A FRAMEWORK FOR FLEXIBLE
SCHEDULING IN REAL-TIME
MIDDLEWARE ‘

Alexcandros Zerelidis

Submitted for the degree of Doctor of Philosophy

The University of York
Department of Computer Science

November 2007

UNIVERSITY
OF YORK
LIBRARY

Abstract

The traditional vehicle for the deployment of a real-time system has been a
real-time operating system (RTOS). In recent years another programming
approach has increasingly found its way into the real-time systems domain: the
use of middleware. Examples are the so called pervasive systems (embedded,
interacttve but not mobile), and ubiquitous systems (embedded, interactive and
mobile), e.g. hand-held devices. These tend to be dynamic systems that often
exhibit a need for flexible scheduling because of their operating requirements
or their execution environment. Thus, today there 1s a true need in many real-
time applications for more flexible scheduling than what is currently the state-
of-practice. By flexible scheduling we mean the ability of the program
executton platform to provide a range of scheduling policies, all the way from
hatd real-time to soft real-time policies, from which an application can choose
one most suited to its needs. Furthermore, some applications may need to be
scheduled by one policy while others may need a different policy, e.g. fixed
ptiotity or eatliest deadline first (EDF) for hard real-time tasks, least slack time
first (LST) ot shortest remaining time for soft real-time tasks. It would be
difficult for the middleware to expect this functionality from the RTOS. This
would require a fine balance to be struck in the RTOS between flexibility and
usability, and many years will probably pass until such approaches become
mainstream and usable.

This thesis maintains that this flexibility can be introduced into the
middleware. It presents a viable solution to introducing flexible scheduling in
real-time program execution middlewate in the form of a flexible scheduling
framework. Such a framework allows use of the same program execution
middleware for a variety of applications — soft, firm and hard. In particular, the
framework allows different scheduling policies to co-exist in the system and
their tasks to shate common resources. The thesis describes the framework’s

protocol, examines the different types of scheduling policies that can be
supported, tests its correctness through the use of a model checker and
evaluates the proposed framework by measuring its execution cost overhead.

The framework is deemed appropmate for the types of real-time applications
that need the services of flexible scheduling.

or T e B A

L

Contents

LiSt Of FigUreS.ccicicicssssentrcscsssnesecccssnnnnnnessosssssnsasencssensancensssssssssosssnssnnane 11
LiSt Of TabIeS ccueeircvereccrninssenissanssansessasnsssnsssssnssssensesnsessseessasesssesssssesces 15
Chapter 1 INtrOdUCHON coccrercsrcrserasensececsecssessesessssersseneessssssessssssssssssssns 21
1.1 Real-time scheduling at the middlewate level..........coevererereercncnnnee 24
1.2 Thesis propoéition ... 25
1.3 TheSIS SLIUCIULE woueevrrerrcrerernrereserasssssensaessssssssnssssenssesssesssssssesasssasnsssans 26
Chapter 2 Flexible Schedulingccvssessrscesscssisssscssscsnssssssssssannesanss 29
2.1 Middleware £ESEATChcverrrrrrrnrerrerrrernrersesnsiscscssssesnssnessersssasassssesnaes 31
2.2 Flexible scheduling in real-time operating systems.....cocceceeerssvennan, 36
2.3 Flexible scheduling in real-time programming languages............... 40
2.4 SUMMALY ..u.ucuiriuiiisisaensencssssssssssssssssssssssssssssessssssssesssssssssssasessssesssssnsses 42
Chapter 3 Resource sharing for flexible scheduling...c..cececeeecreernsenss 45
3.1 Puority-based resource shating protocolscueerveeeveneenecrenenana, 48
3.1.1 Basic priority inheritance (PI) ...ccceccrerecreeennnneceessessessessenes 48
3.1.2 Priofity-ceiling PrOtOCOIS...ccviririnreuerereeereeisecsssnsnensssssesssnssens 49

3.2 Preemption-ceiling PLOtOCOLS ...cvuiiveeieererreerreennrerearnsneseseessesasssessons 51
3.2.1 Stack Resoutce POUCY (SRP) weuereeueeriteeeeeeoeeeeeeeeseeen. 54

3.2.2 Basic Preemption-Ceiling Protocol (BP£eCP)ccceuversernenees 58

3.2.3 Self-suspending tasks......civeveenrirnrerssssssensscnismmssnsnen. 60

3.2.4 'The tole of the PLT and Bl ..oovviveeerecssseessesssessessesersssesssesessenns 63

3.3 The teladon between preemption-ceiling and ptiority-ceiling

PLOLOCOIS ottt s sssessessssssassssssssesssssssssssssensasassenssssssesssassosessasnns 70
34 'The Preemption Level Protocol (PLP) ...iiiinccnenececnnaene, 73
3.5 SUMMALY ...t sssss s sssssenssessasesseasssssssrssssssssssssssssessassaseess 79

Chapter 4 A Flexible Middleware Scheduling Framework............... 81
4.1 BasiC aSSUMPHONS cuvereererrreeeeensesssessesesenssessssserssessssassesessosesssasssssasaes 82
42 Enfotcing diverse scheduling policies using ptiority levels.oon... 83

4.2.1 Basic scheduling of 7 tasks ..c..ceceereirerrernerercsrsereeecsecesasassnns 84
4.2.2 Scheduling POINLS...cocoveririenrnmninniirereessssssesesssssssesssssssarsesessans 85
4.2.3 Decoupling scheduling from normal task execution.............. 86
4.3 Scheduling band OPerations.....ccovmnvnreereseenncsesesesesesseseeseseses 87
4.3.1 Keeping an operation atOMIC....ccuererrersaeseresssssnsessessesecsessenes 90
4.3.2 'The application schedulet APIceoueceevrereeecneresesisenseseesnenns 91
4.3.3 MOdE ChaNGES...ccvrervererernrnrnererenresrsereresscssassasssnsssssssnsessssssssnsssses 92
4.4 Multiple SChedUlErS...ccciunruirnnrererreressrceereeecsesnsesessesessessssssssssssenes 92
4.5 Shating resoutces in the frAMEWOLK c..vvueeeeeceeereeereereeerre e serons 95
4.5.1 The eligibility test FMSF_ET)................. 96
4.5.2 The preemption level test (FEMSE_PLT) ..ccovcevvrierennnnrnnencannnn, 97
4.5.3 Eligibility inheritance (FMSF_PI, FMSF_EI.....ccccsuscueneeee. 102
4.5.3.1Shating resoutrces within one bandcceceecevvivincnnnncene, 103

4.5.3.28hating tesources between band and non-band tasks....... 104

I T T SR ST N [R YT I VT g

4.5.3.3Sharing resources between bands......occcceverrervucersinsercnsenens 109

4.5.3.4Sharing resources strictly between non-band tasks; 110
4.5.4 Using an application-defined resource sharing protocol..... 111
4.5.5 Properties of the resource sharing protocol.........cceeeeeecueunee 112
4.5.6 A note on synchronization and communicatione.eeeeee. 117

4.6 'The Flexible Middleware Scheduling Protocol (FMSF)............... 118
4.0.1 ProtOCO]l PLOPELHES cuuurecrerisesueririnnssnsnssessssssiisssonssssssssasassnsassases 125
47 SUMMALY....covverierircrnnsensessesesissesissississeressessmsssssssasssssassssssossossssssassssaes 131
Chapter 5 Framework Evaluationeeeseceecccsccssessssnssessscssssssessesesnes 133
5.1 An EDF application schedulet.......cvvivsiiescnsiniininnesnnanann, 134
5.2 Modelling the framewOork . eeeninrsersenissssessensssssesensssessssesssssrens 136
5.2.1 The UPPAAL tOOL...ciiisnnsninssescsnsnsnssnsasessssissssessesssnssens 137
5.2.2 Atrchitecture DesSCIPHON wocceereieerresssssseresesssmsassssssssssssssssssasesess 138
5.2.3 Global deciarations ... R -140
5.2.4 TRrEaU.....cereerrccnssrenesesnsssissssssssesassinesnssassessesens 143
5.2.5 BaseScCheduler.......ivieinrissnsssssensisissensenciesnsesnne, 148
5.2.6 Dispatcher......eerireerencreneenreennans resesassnesessanneerasesesnsenessane 161
5.2.7 PHQUEUE ...ttt ssnsissinsisssssssssssenns 162
5.2.8 EDFScheduIer 162
5.2.9 Formal analysis of the modelueeiniciinnnienncinninisnncsnenea, 167
5.3 Accommodating diverse scheduling policies.......eersrerererersserensens 171
5.3.1 Suppotting application of a policy within a band........cccerne.. 171

' 5.3.2 Sharing resources undet a new policy.......... ceresnsarssnssssesssases 176

5.3.2.1Using an application-defined resource sharing protocol... 177

*

D4 SUIMMALY..ccrerreccrerererrrrerensrisesisessesassssssessssssssssssssssssssstsssssssnstssssnses 184
Chapter 6 Implementing the FramewotK...cooeeecseessssessssessnsssaasssanses 187
6.1 'The Real-Time Specification for Java...essssnniistssnesisnnnnnnns 188
6.2 Applying the FMSF to RTS] ...cccosenssmnmenninnsssissnsersssessnssenssssenas, 191
0.2.1 Changes to the PriorityScheduler class..oereereererrnene, 191
0.2.2 Suppotting scheduling band operationscceeeeeeerseennnnnens 194
6.2.3 The PreemptionLevelParameters class............. 197

- 6.2.4 Application-defined schedulets......uceiiirinsvnnnnncrriernnnens 198
6.2.5 Execution eligibility INVELSIONS ..ucerviresiivariuerernrnrerssenensnssnseseans 200
6.2.6 EDFSchedul.er: an application-defined scheduler............ 202
6.2.7 Impact on feasibility analysis........cceverecrnrrnserenrcenreenesenensenene 204
0.3 A simulated implementation of FMSF...........ccevvveernrnnccnrnnnne 205

.6.3.1 The PreemptionLevelPriorityScheduler class.... 206

0.3.2 Changes to the BPreCPResourcePolicy class ... 208

0.4 Measuring the FMSF overhead.......ccoevevvvivrnrvcrnneerseeeensecsrnnenens 209
0.4.1 Caveat.crvrerieriereneninnnncssesensssneensesesssssesssssssssessesssssesssssessosessessens 209
0.4.2 Single-thfead testu.iiriineiieriesessssseesessenssessasasase 210
0.4.3 MUlt-thead tEStS ueumierrrerrueririeeisrenerersecsseessssnsasessesessssssnssesens 211
6.44 Tests with two application-defined schedulets...........ceoevreves 218
645 ASSESSIMENL crvrvnreererrsresssoesoeessoesssseesssesssessssesssnee s 222

0.5 SUMMALY....ooiicviererrnnisienesesssesesseeessssssessssesssenesessassssssssasssssssssasssss 226
Chapter 7 Conclusions and Future Work......c..cescesssesessssssscsesasseseses 229

7.1 CONUIBUHONS teeeeeeeeoeeeeeeeeeeeoeeeeeeees oo sss s saesaessesesaesssseassasssns 231

7.2 Futufe WOILK..ovvsssecoseeesrenssessssssrenses e eeseesessasnnntesteersnnnnsnesasennannnrsesersraes 233

7.3 Final COMMENtaerrecircrrrerreieenieenrannesceseenes reseseseseseetetesssraresssssenassenesnss 234
Appendix A: Test COAe cuennrcrsenrinsnnicscsancsscsaseecsnsecssansessssneecsenssssensss 235
A.1 Single-thread test e 235
A2 MUIt-thead teSt..eurerirecrsersnssssmssnsnssassessessasssssessssssssssssssssssssossssesass 238
A.3 Tests on RTS] methods and Operationsccevesevevnsrsnsesnerensnsenes 242
A.3.1 Measuring SEEPYioTity () ciinnninieeneenesnnes 244
Table Of SYMDOIS cecieeecierearaseenrsnscssssssssncecssosseenassccesessssnsensccsssssasssssss 247
REfEIEIICES rerecceceeerrrrersecnsnrsrsrscsssssacssessssonsarsssssssssesssansssssasssasscscsssasanes 249

List of Figures

Figure 3.1: Deadlock of self-suspending tasks under SRP........cceiervinunucnnne 61

Figure 3.2: A arcular dependency of # tasks..crnicrcenscnnsennsnncsnnnsnescsensssannes 63
Figure 3.3: The role of eligibility inheritance and the preemption level test in
1eSOULCe SharinNg PLOtOCOLS wuiiicernnvcriistsninisnriressinssiisnsnssssisessssssesesssasasanenns 66
Figure 3.4: SPCP schedule for the tasks of Table 3.1cccccicnriirenrecrcrnncncronens 71
Figure 3.5: IPCP schedule for the tasks of Table 3.1...ccvvnininnnnernenicsicasnnnen, 12
Figure 3.6: Prionity queues with PLP......ciiecrninenninnnnesssussismissssnsssssasssnes 74
Figure 3.7: PLP schedule for the tasks of Table 3.1....nivrviiiicnnsesnsncnnnna, 77
Figure 4.1: Scheduling band operation........ceucieinnnmmsniim, 89
Figure 4.2: The effect of a preceding base scheduler call on a scheduling band
OPECIAION «.ceeuririrreuesicssisessssssssasssssessssensrssssssssssssssssestssssessssesssnesesssssassessassestsssane 90
Figute 4.3: Abstract view of flexible middleware scheduling.........c.cceeurrennnnnces 94
Figure 4.4: Eligibility inheritance as a “black box” operation when locking
WIthIn 2 Dand i, 104
Figure 4.5: Locking at a2 non-band priotity with prionty imnhentance.............. 106
Figure 4.6: Non-band task locking at a bandccoueevvicievcreneneneccnneniscsencennee 108
Figure 4.7: Priority and eligibility inhetitance when locking between two bands
.. 110
Figure 4.8: An application scheduler’s conceptual locking list SR— 114
Figute 4.9: Preserving the FIFO otdering of queues when unlocking a
TESOULCE vevseennesressesssssasssrnsassssssssnssanssaosassssssissessasrssasssnessesssssasssessessesssossossensonses 115
Figure 4.10: Blocking on the system ceiling takes place within the base
scheduler call.......... eereesbesesae ittt e b s e b bRt SR s s sas s s R e b e ae b et aeraesnsesnes 116
Figure 4.11: An example of a schedule of four tasks running within the
fEAMEWOLK veveviiienrerenscnseisissistiinineisssesisessissassasssssassssssssessesessensessrsssssss 124
Figure 5.1: An EDF application scheduler’s conceptual locking list 135
Figure 5.2: An EDF application scheduletr’s conceptual medium_lock locking
LISt eereerienisresserssssesnenenssnsssesessssassnsssessssessesassssssssnnensassesssassensssennsasensensessssesnes 136

11

Figure 5.3: Model atcChiteCture vouecemeeeierenencceneeniiriicninncinsessessesssssssessasssnssssses 139

Figure 5.4: The Thread autOmMatonccevireeriserersrcriisnseeressessssesssnsassnssnansasssassaces 144
Figure 5.5: BaseScheduler abstract automaton.......covvversescarsanssenssnnsessnesassansanees 149
Figure 5.0: The reschedule? synchroniZationeveervencessssiscsisessnsenisissssssnsesnnns 155
Figute 5.7: The prepareToLock? synchtONIZAtION ..ecveevesscsnesesnsssnesasesssessisessnacans 156
Figure 5.8: The reschedule_lock? synchtonization.......esssssescussssssssusssesssnsseness 137
Figure 5.9: The prepareToUnlock? synchtoMzation eeieeensssssssscscsscsiecacncns, 157
Figure 5.10: The reschedule_unlock? synchromzation..c..eriiesssiessesnisecsencnsaces 158
Figute 5.11: The prepareToSuspend? synchromization ueeeecemsescssuscssesesesusensnsene. 159
Figure 5.12: The reschedule_resume? synchronization....erevenessnnesesnsienecssienens 160
Figure 5.13: The Dispatcher autoOmaton....coeeeeceseesestssesnsnississassssesseiescsssssnsueses 161
Figure 5.14: The PriQUEUE aUtOMAtON coccierurersresireesneessicssissansissessnisntssassessssessacsss 162
Figure 5.15: The EDFScheduler automaton coeceecesiesncsinstinseneienissnscsscssense 163
Figure 5.16: The test SYSTEIML seeuuersscrnsessirsrsessesssssssssssiansssssssssssssssssimsssssssissessssassssns 167
Figute 5.17: Round-tobin scheduling within a band......ccnncnnnnnnen.e, 173
Figure 5.18: Changes in eligibility within a round-robin band........eeeiuunces 174
Figure 5.19: Eligibility in job-level dynamic policies with static task ordering

.. 181
Figure 5.20: Eligibility in job-level dynamic policies with dynamic task ordeting

.. 181
Figute 5.21: Two tasks with job-level dynamic eligibilitiesuucueunenene... 183
Figure 6.1: Existing RTS] Scheduler class hierarchycoevvcurvvrrinersunvenee. 191
Figure 6.2: Adding base scheduler calls to a potentially blocking library method

.. 196
Figure 6.3: Adding base scheduler calls to a potentially suspending bytecode

I S UL CH O eunnrneeessesesseeesesssssossessssossssssessssessnessssssesssnesssessessssssnsnssssssesssassasssnanss 196
Figure 6.4: Adding base scheduler calls within the virtual machine................ 196
Figure 6.5: The SchedulingParameters class hietarchy....c.ccivvennnerininene, 197
Figure 6.6: The ApplicationDefinedScheduler class diagram................ 198
Figure 6.7: The MonitorControl class hiérarchy .. 201
Figure 6.8: EDFScheduler in the Scheduler class hietratrchy.......coceeveernenne. .202
Figure 6.9: EDFPeriodicParameters in the ReleaseParameters class

NICLALCRY .ottt essass e esas e sresee e s nes 203
Figure 0.10: Execution of a scheduling band operation under a stmulated

framewOork IMPlemMENtAtioNuuuuvucceeeeeeceeseesenseesreeseesssssssessesssesssssssssseses 205
Figure 6.11: PreemptionLevelPriorityScheduler in the Scheduler class

ICEALCRY ettt e seeseeessssssssasasasasssssassessssnssssssssssns 207
Figure 6.12: Measuring execution time with GEETIime () ouereceseseesescsseseasercssens 210
Figure 6.13: Base scheduler call execution times for one test thread 211

12

Figure 6.14: Base scheduler call execution times for one test thread.............. 213

Figure 6.15: Multi-thread reschedule () execution tithe estimates.............. 214
Figure 6.16: Multi-thread prepareToLock () execution time estimates....... 214
Figure 6.17: Multi-thread rescheduleLock () execution time estimates.....215

Figure 6.18: Multi-thread prepareToUnlock () execution time estimates ..215
Figure 6.19: Multi-thread rescheduleUnlock () execution time estimates 216
Figure 6.20: Multi-thread prepareToSuspend (SLEEP) execution time

Figure 6.21: Multi-thread rescheduleResume () execution time estimates 217
Figure 06.22: Multi-thread prepareToSuspend (WFNP) execution time

CSUTIALES 1revereeereaereereesessessrneesessssessasssnssassnessassssenssasssssssssesssssssnsssesessessesesssnsenes 217
Figure 6.23: reschedule () execution time estimates for two EDF schedulers
.. 218
Figure 6.24: prepareToLock() execution time estimates for two EDF
SCREAUIRES ..ttt rses e see et esesnsasansssssans 219
Figure 06.25: rescheduleLook() execution time estimates for two EDF
SCREAULELS....couirieincirieieeeicnreeereenereessereseseeseseessssesssssssasesersssnssssssssssnsssosernans 219
Figure 6.26: prepareToUnlock() execution time estimates for two EDF
SCREAUIELS..c...critreiriiretrerenecenecnreeneesesessssesesssassssssesessssasansasssssssessssensassans 220
Figure 6.27: rescheduleUnlock () execution time estimates for two EDF
SChedUlErs ... s ans 220
Figure 6.28: prepareToSuspend (SLEEP) execution time estimates for two
EDF SChedulers . iicceicicnecnesencssecssesesneesssssnssisesssssessessssseassenss 221
Figure 0.29: rescheduleResume () execution time estimates for two EDF
SCHEAUIELS...vvieitrctierececcecrc s esssestsesneneseasessessesans 221
Figure 6.30: prepareToSuspend (WFNP) execution time estimates for two
EDF schedulers ..o crennresnssninsscsnnsesnsisssssssnesesessssnnne, 222

13

List of Tables

Table 3.1: Task release times and €XeCUtION COSLS...cunmirmnerenireiiensensenesnnsrasessenns 05
Table 3.2: Response times for tasks of Table 3.1 ...covnininininninniiennennennees 69
Table 3.3: Compatison of resource sharing protocols......iinneenerenencnennees 80
Table 4.1: Absolute preemption level distribution (ap/_table)couveuvesisennens 100
Table 5.1: Number of threads per band.....eeiiniiinninniiciniennisenisieesnns 168
Table 5.2: Resource usage pet test CASE....urmnmreriersrssssersessessssssnesnensesssssssssnsonssnss 168
Table 6.1: Execution times of typical RTS] operationsvvevecenisccsssisasasnnass 225
Table 6.2: Increase percentages due to the framewotK...ococviniisniicnncnnnen, 226

15

Acknowledgements

I wish to express my deepest gratitude to my supervisor, Professor Andy

Wellings, for his continual and essential support throughout the course of my
research. His guidance and encouragement have truly defined for me what a

supervisor should be like, and without them this work would never have been
completed. I would also like to sincerely thank Professor Alan Burns for the
crucial help he offered me throughout a series of discussions on the protocol,
and for the understanding he showed as Head of the Department through the
darker moments of my research life. I am also grateful to Dr. Neil Audsley,
who has been my assessot for the best patt of my reseatch effort and whose

comments during our meetings were always constructive and encouraging.

I would like to exptess my gratitude to the Greek State Scholarships
Foundation (ILK.Y.) for funding me for the best part of my research, to
Microsoft Research (in particular Dr. Fabien Petitcolas) for providing me with
a one-year grant, and to the University of York’s Student Financial Support
Unit for extending valuable financial support. Without them this research
work would be impossible.

I would further like to thank all the staff and fellow research students, past.
and present, in the Real-Time Systems Group for creating an ideal working
environment where I always felt “at home” (evident from the /ong hours which
I have spent in my office during all these years). I would like to thank Osmar
Marchi dos Santos for out, discussions and his help with model checking. Also,
thanks are due to Rob Davis and Ian Broster for being always willing to hear
my questions and provide me with answers. My thanks also go to Entk Hu,
Jagun Kwon, Andrew Borg, Armando Aguilar-Soto and Adam Betts for our
relaxing conversations and useful discussions, and to Attila Zabos for our
discussions throughout many of the long outs spent in the office and for his

help.

In York I have had the pleasure of making good friends who have helped
me with their support throughout these years. Amongst them I would like to
acknowledge Nikolaos Nasios and Georgios Despotou. Also, Dimitris, Tzen,
Giannis and Margaritis for their endless hospitality. Back home in Greece my
friends have also offered me immeasutable support duting my studies, as they

17

have always done. In particulat, I wish to thank Flotrentios, Stergios, Kostas,
Komnenos, Dimitris and Grigotis for being always ready and willing to help
me.

My deepest gratitude goes to Elpida, who has ceaselessly and selflessly
stood by my side all these years, making my life. brighter and happiet.

Finally, I wish to deeply thank my family, Xenophon, Elpida and Mamna, for
the encouragement and love with which they have sutrounded me during
these years and all my life.

18

Declaration

Certain parts of this thesis have appeared in previously published papers;
specifically the following references:

Zerzelidis A, Wellings A J. 2006. Getting More Flexible Scheduling in the
RTS]. In Proceedings 9t IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC'06),
IEEE Computer Society, pp.3-10.

Zerzelidis A, Wellings A J. 2006. Model-based verification of a framewotk for

flexible scheduling in the real-time specification for Java. In Proceedings
4% International Workshop on Java Technologies for Real-Time and
Embedded Systems (J TRES'06), vol. 177. ACM Press, pp.20-29.

Zerzelidis A, Bums A, Wellings A J. 2007. Correcting the EDF protocol in
Ada 2005. ACM Ada Lett, Vol. XXVII Issue 2 (Aug. 2007).

19

[]

Chapter 1

Introduction

A real-time system 1s one where correctness of a computation 1s dependent
upon its completion time. The term “real-time” denotes the need for such
systems to respond to real-world events taking place in real-wotld time, 1n a
predictable fashion. Producing a response either too eatly or too late is equally
erroneous. Futthermore, a hard real-time system 1s one where incorrect
completion time, e.g. faillure to meet a deadline, 1s considered to be an
incorrect result with serious or even disastrous consequences for the system
and 1ts environment. In contrast, a soff real-time system 1s tolerant of incorrect
completion times. Such a result, however undestrable, can still be tolerated by.
a soft real-time system.

The traditional vehicle for the deployment of a real-time system is a real-
time operating system. With this approach a real-time application is developed
only for a particular operating system. However, in recent years another
programming approach has increasingly found its way into the real-time
systems domain: the use of middlewatre. A middleware system is a piece of

software that functions as a conversion or translation layer between two

21

different types of applications, in a way that a/ways allows an application of the
first type to successfully communicate with any application of the second type.
In other words, it allows applications of one type to be porfable with tespect to
another type. Thete ate vatious types of middlewate systems, some examples
being web browsers, database middleware, program execution middleware
(also known as universal computing middleware (UCM)) and distributed
computing middlewate [CDE 2007a). The appeal of the middleware concept
to the real-time community is based on two main reasons: the need for
portable real-time software and the need for distributed real-ime computing.
Progtam execution middlewate covers the first need while distributed
computing middleware satisfies the second. This has been done thtough the
development of real-time versions for both middleware types.

Real-time program execution middleware is a type of middleware that sits
between a real-time operating system (RTOS) and an application program, and
enables the application to run on any RTOS/hatdware platform without
modification, while providing real-time guarantees for the execution of the
application. Such middleware is tesponsible for providing all the functionality
needed to a real-time application that would normally be found in the
operating system. Examples of this functionality include scheduling of real-
time tasks, resoutce sharing, memory management and memory access,
asynchronous event handling and asynchronous transfer of control. This i1s
extremely important as it completely, or at least to a very large extent, removes
the cumbersome process of porting the application. Whereas 1n desktop
envitonments porting is less of an issue, because of the dominance of the x806
architecture, the problem has remained significant for real-time systems. The
main reason behind this is the fact that most of today’s real-time systems are
embedded systems, specifically consumer electronics. It is often the case with
such systems that many different host architectures ate used, either
simultaneously or because of the evolution in a product’s lifecycle. Code
porttability in such systems is particulatly important, since it allows for faster
time-to-matket and lower production costs. For example, if, duting
development of an embedded system, implementation decisions dictate that a
mote powerful platform should be used, then, with portable code, transition
to 2 new CPU would be almost ttivial, since code would (ideally) not have to
be re-wrtten.” This also applies to the development of new
versions/generations of embedded systems where code stays almost the same,

while the hardwate is updated. Therefore, real-time -program execution

22

middleware have an important role to play. An example of this kind of
middleware 1s the Real-Time Specification for Java (RTS]J).

Distributed real-time middleware 1s a type of middleware that enables software
components, possibly written in multiple computer languages and running on
multiple computers, to work together. This 1s an impottant and growing
segment of the I'T market. Examples include distributed control of large-scale
telecom switching systems and autonomous vehicles over wireless links.
Distributed real-time systems can run the range of requirements from hard
real-time, e.g. avionics mission computing, to soft, yet stringent, real-time
requirements, e.g. telecommunication call processing. An example of such
middleware 1s real-time CORBA.

The two types of middleware come together to form what 1s known in
tecent years as architecture-neutral real-tme systems [CDE 2007b]. An
architecture-neutral real-time system 1s a real-time system whose target
architecture 1s unknown at system design time. The main focus of
architecture-neutral real-time systems typically 1s embedded systems, including
so called pervasive systems (embedded, interactive but not mobile), and
ubiquitous systems (embedded, interactive and mobile), e.g. hand-held devices.
However, their characteristics are also close to those of Internet applications,
for which we do not a priori know the target architecture. Such real-time

systems have unknown target architecture because:

e they have to be executable on the widest range of atrchitectures
possible in order to increase their portability;

o their lifetime is expected to be greater than ten years and, therefore,
they have to be immune to technology obsolescence;

o their site of execution may vary.

As we can see, the two types of middleware discussed above are both
essenttal to the realisation of architecture-neutral real-time systems. As an
example of a ubiquitous system we can think of a mobile phone user entering
a zone where a particular application provides him with certain information 1n
real time. In this case the application does not have a priori knowledge of
evety possible mobile phone it might run on.

23

1.1 Real-time scheduling at the middleware level

Middleware systems, as described above, tend to be dynamic systems that
often exhibit a need for flexible scheduling, either because of their operating
requirements ot because of their execution environment. Thus, today there 1s a
true need in many real-time applications for mote flexible scheduling than
what is currently the state-of-practice. By flexible scheduling we mean the ability
of the program execution platform, be it the operating system or some higher
level middlewate softwate, to provide a range of scheduling polictes, all the
way from hard real-time to soft real-time policies, from which an application
can choose the one most suited to its needs, i.e. a hard-real time application
will be using hatd real-time policies whereas a soft real-time application will be
using soft real-time policies. Scheduling is at the very cote of every real-time
system and 1s the subject matter of this thesis. More particularly, the thesis
ptesents a viable solution to introducing flexible scheduling in real-time
program execution middleware. Thus, the scope of this thesis is not about the
scheduling algorithms themselves, but rather about a framework that allows
use of the same program execution platform, in our case a middleware
platform, for a vatiety of applications — soft, firm, or hard.

The effort of this thesis to cater for flexible scheduling in middleware 1s
based on two main design constraints. The first is to cater for the state-of-the-
art in scheduling, This means being able to support both well-known practices
and novel approaches, e.g. dual-priority scheduling [Davis and Wellings 1993].
The second is to take into account the dependency of the middleware on the
development platform (operating system and hardware). Attention has been
paid to how easy it is going to be for a particular design to be implemented on
a variety of platforms. The importance of covering a wide range of platforms
lies 1n addressing the main functionality requitement of a program execution
middleware, which is to provide code portability. Code portability increases as

the number of supported host OS/hardware architectures increases.
Therefote, the effort has been to take as much advantage of the set of

common features found across different operating systems as possible, while
at the same time requiring no OS changes. Not only does this make the job of
porting the middleware easier, it also helps in keeping its performance as

uniform as possible across different platforms. This, in a sense, means making
the middleware implementation as potrtable as possible.

24

It has been noted that most real-time operating systems today suppott pre-
emptive priority-based dispatching [Ganssle and Barr 2003], e.g. QNX, any
flavour of RT-Linux, Integrity OS, Windows CE and many mote. Therefore,
we consider a fixed-priority policy to be the only policy the middleware can
rely upon in any particular host. It 1s not, however, the only policy we want the
middleware to support. Today there 1s a true need 1n many applications fot
more flexible scheduling than what 1s currently the state-of-practice [Regehr et
al. 2000], [Brandt et al. 2003], [Jemander 2005]. Furthermore, some
applications may need to be scheduled by one policy while others may need a
different policy, e.g. fixed ptiority or eatliest deadline first (EDF) for hard real-
time tasks, least slack time first (ILST) or shortest remaining time for soft real-
time tasks.

This 1s the reason that state-of-the-art real-ime operating systems
nowadays support hierarchical scheduling [Aldea et al. 2006], [Jones and
Regehr 1999], [Goyal et al. 1996]. This 1s a logical evolution of existing
systems, which already use a very basic form of hierarchical scheduling found
in fixed prionity scheduling. That 1s, a fixed-prionty scheduler first executes the
tasks with the highest priority and from within these tasks, i1t chooses the
oldest runnable task, i.e. FIFO within priorities. The hierarchical nature of
fixed-priotity scheduling is often not realised, as 1t 1s taken for granted.
Howevet, support for more sophisticated hierarchical scheduling in the
operating system requires a fine balance to be struck between flexibility and
usability, and many years will probably pass until such approaches become
mainstream and usable. Even then it will be hatd to agtee on any one such
mechanism to be used in all operating systems. In other words, it will be very
difficult for such mechanisms to reach the level of acceptance and integration
that fixed-priority scheduling has. Therefore, the middleware cannot yet rely
on such state-of-the-art mechanisms for providing flexible scheduling.
However, the middleware can introduce the extra flexibility in scheduling at its
level, relying only on fixed-prionity based dispatching from the operating
system.

1.2 Thesis proposition

Based on the above, it is our thesis that @ fwo-level scheduling framework, having
a fixed-priority base scheduler and support for other schedulers through dynamic

UNIVERSITY
OF YORK
LIBRARY

25

manipulation of task! priorities, provides an effective frameworR for flexible scheduling in
real-time middleware software. '

The above statement implies that:the middleware’s default scheduler 1s
based on the operating system priority scheduler. This constitutes its base
scheduler, which the middleware usually augments with extra functionality. In
many middleware systems such a base scheduler is the only one defined and
directly supported. However, using the desctibed framewotk a middleware
application can implement its own scheduler, which may have its own notion
of execution eligibility. Adopting this approach allows multiple schedulers to
interoperate and is sympathetic to the fact that real-time software 1s costly to
develop, maintain, and evolve in the face of changing scheduling or quality of
service (QoS) requitements. It must be noted, howevet, that this thests 1s not
concerned with issues of fault tolerance, 1.e. no mechanism 1s defined for
pteventing an application-defined scheduler from misbehaving,

1.3 Thesis structure

Chapter 2 contains a literature sutvey of current approaches to introducing

flexible scheduling in real-time middleware and also in real-time systems in
general.

Chapter 3 considers the problem of resoutce sharing under the ptism of
flexible scheduling. The chaptet, staying true to the design decision of taking
as much advantage as possible of the set of common features found across

different operating systems, treviews only the most widely known and used
priofity inversion avoidance algorithms and selects the one most suited for

suppotting flexible scheduling.

Chapter 4 presents the Flexible Middleware Scheduling Framework
(FMSF), a genetic framework for task scheduling at the middleware level that
allows multiple, diverse, uset-defined scheduling policies to co-exist in the
system, each one dictating the execution of a particular subset of the task set.
The chapter describes the framework, starting from the assumptions made, the

VA task is a finite sequence of instructions to be executed on a single processor and is the

smallest schedulable entity in the system. Any particular task can have many instances of execution.
Each such instance is called a job.

26

choice of protocol, and concluding with the desctiption of the actual

mechanism.

Chapter 5 provides a three-faceted evaluation of the framework. The first
part of the evaluation is the description of an application-defined schedulet
implemented in the framewotk. Our choice 1s an EDF scheduler, which has

gained significant suppott over the past several years as a valuable supplement
to fixed-ptiotity scheduling. Then, a verification of the framework’s operation

is provided, which is achieved by modelling 1t as a system of timed automata in
the UPPAAL model checker. This provides a strong indication that a correct
implementation of the framework’s protocol is possible, by testing a number
of characteristic cases. Finally, we present an examination of the types of
different scheduling polictes that can be supported by the framework. The
extended range of policies covered can satisfy a plethora of application
demands and diverse real-time needs. This demonstrates the framewotk’s full

scope.

Chapter 6 provides a practical evaluaton based on a simulated

implementation on the Real-Time Specification for Java (RTS]J). The rational
for choosing RTS] has been the wide acceptance of the Java platform, in
general, and the growing relevance of the RTS] for real-time computing. This
guarantees that the evaluation will be relevant to a significantly broad review

audience.

Finally, Chapter 7 gives a summaty of the contributions contained in this
thesis and provides suggestions for continued reseatch.

As a final note it might be worth mentioning that the citation style used in
this thesis is detived from the Council of Biology Editors (CBE) Name/Year
style, with the exception that square brackets are used instead of parentheses

to denote an in-line citation.

27

Chapter 2

Flexible Scheduling

Flexible scheduling in real-time systems is an emerging field of study with
two complementary research directions: the invention of flexible scheduling
algonithms and the development of flexible scheduling frameworks. The work
presented in this thesis belongs to the latter category. A flexible scheduling
framewotk constitutes a far more general approach, since it provides the
developer with a flexible way of choosing amongst different scheduling
algonithms. More often than not flexible scheduling algonthms focus on
addressing the needs of particular systems by providing specialised solutions.
Under a flexible scheduling framewotk an application can be scheduled by
either a hard policy or a flexible policy or a combination of the two. Such a
framewotk can be implemented at the operating system or at the middleware

level.

On a basic level, a system can be thought of providing a flexible scheduling
framework only if it provides 2 mechanism for enforcing more than one
scheduling policy. There are, generally, three approaches to introducing a new
scheduling policy to a system:

29

Pluggable schedulers — in this approach the system provides a
framewotk into which different schedulers can be plugged at start-up time.
This method can be very efficient, but it has the drawback that the loaded
scheduling modules can neither be isolated from each other nor from the
kernel itself, so a bug in one of them could affect the whole system. The
CORBA Dynamic Scheduling [OMG 2005] specification 1s an example of this
approach. Kernel loadable schedulers also fall into this category, an example
being the SHaRK kernel [Gai et al. 2001]. -

Application-defined schedulers — in this approach, a scheduler can be
added to the system by an application at any time. In this sense the scheduler
is part of the application. The system notifies the application scheduler every
time an event occuts that requites a scheduling decision to be taken. The
application scheduler then informs the system which thread should execute
next. The proposed extensions to real-time POSIX support this approach
[Aldea and Harbour 2002].

Implementation-defined schedulets - 1in this approach, an
implementation is allowed to define alternative schedulers. Typically this

would requite the undetlying implementation (operating system or virtual

machine) to be modified. The Ada 95 and real-time Java (RTS]) languages
allow this approach.

Furthermore, a system may allow one or multiple schedulers to be active at
the same time. This functionality is extremely helpful in cteating flexible mult-
purpose computing systems that need to handle applications with significantly
diffetent scheduling needs. If multiple schedulers are allowed, thete has to be
some kind of hierarchy amongst them that regulates which scheduler is in
control at any one time. Thetefore, a second classification for flexible
scheduling frameworks is whether they allow hierarchical scheduling or not.
Of course, at a very basic level even fixed-prority scheduling can be thought
of as being a two-level hierarchical scheme, with the first level being the
priotity scheduler and the second being a FIFO ot round-robin scheduler.

In general, each of the above solutions can be implemented on either the
opetating system ot the middleware level. The putrpose of this chapter is to
survey the existing literatute and practice on flexible scheduling frameworks,
and even though the focus of this thesis is universal computing middleware,
the survey presents solutions from a much broader range of implementations.
- Section 2.1 presents related research in real-ime middleware. Section 2.2
ptesents research on operating system facilities. Section 2.3 describes current

30

and proposed facilities for two major real-time programming languages, Ada
and real-time Java (RTSJ).

2.1 Middleware research

A lot of the effort for flexible real-time scheduling has gone into real-time
middleware solutions. This is an often preferred and effective solution, since a
middleware approach can mote easily abstract away the particulars of the
operating system scheduler. This section will examine a number of such

efforts.

Distributed real-time middleware: Prominent among the efforts for
distributed real-time systems is the Real-time Common Object Request Broker
Architecture (CORBA) Specification by the Object Management Group
(OMG) [OMG 2005]. Real-time CORBA (RT-CORBA) aims to offer end-to-
end predictability in distributed real-time applications. An RT-CORBA system,
being a middleware solution, needs to rely on a base operating system
scheduler. Therefore, work in RT-CORBA 1i1s of relevance to our wotk. An
RT-CORBA system 1s based on:

¢ the real-time operating system
e the real-time object request brokers (ORB)
¢ the communications transport

e the application(s)

Real-time scheduling in such a system 1s catried out by the ORB. The ORB
relies on the real-time operating system to dispatch thteads and to provide
mutexes. Scheduling is based on an end-to-end schedulable. entity called
distributable thread (DT) [OMG 2005]. A distributable thread can extend and
retract its locus of execution across physical computing nodes by location
independent invocations and (optionally) returns. Within each node, the flow
of control is equivalent to normal local thread execution. Each DT has a
unique system-wide id across all nodes. Moreovet, each DT may have one ot
more execution scheduling parameter elements, e.g. priority, deadline, or
importance. Execution of the DT is governed by the scheduling parameter
clements, on each node it visits. A DT has only one head of execution,
regardless of the number of nodes it spans. The DT interacts with the ORB.
scheduler of the node it currently runs in at predefined scheduling points (e.g.

31

application calls, locking, CORBA invocations). An important charactetistic of
the specification is that it does not define a global scheduling mechanism.
Rather, each ORB performs scheduling in its own node, based on scheduling
information passed on by the disttibutable thread.

[OMG 2005] defines two mechanisms for real-time scheduling in a
CORBA system:

* aclassic fixed-priotity scheme

* 2 dynamic scheduling scheme

Under the fixed-priority scheme, RT-CORBA defines its own prority
levels, in order to provide scheduling consistency across different nodes. On
each node these priorities map down to the local operating system priorities. A
distributable thread carties along with 1t its RT-CORBA prionity when making
a remote invocation. The priority is translated to a remote node’s local priority
and the local operating system schedules the thread according to that priority.

When using the dynamic scheduling scheme, the specification allows an
ORB to implement a dynamic scheduling policy through the use of a
pluggable scheduler. Each ORB utilises only one scheduler. The dynamic
policies described in the specification are earliest deadline first (EDF), least laxaty
Sirst (LLF) and maximize accrued utility (MAU). The specification does not
addtess interoperation between different dynamic scheduling algotithms
running at different nodes. This also means that threads residing at different
nodes and scheduled by diffetent schedulers cannot share mutually exclusive
resources. Thus, the flexibility offered by the specification is limited to only
being able to specify at system start-up which policy each ORB will follow.

A number of scheduling approaches have been proposed for real-time
ORB scheduling under the CORBA dynamic scheduling scheme.
[Aswathanarayana et al. 2005] presents an endsystem scheduling framework
that emphasises on the balanced progtess of application computation

components. The framework is based on a scheduling abstraction called group
scheduling [Frisbie et al. 2004]. It works by grouping computation
components and using an atbitrary policy (e.g. round-robin, fixed-priority) to
schedule each group. Enforcement of the particular scheduling policy is
achieved with the use of dynamic priotity changes, which is a well established

technique [Burns and Wellings 1997]. The Kokyu framewotk, [Gill et al. 2002,
2003}, 1s an ORB scheduling setvice that provides so-called “strategized

32

scheduling”. It consists of pluggable schedulers and configutable dispatching
queues. These queues are priotity otdeted but can have various dispatching
policies, e.g. FIFO, earliest deadline, least laxity. The scheduler specifies the
number of queues it is going to need and the type of dispatching policy each
queue is going to use. Each queue has one local thread setvicing it, which is set
to the priofity of the queue. The above approaches, although able to support
different scheduling polictes, do not address the 1ssue of resoutce sharing
between threads scheduled by different schedulers.

To address the problem of the interoperation of different dynamic
schedulers across different nodes Cotsaro et al. [2001] defines a meta-level
model that enables inter-working between diverse scheduling policies by
translating scheduling properties from one policy to another. By defining the
terms property, competitor and scheduler the paper goes on to define an
adapter function that translates the propetties of competitors according to one
scheduler to properties according to another scheduler. Sharing of resources 1s
not specifically addressed. It is left to each ORDB’s local scheduler to address

the problem.

In addition, there have been several efforts to augment RT-CORBA with
an end-to-end distributed real-time scheduling service (e.g. [Zhang et al. 2005],
[DiPippa et al. 2001], [Kalogeraki et al. 2000], [Wolfe et al. 1999]). Of those,
only [DiPippo et al. 2001] provides a distributed protocol for bounding
priotity inversion, but, on the other hand, it supports only deadline monotonic
scheduling. |

The CPU Broker [Eide et al. 2004] 1s a CORBA-based processor capacity
reservation manager. It resides above a particular host’s ORB rather than
within the ORB. The broker can mediate between both CORBA and non-
CORBA applications and the RTOS, and can implement a variety of different,
usually “soft”, reservation schemes. Reservations are negotiated on two levels.
The top level, called the advocate, receives an initial reservation request from
the application. There is at least one advocate per application. Each advocate

“processes its application’s request based on feedback from the application
~ itself and from the system (e.g. consumed CPU time). It then forwatds the,
possibly modified, reservation request to the second level. The second level
implements a system-wide reservation policy. It is responsible for making the
final request to the RTOS. As a response to an advocate’s request the system-
wide policy may re-compute the reservations for all the broket’s’ managed

33

applications. The CPU broker, unlike our framework, 1s especially targeted
towards soft teal-time dynamic systems. The framework proposed in this

thesis is able to address a broader set of applications, since it can enforce a
broader range of scheduling policies. '

Other middleware: An interesting solution to the problem of executing
both real-time and non-real-time applications on a single processor 1s
presented in [Deng and Liu 1997]. Their system is based on an EDF operating
system scheduler that sets up and schedules different servers. Each real-time
application has a dedicated server, while all non-real-time applications are
executed by a single total bandwidth server [Sputi and Buttazzo 1996]. A real-
time application server can be either a constant bandwidth server [Deng et al.
1996} or a total bandwidth server. Within each setrver tasks are scheduled
according to a particular scheduling algorithm by the server scheduler. The
server scheduler for non-teal-time applications uses a time-sharing algorithm.
The setver schedulers of real-time applications are chosen by each real-time
application. Hence, this scheme supports two-level hierarchical application-
defined scheduling, as does the framewotk presented in this thests, with the
difference that our approach is based on a fixed-ptiority scheduler, which is
much more common amongst RTOS. Resoutce contention within a servet 1s
resolved accotding to the locking policy used by the application. Resoutce
contention across different applications is handled by the non-preemptable
critical section (NPS) protocol [Mok 1983]. This is a rather crude way of
dealing with priority inversion. According to this protocol, whenever a task
holds a globally shared resoutrce, it becomes non-preemptable and remains as
such until it releases all such resources. In fact, the whole server that executes
the locking task becomes non-preemptable. This introduces ptiotity inversion
to tasks that are not using the particular resource and would normally preempt
the locking task. In contrast, our framewotk uses a more efficient protocol
that bounds priority invetsion to the longest critical section of a lower
eligibility thread. To addtess the issue of portability actoss the vast majotity of
commerctal RTOS, Kuo and Li [1999] translated this framework to one based
on a fixed-priority scheduler. In their system all servers ate sporadic setvers

[Sprunt et al. 1989}, because of the incompatibility of the constant utilisation
and total bandwidth setvers with the fixed-priority scheduler.

Another approach for flexible scheduling based on POSIX-compliant

RTOS 1s given by Li et al. [Li et al. 2004]. They have provided a formalized
POSIX framework, which aims at supporting various utility accrual (UA)

34

scheduling algotithms, but can also support non-UA scheduling policies. The
heart of the framework is the meta scheduler. The meta scheduler runs as a
sepatate POSIX thread and enforces a particular policy by dynamically
changing application thread priorittes, as in [Burns and Wellings 1997].
Scheduling decisions ate dictated by application-defined schedulers that the
meta scheduler queties at each scheduling event. Their approach is similar to
the approach presented in this thesis, with three major differences. First, the
meta scheduler does not implement a particular priority mnversion avoidance
algorithm. Presumably, each application scheduler implements its own locking
policy, although this is not specifted. Howevert, this means that resoutce
sharing between different schedulers 1s not supported. Secondly, the meta
schedulet keeps a list of resoutces that it manages. These tesources cannot be
used by POSIX threads running outside the meta scheduler, If outside threads

could use them, then the operating system would apply its own priotity
inheritance mechanism, causing threads to change priority without the
knowledge of the meta scheduler. Thirdly, the meta scheduler runs as a
sepatrate process in the operating system. In contrast, this thesis suggests that
scheduling operations should be made in the context of scheduled threads.
This latter approach greatly reduces the number of context switches and hence
the amount of overhead the application experntences. |

Another processor reservation manager, similar to the CPU Broker above,

is the Dynamic Quality-of-Service Resource Manager (DQM) [Brandt et al.
1998], [Brandt and Nutt 2002]. This middleware is illustrative of a categoty of
systems that approach the issue of flexibility in scheduling with the notion of
“quality of service” (QoS). Mote specifically, DQM uses and extends the
model of QoS levels introduced by Tokuda and Kitayama [1993]. A QoS level
describes the amount of CPU an application 1s entitled to. In general, the
higher the level, the higher the CPU time allocation. The DQM is designed to
address the soft real-ime needs of desktop applications. It prowvides
implementation-defined non-hierarchical scheduling. The resource manager
can be initialised with one of four approximation algorithms that select the
level at which each application must execute. It 1s explained that the user can
affect the enforced policy by choosing different parameters for the different
QoS levels that their application will run at. However, this is nothing more
than the equivalent of choosing a prionty in a fixed-priority system. Also, the
progtammer must specifically program her application to use the DQM by
calling certain functions. Overall, the approach is less flexible than the

framewotk presented in this thesis because of three reasons: 1) CPU allocation

35

policies are implementation—de'ﬁned instead of application-defined, 1)
applications running under DQM must be specially programmed to interface
with the manager, and iii) DQM does not provide any synchronisation
mechanism for sharing non-CPU resources. |

The concept of servers is used by Kaneko et al. [1996]. The authors use an
SGI Challenge multiprocessor system running IRIX and implement a
planning-based scheduler on top of the operating system priotity schedulet.
The planning-based scheduler runs at a very high prionty and its task is to
direct the execution of hard real-time tasks and of multimedia servers running
on different processors (one server per processor). It performs admission
control on newly started tasks and dynamically generates a schedule of feasible
tasks. Tasks running ditectly under the planning-based scheduler are
guaranteed all required resources, including a ptrocessor. These are the hard
real-time tasks. When a multimedia task arrives, the planning scheduler has to
again access its feasibility. If it is schedulable, a server is created for it on an
available processor, ot the task is added to an existing setver. The setver, on its
patt, schedules multimedia tasks accotding to one of four allocation policies,
which is chosen at start-up time. This approach provides a hierarchical
implementation-defined scheduling scheme. Scheduling flexibility is very low,
since the programmer cannot choose the scheduling policy for hatd real-time
tasks and has a choice of only four policies for multimedia tasks. Resoutce
shating is handled by the planning-based scheduler, but in a very restricting
way: tasks are added to the schedule only if all required resoutces are available.

Furthetmore, there is no specified safe way of sharing resources between hard
real-time tasks and multimedia tasks.

2.2 Flexible scheduling in real-time operating systems

Although some specialist operating systems support different scheduling
approaches, the vast majority of commetcial-off-the-shelf (COTS) teal-time

operating systems support fixed-ptiotity preemptive scheduling. However, the

idea of flexible scheduling has also been applied in many, mainly experimental,
RTOS.

One solution is presented by Wang and Lin [1999] in RED-Linux [Wang
and Lin 1998], in which a two-level scheduler is used. The central idea in this
approach is the use of four scheduling attributes: priority, start and finish

36

times, and execution time budget. These attributes are meant to capture the
basic minimum set of common characteristics across different scheduling
algorithms. However, the authors identified this set by examining only three
scheduling paradigms. Therefore, although this mechanism can support some
scheduling algotithms, there may be othets that cannot be implemented, if
they are based on parameters different from those chosen. The framework
itself 1s based on a lower kernel-level scheduler, called the dispatcher, and an
upper level scheduler, called the alocator. The allocator can be implemented in
either the kernel space or the user space, depending on the implementation
charactenistics. An application passes its scheduling characteristics to the
allocator. The application can also, at runtime, instruct the allocator as to
which policy to enforce. This, essentially, constitutes application-defined
scheduling. The allocator enforces a particular policy by specifying to the
dispatcher which scheduling attributes to use when making a scheduling
decision. The attributes that participate in the scheduling decision collectively
constitute the effectzve priority of the task. For example, in otrder to enforce EDF
scheduling the allocator specifies the finish time as the effective priority. The
scheduling attributes together with the information about a task’s effective
ptionity are passed to the dispatcher through a special APIL. The dispatcher
inspects the values of the scheduling attributes that make up the effective
prionty, chooses one job from the ready queue and dispatches 1t. Apart from
the limited number of supported scheduling algorithms, this solution does not
address the implementation of ptiority inversion avoidance protocols for
shared resources. Finally, it is not an easily portable solution, since it i1s
implemented on top of RED-Linux, which 1s a specially modified version of
Linux.

A different approach is followed by Ford and Susatla [1996]. They define
CPU Inheritance Scheduling where the application defined schedulers are
threads which donate the CPU to other threads. This donation 1s achieved
through the kernel dispatcher, which only implements thread blocking,
unblocking and CPU donation. The dispatcher 1s not a thread, rather it
executes in the context of the running thread. Furthermore, it is not a standard
RTOS dispatcher, e.g. it does not have any notion of thread priorities. It 1s
each scheduler’s responsibility to provide the necessary context for the policy
it 1s implementing. All schedulers ate running as user-level threads that instruct
the dispatcher to donate CPU time to one of their threads through a
schedule operation. Scheduler threads can also be scheduled by other
schedulers. Thus, a scheduler hierarchy of atbitrary depth is formed with child

37

schedulers “inheriting” CPU time from their patrent scheduler. Only the
scheduler at the root of this hierarchy has all the CPU time to donate. In this
approach the only method used to avoid priotity inversion is a special form of
priotity inheritance, which may be a limitation for some application-defined
policies. On the other hand, the approach theoretically allows any type of

scheduler to be implemented and also allows multiple schedulers to co-exist 1n
the system.

Another solution commonly found in RTOS is pluggable schedulers. The
application scheduling algotithms are modules to be included or linked with
the kernel. With this mechanism the functions exported by the modules ate
invoked from the kernel at every scheduling poimnt. In RT-Linux [Yodatken
1999] three scheduling modules are included: the standard fixed-prionty
scheduler, an earliest-deadline-first scheduler and a rate monotonic scheduler,
although it is not clear whether multiple schedulers can co-exist in a system. In
addition, there is no protocol defined to handle ptiority invetsion in a case
whete arbitrary schedulers co-exist in RT-Linux. Vassal [Candea and Jones
1998], a modification of the Windows NT 4.0 ketnel, can support a second
schedulet, apart from the default system scheduler, which can be dynamically
loaded. This scheduler can dynamically choose to schedule its threads or let
the native scheduler perform the task. However, there is again the issue of

resource sharing between threads scheduled by different schedulers. S Ha.R.K

[Gai et al. 2001] is a third pluggable approach. Multiple scheduling modules
can be loaded at system statt-up and, thus, a hierarchy of schedulers can be
created. The first module to be loaded is the highest scheduler in the
hierarchy, the second is the next highest and so on. Whenever a task becomes
runnable at a scheduler highet than the scheduler of the running task, the latter
gets preempted. Hence, S.Ha.R.K. supports a two-level hierarchical scheduling
scheme with priority scheduling at the root of the hierarchy and an atbitrary
numbet of pluggable schedulers at the second level. The approach is mote
flexible than the ptevious two in the sense that pluggable locking policy
modules can be loaded as well at start-up, thus providing integrated suppott
for 2 number of priority inversion avoidance policies, e.g. ptiotity inheritance,

priotity ceiling emulation [Sha et al. 1990], stack resource policy [Baker 1991]
ctc.

Application-defined scheduling is offered in MaRTE OS [Aldea and
Hatbour 2001, 2002, 2004b]. An applicaton-defined scheduler can be
implemented as either a sepatrate scheduler thread or its functionality can be

38

executed within the context of a scheduled thread. Furthermore, in the former
case a scheduler thread can either run 1n user space or, for increased efficiency,
in kernel space. To simplify the effort of implementing applicatton-defined
policies the concept of a task’s “urgency” is introduced. The urgency of a task
is its priority according to a particular scheduling policy. So, for example, for
EDF scheduling the urgency is the absolute deadline. This is reminiscent of
the notion of effective priority in RED-Linux. The idea is that when prionty
queues ate ordered by urgency the dispatcher automatically selects the most
eligible task. However, this notion of urgency does not suffice for policies
where task urgencies change dynamically during a task’s release. Reatranging
the queue under constant changes 1n urgency values would probably be too
costly. For the shating of resources the approach supports the standard
POSIX protocols (priority inheritance, priotity ceiling emulation), and also
offers an urgency inheritance protocol and the stack resource policy, which, as
is shown in Chapter 5 of this thesis, suppotts a variety of scheduling policies.
A potential weakness compated to the framework in this thesis is that
application scheduled threads do not run in clear separation of system
scheduled threads. A thread scheduled by an application scheduler can execute
at the same priority level as system scheduled threads, either in FIFO order or
round-robin. This can mote easily lead to etroneous situattons where an
application scheduled thread executes at the wrong prionty level and gets
preempted by system scheduled threads. In contrast, the flexible middleware
scheduling framework in this thesis defines bands of execution where threads
under a particular application-defined scheduler run. The only way to tun at
the same priority as system scheduled threads is if a band thread locks a
resource also used by system threads. *

The European FIRST project [FIRST 2005] i1s a joint effort to add
scheduling flexibility to the RTOS. The project has produced the FIRST
Scheduling Framework (FSF) [Aldea et al. 2006], whose key abstraction 1s the
service contract. The establishment of service contracts between the applications
and the undetlying scheduler 1s meant to capture the scheduling requirements
of each application and are independent of the scheduling policy used. The
-result of an accepted contract i1s the creation of a server particular to the
application. Vatious server schemes can be used, e.g. constant bandwidth
servers on top of an EDF scheduler, or sporadic servers on top of fixed
priotities. Application threads are run directly by the server. Alternatively, the
FSF can be extended to a two-level hierarchical scheduling architecture,
according to which the lower level scheduler is the scheduler that takes care of

39

the setvice contracts, and each of the top-level schedulers runs within a
particulat FSF server and schedules application threads according to its
particular policy. At the moment, FSF provides top-level schedulers only as
part of its implementation, ie. top-level schedulers ate implementation-
defined. The teason for this, as explained in [Aldea et al. 2006], is that it 1s
simpler than having a specific API for application schedulers. However, this
makes the framework less flexible than if it was supporting application-defined
scheduling. Another issue regarding FSF is the fact that there 1s no run-time
mechanism for mutual exclusion in shared resources. Two reasons are given
for this: the first is upward compatibility of legacy code that is using regular
mutexes, and the second is that enforcing wotst case execution time for critical
sections is computationally expensive. Thus, there is no standard way of
sharing resources between threads scheduled by different schedulers. A further
problem is the fact that there is no standard way of providing FSF
functionality. As explained in [Aldea et al. 2006], “each FSF implementation
would have to be tailored to a specific RTOS”. Therefore, the FSF, at the
moment, does not promote portability. However, an effort is underway [Aldea
and Harbour 2004] to incorporate the new mechanisms into the POSIX real-
time operating system standards [IEEE 2004]. In this respect, it is very helpful
that due to the use of setvets the framewotk is independent of the undetlying
operating system scheduling policy. This has been demonstrated by

implementing the framewotk on two RTOS, MaRTE OS [Aldea and Harbout
2001} and SHaRK [Gai et al. 2001].

2.3 Flexible scheduling in real-time programming
languages

In this section we will examine the approach taken and the proposals made
for two major real-time languages, Ada [Ada-Europe 2007] and real-time Java
[Bollella et al. 2000], [Belliardi et al. 2006]. Ada is, pethaps, the best known
real-time language, having being specifically designed for building mission-
critical military systems in the mid-seventies. Java is a relatively late entry into
the genre, but shows much promise and has amassed great support for real-
time development over the last ten years. It is, thus, worth looking at how

these two popular real-time programming tools promote the development of
flexibly scheduled systems.

40

a
~ O T R g TITEF e & W = h - [- S o !

Ada recently underwent a major revision and several new features have
been included in the new reference manual [Ada-Europe 2007]. Ada supports
one type of scheduling, fixed-prionity scheduling. However, new dispatching
policies have been added, which dictate the way tasks are ordered in a priority
queue. Apart from FIFO otdering, which can be either preemptive or non-
preemptive, Ada now offers round-robin [Burns et al. 2003] and eatliest
deadline first dispatching [Burns et al. 2004]. All these policies are
implementation-defined, therefore, as we can see the language suppotts a two-
level hierarchical implementation-defined scheduling scheme, where the low-
level scheduler 1s fixed-priority based and the second level is defined by the
priority queue order. FIFO and round-tobin dispatching both use the priority
cetling emulation protocol to handle resource contention. Eatliest deadline
first dispatching enforces priority inversion avoidance through the preemption
level protocol (PLP) [Burns et al. 2004], which 1s a special version of the stack
resource policy [Baker 1991]. The mechanics of the PLP, though, are the same
as those of the priority ceiling protocol. Therefore, Ada uses the same prionty
inversion avoidance mechanism across all supported policies, which allows for
great flexibility in designing a complex real-time system with components
running under different scheduling policies. All in all, it can be said that
although the number and types of policies are restricted, the existence in Ada
of all the basic real-time scheduling policies under one scheme and the ability
to use these policies in a cooperative manner is extremely useful to the real-
time systems develdper and ensures the continuation of the language’s
televance 1n the real-ime domain.

During the process of defining the new specification of the Ada language
an interesting proposition was made for the endowment of Ada with
application-defined scheduling capabilities [Aldea and Harbour 2003], [Aldea
et al. 2004]. Applicatton schedulers implement primitive operations that are
invoked by the system when a scheduling event occurs, and in their reply they
can specify which task to suspend and which to execute. This is approach is
similar to the framework of this thesis. One difference is that application
schedulers under this framework can exchange information between them,
which can lead to the construction of cooperative schedulers. On the othet
hand, this framework 1s based on a previous proposal by the same authors
[Aldea and Harbour 2002] for applica<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>