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Abstract

The amount of music available for digital archival and analysis increases steadily and
swiftly. As more people listen to more music it is increasingly useful to reconsider aspects
of the tools used to playback this audio.

One of these aspects is that of navigating around a music track. I propose to enhance
the user experimence of audio playback software by providing with any musical audio
track played a visual depiction of the contents in such a way that it may be utilised with

a minimum of effort.

The amount of computation power for the processing of these musical audio signals is
also increasing. On modern hardware, techniques for creating images from audio content
may realistically utilise modern signal processing and machine-learning techniques. I pro-
pose a number of novel visualisation techniques drawing from state-of-the-art musical-audio

signal analysis techniques.
By way of proving the thesis I prototype a number of methods to do this content-based

depiction and integrate them into a common piece of software for personal music playback.
I show empirically how usage of the novel visuals differs to both typical playback software
with no visuals and the traditional amplitudal representation of audio.
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Chapter 1

Introduction

“I don’t know anything about music. In my line you don’t have to.”

—Elvis Presley (1935-1977)

1.1 Overview

The last quarter-century has seen the digital representation of music, and in particular
music recordings, grow to become the most popular distribution format. From the en-
gineering novelty of the Compact Disc by, among others, Doi and Immink (1998) it has
progressed to the Internet distribution of MPEG-compressed audio (e.g. MP3 files) and
the growth of portable players for this media (e.g. the Apple iPod).

One difference between previous formats of media and MP3 files is, like the transition
from tape to disc for secondary computer storage, simultaneous digital random access.! A
number of points in the music can be accessed and processed at once with no perceivable
performance degradation; this functionality has not existed in any mainstream media
before and throws open the door to a multitude of uses, one of which the present work
addresses.

With the increased popularity, fixed-function playback hardware has been largely re-
placed with far more flexible playback software or (upgradable) firmware. People are
becoming increasingly comfortable with—and reliant upon—this software for music play-
back. Therefore, even modest improvements in the design of such software would have a
cumulatively large beneficial effect when considered in a worldwide scope.

Until recently, intra-track music navigation was limited due to the serialised nature
of the playback medium (e.g. compact cassette). Navigation was limited to operations
of rewinding and fast-forwarding still commonplace on CD-players and video cassette

1Compact Discs do allow a restricted kind of random access though only for a single read-stream and
this would typically be hidden from the user.



2 CHAPTER 1. INTRODUCTION

recorders or difficult random access with the needle of a gramophone player. Other contrib-
utory factors, such as a limited visual interface and minimal numerical processing power
had conspired to prevent any significant improvement in navigation facilities.

With the exception of the addition of a basic random-access interface, popular music
playback software still has a relatively simplistic interface for in-track navigation. This
thesis posits that these interfaces are sub-optimal, and that with the current technology
superior interfaces can be devised that better allow navigation within a piece of musical

audio.

1.1.1 Title Definitions

I will now discuss exactly what I mean by the given title. First by defining the terms
properly then second by identifying driving factors and related fields.

Music

Discussed in the literature by for example Terhardt (1982), there are three different classes
of representation of music, which indeed may be thought of as different meanings for the
noun itself. These are auditory, concerned with our perception of the phenomenon, acoustic
concerned with the objective observations that can be made from the sound and symbolic
concerned with the music theoretic ideas such as notes, idealised timing relationships and
so forth. By utilising only the acoustic data and foregoing any meta-data such as the score
or annotated timeline, the present work focuses concretely on the former two aspects. In
essence, we take music to mean music recordings rather than music compositions.

Visualisation

According to the Oxford English Dictionary, ‘visualisation’ is:

“1. trans. To form a mental vision, image, or picture of (something not
visible or present to the sight, or of an abstraction); to make visible to the

mind or imagination.

2. absol. or intr. To form a mental picture of something not visible or
present, or of an abstract thing, etc.; to construct a visual image or images in
the mind.

3. trans. To render visible.”—Simpson et al. (1989)

Literally we will take meaning 3; “to render visible a musical audio recording”. However

it is clear from the other definitions that the general meaning of visualise has to do with
the perceiver rather than the perceived—the mind’s representation over any physical form.
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These definitions are helpful in describing the true goal towards which this work is
merely a small step. It is an attempt, in part, to work towards a systematic method of
creating an image which, when seen, is perceived as being the same ‘thing’ as the sound
when heard. In this work we wish to create this image from the pulse-code modulation
information only. Exactly what it means for a sonic-based perception to be ‘the same
thing’ as a visual perception is an interesting question in itself and is alluded to by Spence

(2001).

Navigation

This thesis is concerned with how such a thing helps one to navigate around a piece of
musical audio media. For the word ‘navigate’, we once again defer to the OED (using the
only term not about some form of transport):

“The action or process of moving around a file, file system, website, etc.”—
Simpson et al. (1989)

Thus, by aiding navigation, the aim is to help the action of moving around within a
musical recording (generally while being played back). This being an empirical study, I
attempt to quantify the amount of help given in several ways, but typically with respect
to some particular task to be completed.

Common

The term common navigation is used in order to distance the present work from the arenas
of professional navigational aids and /or scientific visualisation. This work is concerned with
aspects of navigation as used by people whilst listening to music in the most general sense.
Though this work may be of interest and use in other, more niche, areas I do not seek to
address them explicitly. The assumptions, requirements and metrics used, especially with
regard to the user interface and expected tasks, vary considerably.

1.1.2 Driving Factors

A improvement in the navigation facilities of common music playback systems is desirable
for practical reasons alone. In addition to providing such practical benefit, this work aims
to further our understanding of musical audio information extraction by determining the
characteristics of music that become apparent with a variety of audio processing methods.
Such an understanding may help further work not just in terms of musical audio visualisa-
tion, but also in other fields of music and audio information retrieval where it is important

to understand exactly what is being represented by the information at hand.
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While the Self-Organising Map has been proposed for several music and audio-related
tasks (see section 4.2.2), it has not yet been used to provide a simple representation of a
single piece of music. As such this work provides ideas, information and empirical observa-
tions concerning the preprocessing, parameters and outcome of using such dimensionality
reductions on musical audio data, as a method of decoding the intrinsic musical informa-
tion. Related areas that will therefore benefit from this work include intra- and inter-track
similarity measures.

There is a large body of work on empirical studies of navigation within audio documents
in the context of speech but almost none for musical documents. The small empirical study
of real and current user behaviour documents a basic understanding of humans’ search and
retrieval approaches. Furthermore the comparison of various performance metrics between
different visualisation aids helps to understand how humans react to different annotations
and exactly how these annotations manifest improved performance. Further understanding
of these HCI phenomena is advantageous for continued improvements in the field.

1.1.3 Disciplines

Several disciplines are involved in the present work; I will briefly document the subset of

disciplines and how they interrelate.

Computer Science

The discipline of computer science forms the backbone to this work. The fields of computer
audition, information visualisation, human computer interaction and neural networks (NN)
are all important areas that the present work draws on and in some cases contributes to.

Audio-content navigation, generally focusing on speech data, is a related field; in par-
ticular the What You See Is What You Hear (WYSIWYH) system of visually annotating
a voice audio timeline is a proposal by Hirschberg et al. (1999) in spoken-word audio sim-
ilar to that in the present work. Usage of content-based information on audio recordings
provided visually in the user-interface of a (real world) playback device dates back to the
nineties, with the work of Roy and Schmandt (1996).

Human-Computer Interaction (HCI) is perhaps the field in which, as a whole, the
present work primarily belongs. Concerning itself with our understanding of how we, as
humans, interact with machines, HCI can be seen as the field encompassing user interface-
design engineering. Being concerned with the actions of humans to certain conditions, it
is heavily related to the field of psychology. HCI is drawn upon and contributed to in the
present work mostly with chapter 2 where in-track navigation is considered empirically.

Neural networks (NN) may as a whole be considered a discrete discipline in the field of
computer science. Though there are many varieties of NN, they are generally inspired by
our limited understanding of the brain. Typically, a neural network is considered a ‘black
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box’ non-linear transformation taking some set of inputs and providing a set of more useful
outputs. Before working properly they must first go through a ‘training phase’ whereby the
context of the data is learned; the parameters of this phase will make the difference between
a useful and useless end result. They may be denominated into two types; supervised
networks where prototype mappings of inputs to outputs are given in the training phase
and unsupervised where such mappings are not provided. The present work proposes the
adoption of a particular unsupervised neural network, the Self-Organising Map, to help
generate helpful visualisations.

Information Visualisation

Information visualisation, which is in essence the present work’s proposal to aid navigation,
is itself a rich, inter-disciplinary field with many heavily context-based avenues. Spence
(2001) argues that exploration, presentation and indeed the navigation of data are each
intrinsically linked to visualisation.

One should not ignore more philosophical streams of thought on visualisation such as
those of Wittgenstein (2004) and in particular the arguments of Biggs (2002) and Sterrett
(2004) concerning it. The representation of an abstract object or event had been, until
Wittgenstein, largely a non-issue. An idea or event typically had a canonical physical
form; an example might be the symbolic score for a piece of music or the script for a play.
With the advent of a reusable, distributable physical form of representation for a piece of
music, it becomes clearer to see how Wittgenstein’s ideas came to form.

One of the key insights that Wittgenstein lends us, and which the present work im-
plicitly draws upon, is the concept of multiple representations of the same intrinsic article,
and that transformations exist in order to change from one to the other.

“There is a general rule by means of which the musician can obtain the sym-
phony from the score, and which makes it possible to derive the symphony from
the groove on the gramophone record, and using the first rule, to derive the
score again. That is what constitutes the inner similarity between these things
which seem to be constructed in such entirely different ways.”—Wittgenstein

(2004), 4.0141.

Unlike Wittgenstein, however, the present work is concerned with the transformation
between the acoustic “groove” and a second representation which may be considered more
useful. Wright (1994) also offers more esoteric thoughts on visualisation. He concludes
visualisations “become a focus for conceptualism, as tools for thinking. ... The scientific
image can ‘objectify’ knowledge into visible form, but at the same time ‘situating’ it with
respect to the forms of subjectivity implied in its reading”. While the context of this work
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is science and mathematics?, it nonetheless concludes that visualisation is a useful means
of dissemination of knowledge to the public.

Psychology

Psychology and psychoacoustics play an important role in providing systems and theories
with which working models of our appreciation of musical audio may be created and
developed. Psychoacoustics improve our understanding of the brain’s representation of
sound, and thus how it may be optimally represented for a knowledge-based or general
signal-processing system. Psychology and (more importantly) music psychology can help
us to understand how music is different from other sounds; a key idea if the overall aim is
to be achieved.

Since the present work concentrates on mainly low-level aspects of the musical au-
dio, psychology plays only a small role with psychoacoustics permeating through each of
the proposals. Our analysis and evaluation of the navigation aids is largely grounded in
statistical tests heavily related to and used within the field of psychology.

Electronics and Music Technology

Signal processing and the general field of informatics plays a most important part in
extracting useful information from the incredibly dense data source of a sound-recording.
These disciplines, together with psychoacoustics, provide a pool of understanding and
knowledge which is important to consider when thinking about processing sound signals.
Thus music technology, and audio engineering in general, provide a solid base from which

the present work advances.

Music Information Retrieval

Music information retrieval (MIR) is a very multidisciplinary field drawing people from
subjects as diverse as computer science and musicology together with librarians and music-
technologists. It may be viewed as being in a similar field to computer vision as it shares
many of its premises; i.e. information retrieval from source signal, high-level feature
extraction and search for invariant measurements. It may also be seen as a complement
to information-retrieval and dynamic-library-searching, in a similar field to the currently
popular topic of data-mining. Within the fields of MIR there are several on-going research

avenues including segmentation of music, classification of music, methods for browsing

large music archives, and music search and retrieval.
Much of the related work discussed in chapters 3 and 4 is published within the MIR
community, as indeed are portions of the present work. As such MIR contributes possibly

3using chaos imagery as its main example
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more than any other discipline to the basis of the present work. Self-similarity matrices
were presented as an MIR device (for visualisation), and much of the utilisation of a
Self-Organising Map for music visualisation is inspired by the Islands of Music work, also

largely a MIR-grounded project.

Music Theory

In defining our aim as including content-based visuals, the natural source of information
for the visuals is not the music notation but rather the audio signal data that is heard by
the listener. I consider the application of theory such as that in Lerdahl and Jackendoff
(1983) to such a low-level form of data out of the scope of this work. Though signal to
notation transcription systems do exist—and indeed have improved throughout the course
of this research—they do not yet perform appropriately robust or accurate.

By addressing the playback of media files, the present work is concerned with perfor-
mances as opposed to compositions. With western classical music, performers will typically
try to play the piece exactly as the composer intended (though subtle variations in perfor-
mance may be analysed and visualised with techniques such as those described by Dixon
et al., 2002a). This is in stark contrast to jazz, especially Dixieland jazz and early folk
blues music, where performances will generally attempt to create a new interpretation of
the composition by varying the melody, harmonies and even time-signature.

Other idioms of music, for instance electronic art music and various forms of electronica
(in the modern sense of the word meaning ‘experimental dance music’) including IDM3
and post-rock, may use a particular recording as the only definitive “specification” of
a given piece.! This results either from it being unnecessary or simply impossible to
describe it in a substantial way notationally; Middleton (1990) writes “in most Western
popular music since rock and roll ... ‘non-notable’ parameters are of great and often
predominant importance.”. Music which relies heavily on sampling or real-time alteration
(e.g. turntablism, the art of creating music through phonograph turntables, using it in the
spirit of an instrument) or whose exact composition is left undefined (e.g. indeterminate

and aleatoric music) are all examples of idioms where using notation for description of a
piece is troublesome. Other forms of notation have been introduced to address some of

these concerns e.g. graphical and prosaic notation. Nonetheless, the limitations of common
music notation mean that much of the music composed in the present-day is notated only

in the form of a digital recording.

3a widely accepted, though often criticised term, being an acronym for intelligent dance music
“This may be seen as a blurring of the boundary between composition and performance. It seems to us

a reasonable result of the culture of artists by-and-large being the only performers of their work, a trend
surely following from the widespread ownership of performance playback devices (i.e. record players and
their modern counterparts).
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1.2 Argument

I believe that inclusion of a content-based visual in popular playback navigation interfaces
speeds up certain common tasks by complementing the navigation interface. I will argue
this by showing that it is easy to implement via a modern signal processing framework
and furthermore very fast to compute, that it does not provide a distraction and that its
appearance is not considered unattractive (a concern technically less than rigorous but

of great practical importance). I will first demonstrate how it intuitively shows musi-
cally important information such as hierarchical structure and secondly conduct several

moderately sized user studies in order to test this empirically.

1.2.1 Aims and Objectives

The previous section presented a brief discussion of the motivation for carrying out this
project. It explained the need for the work, and where the work fits in to the general
discipline. The concrete objectives I aim to achieve with this work are:

e Propose a basic working theory of users’ music playback navigation in terms of
purpose and strategy.

e Determine methods of automatically generating visuals from musical audio which
aid the user in determining the content of the track for navigation purposes.

e Demonstrate such methods working on a mainstream popular music player with
commodity hardware.

To achieve these aims, the following intermediate steps were taken:

e I reviewed the current state of the art of music track navigation aids, including the

HCI technology, their current usage and the reasons for usage.
e I reviewed the current state of the art for visualising musical audio.

e I designed several techniques to project small portions of audio content (audio texture

windows) into a colour.

e I designed a trial framework for determining how useful the proposed navigation aids

were.

o I determined the degree of objectivity of certain characteristics of music in order to
validate the trial framework.

e I conducted trials under this and another task-based framework, and used statistical
models on the results to evaluate the techniques and make conclusions.
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1.2.2 Thesis Outline

Chapter 2 concerns the nature of music track navigation in playback and its history, I
discuss exactly what it is used for, and detail a case study into the real usage a typical
navigation system.

Chapter 3 discusses the techniques that have been in wide use for generating visuals
of musical audio. I then propose several novel techniques for generating content-based
visuals, in particular techniques for transforming small blocks of audio directly to colour.
I illustrate and discuss these techniques with both real-world musical audio and portions
of audio created specifically to test certain aspects of visualisation.

Chapter 4 continues from chapter 3 by discussing the use of dimension-reduction tech-
niques, in particular the Kohonen Self-Organising Map neural network, in order to produce
a perceptually topologically correct mapping between audio blocks and colours. I propose
a novel use of the SOM for projecting audio data into colour by mapping the audio onto a
pre-set hue plane. A similar version of the technique using principal component analysis
rather than the SOM is also proposed. The techniques are discussed as in chapter 3.

Chapter 5 discusses the trial framework devised to test the navigation aids. I propose
two methods; a simple question-answer task list and a time-limited ‘boundary’ search.
For the second, I discuss and present empirical evidence of objective boundaries in music.
The results found by conducting the trials are then presented and discussed together with

statistically significant statements that may be made.
The thesis concludes with chapter 6 which discusses the contributions made by this

body of work, the empirical evidence collected and statements that may be taken from it.
I go on to discuss future directions for this work in terms of HCI, visualisation and signal

processing.

1.2.3 Thesis Summary

Proposals Time-to-space mapped visualisations of music facilitate navigation
through audio recordings; visualisations are automatically generated

using a self-organising map.

Goals e Determine how useful (if at all) a visual navigational aid is to have
in common audio playback tools.

e Determine from the musical audio visualisation methods discussed
which is most useful, and the reasons why this is the case.

Contributions e Data on, and analysis of, humans’ use of intra-track navigation.

e Collection of data on and analysis of actual usage characteristics of
humans doing intra-track navigation for task completion.
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e Development of novel methods for creating visuals from musical au-
dio, specifically by projecting discrete audio chunks into a colour:

- RGB-mapped bandwise magnitude.
— RGB-mapped bandwise rhythm magnitude.
— PCA-projected histogram features.
— SOM-projected histogram features.

e Comprehensive evaluation of techniques for use by humans on track

navigation.

Conclusions e People are able to effectively take cues from automatically-generated
visuals and utilise them effectively to summarise and navigate

through aadio dava.

¢ Psycho-acoustic preprocessing on the audio signal results in percep-
tually more meaningful visuals.

e The SOM is able to generate a visually simpler image with no loss of
performance over other more direct methods.

e A traditional loudness waveform envelope visual gives a less useful
representation than other texture or SOM-based methods.

e Rhythmic qualities of a music audio signal lend themselves less to a

useful visualisation than basic spectral surface qualities.

o Absolute meaning in terms of colour is not a prerequisite to a useful
audio visualisation; relative meaning is enough to provide a helpful

image.

1.3 Chapter summary

This chapter has presented an introduction to the work of this project. It has introduced
the principal topics of research and discussed the motivation for the investigation of these
particular areas. The discussion of the problem resolved into a statement of the aims
and objectives of the work, and how these relate to the specific requirements to be met.
Following the presentation of the motivation and central themes of the thesis, an outline

of the thesis as a whole has been given.




Chapter 2

Music Playback Navigation

“I see my path, but I don’t know where it leads. Not knowing where I'm

going s what inspires me to travel it.”

—Rosalia de Castro (1837-1885)

2.1 Introduction

I begin this chapter by introducing the concept of navigation within a musical audio
recording. This is important to the content of the thesis to make the reader aware of the

specific reasons for navigating at all, the variety of navigation mechanisms proposed and
popularly used and the difficulties that they present the user.

Chapter Summary

Following the present introduction, the chapter will begin with a review of the literature
most directly concerning musical audio track navigation. I cover the popular navigation
bar UI mechanism evident in all mainstream musical audio playback software. I review
other techniques of navigating through musical audio such as the Link Player and the
rhythm-metadata enabled navigation. The review is the broadened to include techniques
proposed for navigation audio generally, and then in particular spoken-word audio such as

voicemail processing.
By the end of the literature review I will have discussed the current state of the art

in musical audio navigation. I will have demonstrated that though there is a considerable
body of work dedicated to understanding user usage patterns in spoken word recording
information retrieval, little has been done specifically in usage patterns of navigation for

musical audio information retrieval.
The chapter continues with two studies conducted in order to better develop under-

standing of common aims in musical audio recording information retrieval; I describe the

11
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questionnaire and interviews with users of musical audio playback software conducted in
order to determine the sorts of tasks they think they require. I then analyse and discuss
the actual actions taken by users of the random-access navigation bar when attempting to
carry out a set of tasks designed around the results of the prior investigation.

By the end of the chapter the reader will have some understanding of the concept and
usage of the navigation bar when used as a popular navigation aid.

Contributions

1. I present empirical data and a discussion on the uses of intra-track navigation for
musical audio.

2. I present in-depth traces of the listener’s experience documenting actual usage char-
acteristics for reference task completion.

2.2 Related Work

The mature, mainstream literature (by which is meant a full volume with commentary and
reference) on HCI e.g. Dix et al. (2004) and Preece et al. (1994), when considering musical
audio navigation interfaces, has not progressed much further than a fairly superficial com-
mentary on the video recorder metaphor (play/stop/fast-forward/rewind). On reflection
this should not be especially surprising; PC-based musical audio playback software has not
been in common use for more than around ten years, essentially since MP3 became popular
through its ability to be decoded on commodity hardware. Moreover such software has
only started gaining popular acceptance (i.e. outside of computer and music enthusiasts)
acceptance in the time period over which the present work was produced with the advent

of services like iTunes and Napster.

Musical audio (and, largely, audio) navigation interfaces can be largely broken down
into two types; those that present an overall sequential and continuous metaphor, and those
which provide a discretised and possibly nonlinear ‘hyper-linked’ metaphor. Examples
of the former would be the common navigation bar and the classic fast-forward/rewind
interfaces found on cassette recorders; examples of the latter would include the work by

Kosonen and Eronen (2006) and ESPACE?2 presented by Sawhney and Murphy (1996).

2.2.1 Navigation Bar

An early communication by Aigrain et al. (1995) gives a reasonable definition of the term

navigation bar:

“A scrollbar with a cursor indicating the “present” position in the document
... and one can directly access some relative position in the document duration
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[sic] by positioning this cursor.”—Aigrain et al. (1995)

Though even comprehensive HCI literature such as the volume by Dix et al. (2004)
does not explicitly analyse it, it seems likely that the popular audio navigation bar stems
from two well understood user interface (UI) primitives; the scroll bar and the progress
bar. The progress bar is a read-only indicator of completeness. A typical example would
be a download window in a modern Internet browser which will represent the amount of a
file downloaded. The scroll bar is typically associated with some sort of windowed view; it
is a control interface allowing the user to change (and query) which portion of a document
is currently being viewed. Typically they are used because the document being viewed
is larger than the limited screen space in which to view it. An example would be the
scroll-bar to the right side of a web browser window, when the web page being viewed is
too big to fit on screen at once.

The navigation bar combines these two to form, depending on which Ul primitive
you assume as parent, either a scroll bar which progresses automatically or a progress
bar whose progress may be reset as desired and to which no graphical view is attached.
Several examples of musical audio navigation bars may be seen in figure 2.1. One particular
function that the navigation provides over the older video recorder inspired bars, is the
ability to have random access into the musical audio recording, by providing a one-to-one
mapping between points on the horizontal of the bar to moments in time of the music.
This concept is essential for the subject material of the present work, which theorises that
certain augmentations to this basic metaphor will significantly increase the utility of the
UI. We will now discuss the navigation bar in more detail.

The navigation bar gives the user a visual cue, which may help to imagine (or visualise)
where in the music certain events are, and where they are listening currently. This is
missing from conventional playback devices such as a CD! and cassette recorder.

2.2.2 Musical Audio Navigation

The earliest system suggesting navigation of specifically musical audio recording is that
proposed by Aigrain et al. (1995). The interface includes several representation ‘strips’ of
the musical audio which correspond to segmentation results. Multiple segmentations are
created from different feature sets including dynamics, frequencies, meter and stereo effects.
The presentation of these features is somewhat cryptic and is evidently designed for the
trained viewer. Navigation is performed using the familiar random access navigation-bar

metaphor.
The authors value discrete representation above continuous, suggesting that a timeline

1a display of the current time through the track is not enough (on its own) to give an idea of how far

through playing it is
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(a) amaroK version 1.4, running on Ubuntu Linux (b) Microsoft Windows Media Player version
(18 6, running on Microsoft Windows 2000.

(c) Nullsoft WinAMP version 5, running on Microsoft
Windows XP.

Figure 2.1: Three examples of the audio navigation bar in popular musical audio playback

applications. The navigation bar of the interface has been highlighted over the original

lmage.

of “pre-organized selectable objects” are more manipulable than a continuous representa-

tion.

One of the earliest proposed systems explicitly designed for content-based navigation
of musical audio is the Link Player, detailed by Blackburn and DeRoure (1998). It utilises
melodic pitch-contours with a database of points where contours are found in songs. The
user may ask to be directed to a different point in a different audio document matched
according to the contour. As such this is not navigation between points in a track per
se, but rather navigation between points in all tracks. They conclude that melodic pitch
contours typically do not work especially well for this task, suggesting that information of
aspects such as rhythm might be better suited.

A rhythm-metadata enabled browser was recently proposed by Kosonen and Eronen
(2006). Designed for popular use on mobile devices, it allows the listener to augment the
music being listened to by means of its section-skipping interface. Once in the interface, the
current section will repeat seamlessly, utilising segmentation and beat-tracking technology.

The user may continue playing the track from that point onwards or may move forward

or backward into the neighbouring sections, replaying it until a further decision is made.
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This approach is well suited to the mobile-device platform, where summary and repre-
sentation methods cannot necessarily be relied upon due to the limited space for visuals.
Other possible uses aside from navigation are given; users could, for instance, automat-
ically loop their favourite parts of a track. That said, there is no significant reason to
believe this form of navigation would be of popular use in a desktop environment; aside
from the relatively weak discussion of the implementation the authors provide no further
argument. Evidence that people would indeed utilise its functionality (e.g. a questionnaire
or user study), would significantly contribute to the value of the proposal.

Aigrain (2001) was one of the first to publish a commentary explicitly referring to
systems for navigation of musical audio utilising static content-based visual representations
of the audio. He argues that the optimum representation-based approach would be a visual
annotation that could present the content in various levels of abstraction from the acoustic

to the notational:

“But [a representation-based browser| faces the extreme difficulty of au-
tomatic transcription and also suffers from the fact that the representation
hides some important features of the content (for instance, voices for speech or
performance for music). Static representations of audio content take all their
value when they can be presented at different scales and levels of abstraction

and directly associated with sound production.”—Aigrain (2001)

The present work does not attempt such an all-encompassing navigation aid for two
main reasons. Firstly, and as Aigrain points out, content-based transcription is a tremen-
dously difficult task and only applicable for relevant music. Secondly, it is an open question
as to how to provide a compact interface to such information. The present work aims to
provide an interface readily comprehensible and adaptable to popular playback software.

2.2.3 General Audio Browsing

General audio browsing interfaces do not restrict themselves to any particular audio con-
tent. Typically this is an easier problem to solve than information retrieval in any one
particular context since the features to identify and differentiate are coarser (e.g. music
from speech rather than rock from jazz). Since computation power (and general under-
standing of the problems involved) is forever increasing, there is a significant amount of

relatively early literature dedicated to this subject.

Kimber and Wilcox (1996) present an early example of attempting to augment a basic
random-access navigation system for general audio (film soundtracks is the example given)
with automatic index generation from content-segmentation. The latter technology is
described at length in section 3.2.3. The browser interface presents several timelines of
each of the ‘voices’ (speakers, songs, applause etc.), which the user may utilise to direct
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the random-access navigation. This would have several drawbacks for musical audio; in
many types of musical audio there is not a well-defined (or usefully small, at any rate)
number of voices. Furthermore, having multiple timelines takes a significant amount of the
user-interface; only a far more compact representation of the content would be acceptable
for a popular playback application.

Tzanetakis and Cook (1999) presented a prototype implementation of an audio
browser which includes basic segment boundaries together with a CD-player like navi-
gation interface of fast-forward/rewind along with next/previous segment. The display
is representation-based giving the user an image of the audio portrayed as a basic wave-
form. An informal user-study suggests that automatic content-based segmentation can
help with navigation through the audio document. A comparison of different persons’
manual segmentation of musical audio reveals common parts labelled as segment bound-
aries, suggestive of an underlying ‘objective’ ground truth segmentation.

Comparatively, the present work explores a different approach giving the user more
freedom in their control method (random-access rather than sequential jumping), though
both approaches appear quite valid for ultimately easing navigation for the typical users
of popular playback software.

Tzanetakis and Cook (2000b) present some follow-up work to the above. A small user
study suggests once again that there is reason to expect some degree of objectivity in
segmentation of musical audio, with around 70-80% of segment boundaries being agreed
on by the majority of participants. The content segmented includes both musical audio
and music/speech audio; no figures are given for musical audio alone.

SATIE is a piece of interactive software for expert use intended to guide the viewing
of, and navigation within, musical recordings presented by Lepain (1997). In order to aid
interpretation, understanding and navigation within the musical track, it presents multiple
content-based and manually populated representations of the track. The navigation is a
simple random access metaphor similar to the navigation bar concept previously described.
At the time of publication, only the two basic representations, waveform and spectrogram,
had been implemented though plans for more ambitious representations were proposed.
Although founded in a somewhat different context (SATIE being developed primarily for
an expert audience), this work does share the notion of providing aid for random-access
navigation, though presently I will provide a more thorough investigation.

Another interesting outlook on the audio navigation problem is ESPACE2, as presented
by Sawhney and Murphy (1996). Aiming to provide an accessible system for visually
impaired users, it is an audio-only user interface which provides a hierarchical and spatial
interface through the concept of moving in and out of virtual ‘rooms’ (in a similar way to
the work presented by Kobayashi and Schmandt, 1997, mentioned later).

These approaches, while ambitious and possibly useful to a minority, are hardly appro-
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priate for a mainstream application due to, amongst other things, extra costly equipment
required (multiple speakers), the deterioration of listening experience and the training
required for a relatively unfamiliar interface.

2.2.4 Speech Audio Browsing

Speech audio browsing is another form of audio navigation. The content of the audio is
that of spoken-word and applications tend to focus on recordings of either single speakers
(e.g. voicemail) or multiple speakers (e.g. diarization). The challenges faced when making
a good speech audio browsing interface share a considerable amount in common with those
focusing entirely on musical audio. The solution, argues Kimber et al. (1995), is similar

to that proposed in the present work:

“It is difficult to find specifics in audio recordings because it is necessary
to listen sequentially... Although it is possible to fast forward or skip around
[using a random access interface], it is difficult to know exactly where to stop
and listen. For this reason, effective audio browsing requires the use of indices
providing some structure to the recording... These [indices| can be displayed
graphically as a navigational aid in browsing.”—Kimber et al. (1995)

The interface proposed and prototyped by Kimber et al. is similar to the other audio
system being proposed at the time by Kimber and Wilcox (1996), both focusing on multiple
timelines depicting the onset of various voices.

Kobayashi and Schmandt (1997) suggest utilising people’s natural spatial-awareness
to aid the navigation of audio by mapping the time of the audio document to a spatial

metaphor:

“The motion of the sound sources maps temporal position within the audio
into spatial location, so that listeners can use their memory of the spatial
location to find a specific topic.”—Kobayashi and Schmandt (1997)

The NewsComm system described by Schmandt and Roy (1996); Roy and Schmandt
(1996), proposes and prototypes a device capable of aiding the browsing of audio recordings
of the news. It relies upon the segmentation of the audio into one of a number of speakers
or silence in order to give a discrete representation of the audio and to aid users with a
next /previous speaker interface similar to that described in Tzanetakis and Cook (1999).

The Dynamic Soundscape project, a follow-up work to NewsComm, spatialises several
streams of audio at various points throughout a recording (spoken word) so that they have
the effect of apparently coming from various points around the user. They will naturally
use the ‘cocktail party effect’ to listen to all streams and, when appropriate, ‘home-in’ on



18 CHAPTER 2. MUSIC PLAYBACK NAVIGATION

a stream of interest by stopping all but a single stream of audio which corresponds to a
section of the document in question.

The work of Hirschberg et al. (1999), Hirschberg and Choi (1998) and Nakatani et al.
(1998) is particularly interesting to us at present since it details a system proposal together
with empirical data about usage characteristics concerning random-access navigation of
voicemail documents with visual annotation. The studies suggest, in the field of voicemail
information retrieval, that random-access navigation on its own is far from optimal: “users
often lose track of the current audio context, and being unable to determine the sequence
and structure of different elements of the audio record”. Furthermore:

“obvious signposts such as topic/message boundaries may be less helpful
than users expect them to be and perhaps even counter-productive to users
acquiring a basic understanding of the data. Given this result, we are explor-
ing alternatives to simple topic markers including... acoustic segmentation,
particularly as a means of enhancing users’ ability to extract the information
they seek from the audio data that has been presented to them.”—Hirschberg

and Choi (1998)

We may take this as a (weak, since the context is somewhat different) indication that
annotation from simple high-level boundaries may not be the best method to approach
the problem of aiding navigation of musical audio. An acoustic-based representation could
yet prove more useful in terms of usability, as indeed the present work postulates.

2.3 Analysis of the Navigation Bar

Due to the relatively sparse collection of literature explicitly addressing the real-world usage
characteristics of the navigation bar for musical audio navigation, I conducted two small
investigations; in the first I solicited information from users of musical audio playback
software as to how they utilise the (random-access) navigation facilities. In the second
I devised a set of reference tasks for eight users to carry out; the tasks were largely
representative of the typical usage of navigation bars. The results and analysis of five of
these tasks are given in the second section.

2.3.1 User Study

I conducted a small user study, soliciting answers from 16 potential users of the navigation
system from a questionnaire. The aim was to find out:

e What sort of tasks the navigation interface would be used for.

T
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e [f the tasks were for information-retrieval purposes, what sort of information would

be retrieved.

This initial questionnaire soliciting views from users is in line with typical HCI method-
ology of determining an objective method for evaluating the benefit of one intertace over
another. The reference task agenda proposed by Whittaker et al. (2000) was used as a
broad guideline when forming this pilot study. To determine the options in the question-
naire, [ included both my own expectations of usage as well as the thoughts of others I

solicited informally. A copy of the questionnaire given is available in appendix C.

Content of vocals | | I
Instrument onsets ‘ \

Repetitions & variations

Limits of verse/bridge/chorus
Onset of vocals
Overall structure

Breaks & pauses

1

End of song

Number of votes

Figure 2.2: A bar plot of the results from the questionnaire given to a number of potential

users asking what they utilise a navigation interface for.

The results are plotted in figure 2.2. It is reasonably clear to see from the small study
that navigation is used typically to find the content of vocals in presumably popular music.

Attempting to find overall structure in the music was apparently not a significant priority

for navigation, suggesting some users imagine they would already have some idea of the

broad content of the track before attempting to navigate. Finding the end of the song (i.e.

the outro) and any breaks and pauses inside the track appeared similarly unneeded. Each

of the other possibilities suggested appear roughly similar in popularity.

2.3.2 Task Trace Analysis

In this section I will discuss and analyse the actions taken by candidates asked to perform

tasks broadly representative of those classes resulting from the previous section. This will

not be considered a pure HCI experiment and as such [ will not begin by building a model;
this chapter aims to provide the reader with well-presented data and a discussion noting

any clear trends. It is from this overview that I will consider the actions to be taken for

improvement and thereby build a hypothesis proper.
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Although 23 tasks were given in total, through discarding those tasks whose entire set
of participants failed to answer correctly, only 22 are left. Five of these will be presented
here and discussed, but the interested reader may refer to Appendix B for traces relating
the other 17 tasks. Four of the tasks were finding the time of a particular onset (of either
a section, Instrument or vocals), and one was collecting information about the structure
of the entire recording.

In all cases, the participant was alone when carrying out the task. They were told they
should complete the task as quickly as possible, but that they should take every effort to
ensure they gave the correct answer. They were given six minutes to practise and become
familiar with the user interface and were told that the navigation bar should be used to
reduce the time taken. After completing a task and entering an answer, they were not told

if they answered correctly.

Vocals Search

Figure 2.3 shows the rock-electronica track What I Miss the Most by The Aloof. The
candidates attempted to find the initial onset of vocals in the track.

When is start of vocals?

(a) 0:49

60

Time Passed (s)
40

20

Figure 2.3: Candidates were asked to find the start of the vocals in What I Miss the Most
by The Aloof. (a) marks this point.

Of all participants, only one (hollow circle) appeared to follow an effective systematic
approach using random-access navigation. She made three large jumps of around 15-20
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seconds each, listening for only a few seconds between each until she arrived in a vocal
section: what is essentially a trinary chop search delivered her at the required point.

A second participant (filled circle) seemed to be comfortable utilising the random-access
potential of the UI, but her search is less than efficient; she overshoots, undershoots and
reviews several portions of the track in quick succession. Interestingly she never actually
listens to the onset itself, apparently guessing correctly by picking a point somewhere
between the vocals and instrumental sections.

Three participants (the upright triangles and diamond) did not utilise the random
access nature of the navigation bar at all, deciding to listen through almost a minute
without interruption. It seems unlikely that all three actually liked the music so much to
abandon usage of the navigation bar, so it seems likely they took this course of action due
to the absence of clues as to where the vocals might begin (except that they should be
near the beginning). Another (upturned triangle) jumped a small way into the track and
essentially listened through, possibly under a similar reasoning.

One participant (the square) found the correct onset point within 15 seconds, faster
than any other. However, rather than stopping their search they instead appeared to verify
it was indeed the initial onset by listening to a larger portion before it (0:40 to 0:50), and
then skipping even further back to 0:22 and listening for another 10 seconds. This theme
of requiring multiple runs for verification continues throughout the task traces.

In conclusion, it seems most participants either thought they were unable to use the nav-
igation bar without more immediate information to the contents (and so listened through
large portions of the song) or, despite trying, found it difficult to make particularly effective

use of it.

Structure Assessment

As a follow up task to be carried out directly after the previous task, participants were
asked how many choruses the song had. This required two key facts; firstly they needed
to assess the song and find the portion representative of the verse. Secondly they had to

determine on how many separate occasions this part of the music was played.

Figure 2.4 shows the trace of the six participants who correctly answered the task ‘3.
Each of the three choruses are shown, notably there is a bridge following the third verse
(i.e. where one might expect a third chorus to be) between (b) and (c) at around 3:30-4:00.
Three participants (upturned triangle, square and diamond) utilised the random access to
review this portion of the track presumably to check that it was not another chorus.

In general, three of the six participants (triangles and square) tended to use the random
access to effect a sort of fast-forward-like mechanism, quickly building a series of repre-
sentative blocks (around five seconds each) of the song by skipping around ten seconds
between them. This is a reasonable usage for random access given that the question covers
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How many times is chorus played?

a) 1:22-1:39 b) 2:28-2:45
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Figure 2.4: Continuing in the same track from figure 2.3, candidates were asked how many

times the chorus was played in total. (a), (b) and (c¢) each mark the chorus sections.

the whole song and no further information is given.

Two participants (diamond and hollow circle) listened through the entire track, du-
plicating the approach shown by three in the previous task. One of them does however
briefly review two sections (the aforementioned bridge and the final verse). This suggests

usage of the random access for verification.

One of the candidates (filled circle) skipped through the track by about 30 seconds
each time, listening for around five. After getting to the end of the track, she reversed
direction until finding the first chorus, then the second. It seems she aimed to get a broad
overview as quickly as possible, listening to only very short sections and making large
jumps between them. Unlike the other participant (upturned triangle), she apparently
required verification of the middle structure before making the final answer.

Overall trends in this task seem to be very suggestive of utilising the navigation bar
to skip around large sections quickly for gaining a long-term summary and verification of
suppositions for the structure. This ‘whole track canvassing’ appears to play a consistent
role throughout the task traces.
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Instrument Introduction

We move on to another piece of music now, this time the classical track Warm Air com-
posed by Mike Batt and performed by Royal Philharmonic Orchestra with “child prodigy”

Vanessa Mae taking a lead role on the violin.

When is bass instrument onset?

E———— _(a) 0:45 .
(

100

20

Time Passed (s)
60 80

10
204
30

0:00

Figure 2.5: Candidates were asked to find the onset of the bass instrument in Warm Air

(Vanessa Mae).

The participant to finish the task first (diamond), aside from several jumps at the
beginning to apparently check she hadn’t passed it around 10 seconds in, finds it very
simply through skipping forward and apparently making a lucky guess at how much before
the destination of her penultimate jump it starts. A second participant (circle) had a similar
approach, though maintains a roughly equal skip-listen ratio (about 6-7 each time). She,
however, overshot by considerably more (around eight seconds past) and was very close at
the point of the jump before, so while almost making a perfect binary search it still took

her several jumps to locate the onset. Nonetheless, her trace demonstrates an effective

and systematic search.
The third participant to complete the task correctly (square) skips to exactly the point

of onset after around 25 seconds. Presumably suspecting this, she reviews the previous 15
seconds. Her performance would be similar to the other two were she not then to continue
listening through almost another minute of the track. I would advance two possible reasons
for this; either she neglected the directives for the task and simply wanted to enjoy the
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music at the cost of a quick completion, or she was unsure about whether the onset she

heard was the appropriate one. In any case she then reviewed the onset twice more before

recording her answer, undershooting herself by around ten seconds with the initial jump
back.

This task demonstrates an efficient use of random access in searching, but through a
lack of information overshooting and undershooting known points for reviewing content

appears to be an issue.

Vocals Search 2

Candidates were again asked to determine the time of initial introduction of the vocalist.
The music used in this occasion is the reggae track Money, written by Pink Floyd and
arranged and performed by The Fasy Star All-Stars.

When is start of vocals?

= B R (@) 0:44 : -
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Figure 2.6: Candidates were asked to find the start of the vocals in Money by The Easy
Star All-Stars. This point is marked (a).

The two participants who took the longest time to complete the task (diamond and
hollow triangle) listen through the track without skipping until the vocals start. A third
participant (square), though clearly hearing a long run up to the vocals (0:32 to 0:46), opts
to replay the same portion of the track once again; the only explanation for this course of
action I can offer is that they felt the need to become comfortable with the early contents

of the track before committing to an answer.
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The two fastest-completing participants (filled circle and inverted triangle) skip around
fairly radically listening to about 2 seconds before skipping about 10 seconds. When they
inevitably overshoot they reverse direction eventually arriving at the correct point. No-
tably, one of the two (inverted triangle) reviews the onset point before answering correctly.

Despite having already found where vocals start, one participant (hollow circle) can-
vasses a significant portion of the track (up to around 1:15) before navigating backwards.
They again overshoot into the instrumental part, but again appear to want a ‘broader
view’ of the track since they jump further back (to 0:27), reviewing the early portion again
before skipping forwards and correctly arriving at the onset.

The final participant (filled triangle) is played the onset of vocals three whole times
after canvassing the beginning and finding a perfect excerpt. Despite listening to the
same period before the onset three times she navigates back to 0:18, almost 30 seconds
backwards, presumably to verify that it is the first onset point.

The overriding theme here is one of verification; three participants found the correct
point before skipping backwards through the track, suggesting they were not confident
that they had not missed an earlier onset. Canvassing also seems to be a recurring theme,
whereby participants make long sweeps, skipping significant portions and listening for only
a few seconds at a time. I would expect this is in order to get a broader view of the track

possibly to back up their mental image of its structure.

The Beginning of the End .

The final task I will review here is a search for the outro of the rock track Can’t Get

Enough by Suede. The task was phrased to give participants the knowledge that the outro
had no vocals and comprised the singer singing a recognisable ‘aaah’. This?\mlike other
.. searches, gave them a solid search strategy (i.e: find thé'l transition befﬁqﬁn vocals and
‘aaah’); once vocals had been found, the transition may be located efficiently through a
binary chop search with the end of the track.

One participant apparently realises this premise and acts accordingly; she skips us-
ing a reasonably precise binary chop with the end, listening for around 3-4 seconds per
jump. On hearing ‘aaah’ first time (4:02), she retraces her steps. Interestingly, another
participant (triangle) answered correctly first; she employed a similar strategy, though was
more aggressive, skipping far more of the song initially. Having listened to a portion of
the ‘aaah’, she notably decided to jump forwards again, listening for another five seconds
before retracing and arriving at the transition. A further participant exhibited similar

behaviour, apparently requiring a broader context of the ‘aaah’ section before being happy

to retrace.
The participant to finish penultimately, actually managed an almost perfect first jump,
overshooting the transition by only five seconds. Having listened to the ‘aaah’ of the outro
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When is beginning of outro?

a) 3:58

Time Passed (s)
40 60 80

20

Figure 2.7: Candidates were asked to find the beginning of the outro of rock track Can’t
Get Enough by Suede (a), being informed it started with and consisted of a vocal ‘aaah’.

for around three seconds, she then skipped back a small amount and actually heard the
start of the transition. Despite this she skipped backwards, further into the vocals several
times over, before eventually allowing the end of the track to play through to the transition
point. This is again suggestive of the lack of confidence the participants have in a 3-5 second

context.

The participant finishing last (inverted triangle) canvassed slowly for around 30 seconds
before jumping to within around ten seconds of the transition point and, finding only
vocals, retraces her steps twice. Having arrived two seconds into the outro, she again
jumps further in, before retracing and finding the transition point. This behaviour is once
again suggestive of an unwillingness to trust the logical combination of a single sampling
with information pertaining to the location of the point in question. Because of this, it
costs several more jumps and seconds of listening before the search can continue properly

and the point found.

2.4 Conclusions

[ reviewed the current state of the art of popular music track navigation aids, including
the HCI technology, their current usage and the reasons for usage. I conducted a study
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resulting in a histogram of task types that are commonly found among users of audio
playback software. Given this I created a set of reference tasks of which five I analysed the
behaviour of various users when carrying out. From this I can make two main conclusions
concerning the behaviour of users while utilising the random-access navigation bar.

Firstly, of those that gave the correct answer, those who used the random access to
actively search out an answer generally did better than those who did not, letting the
content play without interruption or jump. In absence of any other information, I would
suggest the reluctance to use the random access properties of the bar is due to a lack of
confidence that they would not skip something important. Thus I favour the idea that
giving an indication, where possible, that they would not skip anything important would
lead to users being more confident with using the bar for random access.

Secondly, when users managed to use random-access properly and skip to the right
place, there is a tendency that if the skip destination is within about three seconds of
the very point they are attempting to locate, they will skip further backwards by several
seconds. This suggests they are unhappy having found an apparent “local optimum” and
require a review of the point in a wider scope to make sure it is in fact correct. Where
prudent, reinforcing the idea (perhaps by visual indication) that the content is relatively
constant around the apparent “local optimum” may help them avoid any unnecessary
skipping and listening for a wide-area review.

This concludes the review of musical audio navigation technology. In the next chapter
I will focus on techniques for visualisation of musical audio, in order to determine how
best the navigation bar user-interface metaphor can be augmented in order to provide
‘visual indications’ that I would argue can improve the utility of the navigation bar for the

reference tasks.
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Chapter 3

Musical Audio Visualisation

“We have to remember that what we observe is not nature herself, but nature

exposed to our method of questioning.”

~ Werner Heisenberg (1901-1976)

3.1 Introduction

Thus far in my argument, I have shown that people find navigation within a musical track
useful. I will demonstrate that the mechanism used for popular audio navigation can
be augmented with a visual generated directly from the audio signal. At the end of this
chapter I hope to have shown that these images are, by and large, reasonable visualisations
of the musical content of the audio signal, in so much as they are representative of the
kinds of aspects we would want to identify.

Chapter Summary

Following the present introduction, the chapter will begin with a review of the literature
most directly concerning musical audio visualisation. Relatively basic methods like the
amplitude graph and the spectrogram are covered. More involved techniques such as self-
similarity matrices and timbregrams follow. Techniques meant for performance analysis
(e.g. the performance worm) and for browsing and selection (e.g. music icons) are then
reviewed. Also covered are techniques meant for professional analysis used in various
software packages as well as techniques developed primarily for their aesthetic value and

not for representative content.

General analysis techniques are then reviewed which, though not explicitly proposed
as visualisations, appear to be potential candidates for the refinement process nonetheless
(e.g. segmentation, novelty). A brief review is made of the literature not directly connected

29
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with musical audio visualisation, but concerning the visualisation of music generally; the
problem of representing musical content.

By the end of the literature review I will have demonstrated that a technique accom-
plishing exactly the sort of visualisation I would want for the navigation metaphor has
not yet been proposed! though several techniques might, with modification, be possible
candidates. I also hope to have demonstrated the challenges of reducing such a complex
entity as a musical recording to a representative image, both in terms of meaning and in
more practical terms of generation from content.

I then propose a general methodology of creating content-based visuals for popular
navigation, which relies on a 1-dimensional series of colours to represent the content of the
music as the recording plays through. I propose several methods to generate those colours,
which I term chromatic projection of the audio. I demonstrate each method before making
an example-by-example comparison between methods over various genres together with a
few contrived ‘test tones’.

By the end of the chapter the reader will understand the strengths and weaknesses of
each of the methods over several types of music.

Contributions

o A formalisation of a general technique for generating visualisations together with
three novel concrete techniques.

o Discussion of these techniques, their advantages and problems and the relations to
existing techniques.

3.2 Related Work

I will break down the various visualisations into five groups:

Traditional signal visualisation A field review would not be complete without the tra-
ditional and widely adopted methods for visualising not just musical audio but audio
and signals in general.

Self-similarity The self-similarity matrix is perhaps the purest piece of work related to
musical signal visualisation. It was introduced as a method specifically for visualising
musical audio and has spawned several techniques based upon it.

Structure extraction This field concerns work in music thumbnailing, fingerprinting
and segmentation. Having such a high-level refinement of the data is clearly ad-

1or, perhaps more accurately, had not been proposed when the initial survey was made

T*;'H
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vantageous for visualisation from the sample graphics in the publications from this
field.

Visualisation and representation of music composition I conduct a brief study on
the thoughts and currents running through the field of music notation. This is not
particularly practical in terms of musical audio visualisation, but does give insight
into the sorts of representations (aside from traditional music notation) that have

been proposed.

ad hoc visuals in software The most practical pieces of work in this field survey; I
review a selection of common and niche audio and music software packages to discuss

the extent of their visualisations.

For an overview of musical audio signal processing generally, I would refer the reader
to the thesis of Hainsworth (2004), who spends most of the document going into far more

depth then is required presently.

A Note on Information Visualisation

Spence (2001) tells us that visualisation can be broken down into several discrete processes,
however it is useful to define visualisation in terms of two of these in particular, since it

will be the two that I concentrate most on in this work:

Visualisation = Data refinement + Data presentation

Refinement is the stripping and transformation of the initial data into a usually but
not necessarily smaller data set. It is in this process that aspects of what the viewer wishes
to see from the data is extracted. The efficacy of a refinement might be illustrated in loose
terms of precision and recall; a good refinement will contain as much of the data relating
to the information to visualise as possible (recall) and as little data as such unrelated

(precision). As such this stage is entirely context dependent, since no decisions can be
made about what data to be cast aside or amalgamated unless one knows what the data

means and thus how it relates to the information contained within.
Data presentation relates largely to putting this extracted data into a view most be-
fitting the situation, which comprises at least the phenomenon to be visualised and the

expected viewer. As such, data presentation is less dependent on the context of the data,
and is more dependent on human factors. The use of positions, colours, sizes, dimensions,
layout, topology and symbols play a large part in this stage. It is the responsibility of this
stage to present the refined data as clearly as possible to the viewer.

In terms of musical audio signals this becomes:
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Musical audio visual = (Signal preprocessing 4+ Audio analysis) + Visual con-
struction

Signal processing goes largely understated in music visualisation techniques. It will
typically be of the general form of conversion to some frequency-domain representation
with some psychoacoustic processing typically either MFCC or critical banding and some
perceptual loudness scale.

A Note on Formal Description of Visualisations

For each explicit method of visualisation, I will consider the type of visual construction it
generates. I describe this by formally describing its space-time dimensionality; I denote
this by writing a single S for each space dimension and a T if the visualisation is time-
based (i.e. animated). I also denote the degrees of freedom for each component making
the visual; generally this will be either 1 (monochromatic/linear scaling) or 3 (full colour),
though (as will be demonstrated in the next chapter) could conceivably be 2. I will define
0 to mean a purely binary value. A spectrogram, for instance is denoted SS-1 since it has
two spacial dimensions but is viewed statically (i.e. unchanging through time) and each
point in space is represented as a linear value. A static waveform, by contrast would be
§S-0, meaning it is still represented as a 2-dimension image, but that each point in the
image may either be part of the waveform graphic or not.

3.2.1 Traditional Audio Visualisation

Here I review the two main visualisation techniques which can be used on musical audio
signals (and, indeed, any signal) which are widespread but relatively simple; the waveform
and the spectrogram.

Waveform

The waveform is the single most canonical method of viewing audio. It is essentially a
time-amplitude graph of the displacement wave which gives rise to the sound. In terms
of a method, it is nothing but a visual construction from the source audio data (hence
canonical). Unlike any of the other approaches here it needs no signal preprocessing or
analysis. The visualisation’s formal form is SS-0, though it may be seen in an animated
form where short excerpts from the signal are visualised at a time (this is often found in
real-time applications such as the screen of an oscilloscope). In this case the visualisation
becomes extruded through time, formally making it SST-0.2

21 would note with a small amount of humour, the spiral groove of a vinyl record could be considered
an SSS-0 ‘visualisation’—or perhaps actualisation—of the waveform.

e e
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Variations on this visualisation method generally involve a change of scale or meaning
of amplitude. A common variant is to use the RMS (root mean-squared) amplitude of the
wave. Another is to use a logarithmic scale of amplitude to construct the visualisation;
both of these are utilised in the Audacity sound editor (Mazzoni and Dannenberg, 2005).

Figure 3.1: An example of a amplitude waveform (top) and the same audio on a dB
scale (bottom). The audio for Prague Radio by Plaid was visualised. While the blue
area is taken up by the wave itself, the light blue areas represent the RMS of the wave.

Constructed using the Audacity sound editor.

When used to visualise musical audio, a rather uninspiring image is found. Certain
aspects of the audio such as large changes in dynamics or spectral content may possibly
be visible, but the visualisation is difficult for anyone but an expert to understand.® Due
to its ubiquity and simplicity this representation is used as a baseline against which other
techniques may be compared.

Basic amplitude has some bearing on perceptual loudness but psychoacoustic methods
are much more accurate, and smoothing through time helps to give the viewer a clearer
idea of mid and long-term changes by reducing the apparency of short-term dynamics.
The visualisation is still limited in a musical sense; timbral, melodic and harmonic content
are largely invisible. Manually created diagrams such as those proposed by Brinkman and
Mesiti (1991) use the basic concept of a time-loudness plot to demonstrate the dynamics
progression throughout an orchestral piece for each of the instruments. As such, short and
medium-term ‘noise’ is never introduced; the result being a diagram showing only the most

long-term and (according to the author of any particular diagram) subjectively-important

changes to the dynamics.

Spectrograms

The spectrogram is a time-frequency image of an audio signal. It is related, but not
equivalent, to a Fourier transform of a signal. Spectrograms show the power or magnitude
of a particular frequency of sinusoid at a particular time in the signal, whereas the Fourier

spectrum of a signal shows the magnitude of a given frequency of sinusoid throughout

SA;I exam;;e of such an e_xpert might be Arthur G. Lintgen who, according to Holland (19 November
1981), is able to ‘read’ vinyl records from the patterns of grooves.
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the signal; since the advent of the Fast Fourier Transform (FFT), finding the Fourier
series (as well as other related transforms such as the Discrete Cosine Transform) has been
computationally cheap.

The spectrogram is therefore a 2-dimensional spatial representation of a piece of musical
audio; each component of the figure may take only a linear value (i.e. the magnitude) and so
O formally declare it SS-1. Figure 3.2 shows a spectrogram. The ‘dancing bars’ animated
visuals often seen with electronic audio playback systems, which formally I would call a
spectrum analyser, is directly connected to this visualisation method in that is an SST-0
projection of otherwise the same basic data.

Figure 3.2: An example of a spectrogram (top) and the same audio on a Phon scale
(bottom). The audio for Prague Radio by Plaid was visualised. Constructed using the
Geddei Nite audio analysis tool.

In terms of the visualisation stages, spectrograms will typically have no analysis stage;
the signal will be preprocessed by some time to frequency-domain transform and it is this
data which will be used to construct the image directly.

In practice, the FFT is used to calculate the spectrogram using the process of window-
ing, whereby the signal is split into multiple portions and each portion’s Fourier series 1s
calculated separately. The process of constructing a time-frequency structure in this way
in known as the Short-Time Fourier Transform, or STFT. Special windowing functions are
applied to each portion in turn in order to reduce edge effects or distortions of the Fourier
series caused by having a finite ‘audio block’ as a signal. Common window functions used
are Hamming and von Hann®. There is an introductory text on this subject by Hamming
(1998) himself.

The process of STFT is very typical in the audio analysis literature, though rela-
tively recently a newer form of spectral analysis has gained some popularity, known as
the Continuous Wavelet Transform (CWT). The STFT has one fundamental problem; the
window-size is fixed for all frequencies, despite higher frequencies being able to be analysed

e — — e — S —

‘often confused and inaccurately called ‘Hanning’
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with certainty within far smaller windows. The CWT circumvents this problem by varying
(dilating) the window size for different frequencies. The outcome (a time-frequency graph)
remains largely unchanged, but higher frequencies will generally have better time resolu-
tion and the overall frequency resolution is higher. Due to the dilation characteristics, the
frequency axis for the CWT is naturally logarithmic. An concise description together with
mathematical definition and some discussion as to how it relates to music can be found by

Alm and Walker (2002).

There are several variations on basic spectrogram which still remain true to the time-
frequency graph; the frequency resolution may be scaled differently in order to make certain
varieties of sound or aspects of music more accessible. Scalograms have their frequency
axis rescaled logarithmically (as mentioned above), and displayed using an octave-based
scale, similar to the well-tempered piano scale but of higher frequency resolution.

The frequency resolution may also be broken down through summation into the criti-
cal bands of human hearing in the Bark Scale as described by Scharf (1970) and as found
throughout the literature on psychoacoustics. These are a set of empirically derived fre-
quency ranges to which the human auditory system has particular sensitivity. Another
example of a psychoacoustic scale would be the mel scale, used in the popular MFCC

transform, discussed later.

Other variations include changing the magnitude scale; a logarithmic scale (dB) gives
a simplistic loudness-like scale allowing much more of the content to be seen immediately.
More perceptually accurate scales include the Phon scale, which gives a constant logarith-
mic loudness scale over all pure-tone frequencies, and the Sone scale, a metric that scales
linearly with perceptual magnitude. A short description of these techniques can be found

by Guessford et al. (2004).

Time-frequency plots are not necessarily limited to determining frequencies of sinusoids
at particular times; there are techniques to find frequencies of beats or rhythms over time;
such plots might be called beat-spectrographs. This concept will be discussed more fully in
section 3.2.2. Other variations on the concept of the spectrograph include the simplified

score rendition described by Brinkman and Mesiti (1991), whereby a time-frequency graph
is used once more but the data used to populate it is taken from the score itself; this work
is closely related to that of the music animation machine detailed by Malinowski (2001)

and discussed later in this section.

Using spectrograms directly for music analysis is not uncommon and there is a con-
siderable amount of literature devoted to it. Don and Walker (2006) demonstrate that
music can be analysed directly with scalograms in a spirit reminiscent of that proposed by
Lerdahl and Jackendoff (1983). Cogan (1984) dedicates an entire volume to the analysis of
the spectrograms of the performances of a wide range of music. In her PhD thesis on the
subject of short-time Fourier transforms of musical audio, Dorfler (2002) states “diagrams
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resulting from time-frequency analysis ... can even be interpreted as a generalised musical
notation”.

While the comprehensiveness of using spectrograms to visualise music and the utility
of such graphics to experts is beyond doubt, they are not without faults: they are exceed-
ingly complex to analyse in even the best of circumstances, and they suffer from other
representations by being too general; like wave form graphics they can describe speech,
noise and non-musical sounds as generally and precisely as music. In this respect they
sufter from information overload which makes them difficult to understand and interpret
directly.

As such, the main issue with using spectrograms for a visualisation aid to music nav-
igation is clear; they are too cryptic for a casual or novice user to become proficient in

casily.

3.2.2 Self-Similarity Visualisation

There are two basic methods for visualisation of data by self-similarity in the literature;
the self-similarity matrix and recurrence plots. Recurrence plots, discussed by Eckmann
et al. (1987), are an older form of numerical analysis technique used in analysis of fractals
and chaotic systems. They could be said to be a specialisation of a self-similarity matrix,
though this goes unnoted in the literature pertaining to self-similarity matrices. Self-
similarity visualisations generally present the viewer with a square image; in the case of
the self-similarity matrix the visualisation is formally SS-1, whereas the recurrence plot,

presently discussed gives an SS-0 image.
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Figure 3.3: A recurrence plot of an auto-regressive process. Original image constructed

by N. Marwan, used with permission.

Recurrence plots can be expressed formally as the Boolean matrix R such that:
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Ri; = O(c — |2G) — 2G)l), Z() €R™, i,j=1,...,N, (3.1)

where N is the number of signal states (i.e. samples) #(i), € is a relatively small
threshold distance, || - || the Euclidean norm and 6(-) the Heaviside step function.

This Boolean matrix which may be expressed visually as a bitmap will have a mark at
any two times where the samples are roughly (at most € apart) similar. Figure 3.3 shows

an example of this construction.

The Self-Similarity Matrix

Self-similarity analysis is a transformation on a signal that generates a self-similarity matric
(SSM), a two-dimensional representation of the signal over time. Foote (1999b) proposes
this transformation as a useful visualisation when the signal is that of musical audio. He
argues this representation makes directly visible aspects of the audio signal such as verse
and chorus repetition, thematic repetitions and variations, note transitions, on-going beats
and points of novelty.

The approach prescribed by Foote (1999b) (the seminal work in this field) involves
extraction of some feature-vectors on a frame-by-frame analysis of the audio. Foote used
the STFT with 50% windowing and a Hamming function to reduce edge effects. On the
resultant spectra he uses the mel-frequency cepstrum coefficients (MFCC) transformation,
though different transformations may be applied in order to view the similarity of other
aspects of the musical audio, for example chroma, loudness and so forth.

The basic SSM is defined by Foote (1999b) as being the matrix S:

Sij = sw(Fi, F)), 4,j=1,...,N (3.2)

where N is the number of signal states (i.e. audio feature vectors), F is the series of
audio feature vectors and s(i, j) is the similarity function.

The key difference between the construction of the SSM and the recurrence plot is that
the similarity function of the SSM is left undefined. In order to view phase differences, the
recurrence plot defines a Boolean similarity function as the value equality (within limits).
The example of the self-similarity matrix in figure 3.4 may be used to see the form that

the two share.
The basic similarity function is defined as being the Cosine distance between the feature-

vectors of the two audio blocks. Foote suggests using either the basic frequency spectrum
from an STFT of the signal or the MFCC features of the signal.
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Figure 3.4: A self-similarity matrix of an excerpt from Plaid’s Prague Radio. Formed using
the Cosine-distance similarity function on the Bark critical band summations as feature

vectors.

As such the matrix is calculated through the cross combination of the array of feature-
vectors by some ‘similarity’ function. He also advocates an improvement to the similarity
function which uses several sequential vectors to give the (correct) ordering of the “sound”
vectors a (positive) influence over the similarity. There is no mention of any other similarity
measures tested” or otherwise consulted. There is potential for further work here to test the
efhicacy of the dot product similarity measure, or even whether other similarity measures

can make the matrix useful for extracting or representing any other signal |)henmnelm.

Foote postulates that retrieval could not only be made by acoustic similarity (how a
piece sounds) and what appears to be the staple of the associated literature (work by
Tzanetakis et al., 2001, Logan and Salomon, 2001 and Pampalk et al., 2002), but by
structural similarity. This means that potentially it could match the same piece of music
played with a different instrument.

The self-similarity matrix therefore has several advantages over other (musical) signal
analysis techniques put forward. It has no need for user-specified cut-offs or other parame-
ters. It does not rely upon absolute musical events (e.g. note onsets) to generate feedback

but rather relative events (e.g. periods of lag-correlation), and thus is highly generalised.

Unfortunately, identifying discrete ‘events’ in the matrix tends to be somewhat more
involved due to the increased amount of data to look at. Like the spectrogram it has a
complex form to get accustomed to using and, perhaps more importantly it is a planar
rather than linear representation of time. The matrix can give an enlightening view on the

data though as it stands, due to its complexity, it is probably best left to specific expert

“‘tested’ being a rather invalid term here, since he makes no quantitative measure of his experiments
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tasks rather than general use.
Furthermore, as with many signal-based visualisations, it is clear that it works far

better on monophonic music than on more complex polyphonic music. Music in general,
however, tends to be realised with multiple instruments, presenting the grave difficulty of
the matrix becoming so “cluttered” with features that it would make it hard to read easily.

In a purely practical and aesthetic concern, integrating a naturally square visualisation into
a metaphor that favours linearity and therefore a rectangular image may also be reason

for concern.

Analyses on the Matrix

Though not presented as visualisations, there are two graphs from the SSM one can make
which are of interest to us as potential visualisation tools; a graph measuring audio novelty

and the beat spectrum. The progression of novelty over a signal is given as the sum of a
Gaussian-tapered checkerboard kernel when multiplied, element-wise, by subsequent sub-
matrices falling on the SSM’s main diagonal and summed. The kernel matrix is given by

the function K:

G(z,y), (x>0)=(y>0)
K(z,y) = (3.4)
@y -G(z,y), (x>0)#(y>0)
where
G(z,y) = Gaussian(|| (%E, %‘T’-{) 1) (3.5)

where = and y both fall in the range ‘[-—%, 2] and the kernel matrix is of width s.

The novelty score becomes high when the submatrix is centred around a point before
and after which the signal is self-similar, but around which is dissimilar. Foote (2000a)
showed this can be used to segment audio and it has later been used for segmentation of
music tracks which I discuss in section 3.2.3.

The beat spectrum is formed by summing the contents of the super-diagonals across
the matrix; these sums form a series of lag-correlation scores for a number of lag times
from the distance between successive feature vectors to the Nyquist, which here is given
by half the total length of the matrix. Formally it can be described as the series S:

8—1

S() = Z M(k, k +1) (3.6)
k=0

where M is the self-similarity matrix over which the best spectrum is to be found.

There are many techniques to extract a beat or rhythm spectrum throughout the
literature, especially in the time over which the present work was taking place. For a
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comprehensive review of each of them the reader may refer to Hainsworth (2004). Foote
argues that conventional methods of tempo/beat extraction must rely upon some sort of
trigger, an audio characteristic signalling the onset of a beat. Using self-similarity allows a
far more general method for detecting repetitive patterns. This is because the only audio
characteristic necessary is that the signal must be “similar to itself”, and the similarity
must be periodic. This is a prerequisite for a beat to be present, similar to some of the
rules regarding rhythmic well-formedness declared by Lerdahl and Jackendoff (1983) in

their Generative Theory of Tonal Music.

Though not mentioned in the literature, subsequent matrices may be windowed and

overlapped in order to form a beat spectrogram, an example of which can be seen in figure
3.D.

Figure 3.5: A rhythm spectrogram of an excerpt from Plaid’s Prague Radio. Formed using
the Cosine-distance similarity function on the Bark critical band summations as feature

vectors. Rhythm strength varies from red (highest) through blue to green.

3.2.3 Visualisation from Segmentation

In this section I discuss briefly the techniques for automatic content-based structure ex-
traction from musical audio. Structural extraction from music attempts to determine a
(possibly hierarchical, possibly labeled) description regarding the perceived structure of
the underlying music. Determining exactly what the structure of any given piece music
is and how one might systematically approach it is a musicological quandary, which aside
from referring the reader to Lerdahl and Jackendoff (1983) I will defer until given concrete

examples later in this chapter. Most researchers in the field are happy to forgo the theory

and appeal to a popular opinion by comparing their results to those of humans given a
similar task.

Though not explicitly proposed in the literature as visualisation methods (and thus
missing the latter stage of the visualisation pipeline), they are so well suited to visualisation
that authors, in describing the results of their segmentation algorithms, tend to accidentally
provide visualisations of the audio tracks. I will use this accidental visualisation as my

definition of the latter stage here and thus formally label it S-1°.

©5-0.5 may be a slightly more precise labelling, since there are typically very few segment types, and
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Visualisations from segmentations are advantageous in one particular way shared by
no other content-based visualisation; they give a high-level overview to the structure of the
song easily with the clear and precise visual cues provided (assuming the colours chosen

for the segments contrast well). Figure 3.6 is an example of such a visualisation.

_Ji—r-l

Figure 3.6: A simple segmentation visualisation created from What I Miss The Most by
The Aloof. Formed using the algorithm detailed by Abdallah et al. (2006). Time runs
along the x axis; segments of the same colour should represent multiple repetitions or

variations on the musical theme.

There are however problems with this naive way of visualising. The colours have no
meaning for what they represent; only that a difference in colours represents a difference
in segment type. Furthermore segments whose content is more similar than others’ will
not be represented. As Lerdahl and Jackendoff (1983) state and as noted by Paulus and
Klapuri (2006), musical structure is typically best represented as a hierarchy giving rise
to multiple levels of segmentation; typical audio segmentation approaches return a single
level of segmentation only. This is likely due to the evaluation methods which typically
require only a single set of segments for any track.

The above paragraph may be seen not so much as criticisms but as ideas for arriving,
given segmentation technology, at a useful visualisation. The present work, however, does
not follow this particular route, though I discuss it as a future direction in the conclusions.

Currents in Segmentation

Early work in the field of thumbnailing by Bartsch and Wakefield (2001) and largely
reported again by Bartsch and Wakefield (2005) used a chroma-based self-similarity matrix
to generate a lag-correlation matrix. This could be used to determine and retrieve the
repetitive parts of the audio; given some structural assumptions on the audio (such as a
verse-chorus structure) they used it to determine a representative portion on the song.
This technique did not recover structure as such, but was a first step to solving a problem
that would later by attempted though more thorough analysis and extraction.

Logan and Chu (2000) report of basic clustering clearly outperforming HMMs. Notably,
the HMMs could not be shown to be better than random in their early attempts at structure
extraction.

General audio segmentation techniques and musical audio structural analysis are heav-
ily linked fields. Early work such as that by Tzanetakis and Cook (1999) was used for

thus any given time, in belonging to only one segment type, will take one of a very limited finite range of

values.
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audio segmentation, such as annotating boundaries between music and speech in radio
broadcasts. This is useful as it can be done automatically by the application, ahead of _
listening. In their augmented sound editor, users may supplement automatic segmentation r
with their own notes. |

Other work such as that by Foote (2000a), Raphael (1999) and Logan and Chu (2000)
show the roots from which modern music structural analysis has grown. It is a large
field with many applications; Aucouturier and Sandler (2001) have used the approach of
segmentation to advance early work by Foote (2000b) in search and retrieval and numerous. \
Burges et al. (2005) use it for duplicate detection. Other uses include thumbnail generation
(determining a representative excerpt), video synchronisation (compiling transition points
and fitting them to a video stream) and section alignment. -

I will briefly discuss three approaches to segmentation aimed towards the application
of thumbnailing (either explicitly or apparently); the work of Foote (2000a) & Foote and
Cooper (2003) and the related work of Cooper and Foote (2003) together with the work of :

Abdallah et al. (2005) and of Chai and Vercoe (2003b), Logan and Chu (2000) & Paulus
and Klapuri (2006).

Maximising Cross-Dissimilarity

The approach proposed by Foote (2000a) uses the novelty measure described in section
3.2.2 to determine the segmentation boundaries. In later work, Foote and Cooper (2003)
propose using a spectral clustering method to group the similar segments, creating a system
of similar purpose and scope to others described. No quantitative results comparative with
other techniques were presented, making it difficult to ascertain exactly how effective these
techniques were.

Cooper and Foote (2003) attempt to determine segment boundaries in a similar manner
through the novelty graph, though determines the labels for the segments through a further
self-similarity matrix of each of the segments themselves. The similarity measure for this
new matrix is calculated from the Kullback-Leibler distance. Singular value decomposition
is used to determine the final labels while ignoring fine or unrepeated structures. The

results published are brief but promising, though no further analysis of the technique has
since been published.

Repetition Detection

Chai and Vercoe (2003b) use dynamic programming in order to deduce small segments
(around 4.5 seconds) which repeat throughout a track most often and most precisely. The
repeating segments that the dynamic programming are typically smaller then the musical

phrase they belong to (which is what is ‘really’ repeating), and thus a further step is taken
to merge them into fully-fledged sections.
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The dynamic programming algorithm can be viewed as doing a similar job to a lag-
correlation matrix determined from the self-similarity matrix as used by Bartsch and
Wakefield (2001). In both cases a distance measure is used and in both cases the output
is a a likelihood of repetition of data given a specific period. Two distance measures were
compared in this work, concluding that a slightly modified spectral cosine-distance measure
(almost identical to that used by Foote, 1999a) was generally better than a slightly more
musically-orientated pitch-distance measure.

Further results of this technique are reported by Chai and Vercoe (2003a) using a
chroma-based similarity measure much like that proposed by Bartsch and Wakefield (2001)
on a different evaluation corpus. The results show chroma being consistently worse than
the original two similarity measures. The spectral similarity measure again generally

performed best.

Texture-Cluster Grouping

The most widespread approach for thumbnailing is to preprocess the audio into some
relatively low-dimensionality series of ‘texture’ tuples. A limited set of texture ‘prototypes’
is generated such that each texture tuple may be classified as a prototype. Segments are
sequences of texture tuples that share the same prototype classification. The key problems
are finding the limited number of texture prototypes to describe the audio best (roughly
known as the dissimilarity) and to reduce the number of segments in the classification to
only those that are significant (known as minimising complezity and unlabeled segments).

The approaches vary in their exact implementation; typically the audio is transformed
to a series of frames of some perceptually significant acoustic quality. Aucouturier and
Sandler (2001) used the mel-scaled frequency cepstrum coefficients, whereas Abdallah et al.
(2005) used the first 20 principal components of the frequency spectrum.

One approach used by Logan and Chu (2000) clusters the features directly. Other
approaches use a Hidden Markov Model trained with the series of frames with Viterbi
decoding to determine the prototype textures. While Aucouturier and Sandler (2001) and
Logan and Chu (2000) classified segments directly with these textures, Abdallah et al.
(2005) used them as the input to capture features over a longer time-scale by taking his-
tograms of texture types over successive frames with a moving window. The histograms are
then clustered with a version of the soft k-means algorithm modified to favour neighbouring
histograms to share classification. Importantly, they have observed that it is the effecting
of a longer time scale (they use seven beats) which produces good data for clustering rather
than their particular approach with histograms of the frames’ texture classifications.

Work summarised by Rhodes et al. (2006) and reported fully by Abdallah et al. (2006)
advances this approach with the use of segment duration priors in a modified version of
the Wolff algorithm, which affect the fitness of a given segmentation by incorporating an
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expectation to the length of a segment. The authors concluded that by introducing such
a prior, the problem of segment fragmentation, whereby rapidly changing portions of the
audio are themselves segmented, is solved. Of course the prior is entirely ‘artificial’ and
must be experimentally determined. However the authors found that a “suitably broad
prior” was able to generate a realistically wide range of segment lengths.

Paulus and Klapuri (2006) presented a system with an interactive cost function allowing
the fitness of segmentations to be dictated by varying relative values of the segmentation’s
complerity (total number of segments), unlabeled segments (number of textures that are
not satisfactorily classed as any texture prototype) and dissimilarity (variance of textures
classified to the same texture prototype). By varying this fitness function, the “efficient”
segmentation algorithm favours differing segmentations. The interactivity allows an indi-
vidual to play with the cost function to determine an optimum for any given recording.
Exactly why this level of interactivity is of any use is left unexplained, and the accuracy
and precision of segmentations are not benchmarked against other systems.

3.2.4 Visualisation of Tonality

Tonality visualisation as described by Gémez and Bonada (2005) is a method of music
visualisation for analysing the various aspects of tonality. The musical key of an audio
block is estimated from the audio signal by combining several low-level spectral features
with a (presumably music-theory-based) tonal model. Gémez provides several involved
visualisations for analysing a given piece of music.

This work is clearly meant for musicians since the content of the visualisations is
analytic and fairly complex; though the authors do note that a foreseen use would be
in studying the musical content of multiple tracks at once. One particularly interesting
visualisation he presents is the KeyScape, which is an SS-1 visualisation plotting the key as
a hue in a time-locality space. This is similar to the earlier work of Sapp (2001). The long
term key (i.e. over the whole track) determines the colour of the top of the image; the next
row down is split into two portions whose keys are self-similar and coloured according to
the keys found in either. This splitting and colouring continues on down the y-axis, with
the time-scale getting gradually smaller and thus locality getting greater. The bottom of

the image denotes the keys of the individual chords of the track. The use of the y-axis as
a time-scale dimension is reminiscent of the tree visualisation for structural decomposition

in Lerdahl and Jackendoff (1983).

3.2.5 Visualisation for Content-Indication

The current of work pertaining to the visualisation of audio for indications of that content
of a track started with the Timbregrams of Tzanetakis and Cook (2000c). Timbregrams
are a small part of a larger body of work known collectively as Marsyas; the software
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and systems which Tzanetakis reported on for his PhD, and which formed a considerable
part of the initial body of work of the field now known as music information retrieval.
Tzanetakis introduced Timbregrams noting that being a content-based visual they could
give the viewer a cue of whether the audio in question was speech or music; this later
included telling apart certain genres of music such as classical and rock.

With the Timbregram, the audio is depicted through a reduction of the data from a
small number of features extracted. These features are several simple statistics based upon
the spectrum, together with several other values describing aspects of the rhythm. The
latter values are derived from a beat-histogram, which is formed by counting successive
values of lag found to have the greatest autocorrelation in each of the spectral bands. A
basic dimensionality reduction technique known as Principle Component Analysis (PCA)
is used to reduce the dimensionality to the three dimensions, in a rotation of the feature
space that best encompasses the variance of the dataset (the dataset being the music
track). These three features are normalised and used as the three components in a colour,
either red/green/blue or hue/saturation/value. This process is done for each second of
the audio signal. The resultant series colours are compiled into a vertically striped image
where time runs from left to right. As such the visualisation is formally S-3.

A small and informal user study done on the timbregrams supported the suggestion
that the descriptive icons could be used to give the user an idea of what audio the cor-
responding track contains. No further work was openly published on this technology,
however the concept of automatically generating images representative of the content has
been continued:

Kolhoff et al. (2006) present a system capable of generating visually attractive graphic
“blooms” varying in form according to the content of musical audio tracks. Figure 3.7
has an example of such blooms. This is integrated with the operating system in order to
augment the native browsing interface. The blooms vary in form, size and colour (an SS-3

visualisation) according to the output of back-propagated multi-layer perceptron neural
network. The supervised network is trained by humans selecting tracks and image combi-
nations; the data from all tracks is then fed back into the trained network for calculating

the icon parameters for each track.

L il i

Figure 3.7: Examples of Kolhoff’s blooms generated according to the content of audio and

training parameters given by the user.

Unlike the Timbregram, the colours are determined with the training of the user; this
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of course means more effort on the part of the user, but should result in icons that are
easier to interpret. The use of the bloom shape is not only more visually enticing than
the stripey rectangular bar but it also fits within the square space that an icon should
inhabit far more naturally. A small user study found that the system had very respectable
real-world results, with visual similarity of icons and audible similarity of music content
agreeing around 70% of the time.

Other work in this area would include that of Hiraga and Matsuda (2004a), who
presented a system capable of extracting information from audio to produce a rectangle
of colours (thereby an SS-3 visualisation) designed to capture and visualise the mood of
the track. Their work stems from that in performance visualisation which I discuss next.

3.2.6 Animated Visualisations

Performance Visualisation

Performance visualisation attempts to visualise the particulars of expressive music perfor-
mance over any other aspects of the musical content of the audio. Hiraga (2006) writes
performance visualisation is used to:

e “Share understanding of a performance between co-players.”
o “Compare expressions of performances.”

¢ “Understand musical intent of performer.”

¢ “Data~-mining through the mood of performance.”

Typically the analysis of performance revolves around qualities that tend to be varied
from a strict interpretation of the score in classical music. Other genres of music, such as
jazz, may be somewhat trickier to visualise effectively, due to the wide array of deviance
from the score that performances may make.

Due to the concentration on classical music, these aspects visualised are typically
limited to the relative dynamics and relative tempo of a piece. Characteristics such as
timbre, absolute tempo & loudness, key and melody are essentially ignored. Assumptions
such as the relations of onset intervals (such as in Dixon et al., 2003), or that a precise
MIDI-encoded version of the performance is available, (such as in Hiraga’s work) may be
made in order to ease analysis.

Several methods for visualising performance exist; there are two main currents—the
work done by Hiraga et al. (described by Hiraga et al., 2002a, Hiraga et al., 2002b
and Hiraga and Matsuda, 2004b) and that of Dixon et al. A particular visualisation
recently proposed by Hiraga and Matsuda (2004b) is one of form SS-3, comprising a series
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of rectangles organised as a horizontal series. The axes of the visualisation are time-
loudness. The rectangles’ horizontal spacing denotes relative articulation in the music and
their relative size denotes relative tempo. Absolute tempo is not shown. A user study
gave mixed results for this visualisation, suggesting that except where the differences are

extremely pronounced (in terms of deviation from regularity) it may not adequately reflect
the viewer impression. The implementation also relied upon an accurate MIDI rendition

of the performance, implementing it to use an audio signal may be non-trivial.
The visualisation proposed by Dixon et al. (2002b), called the performance worm, is

based upon a tempo-loudness graph with the curve on it extending through the time of the
piece in question. The visualisation was designed to be viewed in an animated fashion in

real time (making it SST-0), though the animation can be folded down to a single image,
plotting the entire track’s trajectory on a single graph, making it an SS-0 visualisation.
The implementation uses a smoothed series of inter-onset-intervals (IOIs) to determine
the trajectory of the curve (which in the real-time visualisation appears as a ‘blob with a
tail’). To do this they make an assumption as to the underlying regularity of the music
that is being played which, for the body of classical pieces they have tested, is reported to
work well. The authors imagine it to extend well into non-classical and non-tonal music,
though no empirical tests have been reported to strengthen this claim.

A general and recent overview of performance analysis techniques and literature review
is made by Widmer and Goebl (2004), and for further information the reader may find

this useful.

Non-analytic Visualisations

There are several interesting though not directly relevant methods of visualising music
information. Many assume MIDI data is available and generate event-based 3D words

to view the music in a discrete manner; an early proposal by Smith and Williams (1997)
would be an example of this, which generates an SSST-3 type visualisation. The CAVE
Automatic Virtual Environment was a somewhat grander scheme, to generate a similar type
of visualisation again from score data in an immersive environment (the Cave), presented
by Kaper (1998).

Malinowski (2001) describes his Music Animation Machine (MAM). This is an SST-1
visualisation synchronised to the music performance, which uses the MIDI data of the
performance to visualise the music on a time-pitch graph which itself rolls through time.
It shares some similarities to a usual piano roll which finds itself in time-pitch space.
Different instruments are plotted on the same stave, with individual colours to separate
them. One interesting point is that unlike other time-pitch-based visualisations, it rescales
the pitch axis for each instrument; this makes only relative melodic movements important
and, through sacrificing the ability to compare pitch between instruments, simplifies the
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view.

In a similar vein to the MAM and the tonal visualisations is the work presented by
Chew and Francois (2003) called MuSA.RT. It displays an animated 3D spiral projection
of chroma (SS7T-3), with each quarter revolution being equal to a Major Third (i.e. a
frequency ratio of about 1.1892). This again uses MIDI data to animate the visual. The
3D spiral view has the advantage of clearly displaying triads as triangles, though it appears
be be restricted to monophonic display and does not visualise aspects of the music such
as timbre or rhythm.

Projects such as ImproViz by Snydal and Hearst (2005) show the utility of visual aids
in music software, though it is a niche tool for jazz players and not a general purpose tool;

It works only on monophonic MIDI data.

A quick search on the World Wide Web with Google (2007) reveals several popular
pieces of software which attempt content-based musical audio visuals, some of which are
quite sophisticated. sndpeek and Armadillo both give large analytical views of the audio
using 3D to give visualisations; such as spectrograms of varying dimensionality, waveforms,

and text noting certain statistical values.

Lillie’s Music Visualisation

Lillie (2007) has proposed some as yet unpublished but nonetheless interesting work at
MIT on visualising music. The form of the visualisation is SST-2, though it can also
be amalgamated to SS-2. The visualisation is formed from a time-tone graph, with the

y-axis being discretised into the 12 semitones of the equal-tempered scale. T'wo images are

provided as an example in figure 3.8.

Figure 3.8: Beethoven’s Moonlight Sonata (left) and Daft Punk’s Superheroes (right) with

Anita Lillie’s music visualisation. Reproduced with permission.

The colour spanning any given column of the graph is determined by some timbrel
characteristics of the signal, whereas the relative loudness of each semi-tone is given by the

brightness. Chords are visible as repetitive combinations of loudness in particular rows.
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3.2.7 Scientific and Professional Applications

There are several scientific, professional, and otherwise niche audio playback and editing
tools that include musical audio visualisation components. Some follow a multi-pane ap-
proach where the time is once again presented horizontally and whereby various features
are drawn accordingly, each on their own subsection of the y-axis. The CLAM Music
Annotator presented by Amatriain et al. (2005), WaveSurfer presented by Sjolander and
Beskow (2000) and the newer Sonic Visualiser presented by Cannam et al. (2006) are each
examples of this. Each incorporate various visualisations of the same signal; Sonic Visu-

aliser is a particularly interesting project with its extensible plugin architecture, allowing
future music signal analysis techniques to be extended into its interface. The relevant
techniques used to visualise the audio have, however, been discussed elsewhere in this

section.

Variations2

Other visualisation tools, such as Variations?, as reported by Isaacson (2003), addresses
the problem of visualising music content through synchronisation of various analytical
views with performance playback. These views might take the form of music notation,
having been analysed in a manner proposed by Schenker; a number of arbitrary text labels
at specific points through the music, or an attractive hierarchical construction of segments,
populated perhaps, after the rules proposed by Lerdahl and Jackendoff (1983). Notably
all such views would have to be made manually; none of the visualisation is content-based.

Augmented Sound Editor

As part of the Marsyas project, Tzanetakis and Cook (2000b) discuss the Marsyas Aug-
mented Sound Editor; it functions as a standard sound editor, where an audio file is

depicted in the usual waveform graphic with time mapped from left to right. However,
the wave is actively coloured dependant on the audio at that particular point, making it
an S5-1 visualisation rather than the normal SS-0. Aside from this niche application, the

technology never progressed any further, implying either the lack of utility or an opportu-

nity missed.

3.2.8 Representation Issues

As I noted in the introduction, the representation of music does not end at the common
music notation. In many ways for many tasks, common music notation is simply not the
right tool. It is cumbersome, limiting or impossible to note aspects such as hierarchy
(Lerdahl and Jackendoff in their work on music theory opted for a tree representation
to better analyse motific portions score), timbre, rhythm, pitch nuance and gradation.
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Because of this we see various attempts at creating other methods of representing music
e.g. the map-based notation of Weyde (2005) and Weyde and Wissmann (2004) which
visualises music structure where linear and even hierarchical methods will not suffice.

Couprie (2004) gives an interesting discussion on possible intuitive graphical represen-
tations of music. He contends that electroacoustic music, not being score-based, has more
problems with analysis than, for example, classical music. He argues that spectrograms
are too complex to ease analysis and that some other form is necessary. The display com-
prises multiple discrete but iconic elements, with each element having a continuous form.
This display has attributes of a symbolic notation (such as common music notation with
multiple discrete elements), but also of a continuous visualisation (such as a spectrogram).
He argues that navigational aids are helpful in numerous situations, with the final sound
bite “the creation of the visual provokes an enrichment of the listening”.

Isaacson (2005) reviews techniques to visualise music from a music theoretic point of
view, pointing out that good visualisation techniques should be backed up with accepted
music theory. Middleton (1990) argues quite persuasively that music theory is a “less than
useful resource” for popular music. In agreement, many scholars in the area of content-
based visualisation and musical audio analysis, when dealing with popular music, typically
take a more relaxed and empirical approach, opting to collect evidence not through an
explicit appeal to music theory but rather through empirical experiments. The present
work attempts to take an approach respecting both views; empirical evidence will be
sought, but I will discuss the visualisations features with regard to the relevant aspects of
texts such as Lerdahl and Jackendoff (1983).

Isaacson writes that there are “many facets of music to be visualised”. Unfortunately,
he does not go into the specifics of how each of these facets might be useful; in particular
there is no mention of the music navigation metaphor and how the visualisations might fit
into this, despite navigation being an immediate and obvious use for visualisation (enough
for Spence, 2001 to devote an entire chapter of his book to it).

Dannenberg (1992) tackles the de facto standard in digital music composition repre-
sentation, Musical Instrument Digital Interface or MIDI. He notes that while being the
standard and doing its initial job adequately (it was designed as an interface between
digital music equipment in order to transfer such information as note onsets), it hardly
fulfils a need for the representation of higher-level features such as structural depictions of

music.

3.2.9 Colour

The primary defintion of colour is:

“The quality or attribute in virtue of which objects present different ap-
pearances to the eye, when considered with regard only to the kind of light
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reflected from their surfaces.”—Simpson et al. (1989)

We can therefore see that colour, in a similar manner to visualisation, is a term con-
cerning our perception. Colour arises, like sound, from our interpretation of a wave. Like
sound, a spectrogram can be drawn of this wave; giving the intensities of the various fre-
quencies which make it up. Similarly, these frequencies are typically limited to the range
to which humans are sensitive; this is called the visible spectrum. Whereas sound runs from
roughly 20 Hz to 20 KHz (for the average human child), colour runs from approximately
1.4 MHz (700 nm, ‘red’) to 2.5 MHz (400 nm, ‘violet’).

The visible spectrum is not an accurate representation of the degrees of freedom our
perception has however. In fact, with regard to colour, humans have only three degrees of
freedom; colour-sensitive (cone) cells in the retina are sensitive to (roughly) the blue (= 445
nm), green (= 535 nm) and orange (= 575 nm) areas of the spectrum. The perception
of the ‘colour’ of the visible spectrum comes from the ratios of these three quantities.?
Since the visible spectrum may be made up of any combination of strengths of frequencies,
humans perceive many different combinations of spectral light as being equivalent; for
example a single frequency of orange light could easily appear indistinguishable from two
frequencies of light which would, on their own, be perceived as yellow and red. This
contrasts to sound, where two pure tones would rarely be indistinguishable from a single
tone of their average frequencies.

The collection of colours which humans can perceive is called the human gamut. Figure
4.6 gives an illustration of the human gamut; it is bounded by the visible spectrum. On
the gamut the intensity of the colour (i.e. how dark or light it is) is ignored, providing a 2-
dimensional (i.e. planar) representation of colour. Much of the gamut can be emcompassed
by carefully selecting a number of colour points (primaries) on the visible spectrum and
combining them to form a composite colour. A systematic combination to synthesise a
colour is called a colour model.

Colour models in themselves do not properly define colours, since they describe only
the basic methodology of creating a colour rather than the specifics. Examples of
colour models include red/green/blue (RGB, a colour is created by combining differing
amount of red, green and blue light), hue/saturation/value (HSV a colour is defined by
where it falls in the visible spectrum, its brightness, and how ‘faded’ it appears) and

cyan/magenta/yellow/black (CMYK, commonly used in printing; a colour is defined by
how much of four colours of paint should be combined). Modern computer systems often

use the RGB model, making it convenient for transmission to visual display units which

synthesise colour by mixing these three primaries.

"There is actually a fourth cell in the retina for perceiving light (a rod cell), though it is sensitive only
to the intensity of light rather than individual frequencies, and is used by the eye for accurate judgement

of brightness as well as periphery vision, where accurate colour perception is less important.
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For accurate specification of a colour, a colour space must be utilised. A colour space
encompasses a coluor model and extends it by defining the parameters properly (e.g.
the wavelengths of the primaries). Examples of colour spaces include CIE 1931 XYZ (a
perceptually motivated space, discussed later) and sRGB, an industry-dominant, properly
defined version of the RGB colour space. Since our system will be evaluated on basic
consumer hardware only, this colour space was chosen to best represent our RGB colours.
Exactly what colours are presented on the display device depends on a wide array of
factors (e.g. the individual device’s characteristics , contrast/brightness settings on the
device itself, hardware drivers of the graphics display software (e.g. X-Windows), gamma
correction in the system software). As such it is unlikely that the sSRGB colour will be

reproduced accurately, but it does at least give a theoretical stationary target.

3.3 Proposed Visualisation Methods

3.3.1 Visual Construction Method

In at least one piece of work (that by Tzanetakis and Cook, 2000a), a visualisation of a
music recording has been created by colouring the points of a plane according to the point
in the recording analogous to the horizontal position of the given point. Indeed, this is
done almost by accident when depicting a segmentation of musical audio, as was shown In
the last section.

When combined with linear progress-bar style GUI navigation widget, however, the
colours afforded by this visualisation method become an obvious metaphor for the music.
Colours on the y axis are constant and therefore it seems clear that the graphic is linear,
and reasonably obvious that it is a 1-1 mapping from time to the z axis. This might be
contrasted to the spectrogram where both axes change; novice and casual users may not

see this directly.
This technique may be formalised by naming a function P, such that it converts from

the domain of audio blocks to that of colours. For convenience, we will define the audio
block ¢ in terms of our common signal preprocessing. In all instances, the signal’s spectra
were first calculated by using a series of STFTs over the audio recording. The window size
used was 1024 samples, with a 50% overlap. With the input signal being the CD standard
44100 Hz, this puts the lowest frequency to be detected at around 43 Hz, with windows
around 11 ms apart. The stereo signals were first downmixed into mono, to prevent any

problematic stereo separation effects.

c = P(b) (3.7)

where b € the set of all frequency spectra as output by the above STFT and c € the
set of all colours.

LI Mu il
+
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Some techniques naturally rely upon multiple audio blocks to create a colour (perhaps
in order to build a context); projection function is therefore extended to P':

v =P(c,b) (3.8)

Where b is a series of spectra.
For convenience and relying upon the fact colours can be determined through three
values, one for each of three primaries, the chroma-projection is defined instead in terms

of a two-parameter function P”:

v =P"(c,b) (3.9)

such that

C.rea(P"(0,b),P"(1,b), P"(2,b)) = P'(b) (3.10)

where b € the set of all audio blocks and ¢ € 0,1,2. For ¢, 0 represents the red
channel, 1 green and 2 blue of the sRGB colour space. The colour space function Cs;rcB
simply converts from the three primary colour intensities (red, green and blue) to the
corresponding element in the set of all colours. This conversion, though likely rendered
inaccurate by the hardware, is a precisely defined colour space, and is a convenient form,
used implicitly in most computer video systems. Thus P converts from audio blocks and

colour channels to an intensity of the given channel.

With the projection function defined, the visualisation technique may be defined as
the planar shader S, which maps the points of any given plane (in z, y coordinates where
both are bounded between 0 and 1):

S(z,y) = P’(ﬁt...ﬁw), = z(l - w) (3.11)

where B is the audio track’s series of spectra, ! is the length of the audio track in
spectra and 7;_; is the vector containing the ith to jth elements of ¥. See figure 3.9 for an

illustration.
I call this general method an audio-colour projection (ACP), with P’ being the ACP

function. As such, different individual techniques need only to define their particular
projection function to be completely defined as a visualisation method.

Formally, the ACP method is of type $-8, though if a projection function neglects the
¢ parameter it becomes of type S-1. Although it cannot ever formally be S-2 or $-0, it
may still be useful to consider projection functions that restrict themselves to only two

dimensions of colour.
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Figure 3.9: An illustration of the core visualisation method.

3.3.2 Signal Postprocessing

[n order to utilise the full gamut of colour, a quantile stretch of the data is done into the

full colour space. A 90% quantile stretch was used, given by v":

(U — 40.95)
d0.95 — 40.05

/
¥ =

where g, gives the nth quantile of the dataset of values v. This particular normalisa-
tion technique was used above others to reduce any extreme outliers affecting the distribu-
tion of brightness adversely, which can be a problem with other methods (e.g. max-min,

mean/normalisation) when the distribution is heavily skewed or not normal.

3.3.3 Psychoacoustics

In order to help generate a perceptually accurate image, the audio is preprocessed with
certain psychoacoustic transforms, designed to account for the process that sounds must
go through to reach the brain. These transforms are derived from empirical data collected
on humans. In particular three transforms are used: equal-loudness contours for phon

scaling, critical-band summation, and specific loudness sensation for sone scaling.

Bark

The Bark scale is a non-linear scale of ‘critical’ frequency bands, between which we have a
similar perception of frequency difference. They are based upon the inner ear, which can
be considered as a complex set of band-pass filters: each of the centre frequencies of the
Bark bands are related to said filters. Figure 3.10 illustrates the edges of each critical band.
As can be seen, the bands increase monotonically between 100 and 500 Hz, showing the
human ear’s sensitivity to changes in this part of the spectrum. The width of the bands
then rises sharply after this, denoting the ear’s indifference to small changes at higher
frequencies.
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Figure 3.10: The Bark critical bands and where they fall on the audio spectrum.

Summing a basic power spectrum into a Bark critical banded spectrum has several

benefits; aside from being a perceptually motivated frequency scaling, it drastically reduces
the amount of data it is necessary to process; typically up to two orders of magnitude.
Formally, I define the function Bark(s) as the bark spectrum s of 20 bands s;, 0 < 1 < 21

where:

= Y X (3.12)

bi 1< f;<b,

where b; is the frequency of the ith critical band, f; is the frequency of the ith band of

the spectrum x and by = 0. The band of any given frequency may be estimated with the

function Zp,1, proposed by

Zvark(ferrz) = 13tan 1 (0.76 f) + 3.5tan ' (f/7.5)* (3.13)

Decibel

The level of sound may be objectively measured as a ratio between the pressure of the
signal in question compared to some agreed base line pressure; the unit of pressure is
the Pascal (Pa). Since ratios of levels tend to vary both very little and very greatly, a
logarithmic scaling is used to represent the ratio, decibels (dB), which is defined as being

the ten times the 10th logarithm of the ratio of value a to base line b thus:

a
AdB—b = 1030910(3) (3.14)

Typically in audio processing, it is useful to agree upon a standard baseline to minimise
confusion between parties. The absolute level 20 pPa, is used as such, which is considered

to be the lowest possible amount of sound pressure that the human ear can sense. If a
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logarithmic ratio is given with this level as the baseline, then the meta-unit dBgspy, is used
to mean decibels (Sound Pressure Level). Unfortunately, this presents a problem for musical
audio signal processing, in that recordings typically do not denote where on the amplitude
scale 20pPa falls. Without this information, there is no way to transform accurately the
raw audio spectral data into dBgpy, and psychoacoustic scales based thereon.

For the present work, I arbitrarily set the levels such that the maximum level within a
piece of music is 90 dBgpy; any levels falling below zero were raised to zero. This should
mimic a listener playing back the music at the highest healthy level. Thus I define dB,
which operates on a power spectrum of values in positive unity range, as:

dB(x) =d,where Vi,0<i<n:d;= 10log10(x;) + 90 (3.15)

where x; is the ith band of x and n is the total number of bands in x.

Phon

Humans perceive tones of differing frequencies at differing levels of loudness and are most
sensitive to frequencies around 3 KHz. The phon scale is a scale of frequency-independent
loudness. Any pure tone of loudness p phon is defined as being perceptually as loud as
a tone of 1 KHz at p dBgpr. To transform (approximately), one linearly interpolates
between the equal-loudness curves given by Pampalk (2001). Figure 3.11 illustrates these

curves.

Sone

The sone is a scale of specific loudness sensation. It is designed to give a linear rise with
respect to perceived loudness, unlike decibels which give a well spaced a scale for many
different uses. Thus a doubling in the scale of sone should represent a doubling of perceived
loudness. If it operates upon the phon scale, it is a frequency-independent measure. As
such this represents the final stage in the present work’s psychoacoustic processing chain.
Formally, I define the equation Sone(p), taken from Bladon and Lindblom (1981):

2@—40)/10, p > 40
(£)%%42,  otherwise

Figure 3.12 illustrates the scale; notice that until around 30 phon it grows slowly; after
this it increases in sone at a much faster rate.

We may therefore define the Loudness function L, which operates on a spectrum x to
give the first 20 Bark critical bands on a specific loudness sensation scale:

Sone(p) = { (3.16)

L(x) = Sone(Phon(Bark(dB(x)))) (3.17)
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Figure 3.11: The equal-loudness curves. Each curve denotes a constant level of perceived

loudness for all frequencies.

3.3.4 Bandwise Loudness Magnitude

Definition

Initially, the spectrum is processed with a psychoacoustic pipeline: The spectrum is con-

verted to use a perceptual loudness scale Phon, which gives a frequency-independent scale
of loudness. After this it is summed into the critical bands on the Bark scale. This sig-

nificantly cuts down on the computation cost in many areas, since the 512 bands of the
FFT output is reduced to only 24 critical bands, and it also gives a good frequency scale
which can be easily split into three portions later. The final bands of the Bark scale are
then converted to a perceptually linear scale, Sone.

A windowing technique is then used; as supposed by Abdallah et al. (2005), we found
that a moving window mean over the signal was most helpful in refining the output to
become musically relevant. The exact window width we used was an experimentally-

determined three seconds, with it being moved one second between successive windows.

The bandwise mean is taken over the window of spectra.

Each perceptual spectrum of 24 critical bands is then split into three separate chan-
nels for red, green and blue respectively. Each sub-spectrum is then used as an eight-
dimensional vector to which the magnitude is calculated (as the Euclidean distance from
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Figure 3.12: The sone scale in terms of phons.

zero). Formally, I define Pgrsas:

Porsm(c,b) = ||L(b)g, g5l (3.18)

where ¢ € {0,1,2} and represents the colour channel (either red, green or blue respec-

tively) and b is a vector of three seconds of spectra.

m Window Sum Critical Convert Convert
um STFT Bands to Phon to Sone

Y 4y e e € ey
:

Figure 3.13: An activity flow chart of the bandwise loudness smoothed magnitude (BLSM)

technique.

Figure 3.13 gives a data-flow representation of the technique, which directly corresponds

to a network graph in the audio analysis framework [ used.

Expectations and Discussion

Figure 3.14 gives an illustration of the various processing stages while preprocessing the
track Clubbed to Death. Starting with the basic waveform of the audio, the basic spectral
representation is shown followed by the critical-band spectrum in units of dB, Phon and
Sone. The bottom graph shows the BLSM intensities in each of the three bands (red

corresponding to the lower Bark bands, blue to the higher and green in the mid-range).

The final visualisation for this track is shown in 3.16.
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Figure 3.14: A depiction of the track Clubbed to Death at the various stages of the BLSM

transform.
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This is primarily a timbre-based refinement. Colours should be very descriptive in
timbrel terms. Music where the timbre is very important benefits from this representation
e.g. electronica and rock, but other types where aspects such as rhythm, harmony and
melody weigh more such as classical, hip-hop and jazz music, will have their ‘meaning’
represented poorly.

The hue of the colour should be an indication of the relative “brightness” of the sound.
A redder hue will denote more power in the low frequency portion. A greener hue denotes
more mid-range content and a bluer hue would denote high-range. The lightness denotes
overall relative power, as in the standard spectral magnitude measurement. Clear large-
scale dynamics will be represented by clear banding of dark and light areas, whereas tracks
whose power changes little will be more uniform in appearance. Finally the saturation of
the colour would denote the relative balance of power in the spectrum. A spectrum that
contains much of its power in a particular place should give rise to a very saturated colour,
since it is likely that the power will be engulfed into one of the three subspectra.

Because of this, it should depict the spectral surface changes, such as the onset of
instruments, and dynamics changes (e.g. crescendos) clearly. Other aspects of the music
such as tempo changes, and more generally rhythm, we would expect to be less obvious.
Similar colours should arise from certain combinations of instruments in particular keys.

As such, repetitions and small variations should be visible as portions of similar colour.

Demonstration

Wave
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Figure 3.15: Altitude (Red Square Reprise) by Hybrid visualised as a basic wave (Wave)

and with bandwise loudness smoothed magnitude (BLSM).

Hybrid’s Altitude & Rob Dougan’s Clubbed To Death are both electronic/classical hy-
brid pieces incorporating aspects of both musical styles. Clubbed contains a short excerpt
from the Theme (Andante) of Elgar’s Variations on an Original Theme for orchestra, Op.
36 (“Enigma”). In addition to two main sections of strings and drums with various DSP
effects and samples, there are two more piano parts, largely reminiscent of Variations 1 and
12 of Enigma, but composed entirely by Dougan himself. Altitude is a simple string theme
mixed with breakbeat, with both the dynamics and the rhythm building to a crescendo

and holding briefly before dying away.
In Altitude (figure 3.15), it is clear to see the crescendo at 1:28 repeating its figure
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four times until 1:53, before reducing and fading. More interestingly the visualisation
depicts the general brightness of the sound on its way through the track. It starts (until

around 0:24) with some non-tonal sampled content with a high-pass filter, restricting it
to the treble region of the spectrum. This is represented by the blue hue. The track then

introduces some quiet strings with a high-pass filter on, which get progressively louder

and whose filter gets progressively more relaxed. This is visible as the red (denoting bass

content) fades into murky brown, cream and eventually white.
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Figure 3.16: Clubbed to Death (Kurayamino Miz) by Rob D visualised as a basic wave
(Wave) and with bandwise loudness smoothed magnitude(BLSM).

Figure 3.16 shows the BLSM image for Clubbed to Death. The piano parts are clear to
see as two portions of green. The blue at the very beginning marks the Elgar’s “Enigma”
Theme used as the introduction. The red parts which fade into purple show the portion
of percussion (red) fading to pale blue as other voices are added (taking over the mid and
high-ranges and eventually reducing the apparency of the percussion). The large shift in
loudness from a multitude of instrumentation to a single piano is clear at 2:55 and again
at 9:92.

Banding between pink and gray is visible at 3.58 which continues to 4:17. This repre-
sents the addition of a parametric EQ filter (most likely a bandpass or notch), sweeping

through the frequency spectrum and changing the timbre of the various sounds.

Without Colour

Here I will compare the main method to the basic non-bandwise version. The only dif-
ference is that the magnitude of the entire psychoacoustic spectrum is taken, rather than

splitting it into three parts. We may define this formally as Prgas:

Prsm(c,b) = || L(b)|| (3.19)

where ¢ € {0, 1,2} and represents the colour channel (either red, green or blue respec-
tively), and b is a vector of three seconds of spectra.

The well known jazz track Green Onions is shown in figure 3.17. The imprint of the
funk guitar between 1:10 and 1:50 is visible on both images as a bright spot. Half-way
through (at 1:30), the funk guitar steps up a key; this is clearly visible on the SBL image as
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Figure 3.17: The track Green Onions by Booker T. and the MG’s displayed with bandwise

loudness smoothed magnitude (BLSM) compared to loudness smoothed magnitude (LSM).
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Figure 3.18: Takl by Plaid displayed with bandwise loudness smoothed magnitude
(BLSM) compared to bandwise loudness magnitude (BLM).

a change of hue from pink/yellow (denote mid-pitch sounds) to blue (denoting high-pitch

sounds); however it appears as a constant white tone on the SL image.

Without Smoothing

We now compare the main method to the unsmoothed version. More formally, the bandwise

loudness magnitude, Pgras is defined as:

Perm(c,b) = || L(b)sc...sc+s|| (3.20)

where ¢ € {0, 1,2} and represents the colour channel (either red, green or blue respec-
tively) and b is a spectrum.

Tak 1 is a short track by electronic music artists Plaid, which is visualised in figure
3.18. It contains several short repetitive figures, played on an organ-like instrument that
progress into a lower overall key throughout, with a chaotic drum beat in the background.
In the fourth figure, another, louder, organ-like voice is introduced with a higher key that
gets higher-pitched in the final two figures.

[t is a good example of where reduction of short-term features (such as individual
onsets) makes medium-term progression much clearer. In the unsmoothed version, the
‘shape’ of the individual figures can be seen in terms of note onsets. The smoothed version

does not have this, but better shows the changes between the figures as they progress
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Figure 3.19: Zala by Plaid displayed with bandwise loudness smoothed magnitude (BLSM)
compared to bandwise Bark smoothed magnitude (BBSM).

through the track, with colour slowly changing throughout to denote the progress and the

introduction of instruments.

Without Psychoacoustics

[f we remove the psychoacoustic loudness scaling from the method, using just the basic
magnitude from the spectrum, we see, crucially for visualisation, the relative dynamic
ranges of the three channels decrease. This gives a smaller range of hues than before. We

formally define this variant as Pggsas:

Peasu(c,b) = “Bm‘k(g)ac...sc+3|| (3.21)

where ¢ € {0, 1,2} and represents the colour channel (either red, green or blue respec-

tively), and b is a vector of three seconds of spectra.

From the addition of the psychoacoustic loudness scaling, a significantly greater role
is taken by the blue channel takes in defining the artefacts in the visualisations. With-
out psychoacoustic scaling, blue tends to stay at a roughly constant level throughout, or
be covariant with the red channel. The frequency-dependent loudness scale appears to
distribute the channels values far more evenly. To illustrate this, we look at a piece of
electronic music by the abstract electronic artist, Plaid.

Both images look remarkably similar, and both identify roughly the same aspects in
a similar way. However in the BBSM image, the red and blue components of the image
are largely covariant, resulting in an image dominated by purple. Whereas in the BLSM

image there is a slightly better use of hue with portions of light green, blue, pink and dark
indigo. A far more important criticism, however, is the lack of differentiation between the

portion of 3:30-3:52 and much of the first half, due to the sharing the hue. This is in
marked contrast to the BLSM image, which colours the two sections entirely differently
(pink versus varying shaded of blue). This turns out to be musically important. The latter

portion has a clear bass component, and there is no instrumentation in the higher key of

the first half.
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Comparison to Mel-Frequency Cepstrum Version

Another common method of psychoacoustic audio preprocessing is the extraction of the
cepstrum co-efficients from the mel-scaled spectrum. Mel-scaling, as proposed by Stevens
and Volkmann (1940), is similar in concept to the Bark scale, whereby the log-amplitudes
of the spectrum are mapped according to empirical experiments on the human perception
of tone change. The cepstrum co-efficients (of which only approximately the first twenty
are taken), are simply the first amplitudes of the discrete cosine transform, when mel-scaled
spectrum is treated as a discrete signal.

This was visualised as before, except with the substitution of the critical banding
and psychoacoustic loudness scaling for the first 24 mel-frequency cepstrum coeflicients
(MFCC). As with the 24 critical bands, these were split into three subsets, the magnitude
was taken as the Euclidean distance from zero, and the three colour channels were valued

accordingly. Formally, the colour projection function is Pgarsar where:

Pemsm(c,b) = | MFCCo..23(b)s..sc4s] (3.22)

where ¢ € {0,1,2} and represents the colour channel (either red, green or blue respec-
tively), and b is a vector of three seconds of spectra.

Generally, the use of three subsets of the MFCCs seems to give a reasonably useful
visualisation, with images noticeably matching those from the spectral version of the algo-
rithm. However, there are two key points that seem to burden the MFCC variant, making
it on the whole less useful for visualisation of music: Firstly, while the brightness of the
signal represents the loudness, it is not quite as detached from the hue as it is in the

spectral visualisation. Secondly, the distribution of hues and their brightnesses implied .

from the MFCC data results in a less informative visualisation, due to fewer artefacts.

To illustrate the first point, we use the rock track Moving by British indie rock band
Supergrass. The track features a fairly typical AAB AAB A verse/chorus structure. How-
ever the sets of verses (’A’s) get increasingly louder, with increasing instrumentation and
more emphatic vocals. Importantly, this loudening is barely noticeable over the general
theme.

Figure 3.20 shows the smoothed bandwise loudness and smoothed bandwise cepstral
magnitude, both with amplitude outlines. In both, the choruses are instantly recognisable
as the two bright white blocks in the middle. In both (though less obvious in the MFCC
version), each verse is noticeably a single theme repeated. In the smoothed bandwise
loudness visualisation it is, however, quite clear to see that the second pair of verses are
repetitions of the first pair, but only louder (brighter, but same orange-green-black-red
pattern), the third verse (the outro?) being of the same quality, but perhaps louder still.
In the MFCC variant, with a far more complex set of colours to denote the verse, and

with the colours apparently far more noisy from set to set, it is very difficult to extract

- [venor o
T T mr—— ———— T T R T P W T TR T LA R
r




3.3. PROPOSED VISUALISATION METHODS 65

Wave

BLSM

vsv [N TR

rTTf__T__l_f_'_[_f_'I’IITTTTﬁ'
Gﬂﬂﬂ% Gﬂgﬂ
- N ™M < - O

il L R
- & 8 ¥ B - & 8 ¥ B = & &

<
0:00 1:00 2:00 3:00 4:00

4 I

Figure 3.20: Moving by Supergrass displayed with bandwise loudness smoothed magnitude
(BLSM) compared to bandwise mel-frequency cepstral smoothed magnitude (BMSM).
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Figure 3.21: Gabriel’s Oboe by Ennio Morricone displayed with bandwise loudness

smoothed magnitude (BLSM) compared to bandwise mel-frequency cepstral smoothed
magnitude (BMSM).

the same information.

We can see the visualisations of Gabriel’s Oboe by Ennio Morricone in figure 3.21. The
structure of the song is essentially AB-AB-A’B’, with the A’ having an extra somewhat
bassy instrument present compared to the As, and the B’ being slightly augmented from
the Bs to form an outro. The MFCC visualisation presents this well, though the different
A’ from A goes entirely ignored. Very little textural information within the B portions of

the song is apparent, with them being mostly white.

Conversely, the loudness version clearly shows the B portions being comprised of
two distinct smaller parts, corresponding to two distinct themes, the second including

a mandolin-like instrument. The stripes between red and yellow in the first part of the Bs
correspond to the playing and silence of the oboe. However, where the loudness variant’s
visualisation becomes somewhat questionable is in the third A, running from 3:27-3:58.
Due to the extra spectral content from the extra instrument, it becomes brown rather than

green followed by red.
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3.3.5 Bandwise Loudness Rhythm Magnitude

Definition

particular point. It is calculated by using the rhythm spectrum (also known as beat
spectrum) as a vector, and taking its magnitude. We use the algorithm by Foote (1999a)
for calculating the rhythm spectra, which involves populating a self-similarity matrix and
summing across the super-diagonals. Section 3.2.2 gives a full definition of the technique.

As before, this is an extension to the standard rhythm magnitude technique done to
provide colour. The output of the critical banding is split into three subspectra, a rhythm
magnitude for each one is found. Each are normalised individually, and used as their
corresponding red/green/blue component in the final colour. The technique may be more
formally defined as the projection function Pgrras:

The rhythm magnitude is a novel technique to deliver the ‘rhythmicity’ of audio at a I

r
Wﬁm-;ﬁﬁ?m T

b il

PoLrm(e, B) = | Rhy(L(Bre.serll, £=7 (3:23)

where ¢ € {0, 1,2} and represents the colour channel (either red, green or blue respec-
tively) and b is a vector of 128 spectra (approximately 1.5 seconds). L

I

s—|
Rhy(R); =) Mg(k,k+1), 0<I<
k=0

S
. (3.24)

where s is the size of the self-similarity matrix M and My is determined from the series

of spectra X. Figure 3.22 shows the process as a dataflow pipeline.

VWA

Figure 3.22: An activity flow chart of the bandwise loudness rhythm magnitude (BLRM)
technique.

Expectations and Discussion

This is a rhythm-timbre based refinement; it should benefit music whose short-term auto-
correlative properties change with regard to different voices over time. As such, more :
rhythmic music should benefit, such as hip-hop and dance, whose timbre may stay roughly




3.3. PROPOSED VISUALISATION METHODS 67

constant throughout, but whose rhythmic properties (perhaps with regard to different

voices) changes.

The brightness of the colour relates to the strength of the rhythm at that point (i.e.
how self-similar the signal is over a short period of time), whereas the hue describes where
in the spectrum that simplicity lies. If there is little correlation, or if it is compromised
between two successive and unique rhythms, however, then it should have a lower overall
power and thus be darker in shade.

If the rhythmicity is mostly in voices in the upper part of the frequency spectrum,
the hue will be cooler (blue/cyan/green). If in the lower part, the hue will be warmer
(yellow/orange/red). Hues would therefore change whenever there is a shift in the relative
lag-correlation of the three sub-spectra. As different portions of the total spectrum change
in their self-similarity (perhaps by introduction, removal or interruption of voices), a greater
shift in hue would be expected.

The number of spectra used, and thus the imprecision of the metric, is equivalent to
the number of bands of the rhythm spectrum (or the cardinality of the vector we measure).
Determining the optimum size of the spectrum is rather a black art; a smaller size results
in better time precision and less processing. A larger size gives less noise and allows higher-
level features to be captured; I settled on a window of around 1.5 seconds, which gave a

generally reasonable output.

Demonstration

Rounds, an album by Kieran Hebden (released under the moniker Four Tet), is considered
(e.g. by Clarke, 2003) as being a prime and largely seminal example of a genre called ‘folk-
tronica’. This is a fusion between the abstract electronic and folk music genres. And They
All Look Broken Hearted (‘Broken’) is a track from this album which focuses on chaotic
drumming and a repetitive harp melody, underlined with slow bass chord progressions,
with other relatively soft ‘instrumentation’ progressing through the track. Unspoken is
another track from the album, again featuring a repetitive melody (this time piano) and
a clear progression, though with more esoteric sounds creeping in. Figure 3.23 shows the
tracks under the BLRM visualisation.

In Broken, we can see that despite the instrumentation and loudness being relatively
similar, the visualisation clearly differentiates the repetitive melody of the harp (1:25-2:30)
from its ‘chorus’ theme (2:30-2:55). It also disambiguates between the solo harp and the
harp with bass and drums which transitions at 1:45. The repetition of the section 1:45-2:55

at 3:17-4:27 is also clear to see, despite the addition of an extra, rather loud, bass drum.

Unspoken, like Broken focuses largely on repetition. It progresses throughout by adding
and removing instruments®. Particularly notable in this visualisation is how the addition

8¢instruments’ is used loosely here; many of the sounds not only are not recognisable instruments, but
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Figure 3.23: Four Tet’s And They All Look Broken Hearted (top) and Unspoken (bottom)

visualised as a basic wave (Wave) and with bandwise loudness rhythm magnitude (BLRM).

of a loud drum (6:11) to the much quieter bass, and later (6:14) the piano, makes very little
difference to the blue stripes of the visualisation. This is despite changing the dynamics
significantly. What the visualisation clearly shows is the addition of chaotic sounds (5:00),
similar to a feedback loop one would expect to hear from a microphone being moved close
to a loud speaker amplifying its signal. The change from blue to a pink /white hue at
3:40 seems to be caused by the ‘dirtying’ of the rhythm, with the addition of an extra
bass sound and subtle string-like theme. Interestingly the removal of the primary melodic
instrument, the piano, at 3:06 causes no significant change on the colour.

With these two tracks, the effects of visualising through rhythm are relatively notica-
ble; despite changes in timbre, the visuals remain largely unaffected due to the extreme
similarity of rhythm.

Without Colour

A basic version of the the rhythm magnitude ignores the per-channel aspect of the original

method, and merely notes the lag-correlation evident in the entire spectrum. The formal

definition is given by Prrnm:

= : . .t
Prrm(e,b) = | Rhy(L(b))||, t= - (3.25)

Figure 3.24 depicts the classical track Sabre Dance, a highly rhythmic fast-paced or-
chestral track whose rhythm is maintained by strings throughout. Woodwind and brass
give the main melodic content, whose playing affects the rhythm magnitude by disrupting
it and by reducing the brightness of some primary colours.

The basic LRM visualisation does not clearly denote the point where the loud brass
instrumentation exits the foreground at 0:50; the BLRM in contrast changes hue from pink

are not even immediately recognisable as being tonal at all
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Figure 3.24: The track Sabre Dance by Aram Khachaturian visualised with bandwise

loudness rhythm magnitude (BLRM) and loudness rhythm magnitude (LRM).

to cyan/yellow. The point at which the woodwind melody is introduced at 1:07 is also
clearly marked with a change of hue, again to blue/red, denoting disruption to mid-range’s

overall rhythm strength. This change, in the context of the entire spectrum, is subtle and

difficult to identify clearly.

Without Psychoacoustics

Removing the psychoacoustic loudness scaling from the method has the effect of reducing

the relative dynamic ranges of the three channels, giving a smaller range of hues. The

formal definition is given by Ppprui:

(3.26)

]

| @

Peru(c,b) = | Rhy(Bark(b))e..tettll, ¢
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Figure 3.25: The track Without Me by Eminem visualised with bandwise loudness rhythm

magnitude (BLRM) and bandwise Bark rhythm magnitude (BBRM).

To illustrate this, we use a rap track by Marshall Mathers, also known by the name
Eminem. Figure 3.25 shows the track Without Me. In the BLRM image, we can see it is
far clearer to find the intro, verse and chorus changes; the outro is also clearly visible. Blue
appears due to Mathers’ vocals being the rhythmic element which changes throughout the
track; other rhythmic voices contributing to the spectral loudness, such as the drums, tend
to be constant throughout, thereby having no effect on the colour balance. The white
appears due to the self-similarity of the whole sound; the spectrum is far ‘fuller’ from more

instruments being introduced, all with a simple repetitive theme.
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Figure 3.26: The track Time is the Enemy by Quantic visualised with bandwise loudness
rhythm magnitude (BLRM) and bandwise Bark rhythm magnitude (BBRM).

As a poignant counter-example to the usage of psychoacoustics here, we can look at
the excellent visualisation afforded by the Bark-based rhythm spectrum in figure 3.26.
The track is Time is the Enemy by Will Holland (released under the moniker Quantic),
a multi-talented musician who often plays lead duty on guitars, bass, double bass, piano,
organ saxophone and percussion. In the figure, the waveform makes visible only the two
large sections to the track, with the gap at 1:56 to 2:01. Aside from the start and finish,
little else is visible.

In the BBRM image, we can see the very clear sectioning of the track. The introduction
is given by the blue/red stripes at the beginning, the first repeating theme with red-yellow-
red striping, and the second repeating theme with green-yellow-green striping. The gaps
with loud noisy guitar notes played are white. The first theme is just a repeating high-
note arpeggio on the piano, the second incorporates a second theme, as well as having a
lower-key and very quiet repeating arpeggio. The red-yellow striping of the first theme
is produced by the difference between the piano with the drums (red since the piano is
not immediately lag-correlative), and yellow with only the drums (since the piano is not
introducing the decorrelation). The green-yellow banding of the second theme is caused
by the relatively low-key theme, again spoiling the otherwise correlating drums.

The BLRM image, by contrast, is fairly nondescript and barely better than the included
(non-bandwise) LRM image, showing that each section is in fact two subsections. In
particular, the stressed purple marks at 1:53 and 3:17, each of which represents a loud and

unexpected guitar riff, is far clearer in the BBRM image than in either of the others.

3.3.6 Novelty Score
Definition

The novelty score was introduced by Foote (1999a). It provides a value determined by
the cross dissimilarity of the portions of signal both before and after the moment in time.

Like the rhythm spectrum, it relies upon a prior abstraction of the signal known as a
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self-similarity matrix, which is calculated simply by evaluating the similarity of the signal
to itself at varying intervals (given by 2 — y). Section 3.2.2 gives a full defintion of the
technique. Formally, we define the colour-projection function PNovelty

Provelty(c, b) = |[N(L(b))) (3.27)

where ¢ € {0,1,2} and represents the colour channel (either red, green or blue respec-
tively), and b is a vector of spectra preprocessed from the signal. Futhermore, we define

the function N:

i<s j<8
NE) =) ) Mg(i,)K(, 5) (3.28)

i=0 j=0
M} is the self-similarity matrix determined from the series of spectra X (both of size
8), and K is the Gaussian kernel function given in section 3.2.2. Figure 3.27 shows the

process as a pipeline in a canonical fashion.
mm Window Sum Critical Convert Convert
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Figure 3.27: An activity flow chart of the bandwise loudness rhythm magnitude (Novelty)
technique.
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The size of the self-similarity matrix and accompanying checkerboard kernel were ex-
perimented with and qualitatively evaluated. I found that a value of around 128 spectra
(1.49 seconds) provided a good balance between time precision and larger scale feature

presentation.

Demonstration

Figure 3.28 shows a visualisation of the well-known James Bond theme, which will suffice
to illustrate the form of visualisation that a novelty score produces. The novelty output is

visibly different to the spectral magnitude, since it is one level of indirection away. Rather
than showing the track directly, and allowing the user to determine when the metric changes
enough to denote a feature, it instead shows the changes directly, essentially providing a

differential view.
It is clear to see the main orchestral figure plays four times between 0:40 and 1:00.
This is despite slightly different sets of instruments and slight variations on the figure.

The repetition of the guitar theme, twice at the beginning and twice at the end, is also
visible as several gray lines followed by a block of black. The main orchestral climax after
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Figure 3.28: James Bond Theme by John Barry visualised as a basic wave (Wave) and

with the novelty score (Novelty).

the figures, which runs from 1:06 to 1:16 is not discernable as being any different from the
guitar themes after it. This illustrates the main drawback of this method; the refinement
is <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>