
A FRAMEWORK FOR FLEXIBLE
SCHEDULING IN REAL-TIME

MIDDLEWARE

Alexandros Ze, elidis

Submitted for the degree of Doctor of Philosophy

The University of York
Department of Computer Science

November 2007

UNIVERSITY
OF YORK
UBRAR

Abstract

The traditional vehicle for the deployment of a real-time system has been a
real-time operating system (RTOS). In recent years another programming

approach has increasingly found its way into the real-time systems domain: the

use of middleware. Examples are the so called pervasive systems (embedded,
interactive but not mobile), and ubiquitous systems (embedded, interactive and
mobile), e. g. hand-held devices. These tend to be dynamic systems that often
exhibit a need for flexible scheduling because of their operating requirements
or their execution environment. Thus, today there is a true need in many real-
time applications for more flexible scheduling than what is currently the state-
of-practice. By flexible scheduling we mean the ability of the program
execution platform to provide a range of scheduling policies, all the way from

hard real-time to soft real-time policies, from which an application can choose

one most suited to its needs. Furthermore, some applications may need to be

scheduled by one policy while others may need a different policy, e. g. fixed

priority or earliest deadline first (EDF) for hard real-time tasks, least slack time
first (LST) or shortest remaining time for soft real-time tasks. It would be
difficult for the middleware to expect this functionality from the RTOS. This

would require a fine balance to be struck in the RTOS between flexibility and
usability, and many years will probably pass until such approaches become

mainstream and usable.

This thesis maintains that this flexibility can be introduced into the

middleware. It presents a viable solution to introducing flexible scheduling in

real-time program execution middleware in the form of a flexible scheduling
framework. Such a framework allows use of the same program execution
middleware for a variety of applications - soft, firm and hard. In particular, the
framework allows different scheduling policies to co-exist in the system and
their tasks to share common resources. The thesis describes the framework's

protocol, examines the different types of scheduling policies that can be

supported, tests its correctness through the use of a model checker and
evaluates the proposed framework by measuring its execution cost overhead.
The framework is deemed appropriate for the types of real-time applications
that need the services of flexible scheduling.

3

Contents

List of Figures ... 11

List of Tables
.. 15

Chapter 1 Introduction ... 21

1.1 Real-time scheduling at the middleware level 24

1.2 Thesis proposition ... 25

1.3 Thesis structure ... 26

Chapter 2 Flexible Scheduling ... 29

2.1 Middleware research ... 31

2.2 Flexible scheduling in real-time operating systems 36

2.3 Flexible scheduling in real-time programming languages
.............. 40

2.4 Summary
... 42

Chapter 3 Resource sharing for flexible scheduling 45

3.1 Priority-based resource sharing protocols 48

3.1.1 Basic priority inheritance (PI) ... 48

3.1.2 Priority-ceiling protocols

3.2 Preemption-ceiling protocols .. 51

3.2.1 Stack Resource Policy (SRP) ... 54

5

3.2.2 Basic Preemption-Ceiling Protocol (BPreCP)
58

3.2.3 Self-suspending tasks ..
60

3.2.4 The role of the PLT and EI ..
63

3.3 The relation between preemption-ceiling and priority-ceiling
protocols ... 70

3.4 The Preemption Level Protocol (PLP) .. 73

3.5 Summary
... 79

Chapter 4A Flexible Middleware Scheduling Framework 81

4.1 Basic assumptions ... 82

4.2 Enforcing diverse scheduling policies using priority levels........... 83

4.2.1 Basic scheduling of n tasks .. 84

4.2.2 Scheduling points .. 85

4.2.3 Decoupling scheduling from normal task execution 86

4.3 Scheduling band operations ... 87

4.3.1 Keeping an operation atomic ...

4.3.2 The application scheduler API ... 91

4.3.3 Mode changes .. 92

4.4 Multiple Schedulers ... 92

4.5 Sharing resources in the framework
... 95

4.5.1 The eligibility test (FMSF_ET)
... 96

4.5.2 The preemption level test (FMSF PLI)
97

4.5.3 Eligibility inheritance (FMSF_PI, FMSF_EI)
102

4.5.3.1 Sharing resources within one band 103

4.5.3.2Sharing resources between band and non-band tasks 104

6

4.5.3.3Sharing resources between bands
... 109

4.5.3.4Sharing resources strictly between non-band tasks 110

4.5.4 Using an application-defined resource sharing protocol.... . 111

4.5.5 Properties of the resource sharing protocol 112

4.5.6 A note on synchronization and communication 117

4.6 The Flexible Middleware Scheduling Protocol (FMSF) 118

4.6.1 Protocol properties ... 125

4.7 Summary ... 131

Chapter 5 Framework Evaluation .. 133

5.1 An EDF application scheduler .. 134

5.2 Modelling the framework ... 136

5.2.1 The UPPAAL tool .. 137

5.2.2 Architecture Description ... 138

5.2.3 Global declarations .. 140

5.2.4 Thread .. 143

5.2.5 BaseSchedu le r ... 148

5.2.6 Dispatcher ... 161

5.2.7 PriQueue ... 162

5.2.8 EDFScheduler .. 162

5.2.9 Formal analysis of the model .. 167

5.3 Accommodating diverse scheduling policies 171

5.3.1 Supporting application of a policy within a band
................. 171

5.3.2 Sharing resources under a new policy 176

5.3.2.1Using an application-defined resource sharing protocol... 177

.

7

5.3.2.2Using the FMSF ..
179

5.4 Summary
...

184

Chapter 6 Implementing the Framework ...
187

6.1 The Real-Time Specification for Java ... 188

6.2 Applying the FMSF to RTSJ 191

6.2.1 Changes to the PriorityScheduler dass
...................... 191

6.2.2 Supporting scheduling band operations 194

6.2.3 The PreemptionLevelParameters class:............ 197

6.2.4 Application-defined schedulers ... 198

6.2.5 Execution eligibility inversions ... 200

6.2.6 EDFScheduler: an application-defined scheduler............ 202

6.2.7 Impact on feasibility analysis ... 204

6.3 A simulated implementation of FMSF
... 205

6.3.1 The Preempt ionLeve1PriorityScheduler dass
.... 206

6.3.2 Changes to the BPreCPResourcePolicy class 208

6.4 Measuring the FMSF overhead ... 209

6.4.1 Caveat ... 209

6.4.2 Single-thread test ... 210

6.4.3 Multi-thread tests .. 211

6.4.4 Tests with two application-defined schedulers 218

6.4.5 Assessment .. 222

6.5 Summary
... 226

Chapter 7 Conclusions and Future Work ..
229

7.1 Contributions
... 231

8

7.2 Future work :.. 233

7.3 Final comment ...
234

Appendix A: Test Code .. 235

A. 1 Single-thread test ..
235

A. 2 Multi-thread test ...
238

A. 3 Tests on RTSJ methods and operations ...
242

A. 3.1 Measuring setPriority () ...
244

Table of Symbols ..
247

References ..
249

9

10

List of Figures

Figure 3.1: Deadlock of self-suspending tasks under SRP 61
Figure 3.2: A circular dependency of n tasks .. 63
Figure 3.3: The role of eligibility inheritance and the preemption level test in

resource sharing protocols ...
66

Figure 3.4: SPCP schedule for the tasks of Table 3.1 ... 71
Figure 3.5: IPCP schedule for the tasks of Table 3.1 .. 72
Figure 3.6: Priority queues with PLP ... 74
Figure 3.7: PLP schedule for the tasks of Table 3.1 .. 77
Figure 4.1: Scheduling band operation ..

89
Figure 4.2: The effect of a preceding base scheduler call on a scheduling band

operation ... 90
Figure 4.3: Abstract view of flexible middleware scheduling 94
Figure 4.4: Eligibility inheritance as a "black box" operation when locking

within a band
.. 104

Figure 4.5: Locking at a non-band priority with priority inheritance
.............. 106

Figure 4.6: Non-band task locking at a band ... 108
Figure 4.7: Priority and eligibility inheritance when locking between two bands

.. 110
.

Figure 4.8: An application scheduler's conceptual locking list
.............:.......... 114

Figure 4.9: Preserving the FIFO ordering of queues when unlocking a
resource ... 115

Figure 4.10: Blocking on the system ceiling takes place within the base

scheduler call .. 116
Figure 4.11: An example of a schedule of four tasks running within the

framework
...

124
.

Figure 5.1: An EDF application scheduler's conceptual locking list
..............

135
Figure 5.2: An EDF application scheduler's conceptual medium lock locking

list ... 136

11

Figure 5.3: Model architecture ...
139

Figure 5.4: The Thread automaton ..
144

Figure 5.5: BaseScheduler abstract automaton ..
149

Figure 5.6: The reschedule? synchronization ...
155

Figure 5.7: The prepareToLock? synchronization ..
156

Figure 5.8: The reschedule lock? synchronization ...
157

Figure 5.9: The prepareToUnlock? synchronization ...
157

Figure 5.10: The reschedule_unlock? synchronization ...
158

Figure 5.11: hepr ..
159 pareToSu bend? synchronization

Figure 5.12: The reschedule_resume? synchronization ...
160

Figure 5.13: The Dispatcher automaton ..
161

Figure 5.14: The PriQueue automaton ..
162

Figure 5.15: The EDFScheduler automaton ...
163

Figure 5.16: The test system ...
167

Figure 5.17: Round-robin scheduling within a band ... 173

Figure 5.18: Changes in eligibility within a round-robin band
......................... 174

Figure 5.19: Eligibility in job-level dynamic policies with static task ordering

..
181

Figure 5.20: Eligibility in job-level dynamic policies with dynamic task ordering

..
181

Figure 5.21: Two tasks with job-level dynamic eligibilities 183
Figure 6.1: Existing RTSJ Scheduler class hierarchy

..................................... 191
Figure 6.2: Adding base scheduler calls to a potentially blocking library method

..
196

Figure 6.3: Adding base scheduler calls to a potentially suspending bytecode

instruction
...

19 6
Figure 6.4: Adding base scheduler calls within the virtual machine

196

Figure 6.5: The SchedulingParameters class hierarchy
..............................

197

Figure 6.6: The ApplicationDef inedScheduler class diagram
................

198

Figure 6.7: The MonitorControl class hierarchy
..

201

Figure 6.8: EDFScheduler in the Scheduler class hierarchy
........................

202

Figure 6.9: EDFPeriodicParameters in the Re lease Parameters class
hierarchy .. 203

Figure 6.10: Execution of a scheduling band operation under a simulated
framework implementation

..
205

Figure 6.11: Preempt ionLeve1Priori tyScheduler in the Scheduler class
hierarchy

.. 207
Figure 6.12: Measuring execution time with getTime ()

210
Figure 6.13: Base scheduler call execution times for one test thread 211

12

Figure 6.14: Base scheduler call execution times for one test thread
213

Figure 6.15: Multi-thread reschedule () execution time estimates 214
Figure 6.16: Multi-thread prepareToLock () execution time estimates....... 214
Figure 6.17: Multi-thread rescheduleLock () execution time estimates..... 215
Figure 6.18: Multi-thread prepareToUnlock () execution time estimates.. 215
Figure 6.19: Multi-thread rescheduleUnlock () execution time estimates 216
Figure 6.20: Multi-thread prepareToSuspend (SLEEP) execution time

estimates .. 216
Figure 6.21: Multi-thread rescheduleResume () execution time estimates 217
Figure 6.22: Multi-thread prepareToSuspend (WFNP) execution time

estimates .. 217
Figure 6.23: reschedule () execution time estimates for two EDF schedulers

.. 218
Figure 6.24: prepareToLock () execution time estimates for two EDF

schedulers .. 219

Figure 6.25: rescheduleLook () execution time estimates for two EDF

schedulers .. 219
Figure 6.26: prepareToUnlock () execution time estimates for two EDF

schedulers .. 220
Figure 6.27: rescheduleUnlock () execution time estimates for two EDF

schedulers .. 220
Figure 6.28: prepareToSuspend (SLEEP) execution time estimates for two

EDF schedulers ... 221
Figure 6.29: rescheduleResume () execution time estimates for two EDF

schedulers .. 221
Figure 6.30: prepareToSuspend (WFNP) execution time estimates for two

EDF schedulers ... 222

13

14

List of Tables

Table 3.1: Task release times and execution costs ...
65

Table 3.2: Response times for tasks of Table 3.1 ..
69

Table 3.3: Comparison of resource sharing protocols ..
80

Table 4.1: Absolute preemption level distribution (apl table)
100

Table 5.1: Number of threads per band ..
168

Table 5.2: Resource usage per test case ...
168

Table 6.1: Execution times of typical RTSJ operations 225

Table 6.2: Increase percentages due to the framework 226

15

16

Acknowledgements

I wish to express my deepest gratitude to my supervisor, Professor Andy

Wellings, for his continual and essential support throughout the course of my

research. His guidance and encouragement have truly defined for me what a

supervisor should be like, "and without them this work would never have been

completed. I would also like to sincerely thank Professor Alan Burns for the

crucial help he offered me throughout a series of discussions on the protocol,

and for the understanding he showed as Head of the Department through the
darker moments of my research life. I am also grateful to Dr. Neil Audsley,

who has been my assessor for the best part of my research effort and whose

comments during our meetings were always constructive and encouraging.

I would like to express my gratitude to the Greek State Scholarships

Foundation (I. K. Y.) for funding me for the best part of my research, to
Microsoft Research (in particular Dr. Fabien Petitcolas) for providing me with

a one-year grant, and to the University of York's Student Financial Support

Unit for extending valuable financial support. Without them this research

work would be impossible.

I would further like to thank all the staff and fellow research students, past.

and present, in the Real-Time Systems Group for creating an ideal working

environment where I always felt "at home" (evident from the long hours which
I have spent in my office during all these years). I would like to thank Osmar

Marchi dos Santos for out discussions and his help with model checking. Also,

thanks are due to Rob Davis and Ian Broster for being always willing to hear

my questions and provide me with answers. My thanks also go to Erik Hu,

Jagun Kwon, Andrew Borg, Armando Aguilar-Soto and Adam Betts for our
relaxing conversations and useful discussions, and to Attila Zabos for our
discussions throughout many of the long ours spent in the office and for his
help.

In York I have had the pleasure of making good friends who have helped

me with their support throughout these years. Amongst them I would like to

acknowledge Nikolaos Nasios and Georgios Despotou. Also, Dimitris, Tzeni,

Giannis and Margaritis for their endless hospitality. Back home in Greece my
friends have also offered me immeasurable support during my studies, as they

17

have always done. In particular, I wish to thank Florentios, Stergios, Kostas,

Komnenos, Dimitris and Grigoris for being always ready and willing to help

me.

My deepest gratitude goes to Elpida, who has ceaselessly and selflessly

stood by my side all these years, making my life. brighter and happier.

Finally, I wish to deeply thank my family, Xenophon, Elpida and Maria, for

the encouragement and love with which they have surrounded me during

these years and all my life.

18

Declaration

Certain parts of this thesis have appeared in previously published papers;
specifically the following references:

Zerzelidis A, Wellings A J. 2006. Getting More Flexible Scheduling in the
RTSJ. In Proceedings 9th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC'06),
IEEE Computer Society, pp. 3-10.

Zerzelidis A, Wellings A J. 2006. Model-based verification of a framework for
flexible scheduling in the real-time specification for Java. In Proceedings

4th International Workshop on Java Technologies for Real-Time and
Embedded Systems QTRES'06), vol. 177. ACM Press, pp. 20-29.

Zerzelidis A, Burns A, Wellings A J. 2007. Correcting the EDF protocol in
Ada 2005. ACM Ada Lett, Vol. XXVII Issue 2 (Aug. 2007).

19

20

Chapter 1

Introduction

A real-time system is one where correctness of a computation is dependent

upon its completion time. The term "real-time" denotes the need for such

systems to respond to real-world events taking place in real-world time, in a
predictable fashion. Producing a response either too early or too late is equally
erroneous. Furthermore, a hard real-time system is one where incorrect

completion time, e. g. failure to meet a deadline, is considered to be an
incorrect result with serious or even disastrous consequences for the system
and its environment. In contrast, a soft real-time system is tolerant of incorrect

completion times. Such a result, however undesirable, can still be tolerated by.

a soft real-time system.

The traditional vehicle for the deployment of a real-time system is a real-
time operating system. With this approach a real-time application is developed

only for a particular operating system. However, in recent years another
programming approach has increasingly found its way into the real-time
systems domain: the use of middleware. A middleware system is a piece of
software that functions as a conversion or translation layer between two

21

different types of applications, in a way that always allows an application of the

first type to successfully communicate with any application of the second type.

In other words, it allows applications of one type to be portable with respect to

another type. There are various types of middleware systems, some examples
being web browsers, database middleware, program execution middleware
(also known as universal computing middleware (UCM)) and distributed

computing middleware [CDE 2007a]. The appeal of the middleware concept

to the real-time community is based on two main reasons: the need for

portable real-time software and the need for distributed real-time computing.
Program execution middleware covers the first need while distributed

computing middleware satisfies the second. This has been done through the
development of real-time versions for both middleware types.

gram execution middleware is a type of middleware that sits Real-tzme pro
between a real-time operating system (RTOS) and an application program, and

enables the application to run on any RTOS/hardware platform without

modification, while providing real-time guarantees for the execution of the

application. Such middleware is responsible for providing all the functionality

needed to a real-time application that would normally be found in the

operating system. Examples of this functionality include scheduling of real-
time tasks, resource sharing, memory management and memory access,

asynchronous event handling and asynchronous transfer of control. This is

extremely important as it completely, or at least to a very large extent, removes
the cumbersome process of porting the application. Whereas in desktop

environments porting is less of an issue, because of the dominance of the x86
architecture, the problem has remained significant for real-time systems. The

main reason behind this is the fact that most of today's real-time systems are
embedded systems, specifically consumer electronics. It is often the case with
such systems that many different host architectures are used, either
simultaneously or because of the evolution in a product's lifecycle. Code

portability in such systems is particularly important, since it allows for faster

time-to-market and lower production costs. For example, if, during
development of an embedded system, implementation decisions dictate that a
more powerful platform should be used, then, with portable code, transition
to a new CPU would be almost trivial, since code would (ideally) not have to
be re-written. , This also applies to the development of new

versions /generations of embedded systems where code stays almost the same,

while the hardware is updated. Therefore, real-time -program execution

22

middleware have an important role to play. An example of this kind of
middleware is the Real-Time Specification for Java (RTSJ).

Distributed real-time middleware is a type of middleware that enables software
components, possibly written in multiple computer languages and running on
multiple computers, to work together. This is an important and growing
segment of the IT market. Examples include distributed control of large-scale

telecom switching systems and autonomous vehicles over wireless links.
Distributed real-time systems can run the range of requirements from hard

real-time, e. g. avionics mission computing, to soft, yet stringent, real-time
requirements, e. g. telecommunication call processing. An example of such
middleware is real-time CORBA.

The two types of middleware come together to form what is known in

recent years as architecture-neutral real-time systems [CDE 2007b]. An

architecture-neutral real-time system is a real-time system whose target

architecture is unknown at system design time. The main focus of
architecture-neutral real-time systems typically is embedded systems, including

so called pervasive systems (embedded, interactive but not mobile), and
ubiquitous systems (embedded, interactive and mobile), e. g. hand-held devices.
However, their characteristics are also close to those of Internet applications,
for which we do not a priori know the target architecture. Such real-time
systems have unknown target architecture because:

" they have to be executable on the widest range of architectures
possible in order to increase their portability;

" their lifetime is expected to be greater than ten years and, therefore,
they have to be immune to technology obsolescence;

" their site of execution may vary.

As we can see, the two types of middleware discussed above are both

essential to the realisation of architecture-neutral real-time systems. As an
example of a ubiquitous system we can think of a mobile phone user entering
a zone where a particular application provides him with certain information in

real time. In this case the application does not have a priori knowledge of
every possible mobile phone it might run on.

23

1.1 Real-time scheduling at the middleware level

Middleware systems, as described above, tend to be dynamic systems that

often exhibit a need for flexible scheduling, either because of their operating

requirements or because of their execution environment. Thus, today there is a

true need in many real-time applications for more flexible scheduling than

what is currently the state-of-practice. By flexible scheduling we mean the ability

of the program execution platform, be it the operating system or some higher

level middleware software, to provide a range of scheduling policies, all the

way from hard real-time to soft real-time policies, from which an application

can choose the one most suited to its needs, i. e. a hard-real time application

will be using hard real-time policies whereas a soft real-time application will be

using soft real-time policies. Scheduling is at. the very core of every real-time

system and is the subject matter of this thesis. More particularly, the thesis

presents a viable solution to introducing flexible scheduling in real-time

program execution middleware. Thus, the scope of this thesis is not about the

scheduling algorithms themselves, but rather about a framework that allows

use of the same program execution platform, in our case a middleware

platform, for a variety of applications - soft, firm, or hard.

The effort of this thesis to cater for flexible scheduling in middleware is

based on two main design constraints. The first is to cater for the state-of-the-

art in scheduling. This means being able to support both well-known practices

and novel approaches, e. g. dual-priority scheduling [Davis and Wellings 1995].
The second is to take into account the dependency of the middleware on the
development platform (operating system and hardware). Attention has been

paid to how easy it is going to be for a particular design to be implemented on
a variety of platforms. The importance of covering a wide range of platforms
lies in addressing the main functionality requirement of a program execution
middleware, which is to provide code portability. Code portability increases as
the number of supported host OS/hardware architectures increases.
Therefore, the effort has been to take as much advantage of the set of
common features found across different operating systems as possible, while
at the same time requiring no OS changes. Not only does this make the job of
porting the middleware easier, it also helps in keeping its performance as

uniform as possible across different platforms. This, in a sense, means making
the middleware implementation as portable as possible.

24

It has been noted that most real-time operating systems today support pre-

emptive priority-based dispatching [Ganssle and Barr 2003], e. g. QNX, any
flavour of RT-Linux, Integrity OS, Windows CE and many more. Therefore,

we consider a fixed-priority policy to be the only policy the middleware can
rely upon in any particular host. It is not, however, the only policy we want the

middleware to support. Today there is a true need in many applications for

more flexible scheduling than what is currently the state-of-practice [Begehr et
al. 2000], [Brandt et al. 2003], [Jemander 2005]. Furthermore, some
applications may need to be scheduled by one policy while others may need a
different policy, e. g. fixed priority or earliest deadline first (EDF) for hard real-
time tasks, least slack time first (LST) or shortest remaining time for soft real-
time tasks.

This is the reason that state-of-the-art real-time operating systems

nowadays support hierarchical scheduling [Aldea et al. 2006], [Jones and
Regehr 1999], [Goyal et al. 1996]. This is a logical evolution of existing
systems, which already use a very basic form of hierarchical scheduling found
in fixed priority scheduling. That is, a fixed-priority scheduler first executes the
tasks with the highest priority and from within these tasks, it chooses the

oldest runnable task, i. e. FIFO within priorities. The hierarchical nature of
fixed-priority scheduling is often not realised, as it is taken for granted.
However, support for more sophisticated hierarchical scheduling in the

operating system requires a fine balance to be struck between flexibility and

usability, and many years will probably pass until such approaches become

mainstream and usable. Even then, it will be hard to agree on any one such
mechanism to be used in all operating systems. In other words, it will be very
difficult for such mechanisms to reach the level of acceptance and integration

that fixed-priority scheduling has. Therefore, the middleware cannot yet rely
on such state-of-the-art mechanisms for providing flexible scheduling.
However, the middleware can introduce the extra flexibility in scheduling at its
level, relying only on fixed-priority based dispatching from the operating
system.

1.2 Thesis proposition

Based on the above, it is our thesis that a two-level scheduling framework, having

a xed priority base scheduler and support for other schedulers thivugh dynamic

UNIVERSITY' 25
OF YORK
LIBRARY

manipulation of taskI priorities, provides an effective framework for flexible scheduling in

real-time middlevare software.

The above statement implies that, the middleware's default scheduler is

based on the operating system priority scheduler. This constitutes its base

scheduler, which the middleware usually augments with extra functionality. In

many middleware systems such a base scheduler is the only one defined and
directly supported. However, using the described framework a middleware

application can implement its own scheduler, which may have its own notion
of execution eligibility. Adopting this approach allows multiple schedulers to
interoperate and is sympathetic to the fact that real-time software is costly to
develop, maintain, and evolve in the face of changing scheduling or quality of
service (QoS) requirements. It must be noted, however, that this thesis is not
concerned with issues of fault tolerance, i. e. no mechanism is defined for

preventing an application-defined scheduler from misbehaving.

1.3 Thesis structure

Chapter 2 contains a literature survey of current approaches to introducing
flexible scheduling in real-time middleware and also in real-time systems in

general.

Chapter 3 considers the problem of resource sharing under the prism of
flexible scheduling. The chapter, staying true to the design decision of taking
as much advantage as possible of the set of common features found across
different operating systems, reviews only the most widely known and used
priority inversion avoidance algorithms and selects the one most suited for

supporting flexible scheduling.

Chapter 4 presents the Flexible Middleware Scheduling Framework
(FMSF), a generic framework for task scheduling at the middleware level that
allows multiple, diverse, user-defined scheduling policies to co-exist in the
system, each one dictating the execution of a particular subset of the task set.
The chapter describes the framework, starting from the assumptions made, the

A task is a finite sequence of instructions to be executed on a single processor and is the
smallest schedulable entity in the system. Any particular task can have many instances of execution.
Each such instance is called a job.

26

choice of protocol, and concluding with the description of the actual

mechanism.

Chapter 5 provides a three-faceted evaluation of the framework. The first

part of the evaluation is the description of an application-defined scheduler
implemented in the framework. Our choice is an EDF scheduler, which has

gained significant support over the past several years as a valuable supplement
to fixed-priority scheduling. Then, a verification of the framework's operation
is provided, which is achieved by modelling it as a system of timed automata in

the UPPAAL model checker. This provides a strong indication that a correct
implementation of the framework's protocol is possible, by testing a number

of characteristic cases. Finally, we present an examination of the types of
different scheduling policies that can be supported by the framework. The

extended range of policies covered can satisfy a plethora of application
demands and diverse real-time needs. This demonstrates the framework's full

scope.

Chapter 6 provides a practical evaluation based on a simulated
implementation on the Real-Time Specification for Java (RTSJ). The rational
for choosing RTSJ has been the wide acceptance of the Java platform, in

general, and the growing relevance of the RTSJ for real-time computing. This

guarantees that the evaluation will be relevant to a significantly broad review

audience.

Finally, Chapter 7 gives a summary of the contributions contained in this
thesis and provides suggestions for continued research.

As a final note it might be worth mentioning that the citation style used in

this thesis is derived from the Council of Biology Editors (CBE) Name/Year

style, with the exception that square brackets are used instead of parentheses
to denote an in-line citation.

27

28

Chapter 2

Flexible Scheduling

Flexible scheduling in real-time systems is an emerging field of study with
two complementary research directions: the invention of flexible scheduling
algorithms and the development of flexible scheduling frameworks. The work
presented in this thesis belongs to the latter category. A flexible scheduling
framework constitutes a far more general approach, since it provides the
developer with a flexible way of choosing amongst different scheduling
algorithms. More often than not flexible scheduling algorithms focus on
addressing the needs of particular systems by providing specialised solutions.
Under a flexible scheduling framework an application can be scheduled by

either a hard policy or a flexible policy or a combination of the two. Such a
framework can be implemented at the operating system or at the middleware
level.

On a basic level, a system can be thought of providing a flexible scheduling
framework only if it provides a mechanism for enforcing more than one
scheduling policy. There are, generally, three approaches to introducing a new
scheduling policy to a system:

29

Pluggable schedulers - in this approach the system provides a
framework into which different schedulers can be plugged at start-up time.
This method can be very efficient, but it has the drawback that the loaded

scheduling modules can neither be isolated from each other nor from the
kernel itself, so a bug in one of them could affect the whole system. The

CORBA Dynamic Scheduling [OMG 2005] specification is an example of this

approach. Kernel loadable schedulers also fall into this category, an example
being the SHaRK kernel [Gai et al. 2001].

- Application-defined schedulers - in this approach, a scheduler can be

added to the system by an application at any time. In this sense the scheduler
is part of the application. The system notifies the application scheduler every
time an event occurs that requires a scheduling decision to be taken. The

application scheduler then informs the system which thread should execute
next. The proposed extensions to real-time POSIX support this approach
[Aldea and Harbour 2002].

Implementation-defined schedulers - in this approach, an
implementation is allowed to define alternative schedulers. Typically this

would require the underlying implementation (operating system or virtual
machine) to be modified. The Ada 95 and real-time Java (RTSJ) languages

allow this approach.

Furthermore, a system may allow one or multiple schedulers to be active at
the same time. This functionality is extremely helpful in creating flexible multi-
purpose computing systems that need to handle applications with significantly
different scheduling needs. If multiple schedulers are allowed, there has to be

some kind of hierarchy amongst them that regulates which scheduler is in

control at any one time. Therefore, a second classification for flexible

scheduling frameworks is whether they allow hierarchical scheduling or not.
Of course, at a very basic level even fixed-priority scheduling can be thought
of as being a two-level hierarchical scheme, with the first level being the
priority scheduler and the second being a FIFO or round-robin scheduler.

In general, each of the above solutions can be implemented on either the
operating system or the middleware level. The purpose of this chapter is to
survey the existing literature and practice on flexible scheduling frameworks,

and even though the focus of this thesis is universal computing middleware,
the survey presents solutions from a much broader range of implementations.
Section 2.1 presents related research in real-time middleware. Section 2.2

presents research on operating system facilities. Section 2.3 describes current

30

and proposed facilities for two major real-time programming languages, Ada

and real-time Java (RTSJ).

2.1 Middleware research

A lot of the effort for flexible real-time scheduling has gone into real-time
middleware solutions. This is an often preferred and effective solution, since a

middleware approach can more easily abstract away the particulars of the

operating system scheduler. This section will examine a number of such

efforts.

Distributed real-time middleware: Prominent among the efforts for

distributed real-time systems is the Real-time Common Object Request Broker

Architecture (CORBA) Specification by the Object Management Group

(OMG) [OMG 2005]. Real-time CORBA (RT-CORBA) aims to offer end-to-

end predictability in distributed real-time applications. An RT-CORBA system,
being a middleware solution, needs to rely on a base operating system

scheduler. Therefore, work in RT-CORBA is of relevance to our work. An

RT-CORBA system is based on:

" the real-time operating system

" the real-time object request brokers (ORB)

" the communications transport

" the application(s)

Real-time scheduling in such a system is carried out by the ORB. The ORB

relies on the real-time operating system to dispatch threads and to provide

mutexes. Scheduling is based on an end-to-end schedulable. entity called
distributable thread (DT) [OMG 2005]. A distributable thread can extend and
retract its locus of execution across physical computing nodes by location
independent invocations and (optionally) returns. Within each node, the flow

of control is equivalent to normal local thread execution. Each DT has a

unique system-wide id across all nodes. Moreover, each DT may have one or

more execution scheduling parameter elements, e. g. priority, deadline, or
importance. Execution of the DT is governed by the scheduling parameter

elements, on each node it visits. A DT has only one head of execution,
regardless of the number of nodes it spans. The DT interacts with the ORB.

scheduler of the node it currently runs in at predefined scheduling points (e. g.

31

application calls, locking, CORBA invocations). An important characteristic of

the specification is that it does not define a global scheduling mechanism.
Rather, each ORB performs scheduling in its own node, based on scheduling
information passed on by the distributable thread.

[OMG 2005] defines two mechanisms for real-time scheduling in a
CORBA system:

"a classic fixed-priority scheme

"a dynamic scheduling scheme

Under the fixed-priority scheme, RT-CORBA defines its own priority
levels, in order to provide scheduling consistency across different nodes. On

each node these priorities map down to the local operating system priorities. A
distributable thread carries along with it its RT-CORBA priority when making
a remote invocation. The priority is translated to a remote node's local priority
and the local operating system schedules the thread according to that priority.

When using the dynamic scheduling scheme, the specification allows an
ORB to implement a dynamic scheduling policy through the use of a
pluggable scheduler. Each ORB utilises only one scheduler. The dynamic

policies described in the specification are earliest deadline first (EDF), least laxity
first (LLF) and maximize accrued utility (MAU). The specification does not
address interoperation between different dynamic scheduling algorithms
running at different nodes. This also means that threads residing at different

nodes and scheduled by different schedulers cannot share mutually exclusive
resources. Thus, the flexibility offered by the specification is limited to only
being able to specify at system start-up which policy each ORB will follow.

A number of scheduling approaches have been proposed for real-time
ORB scheduling under the CORBA dynamic scheduling scheme.
[Aswathanarayana et al. 2005] presents an endsystem scheduling framework

that emphasises on the balanced progress of application computation
components. The framework is based on a scheduling abstraction called group
scheduling [Frisbie et al. 2004]. It works by grouping computation
components and using an arbitrary policy (e. g. round-robin, fixed-priority) to
schedule each group. Enforcement of the particular scheduling policy is

achieved with the use of dynamic priority changes, which is a well established
technique [Burns and Wellings 1997]. The Kokyu framework, [Gill et al. 2002,
2003], is an ORB scheduling service that provides so-called "strategized

32

scheduling". It consists of pluggable schedulers and configurable dispatching

queues. These queues are priority ordered but can have various dispatching

policies, e. g. FIFO, earliest deadline, least laxity. The scheduler specifies the

number of queues it is going to need and the type of dispatching policy each

queue is going to use. Each queue has one local thread servicing it, which is set
to the priority of the queue. The above approaches, although able to support
different scheduling policies, do not address the issue of resource sharing
between threads scheduled by different schedulers.

To address the problem of the interoperation of different dynamic

schedulers across different nodes Corsaro et al. [2001] defines a meta-level
model that enables inter-working between diverse scheduling policies by

translating scheduling properties from one policy to another. By defining the

terms property, competitor and scheduler the paper goes on to define an
ädapter function that translates the properties of competitors according to one
scheduler to properties according to another scheduler. Sharing of resources is

not specifically addressed. It is left to each ORB's local scheduler to address
the problem.

In addition, there have been several efforts to augment RT-CORBA with
an end-to-end distributed real-time scheduling service (e. g. [Zhang et al. 2005],
[DiPippo et al. 2001], [Kalogeraki et al. 2000], [Wolfe et al. 1999]). Of those,

only [DiPippo et al. 2001] provides a distributed protocol for bounding

priority inversion, but, on the other hand, it supports only deadline monotonic

scheduling.

The CPU Broker [Eide et al. 2004] is a CORBA-based processor capacity
reservation manager. It resides above a particular host's ORB rather than

within the ORB. The broker can mediate between both CORBA and non-
CORBA applications and the RTOS, and can implement a variety of different,

usually "soft", reservation schemes. Reservations are negotiated on two levels.
The top level, called the advocate, receives an initial reservation request from

the application. There is at least one advocate per application. Each advocate
processes its application's request based on feedback from the application
itself and from the system (e. g. consumed CPU time). It then forwards the,

possibly modified, reservation request to the second level. The second level
implements a system-wide reservation policy. It is responsible for making the
final request to the RTOS. As a response to an advocate's request the system-
wide policy may re-compute the reservations for all the broker's' managed

33

applications. The CPU broker, unlike our framework, is especially targeted

towards soft real-time dynamic systems. The framework proposed in this

thesis is able to address a broader set of applications, since it can enforce a
broader range of scheduling policies.

Other middleware: An interesting solution to the problem of executing
both real-time and non-real-time applications on a single processor is

presented in [Deng and Liu 1997]. Their system is based on an EDF operating

system scheduler that sets up and schedules different servers. Each real-time

application has a dedicated server, while all non-real-time applications are

executed by a single total bandwidth server [Spun and Buttazzo 1996]. A real-
time application server can be either a constant bandwidth server [Deng et al.
1996] or a total bandwidth server. Within each server tasks are scheduled

according to a particular scheduling algorithm by the server scheduler. The

server scheduler for non-real-time applications uses a time-sharing algorithm.
The server schedulers of real-time applications are chosen by each real-time
application. Hence, this scheme supports two-level hierarchical application-
defined scheduling, as does the framework presented in this thesis, with the
difference that our approach is based on a fixed-priority scheduler, which is

much more common amongst RTOS. Resource contention within a server is

resolved according to the locking policy used by the application. Resource

contention across different applications is handled by the non-preemptable
critical section (NPS) protocol [Mok 1983]. This is a rather crude way of
dealing with priority inversion. According to this protocol, whenever a task
holds a globally shared resource, it becomes non-preemptable and remains as
such until it releases all such resources. In fact, the whole server that executes
the locking task becomes non-preemptable. This introduces priority inversion

to tasks that are not using the particular resource and would normally preempt
the locking task. In contrast, our framework uses a more efficient protocol
that bounds priority inversion to the longest critical section of a lower

eligibility thread. To address the issue of portability across the vast majority of
commercial RTOS, Kuo and Li [1999] translated this framework to one based

on a fixed-priority scheduler. In their system all servers are sporadic servers
[Sprunt et al. 1989], because of the incompatibility of the constant utilisation
and total bandwidth servers with the fixed-priority scheduler.

Another approach for flexible scheduling based on POSIX-compliant
RTOS is given by Li et al. [Li et al. 2004]. They have provided a formalized
POSIX framework, which aims at supporting various utility accrual (UA)

34

scheduling algorithms, but can also support non-UA scheduling policies. The

heart of the framework is the meta scheduler. The meta scheduler runs as a

separate POSIX thread and enforces a particular policy by dynamically

changing application thread priorities, as in [Burns and Wellings 1997].

Scheduling decisions are dictated by application-defined schedulers that the

meta scheduler queries at each scheduling event. Their approach is similar to

the approach presented in this thesis, with three major differences. First, the

meta scheduler does not implement a particular priority inversion avoidance

algorithm. Presumably, each application scheduler implements its own locking

policy, although this is not specified. However, this means that resource

sharing between different schedulers is not supported. Secondly, the meta

scheduler keeps a list of resources that it manages. These resources cannot be

used by POSIX threads running outside the meta scheduler. If outside threads

could use them, then the operating system would apply its own priority
inheritance mechanism, causing threads to change priority without the
knowledge of the meta scheduler. Thirdly, the meta scheduler runs as a

separate process in the operating system. In contrast, this thesis suggests that

scheduling operations should be made in the context of scheduled threads.
This latter approach greatly reduces the number of context switches and hence

the amount of overhead the application experiences.

Another processor reservation manager, similar to the CPU Broker above,
is the Dynamic Quality-of-Service Resource Manager (DQM) [Brandt et al.
1998], [Brandt and Nutt 2002]. This middleware is illustrative of a category of

systems that approach the issue of flexibility in scheduling with the notion of
"quality of service" (QoS). More specifically, DQM uses and extends the

model of QoS levels introduced by Tokuda and Kitayama [1993]. A QoS level

describes the amount of CPU an application is entitled to. In general, the
higher the level, the higher the CPU time allocation. The DQM is designed to

address the soft real-time needs of desktop applications. It provides
implementation-defined non-hierarchical scheduling. The resource manager

can be initialised with one of four approximation algorithms that select the
level at which each application must execute. It is explained that the user can

affect the enforced policy by choosing different parameters for the different

QoS levels that their application will run at. However, this is nothing more
than the equivalent of choosing a priority in a fixed-priority system. Also, the

programmer must specifically program her application to use the DQM by

calling certain functions. Overall, the approach is less flexible than the
framework presented in this thesis because of three reasons: i) CPU allocation

35

policies are implementation-defined instead of application-defined, ü)

applications running under DQM must be specially programmed to interface

with the manager, and iii) DQM does not provide any synchronisation
mechanism for sharing non-CPU resources.

The concept of servers is used by Kaneko et al. [1996]. The authors use an
SGI Challenge multiprocessor system running IRIX and implement a
planning-based scheduler on top of the operating system priority scheduler.
The planning-based scheduler runs at a very high priority and its task is to
direct the execution of hard real-time tasks and of multimedia servers running
on different processors (one server per processor). It performs admission
control on newly started tasks and dynamically generates a schedule of feasible

tasks. Tasks running directly under the planning-based scheduler are
guaranteed all required resources, including a processor. These are the hard

real-time tasks. When a multimedia task arrives, the planning scheduler has to

again access its feasibility. If it is schedulable, a server is created for it on an
available processor, or the task is added to an existing server. The server, on its

part, schedules multimedia tasks according to one of four allocation policies,
which is chosen at start-up time. This approach provides a hierarchical
implementation-defined scheduling scheme. Scheduling flexibility is very low,

since the programmer cannot choose the scheduling policy for hard real-time
tasks and has a choice of only four policies for multimedia tasks. Resource

sharing is handled by the planning-based scheduler, but in a very restricting
way: tasks are added to the schedule only if all required resources are available.
Furthermore, there is no specified safe way of sharing resources between hard

real-time tasks and multimedia tasks.

2.2 Flexible scheduling in real-time operating systems

Although some specialist operating systems support different scheduling
approaches, the vast majority of commercial-off-the-shelf (COTS) real-time
operating systems support fixed-priority preemptive scheduling. However, the
idea of flexible scheduling has also been applied in many, mainly experimental,
RTOS.

One solution is presented by Wang and Lin [1999] in RED-Linux [Wang

and Lin 1998], in which a two-level scheduler is used. The central idea in this
approach is the use of four scheduling attributes: priority, start and finish

36

times, and execution time budget These attributes are meant to capture the
basic minimum set of common characteristics across different scheduling
algorithms. However, the authors identified this set by examining only three

scheduling paradigms. Therefore, although this mechanism can support some
scheduling algorithms, there may be others that cannot be implemented, if

they are based on parameters different from those chosen. The framework
itself is based on a lower kernel-level scheduler, called the dispatcher, and an
upper level scheduler, called the allocator. The allocator can be implemented in

either the kernel space or the user space, depending on the implementation

characteristics. An application passes its scheduling characteristics to the

allocator. The application can also, at runtime, instruct the allocator as to

which policy to enforce. This, essentially, constitutes application-defined
scheduling. The allocator enforces a particular policy by specifying to the
dispatcher which scheduling attributes to use, when making a scheduling
decision. The attributes that participate in the scheduling decision collectively
constitute the effective priority ofthe task. For example, in order to enforce EDF

scheduling the allocator specifies the finish time as the effective priority. The

scheduling attributes together with the information about a task's effective
priority are passed to the dispatcher through a special API. The dispatcher
inspects the values of the scheduling attributes that make up the effective
priority, chooses one job from the ready queue and dispatches it. Apart from

the limited number of supported scheduling algorithms, this solution does not

address the implementation of priority inversion avoidance protocols for

shared resources. Finally, it is not an easily portable solution, since it is
implemented on top of RED-Linux, which is a specially modified version of
Linux.

A different approach is followed by Ford and Susarla [1996]. They define
CPU Inheritance Scheduling where the application defined schedulers are
threads which donate the CPU to other threads. This donation is achieved
through the kernel dispatcher, which only implements thread blocking,

unblocking and CPU donation. The dispatcher is not a thread, rather it

executes in the context of the running thread. Furthermore, it is not a standard
RTOS dispatcher, e. g. it does not have any notion of thread priorities. It is

each scheduler's responsibility to provide the necessary context for the policy
it is implementing. All schedulers are running as user-level threads that instruct

the dispatcher to donate CPU time to one of their threads through a
schedule operation. Scheduler threads can also be scheduled by other
schedulers. Thus, a scheduler hierarchy of arbitrary depth is formed with child

37

schedulers "inheriting" CPU time from their parent scheduler. Only the

scheduler at the root of this hierarchy has all the CPU time to donate. In this

approach the only method used to avoid priority inversion is a special form of

priority inheritance, which may be a limitation for some application-defined
policies. On the other hand, the approach theoretically allows any type of

scheduler to be implemented and also allows multiple schedulers to co-exist in

the system.

Another solution commonly found in RTOS is pluggable schedulers. The

application scheduling algorithms are modules to be included or linked with
the kernel. With this mechanism the functions exported by the modules are
invoked from the kernel at every scheduling point. In RT-Linux [Yodaiken
1999] three scheduling modules are included: the standard fixed-priority

scheduler, an earliest-deadline-first scheduler and a rate monotonic scheduler,
although it is not clear whether multiple schedulers can co-exist in a system. In

addition, there is no protocol defined to handle priority inversion in a case
where arbitrary schedulers co-exist in RT-Linux. Vassal [Candea and Jones
1998], a modification of the Windows NT 4.0 kernel, can support a second
scheduler, apart from the default system scheduler, which can be dynamically
loaded. This scheduler can dynamically choose to schedule its threads or let

the native scheduler perform the task. However, there is again the issue of
resource sharing between threads scheduled by different schedulers. S. Ha. R. K
[Gai et al. 2001] is a third pluggable approach. Multiple scheduling modules
can be loaded at system start-up and, thus, a hierarchy of schedulers can be

created. The first module to be loaded is the highest scheduler in the

" hierarchy, the second is the next highest and so on. Whenever a task becomes

runnable at a scheduler higher than the scheduler of the running task, the latter

gets preempted. Hence, S. Ha. R. K. supports a two-level hierarchical scheduling
scheme with priority scheduling at the root of the hierarchy and an arbitrary
number of pluggable schedulers at the second level. The approach is more
flexible than the previous two in the sense that pluggable locking policy
modules can be loaded as well at start-up, thus providing integrated support
for a number of priority inversion avoidance policies, e. g. priority inheritance,

priority ceiling emulation [Sha et al. 1990], stack resource policy [Baker 1991]

etc.

Application-defined scheduling is offered in MaRTE OS [Aldea and
Harbour 2001,2002,2004b]. An application-defined scheduler can be
implemented as either a separate scheduler thread or its functionality can be

38

executed within the context of a scheduled thread. Furthermore, in the former

case a scheduler thread can either run in user space or, for increased efficiency,
in kernel space. To simplify the effort of implementing application-defined

policies the concept of a task's "urgency" is introduced. The urgency of a task
is its priority according to a particular scheduling policy. So, for example, for

EDF scheduling the urgency is the absolute deadline. This is reminiscent of
the notion of effective priority in RED-Linux. The idea is that when priority
queues are ordered by urgency the dispatcher automatically selects the most

eligible task. However, this notion of urgency does not suffice for policies

where task urgencies change dynamically during a task's release. Rearranging

the queue under constant changes in urgency values would probably be too

costly. For the sharing of resources the approach supports the standard
POSIX protocols (priority inheritance, priority ceiling emulation), and also

offers an urgency inheritance protocol and the stack resource policy, which, as
is shown in Chapter 5 of this thesis, supports a variety of scheduling policies.
A potential weakness compared to the framework in this thesis is that

application scheduled threads do not run in clear separation of system
scheduled threads. A thread scheduled by an application scheduler can execute

at the same priority level as system scheduled threads, either in FIFO order or
round-robin. This can more easily lead to erroneous situations where an
application scheduled thread executes at the wrong priority level and gets
preempted by system scheduled threads. In contrast, the flexible middleware

scheduling framework in this thesis defines bands of execution where threads

under a particular application-defined scheduler run. The only way to run at
the same priority as system scheduled threads is if a band thread locks a
resource also used by system threads.

The European FIRST project [FIRST 2005], is a joint effort to add
scheduling flexibility to the RTOS. The project has produced the FIRST
Scheduling Framework (FSF) [Aldea et al. 2006], whose key abstraction is the

service contract. The establishment of service contracts between the applications
and the underlying scheduler is meant to capture the scheduling requirements
of each application and are independent of the scheduling policy used. The

result of an accepted contract is the creation of a server particular to the

application. Various server schemes can be used, e. g. constant bandwidth

servers on top of an EDF scheduler, or sporadic servers on top of fixed

priorities. Application threads are run directly by the server. Alternatively, the
FSF can be extended to a two-level hierarchical scheduling architecture,
according to which the lower level scheduler is the scheduler that takes care of

39

the service contracts, and each of the top-level schedulers runs within a

particular FSF server and schedules application threads according to its

particular policy. At the moment, FSF provides top-level schedulers only as

part of its implementation, i. e. top-level schedulers are implementation-

defined. The reason for this, as explained in [Aldea et al. 2006], is that it is

simpler than having a specific API for application schedulers. However, this

makes the framework less flexible than if it was supporting application-defined

scheduling. Another issue regarding FSF is the fact that there is no run-time

mechanism for mutual exclusion in shared resources. Two reasons are given
for this: the first is upward compatibility of legacy code that is using regular

mutexes, and the second is that enforcing worst case execution time for critical

sections is computationally expensive. Thus, there is no standard way of

sharing resources between threads scheduled by different schedulers. A further

problem is the fact that there is no standard way of providing FSF

functionality. As explained in [Aldea et al. 2006], "each FSF implementation

would have to be tailored to a specific RTOS". Therefore, the FSF, at the

moment, does not promote portability. However, an effort is underway [Aldea

and Harbour 2004] to incorporate the new mechanisms into the POSIX real-
time operating system standards [IEEE 2004]. In this respect, it is very helpful

that due to the use of servers the framework is independent of the underlying
operating system scheduling policy. This has been demonstrated by
implementing the framework on two RTOS, MaRTE OS [Aldea and Harbour
2001] and SHaRK [Gai et al. 2001].

2.3 Flexible scheduling in real-time programming
languages

In this section we will examine the approach taken and the proposals made
for two major real-time languages, Ada [Ada-Europe 2007] and real-time Java
[Bollella et al. 2000], [Belliardi et al. 2006]. Ada is, perhaps, the best known

real-time language, having being specifically designed for building mission-
critical military systems in the mid-seventies. Java is a relatively late entry into

the genre, but shows much promise and has amassed great support for real-
time development over the last ten years. It is, thus, worth looking at how

these two popular real-time programming tools promote the development of
flexibly scheduled systems.

40

Ada recently underwent a major revision and several new features have
been included in the new reference manual [Ada-Europe 2007]. Ada supports
one type of scheduling, fixed-priority scheduling. However, new dispatching

policies have been added, which dictate the way tasks are ordered in a priority
queue. Apart from FIFO ordering, which can be either preemptive or non-
preemptive, Ada now offers round-robin [Burns et al. 2003] and earliest
deadline first dispatching [Burns et al. 2004]. All these policies are
implementation-defined, therefore, as we can see the language supports a two-
level hierarchical implementation-defined scheduling scheme, where the low-
level scheduler is fixed-priority based and the second level is defined by the
priority queue order. FIFO and round-robin dispatching both use the priority
ceiling emulation protocol to handle resource contention. Earliest deadline
first dispatching enforces priority inversion avoidance through the preemption
level protocol (PLP) [Burns et al. 2004], which is a special version of the stack
resource policy [Baker 1991]. The mechanics of the PLP, though, are the same
as those of the priority ceiling protocol. Therefore, Ada uses the same priority
inversion avoidance mechanism across all supported policies, which allows for

great flexibility in designing a complex real-time system with components
running under different scheduling policies. All in all, it can be said that

although the number and types of policies are restricted, the existence in Ada

of all the basic real-time scheduling policies under one scheme and the ability
to use these policies in a cooperative manner is extremely useful to the real-
time systems developer and ensures the continuation of the language's

relevance in the real-time domain.

During the process of defining the new specification of the Ada language

an interesting proposition was made for the endowment of Ada with
application-defined scheduling capabilities [Aldea and Harbour 2003], [Aldea

et al. 2004]. Application schedulers implement primitive operations that are
invoked by the system when a scheduling event occurs, and in their reply they
can specify which task to suspend and which to execute. This is approach is

similar to the framework of this thesis. One difference is that application
schedulers under this framework can exchange information between them,

which can lead to the construction of cooperative schedulers. On the other
hand, this framework is based on a previous proposal by the same authors
[Aldea and Harbour 2002] for application-defined scheduling in POSIX. Since

the Ada runtime system is not designed as middleware, OS support is needed
and the implementation of their application-defined scheduling for Ada

presupposes the existence of their application-defined facilities in the

41

operating system, or the ability of the operating system to accept kernel-

loadable modules. This fact reduces the framework's portability. Furthermore,

application schedulers can only use the stack resource policy (SRP) for

handling priority inversion and cannot define their own protocol. What is

more, the SRP does not cater for tasks suspension while locking. Of course,
this is not a problem with Ada, since such behaviour is not allowed. It does

mean, however, that the framework is not generally applicable.

The RTSJ adopts the implementation-defined schedulers approach
(although it also tries to provide a framework for the implementation to
follow) and allows for applications to determine dynamically whether the real-
time JVM on which it is executing has a particular scheduler. Unfortunately,

this is the least portable approach, as an application cannot rely on any
particular implementation-defined scheduler being supported. The only
scheduler an application can rely on being present is the
PriorityScheduler. The work reported in this thesis only assumes the

presence of the priority scheduler and that priority changes have an immediate

effect. An attempt has been made [Feizabadi et al. 2003] to support a utility
accrual scheduler in the RTSJ but this required a non standard interface and
was not generalized. Similarly, although JTime by TimeSys supports multiple
schedulers, this has been achieved in an ad hoc manner [Dibble and Wellings
2004].

2.4 Summary

A number of solutions, across different application domains, have been

proposed over the years to address the issue of flexibility in the scheduling of
real-time applications. While all have been useful in demonstrating the
feasibility of a flexible scheduling framework, they are not able to offer an
adequate solution for the domain of real-time program execution middleware.
More specifically, all of the reviewed approaches exhibited one or more of the
following limitations:

" inability to support arbitrary scheduling policies
" inability to support multiple co-existing schedulers

" inability to allow the application to select the preferred scheduling
policy at runtime (application-defined scheduling)

42

" lack of portability, e. g. by being based on a particular operating
system

" inability to facilitate sharing of non-CPU resources between threads

scheduled by different schedulers
" inability to allow applications not using the framework to co-exist

and share resources with applications that are using it

" inability to allow applications define their own resource sharing
protocol for their own use

" inability to bound execution eligibility inversion as efficiently as
possible, i. e. to one instance

As a minimum, an effective solution should address all of the above issues.

Such a solution has to be general enough to be able to express the scheduling

needs of the widest possible range of applications, while guaranteeing that the

approach will be portable to the largest possible number of platforms. The
following chapters elaborate 6n a framework for flexible scheduling in real-
time program execution middleware that can host an arbitrary number of

arbitrary scheduling policies based on the de facto operating system real-time

scheduling standard of a fixed-priority scheduler. The framework can be used
to create cooperating real-time applications with diverse scheduling needs.

43

44

Chapter 3

Resource sharing for
flexible scheduling

The introductory chapter has set forth our thesis and given justification for

it. We have argued in favour of a middleware framework that will provide an

easy way for applications to supply their own preferred policy for scheduling
their tasks. We have suggested that supporting multiple and diverse scheduling

policies in the middleware will be significantly helpful to programmers.
However, it would be even more useful to allow tasks running under these

policies to also share resources in producing a combined functionality. In

other words, we want to allow tasks scheduled by different schedulers to access the same

resources without fear of undermining the correctness of the system. It needs to
be stressed, though, that this work addresses only single processor systems

and, therefore, the protocols examined in this chapter are strictly single

processor protocols.

First and foremost, this requirement poses the need for expressing
resource usage eligibility in a way which is independent of execution eligibility.

45

Ideally, the framework should be able to use one metric, shared and
understood by all the different schedulers, to adjudicate requests for access to

resources. Secondly, as with all cases of resource sharing, it presents the
problems of deadlock and unbounded eligibility inversion (a special case of which is

unbounded priority inversion). These terms are well-defined in the literature but
for completeness we give their definitions below.

`A deadlock is a situation where two or more processes are unable to proceed
because each is waiting for one of the others to unlock a resource"

`Eligibility inversion is the situation where a lower-eligibility task executes
while some ready higher-eligibility task waits"

"Unbounded eligibility inversion is the scenario where a low eligibility task
holds a shared resource that is required by a high eligibility task, causing the
execution of the high task to be blocked2 until the low task has released the resource,
all the while allowing other medium eligibility tasks to preempt it"

Eligibility inversion is unavoidable once we allow sharing of resources
between tasks. Imposing precedence constraints on tasks could produce
schedules without eligibility inversion in certain systems (essentially static, off-
line schedules), but in the general case, there is no guarantee that the higher

eligibility task will always request a shared resource before lower eligibility
tasks do. However, real-time systems have to bound the extent of eligibility
inversion. Finally, in the interest of the framework being as widely applicable
as possible, the resource sharing protocol should be able to retain its
correctness when tasks self-suspend with the potential of holding resources.

There exist several protocols that help avoid eligibility inversion and
deadlock situations. All of them impose new rules on the scheduling of tasks
in light of resource sharing amongst them. However, most of them are
experimental protocols with limited applicability, e. g. [Kim and Kph 1995],
[Squadrito et al. 1999]. They are meant to address specific needs of a certain
class of applications, e. g. soft real-time systems (e. g. [Lipari et al. 2004]),
multimedia systems (e. g. [deNiz et al. 2001]), real-time data bases (e. g. [Huang
et al. 1992], [Squadrito et al. 1996]), real-time distributed systems (e. g. [Sun and

2 By blocked we refer to a task that has been rendered unschedulable due to reasons outside its
control, e. g. a resource it wants is already locked. This term is similar to suspended However, we define
suspension to be the result of either external factors or of the task itself, i. e. self-suspension.

46

Liu 1996], [Zhang and Cordes 2002]), and so forth. Moreover, most of them

are versions of more established protocols, e. g. [Lam and Ng 2000], [Real and
Wellings 1999].

Our design criteria, which have also been laid out in the Introduction,
dictate that the framework should utilise well-known and widely used
protocols. This is important on more than one level:

" The better-known the protocol, the easier it is going to be to
implement it.

" The more general the protocol, the broader the spectrum of scheduling
policies it will be able to handle.

" The more widely the protocol is used, the more likely it is going to be

that programmers will be familiar with it, and by extension, adopt the
framework.

As a result of these criteria, there is also no intent to create a new protocol.
On the contrary, our focus is placed on the well-established resource sharing
protocols that form the basis for most other protocols. Indeed, one can think

of these as archetypes for other protocols. They are:

" Basic Priority Inheritance (PI) [Sha et al. 1990]

" Basic Priority Ceiling Protocol (PCP) [Sha et al. 1990]

" Immediate Priority Ceiling Protocol (IPCP) [Burns and Wellings
2001], also known as Ceiling Priority Protocol [Liu 2000]

" Stack Resource Policy (SRP) [Baker 1991], also known as Stack-
Based Preemption-Ceiling Protocol [Liu 2000]

There are also three major variations of the PCP and SRP:

" Stack-Based Priority-Ceiling Protocol (SPCP) [Liu 2000]

" Minimal Stack Resource Policy (MSRP) [Baker 1991]

" Basic Preemption-Ceiling Protocol (BPreCP) [Liu 2000]

Finally, a protocol of significant relevance to our work is the Preemption
Level Protocol (PLP) [Burns et al. 2004], which is part of the new Ada

standard [Ada-Europe 2007]. Its purpose is to incorporate EDF scheduling in

the Ada programming language by using the SRP. This is particularly

47

interesting, since Ada only specifies a fixed-priority preemptive scheduler.
Therefore, PLP allows resources to be shared between the priority scheduler

and a second-level scheduling policy.

If possible, our aim is to adopt one of these protocols in our framework,

with the smallest possible amount of changes. The following sections examine

the protocols in more detail. Section 3.1 briefly discusses the priority-based

protocols (PI, PCP, IPCP, SPCP). Section 3.2 presents in detail the

preemption-ceiling protocols (SRP, BPreCP, MSRP), their mechanism and

relative merits. Section 3.3 examines the relation of priority-ceiling and

preemption-ceiling protocols and shows the cases where the former are a

special case of the latter. Section 3.4 presents the preemption level protocol
(PLP). Finally, Section 3.5 provides a summary of the properties of each

protocol and makes some concluding remarks justifying our choice.

3.1 Priority-based resource sharing protocols

As is evident by their names, PI, PCP, IPCP and SPCP all rely on the

notion of priority. However, the meaning of priority implied is not that of

abstract eligibility. Rather, it refers to a particular task parameter that is used in

fixed-priority scheduling and whose base value ' remains unchanged by the

system throughout the execution of a task (hence the term fixed-priority).

Each one of these protocols affects a task's active priority3, which at first is

equal to the base priority and changes when accessing resources. In other

words, the protocol mechanisms are tailored for tasks that are scheduled
according to the particular metric of fixed priority. Tasks of the same. priority

are scheduled on a FIFO basis.

Priority-based protocols, being linked to a particular scheduling policy, are

unsuitable for use in our framework. Nevertheless, they will be discussed,

since they provide insight into the workings of preemption-ceiling protocols.

3. ß. 1 Basic priority inheritance (PI)
The basic priority inheritance protocol is most commonly known as just

priority inheritance. The protocol specifies that

3 When referring to the priority of a task, we will always mean its active priority, unless otherwise
noted.

48

" the priority of a task accessing a resource is elevated to the priority of the highest

task waiting for that resource.

The positive aspects of the protocol are that it bounds priority inversion

and it does not need to know task resource demands in advance. However, of
all the priority protocols, priority inheritance is the only one susceptible to
deadlock and, additionally, its bound on priority inversion is not the smallest
possible.

Although the initial protocol refers to fixed-priority scheduling, it has been

translated to other scheduling policies, such as EDF [Stankovic et al. 1998]. In
fact, the protocol can easily be applied to every scheduling policy with job-

level static eligibilities4. That is, policies for which a task's eligibility stays

unchanged for the duration of the task's release. Indeed, we can say that

priority inheritance is a particular application of the more general eligibility
inheritance protocol. So, for example, with EDF scheduling the protocol would be

an "absolute deadline inheritance protocol".

The fact that the protocol does not avoid deadlocks and needs different

versions for use with different policies makes it unsuitable for our framework.
Nevertheless, it can be a valuable tool in certain situations and for certain

classes of systems, as in the case of the Mars Rover detailed in [Jones 1997]. A

testimony to that is the fact that PI is available in most real-time operating

systems and languages like POSIX [IEEE 2004], Ada [Ada-Europe 2007], and
the RTSJ [Bollella et al. 2000], [Belliardi et al. 2006]. More importantly, as we
will see in subsequent sections, eligibility inheritance (or priority inheritance, in

the case of priority-based protocols) is an integral part of other protocols.

3.1.2 Priority-ceiling protocols
These are protocols that are also relevant to fixed-priority scheduling. The

PCP protocol uses the notion of priority ceiling introduced in [Sha et al. 1990].
For all priority-ceiling protocols, the priority ceiling of a resource is the highest
base priority amongst the tasks that may use it. This has the implication that,
in contrast to PI, task resource needs must be known before its release. Also

4 When we want to refer to the metric for task eligibility used by an arbitrary scheduling policy,
we will use the term "execution eligibility", or simply "eligibility".

49

in [Sha 'et al. 1990] the notion of a system ceilings is introduced, which is the
highest ceiling amongst the locked resources. Based on [Sha et at 1990] the
PCP can be defined as follows:

Priority Ceiling Protocol (PCP): A task is granted a request for a

resource only if i) the resource is free and ii) the active priority of the task is greater

than the system ceiling, or it is equal to the system ceiling and the task is locking the

resource whose ceiling is equal to the system ceiling. Otherwise, the task is said to be

blocked on the system ceiling by the task that is locking the resource that set the

system ceiling. When a task blocks another task in this manner, it inherits the

priority of the blocked task.

The SPCP is presented in [Liu 2000] and can be defined as follows:

Stack-based Priority Ceiling Protocol (SPCP): A task can start

execution only if its active priority is greater than the system ceiling. Otherwise, the

task is said to be blocked on the system ceiling by the task that is locking the

resource that set the system ceiling.

The PCP and SPCP are similar in that they both make use of the system
ceiling. They elevate the system ceiling to the highest ceiling amongst the
locked resources. Their difference is that, if a task does not have a higher

priority than the system ceiling, the SPCP blocks it upon its release, while the
PCP blocks the task upon its request of a resource. As will be shown in
Section 3.3, this helps SPCP produce a schedule that allows tasks to share a
run-time stack. A second difference of PCP and SPCP is that the former

applies priority inheritance to a task holding a resource when a higher priority
task blocks upon requesting the same resource. The SPCP does not need to
apply priority inheritance, as will be seen in Section 3.3.

The IPCP, on the other hand, does not use a system ceiling. It is defined as
follows [Liu 2000]:

Immediate Priority Ceiling Protocol (IPCP): Every task executes at its base

priority when it does not lock a resource. The priority of each task locking a resource is equal
to the highest priority ceiling of all the resources locked by' the task.

5 Sha et al. [1990] do not use the term "system ceiling", but rather they refer to the semaphore
with the highest priority ceiling of all the semaphores currently locked. The system ceiling, as defined
here, is a simplification of that, found in [Liu 2000].

50

Even though the notion of a system ceiling is absent from the IPCP, it

produces the same schedule as SPCP through a different technique, which is

to elevate the priority of the locking task to the ceiling of the locked resource

as soon as the resource is locked.

Priority-ceiling protocols are powerful programming tools that have been
.

extensively researched. Several variations of the PCP protocol exist, some
examples being [Squadrito et al. 1999], [Jiang and Cheng 2001], and [Chen et
al. 2004]. Versions have also been devised for multiprocessor systems, e. g.
[Rajkumar et al. 1988], [Rajkumar 1991], [Chen and Tripathi 1994], [Gai et al.
2001b]. IPCP, together with priority inheritance, is widely used as the priority-
ceiling protocol of choice in real-time operating systems and languages, e. g.
POSIX [IEEE 2004], Ada [Ada-Europe 2007] and the RTSJ [Bollella et al.
2000], [Belliardi et al. 2006]6. Their advantages and shortcomings are well
documented and for an entry-level discussion on the relative merits of PI and
IPCP one can look at [Yodaiken 2002] and [Locke 2002].

Despite their extensive use and applicability, however, they still present us
with one major drawback, which, as in the case of priority inheritance, is their
application to only fixed-priority scheduling. There have been attempts to use
BPI and PCP with deadlines for the Earliest Deadline First (EDF) scheduling

algorithm [Chen and Lin 1990], [Spun and Stankovic 1994], [Stankovic et al.
1998], but they can not be generalized to other scheduling algorithms.
Therefore, these protocols are also unsuitable for achieving safe resource
usage across policies, for we must be able to express resource usage eligibility
in a way which is independent of any particular scheduling algorithm.

Priority-ceiling protocols will be discussed in more detail in Section 3.3,

where their mechanism is analysed and their relation to the preemption-ceiling

protocols displayed.

. 3.2 Preemption-ceiling protocols

The key characteristic of the SRP, BPreCP and MSRP protocols, and one
that has particular bearing on our work, is the fact that they are specifically
designed to detach adjudication of resource sharing from any kind of eligibility

6 In fact, the RTSJ uses a version of IPCP that also enforces priority inheritance.

51

metric. These protocols assume preemptive dispatching based on any type of

eligibility metric7. Thus, they are independent of any particular scheduling

policy. Their mechanism depends on a new task parameter called preemption
level, which was defined in [Baker 1991]. Below is a definition based on Baker's

paper.

Definition 3.1: The preemption level z(r) of a task r is a static
parameter that specifies the resource usage eligibility of r.

Of the three, SRP and MSRP were introduced first and explained in [Baker

1991]. BPreCP is presented in [Liu 2000]. The three protocols are similar, and
later on, in Sections 3.2.3 and 3.2.4, we are going to demonstrate their
differences and explain their relative merits.

Baker [1991) explains that the SRP is an extension of PCP. In Section 3.3

we elaborate on this notion of extension. Baker explains that the PCP is

extended in three ways that can be applied independently or together.

1. It introduces multi-unit resources. Effectively, it treats the ceiling of a
resource as a function of the number of free units currently available.
This leads to dynamic resource ceilings.

2. It separates the execution eligibility of a task from its resource usage
eligibility, the latter being expressed through the preemption level

parameter.
3. It allows sharing of runtime stacks.

Each task has its own static preemption level. Preemption levels are
separate from eligibilities (which can be static or dynamic), and are assigned
according to the following rule, which has been taken from [Baker 1991] and
been slightly modified for clarity.

Rule 3.1: If a task t1 has higher execution eligibility than another task t2

even if released later than za then it must also have a higher preemption level than

7 Chapter 5 will more fully address the range of different scheduling policies compatible with the
notion of preemption levels. In this chapter we will assume that any type of eligibility metric is

compatible.

52

In other words, in situations where no locking takes place, preemption levels concur
with execution eligibilities as to which task should run next. The above allocation rule
is meant to provide an optimum preemption level assignment, so that tasks

will suffer the minimum possible execution eligibility inversion [Baker 1991].
To understand the rule better, let us assume the lower eligibility task rf is

released at t1. If we take the higher eligibility task r2 released at t2>tl, such that
trt1=0, then effectively we can consider that, in the extreme case, r2 is

released simultaneously with rl (t1=t2). Also without loss of generality, we can
take t1=0. Given that p(rl, t,) = p(rl, tZ) < p(r2, tl) = p(r2, t2), the rule specifies

that z(rl) < z(r2). In other words, if two tasks were to be both released at time t=0,

the one with the higher execution eligibility should also have a higher preemption level. As an
example of such an assignment, Baker explains that in the case of EDF

preemption levels should be assigned monotonically according to relative
deadlines. That is, a task with a shorter relative deadline has greater
preemption level than a task with a longer relative deadline. We can
understand this if we consider two EDF tasks being released at t=0. If at t

task r2 has a shorter relative deadline than r1, then it also has a closer absolute
deadline, i. e. greater eligibility. Therefore, its preemption level should be

greater.

Since the SRP is an extension of PCP it follows that resources have

ceilings. These, however, are based on preemption levels. In all three

protocols, resource ceilings for multi-unit resources are computed according
to the following rule:

Definition 3.2. a: The ceiling of a multi-unit resource is set to the

maximum preemption level amongst the tasks that can block on the resource, given
its current number of free units. [Baker 1991]

We can see that the above definition leads to dynamic ceilings that change
according to the number of free units a resource has at any particular time. A

specific case is single-unit resources, which according to the above definition,
have static resource ceilings that are set in a way analogous to PCP, albeit

using preemption levels instead of priorities.

Definition 3.2. b: The ceiling Fr] of a . ringle-unit resource r is set to the

maximum preemption level amongst the tasks that use it. [Baker 1991]

53

All three protocols can work with both multi-unit and single-unit

resources, because, as we will see, the definition of the resource ceiling is

orthogonal to the protocol mechanism. In other words, as long as a resource
has a ceiling value at every point in time, the protocols are not affected by the

way the value was assigned. To understand this let us consider any resource r

at any time t, and any task rb whose request of r would block at time t. What

the preemption-ceiling protocols expect from the definition of the ceiling of

resource r, is the inequality x(rb) <_ [rj .
Conversely, if rg is any task whose

request of r at time t would be granted, the protocols expect z(rB) > In to

hold. Both Definitions 3.2. a and 3.2. b satisfy this.

The SRP and BPreCP protocols will be the focus of our examination of

preemption-ceiling protocols, since they constitute the two main approaches
to the use of preemption levels. MSRP is merely an extension of the SRP and

will be briefly presented later in this section.

3.2.1 Stack Resource Policy (SRP)

Based on the definitions for preemption levels and resource ceilings [Baker

1991] describes the SRP with the following rule.

Stack Resource Policy (SRP): A task can start execution only if it is

the oldest, highest execution eligibility, pending request, and its preemption level is

higher than the ceiling of each locked resource.

According to Baker, the usage of preemption levels in the SRP means that

a task can preempt another task only if it has a higher preemption level. However, we
must not mistake preemption levels as an extra metric for task dispatching.
This rule describes a necessary condition for preemption, but not a sufficient
one. It should be read as "a released task with lower -preemption level can
definitely not preempt the running task". This is more of an ascertainment
stemming from the preemption level assignment rule, rather than a rule in
itself. Indeed, if preemption levels are assigned according to Rule 3.1, a lower

preemption level at the point of release automatically means that the released
task has lower eligibility than the running task.

To make the SRP rule easier to apply, the notion of a gstem ceiling is

introduced [Baker 1991]:

54

Definition 3.3: The system ceiling z is the highest ceiling amongst the
locked resources:: r = max{rrl Ir= locked l

As we can see, the execution eligibility rule is made up of two parts, which
are:

SRP Eligibility Test (SRP_ET): A task can start execution only, if it is

the oldest, highest execution eligibility, pending request.

SRP Preemption Level Test (SRP_PLT): A task can start execution
only, if its preemption level is higher than the y stem ceiling.

The eligibility test represents a dispatching point. Two observations can be

made on the SRP_ET. First, the fact that the SRP_ET describes only one such
dispatching point, namely a task's release, means that the SRP considers tasks
to be non-suspending. Secondly, we can see that what the SRP_ET implies is

that the eligibility of a newly released task ra must be compared to the

eligibility of all the tasks previously released. What is important here is the

meaning of "pending". A pending request is a released task that, for whatever
reason, is still waiting to be granted the CPU. It might be that its execution
eligibility was not high enough to preempt the running task, or that it was
blocked by the SRP_PLT due to mutual exclusion. Therefore, in order for'task

r,, to start execution, it must have higher execution eligibility than all the tasks

that were released before it and are currently pending. At first one might think
that any task rp that is currently pending must have lower execution eligibility
than the running task 'r, - However, it is clear that the SRP rule can fail either
because of the execution test or because of the preemption level test.
Therefore, it is perfectly feasible that the pending task rp has greater execution
eligibility than the running task r,, but failed the preemption level test due to
resource sharing. Hence, to successfully perform the ET part of the SRP, we
must keep track of the highest execution eligibility amongst the tasks that have

already been released in the system. The test should compare against this

eligibility and not that of the running task. And since the eligibility of runnable
tasks is, by default, being taken into consideration, it is the eligibility of tasks
blocked on the system ceiling that should also be included.

This notion of checking against an execution eligibility different from that

of the running task is reminiscent of another protocol we have already seen. It
is exactly what the eligibility inheritance protocol achieves, as explained in Section

55

3.1.1. When the running task inherits the eligibility of the highest eligibility
pending task, checking against its active priority is the same as checking
against the highest eligibility task. In other words, what is implied is that, for

the SRP to be correct, the eligibility test should behave in a way analogous to
dispatching under the effects of eligibility inheritance. And the easiest way to
achieve that is to actually apply the eligibility inheritance rule. In the case of
SRP, eligibility inheritance should take place on the running task, when a
newly released task blocks due to the system ceiling. However, Baker [1991]
does not explicitly specify eligibility inheritance taking place. Nor does he

provide any other way of achieving the same result. Therefore, we must
assume that eligibility inheritance is an implicit part of the SRP. The
inheritance rule can be specified as:

SRP Eligibility Inheritance (SRP_EI): When a task blocks due to
the. ystem ceiling, the blocking task inherits the highest execution eligibility of all the
blocked tasks, if this is grater than its own current eligibility. Upon unlocking, the
eligibility of the blocking task returns to the value it had at the time of locking the
resource.

The inherited eligibility is called the active eligibility of the blocking task.
Having defined the SRP_EI rule it is immediately obvious that its addition
does not affect the SRP rule. The reason is that the rule applies to newly
released tasks, whereas eligibility inheritance has meaning only for tasks
already running and holding resources. [Liu 2000] combines the SRP_ET,
SRP PLT and SRP_EI to present the SRP protocol more formally, but for
priority-driven systems. Liu [2000] names this version the Stack-Based
Preemption-Ceiling Protocol and it is given below, but translated for any
execution eligibility metric.

Stack-Based Preemption-Ceiling Protocol (SBPCP)
1. Update of the system ceiling. Whenever all the resources are free, the

system ceiling is x=0. The system ceiling is updated each time a
resource is allocated or freed.

2. Scheduling rule. After a task is released, it is blocked from starting
execution until its preemption level is higher than the current
system ceiling. At any time i, tasks that are not blocked are
scheduled preemptively according to their assigned eligibilities.

3. Allocation rule. Whenever a task r requests a resource r, it is allocated
the resource.

56

4. Eligibility inheritance rule: When some task is blocked from starting,
the blocking job inherits the highest eligibility of all blocked tasks.
The eligibility of the blocking task drops to its previous value when
the reason for blocking the other task is removed.

It is interesting to note here that although Baker [1991] does not explicitly
mention an inheritance rule, it is clear from the use of the word "pending" in

the eligibility test. It is worth mentioning the following quote from [Baker
1991]:

"Note also that the SRP preemption test (i. e. the SRP_PLT) has the effect
of imposing priority inheritance (that is, an executing job that is holding a
resource resists preemption as though it inherits the priority of any jobs that

might need that resource), though the effect is accomplished without
modifying the formal priority of the job, p(J). "

Baker attributes the application of eligibility inheritance (to which he refers
to as priority inheritance) to the preemption level test, which is to say that by

merely applying the test we have the effects of eligibility inheritance. This is

not correct. It is true that the SRP rule enforces eligibility inheritance, yet not
through the SRP_PLT. The use of the word "pending" in the eligibility test
implies the existence of the effects of eligibility inheritance. Whether these

effects are achieved by modifying the active eligibility of the task is a matter of
implementation. In order to make our point clear we can say that the SRP_ET

test needs the enforcement of SRP_EI in order to produce the correct results,
but it is the SRP_PLT, when it fails, that triggers the application of SRP_EI.
In this sense, eligibility inheritance is a distinct part of the SRP rule, as are
SRP_ET and SRP PLT, however it is implicit.

The SRP has been proven to be deadlock-free [Baker 1991], with the
assumption that tasks do not suspend while locking. In Section 3.2.3 we prove
that the SPR is not deadlock-free when tasks do suspend while locking. The

stack-sharing properties of SRP are important in embedded systems, where
memory is limited and precious [Gai 2005], [Hänninen et al. 2006]. In certain
cases the SRP allows storage savings of up to 90% [Baker 1991]. In addition,
the SRP ensures that, once a task has started executing, it cannot block. Also,

as we will see in Section 3.2.4, the SRP allows better response times for the
highest eligibility task, in contrast to BPreCP, as can be seen in Figures 3.3. e
and 3.3. f. This is because by applying the SRP_PLT rule at their release, the

57

SRP blocks middle eligibility tasks before they execute. This way it minimises
interference on the low eligibility locking task, which in turn means that it will
finish its critical section sooner and allow the high task to start its execution

sooner.

Finally, the MSRP is briefly described in this section, since it is just an

extension of the SRP:

Minimal SRP: A task can execute only, if it is the oldest, highest execution

eligibility pending request and its preemption level is either i) higher than the system

ceiling or ii) equal to the ystem ceiling with the presently available resources

sufcient for the task to execute to completion without direct blocking.

The MSRP was designed to solve the problem of unnecessary blocking

present in the SRP. It imposes the minimal blocking necessary to prevent
deadlocks and multiple eligibility inversion under conditions of stack sharing.
However, this has made the scheduling rule more complicated, as noted in

[Baker 1991].

3.2.2 Basic Preemption-Ceiling Protocol (BPreCP)

Having examined the SRP, it is easy to see where the BPreCP differs. The
disparity is that the BPreCP enforces its own BPreCP PLT test at a different

point in a task's execution, namely at the point of attempting to lock a
resource and not at its release. This has implications when an executing task r
performs nested locking of resources, i. e. it is already locking a resource when
the BPreCP PLT is enforced. Locking a resource means that the system
ceiling will have already been set to the preemption ceiling of the locked

resource and from the Definitions 3.2. a, 3.2. b and 3.3 it is easy to see that
>_ . (z)

. Therefore, locking a second resource in a nested way would be

impossible under the SRP PLT. For this reason, the preemption level test is
defined for the BPreCP as follows:

BPreCP Preemption Level Test (BPreCP_PLT): A task is

granted a request for a resource only if its preemption level is higher than the system
ceiling, or if it is the task holding the resource whose preemption ceiling is equal to
the ay, stem ceiling

58

The eligibility inheritance rule for the BPreCP is the same as for the SRP.
However, the eligibility test is different, since with BPreCP scheduling
decisions can be made during a task's execution and not just at the point of its

release. The eligibility test can be written as follows:

BPreCP Eligibility Test (BPreCP_ET): A task can execute only if it
is the oldest, highest active execution eligibiliy runnable task, provided that

execution eligibility inheritance is being applied to a task holding a resource when a
higher eligibility task blocks on the same resource.

Liu [2000] gives a formal definition of the BPreCP protocol, which is given
below, again translated for execution eligibilities rather than just priorities.

Basic Preemption-Ceiling Protocol (BPreCP):
1. Scheduling rule.

a. At its release time t, the active eligibility of every task r is equal
to its base eligibility. The task retains this eligibility except under
the condition stated in the eligibility inheritance rule.

b. Every ready task is scheduled preemptively according to its

active eligibility.
2. Allocation rule: Whenever a task r requests resource r, one of the

following two conditions occurs:
a. The resource is locked.

i. The preemption level of -r is not higher than the system ceiling
(ir(r) 5 T), the request is denied and r blocks.

b. The resource is free.
i. If the preemption level of r is higher than the system ceiling

(ir(r) > >r), or if r is the task holding the resource whose

preemption ceiling is equal to the system ceiling ([rl = , T), ris

allocated to r.
ii. If the preemption level of r is not higher than the system

ceiling (, T(r) Sz), the request is denied and r blocks.

3. Eligibility inheritance rule. When r becomes blocked, the task zb that
blocks r inherits its active eligibility. rb executes with its inherited

eligibility until the time when it releases every resource whose
preemption ceiling is equal to or higher than the preemption level

of z At that time the eligibility of zb returns to the value it had at
the time it was granted the resources.

59

As can be seen, in Liu's definitions as well, the eligibility inheritance rule is

basically the same in BPreCP as in the SRP. In the following section we prove

that the BPreCP is deadlock free under any circumstances. This, together with
its support for arbitrary scheduling policies, makes it, overall, the best

candidate for forming the base of the resource sharing protocol in our
framework, which will be presented in the next chapter.

3.2.3 Self-suspending tasks

Task self-suspension can happen through one of many ways, an example
being the equivalent of a POSIX sleep () call. In general, we can distinguish

two cases: i) self-suspension while executing outside critical sections, and ii)

self-suspension while executing inside a critical section (locking a resource). In

this section we examine the effect of both cases on the preemption-ceiling
protocols.

Proposition 3.1: Non-blocking task execution, minimum eligibility
inversion and stack sharing all presuppose that tasks will not self-suspend. If

the system does allow self-suspension, these conditions are negated.
Proof. Let us suppose task rl suspends itself at time t5, when the system

ceiling is -z.. At is another task will have to be selected to run, say r-% Suppose

p(r2) < p(rl). Also suppose that r2 locks a resource with a ceiling higher than

the system ceiling (Fr] > ; r,). Then r1 wakes up and preempts t If rl now

attempts to lock r it will block either on its lock, in the case of SRP, or on the

system ceiling, in the case of BPreCP. Furthermore, this blocking is additional
to any initial blocking from lower eligibility tasks, so eligibility inversion is not
minimal. Finally, since we are forced to execute a lower eligibility task after a
higher eligibility task has already started its execution, stack sharing under SRP
is violated.

Proposition 3.2: Under SRP, task self-suspension while locking negates
deadlock-free execution.

Proof. To prove this, let us consider two tasks r1, rz with p(r2) < p(r,),

using two resources rl, r2 as shown in the Gantt diagram of Figure 3.1.

60

k

r

time
Key

Task release Lock resource Self-suspension Blocking on n Normol Lrsk

lock execution

I
Task end Unlock resource Wake-up Locking r, L ockin(1 r.

Figure 3.1: Deadlock of self-suspending tasks under SRP

Task r2 is released first. 't'hen r, is released and preempts r,. It runs and
locks ri. Then it suspends itself and r2 is selected to run. r2 locks r"' and then

suspends as well. After some time r, wakes up, continuing to hold r1, and tries

to lock rA Naturally it cannot and blocks on the lock. After a while r., wakcs

up and tries to lock r1. It also blocks on the lock producing a deadlock.

This situation is possible because in the SRP the preemption level test

takes place once at the point of release. The SRP applies its ITT early
(enforcing early task blocking) precisely because it assumes no self-suspension.
Once a task starts running there are no more preemption level tests to regulate
its use of resources, since it is assumed that everything will be available. If,

however, a task is selected to run because some other task suspended while
holding a resource, this availability is not a given anymore. This also affects the
implementation of shared resources. When locking tasks do not suspend, the
SRP is guaranteed to grant every resource request. 't'herefore, no locks need to
be implemented for resources. However, once tasks are allowed to self-

suspend, the absence of locks can jeopardise mutual exclusion. This can be

seen in Figure 3.1, at the time -cl tries to lock zr9. If no lock is present, both r1

and r2 will be simultaneously using rx

In contrast, BPreCP applies its P1; 1' at every attempt to lock a resource.
This, together with the fact that the system ceiling changes only upon locking

and unlocking, means that it is not possible for a task to lock a resource

without having a higher preemption level than the system ceiling, even if some

task has previously suspended while holding a lock. This is proved in the
following proposition.

Proposition 3.3: Under IBPreCP, task self-suspension while locking can
not lead to a deadlock.

61

Proof Let us assume a task r self-suspending at time is and that tg is the first

instance when self-suspension happens in the given system. Let us assume task

t was holding resources at time t5, and the system ceiling was z. Without loss

of generality, we will only consider the case of holding one resource r,

therefore it = Frl. At is the system ceiling remains unchanged. Therefore, any

task r' executing after t8 and trying to lock a resource will have to pass the

BPreCP PLT, such that ; r(r') > >r = Frl. If z then the task will block,

preventing a deadlock. If it does pass the test then it follows that it will not

need r, since if it did it would be Frl >_ z(r') . Also, if r wakes up, it will not be

able to lock anything since the system ceiling will be

z' z(r) > jr >_ z(r). Hence, there can again be no deadlock.

A second question is what happens if some resources were already locked
by other tasks at the time r suspended. If this is the case then it follows that

the preemption level of r must be greater than the system ceiling `z at the

time r locked r (; r(r) > `n) and, therefore, r could not be using any of the

already locked resources. Conversely, if a task `r holding such a resource is

selected to run, it will not be able to lock another resource because of the

system ceiling (; r(`r) <_ ̀; c < ir(r) < If `r does not try to lock anything, it will

proceed with the execution of its critical section. If r wakes up before `r
finishes then the system will be in a state equivalent to just prior to t, If `r

executes its critical section uninterrupted, it will proceed to unlock the

resource. At that point the new system ceiling ; r, as stated in Definition 3.3,

should be equal to the highest ceiling amongst the locked resources, which

means r" = ic = Fr]. This leads the system to a state equivalent to the state it

had at i9, but with one additional free resource. Hence, there can again be no
deadlock.

Corollary 3.1: The BPreCP is deadlock-free under any circumstances.
Proof. Suspension while locking is a stronger condition than non-

suspension while locking. Since the protocol is deadlock-free even when
suspension is allowed while locking, it will be deadlock free in general.

From the above proof of Proposition 3.3 we can see that a key issue in

guaranteeing the correctness of BPreCP with self-suspending tasks is to
provide an appropriate representation of the system ceiling. For example,
modelling the system ceiling as a stack would produce erroneous results, if a

62

task tried to unlock a resource while the task holding the highest locked

resource was suspended. On the other hand, keeping the system ceiling as a
list, where we can delete any arbitrary link, would be appropriate. Also, we

note that there is no need for locks on resources used under BPreCP.

In general, self-suspension while holding no locks is not a problematic task
behaviour. The self-suspending task should know the consequences of

suspension, for example, possible additional blocking, and use self-suspension

at its own risk. Self-suspension outside of critical sections can only affect the

suspending task. As far as the system is concerned, it can consider suspension

as the end of the task's execution. When the task wakes up the system can

consider that to be the release of a new task with shorter relative deadline,

shorter period, and shorter execution cost than the initial task. 't'herefore, the

protocol will handle it as any other task release.

However, the case of suspending while locking a resource can present

serious problems to certain resource sharing protocols, as with the case of
SRP. The approach different real-time languages take towards this problem

varies. For example, Ada does not allow suspension while locking a resource
Ada-Europe 20071, while the R"1'S) allows it IBollella et al. 20001. As it has

already been stated, in the interest of applicability our scheduling framework

takes the more general approach of allowing task self-suspension within a

critical sccrion.

3.2.4 The role of the PLT and EI
The preemption level test and eligibility inheritance rule each fulfill a

particular function, which is the same in both BPre(; I and SR1'. When

combined, they achieve deadlock-free, maximally bounded execution eligibility
inversion control.

ýt
1

i

ýý ...

...
,. A

ý` _.

63

Figure 3.2: A circular dependency of n tasks

Theorem 3.1: The preemption level test, applied when requesting a
resource, is sufficient to prevent deadlocks.

Proof. To describe a deadlock situation in a general way, let us suppose we
have nEN tasks { rl,..., r}, with ; r(rl) < ... << . ir(rn) , that use n single-

unit resources {rj,..., r, } in a circular fashion. This is shown in Figure 3.2,

where g, i, j, ke [1, n]. The use of single-unit resources is preferred for

simplicity and does not imply loss of generality. Each task r; uses exactly two

resources, r and re,. Each resource r; can be used by exactly two tasks, r1 and Tg.
Therefore, there will be two resources that both have the highest preemption
level as ceiling, the first being r, 2 and the second being the second resource that

task ro uses, which we name ri. In order to have a circular wait condition,

every resource must be locked. However, once either r or rk is locked by the

running task r, any other task trying to lock a resource will fail the preemption
level test, since it cannot have a higher preemption level than the system

ceiling. Therefore, the only task that will be able to lock a resource is rr Since

or rk, it follows that the second of the two Tr was able to lock either r
resources is also unlocked, so the task can proceed with locking that as well.
Therefore, the running task can finish its execution, thereby eliminating the

possibility of a circular wait. Hence there can be no deadlock.

Essentially, PLT avoids a circular dependency by putting a stop to further
locking, once the highest preemption ceiling resource has been locked. Note
that the above proof is irrespective of whether tasks self-suspend or not.

Theorem 3.2: The preemption level test, applied at the point of a task's
release, is sufficient to prevent deadlocks, if and only if no task self-suspends
while holding a resource.

Proof The "if' part of the theorem follows from Proposition 3.2. To prove
the "only if' part let us suppose that there is a deadlock while PLT is applied at
the release of a task and there is no self-suspension while holding resources.
To have a deadlock a circular wait must exist, as in Figure 3.2, where all
resources have been locked and a task ts, having locked ri, is requesting i

Since self-suspension is not allowed, task rj could only have started its

execution by preempting at the point of its release the previously running task.
Also, since all resources must be locked, t must be the one locking the
resource with the greatest preemption level r1,, i. e. r, rn and r1 = rt . If it

was not, then the task locking it would have run before r; and would have set

64

the system ceiling to ; r(r;) <_ ̀; c = Fr. 1, thus blocking r; at the point of its

release. This means that the system ceiling when r; was released was `z < ir(ri)

and that the current ceiling is n= [rn 1. Also because r; will not self-suspend,

only tasks with greater preemption level and execution eligibility will be able to
preempt it. However, these tasks do not affect the circular dependency. So, for

task r; to cause a deadlock, it must block on the second resource rk whose
ceiling is equal to rp. However, if rk is already locked, r; would have blocked

when it was released -a contradiction.

Eligibility inheritance, on the other hand, bounds eligibility inversion.
However, on its own eligibility inheritance "does not reduce the blocking

times suffered by jobs (to) as small as possible" [Liu 2000]. This can be seen in

Figure 3.3. b, where r4 does not have to suffer inversion from r, but it still

suffers inversion from more than one task (both rl and r2). In fact, r4 would
suffer blocking from each and every task that got to run before it and locked a
resource that it will need to use.

Minimising blocking to just one instance is achieved with the help of the
preemption level test, which specifically blocks tasks from locking resources
that might be used by tasks that have already locked other resources. The

cumulative effect of EI and PLT can be seen in Figures 3.3. e and 3.3. f,
BPreCP_PLT being applied in the first case and SRP PLT in the second.
Conversely, a PLT on its own does not limit inversion, as can be seen in
Figures 3.3. c and 3.3. d, again with BPreCP_PLT and SRP_PLT respectively.

Let us examine Figure 3.3 in more detail. It depicts the classic paradigm of
priority inversion with 4 non-suspending tasks rl, r2, r3, r4, running with
eligibilities A, B, C and D, respectively. The eligibility e, release time tr and
execution cost c of each task are given in Table 3.1 below.

Table 3.1: Task release times and execution costs
ri T2 73 74

e A B C D

tr 0 2 6 4

c 8 4 1 5

65

r, rz

r, r, r r, r, O

r, rr r,

C

rr

4eo aý e

a. Deadlock-prone Unbounded Priority Inversion

JJ,
rz

7z
,
7*; tz

B
fi

A
r- r

-Q-_. iLl-.
_

r,
_..

ý

?a[, rt 1 14 1t,

c. Basic Preemption Level Test without Eligibility
Inheritance

l__ _-
q

.. _
rr' r. r T4 141

r, r, fr r,

r r.
ý1C -£S_. _--tu 11 to 16

r, rs

r, rr q il rý r r. q

r, r, r, r2 r, ra r,

C
tr

ri

rr it jý
B

n

0268 10 12 14 16

b. Basic Eligibility Inheritance

r, r.

ryý r, r r, r,

_.

l.
''

T) r)

B

rr

!ý Ir rr Tr
A

.ic4ý.
1') 11 ýd lö

d. Stack-based Preemption Level Test without
Eligibility Inheritance

T,

r. r, r,

f
r- r, r

r)

h r: ri T:
P

e. Basic Preemption Level Test with Eligibility f. Stack-based Preemption Level Test with Eligibility
Inheritance Inheritance

K, y

Diagram am axes

Figure 3.3: The role of eligibility inheritance and the preemption level test in resource sharing
protocols

66

hl

Execution eligibility A is the lowest and D the highest of the four. We

think of these as the eligibilities for the current job of each task, which, in the

general case, can be task-level dynamic eligibilities, i. e. they could change
between two different jobs of a task (Section 5.3.1 will examine the case of
job-level dynamic eligibility algorithms). Irrespective of their current
eligibilities, the task preemption levels are ; r(rl) < z(r2) < 7r(t4) < Tc(r,) . Tasks rl

and r4 use resource rl, therefore kr11= ; r(r4). Tasks r2 and zQ use resource r2,

therefore 1rz1= x(r4). Both resources are single-unit.

First, Figure 3.3. a shows what happens when there is no resource sharing
protocol applied. Task z1 is released and locks r1. Then it is preempted by rs

which locks rg At time 4 task r4 is released, preempts r2 and tries to lock r1 but

blocks on its lock. Task r2 continues the execution of its critical section and at
time 6 it unlocks rýL At the same time it is preempted by task r3. Both the

execution of r2 and of r3 constitute unbounded priority inversion, that delays

the time tl releases rl and, consequently, the time at which rq will finish its

execution. Furthermore, deadlocks are possible. For example, if at time 5 r2
had requested rl, it would have blocked on its lock. Then, if at a later time Tj
had requested r,, ,,

deadlock would have occurred.

Figure 3.3. b illustrates the case where we enforce the eligibility inheritance

rule. So, again, task rl is released first and locks r1. r2 preempts it at time t=2

and proceeds to lock r,. At t=4 task r4 is released, but when it tries to lock r1 it

blocks on its lock and the eligibility of r,, is raised to D. rl now executes at D

and r., released at t=6, cannot preempt it. At t=10 rl releases rl and r4

promptly locks it. Then at t=11 it tries to lock r2 but blocks on its lock. This

immediately raises the eligibility of r2 to D. r2 executes at D and then unlocks
ra which is immediately locked by rQ in a nested way. r4 proceeds to unlock
both resources and finishes its execution. Only then is T3 able to run. Finally,

all tasks end one by one. Here we can see that eligibility inheritance was able
to prevent one case of inversion, at time t=6 when z3 was unable to preempt

Ti. However, r4 still suffers multiple eligibility inversion, since it is blocked by

both rl, at t=5, and zA at t=11. Also, the possibility of deadlock is not
removed. We can understand this if we consider the case where r2 requests rl

at, say, t=3.5 and TI requests r2 at t=3.7 The two tasks would then be caught

up in a deadlock.

67

ti.

Figure 3.3. c shows the application of the preemption level test at the point

of requesting a resource, as in the BPreCP. However, the eligibility inheritance

rule is not applied here, in order to observe the role of just preemption levels.

Again task r1 is released and locks rl, this time setting the system ceiling to

x =1 ri I= ; r(r4) " r2 is then released but when it tries to lock r2 it triggers the

preemption level test, which it fails since ; r(r2) <; r. Notice that r2 fails the test

even though it tries to lock a free resource. Therefore r2 is blocked on the

system ceiling and rl continues to run. At t=4 it is preempted by 74, which

tries to lock rl and also fails (z(r4) <_ r). r1 again continues to execute.

However, at t=6 it is preempted by r3, since z(r3) > ; r. The fact that r3 has a

greater preemption level but lower eligibility than r4 should not be viewed as a

contradiction. For example, if the scheduling policy was EDF, then it might be

the case that r3 has a shorter relative deadline than r4, but in this particular
instance has a greater absolute deadline than r4. As a result, we see that the

preemption level test on its own, when applied at the point of accessing a
resource, cannot prevent unbounded eligibility inversion. However, it is

sufficient to prevent deadlock, as shown by Theorem 3.1.

Figure 3.3. d illustrates the case where we enforce the preemption level test

at the point of a task's release, as in the SRP, again without EI. Task zl is again

released and locks the resource, setting the system ceiling to x= fr, 1. This

time, when r2 and r4 are released, the preemption level test is enforced and the

tasks are blocked, since ir(r2) < n(r4) 5 x. However, r3 is again able to preempt

rj, causing unbounded eligibility inversion as in the previous case. Again, as
per Theorem 3.1, no deadlock is possible.

In Figure 3.3. e we produce the BPreCP, by combining EI and PLT at the
point of locking. We again have the situation of rl locking r1, while r2 and rQ
block due to the preemption level test. However, because of eligibility
inheritance, task zl inherits the eligibility first of -r2 and then of r4, when they
block on the system ceiling. This way task z3 cannot preempt rj when it is

released. Hence, priority inversion is limited to only one block from a lower

eligibility task.

Finally, in Figure 3.3. f we enforce the SRP, by combining EI and PLT the
instance a task is released. -cl is released and locks rl, T2 and r4 block due to the

preemption level test, and r3 cannot preempt rl when it is released. So, again,
priority inversion is limited to only one block from a lower eligibility task. The

68

difference here is that r2 and r4 do not get to execute at all before rl releases

r1. Therefore, contexts can be loaded on a stack, with a context being

unloaded off the stack only at the end of a task's job. This also has the effect

of a better response time for the highest eligibility task, compared to BPreCP.

To give a more complete picture of the effects of each protocol, the
following Table 3.2 summarises the response time for each task under each
protocol.

Table 3.2: Response times for tasks of Table 3.1

T1 72 T3 T4

No protocol 18 6 1 13
EI 18 15 10 11

BPreCP_PLT without EI 18 15 1 10
SRP PLT without EI 18 15 1 9
BPreCP PLT with EI 18 15 8 9

SRP PLT with EI 18 15 7 8

We will now give a more formal definition of the roles of EI and PLT.

Given a task clocking a resource rwe will define three sets of tasks:

" The set T of tasks with eligibility higher than that of the locking task r,

e. g. { r2, -r3,7-4) in Figure 3.3.

" The subset T of T containing those tasks whose preemption level is

lower or equal to the system ceiling, not including the locking task; e. g.
{r r4} in Figure 3.3.

" The subset T of t containing the tasks with preemption level higher

than the system ceiling, but lower eligibility than the highest eligibility task
that uses the latest locked resource; e. g. { r3} in Figure 3.3.

When enforced, the preemption level test blocks set T, while the eligibility
inheritance rule blocks T. With the above example we can see the dual role of
preemption levels: on the one hand they enforce mutual exclusion, and on the

other they help limit eligibility inversion down to one instance.

69

3.3 The relation between preemption-ceiling and
priority-ceiling protocols

In Section 3.2 we explained how preemption levels are assigned and how

they are independent of any particular policy. Rule 3.1 is a guide for optimum
preemption level assignment and we showed how it translates in the case of
EDF. Since application of preemption levels is not restricted by the policy, we
could also apply the rule to fixed-priority scheduling. In this special case
preemption levels equal task priorities. This way mutual exclusion and
bounded priority inversion is achieved using only one metric, priority. Yet, if

we do this, we see that the schedule produced by BPreCP is exactly the same
with that produced by PCP. This means that PCP is an instance of BPreCP.
Or, in other words, PCP is the incarnation of BPreCP for the special case of
fixed-priority scheduling. So, in the example of Figure 3.3, if we take A, B, C, D
to be priority levels, we can see that enforcing PCP produces the same
schedule as Figure 3.3. e.

We have mentioned that PCP is to SPCP what BPreCP is to SRP.
Therefore, since PCP produces the same schedule as BPreCP when
preemption levels are based on priorities, the same is true for SPCP with
regard to SRP, but only in the sense that both protocols produce schedules
where the same tasks run at the same moments in time. The SPCP protocol is

an incarnation of SRP for fixed-priority scheduling, but, according to the
protocol's definition in [Liu 2000], it differs in one aspect: it does not apply an
eligibility (priority) inheritance (EI) rule. The reason for this is that ceilings are
based on eligibility, i. e. priority. The SPCP takes advantage of that, realising
that there cannot be such discrepancy as in the case of the SRP, where a task
can have a higher preemption level than the system ceiling and yet lower

eligibility than the highest locking task. So, by setting the system ceiling to the
priority of the highest locking task the protocol is certain that any released task
failing the SRP PLT test will also fail the EI test. Therefore, there is no need
for eligibility inheritance (EI). In the case of the SPCP, the SRP PLT
incorporates the EI test.

Another way to look at this is by considering the task sets defined in the
previous section. In the case of SPCP it is i; = 0. Therefore, in this case only
tasks that belong to T must be blocked, and SRP PLT is sufficient for that.
However, in the case of PCP, where we do not apply the PLT as soon, as a
task is released, any task belonging to T will have the chance to preempt the

70

locking task. To bound this preemption we have to apply the priority
inheritance rule, which wouldn't have been needed if P1: 1' was applied at the

point of a task's release.

The schedule produced by the SPCP can be seen in figure 3.4.

T4 r, r]

LTj4T4-b
"I

v
r3 r, r,

-T'

rz
v

rz

6V
'1 Il ýf I T`

1
r,

"

r, T,
r

",

A0 248 10 12 14 10

Ta, k
HI-, k on the Normal task

svslem ceihn9 exer: uhnn nýAniýi r,

Task and '', 'IEI nckmq r. ,. '. nub býýth

Figure 3.4: SPCP schedule for the tasks of Table 3.1

Lhwyi, ini oxcs

The drawback of not explicitly applying the I 'A I rule, I1OWCVc1-, is t that

released tasks, that are going to be blocked by the 1'l. 'I' test, still have to

perform the test. This, presumably, introduces some overhead. Applying I ýi

would mean that, when a task blocks, no other task with equal or lower

priority than the blocked task will need to perform the I'l; l' test. "Therefore,

the issue is one of optimisation. By applying the I'll test, the 'SP(A) hemmies

the exact translation of SRP for fixed-priority scheduling, and womid 1001k like

Figure 3.3. f.

The last priority-ceiling protocol is IP(; P. 't'aking the same example, the
IPCP produces the same schedule as the SPCP, but in its own unique way.
This can be seen in Figure 3.5. The ceilings of resources are equal toi the

maximum priority amongst the tasks that use them, so [r, 1 [r, is

released and as soon as it locks r1 its priority is elevated to the resource ceiling.
I fence, all tasks r, with priorities p(-,;) are prevented from runniiig

upon their release, until /=i when -. j rclcascs tlii resource.

T4 r, rp

T, T, T4 T4 T4 T4
D

T3 rp r,

T3

Tz rz

Tp Tz r2

e D. lý

A0
2468 10 12 14 16

Key

I ask w 4,,,, v Innk rrsnurce
Normal

ezecut it oýask
Locklr, g ýr

Diagram axes

priosty

I. nd Unlnrk resource
hip g both 12

Lo:; kiny r;
.

rr rz
lore

Figure 3.5: IPCP schedule for the tasks of Table 3.1

The IPCP goes one step further than the SPCP. Similar to the

siniplihcation the SP(; P introduces, it is realised that both the SRP_PL 1' and
I -A tests can be substituted by the eligibility test (I? '1), if the priority of a task is

treated as the system ceiling. Just as the system ceiling is elevated to the ceiling

of a resource as soon as that resource is locked, so is, in the IPCP, the priority

of a task elevated to the ceiling of a resource as soon as it is locked. This,

again, can be done because ceilings are based on priorities. This is a sort of

priority inheritance, where the inherited priority is not the priority of another

task bur the ceiling of a resource. IPCP also has no need for the equivalent of

a preemption level test (PIA), since it does not use a system ceiling. 'T'herefore,

the only mechanism the IPCP uses is the execution eligibility test (1, I). In

other words, it simply relies on fixed-priority dispatching to enforce the

necessary conditions for deadlock prevention and bounded priority inversion. 8

The gain by using IPCP is that it is easier to implement. It just uses

preemptive fixed-priority dispatching together with the standard definition of

resource ceilings. Priority inheritance only happens once at the point of
locking and not every time a higher priority task is blocked. Also, there is no

need for special checks at the point of a task's release. If the released task is

not eligible to run, the dispatcher will simply not select it. This can be seen in

Figure 3.5, when at time t, =2 r, is released. Remarkably, in spite of all these
differences, the schedule it produces is the same as the SPCP (Figure 3.4), in

'Tt'his is why IV(: P is also known as the Priority Ceiling 1'mulalion Protocol.

72

the sense that in both diagrams the same tasks run at the same moments in

time. On this merit it can be considered to support sharing of the run-time

stack.

However, there is a drawback to IPCP. The above observations are true

only in the case where tasks do not suspend themselves. Once that happens,

the protocol is broken. When tasks suspend, unbounded priority inversion can
occur. Additionally, if tasks suspend while holding resources, deadlocks are
possible. The reason for that is that since the protocol relies on the task's

priority to carry out the role of the system ceiling, once the task is blocked, the

system has no "memory" as to which tasks it must prevent from running and
no way to stop a task from locking a resource that might be needed by

,
the

blocked task. In contrast, the SPCP does not have this problem, since it

explicitly keeps track of the system ceiling.

As a note, we can say that based on the above, we can now better

understand the role of the system ceiling. Just as preemption levels allow the resource
sharing protocol to be independent of any panlicular scheduling poluy, the system ceiling
disentangles the protocol from the dis atching mechanism.

3.4 The Preemption Level Protocol (PLP)

In this section we examine the preemption level protocol (PLP), which, as

already explained, is of particular relevance to our work. The principles on
which PLP achieves resource sharing are not new. Rather, it is a novel way of
implementing a preemption-ceiling protocol to handle resource sharing of
EDF tasks scheduled on priority queues. The protocol is specified in the

context of the Ada programming language, which does not allow suspension
while locking. Furthermore, it has been accepted as part of the new proposed
Ada standard [Ada-Europe 2007], where the assumption is that it enforces the SRP.
We will first describe the protocol and then explain its mechanism.

Under PLP, an EDF task's preemption level is assigned as in the SRP,

monotonically according to its relative -deadline. The EDF task's priority
parameter holds its preemption level and not its eligibility (the task's eligibility
is its absolute deadline). This does not present a problem, since preemption
levels are static as are priorities in fixed-priority scheduling. However, task
dispatching is still based on the priority parameter. Resource ceilings are also

73

assigned as in the SRP.: \dditionally, the protocol assumes that in Ada we can

specify, within the range of priority queues, a number of consecutive prioritýv

queues dedicated to I? D1 scheduling. PLP is described in IBurns et al. 2004

with the. following three rules:

Rule 1: , I/l 1: 1)l priority queues are ordered by absolute deadline (shorter

absolute deadline implies closer to the head of the ready queue, i. e. E1)1

di. ýpatchine).
Rule 2: 1; xemlion while holding a resource occurs at the priority ceiling of that

rt, snnrre (i. e. the e. lzsting rule in /PCP, Which Ada uses).
Rule 3: Whenever a task, r becomes runnable, it is placed on the highest non-

empty I : 1) I' priority queue R,
. such that the base priority qfr is greater than R and

the absolute deadline of r is less than the deadline of the task at the tail of queue R
f no such R e, %z. sl. s, r is added to the lowest 1; 1)1' priority queue.

Let us suppose we have a priority range tIIIIII, IIIaxI and we apply E1)1'

scheduling toi priority queues jlow, low-f-4. Three tasks r1, rh ry with relative
deadlines I), > 12, > D,

{ b 74r,) << Let us suppose that

1, n(r2) = 2, T(r;,) = 3. Furthermore, r., uses rj and t3 uses r2, hence

['
= 2, [1;] = 3. If the tasks execute as in the Gantt chart of Figure 3.6. a, the

I '1)F priority ciucucs under P1, P would look like Figure 3.6. b. We assume that
during this particular release of each task their absolute deadlines are
(l, > (l, >(13*

r, r1

>> rx '7,

Mr,

- tinu

a. Gantt chart

Key

LrN. k resawce
®

I a(long n

max

3
ow+3

r
ö
c

7ý

ow+1 ö
wö

low

F
ä

min

b. Priority queues

T -k Diagram axes

priority
LI

Lo ; long lask hont nl

Figure 3.6: Priority queues with PLP

Task r' executes first at priority low. After a while it is preempted by

also at low, which has a shorter absolute deadline, and -z1 is placed on the low

74

queue. z2 proceeds to lock rl and, therefore, -its active priority parameter, i. e. its

preemption level, is raised to the ceiling of r1. Then r3 is released and in turn
preempts r2, since its absolute deadline is shorter than r2 and its preemption
level is greater than the ceiling of r1, which happens to be the highest locked

resource, i. e. the system ceiling. If a fourth task r4 comes in with n(r4) =4 and
d2 > d4 >_ d� it will not be able to preempt r3 and will be placed on queue
low+2in front of z2,

Most tasks are on the low queue, not locking any resource. Each locking

task is on a queue above low and, conversely, each occupied queue above low

signifies a resource being locked. For queue low+i the locked resource has a
ceiling of 1 The locking task is always at the back of queue lowfi. For a task to
release a resource no other task must exist on the queue in front of it (or it

would have been preempted). Therefore, when the task releases the resource
the queue will be empty. The task's priority parameter (i. e. its preemption
level) is then set to the value it had before locking, and it is placed on a lower

queue according to Rule 3. In front of a locking task on the same queue are
tasks that can preempt it. Since PLP tries to apply SRP, preempting a locking

task would mean satisfying the SRP rule. So, let us examine what happens

when a task is released.

To implement the SRP rule we must enforce the eligibility test (ET), the
preemption level test at the point of a task's release (SRP_PLT) and eligibility
inheritance (EI). As we can see, the rules force a locking task to occupy a
higher queue than low. This is because PLP uses the same mechanism as IPCP

and raises the priority parameter of a task to the ceiling of the locked resource.
However, there is a qualitative difference. In IPCP the priority parameter is
both the eligibility of the task and its preemption level. In PLP it is just its

preemption level, because PLP deals with tasks whose preemption level is
different from their eligibility. Therefore, this mechanism cannot emulate both

the SRP PLT and EI, as in the IPCP. Instead, ceiling emulation in PLP

enforces only the SRP_PLT test. Raising the preemption level of the task has

the effect, as in IPCP, of emulating the system ceiling and emulating early
blocking of tasks9. The priority of the highest occupied queue is, in essence,
the system ceiling. In fact, every occupied queue above low becomes the

9 Tasks with lower priority than the ceiling of the highest locked resource do not really block; they
just have lower priority than the locking task and wait on the priority queues to be dispatched.

75

system ceiling, when all locking tasks on queues higher than it have released

their resources.

Proposition 3.4: The preemption level protocol enforces the preemption
level test at the point of a task's release.

Proof. In preemption-ceiling protocols, when no resources are locked, the

system ceiling must be Zero (lower than any legal preemption level value) and

therefore all tasks will have greater preemption level than it. This is emulated
in the PLP by all tasks being on the low queue and all higher EDF queues
being empty. In this case a released task will be placed, by default, on the low

queue and the only criterion for its position will be its eligibility (i. e. its

absolute deadline). This amounts, by default, to having greater preemption
level than the system ceiling.

In order to preempt the running task when resources are locked, a released

task, apart from greater execution eligibility, also needs a greater, preemption
level than the priority of the highest occupied queue. This priority is the ceiling

of the highest locked resource, which, by definition, is the system ceiling.
Therefore, the mechanism is equivalent to the preemption level test.

Proposition 3.5: In the context of the Ada language, the preemption level

protocol is deadlock-free.

Proof. Since Ada does not allow a task to self-suspend while locking, proof
of this proposition follows from Proposition 3.4 and Theorem 3.2.

By extension, the PLP cannot be implemented in systems where task

suspension while locking is possible. Additionally, it does not enforce the EI

and therefore allows potentially unbounded eligibility inversion [Zerzelidis et
al. 2007]. This fact is demonstrated with examples. First, we show in Figure
3.7 the schedule produced by PLP for the tasks of Table 3.1. Figure 3.7

presents two ways of viewing the execution of tasks under PLP. Figure 3.7. a

shows each executing task according to its eligibility, that is, its absolute
deadline. Figure 3.7. b shows task execution according to which priority queue
each task is executing on. Task preemption levels were specified as
n(rl) < n(r2) < ir(r4) < n(r3) . Let us assume that they are 'r(rl) = low + 1,

'T(r2) = low + 2, n(r4) = low + 3,1r(r3) = low + 4. At time 0 task rl is released,

executes at priority low and proceeds to lock r1. At that point Figure 3.7. b

shows that its priority is raised to the ceiling of the resource, which is low+3.

At times 2 and 4 tasks r2 and r4 are respectively released, but cannot preempt

76

as if they were blocked by the system ceiling (figure 3.7. a). In fact, they cannot

preempt because they are released at priority low according toi the PIT rules
(Figure 3.7. b). However, task rA released at time 6, can preempt -. /, because its

preemption level is higher than priority of the dueue where r1 executes (Trüg its

eligibility is higher than that of r1 (Figure 3.7. a). 'Phis constitutes eligibility
inversion for r1 which wouldn't occur under SIZP. This is possible since r,
does not inherit the eligibility of r. /.

T4 rf l:

rý rß:

1

r rý rý

f: If
-ý Iý

jý low+3 ý---- -- - iv
V4

"'I
V

rv low+2-

ti :17 re

low+1

rf r, r, r4 rf r:

r, tr q r' I1I rý qfr; r.
A -- Inw -1 0246 10 12 14 if,

ýýýLLL
074 ýý n IU 1: I. 1 11i YYY

a. Schedule according to eligibility b. Schedule according to priority (preemption level)

Key

Diagram a apes l . i'ý.

Figure 3.7: PLP schedule for the tasks of'1'ablc 3.1

Therefore the PIT does not implement the SRP correctly. This is �

significant importance since the protocol has already been adopted in the new
Ada reference specification as part of the Real 'l'ime Annex Ada I'uropc

2007. This could mislead the programmer into believing Him eligibility
inversion is bounded as in the SRP, while in fact it is not.

We have to point out, however, that the notion of unbounded eligibility
inversion here is not the same as the familiar one of unbounded priority
inversion. In a static eligibility system there is no possibility a high eligibility

task can ever be preempted by a low eligibility task under normal c(inclillons.
't'herefore, when a medium priority task preempts a low task, which in turn is

locking a resource on which a high task has blocked, the middle task is doing

something that would normally be impossible. Namely, it is executing in

preference to the high task. This effect is the classic case of ººnbotinded

priority inversion. On the other hand, when task level clynannic eligibility

algorithms, like FD1', are used, any task has the potential to preempt any 01lier

task under specific circumstances. In the case of I? l)l., for example, we can
have two tasks r; and that have relative deadlines U; and I); respectively, with

77

(D; -D)=d>0. Usually, rj will execute in preference to ri since it has a shorter

relative deadline. But in some cases it could be that r; is released d to D; time

units before the release of rf In that case r; will execute in preference to rl So,

in task-level dynamic algorithms we cannot be certain of the precedence order
between any two tasks for their every possible release. Therefore, in such

systems. a case can be made that the static analysis will always take into account
the possibility of any task preempting any other task. Thus, in the above

example for EDF, task rj could potentially be preempted by any task r; with

greater relative deadline for a maximum of (D, a) time units. Returning to the

example of Figure 3.7, we can say that static analysis for r4 would have already
taken into consideration a preemption by TS, and, thus, the inversion that r3

causes due to the PLP would have been addressed.

Be that as it may, the fact remains that the lack of eligibility inheritance in

PLP causes the analysis of any system to be pessimistic. The inversion allowed
by PLP will cause certain systems that would be schedulable under SRP to

miss their deadlines. In other words PLP is sub-optimal with respect to SRP.

To counter this problem we have to apply the eligibility inheritance rule as
part of the third rule of PLP. A key feature of the protocol that must be

recognised in order to counter the problem is that, due to the way the PLP

emulates the system ceiling, a locking task must always be at the back of the

queue. This way, once the locking task releases the resource, the queue will
become empty, thus emulating a drop of the system ceiling. This rule can be

amended as follows:

New Rule 3: Whenever a task r becomes runnable, it is placed on the highest

non-empty EDF priority queue A such that the base priority of r isgreater than R

and the absolute deadline of r is less than the deadline of the task at the tail of
queue R and also less than the deadlines of all other tasks on ready queues with
priorities strictly less than A If no such R exists, r is added to the lowest EDF

priority queue.

The new rule makes, of course, the implementation of PLP more difficult,
but it is necessary for a correct translation of the SRP. This amendment is

equivalent to the solution given in [Zerzelidis et al. 2007], which specifically
corrects the wording of the protocol as described in [Ada-Europe 2007].
[Zerzelidis et al. 2007] also provides the proof for this correction, which is not
included here, since it is outside the scope of this thesis.

78

hk

3.5 Summary

In this chapter we examined the most widely known and used resource
sharing protocols, in order to form an opinion on which would be the best

choice in a scheduling environment of arbitrary schedulers, both in number
and in policies.

The major types of protocols are three: basic eligibility inheritance,

priority-ceiling protocols, and preemption-ceiling protocols. Table 3.3

summarises their properties, which form two groups: behaviour and
mechanism. The protocol behaviour properties are those characteristics that

pertain to what the protocol has to offer in countering eligibility inversion,

whereas the mechanism characteristics describe how the protocol achieves its
behaviour. Based on these properties one can identify the relative merits of
each protocol. To determine which protocol best suits the framework

presented in this thesis only a subset of the properties is of consequence. At a
bare minimum, the protocol must ensure deadlock-free operation while
bounding eligibility inversion as much as possible. As can be seen, most of the
protocols achieve this. However, the main concern is for the protocol to
possess a policy-independent mechanism. The only protocols able to operate
under different scheduling policies are the SRP, BPreCP and MSRP. Finally, in

order for the framework to address the greatest possible number of systems, it

must cater for situations where tasks self-suspend while holding resources.
BPreCP is the only protocol satisfying all three criteria. It is resilient to task
self-suspension, as proven with Proposition 3.3, since the BPreCP_PLT takes
place at the point of locking a resource and the system ceiling guarantees that

no other task will be able to lock-potentially needed resources.

79

Table 3A! Comnarison of resource sharint protocols
Basic Priority-ceiling protocols Preemption-ceiling protocols

Eligibility
Inheri- PCP SPCP IPCP BPreCP SRP MSRP PLP

tance
Behaviour

Deadlock-free X � � � � � � �

Bounded Not
Eligibility

Not smallest One One One One One
i

One
instance smokst

possible instance instance instance instance nstance possa)k
Inversion

Resilient to N/A
task suspension x � � x � x x

10
while locking

Allows sharing

of run-time X x � � x � � �

stack
Minimum

blocking with x X X X X X � x

stack sharing
Mechanism

Policy
independent x x x x � � � x

mechanism
System ceiling X � � x � � � x

System ceiling x x x � x x x �

emulation
agib'hty � � x x � � � x

inheritance

Early blocking x X � X � � x
Early blocking

x x x � x x x �
emulation

Taking all factors into consideration, the BPreCP is the best choice.
Therefore, it constitutes the basis for the framework's resource sharing
protocol, which will be discussed in Section 4.5.

10 The PLP specifically addresses the Ada programming language, which does not permit task
suspension while locking. An implementation of PLP without the no-suspension rule would allow
deadlocks.

80

Chapter 4

A Flexible Middleware
Scheduling Framework

This chapter presents a generic framework for task scheduling at the

middleware level that allows multiple, diverse, user-defined scheduling policies
to co-exist in the system, each one dictating the execution of a particular
subset of the task set. The only OS scheduler required by the middleware is

the standard fixed-priority preemptive scheduler found in most real-time
operating systems, e. g. POSIX, all real-time Linux, Integrity OS, VxWorks,
QNX, Windows CE. The user-defined policies are enforced through the
manipulation of task priorities. This use of dynamic priority changes to

support alternative scheduling policies is well established. The approach
adopted here is based on [Burns and Wellings 1997].

The chapter describes the framework, starting from the assumptions made,
the choice of protocols, and concluding with the description of the actual
mechanism. More specifically, Section 4.1 presents the basic assumptions on

which the framework is built. Section 4.2 shows how different scheduling

81

policies can be enforced through the use of a fixed-priority scheduler. Section
4.3 introduces the notion of a scheduling band operation. Section 4.4 explains
how multiple schedulers could be introduced under the framework and gives a
detailed definition of the notion of a scheduling band. Section 4.5 talks about
sharing resources between different bands. Section 4.6 presents the framework

protocol and gives some basic properties. Finally, Section 4.7 provides some
concluding remarks.

4.1 Basic assumptions

In constructing the Flexible Middleware Scheduling Framework (FMSF)

we assume the following characteristics for the environment it is going to be

applied in:

" The middleware runs within the same user-level process as the

applications, on top of a real-time operating system. Thus, any objects
shared between middleware tasks are defined within the same address
space and no issue arises in sharing them.

" Middleware scheduling decisions are taken as part of a task's execution;
more specifically, we view the middleware as a collection of libraries to

which the task makes calls and part of this library is the middleware
scheduler, or base scheduler (B5).

" The only, scheduling policy enforced by the base scheduler is fixed-

priority preemptive dispatching. This means that each middleware
application task has, at the least, a fixed priority as a scheduling parameter
and changes in task priorities are assumed to have immediate effect.
" Because of the base fixed-priority preemptive dispatching, the
scheduling model supported is event-triggered.

" The particular implementation of middleware tasks is irrelevant, as long

as the needed scheduling behaviour is supported.
" Every middleware base scheduler operation immediately translates to
an equivalent operating system scheduling operation - in particular,
changes in task priorities are assumed to have immediate effect on the
corresponding operating system task.
" The default model of interprocess communication and synchronisation
is shared memory; however, message passing can also be accommodated.
" Tasks are permitted to suspend while holding a resource.

82

In such a system the middleware application is allowed to introduce its

own scheduling policies. These policies are part of application-defined libraries

and constitute a second level of scheduling. It is the function of the
framework to translate the decisions of all second-level schedulers to base

scheduler decisions. However, an important observation needs to be made.
The framework, does not make provisions for each and every scheduling
policy to be supported. Only those policies that can be implemented simply
based on the above assumptions are directly supported. Policies that need

special provisions are not directly supported; for example, a policy that assigns

eligibility based on the exact time tasks have executed on the CPU. In this case
the middleware would have to be able to provide a way for the application

scheduler to measure or acquire the exact time each one of its tasks has had

control of the CPU for. Needless to say, the more capabilities the middleware

provides (e. g. CPU time clocks) the better. There is no point, however, for the
framework to require them, because its purpose is to be a general scheduling
framework and not to show preference for particular scheduling policies by

indicating which capabilities should be present. Section 5.3 of the next chapter

will examine support for scheduling policies that fall outside the model given
by our basic assumptions.

The addition of second-level schedulers means that some middleware tasks

might have additional scheduling parameters depending on the type of policies

that will schedule them during their lifetime. When a scheduling decision'

needs to be made, the base scheduler queries the relevant second-level

scheduler via an application programming interface (API). This means that

second-level schedulers are "passive" and, when queried, provide information

to the base scheduler, who carries out the low level scheduling, i. e. the
dispatching. They designate which task they want to run, according to their

policy, and the base scheduler translates this to a fixed-priority scheduling
decision (e. g. changes the fixed priority of a task). We will refer to second-level

schedulers as "application schedulers" or "application-defined schedulers" or
"application-level schedulers", and we will use these terms interchangeably.

4.2 Enforcing diverse scheduling policies using
priority levels

This section presents the rationale for the mechanism of supporting any
arbitrary scheduling policy using priority levels, followed by the definition of

83

when and where application-defined policy decisions take place.

4.2.1 Basic scheduling of n tasks
Theoretically, leaving aside for the moment the problem of how

scheduling decisions are triggered, the decisions of any scheduling policy can
be supported on a preemptive fixed-priority scheduler simply by manipulating

priorities. This easily follows if we consider that the role of any scheduling

policy is to set nEN, n>1 number of tasks in order of precedence according

to a particular metric. This metric defines the measure of a task's eligibility

according to the particular policy, so that the ordering of tasks runs. from the

task with the lowest eligibility to the task with the highest eligibility. Once we
have that ordering, we can always find n nonnegative integers

AI p2,..., p.,, E N, such that pl < P2 < ... < pQ , and assign them to each task

according to that task's position in the precedence list. These n numbers are
then appropriate priority assignments for scheduling the task set under priority

scheduling, irrespective of the higher-level scheduling policy that decided on
the particular ordering. Moreover, in a single processor system, there can be

only one task running at any time, thus splitting the n tasks into two classes,
the running task and the n -1 remaining tasks. The inequality then becomes

pl < P2 5 ... <_ pn_1 < p1. This means that in the most basic case we only

need two priority levels, medium and low with medium>low, in order to

express a valid task schedule, regardless of the number of tasks. These two
priorities form the basis of what we call a scheduling band.

Definition 4.1: A scheduling band is a range of consecutive priorities, being a
subset of the base scheduler priority range, which facilitates the dispatching of tasks scheduled
according to a particular application-defined policy.

Definition 4.2: A task scheduled according to an application-dined policy is called
a band task.

We will symbolise the eligibility of a task r according to some arbitrary
policy as e(r). Sometimes, given a set of n band tasks, the task with the highest

eligibility according to the band's policy cannot run due to resource sharing. In

that case the task that is actually assigned the medium priority is the highest

eligibility runnable task. The concept of a scheduling band is principal to our
framework and will be refined and fully defined in subsequent sections.

84

4.2.2 Scheduling points
The need to always have the correct ordering of tasks according to the

policy's eligibility metric gives rise to the need for determining the instances in

each task's execution where the application scheduler will need to make a new
scheduling decision. We name such an instance a scheduling point. As has been

already pointed in Section 4.1, the framework is based on event-triggered
scheduling due to the nature of the standard fixed-priority scheduler.
Therefore, a scheduling point is linked with the occurrence of certain events.
Its definition follows:

Definition 4.3: A scheduling point is a call to the operating system or to the
middleware, contained within a task's code that can do one or more of the following: i)

change the task set, ii) potentially cause the preemption of the task, iii) potentially

suspend the task.

It is useful, at this point, to repeat the definition of suspension given in
Chapter 3.

Definition 4.4: A suspended task is one that temporarily cannot be considered
for being a signed the CPU, but rather waits for an event upon which it will become

schedulable again.

A task might become suspended due to an external factor, or it might
suspend itself. Alternatively, we will use the term blocked for a task that has
been suspended purely due to an external factor.

Examples of scheduling points are the following:

" the release of a task
" the termination of a task

" the equivalent of a POSIX pthread_j oin (), sched_yield () or

sleep () call

"a change in the scheduling parameters of a task

Thus, at a scheduling point the precedence ordering of tasks can possibly
change, i. e. we might have a context switch. When at a scheduling point
scheduling decisions are dictated by the application-defined scheduler. The

exact mechanism is presented in Section 4.3.

85

As a result of the definition of a scheduling point, the scheduling policies

supported by the framework are event-triggered and not time-triggered. This

means that scheduling decisions are taken in reaction to some event and not at

predefined time instances. This does not mean that timers cannot be used at
the application leveL The expiration of a timer is an event that will trigger a

scheduling decision. Rather, it means that scheduling policies that rely on the

existence of timers within the scheduler are not directly supported. Chapter 5

provides a more complete evaluation of the different scheduling policies
supported by the framework.

4.2.3 Decoupling scheduling from normal task execution
In order for scheduling decisions to be made without interference from

any of the other band tasks, it is necessary to introduce a third higher priority
level high in a scheduling band, such that h gh>medium>low. A task's priority
is elevated to high in order to execute a scheduling point and the
accompanying application scheduler code. This allows us to decouple the
functions of a task executing application code and executing scheduling code,
which is necessary for the correctness of our system. The need for the third
priority level is explained with the following property.

Property 4.1: Using the same priority level for application code execution
and scheduling code execution leads to incorrect system behaviour.

Proof. This will be demonstrated with a simple example. Suppose task r, is

running at medium when another task ra with greater application scheduler
eligibility is released. r2 cannot preempt r1, since they have the same fixed

priority mediun, and, therefore, is placed on the queue for media. As a
result T2 does not have the chance to run the scheduling code associated with
its release (which would preempt rj) and eligibility inversion takes place.

So, to sum up, in the uniprocessor case we need three priority levels from
the base scheduler priority range to enforce an application scheduler decision

using base scheduler dispatching: the first, high, is where execution of
scheduling code takes place; the second, medium, is where the most eligible
task runs; and the third, low, is where, in the general case, all other tasks lie.
The high priority level has expanded the concept of a scheduling band, given
in Section 4.2, which will be fully expanded in Section 4.4. Using this scheme
we are relying on the operating system priority-based dispatching to carry out
application-defined scheduling policy decisions.

86

4.3 Scheduling band operations

As already mentioned, a scheduling point, by definition, can potentially

cause a context switch. Therefore, when a task is at a scheduling point, it is

necessary to inform the application scheduler, so that a scheduling decision

can be made. This is achieved by runnunding every scheduling point with calls to the
base scheduler. The base scheduler library, in turn, makes the necessary calls to

the application scheduler, which returns its scheduling decision. Hence, in the

general case, there are two distinct calls, one immediatelyßrior to the scheduling
point and one right afkrit. According to our assumption, these calls to the base

scheduler library code execute as part of the running task.

In order to canonise the appearance of scheduling points in a task's

execution, we identify eight scheduling band operations in our framework, each
one corresponding to a particular type of scheduling point. All of them are
poknlially suspending operations.

1) A release operation, rrl(r), corresponds to a task r being released for

the first time.
2) A lock operation, loc(r, r), corresponds to a task r trying to lock a

synchronization construct r, e. g. semaphore, monitor etc. We will refer to

these constructs as rrsoumr, because their standard use is to regulate access to

shared resources, e. g. a data bus.

3) An unlock operation, uaL(r, r), corresponds to a task r unlocking a

resource r.
4) A wait operation, rw-t(r, r, ev), corresponds to a task r performing the

equivalent of the POSIX pthread eond_wait () call [IEEE 20041 on the

condition variable evwhile locking mutex r. The semantics of wait is that the
task must be locking r before the operation; executing the scheduling point
unlocks the resource and blocks the task, which becomes unblocked only after
re-locking rbecomes possible.

5) A suspeaslon operation, sur(r), corresponds to a scheduling point,

other than locking or unlocking, that could either potentially or definitely

suspend task r. In general, this encompasses every potentially suspending
operation, other than lock- and wait, since they are all treated the same way.
The only requisite is that such an operation does not introduce race conditions

87

between tasks. In that case it would be considered a lock operation since the
race condition would have to be avoided by enforcing some kind of mutual
exclusion, e. g. use of a mutex.

6) A yield operation, y1d(r), corresponds to a task r executing the

equivalent of a sched_yield () POSLX call (IRRE 2004]. Therefore, the
yield operation will always have an effect at the base scheduler level, i. e.
yielding the CPU to the next task on the queue for the yielding task's priority.
However, as explained in Section 4.2, an executing band task is the only task
with priority medium. Therefore, a base scheduler yield will not cause the
CPU to be handed over to another band task. Consequently, within the
framework a yield operation must have the added semantics of asking the
yielding task's application scheduler for a scheduling decision, in light of the
desire to yield. The application scheduler will then specify the next task to
execute.

7) A change operation, ehg(r , corresponds to a change in the scheduling
parameters of task r. This operation is special in that it is not necessary for r
to execute it; other tasks can change 'es parameters as well. Additionally,
because r is scheduled by an application scheduler, its scheduling parameters
will, in the general case, be relevant only to that scheduler. Therefore, this
operation's scheduling point will not be an operating system call, but rather a
call to the application-defined scheduling library. The only operating system
scheduling parameter used by r is* its priority and only the base scheduler
should change it. A change operation in a task's scheduling parameters might
also include a change in its preemption level, when that is needed.

8) An end operation, end(r), corresponds to a task r terminating its

execution. This, essentially, is a suspend operation consisting of a definitely
suspending scheduling point. However, its semantics are unique and this is why
it is presented as a separate case.

Based on the above definitions we can see that certain scheduling
operations are made up from the combination of others. A wait operation is,
in essence, the consecutive execution of unlock, suspend and lock A change
operation, which might cause preemption of the running task (e. g. by changing
an application policy related scheduling parameter or associating the task with
a new band), can be seen as a suspension operation. In this case, suspension
would mean preemption rather than blocking, these two concepts having the same
end result from a middleware perspective, although being different in nature.
Namely, in both situations the previously running task hands the CPU over to

88

a new task that is selected by the application scheduler. Finally, a yield can also
be seen as suspension, in this case self-suspension. 't'hus, of the eight

operations we identify five basic operations, which are sufficient to test against
for the framework's correctness, as will be shown in Chapter 5. These are

release, cud, lock, unlock and suspend.

Based on the above, and with the definition of a scheduling point in mind,

, k,. -c now give a more complete definition of a scheduling band operation:

Definition 4.5: 1 scheduling band operation is the combination o1 'a scheduling
ßoint and its ýumun, in, mire scheduler calls-.

For brevity, we \,, -rite the preceding base scheduler call of a scheduling

operation as pbse and the succeeding ball as sbsc. For a particular operation

we specify its preceding and succeeding base scheduler calls using the dot

notation, e. g. srLS(. ý). ptxu .

To ensure the correctness of a scheduling; operation, all base scheduler

calls must be implemented in a thread-sale way. This means that a base

scheduler call could be preempted by higher tasks but not for the purpose of

executing another base scheduler call. This rule guarantees the consistency of
both the base and application scheduler's internal data. Moreover, the base

scheduler should be implemented in a \t-ay that could recover, should an API

call to an application scheduler block or fail to return.

Conceptually a scheduling band operation is depicted in the following

diagram:

Scheduling band operation

llhere arc two obvious cases where there is need for only one call to the
base scheduler. as part of the scheduling band operation. These arc:

89

i) When a task is not executing before a scheduling point, and hence we

only need a base scheduler call after the scheduling point (e. g. when a task is

released). We note that the priority of a band task at the time of a new release

will always be the hihi priority of its band.
ii) When a task terminates after a scheduling point, and hence we only need

a base scheduler call before the scheduling point (e. g. at the end of a task's

execution).

4.3.1 Keeping an operation atomic
There are cases where there is no possibility of a task being blocked at a

scheduling point; for example, during an uiilock operation. One could think

that there is no need for a base scheduler call preceding such a scheduling

point. Indeed, as we will see, the protocol itself would not be compromised by

the lack of a preceding call. However, the call is necessary for the optimal

performance of the protocol.

; gis we can see in Figure 4.1, the task can be preempted in the time between

the scheduling; point and a base scheduler call. If there is no call prior to the

scheduling point, then the task will execute the scheduling point at znediutll (or

tiw(fiw»n-lock, see Section 4.4) priority. Because of that, the possibility exists

that another hand task will be released and preempt the running task, rzght after

the latter has executed the scheduling point and before the succeeding base

scheduler call. This can be seen in Figure 4.2 below.

High

Ta

a. Unlock operation with no
preceding base scheduler call

rtr
High

Medium ... ---..
1 i.

_....... ------1ýý
b. Unlock operation with

preceding base scheduler call

KEy

Diagram axes
ax cuoýn

ýo ry

Figure 4.2: The effect of a preceding base scheduler call on a scheduling band operation

In Figure 4.2. a task r1 proceeds to unlock a resource without first making a

preceding base scheduler call. As soon as it releases the resource it is

preempted by z, which executes a release operation. It is decided that :9 can

preempt r/, therefore it is given medium priority and r1 is put on low Such

90

preemption of the unlocking task "breaks up" the unlock operation by

postponing the execution of its succeeding base scheduler call.

In Figure 4.2. b rl first calls the base scheduler, which takes it to high, and
then releases the resource. This means that when r2 is released, it will not be

able to preempt r1, due to the FIFO ordering of priority queues. rj will
execute the second base scheduler call, which will put it on medium. Then, r2

will run, causing the preemption of rj and its subsequent relegation to priority
low, while r2 continues to run at medium.

Although r2 gets to' run sooner without a preceding call, this is not
considered a significant benefit, since it would be very hard to include such a
gain in a worst-case execution time analysis. It is far more desirable to keep a
scheduling band operation as an undivided whole, thus restricting the

possibility of inducing the system with errant behaviour. It is true that having

the preceding call cannot prevent a higher priority task outside the band from

preempting rl, but this is not considered a problem, in the sense that this
higher task can not affect scheduling within the band, apart from being able to
preempt any task in the band, nor can the band affect it.

4.3.2 The application scheduler API
As mentioned in Sections 4.1 and 4.3, during the course of any scheduling

operation the base scheduler informs the task's application scheduler of the

operation, using a standard API that every application scheduler library is

assumed to have implemented. We consider this API to consist of the
following:

"a separate call pertaining to each scheduling operation
"a call asking the application scheduler to provide its most eligible task,

e. g. getMostEligible()
"a call asking the application scheduler whether a certain task is eligible
for execution, e. g. isEligible (T)

As we will see in subsequent sections, resource sharing could cause a band

task to execute outside its own band. Under these conditions, it could be the

case that certain operations, executed while the task is outside its own band,

would not affect the scheduling decisions taken under certain scheduling
policies. However, this cannot be generalised and, therefore, a task's own

91

application scheduler must always be informed of any scheduling operation,

regardless of the priority of the task.

4.3.3 Mode changes

Given the previously defined scheduling operations we observe that they

are versatile enough so as to allow an application to effect mode changes. In

particular, we can identify three such operations: release, end, change. Using

the terminology found in [Real and Crespo 2004] we can describe how these

operations can support a mode change. Wholly new tasks can be introduced to

the system through the release operation. The end operation will take care of

the termination of old-mode aborted tasks and old-mode completed tasks.
Finally, the change operation can be used to create new-mode, changed tasks.

The actual mode change protocol used by the application is of no interest

to the framework. Its operation will be completely unknown to the
framework, which simply provides the scheduling operations that can enforce

a mode change. For example, the framework does not need to know about the

offsets in the release time of new-mode tasks, as described in [Real and Crespo

2004]. Similarly, the framework will not know of any changes in the way tasks

use resources. A change in a task's preemption level could affect its resource

using potential. Additionally, a change in the set of tasks using a resource

would probably render the resource ceiling obsolete. That is, a lock operation
by a new-mode task with a higher preemption level than the resource's ceiling
would cause an error. The framework assumes that such issues will have been

considered and resolved at the application level.

4.4 Multiple Schedulers

The mechanism described up to now put forth what is needed for

application-defined scheduling within the context of one application
scheduler. This concept can be repeatedly applied to non-overlapping ranges
of base scheduler priorities to allow us to have multiple application-defined
schedulers co-existing under the base scheduler. This way a hierarchy is

created amongst application schedulers, with tasks under a particular scheduler
executing if and only if there are no runnable tasks at higher priorities. However,

an important consideration, and one that must be accounted for, is the sharing
of resources between tasks running under different schedulers. This will be

92

described at length in Section 4.5. For now, we will point out that this
introduces the need for a fourth priority level under application scheduler
control, which we name medium-lock. Thus, we associate four priority levels

from the base scheduler range with an application-defined scheduler. We can

now give a more detailed definition of a scheduling band.

Definition 4.6: A scheduling band is a range of four consecutive priorities named
high, medium, medium-lock and low, being a subset of the base scheduler priority range
that facilitates the dispatching of tasks scheduled according to a particular associated

application-defined policy.

We will be referring to a particular scheduling band by using the value of
its low priority level, e. g. band 3 occupies priorities 3-6, and will symbolise it

with BI., e. g. band 3 will be written B,?. Also, we will call the band that a task

was initially released in the task's own band and symbolise it with. Br So, for

example, if r was released in band 3, it will be B{Bj Furthermore, we will

symbolise a band's priority levels with pjj(B1=n+3, pm(B)=n+2,

p (B,,)=nß-1, pL(BRd=rt, and the band's application scheduler as S(B,).

These priorities are to be used in the following general manner - the full

protocol governing the use of priority levels in a band will be given in Section

4.6:

" When tasks are released or become unblocked, they execute at priority
level high. This is the priority of a task executing a scheduling band

operation when running within a band.

"A band's highest execution eligibility runnable task normally runs at the

medium priority level.

"A band's medium lock priority level is occupied solely by tasks coming
from lower bands, when locking a resource that is also used by tasks in

this band. This level is above low, so that the band's non-eligible tasks will

not interfere with the locking task's execution. It is, however, below

medium, since eligible tasks in the band should, by default, be able to

preempt any lower-band tasks.

" Finally, priority low is the priority usually assigned to runnable

application scheduler tasks waiting to run.

Figure 4.3 gives an abstract view of the framework, where the band

hierarchy can be seen. The scheduler nearest to the minimum system priority

93

is the lowest while the one nearest to the maximum system priority is the
highest.

Band 1I Band 2I Band 3I Band iI

--------------------- -- --------------------------------------
IApplication I Application I Application J I Application I Application-defined

. Scheduler; '. I I Scheduler2 Scheduler3
II

I Scheduler; I

I

`heduhng library

I
API API API+ - -------- - -- API ---------------------------------------

........ I I- -- +... E..... + - - a -- . 4.... -----------------------------------

I Base Schedulerl(pgiority scheduleq)
nP

scheedulinwarduling library

i:........ I I- ---4------ ------ ------- -------- ----------------- 4-- --------
ý--4 priorities . -4 priorities-. K--4 priorities- .

K-4 priorities
- ------------"

üII III L-
OS scheduler

ilmum Priority Levels maximum

prey --. ..
priority

-------- -- -- -----
Figure 4.3: Abstract view of flexible middleware scheduling

In Figure 4.3 we can see, at the top, the application-defined schedulers
being part of the application-defined scheduling library and each one being in

charge of a particular scheduling band. Below them, the priority scheduler is

the only one defined by the middleware and is the main part of the

middleware scheduling library. Between the two types of schedulers we see

one-way arrows signifying the one-way API between them, initiated by the
base scheduler. At the lowest level is the operating system scheduler. We can

sec that the middleware scheduler's range of priorities conceptually has a one-to-

one correspondence with the operating system priority range. On this range,

each hand occupies four priorities.

Based on this hierarchical arrangement of application schedulers we can

give a system-wide definition of eligibility:

" If the priority of the oldest highest priority runnable task z is a non-
hand priority level, then that task is the most eligible in the system.
" The eligibility relation between tasks running in fixed-priority non-band
levels is the same as that specified by their priorities.

" 't'asks running at a fixed-priority non-band level k are, by default, more

eligible than tasks executing in bands below k and less eligible than tasks
executing in bands above k.

" Tasks belonging to bands with greater low priority arc, by default, more
eligible than tasks belonging to bands with lesser low priority. That is to

say: di, jEN3i>j e(rk) > ((rrtý), V rk e B1, r1� E Bý

94

" If the priority of the oldest highest priority runnable task r is a band

priority level other than low, then the most eligible task in the system is the

oldest highest eligibility task whose priority belongs in the corresponding
band. That is to say, if 3B; 3i< p(r) <_ i+3 then the most eligible task in

the system is oldest highest eligibility task r' such that iS p(r') Si+3.

" It is an error for the priority of the oldest highest priority runnable task
to be the lowpriority of a band.

To better understand this, let us first consider the case of the oldest
highest priority task in the system running at the medium lock priority of a
band. For this to be so, the task must belong to a lower band, and additionally,
no task in this band can be at high or medium. Therefore, by default the task

at medium_ lock is the most eligible in this band. Secondly, consider the oldest
highest priority task in the system running at a band's high priority. It can

either belong to this band or to a lower band. In either case, it might not be

selected to run, once its scheduling operation finishes. Therefore, we say that,
in this case, the highest eligibility task in the system is, in essence, the oldest
highest eligibility task in this band. Consequently, a task running at high is a

source of potential bounded eligibility inversion. Hence, scheduling
operations, as far as the base scheduler is concerned, are kept as small as
possible. However, their execution time depends on the application schedulers

as well. Therefore, implementers of application schedulers mu§t take great care
to make the scheduler API as efficient as possible.

4.5 Sharing resources in the framework

As we have already mentioned, the main goal of our framework is to
facilitate the use of diverse application-defined scheduling policies in the

middleware. After having discussed the conditions and mechanisms under
which a variety of scheduling policies can be enforced by using the framework,

an equally important property of the framework will now be discussed, which
is to allow resource sharing between tasks in the framework. We can
distinguish four cases of resource sharing:

" sharing between tasks of the same band

" sharing between tasks of different bands

" sharing between band tasks and non-band tasks

95

" sharing strictly between non-band tasks

Of these, only the first three are under framework control. The fourth one
does not directly involve the framework and will be discussed later in this

section. Moreover, the first case, which will also be discussed separately, need

not necessarily be arbitrated by the framework's protocol; nonetheless the
framework must be able to handle it, in order to guarantee the maximum level

of flexibility.

In the three cases where the framework applies, the framework's resource

sharing protocol must be able to perform the basic functions of deadlock

avoidance and bounded eligibility inversion. Moreover, because of the multi-
scheduler environment that the framework harbours, its protocol must also
have the characteristic of being independent of any particular scheduling
policy. Furthermore, as we have seen in Section 4.1, one of the main
assumptions in our framework is that tasks can self-suspend while holding resources.
The protocol must, therefore, be able to maintain system integrity should such
a situation arise.

Chapter 3 provided an analysis of the best known protocols and presented
their relative merits. From this analysis it is clear that in systems where task
self-suspension is not allowed, the best choice would be the Stack Resource
Policy (SRP), since, apart from satisfying our criteria, it also allows task sharing
of a run-time stack. On the other hand, in systems where such behaviour is
allowed, only the Basic Preemption-Ceiling Protocol (BPreCP) can retain its

correctness and support all the needed requirements, as shown in Section
3.2.3. Therefore, the framework's resource sharing protocol is based on the
BPreCPll. To enforce the BPreCP protocol means to enforce the BPreCP

eligibility test (BPreCP_ET), the BPreCP preemption level test
(BPreCP PLT), and eligibility inheritance (EI) when attempting to lock a
resource.

4.5.1 The eligibility test (FMSF_ET)
Within the framework the eligibility test is carried out by a band's

application scheduler and its purpose is to decide which task is the most
'eligible to execute within the band. Task execution in this case means

It If task self-suspension while locking is not an issue, then the framework could be altered to
implement the SRP instead of the BPreCP.

96

execution of non-scheduling code. Hence, the eligibility test decides which
task is most eligible to run at the medium or medium lock priorities. As we

will see, execution at medium priority is directly enforced, by changing the

priority of the most eligible task. Execution at medium lock is indirectly

enforced, by not allowing any lower eligibility task to preempt the task already
present at medium lock. A necessary condition for the correctness of the

eligibility test is the application of eligibility inheritance as part of the lock

operation. The test can be expressed as follows:

FMSF Eligibility Test (FMSF_ET): A task can execute in a band B

only, if it is the oldest, highest effective eligibility runnable task in the band, and
provided that execution eligibility inheritance is being applied by the band's

application scheduler S(B), when needed.

The term "effective eligibility" denotes the task's base eligibility or an

eligibility acquired through the application of eligibility inheritance, whichever
is higher. The term will be better defined in Section 4.5.3.

4.5.2 The preemption level test (FMSF_PLT)
The preemption level test used in the framework is the same as that of the

Basic Preemption-Ceiling Protocol and is given below.

FMSF Preemption Level Test (FMSF_PLT): A task is granted a
request for a resource only, if its preemption level is higher than the system ceiling, or
if it is the task holding the resource whose preemption ceiling is equal to the system
ceiling.

In applying the FMSF_PLT two other issues need to be addressed, namely,
by whom and how the test is carried out. One way would be to have each
application scheduler carry out the test. It is immediately apparent, though,
that this would unnecessarily complicate the design of an application
scheduler, since the scheduler would need to know what the system ceiling is

and how to handle it. Furthermore, all application schedulers would need

access to the system ceiling, which would, therefore, have to be treated as a

shared resource. Finally, any changes to the way the system ceiling is

represented would translate to changes to the schedulers. For these reasons
the framework assigns responsibility of the FMSI? PLT to the base scheduler.
However, when a task blocks due to the system ceiling, the base scheduler

97

needs to inform the task's application scheduler in order for eligibility
inheritance to be applied as per the BPreCP, if necessary.

To examine how the test can be carried out, we note that the comparison it

makes between preemption level and system ceiling must be meaningful,
irrespective of the band the task belongs to. In other words, the system ceiling

needs to be calculated in such a way that the FMSF_PLT can compare it to

preemption levels of tasks from all bands. Since the system ceiling is the
highest ceiling amongst the locked resources, and a resource ceiling is the
highest preemption level among the tasks that use it, any way of assigning

unique preemption levels to tasks in the system would seem adequate.
However, if the programmer uses one continuous range of values for

assigning preemption levels to all tasks in the system, then to assign levels to
tasks within a particular band, one should know which preemption levels have
been already used for tasks in lower bands. This is a complication of the usage
of preemption levels that needs to be avoided, in order to keep the framework

as flexible as possible. For this reason we use two notions of a task's

preemption level, the relative preemption level ('r) and the absolute preemption level

(I ; tl). Each band is assigned the same range of relative preemption levels [1, A,

where 1Z4 is a natural number chosen at system start-up12. From this range,
each task in the band is assigned its relative preemption level, according to
Rule 3.1 seenin the previous chapter. A task's absolute preemption level is a
function of its relative preemption level and the band lit belongs to. The value
of Izi for a task with a given ; n, belonging to band 1, is given by the following

equation:

ýI-1)x1+imod4+z-1,
when imod4 #0

Il(I
-1)x1+4+z-1, when imod4=0

4

Equation 4.1: Absolute preemption level 1, T1

12 It must be IZ4 in order to guarantee an efficient assignment of preemption levels. Let us
assume we have created band 5 and allow only 3 relative preemption levels per band, i. e. 1=3
According to Equation 4.1, the 1, TJ for a task in the band with 'r=1 would be 4. This would mean that
for priority levels 1-4 we would only have 3 preemption levels available to assign. This cannot be
allowed.

98

where i, 1, Ir E N* . Equation 4.1 is a monotonically increasing function for i

and z

Inl(1 +1,1, ßr) > Iirl(i, 1,, T) with 1, z constants

kI (r, 1, z+ 1) > Izl (i, 1, z) with 1,1 constants

For lit is a non-decreasing function.

Irl(i, 1 +1, ßc) = I4rl(i, 1,; r), iS4
. with 1, r constants 1+t1, ßc) > I; rI(', 1, ßr), 1 >4

Regarding 1 as a constant in any given system, we can think of an Ind value

as a pair (i,; t). Since this pair is unique for each task ; we can write the

absolute preemption level function as I , Tl (r) .

Based on the above definition of absolute preemption levels, we give the
following definition of resource ceilings and of the system ceiling.

Definition 4.7: Each resource is assigned a preemption ceiling value that is equal
to the highest absolute preemption level among the tasks that use it.

Definition 4.8: The system ceiling is equal to the highest ceiling amongst the
locked resources and, thus, has an absolute preemption level value.

The reason we assign each band the same number of preemption levels is

that it allows for a static, a priori allocation of absolute preemption levels to

priority levels. Once the number of relative preemption levels needed per band

has been specified at system start-up, we can construct a table which, for every
priority level i, will contain the minimum absolute preemption level value that

would be used in a possible band i We will call this table apl table. Its use is

made clearer in the following example.

Let us assume that the needed number of relative preemption levels per
band is 100. Then for the first 9 priority levels the table would look like Table
4.1.

99

Table 4.1: Absolute preemption level distribution (apl table)

Priority 1 2 3 4 5 6 7 8 9

I 'd 1 2 3 4 101 102 103 104 201

We can easily see that there is a pattern that changes every four priority
levels, first at 5 and then at 9,13,17,21 etc. For example, we can calculate that
Intl =1001 will be at priority level 41. If we assume a priority range of 256

priorities for the base scheduler, then the maximum possible absolute

preemption level will be 6400 and will be assigned to tasks in band 253, which
is the highest possible band. The way to interpret this table is that if we create

a band at priority 1, occupying range [i, i+3], then absolute preemption levels

used in this band will be in the range [apl table[ij, apl tab]4i+4]-1]. So, for

example, if we construct band 3, then the absolute preemption levels reserved
for this band will be in the range [apl tab]e[3], apl table[7])=[3,103)=[3,102].

For a band B, we symbolise this range with
II(13) =[apl tab1e[pL(BA, apl table[pL(B)+4]).

In addition, the apl table[I] value for priority level i is the J; i of every
fixed-priority non-band task whose priority is 1 For example, fixed-priority

tasks running at priority 8 will have an absolute preemption level of 104, which

will be used to calculate the ceiling of any resources it uses jointly with band

tasks. We note that no band can make use of Jzl =104. Since priority level 8 is

assigned to and used by a fixed-priority task, ' it follows that it cannot be

allocated to a band. At the most, a lower band will start at priority 4, which
means that its range of absolute preemption levels will be [4,103]. On the other
hand, the lowest priority a higher band can start at is 9, which translates to the

range [201,300].

Based on the apl table and on Definition 4.7 above, we say that a resource r
belongs to band i, if Frl E [apl table[i], apl tab]e[i+4]-1]. Similarly, we say that

resource r belongs to the non-band priority k, if rrl =apl table[k]. Furthermore, for

the purposes of resource sharing the following definitions apply:

Definition 4.9: We u ill call the band to which the ceiling of a resource r belongs to a
locking band and ymbolise it with B, ".

It follows that there can be more than one locking band. In this case:

100

Definition 4.10: The highest locking band is the band with the highest low

priority such that there exists at least one resource that belongs to it.

The flexibility provided by the use of the apL table can be demonstrated if

we consider how easily an application can add a new scheduler in the system.
The range of absolute preemption, levels needed by the scheduler will be

immediately available without the need for any reshuffling.

As we can see, some preemption levels can be "lost" according to this

scheme. In the above example, values 105-200 are not used. This, however,

does not present a problem, since, on the one hand, there is no reason for

values of fin to be consecutive, and secondly, the maximum value is still

containable in a 16-bit integer variable. Even if we consider that the optimum

number of relative preemption levels per band is 256 - the same ' way 256

priority levels are considered optimum for scheduling under a priority

scheduler - the maximum value is 1, T I=16385, which still fits in a 16-bit

variable. In fact, the maximum number of relative preemption levels per band

we could accommodate with 16 bits is 1023.

In systems where the lowest priority in the priority range is 0, the
framework will treat it as being 1. Similarly, in systems where priority 0 is the
highest, the framework will treat it as if it had the value of the lowest priority
in the system. So, for example, in a system where the range of priorities is

from 255 (lowest) to 0 (highest), the framework will consider priority 255 to be

1 and priority 0 to be 256.

We cannot assume preemption levels are equal to priorities, as in the case

of priority-ceiling protocols, seen in Section 3.3. This is easy to understand if

we consider, for example, priority 5. If a fixed-priority task with priority 5 had

a preemption level of 5, then the number of preemption levels available to the
band occupying priorities 1-4 would be only 4. This is too restricting.
However, as with priority-ceiling protocols, we assign the same preemption
level to fixed-priority tasks with the same priority.

It is important . to note that absolute preemption levels are not an issue for

the programmer. The only thing the programmer needs to do is to define the
bands he needs and set the relative preemption levels of tasks, without needing

to know the corresponding ki value (although it can be easily calculated). In

101

other words, absolute preemption levels are for internal use by the framework

and the above discussion aimed at making their implementation clear.

4.5.3 Eligibility inheritance (FMSF_PI, FMSF_EI)
The framework applies eligibility inheritance on two levels. The first is

priority inheritance applied by the base scheduler, similar to that of the
Immediate Priority Ceiling Protocol (IPCP). The other is eligibility inheritance

applied by application schedulers similar to BPreCP eligibility inheritance, but

only when a task blocks within its own band. These two rules are given below.

FMSF Priority Inheritance (FMSF_PI): When a task ri locks a

resource that belongs to a band higher than its own, it executes the critical section

associated with this resource at the locking band's medium lock priority. If the

resource belongs to a higher non-band priority level, rj executes its critical section at
that non-band priority.

FMSF Eligibility Inheritance (FMSF_EI): When a band task rb
blocks within its own band due to the ystem ceiling, the blocking task rj acquires

an effective eligibility and executes as if it had inherited the execution eligibilit, y of rb,
if this isgreater than its own current fective eligibility. Upon unlocking, the effective
eligibility of the blocking task returns to the value it had at the time of locking the

resource.

The term effective eligibility is used to cater for situations where there can be

no actual inheritance between the blocking and blocked tasks, i. e. the two
tasks do not belong to the same band. The only situation where this can
happen is when the blocking task is from a lower band or non-band priority
than the blocked task. We will write the effective eligibility of task z as ef(r). If

the two tasks do belong to the same band then actual inheritance can take
place and the blocking task is said to acquire an active eligibility. We will write
the active eligibility of task r as ea(r). To explain the relation between active
and effective eligibilities we can say the following a blocking task zl acquiring an
effective eligibility from some blocked task r2 of a higher band, is scheduled as if it was a
task of the same higher band and bad acquired an active eligibility from zý A band task's
initial effective eligibility is its active eligibility, and its initial active eligibility is
its base eligibility. A task can acquire an active eligibility different than its base

eligibility only when locking within its own band. When this happens, it must
be that ea(r) > e(r). A task can acquire an effective eligibility different than its

102

active eligibility only when locking within a higher band. When this happens, it

must be that ef(r) > eß(r). It is possible that a task will have

ef(r) > e8(r) > e(r).

This section provides justification and explains the use of these rules for

each of the four resource sharing situations described at the start of this
section.

4.5.3.1 Sharing resources within one band
This is the situation where a resource is shared only between tasks Of the

same band. Using the framework's protocol for resource sharing within one
band is not the only option. The band's scheduler can introduce its own
protocol to address eligibility inversion for resources used solely within its
band, and this case will be discussed in Section 4.5.4. However, if an
application scheduler opts to take advantage of the FMSF, it must perform
eligibility inheritance on its tasks, based on the type of eligibility metric it is

using. This is because the only meaning eligibility inheritance can have in this

case is in relation to the scheduling policy that schedules these tasks. The
following rule applies:

Rule 4.1: The application scheduler needs to make sure that, when one of its tasks is
locking a resource, its eligibility will either be the highest eligibility amongst all those tasks
that belong to its own band and have blocked on that resource, or the eligibility it had before
locking the resource, whichever is higher. We will call this eligibility the active eligibility of
the task.

Eligibility inheritance is applied when the FMSF_PLT test fails, and since

the aim is to apply the equivalent of the BPreCP rule, it is during the loc(r, r

operation that the EI must take place, if required. During locking, the base

scheduler informs the application scheduler of the operation and the latter

must carry out eligibility inheritance for tasks in its band. This way the next
time the application scheduler is asked about its most eligible task, it will
return a task whose active eligibility will be the highest eligibility among all
pending tasks in the scheduler. This task will be placed on the medium priority
and will be selected by the dispatcher, if there are no tasks on higher bands

and if there are no tasks of the same band about to execute a scheduling

operation at priority high. During the unL(r, r) operation the application

scheduler is again informed and must now undo any eligibility inheritance

103

caused by the locking of the task. Locking within a band is demonstrated in

Figure 4.4, where the application scheduler is depicted as a "black box" with

respect to the base scheduler.

Base priority scheduler

max

H

M (i+2) Z

AL (i+1)

L (i)

Loin

time

Key

Task release Lock resource
T i

Block on the
I

system ceiling

bail schedule , Locking a

calls resource

Normal task

execution

Figure 4.4: Eligibility inheritance as a "black box" operation when locking within a band

In this figure we can see task r1 in hand i locking resource T. The task is

first executing at me(flu lt priority and then is moved to high to execute the

Inc(-, r) scheduling operation. The scheduling point of locking the resource is

surrounded by calls to the base scheduler, which inform the application

scheduler of the locking. After the scheduling operation the task continues to

run at iiwdiunt. 't'hen task r2 is released preempting r1. It executes for a while

at medium and then tries to lock T. However, it blocks on the FMMSF_P11' and
the application scheduler must apply eligibility inheritance internally, as

appropriate.

4.5.3.2 Sharing resources between band and non-band tasks
This section refers to the specific case that a resource is used by hot/ band

and non-band tasks. In such a situation, we can distinguish two cases: one

where the resource ceiling belongs to a non-band priority level and the other
where it belongs to a hand.

104

IL

Resource ceiling belongs to a non-band level
This case can be split into two sub-cases. The first is when a band task

locks the resource, while the second is when a non-band task locks at the non-
band level.

In the first case, eligibility inheritance is enforced in the form of priority
inheritance, exactly as in the IPCP. Any band or non-band task that locks the

resource has its base scheduler priority raised to the priority of the apL table

corresponding to the ceiling of the resource. This has the effect of not

allowing tasks with priorities higher than the high priority of the locking task's
band and lower than the priority of the highest-locking non-band task to

preempt. Additionally, any task released at the same priority will not be able to

preempt due to the FIFO ordering of the queues. This priority inheritance, in

contrast to the eligibility inheritance that takes place within an application

scheduler, is happening at the base scheduler level. As explained in Section 3.3,

this has the effect of enforcing both the PLT and EI in a way analogous to the
SRP, as long as the locking task does not suspend. If it does suspend, the
dispatcher will select an equal or lower priority task, which can possibly lead to

multiple inversions. However, the presence of the FMSF_PLT in the loe(r, r)

operation will prevent deadlocks. During the unL(r, r operation the task will

return to its band or to its original non-band priority, depending on whether it
is a band or non-band task. If it is a band task, the application scheduler has to
decide if the unlocking task is still the most eligible task in the band. Locking

at a non-band level is shown in Figure 4.5 below.

105

Base priority scheduler

max T2

d T Tl c k

c_.
H (i+3)

.°i M (i+2)
a

ML (i+1)

L (i)

min

time

Key

Task release Lock resource

Rase scheduler Locking a Normal task

calls resource execution

Figure 4.5: Locking at a non-band priority with priority inheritance

I Jere we can see task r1, belonging to band i, locking resource r whose

ceiling corresponds to a non-band priority k. Initially, the task again executes

at ino(hntl priority. When the locking scheduling operation begins, the base

scheduler determines that the ceiling of r lies outside the task's own band and

moves the task to priority k. This priority inheritance, shown with a dashed

arrow (°'" º), ensures that the scheduling operation will be executed as an

atomic operation, as explained in Section 4.3.1. "1'hus, when task r2 is released

at priority k it cannot preempt r1. "1'his way, only tasks with higher priorities

than k will be able to preempt the locking task. These tasks have, by default,

higher preemption levels than the system ceiling and, therefore, will never use
1'.

In the second case, where this time a non-band task locks the same

resource r of the previous paragraph, the protocol behaves exactly as the
IPCP, boosting the task's priority to k for the duration of the lock. As a note it

has to be pointed out that the implementation will need to check whether r is

also used by band tasks, otherwise this would be a case of normal non-
framework resource sharing between non-band tasks.

106

Resource ceiling belongs to a band
This is the situation where a non-band task locks a resource whose highest

locker is a band task. Because the resource's ceiling belongs to a band, the

eligibility inheritance applied is a combination of eligibility inheritance in the
locking band and priority inheritance. This is because in this case there are two

sets of tasks that must be prevented from causing unbounded eligibility
inversion. One is the set of tasks with priorities higher than the locking task's
initial priority and lower than the lowpriority of the locking band. The other is

the set of tasks in the locking band that have a higher absolute preemption
level than the system ceiling but lower eligibility than tasks in the band that
have blocked on the system ceiling.

We note that the first group of tasks is identical to the tasks whose

preemption is avoided with the use of priority inheritance, in the case of a

non-band highest-locker task. Therefore, priority inheritance is again applied.
However, since the highest locker is now a band task, there is no specific base

priority associated with it. Hence, the inherited priority cannot be that of a
task. Instead, it is the "priority" of the locking band. It is exactly this notion of

a band's "priority" that the medium lock priority level is. This means that

every locking task coming from outside the band, will have its priority
promoted to the medium lock priority of the locking band, effectively not
allowing any task situated between the locking task's initial priority and the
locking band to preempt. Again, the only way for the dispatcher to select one

of these intermediate tasks, while the resource is locked, is for the locking task

to suspend. Deadlocks will again be avoided due to the FMSF_PLT. The

positioning of the middle lock priority level within the band has to allow
more eligible tasks to execute in preference to the locking task, while not

allowing lower eligibility tasks to preempt. This is why the medium lock

priority is placed below the medium priority and above low.

107

Base priority scheduler

max

r IOC 2, H (i+3)
ry

M (t+2)
ü Tý r+ s 0`00

t L(i)

k

a
min

time

Key

Mask nelrtý. ýc Hu. h
Block on the

system cello g

ß'-x s
ills

ri I ýckinq nE Normal task

c,, 1 -'ý0ýýuuI execution

Figure 4.6: Non-band task locking at a band

The second set of tasks, namely the set of tasks in the locking band that

could cause eligibility inversion, cannot be stopped by means of priority
inheritance. Instead, eligibility inversion is stopped by means of eligibility
inheritance in the locking band, as was the case with locking within a band.

Application of this inheritance happens as a result of the FMMSF, which is

based on the BPrcCP rule. Section 3.2.1 explained how the PIA' test can

trigger the application of eligibility inheritance, when the executing task (i. e.

the locking task, in the case of the FMSF) has lower or equal preemption level

than the system ceiling but higher eligibility than the oldest highest execution

eligibility pending task. It is important to note that this inheritance cannot be

performed on the locking task, since the notion of eligibility used is

understood only within the locking band. 'T'herefore, an application scheduler

must always be able to keep track of the eligibility of its oldest highest pending

task, even though the locking task might not belong to its band.

Figure 4.6 above demonstrates a non-band task locking at a band. The

no n" band task z/ executes at its priority and calls for locking resource r whose

ceiling belongs toi band i The base scheduler initially executes at the base

priority- of the task and once it determines which band the resource ceiling
belongs to, it moves the task to the high priority of band I hocking takes place

and then the succeeding base scheduler call moves the task to the

10tß

k

medium lock priority of band 1 While zl is executing, r2 is released in band 1

at priority high. It preempts t1 and is moved to medium in order to execute.
When it tries to lock a resource, it is blocked by the FMSF_PLT while running

at priority higA Thus, rj is selected by the dispatcher and continues the

execution of its critical section.

4.5.3.3 Sharing resources between bands

Resource sharing between tasks belonging to different bands is handled the

same way as when a non-band task locks a resource within a band, i. e. by

enforcing both priority inheritance and eligibility inheritance within the locking

band. The locking task again inherits the "priority" of the locking band, i. e. its

medlurn_loek priority13. The locking band again keeps track of its oldest
highest pending task and performs eligibility inheritance on its tasks, when

needed.

Figure 4.7 demonstrates what happens in such an event. In this figure task

rl belongs to band land locks a resource whose ceiling belongs to band j. At

the beginning, tl executes at the medium priority of band i As soon as it calls
the locking operation, the base scheduler moves it to the high priority of band

i, which is standard for every scheduling band operation. Then, the base

scheduler determines that the resource ceiling belongs to a higher locking

band, therefore it elevates the priority of ri to the high priority of band j in

order for the locking to take place. After the scheduling point, the task is

moved to the locking band's medium lock priority, which constitutes the

priority inheritance part of the protocol. While rl executes at this priority, task

z2 is released in band j. The release takes place at priority high, thus

preempting zl. The application scheduler of band j is informed of the release

and, since there is no other task in the band, allows r2 to execute.

13 This use of priority inheritance means that at any point in time an arbitrary band task can be

executing in either its own band or in a higher locking band. Thus we say that either of these can be

the task's crnnnt band. We symbolise this with Br".

109

priority

b
c
m

time

Key

Task release Lock resource
Bcu. k on the

v r lem ceiling

Base scheduler] Lock lnq Normal task

r.. tlls L Jl resoureu execution

Figure 4.7: Priority and eligibility inheritance when locking between two bands

Max

M U+2)

H U+3)
r2 'ý

r rr m

ML 6+1)

L U)

H (i+3)

M (i+2)

ML (i+ 1)

L (i)

min

Accordingly, the base scheduler moves z2 to the medium priority of band I.

'T'hen r, executes a locking operation and, hence, is moved to kgh. However,

since its preemption level is not higher than the system ceiling, z_-) blocks and
its scheduler is informed of the blocking. As a result, eligibility inheritance is

applied by the application scheduler of the locking band. The base scheduler

now selects r to run, since it is the next highest runnable task in the system. It

is important to note that the application scheduler of the locking band has no
knowledge of rj or of the system ceiling. It is passively informed of the
blocking by the base scheduler.

4.5.3.4 Sharing resources strictly between non-band tasks

, Although it should he obvious that this case falls outside the framework's

jurisdiction, it is important to point out that the framework's resource sharing

protocol does not, in any way, inadvertently affect resource sharing strictly
between non-band tasks. l? ssentially, as far as non-band tasks are concerned,
bands are "invisible" entities. Non-band tasks, which do not share resources

with band tasks, will never execute within a band. If they lock a resource

1 10

ý.

shared with other non-band tasks, the priority-based resource sharing protocol
that governs that resource will be applied by the base scheduler, as normal.

4.5.4 Using an application-defined resource sharing
protocol

An important aspect of the "scheduling encapsulation" a band provides to
its tasks, is the fact that it can also make use of its own "custom" resource
sharing protocol. It is important to keep in mind, though, that this is possible
only for those resources that are solely used by tasks of one band. The base

scheduler could be instructed not to perform the preemption level test when
locking resources which it identifies to be governed by a protocol other than
the framework's protocol. Instead, for these resources the band's application
scheduler can enforce its own protocol every time it is informed of a lock or
unlock operation, or it can even choose not to enforce a protocol.

If the application scheduler does use a protocol, it can be to bound

eligibility inversion, avoid deadlocks, or both. It is worth pointing out that

enforcement of the application-defined protocol does not have to happen only
during a lock or unlock operation. For example, an application scheduler
might want to enforce the SRP, if it is certain that its tasks do not self-
suspend. In this case, it would have to carry out its own PLT test during each
band task's release operation. It is important to note here that even if the

application scheduler does use its own resource sharing protocol, it can still

choose to make use of the FMSF_PLT for deadlock avoidance, as will be
discussed in Section 5.3.2.1.

Another point worth making is that use of an application-defined protocol

within a band does not exclude a task of that band from using resources

outside the band. The only requirement is that the task has been assigned a
relative preemption level, because such resources could potentially be used by

tasks in other bands that do use the FMSF. Therefore, the framework must be

able to perform its PLT when locking takes place, so as to guarantee correct
behaviour. Since absolute preemption levels are assigned to each band

statically, regardless of whether the band's scheduler wants to use the FMSF or
not, the base scheduler is always able to assign an absolute preemption level to

a task from any band and thus carry out the preemption level test for that task.

111

4.5.5 Properties of the resource sharing protocol
This section contains some important observations concerning the

framework's resource sharing protocol.

Observation on the preemption level test
A consequence of the preemption level test is that an application scheduler

needs to provide scheduling decisions only for those of its tasks that execute

within its band. Tasks locking at higher bands or non-band priority levels are

scheduled directly by the base scheduler for the duration of their execution

outside their band.

To understand this we note that a band task r of band B1(B, B), locking

a resource r at a higher band k or a higher non-band priority level k (k>i+3),

sets a system ceiling n= [r] z apl
-

table[k] >apl table[i+4J-1, which is higher

than the absolute preemption level of any task below the locking band or
locking non-band priority level. Now, if r does not suspend, it can obviously

not be preempted by any task below the locking band or below the non-band

priority that it is locking at. But even if r does suspend, no lower task will be

able to lock a resource, since it will fail the FMSF_PLT.

The above observation has two consequences. The first is that ris the only
task outside band k or priority level k that can be locking within this band or
priority level. Secondly, no task from BB will be able to lock outside the band.

Instead, they will block at the appropriate priority as specified by priority
inheritance. Therefore, there can never be the case that two or more tasks
from the same band can be executing outside their band. This, in turn, means
that there can never be execution eligibility contention between tasks of the

same band while executing outside the band. Therefore, the application
scheduler will never be asked to provide an execution eligibility decision on a
task executing outside a band. Instead, the base scheduler will schedule the
task when it becomes the oldest highest priority runnable task in the system.

More formally we can say that:
" At any one time, there can only be one task not belonging to a
particular band or non-band priority level that is locking resources at that
band or non-priority level.

" An application scheduler does not need to keep track of where a task

goes once it locks a resource outside the band.

112

That is not to say, however, that a task's own scheduler should never be

informed of the scheduling operations the task makes outside its band, as the

scheduler's policy might be taking into account some of these operations. For

example, a policy might be interested in the amount of blocking time a task
has had, which means that it would have to know when the task blocks, even
if this happens outside its band. Therefore, we choose to always notify a task's

application scheduler of scheduling operations taken by the task outside its

band, even though such notification might be disregarded by the scheduler.

Observations on eligibility inheritance

Now that the resource sharing protocol of the framework is defined, some
important observations can be made on its eligibility inheritance. The first is

the following proposition concerning the application of eligibility inheritance.

Proposition 4.1: Eligibility inheritance can be applied only, within the band

the system ceiling belongs to, and only when the task blocking on the system

ceiling belongs to this same band.

Pmof. If the system ceiling does not belong to a band (i. e. locking takes

place at a non-band priority level) there can be, by default, no notion of
eligibility inheritance.

If the system ceiling does belong to a band, this will be the highest locking

band. Since the system ceiling is only lowered upon unlocking a resource,
blocking on the system ceiling will always be due to the highest locked

resource. Therefore, eligibility inheritance needs to make sure that the task
locking this resource, which will be executing in the highest locking band, will
finish without unnecessary preemptions. The only tasks that could cause

unwanted preemption are tasks of the highest locking band, since tasks in

higher bands are by default more eligible to run and tasks in lower bands

cannot preempt. Consequently, the only band that can perform this eligibility
inheritance is the highest locking band. QED

Furthermore, we can deduce a simple way for application schedulers to
keep track of locking within their band, based on the following simple

observation. Because of the FMSF_PLT, the task that set the ceiling will be the last

task to have locked a resource. This is easy to understand, if we consider that no

task r can lock a resource, unless I ; rl(r) > >r , or r is the task that set the system

ceiling. If r is the latest task in the system to lock a resource, say r, it will be

[r] >_ Izj(r) and, therefore, also Fr] > ;r. From this it follows that, upon locking

r, the system ceiling must be updated. In the case where r was already locking

113

a resource before locking r, it is evident that it will continue to be the task

whose locking operation set the system ceiling.

By applying this observation to tasks locking within their band we

conclude that the last task to do so is also that task which is currently holding

the highest preemption ceiling locked resource. 't'herefore, a conceptual list

where the last band task to lock within the band is placed at the head, is

enough for an application scheduler to easily apply eligibility inheritance.

I? Avery time the application scheduler is informed that one of its tasks has

blocked while trying to lock a resource within the band, it will know which
locking task to check for eligibility inheritance, namely the first task on the list.

I)uc to the 1'MSF_PL'I', multiple entries of the same task, locking different

resources in a nested way, will be grouped together, as shown in Figure 4.8.

T nested locking r3 nested locking

TI i2 7p Y3 73 Yý
1 11

Tail of list Head of list
(oldest (most recent

locking task) locking task)

Figure 4.8: An application scheduler's conceptual locking list

Use of such a list implies that the application scheduler does not need to
know anything about the ceilings of the locked resources. In other words,
locking is transparent to application schedulers, which only need to know that

a task is locking within the scheduler's band.

Implementation of priority inheritance
Ideally, the implementation of the framework should guarantee that, when

a task is to be placed at a non-band priority level upon unlocking a resource, it

will be placed at the front of the conceptual queue for that priority level. This

is the usual behaviour for priority-based resource sharing protocols and its

purpose is to preserve the FIFO ordering of the queue by not allowing other
tasks in the queue toi preempt the unlocking task. The FIFO ordering can be

seen as a policy for deciding the eligibility of tasks of the same priority. So, in

this sense, placing a task at the front of the queue when unlocking has the

effect of not allowing; lower eligibility tasks to preempt.

This can he seen in Figure 4.9 below. In this figure we can see three tasks,

r1, r11, r11. "Tasks j and r11 belong to the same non-band priority level k, while

114

hk

rL can belong to either a lower priority level or a lower band. I'urthcrr7morc, r,

and r11 share a resource r1, while zr. also uses r,, which has a higher Iýreý ýnlýi iý ýn
ceiling than rl. zL initially holds both resources, while t, 11 and r// arc on queue
k, with zH in front of r11.

FIFO queue for Task execution
priority level k

before Tt unlocks E II jIbIIIty
inversion

T(

TM TH Non-be(nd TL.::. TH "TH TM , Tll TH TM
P

pr, IV level

k V

fro time
a. Unlocking task h. Unlocking task
placed at the front placed at the back

of the queue of the queue

Key

Task end
Lock

T

resource

Locking two I nckin{ý ý, nr N ani. i1 Lr. k

Figure 4.9: Preserving the FIFO ordering of queues when unlocking a resource

Then rj. unlocks r2. Figure 4.9. a shows the task execution when rI is pI; ºcco. 1

at the front of queue k. z1 proceeds to unlock i'i and is immcdi; ºtcly, l)rccmhtc(l
by -, //, which locks rl. Then r11 finishes and rte executes last. I"igurc shows
the eligibility inversion that occurs, if r1, goes to the back ºº(ilie yucue. rJ/ runs
first and blocks on r1. raj is next on the queue and runs, intn, clucint; cli}; il, ilitý

inversion. After rt/ finishes, r1, runs and unlocks the resource, and 1-mall- T//

gets to lock r1.

Despite this situation, eligibility inversion of this sort is not as SCv'Cr(' ; is is

inversion by lower priority tasks. The FIFO ordering of tasks at the sannt level

is not supposed to be an exact method for determining cligil)ilitvv. ror

example, if it was the case that r,,, was released a fraction earlier than tlicre

would not be such a problem. Therefore, we dog not consider adding r at tile
back of the queue a breach of the protocol.

Nested locking of resources
We ObsenVC that the framework allows nested locking of resources thanks

to the FN1SF_PIA'. The task does not have toi be executing in its (mn band in

115

order to lock a resource. The base scheduler, knowing the ceiling of the

resource to be locked, can decide how to perform priority inheritance on the

task irrespective of its current priority. The only restriction is that critical

sections must be properly nested, i. e. unlocking of resources should happen in

the reverse order of locking them.

Implementation of synchronization primitives

,1 very useful characteristic of the framework's resource sharing protocol is

that its correctness does not depend on the particular implementation of

synchronization primitives by the middleware. The reason is that use of a

synchronization primitive in application code can never cause inadvertent

manipulation of task priorities by the middleware or operating system. To

better understand this let us consider the following example: we assume two

band tasks, rj and z, with eligibilities er < e_,, that share a resource T. ,i runs

first and locks T. 't'hen r2 is released and preempts r1, thus moving r1 to low r

then tries to lock r and blocks at high (Figure 4.10).

Base priority scheduler

RlaX

H (i+3)

M (i+2)

ML (i+ 1)

L (i)

.....................................
Base

scheduler "13eß'""'
caU i3°¬:, f

min

time

i: c; k Block on the

system cehny

E3, iye scheduler Lr, ý. kinq .ý -
Normal task 0

taus E l vseun. e 1 1 execution

Figure 4.10: Blocking on the system ceiling takes place within the base scheduler call

Ifr, was to block on the actual synchronization primitive representing the

shared resource, the middleware (or operating system, depending on the
implementati(n), assuming that the default resource sharing protocol is

priority- inheritance, would have toi elevate the priority of r/ to high. This

would constitute a breach of the protocol. However, the use of the system

I

116

ceiling in the protocol prevents such a case. z2 blocks within the preceding
base scheduler call and not at the scheduling point, as can be seen in Figure
4.10. The scheduling point, which is the call to a locking primitive in the

middleware library, will be executed only when r2 s preemption level is greater
than the system ceiling, i. e. when the resource has been unlocked.

To sum up, avoiding unbounded eligibility inversion in our framework is
done on two levels: eligibility inheritance, carried out by the application
schedulers, provides a first level of minimising inversion, while priority
inheritance, carried out by the base scheduler, avoids the inversion caused by
tasks situated between the initial priority of the locking task and the locking
band.

4.5.6 A note on synchronization and communication
The discussion on sharing system resources has centred on the use of the

shared memory model of synchronization, e. g. using shared variables,
semaphores, monitors etc., as stated in Section 4.1. The reason is that this
model is better suited to the framework. To understand this we must consider
that what the framework ultimately aims at, is to be able to house different

types of applications in one system, ranging from hard to soft, to non-real-
time applications. In such a system, it makes more sense to assume a large

number of tasks, with rapid task creation and deletion, rather than a static
number of tasks with predefined communication paths, and according to
[Lauer and Needham 1979], more dynamic systems tend to be better
implemented on the shared memory model.

However, message passing can still be supported by our framework. To
demonstrate this, let us assume two band tasks, rl and rA communicating
using the asynchronous type of message passing, which is the most basic

variant for message passing [Burns and Wellings 2001; p. 284]. More

specifically, they use two message transmission operations: send () and
wait 0. .

Calling wait () must be modelled is a suspension operation, but

send () need not be, since it is asynchronous. At some point r2 executes

wait (message), which means executing the preceding base scheduler call
and then blocking at the actual scheduling point, at priority high. Later, Ti
passes a message to r2 by executing send (message). Ti does not execute a
scheduling band operation, does not block, but continues with its execution at
medium. However, r2 is now unblocked and since its priority is higher than Ti,

117

it preempts it and executes the succeeding base scheduler call for wait O,

which decides if r2 can preempt Ti.

Using the asynchronous variation of message passing we can construct
both the synchronous and remote invocation variations [Burns and Wellings

2001; p. 284]. Therefore, message passing can be fully supported in. our
framework, if needed. Additionally, it has been shown in [Lauer and Needham

1979] that the two communication techniques are "duals of each other" and
that a system which is constructed according to one model has a direct

counterpart in the other. This means that we do not lose any expressivity by

supporting only the shared memory model, and that any system which is based

on message passing can be faithfully constructed using shared memory
techniques.

4.6 The Flexible Middleware Scheduling Protocol
(FMSF)

Having described its constituent parts, this section presents the protocol in
its entirety. The protocol is, in essence, a two-level scheduling mechanism.
There are four basic rules on which the definition of the protocol relies, and
these are given below:

A. As part of any scheduling operation, the task's application scheduler
is always informed of the operation. Rule A will always take place in

an operation before Rules C and D.
B. The first action of a pbsc of any scheduling operation, apart from a

lock, is to elevate the calling task's priority to the high priority of the
band in which the task is executing, if it is executing in one. If the
task is executing at a non-band priority level, the task priority
remains unchanged.
The lock operation moves the executing task to the high priority of
the band to which the resource, belongs to, if that is the case. If the

resource belongs to a non-band priority level, loc(r, r). pbsc sets the

task's priority to that level.
C. During the pbsc part of any suspending scheduling operation, a task

shall always inquire the next most eligible task of its own and
current band's application scheduler, if the two bands are different.

118

5

D. When executing the sbsc of a scheduling operation at its own
band's high priority, a task r shall always ask its application

scheduler to perform an eligibility test. If r is no longer the highest

eligibility task in the band, it is put to pL(BT), otherwise it is put to

p, N(BT). In the latter case, if there was another task previously
running at pM(Bj), that task is put to pL(BT.

Based on these four rules, the framework's protocol is given below,
describing the steps taken during each of the scheduling operations.

1. Immediately after the release of task r the rel(t operation is performed.
1.1. Task ris released.

1.1.1. If r belongs to band B, it is released at the high priority level of
its band (p(r)pH(BT)).

1.1.2. If r is not a band task, it is released at its assigned (non-band)
base priority.

1.2. rel(r). sbsc does the following:
1.2.1. If r is a band task, it informs S(BT) of the release and asks it to

perform an eligibility test, as in Rule D.

2. A task r can perform loe(r, r) at any point during its execution. The

protocol does the following:

2.1. The following steps are followed in loc(r, r). pbsc :
2.1.1. The task is moved to the appropriate priority.

2.1.1.1. If the resource ceiling belongs to a band, the task is moved

to the high priority of the locking band (pH (L? 0c)). If

Bf°C Br"I , there is no need to first move the task to

PH(Brý

2.1.1.2. If the resource ceiling belongs to a non-band level, the task
is moved to that priority level.

2.1.2. If the resource is governed by the FMSF protocol, the base

scheduler continues with 2.1.3 to apply the FMSF_PLT. If the

resource is governed by some other resource sharing protocol, the
base scheduler, depending on the programmer's choice, can
continue with 2.1.3 or go to 2.1.5.

2.1.3. If j; rj(r) <_ ;c, then the task blocks against the current system

ceiling until kJ(r) >; r, at which point the protocol continues with
2.1.4.

119

2.1.3.1. The base scheduler informs is application scheduler of

the blocking.

2.1.3.1.1. If BT = BIOQ, then if the blocked task is more eligible

, than the oldest highest execution eligibility task in Bj'

the band's scheduler must perform eligibility inheritance

based on the blocked task.

2.1.3.1.2. If -clocks at a higher band B'°' > Br
, or if it locks at

a non-band level, no eligibility inheritance need take place.
2.1.3.2. The base scheduler asks -es scheduler for its most eligible

task, which it places at p j1(Br) .
2.1.4. When 14r) > n, the base scheduler updates the system ceiling

(; r =[rj).

2.1.5. The base scheduler informs S(B1) of the locking.

2.1.6. If r is locking within a higher band BrO° > B,
, the base

scheduler also informs S(B, ") .
2.2. The actual resource locking takes place.

2.3. The loc(r, r). sbsc modifies the task's priority appropriately:

2.3.1. If BB = B, ", the task's application scheduler is asked to

perform an eligibility check, as in Rule D.

2.3.2. If B, 1' > Bt , the base scheduler puts rat pU7; (BI°c).

2.3.3. If r is locking at a non-band level, its priority remains

unchanged.
3. A task r can perform unL(r, r) only after having performed the

corresponding loc(r, r) operation. The protocol does the following

3.1. unL(r, r). pbsc takes the following steps:

3.1.1. If the task is executing within a band, it is moved to pH (B, ")

Otherwise, the task's priority remains unaltered.
3.2. The task unlocks the resource.

3.3. The unL(r, r). sbsc does the following:

3.3.1. The base scheduler informs S(BT) of the unlocking.

3.3.2. If BrO° > B,
, the base scheduler also informs S(BI°C) of the

unlocking operation.
3.3.3. If the resource is governed by the FMSF protocol, the system

ceiling is modified accordingly by removing the resource ceiling

120

from the system ceiling list, even if r was not the highest locked

resource, and all tasks waiting on the unlocked resource are

notified.
3.3.4. The base scheduler moves the task to the appropriate priority.

3.3.4.1. If the task does not hold any other resources, or if the next
highest resource it holds belongs to its own band, the base

scheduler moves the task to pif(IJt) and asks the task's

application scheduler to perform an eligibility test, as
described in Rule D.

3.3.4.2. If the next highest resource r'the task holds belongs to a
higher band than its own band, the task's priority is set to
PML(Br'').

3.3.4.3. If the next highest resource the task holds belongs to a

non-band level, the task's priority is set to that priority level.

3.3.4.4. If the task is a non-band task and holds no other
resources, it is moved to its own priority.

4. A wait operation wt(r, r, ev) can only be performed between a loc(r, r

operation and its corresponding unL(r, r) operation. The protocol does the
following

4.1. The wt(r, r, cv). pbsc does the following:

4.1.1. If the task is executing within a band, it is moved to Pu l (%3r `)
.

Otherwise, the task's priority remains unaltered.
4.1.2. The system ceiling is modified accordingly.

4.1.2.1. If r was the highest locked resource, then the head of the

conceptual system ceiling queue is removed.
4.1.2.2. If r was not the highest locked resource, the list link

corresponding to the resource ceiling is removed.
4.1.3. The base scheduler informs is application scheduler of the

wait.
4.1.4. The base scheduler asks the application scheduler of r for its

most eligible task r; if any, and places r'at pm (13T)
.

4.1.5. If Bz"` # Br, it asks the application scheduler of BT"J for its

most eligible task r"and moves r"to pM (lr ") .
4.2. The task performs the wait and blocks.

4.3. The wt(r, r, cv). sbsc does the following:

4.3.1. The base scheduler updates the system ceiling (Ir = rrl).

121

4.3.2. If the locking task is in its own band, the base scheduler informs

the task's application scheduler of the locking.

4.3.3. The base scheduler modifies the task's priority appropriately.
4.3.3.1. If BB" = Br, the base scheduler asks the task's application

scheduler to perform an eligibility test, as in Rule D.

4.3.3.2. If BT "> Br , it is placed at pm (BT "r) .
4.3.3.3. If the task is at a non-band priority, it continues to run at

the same priority.
5. A task r can perform sus(r) at any point during its execution.

5.1. sus(r). pbsc does the following:

5.1.1. The task is moved to pH (BT "r)
,

if executing within a band;

otherwise its priority remains unchanged.
5.1.2. If the base scheduler can determine that the particular

scheduling point, at this particular execution, will not cause the
task to suspend, it simpry lets the task proceed with the scheduling
point.

5.1.3. If there is a possibility that the task might suspend at the

scheduling point, the base scheduler does the following:
5.1.3.1. It informs the task's application scheduler of the

suspension.
5.1.3.2. It asks the application scheduler of BT for its most eligible

task r, if any, and places r'at pJ(BT).

5.1.3.3. If BT " :AB, ,
it asks the application scheduler of Bz' for

its most eligible task r'; if any, and moves r"to p1(B2 ")
.

5.2. The task executes the scheduling point and it either suspends or not.
5.3. sus(r). sbsc does the following:

5.3.1. The base scheduler informs S(BT) of the resumption.

5.3.2. If Br" = Bz, the base scheduler asks the task's application

scheduler to perform an eligibility test, as in Rule D.

5.3.3. If B, 1 r> Bt ,
S(BB ") is notified of the resumption and the task

is placed at p jM
(BT'S)

.
5.3.4. If the task is at a non-band priority, it continues to run at the

same priority.
6. A task r can perform 711-d(r) at any point during its execution. The

protocol does the following.

122 0

6.1. yld(r). pbsc performs the following:

6.1.1. If and only if B, " = BT
, the task is moved to pH (Br) .

6.2. The task executes the yield primitive.
6.3. yld(r). sbsc performs the following:

6.3.1. If and only if Br °` = B, , the following is done:

6.3.1.1. The task's application scheduler is informed of the yield.
6.3.1.2. The task's application scheduler is asked for its most

eligible task r which is placed at p yi(Bd. If r'# r, r is placed
at pL(B,)

7. The chg(r) operation on r can be performed at any time by any task r, of

the same band, i. e. Br = Bt .
Additionally, only a task itself can change its

own band, and this can occur only if the task is not holding any resources.

7.1. If B rc" = Brc
, chg(r). pbsc moves t,, to pg (BTU)

, otherwise its

priority remains unchanged.
7.2. The change in -es scheduling parameters takes place.
7.3. chg(r). sbsc does the following:

7.3.1. The application scheduler S(BB) is informed of the change in

z's scheduling parameters.
7.3.1.1. If z, =z and the operation changed z, s own band to

another band B, " ', then:

7.3.1.1.1. S(B2f ') is informed of the operation as well.

7.3.1.1.2. S(B"d) is asked for its next most eligible task, which'

is moved to pm(ld

7.3.1.1.3. The priority of reis changed to pH (B how)
.

7.3.2. If B, " = Br, then S(ri) is asked to perform an eligibility test, as

per Rule D.

8. A task r can successfully perform end(r only, when it has executed a

corresponding unL(r, r) operation for every loc(r, r) operation it has

performed. The base scheduler does the following:

8.1. end(r). pbsc moves r to pH(B3,

8.2. The base scheduler queries the task's own band for its most eligible
task, and places the returned task, if any, at pyf(BT)

8.3. The task terminates.

123

As a comment we can say that the base scheduler needs to keep the system

ceiling, T, conceptually as an ordered linked list, so that it can accommodate

nested locking. Now that the framework's protocol has been described, an

example is provided to help in better illustrating the way the framework

behaves. Let there be four tasks, such that r1 belongs to band 1 and is released

at G/ _(>, task r-, is a non-band task with priority 5, released at t, =2, task r3
belongs to band 6 and is released at t, t=6, and task r1 belongs to band 10 and is

released at 11=1. Furthermore, let us assume they share two resources: tasks 71

and r1 share t',, and tasks r, and t. 1 share r?. Figure 4.11 shows the schedule

produced by the framework protocol.

ID

y

11

F,

m

TI,

4

3H-.. -
a
C
m m

68 10 12 14 16 18

T 1 A, I ,r Io, kr r ,ii,, nk ýI. , kuA, iier Ulagram axes

Figure 4.11: An example of a schedule of four tasks running within the framework

124

k

The figure shows the execution of the four tasks on the base scheduler

priority queues. Although scheduling operations are a distinct part of a task's

execution, their execution cost is negligible compared to the task's total

execution cost. Therefore, the passage of time, shown on the Xaxis as a thick
black line, does not take scheduling operations into account. Initially, task r, is

released at its band's high priority, as per paragraph 1.1.1 of the protocol.
After an eligibility test, as per paragraph 1.2.1 and Rule D, it is moved to

medium where it executes, until it decides to lock resource r1. It is then moved
to the high priority of band 10, as per paragraph 2.1.1.1, where it locks the

resource and is then promptly moved to medium lock priority (priority 11) as

per paragraph 2.3.2. While executing at priority 11, task r2 is released at

priority 5, but cannot preempt. Then task rq is released at priority plf(Blo)=13,

preempting r1. After an eligibility test, as per paragraph 1.2.1 and Rule D, it is

moved to medium (priority 12) where it executes for a while before deciding

to lock r, % However, it blocks due to the FMSF PLT, as per paragraph 2.1.3,

and rl continues to run. Meanwhile, task r,? is released at p,, j(B6)=9, as per
1.1.1, but cannot preempt. Then, task Ti is again moved to p11(Blp) to unlock
-r1, as per 3.1.1. It is then moved to its own band's high priority, as per 3.3.4.1,

and is immediately preempted by r4, which promptly locks rl and is moved to

medium, as per 2.3.1. Then, r4 successively locks r, unlocks rz and r1, and

proceeds to end its release at priority high, as per 8.1. The base scheduler then

selects the next most eligible task, which is T at priority 9. t3 executes its

release operation, is moved to its medium priority, as per 1.2.1, and then
finishes its run again at pu(Bo)=9. The next most eligible task is TT which
executes at-non-band priority level 5. After executing for a while it decides to
lock r2 and is moved to pjjBjo)=13, according to paragraph 2.1.1.1. After

locking, the task executes at the locking band's medium lock level, as per
2.3.2, and then unlocks the resource. This takes it back to its own priority
level, as per 3.3.4.4, where it finishes its execution. Finally, task rl is selected
and gets to finish its unlock operation. It is moved to medium, executes for a

while and then executes an end operation.

4.6.1 Protocol properties
Three are the main protocol properties that guarantee its correctness and

are given below:

" Resource usage under the protocol is deadlock-free.

125

" Blocking of tasks is reduced to the duration of one critical section from

a lower eligibility task, if and only if tasks do not self-suspend.

" The framework always selects the oldest, highest effective eligibility,

runnable task in the system to execute.

Following, we will prove each one of these properties.

Deadlock avoidance: Under the FMSFprotocol there can be no deadlock.

Proof. Liu [2000: p. 313] mentions that the BPreCP is deadlock-free and that
it bounds eligibility inversion to, at most, one critical section of a lower

eligibility task. Additionally, Proposition 3.3 and Corollary 3.1 have also
proved that the BPreCP is deadlock-free even when self-suspension while
locking is allowed and even when tasks unlock resources with lower ceiling
than the system ceiling. The BPreCP PLT part of the protocol was adequate
to prove these properties, and the same is indicated in [Liu 2000: p. 313]. Since

the framework's FMSF PLT is exactly the same as the BPreCP PLT, it
follows that the framework will also be deadlock-free.

Bounded eligibility inversion: Under the FMSF protocol no task can be
blocked for longer than the duration of one outermost critical section of a lower eligibility
task.

Proof. We base our proof on the equivalent proof for the PCP protocol,
provided in [Sha et al. 1990]. Suppose a task rHis blocked by a lower eligibility
task rL. This means that when rHwas released, rL was already locking a shared
resource r. We can distinguish four situations: i) ru and rL are both non-band
tasks, ii) rjt is a non-band task, but zL is a band task, iii) TH is a band task, but.

rL is a non-band task, and iv) zH and rL are both band tasks.
In i), it is assumed that r is also used by at least one band task. According

to the framework, TL will be running at the priority of- rH at the time when TH is

released. Therefore, rH will not be able to preempt it and the protocol will
work like the IPCP. As soon as rL unlocks the resource, it loses the inherited

priority and rjt preempts it. rL will not be able to lock another resource and
block r11.

Situation ii) is effectively the same as i), because they both take place at
p(rid in exactly the same manner, irrespective of where task tL comes from.

In iii), tL will be at priority pw (BH at the time when Tug is blocked (at

Priority PH (BTU)). In order for rL to have locked within Br
ff , no band task

could have been locking a resource prior to TL locking r. Furthermore, as

126

shown in Section 4.5.5, zL will be the only task not belonging to Br1 that is

locking within the band. Also, no band task could have locked another

resource prior to rHbeing released, otherwise rHwould not have blocked on r.
Before blocking, THwill have already executed for some time, preempting rL,

since, by default, its eligibility is higher. rH will block due to a 1oe(r jf, r

operation. S(Brg) will be informed of the blocking and will keep the eligibility

of TH as the highest eligibility of a pending task in the band. Any band task r11
being released after rH blocks will trigger, by default, an eligibility test by

t S(BTH) as part of its rel(rA, 1) operation. If its eligibility is not higher than the

highest pending eligibility, ryr will be moved to pL(BTH) and, therefore,

eligibility inversion will not occur. When zL performs the unL(TL, r) it will

wake tH up. rH will run at its priority (pH (BTH))
2 preempting tL. rL will not be

able to block rg again. When all tasks in B=H finish execution, rL will be

selected to execute, it will finish its unlock operation and move back to its

initial priority level.
Situation iv) is practically the same as iii), because it again leads to eligibility

inheritance within the band, thus preventing any medium eligibility task TM f
from delaying rH

Therefore, we have proved that rH can be blocked by a particular lower

eligibility task for the duration of its longest critical section, at the most.

Now let us suppose that zH can be blocked by more than one lower

eligibility task, each time for the duration of that task's longest critical section.
Suppose that the first two lower eligibility tasks to block rjl are TLl and TL. If

TU and TL2 belong to bands or non-band priority levels below B,,, , then, by

default, they will have absolute preemption levels that are lower than that of
zH If either or both TLl and TL2 belong to the same band as rfl then, because of
their lower eligibility, they will have been assigned lower relative preemption
levels that again translate to lower absolute preemption levels than rll

In order for both tasks to block rjj they must both be locking a shared

resource when TH is released, say rl and r2 respectively. Let us assume that TL2
has the lowest eligibility and was the one to lock a shared resource first. It

would have set the system ceiling to it = Fr2] z ! irIrLZ . Under the FMSP_PLT,

in order for TU to lock rl, it must be that InlL1 > rr21 z kirL2 Since we assume

that rR can be blocked by rj2 it must be I4.,, S 1r21 < I)rIrLl A contradiction,

127

since by assumption it is 1, Tlrfl > kIzLi
. Thus, it is impossible for task TRto have

eligibility higher than both tasks TU and TL2 and to be blocked by both of them
under the framework protocol. QED

Highest effective eligibility dispatching: The framework 'behaves as if the
system's dispatcher is always selecting the runnable task with the oldest highest effective
eligibility, provided that all possible typet of scheduling points have been identified.

Proof. First, we are going to prove the correct execution of tasks within a
band, according to that band's policy. This, in effect, means guaranteeing the
correct order of execution for the non-scheduling code of band tasks
according to their eligibilities. The correctness of task execution is proved with
the following six observations on the rules of the protocol.

Observation I: The application scheduler needs to provide a new
scheduling decision, i. e. specify the next task to run at medium priority, every
time the set E=fe(rl), e(r2),..., e(,)) of the eligibilities of runnable tasks
changes. A scheduling point represents a potential change to this set. Given

our assumptions that all scheduling points have been identified and that the
framework addresses only event-triggered policies (as explained in Sections 4.1

and 4.2.2), the fact that it provides a scheduling operation for each scheduling
point guarantees that a scheduling decision will be made by the application
scheduler when needed.

Observation II: Rule D guarantees that the application scheduler will
always make a scheduling decision after every scheduling point.

Observation III: Rule B guarantees that scheduling operations will be

executed without interference from normal task execution. In addition, the
rule guarantees the serialisation and, thus, integrity of the scheduling
operations. Each operation will finish before another one is executed.

Observation IV: Rule A guarantees that a band's application scheduler
will always be able to assess the effects of a scheduling point and keep the
correct information on its tasks. Since changes in E can only happen at
scheduling points and since Rule A always precedes Rules C and D, it follows
that an application scheduler will always have an updated E set when taking a
scheduling decision, thus guaranteeing the correctness of the decision.

Observation V: Rules B and D guarantee the preemptive execution of
tasks, since any executing task running at medium can be preempted by a
scheduling operation of another task running at high. Thus, the application
scheduler can make a new scheduling decision whenever needed, possibly
indicating a new task to execute.

128

Observation VI: Rules C and D guarantee that a task will always be

running in the band, if one is available.

With the above observations we can show that the execution of scheduling

operations leads to the desired behaviour within a band. Based on the
definition of scheduling points we can infer that the execution of a task is

nothing more than the execution of code segments, each segment contained

within two scheduling points, with each task having at least one such code

segment contained within its release and its termination. Section 4.3 has given
the five basic scheduling operations corresponding to five basic scheduling

points: release, end, lock, unlock, suspend We will examine each one in turn.

"A band task is always released at its band's high priority. This, as in (V),

guarantees that it will be able to preempt the running task, if needed.
" The end operation, due to observation (VI) above, always allows the

application scheduler to select the next most eligible runnable task to

execute in the band, if such a task exists.

" Similarly, the pbse of a suspend operation, due to (VI), will allow the

application scheduler to select the next most eligible runnable task to

execute in the band, if such a task exists. The sbsc of the suspend

operation, because of (V), will act exactly like the Ase of the release

operation, again guaranteeing the ability to preempt, if necessary.

"A lock operation is possibly suspending. Thus, in this respect it has the

same characteristics as suspend with respect to (V) and (VI). Additionally, a
lock operation, in conjunction with its corresponding unlock operation,
enforces the FMSF PLT and triggers the EI rule.

" The unlock operation, as already stated, enforces the FMSF_PLT, EI

and FMSF_ET rules, and like any other operation, allows the application
to enforce preemption, as per (V). This means that the loss of any
inherited eligibility will indeed reflect on the execution of the unlocking
task.

Therefore, we have shown that for all five basic scheduling operations, and

thus for all scheduling operations in general, the framework protocol

guarantees task execution within a band as if the application scheduler was the
base scheduler. The only way for a band task to execute outside its band is to
lock a resource with a preemption ceiling higher than the highest absolute

preemption level assigned to the band. Priority inheritance enforces part of the
FMSF protocol's eligibility inheritance. As has been shown in Section 4.5.5,

129

this task will be the only task executing outside the band and, thus, its

application scheduler need not keep track of where it goes. Effectively, it has

been proven that the application scheduler will not need. to make a scheduling
decision regarding the task, while its priority is outside the band. Also, as long

as this band task executes outside the band, no other band task will be able to

execute within the band due to the base scheduler's priority dispatching.

One consideration is the application scheduler of the locking band for a

task that locks at a higher band. The FMSF Eligibility Inheritance rule (Section

4.5.3) specifies that the locking band's application scheduler will apply

eligibility inheritance within its band, such that the locking task might acquire

an effective eligibility. This will prevent eligibility inversion within the locking

band. Tasks of the locking band with higher eligibilities than the effective

eligibility of the locking task will be able to execute within or outside their
band, as has been described.

Of the five basic operations only three are available to a task locking

outside its band: lock, unlock and suspend release is not applicable and end is

not permitted while a task holds resources. Let us examine each of the three

possible operations.

"A lock operation, performed while a task is already executing outside its

own band, can only lock a resource r2 with an even higher preemption-

ceiling than the already locked resource r1. Therefore, the locking task is

going to remain outside its own band. For every nested lock operation

outside the band, Rule B applies. Therefore, the situation the task is going
to be in, when executing its P nested lock operation outside its own band,

is identical to that of the P resource being the first resource locked outside
the task's own band. Without loss of generality, we can consider each
nested locking outside the task's own band as the first locking outside the
band. Therefore, performing a lock operation while a task is already
executing outside its own band does not affect the correctness of the

protocol.

" If an unlock operation is executed after the task has performed ! nested
lock operations outside its own band, then by unlocking its P locked

resource it will be in a situation identical to that of locking the (i-1Jb

resource. Therefore, such an unlock operation does not affect the

correctness of the protocol. If the task unlocks its last locked resource
outside its band, then the unL(r, r). sbsc is going to enforce preemption, if

130

necessary, as per observation (V). Execution will continue within the band

as was described above.
" If the locking task suspends, the pbsc of the suspending operation will

select the next most eligible task in its band to place on medium. This is so
that other band tasks will get the opportunity to execute while the locking

task is suspended, and also so that the first runnable task the dispatcher

will find, if no runnable task exists above the band, will be at the medium

priority and not the low priority of the band. As long as the task remains

suspended, task execution within its band will proceed as described above.
As soon as the task wakes up, it will, by default, preempt any band task

that happens to be executing.

Finally, non-band tasks will be scheduled by the base scheduler according

to their priority, as normal. Lock within a band will be treated the same as a
lower band tasking locking at a higher band. The locking band does not
distinguish between a lower band task and a non-band task locking at
medium lock.

Thus, for all possible situations, we have demonstrated that the framework

protocol manages to enforce highest effective eligibility dispatching. QED

4.7 Summary

This chapter presented a scheduling framework that adds support for

flexible scheduling in real-time middleware. Its primary benefits arc:

1. Its basic assumptions are simple and widely used.
2. It is designed to support arbitrary scheduling policies.
3. Its protocol supports resource sharing between tasks of different

policies, guaranteeing deadlock avoidance and bounded eligibility
inversion.

4. The protocol is deadlock-free even when tasks suspend while holding

resources.
5. The protocol properties have been demonstrated with examples and

proven.

In subsequent chapters a multi-faceted evaluation of the framework takes

place, which further strengthens its proposal and demonstrates its viability.

131

132

Chapter 5

Framework Evaluation

Chapter 4 described a framework for achieving flexible scheduling in real-
time middleware. This chapter provides a three-faceted evaluation of the

protocol. The first part of the evaluation is the description of an application-
defined scheduler used in conjunction with the framework. This essentially is a
case study of how an arbitrary scheduler can be incorporated in the
framework. Our choice is an EDF scheduler, which has gained significant

support over the past several years as a valuable supplement to fixed-priority

scheduling [Buttazzo 2005]. Then, a verification of the framework's operation
is provided, which is achieved by modelling it as a system of timed automata in

the UPPAAL model checker. This provides a strong indication that a correct
implementation of the protocol is possible, by testing a number of

characteristic cases. Finally, we present an examination of the types of
different scheduling policies that can be supported by the framework. The

extended range of policies covered can satisfy a plethora of application
demands and diverse real-time needs. This demonstrates the full scope of the

protocol.

133

Combining the three types of evaluation instills more confidence into our

assertion that the Flexible Middleware Scheduling Framework is a viable and

appropriate solution for flexible real-time scheduling in middleware.

5.1 An EDF application scheduler

The protocol presented in the previous chapter is the core element of a
flexible middleware scheduling framework, but, on its own, is not enough to

evaluate the approach. A crucial element, and indeed the reason for which the
framework was created, is the presence of an application scheduler. This

section describes how an EDF application scheduler could be implemented

for use by the framework.

Implementing a basic EDF scheduler is fairly straightforward. To enforce
the policy it is sufficient for the scheduler to keep a queue ordered by absolute
deadline, where the head of the queue holds the task with the nearest absolute
deadline while the back of the queue is the task whose deadline is furthest

away in the future. It is important to note that, as a direct consequence of the

observation on FMSF_PLT in Section 4.5.5, only band tasks executing within
the band need to be placed in this queue.

However, the, scheduler must also be able to cope with resource sharing
within its band. In doing this, the EDF scheduler can implement a protocol of
choice, but if it is to share resources with other schedulers it needs to support
the FMSF_EI. It is the second case that is going to be examined here.
Therefore, the scheduler must conform to the FMSF by performing the

eligibility inheritance part of the protocol, as specified in Chapter 4. In light of
this, the simple EDF queue model must be enhanced, so that the scheduler
can easily apply eligibility inheritance when needed.

As stated in Rule 4.1, eligibility inheritance will need to be applied when a
task blocks while executing within its own band. What makes eligibility
inheritance easy to implement is the observation on the manner of resource
locking, made in Section 4.5.5. By keeping a list of locking tasks within the
band, like the one described in 4.5.5, the application scheduler can store within
every link in the list the eligibility which the corresponding locking task had at
the point of locking. If a band task -rb blocks within the band due to resource
sharing, the scheduler compares its eligibility against the active eligibility of the

134 0

first task in the locking list, -cl. The active eligibility of rl is increased, if -, /, has

higher execution eligibility. When Tj unlocks the resource, its eligibility is

restored to the value stored in the link and the link is removed frone the list.

Figure 5. X shows such a conceptual list, where (1,, (r;) is the absolute deadline

task r; had before locking its zur" nested resource.

nested locking of 12 nested locking of T,

locking task

locking task's deadline
at the point of locking

Ti T2 T2

dtýTtý dt(T2) d2(T2) d1(Tý-t) d2ýTý
tý

atýTiý]

Tail of list Head of list
(oldest (most recent

locking task) kicking task)

Figure 5.1: An EDF application scheduler's conceptual lucking list

Note that no resource related information needs to be kept in tile Its(.

Furthermore, in removing links from this list the scheduler is nut t ýiric týýI t(

removing only the head of the list, but can remove the entry Id it Ii), to

the highest locked resource of any task currently lacking. Fw- cxannl, lc, in

Figure 5.1 above the head of the list represents the highest locking resýýurre
for task z -i also the highest locked resource in the scheduler. "I'he second
link in the list represents the highest locked reso tircu f nr task r, / and,

therefore, can be removed from the list, if r; suspends and r; / executes and

reaches the end of its innermost critical section.

The scheduler also has to cater for the situation where the Ih, ckini; task .'
is of a lower band or fixed-priority level, as described in

as explained in Section 4.5.5, because of the I MSF_I'I I', at any une timt there

can only be one lower task using band resources sind cxccutinig at the

medium lock level. However, because r1 does not Belo tii, t() thu band,

eligibility inheritance is not applicable to it and, hence, the Iý>ckink; (Iticti " is no, t

suitable for keeping track of its locking history. Instead, the sncCdulur keeps a

separate LIFO list for the task that happens to be executing; at nies iu n lock.

1? very link in this list corresponds to a separate band resource that has hewn

locked by rl in a nested way and holds the highest eligibility , infong; st I); tn: I

tasks that have blocked within the band clue toi .,. I; ach tulle uni ýýt th se

resources is unlocked, the corresponding ling: will be removed h oh l the" list.

This list is shown in Figure 5.2.

i)

nested locking of medium-lock task

d, da d3 d�

Tail of list Head of list

(oldest locked (most recently

resource) locked resource)

Figure 5.2: An EDF application scheduler's conceptual medium-lock locking list

TO sum up, the ED1 scheduler comprises three main constructs: the 1 "AM"

queue of band tasks located within the band, the locking list of band tasks

locking within the band, and the 1.1FO medium-lock locking list for keeping

track of eligibility inheritance when lower tasks lock in the band. The next

section uses this definition of the 1? 1)1' scheduler to test the framework with

model checking. What is more important, though, is the fact that these

constructs are applicable to any application scheduler, regardless of its policy,

since they are based on the general observations made in Section 4.5.5. The

actual implementation of an 1,: 1)1 application-defined scheduler will be given
in the next chapter, together with the framework implementation.

5.2 Modelling the framework

The formal verification presented in this section is based on model checking.
Model checking is a method for algorithmically verifying formal systems. In

order toi apply the method, a system has to be modelled as a directed graph of

vertices and edges. The set of vertices represents the state of the system at any

time while the set of edges represents the set of possible transitions the system

can take, going from one state to another. Given this model, model checking
is simply an exhaustive search of the state space in order to see if a given
formal specification is satisfied. However, as can be understood, this search is

possible only when the model itself is finite. If the system that the model is

representing is also finite then model checking can provide conclusive proof

of the correctness of a property. When, however, the system to be modelled is

not finite, any attempt to model it must, by default, limit the initial dimensions

of the system.

This is true for the FNISF framework. Although the framework itself is

finite, the possible situations under which it can be used are infinite. For

example, theoretically we cannot put an upper limit on the number of tasks in

the system, and the same is true for the number of resources and the number

136

of bands in the system. Furthermore, we cannot restrict the way tasks use
resources, therefore the combinations of task resource usage are also infinite.

Therefore, in building a model of the framework we must restrict these

parameters. However, in the case of the FMSF framework we deem these
limitations acceptable. The reason is that we have no desire of proving the

correctness of the framework through model checking. The correctness of its

three basic properties, namely deadlock avoidance, bounded eligibility
inversion and highest effective eligibility dispatching, has already been
demonstrated in Section 4.6.1. Rather, the result sought from model checking
is the affirmation that the framework can be correctly implemented, without
any run-time emergent properti es like, for example, race conditions, which arc
notoriously difficult to test for. Despite the model's limitations, its importance
is that it provides a very good indication of the desired behaviour. Essentially,
it is a test bed for the framework, which has considerable advantages over a
concrete implementation, such as:

" Rapid development of the model

" Ease of forming and trying different test cases
" Use of the model as the design specification of an implementation

In this case, model checking was done using the UPPAAL model checker.
The following section briefly describes this tool, while Sections 5.2.2 to 5.2.9
describe the model. There are two application schedulers used, af xed-priority
scheduler and an EDF scheduler based on the description in Section 5.1. In
the model, tasks are referred to as threads, because the model is seen as an
abstraction of an actual implementation, where tasks are implemented as
threads.

5.2. E The UPPAAL tool
In this section we will give a brief introduction to the modelling tool

UPPAAL. This is a freely available model checker based on the theory of
timed automata. A timed automaton is a finite state machine extended with
clock variables. UPPAAL defines a modelling language that extends timed

automata with, amongst others: constants; bounded integer variables with
which we can perform arithmetic operations; binary synchronization
channels, where a transition labelled with ci synchronizes with only one (out

of possibly multiple) transition labelled c?; broadcast channels, where one
sender ci can synchronize with an arbitrary number of receivers c?; urgent

137

locations, where time is not allowed to pass when the system is in such a
location; committed locations, where time is not allowed to pass and the next
transition in the system must involve an outgoing transition from one of the

committed locations; multi-dimensional arrays.

To express requirement specifications, UPPAAL has a query language that

consists of state formulae and path formulae. A state formula translates to

an individual state, a state being the set of the locations of all automata, all

clock values and the values of all discrete variables. A path formula quantifies
over paths in the model. Path formulae are classified into reachability ("can a
particular state be reached? "), safety ("something will never happen") and
liveness ("something will eventually happen"). To express path formulae we use
the syntax [A I E] [" [3" 1,, <>"] gyp, where (p is a state formula. A denotes that a

given property should hold for all paths in the system. E denotes that there

should be at least one path. N []" denotes that all states in the path should
satisfy the property, while "<>n denotes that at least one state in the path
satisfies the property. So, for example, (A [] gyp) means that invariantly rp should
hold. UPPAAL offers the keyword deadlock to describe the state where no
outgoing transitions are possible. The reader is referred to [Behrmann et al.
2004] and [Bengtsson and Yi 2004] for more information on UPPAAL and
timed automata in general.

5.2.2 Architecture Description
In order to test our framework and evaluate its behaviour we have

implemented it as a collection of timed automata in UPPAAL [Zerzelidis and
Wellings 2006b]. In building our model we have identified 4 basic automata
which are: Thread, PriQueue, BaseScheduler, Dispatcher. The model is

rounded out with the EDFScheduler automaton, which helps demonstrate the
ability of our framework to accommodate different application level

schedulers. Our model's architecture can be seen in Figure 5.3. API calls
(whether middleware or OS calls) are simulated with synchronization channels
between automata, which can be seen as arrows in the figure, going from the
automaton initiating the synchronization to the one receiving it. The channels
on the arrows are just examples.

The Thread automaton represents a thread in the system. More than one
instance of Thread can be specified and different threads can belong to
different, application schedulers (the dashed lines in Figure 5.3 between threads

138

and application schedulers demonstrate which scheduler each thread bcl mgs

to). PriQueue models the functionality associated with it base scheduler

priority queue. Naturally, there can be more than one instance of PriQueue.

The BaseScheduler automaton represents the middlewarc priority scheduler,

which has the priority queues under its control.

V 7J
NNN

LLL
HH

U) U)
IL LL

3

L
U

J

0D
WW

N
j

Oý 4ý P
f- -D 4ý 0

UJN ý

PriOuuue

BaseScheduler I'nUur>ue

schedule! Pi r)ueue

Dispatcher Nnt)uauw
raur

Figure 5.3: Mode l architecture

The Dispatcher automaton models the dispatching mechanism. It, I (m),
interacts with the PriQueues, and is, in principle, part Of the" lase scheduler,
but has been modelled separately for clarity. Finally, the EDFScheduler

automaton represents an application-defined FIl)F scheduler, witlh its private

variables and data structures (e. g. internal queues). It contains ()nlv Ilhc ktsic

parts of an IMF scheduler, those necessary to the model. The EDFScheduler

automaton presents a special case since it is "hluggahie'". WC can replace it, ()r

use it in conjunction with other application scheduler ; tuten ata, ; is lOnt, as we
keep the same interface, i. e. the same synchronizatWui channels. 'T'his is "11O n
in Figure 5.3 with a ValueScheduler automaton. We can also have multiple
instances of a particular application scheduler autcmnaton.

It is worth pointing out that none of the automatons in the nf()deI ni, ikes

use of clock variables. The reason for this is that the model (1()(. s nOt r(l, re, clit
the implementation of a particular system with known deadlines and costs. It

is a model of a theoretical framework and our primary concern is the detection

of race conditions, rather than meeting some kind Of deadline Or 1neasurini;

execution costs. The only variable used to represent the passage ()t tini(. is th,
integer runtime in the Thread automaton. 'Phis Variable is irncrernic"ntcd t()

simulate execution time passing for a particular Thread instance. Its practical

use is to provide a limit to how long a thread can P; O On sell suspcn1hl I ur

1 19

locking an object. ' Thus, it guarantees that a Thread automaton will eventually
end its run.

Every transition in the model is triggered as part of a chain of transitions
that originate from the Thread automaton. In the figure we can see that the
BaseScheduler plays a central role in our model. Its functionality is triggered
by thread actions, e. g. start of a thread, resource locking etc. It then manages
thread execution. To do so, it utilises the one-way API with the application
defined schedulers and the Dispatcher, and sets thread priorities. The
Dispatcher then selects and sets the running thread.

In describing the automata diagrams it is useful to keep in mind that all the
code pertaining to a particular edge is usually situated at some point above the
transition line, with the guard expression being first, followed by the

rynchroniiation channel and then the update code. Also, for the sake of brevity, a
path containing four or more locations with successive numbering, e. g.
S22 -+ S23 -* S24 --> 525, will be written as S22 -ý ... --> 525. This is
different from S22 -- S25, which implies a transition on an edge directly
linking locations S22 and S25.

5.2.3 Global declarations
The global declarations section of the model contains elements that can be

used by any automaton. There are three main types of declarations: constants,
variables and synchronization channels.

The constants are further subdivided into three categories: constants that
specify maximum values (MAX_THREAD, MAX_PRIORITY, MAX_PRELEVEL,

MAX_RES, MAX -Lock), constants that are used for indexing the thread[] [l
array PERIOD=0, ADEAD=1, RDEAD=2, WAITING=3, RFH=4, PRIORITY=5, BAND=6,

PRELEVEL=7, APL=8, ITER=9, COST=10, LAST_LOCKED=11, LOCKED=12), and

constants used to set the value of thread(] [RFH] by specifying the reason a
thread is at location High. MAX_THREAD is the maximum possible number of
threads in the system, MAX_PRIORITY is the maximum number of priorities,
MAX PRELEVEL the maximum number of preemption levels per band, MAX_RES
the maximum number of resources in the system, and MAX_LOCK the maximum
number resources used by a thread.

The main global variable in the model is the thread[] [] array, which
contains all thread parameters, e. g. row thread [i] [] contains all parameters

140 .0

of thread 1 etc. Using the indexing constants we can access the different

parameters for a thread. For example, to get the relative preemption level for

thread 1 we access thread [1] [PRELEVEL]. Column thread[] [PERIOD]

contains the thread periods. A thread's relative deadline is stored in column
thread [] [RDEAD], while the absolute deadline is column thread [l [ADEAD]

and is set by the EDFScheduler. Column thread[] (WAITING] indicates

whether and why a thread is at the Wait location; thread[] (RFH] indicates the

reason a thread is at the High location; thread[] [PRIORITY] is the thread's

priority; thread H [BAND] is the low priority of the thread's band;

thread[] [PRELEVEL] is the thread's relative preemption level; thread[I [APL]
is the thread's absolute preemption level and is set by BaseScheduler during a
reschedule? Synchronization; thread [] LITER] is the number of times the thread

will execute; thread [] [COST] is a thread's execution cost;
thread [] [LAST_LOCKED] is the ceiling of the latest resource the thread has
locked (zero if none); thread H] [LOCKED] holds the number of resources,
simultaneously locked by the thread.

The third set of constants, specifying the possible values that column

thread[I [RFH] can take, is:

" AT_REL, the thread has been released,

" AT_BLOCK, the thread is executing prepareToSuspend? in order to suspend
itself,

" AT UNBLOCK, the thread is executing reschedule resume?,
" AT_BLOCKLOCK, the thread has to execute prepareToLockl again after
being unblocked,
" AT_LOCK, the thread is executing prepareToLock?,

" AT_RESLOCK, the thread is executing reschedule lock?,

" AT_RESUNLOCK, the thread is executing reschedule unlock?,
" AT END, the thread is executing prepareToSuspend? in order to end.

The bands [] array has as many cells as are priority levels and, if a priority
level falls within a band, the corresponding cell contains the low priority of the
band; otherwise it is zero.

The res [] H array contains the resources available in the model. The first

row res [0] [l contains the ceilings of the resources in the same format as
mutex. The format is xrxy, where =is the ceiling and yis the low priority of
the band (this clearly only works for bands with a low priority of 1 to 9 but its

141

enough for the purposes of our model). The second row res [1] [] contains

the lock for each resource, e. g. res [1] [3] =1 means that resource 3 is locked,

a value of 0 means it is unlocked.

Next is the two-dimensional array t_res[] []. This array contains the
indexes of the resources (as they are allocated in the res [] [l array) to be

locked by each thread. Each row of t_res [l [] contains the set of resources

used by a different thread. For example, if t_res [x] [o] =1 this means that

thread x will lock resource res [o] [1). Apart from specifying the resources,

though, it also provides a schedule for locking the resources. That is, thread x

will first lock t_res [x] [o], then it will lock t_res [x] [ll in a nested way, and

so on. However, the number of resources actually locked in each run is

random, e. g. on one run thread x might lock only the first resource, while on

another run it might perform a nested lock of the first two, and so on.
Therefore, we are not specifying one particular scenario through the use of
this array.

The last seven shared variables are used for communication between

automata, much like parameters in a procedure call. run thread holds the

thread that is currently running. It is set and unset by the Dispatcher and used
in transition guards by the Thread automatons to distinguish which one is

currently executing. cur_thread is used by Thread for synchronization with
the BaseScheduler and Dispatcher automata, to specify which thread

performed the last synchronization with the BaseScheduler or Dispatcher.

app_threadl and app_thread2 are used to emulate parameter passing when
the BaseScheduler synchronises with an application scheduler on one of its

channels e. g. isEligiblel. cur_queue is used by the BaseScheduler and
Dispatcher, for synchronization with the PriQueues, and contains the id of the

queue that must respond to a given synchronisation. cur band is used between

the BaseSeheduler and the application scheduler automata and contains the id

of the scheduler that must respond to a given synchronisation. mutex is used
between the Thread and BaseScheduler automata and contains the ceiling of
the resource to be locked or unlocked, in the form described for the res [] [l

array. .

Finally, there are a number of synchronization channels used between

automata to guide the execution flow. These are divided according to the

automaton which acts upon them. Unless stated otherwise, a channel is not a
broadcast channel. For the rest of this chapter we will refer to- a

142

synchronization channel by writing its name in italics followed by a` 1' or
depending on the way it appears in the automaton under question.

Dispatcher automaton: start? is equivalent to a thread's start () method;
schedule? is called by the BaseScheduler whenever there is reason to re-select
the running thread.

Thread automaton: high?, medium?, medium lock, lows and fýi? tell Thread to

go to the respective location, which signifies that the thread has acquired the

corresponding priority.

BaseScheduler automaton: reschedule? is the equivalent of the framework's

rel(r). sbsc operation, as defined in Section 4.3; prepareToLock? is the equivalent

of loc. pbsc; reschedule lock? is the equivalent of loc(r). sbsc;

prepareTo Unlock? is the equivalent of unL(r, r). pbse; reschedule unlock? is the

equivalent of unL(r, r). sbsc; depending on the situation, prepare ToSuspend Zis the

equivalent of either sus(r). pbsc or end(r). pbse; reschedule resume? is the

equivalent of sus(r). sbsc.

EDFScheduler automaton: With a released?, blocked?, suspended? or resumed?

synchronization the scheduler is informed that app thread? has been

respectively released, blocked, has suspended, or resumed after suspending,

and takes appropriate action. suspended? in particular is a broadcast channel that

at the same time instructs Thread to go to the Suspended location. irElisible? asks
the scheduler to decide if app_threadl is eligible to execute. The scheduler
sets app_threadl to the most eligible thread in the band and also sets

app_thread2 to the formerly executing thread in the band, if any. With

getMostEligible? the scheduler places its current most eligible thread in

app_threadl and also sets this thread as the thread executing at its medium.
lockedResource? and unlockedResoürcel inform the scheduler that one of its threads
has respectively locked or unlocked a resource, so that it can appropriately

adjust its internal queues.

5.2.4 Thread
Local declarations: cost is thread [] (COST]. period is thread [] (PERIOD].

rt is run_thread. et is cur thread. sus is thread[] [RFH]. w indicates

whether a waiting thread should go to High or Fp once notified. 1e counts the

143

number of times the thread has self-suspended. It is used to limit the number

of times a thread can suspend, in order to restrict the state space and, thus,

make the model more testable. id is the id number of the thread, which is also
the index of the thread in the thread[] [] array. runtime is the amount of
CPU time consumed. iterations is ' the number of releases the thread has
had. locked is thread [] [LOCKED]. It counts the number of resources

currently locked by the thread and is also used as an index for the t_res [] []

array that contains the indexes of the resources to be locked. So, for example,
when locked is 0, meaning that no resources have been locked, it points to the
first resource to be locked, t_res [id] [0] .

er'_Imd ra vdm. «ooa

stet I Ngh?

so al

J
pýspsrsTotockl

_-".
lock? mýrsslidllbckwl I

e--ld MA 10.1
add, b«.,
wus. AT_BLOCK

04d

mochadulejwkl

ft--ld and . uu AT_RESUNL

wýý
T-BL T OCK = 1-1

oabnnöm. -1
I

add. lc++.
ý?

an-AT_BLOCK
T_BLOC

Niswd? wa T UNBLOCK
C 'P?

wit cost-n"" I
ýý ° Mph?

nnlMnýrý d.. M
waX9

MWlum_Loe N., 4d
locke&and MAX LOCK end

d. -4d l-Cbll adJO
lt-Id and locks" clad,
""+ 4ýlblllocbd-11 mulez ten
d-w

dell
ro? d-ý

prepýnToLodcl high? !! /

so

aid

n. wý awe

A-Jd t
and aid

ladiedý
are
rs AT END

add rd 1x1
mrd nntm. i
add, lw+,
ws. AT_BIOcl(

1
co - zt
and sus-O

awe
medým9

ýus.. AT_UNBLOCM
ýfiadile_ýewmel

ls aý

dý wW (sus--Oil &
L a.. d FP

ameAT_L I
amdAT_BLOCKLpýýý aý
rid bcked. MAK. LOCK wnd
UesudI od. dIýo
a t md ow mgftwoost . ..

. na vas Cb Dodwdlýo

fSS h. dd and locke" and

mutsx. irosMll 1
Si aad

.......,. nyeýw swiwrmwrecoýresolwýlýýtný Ngh?
ww1T_REL E10 eta" WFNR k9«Fq

Non O-N +
KN-AT-END
amp-ded7

necah lv and
[blfRfRl

Figure 5.4: The Thread automaton

"+_tlwlnod d-v.
cWd

5ý

Description: The Thread automaton describes an implementation of both a
band and a non-band task. However, due to a need to restrict the state space,
we have limited this description in certain aspects. First, only band threads can
perform scheduling operations other than release and end Essentially, non-

144

band threads are modelled to only start, execute and finish. Secondly, the only
other operations modelled for band threads are lock, unlock and suspend.
These limitations have made our model testable, and yet they have not taken

away from the ability of the model to test the principle of different threads

executing different scheduling operations in various combinations, for reasons
that will be presented in the BaseScheduler automaton.

Modelling a non-band thread consists of two main locations, Released and
Kenning, which are self-explanatory. In the case of a band thread, there are
eight main locations, High, Medium, Medium Lock, Low, Fp, Suspended, Wait and
WF1VR. The first four correspond to the four priority levels of a scheduling
band. The Fp location is reached when a band thread locks a resource at a
fixed-priority level. Being at High, Medium, Medium Lock or Fp means that the

thread is either runnable or running. Being at Low means that the thread is

runnable but not running. Being at Suspended signifies that the. thread has

suspended itself and, thus, lies outside the priority queues, waiting to resume.
A thread is permitted to suspend both while it is holding resources and when
it is not. The Wait location is reached whenever a thread blocks due to the

system ceiling. There it waits to be notified that the resource it needed has
been released. The wait-for-next-release (WFNR) location is reached
whenever a thread finishes its current release. From there it can start a new
release, or terminate. The two locations completing the set of primary thread
locations are SO and End. SO is the initial location, where the thread has not

started yet, while End is the final location in a thread's execution path, where
the thread has terminated.

All primary locations, except End, Low and Wait, arc urgent, which means
that when a thread automaton is in one of them it has to take a valid outgoing
transition without delay. This is to guarantee that the system will eventually
progress. There are also a number of secondary locations, when moving
between primary locations, which are transitory. Their importance lies with the
transitions between them rather than with the locations themselves. All

secondary locations are committed.

Generally speaking, transitions that start from one of the High, Medium,
Medium Lock and Fp locations are meant to be taken when the thread is

running. These transitions might be the first in a path that starts from one of
these locations and ends at another one of them, e. g. the path
Fp --p 55 -> 56 -* High . As a rule, the first transition in such a path contains

145

the guard rt==id, which guarantees that only the automaton representing the

running thread will take the transition. Similarly, transitions that receive

synchronisations from other automatons (e. g. Wait --> . gb) will, in most

cases, have the guard ct==1d, to guarantee that the correct thread receives the

synchronisation. The automaton'can be seen in Figure 5.4.

First, the available transition choices of the Thread automaton will be

presented for each of its main locations. Then we will describe how a thread

can initiate each of the three main scheduling operations supported, namely
lock, unlock and suspend

The first transition SO 4S1 takes place when the thread is started. At S1

we determine the type of thread. If it is a non-band thread (band=-1), it

receives an fp? synchronization and is taken to Released and rotates between
Released and Running until it has had a specified number of releases, at which
point it goes to End. If it is a band. thread it is taken to High. From there the
thread calls for a system reschedule, by taking one of a number of cyclic
transitions High -* High. From High it is taken to either Medium or Low,

depending on whether the thread is the most eligible to run or not. From Low

the only possible transition is Low -+ Medium , which occurs when the thread
is selected as the most eligible to run.

While at Medium, six transitions are possible: i) the thread could get
preempted by a higher thread in the band and moved to Low
(Medium -> Low), ii) it can execute normally, taking transition
Medium -* Medium, during which the runtime local variable is incremented
by 1, iii) it can try to lock a resource following the
Medium --ý S5 -> S6 --> High path, iv) it can unlock a resource taking the
Medium -* S7 --ý S8 --ý S9 -* High path, v) it can suspend itself
(Medium -> S2 --4 S3 --* High -* Suspended), regardless of whether it is

currently locking resources, and finally, vi) it can terminate via
Medium -->S2--4S3--4Migh-->WFNR-*End.

When at Medium Lock, a thread can do one of four things: i) execute,
represented by the Medium

-
Lock -* Medium

_
Lock transition, during which

its runtime is again incremented, ii) the thread can perform a nested locking

call, represented by transition Medium_ Lock -* 55 --* S6 --> High, iii) the

thread can unlock the latest locked resource, following the

146

Medium
-Lock --* S7 -* S8 -* S9 -> Hi-bb path, or iv) it can suspend itself

through Medium
-

Lock - S2 --> S3 --> High -4 Suspended.

Being at location Fp the thread has the following four choices: i) it can

execute (Fp -4 Fp), ii) it can perform a nested lock via Fp -* S5 --3 S6, iii) it

can unlock a resource (Fp -+ S7 -> S8 --' S9), or iv) it can choose to suspend
itself (Fp --* S2 --4 S3 -* Suspended).

In order to lock a resource, a thread must not have reached the limit on

simultaneously held resources (MAX_LOCK). If this criterion is satisfied
(Medium --* S5, Medium

_
Lock -> S5, Fp --* S5), then the thread

synchronises on prepareToLock! (S5 --+ S6), while at the same time setting the

type of the scheduling operation (sus=AT_LOCK). From S6 the thread is moved

to either High or Fp, depending on whether the resource belongs to a band or
to a non-band priority level. If the thread is blocked due to the system ceiling,
it is moved to the Wait location (High -* Wait, Fp --* Wait). There it waits

until the system ceiling is lowered, at which point it is notified and moves back

to High or Fp. Once at High or Fp, the thread synchronises on reschedule lockl

with a high -4 High or Fp -ý Fp transition, respectively. Again, this is due to

the sus variable being set to AT_RESLOCK by the BaseScheduler in the

prepareToLock? synchronisation. If the thread is at High, it can next be moved

to either Medium or Medtum_ Lock, depending on whether locking takes

place in the thread's own band or in a higher band. If it is at Fp it remains

there.

In order to unlock a resource, a thread takes one of the transitions
Medium -"* 57, Medium

-
Lock -* S7, or Fp -p S7, depending on its current

priority. In S7 -ý S8 the thread sets the thread [id] [LAST LOCKED] variable
to the resource, if any, it was holding when it locked the resource it is now

unlocking. Then, the thread synchronises on prepareToUnlock! (S8 -ý S9),

which sets sus=AT RESUNLOCK and takes the thread to either High or Fp,

depending on whether was locking within a band or at a non-band level. At

High and Fp the thread synchronises on reschedule unlock t, through the
High --->Hlgh and Fp ->S9 transitions, respectively. It is then moved to

either Medium, Medium Lock, Fp or Low, depending on the circumstances.

To suspend itself a thread takes one of the three transitions
Medium --4 S2, Medium

_Lock -* S2, or Fp -4 S2, depending on its current

147

priority. The limit on the number of times a thread-can self-suspend is set to 1
(ie<i). The thread then synchronises on prepareToSurpend! (S2 --+ S3) and is

moved to either Suspended, or High and then to Suspended, depending on

whether it is executing outside or within a band. When at Suspended, a thread

can spend a variable amount of time there taking the Suspended -ý Suspended

transaction. Once the thread is ready to resume, it synchronises on start!
(Suspended --> S4), setting sus=AT_UNBLOCK. It is then moved to High or Fp, '.,
depending on its priority, and synchronises on reschedule resume! through
High -4 High and Fp -> Fp transitions, respectively. From High it can be

then moved to Medium, Medium Lock, or Low, depending on the circumstances.
If at Fp, it remains there.

While at WFNR the thread can increase its runtime through
WFNR -4 IVFNR. If runtime equals or exceeds the thread's period parameter
and if the number of performed thread iterations is less than the number of
maximum thread invocations (iterations<thread[id] [ITER]), the thread is

released again. Otherwise, if the number of maximum invocations has been

reached, the thread is moved to End. When all threads reach End, the system
has finished its execution. The end variable takes its maximum value and the
transition End -4 End is possible. This is done so that testing the model for

the (A [] not deadlock) property will return true.

5.2.5 BaseScheduler
Local variables: The PL [] array contains pre-calculated values of the

absolute preemption level for each priority level in the system. This is

calculated according to Equation 4.1 for ; r=1. For example, for priority level
1--5, given that the number of preemption levels per band is 1=100, cell PL [51
equals 101. The system_ceiling[] [] array keeps a stack of the system
ceilings, past and present. Row 0 (system-ceiling[o] []) holds the actual
system ceilings, row 1 (system-ceiling [1] [1) holds the thread ids that have
locked the resource that set the corresponding ceiling, while row 2
(system_ceiling[2] []) holds the ids of the locked resources.
systefn_ceiling [0] [ol holds the current system ceiling. The wait-queue [l []
array holds all blocked threads that are waiting for a resource to be freed.
There is one queue for each resource in the system. When a particular
resource is unlocked all threads waiting on that resource are notified.

148

All other variables hold temporary values to assist in setting up transition

guards etc. i and j are counters; ceil and rs hold resource ceilings.

next-band holds the calculated value of the next band the thread is going to.

tmp_thread holds thread ids. BPreCP is a "mock" boolean variable that is

always true. It is meant to demonstrate what path prepareToLock? and

reschedule unlock? would be taking if the resource being locked or unlocked

was not governed by the BPreCP protocol.

prepareToLock?

reschedule_lock? reschedule?

0

prepareToUnlock? prepareToSuspend?

reschedule-unlock? reschedulejesume?

Figure 5.5: BaseScheduler abstract automaton

Description: The BaseScheduler automaton waits at the initial location SO

for a Thread to synchronize on one of seven channels. This can be seen in

Figure 5.5, which is an abstract depiction of the automaton. Following, the

actions taken by the BaseScheduler for each of its synchronization channels

will be presented, accompanied by the relevant portion of the BaseScheduler

automaton. We will call each such portion of the BaseScheduler a
"synchronisation". So, when a Thread automaton synchronises on e. g.

prepareToLock' it triggers a prepareToLock? "synchronisation" that starts

with the given channel from location SO and traverses a path in the

BaseScheduler that ends with SO.. All locations in the automaton are specified

as committed so as to guarantee that the execution of the scheduler will not be

interrupted. The transition path in each such diagram begins and ends at the
initial location S0.

A Thread automaton will synchronise on reschedule? (Figure 5.6)

immediately after it has started. The base scheduler first calculates the absolute
preemption level of the thread, based on the PL [] array (S49 --ý S50), and
then informs the application scheduler of the release (S50 -* S51). Following,

the application scheduler is asked if the thread is eligible to execute in the band

(S51--- S53).

If the released thread is eligible to execute, the application scheduler will

return the thread's id in app_threadl (app thread1 cur thread). If no

other thread was previously executing in the band, the thread is put at medium

priority (S53 -> S60 -4 ... -> S63). If it is eligible, but there exists another

149

thread that was previously running at medium, the application scheduler will

return the preempted thread's id in app_thread2 (app_thread2 i =o). The base

scheduler will first put app_thread2 at low (S53 --* S55 --4 ... -4 S60) and then

put the released thread at medium (S60 -ý ... --.
S63). Finally, if the released

thread is not eligible to execute (app_threadl ! =cur thread), it is put at low'

(S53 -- S54 --> S62 -> S63). In this case, the thread currently executing in the'
band is more eligible and will continue to execute. The base scheduler finally-

calls the dispatcher to schedule the system (S63 --> S64 -> SO).

When a thread is running, it can synchronize on prepareToLock? This

synchronization can be seen in Figure 5.7. After calculating the locking band

(next-band in transition 51--* S2), the base scheduler checks to see if this is

the thread's first attempt to lock the resource (AT_LOCK), or if it is retrying after
being blocked (AT_BLOCKLOCK). In the first case (S2 -4 S3), the thread is

moved to the appropriate priority level, i. e. if locking within a band

(next_band>=thread [cur_thread] [BAND]) it is placed on the locking band's

high queue (S3 -> S5), otherwise (next band==0) it is placed at the

appropriate non-band priority level (S3 -ý S4 -> S5). In the latter case, the

thread will already be at the appropriate priority level, so no change in its

priority takes place. Next, the preemption level test takes place, if the resource
is governed by BPreCP (BPreCP==true). This is a mock guard, as this is always

true in the model. If it was the case that BPreCP==false, the base scheduler

would proceed with informing the application scheduler of the locking and it

would be up to it to apply a resource sharing protocol (S5 --' S32). However,
in the model the preemption level test is always taken. If the thread passes the

test (S5 -> S29), we make sure its absolute preemption level is less or equal to

the resource ceiling (S29 -> S30). We then update the system ceiling stack,

saving, along with the system ceiling, also the thread id and the resource id

(S30 -p S31--4 S32). Before the end of the synchronisation the base scheduler
checks the thread's current band. If the thread is locking within a band
((cur_band=bands [thread [cur_thread] [PRIORITY]]) >0), the base scheduler
notifies the locking band's application scheduler of the locking
(S32 --ý S33 --> S34). If locking happened at a non-band priority
(cur band==o), then no notification is necessary. This is somewhat different
from the actual framework protocol, which specifies that the thread's

application scheduler must always be notified of the locking, whether this
takes place within its own band, at a non-band priority, or within a higher
band. However, Section 4.5.5 has made the point that the only reason for such
notification is to cover the case where knowledge of the operation affects the

150

IkL

task's eligibility, according to some policy. In our model we are only using an
EDF scheduler whose policy is not affected by a thread's locking history.
Therefore, in order to keep the model complexity low, we do not inform a
thread's own scheduler, when locking occurs outside its own band. Finally, the
base scheduler indicates, by setting thread [cur

_thread]
[RFH] -AT RESLOCK,

that the next action taken by the thread (once it
,
locks the actual resource)

should be to call reschedule 1ock? (S34 -* SO).

If the thread failed the preemptiQn level test (S5 -- S6), its application
scheduler is informed that it has blocked through the blocke! channel
(S6 -+... -* S9). As parameters to this synchronisation the base scheduler
passes the blocked thread (app_threadl=cur_thread) and whether the
thread's band is the locking band (app thread2==0) or not (app thread2""-
i). Then the thread is instructed to wait! and is added to the wait_queue [] [l
for the resource it blocks on. The threads application scheduler is further
informed that the thread has suspended (Sll -- S12 -> S13), meaning that it
has relinquished the CPU, and is asked for its next most eligible thread
(S13 --ý S14 --ý S15). If no thread is returned, the system is scheduled
(S15 -4 S27 -* S28). If there is such thread, it is removed from low and
placed on medium (S15 -* ... --> S21). If, additionally, the application
scheduler also returns a thread in app_thread2, then this thread has been

preempted by app_threadl and must be put at low (521-->
... -* S27). If

app_thread2 is zero, meaning that no thread has been preempted, the base

scheduler immediately asks the dispatcher to schedule the system
(521-4 S27 -* S28). Finally, the base scheduler indicates, by setting
thread [cur_thread] [RFH] =AT_BLOCKLOCK, that the next action of the thread

should be to again synchronise on prepareToLoek? (i. e. once it has been

notified that the resource has been unlocked).

After locking takes place, a thread synchronises on reschedule_ lock?
(Figure 5.8). The thread is placed at the appropriate priority level, depending

on where it is executing. If the locking band is not its own band, the thread is

taken to its medium lock priority (S36 --* S46 -> S47). If the thread is at a
non-band level, its priority remains unaltered (S36 -> S46 -- S47). If the
thread is locking in its own band, an eligibility check is asked for
(S36 -* ... --> S39), exactly as described for reschedule? If the thread is

eligible, it will either preempt another band thread (S39 -* S40) or not
(S39 --> S44). Either case, it is moved to medium (S44 -* S46 --> S47). If the
thread is not eligible, it is moved to low (S39 -4 S45 - S46 -> S47). At the

151

end of the synchronization the dispatcher is called once more to . schedule! the

system (S47 --> S48 --4 SO).

Before unlocking a resource, a thread synchronizes on prepareTo Unlock?

(Figure 5.9), which is charged with putting the thread on the right priority

queue. If the thread is executing within a band

(cur_band=bands[thread[cur_thread][PRIORITY]],

cur_band>=thread [cur_thread] [BAND]), it is put at the band's high priority
(S66 -> S67). Otherwise, it remains at the fixed priority it currently has

(S66 -4 S67). Finally, the thread is instructed to synchronise on

reschedule u lock? next (thread [cur_thread] [RFH] =AT_RESUNLOCK).

After actually unlocking a resource, a thread will synchronise on

reschedule unlock? (Figure 5.10). If the thread is executing within its own
band, it will continue to run in it and next band is set to next band=cur band

in 5105 -* 5106. If the thread is executing within a band, that band is notified
of the unlock operation (5106 --> 5107 --* 108). Again, as explained in

reschedule_ lock? the thread's own band is not necessarily notified. Next, the

calculation of the band the thread will next go to is concluded. If the thread is

currently executing outside its own band and it has additional locked

resources, then the next band is calculated from the ceiling of its next locked

resource ((next_band==0 and thread (cur_thread] [LAST LOCKED] >0) in

5108 -> S109). If the thread is currently executing outside its own band but
has no additional locked resources, then the next band will be its own band
((next-band==o and thread(cur_thread][LAST_LOCKEDI==O) in

5108 -* S109). The next transition is again guarded by the BPrecP flag. In the
hypothetical case that the unlocked resource is not governed by BPreCP
(BPreCP==false), the base scheduler leaves the system ceiling as is and
proceeds with transition S9 --> 5115. However, this again is never the case
and the base scheduler proceeds to find the unlocked resource's ceiling among
the system ceiling values in the system-Ceiling[][] array
(5109 -> S110 -. 5111). Then, all threads blocked on the unlocked resource
are notified and placed on the queue for their respective priority
(Sill -+ 5112 -+ 5113 --* Slll). Immediately after that, the system ceiling
value corresponding to the unlocked resource ceiling is removed from the

system-Ceiling [] [] array (Sill -+ 5114 -* 5115). This value can be at any
position in the array. After that, the thread is moved to the appropriate priority
level to execute after the unlocking. If the thread is going to execute within a
band other than its own, it is moved to that band's medium lock priority

152

(5115 -ý S125 --4 5126 --> 5127). If it is going to execute at a non-band level,

that level is calculated using the resource ceiling and the PL [] array, and the

thread is moved to it (5115 -* 5124 -* S126 -* 5127). If the thread is going to

execute within its own band, the base scheduler asks the thread's application

scheduler to perform an eligibility check (5115 -ý S116 -4 S117). Then the

paths are the same as in reschedule? and reschedule lock?. If the thread is the

most eligible and if it preempts another thread, the path is

(S117->... -- S122->S126->S127)- If the thread is the most eligible

without preempting another thread, the path is

(S117->S122-4 S126-4S127). If the thread is not eligible, the path is
(S117->S123-->S126-->S127). Finally, the dispatcher is again called to

schedule the system (S127->S128->SO). The final transition in the

synchronisation (5128 -->SO) sets the entry in the t
-res

f] [] array

corresponding to the unlocked resource to zero, so that it will not be locked

by the thread again. This is again a way of minimising the size of the model

state set.

The final two scheduling operations included in the model, suspend and

end, are modelled using the same synchronisation, namely prepareToSuspend?
(Figure 5.11). As it has already been pointed out in the previous chapter, the

end operation is a special case of the more general suspend operation, their
differences being that end has no Ase and can be executed only if a thread
holds no resources. In the model, end is the only operation that is also

executed by non-band threads. prepareToSuspend? is the same for both

operations (in essence modelling their pbsý, the semantic difference between

the two operations being evident only in the Thread automaton. If the

suspending thread is a simple fixed-priority thread (cur
-

band-. 0 or

cur band==-1), then the base scheduler just calls for a system schedule
(SO -* S68 -ý S69 --* S70 -* S103 -* 5104 -> SO). If the thread belongs to a
band, the base scheduler initially informs the thread's scheduler that its thread
has been suspended (S70 -> S71--3 S72). Then the scheduler is asked to

provide its next most eligible thread (S72 --> S73 -> S74). If no thread is

returned (app_threadl==o) then the path is S74 -+ 587. If a thread is

returned (app
_thread1

! =o), but with no preemption taking place
(app_thread2==0), then it is simply removed from low and put to medium
(S74 -p ... -*

S80 -> S86 -) 587). If app_threadl preempted app thread2
(app_thread2 ! =o), then the preempted thread is put to low

(S80 -->... --* S86). If the suspending thread is performing a general suspend

operation (not an end) and is executing within another band, that band is also

153

informed of the suspension and asked for -its most eligible thread
(S87 S91). Again, there could be no returned thread (591-3 5103),

or there could be a returned thread with no preemption'
(591-ý

... -s S97 -* 5103), or with preemption (591--ý ... -*
5103). Finally,

the base scheduler calls for a system schedule (5103 -* S104 --4 SO).

The final part of the BaseScheduler automaton is the reschedule resume?

synchronisation (Figure 5.12). A thread synchronises on this channel when it is

ready to resume execution after having suspended itself. Depending on what
its priority is at the time it wakes up
(cur_band=bands [thread [cur_thread] [PRIORITY)]), the base scheduler
moves the thread at the appropriate level. If the thread is executing within a
band higher than its own, it is placed on that band's medium lock priority,
since in order to execute outside its band it must be locking a resource. Then

the locking band's scheduler is notified of the resumption
(5130 -+ 5141-> S142 --> 5143 -4 5145 -' 5146). If the thread's priority is a
non-band priority, it is placed on the queue for that priority
(5130 -+ 5144 -* S145 -> 5146). Finally, if the thread is executing within its

own band, the base scheduler asks the band's application scheduler to perform
an eligibility test (5130 -* 5131--> 5132). If the thread is eligible, it will either
preempt another band thread (5132 -* ... --4 5138) or not (5132 -4 5138).
Either case, it is moved to medium (5138 -+ 5139 -> S145 --> S146). If the
thread is not eligible, it is moved to low (5132 -4 S140 -3 5145 --4 5146). At

the end of the synchronization the dispatcher is called once more to schedule!
the system (5146 -+ 5147 -> SO).

154

Figure 5.6: The reschedule? synchronization

155

ý.
E

156

Figure 5.7: The prepareToLock? synchronization

Q
CL

Cl. C-
E

Co m r -'ý
OV

ý`

Figure 5.8: The reschedule. _lock? synchroniza(ion

cur_band=bands[thread[cur_thread][PRIORITY]]
^

preparoToUn! ock?

cur_band>=thread[cur_thread][BAND]
high!
thread[curthread][PRIORITY]=cur_band+3

S67cur. band=0,
thread[cur_thread](RFH]=AT RESUNLOCK

cur- band=0
fp!

Figure 5.9: The prepare Tot into ek? Synch ronization

157

4

m

O

E ýI
.. H

ý.
I

E8
EE
mg
!. T

Figure 5.10: The reschedule unlock? synchronization

158

Figure 5.11: The prcpareToSuspend? s uchruniz. uüin

`i')

Figure 5.12: The reschedule resume? synchronization

160

5.2.6 Dispatcher
Local variables: pq is used as a "pointer" to go through the lýriýýrity yucuý s.

cft is a flag that indicates whether the schýýduJeý synchronisation ha, hccn

initiated by the base scheduler or as part of the strlr/ ýsynchrýýnisatiun.

bands(thread[cur thread](PRIORITY]]==0
fpi

cur queue=thread[cur thread][PRIORITY]

bands[th read[cur_thread][PRI OR ITY]]>O
high

add!
S2

cur queue=thread[cur_thread][PRIORITY]
Sý

start?

thread[cur thread][PRIORITY]<=thread[run thread][PRIORITY]
cur queue=O

thread[curthread][PRIORITY]>thread[run_thread][PRIORITY]

run thread>0 S41
run thread==O

cn==O
return d!

ct1=1
V SC

ielum pq"t
Si,

firm,

cfl=0.
U

cur
""queue=0 qp, 0

rut
0

Ihiendý0 t
schedule9 em IY

run thieed =0.
lii

qp=MAX PHIOHIIY. cw grmue=yp

cur queue=qp S8ý, ý
S9 ti10

nolvrnulY? lid' J

fun thread-0, cft. t,
S7 qP-MAX PRIORITY, S5

add Ind' S6
return pq?

r cur queue-qp
-erN

Figure 5.13: The Dispatcher automaton

Description: The Dispatcher is, together with PriQueue, re present the Imx

level part of the base scheduler. The automaton (FIgure 5.13) contains ()nlv

two synchronization channels start ? and scc%w t'/ruh,: '. . star/? is synchruniscd

upon by a Thread automaton and deals with a thread's release. It takes the

released thread and puts it on the priority queue fair its

(SO -ý ... -
S3). Then, if there is nog thread running, the synclhninisati(in

immediately returns (S3 -- >SO). If there is a thread already rennin},, in the

system and its priority is higher than the priority of the released tlire, td, the

synchronisation simply returns (S3 - SO). If there is a thread already rennah,

and its priority is lower, then the dispatcher puts the running; t111-Cad at ilie
head of the queue for its priority and schedules the sy'ste m, as il" ;t 5(/1C(h//r: '

synchronisation had been received (S3 ->" ... --> SS).

When the base scheduler svnchroniscs on the cli, lritchcr tries too
find a non-empty priority queue, starting from the highest pi-tw-ity in the

system (S8 -* S8). If it finds one, it asks for the thread at the hc; id (d tlic

queue and removes it from the queue (S8 --> ... >S12). It all (lueucs are

empty then the running thread is set to zero and it returns (S8 -) S12). 'hic

synchronisation returns in one of twos ways, depending on whether it was tlic
base scheduler that initiated the scho(bilo? svnchn)nisatioti ((, t t o), (w ;i

thread via the start? synchronisation (c ft==i).

161

5.2.7 PriQueue

Local variables: list [] is the actual FI1ý0-ordered queue. len holds the

current length of the queue, i. e. how many threads it currently holds. i is a

counter.

cq==Ievel cq==Ievel i>0

add? hd? list[i]: =Iist[i-1
list[len]: =ct,
len++

rt: =Iist[0]

cq==Ievel St len>=1

cq==level,
a

notempy! Ien==O
Iist[0]: =rt

cq==level
Ien==O

so len++ 0
list[0]: =rt i empy! return g

52

S6 returnp

cq==Ievel
c_

___return
DQI C

q! S5
list[i]! =ct, i==Ien

len>=1 len==i i>=Ien i: =0,
rem? Iist[i]: =0, cq==Ievel, i: =0 len--
len--, i: =0 len>=1
i0 rem id? S

list[i]==ct

C Shiftdown ! -ý -C
lis([1 _0 C S4

i< len list[i]! =ct, i<len
list[i]: =1ist[i+1], i<len list[i]: =Iist[i+1],

Figure 5.14: The PriOueue automaton

I)escription: {? ach PriQueue represents a separate base scheduler priority
level. It maintains a FIFO queue, which both the BaseScheduler and the

Dispatcher manipulate. The defined queue operations arc to add a thread at the

head (wN W or the tail @1(1(11) of the queue, to remove a thread from the

head (renn. } or from wherever it is in the queue (reni_ id?), to get the head of

the queue (W.), and finally to ask if the queue is empty! or notempty! The

automaton can be seen in Figure 5.14.

5.2.8 EDFScheduler
The Ii)1'Schedulcr automaton is not part of the core framework. As we

have already mentioned, it is a pluggable component of the model, which can
he replaced by any other automaton implementing an application-defined

scheduler, as long as that automaton conforms to the same interface, i. e.
defines the same svnchr<ýnisations: released?, blocked?, suspended?, resumed",
i.. l ; liýibleý, het ý1o. rtl ible?, lockedResource? and unlockedResource?.

Local variables: The main scheduler data structures arc the three described

in Section 5.1. The app_queue[I [I array is the scheduler's internal l' DF

queue. It is a simple l'DF-ordered queue that keeps those band threads that

162

Ö

O

b

Wý

1

Yý

I

Pý

ä.

ýi

6.1

Figure 5.15: The EDFScheduler aulum: Uun

are located within the band, are runnable but not running. The

thread_lock [] [] array is a list of those band threads that are holding band

resources. The badead [] [] array is a LIFO list for keeping track of eligibility
inheritance when lower threads lock in the band. badead [] [o] holds the id of
the band thread with the shortest absolute deadline amongst all band threads

that have blocked on a particular band resource held by a thread outside the
band. badead [i] [11 is 0 if the ith cell does not represent a locked resource,

and 1 if it does. For example, if badead [0] [1] =1 and badead [1] [1] =1, then

the thread running at medium lock has locked two resources in this band.

Three important variables are band, me and mock. band is the id of the

particular EDFScheduler automaton instance. Variable me holds the thread

currently placed at medium, which is the band's currently most eligible thread.

mock holds the id of the thread, if any, at medium lock priority. Finally, i, j

and tmp_thread are helper variables.

Description: The EDFScheduler automaton (Figure 5.15) is the only one in

the model that is pluggable. That is, we can substitute it with a different

scheduler automaton. We can also have many instances of scheduler automata,
each one managing a different scheduling band.

As with the Thread automaton, each edge of the automaton containing a
synchronisation channel is guarded by the check (cur_band==band) to ensure
that the synchronisation is dealt with by only the intended application
scheduler. As has been explained in the BaseScheduler automaton, when a
thread is released, its scheduler is notified via the released? channel
(SO -ý SO). This causes the scheduler to calculate the thread's absolute
deadline. When the base scheduler wants to know if a thread r is eligible to
run, it places the thread id in app_threadl and synchronises on isEhgible?.
The application scheduler returns the id of its most eligible thread in

app_threadl, and the id of any preempted thread at app_thread2. To do this,
the EDF scheduler checks the following cases:

" If r is the one the scheduler has marked as its most eligible
(app_threadl==me) then the synchronisation simply returns
(SO-4S1--ßS6--SO).

" If there was no thread previously running at medium (me==O) and either
there is no outside thread locking in the band (mlock==o), or there is but
the shortest absolute deadline among those band threads that have

164

blocked on the locked resource is greater than the deadline of r, then me is

set to the id of rand the synchronisation returns (SO --* 51--* S6 --* SO).

" If there was no thread previously running at medium (me=an) and the

shortest absolute deadline among those band threads that have blocked

on the locked resource is shorter than the deadline of r, then tis added to

the app_queue [l and the synchronisation returns
(SO-ýS1-*S4-*S5--*S6-*S0).

" If there is a thread already at medium and its absolute deadline is

shorter than the absolute deadline of z, then r is again added to

app-queue [I (SO --* S1-* S3 ->... -* S6 --* SO).

" If there is a thread already at medium and its absolute deadline is

greater than the absolute deadline of r, then me is set to rand the previous

me is added to app_queue [] (SO -4 S1 --* ... -* S6 -* SO).

The scheduler can be asked for its most eligible thread through

getMostEligible?, which it returns in the app_threadl variable. If me--o and if

the app_queue [] is empty, the scheduler sets app_threadl-o
(SO -- S7 --* 511- SO). If me 1=0, then the scheduler sets app threadl-me

and me=o, and inserts the thread into the app-queue [l, using the same
transitions as the isEligible? synchronisation (57 -+ S3 ->... --ý S7). To do

this, it sets the flag efgme=l in order to return back to the getMostE1 gible?

synchronisation (S6 -+ S7). Re-inserting the thread in the queue guarantees

that the thread which was previously set as the most eligible in the band is still
the most eligible. A third case is when me==0 and the app_queue [] is not
empty (S7 -> S8). This can be reached in one of two ways: either it is the
initial case, or it has been reached after me was placed back in the

app_queue (I. If initially it was me i =0 and now that thread is not at the front of
the app-queue(] (cfgme==1 in S8-->S9), the scheduler knows that the
former me thread will need to be preempted by another thread, so it sets

app_thread2=app_threadl (app_threadl now holds the previous me thread)
to indicate its preemption. If efgme==o or if the me thread is at the front of the

queue (. e. it is still the most eligible), the synchronisation simply proceeds to'
S9. The scheduler proceeds to set app_threadl to the first thread on the

app-queue [] (S9 --> S10) and moves all threads one place up in the queue
(S10 -+ S10). Finally, it returns, setting cfgme=o.

The EDF scheduler can be notified of a suspending thread through the
suspended? synchronisation, both if the thread is a band thread and if it is an
outside thread locking within the band. If the thread is a band thread and was

165

the me thread, the scheduler just resets me to zero
(SO -> S19 --3 S20 --> S21--* SO). If it was an outside thread, it sets mlock to

zero (SO --- S19 --> S21- SO). When a thread wakes up from suspension, the
base scheduler synchronises on resumed? to notify the EDF scheduler that the
thread is ready to execute again. If the resuming thread does not belong to the

scheduler's band, the scheduler will know that it is a thread locking at
medium lock and therefore, will set mlock to the thread's id
(mlock==app_threadl in S22 -> S23). If the thread is of the scheduler's band,

the scheduler does nothing. This second case never occurs but is included for

completeness.

The base scheduler can inform the EDF scheduler of a thread locking a
resource within its band by synchronising on its lockedResource? channel. As

usual, app_threadl holds the id of the thread performing the operation. If the
locking thread belongs to the scheduler's band, it is added to the top of the
thread_lock [] [] list, together with the absolute deadline it has at the time of
locking, and the synchronisation ends (SO -+ S31--> S32 -> S34 -* SO). If the
locking thread is not a band thread, the scheduler saves the thread's id in

mlock and pushes the badead I[] stack down, to create space for the newly
locked resource (S33). badead [01 [o] holds the id of the band thread with the
shortest absolute deadline that has blocked on the band resource most recently
locked by the thread locking at medlum_ lode The initial value of this thread
id is the same as the one for the previous resource, if any. That is, initially
badead [0] [0] ==badead [1] [o]. Before returning, the scheduler sets badead
[ol[1] =1 to indicate that the mediums lock thread has locked a resource.

When a thread unlocks a resource, the base scheduler synchronises on
unlockedResource7. If the thread is a band thread (S24 -* S25), the EDF

scheduler searches through the thread_lock[I [] array to find the first entry
for the particular thread (526). It then undoes eligibility inheritance by setting
the unlocking thread's absolute deadline to the value it had at the time of
locking the resource (thread [app_threadl] [ADEAD] =thread -

lock[i] [11 in
S26 --> S27), and proceeds to remove the entry (S27 -> S30). If the thread is

not of this band (S24 --* S28), the scheduler checks to see if the resource it is

unlocking is the last one it holds within the band. If it is (badead [1] [1] ==O),
then the scheduler sets mlock, badead[o] [0] and badead [0] [i] to zero and
returns (S28 -> S30 --> SO). If badead [1] [1] ! =o (the thread holds other
resources as well), the scheduler removes the top of the badead [i[1 stack and
returns (S28 -> S29 -> S30 -4 SO).

.

166 0

Finally, the EDF scheduler can be informed that one of its threads has

blocked when trying to lock a resource through the blocked? synchronisation

channel. If the thread blocked outside the band, the synchronisation simply
returns (SO -* S12 -4 S18 ---> SO). If the thread blocked inside the band
(S12 -* S13), the scheduler checks the thread_lock [] [] array. If

thread lock [0] [o] ==0, then a medium lock thread must have set the system

ceiling. If the current inherited absolute deadline of the medium lock thread
is zero or greater than the absolute deadline of the blocked thread, then
badead [0][0] is set to hold the id of the blocked thread
(badead [0] [0] =app_threadl in S13 -* S18). If the current inherited absolute
deadline of the medium lock thread is less than the absolute deadline of the
blocked thread, the synchronisation returns (S13 -4 S18 -4 SO). If

thread lock [0l [0] i =0, then it is a band thread that has set the system ceiling
(S13 -* S14). If the locking thread's absolute deadline is shorter than the
blocking thread's deadline, the synchronisation returns (S14 -* S18 -ý SO). If

the locking thread's deadline is greater, then it acquires the deadline of the
blocking thread (S14 -4 S15). Then, if the locking thread is the first in the

app_queue [], the synchronisation returns (S15 --4 S18 -> SO). If not, then the
scheduler rearranges the app-queue [I according to the locking thread's new
deadline (S15 -+ ... -*

S18 --> SO).

5.2.9 Formal analysis of the model
In this section we specify certain properties both to evaluate the

correctness of our model and to explore its behaviour. To test these properties
we have defined a system with 10 priority levels (i. e. 10 PriQueue automata)
and two EDF bands with IowEDF1 =1 and lowEDF2 =6 (Figure 5.16).

10

9

ä
7
6

5
4
3
2
1

FP queue
hIi'1iFAF2

I rmromm_jt't Af,)FT 1
TE WFDF2

17' queue

ltf /'I2)FI

mComtumEDF1

medium lockEAFJ

Figure 5.16: The test system

167

It follows that priority levels 5 and 10 are left under direct base scheduler

control. To test the system, seven threads are specified, only three of which

are used at any one time (3 Thread automata), in order to keep the system

analysable. Threads zl, z3 and r7 belong to band B1, threads z2 and z5 belong to

band B& while threads r4 and r6 are' non-band threads with priorities 5 and 10

respectively. ' Based on this we have specified a number of scenarios to test '

against, which can be seen in Table 5.1.

Table 5.1: Number of threads per band

Test case Bi Priori 5 B Priori 10
A T3 TV TZ 0

B T3 T4 0 T6

C 73 0 T2 6

D T1i T3 Tq 0 0

E 0 TQ TZ T5 0
F I'll T3 0 T2 0

H T1, T3, T7 0 0 0

I Ti 0 Tay T5 0

We also specify 6 resources. Resource usage is shown in Table 5.2 below.

The aim is to cover as many different situations as possible by making

combinations of tasks, bands and resources used. At the same time queries

need to be kept small enough to be able to run them. This is why only a subset

of the resources is used in each test case. For example, in case A thread t is

using 3 resources because this test case runs only two band threads. Test case
H runs three band threads, which means more computations, and hence

thread T3 uses only two resources.

Table 5.2: Resource usage per test case

T t
Band 1 Priority 5 Band 6 Priority 10

es case
rl r6 r2 r3 r4 r5

A T3 73 TZ 73 TZ

B T3 T3 T3

C T3 TT T3 -73

D T1, T3 T1, T3

E T2 TZ T5

F T17 TZ 73 TI

H 7*17 T3 T3,77

I TZ 73 TZ, 737 T5

168

Model Consistency First we specify three properties to check the

correctness of our model.

Property 1: Throughout its execution a thread will only be placed on either its own
band's low, medium or high queue, or on a higher band's medium loch or high

queue, or on a normal priority queue above its band.
We specify a safety property for each thread. For thread r3 in test case A

the property is written:

A[] (thread[3] [PRIORITY] 1=2 && thread[3] [PRIORITY] 1-6 &&
thread [3] [PRIORITY] 1=8 && thread[3] [PRIORITY] 1-10 &&
thread[3] [PRIORITY]<ll && thread[3] [PRIORITY]>=0)

Here we check that the priority of thread t;, given by
thread [i] [PRIORITY], never takes an invalid value. The property is satisfied
for all threads.

Property 2: A thread cannot be selected to run if it is on a low queue.
We specify the following safety property:

All !
(Dispatcher. S10
(Dispatcher. S10
(Dispatcher. S10
(Dispatcher. S10
(Dispatcher. S10

&& run_thread==1
&& run thread==2
&& run thread==3
&& run thread==5
&& run_thread==7

&&

&&

&&

&&

&&

thread [1] [PRIORITY] --1)
thread (2] [PRIORITY]--6)

thread(3) [PRIORITY] --1)
thread(5](PRIORITY]--6)
thread [7] [PRIORITY] --6)

which tests that under no circumstances is any of the band threads selected
to run while its priority is the low priority of its band. Threads 4 and 6 are not
band threads and are not checked. This property is also satisfied.

Property 3: me always holds the most eligible runnable thread in a band
This property is expressed as follows, using the ability to define functions

in UPPAAL:

A[] 1(BaseScheduler. SO && (

(thread[EDFSchedulerl. me][ADEAD]>thread[EDFScheduleri. app_queue(0]
][ADEAD] && run_thread==EDFSchedulerl. me && EDFSchedulerl. mel-0 &&

EDFSchedulerl. app_queue[0]1=0) 11

lqueue_check(EDFSchedulerl. app_queue) ýý

169

(thread[EDFScheduler2. me][ADEAD]>thread[EDFScheduler2. app queue[0]
][ADEAD] && run_thread==EDFScheduler2. me && EDFScheduler2. mel=0 &&

EDFScheduler2. app_queue[0]1=0)

lqueue_check(EDFScheduler2. app_queue)))

queue_check () is a function defined in the global variables section of the

model that has the following body:

bool queue_check(int queue[MAX_THREAD])
{

return forall (i: int[O, MAX_THREAD-2])

((thread [queue [i]] [ADEAD] <=thread [queue [i+1]] [ADEAD] &&,

queue[i]l=o queue[i+1] 1=0) Iý

(queue[i]==0 queue [i+l] ==0)) ;'

The <f oral 1(1: Type) exp> expression evaluates to true, if and only if

exp evaluates to true for all values of i in the range of Type. So, here the

whole queue_check () function will return true if the expression in brackets is

true for every i in (0 , MAX_THREAD- 2) . What the expression, in effect, says is

that when two consecutive cells in the queue both contain thread ids, the
thread closer to the head of the queue should have a shorter absolute deadline.
Otherwise the queue cells can be zero.

Using this function, we construct our query, which states that, when the
BaseScheduler automaton is at SO (i. e. no scheduling operation is taking place)
and when the me thread of a band is the actual running thread
(run_thread==me), for all states in the system the following should hold true:

" me holds the most eligible runnable thread in the band,

" threads in each band's EDF queue are in absolute deadline order

The property tests true.

Exploring the behaviour The next two properties guarantee the
unhindered progress of the system.

Property 4: The gstem is livelock free.
This property checks to see whether all threads reach the end of their

execution. It is written as a liveness property:

A<> (Thread2. End && Thread3. End && Thread4. End)

170

This, essentially, tests that all paths of execution contain a state where all
threads have reached their End node. However, since there arc no outgoing

. transitions from the Endnode, this state must be the final state for all paths in

the system. This is proof that there are no race conditions in the system. The

above is how this property is written for test case A. It is written in a similar
fashion for every test case. This property is also satisfied.

Property 5: The system can never deadlock.
This safety property can be expressed as

All (not deadlock)

using the UPPAAL built-in keyword deadlock. The property checks that

under no conditions does the system come to a halt. This is extra proof of the
lack of race conditions. This property is also satisfied.

5.3 Accommodating diverse scheduling policies

The essence of the Flexible Middleware Scheduling Framework is to
facilitate the use of diverse scheduling policies under the preemptive fixed

priority base scheduler. This can be seen on two levels: supporting the

execution of tasks under a particular scheduling policy within a band, and
allowing the sharing of resources within and across bands. Therefore, fully

accommodating other scheduling policies means providing support for both

these aspects. The following sections address these issues.

5.3.1 Supporting application of a policy within a band
To support a scheduling policy a system must be capable of two things: i)

providing the necessary functionality for the policy to be able to make its

scheduling decision, and ii) being compatible with the policy's scheduling
triggering mechanism, i. e. allowing the policy to make a scheduling decision

when it needs to. Section 4.1 briefly commented on the fact that the
framework does not de facto support every scheduling policy. It presented
two major reasons for this. Firstly, the presence of the framework mandates
no additional functionality other than what is provided by the standard fixed-

priority preemptive scheduler. Consequently, functionality that might be

required for the implementation of certain policies will not be necessarily

171

present. Secondly, the framework's reliance on the fixed-priority scheduling
inevitably means that for every application-defined scheduler the underlying

scheduling model will be:
. 4ý

" preemptive scheduling;

" event-triggered scheduling; application scheduling decisions can be

taken only on the occurrence of certain events, which have been

described with the notion of a scheduling point.

Therefore, all preemptive event-triggered schedulers can easily be

implemented in the framework. However, not all scheduling policies are

preemptive or event-triggered. Three other types of policies stand out: non-

preemptive policies, time-driven scheduling and job-level dynamic eligibility

algorithms.

Non-preemptive scheduling .
Non-preemptive scheduling policies are the simplest of the three to

implement. The application scheduler will select a new task to run in only the
following situations:

" during a release operation, if no task is currently running,

" during any operation where the running task voluntarily suspends itself

(e. g. suspend, wait, yiela),

" during an end operation

During all other scheduling operations the application scheduler, when

asked, simply returns the currently running task.

Time-triggered scheduling
In contrast to event-triggered scheduling schemes, time-triggered

scheduling policies apply scheduling decisions at specific time instants. The

most typical examples of this category are off-line scheduling, the round-robin
scheme, and synchronous reactive systems. Under the preemptive fixed-

priority scheduling the framework is based on, the passage of time is not
factored into making a scheduling decision. As a result, time-triggered

approaches are not directly supported by the framework. Nonetheless, there

are ways of implementing time-triggered scheduling by introducing "time

events" in the system. This way we can transform time-triggered policies to

event-triggered. Since round-robin is a well known and easily understood case

172 0

of time-triggered scheduling, its emulation is provided as an example. As we

will see, the solution given can only be implemented if CPL I time clocks ; arc

available.

To enforce the round-robin policy the application scheduler could make

use of some sort of timer to introduce scheduling i pints at regular intervals.

Since scheduling points are linked to the behaviour of tasks, this scheine will
have to involve a "round-robin scheduling task" running in the band on behalf

of the scheduler. A possible behaviour for this task can be seen in I ü; ure 5.17

below.

Base ariority scheduler

i+3

1+2

1+1

max

Irhl

1
_Ris

q

r, r,, rI ,,, n (-i-, l r, l
r2

min

time

Key I

Wake-up tiluep askti l rO
of] low

0 Basar scheduler Lucking a Nrnmul I. r. l.

calls resource exeuilu s

Figure 5.17: Round-robin scheduling within a band

ä
c ýo m

In this figure task r, is the round-robin scheduling task t-Or Iband Il, and
has the highest eligibility in the band. This task executes in an endless AII

other band tasks have the lowest eligibility in the hand. 'I'hcrcl- n, tall; ,, will

always be selected to run in preference to all other tasks. 'I'Ilc (unl\ action this

task takes is to call for a suspending sleep operation. Before suspcinIinu;, it ails

the application scheduler, as per normal iranicwOrk 1)1-()to (-()l rules, t.,
designate the next task to run. The application scheduler (leternlilles, vvith the
help of facilities equivalent to the execution time OH)nit)1inf" 1. mind in I'()SI\

JII? 1? VI 2004], how much time its most eligible tall: has Ic t-t toi execute in Ord(r

'i

to complete one quantum, and directs rn to "sleep" for that duration. The

selected task executes until rn wakes up again, preempting it. At that point, rn
executes again, just enough so that it can call its next sleep operation, at which
point the procedure repeats itself until all tasks have finished. This technique
also addresses the case where a round-robin task might get preempted by
higher priority level tasks before finishing its quantum. This can be seen in
Figure 5.17, where task r2 gets preempted by 71. r2 did not have the chance to
execute part of its quantum and this part must be given back to it. Therefore,

the next time rn wakes up and asks the round-robin scheduler for its next task,
the scheduler again specifies task r2 and instructs T. to sleep for the duration

of the "stolen" time. Figure 5.18 shows the way the eligibility of a round-robin
task r conceptually changes with time, taking into account a possible
preemption.

"Scheduling
eligibility

"Running"
eligibility

"Waiting"
eligibility

5 10 15 18 5n+8 5n+13 time
qu

n quantum

Figure 5.18: Changes in eligibility within a round-robin band

Here, task rte. is shown as always having the highest eligibility within the
band. Task r starts with the lowest "waiting" eligibility, but acquires the
"running" eligibility when it is selected by the scheduler. When it has executed
for a quantum, its eligibility conceptually changes again to "waiting", and
another task is selected to run. This is true even if the task gets preempted, as
can be seen in Figure 5.18. At time 5, when ris selected to run, r,,. calls a sleep
for 5 units, since that is the size of the quantum. In the meantime, the' band
gets preempted by higher priority tasks and, therefore, task z does not have a
chance to finish its quantum. Neither is rn. able to execute at time 10.
However, zn executes at time 15, when the preemption ends, since its priority
is the high priority of the band. z, asks the round-robin scheduler for its next
task and the scheduler returns ; because it did not have the chance to finish
its quantum. z now executes until time 18 when it is preempted by r,,. After all
round-robin tasks have executed in the CPU for nx quantum time units,
where n is the number of tasks in the band, task twill again be selected to run.

174

Round-robin scheduling finds application when tasks need to progress at a
similar rate. It is part of the POSIX standard [IEEE 2004] and has also been

introduced in the Ada language [Burns et al. 2003]. If CPU time clocks are
available, it can be accommodated by the framework, as demonstrated above,
but at an overhead cost. Of course, if the framework was to be implemented
in a system where the preemptive fixed-priority scheduler could use either
FIFO or round-robin within priorities, then round-robin scheduling could be

provided directly by the base scheduler outside of a band.

In general, implementing even a simple time-triggered scheduling policy
like the round-robin scheme is not straightforward and can be unwieldy. The
dependency on fixed-priority scheduling means that the framework is not

specifically designed for these types of algorithms. Synchronous reactive

systems [Benveniste et al. 1994] are even less suited. They present a completely
different scheduling paradigm than that of fixed-priority preemptive
scheduling. Synchronous systems are meant to be hard real-time systems and,
hence, would be severely affected by the inevitable extra overheads. Generally

speaking, reactive systems are not well-suited to the framework and will not be
further considered.

In the case of off-line static scheduling there is arguably little point, if at all,
in incorporating such a scheme in a flexible scheduling framework. Execution

of a static schedule can more easily and reliably take place using non-band
priority levels.

Job-level dynamic eligibility policies
Job-level dynamic eligibility policies are those where the eligibility of a task

changes throughout the course of the task's current release. An example of
such a policy is the least slack time first algorithm (LST). Slack time s is
defined as s=d-t-G""'°g where dis the absolute deadline, t the current time

and C"4 is the remaining task execution time of a task for its current job.
The less a task's slack time the greater its eligibility. As is evident from the

equation, a task's eligibility is monotonically non-decreasing with time. More
importantly, eligibility can increase even though a task might not be executing.

There are three versions for every job-level dynamic eligibility policy, the

strict, the non-strict and the static version [Liu 2000]. Enforcing the strict version
means constantly monitoring the eligibility of all tasks and comparing them

175

with the eligibility of the running task. A context switch has to take place if the

eligibility of the running task falls below the eligibility of another task. On the

other hand, enforcing the non-strict version means making scheduling
decisions only when specific events arise, such as task release or completion.
Finally, the static version of a job-level dynamic policy is not really job-level

dynamic, but rather a translation of the policy to a job-level static policy. This

is achieved by considering the eligibility of a task for the whole duration of its

release to be equal to its initial eligibility at the start of its release. In the case of
LST, for example, this would mean that the eligibilities equation is written

s=d-to, &'t Without loss of generality, we can consider the initial release of

each task to be at t0= O. The equation can now be written s=d-&which is

the same as s=D-Cm 1, where D is the task's relative deadline. The static '

version is, by default, also non-strict.

As we can see, the strict version means that the scheduler should be

constantly aware of the eligibilities of its tasks and preempt tasks as needed.
Scheduling decisions are not just triggered due to specified events, but could
happen at any time, as required by the current eligibilities of tasks. As

mentioned in [Liu 2000: p. 121] the strict version of IST leads to tasks being

scheduled in round-robin manner, when a runnable task's eligibility reaches

the eligibility of the running task. To implement such a policy, an application

scheduler would have to actively keep track of the eligibilities of its tasks.
However, an application scheduler is a passive entity in the framework and

cannot carry out such a task. Therefore, the only option would be to have a
dedicated task, as in the case of round-robin illustrated above, which would

cause a system schedule at regular intervals, emulating the application
scheduler's "tick". This, again, would be an awkward, far from ideal solution.

The non-strict version and static versions, on the other hand, apply

scheduling decisions at specific events. This coincides with the event-triggered
scheduling model of the base scheduler. Therefore, as far as the scheduling
triggering mechanism is concerned, the non-strict and static versions of job-
level dynamic eligibility algorithms can be implemented as an application
scheduler in the framework. It is a matter of the middleware if the necessary
functionality for implementing the policy is present (e. g. CPU. timers).

5.3.2 Sharing resources under a new policy
With respect to sharing resources, there are two possibilities for an

application-defined policy: it can either use the framework's BPreCP protocol

176

or it can make use of its own resource sharing protocol, provided that no tasks

outside its band will want to use resources that belong to its band. We will
examine both cases.

5.3.2.1 Using an application-defined resource sharing protocol
Section 4.5.4 explained that it is possible for an application scheduler to

use its own policy-specific resource sharing protocol for those resources that

are used solely by tasks of its own band. As seen in Section 4.6, the base

scheduler does not perform the preemption level test when locking takes place
on a resource that it identifies to be governed by a protocol other than the
framework's BPreCP protocol. Resources could also not be associated with
any protocol, if that is deemed appropriate. This means that resource sharing
is not an issue, when it comes to a stand-alone implementation of any policy
that can be supported according to the guidelines of the previous section.

Of course, as already pointed out, maximum integration with the
framework means being also able to use resources of other bands, and this
requires the use of preemption levels. However, this does not mean that the
application scheduler needs to fully implement the BPreCP. To understand
this we need to understand the mechanism that is effected when a task uses a
resource outside its own band. When accessing such a resource, the task's own
application scheduler does not need to perform any function. Indeed, the
FMSF_PLT is carried out by the base scheduler, as is priority inheritance.
Eligibility inheritance is carried out solely by the scheduler of the locking band.
Therefore, an application scheduler could be using its own application-defined
protocol for resources used solely by its own tasks, while at the same time its

tasks would be able to lock outside their own band. The only requirement is

that each task locking outside its own band must have a relative preemption
level assigned, even if the band's own protocol does not make use of
preemption levels. The reason for this is that the base scheduler must be able
to compute the task's absolute preemption level, in order to carry out the
FMSF_PLT for the resource in question. Here it is worth pointing out that a
band always has a range of absolute preemption levels statically assigned to it

at the point of its creation, even if it does not make use of the BPreCP.

The assignment of preemption levels to tasks is almost trivial for a band
that uses its own resource sharing' protocol. As explained in Chapter 3, the
preemption level test guarantees deadlock avoidance and assists in minimising
eligibility inversion. However, in the case of a band that specifies its own

177

resource sharing protocol, the FMSF PLT is not used when locking takes

place within the band (hence, not used for minimising inversion), but only to

guarantee deadlock avoidance when tasks use resources outside the band.

To perform the FMSF PLT the base scheduler must know the absolute
preemption level Ji'r of the locking task. The value of kI for a task, in turn, isi

calculated based on the task's relative preemption level hand the band the task
belongs to. The scheduling policy governing a band does not affect the

position of the band in the priority range. Therefore, the only issue to consider
with respect to guaranteeing that tasks will not deadlock is the way relative
preemption levels are assigned.

Section 3.2 presented Baker's preemption level assignment rule (Rule 3.1).
We pointed out that this rule is an optimal assignment rule. This means that it

provides for minimum eligibility inversion. However, this assignment is
irrelevant in our case, since we have explained that we are only interested in

the deadlock avoidance aspect of the FMSF PLT. Moreover, we will show the
stronger assertion that there is no assignment rule that needs to be followed in

order to achieve deadlock avoidance. In other words, the ability of the
protocol to avoid deadlocks is totally independent of the particular assignment
of relative preemption levels.

It is easy to understand this by considering the function that preemption
levels fulfill. Relative preemption levels essentially provide a total ordering of a
band's task set based on a particular metric. Since there is a "1-to-I" relation
between a relative preemption level within a band and an absolute preemption
level, and since a task can only belong to one band at a time, it follows that the
total ordering of tasks within each band translates to a total ordering of all
band tasks in the system. Furthermore, since we have assigned absolute
preemption level values to non-band priority levels as well, we have a total
ordering of all tasks in the system based on- absolute preemption levels. That is to
say that for two arbitrary tasks in the system rl and rS irrespective of the
bands they belong to (and thus irrespective of the policy that schedules them),
exactly one of the relations TT(rl) < ; r(r2), ; r(rl) = z(r2), z(rl) > >r(r2) holds.

Furthermore, resource ceilings, according to Definition 4.7, are set to the
highest absolute preemption level amongst those of the tasks that use them.
As a result, the set of resources in the system that are used by band tasks also
becomes a totally ordered set.

178

Let us consider, now, that relative preemption levels are assigned to tasks
in a random manner. These preemption levels will still correspond to a single

absolute preemption level each. Therefore, the task set will still be totally

ordered, even though the order will not have any particular meaning.
Moreover, Definition 4.7 still applying, the case will still be that if n(r) > In

then r must not be using r. Since the definition of the system ceiling
(Definition 3.3) also remains unchanged, the FMSF_PLT will succeed or fail

for the exact same reasons as before. That is, a task passing the test will never

need any of the locked resources. Therefore, even with arbitrary relative
preemption levels, the FMSF PLT guarantees deadlock-free execution of
tasks.

It should be clear that this result applies to the way relative preemption
levels are assigned in all bands, regardless of the resource sharing protocol

used within the band. Therefore, all band tasks can avoid deadlock through

the use of the FMSF PLT, irrespective of their preemption levels. For bands

that do not use the FMSF, however, it has the particular implication that they

can be using the FMSF PLT to avoid deadlocks in resource sharing, while

using another resource sharing protocol to minimise eligibility inversion, or
even while not using any protocol.

5.3.2.2 Using the FMSF

In using the FMSF eligibility inversion protocol a scheduling policy will
seek two guarantees: deadlock avoidance and minimal eligibility inversion. As
has been pointed out in the previous section, a band could choose to use only
the FMSF_PLT for deadlock avoidance. However, if it also needs minimal

eligibility inversion then it must combine use of the FMSF_PLT with eligibility
inheritance at the application scheduler level. Although deadlock avoidance
can be achieved with an arbitrary assignment of preemption levels, minimising
eligibility inversion through the FMSF PLT necessitates an optimal
assignment of preemption levels. Moreover, the application scheduler must
implement the FMSF eligibility inheritance rule. Therefore, examining the

ability of different scheduling policies to bound eligibility inversion needs to
be done on two levels: i) examine how effective eligibility inheritance can be

under a specific policy and ii) examine if the optimal preemption level

assignment rule is applicable under the specific policy.

179

The key in examining these two factors is the observation that they are
both linked to eligibility, since Rule 3.1 assigns preemption levels according to

the eligibilities of tasks at time t ---O. Under any policy, eligibility is a function

of time and of certain task parameters, like a task's relative deadline, its period,
its release time etc. These task parameters typically stay fixed throughout a
task's execution. As far as their time parameter is concerned, we can
distinguish three types of eligibility functions: fixed eligibility, task-level
dynamic eligibility, job-level dynamic eligibility. A fixed eligibility function

does not change its value over time, or, in other words, the coefficient of time
is zero, e. g. any form of fixed-priority scheduling, like shortest execution time
first (assuming the execution time of a job does not change between releases).
A task-level dynamic eligibility function is static with regard to time during a

task's release (job) but might change between different releases, e. g. EDF

scheduling. Therefore, task-level dynamic eligibilities are always step functions

of time. Job-level dynamic eligibilities change constantly with time, e. g. strict
leäst slack time first (LST), and can theoretically be either non-decreasing,

non-increasing or non-monotonic.

Eligibility inversion happens when a task r2 preempts a locking task rl,

while a task r3 blocked on the system ceiling has the highest eligibility. For

static eligibilities we avoid this by elevating the eligibility of rj to that of r
Section 3.3 demonstrated that BPreCP with fixed task eligibilities amounts to

the PCP. Therefore, policies that apply fixed eligibilities (i. e. fixed priorities) to
tasks will get the same behaviour from the protocol as if it was PCP. In task-
level dynamic eligibility policies there can again be no violation of the protocol
because the eligibilities of tasks rl, r2, r3 remain static for as long as the tasks

participate in the eligibility inheritance situation.

Job-level dynamic eligibility policies can be split into two categories:

a) policies where the ordering of tasks according to their eligibilities
remains static throughout their release (even though eligibilities change),

b) policies where the ordering of tasks according to their eligibilities
changes during their release.

Policies belonging to the first group are able to use the protocol because

they provide the certainty that a task will always be either more or less eligible
than another task for the whole duration of its release. This is the same
guarantee that task-level dynamic eligibility policies provide. Job-level dynamic

180

eligibility policies with static task ordering produce eligibility graphs that never
intersect for two different tasks. Or, to state it differently, if equation
e(r;, t) - e(rj, t) =0 for any i, j has any solutions, it will be for tS0. Three

imaginary examples can be seen in Figure 5.19.

time 1rme dms

Example A Example 8 Example C

Figure 5.19: Eligibility in job-level dynamic policies with static task ordering

Next, let us examine the effectiveness of the eligibility inheritance rule in

the case of job-level dynamic eligibilities with dynamic task ordering. Such

policies produce eligibility graphs that can intersect for two different tasks. In

other words, eligibilities of different tasks can change at different rates. This

can be seen in Figure 5.20.

Start 4 Lock Block + Unlock End

C T1

.

01 i,, ", 0
/--round-robin---I

Tii{'NNNyNNNNNNNNN

T, J i, r /1
T2 i+

ýr
" /r:

r

1 11 I LT+ý 1jf
11 II

,ýIIj11
YIIi, 1rý1I1IC111

t, t, t3 4b4 time t+ 14 13 4 t, time

Example A Example B (strict least Slack time)

Figure 5.20: Eligibility in job-level dynamic policies with dynamic task ordering

To understand how eligibility inheritance would work in such a case, let us
consider the three tasks rl, rj, r,, in Example A of Figure 5.20. The relation
between their initial eligibilities, if they were all to be released at t--0, is

ea(rl) < e0(r2) < e0(r3) . Furthermore, their eligibilities are increasing with time.

Let us assume tasks rj and r3 use the same resource, rl is released first and
proceeds to lock the resource. Task r3 is released at time tf and preempts rl.

181

At time t2, task r3 blocks trying to lock the resource. Let us suppose that Ti

inherits the eligibility of r3. In other words, the active eligibility of Ti is equal to

the eligibility of r3. During the time from to when r3 blocks, to to, when the

resource is unlocked, rj can be preempted by only two sets of tasks: i) tasks

that are released during this time and have greater eligibility than T, I, and tasks

whose eligibility exceeds that of r3 during this time. Both sets of tasks are,

obviously, eligible to preempt and moreover, they can be included in any

worst-case response time analysis for z,,, Therefore, their preempting of zl

would not constitute eligibility inversion. In the example, this is true of task to

which is released at t3, but cannot preempt. However, at t4 the eligibility of 12

exceeds the eligibility of z3 and, therefore, also the active eligibility of rl.
Therefore r2 preempts Ti. Any task that would be able to preempt rj but not 7-3
is prevented from introducing eligibility inversion by means of the eligibility
inheritance.

The same is true for the LST algorithm, which is shown as Example B in

Figure 5.20. LST is a special case of a job-level dynamic policy. Tasks can be

released with different eligibilities, but eventually they will all acquire the same

eligibility and the policy is reduced to the round-robin scheme, as is the case in

the example at time t5. Before entering the round-robin phase, the algorithm

produces a static task ordering. This can be seen in the figure in the interval
[t2ý tt, where TI acquires the eligibility of z,, which is blocked and thus has an
increasing eligibility. Without this eligibility inheritance z2 would be able to

preempt r i, while having lower eligibility than r3, thus introducing eligibility
inversion. Once in the round-robin phase, the task ordering becomes dynamic.

Since the only time that the ordering is dynamic is during the round-robin
phase, there can be no eligibility inversion, because all tasks participating in the

round-robin essentially have the same eligibility. Again, it is possible to include

this preemption in a worst-case response time analysis.

Therefore, for any type 6f eligibility, application of eligibility inheritance
bounds the extent of eligibility inversion. Let us now examine the effect of
eligibility on the preemption level assignment rule.

It has already been mentioned that the assignment of preemption levels

under Rule 3.1 is optimal. Clearly, an arbitrary assignment of preemption levels

would undermine this optimality. As an example, let us assume we have two
tasks rl and r2, with eligibilities e(rl) < e(r2), and we assign preemption levels

to them such that z(rl) > z(r2). Furthermore, we assume that r1 uses resource

182

r1 while t2 uses r2, If t2 is released while tl is locking r1, it will block due to the
FMSF_PLT when it tries to lock r2, even though it has a higher eligibility and
is not using r1. Therefore, because preemption levels are static, their
inappropriate assignment to tasks introduces unwanted eligibility inversion.

Rule 3.1 assigns preemption levels according to task eligibilities at the
instance of their release, which can be taken to be l=0 for all tasks. If we
hypothesise that all tasks are released at 1=0, then higher eligibility for a task at
that instance must also mean a higher preemption level. Thus, a total ordering
is created for all tasks under a particular scheduling policy. The rule is not
concerned with absolute values of eligibility but with the relative ordering of
tasks based on their eligibilities. So, in order to determine if and when the rule

can be broken, we must ask whether there is a way for this ordering to change
during a task's release.

We have already seen that such a change is possible in job-level dynamic

eligibility policies with dynamic task eligibility ordering. For such eligibility
preemption levels can not always be allocated optimally. This is because there
is always a possibility that two tasks rl, r2 with initial eligibilities e(rl) < C(r2)

will have their eligibilities reversed, as time progresses. However, due to the
preemption level assignment rule, their preemption levels will be x(re) > >r(r2)
for the whole duration of their release which leads to the problem outlined

above. Using dynamic preemption levels, i. e. preemption levels that increase

or decrease in value as the task's eligibility increases or decreases, would help

avoid eligibility inversion in some situations, but at the cost of breaking the
FMSF_PLT and allowing deadlocks. To understand
this we can look at Figure 5.21. Tasks rj and 12 have
job-level dynamic eligibilities with the task ordering
dynamically changing at time tý, Let us assume that

T, their preemption levels also change dynamically,

proportionately to their eligibilities. Now, let us

T2 assume that rl locks a resource r1 at time ti, setting the

t, t, t, is time system ceiling to)r =K(rj, tj). At time t4 task rz tries to
Figure 5.21: Two lock a resource rz not used by rl, and succeeds,

tasks with job-level because its pre-emption level at that point is greater dynamic eligibilities
than the system ceiling Tc(r2, t4)> r(rl, t1) This allows r2

to lock r2 whereas with static pre-emption levels it would have blocked.
However, let us now consider the situation where the two tasks share the two
resources r1 and r, % Let us assume that after Ti locking r1, r2 locks r2 at time t,,

183

It will be able to do this, because z(r2i t3)>>r(rl, t1). Then, at time t4, r2 tries to
lock r1. It will again pass the FMSF_PLT, only now rl is locked. If there is no
other mechanism for managing the sharing of resources, rl and r2will be using
rl simultaneously, a critical error. If there is another lower-level mechanism
present that keeps r2 from using r1, then r2 will block, rj will execute, and
when at time t5 it tries to lock r2 a deadlock will occur. Therefore, dynamic

preemption levels are not a solution.

From the above we can understand that as long as a policy produces a
static ordering of tasks based on their eligibility, the optimal assignment rule'
(Rule 3.1) will always produce preemption levels that do not produce
unnecessary blocking. In the case of dynamic task ordering policies the
optimal assignment rule is broken.

5.4 Summary

The contributions of this chapter are to demonstrate:

1. How an application-defined scheduler can be constructed, in

particular an EDF scheduler, according to the requirements set by

the framework. It has been shown that three main constructs are
adequate to support the framework's protocol.

2. That the framework protocol can be implemented free of race
conditions.

3. The range of scheduling policies able to be incorporated in the
framework. More specifically, it has been shown that all scheduling
policies can be supported, as far as supporting their scheduling
decisions is concerned, but strict job-level dynamic eligibility policies
are awkward and not as efficient to implement. As far as being able
to use a resource sharing protocol, it has been shown that new
policies can introduce their own protocol, with an option to use the
FMSF_PLT for deadlock avoidance, or they can choose to comply
with the framework's protocol The only problematic category is
job-level dynamic eligibility policies with dynamic task ordering, for

which the optimal assignment of preemption levels is not valid.

184

The chapter has helped to show the applicability and viability of the
flexible middleware scheduling framework in addressing a wide range of
scheduling needs.

185

i

186

Chapter 6

Implementing the
Framework

This chapter continues the evaluation of the Flexible Middleware
Scheduling Framework (FMSF), taking over from the previous chapter.
However, whereas Chapter 5 concentrated on a theoretical evaluation of the
framework, this chapter provides a practical evaluation based on a simulated
implementation in the Real-Time Specification for Java (RTSJ). The rational
for choosing RTSJ has been the wide acceptance of the Java platform, in

general, and the growing relevance of the RTSJ for real-time computing. 't'his

guarantees that the evaluation will be relevant to a significantly broad review
audience.

This chapter's purpose is three-fold. Firstly, it demonstrates that the FMSF
framework can be feasibly implemented. Secondly, and more importantly, by
describing how the framework can enhance the RTSJ with the addition of
flexible scheduling this chapter highlights the framework's merits and ability to
be easily introduced to an existing middleware system. Last but not least, it

presents measurements on the execution time overhead that the framework

187

introduces, proving that the framework can viably support real-time

applications.

Section 6.1 gives a brief description of the RTSJ and its deficiencies with

regard to scheduling. Section 6.2 presents the implementation design for the
incorporation of the FMSF into the RTSJ, the changes needed in the

specification to fully support our approach, and the impact on feasibility

analysis. The description is mainly kept at the class level, avoiding

cumbersome implementation details. Section 6.3 describes a lightweight

simulated implementation of the framework, which is used in Section 6.4 to

calculate execution time overheads. Section 6.4 discusses the timing results
from a set of test applications. It is deemed that these results are satisfying and

reinforce the viability of a full framework implementation.

6. i The Real-Time Specification for Java

The Real-Time Speciation for Java (RTSJ) [Bollella et al. 2000], [Belliardi et

al. 2006] provides a framework from within which real-time scheduling can be

performed for single and multi-processor systems14. The provided API forms

the j avax. realtime package. The RTSJ enhances Java in seven areas: thread

scheduling and dispatching, memory management, synchronization and
resource sharing, asynchronous event 'handling, asynchronous transfer of
control, asynchronous thread termination, and physical memory access. Of

these areas thread scheduling and synchronization are the two most relevant
with regard to the FMSF framework. It is important to note that the intention

of the RTSJ is. to support a range of schedulers, all of them conforming to the

abstract Scheduler class. However, the current specification defines only a
base scheduler, the PriorityScheduler. The RTSJ provides a series of
classes to specify the scheduling needs and behaviour of a real-time thread.
The SchedulingParameters class and its subclasses (most notably the
PriorityParameters class) provide the parameters to be used in scheduling
the thread. The ReleaseParameters class and its subclasses
(PeriodicParameters, AperiodicParameters, SporadicParameters)
provide information about the execution behaviour of a real-time thread,

although some parameters, like the relative thread deadline, can also be used

14 Although the RTSJ is intended for use on both single and multiprocessor systems, the
specification is silent on specific multiprocessor issues. In this thesis we will consider only single
processor implementations.

188

for scheduling purposes by particular schedulers, e. g. an EDF scheduler. Also

of particular importance is the functionality offered by the

ProcessingGroupParameters class, which groups real-time threads

together, guaranteeing that they will not be collectively given more time per

period than indicated by a cost parameter, and which could be used in an
implementation of temporal isolation between threads of different scheduling
bands in the FMSF. As far as thread synchronization is concerned, the RTSJ

allows the setting of a priority inversion control policy either as the default or
for specific objects. Priority inheritance is the default protocol while priority
ceiling emulation is supported as optional.

The RTSJ scheduling framework can be summarized by describing how it

addresses the three components of scheduling: the scheduling policy, the

scheduling mechanism and the feasibility analysis [Burns and Wellings 2001].

Scheduling Policy: The RTSJ uses the notion of "execution eligibility"
for "schedulable objects" to determine their execution order. Execution

eligibility is encapsulated in the Schedulingparameters class and its

subclasses PriorityParameters and ImportanceParameters. For the
base scheduler, priorities are assigned by the programmer and the scheduler
enforces priority inheritance algorithms when resources are accessed. Hence, it

supports the notion of base and active priorities.

Scheduling Mechanism: For the base scheduler, the RTSJ requires pre-
emptive priority-based dispatching of schedulable objects. An executable
schedulable object with the highest active priority is always executing on the
processor at any given time. However, the RTSJ makes no statement on
whether it supports "pre-emptive execution eligibility dispatching" in general.

Feasibility Analysis: The RTSJ requires no specific feasibility analysis to
be implemented. The default analysis always returns true if the application
contains only periodic and sporadic schedulable objects, and returns false if

aperiodic schedulable objects are present.

Whilst it is clear that the RTSJ's intention is to support different (and

possibly multiple) schedulers, it is far from clear that the provided framework
is adequate for this purpose. Furthermore, it is unclear the extent to which
priority-based dispatching is so ingrained in the specification that all other

schedulers must express "execution eligibility" in terms of priority. In part, this

189

is due to the variety of execution environments in which an application may

execute. There are at least three ways by which an RTSJ application can be

executed [Lindholm and Yellin 1999]:

1. The application runs as a process on top of a real-time operating

system. The RTSJ library and virtual machine (VN supports a native

threads 'model with each schedulable object having an associated

operating system real-time thread (although not necessarily a one-to-

one mapping). Run-time dispatching (the scheduling mechanism) is

provided by the operating system.
2. It runs on top of bare hardware. The RTSJ library and virtual machine

have full control over the hardware resources and implement their

own scheduling mechanism.
3. It runs on top of a hardware-implemented real-time virtual machine.

Again the scheduling mechanism can be implemented by the RTSJ

library and virtual machine. .

Whatever the execution environment, the "write-once carefully, run-

anywhere conditionally" principle (a more realistic version of the "write once,

run anywhere" principle) dictates that the RTSJ should define its scheduling

mechanism. Most real-time operating systems support pre-emptive priority-
based dispatching. Consequently, the RTSJ should arguably explicitly define

this as the only scheduling mechanism. However, many modern applications
require more flexible scheduling [Brandt et al. 2003], [Regehr et al. 2000].

Furthermore, some applications may need to be scheduled by one policy while
others may need a different policy; e. g. fixed priority for hard real-time threads

and EDF for soft real-time threads. Hence, state-of-the-art real-time OS

nowadays move towards supporting application-defined scheduling [Gwinn
2004], often in the form of hierarchical scheduling [FIRST 2005]. Support for

these kinds of applications is not readily available in the RTSJ.

In this chapter we propose that the RTSJ adopts the Flexible Middleware
Scheduling Framework's (FMSF) hierarchical scheduling model, described in

Chapter 4, on top of its own fixed-priority scheduler. This will transform the

existing RTSJ scheduling model to a two-level scheduling scheme, with the
RTSJ's priority scheduler performing the actual dispatching. Under this

scheme an application will be able to introduce its own scheduler, which can
have its own notion of execution eligibility. Adopting this approach also
provides a framework within which multiple application-defined schedulers

190

can be integrated. It is also sympathetic to the notion that priority-based
scheduling is more ingrained in the RTSJ than intended, and that a more

general scheduling mechanism would require more fundamental changes to
the RTSJ than is acceptable to the community. This way, the RTSJ's

scheduling deficit can be suitably addressed, thus fully realising the RTSJ's

scope for supporting "both hard and soft real-time applications" [RTSJ 2007].

The next section describes the augmented RTSJ scheduling model. The

remainder of this chapter assumes that priority changes that require OS
intervention occur immediately and are not deferred. Also, the terms "thread"

and "schedulable object" are used interchangeably, as are the terms
"application-defined scheduler" and "user-defined scheduler".

6.2 Applying the FMSF to RTSJ

To apply the Flexible Middleware Scheduling Framework in the RTSJ a
number of classes must be introduced in the RTSJ API accompanied by

changes to existing classes and to the virtual machine [Zerzelidis and Wellings
2006]. The following sections explain these modifications in detail.

6.2.1 Changes to the PriorityScheduler class
The scheduler class is, perhaps, the most fundamental class of the

scheduling part of the RTSJ API. It is an abstract class intended to be the
base class for any implementation of any scheduling policy. In other words, all
scheduler classes should inherit from this class [Belliardi et al. 2006]. The

current RTSJ Scheduler class hierarchy is shown in Figure 6.1 below. The
RTSJ defines only one scheduler, the PriorityScheduler.

Scheduler

PriorityScheduler

Figure 6.1: Existing RTSJ Scheduler class hierarchy

191

Currently the scheduler class is defined as follows:

package javax. realtime;
public abstract class Scheduler {

// constructors
protected Scheduler();
// methods
protected abstract boolean addToFeasibility(

Schedulable schedulable);
protected abstract boolean removeFromFeasibility(

Schedulable schedulable);
public abstract boolean isFeasible();

public abstract boolean setIfFeasible(
Schedulable schedulable, ReleaseParameters release,
MemoryParameters memory);

public abstract boolean setlfFeasible(
Schedulable schedulable, ReleaseParameters release,
MemoryParameters memory,
ProcessingGroupParameters group);

public abstract boolean setIfFeasible(
Schedulable schedulable, SchedulingParameters scheduling,
ReleaseParameters release, MemoryParameters memory,
ProcessingGroupParameters group);

public abstract void fireSchedulable(
Schedulable schedulable);

public static Scheduler getDefaultScheduler();
public abstract java. lang. String getPolicyName();
public static void setDefaultScheduler(

Scheduler scheduler);

As can be seen from this specification, the Scheduler is mainly concerned
with manipulating the feasibility set and performing feasibility analysis. Only

the fireSchedulable () method is concerned with scheduling and the
PriorityScheduler does not support this method's. In other words,
although the scheduler is responsible for releasing schedulable objects,
monitoring deadline misses and cost overruns, implementing the required
priority inheritance algorithm etc, there is no API support for these. Most of
the semantics of scheduling in the RTSJ are defined to be for the priority
scheduler and they are carried out under the hood. This was to allow for

greater flexibility in an RTSJ implementation that would want to support other
schedulers16. However, this now means that, in order to expose the underlying

Is The intention of this method is to allow other schedulers to support schedulable objects of a
different type to RealtimeThread and AsyncEventHandler.

16 Since the semantics for methods like wait ForNextPeriod O are only defined for-the

PriorityScheduler, other schedulers can support different semantics.

192

mechanisms, a radical overhaul of the RTSJ scheduling API would be

required.

The FMSF framework enables a different approach. The framework

protocol is such that it can rely on the priority-based dispatching of the RTSJ
to carry out application-defined scheduling policy decisions. This means that
changes to the API can be kept at a minimum, because the scheduling
mechanism is kept as is and invisible to applications. In order to implement

the framework scheduling band operations must be supported. That is,

scheduling points must be identified and base scheduler calls must be added.
To this end seven new methods are introduced in the PriorityScheduler
class17. They can be seen in following class specification:

package javax. realtime;
public class PriorityScheduler extends Scheduler{

constants
public static
public static
public static
public static
public static
public static
public static

or "r
final
final
final
final
final
final
final

eason" argument
int WAIT_FOR_NEXT_RELEASE;

int SLEEP;
int IO_WAIT;
int MUTEX_WAIT;
int SCOPED_MEMORY ENTRY;
int YIELD;

int THREAD_END;

new methods"
protected static final void reschedule(Schedulable ached);
protected static final void prepareToLock(Schedulable ached,

java. lang. Object lock);

protected static final void rescheduleLock(
Schedulable ached);

protected static final void prepareToUnlock(
Schedulable ached);

protected static final void rescheduleUnlock(
Schedulable ached, java. lang. Object lock);

protected static final void prepareToSuspend(
Schedulable ached, int reason);

protected static final void rescheduleResume(
Schedulable ached);

public static final int getPreLevelsPerBand();
public static final void setPreLevelsPerBand(int levels);

public static final void setScheduler(

17 Currently the RTSJ (informally) defines that other scheduling mechanisms can be supported.
With the scheme proposed in this thesis this can still be achieved if other base schedulers implement

their own such methods, tailored to their own dispatching mechanism.
18 These methods must be implemented as thread-safe.

193

ApplicationDefinedScheduler appSched, int band);

The first seven new PriorityScheduler methods are, essentially, the

pbsc and sbse base scheduler calls, as described in Chapter 4. The prepareTo h
methods constitute the pbsc part of the scheduling band operation and the

reschedule methods are the sbse part. It is evident from their names which

scheduling band operation they correspond to. Only prepareToSuspend ()

begs some additional clarification. This method is the pbsc for all potentially,

suspending situations, apart from starting a thread, locking a resource and

unlocking a resource. The reason argument specifies the actual scheduling
band operation for which the method is called for, e. g.

WAIT_FOR_NEXT_RELEASE, SLEEP, MUTEX_WAIT, THREAD END etc.
Therefore, prepareToSuspend () covers five of the eight scheduling band

operations: suspension, wait, yield, change and end.

The last three new public methods of the PriorityScheduler class are

available to the application programmer. getPreLevelsPerBand () and

setPreLevelsPerBand () get and set the number of preemption levels

available to each scheduling band. Finally, the setScheduler () method tells

the base scheduler to register the given application-defined scheduler with the

given priority level as the band's lowpriority.

6.2.2 Supporting scheduling band operations
The key is identifying all possibly suspending situations in the RTSJ and

Java libraries, e. g. the sleep () methods in j avax. realtime .
RealtimeThread and j ava. lang. Thread classes. The goal is to pass

control to the base scheduler (PriorityScheduler) during each of the

potentially suspending calls, once before the scheduling point and once after.
We can distinguish three possibilities. The first is a potentially blocking library

call, such as RealtimeThread. sleep(). In essence, the bytecode of such a

method contains a particular bytecode instruction (or series of instructions)

that can cause thread blocking. All such methods should fall into one of the

eight scheduling band operations identified in Chapter 4 and essentially

contain the scheduling point of the operation. To complete the scheduling
band operation model the implementation must also provide the base

scheduler calls before and after the scheduling point. Adding the base

scheduler calls entails the addition of a call to

PriorityScheduler. prepareToSuspend(rt, SLEEP) just before the

194

potentially blocking instruction (or instructions), and a call to
PriorityScheduler. rescheduleResume(rt) right after that instruction,

where rt is the executing real-time thread. The second possibility is a

potentially blocking bytecode instruction, such as monitorenter. In this case
the RTSJ compiler could add the calls to the PriorityScheduler at compile
time before and after the instruction. Alternatively, the RTSJ virtual machine
(RTSJVM) could be modified to perform the appropriate calls, or a suitable
ClassLoader could perform bytecode re-writing to add the calls. The third

case is the when the RTSJVM needs to perform a context switch due to an
unforeseen situation; for example, if there is an uncaught exception that
terminates the run () method of a thread. In this case the runtime

environment must be appropriately modified to perform the end scheduling
band operation by having the thread calling

prepareToSuspend (curThread, THREAD_END) . For an example, let us

consider one of the RealtimeThread. sleep() methods again.
Conceptually, it can be rewritten as:

public static void sleep(HighResolutionTime time)
throws java. lang. InterruptedException {

PriorityScheduler. prepareToSuspend(
RealtimeThread. currentRealtimeThread(), SLEEP);

code that constitutes the scheduling point e. g. a POSIX sleep()
PriorityScheduler. reacheduleResume(

RealtimeThread. currentRealtimeThread())=

Figures 6.2,6.3 and 6.4 show how the execution of a scheduling band

operation would take place in an RTSJ implementation of the FMSI?
framework. The first figure is for a potentially blocking method, the second
for a potentially blocking bytecode instruction, and the third for a possibly
suspending situation arising within the RTSJ virtual machine.

195

Application Level RTSJ Library

Thread RTSJ_LibraryMelhod Preemption LPVelPnon Scheduler

I

potentially blocking method I

-RII
prepareToMethodl l

I
Iº

Scheduling point rescheduleMethodp
LT- I

I

II

---------*

Figure 6.2: Adding base scheduler calls to a potentially blocking library method

Application Level RTSJ Library

hJJ VM PreempuonLevelPriori ySChedullr

potentially blocking bytecode I

I-I
prepareToMethod(1

------------------ f!

---------------- Scheduling pit
(bytecode escheduleMethodO

I

I

Figure 6.3: Adding base scheduler calls to a potentially suspending bytecode instruction

Application Level RTSJ Library

ha2 Threadl RTSJ V PreemotionLeveIPnorityScheduler

asynchronous interruption

transfer of control

prepareToSuspendl)

-------------- -- Scheduling point i
(context switch) rescheduleResume(i

____________ _
Ii

F____________
I

Figure 6.4: Adding base scheduler calls within the virtual machine

196

6.2.3 The PreemptionLevelParameters class

As we have seen in Chapter 4, a key part of the FMSF framework is the

use of preemption levels for the sharing of resources. Each thread must,
therefore, be associated with its own preemption level. This is supported by

extending the PriorityParameters class. This way the
SchedulingParameters object associated with each thread will contain both

a priority, which is essential for the dispatching of the thread by the base

scheduler, and a preemption level. The new SehedulingParameters
hierarchy is shown below, followed by the description of the
PreemptionLevelParameters class.

SchedulingParameters

PriorityParameters

ImportanceParameters PreemptionLevelParameters

Figure 6.5: The SchedulingParametars class hierarchy

package javax. realtime;
public class PreemptionLevelParameters extends

PriorityParameters {

public PreemptionLevelParameters(
int band, int relativePreemptionLevel);

//methods

public int getBand();
public int getPreemptionLevel();
public int getAbsPreemptionLevel();
public void setBand(int newBand);

public void setPreemptionLevel(int relativePL);

protected void setAbsPreemptionLevel(int absolutePL);
public java. lang. String toString();

An object of the class is initialised with two values, the band to which the
Preempt ionLeve1Parameters object will correspond (i. e. the lowpriority of
the band) and a relative preemption level to be used within that band. These

197

values can be retrieved and changed with the provided get and set methods.
A third field is also part of a PreemptionLevelParameters object, the

absolute preemption level, corresponding to the given relative preemption
level. This field's value is set by the base scheduler using the available set
method.

6.2.4 Application-defined schedulers
To allow application-defined schedulers, a new subclass of Scheduler is

introduced. The position of the ApplicationDefinedScheduler class in

the scheduler hierarchy is shown in Figure 6.6.

Scheduler

PriorityScheduler II ApplicationDefinedScheduler

Figure 6.6: The ApplicationDe£inedScheduler class diagram

The class definition is the following:

package javax. realtime;
public abstract class ApplicationDefinedScheduler extends

Scheduler {

public ApplicationDefinedScheduler(int band,

ProcessingGroupParameters capacity);
abstract methods

protected abstract void released(Schedulable sched);
protected abstract void lockedObject(Schedulable sched);
protected abstract void unlockedObject(Schedulable sched);
protected abstract void suspended(Schedulable sched,

int reason);
protected abstract void blocked(Schedulable sched);
protected abstract void resumed(Schedulable sched);
protected abstract Schedulable[] getMostEligible();
protected abstract Schedulable[] isEligible(

Schedulable sched);
protected abstract boolean setScheduler(Schedulable sched);

// instance methods
public int getBand();

198

As we can see in the constructor, each newly constructed application-
defined scheduler is assigned a ProeessingGroupParameters object. This

object represents the CPU percentage available to all the scheduler's threads.
This effectively allows the threads to be scheduled within a server and will be
further explained in Section 6.2.7.

Through its abstract methods this class sets the API that all user-defined
schedulers must provide in order to be compatible with the FMSF. In other

words, an application-defined scheduler must inherit from this class and
implement all abstract- methods, which form the one-way API between it and
the PriorityScheduler. In this scheme the application-defined scheduler is

a passive entity. Only the base scheduler can pass messages to other

schedulers. For most of the methods the name is indicative of the method's

purpose:

" released () informs the application-defined scheduler that a new thread
in the scheduler's band has been started
" loekedobj ect 0) tells the scheduler that one of its threads has locked

an object (i. e. entered a synchronized region)

" unlockedobj ect () informs the scheduler that one of its threads has
released an object lock (i. e. exited a synchronized region)

*blocked() informs of a thread being blocked while trying to lock a

resource

" suspended () informs the scheduler that a thread has been suspended
(in reality, this method is called right before the thread is actually
suspended)

" resumed () informs that a thread has resumed after a suspension
" getMostEligible () asks from the application scheduler to return its

currently most eligible thread; the scheduler must return a two-cell array
(schedulable [2]) that contains the most eligible thread in the first cell
(cell'0) and a preempted thread, if any, in the second cell (cell'1)

" isEligible () asks the application-defined scheduler whether the

current thread is eligible to run; the scheduler again returns a two-cell array,

as in getMostEligible ().

" setScheduler 0 asks the scheduler to accept a thread to be scheduled
by it, while also associating the scheduler's ProcessingGroup

Parameters object with the thread.

199

" lastly, the getBand () instance method returns the low priority of this
band.

As we have already seen in the previous section, new application-defined

schedulers can be added to a system by registering them using the

PriorityScheduler. setScheduler () method. This way multiple user-
defined schedulers can coexist in the system, occupying non-overlapping
bands in the RTSJ priority range. Hence, the proposal introduces two-level

scheduling to RTSJ. The first level is the PriorityScheduler, the second
level is user-defined.

6.2.5 Execution eligibility inversions
Priority inversion can occur in the RTSJ whenever a schedulable object is

blocked waiting to enter a synchronized region or method. In order to limit

the length of time of that blocking, the RTSJ requires that the priority

scheduler maintain all queues used by the real-time virtual machine in priority

order. So, for example, the queue of schedulable objects waiting for an object

monitor, as a result of a synchronized method call or the execution of a

synchronized statement, must be priority ordered. Where there is more than

one schedulable object in the queue at the same priority, the order between

them is defined to be first-in-first-out (FIFO). Similarly, the queues resulting
from calls to the wait O methods in the object class should be priority
FIFO ordered.

The RTSJ provides facilities for the programmer to specify the use of
different priority inversion control algorithms. By default, the RTSJ requires
priority inheritance to occur whenever a schedulable object is blocked waiting
for a resource. However, an implementation of the FMSF needs to enforce its

own eligibility inversion avoidance protocol, which, as seen in Section 4.5, is
based on the Basic Preemption-Ceiling Protocol (BPreCP). Conveniently, the
RTSJ provides the ability to change the default priority inversion control
algorithm for any and all objects in the system via the MonitorControl class
hierarchy. At the root of this hierarchy is the following abstract class:

package javax. realtime;
public abstract class MonitorControl {

// constructors
protected MonitorControl();

// methods

200

public static MonitorControl getMonitorControl();
public static MonitorControl getMonitorControl(

java. lang. Object obj);
public static MonitorControl setMonitorControl(

MonitorControl policy);
public static MonitorControl setMonitorControl(

java. lang. Object obj, MonitorControl policy);

The four static methods allow the getting/setting of the default policy and
the getting/setting for an individual object (the methods return the old policy).
The RTSJ defines two policies, subclasses of MonitorControl:
Prioritylnheritance (default policy) and PriorityCeilingEmulation.
All we have to do to extend the RTSJ and support preemption levels is to
introduce the following new class:

package javax. realtime;
public class BPreCPResourcePolicy extends MonitorControl {

private BPreCPResourcePolicy(int band, int ceiling);
// methods
public int getSchedulingBand();
public int getCeiling();
public static BPreCPResourcePolicy getMaxPreemptionLevel();
public static BPreCPResourcePolicy instance(int band,

int ceiling);

The Monitorcontrol class hierarchy thus becomes the following:

At this point it is worth repeating what was said in Section 4.5.5, that
implementation of the eligibility inversion control policy is done at the

middleware layer and is transparent to the OS. The OS can carry out its own
priority inversion control algorithm. Also, it is important to note that every
resource accessed by threads (one or more) running under an application-

201

Figure 6.7: The MonitorControl class hierarchy

defined scheduler should be governed by a MonitorControl object of type
BPreCPResourcePolicy.

6.2.6 EDFScheduler: an application-defined scheduler
As an example and proof of concept for our user-defined scheduling

scheme, we can implement an EDF scheduler.

public class EDFScheduler

extends ApplicationDefinedScheduler {

public EDFScheduler(int band,
ProcessingGroupParameters capacity);

The class implements all abstract scheduler and
ApplicationDefinedScheduler. methods. In addition, it has three internal

structures for the enforcement of the EDF policy within a scheduling band,

as specified in Section 5.1. These are: i) the EDF queue of band tasks currently

residing within the band, ii) the locking list of band tasks currently locking

within the band, and iii) the LIFO medium lock locking list for keeping track

of eligibility inheritance when lower tasks lock in the band. Figure 6.8 shows
the position of the EDFScheduler class in the Scheduler hierarchy.

Scheduler

PriorityScheduler II ApplicationDefinedScheduler

EDFScheduler

Figure 6.8: EDFSchaduler in the Scheduler class hierarchy

Construction of the EDFScheduler is fairly straightforward, given the
description of Section 5.1. However, there is one vital element missing. the
RTSJ API does not include the notion. of an absolute thread deadline. To

!i

202 ."

rectify this situation we introduce a subclass of PeriodicParametera,

EDFPeriodicParameters. The only new element this class introduces is

methods that get and set an absolute deadline. This is the absolute deadline of

a thread associated with an instance of this class. The class description is given
below.

import javax. realtime. *;

public class EDFPeriodicParameters extends PeriodicParameters {

public EDFPeriodicParameters(HighResolutionTime start,
RelativeTime period, RelativeTime cost, RelativeTime deadline,

AsyncEventHandler overrunHandler, AsyncEventHandler missHandler);

protected void setAbsDeadline();
protected void setAbsDeadline(RelativeTime rt);

protected void setAbsDeadline(AbsoluteTime at);
public AbsoluteTime getAbsDeadline();

}

The setAbsDeadline () method sets the absolute deadline to an absolute
time equal to the current time plus the deadline parameter passed to the

constructor. The setAbsDeadline (RelativeTime rt) method sets the

absolute deadline to rt amount of time past the previous absolute deadline, or
past the current time, if the previous absolute deadline is null. The

setAbsDeadline (AbsoluteTime at) just sets the absolute deadline to at.
The getAbsDeadline () method returns the absolute deadline of the thread

associated with this. The class diagram is shown in Figure 6.9.

ReleaseParameters

PeriodicParameters

EDFPeriodicParameters

Figure 6.9: EDFPeriodicParametere in the ReleaaeParametera class hierarchy

This class is, of course, meant to be used for periodic threads. In order to
use aperiodic or sporadic threads with the EDFScheduler we can simply

203

construct EDFAperiodicParameters and EDFSporadicParameters,
inheriting from AperiodicParameters and SporadicParameters,

respectively. Alternatively, we could construct EDFNonPeriodicParameters,
inheriting from SporadicParameters, which could be used both as an
AperiodicParameters and as a SporadicParameters class.

6.2.7 Impact on feasibility analysis
As well as providing a framework for schedulers, the RTSJ includes a

framework for the supporting on-line feasibility analysis. However, the default
feasibility analysis for the priority scheduler is very crude (it simply assumes an
adequately fast machine to handle the periodic and sporadic load). The

proposal here allocates all application-defined schedulers a CPU budget and
replenishment period using a constrained version of the RTSJ processing
group parameters mechanism. A ProcessingGroupParameters object
defines a group period, cost, start time, deadline, and relevant overrun and
miss handlers. For threads associated with a ProcessingGroupParameters
object the system guarantees that they will not be collectively given more time
per group period than indicated by the group cost. Of course, this mechanism
requires support from the operating system. As explained in [Belliardi et al.
2006], an instance of ProcessingGroupParameters is logically associated
with a virtual server. The server can only logically execute when i) it has not
consumed more execution time in its current release than the cost (budget)
parameter, ii) one of its associated schedulable objects (e. g. threads) is
executable and is the most eligible of the executable schedulable objects. If the
server is logically executable, the associated schedulable object is executed.
When the cost has been consumed, any overrun handler is released, and the
server is not eligible for logical execution until its next period is due. At this
point, its allocated cost (budget) is replenished. If the server is logically
executing when its deadline expires, any associated miss handler is released.
The deadline and cost parameters of all the associated schedulable objects
have the same impact as they would if the objects were not bound to a
processing group.

This way threads within a scheduling band can be treated as if they are
being served by a deferrable server [Strosnider et al. 1995]. Hence, if the
priority scheduler is supporting true feasibility analysis, then this is not
undermined by the proposed approach. Within a band, the application-defined
scheduler can only assume that it gets its full budget each period. Hence, it can
only give independent partial guarantees. To give full guarantees needs a global

204

server-based analysis (see Davis and Burns 20051). To give full II1dcl'clRlcnt

guarantees would require the priority scheduler to guarantee the capacity

specified in the processing group parameters, which would be a chan), c 0) t Iie

R'I'SJ processing group semantics.

6.3 A simulated implementation of FMSF

The previous sections explained how a full fledged ii IýIcº, iýnt; ttiý, n �I tilt,
framework can be accomplished. I lowever, such an inýlýlýnýcnt; tti�n ýv) ulýl Iu"

outside the scope of our work. The purpose of an inipleniernt; tti�n, Wll, in tI1(

scope of this thesis, is not to prove that the framework can be lillpiel1u ni((I.
This was shown by modelling the system and showing that rn� race c�nýliti�ns

exist. Nor is it about providing the most efficient ur optimised
implementation. Rather, the aim is to acquire an cstiniatc ()it tl, c ()rdIe"r (, I

magnitude of the overhead that the framework will intu)dluce t� tlºt

middleware. Therefore, since acquiring execution tim esliný; ºtý s, ; tn(l 114)1
determining the exact cost of the , \l'I calls, is our concern, wie ha e �Lied 1�r

a simulated implementation of the framework, which avoids cut�I, ("rs4, nºº"
implementation details, while still providing its with tiºnin}, results ýýlutý;, lent

to those of a full implementation. This has been cl()ne by C(din}; Al It; tnºe\vOrl:
functionality as a set of user/application level classes. The sclic(ItI111111" kind

operations' base scheduler calls are "manually" called frunº within cacti IIll(.; t(I.
't'his can be seen in I igure 6.10.

Application Level RTSJ I itn; vy

Thread PeinppgnLevelPnunlytichedulri It 1 t,. l Mrlltýiýf

prepare ToMethodO

I. ýI

potentially blocking method

Sl. hrrdiii: i prnnl 1

rescheduleMethodO I

-

1

Figure 6.10: Execution of a scheduling hand oper: Ition under a simulated franicwurk
implementation

")(
li

By comparing this with Figures 6.2 and 6.3 in Section 6.2.2 we can see that
the only difference between the two approaches, as far as the base scheduler
calls are concerned, is that in a full implementation the calls are executed as
part of the RTSJ library, whereas in the simulated approach they are executed
as application code. This works the same for potentially blocking methods as
well as bytecodes. However, in both cases the virtual machine needs to just-in-

time compile this code, which means that the execution cost of the base

scheduler calls in both cases is of the same order of magnitude. From that we
draw the conclusion that our measurements of the simulated framework will
give a faithful picture of the execution costs under a full implementation.

6.3.1 The PreemptionLevelPriorityScheduler class

The main difference between a full implementation and the simulated
version is the implementation of the base scheduler calls. The purpose of the

simulated version is to avoid reprogramming the RTSJ itself. Therefore, with
this approach the base scheduler calls cannot be added to

PriorityScheduler. Instead, a subclass of PriorityScheduler is
introduced, PreemptionLevelPriorityScheduler. This class simply
contains all the methods added to PriorityScheduler in Section 6.2.1. Its
description is given below.

public class PreemptionLevelPriorityScheduler extends Scheduler
{

// constants for "reason" argument same as in Section 6.2.1

new methods"
public static final void reschedule(Schedulable sched);
public static final void prepareToLock(Schedulable sched,

java. lang. Object lock);
public static final void rescheduleLock(

Schedulable sched);
public static final void prepareToUnlock(

Schedulable sched);
public static final void rescheduleUnlock(

Schedulable sched, java. lang. Object lock);
public static final void prepareToSuspend(

Schedulable sched, int reason);
public static final void rescheduleResume(

Schedulable sched);
public static final int getPreLevelsPerBand();

19 These methods must be implemented as thread-safe.

206

public static final void setPreLevelsPerBand(int levels);

public static final void setScheduler(
ApplicationDefinedScheduler appSched, int band);

The only notable difference between the two classes is that the base

scheduler calls in Preempt ionLeve1Priori tyScheduler arc public
instead of protected. The reason is that in the simulated version these

methods are meant to be called from within application code, i. e. from
different packages, while in a full implementation they are called by other
RTSJ library methods. With the addition of this class the Scheduler hierarchy
has now become the following

Scheduler I

PriorityScheduler I ApplicationDefinedScheduler

PreemptionLevelPriorityScheduler EDFScheduler

0

Figure 6.1h PreemptionLevelPriorityScheduler in the Scheduler class hierarchy

Going back to the example of the RealtimeThread. sleep () method we
can rewrite it for the simulated implementation as follows:

public class AppThread extends RealtimeThread {

public void run() {

PreemptionLevelPriorityScheduler. prepareToSuspend(
RealtimeThread. currentRealtimeThread(), SLEEP ;

RealtimeThread. sleep(new RelativeTime());
PreemptionLevelPriorityScheduler. rescheduleResume(

RealtimeThread. currentRealtimeThread());

207

6.3.2 Changes to the BPreCPResourcePolicy class
A second modification found in the simulated version is the addition of

two methods in the BPreCPResourcePolicy class. The new class is shown
below.

package javax. realtime;
public class BPreCPResourcePolicy extends MonitorControl {

private BPreCPResourcePolicy(int band, int ceiling);

additional methods
public static BPreCPResourcePolicy getBPreCP(

java. lang. Object obj);
public static BPreCPResourcePolicy setBPreCP(

java. lang. Object obj, BPreCPResourcePolicy bprecp);

The new methods, getBPreCP () and setBPreCP 0, , play the role of the

getMonitorControl (j ava. lang. Obj ect obj) and setMonitorControl
(java. lang. Object obj, MonitorControl policy) in the
MonitorControl class. The need to add them again stems from the simulated
nature of the implementation. Even though the setMonitorControl ()

method could be called to bind a BPreCPResourcePolicy object to a shared
object, this would not achieve the desired result. The RTSJ virtual machine
applies only fixed-priority dispatching. Therefore, without modifications to the
RTSJ, it would be impossible for the virtual machine to know how to handle a
monitorenter bytecode instruction on the shared object in order to enforce
the FMSF resource sharing protocol.

In the simulated FMSF implementation the ' application calls
setBPreCP (obj , bprecp) , which saves the pair (obj, bprecp) and returns
the previous BPreCPResourcePolicy for the object, if any. Whenever obj is

used as the monitor in a synchronized statement, the
Preempt ionLevelPriorityScheduler calls getBPreCP(obj) on the

object to retrieve its BPreCPResourcePolicy and, thus, be able to calculate
its ceiling. This can be seen in the following code fragment.

public class AppThread extends RealtimeThread {

public void run() {

Object obj = new Object();
BPreCPResourcePolicy bprecp= BPreCPResourcePolicy. instance(

3,5);

208

BPreCPResourcePolicy. setBPreCP(obj, bprecp);

PreemptionLevelPriorityScheduler. prepareToLock(
RealtimeThread. currentRealtimeThread(), obj);

synchronized(obj) {

PreemptionLevelPriorityScheduler. reecheduleLock(
RealtimeThread. currentRealtimeThread();

...
// critical region

PreemptionLevelPriorityScheduler. prepareToUnlock(
RealtimeThread. currentRealtimeThread());

}

PreemptionLevelPriorityScheduler. reacheduleUnlock(
RealtimeThread. currentRealtimeThread(), obj);

BPreCPResourcePolicy. getBPreCP (obj) is called from within

prepareToLock () in order to calculate the object's ceiling.

6.4 Measuring the FMSF overhead

Based on the simulated implementation of the framework, this section
presents tests that aim at providing an estimate of the execution time of each
base scheduler call. The base scheduler calls are the only part of a scheduling

operation that is introduced by the framework, therefore their execution time
is essentially the overhead that the framework is introducing to the existing
RTSJ scheduling framework. The tests where carried out on an AMD Athlon
700MHz machine, with 128NIB RAM memory, running Red Hat Linux 8.0

with the pthreadrt library and using RTSJ 1.0.2-3 (RI version 1.3). No other

activity was executing on the machine, therefore it is assumed that no
preemption of the test applications took place. The following sections present
the results as raw data, while Section 6.4.5 provides the overall assessment of
these results. The test code is not included in this chapter in order to make
reading easier. Instead, it is included as Appendix A.

6.4.1 Caveat
In the tests that follow, all measurements have been made using the

Clock. getRealtimeClock(). getTime(AbsoluteTime dest) RTSJ

method to get the current time before and after the code to be measured. By

subtracting the time before the code from the time after we get our

209

measurement. However, this way we also include in the measurement the

execution time of getTime O. This can be seen in Figure 6.12.

Actual time Actual time

measured measured

getTime() II Measured code I getTime()

time

xyzxy
Figure 6.12: Measuring execution time with getTime ()

The actual time measured is y+z+x. However, x+y is the execution time

of getTime O. 't'herefore, for every measurement the execution time of

getTime O is added once. 'c'aking advantage of this we can now measure the

execution time of getTime O using getTime In this case z becomes x+v,

therefore the whole measurement is 2(x+y). Dividing it by 2 should give us

the cost of getTime O. This yields a cost C.
1IL2, us.

To get a more precise estimate one needs to subtract this overhead from

any measurement. However, this subtraction is not performed in the following

tests, since the amount is too small to make a significant difference, and also
because it is easy for the reader to calculate.

6.4.2 Single-thread test
The first test is comprised of a single thread, i. e. a thread running

under an I? l)U application-defined scheduler with a louv priority set at

Priori tyScheduler . get Min Priority O. The thread executes all the

Preempt ionLevelPriori tyScheduler base scheduler calls a thousand

times each. Basically, the thread's run O method contains a for O loop within

which it acquires timing results for each base scheduler call and performs

some calculations. ; After exiting the loop the thread performs some final

calculations, prints the results and terminates.

't'his test measures the execution times of reschedule O,

prepareToLockO, rescheduleLockO, prepareTounlockO, resche-

duleUnlock(), prepareToSuspend(SLEEP), RealtimeThread. sleep(),

rescheduleResumeO and prepareToSuspend(WFNP). The

prepareToSuspend (SLEEP) call was selected as representative of all other

2111

prepareToSuspend calls, except prepareToSuspend (WFNP). This latlcr on(-

is also representative of prepareToSu spend (THREAD-END) , as Ilke t\v(

execute the same code. The test calculates the actual anuount of firme spent in

each call. The final printed results arc the mean execution tines (ur Onc
thousand iterations. The results of this test can be seen in Figtirc (x. 13 1c! m.

N
1

140

120

100

80

60

40

20

0
QN q,

AP

Figure 6.13: Base scheduler call execution times for one test thre. ttl

6.4.3 Multi-thread tests
The second test is actually a series pof tests in which a nunwli(. t)I I: I)I'

threads run concurrently, under the same 1`1)F scheduler, each }, ()in}, tlhnuii}'Ih

all the steps described in the previous section. The objective is t() see h()\\. the

execution time of each base scheduler call is affected with the increase in tlhe

number of concurrent threads. I lowever, due to the fact that nuuiltpic thitca Is

arc now running, the execution time has tee be calculated wthin flit Irin

scheduler calls themselves. 't'herefore, each of Ili(, tint lip xls in Ow

Preempt ionLeve1Priori tyScheduler has been chmit', ed too accept On(-
more parameter of type RelativeTime, which is rcturncd I)V the 111(. 11 1()d too

contain the method's execution time. A method calculates its cxeciitiOn time

according to the following model, where start, ends anal pIt, arc ;, t it ic

variables of the Preempt ionLevelPriori tySchedulet class.

public synchronized static RelativeTime someMethod(Schýdul. ýl, l I, i,

RelativeTime rTime) {

start = Clock. getRealtimeClockO. getTime(start);

pip = (Preempt ionLevelParameters)sched. get Schedulit yl, ýi, im t ;, O;

'11

// the method body

end - Clock. getRealtimeClock(). getTime(end);

pip. setPriority(somePriority);
rTime - end. subtract(etart, rTime);

return rTime;

In the above sample code we can see that the end time is acquired before

any change in the thread's priority, because that could cause the thread to be

preempted. Had the end time been taken after setting the priority, the

execution time of the preempting thread would have been added to the

method's execution time estimate, leading to an erroneous calculation. The

actual test code is contained in Appendix A.

In the multi-thread case the timing results taken from all threads produce
the final estimation of the mean execution time for each base scheduler call.
The first graph, shown in Figure 6.14, compares the measurements for all the
base scheduler calls as calculated by the single thread test in the previous

section and by the multi-thread test, when running only one thread. As we
have seen, in the single thread test execution time measurement is done within
the test thread, while in the multi-thread version measurements are taken

within the base scheduler calls. This is shown in the graph as "timing by

thread" and "timing by scheduler". The timing difference between the two
tests is due to two reasons. Firstly, in the "timing by thread" test there is the

extra overhead of calling the base scheduler method, which does not exist
when performing the measurement from within the method. Secondly, for

reasons explained in the previous section, when timing is done by the

scheduler, any setPriority () method that takes place right before the
method returns is not taken into account when calculating the execution time.
For these two reasons the "timing by thread" measurements are greater. Now,
because the overhead of calling the base scheduler method exists for all
methods, while the overhead of setPriority () exists only for the

reschedule methods (the prepareTo methods never set the priority before

returning), the minimum overhead will be that of calling the method.
Therefore, the smallest of the observed differences between the two tests will
give us a worst-case estimate of the overhead of the method call. As we can
see, the smallest difference is for the prepareToSuspend (SLEEP) method
and is dpt=43.92-39.6=4.32, us Conversely, the largest of the observed
differences will give us a worst-case estimate of the overhead for both the call
and setting the priority. This is for the reschedule () method and is

212

d,.,.,
5. =130.057-1051=24,3, us. These differences are used bcl()w toi adjust the

execution time estimates in the multi-thread tests.

140

120

100

80

60

40
N
1

20

0

14

ci °° ýv c 'ý aJ ° ° \0 ý Ja ý
r me ° Z c v 02

qj c i 'ý
J

¢ ym a ý J

ä

c
IR:

c° ` a `ma °
J

ý, Q om Qq a
I Qt may Q v f f U ` ýy

o
y

o
Q `

t

, 0
iF 4-

Q q

liming by
thread

timing by
scheduler

Figure 6.14: Base scheduler call execution times for one test thread

Nest are presented the graphs of the execution time estimates f()r aII ii
base scheduler calls. The graphs are made up of ten estiiu; ites Iia I t(ý Itl

threads running concurrently. Each graph is comprised of two> lines. 'I'll(- IL)ýý (r
hne shows the original estimates as outputted by the test prograni, wile the
higher line shows the adjusted values after adding tlhe t4,1 ; tndl

calculated above. (1, is added to prepareTo method estiiniates, \\ hile i/,,,,, is

added to reschedule method estimates.

.
', I1

1

1

1

1

test output

f adjusted
estimate

100 1IIII1IiT1

123456789 10

threads

Figure 6.15: Multi-thread reschedule () execution time estimates

60

56

52

U)
4E

44

54.5 __- '''' "" 54 62 " v`
54 33 5442 "V1 514 461 42

-M ir

50.50,79 53 50.7 50 69 55 1 50101 5q. 50.1 test output

adjusted
estimate

123456789 10

threads
Figure 6.16: Multi-thread prepareToLock () execution time estimates

214

50

40

30

20

10

40.910 49 41 06 40 84 4J 8 41 08 40 89 40 76 4W 6710-9

16-616 119 16 76 16 54 1 .5
16 78 16 59 16 46 16 3716.6

test output

adjusted
estimate

oý
1

30

26

22

U) M
18

14

23456789 10

threads

Figure 6.17: Multi-thread reacheduleLock () execution time estimates

10-}
1

test output

+* adjusted
estimate

23456789 10

threads

Figure 6.18: Multi-thread prepareToUnlock () execution time estima(es

'I5

80

60

40
U) z

20

63.36 2 62 97 63 17 63 44 62 .6
62 .8

62 -9 62 58 63

39 q7 gq 38 67 38 87 39 114
3$.33 .5 34 .6 30 . 338.7 test output

adjusted
estimate

0
123456789 10

threads

Figure 6.19: Multi-thread reacheduleUnlock () execution time estimates

50

46

42
test output

38

31

3(

adjusted
estimate

123456789 10

threads
Figure 6.20: Multi-thread prepareToSuspend (SLEEP) execution time estimates

216

50

42

34

N

26

18

test output

adjusted
estimate

10

II

123456789 10

threads

Figure 6.21: Multi-thread reacheduleResume () execution lime eslilualeM

test output

adjusted
estimate

123456789 10

threads

Figure 6.22: Multi-thread prepareToSuspend (WFNP) execution Time cslijuales

38.3 3
NIL

8 3j '. 9 31 1.1 3 .1
38 .2 37 98 37 86 38 . 538.8

14 1J .71 .6l .8l .8
14 -9 13 68 13 56 14 . 214.5

.'

6.4.4 Tests with two application-defined schedulers
The final test is almost identical to the second one, with the exception that

the concurrent 1? l)F threads run under two different FDh schedulers. One

scheduler has its low set to PriorityScheduler. getMinPriority O and

the other at PriorityScheduler. getMinPriority O +4. The purpose of

this test is to give us an idea about how the timing behaviour of the base

scheduler calls can change, if more application-defined schedulers are used.
live tests are run. The first places one thread at the lower scheduler and one

thread at the higher, the second test puts two threads at the lower and two at

the higher, the third three and three and so on. As in the previous tests these

threads all access the same resource as part of their run. This way we have a

mixture of cases, with half the threads locking within their band and half

locking at a higher band. The test is contained in Appendix A and the results

are presented below. ; again, as in the previous graphs, the lower line represents
the results of the actual test output while the higher line is the adjusted

estimate, after the addition of the dt, t and d, values for prepareTo and

reschedule methods, respectively. The points on the x-axis show how many
threads run on each band, e. g. the first point is for the test where one thread

was running in the lower l 1)F band and one thread in the higher 1? Dl' band.

test output

adjusted
estimate

1+1 2+2 3+3 4+4 5+5

threads
Figure 6.23: reschedule () execution time estimates for two EDF schedulers

218

test output

adjusted
estimate

threads

Figure 6.24: prepareToLock () execution time estimates for two Ia)Uschedulers

40 i

30

20
U,

10

31.01 30 25 30
-m

47 30
mm

37 30.33
mm

6.71 5
15

6. 7 6. 7 6.03

0
1+1 2+2 3+3 4+4 5+5

test output

adjusted
estimate

threads

Figure 6.25: reseheduleLock () execution time estimates for two I? 1)I schedulers

.
). I ()

30

26

22

U) ZL
18

22.74 22 65 22 67 22 65 22.62

18.42 18
133 18 135

18
133

18.3

14

test output

f adjusted
estimate

10 '
1+1 2+2 3+3 4+4 5+5

threads

Figure 6.26: prepareToUnlock () execution time estimates for two EDF schedulers

60 5 51I 1 58.69
7114 -M

40

U) M

20

test output

f adjusted
estimate

0i iiii
1+1 2+2 3+3 4+4 5+5

threads
Figure 6.27: rescheduleUnlock O execution time estimates for two EDF schedulers

220

test output

adjusted
estimate

1+1 2+2 3+3 4+4 5+5

threads

Figure 6.28: prepareToSuspend (SLEEP) execution time estimates for two 11)1 tichc(I Ikrr:

60

40

cn =L

20

test output

adjusted
estimate

0i --i
1+1 2+2 3+3 4+4 5+5

threads

Figure 6.29: rescheduleResume () execution time estimates for Oo1? tW "chedI'ler,

221

test output

f adjusted
estimate

1+1 2+2 3+3 4+4 5+5

threads

Figure 6.30: prepareToSuspend (WFNP) execution time estimates for two EDF schedulers

6.4.5 Assessment

It is worth restating that the simulated implemcntatiOn was not done with

optimisation in mind, nor could there have been the level of optimisation that

only a full implementation can allow. Of course, redundant or inefficient code
has been avoided where possible, but there are parts where optimisation can

certainly be applied, e. g. an optimised implementation of an F. DF ready queue.
't'herefore, there is every reason to believe that the above timing results can be

improved in a concentrated effort.

By examining the graphs in the single band, multi-thread case we can see
that the execution costs, although slightly changing with every test, as would
be expected, are practically constant. That is to say that there is no observable
tendency tee increase or decrease in value as more threads are added. Of

course, this cannot be proven for more than 10 concurrent threads, but is a
good indication.

In contrast, some of the results of the last test with two 1? l)l' schedulers
do not exhibit the same quality. '1'hc costs of reschedule O,

prepareToSuspend(SLEEP), rescheduleResume() and

1) 1) 1)

prepareToSuspend (WFNP) are equivalent to those of the single EDF

scheduler test, for the first two cases (1+1 and 2+2). In the third case (three

threads running in each EDF band), however, there is a sharp increase in cost.
This cost is maintained, more or less, at the same level in the last two cases
(4+4,5+5). This is most probably due to the increase in possible
combinations between threads, which causes these base scheduler calls to take
longer execution paths. rescheduleLock () has a, more or less, constant
cost, but this is lower than its cost in the single EDF scheduler tests. This is to
be expected, since in this test half the threads arc executing
reseheduleLoek () outside their own band, which is a simpler situation to
handle. More specifically, isEligible () is not called while at a higher band,
hence the decrease in cost. The cost of rescheduleUnlock () slightly
increases at the third test case, however all results are lower than the single
EDF band tests. The reason the results are lower is that the application
scheduler has an easier task to perform when informed about unlocking a
resource by a lower band thread than by its own threads. Therefore, since half

the unlockings are done by lower band threads unlocking at a higher band, the
final execution cost is decreased. Only prepareToLock () and
prepareToUnlock () yield values which are equivalent with those in the
single band tests, because their code is practically the same irrespective of
whether the locking takes place in the thread's own band or a higher band.

The minimum overhead that a real-time thread can expect each period is
the sum of the reschedule () and prepareToSuspend (WFNP) methods. To

that we must add the cost for prepareToSuspend (THREAD_END), in order to

get the total overhead form release to termination. As already mentioned,
prepareToSuspend (THREAD END) costs the same as

prepareToSuspend (WFNP), since their code is practically the same.
Therefore, the base overhead cost for a thread is:

(G'
y-f-ciwhip)' 12 + Cie

zd , n>1

where n is the number of periods the thread executes for. The minimum

possible cost is when a thread executes only once, in which case only
reschedule () and prepareToSuspend (THREAD END) arc executed. Based

on the highest results measured in the single EDF scheduler tests, the worst
measured case is:

CC+ Cad=1328+39.7=172.5, us

223

The cost of accessing a resource is the sum of costs for

prepareToLock(, rescheduleLock(), prepareToUnlock() and

rescheduleUnlock (). Again based on the highest results in the single EDF

scheduler tests, the worst measured case is:

CpTL+C, L+CpTU+Cr,, U = 55.34+41.08+23.12+63.44 =182.98, Us

The cost of suspension is the sum of prepareToSu spend () and

rescheduleResume () . In our estimates we use the

prepareToSuspend (SLEEP) as representative of all prepareToSuspend ()

calls. Based on the highest results in the single EDF scheduler tests, the cost
for suspension is:

CPTS + C� = 44.2 + 38.78 = 82.98, us

Finally, the total cost overhead for a band thread in a single period is given
by the following formula:

Cres+(CPTL+CresL+CpTUf"CresU) *I+(CpiS+CresR) *k+C
P

where 1 is the number of resources a thread locks during its period, and k

the number of self-suspensions a thread performs. Usually, k will be zero. If

we assume that a typical thread locks three resources during its period, then a
typical cost overhead for a single period is:

C� f3 (CpTLfC
-fCpT

C
U)+C, ýp =132.8+3*182.98f39.7= 721.44, ßs

If we assume a more complex system with threads locking outside their
bands, then we have to replace the measurements from the single EDF

scheduler tests with those of the two EDF scheduler tests. Thus, the above
typical cost overhead for a single period becomes:

C, +3*(Cpn+C +CpTUfC, U)+CWýp =
140.8+3 *(52.28*31.01 +22.74+58.69)+65.9 = 700.86lus

To put these numbers into perspective a simple test has been set up to
measure the execution cost of starting a thread, changing priority, locking a
resource, unlocking, calling sleep () and calling waitForNextPeriod () in a

224

normal RTSJ RealtimeThread. The measurements arc made, as usual, by

using a getTime () before and after the code in question. sleep() is called
with a zero argument, so it practically does not suspend and the time measured
is the actual time of the sleep () method. It is worth noting that the cost of
changing a thread's priority is perhaps the most crucial clement in the
framework's performance, since the framework protocol's basic mechanism is

the manipulation of thread priorities. Therefore, it is important to have an idea

about how expensive this operation is. This test is also contained in Appendix
A. The times returned from this test were:

Table 6.1: Execution times of typical RTSJ operations

Initial start of a thread 122ms
Changing priority 151us
Synchronizing on an object 7ps
Releasing an object G, us
sleep() 45, Us
waitForNextPeriod () 1.1111s

With these measurements at hand we can calculate the overhead
percentage that the framework imposes on these operations. The overhead for

the initial start of a thread is the cost of reschedule (). For locking and

unlocking an object the overhead is the sum of prepareToLock (),

rescheduleLock (), prepareToUnlock () and rescheduleUnlock (). For

sleep () it is the sum of prepareToSuspend(SLEEP) and

rescheduleResume () . Finally, for waitForNextPeriod () the overhead is

produced by reschedule () and prepareToSuspend (WFNP). It is important

to note here that on the test platform used, the RTSJ reference
implementation is not able to properly perform priority inheritance [i'imcSys

2007]; that is, no priority change takes place when a thread has synchronized

on a resource and a higher priority thread requests the same resource.
Therefore, the above execution cost estimate for a synchronization operation
is not correct. For a basic application of the priority inheritance protocol this

time should be increased by the cost of two priority changes: one increasing

the active priority of the lower thread upon request of the resource by the
higher priority thread, and one decreasing the active priority of the lower

thread upon releasing the resource. Thus, the total cost for synchronising on
an object is 7+6+15+15=43, us The following table lists the costs of the

operations with and without the framework ý and gives the increase in

percentage. The values used for. the base scheduler calls are the highest

225

measured by the previous tests. The final row is the increase in one period of a

typical thread case, as presented earlier.

Table 6.2: Increase percentages due to the framework

RTSJ, FMSF % increase

Initial start of a thread 122ms +140.8, us 0.115%

Synchronization 43, us +182.98, us 425.53%
sleep () 451us +124.911us 277.56%

waitForNextPeriod () 1. ltns +206.7/is 18 8%

Typical thread period 1.229ms +721.444ts 58.7%

Based on percentages the increase might seem significant, for example in

the case of synchronization. However, percentages can be misleading. For

example, Ins increased to 5ns is an increase of 400% but 5ns is still a

miniscule amount of time. Moreover, an increase of this scale is to be

expected, since the framework introduces a non-negligible amount of new
logic into these operations. This is the price that has to be paid for the
increased flexibility offered. Especially with regard to synchronizations it has

to be said that even with multiple threads waiting on an object the framework

protocol would still incur the same amount of overhead, whereas with priority
inheritance we would have multiple priority changes, which would increase the
total cost of the operation. All in all, the crucial factor is the application
domain that the framework is going to be used in and whether the applications
that might use it can bear the overhead. It is viewed that the increase of under
a millisecond in a typical thread period is satisfactory for the types of
applications that would need to make use of flexible scheduling.

6.5 Summary

This chapter aimed at demonstrating the applicability of the Flexible
Middleware Scheduling Framework to existing real-time middleware systems
and applications. To this effect an implementation of the framework in the
Real-Time Specification for Java has been described. Such an implementation

accommodates an initial goal of the RTSJ, which was to support the state-of-
practice in real-time systems development and mechanisms to allow advances
in state-of-the-art. The work in this chapter provides an extension to the
RTSJ's scheduling framework, thus offering flexible scheduling in a portable
way. The approach is backward compatible with the current version of the

226

RTSJ in that programs that do not define their own schedulers will be able to

execute unchanged even on a version of RTSJ that implements the framework.
Furthermore, these programs will not need to experience any overhead, apart
from the negligible execution time of a single if statement, which will check if

a particular thread is scheduled by an application scheduler or not.

Secondly, this chapter provided a simulated implementation of the
framework on RTSJ, both as a proof of concept and as a test bed for

measuring the introduced overhead. The simulated implementation is done at
the application level, with the application programs explicitly calling the
framework's base scheduler calls at each scheduling point. Based on this
implementation a series of tests was conducted in order to provide insight on

the execution time overhead. The tests were of three types: a single thread test,

a single band, multithread test, and a two-band multithread test. These tests, in

conjunction with execution time measurements of basic RTSJ operations
(synchronization, thread release etc.), showed that the overhead is reasonable.
With a typical execution time increase of under a millisecond per period the
framework is deemed appropriate for the types of real-time applications that

need the services of flexible scheduling.

227

228

Chapter 7

Conclusions and
Future Work

This chapter summarises the contributions of this thesis, thus concluding
the research effort. Furthermore, it provides suggestions for further

development of the proposed framework. The principal aim is to enable rcal-
time program execution middleware to support arbitrary scheduling policies

chosen by the application. In other words, this thesis facilitates application-
defined flexible scheduling in real-time middleware systems.

Chapter 2 of the thesis is concerned with placing this work within the
framework of a broader effort to introduce flexible scheduling to real-time

systems. Through this survey comparative similarities have been highlighted

and also differences in approach. Three major areas of real-time computing

are examined; real-time middleware, including distributed middleware, real-
time operating systems, and real-time programming languages. Although other
approaches are useful within their corresponding domains, none can
satisfactorily accommodate flexible scheduling in real-time program execution
middleware.

229

The purpose of Chapter 3 is to provide insight in deciding the resource

sharing protocol used in the proposed framework. The chapter conducts a

survey of the best known resource sharing protocols, in order to adjudge

which protocol forms the best basis for efficient resource sharing between

arbitrary scheduling policies. In the course of the chapter the relationship
between the different protocols is explained and their differences are

summarised in a table. The Basic Preemption Ceiling Protocol is chosen for

two main reasons. Firstly, it allows resource access eligibility to be expressed in

a scheduling policy neutral way, and secondly, it provides deadlock avoidance

and bounded eligibility inversion even when tasks self-suspend while holding

resources.

Chapter 4 is the main locus of this thesis, presenting the Flexible
Middleware Scheduling Framework. It first sets out the rationale behind the
framework's protocol by explaining the basic mechanism of enforcing
arbitrary scheduling policies through the manipulation of task priorities. The

concept of a scheduling band is introduced, which defines the operating limits

of each application scheduler. The chapter proceeds with explaining the
mechanism of scheduling band operations and their role in enforcing the
protocol. Then the framework's resource sharing protocol is presented, which
is an amalgam of the Basic Preemption Ceiling Protocol and the Priority
Ceiling Emulation Protocol. Finally, the framework's protocol itself is
described, covering all scheduling band operations. This chapter's contribution
is the introduction of a framework for flexible scheduling in real-time
middleware systems. This framework allows applications to define scheduling
policies of their choice; it allows multiple arbitrary policies to co-exist in the
system; and it allows tasks under different policies to safely and efficiently
share resources. This way applications with diverse scheduling needs, across
the soft/hard real-time spectrum, can not only co-exist in a system, but also
cooperate with one another.

In Chapter 5 an initial evaluation of the framework is given which shows
its viability. This is demonstrated in three ways. The first part is the description

of an EDF application-defined scheduler. This is presented as a case study and
identifies mechanisms that can be used by any application-defined scheduler.
The second part presents a verification of the framework protocol's operation.
This is done through the use of a model, constructed in the UPPAAL model
checker, and provides strong indication that a correct implementation of the

230

protocol is fault-free. The third part of the chapter examines the types of
different scheduling policies that can be supported through the use of the
framework. The examination shows that a significant number of both hard

and soft real-time scheduling policies can be supported. In general, the

contribution of this chapter is to demonstrate the applicability and viability of
the flexible middleware scheduling framework in addressing a wide range of
scheduling needs.

Finally, Chapter 6 concludes the evaluation of the framework by examining
the issue of implementing it. The Real-Time Specification for Java is chosen as
the implementation platform, because of its current impetus. The chapter
describes two types of implementation. The first description is that of a full
implementation of the framework that contains all the necessary class
descriptions. However, because undertaking a full implementation is outside
the scope of this thesis, a second approach is presented, that of a simulated
implementation. In this latter case the framework classes arc implemented as
an application level library, with certain alterations in the class descriptions
being necessary. Following the description, timing measurements arc
presented based on the simulated implementation. The overhead imposed by

the framework operation is shown to be adequately low. This chapter's
contribution is three-fold. Firstly, it demonstrates that the FNISI7 framework

can be feasibly implemented. Secondly, and more importantly, by describing
how the framework can enhance the RTSJ with the addition, of flexible

scheduling this chapter highlights the framework's merits and ability to be

easily introduced to an existing middleware system. Last but not least, it

presents measurements on the execution time overhead that the framework
introduces, proving that the framework can viably support real-time
applications.

7.1 Contributions

The major contribution of this thesis is the introduction of a framework
for flexible scheduling in real-time program execution middleware. The
introductory chapter sets two design constraints: support for state-of-the-art
practices and portability of the middleware implementation. In Chapter 2a

number of approaches to flexible real-time scheduling were reviewed and were
found lacking in a number of aspects. The FMSF framework honours the
constraints set and addresses all the limitations of the existing approaches.

231

More specifically, the framework allows applications to define and use their

own arbitrary scheduling policies. It allows such different policies to co-exist
in one system, with an application being able to select a policy at runtime.
Moreover, it allows different applications running under different policies to

share resources amongst them with minimum execution eligibility inversion,

i. e. one instance. Applications can also define and use their own resource

sharing protocol. Additionally, applications not using the framework can co-

exist and share resources with applications' that are using it. This combination

of capabilities is a powerful tool for the specification of both state-of-practice

and novel approaches in real-time scheduling. Furthermore, the framework

promotes portability by being based on the most common of all real-time

scheduling policies, the fixed-priority preemptive scheduler. This greatly
facilitates the framework's implementation on different platforms.

With respect to the framework, the thesis contributes to its analysis and
proof of correctness. In Chapter. 4, proofs are provided for such basic

properties of the FMSF protocol as deadlock-free operation, bounded

eligibility inversion and highest eligibility dispatching. In addition, Chapter 5

contains a verification of the framework protocol's operation through model
checking. A further contribution is the high-level description, in Chapter 5, of
an implementation of an EDF scheduler to be used in conjunction with the
framework. The same chapter also provides an analysis on the scheduling
policy categories that can be used in conjunction with the framework.

This thesis also provides contributions in the area of resource sharing
protocols. Chapter 3 gives a thorough analysis of the most widely used
resource sharing protocols. One contribution is the exposure of the
interconnection between these protocols, and in particular the roles of
eligibility inheritance and the preemption level test. This analysis has lead to
the exposure of a flaw in the Preemption Level Protocol, which is a significant
contribution in its own right. Another contribution is the survey amongst
resource sharing protocols on their suitability for heterogeneous scheduling
environments, i. e. environments where multiple scheduling policies co-exist.
One last contribution in this category is the analysis of the types of scheduling
policies that can be used with preemption levels.

A key contribution for real-time Java application developers and
researchers is the proposed implementation of the framework in the RTSJ.
This realises the initial intentions of the RTSJ of supporting a range of

232

schedulers. To this effect a number of class descriptions arc given in Chapter
6. A final contribution is a simulated implementation of the framework on the
RTSJ, based on which execution time overheads are measured, showing that

the framework can be feasibly implemented.

7.2 Future work

Although the framework presented in this thesis forms an integrated

solution and has been shown to be viable, a number of areas exist in which
further work could be performed. These are the following:

1. Carry out a full implementation of the framework, as laid out in

Chapter 6. Based on this implementation better timing measurements

could be taken, giving us a better view of the capabilities and also the
limitations of the framework. This effort would focus on the
implementation issues and difficulties rather than the theoretical

aspects of the approach.
2. Enable the cooperation of different schedulers, thus allowing the

development of more complex scheduling schemes. The framework

could allow feedback to be passed from one scheduler to another in

order to achieve coordination of scheduling efforts. This could be

useful in, for example, soft real-time schedulers of multimedia

applications, where one scheduler would decrease its CPU reservation
in order for another to increase its own.

3. Add direct support for round-robin scheduling. As part of the
framework specification round-robin scheduling could be added as an

optional requirement for the priority base scheduler. The problem of

supporting this scheduling scheme on a priority scheduler has already
been tackled in [Burns et al. 2003] and this can form the basis for

adding it to the framework. The round-robin scheme is particularly
helpful for multimedia applications and direct support for it would be
ideal, since, as we have seen in Chapter 5, its implementation as an

application scheduler can be problematic.
4. Investigate how the framework can be extended to support scheduling

of distributed systems. Already the framework has been reviewed by

members of the Distributed Real-Time Java effort [Anderson, and
Jensen 2006]. The framework specification could be extended to
support distributed real-time scheduling in any distributed technology,

233

e. g. by requiring that the framework be present in each node of a
distributed system. Furthermore, in conjunction with the first

suggestion, schedulers in different nodes could be passing feedback

between them, guiding the execution of distributed threads on the
different nodes.

7.3 Final comment

In Chapter 1 the proposition of this thesis has been given, which is the
following:

A two-level scheduling framework, having a fixed priority base scheduler and support for

other schedulers through dynamic manipulation of task priorities, provides an appropriate
framework foriexible scheduling in real-time middleware software.

Subsequent chapters lay the groundwork for and present an exact protocol
for such a framework, termed the Flexible Middleware Scheduling Framework
(FMSF). Its correctness is checked and a measure of its capabilities is
demonstrated, first by reviewing the range of possible supported schedulers
and secondly by implementing a simulated, version and getting positive timing
results. As a final note it can be said that the FMSF demonstrates the

proposed thesis.

234

Appendix A

Test Code

A. 1 Single-thread test

As we can see, the thread acquires the current absolute time before and

after each base scheduler call. The thread calls reschedule(),

prepareToLock () , synchronizes on an object, calls rescheduleLock () ,
prepareToUnlock () , exits the synchronized region, calls

rescheduleUnlock (), prepareToSuspend (SLEEP), calls
RealtimeThread. sleep(), then rescheduleResume(),
prepareToSuspend (WFNP) and finally waits for its next period. The

prepareToSuspend (SLEEP) call was selected as representative of all the

prepareToSuspend calls, except prepareToSuspend (WFNP). This latter one
is also representative of prepäreToSuspend(THREAD_END), as the two

execute the same code. At the start of each period (except the first), right
before the end of the loop, the thread calculates the actual amount of time

spent in each call and stores this in the RelativeTime di f fx variables. 'T'hen
it separately adds the milliseconds and microseconds of each measurement to

two ranges of variables, millisx and uicrosx, 1sxs10, which keep the

235

total sum for all the iterations of the for loop, for each of the base scheduler

calls. To mark the end of each iteration the thread prints a dot. At the end, the

thread prints the results, which are the millisx and uicrosx values divided

by the number of iterations, in this case 1000.

public class TestThreadLogic implements Runnable {

final static int numOfIter - 1000;

public void run() {

AbsoluteTime start - new AbsoluteTime(),

afterRes = new AbsoluteTime(),

afterPTL m new AbsoluteTime(),

beforeResL new AbsoluteTime(),

afterResL new AbsoluteTime(),

afterPTU new AbsoluteTime(),

beforeResU = new AbsoluteTime(),

afterResU new AbsoluteTime(),

afterPTSSleep = new AbsoluteTime(),

beforResResume = new AbsoluteTime(),

afterResResume new AbsoluteTime(),

afterPTSWFNP = new AbsoluteTime();

RelativeTime diffl - new RelativeTime(),
diff2 - new RelativeTime(),
diff3 - new RelativeTime(),
diff4 - new RelativeTime(),
diff5 - new RelativeTime(),
diff6 = new RelativeTime(),
diff7 = new RelativeTime(),
diff8 = new RelativeTime(),

zero = new RelativeTime();
int i, uicrosl - 0,

uicros2 - 0,

uicros3 = 0,

uicros4 - 0,

uicros5 = 0,

uicros6 = 0,

uicros7 = 0,

uicros8 = 0;
long millisi - 0,

millis2 - 0,

millis3 - 0,

millis4 - 0,

millis5 - 0,

millis6 - 0,

millis7 = 0,

millis8 - 0;

for (i-0; i<numOfIter; i++) {

start - Clock. getRealtimeClock(). getTime(start);
PreemptionLevelPriorityScheduler. reschedule(RealtimeThread.

currentRealtimeThread());
afterRes - Clock. getRealtimeClock(). getTime(afterRes);

PreemptionLevelPriorityScheduler. prepareToLock(
RealtimeThread. currentRealtimeThread(), obj);

236

afterPTL = Clock. getRealtimeClock(). getTime(afterPTL);
synchronized(obj) {

beforeResL = Clock. getRealtimeClock(). getTime(beforeResL);
PreemptionLevelPriorityScheduler. rescheduleLock(

RealtimeThread. currentRealtimeThread());
afterResL - Clock. getRealtimeClock(). getTime(afterResL);

PreemptionLevelPriorityScheduler. prepareToUnlock(
RealtimeThread. currentRealtimeThread());

afterPTU = Clock. getRealtimeClock(). getTime(afterPTU);
}

beforeResU = Clock. getRealtimeClock(). getTime(beforeResU);
PreemptionLevelPriorityScheduler. rescheduleUnlock(

RealtimeThread. currentRealtimeThread(), obj);
afterResU = Clock. getRealtimeClock(). getTime(afterResU);

PreemptionLevelPriorityScheduler. prepareToSuspend(
RealtimeThread. currentRealtimeThread(),
PreemptionLevelPriorityScheduler. SLEEP)1

afterPTSSleep = Clock. getRealtimeClock(). getTime(afterPTSSleep);
try {

RealtimeThread. sleep(zero);
} catch(InterruptedException ie) {

System. out. println("InterruptedException thrown! ");
}

beforResResume = Clock. getRealtimeClock(). getTime(beforResResume);
PreemptionLevelPriorityScheduler. rescheduleResume(RealtimeThread.

currentRealtimeThread());
afterResResume - Clock. getRealtimeClock(). getTime(afterReBResume);

PreemptionLevelPriorityScheduler. prepareToSuspend(
RealtimeThread. currentRealtimeThread(),
PreemptionLevelPriorityScheduler. WAIT FOR NEXT RELEASE);

afterPTSWFNP - Clock. getRealtimeClock(). getTime(afterPTSWFNP);
if (IRealtimeThread. waitForNextPeriod())

System. out. println("fmsfThread: Deadline overrun at "+Clock.

getRealtimeClock(). getTime());

diffl = afterRes. subtract(start, diffl);
diff2 = afterPTL. subtract(afterRes, diff2);
diff3 = afterResL. subtract(beforeResL, diff3);
diff4 - afterPTU. subtract(afterResL, diff4);
diff5 = afterResU. subtract(beforeResU, diff5);
diff6 = afterPTSSleep. subtract(afterResU, diff6);
diff7 = afterResResume. subtract(beforResResume, diff7);
diff8 = afterPTSWFNP. subtract(afterResResume, diff8);

millisl += diffl. getMilliseconds();

millis2 += diff2. getMilliseconds();

millis3 += diff3. getMilliseconds();
millis4 += diff4. getMilliseconds();
millis5 += diff5. getMilliseconds()J
millis6 += diff6. getMilliseconds();
millis7 += diff7. getMilliseconds();
millis8 += diff8. getMilliseconds();
uicrosl += diff1. getNanoseconds()/1000;
uicros2 += diff2. getNanoseconds()/1000;
uicros3 += diff3. getNanoseconds()/1000;

237

uicros4 += diff4. getNanoseconds()/1000;
uicros5 += diff5. getNanoseconds()/1000;
uicros6 += diff6. getNanoseconds()/1000;
uicros7 +- diff7. getNanoseconds()/1000;
uicros8 +- diff8. getNanoseconds()/1000;
System. out. print('. 1);

System. out. println("\nResults for "+numOfIter+" iterations");

System. out. println("
System. out. println("Mean execution cost for reschedule():

"+(millisl/numOfIter)+"ms
"+((float)uicrosl/numOfIter)+"us") ;

System. out. println("Mean execution cost for prepareToLock():

"+(millis2/numOfiter)+"ms
"+((float)uicros2/numOfIter)+"us") ;

System. out. println("Mean execution cost for rescheduleLock():
"+(millis3/numOfIter)+"ms
"+((float)uicros3/numOfIter)+"us") ;

System. out. println("Mean execution cost for prepareToUnlock():
"+(millis4/numOfIter)+"ms
"+((float)uicros4/numOfIter)+"us") ;

System. out. println("Mean execution cost for rescheduleUnlock():
"+(millis5/numOfiter)+"ms
"+((float)uicros5/numOflter)+"us") ;

System. out. println("Mean execution cost for prepareToSuspend(SLEEP):

"+(millis6/numOfIter)+"ms
"+((float)uicros6/numOfIter)+"us") ;

System. out. println("Mean execution cost for rescheduleResume():
"+(millis7/numOfIter)+"ms
"+((float)uicros7/numOfIter)+"us");

System. out. println("Mean execution cost for prepareToSuspend(WFNP):
"+(millis8/numOfiter)+"ms
"+((float)uicros8/numOfIter)+"us");

A. 2 Multi-thread test

Due to the fact that in this test multiple threads are running, the execution
time has to be calculated within the base scheduler calls themselves. Therefore,

each of the methods in the Preempt ionLevel PriorityScheduler has been

changed to accept one more parameter of type RelativeTime, which is

returned by the method to contain the method's execution time. This has been

explained in Section 6.4.3.

In this case the timing results taken from all threads produce the final

estimation of the mean execution time for each base scheduler call. This

238

means that the final calculations cannot be made inside a test thread but arc
done within the main () method. As we can sec, main () is also contained in

the MultiTestThreadLogic class, therefore it can access the same class

variables as the run () method of each test thread. In order to ensure that

main O will calculate the results only after all test threads have terminated, it

waits on the MultiTestThreadLogic class monitor. I3cforc terminating,

each test thread synchronizes on the same monitor and increases the counter
threadsFinished. When the last test thread terminates the number of
finished test threads is the same as the total number of test threads, and the
thread notifies the main thread, which then produces the final estimation.

public class MultiTestThreadLogic implements Runnable {

final static int numOfThreads - 10;
final static int numOfIter - 1000;

static int threadsFinished - 0;

static float resUicros " 0,

pTLUicros - 0,

resLUicros - 0,

pTUUicros " 0,

resUUicros " 0,

pTSSleepUicros - 0,

resResSleepUicros - 0,

pTSWFNPUicros " 0;

static long resMillis - 0,

pTLMillis . 0,

resLMillis - 0,

pTUMillis - 0,

resUMillis - 0,

pTSSleepMillis - 0,

resResSleepMillis " 0,
pTSWFNPMillis - 0;

public void run() {

RelativeTime resch = new RelativeTime(),

pTL - new RelativeTime(,

resL = new RelativeTime(),

pTU - new RelativeTime(),

resU - new RelativeTime(),

pTSSleep @ new RelativeTime(),

resResSleep ® new RelativeTime(),

pTSWFNP = new RelativeTime(),

zero = new RelativeTime();
int i, uicrosl = 0,

uicros2 = 0,

uicros3 = 0,

uicros4 - 0,

uicros5 = 0,

uicros6 = 0,

uicros7 = 0,

uicros8 = 0;
long millisl = 0,

millis2 - 0,
,

239

millis3 - 0,

millis4 - 0,

millis5 - 0,

millis6 - 0,

millis7 - 0,

millis8 - 0;

for (i=0; i<numOfIter; i++) {

resch - PreemptionLevelPriorityScheduler. reschedule (RealtimeThread.

currentRealtimeThread(), resch)

pTL PreemptionLevelPriorityScheduler. prepareToLock(
RealtimeThread. currentRealtimeT
hread(), obj, pTL);

synchronized(obj)
resL - PreemptionLeve 1 Priori tySchedul er. re schedul eLock (Real time

Thread. currentRealtimeThread(), resL);

pTU PreemptionLevelPriorityScheduler. prepareToUnlock(Realtime
Thread. currentRealtimeThread(), pTU);

}

resU - PreemptionLevelPriorityScheduler. rescheduleUnlock(Realtime
Thread. currentRealtimeThread(), obj, resU);

pTSSleep PreemptionLevelPriorityScheduler. prepareToSuspend(
RealtimeThread. currentRealtimeThread(,
PreemptionLevelPriorityScheduler. SLEEP, pTSSlee

p);

try {

RealtimeThread. sleep(zero);
} catch(InterruptedException ie) {

System. out. println("InterruptedException thrown! ");
}

resResSleep PreemptionLevelPriorityScheduler. rescheduleResume(
RealtimeThread. currentRealtimeThreadC), resResSleep);

pTSWFNP PreemptionLevelPriorityScheduler. prepareTosuspend(
RealtimeThread. currentRealtimeThread(),
PreemptionLevelPriorityScheduler. WAIT_FOR_NEXT_RELEASE, pTSWFN
P) ;

if (1RealtimeThread. waitForNextPeriod())

System. out. println(RealtimeThread. currentRealtimeThread(). to
String() +" Deadline overrun at
"+Clock. getRealtimeClock(). getTime());

millisi += resch. getMilliseconds();
millis2 += pTL. getMilliseconds();
millis3 += resL. getMilliseconds();
millis4 += pTU. getMilliseconds(;
millis5 += resU. getMilliseconds(;
millis6 += pTSSleep. getMilliseconds();
millis7 += resResSleep. getMilliseconds(;
millis8 += pTSWFNP. getMilliseconds();
uicrosl += resch. getNanosecondsC)/1000;
uicros2 += pTL. getNanoseconds()/1000;

240

uicros3 += resL. getNanoseconds()/1000;
uicros4 += pTU. getNanoseconds()/1000;
uicros5 += resU. getNanoseconds()/1000;

uicros6 += pTSSleep. getNanoseconds()/1000;

uicros7 += resResSleep. getNanoseconds()/1000;
uicros8 += pTSWFNP. getNanoseconds()/1000;
System. out. print('. 1);

synchronized(this. getClass()) {

resMillis += millisl/numOfIter;
pTLMillis += millis2/numOfIter;
resLMillis += millis3/numOfIter;
pTOMillis += millis4/numOfIter;
resUMillis += millis5/numOfIter;
pTSSleepMillis += millis6/numOfIter;
resResSleepMillis += millis7/numOfIter;
pTSWFNPMillis += millis8/numOfIter;

resUicros += (float)uicrosl/numOflter;

pTLUicros (float)uicros2/numofIter;

resLUicros +v (float)uicros3/numOfIter;

pTUUicros +- (float)uicros4/numOfIter;

resUUicros +- (float)uicros5/numOfIter;

pTSSleepUicros +- (float)uicros6/numOflter;

resResSleepUicros +- (float)uicros7/numOfIter;

pTSWFNPUicros +a (float)uicros8/numOfIter;

threadsFinished++;
if (threads Finished==numOfThreads)

thie. getClass(). notifyAll();
}

public static void main(String[] arge) {

Threadl. start();

synchronized(threadLogicl. getClass() {

try {

threadLogicl. getClass(). wait();
} catch(InterruptedException ie) {

System. out. println("InterruptedException thrown! "); }
}

System. out. println("\nResults for "+numOfThreads+" threads,
"+numOfIter+" iterations each");

System. out. println("
System. out. println("Mean execution cost for reschedule():

"+(resMillis/threadsFinished)+"ms
"+(resUicros/threadsFinished)+"us");

System. out. println("Mean execution cost for prepareToLock(:
"+(pTLMillis/threadsFinished)+"ms
"+(pTLUicros/threadsFinished)+"us")j

241

System. out. println("Mean execution cost for rescheduleLock():
"+(resLMillis/threadsFinished)+"ms
"+(resLUicros/threadsFinished)+"us");

System. out. println("Mean execution cost for prepareToUnlock():
"+(pTUMillis/threadsFinished)+"ms
"+(pTUUicros/threadsFinished)+"us");

System. out. println("Mean execution cost for rescheduleUnlock():
"+(resUMillis/threadsFinished)+"ms
"+(resUUicros/threadsFinished)+"us");

System. out. println("Mean execution cost for prepareToSuspend(SLEEP):
"+(pTSSleepMillis/threadsFinished)+"ms
"+(pTSSleepUicros/threadsFinished)+"us");

System. out. println("Mean execution cost for rescheduleResume():
"+(resResSleepMillis/threadsFinished)+"ms
"+(resResSleepUicros/threadsFinished)+"us");

System. out. println("Mean execution cost for prepareToSuspend(WFNP):
"+(pTSWFNPMi11is/threadsFinished)+"ms
"+(pTSWFNPUicros/threadsFinished)+"us");

A. 3 Tests on RTSJ methods and operations

This test measures the execution cost of starting a thread, locking a

resource, unlocking, calling sleep () and calling waitForNextPeriod () in a

normal RTSJ RealtimeThread. As with the previous tests, this test is

comprised of a single Runnable class, whose main O method constructs a
thread with this class as its logic. Measuring the cost of starting the thread is

, done by acquiring the current time in main O, right before calling start 0,

and then again as the first thing within the run () method. The run () method
has access to the same variables as main 0, , since they belong to the same
class. Therefore, by calculating the difference between the two times we get an
estimate of the cost of starting a thread. The other measurements are made, as
usual, by using a getTime () before and after the code in question.
waitForNextPeriod () in particular is measured in the second period, so
that the thread is already started when the measurement is made. The current
time is taken when waitForNextPeriod () unblocks to start the second
period and taken again when it unblocks at the start of the third period. The

cost of the method is approximated by subtracting the thread's period from

the difference of the two times. The test code is shown below.

public class RTLogic implements Runnable
private Object res - new Object();
static AbsoluteTime start - new AbsoluteTime();
AbsoluteTime released m new AbsoluteTime(),

242

beforeSync = new AbsoluteTime(),

afterSync new AbsoluteTime(),

beforeUnSync = new AbsoluteTime(),

afterUnSync new AbsoluteTime();

RelativeTime diffl - new RelativeTime(),
diff2 = new RelativeTime(),
diff3 - new RelativeTime()J

int uicrosl = 0,

uicros2 = 0,

uicros3 = 0;
long millisl - 0,

millis2 - 0,

millis3 = 0;

public void run() {

released = Clock. getRealtimeClock(). getTime(released),

beforeGetTime - Clock. getRealtimeClock(). getTime(beforeGetTime)=
foo = Clock. getRealtimeClock(). getTime(foo);

afterGetTime - Clock. getRealtimeClock(). getTime(afterGetTime);

beforeSync - Clock. getRealtimeClock(). getTime(beforeSync)I

synchronized(res) {

afterSync - Clock. getRealtimeClock(). getTime(afterSync)t
beforeUnSync - Clock. getRealtimeClock(). getTime(beforeUnSync);

}

afterUnSync - Clock. getRealtimeClock(). getTime(afterUnSync);

try {

beforeSleep = Clock. getRealtimeClock(). getTime(beforeSleep);
RealtimeThread. sleep(new RelativeTime())=

afterSleep - Clock. getRealtimeClock(). getTime(afterSleep)j
} catch(InterruptedException ie) {

-System. out. println("InterruptedException thrown! ");

if (1RealtimeThread. waitForNextPeriod())
System. out. println("rtThread: Deadline overrun! ");

beforeWFNP - Clock. getRealtimeClock(). getTime(beforeWFNP)J
if (1RealtimeThread. waitForNextPeriod())

System. out. println("rtThread: Deadline overrun! ")p

afterWFNP - Clock. getRealtimeClock(). getTime(afterWFNP)/

diffl - released. subtract(start, diffl),

diff2 - afterSync. subtract(beforeSync, diff2)j

diff3 = afterUnSync. subtract(beforeünSync, diff3),

diff4 = afterSleep. subtract(beforeSleep, diff4);
diff5 - (afterWFNP. subtract(beforeWFNP)). subtract(period, diff5),

millisl += diffl. getMilliseconds();
millis2 += diff2. getMilliseconds()t
millis3 += diff3. getMilliseconds();
millis4 += diff4. getMilliseconds();
millis5 += diff5. getMilliseconds();

243

uicrosl +- diffi. getNanoseconds()/1000;
uicros2 +- diff2. getNanoseconds()/1000;
uicros3 += diff3. getNanoseconds()/1000;
uicros4 +- diff4. getNanoseconds()/1000;
uicros5 +- diff5. getNanoseconds()/1000;

System. out. println("\nResults");
System. out. println("
System. out. println ("Execution cost for starting: "+(millisl)+"ms

^+((float)uicrosl)+"us");
System. out. println("Execution cost for synching: "+(millis2)+"ms

"+((float)uicros2)+"us");
System. out. println("Execution cost for unsynching: "+(millis3)+"ms

"+((float)uicros3)+"us");
System. out. println ("Execution cost for sleeping: "+(millis4)+"ms

"+((float)uicros4)+"us");
System. out. println("Execution cost for WFNP: "+(milliss)+"ms

"+((float)uicros5)+"us");

public static void main(String[] args) {

RealtimeThread rtThread - new RealtimeThread(ppl, releasel, mem,
ImmortalMemory. instance(), null,
rtLogic);

start - Clock. getRealtimeClock(). getTime(start);
rtThread. start(;

A. 3.1 Measuring setPriority ()

public class MeasureSetPriority implements Runnable {

static int minPrio = PriorityScheduler. instance(). getMinPriority();
AbsoluteTime beforeSetPrio = new AbsoluteTime(),

afterSetPrio new AbsoluteTime();

static RelativeTime period = new RelativeTime((long)200,0);

RelativeTime diffi - new RelativeTime(),
diff2 - new RelativeTime();

int i, uicrosl - 0,

uicros2 - 0;
long millisi " 0,

millis2 - 0;

public void run() {
PriorityParameters pp (Priori tyParameters) (RealtimeThread. current

RealtimeThread(). getSchedulingParameters(
));

for (i0; i<500; i++) {
beforeSetPrio - Clock. getRealtimeClock(). getTime(beforeSetPrio);

244

pp. setPriority(minPrio+1);
afterSetPrio = Clock. getRealtimeClock(). getTime(afterSetPrio);

diff1 = afterSetPrio. subtract(beforeSetPrio, diff1);

beforeSetPrio - Clock. getRealtimeClock(). getTime(beforeSetPrio);
pp. setPriority(minPrio);
afterSetPrio = Clock. getRealtimeClock(). getTime(aftersetPrio);

diff2 = afterSetPrio. subtract(beforeSetPrio, diff2)T

millisl += diffi. getMilliseconds();
millisi += diff2. getMilliseconds();

uicrosl +_ (diffl. getNanoseconds()/1000);
uicrosl +_ (diff2. getNanoseconds()/1000),

System. out. println("\nResults");
System. out. println("
System. out. println("Execution cost for changing

"+(millisl/1000)+"ms
"+((float)uicrosl/1000)+"us");

_") 1
priority:

public static void main(String(j args) i

PriorityParameters ppi - new PriorityParameters(minPrio);
PeriodicParameters releasel - new PeriodicParameters(

new RelativeTime((long)100,0), //start now
period, //period

null, //cost

null, //deadline

null, null); //handlers

MemoryParameters mem - new MemoryParameters(MemoryParameters. NOMAX,
MemoryParameters. NO MAX);

MeasureSetPriority logic - new MeasureSetPriority();

RealtimeThread rtThread - new RealtimeThread(ppl,

releasel,
mem,
ImmortalMemory. instanceC),

null,
logic);

rtThread. start 0;
}

245

246

Table of Symbols
r or r; a task or the l task

ir(r) relative preemption level of r

; r(r, t) relative preemption level of rat time t

system ceiling
t or t; a time instance or the 1 time instance

p(r) fixed priority of r
r or r; a resource or the resource
Frl preemption ceiling of r

e(r) eligibility of r
el(r) effective eligibility of 7-

e. (r) active eligibility of r

e; or C, " execution cost of r;
D; relative deadline of Ti
d; absolute deadline of ri

rel(r) release operation for r

7o-c-(-, r-, r) lock operation of r on r

unL(r, r) unlock operation of r on r

wt(r, r, ev) wait operation of r on condition variable cvwhile locking r

sur(r) suspension operation for r

yld(r) yield operation for r

chg(r) change operation for r

end(r) end operation of r

pbsc preceding base scheduler call
sbsc succeeding base scheduler call
B; scheduling band with lowpriority i
InI(r) absolute preemption level of r
II(B) range of absolute preemption levels assigned to band B

Br'°' band for which Fri E H(Bl ')

Br is own band

Brcu'r band in which r currently executes
S(B) application scheduler of band B

247

BS base scheduler
pL(B) lowpriority of band B

p, iQ(B) medium lock priority of band B

pm(B) mediuzu priority of band B

pl1(B) high priority of band B

248

References

[Ada-Europe 2007] Ada-Europe. 2007. Ada Reference Manual - ISO/IEC
8652: 2007(E) with Technical Corrigendum 1 and Amendment 1. Available

at http: //www. adaic. org/standards/05rm/RM-Final. pdf
[Aldea and Harbour 2001] Aldea Rivas M, Gonzalez Harbour M. 2001.

MaRTE OS: An Ada Kernel for Real-Time Embedded Applications. In
International Conference on Reliable Software Technologies, Ada-Europe,

May 2001.
[Aldea and Harbour 2002] Aldea Rivas M, Gonzalez Harbour M. 2002.

POSIX-compatible application-defined scheduling in MaRTE OS. In
Proceedings 14th Euromicro Conference on Real-Time Systems, pp. 67 -
75.

[Aldea and Harbour 2003] Aldea Rivas M, Harbour M G. 2003. Application-
defined scheduling in Ada. In Proceedings 12th International Workshop on
Real-Time Ada (IRTAW'03), ACM Press, New York, NY, pp. 42-51.

[Aldea and Harbour 2004] Aldea Rivas M, Gonzalez Harbour M. 2004.
Proposal for Application-Defined Scheduling in POSIX. Flexible Real-

time Systems Technology (FIRST) European Project (IST-2001 34140),
Deliverable EX. 1v2, May 2004.

[Aldea and Harbour 2004b] Aldea Rivas M, Gonzalez Harbour M. 2004. A
New Generalized Approach to Application-Defined Scheduling. 16th
Euromicro Conference on Real-Time Systems (Work in progress session),
Catania, Sicily (Italy), July 2004.

[Aldea et al. 2004] Aldea M, Miranda J, Gonzalez Harbour M. 2004.
Implementing an Application-Defined Scheduling Framework for Ada
Tasking. Lecture Notes in Computer Science, Volume 3063, Springer-
Verlag, pp. 283-296.

[Aldea et al. 2006] Aldea M, Bernat G, Broster I, Burns A, Dobrin R, Drake J
M, Fohler G, Gai P, Gonzalez Harbour M, Guidi G, Gutierrez J J,
Lennvall T, Lipari G, Martinez J M, Medina J L, Palencia J C, Trimarchi M.
2006. FSF: A Real-Time Scheduling Architecture Framework. In
Proceedings 12th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pp. 113-124.

249

[Anderson and Jensen 2006] Anderson J S, Jensen E D. 2006. Distributed
Real-Time Specification for Java: A Status Report (Digest). In Proceedings
4th International Workshop on Java Technologies for Real-time and
Embedded Systems QTRES '06), ACM Press, pp. 3-9.

[Aswathanarayana et al. 2005] Aswathanarayana T, Niehaus D, Subramonian
V, Gill C. 2005. Design and Performance of Configurable Endsystem
Scheduling Mechanisms. In Proceedings 11th IEEE Real Time and
Embedded Technology and Applications Symposium (RTAS'05), pp. 32-
43.

[Baker 1991] Baker T P. 1991. Stack-Based Scheduling of Real-Time
Processes. Real-Time Systems Journal, Vo1.3, Issue 1, pp. 57-99.

[Behrmann et al. 2004] Behrmann G, David A, Larsen K G. 2004. A Tutorial

on UPPAAL, 4th International School on Formal Methods (SFM-RT
2004), LNCS 3185, pp. 200--236.

[Belliardi et al. 2006] Belliardi R, Brosgol B, Dibble P, Holmes D, Wellings A
J. 2006. The Real-Time Specification for Java, version 1.0.2,2006-May-16.
Dibble*P, editor. Available at: www. rtsj. org

[Bengtsson and Yi 2004] Bengtsson J, Yi W. 2004. Timed Automata:
Semantics, Algorithms and Tools, in Lecture Notes on Concurrency and
Petri Nets, LNCS 3098, Springer-Verlag.

[Benveniste et al. 1994] Benveniste A, Berry G, Caspi P, Couronn'e P, Dupont
F, Gauthier T, Halbwachs N, Le Guernic P, Le Maire C, Mignard F, Paris J
P, Sorel Y. 1994. Synchronous technology for real-time systems. In
Proceedings of Real-Time Systems, Paris, January 1994. North-Holland.

[Bollella et al. 2000] Bollella G, Brosgol B, Dibble P, Furr S, Gosling J, Hardin
D, Turnbull M. 2000. The Real-Time Specification for Java. Addison-
Wesley.

[Brandt et al. 1998] Brandt S., Nutt G, Berk T, Mankovich J. 1998. A Dynamic
Quality of Service Middleware Agent for Mediating Application Resource
Usage. In Proceedings 19th IEEE Real-Time Systems Symposium
(RTSS'98), p. 307.

[Brandt and Nutt 2002] Brandt S A, Nutt G J. 2002. Flexible Soft Real-Time
Processing in Middleware. Real-Time Systems Journal, Volume 22, Issue 1,
pp. 77-118.

[Brandt et al. 2003] Brandt S A. Banachowski S, Lin C, Bisson T. 2003.
Dynamic Integrated Scheduling of Hard Real-Time, Soft Real-Time and
Non-Real-Time Processes. In Proceedings 24th IEEE Real-Time Systems
Symposium (RTSS), pp. 396.

250

IkL

[Burns and Wellings 1997] Burns A, Wellings A J. 1997. Concurrency in Ada,
2nd Edition, Cambridge University Press.

[Burns and Wellings 2001] Burns A, Wellings A J. 2001. Real-Time Systems

and Programming Languages: Ada 95, Real-Time Java and Real-Time
POSIX. 3rd Edition, Addison Wesley - Pearson Education.

[Burns et al. 2003] Burns A, Gonzalez Harbour M, Wellings A J. 2003. A
Round Robin Scheduling Policy for Ada. Lecture Notes in Computer
Science, vol. 2655, pp. 334-343.

[Burns et al. 2004] Burns A, Wellings A J, Taft T S. 2004. Supporting
Deadlines and EDF Scheduling in Ada. Lecture Notes in Computer
Science, Springer-Verlag, Volume 3063, pp. 156-165.

[Buttazzo 2005] Buttazzo G. 2005. Rate Monotonic vs. EDF: Judgment Day.
Real-Time Systems Journal, Springer-Verlag, vol. 29, no 1, pp. 5-26.

[Candea and Jones 1998] Candea G M, Jones M B. 1998. Vassal: Loadable
Scheduler Support for multi-Policy Scheduling. In Proceedings 2nd
USENIX Windows NT Symposium, Seattle, Washington, August 1998.

[CDE 2007a] The Computer Desktop Encyclopedia. 2007. Definition for:

Middleware. [Internet], [cited 2007-Oct-30]. The Computer Language

Company Inc. Available through ZDNet at: http: //dictionary. zdnet. com/
definition/Middleware. html

[CDE 2007b] The Computer Desktop Encyclopedia. 2007. Definition for:
Architecture-neutral. [Internet], [cited 2007-Oct-30]. The Computer

Language Company Inc. Available through ZDNct at:
http: //dictionary. zdnet. com/ definition/architecture+neutral. html

[Chen and Tripathi 1994] Chen C M, Tripathi S K. 1994. Multiprocessor

priority ceiling based protocols. Technical Report CSTR-3253, UMICAS-
TR-94-42, Dept. of Computer Science, University of Maryland at College
Park.

[Chen and Lin 1990] Chen M, Lin K. 1990. Dynamic Priority Ceilings: A
Concurrency Control Protocol for Real-Time Systems. Real-Time Systems

Journal, Vol. 2, No. 4, Nov. 1990, pp. 325-346.

[Chen et al. 2004] Chen Y S, Chang L P, Kuo T W. 2004. A Configurable
Synchronization Protocol for Real-Time Self-Suspending Processes. In
Proceedings Real-Time and Embedded Computer Systems and
Applications (RTCSA), Gothenburg Sweden, August 25-27,2004.

[Corsaro et al. 2001] Corsaro A, Schmidt D C, Cytron R, Gill C. 2001.
Formalizing Meta-Programming Techniques to Reconcile Heterogeneous
Scheduling Disciplines in Open Distributed Real-Time Systems.

251

Proceedings of the 3rd International Symposium on Distributed Objects

and Applications, pp. 289-299, Rome, Italy. OMG.
[Davis and Wellings 1995] Davis R, Wellings A. 1995. Dual priority

scheduling. In Proceedings -16th IEEE Real-Time Systems Symposium

(RTSS'95), 5-7 Dec 1995, pp. 100-109.
[Davis and Burns 2005] Davis R I, Burns A. 2005. Hierarchical Fixed Priority

Pre-emptive Scheduling. In Proceedings 26th IEEE International Real-

Time Systems Symposium (RTSS'05), pp. 389-398.

[Deng et al. 1996] Deng Z, Liu J W, Sun S. 1996. Dynamic Scheduling of Hard

Real-Time Applications in Open System Environment. University of
Illinois at Urbana-Champaign Technical Report, UIUCDCS-R-96-1981.

[Deng and Liu 1997] Deng Z, Liu J W-S. 1997. Scheduling real-time

applications in an open environment. In Proceedings 18th IEEE Real-Time

Systems Symposium (RTSS'97), p. 308.
[Dibble and Wellings 2004] Dibble P, Wellings A J. 2004. The Real-Time

Specification for Java: Current Status and Future Direction. In Proceedings
7th International Conference on Object-Oriented Real-Time Distributed
Computing (ISORC'04), pp. 71-77.

[DiPippo et al. 2001] DiPippo L C, Wolfe V F, Esibov L, Bethmangalkar G C,
Bethmangalkar R, Johnston R, Thuraisingham B, Mauer J. 2001.
Scheduling and Priority Mapping for Static Real-Time Middleware. Real-
Time Systems Journal, Volume 20, Issue 2 (Mar. 2001), pp. 155-182.

[Eide et al. 2004] Eide E, Stack T, Regehr J, Lepreau J. 2004. Dynamic CPU
Management for Real-Time, Middleware-Based Systems. In Proceedings
10th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS'04) (May 25 - 28,2004). IEEE Computer Society,
Washington DC, p. 286.

[Feizabadi et al. 2003] Feizabadi S, Beebee Jr. W, Ravindran B, Li P, Rinard M.
2003. Utilitiy Accrual Scheduling with Real-Time Java. Workshop on Java
Technologies for Real-Time and Embedded Systems LITRES), LNCS
Volume 2889/2003, pp. 550-563, Springer Verlag.

[FIRST 2005] European Union Project IST-2001 34140. FIRST: Flexible
Integrated Real-Time Systems Technology. Final Report, Deliverable D-
FR, Produced by SalsArt Research Group, Mälardalen University, Sweden,
2005 Jun-28.

[Ford and Susarla 1996] Ford B, Susarla S. 1996. CPU Inheritance Scheduling.
In Proceedings 2nd USENIX Symposium on Operating Systems Design

and Implementation (OSDI'96), ACM Press, pp. 91-105.

252

[Frisbie et al. 2004] Frisbie M, Niehaus D, Subramonian V, Gill C. 2004.
Group scheduling in systems software. In Proceedings 18th International
Parallel and Distributed Processing Symposium, 26-30 April 2004, p. 120.

[Gai et al. 2001] Gai P, Abeni L, Giorgi M, Buttazzo G. 2001. A New Kernel
Approach for Modular Real-Time systems Development. In Proceedings
13th IEEE Euromicro Conference on Real-Time Systems, June 2001.

[Gai et al. 2001b] Gai P, Lipari G, Di Natale M. 2001. Minimizing Memory
Utilization of Real-Time Task Sets in Single and Multi-Processor
Systems-on-a-chip. In Proceedings IEEE International Real-Time Systems
Symposium (RTSS).

[Gai 2005] Gai P. 2005. Real-time Systems for Embedded Microcontrollers.
Presentation slides, 2005, found at http: //feanor. sssup. it/-giorgio
/slides/rts/stack. pdf

[Ganssle and Barr 2003] Ganssle J, Barr M. 2003. Embedded Systems
Dictionary. CMP Books.

[Gill et al. 2002] Gill C, Cytron R, Schmidt D. 2002. Middlcwarc scheduling
optimization techniques for distributed real-time and embedded systems.
Proceedings of the 7th International Workshop on Object-Oriented Real-
Time Dependable Systems (WORDS 2002), San Diego, CA, USA, pp. 311

-318.
[Gill et at 2003] Gill C D, Cytron R K, Schmidt D C. 2003. Multiparadigm

scheduling for distributed real-time embedded computing. Proceedings of
the IEEE, Volume 91, Issue 1, Jan. 2003, pp. 183 - 197.

[Goyal et at 1996] Goyal P, Guo X, Vin H M. 1996. A Hierarchical CPU
Scheduler for Multimedia Operating Systems. In Proceedings 2nd
Symposium on Operating Systems Design and Implementation, pp. 107-
121.

[Gwinn 2004] Gwinn J. 2004. Realtime POSIX Status. [posted 2004-2-20;

cited 2007-8-30] Available at:
http: //www. opengroup. org/rtforum/oa_rtes/

uploads/40/4626/Gwinn_POSIX Status_February_4,.., 2004. pdf
[Hänninen et al. 2006] Hänninen K, Mäki-Turja J, Bohlin M, Carlson J, Nolin

M. 2005. Analysing Stack Usage in Preemptive Shared Stack Systems.
MRTC report ISSN 1404-3041 ISRN MDH-MRTC-202/2006-1-SE, 2006,
found at http: //www. mrtc. mdh. se/publications/1136. pdf

[Huang et at 1992] Huang J, Stankovic J A, Ramamritham K, Towsley D,
Purimetla B. 1992. On Using Priority Inheritance in Real-Time Databases.
Special Issue of Real-Time Systems Journal, Vol. 4. No. 3, September
1992. Available at http: //citeseer. ist. psu. edu/huang92using. html

253

[IEEE 2004] IEEE and The Open Group. 2004. Standard 1003.1 - The Single

UNIX Specification Version 3,2004 Edition. Available at http: //

www. unix. org/single_unix_specification/
Qemander 2005] Jemander T. 2005. The need for configurable and flexible

scheduling in a RTOS aspiring to solve contemporary problems. In

Proceedings 1st International Workshop on Operating Systems Platforms

for Embedded Real-Time applications (OSPERT).

Jiang and Cheng 2001] Jiang F, Cheng AMK. 2001. A Context Switch

Reduction Technique for Real-Time Task Synchronization. In

Proceedings 15th International Parallel and Distributed Processing

Symposium (IPDPS'01), p. 10031a.
Jones 1997] Jones M B. 1997. What really happened on Mars Rover

Pathfinder. The Risks Digest, Vol 19, Issue 49,1997/12/9, Neumann P G,

moderator. Available at http: //catless. ncl. ac. uk/Risks/19.49. html

Jones and Regehr 1999] Jones M B, Regehr J. 1999. CPU Reservations and
Time Constraints: Implementation Experience on Windows NT. In

Proceedings 3, d USENIX Windows NT Symposium, pp. 93-102.
[Kalogeraki et al. 2000] Kalogeraki V, Melliar-Smith P M, Moser L E. 2000.

Dynamic Scheduling for Soft Real-Time Distributed Object Systems. In
Proceedings of the 3=d IEEE international Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC), March 15 - 17,2000, p. 114.

[Kaneko et al. 1996] Kaneko H, Stankovic J A, Sen S, Ramamritham K. 1996.
Integrated scheduling of multimedia and hard real-time tasks. In
Proceedings 17th IEEE Real-Time Systems Symposium (RTSS '96), p. 206.

[Kim and Koh 1995] Kim Y, Koh K. 1995. Pessimistic Deadline Ceiling
Protocol: a concurrency control protocol under earliest deadline first

scheduling. In Proceedings 7th Euromicro Workshop on Real-Time
Systems (ECRTS), p. 80.

[Kuo and Li 1999] Kuo T, Li C. 1999. A Fixed-Priority-Driven Open
Environment for Real-Time Applications. In Proceedings 20th IEEE Real-
Time Systems Symposium (RTSS'99), IEEE Computer Society, p. 256.

[Lam and Ng 2000] Lam K, Ng J K. 2000. A conditional abortable priority
ceiling protocol for scheduling mixed real-time tasks. Journal of Systems
Architecture, vol. 46, issue 7 (Apr. 2000), pp. 573-585, Elsevier North=
Holland.

[Lauer and Needham 1979] Lauer H C, Needham R M. 1979. On the Duality

of Operating System Structures. SIGOPS Oper. Syst. Rev. 13,2 (Apr.
1979), 3-19. DOI=http: //doi. acm. org/10.1145/850657.850658

254

llbk

[Li et al. 2004] Li P, Ravindran B, Suhaib S, Feizabadi S. 2004. A Formally
Verified Application-Level Framework for Real-Time Scheduling on
POSIX Real-Time Operating Systems. IEEE Transactions on Software
Engineering, vol. 30, issue 9, pp. 613-629.

[Lindholm and Yellin 1999] Lindholm T, Yellin F. 1999. The Java Virtual
Machine Specification, 2nd Edition. Prentice Hall PTR. Available online as
HTML at https: //java. sun. com/docs/books/jvms/second_edition/html/
VMSpecTOC. doc. html

[Liu 2000] Liu JWS. 2000. Real-Time Systems. Prentice-Hall.

[Lipari et al. 2004] Lipari G, Lamastra G, Abeni L. 2004. Task Synchronization

in Reservation-Based Real-Time Systems. IEEE Trans. Comput. Vol. 53,

Issue 12 (Dec. 2004), pp. 1591-1601. Found at:
http: //dx. doi. org/10.1109/ TC. 2004.120

[Locke 2002] Locke D. 2002. Priority inheritance: The Real Story.

LinuxDevices. com, July 2002, found at
http: //www. linuxdevices. com/articles /AT5698775833. html

[Mok 1983] Mok A K-L. 1983. Fundamental Design Problems of Distributed

Systems for the Hard Real-Time Environment. Ph. D. Thesis, MIT,

Department of Electrical Engineering and Computer Science,

MIT/LCS/TR-297, May 1983.

[deNiz et al. 2001] de Niz D, Saowanee Saewong, Rajkumar R, Abcni L. 2001.

Resource sharing in reservation-based systems. In Proceedings 7th IEEE

Real-Time Technology and Applications Symposium, pp-130 - 131.

[OMG 2005] Object Management Group. 2005. Real-time CORI3A

Specification. Version 1.2, January 2005. Available at:
http: //www. omg. org/technology/ documents/formal/real-

time_CORBA. htm
[Rajkumar et al. 1988] Rajkumar R, Sha L, Lehoczky J. 1988. Real-Time

Synchronization Protocols for Multiprocessors. In Proceedings IEEE
Real-Time Systems Symposium (RTSS), pp. 259-269.

[Rajkumar 1991] Rajkumar R. 1991. Synchronization in multiple processor

systems. Chapter in "Synchronization in Real-Time Systems: A Priority

Inheritance Approach", Kluwer Academic Publishers.

[Real and Wellings 1999] Real J, Wellings A J. 1999. The Ceiling Protocol in
Multi-moded Real-Time Systems. Lecture Notes in Computer Science,

vol. 1622, pp. 275-286, available at http: //www. springcrlink. com/content/
blewf4dlevywk712 / fulltext. p df

[Real and Crespo 2004] Real J, Crespo A. 2004. Mode Change Protocols for

Real-Time Systems: A Survey and a New Proposal. Real-Time Systems

255

Journal, vol. 26, pp. 161-197, available at http: //www. springerlink. com/

content/h151n8v8313028t3/
[Regehr et al. 2000] Regehr J, Jones M B, Stankovic J A. 2000. Operating

System Support for Multimedia: The Programming Model Matters.

Technical Report MSR-TR-2000-89. Available at:
http: //research. niicrosoft. com/-mbi/papers/tr-2000-89. pdf

[RTSJ 2007] The Real-Time Specification for Java Website. [updated 2007 Jul-

15; cited 2007 Jul-26]. Found at: http: //www. rtsj. org
[Sha et al. 1990] Sha L, Rajkumar R, Lehoczky J P. 1990. Priority Inheritance

Protocols: An Approach to Real-Time Synchronization. IEEE

Transactions on Computers, Vol. 39, Iss. 9, p. 1175-1185, Sep. 1990.

available at http: //dx. doi. org/10.1109/12.57058
[Sprunt et al. 1989] Sprunt B, Sha L, Lehoczky J. 1989. Aperiodic Task

Scheduling for Hard-Real-Time Systems. Real-Time Systems Journal, Vol.

1, Issue 1, pp. 27-60.
[Spun and Stankovic 1994] Spuri M, Stankovic J A. 1994. How to Integrate

Precedence Constraints and Shared Resources in Real-Time Scheduling.

IEEE Transactions on Computers, vol. 43, no. 12, December 1994,

pp. 1407-1412.
[Spun and Buttazzo 1996] Spuri M, Buttazzo G. 1996. Scheduling aperiodic

tasks in dynamic priority systems. Volume 10, Issue 2, pp. 179-210.
[Squadrito et al. 1996] Squadrito M, DiPippo L C, Wolfe V F. 1996. The

Affected Set Priority Ceiling Protocol For Real-time Object-Oriented
Databases. Proceedings of the First International Workshop on Real-Time
Databases, March 1996.

[Squadrito et al. 1999] Squadrito M, Esibov L, DiPippo L C, Wolfe V F,
Cooper G, Thurasingham B, Krupp P, Milligan M, Johnston R,
Bethmangalkar R. 1999. The affected set priority ceiling protocols for real-
time object-oriented concurrency control. The International Journal of
Computer Systems Science and Engineering, vol. 14, issue 4, pp. 227-239,
July 1999.

[Stankovic et al. 1998] Stankovic J A, Spuri M, Ramamritham K, Buttazzo G.
1998. Deadline Scheduling for Real-Time Systems: EDF and Related
Algorithms. Kluwer Academic Publishers.

[Strosnider et al. 1995] Strosnider J K, Lehoczky J P, Sha L. 1995. The
Deferrable Server Algorithm for Enhanced Aperiodic Responsiveness in
Hard Real-Time Environments. IEEE Transactions on Computers,
Volume 44, Issue 1 Gan. 1995), pp. 73-91.

256

OhL

[Sun and Liu 1996] Sun J, Liu J. 1996. Synchronization protocols in distributed

real-time systems. In Proceedings 16th International Conference on
Distributed Computing Systems, May 1996. Available at:
http: //citeseer. ist. psu. edu/ sun96synchronization. html

[TimeSys 2007] TimeSys Corporation. 2007. RTSJ Reference Implementation
(RI) and Technology Compatibility Kit ('I'CK) [Internet]. [cited 2007-Oct-
22]. Found at: http: //www. timesys. com/java/

[Tokuda and Kitayama 1993] Tokuda H, Kitayama T. 1993. Dynamic QoS
Control based on Real-Time Threads. 3rd International Workshop on
Network and Operating Systems Support for Digital Audio and Video,
LNCS Vol. 846, pp. 114-123, Springer-Verlag.

[Wang and Lin 1998] Wang Y C, Lin K J. 1998. Enhancing the real-time

capability of the Linux kernel. In Proceedings 5th International Conference

on Real-Time Computing Systems and Applications (RTCSA'98),

Hiroshima, Japan, October 1998.
[Wang and Lin 1999] Wang Y C, Lin K J. 1999. Implementing a general real-

time scheduling framework in the RED-Linux real-time kernel. In
Proceedings 20th IEEE Real-Time Systems Symposium, pp. 246-255.

[Wolfe et al. 1999] Wolfe V F, DiPippo L C, Bethmagalkar R, Cooper G,
Johnston R, Kortmann P, Watson B, Wohlever S. 1999. RapidSchcd: static
scheduling and analysis for real-time CORBA. In Proceedings 4th
International Workshop on Object-Oriented Real-Time Dependable

Systems, pp. 34 - 39.

[Yodaiken 1999] Yodaiken V. 1999. The RTLinux Manifesto. In Proceedings
5th Linux Expo, Raleigh, NC, March 1999.

[Yodaiken 2002] Yodaiken V. 2002. Against Priority Inheritance. FSMLabs
Technical Report, June 2002, found at
http: //www. fsmlabs. com/resources/ white-papers/

[Zerzelidis and Wellings 2006] Zerzelidis A, Wellings A J. 2006. Getting More
Flexible Scheduling in the RTSJ. In Proceedings 9th IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC'06), IEEE Computer Society, pp. 3-10.

[Zerzelidis and Wellings 2006b] Zerzelidis A, Wellings A J. 2006. Model-based

verification of a framework for flexible scheduling in the real-time
specification for Java. In Proceedings 4th International Workshop on Java
Technologies For Real-Time and Embedded Systems GTRES'06), vol. 177.
ACM Press, pp. 20-29.

257

[Zerzelidis et al. 2007] Zerzelidis A, Burns A, Wellings A J. 2007 Correcting

the EDF protocol in Ada 2005. In Proceedings 13th International Real-
Time Ada Workshop (IRTAW-13).

[Zhang and Cordes 2002] Zhang C, Cordes D. 2002. A resource
synchronization protocol for dynamic scheduling real-time CORBA. In
Proceedings IEEE SoutheastCon 2002, pp. 15 - 20.

[Zhang et al. 2005] Zhang J, DiPippo L, Fay-Wolfe V, Bryan K, Murphy M.
2005. A real-time distributed scheduling service for middleware systems.
10th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS), 2-4 Feb. 2005, pp. 59 - 65.

258

