightly (especially in the red-dominated verses), reducing the clarity. Small amounts of 

extra substructure is introduced with the SOM8, such as the repetition of a six-second 

guitar riff at 0: 44 and 0: 50, visible as a pair of yellow/pale orange stripes. On the whole, 
the extra structure added with the SOM8, while perhaps following the music perceptually 
(which changes timbre fairly frequently), does reduce its utility in terms of recognisable 
features. 

The PCP provides a more subtle view overall. Although visible, the chorus sections 

of yellow are not quite as clear as in the other images, especially the musically quite clear 

separation at 0: 56. In the blue-dominated choruses, the PCP provides a subtle cue to the 

change in key, as it changes from blue-green to blue and then to blue-purple. The bridge at 
2: 38 fading into a murky green-blue, however, is not clearly separated from the obviously 
different vocal section after it at 2: 56. 

In general, the simple structure of this track is captured well with the SOM4 image. The 

PCP image does not provide a clear guide to the contents; emphasising a large difference on 
the overall structure, it gives too slight a difference on reasonably important substructure. 

4.4.8 Dance/Classical Fusion 

Figure 4.25 shows the visuals generated for the dance/classical fusion track Clubbed to 
Death. 
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Figure 4.25: Several visualisations of the dance/classical track Clubbed to Death by Rob 

D. 

The PCP visual shows a dubious separation of the classical portions of the track from 
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the percussion; yellow Is used to denote the quiet bass and piano section around 5: 56, with 
the perceptually similar yellow-green used to denote the onset of heavy drums and bass 

around 0: 24 and 4: 00. The bold red and blue blocks do well at separating the extreme 
timbres present In the track, but the simplistic dimension mapping does not seem to reflect 
the multi-timbre nature of the first two and a half minutes, most of it being a (difficult to 
Interpret) mix of yellow/green/blue colours with no clear boundaries (which are present 
In the music as changes In key and voice ensemble). This track illustrates the problems 

of relying upon a linear map which provides too few degrees of freedom in a long and 
timbrely-complex track. 

The SOM2 method once again conducts a reasonably clean segmentation. Blue repre- 

sents the purely classical portions of the track that Rob D himself composed and played 
Including both piano and strings. Red represents quieter strings and piano. The red/blue 

striping at the beginning represents the excerpt of strings taken from the Main Theme 

of Elgar's 'Enigma Variations'. Thus the change from red to blue at approximately 6: 25 

represents the Introduction of strings and a loudening of the piano. Yellow represents 

percussion with a small, If any, string accompaniment, whereas green represents louder 

percussion with more voices (sampling, strings, piano, bass) in the background. The 

SOM2 functions here as a simple method that draws attention to the main changes and 
that acts essentially as a top-level segmenter. 

The SOM4 and SOM8 methods build upon the SOM2 representation considerably; 

classical portions of the track are again represented by the red-blue portion of colour- 

space, but the use of light and dark purple helps represent substructure. Blue represents a 

raised key in the piano solo. The pinks at the beginning represent the violins; notably, after 

they are introduced around 6: 55, the intense blue and purple become less so, becoming 

'dragged' towards the pinks of violins. The Intense red portion denotes the low-tempo bass 

and quiet piano portion of the track. 
The percussion portions of the track are represented well in the orange-yellow-green 

colours. The colours change subtly as the medley of instruments changes; in the SOM8 

visualisation, an abrupt substitution of a sampled voice and high-pitched strings with 

slower strings In a lower key, Is denoted by a change to bright yellow. This is a far clearer 

change compared to the two before It of orange-yellow to faded-yellow and faded-yellow 

to pale green, denoting the Introduction of a single extra sample and background strings 

respectively. 

4.5 Conclusions 

I have detailed and discussed a novel audio visualisation technique, and evaluated it in 

terms of being useful as musical audio navigation aid. I consider the results of the discussion 
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of the images to be encouraging. Usage of the self-organising map as a dimensionality 

reduction method appears to be largely vindicated over simpler techniques such as PCA, 
due to the amount and clarity of information perceived by the viewer. The linearity of 
the PCA seems well suited to depict overall structure clearly and attractively, however 

subtler and transient extreme changes are often ignored or misrepresented. The natural 
usage of the SOM as a quantisation and clustering technique also seems reasonable, with 
the 4x4 map often presenting the majority of information of that given by the 8x8, but 

with increased clarity. 
I have now examined a range of simple musical audio visualisation techniques that 

are appropriate for augmenting a navigation aid. In the next chapter I detail a quantita- 
tive task-oriented evaluation of the better methods of visualisation that have so far been 
identified. 
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Chapter 5 

Evaluation of Navigation Aids 

"The most exciting phrase to hear in science, the one that heralds new 
discoveries, is not `Eureka! ' (I found it! ) but `That's funny ... 

' " 

-Isaac Azimov (1920-1992) 

5.1 Introduction 

My aim is to determine whether automatic content-based visual aids actually do help 

people navigate. A common method for visualising sound is the loudness waveform, which 
is likely to be easy for people to understand and use. I use this as a baseline to determine 

whether other visualisations are more effective. To test the theories presented over usage 
improvement in chapter 2I determine what learning effects there are, if any, over time, 

and how this changes between those' who use the visualisation nand those who do not. To 
determine whether the theory concerning irrelevance of absolute information Is founded 

together with the theory that the SOM presents information better than the PCA methods, 
I test whether users utilising the SOM or PCA methods can perform as well as with the 
original methods. 

In general, I actively look for evidence to support or refute these theories. I test these 
hypotheses by constructing a null hypothesis which I may attempt to refute, statistically, 
to some degree of certainty. In all the statements I make in this chapter the statistically 
accepted probability of their truth is at least 95%, and considerably more In many Instances. 

5.1.1 Chapter Summary 

I begin by detailing work related to the evaluation of visual navigation aids, of which there 
is very little. I continue with the first two studies, which, though essentially simple pilot 
studies, resulted in enough information to make some statistically significant statements. 
After these, I move on to the major study, where, with realistic use cases, I determine 

123 
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usage patterns and comparative performances over a variety of what I consider the best 

proposals of visual aid. I then detail the final study carried out to investigate the learning 

effects over several weeks of usage (prior to this all studies had assumed a minimum of 
training). 

5.1.2 Our Contributions 

With the studies made here, I present, with statistical significance, evidence supporting 
the theory that content-based visualisations can indeed guide users around the track, 

contributing to their performance over a variety of tasks. I show that both the basic 
bandwIso-loudness and SOM-based visualisations aid users in determining answers to a 
variety of questions posed on the content of pieces of music, over simpler methods such 
as the widely used waveform. Furthermore, I present evidence suggesting the reasons 
for this are a pronounced reduction on the number of seek operations around the music 

and an increased accuracy of seek operations. I also make a number of other significant 

observations about individual usage and methods. 

5.2 Notes 

Statistical Testing 

For determining general relations and making categorical statements concerning these 

results, I defer to the Tukey Honest Significant Difference (Tukey IISD) method of inference 

of p-values (hypothesis certainty) as described by Yandell (1997). This Is more conservative 
(e. g. than a basic pairwiso two-way t-test), since it takes into account experiment-wide 

variation of mean, and Increases p-values accordingly. 

Problems with Testing 

The nature of tests means that finding statistically significant results Is difficult, due to 

wide ranges of people's skill and experience. This could be mitigated though conducting 

significantly more trials. However the resources to do this were not available. In total, 106 

Individual trials were conducted. 82 Individuals took part In the studies, and, with several 
tasks in each trial, I collected 2686 individual trial results. 

Softwaro 

In augmenting the software with which to do the trials, the principle of least surprise was 
followed and the playback interface was changed as little as possible. The media player 
that I set about to augment, amaroK, already provided a highly intuitive Interface with 
the now-standard navigation bar. In amaroIC's case, a triangular pointer scrolls across 
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Figure 5.1: The amaroK music player with the BLSM visualisation operational. 
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the top of the bar, denoting the current position of the player through the track. The 

only change I made to the interface was to have the internal portion of the bar coloured 
according to the visualisation algorithm. As before, the user was free to click anywhere 

on the bar, to warp the player to the corresponding position in the song. 

5.3 Boundary-Finding Tests 

The first two performance examinations in this chapter are based around the concept of 
boundaries in music. By this I mean distinguishing points in the music which someone 

would want to remember or know in advance. These might include onsets or removals of 
instruments and voices, chorus/verse/bridge changes and crescendos. I leave exactly what 

constitutes a boundary as a decision for the user, but conduct a preliminary study to verify 
that there is some agreement between the opinions of multiple users over such boundaries. 

5.3.1 Objectivity of Boundaries 

I initially conduct a small study to test the hypothesis that multiple people do not disagree 

considerably about where they consider major boundaries to fall in a given piece of music. 
The validity of this hypothesis will be assumed in interpreting the following experiments. 
Furthermore, I expect that there will be more agreement on boundaries in popular music, 

owing to the presumption of typical and familiar structure (i. e. verse/bridge/chorus) that 

participants may utilise to determine prototype boundaries. 

There is prior work by Tzanetakis and Cook (2000b), who concluded in favour of this 
hypothesis. The results showed that around three quarters (0.73,0.76 or 0.79 depending 

on the configuration of participants) of the total number of boundaries reported would 
typically be agreed upon by at least 50% of participants. This was a study of 20 participants 
(twice ours), where they were given a special segmenting audio editor which automatically 

suggested to them potential boundaries. 
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Although the order of audio tracks given to the participants was randomised in each 
case, the measured learning curve for the audio editor was steep, suggesting that there may 
be a significant amount of (albeit fair) noise in the results. Participants were being timed, 

potentially biasing them Into selecting at speed rather than accuracy and precision. Audio 

was not discriminated; music together with spoken word was used. This experiment Is a 
further test of the hypothesis under slightly different conditions (entirely music, specific 
genres), and thus largely complementary. Since the music used in this test also happens 

to be that used in two of the later experiments, It also helps give some direct validation 
for the interpreting of their results. 

Motliod 

Ten participants were given nine pieces of music each, to determine the boundaries in. For 

the music, three tracks were used from each of the following genres; classical, rock/pop 

and alternative clectronica. The tracks used are given in table 5.3.1. 

Naino Genre 
Air on a C-String (J. S. Bach) 
Siren Song (Devics) 
Elios Therepia (Blue States) 
Country House (Blur) 
Minuet in A (Luigi Boccherini) 
Lebanese Blonde (Thievery Corporation) 
Paranoid Android (Radiohead) 
They're Hanging Me Tonight (Red Snapper) 
Barber's Adagio for Strings (T. C. Albinoni) 

Classical 

Pop/Rock 
Alternative Electronica 

Pop/Rock 
Classical 

Alternative Electronica 
Pop/Rock 
Alternative Electronica 

Classical 

Table 5.1: Tracks used for determining agreement upon boundary positions. 

Each of the participants listened to the tracks, free from a time limit, on their own 

music equipment. They noted down 8±2 most Important boundary points In the music. 
Exactly what constituted a boundary was left for them to decide, although as a guideline 
they were given the same directions for selecting them as those taking part in the future 

experiments. Notably, each of the participants listened to Western popular music for at 
least one hour each day, suggesting that they may have a relatively shared appraisal of 

what would constitute a boundary. 

Once collected, the points were collated and cross-referenced to test for agreement. 
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(a) 1 second disparity for agreement (b) 2 second disparity for agreement 

Figure 5.2: The approximate probability of any given boundary point being agreed upon 
between a number of people. 

Results 

Having tabulated the results, the change in approximate probability of finding a degree of 
agreement of a given boundary point with the number of other persons' opinions sought 
can be graphed. Figure 5.2(b) shows the graph, requiring a disparity between points of at 

most two seconds for them to be considered in agreement. Figure 5.2(a) shows the same 
data with a stricter disparity of one second. 

An analysis of variance may be conducted, to check how each factor apparently affects 
the result. Table 5.3.1 shows the results of the analysis, confirming the significance of the 

curve. Notably, for the stricter appraisal of agreement, the small differences in agreement 
between genres appears statistically significant. A post-hoc Tukey HSD test reveals that 

we can be 95% certain that classical music has a greater amount of agreement (albeit 

only by a mean difference of 0.068). 

Degrees of Freedom 
P-value 

1-second 2-second 

People 10.:: 0 
lGenre 2 0.01465 0.1721 

From the figures, it is clear to see the difference of overall curve of the graphs, with 
the two second disparity yielding a shallower curve overall. This shows how, among 2-3 

People Sharing Agreement People Sharing Agreement 
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people, points tended to have a very high level of agreement, if being slightly imprecise. 
The probability of a point being agreed upon by at least half of the participants is 

either 0.68 and 0.80, depending upon the degree of forgiveness applied for the duration 
between points. This compares as slightly lower than Tzanetakis's measured 0.76 at a 
disparity of only 0.5 seconds, but nonetheless supports the primary hypothesis. 

Conclusion 

I have demonstrated that people typically have a reasonable level of agreement about 
what constitutes a boundary in Western music. Furthermore, I have found evidence to 
suggest the Invalidity of the second hypothesis, showing a small but significant increase in 
agreement at a point-disparity level of ±1 second. 

5.3.2 Basic Methods 

The first study made was essentially a pilot study to test the hypothesis that casual music 
navigation can be aided by provision of an image. Five visualisations from those proposed 
in chapter 3 were integrated Into the navigation bar of the popular Free-software music 
player, amaroK (see The Amarok Team, 2005 for more information). I aim to either refute 
or strengthen the hypothesis by finding that at least one navigation aid does `help' people. 

In this experiment, `help' Is defined with the task of finding boundaries in music, similar 
to that of the previous section; here, however, a strict time limit is imposed for each track. 
Their performance Is determined by comparing their given boundaries to a ground truth 
formulated by the combination of several persons' boundary delimiting. 

Method 

Initially, five tracks were selected from a range of music. The tracks were selected to give a 
good range of different types of music and of different difficulties of problem. Tracks were 
chosen for their Interesting features that would best test the systems. Mood changes (both 

subtle and blunt), instrument changes, vocal changes and rhythm diversity are among the 
features I attempted to utilise in order to best examine the systems. Table 5.2 describes 

the tracks that were chosen. 
For this study, I use the ground truth provided by two people who delimited the music 

in question manually, with no aids. In this early experiment, it was supposed that this 

would be enough to get a good Idea of the outcome. Further experiments use a significantly 
greater corpus of ground truth. 18 subjects were then each given five trials-one for each 
of the five tracks. For each track, each of the five analysis techniques given in table 
5.3 together with a 'blind' control with no annotation were rotated through. This study 
therefore assumes that any cross-learning effects between the visualisation algorithms are 
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Track Genre 

Walk in the Night (D. McMurray) Jazz 
Reasonable, consistent beat structure and loudness. Minimally defined tran- 

sitions. 
Plug In Baby (Muse) Rock 
Simple rock ballad with clear verse/chorus structure. 
Goodnight Moon (Shivaree) Pop/Folk 
Fluid pop song with little beat structure and hazy verse/chorus structure. 
Prague Radio (Plaid) Electronic/Abstract 
Timbrally complex, highly dynamic with multiple moods and well defined 
beats. 

Keep Hope Alive (Crystal Method) Electronic/Dance 
Timbrally simple, well defined beats/transitions, consistently loud, few 

moods. 

Table 5.2: The five tracks chosen for the user study. 
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minimal, something of which we cannot necessarily be sure; this is circumvented in later 

studies. 
Giving multiple tracks and algorithms to the same user means that there is no chance 

of an individual learning the tracks, nor how to use the algorithms during the experiment. 
It also means that a relatively large amount of data can be collected (five sets of times 
for each of 18 people). However the issue of learning effects between different algorithms 
(countered slightly with change of order) goes unanswered. Furthermore, using different 

people means that there are no matched pairs, thus the results are far more difficult to 

model statistically. As different people are likely to perform very differently at this task, 
the variance is likely to be large. This is exacerbated by having different people with a 
different permutation of tracks/algorithms. 

Name Abbrev. 

Spectral Magnitude SM 
Bark Bandwise Magnitude BBM 
Rhythm Magnitude RM 
Bark Bandwise Rhythm Magnitude BBRM 
Novelty Novelty 

Table 5.3: The five visualisation algorithms chosen for the user study. 

Each subject was given an initial period of training (some required more than others), 
until they felt familiar with the controls of the player. Aside from getting to grips with 
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the "look and feel" of the application, they were given no specific information on the 
visualisation algorithms. For each trial, the subject was given 60 seconds with the player, 
Incorporating the given analysis technique with the track loaded. They were allowed to 
utilise the random access of the navigation bar. During this time, they had to determine 

as many boundary points in the music as they could. They were told that additional 
boundary points would not be penalised. 

Participants had to manually write down the times of the boundaries, thus limiting 
their time even more. As with other studies, participants came from the undergradu- 
ate/postgraduate student body, as well as postdoctoral staff. Following the trials, a short 
Interview was conducted, calling for comments on each of the algorithms. 

User Commentary 

The overall feeling of those interviewed was that they preferred SM/BBM visualisations 
over any of the others. Having utilised all five of the methods, many also indicated that 
they intuitively related the intensity of a point with the loudness at that point. Some 

went on to suggest that they would then intuitively relate the colour of a point with any 
Instruments playing at that point. Only one candidate suggested that brighter parts in 

the visualisation might mean increased dynamics and otherwise less constancy. 
The standard RM measure as well as the novelty measure were generally disliked. 

Specific comments were "daunting" and "less predictable". The general feeling was that 
differential measurement (I. e. novelty) was unsuitable for intuitive learning; people ex- 
pected to see "chunks" of similar sounding portions of time, rather than specific points at 
which the music changed. Those who commented felt that the rhythm magnitude measure 
simply looked overly populated and excessively contrasting, and thus determined it to be 

too "daunting" for general use. 
Cosmetically, almost everyone preferred colour over monochromatic visualisations (one 

even went so far as to say It was "pretty"). The majority of those suggested that they 

also found colour to be the better visualisation In respect to usability also. They found it 
"easier to distinguish", and "more Informative". The opinion of colour In the BR. M was 

somewhat more divided. While nobody made It out to be worse that the mono-chrome 
variant, most favoured the look of the BBM, finding the RM less well defined. 

As for usability and comfort, the participants were quite polarised in their opinions as 
to whether adding colour was more helpful in the experiment. While some decided that 
it gave them more Information and thus was more useful, others felt that the addition of 

colour increased the learning curve too much. Most went on to suggest that perhaps, given 

enough time to learn, the colour might eventually be better anyway. 
One participant suggested that the three colour components used to create the colour 

from the low, mid and high portions of the spectrum should be switched. Apparently they 
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expected bluer hues to relate to "warmer" (i. e. bassier) sounds with redder hues related 
to harsher, sharper (presumably higher) sounds. 

Results 

For each of the five trials per person, the times are collated given against the ground truth, 

creating a single `score'. A two second linear kernel is used on the distance from the nearest 
ground truth point to determine the score of any single given point; the final trial score is 
the sum of all such points. Formally, to score a point t;, given the closest point to that 
time in all of the collated ground truth for that track r: 

s(t, r)_E 
3-It; -rjI, It; -rjI<2, j=argmin(lri-til) (5.1) 

t 0, otherwise 3 

The (perhaps slightly lenient) two seconds of allowable deviation was chosen due to the 

nature of the experiment. Not only were the participants heavily rushed, but the player's 
time reading is accurate only to within ±0.5 seconds, and they had to write the time as 
well as inspect it and listen to the music. Once collated, the distributions over the genres 
may be plotted. Figure 5.3(a) shows the distributions as a box-and-whisker plot. The 
box represents the lower and upper quartiles, the inner line is the median and the outer 
lines are the minimum and maximums each genre. It is clear to see that BSM and SM 

visualisation algorithms appear to have helped more than the others. I make a standard 
analysis of variance test on the findings to check if they can be analysed further. This is 

presented in table 5.4. 

P-value 

Algorithm 0.0006228 
Person 0.0019703 
Track 0.1041948 

Table 5.4: Analysis of variance of the factors of the experiment. 

This shows that the algorithm is highly significant at a level of > 99%, and, to a lesser 
degree, the individual in question (less fortunately). Performing a Tukey IISD pairwise 
comparison gives the comparison matrix of figure 5.3(b). Two statements may be made 
immediately from the results concerning the tracks: 

" SM and BSM are better than RM, Blind. 

" SM is better than Novelty, BRM also. 

'or the upper quartile plus one-and-a half the interquartile range 
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If the results data is limited to only that of the electronic music, there is still reasonable 

statistical significance from the ANOVA test (p 0.003898 for algorithms). This is not the 

case for pop which has p -0.1924. The distributions may again be graphed is box plots 

and the comparison nnitrix; this is shown in figure 5.4. 
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I have shown that basic music visualisations can help people navigate around a track for 

basic boundary-finding tasks when given a tight time limit. In particular, the two spectral- 

magnitude based visualisations significantly outperformed all others. There is evidence to 

suggest that the BBM may be more helpful for the timbrally-clearer electronic music than 
for e. g. rock and pop. 

I have further presented evidence suggesting that people may themselves find such aids 
both aesthetically pleasing (especially in the case of BBM) and helpful. These are crucial 

points for a system that is to succeed as a popular navigation aid. 

5.3.3 CPT Projection 

This experiment is to determine if, under a similar test framework to the previous experi- 

ment, we can show any differences in the performance of the methods proposed in chapter 
4. In particular, I would like to test the hypothesis that the SOM-based navigation aids 
do actually provide help over navigation bars without such visuals; I construct a null hy- 

pothesis that they do not and attempt to refute it. Furthermore, I wish to find evidence to 

refute the hypothesis that timbrely-well-defined electronic music is more likely to be sus- 

ceptible for help through visual aid than other types of music. One other null-hypothesis 
that I wish to test is that the direct loudness visualisation is at least as helpful as SOM 

visualisations (i. e. I believe that the SOM visualisations are better). 

The music used for this experiment is different to that of the previous; firstly to test 

the latter hypothesis, I wish to use as much electronic music as possible to minimise the 

possibility of the tested tracks being grossly unrepresentative. Secondly, I wish to have a 

slightly narrower distribution, refocusing on three key genres; classical, rock and electronic. 
Thirdly, since these tracks are a subset of those used for the previous study on boundary 

agreement, there is a good ground truth to work with. 

Method 

The experimental method is generally similar to that of the previous experiment. As 

mentioned before, six tracks are used, detailed in table 5.5.24 participants were used 
in this experiment; each given all six of the tracks In a randomised order with the six 

visualisation agorithms. The order of the algorithms was changed for each participant, 
to reduce the bias from learning. The visualisation algorithms used were the four from 

chapter 4, together with the spectral magnitude (SM) measure, which Is akin to the front- 

runners from the previous experiment, and a 'blind' algorithm (i. e. no visualisation at 

all). 
The advantages and disadvantages with using this experiment outline are highlighted 
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Track Genre 
Country House (Blur) Pop/Rock 
Simple rock ballad with clear verse/chorus structure. 
Paranoid Android (Radiohead) Pop/Rock 
Log, progressive rock with multiple instrumental sections. Well defined tran- 
sitions. 
Minuet in A (Luigi Boccherini) Classical 
Timbrely narrow strings-based track. Repeating and varying figures arise in 
unclear transitions. 
Barber's Adagio for Strings (T. G. Albinoni) Classical 
Long strings/organ track with pronounced dynamics. Several timbrelly- 
contrasting regions give clear transitions. 
Lebanese Blonde (Thievery Corporation) Alternative Electronica 
Fluid rhythm-dominated downtempo track with some timbre-contrast to de- 
fine boundaries well. 
They're Hanging Me Tonight (Red Snapper) Alternative Electronica 
Log, complex and dynamic track with many interwoven timbres. 

Table 5.5: The six tracks chosen for this user study. 

in the previous chapter so, I will not repeat them here. The only significant change to 
the method was to implement a feature in the software allowing participants to press the 

space bar on the keyboard to denote a boundary, rather than having to break focus and 
write it manually. They were allowed to delete the boundaries after pressing the space bar 
by simply right-clicking on the boundary represented by a small rectangle in the bar. 

Results 

The results are collated in a similar way to those of the previous experiment; scores are 
calculated with the same two-second linear kernel on the closest matching ground truth 
for each set of ground truths (10 in total for this experiment). The box-and-whisker plots 
depict the distributions over all genres in figure 5.5(a). There is an approximately normal 
distribution of the points, with the trials of the SOM-based aids having higher but broader 

scores on average. A standard ANOVA test is used to attempt to refute the null hypothesis 

on the data that scores across all algorithms are on average the same. The test reports a 
significantly low probability of any of the factors leading to a consistent mean, leading us 
to refute it: 

The post-hoc Tukey HSD test is conducted to check for any significant comparative 
differences in the data; the results of this are depicted in figure 5.5(b). For this, we 
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P-value 

Algorithm 0.002400 
Person 0.001736 

'luck 1.363 x 10-11 

can see that scores for each of the trials of SOM-based navigation aids are significantly 
higher than those with no such help. There was no significant difference between any 
other algorithms, although the means (i. e. size of triangles) are suggestive that the SOM 

methods do typically result in a higher score then either of the PCA and SM algorithms. 
This is continued by splitting the data into three genre-sets. Figures 5.5(c), 5.5(d) and 

5.5(e) show the distributions of data for the classical, rock and electronic music respectively. 
Using a similar method to that of the above, the probability of the differences in score 
means being significant may be found with an analysis of variance test: 

P-value 
Degrees of Freedom 

Classical Rock Electronica 

Algorithm 5 0.1256 0.776173 0.0007852 
Person 20 0.4007 0.002981 0.0052872 

Track 1 0.2406 0.473618 0.7357833 

The only genre with a significant difference in means is that of the electronica, which has 

a particularly high probability of significance (> 99.9%2). Post-hoc tests on the electronica 

corpus of trials give us figure 5.5(f). 
One may see from the' post-hoc tests that restricting the corpus to only electronica 

results in exactly the same significant conclusions as those of all genres. 

User Feedback 

Short informal interviews were conducted following the trials, to solicit any major opinions 
the participant had after their small period of usage. Few found the visuals detrimental 

to the experience of audio software; those that did found no utility or aesthetic value in 

their combination of tracks and visuals. Of the visual aids, the basic spectral magnitude 
aid was invariably placed last; opinions over the chromatic plane trajectory methods were 
quite diverse, but on the whole the SOM4 was the most popular, with a common criticism 
of the SOM2 being too little information, and PCA of being too difficult to read though 
its complexity. As the participants had so little training time, these opinions are indicative 

of only the initial reaction. 

2This P value is only accurate if this subset is considered as independent from the other two. I continue 
anyway since it is small and the post-hoc analysis gives only supportive results. 
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Conclusions 

I have shown statistically significant evidence to support the hypothesis that SOM-based 

navigation aids help in the task of boundary selection under a time-limit. Although I 
have no statistically significant evidence to refute the claim that more basic methods such 
as spectral magnitude are at least as good as the SOM-based methods I have, at least, 

very suggestive circumstantial evidence. Furthermore, the experiment suggested that the 
PCA-based aid may not perform as well as those of the SOM. 

In this task, there is no significant nor apparent difference in the performance of each 
of the SOM variants. In terms of feedback however, users typically preferred the SOM4 

over all others. 
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Figure 5.6: The amaroK music player with the BLSM & Loudness Height visualisation 
operational. 

5.3.4 Learning Rate 

The final boundary-times based experiment was one designed to test the hypotheses con- 

cerning the learning curve of navigational aids. In particular, I collect empirical evidence 

on how well people perform the time-limited boundary-finding task, over the course of a 

number of weeks' usage. A selection of navigation aids proposed throughout the present 

work were tested in three groups; no visual aid, basic aids of the variety tested so far and 

aids that varied the height as a function of loudness. 

I expect little or no learning curve for the `blind' navigation aid with no visualisation, 

since participants should be typically comfortable with the concept of random-access nav- 
igation and are thus unlikely to improve in their performance of the task over the course 

of three weeks. As such, I expect this curve to denote a control that shows the degree of 
task-learning that happens with increased familiarity with the media. With no reason to 

suspect otherwise, I imagine the other two methods to yield similar curves, thus hypothe- 

sising that the learning curve for the algorithms is either so fast that the initial period of 
training given is enough, or so shallow as to be insignificant. 

The aids that vary the height of the graphic with regard to the loudness are essentially 

an integration of the classical `waveform' visualisation (discussed in section 3.2.1) with 
the proposed visualisation methods. They form a silhouette of the visualisation with the 

loudness waveform. Figure 5.6 gives an example of this in use. 
I expect users to be on the whole more comfortable with utilising the height loudness 

aspects of the visualisation more readily than the proposed colour-projection visualisations. 
This is because, as mentioned previously, the waveform visualisation is a particularly tra- 

ditional one, being found in all manner of professional and semi-professional software3. As 

such, if there is a detectable learning curve, I expect the curve to be less pronounced (shal- 

lower, since part of the learning should already be complete). I also expect performance to 

3 an example being the open-source Audacity audio editor 
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be generally better with the loudness silhouette, since more information is made available 
to the user. 

Four participants were used in this study; although this may seem a low number 

compared to the other studies, it is important to note that for testing the hypotheses this 

proved adequate. Each participant had a total of nine sessions over the course of four 

weeks. Each session comprised nine trials on varying genres of music, and thus a total of 
324 individual trial scores were collected. Participants did not use the software between 

sessions. 

Method 

Prior to starting the first session, participants were given around 10 minutes training on 
the software with each visualisation used in the trials (but not the music). A total of 

eight visualisation algorithms were used in addition to the blank navigation bar ('Blind'). 

Four included the loudness silhouette, four did not. The four chosen were SOM2, SOM4, 

BMFM and BLMS, and were assumed a diverse but reasonably performing selection from 

the proposals. The different methods of visualisation were chosen to help prevent learning 

effects from multiple occurrences of the same combination of track/trial, and to maximise 
the number of trials per session in order to maximise throughput of data. 

In a similar manner to the previous two experiments, this does not take into account 
learning effects through trials. To minimise this effect, the order of music was randomised 
for every session conducted. As before, participants were given only 60 seconds per trial, 

and had to identify boundary points. Unlike in previous experiments, participants were 

given the music prior to the study. This was an attempt to mitigate the effects of learning 

the music through the course of the study. For this experiment, the time read-out on 
the software was disabled to prevent users from learning the individual boundary point 

times in the track. The space-bar functionality described in the previous section made it 

redundant. 
Scores were made in exactly the same way as those of the previous two studies. The 

music tracks used were from the study of boundary agreement, detailed in section 5.3.1; 

three each of classical, rock and alternative electronica. The ground truth found from that 

study is used here also. 

Results 

Once the scores are collated, an analysis of variance on the results is conducted to check 
the probabilities of significance of difference of means, which, as table 5.3.4 shows, is 

reasonably certain. 
Following this, the learning curve proper is plotted. Figure 5.7 shows this as each 

trial's point together with the approximate regression lines to show the trend. One may 
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P-value 

Run 1.019 x 10-05 
Algorithm 1.622 x 10-05 
Person 9.731 x 10-07 
Track 0 

see that over the period of initial learning (until around day 13) each of the three methods 
has largely parallel learning curves, suggesting this is the time required for participants 
to learn how to do the tasks generally (in terms of becoming efficient at random access as 

well as learning the music). 

In the latter half of the experiment, however, the curves split, with the `blind' and 
`both' (proposed visualisations with waveform) level ling off and the `colour' (i. e. proposed 

visualisations) alone continuing to rise to meet the level of `both'. 

Blind 0 Both 0 Colour o 

150 

x 
x 

x x 
x x 

x x x 
x x x 

ý 
x 

x 
M x # 

z 
x 

M Ä x x x x 
x 

x x 

1t 

x 
x ý if 

# ý f t 

x 

x 11 ý x 

x 
x X J[ x x x 
x 

xx 
xx 

xx 
x 

x 

Ix xýM 
8 

XY 

100 

N 

8 
N 

50 

0 

x 

x 
x 

x 

5 10 15 20 25 

Day 

Figure 5.7: Scores of every one of the 324 trials conducted. The x-axis denotes the point 

throughout the study that the trial was conducted. The different navigation aids are 

denoted by different colours. 
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Interviews were conducted following the trials; participants were asked how useful they 

considered each of the visualisations, what uses they could see for it, and whether they 

thought these would be an overall improvement or detrimental to the interface. Candidates 

generally considered the visualisation to be less useful for classical than for the other genres. 
In terms of learning, they generally considered that the curve ended after half the number 
of sessions, also suggesting that their increasing knowledge of the song played a big role. 

The loudness `silhouette' was generally accepted as being useful initially, though again 
less so for the classical music. The high degree of changeability was also commented on, 
suggesting that this `noise' was too dominant. BLMS was generally considered one of the 
best, although like the loudness silhouette, the high frequency variation was pointed out 
as a defect. 

The 2x2 SOM-based visualisation received both considerable praise and criticism. It 

was considered one of the better representations of the classical tracks, and was typically 

considered to "do the right thing" in terms of representing "tonal variations". However 

precision, aesthetics and accuracy were issues. Considered with the loudness silhouette, 
it overcame many of these issues and was typically considered very useful. In particular 
having the duality of colour for tone and height for loudness was considered advantageous. 

Notably, there was disagreement as to the efficacy of the SOM4-based aid. Some con- 

sidered it a "more cluttered version" of the SOM2-aid, despite considerable improvement 
from the silhouette. Others considered the SOM4 a significant improvement, suggesting 
that the previously problematic greater levels of colour were a specific advantage. There 

was similar disparity in the opinions as to which was more aesthetically pleasing of the 

two, though both were generally considered the two `best looking', and there was little 

doubt over their improvement by the silhouette. 

The MFCC was typically considered the weakest visualisation, being a particularly 
"unintuitive representation". One participant suggested he was less likely'to use it due to 
the excess "clutter and general ugliness". 

In terms of the usefulness of the aids, most were generally impressed; as one said it 
is "easier to jump around to a certain bit". One thought it would work well as a good 
iconic representation of a track on a newly bought album; perhaps as a visual thumbnail. 
Exactly when it would be useful was particularly polarised. Some felt that it would be 

most useful before a track was heard, and thus in terms of 'jisting' over `bookmarking'. 
Others were of the opposite conviction, suggesting that it would be largely useless initially, 

but be good for getting to know a piece having heard it once already, and further increase 

in usefulness with knowledge of the piece. 
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Conclusion 

In general, the original hypothesis is supported. Each of the curves roughly resemble that of 
the `blind' curve. The curve `both', denoting the combined waveform and colour-projection 
visualisation, gives a similar but shallower curve. Interestingly, the `colour' actually meets 
`both' during the time frame chosen for this experiment. I take this as suggestive that any 
extra information provided by 'both' becomes redundant after a user is familiar enough 
with the colour-projection, and that this level of familiarity can be attained within three 

weeks of intermittent usage. 

5.4 General Task Tests 

We arrive at the final and more significant experiment conducted as part of the present 
work. In all of the previous studies, the utility of a navigation aid was judged by how 

much it improved a user's ability to determine boundary points that best agree with some 
ground truth. While this is an interesting use that no doubt requires navigation to succeed, 
it is a slightly indirect method of measuring, whose results, as we have seen, tend to be 

quite noisy. 
This study was conducted under a different design; an apparent `score' will not be 

measured within a set time limit, but rather the time taken for a user to complete a 

particular task is measured. These tasks not only require use of navigation, but are 
representative of the various use cases for navigation, and are the same tasks used for the 

reference in chapter 2. 

I have shown how the proposed visualisations, and in particular the SOM4 and BLMS, 

represent the music visually. I have further provided evidence that users are able to benefit 

in terms of their navigation from having a visualisation. 
I therefore submit the following proposals: 

" To be a useful navigation aid, the visualisation need not provide absolute information 

regarding the content but rather relative information. 

9A single-level visual segmentation of the track will not aid so much as one focusing 

instead on relative-distance information. 

"A superior navigation aid will reduce the amount of time to complete a task by 

increasing the accuracy of individual navigation seek operations, and reducing the 

amount required. 

As such, I predict that computer literate people will be able to complete a set of high- 
level music information retrieval tasks faster when given an audio-derived visualisation as 
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a navigation aid than those not. This assumes the users are given a short self-training 
period, and that similar accuracy requirements are placed upon the answers given. 

5.4.1 Method 

50 participants are taken and split them into six groups of eight people and one pair. 
Each participant is given a set of instructions and left alone. This document covers basic 
disclaimers (withdrawal, anonymity) and notes that the participants are being timed, but 

that it is the system being tested, not them. It relates the usage of the audio player 
application, in particular that of the timeline bar. 

When ready, each person is allowed five minutes of training time to familiarise them- 

selves with the navigation system on a track unrelated to the tasks. This is timed auto- 
matically by the system; they are left on their own throughout the session. They are given 
a ten second warning before the first question is given. After completing the tasks they 
fill out a questionnaire concerning themselves and their thoughts on the software before 

leaving. 

Each group of eight people is associated with one of six conditions; the pair is associated 

with a seventh condition. Each condition generally relates to a specific visualisation given 
as a navigation aid. Aside from this unique condition, each participant is subjected to 

exactly the same script, detailed below. Throughout the trial, neither the participant 

nor the supervisor (the question script) know of which condition they are under and the 

experimenter is not present, thereby giving, in this context, a triple-blind experiment. The 

visualisations associated with the conditions are given in table 5.6: 

Condition Name Abbrev. 

Sequential; no random access (Seq) 
Blank Blind 
Bandwise Loudness Magnitude Smoothed BLMS 

4x4 SOM Chromatic Plane Ilajectory SOM4 

Loudness Waveform LMS' 
Sandler/Levey Segmentation Seg 
As BLMS but for a different track Bad 

Table 5.6: The seven conditions in the user study. 

A few conditions need a little more explanation; `(Seq)' refers to a baseline made where 
users were not only given no visualisation, but did not use the random-access navigation 
facilities of the software. They listened to the music without seeking, until they decided 

upon the answer for the task and then moved on to the next. This, therefore, represents a 

sensible lower-bound for the average duration of tasks. Only two people were subjected to 
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this condition due to the lack of variance in the possible approaches that could be taken. 
Blank or `blind' is simply where no visualisation is given, as with the other studies. 

Loudness Waveform `LMS`' is where an untextured silhouette of the loudness is depicted. 
This was used as a good benchmark to measure the performance of our methods. I expect 
users to perform well with this method generally, since it is the traditional and widely 
used form of representing audio, and in a fairly acute test such as this study, I expect the 

most obvious representation to fair the best. 
Sandler/Levy Segmentation or `Seg', is a visualisation derived from the segmentation 

method recently reported by Levy et al. (2006). It can be considered a state-of-the- 
art method of performing a high-level musical feature-based segmentation. The basic 

segmentation information comes in the form of contiguous chunks, with start/end times 

and an arbitrary index according to its `type'. With this data, a visualisation is constructed 
in the same manner as is exemplified in their publication, distributing hues to `types' evenly 
and without preference to their content. 

Finally, the `Bad' visualisation is one which misinforms and misleads the user delib- 

erately. An unrelated track's BLMS visualisation is provided. For the initial minutes of 
training, users received a valid BLMS visualisation. 

The tasks take place at a normal computer terminal. Questions appear at a console, 
and users must navigate through the track (played automatically) to determine the answer. 
The entire navigation trace, including the duration between and length of seeks is recorded 
silently. Once an answer has been entered, the duration taken is recorded silently and the 

next question is given. Answers are not checked for accuracy at this stage. 

5.4.2 Results 

The results are inspected in three sections; firstly, the mean time taken which is the 

primary objective, quantitative metric for evaluating the performance of the visualisations. 
Secondly, the seeking behaviour is analysed and finally the questionnaire is discussed. 

Importantly, before any results are analysed we discarded all incorrect answers. Al- 

though the analysis could be conducted on the general behaviour, I consider using only the 
data for correct answers far more telling of `proper' usage. As an aside, I informally anal- 

ysed the incorrect answers and found no significant differences between that corpus and 
this; even the differences in proportion of correct to incorrect were statistically insignificant 
between conditions. 

Time Taken 

Having collated the durations taken for each of the 26 tasks by each of our 50 participants, 
the distributions of time taken for each of the conditions is depicted (see figure 5.8(a)). 
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Seeing the relatively well-formed distributions, a three-way analysis of variance is conducted 
to check for significant differences in the means; this is given in table 5.7. 

P-value 

Algorithm 4.309 x 10-12 

Task 2.2 x 10-16 

Person 1.065 x 10-15 

Table 5.7: ANOVA of task based study's collated durations. 

Not only the algorithm is highly significant, but both of the other dimensions of the data 

(participant and task). This suggests that it may be difficult to make all inferences from 

our experiment. Nevertheless, a set of visualisations for the data may now be constructed, 
including a conditionwise matrix of comparison with the Tukey HSD. Figure 5.8(b) shows 
these visualisations. 

The results show a statistically significant improvement (i. e. reduction) in time taken to 

complete a task, between the direct-visualisation of the loudness waveform and the SOM4 

visualisation. Indeed the SOM4 clearly outperforms all visualisations. The only one that 

is not statistically significant is BLMS, although the suggestion is there nonetheless. The 

results are further suggestive of the BLMS visualisation being better than the loudness 

waveform, but, as figure 5.8(c) shows, it is not quite at the 95% confidence level. The 

loudness waveform outperforms the blind at 95% confidence levels, though the margin is 

relatively small with a mean reduction in time of around 17%. 

One may see from figure 5.8(d) that is takes on average around 40% longer to get 

a correct answer with the LMS* condition than the SOM4, and an extra 65% with no 

visualisation at all. 

Seek Behaviour 

With the seek behaviour, two metrics are used; the number of individual seeks (i. e. clicks 

on the navigation bar) used to determine a correct answer, and the mean distance travelled 
in a seek (i. e. the difference between the playback positions before and after the seek). 
The theory is that a more expressive visualisation (i. e. one that conveys the information 

it contains better), should effect an increase in the average length of seeks as users learn 

to utilise the graphic to direct larger-scale navigation on faith. A generally more accurate 

visualisation (i. e. one that corresponds well to the music) should effect a decrease in total 

number of seeks required, as they navigate to the desired point in the music without blindly 

skipping through the track as we saw in chapter 2. 

As with the durations after plotting the graph, a three-way ANOVA is used to check 
for relative amounts of variance in the results, and find the means are very significant 
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Figure 5.8: The collated duration results of the task-based study. 

indeed. The results are plotted in figures 5.9 and 5.10. 

P-value 
Seeks Seek Lengths 

Algorithm 2.612 x 10-15 2.779 x 10-16 

Task 2.2 x 10-16 2.2 x 10-16 

Person 5.077 x 10-06 6.210 x 10-09 

Using the Tukey HSD post-hoc test, results indicate that we can be 95% certain that 

LMS* requires, on average, more than twice as many seek operations as the SOM4 for 

determining correct answers. The SOM4 generally requires significantly fewer seeks for 

determining correct answers than any other of the tested navigation aids, including the 

01234 
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Figure 5.9: The collated seek count results of the task-based study. 

BLMS, which itself requires fewer seeks than the segmentation-based visualisation. 
In terms of the lengths of seek operation, a distribution with an apparently long tail can 

be seen. nirther investigation shows that the apparently large number of samples falling 

outside the plot in fact constitute very few (< 5%) of the total number, and I therefore 

consider the distributions to be approximately normal. The `(Seq)' navigation system is 

ignored here, since there are no seek operations to analyse. One may see quite clearly that 

the SOM4 navigation aid has a pronounced effect on the mean length of seeks; significantly 
increasing them over all others. 

From these results, one may say with 95% confidence that for determining a correct 

answer, the SOM4 navigation aid leads users to seek around 85 f 40% further than with 

no visual navigation aid, and around 75 f 40% than with only the traditional waveform 

visualisation. Perhaps more interesting is how both the `bad' BLMS navigation aid and 
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the legitimate BLMS aid resulted in significantly larger jumps than having no aid at all. 
Indeed, according to the confidence intervals they have near identical means. 
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Figure 5.10: The collated seek length results of the task-based study. 

Questionnaire 

The questionnaire following the session was filled out by the participant alone. It can be 

found in appendix D; all questions were multiple choice, most had five ordered responses. 
The answers given from the questionnaire were collated in order to determine any statisti- 

cally significant findings. This was done for two reasons; for the objective questions about 

the participants' background, I want to attempt to refute the groups being approximately 
i. i. &4, a precondition to the previous findings being significant. Secondly, for opinion 

4Independent & Identically Distributed 
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Question Mean Median P-value 

listen 3.6 4 0.4405 

musician 3.0 3 0.9812 

computer 4.7 5 0.1016 

software 1.1 1 0.5053 
useful 3.6 4 0.001829 
training 1.5 1 0.3101 

representative N/A 3 0.7333 
know 1.2 1 0.4245 
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Table 5.8: The averages and ANOVA probabilities of non-equal means over each question 
in the questionnaire. 

questions, this is done to check for any statistically significant trends in perceptions. 
An analysis of variance test was conducted on each of the sets of the questions as a 

response to the condition as a predictor; table 5.4.2 shows the P-values. The question 
pertaining to usefulness of navigation aid has an exceptionally low chance of a consistent 
mean over each condition. Aside from this, none qualify as having a particularly significant 
chance of differing means, and certainly not enough to refute the assumption of approximate 
i. i. d.. 

The averages are largely in agreement over each question. People typically had heard 

at least one of the tracks before, found the five minutes of training time either `too much' 
or `about right', and found the tasks generally representative of how they use navigation 
facilities; we plot the latter in figure 5.11, `Never navigate' was for people who said they 

either did not listen to audio, or at least never needed to navigate in audio. `Not these' was 
for people who did not consider the tasks given as being representative of their navigation 
needs. This accounted for one in three participants. The rest, around 50%, considered the 
tasks representative of their navigation needs. 

to - (V 

Q 

LL. O 

IN 

O 

These 

Figure 5.11: The histogram of opinions as to the degree of representation of the tasks. 
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Finally, the `useful' question is investigated; namely how people perceived the helpful- 

ness of the navigation aid. The Tukey HSD significant difference matrix and 95% confidence 
ratios for difference are given in figure 5.12. On the whole people that had no navigation 

capabilities whatsoever considered the `aid' less than useful. People using the SOM4 and 
to a less significant degree the BLMS and Seg, typically considered them more useful than 

people using other visual aids. In particular, people using the SOM4 visualisation rated 
it on average higher (at 95% levels of confidence) than those using Blind and the LMS* 

visuals. 
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Figure 5.12: The collated `useful' question on the questionnaire for the task-based study. 

5.5 Conclusions 

The initial assumption that the music information retrieval tasks are, on the whole, rep- 

resentative of navigation tasks carried out by people is supported. Objective boundary 

points do exist in music that can be agreed upon by many people. 
The (null) hypothesis that the traditional waveform method of visualising audio is 

as at least as good as a SOM-based chromatic-plane trajectory method of visualisation 
for conducting tasks is refuted, and I instead advance the theory that the SOM4-based 

visualisation will substantially aid the casual navigation of musical audio. 
The current standard of supplying no visualisation at all is significantly worse than even 

basic visualisations for certain tasks. There is evidence leading us to refute the theory that 

the PCA method of dimensionality reduction for chromatic plane projection is as good as 

the SOM methods for projection. 
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A simple visualisation is a reasonable augmentation for a popular music player in 
that the learning curve is minimal with my proposed methods, that it is both objectively 
measurable to be helpful and generally perceived as being so too. A visualisation is helpful 

for navigation because it provides enough of a cue to direct individual seeks accurately to 

the desired point in the music, thus decreasing the number of seeks required and increasing 

the mean seek distance. 
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Chapter 6 

Conclusions 

"The whole problem can be stated quite simply by asking, `Is there a meaning 
to music? ' My answer would be, `Yes. ' And `Can you state in so many words 

what the meaning is? ' My answer would be, `No. ' " 

-Aaron Copland (1900-1990) 

6.1 Discussion 

In concluding a work such as this, it is best to review the original aim. At the beginning, 

I wished to learn more about navigation aids, and in particular how useful they might be 

in the context of popular music playback software. There was reason to believe that a 
depiction of the waveform might be useful through its ubiquity among audio applications. 
However, I sought to explore further, to determine if other methods might be better suited 
in the context. 

To determine if, scientifically, there was any truth in these thoughts, I first conducted 
initial studies concerning navigation in popular music playback software. Largely because 

of this, I hypothesised that content-based visual navigation aids based around a projection 
from audio to colour would prove helpful for common music playback tasks due to providing 
a visual analogy, allowing better directed random-access seek operations. I went further, 
hypothesising that even more useful would be a non-linear psychoacoustic transformation, 

whose mapping of colour to sound was arbitrary, but which rather attempted to preserve 

relationships between colours, while maximising the shades used. I thought that this would 
better express the variety of sound, the inter-relations and the constancy of individual 

portions. 
After comparing my proposed visualisations over a range of music, and conducting 

several user evaluations involving over 100 participants, I have a body of evidence to 

conclude the following: 

153 
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" For my chosen context, the core method of augmenting the navigation system with a 
content-based visualisation is a success. It does have a significant effect on how the 

navigation facilities are used over a multitude of users and on a multitude of tasks. 
Unsurprisingly, this changes dependent upon what algorithm is used to generate the 
image. 

" With the notable exception of classical music, I found basic spectral-surface-based 
visualisations to be adequate for the visualisation of most important aspects. I did 

not test many other more `musically-inspired' types of feature extraction, but it may 
be reasonable to expect that a combined approach may yield superior results. The 

two non-spectral-surface-based feature extractions I proposed proved themselves less 

effective than more basic methods. 

" Despite mapping an entirely arbitrary colour to any particular moment of music 

when considered individually, I found the chromaticity-plane projection through di- 

mensionality reduction techniques to be, on the whole, at least as good as any other 
technique. In particular, this turned out to be such an unimportant property of visu- 

alisation that it allowed the 4x4 SOM-based aid to perform statistically significantly 
better than almost all others. This means that the same technique could be used 

with a different chroma-plane to provide a visual that better fits the colour scheme of 

a particular player with no loss in performance (assuming the plane had a similarly 

good evenness of perceptual colour distribution). 

" The best method, the 4x4 SOM, appeared to agree with my original hypothesis 

concerning improvement of navigation through visual means. The evidence shows 
that a better performance in terms of time taken to complete a task correctly arose 
from fewer-but better directed-random-access seek operations. 

To summarise, the main contributions of this work are: 

The proposal and implementation of a general signal-processing metamodel which 

can be used to model a number of structures difficult to express in other graphical 

metamodels of computation. 

" Empirical data concerning how people navigate around tracks in order to complete 

appropriate tasks along with an analysis of the data. 

"A comprehensive review of literature concerning the content-based visualisation of 

musical audio. 

" Several distinct novel methods for generating visualisations of music. 
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" The implementation of these methods, together with a comparison and discussion of 
their output over several styles of music. 

" Empirical data from user studies conducted to determine the performance of the 

visuals as navigation aids, together with a thorough statistical analysis of the data. 

6.2 Future Directions 

The present work, although making some important contributions, has only scratched the 

surface of this interesting topic. I will now discuss the future directions in which this work 
could be taken. 

Alternative Visualisation Methods 

The feature set used for the SOM-based visualisations, while proving its mettle in this 

study, can almost certainly be improved upon. The low-level features used model little 

other than the timbre, and therefore do not model time-varying changes in music. A range 

of musically significant features, e. g. rhythm, melody, key and harmony, could prove to be 

a useful addition to the feature set. 
I have made few efforts to analyse the effect of combining the waveform visualisation 

with the proposed colour-projection visualisations. Further work is necessary to better 

verify my tentative hypothesis that the addition of the loudness silhouette is not useful 

after the brief period of learning has finished. 

A second visualisation route, based around segmentation technology, could attain a 

visualisation similar to the 4x4 SOM by hierarchical segmentation. Tracks could be seg- 

mented as per the literature, but then each segment could be further `subsegmented'. 

Colour could be based upon the model feature represented by the segment (unlike the 

SOM method where colours are chosen arbitrarily). But the colours used in subsegments 

would be a blend of mostly their parent segment and the other segments to which the 

subsegment model leans (if it is not exactly equal to the parent segment, that is). 
In so far as the bandwise mechanism (for introducing colour) was implemented, our 

study conducted only a simple 3-way fair division of the critical bands. Informal exper- 
imentation suggests that uneven division could significantly improve the fidelity of the 

resultant visualisation. Two points through the critical band spectrum could, for example, 
be chosen such that the three subspectra minimised their cross variance. 

Alternative Navigation Aids 

In the present work, a static image is given on the navigation bar. Another approach 

would be to determine the image of the navigation bar by the current point playing. This 
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might be a single corresponding row of the self-similarity matrix, for instance. 
One further avenue of investigation would be in the translation of abstract pseudo- 

continuous linear audio data into a discretely annotated format similar, perhaps, to that 

presented by Couprie (2004). The translation represents a far easier problem than that 

of generalised music transcription, since the representations are similarly low-level and 
imprecise, dealing with such concepts as speed, brightness and dynamics. 

Miscellaneous 

One of the most exciting aspects (indirectly) opened up in this project (as far as I'm con- 

cerned) is the prospect of a `unified audio visualisation architecture'. Such an architecture 

would help develop visualisation components that are able to actually deliver what they 

promise. Through either a pre-analysis stage or in a real-time context (our metamodel im- 

plementation supports both), the musical audio could have specific features extracted and 

correlated to the rest of the track, in order to deliver a useful and consistent visualisation. 
Because the visualisation can then be programmed separately to the analysis framework, 

the visualisation author could concentrate on the task at hand, and the feature extrac- 
tion author would be able to improve the visualisation, precision, and accuracy, without 

needing their co-operation. 
The information could be presented to the visualisation module by way of an opaque 

interface, and the format could be in either a continuous form (as I have already demon- 

strated), or a higher-level, discrete form as discussed in the preceding section. 
The annotation information could be in the digital music file itself, as technologies 

already exist to encapsulate metadata in a track. This would allow both portable devices 

(such as Apple's ! Pod) to utilise the information accordingly and, with proper standardis- 

ation, could be used to "jist" music tracks whilst browsing in music stores. Such a "finger- 

print" may describe music adequately enough to allow a potential purchaser to determine 

their interest in a record. 



Appendix A 

Tools Used 

Document Preparation 

" LATEX Typesetting software. 

" Bibtex A bibliography administration and translation tool. 

" KBibtex A bibliography collection manager by Thomas Fischer. 

" Kile A Latex document editing environment. 

" Winefish A Latex document editing environment. 

" OpenOffice. org An office suite featuring figure-authoring software. 

" GNUplot A data plotting tool. 

" GNU RA statistical analysis and visualisation language. 

Software Creation and Analysis 

" KDevelop A multi-language integrated development environment. 

" Qt A cross-platform GUI toolkit by Trolltech of Norway. 

" GNU Compiler Collection A cross-platform cross-language compiler. 

" GNU Debugger A run-time debugger. 

" Perl The Practical Extraction and Report Language interpreter. 

" SLOCcount A source code analysis tool by David A. Wheeler. 
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Experimentation 

APPENDIX A. TOOLS USED 

"K Desktop Environment The Unix desktop environment. 

" amaroK The Unix music player. 

" PostgreSQL A database management system. 

All software used for this project is Free software, as defined by the Free Software 

Foundation. 
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Navigation Tasks 

When is theme repeated? 
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Figure B. 1: Task 7: (a) is the original theme, (h) is the repeat. 
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Start of repetition of melody? 
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Figure 13.; 3: Task 9: (a) is the original theme, (b) is a quieter/slower variation, (c) is the 

repetition. 

1 

Figure 13.2: '['ask 8: (a) is the repetition of the melody at the beginning. 

When is repetition, not quieter slower variation? 
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When is second onset of instrument? 
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Figure B. 4: Task 10: (a) is original period of playing, (b) is the second onset. 

When is 6-second break in instrumentation? 
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Figure B. 5: Task 11: (a) is the 6-second break. 
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Figure B. 7: Task 13: (a) is the onset of the organ. 
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When is first onset of drums? 
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What is first line of second vocalist? 
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Figure B. 9: Task 17: (a) is the first line of the second vocalist. 

Figure B. 8: Task 14: (a) is the onset of the drums. 
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When is onset of vocalist after other vocals? 
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Figure B. 10: Task 18: (a) is the period of the second vocalist, (b) is the onset of the first 

vocalist. 

What are first words sang? 
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Figure B. 11: Task 20: (a) is the period over which the first words are sang. 
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How many times is verse-chorus played? 
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Figure B. 12: Task 21: (a), (b) and (c) all mark the verses. There is a bridge between (b) 

and (c). 

When is start of guitar solo? 
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Figure B. 13: Task 22: (a) marks the start of the guitar solo. 
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When is end of guitar solo? 
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When is onset of voice after quiet portion? 
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Figure 13.15: Task 24: (it) marks the quiet portion, (b) marks the onset of the voice. 
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Figure 13.14: Task 23: (a) marks the end of the guitar solo. 
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When is onset of instrument after break? 
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Figure B. 16: Task 25: (a) marks the end of the break, (b) marks the onset of the instru- 

ment. 
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Appendix C 

Reference Questionnaire 

Please circle the tasks you are typically utilise a music playback application's navigation 
facilities for. 

1. Finding the onset of vocals. 

2. Finding the onset of an instrument. 

3. Finding the starts and ends of verses, choruses and bridges in songs. 

4. Finding the ending of the song. 

5. Finding repetitions and variations of the music. 

6. Finding breaks and pauses in the music. 

7. Determining the content of vocals (e. g. wanting to listen for a certain lyric). 

8. Determining the overall structure of the music (e. g. whether it has a verse/chorus 

structure). 

Please indicate in the space below any other uses you would typically have for a navi- 

gation facility: 
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Appendix D 

Main Task Trial Questionnaire 

1. How often do you listen to music? 

(a) I rarely listen to music. 
(b) I usually listen to music for upto 3 hours a week. 
(c) I usually listen to music for upto an hour a day. 

(d) I usually listen to music for upto 3 hours a day. 

(e) I usually listen to music for at least 3 hours a day. 

2. What is the extent of your experience as a musician? 

(a) I have never voluntarily written music or played an instrument. 

(b) I have not played an instrument or written music for over 10 years. 

(c) I have not played an instrument or written music for over 3 years. 
(d) I have played an instrument or written music in the past 3 years. 
(e) I regularly play an instrument. 

3. How much time do you spend on a computer? 

(a) I rarely use a computer. 
(b) I usually use a computer for upto 3 hours a week. 
(c) I usually use a computer for upto an hour a day. 

(d) I usually use a computer for upto 3 hours a day. 

(e) I usually use a computer for at least 3 hours a day. 

4. How familiar are you with audio playback software? 

(a) I am familiar with WinAmp, iTlmes, Windows Media Player or some other 
application for playing music on a computer. 
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(b) I have rarely used applications for playback of music on a computer, but am 
familiar with the idea. 

(c) I am unfamiliar with using a computer to playback music. 

5. Of each of the media in the tasks, please indicate which you were already familiar 
(summed): 

6. How useful did you find the software for helping to answer the tasks given? 

(a) Unhelpful; I think I could have done better with my usual means of music/audio 

playback. 

(b) Not useful; I don't think this helped make the tasks any easier or quicker than 

my usual means of music/audio playback would have. 

(c) Potentially useful; I don't think it helped me this time but given more time to 

learn I think it might be helpful. 

(d) Fairly helpful; I think some tasks were made substantially easier to complete. 

(e) Very helpful; I think most tasks were made substantially easier to complete. 

7. How much training time do you think you need to use the this player application 

and navigation features? 

(a) I think the six minutes given was overkill. It's quite clear anyway. 

(b) The six minutes was about right. I don't think I could have learnt much more 

given more training time. 

(c) The six minutes was too little. I think another 10-20 minutes would have 

resulted in a substantially better performance. 

(d) The six minutes was far too short a time. I think more than 30 minutes solid 
training is needed before the system would be effective. 

8. How representative do you think the tasks given are of your need for navigation? 

(a) I never need to navigate in music or audio. 

(b) When I do navigate in music/audio I would not need to do these tasks or tasks 

like them. 

(c) When I do navigate in music/audio I would need to do these tasks or tasks like 

them. 
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