The Dynamics of Market Structure and R&D

Vo T
' -*I;r ;a‘l*" ;*"‘}
il

*

Competition

Ana Sofia Domingues Rodrigues

PhD Thesis

The University of York

Department of Economics and Related Studies

May 2007



Contents

Abstract 8
Acknowledgements | 11
Declaration 13
1 Introduction 14

2 Understanding Gibrat’s Law with a Markov-Perfect Dynamic

Industry Model 23
2.1 Introduction . . . . . . . ¢ i i i v v i i i i i e e 23
2.2 Gibrat’s Law and Empirical Fiﬁdings ................ 29
23 TheModel. ... ... ...... e e e e e e e e e e e e 28
2.3.1 Thelndustry ... ... ¢ i it ittt eo o eaoeooos 30
2.3.2 Evolution of Market Structure . . . . . ... ... 33
233 DynamicEquilibrium. .. .. .. ... 38

24 Firm Size Distribution . . . . .. .. ... 41
241 Simulation. ... ... . ...t R 41
2.4.2 DistributionResults .. ......... .. .00 44
2.4.3 Cross-Sectional Growth-Size Properties . . . . . ... ... 47

2.5 Variation in the Firm Size Distribution . . . ... ... ... ... 51



2.9.1 Fixed Costs

.......................... 02
25.2 SunkCosts ... ... ... i, 54
2.0.3 Rateof Cost Reduction. . ... ............... 57
2.9.4 Technological Opportunity . . . .. ... ... .. ..... 59
20.0 RateofSpillovers . . ... ... ... ..., 61

26 Conclusions . . . . . . ¢ i it ittt i it et e e e e 63

2.7 Appendix . . . . . i i i it e e e e e e e e e e e e e e e 08

The Endogenous Determination of Market Structure and R&D

Spillovers 104

31 Introduction ... ... ... ittt . 104

3.2 TheModel . . . . . . . . . ittt ittt ittt 109
321 TheSpotMarket . ... ... oot i it eeeenee.. 109
3.22 DynamicProcesses . ... ... .o 111
3.23 R& D and Appropriability . . . . . . o000 oo oo 112
3.2.4 Dynamic Equilibrium....... ... ... ..., 117

33 Numerical Results. . . . . .. .. ...t 131
3.3.1 Methodology . . . . v v i v v it e e e e et e e e 131
332 CostlessR&D Spillovers . .. .... ... 132
3.3.3 Absorptive Capacity . ... .....¢c¢ccoeeeenon.. 140

34 Conclusions . ... . c ot v it i ittt eneonoononooos 144

Monopolistic Competition and Dynamic R&D 165

4.1 Aimsand Motivation . . . . . ... . ... i it e 165

4.2 Background . . . . . . . . it it e e e e e e e e e e e e ... 167

43 TheModel . . . . . . . . . i i i i ittt it ettt et e e 171



431 TheSpotMarket . ... . ... ... ... 172

4.3.2 Thedynamicenvironment .. ................ 176

433 TheR&D Choice . . . . v o v v i v v it e it e e e v e o 180

43.4 EndogenousGrowth-..................... 182

4.4 Solution Methodology . ... ... ..., 186
4.5 Firm Size Distribution . . . . . ... ... 0 o 00 188
4.6 Conclusions . . . « c v v v i v v vt o v v o ottt s v e 192
4.7 Appendix ... ... .. ... e e e e e e e e e 202

9 Final Remarks - 203
Bibliography 209



List of Tables

2.1
2.2
2.3

2.4
2.5

2.6

3.1

4.1

Parameter values . . . . v v v v i i i i e e e e e e e e e e e e 65
Distribution Statistics for Baseline (Natural Logs) . . ... .. .. 66
Distribution Statistics for Baseline Excluding Firms with <1 Em-

ployee (Natural Logs) . . . . . .« v v v v v v v v v i v i vt 67
Average Summary Statistics in Natural Logs . . . . ... ... .. 68
Regression Results . . . . v v v v i v i 0 i b bt et e e e o e n s 69

Tests of Standard Deviation of Growth Rates by Size Class . . . . 70

Parameter Values . . . ... ....... e e e e e e 147

Parameter Values . . . . . v v v v v i e e e e o s oo e oo oo oo 194



List of Figures

2.1 US Firm Size Distribution by Employment, 2002 . . . . . ... .. 71
2.2 Employment Distribution . .................. e . (2
2.3 Log of Employment Distribution. . . . e, 73
24 Values Distribution . . ... ... .. ..o, 74
2.9 Logof Values Distribution . . . . . .« ¢ ¢t v v v v vt v, 75
2.6 OSales Distribution . . . ... ... ... e e e e e 76
2.7 Log Sales Distribution . ........ R I I I 77
2.8 Fixed Costs Effects (Levels) . ... ... 78
2.9 Fixed Costs Effects (LOgS) + » « v« v v v v v o e v e 79
2.10 Effects of Fixed Costs on Firm Size Distribution (Levels) . . . . . 80
2.11 Effects of Fixed Costs on Firm Size Distribution (Logs) . . . . . . 81
2.12 Sunk Costs Effects (Levels) . ... ....... .0, 82
2.13 Sunk Costs Effects (Logs) . . . . . . . oo v i it v v oo 83
2.14 Effects of Sunk Costs on Firm Size Distribution (Levels) . .. .. 84
2.15 Effects of Sunk Costs on Firm Size Distribution (Logs) . ... .. 85
2.16 Rate of Cost Reduction Effects (Levels) . . . . .. ... ... ... 86
2.17 Rate of Cost Reduction Effects (Logs) . .............. 87

2.18 Effects of the Rate of Cost Reduction on Firm Size Distribution



2.19 Effects of the Rate of Cost Reduction on Firm Size Distribution

(Logs) « v v v i v v v i it n e e e D 89
2.20 Technological Opportunity Effects (Levels) . . . .......... 90
2.21 Technological Opportunity Effects (Logs) . . . ... ... .. .. . 91

2.22 Effects of the Productivity of Investment on Firm Size Distribution

(LOES) « ¢« v o i v e e e e e o ot o o oo e e s et 93
2.24 The Rate of Technological Spillovers Effects (Levels) .. ... .. 94
2.25 The Rate of Technological Spillovers Effects (Logs) ... ... .. 95

2.26 Effects of the Rate of Spillovers on Firm Size Distribution (Levels) 96

2.27 Effects of the Rate of Spillovers on Firm Size Distribution (Logs) 97

3.1 The Impact of Spillovers on the Probability of Innovation Under
the Different Appropriability Scenarios . . . ... ... ... ... 146

3.2 The Impact of Costless Spillovers on the Optimai Investment Pol-
Icy Function . . . . . . . L 0 i i e e e e e e e e e e e e e e e 148

3.3 The Impact of Costless Spillovers on the Optimal Probability of

3.4 The Impact of Costless Spillovers on the Optimal Firm'’s Value . . 150
3.5 The Value Functionforb=00 .. ........ .. ... 151
3.6 The Impact of Costless Spillovers on the Ergodic Distribution of

Market Structures . . . . . v v v v 6 v v e e e e o o o o o o o oo o 152

3.7 The Impact of Costless Spillovers on the Concentration Index C1 153

3.8 The Impact of Costless Spillovers on Investment, Probability of

Successand Firm’s Value . . . . . . . ¢t v v it v o o b o e v s o o 154



3.9 The Impact of Costless Spillovers on Consumers’ Surplus . . . .. 155
3.10 The Impact of Costless Spillovers on Producer Benefits . . . . . . 156
3.11 The Impact of Spillovers on the Optimal Investment Policy Func-

tion in the Case of Absorptive Capacity . . . . . . ... ... ... 157
3.12 The Impact qf Spillovers on the Optimal Investment Probability

of Success in the Case of Absorptive Capacity . . ... . ... .. 158
3.13 The Impact of Spillovers on Firm’s Value in the Case of Absorptive

Capacity . . . . . . .. e e e e e e e e e e e e 159
3.14 The Impact of Spillovers on the Ergodic Distribution of Market

Structures in the Case of Absorptive Capacity . . ... ... ... 160
3.15 The Impact of Spillovers on the Concentration Index C1 in the

Case of Absorptive Capacity . . « . « « « ¢« o v v v v v v v v v v b 161
3.16 The Impact of Spillovers on Investment, Probability of Success and

Firm’s Value in the Case of Absorptive Capacity . . . . . . .. .. 162
3.17 The Impact of Spillovers on Consumers’ Surplus in the Case of

Absorptive Capacity . .. ... ... e 163
3.18 The Impact of Spillovers on Producer Benefits in the Case of Ab-

sorptive Capacity . . . .« v v v v i et et 164
4.1 The Change in the Marginal Cost Curve with PS . . . . .. ... 195
4.2 Firm’s Value as a function of the Efficiency Level . ... ... .. 197
4.3 Investment as a function of the Efficiency Level . . ... ... .. 198

4.4 The Distribution of Firm Sizes for a Sample of British Firms . . . 199

4.5 The Distribution of Employment . ... .... ... 200
4.6 The Distribution of Ln Employment . . . . .. .. ... ... ... 201



Abstract

This thesis investigates the articulation of the incentives to perform Research and

Development of profit seeking firms. Throughout the thesis, the dynamic evolu-
tion of the distribution of these incentives across firms is the engine of industry
transformation and growth. Thus, in order to assess the impact of different in-

dustry characteristics on the market structure, we need a faithful picture of the

context where firms make their R&D choices.
Chapter one exposes more in detail the motivation to pursue the analysis
developed in each chapter independently, and how they combine to build up the

search for the understanding of the interactions between R&:D, appropriability

and market structure.

Chapter two presents a dynamic model of the firm size distribution. Empir-
ical studies of the firm size distribution often compare its moments to those of
a log-normal distribution, as implied by Gibrat’s Law, and note important de-
viations. Thus, the first and basic questions addressed in the first chapter are
how well does the dynamic industry model reproduce Gibrat’s Law and how well
does it match the deviations uncovered in the literature. We show that the model
reproduces these results when testing the simulated output using the techniques

of the empirical literature. We then use the model to study how structural para-

meters affect the firm size distribution. We find that, among other things, fixed



and sunk costs increase both the mean and variance of the firm size distribution
while generally decreasing the skewness and kurtosis. The rate of growth in an
industry also raises the mean and variance, but has non-monotonic effects on the
higher moments.

In the third chapter we explore the implications of different degrees of R&D
appropriability on market structure and welfare. We propose a framework to
pursue this analysis by extending the Markov-Perfect dynamic industry model
proposed by Ericson and Pakes (E-P, henceforth) (1995) through the introduc-

tion of a non-proprietary productivity component to R&D as part of a dynamic,
stochastic process. We first assume that spillovers are costlessly absorbed and
exploited by firms in the industry, and find that, in this case, a free rider problem
arises, thereby decreasing the incentives for investment. This leads to a lower
amount of innovations being developed in the industry, which in turn, implies
lower consumer welfare while leaving the degree of concentration in the industry
fairly unchanged. We then model a setting where it is assumed that in order to
build its absorptive capacity the firm has to engage in some R&D of its own.
In this case, we find that an increase in spillovers will enhance both consumer
and producer welfare substantially, and increases the likelihood of neck-and-neck
competition, therefore reducing the level of concentration in the industry. These
results arise from the fact that having absorptive capacity being built as a by-
product of R&D enhances the productivity of R&D investment, compensating for
the free rider effect associated with the lack of appropriability.

The frameworks used in the two first chapters suffer from the "curse of di-
mensionality", such that the industries under analysis are limited in terms of the
number of agents simultaneously active. In order to overcome this problem, in

chapter four we move away from oligopolistic market structures and propose a



model of monopolistic competition, where firms are sufficiently large to generate
a firm size distribution with a certain degree of asymmetry, although each firm
is too small to affect the industry’s outcome. Furthermore, we account for in-
dustry growth by having the industry’s output increasing over time as a result
of knowledge externalities. The rich micro set-up of this model is analogous to
that of E-P (1995), as it is composed by heterogeneous firms making their in-
vestment decisions in a world of uncertainty, but we abstract from entry and exit
and instead of an oligopolistic market structure we model a monopolistic com-
petition environment with many, heterogeneous firms. In this setting, firms are
asymmetric in terms of the technology they use to produce a given commaodity,
and they are able to increase the likelihood of decreasing their marginal costs of
production by investing in Cost Reducing R&D. In order to evaluate their future
stream of profits and make their investment decisions firms only care about the
evolution of their efficiency and the long-run efficiency index in the industry. Cut-
ting down the oligopolistic interactions present in the E-P framework, and having
firms looking at the long-run average industry state, allows us to overcome the

curse of dimensionality usually associated with dynamic models with agent het-

erogeneity. Therefore, we are able to simulate the model with a large number
of firms competing in the industry and we show that, contrary to most existing
endogenous growth models, this model is able to deliver a firm size distribution
with a substantial degree of heterogeneity.

Chapter 6 presents the final remarks to the investigation carried out in this

thesis.
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Chapter 1

Introduction

"In the years after the Second World War the economist’s attitude gradually

changed. The vast expenditures on Research and Development made it increas-
ingly obvious that inventive activity was - or could be made to be - responsive to
economic needs (or even to non-economic needs if such needs received sufficient ,
financial support). Clearly much of the search activity of R and D was highly
purposive: business firms were looking for new techniques in specific categories
of products, they spent much money upon this search, and they were sometimes

highly successful."
Nathan Rosenberg, 1974

This thesis explores the dynamics of organic growth through technological
process as an output of R&D effort at the corporate level and the role of the
expansion of scientific knowledge in the dynamics of market structure. Tech-
nological change has assumed a primordial role in the search for the engines of
growth and development, and throughout the past decades Research and Devel-
opment has predominantly become the province of firms rather than the outcome

of government efforts or stand alone inventors. Thus, the inventive activity and

14



the growth of scientific knowledge should be accounted for in the context of firms’
investment choices, which arise as a response to the economic environment deter-

mining the incentives to perform R&D.

We aspire at providing some insights on the nature of R&D competition, and
on how it shapes the market structure of an industry. We believe that the market

environment, captured by the demand and cost conditions, the market structure,
the productivity of innovations in enhancing the attractiveness of a firm’s product
or In improving the efficiency in which it combines inputs to produce its output,
and the extent to which a firm is able to appropriate the outcome of its own
investment govern the allocation of the innovative effort in the industry, and thus
the pace of technological growth.

In our attempt at modelling firms’ innovative activity, we allow for uncertainty
in the outcome of R&D effort. By increasing the amount of resources allocated
to the R&D activity, a firm enhances its likelihood of developing an innovation
but it also faces the possibility of failure. The importance of accounting for
uncertainty when modelling R&D competition was highlighted by Kamien and
Schwartz (1971) and Dasgupta and Stiglitz (1980). In their approach to R&D
competition, Dasgupta and Stiglitz (1980) also highlight the other dimension
determining the pace of R&D: the market structure. Given the conditions for the
productivity and appropriability of R&D in the industry, the relative position of
the players in the market is what determines the magnitude and distribution of
research effort across firms. Following this path of research implies moving away
from the traditional approach (Schumpeter (1942)) of modelling the connection

between the degree of concentration and R&D unilaterally, addressing not only
the role of market structure in affecting the incentives to invest, but also the

endogenous determination of the market structure itself with respect to the R&D

1o



program.

In the approach presented here, product market competition generates incen-
tives for profit maximising firms to engage in R&D competition, with the aim
of potentially reducing the unit costs of production by improving its production
process (process innovations). The uncertain outcome of the innovative R&D ac-
tivity will, in turn, determine the innovation path of the firm and its profitability
in the spot market. The returns to R&D depend not only on the firm’s success
in innovating, but also on the outcome of the rivals’ R&D effort. A firm’s com-

petitiveness at a given moment in time depends on the path of both its own and
1ts rivals’ past successes in the R&D activity.

In the first chapter, we investigate the economic forces shaping the market
structure in the industry. Given the dynamic character of R&D competition
and the relevance of accounting for heterogeneity at the firm level and turbulence
when modelling an industry environment, we depart from the E-P (1995) dynamic
industry framework, which is able to replicate the variability of similar firms
fates empirically observed. This framework also accounts for the endogeneity of
market structure with respect to R&D competition, which is essential to the task
of exploiting how industry conditions and R&D rivalry affect the distribution of
the incentives to engage in R&D when its outcome is uncertain.

The distribution of market shares across the set of firms operating in an in-
dustry and the asymmetry in firm size have long been an issue of interest in eco-
nomic theory. The first approach to this issue was conducted in 1931 by a French

economist, Robert Gibrat, who proposes a simple model to explain the statis-

tical properties of the distributions of a number of realities such as "l’inégalites
des richesses, la concentration des entreprises, la population des villes”, among

others. Gibrat presents intuitively the importance of his results: "Wouldn’t it

16



be astonishing the existence of a general tendency of an increase to 11 workers
in firms with ten, and an increase to 1.100 in those with 1.000 workers?" . This
intuitive approach was formalised as Gibrat’s law of proportionate effect, accord-
ing to which the relative effect of industrial fluctuations in the number of workers
of a firm (Gibrat takes the number of worker as a proxy for firm size), or their
absolute effect on the log of the size of the firm does not depend on the number
of workers of the firm, such that the distribution of firm sizes can be well approx-
imated by a lognormal distribution. This subject has attracted much attention
since the late 50’s, and has motivated many empiricists in testing the validity of
Gibrat’s statements.

The first chapter of this thesis, however, is not related with the testing of
Gibrat’s law, but rather with the search of the economic forces that shape the
distribution of firm sizes and make the law of the proportionate effect a reasonable,
yet imperfect approximation for the firm size distribution. What are the economic
forces influencing the higher moments of firm size distribution? How do industry
characteristics affect them? These research questions gain further interest given
the results of empirical studies uncovering cross-industry variation in the higher
moments of the firm size distribution such as Machado and Mata (2000), Lotti
and Santerelli (2004) and Audretsch et al. (2004).

We tackle these research questions through the attempt of unraveling how
industry characteristics, captured by a set of parameters in our E-P based model,
affect the expected returns to R&D investment at the level of product market
competition and R&D rivalry. In a first stage, we demonstrate that the model
is able to generate a set of simulated data for firm sizes with similar statistical
properties to those of the real data. We then vary the values of the parameters

6apturing the industry characteristics whose impact on the distribution of firm

17



sizes we want to analyse. We find that the firm size distribution in industries
with higher fixed or sunk costs are flatter and have larger mean size of firms.
Fixed costs make it more difficult for firms to survive in the industry and act as
a requirement of a minimum scale of operations to produce non-negative profits
and survive, implying that the less efficient firms will be better off by exiting the
industry and receiving the scrap value, while sunk costs act as entry barriers and
discouraging potential players to enter the industry. As one would expect, bo;ch

a higher technological progress and a higher productivity of R&D in the industry

will lead to higher mean size and variance, but we found the impact of these
industry characteristics on the higher moments of the firm size distribution to be
non monotonic. Finally, we should expect that the higher the appropriability of
R&D in the industry, the higher the mean and variance in the size of firms, but
the effects on skewness and kurtosis are highly non-monotonic. These theory-
driven results are in line with many of the findings of the empirical literature on
cross industry variation in the firm size distribution, and yield a series of testable
hypothesis on the nature and direction of the effects of key industry characteristics
on the properties of the distribution of firm sizes.

In the third chapter of this thesis, we address the impact of cost-reducing
R&D spillovers on the evolution of the ergodic distribution of market structures.
Our aim is to unravel the dynamic forces driving the market structure changes
brought about by the presence of externalities, and understand the relationship

between the market structure and the trade off between the damage to the incen-

tives for R&D effort and the reduction in wasteful duplication. The contribution
of this piece of research lies on the analysis of the impact of externalities on

market structure and welfare in a dynamic, stochastic context, given that the

investigations carried out in the literature rest on static, symmetric models, or

18



models that fail to account for the uncertainty in firms’ R&D decisions.

In the existing literature concerning the effects of R&D externalities, it is
usually assumed that the external effect of each firm’s R&D is to lower the rival
firms’ unit cost of production (when modelling process innovations) or increase

the quality of the competitors’ product ( product innovations). In chapter three,

we propose a specification which incorporates uncertainty in the outcome of R&D

such that the external effect of a firm’s R&D is to enhance the likelihood of a rival

firm experiencing a reduction in its marginal cost of production. Therefore, we

eliminate the determinism in the relationship between R&D effort and marginal
costs. Higher R&D does not ensure successful innovation, it rather delivers a
more favourable innovation path over time.

We first introduce the conventional form of spillovers modelled in the literature-

Costless RED Spillovers. Under this setting, there are benefits of the R&D un-

dertaken to firms other than the one who has bore its cost. A portion of the R&D
effort by each firm flows to the public pool of knowledge, becoming readily avail-
able to the other firms. The proportion of the R&D effort leaking to the public
pool of R&D is determined by the appropriability conditions in the industry such
as patent policies, secrecy (particularly relevant for process innovations), lead-
time, the extent of knowledge embodied in the output of the innovation process,
the ease of imitation, worker mobility, etc. Under this scenario, firms substitute
costly R&D effort by a free external source of R&D and cost optimization allows
them to achieve higher values. However, the classical effect of R&D externali-
ties of potentially improving the rival’s state decreases the incentives to invest

in R&D. Fewer innovations are developed in the industry and consumers will
experience a welfare loss from reduced appropriability.

These implications of spillovers, however, are sensible to the assumption of

19



R&D spillovers being a pure public good. If one .assumes, such as in Cohen and
Levinthal (1989), that the absorption and exploitation of rivals’ R&D spillovers is
not a costless process, but that it rather depends on a crucial element, this being
the firms’ absorption capacity, built as a by product of R&D, the implications
of R&D spillovers for market structure and welfare change dramatically. In this

scenario, the productivity of R&D increases with an offsetting effect on the re-
duction of the incentives to perform R&D that arise from the free rider problem.

Even with a reduction in the R&D investment undertaken in the industry, spe-

cially in the case of the leader firm (the firm with an advantage in the efficiency
level), the presence of externalities improves the total amount of R&D devoted
to the innovative process, delivering a more favourable innovation path which
implies lower marginal costs in the industry. Consequently, consumer welfare will
increase, but at the producer level, only the follower firm will experience a welfare
gain. The improvement in the follower position relative to the leader reduces the

asymmetry in the market structure.

Thus, we show that spillovers do not necessarily have a detrimental effect
on R&D investment incentives and that the Schumpeterian results are weakened
when imposing the need of an absorption capacity, built as a by product of R&D
investment, in order for firms to absorb and exploit the spillovers. In fact, the
literature on this subject has recurrently treated external information as costlessly
absorbed, and with no other countervaling effects, the free riding problem dooms
the lack of appropriability to be welfare reducing.

Dynamic industry models with agent heterogeneity can be very enlightening
for the understanding of a number of important dimensions related to firm be-

haviour and market evolution, such as the ones addressed in chapters two and

three. However, their usage is limited by the computational burden involved in

20



computing rétional expectations concerning the expected future states of the set
of players In the industry. This “curse of dimensionality” associated with the
dynamic framework used throughout the thesis prevents its use to study indus-
tries with more than a handful of firms. The dimensions of agent heterogeneity
are also restricted by the computational burden.

There have been a series of attempts do overcome this limitation of the mod-
elling of dynamic strategic interaction, namely a version of the Pakes and McGuire

(2001) algorithm that computes expectations over the states of the ergodic set

and ignoring the rest of all possible states and improves the computational effi-
ciency. Dorazelski and Judd (2005) also propose a continuous time alternative

which reduces to zero the probability that the state of two firms change simulta-
neously, improving the computational speed. In the fourth chapter of this thesis,
we propose an alternative dynamic industry model where each firm is assumed
too small to affect the industry outcome, but large enough so that its size 1s sig-
nificant. As a result, each firm, individually, is too small to have a strategic effect
on its rivals’ decisions, and only the average industry state affects firms’ decision.
Furthermore, we simplify firms’ decision process by having them treating the long
run average of the industry as constant. Thus, in computing their perceptions of .
the evolution of the future payoffs, firms only care about the expected long-run
average state of the industry and the dynamics of their own state, whose motion
is given by the firm’s own transition function.

Cutting down the oligopolistic interactions present in the original E-P (1995)
framework allows to model industries with many heterogeneous agents. Firms
will invest in R&D in order to improve their efficiency, and their decisions are a
function of the long run average industry state and the probability dynamics of

their own state. We propose an algorithm and the corresponding code to find the
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optimal R&D investment decisions. For doing this we have the firms forecasting
the long run average industry state, which ultimately affects its profits. Given
that expectation, we find the optimal R&D decision for each of the possible
states each firm can find itself in and, using those, we simulate the industry
market structure to obtain actual series of states for the firms in the indus;:ry.
We perform this process until the expected long run industry average that firms
assume as given for their optimization process is the actual long run average
industry state that arises when simulating the industry’s market structure using

the optimal policy functions. We show that the equilibrium long run distribution

of firm sizes entails a substantial degree of heterogeneity.
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Chapter 2

Understanding Gibrat’s Law with

a Markov-Perfect Dynamic

Industry Model

2.1 Introduction

Studies on the firm size distribution and Gibrat’s Law to date have been the
province of empiricists. We can write down various reduced form models, as in
McCloughan (1995), to reproduce many of the statistical facts surrounding the
firm size distribution and Gibrat’s Law of Proportionate Effect, which states that
the growth rate of a firm is independent of its size, and the well know deviations
from this law found in the empirical literature. However, little of the empirical
work has been guided by a formal structural model. In Caves’ (1998) survey on
the recent empirical findings in industrial organization, he states, “Although the
importance of these facts for economic behaviour and performance is manifest,

their development has not been theory-driven.” This paper seeks to take a step
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towards filling this gap.

We employ an extension of the Ericson and Pakes (1995) model of a dynamic
industry that allows for ‘ﬁrm growth developed by Laincz (2004a). By varying
key priors, the simulations demonstrate potential sources for the various, and

sometimes conflicting, results on Gibrat’s Law uncovered in the empirical liter-

ature. We demonstrate that the model matches empirical findings on Gibrat’s

Law.

A more recent literature uncovers significant cross-industry variation in the

higher moments of the firm size distribution. Machado and Mata (2000) find that

industry characteristics such as technological orientation and capital-intensity are

significantly related to the skewness. Lotti and Santerelli (2004) show how the
distribution of a new cohorts differs across different industries and over time. Au-
dretsch et al. (2004) present evidence suggesting that the firm size distribution
of the service industry differs from manufacturing. We use the model to develop
theoretical reasoning for many of these findings, however, our analysis also em-
phasizes that some variables have strong non-monotonic effects on the moments
of the firm size distribution suggesting caution in generalizing empirical results
based on linear specifications.

After briefly reviewing the lengthy empirical literature on Gibrat’s Law and its
relationship to the firm size distribution in the next section, section 2.3 presents
the basic model. In section 2.4 we compare the results of a baseline simulation to
the empirical literature on the firm size distribution and Gibrat’s Law. Section

2.5 then documents how varying key structural parameters alters the firm size

distribution. Section 2.6 summarizes the results.
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2.2 Gibrat’s Law and Empirical Findings

Following the seminal works of Hart and Prais (1956) and Ijiri and Simon (1964),
the industrial organization literature devoted much energy into exploring the sta-

tistical regularity known as Gibrat’s Law as it applies to the firm size distribution.
Figure 2.1 shows the size distribution of enterprises for the U.S. in 2001. Notably,
the distribution is significantly skewed to the right with the large peak for the
smallest size class with non-zero employment. The following simple statistical
process generates almost the same distribution. Let z; be the size of firm 7, then

growth from one period to the next is represented as:

zi(t) = 28(t — 1) exp wi(2)], B> 0 (2.1)

where u;(t) « iid N(u,0%). Defining y;(t) = Inz;(t), then:

yi(t) = Bui(t — 1) +u;(2). (2.2)

When 8 = 1 we have Gibrat’s Law wherein the growth rate of a firm is inde-
pendent of its size and the process yields a log-normal distribution of firm sizes.

Empirical work on the firm size distribution finds that this characterization is
a close, but imperfect proxy for the data. The earliest work on Gibrat’s Law
only had data available for large firms. Hart and Prais (1956), for example,
included only firms listed on the London Stock Exchange between 1885 and 1950.

They found that Gibrat’s Law provided a good statistical approximation for the
distribution. Simon and Bonini (1958) found similar results for large US firms.

More recently, Hart and Oulton (1996) compare the implications of (2.1) to

a large sample of firms measured by employees, net sales, and net assets. They
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'ﬁnd that the distribution has a long right tail, with skewness coefficient estimates
ranging from 0.19 to 0.75, and leptokurtic with values from 4.58 to 6.20. However,
they argue the deviations should not be compared with the extreme of matching
the log-normal distribution exactly and that the close approximation justifies the
use of Gibrat’s Law in empirical work.

Our task is rather different. We are specifically interested in the deviations
themselves. We want to construct a sensible model of optimizing firm behaviour
that can both approximate the distribution and provide us with a tool to under-
stand the deviations and, moreover, cross-industry differences. Before turning
to the model, we look at the literature that explicitly rejects the strong form of
Gibrat’s Law where S is exactly one.

Mansfield (1962) was perhaps the first to explicitly deal with the problems
that entry and exit present for the interpretation of Gibrat’s Law. Specifically,
since exiting firms effectively have a growth rate of -100%, does Gibrat’s Law
hold for all hrm, only the survivors, or for firms exceeding a size threshold such
as minimum efficient scale? Of the three, he found that the latter interpretation
fit his data the best using a X2 test on the lognormality of the distributions for
each of his industries in each time period. In growth size regressions, Mansfield
found that in the entire sample of survivors, firms grow less than proportionally,
i.e. B <1. However, énalyzing large firms only, he found that the mean growth
rate is independent of size, i.e. B =1. He still concluded that Gibrat’s law does
not hold for any of the versions considered due to the fact that, even for the case
of larger firms only, the variance of growth rates decreases with size.

Subsequent empirical analysis largely confirmed Mansfield’s initial foray into
the subject. Using more advanced econometric techniques to deal with het-

eroscedasticity and sample selection bias, Hall (1987) and Evans (1987) found
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that Gibrat’s Law generally holds for large firms, but not for the entire popula-

tion. They uncover a negative relationship betweén size and growth. Dunne and
Hughes (1994) also find that while size evolves proportionally for medium and
large firms, small firms’ growth rates have higher variance and tend to decrease

with size.

Another set of growth regression studies focused on the persistence of devia-
tions of firm size from the mean, which would imply biased estimates for 8. Singh

and Whittington (1975) and Kumar (1985) found evidence for serial correlation

in the growth rates of firms supporting the variant of Gibrat’s Law proposed in
Ijiri and Simon (1964). Kumar (1985) confirms the previous findings rejecting
the strong form of Gibrat’s Law, by showing that the earlier conclusions were
robust to correcting for autocorrelation in the growth rates.

One of the problems that has plagued this literature, particularly the early
work by Hart and Prais (1956) and Simon and Bonini (1958), has been data

without a balanced representation of small firms. Dunne and Hughes (1994)
and Hart and Oulton’s (1996) work tries to address the problem by using a

database with broad representation of small firms. They use this database to
test for differences in growth rates among firms of different size classes and find
the differences to be significant in contrast to Gibrat’s Law. In the analysis of
our model, we find the same differences and we also note that how small firms
are counted matters when analyzing the firm size distribution itseli.

A newer literature focuses on cross-industry variation. Santarelli and Lotti

(2004) look at the evolution of the size distribution of new firms in four indus-

tries. Over a period of five years most of the distributions approach the log
normal distribution, however, they find that the more technologically oriented
industries achieved the lognormal faster. Audretsch et al. (2004) find evidence
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that services may exhibit different distributional properties than manufacturing,
the main focus of the empirical literature to date. Looking at the Dutch hospi-
tality sector they find that growth is independent of size, whereas the majority of
studies focusing on manufacturing find the negative growth-size relation discussed
above. Machado and Mata (2000) use quantile regressions to examine the effect
of industry characteristics on different portions of the distribution for Portuguese
data. While their results are mixed for some characteristics and distribution

measures, they find that the impact of industry characteristics on skewness is the

most stable over time. Both technology measures and the rate of growth in an
industry reduce the skewness of the distribution, while turbulence increases it.

However, all of the results of the previous paragraph lack a solid theoretical
base for their findings. It is this gap in the literature we seek to fill by propos-
ing a fully dynamic model of optimizing firms that generates the distributional

characteristics found in the empirical literature.

2.3 The Model

To capture the forces that affect firm size distribution in a structural model,
we apply a variant of the Ericson and Pakes (1995) model described in Laincz
(2004a). The modification allows for continually falling marginal costs through
process R&D such that we can discuss both firm and industry growth rates. That

enables us to perform analogous growth-size tests on the resulting simulated data.

We specify an industry with a finite set of imperfect substitutes such that

one of the common drawbacks of the Ericson-Pakes framework does not apply.

Because the state space for a single industry can be very large, it limits the total

number of firms that the computational algorithm can handle, often to no more
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than about 10 firms. In order to generate a cross-sectional distribution with a
reasonable number of observations, our industry is characterized by a finite set
of imperfect substitutes, but each good is produced by a Cournot oligopoly. We
solve for the dynamics associated with each substitute separately treating them
as highly disaggregated goods and then aggregate across the varieties. We think
of each good as being defined at a 7-digit level in the SIC or NAIC codes, for
example, and the aggregation taking place at a less detailed industry level such
as 4 or 5 digits.}

The older literature presumed that a market contained a series of isolated op-
portunities an& assigned exogenous probabilities that these opportunities would
be undertaken by either incumbents or new entrants. By specifying independent
products within the same broader market, we follow Sutton (1998) in bridging
the literature between the earlier stochastic models and the more recent literature
devoted to strategic interaction, by using a distinction between the market as a

whole, and a number of more or less independent submarkets within it. As Sutton

(1997) states, the assumption is “crude,” however, . . . most conventionally de-

fined industries exhibit both some strategic interdependence within submarkets,

and some degree of independence across submarkets.”%. Qur characterization al-

lows for strategic interdependence within each product market, but independence

across products within the industry.

'The approach is similar to Sutton (1998), pgs. 19-20. However, our use of the term
“submarkets” differs from his and accords more with his notion of “subindustry” (see pages
297-298).

?Sutton (1997), p. 49.
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2.3.1 The Industry

We characterize the industry as producing intermediate goods sold into a perfectly
competitive final goods sector. Firms producing the intermediate goods choose
quantity produced, investment in R&D, and whether to exit or not, if they are
currently active in the product market, or enter if they are not currently active.
The dynamic equilibrium is a Markov Perfect Nash Equilibrium which imposes
that decisions are functions only of the current state which is the current market
structure. The basic timing of the model begins with incumbent firms first

choosing whether to exit or not. The remaining incumbent firms then compete
in a Cournot fashion in the product market and determine their optimal levels
of investment in R&D to lower future costs which follow a stochastic process.
Potential entrants then compare their opportunity cost of remaining outside the
industry to the expected value of entering in the next period. These potential
entrants draw on a public stock of knowledge which increases overtime through
spillovers according to another stochastic process. At the end of the period, R&D

outcomes and the public stock of knowledge for the next period are determined

by the results of the stochastic processes.

The Product Markets

" Demand for intermediate goods comes from a perfectly competitive final goods
sector with a CRS production function.®> Qutput in period ¢, Y;, of the final

goods sector is given by the production function:

oy,

M
Y =Kk k52 K3 where }: Om = 1. (2.3)
m=1

3We could analagously think of (2.3) as the utility function for a consumer and apply the
framework to imperfectly competitive final goods producers.
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Each k. is the input from subsector m, where m denotes the products within
the industry. Within each subsector, multiple firms engage in Cournot competi-
tion providing a homogenous good to gam market share. The demand for each

intermediate good k,,; is given by:

(2.4)

Firms producing intermediate goods at any given time have a technology for
production of intermediate goods where the marginal costs are constant although
they vary across firms. All firms are assumed to face constant fixed costs which
do not vary either with time or across firms. Each intermediate goods firm,

n € [1, N,,], in industry m faces the following optimization problem for choosing

quantity:
Nm
I?a-x ij — Pm (ngyK Z qnm) Qjm — Mcjmqu o f (2'5)
Jm n=1 +

where market size, 0,,Y, and total quantity, Zf:l gnm, determine the price of the

intermediate good, P,,. ¢;jm is the quantity output of firm j producing product
m, MC;,, are the marginal costs for firm j, and f is fixed costs. The implicit

production function is linear in the input good with a coefficient equal to the

inverse of the marginal cost.

We focus on one submarket to illustrate the model in the discussion that

follows. Let IV, be the number of firms producing ¢.,, > 0. The Cournot-Nash
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equilibrium outcomes yield the profits for firm j as

'_f )
Mim = IMax (2.6)
Firms choose to produce if:
Nem
n=1

Equation (2.7) simply states that a firm will choose not to produce if its marginal
costs are too high relative to its competitors.

The Cobb-Douglas specification generates a Cournot solution for the interme-
diate goods firms in which profits are homogenous of degree zero in the vector
of marginal costs across firms once we normalize expenditures on the final good,
F,Y, to unity. Thus, a proportional change in the vector of marginal costs leaves
profits the same despite falling marginal costs through process innovation (de-
scribed below). Moreover, it allows for continuously declining marginal costs as
opposed to the Ericson-Pakes framework where marginal costs are restricted to
take on values in a finite set. The reason is that for any given vector of marginal
costs, once the policy functions specifying R&D expenditures, entry, and exit are
determined, these decisions will not vary provided the vector of marginal costs
changes proportionally. Hence, policy functions for a finite subset of possible

vectors of marginal costs are sufficient to characterize the long-run equilibrium

as marginal costs continuously decline with process innovation.
However, the functional form of the demand system does create a problem in

the case of an intermediate goods industry containing a monopolist. Because
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the price elasticity of market demand is unity, the monopolist’s solution is not
well defined. We assume that there is a minimum scale level of operations for
a monopoly." Let ¢ be the minimum amount that a monopoly must produce
in order to engage in the market. The assumption has two effects. First, it
immediately defines a solution for the monopoly problem with a positive level
of output while still providing the monopoly with incentives to invest in order
to lower its costs. Furthermore, provided ¢ is sufficiently small, there remain
strong incentives for firms to strive to become monopolists. The minimum scale
chosen for the simulations of the next section, while small enough to generate

large monopoly profits, is such that in equilibrium firms always have sufficiently

strong incentives to remain in the market or enter the market when the number
of firms is small. Those incentives are discussed in the next subsection. Given
that true monopolies without regulatory protection are exceedingly rare, the focus

on markets where the probability of a monopoly emerging is quite small seems

realistic and appropriate for the questions at hand regarding the distribution of
firms.

2.3.2 Evolution of Market Structure

The number of firms operating in each product market and their relative levels of

marginal cost determine the market structure at any point in time. The market

structure evolves through process R&D which lowers a firm’s marginal cost when

4There are other assumptions that could be made here instead, but do not significantly affect
the results. For example, it would be more natural to think of the minimum scale assumption
applying to all firms whether or not there is a monopoly. This assumption, while more plausible,
only complicates the Cournot-Nash solution by changing the corner solution for output from 0
to q for affected firms. Moreover, Dixit-Stiglitz technology is a viable alternative that yields

the same homogeneity of degree zero property, but it does not create a poorly defined monopoly

problem as in Laincz (2004b). That extension introduces a more complicated problem to solve
without adding much in the way of additional insights for the present inquiry.
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R&D is successful. We track the level of marginal costs by accounting for the
number of innovations that each firm j in market m has available at time ¢ and

denote 1t as %;,,;. The mapping from innovations to marginal costs is:

1 .
MCjims = A exp(—ntjme)- (2.8)

Marginal costs fall at the rate » with each additional innovation. Z is a scale
parameter on costs which we use below to calibrate the model to match the mean
employment level of firms observed in the data. Z captures the unit labour costs
of firms relative to the price of the final output good. Firms with a greater
number of innovations enjoy a cost advantage over rivals. The cost advantage
generates higher profits and the motive for engaging in process R&D.

The total number of innovations accessible by firm j is the sum of publicly
avallable innovations for product m, labelled I,,;, and each firm’s private innova-
tions, ip;, ..,

ijmt - Imt -+ ipjmt- | (29)

Private innovations of incumbents diffuse to the public stock at a constant rate,
0. Thus, I,,; increments by one with probability 4 in every period. We interpret
0 as the strength of lead-time, secrecy, and patent protection within the industry.
However, for incumbent firms an increment in the stock of public innovations also
means a reduction in the stock of private innovations. Thus, in the absence of
successful R&D in any period (discussed below), diffusion of an innovation to the
public stock leaves the total stock of innovations for an incumbent unchanged.
Consider an industry with, e.g., three firms simultaneously active. If, at a given
moment in time, there is a diffusion process, although all firms loose a private

innovation, the public stock of innovations available increases by one such that
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the incumbents’ total innovation stock is unaltered. However, contrary to the
private stock of innovations, the public stock is not private information and it is
also available to the entrants, such that with the diffusion process the gap between
the total innovation stock of the incumbents and the entrants is reduced. Thus,
the eflort that potential entrants need to pursue in order to catch up with the
incumbents is lower than before the diffusion process. In section 2.5, we explore
how the diffusion rate, 4, alters the observed firm size distribution.

The constantly growing public stock of innovations allows potential entrants

to remain viable> Completely new firms in a particular market do not have
to invest to learn all of the innovations that have taken place in an industry

since the beginning of time. Réther, we assume that most innovations are in the
form of readily available public knowledge, while more recent innovations are held
privately by incumbent firms. Existing firms have access to all of the publicly
available technological innovations and have discovered some new ones through
process R&D which is temporarily private information. It is through this process
of knowledge diffusion that industries are prevented from becoming permanently

monopolized.®

We assume that new firms generally enter at relatively lower efficiency levels
than incumbents to capture the fact that hazard rates of exit decline with the

age of the firm (See Dunne, Robertson, and Samuelson, 1988). Specifically, new

°If all information was permanently private, a leading firm could innovate a sufficient number
of times such that the cost to a new firm of acquiring enough innovations to generate positive
profits would make entry costs prohibitively high.

SIn the specification presented here, there are no spillovers between active firms which con-
trasts with the empirical evidence (e.g. Griliches, 1992). The spillover from private to the
public stock of knowledge is necessary for continual growth because it enables new firms to
enter at levels competitive with incumbents. The model can be adjusted to account for diffu-

sion between incumbent firms. Doing so would enable analysis of the role of secrecy and lead
time and how they interact with market structure. Overall, we do not believe it would change

the main results presented in the next section, but we do believe it is worthy of exploration in
future work.
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firms will enter, on average, with fewer private innovations than incumbents:

M Nmn

m=1 n=1

where ip®" represents the number of private innovations of a new entrant. If new

firms entered at higher levels than incumbents, then incumbents would be more
likely to die than entrants producing 'the counterfactual result that incumbents
have a higher hazard rate of exit than new firms. The left side of the inequality
implies that new firms are bringing some new ideas while the right-side, ip, is
the equilibrium average (over the long-run) number of private innovations held
by incumbent firms. This assumption then creates the possibility that new firms

can immediately establish themselves as the new leader if incumbents repeatedly

fail to innovate.’

The stock of private innovations held by incumbent firm j increases through
successful R&D. The role of R&D is given by:

ipjm,t+1 = 1Djmt + Vjme (2.11)

where:

G i
T, for v;m =1

Pr(vim:) = 1+‘”-f"“ : : (2.12)
O Ujmt = 0

1+M3mt
T;me iS the level of R&D undertaken by a firm at time t. Note that the function
does not vary with firm size, i.e. large firms do not possess an inherent advantage

in successfully conducting R&D. We do not: need to assume advantages owing

to size to generate R&D spending distributions that match the highly skewed

"This outcome occurs only rarely. Most of the time new firms will enter with a small market
share relative to existing incumbents.
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distributions in the data (see Laincz 2004a). This assumption is consistent with
the arguments of Cohen and Klepper (1992) among others that there are no
differences in the productivity of research investment owing to firm size.

The parameter a governs the productivity of R&D and is interpreted as mea-~
suring the technological opportunity and basic state of science. We assume this
to be constant across firms and product markets. Clearly, the level of R&D

productivity will be an important parameter for variation in the firm size distrib-
ution. Higher levels of a generate greater potential for ény one firm to extend its
technological advantage and generate greater variance in firm sizes. We explore
the relationship between technological opportunity and the firm size distribution
in section 9.

The combination of the two stochastic variables, R&D and diffusion, in con-
junction with the solution to the dynamic equilibrium results 1n an upper bound
on how much of a lead firm will actually gain over potentially new firms in equi-
librium. Because returns to investment are decreasing when marginal costs are
relatively low, firms will enter a “coasting” state and choose not to invest because

the gains eventually become outweighed by the costs.®

This specification for the evolution of marginal costs and innovation has sev-
eral notable features. First, it is the relative marginal costs that matter to firms’
profits as shown in (2.6); the absolute level of the marginal costs (or total stock
of iﬁnovations) is irrelevant to the decisions of a firm. Second, in contrast to
Ericson-Pakes, the spillover process does not change the marginal costs of active -

firms, but it does lower the costs of potential entrants because the stock of pub-

licly available innovations continually grows. This feature allows for potehtia.l

entrants to remain within striking distance of the incumbents. Hence, the con-

8See Ericson and Pakes (1995) for a discussion of the coasting states.

37



tribution of private innovations to the public stock is an externality that benefits

the pool of potential entrants.

2.3.3 Dynamic Equilibrium

Let s,.,,» be the number of firms with ip private innovations producing product m
and define the vector s,, = [sp,»] which describes the market structure at any point
in time. There are two types of firms facing different problems: incumbents and
potential entraﬁts. Incumbents are either producing for the market or choosing to

exit. Their problem is characterized by comparing the expected net present value
of investment in R&D against a positive liquidation value given by ¢. Potential
entrants compare an outside alternative, 1, against the net present expected value
of entering minus sunk costs of establishing production facilities denoted by .
Both ¢ and x are assumed constant across time and equal across ﬁ.rms:

An incumbent’s intertemporal decision can be described by the following Bell-

man equation where time subscripts are replaced with a prime indicating a future

value and all others are current:

1
147

) B (V! olipim, o] }
(2.13)

‘/j{n(ipjmt Sm) = max {éa 71.(?’“.1"1'1'13 Sm) — CZjmy + (

where the I superscript refers to the value of an incumbent. If the firm chooses to
exit it receives the liquidation value ¢, otherwise the firm receives current period
profits minus its investment level in R&D, z;,, at a cost of ¢ per unit plus the
discounted expected value conditional on future market structure. The future
market structure depends on the firm’s current number of private innovations and
the current market structure. 1/(1+r) is the common discount factor facing all

firms. The expectation sign reflects the fact that the firm is assigning probability
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weights via the transition matrix of the market structure moving from its current
state to all possible states. These include the probability of a spillover, the
probability the firm itself will be successful in R&D, the probabilities of other
firms being successful, and the probabilities of entry and exit.

A potential entrepreneur may enter a submarket, incur sunk entry costs, and

establish production and R&D facilities. Production and sales do not begin until

the following period. The Bellman equation resembles that for incumbents with

few changes:

_ 1 : :
ijnN (ipEN, 8,n) = max {1/), — X — CTjm T (1 n r) EVI(ZP;m, Smlip™" Sm)}

(2.14)

where the EN superscript refers to entrants and the future value corresponds
to that of being an incumbent in the next period. % measures the opportunity -
cost of entering and x represents the sunk entry costs. By endogenizing entry

and exit, we can observe how turnover rates respond to changes in structural

parameters as we observe changes in the firm size distribution in the analytical

section of the paper.

The Bellman equation can be written as follows:

é: W(ijma sm) = ijm""

() | 222 G118 + 1, )+ 1= Ca i, )]
(2.15)

‘/j{n(ipjms sm) = Imnax

The investment strategy of firms derives from the first order conditions on the

above. Let Ci(ip},+1,s],) denote the expected value of the firm conditional on
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successful innovation and Cy(ip/,,, s},) the expected value if it fails to innovate”.
From this, the first-order condition yields the following policy function:

_1+ O-!C]_—CQ!
0, —v ¥ L (2.16)

z:im(ipjmi sm) = INaxX § Y, °

The firm chooses the value maximizing level of R&D investment subject to a
non-negativity constraint on R&D expenditure. Investment in R&D rises with
the expected marginal gain in value, C; — C5, and falls with the discount rate,
r, and the cost of investment, c. The productivity of R&D, captured by a, has
offsetting effects. As a rises it increases the probability of successful R&D and an
incentive to increase investment. However, the higher the level of a the lower the
marginal product for any given level of investment which lowers R&D investment.

Overall, the industry exhibits growth in total output and thus, Y in equation
(2.3), grows over time while the innovations constantly reduce the cost of inputs.
This continually growing industry can exhibit a great deal of chanfge over time
in terms of the identities of firms, their relative sizes, and the degree of entry
and exit. The model provides us with the ability to generate a long-run firm
size distribution based on the ergodjé distribution of the model and the ability to
examine the growth-size relationship at the individual firm level. The numerical
algorithm uses value function iteration to solve for the space of values given by
all possible combinations of firms and private innovations. We use a code for
finding the Markov Perfect Nash Equilibria of the game which is the original C

programming language version of the code by Pakes, Gowrisankaran and McGuire

9This notation follows the convention used in Pakes, Gowrisankaran and McGuire (1993)
"Implementing the Pakes-McGuire Algorithm for Computing Markov Perfect Equilibria in

Gauss", pag. 17, available at the authors webpage. Details on this notation can be found

in the appendix to this chapter, which presents an explanation for the algorithm and code used
to find the equilibrium of the game presented.
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for implementing the Pakes and McGuire algorithm. A Gauss and Matlab versions

of this code are made available at the authors’ webpage for this code is written

in 9. We extract the policy functions including R&D expenditure as well as

the entry and exit decisions. From the solutions, we can simulate our product
markets and industry for comparison with the results found in the empirical

literature. We now turn to that analysis.

2.4 Firm Size Distribution

2.4.1 Simulation

Table 2.1 presents the baseline parameterization of the model. We set the dis-
count rate to 1/1.08 as an approximation of the average cost of capital for firms
following Ericson and Pakes (1995). The rate of technological spillovers, 4, is set
to 0.7 such that knowledge enters the public pool roughly one-and-a-half years
after discovery. This fits with the empirical estimates of Mansfield (1981) on im-
itation time. Cost of a unit of R&D spending is set to one unit of the final good.

The liquidation value and outside opportunity cost are chosen to be small to pre-

vent them from dominating the incentives firms face. The liquidation value is
about 7.5% of the average firm value, while the opportunity cost is roughly 15%
of average firm value. We set both fixed and sunk costs equal to the outside
opportunity cost.

The parameters a and 7 interact to determine the incentives for investment in
R&D and ultimately the growth rate of the industry as measured by the rate of

cost reduction. These parameters are set to 3 and 10% respectively. The latter

1%Details on the algorithm and code used to find the Markov Perfect Nash solutions to the

entry/exit and R&D investment problem stated here can be found in the appendix to this
chapter.
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implies that successful R&D will reduce marginal costs by 10%, but the former
governs the incentives to engage in R&D such that we find at the mean level of
R&D investment, the expected rate of cost reduction is just over 2%, which is
approximately the industry growth rate. Both of these two parameters, plus the
rate of knowledge diffusion, fixed and sunk costs will be allowed to vary in the
following section to analyze their relationship to the moments of the firm size

distribution.

The state space constraints we use have a maximum of six firms per submarket
and each firm can hold up to 30 private innovations. To ensure that the state
space boundaries do not drive the results we choose our demand parameters such
that when six symmetric firms are in a submarket they are making negatife
profits. For the maximum number of private innovations, we checked in the
simulations whether any firm attempted to obtain more private innovations than
exist in the state space and made adjustments accordingly which led to our choice

of 30.

Because we had no priors on how to vary the submarket sizes'!, we choose to

use a simple, transparent linear function as follows:
O =01+ (m —1)b (2.17)

where 0; is the market share of the smallest submarket and each submarket

increments by b'4. Upon simulating the model, we use the state space constraints

'1An example on empirical work along these lines is the article by Buzzacchi and Valletti

(1999), where they develop a test to the independent submarkets model proposed in Sutton
(1998) for the Italian motor insurance industry. The independence between opportunities in the
sector, both due to spacial and administrative reasons, provides an ideal setting to test Sutton’s

independent submarkets model. The authors have found that the size of the submarkets affects
the skewness of firm size distribution. Further investigation concerning the impact of the size

of the submarket on skewness and the other higher moments of the firm size distribution in the
model presented here would be of interest.

12We also considered using a random process, or possibly demand shocks, but obted for the
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to determine 6; and determine m by matching the model to the empirical results
on the firm size distribution. b then follows from % O = 1.

The choices on the market size parameters, 5:— ;.nd b, were determined as
foll:ows. We started with 10 submarkets, m = 10, where the smallest market
share was determined by the lowest level of the market size that still produced
positive levels of investment in R&D. At the tenth submarket firms began to
invest at the upper bound of the state space. Therefore the increments in market
share per submarket were determined to be 0.0318. For the analysis below, we
then choose the number of submarkets, m, to analyze by matching the general
shape of the log-normal distribution which closely, but not perfectly, resembles
the empirical firm size distribution across industries. We found that if there
are too few markets, the distribution is skewed left instead of right. Thus,
for very narrowly defined markets with only one or two submarkets, the model
generates a high frequency of average sized firms and a small number of tiny
firms. On the other hand, as the number of submarkets expanded the model
generated a bimodal distribution, in accord with some of the findings in Bottazi

et. al. (2003b) for some industries. For the general log-normal distribution,

we found that specifying five submarkets, m = 5, was the closest match to the
results reported in Hart and Oulton (1996) discussed in the next subsection. As
a further check on the validity of the results, beyond matching the general pattern

of the firm size distribution, we then conduct cross-sectional regressions to see if

the growth-size relations match the empirical literature in section 2.4.3.1°

simple linear function on account of its transparency.

13Clearly, it would be more appealing to have the submarket sizes determined endogenously.
This additional feature could perhaps be accomplished by specifying a Dixit-Stiglitz demand
function. However, it would still require additional assumptions on how firms interact across
sectors in terms of both price-taking (or not) behavior as well as specifying how innovations
in one sector affect the other. The additional complications introduced would detract from
the main task of this paper, which is to understand how the overall firm size distribution
changes with underlying structural parameters. Moreover, because our model captures strategic
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2.4.2 Distribution Results

In our first comparison of the model with the data, we compute the ergodic
distribution by simulating the model.'* From the distribution found in the

simulations, we weight the observed outcomes by their probability of occurrence

to generate the ergodic distributions for various size measures.!®

Table 2.2 shows the results of the baseline parameterization compared with
the statistics found in Hart and Oulton (1996) who use subsets (50 to 80 thou-
sand companies) of a large UK database that includes very small firms in the

sample. We calibrate the cost parameter, Z, to match the mean log size of
employment reported in Hart and Oulton (1996). Because their data set has a

good representation of small firms we felt that it was the most appropriate for
comparison with the model. They find that the distribution of the natural log of
various size measures (employment, sales, and net assets) exhibit positive skew-
ness (long right-tails) and peaked (leptokurtic) distributions relative to the log
normal distribution. We report analogous measures based on our model.!® Sales
are computed by extracting the quantities and prices while we use firm values,

V7, for net assets. All values below are reported in natural logs.

interaction within each submarket, it is likely that most forms of strategic interaction across
submarkets would be of second order importance. Our assumption of no strategic interaction
across submarkets fits with the arguments of Sutton (1997), mentioned earlier, for blending
strategic interaction with the independent opportunities assumed in the older literature on
Gibrat’s Law.

14The simulation runs the model for one million periods. In order to avoid any bias caused

by the specification of the initial market structure, we simulate it first for 10,000 periods and

find the modal market structure. The main simulation then uses the modal market structure
as its starting point.

151t is important to note that the comparison here with the data is not direct. We take
advantage of the fact that through simulations we can generate the probability distribution of
the market structures. Empirical studies use a cross-section of firms at a point in time (we

turn to this analysis later) while the ergodic distribution shows the probabilities of a market
structure occurring at a point in time. That is, the ergodic distribution is generated as a time
series, but it reveals what the expected cross-section would look like.

16 A1l employment calculations add one in levels to represent the manager which we view as
part of fixed costs.
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Figures 2.2 to 2.7 show the distributions in levels and in logs. The distrib-

utions in levels, for all the three size proxies considered, exhibit long right tails,
especially for the net assets distribution. The size range accumulating the higher

probability mass lies to the left of the mean size in all the distributions. The dis-

tributions for both the log of sales and log of net assets are roughly bell shaped,
but exhibit thicker tails and higher peaks than the standard normal. The distri-

bution of the log of employment exhibits less variance, but shows some skewness

and leptokurtosis.

There are two noticeable differences between the model and the data. First,
the standard deviations of the size measures are considerably smaller. This
discrepancy is not surprising since the model is designed for a particular industry
whereas the empirical estimates cover a large range of industries which would
generate greater size variation.

Of greater concern is the slight negative skewness in the natural log of em-
ployment generated by the model versus the positive skewness observed in the

data. Upon careful examination of the results, it turns out that the negative
skewness is being driven by a tiny fraction of extremely small firms. These are
firms with less than one employee which constitute about 0.1% of all firms and
only 0.0025% of total employment. Those firms are to the left of the vertical line
in Figures 2.2 and 2.3. If we eliminate them from the distribution and recalibrate

Z, the skewness in employment goes slightly positive and the negative skewness
In sales is cut in half as shown in Table 2.3. Moreover, the high kurtosis value

in sales comes down considerably and is much more in line with the data. If we

drop more small firms, less than 5 employees (0.02% of total employment), the

skewness for employment rises to approximately 0.41. In fact, we found that we

can match the Hart and Oulton skewness figure almost exactly if we eliminate all
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firms of less than 10 employees (0.14% of total employment).

The negative skewness for sales remains even after eliminating the small firms,
although the skewness value for sales reported by Hart and Oulton, while positive,
is the smallest of the three. This result of our model is being driven by the
strong implications of Cournot oligopoly pricing with homogenous goods in each
submarket. For example, when multiple firms produce large quantities, and
hence have substantial employment, the direct competition between them drives
the price down significantly. What we find is that the model often éenerates 3 or
4 firms in a given submarket with marginal costs that are very close. Although
quantities are reasonably high for these firms, the low level of the price accounts
for the reduced skewness when comparing employment and sales.!” Overall, the
ergodic distribution of the model reasonably matches the observed data in terms
of deviations from a log-normal distribution

When we turn to the growth-size relationship in the next subsection, we ex-
tract a balanced panel which eliminates exiting firms. These exiting firms in-
clude these extremely small firms that generate the negative skewness in employ-

ment. Thus, In our summary statistics on the balanced panel below, the skewness

measures increase significantly. These results suggest an interesting hypothesis.
First, although the skewness is generally smaller than that observed in the data,
it is important to bear in mind that data sets rarely include the full population
of small firms. Second, the model accounts, in some sense, for part-time workers
while data typically do not. These differences may be relevant empirically for
testing distributions against the log-normal distribution. For example, if data

collected round workers upward it would imply an underweighting of the left-side

1TNote that the statistics we report exclude monopolies altogether so as not to be affected by

the minimum quantity assumption. In the baseline, monopolies account for less than 0.000001%
of all observations.
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of the distribution which would bias skewness upwards.

2.4.3 Cross-Sectional Growth-Size Properties

We examine the growth-size relationships of the simulated model and compare
them with the empirical literature on Gibrat’s Law. To extract cross-sectional
data comparable to that used in the empirical literature, we simulate the model
five times for 5,000 periods each and extract the final periods from each run.!8
That provides us with simulated panel data to test the growth-size relationship.
We ran these simulations ten times to check the robustness of these results.

" The average number of total firms observed in each simulation was 138.8
(range of 132 to 143) with an average of 43.4 new entries over two periods and
25.9 exits.'? We eliminate all the new entrants, who do not produce in their initial
period and all firms that exit to generate a balanced panel for analysis. Table
2.4 shows the average distributional characteristics for size measures across these
simulations of the balanced panel of firms for the initial period. The measures are
similar to those shown in Tables 2.2 and 2.3, but note the substantial increases
in the skewness values when small éxiting firms are eliminated.°

Table 2.5 provides the results of the regressions on each of the ten simulations

of the following form:

Yt = BYe-1 + € (2.18)

where y; is the log of the various size measures. Of interest in terms of Gibrat’s

'8To prevent the variance of the size of the firms from being dominated by the overall growth

process, we shut down the increments to the public stock of knowledge except for the periods
we extracted for analysis.

9Note that entries and exits would match almost exactly if we included those firms that
exited in the previous period.

*0The negative skewness in sales persists, but becomes even smaller in absolute value than
when we eliminated the smallest firms outright in the preceding subsection.
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Law is whether the coefficient is significantly different from unity. Hall’s (1987)
estimates for 8 as applied to employment across three different samples were
consistently 0.99 and significantly less than one. Evans (1987) found values

for B that range between 0.93 and 0.97 for employment. The model here also

generates a coefficient less than one, below Hall’s estimates, but in accord with

21

those of Evans’. The last columns report the percentage of times the null

hypothesis of 8 = 1 was rejected at the 10% level, followed by the percentage of
times it was rejected at the 5%, and 1% levels, respectively.

We use the median size values to split our sample into large and small firms.
Empirical evidence suggests that Gibrat’s Law works better for the large firms.

Our results show a similar pattern. The estimated S’s are consistently closer to
one for the large firm sample for each size measure and in every simulated sample.
In fact, for the employment size measure we cannot reject 8 = 1 nine out of ten

times and then only at the 10% level.

For the three size measures we also tested for the equality of the coefficients

between the large and small firm subsets reported in the last rows of Table 2.5.
For employment we reject equality in all cases at the 5% level or better and 80% of
the time at the 1% level. For sales, the differences weaken somewhat and we reject
equality 60% of the time all of those t-statistics at the L5% level or better. Equality
of values is rejected in nearly all of the subsamples. It is worth emphasizing,
however, that in all subsamples, the estimated beta for large firms was greater
than that of small firms for all three size measures. Given the small sample

size we draw, the large number of significant rejections of Brirce = Bsararr

21We report the results using robust standard errors, but even without using them the results
are hardly changed. The R-squared’s are exceedingly high typically between 0.95 and 0.99.
However, since there are only two simple stochastic processes in the model and nothing akin to

demand shocks, it is not surprising in the least that past size is a good predictor of size in the
short-run.
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indicates the model matches the empirical findings.

In order to test for serial correlation we reduce our sample to those firms
surviving in three consecutive periods for a balanced panel. The previous tests
only had 69'.5 observations on average and after one more period of eliminating
exiting firms to retain a balanced panel, we were left on average with 46.9 firms.
The test specification is similar to Kumar (1985) where growth is the dependent

variable (instead of the log of size):

Y \ Yi-1
('3;:) = (1 -+ 5) Yi—1 + (yt—z) + €. (219)

. Persistence in growth will show up as a positive value for 4. We find that the
coefficients for 8 and ~ are significant at the 5% level for the majority of the ten
samples. Their average estimated values are 0.9817 and 0.577 respectively. 4 is
positive and significant in all but one of the samples at the 1% level.

The positive and significant value of -y indicates serial correlation which comes
as no surprise given the design of the model. There are several contributing
factors to serial correlation in our model. First, successful firms seek to build
on and protect any technological advantage and thus invest more heavily than
small firms. In addition, a growing firm pushes rival firms closer to the exit
threshold. Thus, the growing firm will get a subsequent additional increase in
market share with the increase in the likelihood of rivals’ exit. These processes
of firm dynamics effectively embed serial correlation in error terms that do not

control for innovative behaviour and expected future changes in market share

conditional on them. The results suggest that serial correlation should weaken
-in empirical studies if appropriate controls for own and rival R&D expenditure

and innovations are included. We leave this hypothesis for future empirical

49



work.2?

Finally, we look at the variance in growth rates across firm sizes. A number
of studies find that the variance of the growth rate is larger for small firms (e.g.
Dunne and Hughes (1994)). The work by H. Stanley and his co-authors® has
also found, for a dataset comprising information concéming all publicly traded
U.S. companies between 1974 and 1993, that the fluctuations in the growth rates
. as measured by the width of the distribution, decrease with company size and
increase with time. They find a scaling relationship between the variance of
growth rates and company size which is the same for all size measures they have
considered. In fact, they find that the spread in the distribution of rates decreases
with increasing sales as a power law over seven orders of magnitude.

Again, we separate our simulated samples by the median size. Table 2.6
shows the average standard deviations in growth rates across the ten samples
and for large and small firms according to the three size measures. By all three
measures the variance in the growth rate of the small firms is larger than that
of the large firms and across all ten samples. The final columns report the

percentage of rejections based on the F-statistic for the variance ratio test for

equality of the standard deviations. We reject equality at the 1% level based on

the employment and sales measures in seven out of ten samples, but in only half

22One note on the magnitude of serial correlation is required here. Our estimate of v is larger
than that found in either Singh and Whittington (1975) or Kumar (1985) who find values of
approximately 0.3 and 0.12 respectively. The distinguishing feature is in the difference in time
periods. Those authors use a much longer time frame, 10 to 12 years, compared with our
simulated data which corresponds to roughly three years based on the user cost of capital we
specify. Because we know that the model will predict serial correlation that declines over time
due to the Markov perfect nature of the equilibrium, we do not pursue that issue any further
here. Suffice it to say, that the model does generate serial correlation in the errors when using
the basic regression model found in the growth-size regressions related to Gibrat’s Law. See
Pakes and Ericson (1998) for the empirical implications of the Markov Perfect feature embedded
in the model.

23nScaling Behaviour in Economics: The Problem of Quantifying Company Growth", Physica

A (1997), and "Scaling Behaviour in the Growth of Companies", Nature (1996), among other
articles.
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the samples for net assets. The latter also has the highest level of the standard
deviation. Overall, the results are encouraging in the sense that, again the model
replicates empirical findings.

To summarize the section, we find that the model is able to replicate em-
pirical studies of Gibrat’s Law in two ways. First, it can generate a firm size
distribution with the higher moments deviating from the log-normal distribution
in the same direction as actual distributions. Secondly, in the cross-section the
model generates a negative firm size-growth relationship, decreasing variance in
the growth rate with firm size, and serial correlation, all found in the data. Based

on the above we feel reasonably confident in using the model to understand how

underlying structural parameters affect the overall firm size distribution.

2.5 Variation in the Firm Size Distribution

The previous section established that the model reasonably matches the data in

terms of the firm size distribution and in its cross-sectional empirics. Now we
ask how the moments of the firm size distribution change with underlying struc-

tural parameters suggested in the literature. Specifically we vary the following
parameters: sunk costs, fixed costs, productivity of R&D, rate of spillovers, and

the rate of decline in marginal costs.?* The goal of this section is to generate a
set of hypotheses that can be examined empirically. We do not carry out that

examination in this paper, but view the contribution of this analysis as setting an

24We do not vary the outside alternative parameter, 1, because it enters in much the same
way as sunk costs, and we do not vary the liquidation value because the parameter must be
constrained to be less than X, /(1 + r) such that firms cannot enter, produce nothing, and exit
with a net gain. We also do not vary the discount rate because even if the discount factor
varied uniformly across firms, such variations basically mean interest rate variations and those
variations are typically short-run fluctuations rather than long-run characteristics inherent to
an industry that shape the firm size distribution.
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empirical research agenda on the firm size distribution guided by theory. How
the model fares when taken to the data should provide insights for improvement -
in the model itself and a deeper understanding of the empirical work. All of the

analysis below shows the distribution including all levels of employment, i.e. all

firms are included no matter how small.2526

2.5.1 Fixed Costs

We start with fixed and sunk costs. In the baseline fixed costs were set to 0.2 and

we allow that to vary from 0 to 0.25, when translated via the unit cost of labor,
the range of the fixed costs then go from about 12% (for the smallest non-zero
va.hie, 0.025) to just over 50% of total costs of production excluding R&D costs

for the mean sized firm in the sample.

We find that increases in the level of fired costs lead to a larger mean size

of firms, but lower variance, skewness and kurtosis of the firm size distribution.
Figure 2.8 shows how the first four moments of the firm size distribution change

relative to the baseline while Figure 2.9 shows the same measures when we look
at the firm size distribution in natural logs. The x-axis shows the level of fixed

costs and the y-axis shows the percentage change from the baseline. Figure 2.10
shows the baseline distribution in levels against the low and high value of fixed

costs.2” In the latter, Figure 2.10, low levels of fixed costs are associated with

25We also examined the behavior of the first four moments when eliminating small firms as
in the previous section, but found no qualitative differences. The only notable difference was
that as we eliminated small firms from those of less than 1 employee, to less than 5, to less than
10, the effects became even more pronounced. By that we mean that the percentage changes

in any moment of the firm size distribution were larger when eliminating small firms, but the
direction of the effects was stable.

26We also analyzed the changes in the distributions of both sales and net assets, but we do
not report those results here. Qualitatively they are very similar to the effects on the size
distributions by employment.

*TIn Figures 9 through 12 for the graphs showing the shape of the firm size distribution,
we standardize the x-axis to maximums of 160 and 6, in levels and logs. However, in many
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a greater mass of the distribution at lower levels of employment, but also with
a longer right-tail and, hence, a higher skewness. The high levels of the fixed
cost exhibit greater mass further to the right and there is a small, but noticeable,
second mode emerging to the right of the peak.

Figure 2.11 shows the same distribution but in natural logs and we see similar
changes. The mean size rises as the mass of small firms shrinks while the mass
of larger firms grows. The variance falls as the distribution becomes more lep-
tokurtic (in logs) as firms become more concentrated around the mean size. The

skewness increases relative to the baseline at lower levels of the fixed costs, but
then declines at the higher levels. The initial increase stems fromr an increase in

the frequency of firms above the mean size creating more mass on the right-side
of the distribution. The decrease follows from the flattening of the left-side of the
distribution as smaller firms become more dispersed in their scale of operations.

When we set fixed costs to zero, the mean firm size is more than 11% below the
mean size of firms in our baseline. As fixed costs rise the mean size of firms also
rises with a more rapid increase at higher levels. Although the pattern exhibits
some non-monotonicity, the variance generally falls with increases in fixed costs,
while both skewness and kurtosis decline.

Intuitively, in the model higher fixed costs make it more likely that small firms
will choose not to produce as in equation (2.7) and increase the likelihood of exit
because future profit values are smaller for the same level of output. Thus,
by reducing the fraction of small firms in the sample the mean size increases.
Moreover, with small firms more likely to exit, higher fixed costs create greater

incentives to innovate for incumbent firms to distance themselves from the exit

cases the maximum sized firm exceeds those values. We choose to standardize the x-axis to

facilitate comparison in the regions showing the bulk of the mass and how the parameters alter
the distribution.

03



threshold which further increases the mean. The variance, however, declines and
is related to the decrease in kurtosis. With a reduced fraction of small firms, the
frequency of firms near the mean size increases, but there is also an increase in the

mass of firms to the right of the peak reflecting higher R&D investment among

incumbents which decreases the kurtosis. In natural logs we see more or less the
same pattern, however, the higher moments behave differently. Skewness displays
an inverted-U shaped pattern, while the kurtosis displays a generally increasing
pattern. The reason is that the fattening of the tails in levels is primarily just to °

the right of the primary mode such that in logs the effect blends with the original

mode and the tails remain relatively flat.

Skewness, in levels, falls because the region of small firms becomes smaller
while the frequency of mid-sized firms increases. This effect flattens and length-
ens the tail on the left-side which reduces the skewness. Thus, fixed costs act

in a way that is fairly straightforward by making it more difficult for very small
firms to survive, essentially requiring a minimum scale of operations to produce

non-negative profits and survive. These results are consistent with the findings
of Machado and Mata (2000) who use a Box-Cox quantile regression model to
characterize the effect of covariates on the firm size distribution of Portuguese
firms. They find that minimum efficient scale had a consistently positive impact

on the size of firms, a negative effect on the skewness, and an ambiguous effect

on kurtosis.?®

2.5.2 Sunk Costs

Figures 2.12 to 2.15 show the results from varying the sunk costs of entry. The

range here starts from 0.1 such that (T—}:) X. > 1 continues to hold. The upper

28Machado and Mata (2000) do not report measures of variance.
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bound here is much higher than for fixed costs to capture industries for which sunk
entry costs will take, in expectation, significant time to recover. These values
can be understood as a ratio to the value of the mean sized incumbent firm. The
range is from 10% to 35% and equals approximately 21% at the baseline. The
vast majority of firms that enter the market do not recover their full sunk costs.
However, those that survive and grow ultimately reap substantial rewards. At

low levels of sunk costs, a firm does not need to survive for a long period of time

before making entry optimal. However, at high levels of the sunk costs, firms

require a substantial likelihood of sustained success to induce entry.

At low levels of the sunk costs we see little change in the mean size of firms,
but a negative effect on all the higher moments. In fact, we find that industries
characterized by lower levels of sunk and/or fized costs will more nearly maich
the log-normal distribution and the strong form of Gibrat’s Law. In Figure 2.14
its clear that these changes are fairly small when comparing the shape of the
baseline distribution to the low end for sunk costs. However, once sunk costs
reach 0.25 (or approximately 26% of the value of the mean sized firm), the mean
size of firms rises rapidly, while the variance increases though somewhat non-
monotonically. The entry barrier discourages new firms reducing the mass of
small firms. Markets become more concentrated with fewer firms, but of greater
average size. Thus, industries with high levels of sunk entry costs unll exhibit

greater average size of firms, higher variance in the size, but a flatter distribution

potentially with multiple modes.

Higher sunk costs have offsetting effects for incumbents which increases the

variance but continues to reduce skewness and kurtosis. With smaller firms
less likely to enter and pose a threat to incumbents, firms have less competition

reducing the benefits of engaging in R&D which flattens the far end of the right-
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tail. However, at the same time, among incumbents, because the sunk costs
help extend the expected lifetime of any one firm, competition in terms of R&D
intensifies. Thus, once a firm does enter it has strong incentives to try to develop
a technological lead over its rivals. This incentive leads to an increase in the

mass of firms in the mid-sized range. Once a sufficient cost advantage has

been established the first effect comes to dominate and discourages firms from

establishing an even larger technological lead because the threat of entry has been

reduced.

The model thus suggests that industries with lérge sunk costs should have a
larger mean size, greater variance and a flatter distribution overall. The flatter
distribution and Figures 2.14 and 2.15 suggest that bi- or multi-model distribu-
tions are quite likely for industries characterized by high sunk entry costs. The
sunk entry costs protect incumbents such that once a firm reaches a sufficiently

large size, it seeks to maintain that size by investing in R&D to maintain its

advantage but with less incentive to increase that advantage.

Audretsch et. al. (2004) argue on the basis of some studies on particular
industries that the service sector approximates better the strong form of Gibrat’s
Law and therefore the lognormal distribution because the link between firm size
and survival rates is weaker in industries with lower sunk costs and where capital
intensity and scale economies play less of a role?®. While evidence on this point
is limited, the Audretsch claim is consistent with the production of the present

model reported above (page 54, italicised). In our analysis, we find that to be
true particularly for the fixed costs which imply a higher requirement for scale in

order for net profits to be non-negative. We also find that the distribution more

closely approximates the log-normal distribution at the low end of the sunk costs.

29 Audretsch et al (2004) study the Dutch hospitality sector.

00



2.5.3 Rate of Cost Reduction

The rate of cost reduction is captured by the parameter 7. More specifically, 7,

which first appears in (2.8), is the percentage decline in marginal costs of pro-
duction conditional on a successful innovation. Thus increases in 7 will translate
into a faster industry growth rate for the same level of investment as measured
by output of the final good. We think of 7 as a key parameter in governing the
rate of technological progress which in the context of the model is the rate at
which costs fall.

The parameter ranges from 0.07 to 0.20 with éur baseline value set to 0.1
(10%), but to make better sense out of this specification, we convert it to the
expected cost reduction at the mean level of investment. At the low end, few
firms are actually engaged in R&D and thus the mean expected rate of cost
reduction is only 0.32%, an anemically growing industry with little innovation.
However, at the upper bound, there is a fair amount of R&D and the mean rate

rises to 12.13%.39

Looking at Figures 2.16 to 2.19, we see that increases in the rate of techno-
logical progress lead to an increase in both the mean and variance of the firm size
distribution. The higher levels of cost reduction lead to greater incentives to

engage in R&D and capture market share from rivals which leads to increases In

both of the first two moments. At the same time, variation in the rate of techno-

logical progress has non-monotonic effects on both the skewness and the kurtosis.

Both exhibit convexity as 7 rises. Skewness falls initially because at low levels of

30 Jorgenson and Stiroh (2000) report industry growth rates for highly aggregated industries
with the fastest growing industry, electronic and electric equipment, growing at an annual rate

of 5.457% from 1958 to 1996. That would suggest an upper bound for n of approximately 0.14
or 0.15. However, since that growth rate is for an industry at roughly the 2-digit SIC level, it

therefore averages across more detailed sectors. Thus, we examine the effects for even faster
rates of growth.
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cost reduction, there is a very small percentage of extremely large firms. These
are firms that established a technological advantage and raced ahead to cement

their leading position. With increases in the rate of cost reduction and, there-
fore, greater incentives for small and medium sized firms to use R&D, the scope

for business stealing rises. As a result the industry becomes more competitive

leading to more firms and more competition with fewer truly giant firms which

reduces the overall skewness.

As the rate of cost reduction increases, around 1 = 0.15 or a mean expected
cost reduction of 7.1%, the skewness begins to increase as a larger mass of firms
emerges in the mid-sized range as can been seen in Figures 2.18 and 2.19. Kurtosis
undergoes a similar change. In fact, the whole distribution almost completely
flattens out at our extremely high range. This effect occurs because the range
of relative marginal costs throughout the incumbent firms increases along with

the strong incentives to engage in R&D to defend existing market share as well
as capture market share from rivals. Thus, rapid growth should lead to a high
variance and a flatter distribution. This leads to the hypothesis that industries

with high rates of technological progress are more likely than those with low rates
to’ezhibit multi-modal distributions.

Machado and Mata (2000) also measure empirically the marginal effects of
industry growth rates on the firm size distribution in their paper. They find that
firms in faster growing industries have a higher mean, but more rapid growth

reduces the skewness. For kurtosis they also find a negative effect, but it is not
statistically significant.
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2.5.4 Technological Opportunity

The productivity of R&D which we think of as the technological opportunity

facing an industry is captured by a in equation (2.12). It is related to the rate
of cost reduction, n, in the sense that those two parameters jointly affect the
equilibrium rate of cost reduction. a governs the incentives to engage in R&D
and 7 defines the gains of success in terms of cost reduction. Higher levels of
a imply a higher probability of success for any given level of R&D expenditure.
However, the marginal impact of an increase in R&D expenditure falls with higher
levels of a. Moreover, the solution for the optimal level of investment based on
the first-order condition of the value function shown in (2.16) implies that changes
in a will have countervailing effects. Thus, as a prior, we expect to find non-
monotonic behaviour as a varies. |

The range of a that we used went from 2 to 4, centred around the baseline
value of 3. At both the lower and upper limits the computational algorithm
began to generate extreme results. At the lower level, we found that virtually

no firms were investing in R&D while at the upper bound firms began to exceed
the limitations of the state space. To provide some economic interpretation of
these values, a firm investing at the average level from the baseline, would expect
success in R&D with a probability of 20.7% and thus an expected cost reduction
by the following period of 2.07%. At the lower bound of a, 2, those values fall

to less than 10% and under 1% while at the upper bound they are slightly less
than double the baseline.

Figures 2.20 through 2.23 show the effect of varying a. Both the mean and
variance of firm sizes rise with productivity of R€D. In natural logs the pattern
is similar, but there is some concavity at the higher levels of a with respect to

the variance. Increases in the productivity of R€D have non-monotonic effects
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on both the skeuness and the kurtosis. Skewness and kurtosis both exhibit
concavity, which contrasts with the results for the rate of cost reduction. The

difference between these two parameters appears to come from the left-side of
the distribution and their effects on smaller firms. Changes in the productivity
parameter affect the right-tail of the distribution in much the same way as an
increase in the rate of cost reduction. In both we observe a steady increase In
the mass of firms to the right of the peak while the peak itself shrinks which
eventually lowers the skewness and the kurtosis. In natural logs the pattern is
similar with, again, another mode emerging on the right.

At very low levels for a, we found that the right-tail was much shorter and
thinner than for the higher values. This follows from the much lower productivity
in R&D which stunts the incentive to engage in R&D and the mean size of firms
is considerably smaller as a result. Thus, at the lowest levels of a, as R&D
expenditures yleld greater returns with the higher marginal product, larger firms
emerge and stretch the right-tail initially leading to increases in skewness and

the kurtosis. As a rises beyond 2.5, more firms engage in R&D leading to the
increase in the variance and hence a flatter distribution overall with less skewness.
Of the structural parameters we investigate, this parameter is almost certainly

the most difficult to capture empirically. However, we do wish to emphasize the

strong non-monotonicity in this variable and in the rate of cost reduction. The

main conclusion we draw here is that empirically we should not expect proxies

for either a or 1 to have clear monotonic effects on the higher moments of the dis-
tribution and caution should be exercised in generalizing results found in studies

of the firm size distribution for a selected group of industries.
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2.5.5 Rate of Spillovers

In the model, the parameter 0 governs the rate at which the public stock of

knowledge grows. The faster it grows the easier it is for entrepreneurs drawing

on the public stock to enter the industry and challenge incumbents for market
share. If 0 = 0, it would imply that no knowledge enters the public stock and
over time no entrant would be able to challenge existing incumbents. At the
other extreme, if 6 = 1 then all new innovations enter the public stock in the
following period which would be similar to Klepper (2002) where all R&D is

costlessly imitated.3!

Mansfield (1981) reports imitation times that range from about 6 months to
nearly three years. Thus, we allow § to vary from 0.3 to 0.9 which generates
an expected lifetime for a single innovation to remain private from just over one
year to more than three years. Low values of 4 can be interpreted as pertaining
to an industry where incumbent firms possess strong advantages through secrecy,
patent protection, and/or lead time to implement their innovations.

Figures 2.24 through 2.27 show the results which are quite striking. Changes
in the rate of spillovers generate an enormous impact on both the mean and
variance. Industries with stronger patent protection (secrecy, or lead time) will
have a higher mean and variance in the size of firms. For example, at the
low end of § = 0.3 the mean firm size is nearly six times that of the baseline!
Intuitively the stronger the protection for private innovations, thé greater their

value to any one firm. Therefore firms will accumulate a great number of private

innovations and establish a large presence in the market making it difficult for

3In Klepper (2002), he assumes randomly assigned R&D productivities which allows for
survival of the more productive firms while generating high rates of exit during the product life

cycle. Here we do not allow R&D productivity to vary by firm but allow the innova<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>