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Abstract 

An attempt to simulate the emergence of case-like behaviour in populations 
of communicating software agents is presented. An implementation of an 
Iterated Learning Model is described based on Kirby [44]. The occasional 
emergence of grammars with distinguishable subject and object noun cate- 
gories is noted. Changes are then made to this model to enable the use of 
multiple word orders, in the hope that this will promote such behaviour. 

These changes do not appear to promote the emergence of such grammars 
to the degree anticipated, due to the fact that there is no requirement for 

agents to understand each other. Further changes are made to the model 
such that learners will reject utterances which they believe to mean some- 
thing other than what the speaker intended. As a result, there is a rise in 
the relative number of two-noun category grammars emerging, although the 

changes to the model also have a destabilising effect, resulting in a decrease 
in the absolute number. 

Experiments are also described involving external manipulation of the subset 
of the meaningspace that agents are permitted to use, also known as the 
learning bottleneck. The results of this appear to show that in the presence 
of a very strong bottleneck, regular and fully compositional grammars with 
a single noun-category are favoured, whilst relaxing the bottleneck to an 
intermediate value seems to promote the emergence of two-noun category 
grammars. 

Finally, a different approach to the emergence of case is described. This in- 

volves attempting to achieve proper inflectional case markings in the absence 
of free word order by treating inflection as another level of compositional- 
ity. The emergence of inflectional endings again seems to be favoured by the 
imposition of a moderately sized learning bottleneck. 
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Chapter I 

Introduction 

Human language is a communication system quite unlike any other found 
in the natural world. It has the unique property of allowing us to convey 
complex propositional statements about things both present and absent, near 
and distant, past and future, real and imaginary. It is something that sets 
our species apart from all other animals, by allowing us to communicate 
not just about things that are relevant to our immediate well being - food, 

danger, courtship, ownership of territory - but also about anything else that 

we choose. It is arguably one of the key features that makes us human. 

Unsurprisingly then, the origins of this peculiar human skill have engendered 
a great deal of interest. How did language come about? What is it about the 
human brain that makes language possible? How is language learnt? These 

question axe significant to Linguists, Psychologists and Computer Scientists 

alike, and there is a great deal of inter-disciplinary interest. Quite apart from 

an interest in the problem for its own sake, if Linguists and Psychologists 

axe able to provide a better understanding of the structure of language, the 

way in which it emerged and the nature of the mechanism by which it is 

acquired, this knowledge could be potentially very useful in the development 
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CHAPTER 1. INTRODUCTION 13 

of computer systems that can leaxn a language or communicate with the 
human user. Conversely, Computer Science has also proved a useful tool to 
linguists, by providing methods by which the acquisition of language can be 

modelled in populations of communicating agents. 

Up until now syntacticians have had very few scientific methods at their 
disposal when it comes to the emergence of language. It is a phenomenon 
that has evolved once and only once, as far as we know, and there are no 
species with nascent language faculties for us to observe. The only means 
available has been to study the acquisition of language in individuals of our 
own species, in the hope that this might represent some kind of microcosm of 
the emergence of language in the species as a whole. Also, studying the way 
in which language is leaxnt can help to elucidate its fundamental structure, 
and this in turn can give an insight into the cognitive structures that are 
necessaxy for the acquisition of language, which might suggest ways in which 
it evolved. However, this avenue too, is somewhat limited in the tools it can 
use - certainly experimentation on human children to see what is necessary 
for the successful acquisition of language in terms of linguistic input and 
other stimuli is not an option. Observing the way in which children learn 
language can be helpful, but leaves little room for testing hypotheses. As a 
result, reseaxch has often been limited to simply theorising about what the 
key features of any language-acquiring mechanism may be, and attempting 
to see if these theories are compatible with the utterances of real human 
children at various stages of learning their first language. 

However, more recently, the use of computer models has been able to add 
to the body of knowledge provided by such psycholinguistic investigations, 
and has given some valuable insights into the mechanisms by which language 

may have emerged and the way in which it is acquired. This is the subject 
matter with which this thesis is primaxily concerned. 

One of the fundamental questions regarding the acquisition and evolution 
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of language, is the degree to which it is innate. Whilst it cannot realisti- 
cally be argued that humans beings axe not in some respects predisposed to 
language, the debate still rages with regaxd to exactly how much and what 
aspects of our language capacity is genetically endowed. The traditional 
Chomskyan view [19,23] is that we have a highly specialized language fac- 

ulty that determines the precise nature of language. Acquisition is simply a 
matter of selecting the correct parameter settings for the local language from 

those made available by this language faculty. This notion is drawn from the 

observation that although languages differ significantly, the commonalities 
between them are striking, and only a very small proportion of the space 
of logical possibilities seems to be covered. Chomsky's second supporting 
observation is the claim that the nature of language data available to chil- 
dren radically under-specifies the precise nature of language (although some 
would argue that this is not in fact the case e. g. [64]). If the structure of 
language is not made explicit in the learning environment, and yet human 
children are able to acquire it with such accuracy and ease, then knowledge 

about how languages axe structured must surely be innate? 

An alternative viewpoint that has found favour in more recent years is that 
whilst we obviously do have pre-adaptations to language which give us both 
the desire to communicate verbally, and the aptitude to do so, we do not 
have any specific innate knowledge about what language is like. The fact 
that children are able to acquire language despite the under-sPecified nature 
of the data is due to the fact that languages themselves are evolving enti- 
ties that have been shaped by the biases of human learners. Thus whilst 
Chomsky observes that children appear to make "lucky guesses" during the 
acquisition process as to what language should be like, and attributes this 
to innate knowledge of its structure, Deacon [27] suggests that these guesses 
only appear to be lucky because languages have evolved such that the guesses 
children axe likely to make will most probably be correct. 

This is one arena in which the use of computer models mentioned above 
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has really come into its own. Several authors [46,3,70,85] have succeeded 
in demonstrating the emergence of compositional syntax in populations of 
language learning agents with no innate language-specific knowledge. This 
is attributed to the learning biases of the agents themselves, as described 

above, and also to the dynamics of language transmission, in particular what 
is known as the "language bottleneck": under circumstances where agents 
cannot hope to hear all possible utterances from a language during their 
lifetime, languages in which the meaning of the utterance can be predicted 
from the meaning of its parts will have a selective advantage. Further studies 
along these lines have succeeded in demonstrating the emergence of other 
characteristics of natural language also, such as recursion [44], patterns of 
stable irregulaxity [47] etc. The aim of the current investigation is to ascertain 
whether it is possible to add more complex aspects of generative syntax to 
this repertoire, namely the use of case to signal semantic relationships. 

Most languages of the world employ one of two mechanisms to signal seman- 
tic relationships (that is the details of "who did what to whom") between 

participants in events or actions being described: either word order, as in En- 
glish, or case-markings as in languages such as Latin and Russian. Sometimes 

other cues axe brought to bear such as the use of pragmatic cues and verb- 
subject agreement, but word order and case are the two primary methods. 
Case-markings are typically Manifested as either inflectional affixes attached 
to noun phrases (usually just the head noun, but sometimes also articles and 
adjectives) or as grammatical function words denoting role, such as the use 
of prepositions in English to specify direct and indirect objects of ditransitive 

verbs. In the computational studies of language evolution described above, 
it is notable that semantic relationships are universally signalled using word 
order. None of the languages emerging exhibit any of the properties of case 
grammar. This is clearly a deficit as it does not reflect the true nature of 
human language. Thus if we axe to be able to take seriously this account re- 
garding the dynamics of language transmission and the biases of the learner, 
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we must show that case-gammaxs are an equally plausible outcome of sim- 
ulations such as these. This is the aim of this thesis. 

In the following chapter I shall describe in more detail some of the current 
theories of language evolution, before going on in Chapter 3 to review the 
history of modelling the acquisition and emergence of language using com- 
puter simulations, and in particular, a type of model known as the "Iterated 
Learning ModeP' [9]. In Chapter 4,1 shall describe the details of my own 
implementation of such a model and the results of this. In Chapter 5,1 will 
develop this further, and by introducing a degree of word order freedom to 
the utterances produced by agents in the simulation, I will attempt to pro- 
mote the emergence of a primitive kind of case system. In Chapter 6, the 

shortcomings of the results of this will be discussed, and further changes will 
be made in order to overcome these. Finally, in Chapter 7, a somewhat dif- 
ferent approach will be described in which the evolution of a proper system 
of inflectional maxking is attempted. The results of the experimental work 
described in these chapters will be drawn together in Chapter 8. 



Chapter 2 

Theories of Language Evolution 

2.1 Nature or Nurture? 

That human beings are in some respect predisposed to learn language is be- 

yond any reasonable doubt. In his fascinating book, The Symbolic Species 
[27], Terrence Deacon describes how our species manifests an extensive array 

of perceptual, motor, learning, and even emotional predispositions towards 

the leaxning of language. For example, the human larynx is positioned sig- 
nificantly lower in the throat than that of other primates, which puts us at 
much greater risk of choking on our food, but increases the range of sounds 
that can be produced by allowing greater changes in the volume of the res- 
onant chamber, and also by shifting sound away from the nose and towards 
the mouth. Furthermore, we have a much greater degree of voluntary control 
over our respiratory function than other primates, enabling the long slow ex- 
halations necessary for the production of speech. And although the neural 
correlates of a predisposition to language axe less easy to identify than the 

physiological ones, it is worth noting that all normal children raised in nor- 
mal social environments inevitably learn their local language, whereas other 

17 
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species, even when raised and taught in this same environment, do not [27]. 

Language emerges in all normal children all over the world at approximately 
the same age, no matter what culture they axe growing up in and what lan- 

guage they are acquiring [2]. Furthermore, Briscoe [15] notes that "failure 
[to acquire language] appears to correlate more with genetic defects or with 
an almost complete lack of linguistic input during the critical period, than 

with measures of general intelligence or the quality or informativeness of the 
learning environment" (p. 1). There are certainly many examples of individ- 

uals, whether through lack of input or due to brain damage, have extremely 
impaired language capabilities despite normal levels of intelligence [25,51], 

and conversely severely brain-damaged individuals who axe extremely pro- 
ficient with language [92]. As mentioned previously, it would appear that 
human language is quite unique: the study of communication systems in 

other animals has failed to identify anything compaxable (see Aitchison [2] 

for an overview), and attempts to teach language to non-human primates, 

whilst showing that they may be capable of mastering symbolic representa- 
tion to a limited degree, demonstrate that they are certainly not capable of 
human proficiency, and that they certainly do not appear to have the same 
"natural aptitude" that we do [66,39]. 

It is clear that there is "something special about human brains that enables 
us to do with ease what no other species can do even minimally without 
intense effort and remarkably insightful training" [271. So perhaps the real 
question to be addressed is not whether language is the product of nature or 
nurture, but which aspects of language are innate? What form do they take, 

and how did they axise? 
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2.2 Universal Grammar 

One of the most interesting observations about human language is that de- 

spite the vast array of different languages being spoken around the world, 
they are all essentially remarkably similar. Even those which appear incredi- 
bly variable on the surface seem to share a vast array of commonalities when 
inspected in more detail. Noam Chomsky axgues that this is because all hu- 

man languages axe underpinned by a Universal Grammar (UG), knowledge 

of which is in some sense part of the innate endowment of a child [19]. In 
"Aspects of the Theory of Syntaie' he argues that the primary linguistic data 

available to children is not sufficient to make explicit the underlying structure 
of the language, and that learning is therefore guided by a specific cognitive 
module, which he calls the "Language Acquisition Device" (or LAD). Univer- 

sal Grammar is at the very core of this specialised module, providing detailed 
information about the space of possible languages. The problem of acquiring 
a language is thus reduced to finding the correct grammax from within this 

space. 

He claims that the existence of UG and the LAD are necessaxy to be able 
to explain the phenomenon of language acquisition. The main thrust of his 

argument is that language acquisition is not simply a matter of learning sen- 
tences by rote and repeating them, but that it requires the internalisation 

of a set of rules for the construction of novel utterances. The underlying 
structure of language is very complex, and it is not made explicit in the lan- 

guage data available to children [20], thus rendering the acquisition process 
intractable without extensive trial and error learning with explicit feedback. 
There are many studies that suggest that children axe not reliably provided 
with negative feedback on their incorrect utterances [17] and that even when 
they are, they are unable to make use of the information [8], and yet young 
children rapidly and easily learn the complex rules of grammar. Theoretical 

studies such as Gold [35] have shown that without negative feedback, infi- 
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nite languages axe effectively unleaxnable without constraints on the set of 
targets. Thus Chomsky believes that children must be endowed with innate 
knowledge about what languages must be like. 

In his later work [22], he develops the "Principles and Paxameters" model 
as an alternative to UG, in which grammatical constructs can be divided 
into principles, i. e. those which are invariant across languages (such as the 

existence of syntactic categories such as nouns and verbs), and parameters, 
of which there axe a finite number, each with a finite number of values (for 

example, whether adpositions preceed or follow a noun phrase). Thus, the 

acquisition task is further simplified to finding the correct settings for each 
of these paxameters. 

The observation that the problem of learning language is a much more dfffi- 

cult one than the experience of countless generations of human children would 
suggest has also been made by other authors. William O'Grady [57] presents 
a discussion of the relationship between the experiences of language available 
to children and the nature of the grammar they extract from it, suggesting 
that the experience to which children axe exposed radically under-determines 
the type of grammar required to be able to speak and understand a human 
language; this is an example of the "projection problem" whereby the task of 
the learner is to try and determine underlying regularities in the language to 

which he/she is exposed (Le to acquire a grammar) when the data available 
may not be sufficient to determine these uniquely. He is able to identify 

a number of areas of syntactic structure where this is the case, including 
the syntactic categories to which words belong and their properties, the un- 
derlying hieraxchical structure from which sentences axe composed, and the 
constraints on form and interpretation of sentences such as placement of gaps 
and resolution of pronouns. 

Clearly it is easy to suggest that if the structure of language is under- 
determined by the experience of the learner and that some sort of innate 
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knowledge must be making up the shortfall. 

2.3 Natural Selection of the Language Faculty 

But what form does this innate knowledge take? Is it highly structured 
linguistic information as Chomsky suggests? Or is it simply the product of 
more general human cognitive capacities? One argument against the notion 
of a Universal Grammar and a Language Acquisition Device is the question of 
how such a thing could have arisen. Many theorists believe that it is fax too 

complex to have emerged by Darwinian natural selection, and would have 

required some kind of "catastrophic mutation7' to bring it into existence. 
Chomsky himself is rather vague on this subject, not wishing to attribute 
it to natural selection but instead to complex processes, as yet not fully 

understood, and "reasons that have to do with the biology of cells, to be 

explained in terms of properties of physical mechanisms" [23] (p. 169). The 

essence of the argument that Universal Grammar could not have arisen by 

natural selection is that a "partiaP' grammar faculty would be of little value 
to an organism. 

Pinker, however, argues that the existence of language can only be explained 
as a result of Darwinian natural selection. Although he does not support 
Chomsky's belief in a very highly determined Universal Grammar, he does 
believe that we are endowed with a complex language faculty that provides 
us with a large amount of innate information about the nature and struc- 
ture of language, and argues that this must have arisen by natural selection 
because it is the only process that can steer organisms through a myriad of 
possibilities to give the appearance of design that is so apparent in all living 
things. The alternatives can only grope randomly he claims, and he likens 
trying to attribute such complexity to the proverbial hurricane that blows 
through a junkyard and assembles a Boeing 747 [621. In his much-cited paper 
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of 1990, co-authored with Paul Bloom, he says: 

"Evolutionary theory offers clear criteria for when a trait should be attributed 
to natural selection: complex design for some function, and the absence of 
alternative processes capable of explaining such complexity. Human language 

meets this criterion... " 

Steven Pinker and Paul Bloom, "Natural Language and Natural Selection" 
[63] (p. 1) 

He presents a series of comprehensive criticisms of those authors who have 

suggested that language may have developed by other mechanisms, using the 

premise that language is a feature of our biology, not society and that natural 

selection is the only successful mechanism by which biological complexity can 
be accounted for. He draws analogies between the development of language 

and the evolution of the eye, rejecting the idea that the language acquisition 
device is merely a by-product of selection for other cognitive abilities. He also 
rejects Gould's notion that language is a "spandreP' [371 or Bickerton's view 
that it could not have evolved unless by a single "catastrophic mutatioi2' [5], 
due a lack of selective pressure for the partial ability to acquire language. In 

answer to this, Pinker and Bloom quote Gould [36] as having said "What 

good is 5 per cent of an eye? " and Dawkins' [26] reply: "An ancient animal 
with 5 per cent of an eye ... used it for 5 per cent vision. ... Vision that is 5 

per cent as good as yours or mine is very much worth having in comparison 
with no vision at all. So is 1 per cent vision better than total blindness. And 
6 per cent vision is better than 5,7 per cent better than 6, and so on up 
the gradual, continuous series". So it is also the case for language evolution, 
they claim. 
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2.4 Alternatives to Universal Grammar 

However, if the highly specific nature of Universal Grammar really does pose 
a problem for arguments suggesting that the language faculty evolved by 
Darwinian Natural Selection, how might we get round it? There are a number 
of writers who have tried to suggest alternative forms that an innate language 
faculty might take and ways in which might have evolved. Some of their 

axguments will be reviewed below. 

2.4.1 General nativism 

William O'Grady [57,58] takes the position commonly known as "General 
Nativism". That is, he rejects the idea of a Universal Grammar, but also 
the completely inductivist view, that the structure of language is elicited 
purely from the experience of the child. Instead he proposes the existence of 
a "General Nativist Acquisition Device", made up of a number of modules 
which interact with each other to help the child elucidate grammar for the 

utterances heard in its linguistic environment. He claims that some of these 

modules may be specific to the language faculty whereas others may also 
have independent non-linguistic functions, and might have evolved to fulfil 

quite different purposes. 

Within this framework, he aims to provide an alternative solution the learn- 

ability problems previously discussed in relation to Universal Grammar. He 

stresses that any truly plausible alternative must include a system of sentence 
formation that accounts for the full range of syntactic phenomena found in 
adult speech, and an explanation as to how these phenomena might arise 
without the need for the highly determined innate linguistic structure that 
Chomsky proposes. In particular, he aims to find a plausible solution to the 
problem of acquisition of those features of language which he believes are 
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not made explicit in the utterances children hear, as previously mentioned 
in Section 2.2: syntactic categories, hierarchical structure and constraints 
regulating phenomena such as gap placement and reflexive pronouns. 

The General Nativist Acquisition Device hypothesised by O'Grady is based 

on five modules. The most fundamental of these axe the perceptual module, 
responsible for the analysis on the incoming auditory signA and the learning 

module, which provides mechanisms by which hypotheses on the structure 
of language can be formed and tested. On top of these, he first proposes a 
conceptual module for the acquisition of syntactic categories which identifies 

members of each category from their semantic correlates. This idea is similar 
in some ways to Pinker's theory of Semantic Bootstrapping [60]. Unlike 
O'Grady, Pinker believes children have innate knowledge of the existence of 
syntactic categories such as nouns and verbs, but the problem they are faced 

with is identifying which words are examples of which category. Whilst it 
is generally accepted that grammatical concepts such as these do not have 

reliable semantic identities, it is suggested that perhaps this is not the case 
in parent-child discourse; that when speaking to children, adults use nouns 
only to refer to people and objects, and verbs to refer only to actions and 
changes of state etc. Thus in the early stages of language acquisition, the 

child is able to identify syntactic categories by these semantic properties. 
Once the distributional properties of the categories have been learnt, it will 
then be possible to widen their semantic scope to include the full range seen 
in adult language. 

In a similar way, O'Grady proposes that syntactic categories can be reduced 
to their underlying semantic notions. However, he suggests that the categori- 
sations adopted by the Semantic Bootstrapping hypothesis axe unnecessarily 
restrictive. Rather than allowing only some instances of syntactic categories 
to have semantic correlates, he instead proposes a set of broader categories: 
verbs as events (encompassing both actions and changes of state), nouns as 
individuatable things (which includes verbal nouns such as "a walk") and 
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adjectives as gradable properties. This, he claims, leads all instances of a 
particular category to have the same properties. Therefore, rather than con- 
taining innate knowledge of the existence of verbs and nouns, the language 

module responsible for syntactic categories instead has information about 
each of these three notions, as well as information about the distributional 

properties of each: events are grounded in time and therefore likely to be as- 
sociated with time-based markings such as tense and aspect; individuatable 
things are likely to be associated with determiners or deictics (pronouns such 
as this and that) responsible for individuating them; gradable, properties are 
associated with those morphemes that a language uses to indicate gradation 
Cctoo", "very" , etc. in English). Armed with this information, this cognitive 
module is able to classify the terms it encounters into categories. 

The fourth cognitive module that O'Grady proposes is a propositional mod- 
ule responsible for representing meanings in a manner similar to Fodor's 
"language of thought" [33]. This helps elucidate the hieraxchical structure 
of language by providing information about predicate-axgument relations, 
the nature of those axguments (agent, theme, goal), and distinctions be- 
tween past and non-past, definite and indefinite, etc. He claims that this 

representation is not specifically syntactic - it contains no syntactic labels 

or phrasal constituents. By combining information on number and types of 
arguments required by different predicates with the results of the classifi- 
cations performed above by the perceptual module (event vs individuatable 
thing vs gradable property), a simple lexicon can be built up. Each entry 
in the lexicon appeaxs either as a basic category i. e. one that does not re- 
quire any arguments, or as a functor - one with dependencies (or unsatisfied 
arguments). 

Functor categories then combine with argument categories of the appropriate 
number and type, as regulated by the final computational module. O'Grady 

proposes this module as an alternative to the classical Government and Bind- 
ing Theory (GB) [22], saying that the combinatorial operations are driven 
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by semantic considerations rather than syntactic ones. He suggests that this 

module has three important properties (which are also commonly manifested 
in other syntactic frameworks such as GB): binarity (application of the com- 
binatorial operation to pairs of elements), inheritability (dependencies which 
axe not satisfied by the operation in question axe passed up to the next level) 

and iterativity (the same operation can be continuously re-applied until all 
dependencies axe satisfied). 

Again, O'Grady argues that this computational module may not be language 

specific, but instead is the same cognitive structure that we use to perform 
arithmetic operations, substantiating this claim with the observation that 
the our "arithmetic faculty" also displays the properties such as binarity. 

Finally, the question of how the learner is able to discover the principles 
underlying issues such as gap placement and pronoun resolution is raised, 
which O'Grady claims is one of the biggest challenges for any general na- 
tivist theory of language acquisition. However, he attempts to make a start 
on this with a proposition on how reflexive pronouns might be dealt with. 
For example in a sentence such as "Haxryi admires himselfi", Harry and him- 

self co-refer. However, in the sentence "Harry's brotheri admires himselfi", 
himself refers not to Harry but to his brother. Such a sentence where Harly 

were the intended co-referent would be ungrammatical in English, and in- 
deed all languages, according to O'Grady. This poses the question of how 

such a principle is leaxnt without innate syntactic information of the type 
hypothesised in UG. O'Grady proposes that in addition to the dependencies 
between functors and axguments discussed above, there is a further type of 
dependency which must also be satisfied when lexical items combine to form 

sentences. These he calls "interpretative dependencies", whereby one ele- 
ment must look to another for determination of its reference. Elements may 
possess one of two types of referential index: a functor index, which occurs 
on a reflexive pronoun, and must co-refer to an index of the other type, the 
basic index, which occurs on lexical noun phrases. 
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Thus the path of an interpretative dependency can be traced as a sentence 
such as "Harryj admires himselfi" is formed. Firstly admires combines with 
himself to provide the transitive verb with a theme argument. At this point, 
the functor index on himself does not refer to the basic index on another 
noun phrase, and is as yet unsatisfied, causing it to be inherited by the re- 
sulting verb phrase admires himself This phrase also inherits the unsatisfied 
requirement for an agent argument for the verb admire. When the whole 
phrase admires himself is combined with Harry, both dependencies axe sat- 
isfied. In the case of sentence such as "Harry'si brotherj admires himselfj", 

the verb phrase admires himself would be combining with the whole noun 
phrase Harry's brother, which carries the basic index not of Harr but his y 
brother. 

The situation regarding the binding of reflexives in relative clauses is more 
tricky however. Take for example a sentence such as "Peterj says that Johni 

admires himselfi". In English, the reflexive pronoun may only refer to John, 

not to Peter. However, in Japanese, it could refer to either. In GB, this 
is generally accounted for the by the existence of a grammatical parameter 
which specifies whether the reflexive pronoun must be bound within the rel- 
ative clause, or whether the referent can be outside of it. O'Grady proposes 
that the learning module of his acquistion device is equipped with a law of 
conservatism, requiring it to adopt the most conservative hypothesis con- 
sistent with experience. Thus, in English, this module would assume that 
co-referents for reflexive pronouns must be within the same clause as the 
pronoun itself, and would never receive any evidence to the contrary, whilst 
in Japanese, it would soon be alerted to the fact that the most conservative 
hypothesis was incorrect. 

Thus O'Grady concludes by stressing that his proposal for a General Na- 
tivist Acquisition Device does not require the categorical and hierarchical 

properties of language to be somehow discovered by experience as a purely 
empiricist theory would do, but instead follows inborn principles and prop- 
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erties. However, the contrast with approaches such as Universal Grammar is 
that these principles and properties are not specifically syntactic in chaxacter, 
and may be manifested in other aspects of cognition. 

2.4.2 Proto-language 

Yet another alternative to UG is that of Derek Bickerton [5], who proposes a 
two-stage hypothesis for the evolution of language: a proto-language stage, 
which was probably fairly stable and long-lived, followed by the emergence 
of fully developed modern human language. This, he claims, happened quite 
rapidly [6], through the use of pre-existing brain structures that might have 

evolved individually for other purposes, but that collectively could have been 

considered a pre-adaption for syntax. This is perhaps is an idea not too 
dissimilar from that of O'Grady's General Nativist Acquisition Device [57, 

58], just discussed. For example, he postulates a brain module for "thematic 

analysis" in terms of keeping track with "who did what to whom" which could 
be very useful in a highly social and intelligent species such as ours, even prior 
to language, but that could very well be put to good use in the assignment of 
semantic roles (c. f. O'Grady's "propositional module"). He believes that the 

proto-language stage was composed largely of stand-alone lexical items of a 
referential nature - names for things and simple actions, which were combined 
without syntax to produce primitive utterances. As evidence for this, he 
claims that remnants of the proto-language system can still be seen today 
in situations where full language has not (yet) developed or is disrupted, 
for example, the one- and two-word utterances of pre-linguistic children, the 
symbolic language of chimpanzees, and pidgin languages. Furthermore, he 
claims that such a proto-language is still paxt of the human psychological 
endowment, remaining accessible to all members of the species throughout 
life, which explains the rudimentary language skills that children such as the 
unfortunate "Genie" axe able to master, who had been isolated from human 
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contact until her teenage years - well past the critical period for normal 
language acquisition [25]. He also believes that modern humans also tend 
to revert to this mode of communication when we axe feeling cognitively 
incapacitated as a result of fatigue, alcohol, sickness etc. 

Alison Wray [88], although another strong proponent of the theory that full 

modern syntax arose from a primitive proto-language, argues that there are 
many problems with this view. First and foremost she takes issue with the 

existence of single referential words, saying it is not at all clear where these 

words would have come from. Furthermore, she suggests that it is difficult 
to imagine what advantage such a primitive half-way grammax would have 
for its users compared to the highly successful communication systems used 
by all modern primates, and therefore presumably by our hominid ancestors. 
Instead she proposes the existence of a holistic proto-language. She sug- 
gests that early hominids living in large social groups might well have used 
holistic utterances to communicate about the kind of thing that modern-day 
chimpanzees do, but that perhaps they had a need for a more complex inven- 
tory of functional exchanges. Utterances would primarily have been used for 
building and maintaining social relationships, in a way that is reminiscent 
of Dunbar's theory of social grooming [30]. Given that these utterances are 
holistic, each would have to be auditorily distinct. Thus this would create 
the need for ever more phonemically complex sounds. This would have two 
effects: firstly to drive the evolution of the human vocal tract to be able to 
produce the wide range of different phonemes that we are capable of today 
(which is arguably more than we actually need for the production of mod- 
ern language - hence the fact that phonemes exist in some languages that 
axe absent in others); and secondly to possibly result in longer, polysyllabic 
utterances. This, she suggests, might act as a foothold for the evolution of 
full modern syntax. 

Thus we have the basis of a useful and stable communication system that 
may well have persisted for several million yeaxs. What next? How did full 
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modern syntax develop? Like Bickerton, Wray seems to advocate the point 
of view that the ability to process syntax may have arisen through the link- 
ing together of specific brain structures that had originally evolved for other 
purposes. Unlike Bickerton, she does not believe that the change from proto- 
language to modern language was a sudden one. She posits instead that this 

was a gradual process which arose due to segmentation of holistic utterances. 
She gives the following example as to how this could occur: supposing that in 
the proto-language, the utterances /mEbita/ and /ikatube/ mean give her the 
food and give me the food, respectively, and also that the utterance /kameti/ 

means give her the stone. Of course, these three utterances axe completely 
arbitraxy; any similarity between the syllables used is purely coincidental. 
However, by chance /mEbita/ and /kameti/ share the syllable /me/ and also 
share in their meaning a single female recipient. Thus an early human proto- 
language user, perhaps driven by Bickerton's hypothesised theta-role finding 
brain module, might arrive at the conclusion that this syllable means her. 
Furthermore, the utterances /ikatubc/ and /kamEti/ both share the syllable 
/ka/ and refer to the act of giving; thus the same individual may well be 
drawn to postulate that /ka/ means give. Of course, just because one or two 
language users have noted that there are some similarities between arbitrary 
strings with related meanings and chosen to segment their strings in this way, 
that doesn't mean we're at the full compositional language stage just yet. For 

a start, for every coincidental similaxity between utterances, there will poten- 
tially be many counter-examples which suggest that the segmentation being 
hypothesised is incorrect, such as other utterances involving female recipients 
that do not contain the syllable /me/. Wray suggests that there are several 
possible outcomes that may result from this: a) the individual may conclude 
that they were wrong and that /me/ does not mean her after all; b) that 
overgeneralisations will occur - perhaps leading to the changing in pronoun- 
ciation of a similar syllable in another utterance so that it starts to sound 
like /mE/; or c) there will be overgeneralisation in the opposite direction, for 

example in the case of an utterance that appears to refer to the act of giving 
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but does not contain the syllable /ka/, which might lead the individual to 

make subtle semantic distinctions, such as concluding that the utterance in 

question may refer to the act of presenting rather than merely giving. Thus, 

slowly but surely, over the course of many generations, differences in use and 
pronunciations of utterances will creep into the language (just as they do 
in modern languages) which reinforce and aid the compositional interpreta- 
tion of strings, and ultimately a fully rule based compositional language will 
result. 

Another viewpoint that Wray has in common with Bickerton is the belief that 

proto-language has never been fully be replaced, but still exists in modern- 
day speech. However, once again, she disagrees with him over the details: 

she dismisses his examples of proto-language, such as the one- and two-word 

utterances of young children, the speech of adults deprived of linguistic input 
during childhood, pidgin languages etc. because they are all examples of one 
"proto-language" user interacting with fully competent adults. Instead, Wray 

proposes that the remnants of proto-language can be seen in the everyday 
formulaic speech that we all use very frequently - holophrases such as "How 
do you do? ", "Can I help you? ", "Give it a rest! " etc. Whilst it is undeniable 
that these phrases share the structure of modern syntactic language, they are 
not used in this way - they axe not generated from rules each time they are 
used, and have meanings which in the social context are fax wider than the 
literal meaning of the phrases themselves. Wray has written extensively on 
this topic e. g. [91,90]. 

2.4.3 Incremental language evolution 

Another variation on the idea of proto-language is Ray Jackendoffs theory 
of language evolution [42]. He takes a similar viewpoint to Pinker, sug- 
gesting that the language faculty could indeed have arisen incrementally 
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through selective pressure for communicative ability. He urges us to consider 
the Chomskyan Language Acquisition Device not as a single, all or nothing 
"grammar bo)e', but rather a "toolkit" for language acquisition, composed of 
many discrete capabilities. Thus he argues, it is perfectly possible to view it 

as something that might have axisen through natural selection. He proposes 
a two-tier theory of language evolution not dissimilar to, but more elaborate 
than, the proto-language theories outlined above. 

According to his hypothesis, the main pre-requisite for proto-language is a 
population of individuals with thoughts worth communicating to each other. 
He believes that this is something that can already be said of chimpanzees, 

on account of their rich social structure and problem solving abilities, and 
thus it is easy to imagine that it may also have been true of our last common 

ancestor with them. He goes on to suggest that the most important step 
for the emergence of language in such a population is the use of symbols; 
however, these symbols must be used in a non-situation specific manner, 

unlike some of the referential symbols used by contemporary non-human 

primates, such as the vervet alarm calls. It might be axgued that some 
great apes can be trained in this ability [81,66], and thus that they may 
possess some of the cognitive pre-requisites for language. Once this ability 
has axisen, he claims that there axe two important innovations that need to 

occur to set a species on the path to language - firstly the ability to use a 
open, unlimited class of symbols (and the appropriate phonological support 
for this), and secondly, the concatenation of symbols, which could be viewed 
as the beginnings of syntax. These two changes are logically independent, 

and could have arisen quite separately. 

Unlike many writers, he believes that each of these preliminary stages in 
the putative evolution of language axe adaptive in their own right, and that 
they can each confer a fitness advantage in terms of improved communica- 
tion. He compares them to the "one word" stage of a baby's development; at 
this point, utterances may sometimes be difficult to interpret, but nonethe- 
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less, communication is occurring, and is a lot more productive than before 
the child has any linguistic competence at all. Once the two-word stage 
commences, i. e. symbol concatenation has begun, communicative ability is 

enhanced further still. Thus, he believes that such behaviours in primitive 
humans could each have been suitable targets for natural selection, and there 
is no need to suggest that they must have axisen simultaneously or as one 
large package containing the whole language faculty. 

Finally, in order to have a workable "proto-language" of the type that Bick- 

erton describes, Jackendoff claims that the primitive use of word order to 

express basic semantic relations is necessary. In the eaxly stages of symbol 
concatenation, it would probably be fairly trivial to figure out from the con- 
text exactly what the intended sense is. However, as more words are added, 
the number of pragmatic possibilities starts to increase, and even with the 
knowledge of the context it may not be possible to precisely determine the 
intended meaning. Nonetheless, as Jackendoff rightly points out, it is not 
necessaxy to have full generative syntax in order to improve this situation. 
He suggests that modern languages display some robust principles of word 
ordering which are in some sense outside of their syntax, and can be seen 
quite cleaxly in situations when normal syntax is somehow impaired. He 
discusses the early stages of first language acquisition, pidgin languages, and 
the impoverished speech which Klein and Perdue refer to as "The Basic Vari- 

ety" [50] that is seen in adult second language learners who have received no 
explicit instruction in their taxget language. In all these cases, there seems to 
be a tendency to exhibit an "agent-first, topic-last" type behaviour. There 
is a suggestion too, that some' of the "talking chimpanzees" used in ape- 
language studies also follow this rule [67]. Thus Jackendoff suggests that it is 
a "fossil principle" incorporated into the Universal Grammar toolkit during 
the proto-language stage. 

Thus we have a plausible story starting to emerge; a set of pre-requisites for 
language, some of which currently exist in other non-human primates, and 
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thus could easily have also occurred in our ape-like ancestors, and a set of 
possible small innovations that would have led to the incremental develop- 

ment of proto-language. Why is it then that our ancestors did indeed develop 

such a proto-language when other apes did not? If chimpanzees possess some 
of these pre-requisites in the form of thoughts worthy of communication and 
the ability to use symbols, and possibly even the tendency to use basic word 
order to express semantic relations, why do they not speak also? Presumably 
due to the absence of selective pressure in their evolutionary environment for 

the crucial innovations described above. To the extent which they do display 

some of the cognitive structures that may underlie language, it is quite clear 
that they have nowhere near the proficiency that we do, even in the most 
basic skills. 

Let us look at the ability to acquire a large open class of symbols. Although 

some primates can be taught to use symbols in a non-situation specific man- 
ner, to a limited degree, they certainly lack the human aptitude for it, as 
exemplified by the huge difference in the relative sizes of the average human 

vocabulary and that of chimpanzees and bonobos who have been used as 
subjects in ape language studies [81,66,671. If, at some point in our evolu- 
tionary history, there was a good adaptive reason for us to be able to use a 
very large number of symbols, this would have resulted in a selective pressure 
for the ease of vocabulary acquisition that we see in modern human children 
- something they do rapidly and with minimal instruction, quite unlike the 
majority of apes who have been trained in symbol use. Human behaviours 

which may underlie this skill include the ability to imitate and the use of 
pointing, skills which are ncZ present in the great apes. Thus, it might be 

possible to consider these skills as part of the Jackendoff's Universal Gram- 

mar "toolkit" , the set of cognitive pre-adaptations necessary to kick-start the 
evolution of language. 

So, at this stage in the hypothesis, we have a population of individuals com- 
municating with each other in "proto-language", putting together meaning- 
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ful symbols to form larger utterances whose meanings are a function of the 

meanings of the constituent symbols. Already, selective pressure for commu- 

nicative ability may have resulted in a number of aspects of the Universal 

Grammar being added to the toolkit, including the tools necessary to be able 
to quickly and easily learn symbols and the ability to invent new symbols for 

new situations resulting in an open vocabulary, the concatenation of symbols 
to express more complex propositions whose meanings are a function of the 

meanings of their parts, and the use of word order and to express semantic 
distinctions in these complex meanings. What happened next? How did full 

modern language evolve? 

Unlike Bickerton, Jackendoff does not suggest the mystical one-stage "giant 

leap" from proto-language to modern language, nor does he propose a pro- 
longed single process like Wray, but instead describes of a set of putative 
stages that the proto-language might have progressed through in order to 
develop the full generative syntax that we have today. These include the de- 

velopment of phrase structure, syntactic categories (including the noun-verb 
distinction) and the use of morphological markings. He suggests that each 
of these may have evolved independently and by quite sepaxate mechanisms. 

Throughout the discussion of this hypothesis, Jackendoff stresses two impor- 

tant points: firstly that we need not necessarily appeal to language-specific 

cognitive structures to explain all elements of UG. If there axe linguistic uni- 
versals that can be explained on more general cognitive grounds then we need 
not ascribe these characteristics to the UG toolkit. And if UG is a "toolkit" 

then it is not necessary to use every tool at ones disposal for every task. To 

quote: "beyond the bare minimum of concatenated words ... languages can 
pick and choose which tools they use, and how extensively". For example, 
modern languages have a wide range of means available to them for the ex- 
pression of semantic relations - word order, inflectional case markings, and to 

some degree the use of subject-verb agreement as occurs in some languages. 
Different languages make use of these particular tools to different degrees, 
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but not all languages use all of these devices, and some use combinations of 
them. 

2.5 Evolution of Language Rather Than 

Learner 

Returning to Chomsky for a moment: he (and Pinker, to some degree) ar- 
gue(s) that language must be innate because of complex nature of the data 

and the ease with which children acquire it when it is so under-specified, 
claiming that this would only be possible if they have brains that have evolved 
to provide a laxge amount of information about the structure of language. 
However, there is an alternative view point that turns this argument on its 
head somewhat. 

Terrence Deacon [27] suggests that rather than human beings having evolved 
the necessary cognitive structures to be able to acquire language more eas- 
ily, perhaps it is the case that language has itself evolved to be more easily 
acquired by the cognitive structures present in human brains. He uses a 
computer-based analogy to illustrate his point - the Apple Macintosh. Up 

until the advent of this machine in 1984, he claims, the use of computers re- 
quired extensive training and experience, but the designers of the Macintosh 
decided to take a different approach - to make interacting with a computer 
intuitive; to make it possible to learn to use it by trial and error. Since then, 
all other computer manufacturers have had to follow suit. Users are able to 
master the basics of a windows based operating system, not because they 
have innate knowledge enabling them to do so, but because computers have 
evolved to be compatible with the way people think. 

So it is for language, Deacon axgues. When, as Chomsky observed, children 
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quickly master the bases of grammar despite the paucity of the input stimuli 
from which they are learning, one could perceive them to be making "lucky 

guesses" about grammar and syntax and the way words work together, which 
might be all too easy to attribute to some innate, language specific knowledge. 
Deacon believes that learning is occurring by trial and error, but that a very 
large proportion of the guesses made are correct - not because of innate 
knowledge, but because the languages they axe learning have evolved in such 
a way as to fit in with the guesses that children are likely to make. 

He says that language can be thought of as a symbiotic relationship between 

an independent organism and its host, albeit that language is not a truly 

independent organism, as it lacks its own metabolic processes or the ability 
to reproduce; however, it can be thought of as more akin to a virus, which 
is essentially just a package of information encoded as DNA and which relies 

upon having the information it encapsulates integrated into the machinery 

of a host cell for its metabolism and reproduction to proceed. In a similar 

way, the information encapsulated in the grammar of a language becomes 

integrated into the machinery of the human brain, which reproduces its paxts. 
This relationship is symbiotic (unlike that between virus and host) because 

both host and language need each other for survival. The metaphor can be 

taken further still by the observation that although a common language may 
link a social group, the internal grammaxs of each of those speakers is unlikely 
to be identical, but subject to variation - it is more like a collection of similar 
but not identical languages. And as a result of this variation, languages are 
able to evolve with respect to the selection pressures around them, just as 
variation within a viral gene-pool drives evolution. 

The selection pressures in question here are the biases of human learners. In 

making their "lucky guesses" about the way in which words work together, 
children actually neglect a large proportion of the hypothesis space - they fail 
to explore the full range of ways of organising words. Thus a language that 
organises its words in a way that falls outside the "lucky guesses" of children 
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will not easily be learnt and will fail to be passed on to the next generation, 
whereas a language for whom the "lucky guesses" are usually correct guesses 
will be much more easily acquired. 

2.5.1 Why do languages have so much in common? 

So, we have an explanation for the fact that children are able to learn lan- 

guage so easily even though its structure is heavily under-specified by the 
data. Can this theory also shed some light on the other fundamental ob- 
servation that led to the idea of a Universal Grammax in the first place: 
Language Universals? 

Deacon believes it can. He suggests that Language Universals are merely an 
example of convergent features that is a common phenomenon in biological 

evolution, for example the dorsal fins of sharks and dolphins: structural 
similarities in unrelated species brought about by the existence of common 
selective pressures. As a linguistic example, he discusses the common set 
of colour terms that can be found in many of the world's languages. Not 

only do most languages possess terms for the same colours of the spectrum, 
but amongst those that possess fewer, it is always for the same colours. For 

example, if a language has only two colour terms, these are always light and 
dark (or white and black). If there is a third, it is always red, and the fourth 
is always green. Languages with more than four terms tend to add yellow 
and blue next, brown after that, followed by orange, purple, pink and grey. 
Furthermore, although the boundaries of these colour terms may vary, (for 

example, in a language with only 4 terms, blue things might be labelled 

green), the archetypal example of each is always the same. Deacon asks why 
this should be the case when we are capable of seeing the whole range of 
the visual spectrum, capable of inventing a myriad of different terms, and 
segmenting the spectrum at any arbitrary point? 
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It might be easy to suggest that this is due to some innate mechanism speci- 
fying that these axe the important colours that we should know about. How- 

ever, Deacon claims it is simply due to the biases exerted by the way our 
nervous system processes colour: because of the response properties of differ- 

ent neurons in the visual processing axeas, some colours axe more salient to us 
than others. Thus it is natural that whichever colour distinctions appear first 
in a language, they should relate to these more salient colours. Moreover, he 

suggests that if a colour term were to be invented for a shade that was not 
one of these salient frequencies, its meaning would be likely to slowly change, 
due to the biases of our perceptual system, until it did describe such a wave- 
length. Thus, Deacon claims, "the biases our brains introduce ... are the social 
and psychological analogues to mutation". Relatively speaking, he says, the 
biases introduced by the perceptual system with respect to colour names are 
quite weak; if they are able to produce such striking similarities between 
languages, then stronger biases such as the limitations of working memory, 
attention or sound production should be more than capable of accounting 
for the observed universals amongst the world's different languages. 

Jackendoff [421 is somewhat critical of Deacon's viewpoint, claiming that Dea- 

con puts the cart before the horse. However, it seems that their two points 
of view might easily be reconciled, especially given Jackendoff's insistence 

on not viewing Universal Grammar as a single entity, but more a collection 
of tools, and also that we need not necessaxily ascribe all features of human 
language to language specific processes. Similarly, Deacon is quite prepared 
to accept the possibility of co-evolution of language and learner, and does 

not deny that human beings may well exhibit language specific adaptations 
that make the languages which have evolved easier to learn. 
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2.5.2 A critical period for language acquisition 

Another argument that is often used in favour of an innate Universal Gram- 

ma. r is the notion of a critical period for language learning. 

Certainly, it is demonstrably true that such a thing exists: children seem to 

acquire languages with relative ease compared to adults, and often show su- 
perior ability. Acquisition of a second language seems to occur more rapidly 
and completely in children than in adults. Similarly, individuals deprived of 
linguistic input at a young age have difficulty acquiring their first language, 

and often never achieve full language competency. Interestingly, language 
learning appeaxs to occur at an age when the learning ability of children is 

otherwise poorly developed. These observations have lead to the postulation 
that this "time-dependant island of competence for learning language" coin- 
cides with a period during which some special language faculty (which gets 
shut off in later life) is active, somewhat akin to critical periods for learn- 
ing birdsong exhibited in some species. This in turn is taken as evidence in 

support of a Chomskyan-style language acquisition device. 

Deacon feels that we need not appeal to such an explanation however, and 
that this phenomenon too can be used to support his theory of the emergence 
of language. He believes that the critical period for language acquisition can 
be explained in terms of features of infancy in general (noting also that in 
chimp "language" studies, it has been inadvertently discovered that imma- 
ture chips acquire "language-like" capabilities such as symbolic representa- 
tion [66], and perhaps some form of primitive syntax [39], more easily than 
mature ones). 

He tries to tie this in with Elman's "Staxting Small" hypothesis [311. In 
essence, Elman was wanting to investigate Chomsky's thesis that languages 

were unlearnable because the data available to the learner may not be suf- 
ficient to uniquely determine the underlying grammax. This he did using 
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recurrent neural networks, and training them on a semi-realistic English- 

like artificial language. This language possessed some of the key properties 

suggested to make natural languages unlearnable, particularly multiple em- 
beddings in the form of relative clauses. The task of the networks was to 

uncover underlying regularities in the structure of the training language and 
to use this to predict the next word in a given sequence. This, he suggests, 
is akin to the inferences a child must make when trying to elucidate the 

grammar of the language prevalent in their linguistic environment. 

Initially, Elman trained his neural nets on corpora containing a whole range 

of sentences from the target language, of vaxying complexity, but found the 

performance to be very poor. So, in an attempt to understand where the net- 

works were failing, he tried using corpora of increasing complexity. He started 

with a corpus made up entirely of simple, non-embedded, non-recursive sen- 

tences, and progressed through five different phases to a corpus containing 
the full range of complex constructions allowed by the grammar. This time 

he found that the networks were very successful in learning the training data, 

and were also able to generalise to novel sentences. However, this does not 

seem to be a good model for the circumstances under which children learn 

language: although adults do modify their speech when talking to young 

children, it does not seem that it can be guaranteed that children will hear 

no complex sentence forms until they have successfully acquired the grammar 
for more simple structures. 

Elman notes that during the period in which children acquire their first 
language, they are also undergoing significant developmental changes, i. e. "if 
it is not true that the child's environment changes rapidly, what is true is 
that the child changes during the period he or she is learning language". In 

particular, he emphasises a gradual increase in memory and attention span, 
and attempts to model this within his networks by gradually increasing the 

access the network has to its own prior internal states. Starting with an 
initial memory window of 3-4 words, and increasing it in phases over the 
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course of the experiment, until in the fifth phase, memory was not limited at 
all, he trained the networks on the complete "adult" grammar, containing the 
full range of complex constructions from the outset. He found that, although 
the first phase needed to be much longer than in the previous experiment, 
similar degrees of accuracy were achieved, including the ability to generalise 
to novel sentences. Thus he concludes that in children, "limited capacity 
acts as a protective veil, shielding the infant from stimuli which may either 
be irrelevant or require prior learning to be interpreted". Rom the results of 
Elman's studies, Deacon suggests that immaturity itself may provide part of 
the answer to the observed "critical period" for language learning in human 

children. 

Thus whilst Deacon is not dismissing the idea that human beings do not 
exhibit specific adaptations to enable them to leaxn language, nor that they 

may have evolved in some way as to make this task easier, he also intro- 
duces the idea that perhaps it is languages that have adapted to be more 
easily learnt by us. This is a very appealing notion, and has captured the 
imagination of vaxious researchers. 

2.6 The evolution of case markings 

Finally, it is appropriate here to say a little about the evolution of case mark- 
ings, as this is central to the topic of this thesis. Unfortunately, much as the 
literature on case systems is very extensive (and very contradictory), little 
has been written about the mechanisms by which case may have arisen. Gen- 

erative linguists in the Chomskyan tradition believe it to be part of the gram- 
matical endowment of the Universal Grammar, and thus to have evolved by 

whatever mechanism by which UG came into being. Conversely, Jackendoff 
believes it to be one of several complementary systems for the disambigua- 

tion of theta relationships that have been added to the grammar toolkit at 
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different stages in our evolutionary history. As touched on on page 35, he be- 
lieves the eldest of these to be the use of word order to signal basic semantic 

relationships such who the participants axe in an event being described and 

what their role in that event is. This facility, he suggests, have developed 
during the proto-langauge stage of langauge development. Case markings, 
and other methods for the dismbiguation of theta roles such as noun-verb 
agreement, he believes to be a later add on, which developed during the in- 

cremental transition from proto-language to fully syntactic modern language. 
One thing that seems to be significant about case and case-maxkers is that 
the literature on both seems to show very little consensus about a general 
set of cases or semantic roles and the precise function of each. This seems 
more in keeping with the idea that they are a nascent feature of the language 

itself, perhaps created by a consensus of the speakers themselves (see later a 
discussion of Luc Steels' work in this context [79]) rather than a feature of a 
genetically determined universal grammar. 

Having reviewed the literature on theories of language evolution, I shall now 
go on in the following chapter to look at various attempts to model these 
theories using computational simulations, before describing Kirby's Iterated 
Learning Model [47,49], on which the work in this thesis is based. 



Chapter 3 

Computational Models of the 
Evolution of Language 

In Chapter 2, we discussed the issue of whether language learning is an ability 
innate to humans. That it is to some degree appears to be beyond doubt, 
but the question still remains exactly how much innate knowledge about the 

structure of language we are endowed with, and exactly what form it takes. 
Chomsky argues for the existence of a highly specified Language Acquisition 
Device, whilst simultaneously appearing to argue that this means that the 
language faculty could not have evolved by traditional selective processes due 
to the inherent complexity of such an organ. Other writers have suggested 
that the LAD could indeed have arisen by natural selection, or that such 
a highly determined structure is not necessary at all for the evolution of 
language. 

Until recently it was possible to do little other than theorise, and to make 
sure that these theories were in-keeping with the existing data on linguistic 

structure and language acquisition. However, language is clearly a complex 
dynamical system, and such systems very rarely behave in the manner that 

44 
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one might intuitively expect them to. With the advent of artificial life and the 

possibility of simulating complex behaviours on a computer, a new dimension 

to the field has arisen, resulting in a wide range of attempts to examine the 

cognitive pre-requisites for the evolution of language with the use of modelling 
techniques. In this chapter, I shall briefly review some of these approaches, 
which largely focus on whether a) language could emerge in the absence of an 
LAD or b) whether it is possible for an LAD to evolve by natural selection. 
I shall then go on to discuss the class of model that is central to this thesis, 

otherwise known as the "Iterated Leaxning Model" [47,49], and to describe 
its relevance to the work presented here. 

3.1 Language as an Emergent Phenomenon 

One of the earliest models of the emergence of language was that devised by 
Luc Steels in the mid-nineties [72,73,751. Steels believes that language is an 
emergent phenomenon which "spontaneously forms itself once appropriate 
physiological, psychological and social conditions have been satisfied" [76]. 
He has demonstrated that it is possible for populations of robotic agents to 

converge on a common vocabulary for objects in their environment simply by 
interaction in a series of negotiation rounds. Agents engage in "discrimina- 
tion games" (whereby they must create distinctions between different objects 
in their environment) and "language games" (involving communicating those 
distinctions to other agents present). In essence, they pick out an object, as- 
sess how it is different from others in the environment, invent a "name" 
for it (assuming they do not have one already), and then use that name to 
communicate to others about the object they axe referring to. 

Agents are equipped with a number of sensory channels. Each channel yields 
a value in the continuous range 0.0 to 1.0, and it is the agent's task to 
build a "discrimination tree" for each, that will allow different objects in the 
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environment to be successfully distinguished. This is done by subdividing 
the sensory channel into a set of discrete categories. For example, a channel 
measuring the intensity of visible light might initially be subdivided into 

categories "bright" (0.5 <x<1.0) and "dimý' (0.0 <x<0.5). The agent 
will distinguish objects in its environment by assigning to each a unique 
featureset. Thus it must ensure that there axe sufficient perceptual categories 
to enable this. If a new object is encountered for the which a unique featureset 

cannot be created, the agent must further refine the distinctions it is able 
to make by adding new branches to the discrimination tree for a particular 
feature, for example, subdividing the range for "bright light" into "quite 
bright" and "extremely bright". Initially agents have no discrimination trees 

at all and all channels are completely unsegmented. 

A successfully distinguished object is assigned a name based on its unique 
featureset. An entry is added to the agent's internal lexicon recording the 
appropriate name-featureset pairing for future use, and then agents attempt 
to communicate with each other about the objects in the environment. The 
"speaker" identifies an object as the topic of the interaction and makes it 
known to the "hearer". Both agents identify the object by retrieving a fea- 
tureset for it which cannot be applied to any other object in the environment 

- the featuresets identified by each agent need not be identical. The "speaker" 

uses the featureset is has retrieved to look up a "name" for the object, and 
then communicates this to the "hearer". The "hearer" will look up this name 
in its own lexicon to see if it corresponds to the object in question: if it does, 
then communicative success has been achieved. If the featureset associated 
with that word in the hearer's lexicon does not match the object being identi- 
fied, then this is considered a communicative failure. Alternatively, the word 
may be one with which the hearer is unfamiliar, in which case it will add it 
to its lexicon, paired with the unique featureset that it has previously iden- 
tified for the object (which may be a different featureset to that associated 
with this particular word in the speaker's lexicon, and which may or may 
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not lead to future communicative failures, dependent on the introduction of 
other objects with similax characteristics). 

In these experiments Steels has demonstrated that agents can successfully 
discriminate and communicate about objects in their environment, perfor- 
mance in both these tasks increasing with the number of "games" played. 
The discrimination trees created by each of the agents in the simulation be- 

come increasingly similar as time goes on: requiring agents to be able to 
communicate with each other causes the commonality of the environment in 
which they exists to become reflected in the representations of that environ- 
ment that each holds. 

Steels has also done a variety of similar studies in which agents engage in 
dialogue in order to identify each other by their relative positions [74], or at- 
tempt to communicate about structured cognitive memories [77], once again 
demonstrating how agents which share a common environment often develop 

similar internal representations of that environment, the degree of similarity 
being increased significantly when agents are required to engage in commu- 
nicative exchanges about those representations. He refers to this process as 
"structural coupline'. This occurs when an agent conceptualises reality in 
terms of its internal representation, and then verbalises the conceptualisation; 
to understand the verbalisation, another agent is forced to adopt/hypothesise 
similar conceptualisations leading to similarities in its internal representation 
of the environment. Throughout all his simulations, Steels has managed to 
demonstrate the spontaneous emergence of a coherent lexicon amongst a 
population of agents, as well as combinatorial structure in the utterances of 
agents which mirrors the structure of the environment in which they find 
themselves (for example a lexical entry for the property red may emerge and 
be used in conjunction with entries for quite different objects, both of which 
happen to be red). He claims that this is significant in the development of 
syntax, but as yet has not succeeded in getting agents to express predicate 
argument relationships. 
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To a certain extent, the work of John Batali follows on from where Steels 
leaves off. Batali's work investigates whether agents using a similar "ne- 

gotiation" type paradigm can develop co-ordinated systems for conveying 
structured meanings [3]. His agents are recurrent neural networks, and they 

exchange sequences of tokens intended to represent meanings within a par- 
ticulax semantic space. This space is made of 10 "predicates" such as happy, 

sad, excited (which are all single-place predicates) and 10 "referents" which 
can best be described as a complex pronoun system. This is derived from 

an English-based creole and includes the standard English pronouns me, you 
and they, one in the sense of a generic third person singular, we as a group 
of speakers, yall as a group of hearers and all referring to a group that in- 

cludes both speaker, hearer and others, plus additional pronouns mip, yup 
and yumi, which refer to a group which includes the speaker, a group which 
includes the hearer, and a group including both speaker and hearer but no 
others, respectively. 

The combination of 10 predicates with 10 referents in this way gives a space 
of 100 possible meanings. Agents represent these meanings by means of a 
vector which can hold ten real-valued numbers between 0 and 10. Six of the 
values in the vector determine the predicate and four designate the referent. 
Each of the 100 meanings in the meaning space is represented by a predefined 
sequence of Os and 1s. 

Agents engage in rounds of "negotiation" where they attempt to commu- 
nicate with each other and leaxn from the utterances made. An agent is 
chosen at random from the population to act as learner. Ten further agents 
are chosen in succession to "teachý' the learner. Each teacher sends a set of 
sequences, each presented once, in random order. These are represented by 
setting each value in the meaning vector to either 0 or 1, according to the 
meaning to be conveyed. The speaker then runs through each of the tokens 
in its repertoire and inputs them to its network, selecting the one which gives 
the output closest to the value in the meaning vector. If necessary, further 
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tokens axe selected to modulate the first until an output close enough to the 

correct meaning is achieved. The hearer processes each of the tokens in the 

sequence in the order in which they are presented, and compares its own 
output with the meaning intended by the speaker (any value within 0.5 of 
the value in the speaker's meaning vector is considered to be correct). Ad- 
justments axe then made to the network by back-propagation with the aim 
of learning the correct pairing between sequence and meaning. 

Initially, the utterances produced by the population are completely uncoor- 
dinated. Agents send very long strings of seemingly random tokens which 
suggests that their attempts to find a sequence which has the correct meaning 

are not very successful. However, after very many negotiation rounds, Batali 

claims that "agents develop highly co-ordinated communication systems that 
incorporate structural regularities reminiscent of those in human languages", 

with a high level of communicative accuracy and short, distinct utterances 
for each meaning. Significantly, he claims that systematic regularities exist 
between the meaning patterns and the sequences that convey them, although 
they axe not completely regular. He proposes a quasi-linguistic analysis of 
the language(s) developed by his system as a root which expresses the pred- 
icate plus some modification to the root that expresses the referent. The 

referent does not necessarily take the form of a sepaxate "wor&', and may 
appear as a modifier element, interspersed with the characters that make up 
the root. 

Thus, both Steels and Batali have succeeded in demonstrating the sponta- 
neous emergence of language-like behaviour in populations of agents that are 
required to communicate with each other about aspects of their environment. 
In neither case do agents possess any kind of "Language Acquisition Device" 
or indeed any language specific knowledge. However, the behaviour exhib- 
ited is very simple and there is little to suggest how language might have 

progressed from these simple stages to the complex phenomenon that it is 
today. 
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3.2 Modelling the Language Acquisition Device 

The following models take almost the opposite stance to those discussed 

above: rather than trying to demonstrate what aspects of language can 
emerge in the absence of a Language Acquisition Device, they focus upon 
modelling the evolution of such a language faculty, in order to discover 

whether such a thing could indeed arise by selective processes, in partic- 
ular whether it is possible to demonstrate it evolving to increase the ease of 
acquistion of languages in the an agent's environment. 

Simon Kirby and Jim Hurford [48] have investigated the relationship between 
linguistic selection for languages that are more easily parsed and natural 
selection for agents which axe better able to acquire their target language, 
in order to discover whether either or both of these forms of selection are 
sufficient to cause the evolution of a Language Acquisition Device. Using a 
principles and paxameters type framework, they demonstrate that selection 
for an LAD seems only to occur in tandem with linguistic selection. 

Their simulation tracked the emergence of an LAD amongst a population of 
interacting, reproducing software agents. Each agent is made up of a gram- 
max and a genome. The grammax is represented as an 8-bit string of Os and 
1s. This gives a total of 256 logically possible languages, although Kirby and 
Hurford aim to show that due to the actions of natural selection and linguis- 
tic selection, the actually occurring languages will not be evenly distributed 

within this space, just as natural languages are not evenly distributed within 
the space of logically possible languages. The genome of each agent is also an 
8-character string, and each position on the string can be one of three possi- 
ble alleles - either 0,1 or ?. This, the genetic makeup of an agent influences 
the possible range of languages it can leaxn: if the value of any given bit on 
the genome is set to 0 or 1, then the value of the corresponding position on 
the agent's grammar is predetermined to be a0 or 1 respectively, and the 
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agent will only ever be able to acquire grammaxs with the appropriate value 
in this position. Thus "genes" with a value of 0 or 1 can be thought of as 
representing grammatical principles. 

A value of ? in the genome represents a grammatical parameter whose value 
is set when a language is acquired. Thus an agent with all the positions in 
its genome set to 0 or 1 can be thought of as having no paxameters, only 
principles: a fully nativised grammar. No learning is required in order for 
it to acquire a language. Conversely, an agent with only ?s in its genome is 
fully plastic and unconstrained with regaxd to the range of languages it can 
learn. It has no grammatical principles. 

The population of agents is made up of both adults and learners. The adults 
produce utterances from which the learners attempt to acquire the language 

of the current population. Utterances are encoded as an 8-bit string of *s with 
either a0 or a1 at one position. Using a slightly modified version of Gibson 

and Wexler's 'Rigger Learning Algorithm (or TLA) [34], the learner attempts 
to analyse the sentence by comparing it with the current value of its internal 

grammar. If the sentence "fits" the grammar, i. e. the 0 or 1 value in the 
incoming string corresponds to the same value in the appropriate position of 
the learner's grammar, then the string is considered to have been successfully 
parsed, and the learner's grammar remains unchanged. If however, there is 

no fit, then the learner chooses one parameter, at random, from the those 
which axe not predefined by its genome, and resets it. It then attempts to 
re-process the failed sentence. If this time it is successful, the change to 
the grammar is preserved. If it fails, then the original parameter value is 

retained, and the process is repeated. 

A critical period is employed, during which learning occurs. After this, agents 
become adults and cease to be able to modify their internal grammars. At 
this stage, the success of language learning is measured: the newly mature 
adult agents interact with each other, and are scored on their ability to 
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successfully process incoming utterances, as well as their ability to produce 
utterances that axe successfully processed by other agents. This score is 

used to assign a fitness to each agent based on its communicative ability. 
In addition to this, 10% of an agent's utterances as an adult are rated on 
how easily parsed they axe. In order to reflect the idea that some parameter 
settings would result in grammars that axe more easily parsed than others, 
parsability was measured by an arbitrary function that prefers ls in the first 
four bits of the vector. Once the fitness of the individual agents has been 

ascertained, those in the top 90% of the population are selected to breed, thus 
passing on the principles encoded within their genomes (rather than the final 

settings of their grammars). Reproduction involves 1 point crossover of the 
genomes of two individuals, plus mutation at a probability of 0.001 per allele. 

The simulation was caxried out in two phases: in the first, the role of natural 
selection alone was examined. The original population used was of 100 agents 
with fully plastic LADs, that is, whose genomes contain eight ? s. Under these 

conditions, the fitness of the population never reaches its maximum level, and 
although agents receive a higher fitness score if the language they acquire is 

more easily parsed, (i. e. if it has a greater number of ls in the first four bits 

of its grammar), this does not seem to result in the nativisation of ls in these 
positions. Some parameter settings were nativised, but these appeaxed to be 

entirely random and not necessaxily those that would constrain the leaxner 
to be able only to acquire a more easily parsed grammar. 

In the second part of the experiment, an element of linguistic selection was 
introduced, by modifying the parameter setting algorithm to favour "trigger 

sentences" from more easily parsed grammars. In 10% of cases, the learning 

agent will only keep the new parameter setting if the new grammar has 

a higher parsability than the old one. The results of this phase are quite 
different to the first: the population converges very quickly, and the languages 

converged upon rapidly evolve towards those which are more easily parsed. 
Natural selection of agents themselves is also observed, although at a much 
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slower rate, resulting in ? alleles in the first four positions of the genome 
vector gradually becoming 1s. Thus, the LAD does eventually evolve to at 
least paxtially constrain learners to languages that are more functional. 

Kirby and Hurford conclude that selection pressure on the individual to be 

able to interpret and speak more easily parsed languages is not in itself 

sufficient for the learner to become constrained by natural selection to only 
be able to acquire such languages. This is because the most important thing 
to the learner is to achieve sufficient fitness to be able to reproduce by being 

able to correctly learn the language of its speech community. Thus, if the 
community speaks an optimally paxsable language, then a mutation that 

constrains the learner to only learning parsable languages will not really 
give much of a reproductive advantage - this learner may acquire the target 
language more easily than those around it, but they too are obviously able 
to acquire it perfectly successfully, or it would not be the prevalent language. 
On the other hand, if the language of the speech community is less than 

optimally parsable, then any mutation which constrains the learner to be 

able to learn only more paxsable languages would result in that learner being 

unable to acquire its target language, and thus a paradoxical reduction in 
fitness. 

Thus, they argue, "there is no way in which a mutation that increases the 
functionality of the LAD (in the sense that it constrains languages to be 

parsable) can give a direct fitness advantage to an individual ... even though 
the fittest population would be one that possessed just such an LAD. " 

However, in the situation where agents favour languages which axe more 
easily parsed, even without natural selection of agents, speakers converge on 
those languages which are optimal. Thus, claim Kirby and Hurford, it is 
simple for an LAD to gradually evolve which mirrors the existing constraints 
on variation. A mutation which prevented an agent from acquiring a less 

easily parsed language would no longer be likely to carry a penalty for the 
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individual, as the language of its community is unlikely to be such a sub- 
optimal language. This result appears to add weight to Deacon's suggestion 
[27] that languages may evolve to fit the biases imposed by the learner. 

Ted Briscoe has also done a series of similar experiments, attempting to 
demonstrate the co-evolution of language and the language acquisition de- 

vice [13,14,15,16] using "grammars" with a more explicity linguistic basis 
than the rather abstract model described in Kirby and Hurford's experi- 
ments. He is also able to demonstrate the evolution of languages themselves 
towards greater functionality (which he measures in terms of learnability, 
interpretability and/or expressivity rather than parsability), with simultane- 
ous evolution of the Language Acquisition Device to aid the acquisition of 
these more functional languages. 

The agents in Briscoe's experiments have a grammatical framework based on 
a Generalised Categorial Grammax (which is intended to represent Univer- 

sal Grammar). This is augmented with a series of 20 parameters specifying 
variable elements within the framework, such as the positions of axguments 
relative to their functors (which he calls gendir) or the relative position of 
subject arguments (subjdir), or the requirement for a verb in the second posi- 
tion of the sentence (V2) as is observed in languages such as German. These 

paxameters have a partial ordering: for example, subjdir is more specific than 
gendir. Each parameter has two possible values (in the case of the gendir 
and subjdir, left or right, and in the case of V2, true or false), and the value 
of the parameter can be specified as an Absolute (i. e. cannot be changed by 
leaxning, but can be regarded as a principle of the underlying UG), Default 
(i. e. can be reset as part of the leaxning process) or Unset (i. e. has no initial 

value). This framework defines about 300 different grammaxs. However, not 
all of these axe stringset distinct - some are subsets of others; in total there 
axe about 70 distinct full languages, many of them resembling the syntax of 
cleaxly attested human languages. 
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Agents in the simulation parse and generate sentences which are compatible 
with their current parameter settings, as in Kirby and Hurford's simulations. 
If, during the learning phase of development, they are unable to parse a 
particular sentence, then they attempt to update their parameter settings to 

cover it. Briscoe's original learning algorithm [13] is also based on Gibson 

and Wexler's Trigger Learning Algorithm [34] although with a few important 
differences: 

An element of memory has been incorporated, as Briscoe argues that 
the memoryless nature of Gibson and Wexler's algorithm, in which a 
learner may continually set and re-set the same parameter, is psycho- 
logically implausible - there is no evidence that children blindly revisit 
previous hypotheses before eventually converging on a target. Instead, 
the algorithm is changed so that each parameter can be reset only once 
during the acquisition process. 1 

The standard TLA allows only one parameter to be reset per trigger. 
Briscoe's algorithm allows n resettings, where n<5; the exact value 
of n is subject to alteration by the pressures of natural selection. 

The standard TLA chooses parameters at random for resetting in re- 
sponse to an unparsable trigger. Briscoe's algorithm starts with the 

most general in terms of the hierarchy defined by the partial order- 
ing of parameters. Thus the gendir parameter would be set before the 
subjdir one. 

'One might axgue that this is equally psychologically implausible: whilst not "blindly 
revisiting" previous hypothesis, children do sometimes appear to "backtracy' during the 
process of acquisition. For example, it is not unusual for a child to be able to productively 
use irregulax verb forms such as was and went before past tenses of regular verbs have 
been leaxnt. Once the regular forms have been acquired, they may go through a period 
of "regulaxising" irregular verbs before eventually getting the right mix of regular and 
irregulax [32). 
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However, in his later experiments [14,15,16], Briscoe has changed his learn- 
ing algorithm to give it a Bayesian basis. Whereas previously, a single oc- 
currence of a particular trigger would cause parameter resetting, according 
to the revised algorithm, it simply increases the confidence with which the 

agent believes a particular parameter setting to be correct. 

Once learning is complete, adult agents continue to interact and are assessed 
by means of a fitness function, whereby the ability to communicate via lan- 

guage confers a selective advantage, and the ability to communicate by a 
more leaxnable, more expressive and/or more interpretable variant language 

confers a further advantage still. Those agents with a higher than average 
fitness are selected to reproduce, whilst those with lower fitness may die 

prematurely. Reproduction proceeds by passing on of the initial parameter 
settings of the agent, not the learned ones, and involves one-point crossover 
of agent genomes with a probability of 0.9, plus single point mutation with 
a probability of 0.05. 

In the first set of simulations, agents were not selected for on the basis of 
communicative ability, but were allowed to reproduce regardless of whether 
they had successfully acquired a functional grammar. The initial population 
of agents was a genetically invariant one, but the linguistic environment was 
kept continuously heterogenous, thus providing variation which might act as 
the substrate for linguistic selection. This was achieved by two means: 

The first is by migration, in the form of additional agents (about one third 
of the population) speaking a second full language introduced at periodic 
intervals. This was done at such a rate that there were always two languages 

present in the population, yet communicative performance was kept at a level 

of at least 90%. The second language was never more than three parameter- 
settings away from the original. 

With this method of introducing linguistic diversity, when there is no natu- 
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ral selection for agents, linguistic selection still occurs - populations tend to 

converge on those languages which are more easily learnable. Without pres- 

sure for expressivity, the population shows a strong tendency to converge on 

subset languages, i. e. those with sub-optimal expressivity. 

A further element of linguistic selection was then added. The fitness of 

agents was measured by assessing the interpretability and expressivity of 
their language, and this was used to determine which speakers will provide 
the trigger stimuli for the next generation (although all agents still reproduce 

and pass on their initial paxameter setting to the new learners). This causes 

agents to stop converging on the simpler subset grammars, but instead to 
favour easily learnable and interpretable full languages. 

In further simulations, rather than using migration to introduce linguistic di- 

versity, Briscoe used a bilingual initial population made up of two genetically 
identical adult groups. These groups speak different full languages which con- 
trast in terms of their learnability and/or their interpretability, for example 

a language whose underlying word order is Subject-Object-Verb (SOV), and 

an identical Subject-Object-Verb language with a V2 requirement (SOVv2). 

The SOVv2 language is slightly easier to interpret because of the super- 
ficial Subject-Verb-Object ordering found in unembedded sentences, which 

requires a slightly lower working memory load. 

Without natural selection of agents, linguistic selection tends to favour the 
SOV language, because it requires one less parameter to be reset, making it 

easier to leaxn. Thus this language quickly dominates. However, adding a 
fitness function as described above to include pressures for interpretability 

and expressivity results SOVv2 to becoming the dominant language. In both 

cases, there was no significant change in average agent fitness. 

Finally, simulations were run in which the full fitness function is used to 
determine which agents would be able to reproduce and pass on their orig- 
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inal parameter settings. The effects of this were investigated in a relatively 
constant linguistic environment, i. e. one where there were no population mi- 
grations, and also in a continuously changing linguistic environment with 
regular migrations as described previously. In both cases, the original popu- 
lation was of genetically identical agents speaking one full language. 

When there axe no migrations, convergence on parameter settings which 
enhanced the learnability of the dominant language was seen. (It is worth 
noting that even in this relatively constant linguistic environment, there was 
still some heterogeneity, due to the occasional misconvergence of a learner, 
for example). This usually takes the form of an increased number of default 

parameter settings and a reduced number of unset parameters. There is 

also a tendency for the value of n (i. e. the number of of parameters that 

are reset when a trigger is found to be unparsable) to be reduced to 2 or 3. 
The reduced learning costs associated with the evolution of the population 
resulted in an increase in agent fitness, although interpretability, expressivity, 
and communicative performance tended to stay the same. This is a clear 
example of genetic assimilation - agents evolving to be able to acquire the 
dominant language more effectively. The low level of linguistic variation 
creates very stable selection pressures for genetic change to be based on. 

Adding migrations, by periodically replacing approximately 30% of the pop- 
ulation with agents speaking a second full language, there is a lot more 
linguistic vaxiation, and the dominant language changes rapidly. It does not 
confine itself to the two languages originally present in the population, either, 
but many different languages axe sampled. However, as before, the LAD still 
evolves to improve leaxnability, although instead of replacing unset paxam- 
eters with default values, as before, the tendency is to create grammatical 
principles as well as defaults. Once again, an increase in fitness was observed 
due to the decreased learning costs brought about by the evolution of the 
LAD, but also this time, increased parsability was observed. 
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When discussing these results, Briscoe suggests that in a rapidly changing 
linguistic environment, one might expect that nativisation of default parame- 
ters would be more common than nativisation of principles because a correct 

principle which subsequently became incorrect due to change in the dom- 

inant language would incur a very high cost, whereas a default parameter 
setting which became incorrect would only incur the same cost as a param- 

eter that had been left unset. Whereas conversely, in a relatively constant 
linguistic environment, the nativisation of principles incurs no cost as they 

are unlikely to become incorrect, although there is relatively little pressure 
for principles rather than correctly set defaults. However, the observed re- 

sults seem to show the opposite trend. Briscoe suggests that this is due to the 
linguistic selection imposed by the nativisation of a grammatical principle: 

any languages that do not obey this principle effectively become unleaxn- 
able. Although in a relatively stable linguistic environment, a grammatical 

principle confers very little advantage over a correctly set default, when the 

environment is changing rapidly perhaps the nativisation of principles makes 
it easier for a population to converge on one single language by constraining 
the space of possible languages that can be learnt. 

So, in summary, while Kirby and Hurford have demonstrated that in the 

absence of linguistic selection, natural selection seems powerless to steer 
the Language Acquisition Device towards that acquisition of "superior" lan- 

guages, both they and Briscoe appear to have found that when linguistic 

selection and natural selection act in tandem there is significant convergence 
on parameter settings that aids the acquisition of more functional languages. 
Genetic assimilation does appear to be occurring, despite Deacon's assertion 
that the rate of linguistic change is far too fast to provide a stable base for 
this to happen. In fact, if anything, more drastic change seems to occur when 
there is more linguistic change, as seen in the nativisation of principles in 

populations undergoing frequent migrations. Thus, although Briscoe recog- 
nises that the time taken for grammatical change and for biological evolution 
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depends on many factors such as the population size, geographical dispersal, 

the diffusion rates of genes and of variant grammatical forms etc., he believes 

that his results demonstrate that genetic change can occur even in the face 

of very rapid linguistic change. This, he says, is because the space of possible 
grammars is vastly larger than the number of possible grammaxs which can 
be sampled by the population in the time it takes for one default parameter 
or principle to become prevalent within the population. Typically, he claims, 
5% of the grammatical space may be sampled in such a period, which leaves 
95% of the selection pressure for genetic assimilation constant at any one 
time. 

However, there is one question that might be raised by this. If genetic assimi- 
lation can occur so rapidly and with such ease, what stops it from happening 

within linguistic communities? It is not generally suggested that different 
human populations with different predominant languages have genetic dif- 
ferences that enable them to learn their own languages much more easily than 
that of another speech community. An infant brought up in a different speech 
community from that of its parents is not generally impaired in its language 

acquisition. Yet, if genetic assimilation occurs as readily as demonstrated by 
Briscoe's results, would this not be the case? 

It is perhaps necessary to interpret Briscoe's results with caution. In his 

simulations, mutation involves a simple change to a binary valued parameter, 
occurring with a probability of 0.05. Every mutation brings about a change 
in the functionality of the LAD it specifies and mutations never result in 

an LAD that is non-functional, or unable to acquire a language of any sort. 
By contrast, the probability of any given human gene mutating during the 
lifetime of an individual is 1 in 2500. However, the human genome is so large 
that one would expect about 10 mutations in the passage of genome from 

parent to child [40]. Without knowing exactly what proportion of the genome 
is devoted to language-specific information, it is difficult to judge whether 
Briscoe's mutation rate of 0.05 is realistic or not. Regardless, at whatever 
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rate mutations do occur within the part of the human genome specifying 
language capabilities, this does not equate to an equivalent rate of principle 

nativisation or parameter flipping. A single mutation to a single gene in 

the language faculty would almost certainly not result in the binary change 
in behaviour that Briscoe's model encapsulates. Firstly the genetic code is 

not binary, but quarternary. Thus a change to one base in a DNA sequence 

yields not one but three possible outcomes. Secondly, such a mutation may 
well have no structural effect whatsoever on the protein being encoded by 
the gene in which it has occurred, and no structural effect on the protein 
means no behavioural effects in the individual. Thirdly, if any changes in 

protein structure do occur, it is very unlikely to result in parameter flipping 

or principle fixation, but simply to render that protein dysfunctional. Finally, 

many of the complex characteristics of human biology are controlled not by 

one single gene, but by a number of genes. Thus it seems likely that for a 
paxameter's default value to be flipped, or for a principle to become fixated 

within the LAD, it would probably require a number of specific mutations 
to a number of different genes. Thus it seems that the mutation rate in 
Briscoe's simulation is actually very high. By contrast, the mutation rate 
in Kirby and Hurford's study described above [48] is set to the much more 
conservative rate of 0.001. 

Of course, the whole simulation is a simplification of all the factors involved, 
including of the language being spoken, the process of its acquisition, as 
well as the way in which the language faculty is represented genetically. 
Such simplifications axe necessary in order to be able to make such a model 
viable, and as such, they do not necessarily undermine his results in any way. 
However, it does serve to highlight that we should be careful in drawing 

any firm conclusions from them: if the dynamics of genetic change have 
been wrongly estimated relative to the dynamics of language change then 
it is not necessaxily possible to state that because genetic assimilation does 

occur in the model, that it could also have occurred in evolving populations 
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of pre-linguistic hominids. It is interesting to note that although Briscoe's 

model of language is far more complex than that used in Kirby and Hurford's 

simulations, he allows genetic mutation to occur with twenty times higher 

probability. 

However, with this caveat in mind, both Briscoe's and Kirby and Hurford's 

models appear to show that, under the right circumstances, the Language 
Acquisition Device can indeed evolve to aid the acquisition of language and 
to constrain the range of possibly languages that can be acquired. However, 
the models used in both studies incorporate a very sophisticated framework 
for language acquisition and on which selective processes will act, without 

explanation for its existence. Thus it has been shown that with some form of 
genetically determined language specification in place, selective pressures do 

exist to further constrain the range of learnable languages, but what has not 
been demonstrated is how and indeed whether this complicated blue-print 

might have evolved in the first place. 

3.3 Iterated Learning Models 

The final class of model I will discuss here, known as the "Iterated Leaxn- 
ing Model" (a term coined by Henry Brighton [12]) was developed by Simon 
Kirby, [47,49] and is intended to demonstrate that a Language Acquisition 
Device is not necessar ,y 

for the emergence of some of the crucial features 

of human language (namely compositionality and recursion). Instead Kirby 

proposes that these features could in fact be an inevitable outcome of the 
dynamics of language transmission. Iterated Learning Models axe so called 
because they simulate an iterative learning process over a series of genera- 
tions of agents. Agents leaxn observationally from the behaviour of others in 
their environment. Through this process of cultural transmission, structure 
emerges spontaneously. 
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An overview of the model is as follows (although I will gloss over the de- 

tails here, as I will be describing my own implementation of a similar model 
in Chapter 4): the simulation consists of a population of identical agents, 
initially with no language knowledge. In the experiments Kirby describes 

in his early studies, the population size is simply 2: one learner and one 
speaker. Agents are equipped with a simple leaxning algorithm with which 
they can make generalisations about the linguistic behaviour they observe. 
The speaker produces utterances intended to represent items from a prede- 
fined meaning space, which are conveyed to the leaxner as string-meaning 
pairs. It does this by consulting the grammar it has induced from the utter- 

ances to which it was exposed when it was a learner. If it is unable produce 

an utterance for a given meaning, it will invent one. (The very first speaker 
in the simulation, having no knowledge of the language at all, will have to 

resort to invention for every meaning that it wishes to convey). The learner 

receives the speaker's utterances, and uses them to build its own grammar for 

the language being spoken. After a fixed number of interactions of this type 
(in Kirby's simulations, 100), the speaker is removed from the population, the 
learner becomes the new speaker, and a new learner is introduced. 

Grammars are built by extracting regularities from the utterances to which 
agents are exposed. The first stage in this process is to build a single grammar 
rule for the incoming utterance to relate the string heard to the meaning 
intended. The second part of the grammar induction process is to try and 
make generalisations between the newly incorporated rule and other rules in 
the grammar. To do this, Kirby uses two basic operators, chunk and merge, 
plus a set of heuristics to determine when each of them should be applied. 
The operators axe based directly on a grammar inducing algorithm by Stolcke 
[80], although Stolcke himself uses a Bayesian technique to determine when 
they should be used. 

The main function of the chunk operator is to attribute parts of the string to 

elements of the meanings. Thus rules are compared on a pairwise basis, and 
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if two rules axe found to differ by only one part of their meaning, and the 

strings associatiated with those rules also differ by a single substring, then 

the difference in the meaning is attributed to the differences in the strings. 
For example, if rules exist that state that the string j, o, h, n, lo, ve, s, m, a, ry 
has the meaning loves(john, mary) and that the string p, e, t, e, ], o, ve, sm, a, ry 
has the meaning loves(pete, mary) then the agent will conclude that john is 

attributable to the substring j, o, h, n and that pete is attributable to the 

substring p, et, e. The two original rules are removed from the grammar, and 
new rules are created to reflect this. 

The merge operator is intended to remove redundancy from the grammar. 
Thus when pairs of rules axe compared, if two are found to be equivalent, the 

second will be removed from the grammar. The reader is referred to page 95 
for full details of the implementation of these operators. 

The crucial part of the model is the transmission of information across gen- 
erations: after a pre-specified number of utterances, the speaker is removed 
from the simulation, the learner becomes a new speaker, and a new agent 
with no linguistic knowledge at all is added as the new learner. Thus the 

previous leaxner will pass on the language that it has learnt to this new agent 
before the process is repeated yet again. 

In Kirby's original studies [43,46], agents are required to produce utterances 
for a range of meanings made up of five "actions" (all of which require two 
participants) such as loves, hates, etc. and five "individuals". These are 
combined to give a total of 100 possible meanings to be expressed (as no 
"individual" can be both subject and object of an event being described). 
As a result, it is very unlikely that any given learner will get to observe 
utterances for every item in the meaning space, as meanings axe selected at 
random, with replacement. This means that in all probability there will be at 
least some meanings that occur more than once, and some that do not occur 
at all. Under these circumstances, agents early in the simulation tend to 
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have entirely holistic grammars in which the whole of a complex meaning is 

expressed by an unanalysed axbitrary sequence of characters. At this stage, 

only a very small proportion of the meaning space can be expressed, and 
grammaxs are very large - there is generally one rule per utterance that has 
been observed. As the simulation progresses, however, generalisations staxt 
to emerge, resulting in a transitional phase of semi-compositional behaviour, 

during which the proportion of the meaning space that can be expressed 
rapidly increases, although the size of the grammar remains laxge. After this, 

agents go on to converge on very tidy, minimal, fully compositional grammars 
which axe able to express the full meaning space. Two sepaxate non-terminal 

categories are generally seen in these grammars, one used to express the 
individuals from the meaning space, and the other the actions, thus encoding 
the noun/verb distinction. A single top level rule for these categories specifies 
the order in which they are to be combined, thus determining which of the 
"words" of the "nouný' category are the subject and object of the sentence. 

In further work, Kirby added a set of five "actions" which he calls embedding 
predicates - notions such as believes and knows [44,45] - broadening the 

meaning space to include ideas such as "John knows Pete loves Mary". He 

employs a paradigm akin to that used in Elman's work on the "Starting 
Small Hypothesis" [31], gradually increasing the degree of embedding in the 

meanings that each agent is required to express during its time as a speaker. 
In this way he has succeeded in demonstrating the emergence of a fully 

recursive grammar. This includes a second verbal category used to denote 
the embedding predicates described above, and two rules for the construction 
of sentences: the first specifies that a sentence may be made up of one word 
of the verb category and two of the noun category (in the appropriate order) 
and the second says that it can also be made of a noun and a verb, plus 
another sentence. 

In yet another study, a non-uniform meaning space was employed [47]. In 
this case, agents were biased to favour shorter strings, and were requested to 
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express certain events from the total space of meanings much more frequently 

than others. A pattern of stable irregularity was the result: agents tended 

to favour short holistic strings for the commonly occuring meanings, but still 

used longer compositional utterances for those that were less frequent. This 

behaviour clearly mirrors the tendency in natural languages for the most 

commonly used verbs to be irregular, and to have morphology that is not 

strictly governed by the rules of that language. 

Kirby claims these results are a consequence of the "dynamics of language 

transmission". In short, it is due to what he refers to as the language bottle- 

neck: because agents cannot hope to sample utterances covering the entire 

meaning space during their lifetime, any language in which the meaning of 

a string can be easily predicted from the its structure will stand a much 
better chance of being successfully propagated from one generation to the 

next. Initially, in these simulations, such languages cleaxly do not exist: the 

grammars of the initial agnets are almost purely holistic and amount to little 

more than vocabulaxy lists relating the whole complex meaning to single, 
non-decomposable string. However, if similarities between strings with sim- 
ilar meanings should occur by chance, and if the appropriate generalisations 

are made, this may well result in selection for compositional structure. If 

the meaning space were smaller or agents were in some way guarenteed to 
heax utterances covering every meaning in it during their lifetimes, then a 
compositional language would have no selective advantage. Chance similar- 
ities between strings might occur, resulting in the kinds of generalisations 
seen here, but they would be no more learnable than holistic rules, thus they 

would not be selected for in any meaningful sense. This is mirrored in Kirby's 
later study on stable irregularity [47] in which rules to create utterances for 

meanings that occur most frequently tend to remain holistic. 

One thing that is very important is the caveat mentioned above: "if the 

appropriate generalisations are made". These generalisations depend on the 
learning algorithm employed, which as Kirby says, must be "able to exploit 
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pattern, or [be] biased towards generalisation" [451. Naturally, this is a very 
important pre-requisite, for an agent that is incapable of making the correct 
generalisations will not be able to learn a compositional language, and if a 
compositional language cannot be learnt, then it certainly will not emerge 
spontaneously from a holistic one. The induction algorithm employed in 
these experiments was based on one designed for learning natural language 
[80], which essentially looks for the kind of similarities between strings that 

one might expect from a compositional language: in short, it is looking 
to associate parts of the string with parts of the meaning. Agents that 

sought to make other kinds of generalisations would probably not result in 
the emergence of the compositional behaviour seen here. Similarly, given 
the biases inherent in the learning algorithm employed here, it would not be 

possible for any other type of language to have arisen. Thus, whilst as Kirby 

rightly claims, agents are capable of learning holistic grammars just as well 
as compositional ones, they are strongly biased in favour of the latter. This 
has lead critics of his work to suggest that whilst his results are certainly 
striking, they are to some degree inevitable. 

Nonetheless, what Kirby has been able to demonstrate is the spontaneous 
emergence of important features of natural language, namely composition- 
ality and recursion, in the absence of a Universal Grammar, or any other 
"language blueprint". In some respects though, the biases of the learner are 
fulfilling the same role as a Universal Grammar, by constraining the types of 
languages an agent can acquire. 

In order to address the criticism that the learning bias of the agents in his 

simulations is too strongly in favour of compositionality, Brighton and Kirby 
have done a series of studies described in [12,111 whereby an alternative 
approach is employed - that of the Minimum Description Length (MDL) 

principle. MDL, they claim, rests on a solid mathematical justification for 
induction, whereby the best hypothesis for some observed data is consid- 
ered to be the one that minimises the sum of a) the encoding length of the 
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hypothesis itself, and b) the encoding length of the observed data in terms 

of that hypothesis. Hypotheses regarding the grammar that produced the 

utterances that an agent has observed are expressed in terms of Finite State 
Unification Transducers. For each utterance drawn from the language to 

which the agent is exposed, a pathway through the transducer is created 
which associates the string with the its meaning. The result of this is known 

as the "prefix tree transducer" and acts as the staxting hypothesis for the 

grammar. The agent then attempts to reduce the MDL of the grammar, by 

merging states and edges of the transducer based on commonalities between 

meaning and strings. It does this on a hill climbing basis, whereby all possi- 
ble merges are evaluated in turn to see which results in the greatest reduction 
of the MDL, and that operation is chosen. This process is repeated until no 
further reductions can be made resulting in a "compressed transducer". 

In general, it is the case that for a holistic language, a prefix tree transducer 

results in the lowest MDL, whilst for a compositional language, it will be 

a compressed transducer. In the case of a holistic language, structure is 

not related to meaning in any way, and thus there are no generalisations 
that can be made, whereas in the case of a compositional language, there is 

a typical structure to the transducers learnt, whereby each feature is dealt 

with by a separate fragment of the transducer. After the constituent part of 
the signal has been parsed, its meaning is logged by that fragment, and the 
transducer moves on the next constituent. After all the constituent parts of 
the signal have been parsed, the union of the logged meaning fragments is 

used to generate the whole meaning. 

Brighton and Kirby then conducted experiments in which they assessed the 
stability of various language types, by artificially constructing both holistic 

and compositional languages, and presenting a subset of the strings from one 
such language to the agents described above. They then measured the ex- 
pressivity of the languages that these agents had learnt, by calculating what 
proportion of the meaning space they would be able to express without re- 
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sorting to invention. Unsurprisingly, for holistic languages, the expressivity 
was directly proportional to the proportion of the meaning space observed 
during the learning phase. In order for 100% expressivity to be achieved, 
100% of the meaning space must be sampled. For compositional languages 
though, 100% expressivity is achieved after a relatively small number of pre- 
sentations, as an agent does not have to have observed all possible strings 
from a language to be able to express them all, once appropriate generalisa- 
tions have been made. 

Brighton and Kirby then went on to investigate how the structure of the 

meaning space effects the stability of these languages types, and in par- 
ticular to assess the relative stability of compositional languages to non- 
compositional languages. In order to do this, they created a variety of 
different meaning spaces, varying either the number of dimensions in the 
meaning, or the number of values each dimension could take, and repeated 
the experiment described above. As before, they found that when only a 
small proportion of the meaning space was presented to the agent during 
language learning, the relative stability of compositional languages was far 

greater than that of holistic languages, for the reasons discussed above. This 
decreases as the proportion of the meaning space observed during learning is 
increased. However, what they also discovered, was this advantage increased 

with the complexity of the meaning space: this effect was noted both for ex- 
periments where number of dimensions from which meanings were composed 
was increased, and also those where the number of values these dimensions 

could take was increased, in both cases resulting in much larger meaning 
spaces. A further experiement was performed, in which the overall size of 
the meaning space was held constant, but the number of dimensions and the 
number of values of those dimensions were varied together. This resulted in, 
at one extreme, meaning spaces with very many dinmensions, each of which 
could take only a very few different values, and at the other, meaning spaces 
with very few dimensions with many possible values. The results of this 



CHAPTER 3. COMPUTATIONAL MODELS 70 

showed that once again, when only a small porportion of the total meaning 

space is presented during learning, compositional grammars show a much 
higher relative stability than holistic ones, and that this effect decreases as 
the proportion of the meaning space presented during learning is increased. 
However, what was also shown was that the relative stability of composi- 
tional grammars is greater still for meaning spaces in which there are many 
dimensions with only few possible values. 

Thus Brighton and Kirby conclude that the stability of compositional lan- 

guages when being transmitted from one generation to the next through a 
population, and thus ultimately the likelihood of compositionality occurring 
is greatest under conditions where there is poverty of stimulus, i. e. agents are 

only exposed to a small proportion of the total meaning space during lan- 

guage acquisition (referred to as the learning bottleneck) and also where the 

meaning space is highly structured, in particular where there axe a great many 
different dimensions to the meaning. These features, they argue, correspond 
to conditions specific to hominids and could well have been instrumental in 

the emergence of compositional language. 

Kenny Smith [70] has furthered this investigation into the influence of mean- 
ing space structure and the leaxning bottleneck on the emergence of compo- 
sitional behaviour in a full iterated learning model (as opposed to Brighton's 

model which compares the stability of langugaes over a single generation of 
cultural transmission). Smith's agents are implemented as a basic associative 
network. Initially the weights on the networks axe set to 0, and when learn- 
ing occurs, they axe updated according to some weight-update rule W, the 
details of which I shall not go into here. The population dynamic is such that 
there is only ever one agent at any given point in time. The current agent 
generates a set of meaning-signal pairs by applying the network production 
process to every meaning in the environment, and is then removed from the 

simulation. A new agent enters the simulation, again with initial weights set 
to 0, and using the update rule W. This agent receives e exposures to signal- 
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meaning pairs produced by the preceeding agent. After each signal-meaning 

pair is presented, the new agent updates its connection weights according to 

its weight-update rule, W, and the whole process is repeated. 

Note the use of the term environment. Smith makes an important distinc- 

tion between this and the entire space of possible meanings. As previously 

mentioned, agents in Brighton's simulations are potentially exposed during 
learning to any meaning from the entire meaning space, but Smith argues 
that it is not necessarily the case that meanings agents will experience in 
the real world will encompass the entire space of possible meanings in this 

way. There might be meanings, that whilst logically possible, are not likely 

to ever be experienced in a child's learning environment (for example, whilst 
one might expect to heax of a man driving a car, one wouldn't expect to hear 

of a car driving a man). Rather than manipulate the structure of the entire 
meaning space, as Brighton does, Smith's experiments focus on the agent's 
environment, which is taken to be a subset of the space of possible meanings. 
He defines two basic types of environment: unstructured, in which items are 
drawn at random from the space of possible meanings; and structured, in 

which they are taken from a contiguous area of this space. In addition to 

manipulating the structure of the environment, Smith also looks at environ- 
ment density, that is the proportion of the total space of possible meanings 
that it contains. 

The thrust of his experiment is to explore the emergence (of lack of) of com- 
positional grammars using six different environment structures (3 different 

structured environments and three different unstructured environments, of 
sparse, medium and high density) under conditions where there is no bottle- 

neck on transmission (i. e. where agents axe exposed to all meanings from that 

environment during the learning phase) and for various different bottleneck 

sizes. 

Under conditions where there is no bottleneck, he found that the emergence 
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of compositionality was infrequent; however, when it did occur, it was more 
likely to be in sparse, (and occasionally medium-density) structured environ- 

ments. In all high-density environments, and all unstructured environments, 
the emergence of compositionality was extremely unlikely. The fact that the 

emergence of compositionality is infrequent is explained by the fact that in 

the absence of a bottleneck, compositional languages and holistic languages 

are equally stable. Given that this is the case, and given that the initial ran- 
dom languages of the agents are holistic, it is perhaps surprising that compo- 
sitionality ever emerges under these conditions. Smith's further analysis of 
his results shows that the system seems to be sensitive to the compositional- 
ity present in the initial random system - although it does not guaxentee the 

emergence of a compositional grammar, a higher degree of compositionality 
at the outset, unsurprisingly, favours the development of full compositional- 
ity. So, perhaps the most important question, is why is this only the case for 

medium to low-density structured environments? 

The answer is quite simply that in a structured environment, distinct mean- 
ings tend to have feature values in common, thus if in the initial random 
system, there is a tendency to express a given feature value with a particular 
substring, it is possible that this may spread to cover all meanings involv- 

ing that feature value. In an unstructured environment, very few meanings 
are likely to share any given feature value, so the potential for this to hap- 

pen is much reduced. Furthermore, in a high-density environment, even if 
it is structured, and there happen to be a number of meanings that share 
a common substring for a common feature value, due to the large number 
of meanings containing that feature value, there are likely to be a lot more 
that do not share it, thus the chances of that substring spreading cover all 
of them is not very high. Thus compositionality is most common in low- to 

medium-density environments that axe highly structured. 

Once a bottleneck on the transmission of the language is introduced, the 

emergence of compositionality becomes almost inevitable. Almost all the 
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languages resulting from the simulations show some degree of composition- 

ality, and highly compositional languages emerge with high frequency. Sig- 

nificantly, they emerge most frequently when the environment is structured. 
The size of the bottleneck also has an important influence. Whilst for struc- 
tured environments, the emergence of highly compositional languages is al- 
most guaxenteed for any bottleneck, in unstructured environments this is 

not the case. For very tight bottlenecks, although compositionality is still 
favoured, languages tend to be only partially compositional, not fully so. 
What constitutes a very tight bottleneck depends primarily on the density 

of the environment: in very dense environments, both structured and un- 
structured, the emergence of highly compositional grammars is seen when 
agents axe able to observe 40% or more of the environment during learning. 
However, when this figure is dropped to only 25%, the degree of composi- 
tionality seen in languages emerging in unstructured environments starts to 
drop. For medium-density environments, the figure at which this transition 
is seen is slightly higher - when agents are able to observe 60% or more of 
the environment during learning, highly compositional languages axe seen 
in both structured and unstructured environment. However, at 40%, once 
again, the degree of compositionality seen in languages emerging from un- 
structured environments staxts to drop - even more so than is the case for 
high-density environments. In sparse enironments, even when agents are able 
to observe 80% of the environment during leaxning, the languages emerging 
when that environment is unstructured are generally only partially compo- 
sitional. These observations can in paxt be explained by the fact that in 

structured environments, meanings are likely to shaxe feature values with 
several other meanings, leading to the maximum advantage for composition- 
ality especially where the bottleneck is tight. Thus we would expect to see 
highly compositional languages emerging across a whole range of bottleneck 

sizes. In an unstructured environment however, it might be entirely possible 
for a meaning to have a value for a particular feature that is not shared by 

any other meaning observed by the learner - in which case compositionality 
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would provide no advantage whatsoever. This is clearly more likely to be 

the case when the bottleneck is tight and thus a very small proportion of the 

environment is ever observed by any one agent. 

Thus Smith concludes that the presence of bottleneck is crucial to the emer- 
gence of compositionality. In the absence of a bottleneck, highly composi- 
tional languages are unlikely to evolve, and only do so (with very low fre- 

quency) when the environment is structured and at least moderately sparse, 
due to the increased potential for compositionality to spread axising from 
the shaxing feature values between meanings. However, in the presence of a 
bottleneck on cultural transmission compositional languages reliably emerge 
from the random initial holistic mappings of the agents. Only for very tight 
bottleneck values does this break down. 

Willem Zuidema [93] has done his own investigations regarding the process 
of cultural transmission and used his results to put a new spin on Cold's 
leaxnability result [35], dicussed in Section 2.2. Gold concluded that in the 
absence of negative feedback, infinite languages are effectively unlearnable 
without contraints on the seaxch space, leading Chomsky to postulate the 

existence of a Universal Grammar [191. Using a simple learning algorithm 
inspired by Kirby's described above, Zuidema examines the ability of sin- 
gle agents to acquire a range of context free languages. In accordance with 
Gold's prediction, he found that whilst some languages were indeed leaxn- 

able, others were not. He presents an example whereby agents axe presented 
with a set of three strings from a recursive taxget language, and shows three 
different grammars that might have produced these strings, each of which 
an agent may exhibit during the process of grammar induction. However, 

agents always acquire the most general of these grammars. More restrictive 
languages, in which some of the strings from the most general case are not 
valid, axe unlearnable. He extends this result to conclude that there axe many 
taxget grammars that could never be correctly learnt, no matter how many 
sentence presentations axe made. However, there axe some that are always 
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learnt successfully, and yet others that can be learnt correctly but only some 

of the time. Thus, when the agents are incorporated into a generational 
framework, where each agent learns its grammar from a set of sample sen- 
tences generated by the previous one, he observes that the languages being 

employed by the agents tend to drift towards these more learnable languages 

as the simulations progress. Thus he concludes that there is indeed a con- 
straint on the possible targets that a learner might have to acquire, but that 
this is not internally imposed by innate knowledge about the structure of 
language, as Chomsky has concluded. Instead, it is externally imposed by 
the process of cultural transmission: the languages that children must leaxn 
during the process of language acquisition will only ever be languages that 

other children have already successfully learnt before them. 

Another limitation of the Iterated Learning Model as described so far is the 
simplicity of the population model employed. Smith and Hurford argue that 
this is a serious weakness [711 due to the apparent importance of factors such 
as population structure and demography in language evolution in the real 
world. Thus they have extended the model to the case where populations 
consist of multiple individuals. Instead of only having two agents in the 

simulation at any given time, one learner and one speaker from whom the 
learner receives utterances, these simulations involve a population of n agents, 
and a single learner. Each learner has p cultural parents drawn from that 
population, meaning that it only receives utterances from a subset of the total 
population. When an utterance is required, agents axe drawn at random from 
the pool of cultural parents, with replacment. At the end of each generation, 
one speaker is removed from the population, again at random, the current 
learner becomes a speaker, and a new learner enters the simulation. 

The first interesting finding that Smith and Hurford encountered due to 
this simple change in the model was a rapid increase in the length of the 

right hand sides of rules over generations, due to the addition of strings of 
meaningless terminal characters. They attribute this behaviour to the fact 
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that the learner will be sampling utterances from several speakers, resulting 
in exposure to multiple overlapping but non-identical grammars and conse- 
quent inconsistent training data, in conjunction with the greedy nature of 
the induction algorithm employed by the model. This, they claim results in 

overgeneralisations of the type that introduce the "spare" characters, and 
because agents do not consider multiple possible grammars at one time, nor 
axe they capable of backtracking, they are unable to recover from this. In 

order to overcome this problem, a number of suggestions are made for ways 
in which the greedy nature of the algorithm could be reduced, but in the 
end, a simpler approach is opted for: simply fostering in the agents a bias 
towards signal simplicity, which means that when an agent comes to produce 
an utterance, it will favour the rule in its grammar that has the shortest 
right hand side. Thus over-generalisations that introduce additional termi- 
nal characters into the rules will still be made, but these rules will not be 

propagated. With this additional bias in place, they find that the results of 
Kirby's initial simulation [44] are indeed generalisable to larger population 
sizes: using a population size where n= 10 and varying the value of p such 
that 1<p< 10, compositional grammars are seen to emerge for the major- 
ity of runs. However, there appears to be an optimal value of p at around p 
=4 or 5, where the grammars emerging are superior in terms of their size, 
coverage of the meaning space, and communicative accuracy. The number 
of cultural parents also appears to affect the speed of convergence, with the 
most rapid convergence on a shared compositional grammar also occuring 
for values of p where p=4 or 5. Thus Smith and Hurford conclude that 
the previous model can indeed be extended to larger populations, and also 
that the number of cultural parents an agent has does have an impact on 
the structure of emergent languages and the speed with which they evolve. 
However, they stress the need to develop the model further to encompass 
situations where there is gradual population replacement and where learning 
interactions are unrestricted (i. e. where learners may speak to each other) 
as opposed to the strictly generational turnover approach applied to date. 
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Vogt has addressed this and other issues in his studies which attempt to 

unite Steels' grounded approach to lexicon emergence (using the THSim 

toolkit [84]) with Kirby et aPs multigenerational iterated learning model, 
with interesting results [85]. Agents in his simulation play language games 
similar to those described in Section 3.1 where they observe objects in their 

environment and attempt to communicate to each other about them. The 

environment in question is composed of a set of geometrical coloured objects 
of different shapes. Agents attempt to form distinctions between these ob- 
jects based on four perceptible features: the red, green and blue components 
of the rgb colour space, and shape, which is determined by the ratio of the 

area of the object and the axea of the smallest bounding box that can be 
drawn around it. Agents create distinctions between these objects in a man- 
ner similar those in [75] and then engage in one of two different language 

games: 

The observational game in which the speaker picks an object from 
the environment, and indicates to the hearer which object it has picked. 
The speaker then produces an utterance for that object, and the heaxer 

attempts to interpret it. If the speaker manages to decode the utterance 
to the correct meaning, the game is considered successful. 

The guessing game in which the speaker picks an object from the 

environment, but does not indicate to the hearer which object it has 

picked. The speaker then produces an utterance for that object, and 
the hearer attempts to interpret it. Once it has decoded the utterance, 
the hearer makes a guess as to which object the speaker was referring 
to. If it guesses correctly, the game is considered successful. 

The greatest difference between this study and those of Steels [72,73,75] is 
the incorporation of these games into a transgenerational model. The iter- 

ated learning model employed is in most respects very similax to that used 
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by Kirby [43,46]: at any given time there are two agents in the population, 
one learner, one speaker. Learners enter the population with no knowledge of 
the language at all, and also no knowledge of the objects in the environment, 
or how to distinguish them from each other. By engaging in interactions 

with the speaker, they attempt to acquire this information. After a prede- 
fined number of interactions, the speaker is removed from the simulation, 
the learner becomes a new speaker, and a new blank agent is introduced to 
the system as the new learner. Thus, vertical transmission of language from 

speaker to learner across a multiple generations is achieved, in the same way 
as described in Section 3.3. 

However, the granunar induction algorithm employed here, although broadly 
to similar to Kirby's, does differ from it in some significant ways. Firstly, 

as well as storing a set of grammatical rules that the learner has induced 
from its exposure to the speaker's language, Vogt's agents also store a list 

of instances: for each game where the learner receives an utterance and 
sucessfully identifies the topic, the string presented plus its meaning are 
added to this repository. A count of the frequency with which each string- 
meaning pair has been observed is also stored. It is these stored instances 
themselves rather than any grammar rules that have already been acquired 
that axe used as the substrate for the induction process. The justification 
for this is that human learners do seem to store both whole utterances as 
exemplars and generalizations of these. This has the advantage the learners 

are not forced to abide by previously made generalizations which allows them 
some ability to backtrack if those generalizations prove incorrect. 

Secondly, novel utterances are not automatically added to the grammar as 
holistic rules in the way that they axe in Kirby's simulations. Instead, the 
learner seeks to make generalisations from those utterances and only resorts 
to adding holistic strings if it is unable to do so. Agents will first seek to 
exploit any previous rules that have been leaxnt, where, for example, the 
agent is already capable of decoding part of the sentence. If this is the case, 
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new grammar rules will be created to cover the remainder. If the agent is 

not able to decode the sentence at all, the utterance is compared to each of 
the items in the repository of stored instances to see if the chunking operator 
might be applied. 

Thirdly, the exact nature of the chunking operator is also slightly different 

to that described by Kirby: recall that on page 63, we stated that in Kirby's 

simulations rules are compared on a pairwise basis and if any two rules are 
found to differ by just a single paxt of their meaning, and also the strings asso- 
ciated with those meanings are found to differ by a single substring, then the 
difference in the meanings is attributed to the differences in the strings. Both 

rules axe removed from the grammar, and new rules are introduced to reflect 
this. Vogt's chunking operation however, is based on based on van Zaanen's 
Alignment Based Learner [83], and thus, rather than searching for differences 
between strings, it looks for alignments: pairs of utterances whose strings 
share a common substring, and whose meanings also share common values. 
In a sense, Kirby's operator can also be said to be looking for alignments. 
Looking at the following example, where the agent has rules in its grammar 
stating that the string j, o, h, n, ], oves, m, a, ry means and loves(john, mazy) 
and the string j, o, h, nkno, ws, m, a, ry means knows(john, mary) we can see 
that this can be viewed either as a difference between the predicate element 
of the meaning (loves(x, y) vs knows(x, y)) and the two substrings lo, ve 
and kn, o, w, or an alignment between the subject and object elements of the 
meaning (p(john, mary)) and the substrings j, Oh, n .... m, a, ry. However, in 
Vogt's simulations, alignments can only be made either at the start of the 
sentence or at the end, and thus generalization such as that in the example, 
where a new rule is created from the middle portion of the string, would not 
be made. This helps to prevent the occurence of meaningless characters in 

sentences and the explosion in string length seen by Smith [711. Furthermore 
Vogt's chunking operator does not require the meanings of the utterances to 
be aligned on all but one of their features in the way that Kirby's does. This 
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results in a much wider range of possible generalizations. 

Fourthly, Vogt's chunking algorithm does not make all possible generaliza- 
tions in a single pass as described in Kirby's algorithm. When a new utter- 
ance is encountered that cannot be added to the existing grammar by ex- 
ploiting the rules that have already been induced, the agent searches through 
the repository of stored instances looking for possible alignments of the type 
described above. When more than one possible alignment is found, that con- 
taining the substring that has been observed most frequently is chosen. If 
there is tie, the largest alignment is used. 

Finally, rules that have been learnt are never deleted from the grammars 
of Vogt's agents. Instead he uses a series of sophisticated update rules to 

ensure that those which have been used most successfully will be favoured. 
This again means that agents are not committed to previous generalisations 
they have made, and gives them the ability to backtrack. 

Using the experimental conditions described above, Vogt first examines the 
types of grammaxs that emerge in the absence of a bottleneck (Le. where 
agents are exposed to the entire meaning space during learning). He finds 
that even in the absence of a bottleneck, compositional behaviour does re- 
liably emerge. This is somewhat at odds with Smith's result [70] described 

above, in which the emergence of compositionality in the absence of a bot- 
tleneck was a rare occurence. This is perhaps because Vogt's induction algo- 
rithm is more strongly biased towards relating paxts of the meaning to parts 
of the string than Smith's networks. However, what is notable about Vogt's 

results is the differences in outcome between simulations where agents were 
playing the observation game and those where they were playing the guessing 
game. In both cases, compositional behaviour emerges rapidly. In both cases, 
there are seen to be random fluctuations in the amount of compositionality 
observed, where languages will change from compositional to holistic ones. 
However, compositionality is always ultimately restored. What is interest- 
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ing is that a) although full compositionality takes longer to be achieved in 
the guessing game than the observation game, the degree of compositional- 
ity seen in the latter is generally higher, b) the guessing game seems less 

prone to sudden losses of compositionality than the observation game, but it 

also seems to be more sensitive to its effects; in the observation game, when 
languages become holistic, agents seem still able to communicate accurately, 
whilst in the guessing game they cannot, and c) the amount of coherence seen 
in the guessing game (i. e. the degree to which agents give the same name to 
the same object) is much greater than in the observation game. 

Vogt then goes on to see what happens when additional agents are added 
to the population. Instead of a single learner and a single speaker, he in- 

creases the number of agents to three of each. This appeaxs to have quite a 
catastrophic effect. As with the smaller population size, for both the obser- 
vation game and the guessing game, the degree of compositionality observed 
quickly rises to a high level. This time however, it does not appear to be as 
stable, and soon staxts to decrease again. The grammars emerging from the 
guessing game do seem to be slightly more resilient than those emerging from 
the observation game however, and in some cases compositionality persists, 
or even recovers for a while. The effect of this loss of compositionality on 
communcative accuracy is the same as before: for the observation game, the 
transition to holistic grammars does not prevent agents from communicating 
effectly but for the guessing game, lost of compositionality results in a loss 
of accuracy. Coherence in both cases is seen to increase as compositionality 
decreases, and is again higher for the guessing game than for the observation 
game. 

Finally Vogt repeats this experiment but introduces a bottleneck on the 
transmission of language: language games that the agents engage in during 
the leaxning phase now only cover 50% of the objects in the environment. 
When the population size is only two (one learner, one speaker), this has the 
striking effect of causing compositionality to emerge quickly to high level, 
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and to remain at a high level throughout the duration of the simulations. 
This, of course, is perfectly in keeping with results from Smith [70] and 
Brighton [12,11,10] which suggest that the imposition of a bottleneck is 
highly conducive to the emergence of compositional languages. When the 
size of the population is 6 (3 learners and 3 speakers) again a high and 
stable level of compositionality is seen - but only for the guessing game. In 
the observation game, compostionality tended to persevere for longer than in 
the absence of a bottleneck, but it still ultimately disappears and simulations 
revert to holistic languages. 

3.4 Computational Models of Case and Word 
Order 

To date, not a lot of work has been done regarding the modelling of case and 
word order and the interrelationship between them. However, there are two 
studies of significance that should be discussed here. 

Firstly is that of Luc Steels, who has attempted to extended his grounded 
paradigm whereby agents engage in "lanugage games" regarding real-life ob- 
jects in the world axound them to negotiate a shared language. In his study 
of 2002 [79] he describes experiments where agents observe dynamic scenes 
played out before them. They categorise these scenes into a series of events 
and micro events, and the agent acting as speaker in a given interaction will 
select a single one of these scenes from its recent memory and use items 
from a predetermined lexicon to create a unique utterance with which to 
describe it. The role of the hearer is to decode the utterance and to identify 

which of the recent events the speaker is referring to. If it succeeds in doing 
this correctly, the game is considered successful. Based on the assumption 
that speakers of a language wish to maximise their communicative accuracy, 
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agents axe primed to try and reduce ambiguity wherever possible. However, 

they axe not compelled to make explicit all elements of the scene they are 
described. For example, Steels uses the scenario where a red ball moves away 
from a smooth green ball. Also present in the environment are a hand and 
a box, although they do not take part in the event in question. The speaker 
simply describes this event as SMOOTH MOVE-AWAY-FROM. It is not 
necessary for it to specify that the smooth object is also a green ball, as this 
information is clear from the context; similarly it does not need to specify 
which second object is involved in the event because this is the only MOVE, 
AWAY-FROM event in recent memory that involves the smooth green ball. 
Finally, it is not necessary for it to make explicit in this case whether the 
smooth green ball is doing the moving away from, or being moved away 
from, again because there is no other MOVFAWAY-FROM event in recent 
memory that involves the smooth green ball, so this level of disambiguation 
is not required. 

Thus Steels found that even in this very simple case a relatively good degree 
of communicative success can be achieved simply by virtue of the fact that 
agents have a shared context. The next stage of his experiment, however, was 
to try and prompt agents to introduce markers for semantic relations to make 
explictit the object-event relationships in situations where it is necessary to 
distinguish between one event and its exact opposite. In order for the speaker 
to know when such additional markings would be helpful, the technique of 
"re-entrance" is employed. When the speaker produces an utterance, it uses 
its own grammatical knowledge and memory of recent events to interpret the 
utterance and attempt to ascertain whether it would be ambiguous to the 
hearer as to which event is being described. If it finds this to be the case, in- 
troduces a marker to specify what the role is of one of the objects in the event. 
For example, it may change the utterance describe above from SMOOTH 
MOVE-AWAY-FROM to PO SMOOTH MOVE-AWAY-FROM where the 
morpheme PO indicates that the smooth green ball is object doing the mov- 
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ing in the MOVE-AWAY-FROM event. If the hearer is already familiar with 
the marker in question, then the utterance can be interpreted unambiguously 
and communication has been successful. If however, the marker is new, then 
the hearer must make a guess at its meaning which can be confirmed through 
further usage. 

In this way, agents axe able to make explicit the semantic relations between 

objects in the events being described. However, the "language" emerging 
still does not look much like the case systems used in natural languages: 
there axe large numbers of different semantic markers, unique to each event 
type within the environment. In order to address this, Steels has performed 
a final experiment in which agents attempt to generalise across semantic 
markers by use of analogy. When disambiguation is necessary, instead of 
simply introducing a new marker, agents first try to see whether there is 

already a marker that expresses an analogous event-object relationship that 
can be exploited. The process by which Steels' agents determine analogy is 
interesting: it is basically a mapping from a source event for which markers 
already exist to a target event for which semantic markers do not yet exist. 
Agents decompose the events into primitive microevents. So, for example, 
WALK-TO event involving WALK-TO-1, that is the agent doing the walking, 
and RALK-TO-2, that is the target being walked towards, might be broken 
down into the following sequence of microevents: the agent does not move, 
the target does not move, the agent approaches the target, the agent touches 
the target. Similarly, a MOVE-INSIDE event that also involves two objects, 
MOVE-INSIDE-1, the agent moving and MOVE-INSIDE-2, the location into 

which the agent is moving, might be broken down into these microevents: 
the agent is visible, the location is visible, the agent does not move, the 
location does not move, the agent approaches the target, the agent touches 
the location, the agent becomes invisible. If all the microevents in the target 

event can be mapped onto microevents involving the same object in the 
source event, then the two events are considered analogous and any markers 
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associated with the source event will be used for the target. Thus in the 

example given above, MOVFINSIDE is the source event, and WALK-TO is 
the target, then analogy exists, as the four microevents into which WALK-TO 

can be decomposed all exist in the MOVE-INSIDE event as well. However, 

were WALK-TO the source, and MOVE-INSIDE the target, analogy would 
not be found. 

The result of this exploitation of analogy in order to re-use markers is that 

agents end up using a far smaller number of different markers, which will be 

shared between different events with different semantic commonalities. In 

short agents have constructed their own semantic categories. Steels claims 
that analogy leading to the re-use of existing forms to provide new meanings 
is a fundamental driving force in the introduction of new layers of gram- 
max, and proproses that the same principles could be put to use in evolving 
grammars for tense, determination, sentence structure etc. 

The second computational study of case that I am about to describe is strictly 
speaking a study of case and word order acquisition, rather than their emer- 
gence, but the conclusions that can be drawn from it have important impli- 

cations for the emergence of such behaviours, so it is worthy of discussion 
here. 

The study in question is by Lupyan and Christiansen [53,52], who use sim- 
ple recurrent neural networks to model the acquistion of a series of artificial 
languages, which exemplify each of the six possible orderings of subject, ob- 
ject and verb, plus a freely ordered language. Each of these possibilities is 
used with and without case maxking, giving a total of fourteen languages 

all together. After training on a subset of the language in question during 

which agents are presented with sentences from it in sequential form, and 
given information about whether each word in the sentence is the subject, 
direct object, indirect object, genitive noun or verb, agents axe then tested 
on the full language. Lupyan and Christiansen found that for the seven 
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languages that included case markings, agents were successfully able to pre- 
dict the parts of speech for 100% novel utterances, irrespective of the actual 
word order and whether it was fixed or free. However, the degree of success 
with languages which did not have case markings varied quite considerably. 
Near perfect performance was obtained for only two word orders - SVO and 
VSO. On SOV languages, performance was considerably poorer, and with 
the other three possible fixed word orders, poorer still. Unsurprisingly, free 

word order languages without case markings faired very badly indeed. This 

result is interesting because (according to Greenberg's Universal number 1 
[38]) the vast majority of languages in the world are one of these three types: 
SVO, VSO or SOV. The other three orders, despite being seemingly equally 
good candidates axe very much underrepresented. Furthermore, (according 

to Greenberg's Universal number 41 [38]), verb final lanugages almost always 
have a case system. Thus, the data obtained by Lupyan and Christiansen 

seems to reflect quite accurately the frequencies of different word orderings; 
in the languages of the world. 

This experiment was followed up by one to investigate the interrelation- 

ship between case and word order: using a similar paxadigm to the first 

experiment, languages were created which exhibited different degrees of case- 
marking, from only genitive markers to maxking on 100% of the nouns. This 

was intended to reflect the fact that in some natural languages, case mark- 
ings are phonologically ambiguous, or there may be certain nouns which do 

not take case maxkings at all. Five such languages were created. In ad- 
dition, five different conditions regarding the strictness of word order were 
introduced, modelled on the word orders permissable in real-world natural 
languages. These ranged from a language based on English with fully fixed 

word order (SVO) to one with completely free word order. There were also 
three intermediates with increasing degrees of freedom based on Italian (pre- 
dominantly SVO, but all other combinations are possible where they can be 
disambiguated from other cues [41), Polish (predominantly favours orderings 



CHAPTER 3. COMPUTATIONAL MODELS 87 

in which the subject preceeds the object [41]) and Turkish (almost completely 
free word order - approximately 50% of utterances are SOV, with SVO, OVS 

and OSV being the next most common [69]). The combination of the five 
different degrees of case-maxking with the five different possibilities for strict- 
ness of word order resulted in 25 test languages, in which agents were trained 

and tested in the same manner as in previous the previous experiment. As 

expected, the results showed that the more consistent the word order of a 
language, the less the performance of agents learning that language could be 
improved by the addition of case markings. 

Finally Lupyan and Christiansen carried out some experiments whereby they 

compared the performance of their networks to that of children learning real 
languages. Slobin and Bever [69] have shown that children acquiring lan- 

guages such as Serbo-Croatian (which use a mixed strategy for disambiguat- 
ing semantic relations in which neither case nor word order can be fully relied 
upon, meaning that it is necessary to attend to both) are slower in learn- 
ing to reliably determine event-object relationships accurately than children 
acquiring languages which either have completely fixed word order, such as 
English, or reliably expressed case markings, such as Turkish. Lupyan and 
Christiansen found that performance of their networks on the artificial lan- 

guages created to model the properties of these languages were very similar: 
languages in which case and word order axe both required in order to deter- 

mine semantic relationships are harder to acquire. 

Thus what both Steels' and Lupyan and Christiansen's studies appear to 
show is that where disambiguation is necessary in order to determine event- 
object relationships, the use of case markings will aid this process greatly. 
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3.5 Summary 

It is the aim in the current study to see whether the Iterated Learning Model 
type approach can be extended to generate the emergence of case-like be- 
haviour by introducing such a need for disambiguation. So far, one of the 
key features of grammars that emerge from simulations based on models such 
as Kirby's is the use of word order to specify meaning distinctions. However, 
it is worth noting that in many natural languages, meaning distinctions axe 
not wholly specified by word order - even in English, some freedom of word 
order is allowed, and other languages allow much more. This is generally 
accompanied by a much richer case system than that found in English. Thus 
it is hoped that it will be possible to exploit this relationship and stimulate 
the emergence of case-like behaviour by the introduction of a degree of word 
order flexibility into the system. In the chapter that follows, I shall go on to 
describe in detail my implementation of the Iterated Learning Model, and in 
Chapters 5 and 6 the effect of introducing some freedom of word order into 
this model will be described. 



Chapter 4 

Implementing an Iterated 

Learning Model 

As discussed in Chapter 3, the aim of the work presented in this thesis is to 
investigate whether the Iterated Learning Model developed by Kirby et al [44] 

can be used to model the emergence of further features of natural language, 
in particular the use of case-maxkings to denote semantic relations. To this 

end, an implementation of such a model is presented. This is based on the 
description given in Kirby [44]. 

4.1 Basic Features of the Model 

Individuals in the system are equipped with an induction algorithm (for 
lea. rning grammaxs), a parsing and production algorithm (for interpreting 
incoming utterances, and producing new ones) and an invention algorithm 
(for dealing with meanings that they are otherwise unable to express). All 

agents are identical and start life with no grammar at all. An overview of 

89 
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their lifecycle is shown in Figure 4.1. 

At any given time, there are two agents in the system, a speaker and a 
learner. The speaker produces utterances by consulting the grammar it has 
learnt during its period as a learner, and producing a string of characters 
for the meaning it wishes to express, or if unable to produce a string in 
this way, by resorting to invention. In the case of the very first learner, it 

will be necessaxy to resort to invention for every utterance it produces, as it 
has not had the opportunity to learn a grammar from a previous speaker. 
This means that the initial language will be entirely holistic. The string 
that results from either production or invention is then passed to the learner 

along with the intended meaning. The learner first attempts to parse the 
string, and if able to do so takes no further action. It does not require the 
meaning that results from this paxse to be the same as that which the speaker 
intended, so long as the string can be parsed to give some meaning. This is 
important because it helps to ensure a one-to-one mapping between meanings 
and strings, the significance of which will be discussed in Section 4.2.1. If the 
string cannot be paxsed at all, however, the leaxner incorporates it into its 
grammax in conjunction with the correct meaning. This process is repeated a 
fixed number of times - in the simulations described here, 100. The speaker is 
then removed from the simulation, the learner becomes the new speaker, and 
a new learner with no grammatical knowledge is "borný'. At this point, the 
grammar rules that the new speaker has aquired during its period as a learner 

are "shuffled". This helps to ensure that the speaker's choice of grammatical 
rule is not biased towaxds those which were acquired first. Simulations are 
typically run for 5000 generations. 
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Meaning m selected at random 

A'1ý 
If G(speaker) covers m, Otherwise, invention occurs 

string s is produced to produce string s 

Utterance <, ms> passed to learner 
X100 

Learner attempts to parse s 

'Wý x5000 
If successftil, If unsuccessful, 

no action taken induction occurs 

Speaker is removed 

Learner's grammar rules are shuffled; 
learner becomes new speaker 

T 

New blank individual is added; 
new individual becomes learner 

Figure 4.1: The life cycle of the simulation. 
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4.1.1 The meaning space 

Meanings to be expressed by the speaker are drawn at random, with replace- 
ment, from a simple meaning space. These meanings are viewed as having 
been provided by external world, perhaps something particularly salient to 
the speaker agent, prompting it to try and communicate some information 
to the learner. The space is composed of a number "who did what to whorn" 
type propositions, taken from a set of actions or events that might occur, such 
as "loves" , "hates" , "hits" etc. and a set of individuals that might participate 
in those actions or events, such as "johiP, "maxy", "kate" etc. Elements from 
the two sets axe combined, with members of the former acting as predicates, 
and the latter set their arguments, to give statements of propositional logic 

such as loves(john, mary) written (for ease of implementation) in the vector 
format [loves, john, mary]. In each vector, the first position represents the ac- 
tion or event being described, the second the "actor" in that event, and the 
third the party being "acted-upon". As in Kirby [43], the constraint has been 
included that "actor" and "acted-upon" must be distinct: meanings such as 
[loves, john, john] are disallowed. The "actor" and "acted-upon" elements of 
the semantics could be viewed as "subject" and "object" of the event being 
described; however, I have chosen to avoid these terms as they have syntactic 
connotations and it is an important feature of this model that agents have 

no syntactic knowledge. They axe aware who is the "actor" and who is the 
"acted-upon" in the event being described because they have presumably 
witnessed it happening, and not because they have any innate knowledge of 
subjects, objects or any other syntactic category. 

In the simulations described below, the meaning space consists of 5 individu- 

als, plus 5 predicates resulting in a total of 5x5x4= 100 possible meanings. 
Unlike Kirby [44], no embedded predicates are used here; the meaning space 
contains only simple propositions as in his earlier studies. 
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Given that the size of the meaning space is 100 (from which instances axe 
chosen randomly, with replacement), and that each agent hears only 100 

utterances during its period as a learner, the chance of a given agent being 

exposed to all possible meanings is extremely small. This is crucial to the 

emergence of natural language-like behaviour, as discussed in Chapter 3, as 
it imposes a "bottlenecle' on the transmission of information. 

4.1.2 The grammar and the parser 

The grammax itself represents what the agent knows about the language of 
its speech community, and is basically a list of rules for how to construct 
sentences. Each agent starts life with a completely empty grammar, and 
adds rules to it on the basis of utterances it has heard during its period 
as a learner. The representation used is a context free grammar enriched 
with simple semantics, again as described in Kirby [44]: non-terminals have 

a single argument attached to them which conveys semantic information. 
Thus a rule such as 

NT/john ) i, o, h, n 

indicates that the string "j, o, h, n" is a word of category NT meaning john: 
the left hand side of the rule is made up of the syntactic category of the 
string, plus its meaning, and the right hand side consists of a string of either 
terminal categories as in the above example, or non-terminal categories and 
their associated semantic labels, such as the following: 

S/[P, X, Y] ) NT1/P, NT2/X, NT3/Y 

The parser is a straight-forward top-down deterministic parser, augmented to 

cope with the semantic representations associated with the rules in the gram- 
mar. Its role is to parse incoming utterances, thereby identifying whether 
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they are covered by an agent's current grammar. The same algorithm is also 
used in the production of outgoing utterances. It operates by choosing a 
rule from the grammar, taking each of the characters on the right hand side 
of that rule in turn, and expanding those of them that axe non-terminals If 

any of the characters in the string returned are non-terminals, it will expand 
those too. Non-terminals axe expanded by finding the first rule in the gram- 
mar with that category on its left hand side and whose semantics can be 

unified with those required and repeating the process on that rule. 

The deterministic nature of the parser is very important: if the grammar al- 
lows more than one way of expressing a given meaning, only one will ever be 

used, because the agent simply moves down its grammar searching through 
the grammar rules in the order in which they appear. For this reason, rules 
are re-ordered randomly during the transition from learner to speaker, thus 
ensuring that those learnt first do not necessarily appear highest in the gram- 
max. The fact that the parsing algorithm is deterministic is another feature 

of the simulation which helps to ensure a one-to-one mapping between strings 
and meanings, which, as Smith [70] has shown, is crucial to the emergence 
of language in simulations such as these. This point will be returned to in 
Section 4.2.1. 

4.1.3 The induction algorithm 

The grammar induction algorithm consists of two basic phases, as in Kirby 
[44]. The first is a simple incorporation step, which involves building the 
simplest rule which will relate the string heard to its intended meaning. A 
the new rule has the non-terminal symbol s on its left hand side, and the 
semantic argument associated with it is simply the meaning vector for the 
utterance concerned. The right hand side is the string part of the utterance. 
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Thus if the utterance had been 

[loves, john, mary] j, Oh, n, l, o, v, e, s, m, a, r, y 

the rule 

s/[Ioves, john, mary] ) j, o, h, n, l, o, v, e, s, m, a, r, y 

would be created. 

The second phase of the induction algorithm is to make generalisations be- 

tween this new rule and others already present in the grammar. This involves 

comparing rules on a pairwise basis and seeking to create a new rule that will 
subsume them both. To this end, there are two basic operations available to 
the agent: 

If rules A and B differ only by non-terminals X and Y, and if changing 
Y to X would make them identical, then rule B is removed, and all 
other instances of Y in the grammar axe changed to X. 

If the semantics of rules A and B differ by the value of a single element 
whose meanings are a and b, and their strings differ by substrings a 
and 3, a and b are replaced by a variable x, and a and 3 axe replaced 
by a non-terminal, N whose meaning is x. New production rules are 
created from N to strings a and 0 with meanings a and b respectively. 

In the simulations described, these two operations are actually served by a 
total of four basic heuristics. These axe findchunks, findchunk, merge- 
able and subrule, whose implementations are outlined below. Whenever a 
new rule is added to the grammax, it is compared with each of the existing 
rules, and the heuristics are applied in the order subrule, mergeable, find- 
chunks, findchunk. For each new rule that is created by the application of 
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these operations, the process is repeated until no further simplifications to 
the grammar are possible. There is also a function that removes any dupli- 

cate rules that may have been created during the induction process from the 
grammar. 

Findchunks 

Given a set of rules R representing the grammar of agent a, and a set of 
non-terminal symbols. /V: 

for rl, 72 ER where r, = JVI/mj ) a, andr2 = JV1/M2 ) Or2 

if m, andM2differ only by values v, andV2 respectively 
and a, andO'2differ only by substrings A, and A2 respectively 

add new rules JV2/vj A, and Ar2/V2 A2 

where JV2E X 

replace rl, r2with new rule A(I/M3 a5 
whereM3 = M1with v, replaced by variable V 

and a5 = a, with A, replaced by Ar21V 

This heuristic identifies differences in meaning between two rules, and at- 
tributes them to differences in the strings representing those meanings. Thus 
if the two rules being compaxed axe 

s/[Ioves, john, mary] j, o, h, n, l, o, v, e, s, m, a, ry 
s/[Ioves, john, kate] j, o, hn, l, ov, es, ka, t, e 

this heuristic would notice that the only difference in the meanings of the two 
strings is the individual in the position in the meaning vector representing 
the person being acted upon: "mary" in the first case and "kate" in the 
second. It would also note that the two strings axe almost identical apart 
from the final substring, m, a, ry in the first rule and ka, t, e in the second. It 
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will thus conclude that the substring m, a, ry means "mary" and that ka, t, e 
means "kate", and alter the rules of the grammar to reflect this, by replacing 
the two original rules with the following: 

s/[loves, john, X] jo, h, n, l, o, v, e, s, NT/X 
NT/mary m, a, r, y 
NT/kate ) k, a, t, e 

Findchunk 

Given a set of rules R representing the grammar of agent a, and a set of 
non-terminal symbols Ar: 

for rl, r2 ER where r, = jVj /m, ) a, andr2 = JV1/7n2 ý 072 

if m, and M2 differ only by value v and variable V respectively 
and ol andU2 differ only by substring A and non-terminal JV2/V re- 

spectively 
add new rule JV2/v 

where JV2 EJV 

replace r, with new rule JV1/M2 --* U21 

This heuristic is very similar to the findchunks heuristic described above, 
except that when searching for differences in the meanings of the two rules 
being compared, rather than looking for two atomic values, an atomic value 
in one rule and a variable in the other are required. Similarly, the differences 
in the strings representing those meanings should be a string of terminal 
characters in the first case and a non-terminal associated with the vaxiable 
identified in the other. For example, given the rules 

'Clearly this new rule is identical to r2. However, in the current implementation, r, 
is replaced with a duplicate rule rather than simply removed in order to facilitate the 
changes that will be made in Chapter 5. 
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s/[Ioves, john, jane] j, o, h, n, l, o, ve, s, j, a, n, e 
s/[Ioves, john, X] j, o, h, n, l, ov, es, NT/X 

it can be seen that they again differ semantically in terms of the value in 
the third position of the meaning vector - that representing the individual 
being acted upon. In the first rule, it is "jane" and in the second it is the 

variable X. The strings associated with these meanings again differ in their 
final substrings: the first rule ends with the string j, a, n, e whilst the second 
ends with an instance of the non-terminal NT. The findchunk heuristic would 
conclude from this that the substring j, a, n, e is an instance of the non-terminal 
NT and create a rule to this effect. Thus the first rule would be removed 
from the grammar and the following added: 

NT/jane ) i, a, n, e 

Subrule 

Given a set of rules R representing the grammax of agent a, and a set of 
non-terminal symbols JV: 

for rl, r2 ER where r, = JVl/m, ) al and r2 = Ar2/M2 0 a2 
if U2 is a proper substring of ul 
and M2 appears in m, 

replace r, with new rule JVI/M3 ----+ U3 

where M3 = m, with M2 replaced by variable V 

and u3 = a, with Or2 replaced by Ar21V 

The purpose of the subrule heuristic is to identify substrings in the newly 
incorporated utterances which can be attributed to one of the previously 
induced rules. For example, if the grammar contained the pair of rules 
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sl [loves, j ohn, j ane] j, o, h, n, l, o, v, e, s, j, a, n, e 
NT/john j, o, hn 

then the subrule heuristic would identify that the semantic value associated 
with the second rule, "john", appears in the semantic vector associated with 
the first, and that the string on the right hand side of the second rule, j, o, h, n, 
is a substring of string associated with the first. Thus it would assume that 
this substring when it occurs in the first rule is an instance of the second 
rule, and make the necessary changes to the grammar. The first rule would 
be replaced with the following: 

s/[Ioves, X, jane] ) NT/X, I, o, v, e, s, j, a, n, e 

Mergeable 

Given a set of rules R representing the grammar of agent a, and a set of 
non-terminal symbols JV: 

for rl, r2 ER where r, = jVl/m, ) or, andr2 = JV2/M2 ) 0'2 

if m, andM2are unifiable and a, : -"-- Gr2 

replace all instances of JV2 in the grammar with JVI 
OR 

if JV, JV2and m, andM2 are unifiable 
and a, andU2differ only by categories JV31V, and Ar41V2 

and V, and V2 occupy corresponding positions in m, andM2 
replace all instances of JV4 in the grammar with Ar3 

The final heuristic mergeable is responsible for identifying pairs of non- 
terminal categories which essentially serve the same syntactic function as 
each other, allowing the inducer to replace all instances of one category in 
the grammar with the other. Categories are judged syntactically equivalent 
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in this way if they occur in pairs of rules which axe otherwise identical, such 

as 

NT1/john j, o, h, n 
NT2/john j, o, h, n 

OR 

s/[Ioves, john, Xl] j, o, h, n, l, o, ve, s, NT1/Xl 

s/[Ioves, john, X2] j, o, h, n, l, ov, e, s, NT2/X2 

In both these cases, the categories NT1 and NT2 would be selected for merg- 
ing. 

4.1.4 The invention algorithm 

The invention algorithm is the process by which agents can produce utter- 
ances for meanings which are not covered by their grammars. This is very 
important in the initial stages of the simulation, for in the first generation, 
the speaker has no grammar at all: without some way of inventing utter- 
ances, language would therefore be completely unable to get off the ground. 
However, it continues to be important for many subsequent generations, due 
to the existence of the learning bottleneck: as previously mentioned, the 
total size of the meaning space is 100, from which items are drawn at ran- 
dom (with replacement), and speaker agents only make 100 utterances per 
generation. Therefore, it is extremely unlikely that any given learner will 
encounter every possible meaning. It is possible to calculate an estimate of 
exactly how many it will observe, using a measure called coverage [9], where 
the expected coverage c after R random observations drawn from a pool of 
N objects is as follows: 

c=1- (1 - 
11N)R 
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Therefore, in the case of 100 utterances per generation and a meaning space 
of 100, this figure would be 

1/100)100 = 0.6339 

In other words, after 100 observations drawn at random from a meaning 
space of 100 items, we can expect to have seen 63.39% of the items in that 

meaning space. Thus there will probably continue to be meanings which 
axe not covered by the agents' grammars for quite some time. Eventually, 
if compositionality starts to emerge, then agents will start being able to 

produce utterances for meanings they have not previously experienced and 
the number of meanings that cannot be expressed will decrease. If optimal 
compositionality is achieved, then agents should be able to express the entire 
meaning space even if there axe meanings that they have not previously 

observed, and they will no longer be forced to resort to invention. 

All this points to the fact that the inventor must be such that it preserves 
any grammatical structure that has already emerged, without adding any new 
structure. The algorithm used here is once again taken from that described 

in Kirby [44]. It seaxches for the closest meaning to the one required that 
the speaker can produce, deletes any string associated with the "incorrect" 

paxt of the meaning, and replaces it with a new substring. 

Thus existing structure is preserved: if the agent is asked to produce a string 
for a meaning such as [hits, john, pete], and has rules in its grammar such as 

s/[hits, john, X] j, o, h, n, h, i, t, s, NT/X 
NT/jane j, a, n, e 
NT/mary m, a, r, y 

then it will seek out the nearest possible meaning for which it can produce 
a string. This would be either [hits, johnjane] or [hitsjohn, maxy]. Either 
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way, the part of the string associated with the incorrect part of the meaning, 

either "jane" or 'Johný' would be deleted and replaced with a new substring, 

such as b, ], i, p, resulting in j, o, h, nh, i, t, s, b, l, i, p, and the structure inherent 

in the grammar is preserved. The alphabet from which invented strings 

axe drawn, and the maximum and minimum lengths of those strings, are 

supplied parametrically. In the studies describe here, the alphabet is simply 
the whole of the roman alphabet, and the string length is between one and 
three characters. 

If however, the requested meaning had been [hits, pete, jane], then again the 

closest possible meaning would be [hits, john, janel. However, in this case, the 

incorrect paxt of the meaning is "john" which is not expressed by any subpart 

of the string, but rather by the toplevel rule itself. Therefore there is no one 

substring that can be replaced in order to create the desired utterance, and a 

completely novel holistic string is used instead. Thus structure is not being 

introduced to the grammar that was not previously present. 

Once invention has taken place, the speaker has essentially produced a string 
for the meaning that it was previously unable to convey. It will then add the 

string-meaning pair to its own grammar by using it as input to the induction 

algorithm. In this way, it ensures that the next time it is required to produce 

a string for that meaning, it will be able to do so. 

4.2 A Compositional Grammar 

As in the results presented in Kirby [44], the language spoken by the popu- 
lation of the simulation evolves over a number of generations from a simple 

vocabulary driven language, where each meaning is represented by an idiosyn- 

cratic string with no internal structure, to a fully compositional language, 
in which the meaning of the string is derived from the meaning of its parts 
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and the way they are assembled. In particular, sepaxate syntactic categories 
for nouns and verbs emerge, which are combined in a fixed order which en- 

codes meaning distinctions in a compositional manner. The percentage of 
the meaning space covered by the grammaxs is seen to increase from axound 
60% on average in early generations to 100% in later ones. This is accom- 
panied by a dramatic decrease in the number of rules in the grammar from 

over 100 to begin with to very close to the minimal value of 11 (one "top 
leveP' rule, plus five rules for each of the five individuals and five for each of 
the five actions). 

This can be exemplified by looking at sample grammars taken from agents 

existing at various points in a single simulation. Below is the grammar of 
the first agent in the simulation at the end of its life: 

s/[loves, anna, mary] c 

s/[loves, anna, pete] x 

s/[sees, mary, anna] t, b, s 

s/[hates, anna, mary] b 

s/[adores, pete, kath] ) b, p, o 

s/[loves, anna, john] )k 
s/[loves, kath, anna] x, i 

s/[adores, maxy, kath] z, g, h 

s/[kisses, pete, anna] ) C, v 

s/[sees, kath, mary] ) d, q 
s/[adores, mary, anna] )m 
s/[adores, john, kath] f 

s/[kisses, kath, john] k, n, c 
s/[sees, john, anna] ) i 
s/[adores, anna, kath] ) h, n, s 
s/[adores, john, pete] S 
s/[adores, john, mary] f 

s/[adores, mary, john] f, 0 
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s/[sees, john, kath] )r 
s/[loves, pete, mary] s, k, e 

s/[adores, A, anna] q, 1/A 

1/kath q, k 

1/pete i 

s/[kisses, kath, A] ) q, 1/A, g 
s/[hates, mary, pete] q 

s/[loves, john, anna] f, u 

s/[sees, kath, john] c, i, e 
s/[loves, pete, kath] f7 q, 1 

s/[hates, kath, mary] X, f 

sAkisses, mary, anna] --+ M, m 

s/[hates, john, kath] ) Z, 0 
1/anna ) q7 d, x 

s/[kisses, john, anna] j, f, k 

s/[hates, pete, anna] S, i 

s/[loves, mary, anna] o, b, e 

s/[sees, kath, anna] W, 1 

s/[hates, A, kath] 2/A, c 
2/anna a, d 

2/mary k, w 
s/[sees, john, pete] P, p 
s/[sees, john, mary] o, r 

s/[adores, kath, A] e, 1/A 

s/[hates, kath, pete] d 

s/[A, pete, john] 3/A, d 
3/hates g 
3/loves r 
s/[A, mary, john] d, 4/A 
4/sees Z 
4/hates v 
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s/[hates, kath, anna] ) i, e, t 

s/[hates, pete, maxy] )j 
s/[A, anna, kath] ) y, 5/A 
5/sees i' 1 
5/loves e, t 

s/[kisses, pete, Imth] ) W, 11 9 
s/[adores, mary, pete] ) b, y 
s/[loves, kath, pete] e 
s/[kisses, john, kath] b, e 
s/[kisses, john, pete] )p 
s/[sees, mary, kath] ) Y, k, 1 

s/[sees, A, pete] 6/A, i 

6/anna v, s 
6/'kath r, z 

s/[adores, pete, mary] ) z, s, k 

s/[hates, anna, A] k, 1/A 

s/[kisses, maxy, pete] S, u 
s/[loves, john, maxy] w 
6/mary c 
2/pete t, g, c 

What is immediately clear is that this grammar is very large, containing 

a total of 69 rules, almost all of which are holistic and unanalysable. For 

example, in the rule 

s/ [sees, maxy, anna] ) t, 

there is no part of the string t, b, s than can be identified as meaning (4sees" , 
"mary" or "anna? '. It is simply the case that the whole string has the entire 
meaning [sees maxyanna]. 

The grammar is also very suboptimal, it contains a very large number of 
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rules, 69, and yet is only able to express 63% of the meaning space. 

However, already we can see that compositionality is beginning to emerge: 
so fax, all the utterances produced have been invented from scratch, as the 
first agent had no grammar when the simulation began. However, chance 
similarities between strings had led to generalisations being made, such as 
those which produced these rules: 

sl [adores, A, anna] q, 1 /A 

l/kath q, k 

1/pete j 

as would have been formed by the following utterances: 

< [adores, kath, anna] q, q, k> 

< [adores, pete, anna] q, > 

The fact that the two utterances shaxe 2 out of 3 elements of the semantic 
vector ("adores" as the action and "annaP as the acted-on) as well as a 
portion of the string (the substring q) has happened quite by chance, as 
both strings were generated by random invention. However, it is sufficient 
to kick-start the generalisation process, resulting in the invention of a new 
non-terminal 1. Instances of this non-terminal include the string q, k meaning 
"kath" and j meaning ttpete". 

If we move on approximately ten generations, we can see an increase in the 

amount of compositionality displayed: 

6/loves )c 
s/[adores, A, john] ) z, 3/A, d 
6/adores Z, j 
3/john j, W, j 

s/[hates, A, mary] u, b, z, 3/A, g, u, 1 
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6/sees d, y, 1 

4/sees W, v 
4/loves h, s 
s/[A, john, B] t, 1/A, 7/B 
4/adores u 
s/[A, pete, mary] ---+ 1/A, z, y, g, u, 1 

7/mary e, d, a 
6/kisses q 
s/[A, kath, B] --+ 6/A, 3/B, g 
4/hates e, g, a 
3/pete 

3/anna y 
1/sees v, a 
3/mary e, t 

7/anna u, b 

6/hates Y, V, u 

s/[A, john, mary] 9/A, e 
7/kath r, z 
1/adores q 

s/[A, B, kath] ) 7/B, z, 6/A, 1 
1/loves ) h, n 
s/ [A, B, annal 1/A, 3/B 
3/kath ) d, n 
s/[A, pete, john] 6/B, d 

9/loves 0 
s/ [A, B, C] 4/A, 3/C, 3/B 
1/hates m 
7/pete m 
9/kisses M, Z 
4/kisses C, c 
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In this grammar, which is only a few generations into the simulation, we can 

see that many more generalisations have been made. In the grammax be- 

longing to the very first agent, the vast majority of the production rules were 
top level ones, i. e. they had the non-terminal s on their left hand side. There 

were only a few other non-terminal categories. In this grammar, that trend 
has been reversed: there are many more subrules than top-level ones. Also, 

in the previous grammax, most of the top level rules were completely holistic, 

i. e. they contained only terminal characters on their right hand sides, and 
no vaxiables in their semantic vectors. In the above grammar, however, all 
of the top level rules have at least one non-terminal on their right hand side, 

and contain at least one semantic variable relating to this: i. e. components 

of the meaning have become lexicalised. There is even one rule in which all 
three components of the semantic vector have been lexicalised; this rule is 

maximally compositional and is actually able to express 100% of the meaning 

space. However, in many cases this particular agent will not use that rule 

unless there is no other way of expressing the required meaning, because of 
the deterministic nature of the parser: if there is more than one rule that 

can be used to express a particular meaning, the first will always be used. 
Because the rule covering the entire meaning space is quite low down in the 

grammar, other rules will be selected first, if they exist. 

Notably though, despite the much greater degree of compositionality inherent 
in this grammax, and although it is now able to express 100% of the meaning 
space, it is still quite large, containing 35 rules. The grammar belonging to 
the final agent in the simulation is an entirely different story: 

s/[A, B, C] 2/A, 3/C, 3/B 
3/pete j 
3/maxy e, t 
3/kath d, n 
3/john JIWIJ 
3/anna y 
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2/kisses C, c 
2/adores u 
2/hates e, g, a 
2/sees W, v 
2/loves h, s 

This grammar is fully compositional and entirely optimal: it contains just 

11 rules - one for each of the five individuals in the meaning space, one for 

each of the five actions and one top level rule specifying how to combine the 

strings produced by the other rules. This is the minimum number of rules 
that can be achieved and yet be able to express 100% of the meaning space. 

This pattern is a common result in these simulations: a progression is seen 
from the early agents which have very large grammars able to express only a 
proportion of the meaning space, to the later ones whose grammars are very 
small and compact, and able to express 100% of it. This is accompanied by 

the transition from largely holistic to fully compositional. Figure 4.2 shows 
the size of grammars versus the proportion of the meaning space they are able 
to express at the beginning of each simulation, and after 5000 generations. 
After 5000 generations, all the grammars are able to express 100% of the 

meaning space, without exception, and 16 of the 25 simulations run have 

converged on an optimal minimal grammar with only 11 rules, although 
there are a few simulations which result in grammars of a larger size. It 
is clear that at the end of the simulation, grammars appear to fall into 

one of two groups: we will return to this point in section 4.2.1. In general, 
agents in the simulations become able to express the whole meaning space (or 

nearly all of it) within a very few generations, as demonstrated in figure 4.3, 

which shows the proportion of the meaning space expressible by agents in the 
first 20 generations for 10 typical simulation runs. Most of the simulations 
have reached 100% expressibility within this timescale. Figure 4.4 shows 
the size of the grammars for the agents in the first 200 generations of the 
same simulations. It is clear that it takes a lot longer for grammars to reach 
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Figure 4.2: The size of grammar versus proportion of meaning space ezpress- 
ible for grammars emerging after 1 and 5000 generations of the simulation. 

optimal compositionality (if at all). 

As mentioned above, one of the key features of these grammars is the use 

of word order to specify the distinctions between syntactic categories. For 

example, in a given sentence it is possible to identify what the subject and ob- 
ject of the event being described axe by their positions in the sentence, much 
as in the English language. Free word order languages do not emerge, and nor 
does the use of inflection to specify the distinction between thematic roles. 
This is not entirely surprising, given the nature of the heuristics that axe 
used in grammar induction. These heuristics search for differences between 

strings: they essentially do so by looking for common prefixes and suffixes. 
When the parts of the strings which are the same have been identified, those 

which are different can be attributed to differences in the meanings of the two 

strings (as explained in Section 4.1.3 which describes the implementation of 

+e+ 
+ 
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Figure 4.3: The proportion of the meaning space than can be expressed by 

agents in the first 20 generations. 

the grammar induction algorithm). Thus if presented with the strings abcdef 

meaning [Iovesjohn, mary], and abcdgh meaning [loves, john, katel, the gram- 

max inducer would identify the common prefix abcd, whilst noting that the 
final sections of the two strings differ. Thus the difference in meaning would 
be ascribed to this, resulting in the conclusion that ef means "mary", whilst 
gh means "kate". Suppose however, that the second string had been ghabcd, 
as might occur in a language that allows freedom of word order. This shaxes 
neither a common prefix nor suffix with the string abcdef, so the current 
grammar inducer would fail to notice any similarity between the two. As a 
result it would not pick out the relevant differences either. Thus if chance 
regularities between strings did occur such that a free word order language 

might be induced, the current grammar inducer would not be able to induce 
it. 
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Figure 4-4: The size of grammars belonging to agents in the first 20 gener- 
ations. 

However, natural languages do not tend to exhibit such rigid word order as 
those emerging from the simulation. Even English, which has a relatively 
strict ordering, allows a small degree of word order freedom, for example 
when the speaker wishes to topicalize the object. Other languages, such 
as German allow a lot more, and still others exist such as Russian which 
allow almost complete freedom of word order. Clearly, in such languages, 
it is no longer possible to use word order to distinguish between thematic 
roles: if the language allows both SVO and OVS sentences, for example, and 
the string johnlovesmary is heard, how is the heaxer to distinguish between 
the two possible meanings [loves, john, mary] and [loves, maryjohn]? Instead, 
inflection is commonly used - different forms of the nouns john and mary - to 
determine their case, i. e. whether they are subject or object of the sentence. 
Thus the two possible meanings can be distinguished by the form of each 
noun used. 
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4.2.1 Different subjects and objects 

As mentioned briefly above in section 4.2, in some cases the grammars emerg- 
ing from the simulation did not converge on the minimal number of rules, 
11, needed to express the entirety of the meaning space. Indeed, a significant 

number of the runs converged on a larger grammar with 16 rules. The key 

feature of these grammars is that they contain two distinct noun categories 

rather than one, one of which is used to express the subject of the sentence, 

and the other the object, as in the following example: 

SAP, X, Yl ) 3/X, i, 1/Y, 2/P 

i/anna i, P, 
l/kath C, s 
i/mary t, a 
1/john j, e 
1/pete h 

3/kath a, k, f 

3/pete a, u, f 

3/maxy t, s 
3/anna g 
3/john p 
2/kisses t 
2/hates Z, s 
2/loves m, q, j 
2/adores U, i 
2/sees M, y 

In this case, the non-terminal category 2 represents the predicate, 3, the 

subject and 1, the object, arranged in the order Subject, Object, Verb. (This 

grammar also contains a non-terminal category i in its top-level sentence rule. 
This is simply an artifact of the grammar induction algorithm used: as the 
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different parts of the string get associated with different parts of the meaning, 
it sometimes happens that some chaxacters get "left behind" and stranded 
in the top-level rule without being attributed to any particular paxt of the 

meaning. ) 

Could we view such a grammar as exhibiting some form of primitive case 

system, in that it is possible to distinguish subject forms of nouns from 

objects, rather than using the same form for both? This is analogous perhaps 
to highly irregular forms of case found in some languages, such as the English 

pronouns I, me, we and us, where the nominative forms (I and we) used to 

the represent the subject of a sentence have no morphological relationship 

to the accusative forms used for objects (me and us). Kirby himself makes 

reference to such a grammar in the intermediate stages of his simulations 
[45], in which he refers to the two distinct noun categories as "case-marked 

nominaY. 

4.3 Summary 

In this chapter, the implementation of an iterated leaxning model has been 

described, resulting in a successful replication of Kirby's results: the emer- 

gence of grammaxs showing compositional behaviour, in which the meaning 

of an utterance is a function of the meaning of its parts and the way it is 

assembled. Like Kirby, we have seen distinct grammatical categories used to 

express nouns and verbs, and the use of word order to distinguish between 

different semantic roles. We have also seen the emergence of appaxently "sub- 

optimaP' grammaxs which appeax to exhibit two distinct noun categories, one 

used for the subject of the sentence and one for the object, which might be 

considered as some form of primitive case system. 

The following chapter will describe attempts to create a selective pressure for 
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languages of this type, in order to see whether it is possible to facilitate their 

emergence. As previously discussed in Section 3.4, inflectional case endings 
axe commonly associated with languages which display a large amount of 
optionality in the ordering of words in a sentence: where word order can no 
longer be relied upon to make semantic roles explicit, alternative cues must 
be found. The idea here is to introduce a degree of word order freedom into 
the simulations so that semantic roles can no longer be distinguished on that 
basis. It is hoped that this will result in pressure for distinguishable subject 
and object categories, which will in turn promote the emergence of grammars 
such as the one above. 



Chapter 5 

The Effect of Word Order 

A key feature of the grammars that emerge from Kirby's simulations as de- 

scribed in Chapter 3 and the current implementation of the model described 
in Chapter 4 is the use of word order to specify meaning distinctions. How- 

ever, it is worth noting that in many natural languages, meaning distinctions 

are not wholly specified by word order - even in English, some freedom of 
word order is allowed, and other languages allow much more. This is gener- 
ally accompanied by a much richer case system than that found in English. 

In Chapter 4, we succeeded in reproducing the results of Kirby's simulations, 
demonstrating the emergence of compositional languages without natural se- 
lection for communicative ability of agents, purely as a result of the adapta- 
tion of the language to the dynamics of language transmission and the biases 
imposed by the learner. Returning to Jackendoff's hypothesis that language 

may have evolved in an incremental manner [42] discussed in Section 2.4.3, 

one could perhaps view the outcome of Kirby's simulations and of the current 
implementation as having reached a level of complexity akin to the "proto- 
language" stage of development, namely exhibiting properties such as use of 
symbols in a referential manner, concatenation of symbols, and use of sym- 

116 
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bol position to convey basic semantic relations. The grammars arising from 

these simulations could perhaps even be argued to exhibit some of the more 
advanced features of modern language, in particular the apparent distinction 
between nouns and verbs, with separate syntactic categories used to express 
each. 

The question is, can this be taken further? Is it possible to encourage the 

emergence of more of the "later features" of modern language using this 
framework, and without the need for innate, language-specific knowledge? 
Kirby has already demonstrated that some degree of behaviour resembling 
phrase structure is possible in his experiments with recursion [44], and as 
already mentioned, there does seem to be some evidence for the emergence 
of syntactic categories. This is similax then to the stage at which Jackendoff 

suggests that it would have been possible for morphological markings to 

evolve. 

Jackendoff discusses the relationship between the use of word order and the 

presence of morphological maxkings, suggesting that they could be viewed as 
completely separate systems, working in parallel, to accomplish partly over- 
lapping functions. He draws an analogy between this and the perception of 
depth in the visual system, where there axe a variety of disparate mechanisms, 
all acting in concert to give different kinds of information about the distance 
from the viewer of the surface being viewed [54]. Under some circumstances, 
these individual systems provide redundant information, and under others, 
one or other of them will dominate, and under yet other circumstances still, 
they may conflict resulting in optical illusions. Furthermore, these systems 
vary greatly in their evolutionary age, some of them rooted in the more 
primitive or "earlier" visual axeas of the brain, such as the Lateral Genic- 

ulate Nucleus, and others dependant on the more recently evolved Visual 
Cortex. 

Jackendoff envisages that the various methods by which a language speaker 
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might elucidate semantic roles might operate in a similar manner. He con- 

siders the use of word order to signal these distinctions to be the oldest 

method in an evolutionary sense, having developed (as described in Chap- 

ter 2) during the proto-language stage. On top of this, though, axe built the 
(sometimes) redundant systems of inflectional marking: verb agreement with 
subject (and in some languages, object too), and case marking, making up 

a tri-partite system for signalling semantic roles. As with depth perception 
in the visual system, the brain is able to make use of these three different 

systems appropriately according to the circumstances, leaving languages free 

to "mix and match these strategies in different proportion". The observation 

above that languages with richer inflectional systems often allow more free- 

dom of word order clearly follows on from this. Once word order is not the 

exclusive means by which semantic roles may be determined, it can be put to 

other uses, such as giving information about focus and topic of the discourse. 

Conversely, in some languages inflection is used for this purpose without any 
loss of expressivity, because the information about semantic roles can still be 

conveyed by other elements of the tri-partite system. 

In this chapter and those that follow, we will be attempting to build on the 

use of word order to make semantic distinctions that can be observed in the 

results of Kirby's studies and in the current replication of those experiments 
described in Chapter 4. The aim of this work is to see if it is possible to 

add a second part of this tri-paxtite system within the current framework: 
inflectional case markings. The hypothesis being explored here is whether 
or not such a system can emerge with the cognitive machinery these agents 
already have, developing as a result of their "general purpose learning abili- 
ties", helped along by the "dynamics of language transmission", or whether, 
in fact they need some kind of LAD in the form of innate language-specific 
knowledge in order for this behaviour to be possible. 
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5.1 The Need for a Non-Deterministic Parser 

It is observed in the replication of Kirby's system described in Chapter 4, 

that "suboptimal" grammars occasionally emerge which contain two separate 
syntactic categories denoting the individuals in the meaning space, one of 
which will be used for the subject of the sentence and the other for the 

object. These separate subject and object noun categories can perhaps be 

viewed as a primitive form of case system. The work described in this chapter 
is an attempt to promote the emergence of grammars with such properties. 

This endeavour will involve the introduction of a degree of word order flexi- 
bility to the Iterated Leaxning Model described in Chapter 4. This will take 
the form of the occasional re-ordering of the elements of a sentence, as might 
occur in natural language when a speaker topicalises a word for emphasis, 
or even makes grammatical error. When such re-ordering occurs, it is hoped 
that the sentence exhibiting the alternative word order will be learnt by the 
agent to which it was spoken, and incorporated into that agent's grammar 
as an alternative means by which the meaning in question may be expressed. 
It is anticipated that the acquistion of alternative word orders in this way 
might create a selective pressure for the emergence of distinguishable subject 
and object nouns, resulting from a need to disambiguate potentially conflict- 
ing word orders. For example, if a language permits both SVO and OVS 
orderings, then it will be impossible to determine the subject and object of 
any given sentence unless different noun forms are used for each. 

However, the current model does not really support the use of multiple word 
orders, due to the deterministic nature of the parsing and production algo- 
rithm employed: if a learning agent observes an alternative word order which 
is not already encompassed by its grammar, it will find that it is unable to 

parse the utterance in which it was observed, and will use that utterance as 
the basis for induction. Thus the appropriate rules will be added to its gram- 
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max. As a result, in future it will be able to successfully parse any utterance 
it encounters which exhibits this new alternative order. However, during 

production, because the agent will simply scan the database for the first set 

of rules capable of producing a string with the required meaning, any sub- 

sequent sets of rules will never be used, and thus sentences with other word 

orders will never be generated. Therefore, although alternative word orders 

can be learnt, enabling utterances that axe examples of these word orders to 

be parsed, they will not be passed on from one agent to the next during the 

process of cultural transmission. Thus it is necessary here to make changes 
to the parser in order for an agent to be able to have more than one word 

order in its grammar, and to be able to use them all productively. 

5.1.1 Random selection of strings 

Perhaps the simplest way to achieve this would be for the agent to select 

all possible ways of expressing a given meaning, and to choose one of them 

at random. However, attempts to implement this tend to result in simula- 
tions which do not converge on the minimally sized but maximally expressive 

grammars seen in Chapter 4, but instead result in grammais containing a 

very large number of rules, and a very large number of alternative ways of 

expressing a given meaning. In the system using the strictly deterministic 

parser, grammars have generally achieved a fairly small size within the first 

100 generations, the average size at this stage being approximately 19 rules. 
However, using this simple method to enable the expression of alternative 

word orders raises the average number of rules after 100 generations to 61.6. 
In both cases most grammaxs are already able to cover 100% of the meaning 

space, although some of those using the new production algorithm do fail 

on that score. Figure 5.1 shows grammax size versus the number of mean- 
ings covered after 100 generations for both the new and the old production 

algorithms. It can clearly be seen that simulations employing the original 
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Figure 5.1: A scatterplot showing the sizes of grammars vs the number of 

meanings covered at 100 generations for the version of the model that uses 
the first available string for each meaning and that which selects a shing at 

random from amongst all possible utterances. In both cases is it possible to 

see that most grammars cover 10016 of the meaning space, but the size of the 

grammars differs wildly in the two cases. 

deterministic production algorithm, in which agents always use the first avail- 
able string for a given meaning as described in Section 4.1.2, result in much 
smaller grammars than those using the new version where agents generate 
all possible strings and select one of them at random. 

The grammars that axe being transmitted from one generation to the next 
when the new production algorithm is used staxt large and stay large, many 

of them becoming very unwieldy, and resulting in simulation runs that grind 
to a halt and fail to reach the requisite number of generations (which in these 

experiments is taken as 5000). There axe simply too many possible strings 
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Figure 5.2: A graph showing the size of the grammar at each generation for 

one run of the simulation when using the version of the model that chooses 

one of the possible strings for a given meaning at random. A comparable plot 
for the purely deterministic production algorithm is also shown. 

for an agent to be able to enumerate them all. Even those simulations which 
do complete fail to converge on a minimal grammar. Figure 5.2 illustrates 

this by showing the size of agents' grammars at the end of each generation, 
for the first 1000 generations of one such run. There is a short initial period 
during which the number of grammar rules starts to decrease, (this only 

occurs within the first few generations and is almost unnoticeable on this 

graph), but it is swiftly followed by a dramatic turnaround. Rom about 

generation 20 onwards, the number of grammar rules increases rapidly again. 
This behaviour is typical. The plot also shows the results from a run of the 
deterministic parser for comparison. 
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5.1.2 Random selection of rules 

To address the issue that many of the simulations were failing to complete as 

a result of there being far too many possible strings for an agent to enumer- 

ate, an alternative approach to allowing the propagation of alternate word 

orders was attempted. In the original parsing and production algorithm, the 
first rule in the grammar with the correct non-terminal on its left hand side 

and semantics that can be unified with the desired meaning is chosen for 

expansion. In the revised version described in Section 5.1.1, all such rules in 

the grammar are selected and expanded, and one of the strings returned is 

chosen at random. In the alternative to this, again all the rules are selected, 
but rather than expand them all, just one is chosen at random. Thus, for ex- 

ample, if the desired meaning were [sees, kath, anna], then all rules which have 

the non-terminal s on their left hand sides, and whose meanings can be uni- 
fied with [sees, kath, anna] will be picked up. This might include completely 
holistic rules, such as 

s/[sees, kath, anna] ) 07 U, z 

or rules which have been completely lexicalised, such as 

s/[A, B, C] ) 2/A, 3/C, 3/B 

(as the variables A, B and C axe unifiable with the atoms sees, kath and 
anna) or rules which have been only partially lexicalised, such as 

s/[A, anna, kath] ) y, 5/A 

Once these rules have been identified, one of them is chosen at random, and 
the process is repeated for any non-terminals on the right hand side of the 

selected rule. Thus in our example, if the rule chosen were the second one, 
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s/[A, B, C] ) 2/A, 3/C, 3/B 

the variables A, B and C will become unified with the meaning [sees, anna, kath], 

and the agent will go on to seek out rules with the non-terminal 2 on their 
left hand side and whose meanings can be unified with the atom sees, etc. If 

at any stage a chosen rule contains non-terminal categories on its right hand 

side that cannot be expanded, it is removed from the list of potentially ap- 

plicable rules, and a new one is selected, again at random. Rules are picked 

with equal probability. 

Unfortunately, this type of non-deterministic implementation also results in 

simulation runs which fail to converge on the minimally-sized but maximally 

expressive grammars seen when the original deterministic production algo- 

rithm is used. Figure 5.3 shows the size of grammars versus the number of 

meanings that can be expressed after 100 generations, for both the original 

model in which agents always use the first available string for a given mean- 
ing (i. e. the deterministic system) and the new version in which one rule is 

chosen at random for expansion from amongst all possible rules at each level 

of the paxse tree. 

Again, grammars tend to be very large and to contain very many ways of 
expressing a given utterance. Their size seems to be similar to that found 

when selecting strings at random, with the average number of rules after 
100 generations being approximately 56. However, the lengths of the rules 
seems to be even greater. One particular feature of both types of grammar 
is the presence of very long rules, each containing large numbers of terminal 

characters, often including repeated segments. Many of these rules differ 
from each other only by the number of repetitions of these segments. Similar 

problems were also encountered by Smith and Hurford [71] in their attempts 
to extend the Iterated Learning Model to populations of multiple agents. 

In both cases, failure to converge when using a non-deterministic parser is 
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Figure 5.3: A scatterplot showing the sizes of grammars vs the number of 

meanings that can be expressed at 100 generations for the version of the model 
that uses the first available parse for each meaning and for that which chooses 

one of the possible parses at random. 

presumably related to Smith's result [70] that in order for compositionality to 

emerge in an Iterated Learning Model, a one-to-one correspondence between 

meanings and strings must be established. In the original (deterministic) 

implementation of the system described here, this property is established by 
two means: 

a learner will not seek to associate more than one meaning with a 
particular string (i. e. if it can parse a string, it does not use it as input 
for the induction process, even if the meaning returned by the parse 

was not that intended by the speaker). 

9 if there is more than one way of expressing a particular meaning, agents 
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will always choose the same one, due to the deterministic nature of the 

parsing and production algorithm, which simply scans the rules in the 

database until it finds the first set that can produce a string for the 

required meaning. 

Clearly this is not a property of natural languages, where synonymy and 
homonymy are common occurrences. However, Smith argues that children 
do have such a bias, and quotes Slobin [68] in saying that they prefer a 

one-to-one mapping of content and form wherever possible. 

This requirement leads to a fundamental quandary. In order to introduce 

freedom of word order as a feature that might promote the emergence of dis- 

tinguishable subject and object categories, we need agents that axe capable 

of understanding, and productively using multiple versions of a particulax 

meaning. This is the only way in which alternative word orders, once in- 

troduced, can be passed on to subsequent generations. And yet, in order 
for a grammar to emerge at all, we need agents that maintain a one to one 

correspondence between meanings and strings. 

5.1.3 A quasi-probabilistic parser 

How strong is the requirement for a one-to-one mapping between meanings 

and strings? Must the same meaning always be expressed by the same string, 

or is it sufficient if it usually is? With this in mind, a form of probabilis- 
tic parsing and production algorithm was developed, based on the second 

non-deterministic one above: at each level of the sentence generation pro- 

cess, every rule that might be capable of producing the required meaning 
is once again selected, and one of these rules is chosen for expansion, as in 

Section 5.1.2. However, the rules are no longer chosen with equal probability, 
but in proportion to the number of times each has been used previously. 
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This was implemented by associating with each rule a count, representing 
the number of times it has been used; the probability that a given rule will 
be chosen is proportional to the size of that count. Rules are selected as 
follows: 

Find all rules in the database with the appropriate non-terminal cate- 

gory on their left hand sides whose semantics can be unified with the 

semantics of the intended utterance. 

e Retrieve the count associated with each of these rules. 

Assign a numerical range to each rule, which has the same magnitude 

as the count associated with that rule. Ranges are consecutive; thus if 

the first rule spans the integers from 0 to 5, the range for the second 

will staxt at 6. 

9 Select at random an integer between 0 and the highest value associated 

with the last rule. 

9 The chosen rule is the one whose range that integer falls into. 

Thus if a rule has a very low count, it will have a very small range associated 

with it. This will result in a low probability that the integer chosen will fall 

into that range, consequently giving a low probability of the the rule being 

chosen for use. 

As with the production algorithm described in Section 5.1.2, if a rule chosen 
at any stage in the process cannot be expanded any further, it is removed 
from the list of potentially applicable rules, so that an alternative may be 

selected. This requires the ranges associated with the remaining rules to be 

adjusted to compensate for the missing rule. A new integer is then chosen 

at random. 
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This method of rule choice has an advantage over the deterministic produc- 
tion algorithm in that it gives agents the ability to use multiple strings to 

express the same meaning, and thus will allow grammar rules for sentences 

with different word orders to co-exist, and to be used in production, enabling 

agents to pass on those word orders to subsequent generations. It has an ad- 

vantage over the the previous non-deterministic implementation of the model 

where rules are chosen at random from the database with equal probability, 
because it increases the chances of the same rule being used to generate a 

string for any given meaning much of the time. If there is a dominant rule 
with a high count, then this is the one that will usually be used, whilst a 

rule for a sentence structure with an alternative word order will be used less 

frequently. Thus, whilst not committing agents to a one to one mapping 
between strings and meanings, which obviously is not possible if the gram- 

mar is to tolerate alternative word orders, it does preserve this in a slightly 

weakened form by ensuring that the same string is usually used to express a 

given meaning. 

But does it allow the emergence of compositional grammars, whilst also mak- 
ing it possible for agents to understand and productively use rules for multiple 

word orders? 

Inserting the new parsing and production algorithm into the original simu- 
lation without introducing any freedom of word order at this stage appears 
to show that the answer to this question is "yes". The majority of simu- 
lations (96.15%) using the new quasi-probabilistic parsing/production algo- 
rithm converge on minimal sized maximally expressive grammars of the type 

seen in the output of Kirby's simulations [43]. There is still a slight issue with 
the insertion of repeated sequences into rules (as in the two non-deterministic 
attempts described in Sections 5.1.1 and 5.1.2). Again, this results in gram- 
mars with large numbers of very long rules, as described above, but these 

are comparatively rare (occurring in approximately 1 in 25 runs). It would 
appeax that this type of behaviour is associated with the breakdown of one- 
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to-one mapping between strings and meanings. What is apparent about the 

grammars that behave in such a manner is that they contain very many rules 
for each syntactic category, each tending to have very low counts associated 

with them. This results in very many possible ways of producing an utterance 
for a given meaning, all with a fairly similax probability of being chosen. 

A snippet of such a grammar is given below, taken 100 generations into a 

simulation: 

S/[P, X, Yl 5/P, I, u, 4/X, u, 4/Y 2 

S/[P, X, Y] 5/P, I, u, 4/Y, u, 4/X 2 

S/[P, X, Y] 5/Pl, u, 4/X, u, p, yf, u, p, yf, u, 4/Y, u, p, yf 3 

S/[P, X, Y] 5/P, I, u, p, yf, u, p, yf, u, p, yfu, 4/X, u, 4/Y 7 

S/lp7x, yl 1 5/P, I, u, p, yfu, p, yfu, 4/Y, u, 4/X, u, p, yf 2 

Here we can see a number of rules with fairly low count associated with 
them (the highest in this case is 7), which are all essentially very similar. 
Each takes a word of non-terminal category 4 as its subject, another of non- 
terminal category 4 as its object, and a word of non-terminal category 5 as 
its predicate. The rules differ primaxily in the number of repetitions of the 

sequence u, p, yf inserted at various points in the string. The also differ in 

word order, sometimes showing a VSO pattern, and sometimes a VOS. 

Looking at the entries in this grammar for words on non-terminal category 
4, we can see that the situation is similar: 
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4/john Yf, u, p, y 28 

4/john P, Ylf, u, YU, P, yf 14 

4/john P, YfU, P, Yf, U, YU, P, Ytf 2 

4/john P, Ylfu, P, Yf, U, P, YfU, P, YfU, Y 20 

4/pete P, Yf, u, P, Yf 23 

4/pete P, Yf, u, P, Yf, u, P, Yf, u, P, Yf 52 

4/pete Plyf, U, P, YfU, P, yf, U, P, Yf, U, P, Yf 2 

4/pete P, YfU, P, P, YfU, P, yf, f, U, P, YfU, YU, P, Yf, U, P, Yf 3 

4/mary w 76 
4/kath t 56 

Here we can see that of the five individuals in the meaning space, two of 
them, john and pete, have multiple entries within this syntactic category. It 

is possible to use any of these entries in conjunction with the rules above, 

and although the counts associated with them are variable, there is no clear 
dominant rule which is likely to be chosen in the majority of cases. Thus there 

are very many possible ways of expressing any meanings from the meaning 
space involving those two individuals, each with a fairly similar probability 

of being used. And this is only a part of the grammar for this agent - the 
full grammar contained a total of 85 rules, of which 46 were top level rules 
for composing sentences. The highest count on any of the top level rules was 
20. Later generations in the same simulation contained even larger numbers 
of even longer rules with even lower counts. 

However, as previously mentioned, the incidences of grammars such as these 

are comparatively rare, and on the whole simulations do converge on small, 
expressive, compositional grammars, with an overall pattern of results similar 
to that achieved using the deterministic parser. Figure 5.4 is a scatterplot 
showing the size of grammars versus the proportion of the meaning space they 

axe able to express at the beginning of the simulation runs, and after 5000 

generations, using the new probabilistic parsing and production algorithm. 
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Figure 5.4: A scatter plot showing size versus proportion of meaning space 
expressible for grammars emerging after 1 and 5000 generations of the simu- 
lation using the probabilistic parser. 

This is cleaxly a very different situation to our earlier attempts to allow 
multiple word orders to exist and be productively used: once again, we can 
see that the grammaxs of agents from early in the simulations generally have 

quite a laxge number of rules, and yet are able to express only a proportion 
of the meaning space, whilst the grammars belonging to the final agents can 
all express 100% of the meaning space, with far fewer rules, indicative of 
compositional behaviour. Many of the grammars contain only the minimal 
number of just 11 rules, and even though some of them are larger, they all 
contain fewer than 20. 

Figures 5.5 and 5.6 show that although the number of generations taken to 

achieve a grammar capable of expressing the entire meaning space is similar 
when the quasi-probabilistic parser is used instead of the deterministic one, 
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the length of time taken to achieve a grammar with the minimal number 

of rules tends to be longer, as can be seen when comparing figure 5.6 with 
figure 4.4. This is unsurprising; early on in the simulations there axe often 

multiple ways of expressing different meanings, but these tend to die out 
fairly quickly when using the deterministic paxser. The ordering of the rules 
in the database is the crucial thing here: whichever rule is first will always 
be the one chosen, and alternatives will not be propagated unless they axe 

essential for the expression of another meaning. When using the probabilistic 

parser, these rules are much more likely to be propagated for longer. However, 

those rules which axe less compositional and therefore can be used to produce 

strings for a smaller range of meanings will be less likely to be chosen. This 

will result in their having a smaller count relative to more "usefuF' rules in 

the next generation, and being even less likely to be chosen when that agent 
becomes speaker. Thus the pruning of alternative ways of expressing a given 

meaning still occurs, but much more slowly. It is not the one-step process 

seen when using the deterministic parser. 

Further examination of the grammaxs output from simulations using the new 

probabilistic parser, shows that the most common outcome is a single syn- 
tactic category used to express verb-like concepts, and another to express 

noun-like concepts: this occurs in 48.0% of runs. The other pattern, con- 
sisting of a single verb-like syntactic category, plus two noun-like categories, 
one of which is used to express the subject of the sentence, and the other 
the object, also occurs in 33.0% of cases. The remaining 19.0% of runs fail 

to converge on a grammax of either type. 1 Comparing this to the output 
of simulations using the deterministic paxser, we find that 58.33% of these 

result in grammars containing a single verb-like category, and a single noun- 
like category, 19.05% contain two noun-like categories, and 22.62% fail to 

'A grammax is deemed to have converged by looking at all fully lexicalised top level 

rules (i. e. all those with only variables in their semantics) and determining whether they 

all contain the same terminals and non-terminals. Rules which are not fully lexcalised axe 
discounted because even in otherwise optimal grammars, their occurrence is very common. 
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Figure 5.5: The proportion of the meaning space than can be expressed by 

agents in the first 20 generations for simulations using the probabilistic parser. 

converge on either. 

Thus it is interesting to note that simply enabling the expression of multiple 

word orders by making the grammar probabilistic rather than deterministic 

is sufficient to encourage the emergence of the feature which we would like to 

promote: that is, distinguishable subject and object forms for each individual 

in the meaning space, the incidence of which has increased from 19.05% 

to 33% of simulations. Compaxing the proportions of 1 noun and 2 noun 
grammars in runs using the original deterministic parser and those using the 

new probabilistic one shows this difference to be a statistically significant 
difference (i. e. p<0.05). 

Why does this happen? Perhaps alternative word orders axe emerging spon- 
taneously, and thus creating a selective pressure for two distinct types of 
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Figure 5.6: The size of grammars belonging to agents in the first 20 gener- 

ations for simulations using the probabilistic parser. 

noun category? Those grammars emerging from the system which contained 
two noun categories were examined to see if this was the case. Of the 33 such 

grammars, 9 showed spontaneous reordering (approximately 27.27%). This is 

very similar to the situation when the deterministic parser is used: although 
fewer grammars have two noun categories, a similar proportion of those that 
do, i. e. 4 out of 12 (33.33%) exhibit spontaneous reordering. Thus this does 

not appear to be a factor in the emergence of this grammar type. What 

is noteworthy is that in every case of spontaneous reordering, whether pro- 
duced by the deterministic or the quasi-probabilistic parsing and production 
algorithm, the thematic role expressed by the two noun categories appears 
inconsistent between the different rules. For example, if there are two top 
level rules specifying how to construct a sentence, a given noun category will 
be used in one of them as the subject of that sentence, and in the other as 
the object. Furthermore, in each of these cases, it appears that at least one 
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of the noun categories lacks a lexical entry for at least one individual in the 

meaning space. Thus the second rule specifying alternative word ordering is 

able to compensate for this deficiency in the grammax, by allowing the other 

noun category to assume the semantic role (either subject or object) of the 

missing lexical entry. For example, a grammar may contain noun categories 
NT1 and NT2, and a rule which relates them in such a way that NT1 is used 
for the subject and NT2 is used for the object. However, it may be the case 
that category NT1 lacks an entry in that grammar for the individual "john". 
In this situation, another rule will commonly be found in which NT1 is used 
as the object and NT2 as the subject, which thus allows meanings in which 
"john" is the subject to be expressed. An example of such a grammar is 

given below: 

s/[P, X, Y] 1/X, 2/P, 3/Y 

s/[P, X, Y] 1/Y, 3/X, 2/P 

1/awa p 
1/maxy i 
1/Wh g, q 
1/pete b 

2/kIses a 
2/sees P, y 
2/hates s 
2/adores c, p 
2/loves c, i, n 
3/Wh n, w 
3/pete I 
3pohn t 
3/mary g, y, x 

In this particular grammar, both the noun categories are unable to express 
the full range of individuals in the meaning space. Category 1 lacks a lexical 
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entry for the individual "john" and category 3 lacks "anna? '. The first top 
level rule in the grammar indicates that category 1 should be used as the 

subject of the sentence, category 3 as the object, and that they should be 

combined with a verb of category 2 in a SVO ordering. Due to the lack of 
lexical entries for "john" and "annaP, it is not possible to use this rule to 

express any meaning in which "john" is the subject or "annaP the object. 
However, the presence of a second rule overcomes this, by allowing Category 

1 (which does include a lexical entry for "anna? ') to act as the object of the 

sentence and using Category 3 (which does have a lexical entry for "john") 

as the subject, combined in a OSV ordering. The appea-rance of this alter- 

native word ordering in order to overcome the missing lexical items actually 

occurs very early in the simulation from which this grammar was taken: at 

generation 123. Interestingly at this stage, a lexical entry of Category 1 for 

the individual "john" does actually exist, although Category 3 is lacking 

entries both for "anna? ' and "kath". Not only does the alternative word or- 
der compensate for missing lexical entries, but it means that it is no longer 

crucial to have a full complement of lexical entries for both noun categories, 

making it possible for some of them to be discarded in this way without loss 

of expressivity. 

Thus it would appear that this spontaneous reordering emerges as result of 
the existence of two separate noun-categories, rather than promoting it, by 

making it possible for a speaker to compensate for items missing from its 
lexicon. 

5.2 Introducing Word Order Freedom 

Now that we have created a system where agents are capable of understand- 
ing and productively using multiple word orders for a given sentence, what 
happens when we introduce a degree of word order freedom? To do this, a 
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very simple "re-order" function was added to the system which would reorder 
the parts of the sentence produced by the speaker before conveying it to the 

learner. This is done with a fixed probability p. In the early stages of the 

simulation, where the grammar is composed entirely of idiosyncratic strings, 
this will have little effect other than to scramble those strings, whereas later, 

once separate syntactic categories have begun to evolve, it will have the re- 

sult of re-ordering the subject, object and verb components of the sentence. 
This is intended to model the occasional "mistake" or use of word order to 

provide emphasis by the speaker. Once an utterance with an alternative 

word order has been made, if it is incorporated into the learner's grammar, 
the rules producing that word order may well be used again, when that agent 
becomes a speaker. Thus it may be propagated down the generations. It is 

hoped, that by generating potentially ambiguous word orders, this will act 

as a driving force towards distinguishable subject and object versions of each 

noun, i. e. a primitive case system. 

The rationale behind this is that occasionally the re-ordering operation may 

cause the position of the subject and object nouns to be inverted, resulting in 

the meaning of the sentence appearing to be something quite different to that 
intended. So, if an agent already has a the string j, o, h, n, l, o, ves, m, a, ry in 

its grammar, associated with the meaning [loves, john, maxy], it may go on to 
hear the same string meaning Iloves, maxyjohn] (having been produced by the 
inversion of subject and object by the re-ordering operation on the original 
string m, a, ryI, o, ve, sJ, oh, n). Because agents are biased towards associating 
only a single meaning with a given string, under such circumstances, the new 
meaning of the string johnlovesmary would never be learnt. However, had 

the original utterance (prior to re-ordering) meaning [loves, maryjohn] been 

something like yramlovesnhoj, where yram is a string meaning "maxy" when 
she is the subject of the sentence (as opposed to m, a, ry which is used when 
she is the object) and n, h, oj is a string meaning "john" when he is the object 
of the sentence (as opposed to j, o, h, n when he is the subject), then the re- 
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ordered string n, o, hj, l, o, ves, yra, m would be perfectly distinguishable from 

the string j, o, h, n, ], o, ves, m, a, ry meaning [lovesjohn, mary]. Thus in this 

case, a rule for this alternative word order would be created. 

Thus it is hoped that, in a situation in which word order can no longer be 

relied upon for the distinguishing of subject and object syntactic categories, 
the use of an alternative mechanism, i. e. different subject and object noun 

categories, might be promoted. 

5.2.1 Results 

Initially, in the simulations described below, the probability of an utterance 
being re-ordered was set to the low value of 1%. 

The grammars resulting from these conditions (i. e. use of the probabilistic 

parsing and production algorithm in conjunction with "re-ordering" at a 

probability of 1%), can be subdivided into two types. The first (Type A) 
has a single syntactic category used to express nouns, and another for verbs. 
The second (Type B) has two separate noun categories, one of which is used 
to express the subject of a sentence, and the other for the object. 2 This is in 
keeping with the pattern we have seen previously. However, what is different 
here, is the range of different word orders that each type of grammar allows: 
whilst type B grammars can take full advantage of all the possibilities, type 
A grammars are more restricted. However, they are not fixed to a single 
word order, as one might expect. Instead, they tend to express roughly half 

the space of available possibilities. The set of possible word orders can be 

subdivided into pairs, where each member of the pair is identical but for 
2AIthough two separate noun categories have emerged, and within any given rule one 

of them is used for the subject of the sentence and one for the object, again there is little 

consistency between rules: a given non-terminal may commonly be used as the subject of 
a sentence in one of the top-level rules and the object in another. 
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the fact that the subject and the object have been transposed. If subject 
and object forms of any given noun are identical, this makes it impossible to 
determine which of the two rules is being applied and thus distinguish which 
noun is the subject and which is the object. Therefore, members of these 

pairs are mutually exclusive in the Type A grammars. Once one member 
of the pair has already been learnt, if the other is produced by a chance 
re-ordering event, it will be parsed (incorrectly) by the leaxner, and thus not 
added to the grammar. 

So, if a sentence is made up of two nouns plus a verb and no other characters, 
this allows a total of six permutations. Generally, in a Type A grammar, 
three of these are expressed, without any loss of distinguishability of subject 
and object. For example, in the case where the word order SOV is allowed, 
OSV will not be, because this would cause confusion. Other rules such VSO 

can be perfectly easily distinguished from this however, due to the different 

positioning of the verb. Essentially, it is possible to divide the set of possible 
word orders up into three mutually exclusive pairs, SOV-OSV, VSO-VOS 

and SVO-OVS. The two items in each pair share a common verb position, 
but have the subject and object inverted: thus grammars with only one noun 
category used for both subject and object do allow the use of both members 
of such a pair, as it would not be possible to tell which rule was being applied. 

A typical Type A grammar looks like this: 3 

SAP, X, Y] [3/Y, 2/P, 3/X] 

S/[P, X, Y] [2/P, 3/X, 3/Y] 

s/IP, X, Yl [3/X, 3/Y, 2/P] 
3/john [q] 

3/mary [t] 

3/pete [u, f] 

3/anna [z, e] 
'Where P, X and Y are variables over predicates, subjects and objects, respectively. 
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3/kath [r] 

2/loves [C] 

2/hates [r, a] 
2/adores [i, t] 
2/kisses [il 

2/sees [m, j, g] 

140 

It can be seen that this grammar exhibits three of the six possible word orders 
for sentences sentences made up of two nouns, plus one verb: OVS, VSO and 
SOV. From each of the mutually exclusive pairs SOV-OSV, VSO-VOS and 
SVO-OVS discussed above, only one member is present. And of the three 
different word orders that do occur, the position of the verb makes it quite 
cleax which rule is being applied, and thus it is possible to differentiate which 
noun is subject and which is object. 

Occasionally, pairs of mutually exclusive word orderings are learnt by indi- 

vidual agents speaking a Type A language, if both axe presented very early 
on in the learning process before any general top-level rules have been in- 
duced. Imagine a scenario where the speaker has a Type A grammar, with 
a basic SVO order. The first meaning it is asked to present to the learner is 
[lovesjohn, maxy], and it duly selects the string j, o, h, n, ], o, ves, m, a, ry. How- 

ever, when the second meaning is requested, [loves, anna, pete], a re-ordering 
event occurs, changing the transmitted string from a, n, n, a, ], o, ve, s, p, et, e to 

p, e, t, e, ], o, v, e, s, a, n, n, a. Thus the leaxner will happily add the rules 

s/[Ioves, john, mary] j, o, hn, l, o, v, e, s, m, a, r, y 

s/[Ioves, anna, pete] p, e, t, e, l, o, v, e, s, a, n, n, a 

to its grammar. Later, when the appropriate non-terminal noun and verb 
categories have been induced, these rules will have become 
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S/[P, X, Y 1/X, 2/P, 1/Y 

S/[P, X, Y] 1/Y, 2/P, 1/X 

and the agent's grammar is actually capable of generating pairs of strings 
which are identical in appearance, but opposite in meaning in terms of "who 
did what to whomý'. 

Contrasting the Type A grammar with a typical Type B grammar such as 
that shown below, we can see that a much wider range of word orders is 

allowable. This one exhibits four of the possibilities - OVS, SOV, VSO and 
SVO: 

S/[P, X, Y] - 

s/[P, X, Y] - 
s/[P, X, Y] - 
S/IP, X, «ýl 
1/john 
1/mary 
1/pete 

1/anna 

1/kath 

3/john 

3/mary 

3/pete 

3/anna 

3/kath 

4/loves 

4/hates 

4/adores 

4/kisses 

4/sees 

-+ 

-+ 

--4 

I [f, Z' X1 
[h) n, v] 
ul 

lyl 
[a, t] 
[d] 

N 
lil Ul 
[q] 

Icl 

[k, h, k] 

-+ [h, i, x] 

If] 

[3/Y, 4/P, 1/X] 
[1/X, 3/Y, 4/P] 
[4/P, 3/X, 1/Y] 
r. ", . t- - iý ri 4/F7 J/ YJ 
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It should be noted that although only four of the possible six word orders 

are displayed in this grammar, there is nothing to prevent the other two 

from being added as well. Presumably it is simply the case that the agent 
has not observed them during its period as a learner. What is important 

to notice is that this grammar includes both members of one of the pairs of 

orderings; which are mutually exclusive in the Type A grammar: OVS and 
SVO. This is made possible by the existence of two noun categories. Thus the 

meaning [loves, john, maxyl using the OVS rule would be dci which is perfectly 
distinguishable from [loves, maryjohn] using the SVO rule, which is fzxcat, 

even though both sentences involve a word for "mary" followed by a word 
for "loves" followed by a word for "john". 

When re-ordering is added to the simulation, 50-98% of the runs which ran 
to completion exhibited a Type A grammar, and 43.14% a Type B. 5.88% of 

runs did not converge on one or the other. This is a significant increase in the 

occurrence of separate noun categories compared with runs where re-ordering 

was not used (p<0.05), which is itself a highly significant increase (p<0.01) in 

comparison to runs using the deterministic parsing and production algorithm 
as can be seen from the following table: 

Type A Type B non-converging 
(1 noun cat) (2 noun cats) 

deterministic 58.33 19.05 22.62 

probabilistic 48.0 33.0 19.0 

with 1% re-ordering 1 50.98 43.14 5.88 

Thus it would appear that the attempts to create a selective pressure for 

some form of case marking have to a limited degree been successful. How- 

ever, there are some interesting points to note: firstly the introduction of 
a probabilistic parsing algorithm itself seems to create a mild pressure to- 

wards two-noun-category grammars; secondly, the increase in the incidence 

of two-noun-category grammars (+24-09%) is more than three times as large 
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as the decrease in the incidence of one-noun-category grammars (-7.35%) - 
two-noun category grammars seem to have been largely recruited from the 

runs that were previously not converging on a minimal compositional gram- 
mar; finally, the incidence of non-convergence decreases dramatically when 
optionality of word order is made possible, going from 22.62% in the origi- 
nal system with the deterministic parser to 5.88% when re-ordering and the 

probabilistic parser are used. 

5.3 Increasing the amount of word order free- 

dom 

If such a small amount of word order freedom (i. e. a 1% chance of re-ordering) 
is sufficient to increase the frequency of grammars exhibiting case-like be- 
haviour in the form of two distinct noun categories, can we increase their 

occurrence still further by making the likelihood of re-ordering greater? 

Further simulation runs were performed in which re-ordering occurred with 
a probability of of 2%, 5% and 10%. The results are given below, with those 
for 1% from the table above included for reference. 

probability Type A Type B non-converging 
of re-ordering (1 noun cat) (2 noun cats) 
1% 50.98 43.14 5.88 
2% 44.16 46.75 9.09 
5% 42.30 48.08 9.62 
10% 38.30 38.30 23.40 

This appears to show a trend of increasing numbers of Type B grammars 
relative to Type A grammars as the probability of re-ordering increases, up 
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to a point. This seems to be coupled with an increase in the number of runs 
failing to converge on a grammar of either type. However, once the probabil- 
ity of re-ordering reaches the 10% point, this trend ceases, and the proportion 

of two-noun category grammars seems to drop again. Also, the number of 

runs failing to converge increases dramatically. However, a chi-squared test 

on the first three conditions, Le re-ordering at a probability of 1%, 2% and 
5%, shows that despite a generally increasing trend in the proportion of two- 

noun category grammars, these differences are not statistically significant 
(p>0.05). 

Looking at the distribution of nouns in two-noun category grammars, we 

can see that the degree of consistency with which noun categories are used 
(i. e. whether a given non-terminal is always used to express either the sub- 
ject or the object of a sentence for a particular grammar) seems to reflect 
this trend, with the number of grammars using their nouns inconsistently in- 

creasing as the probability of re-ordering increases, until the condition where 

re-ordering happens with a probability of 10% is reached, which results in a 
dramatic decrease. 

probability consistently used inconsistently used 

of re-ordering noun categories noun categories 
1% 75.00 25.00 
2% 66.67 33.33 
5% 62.11 38.89 
10% 88.00 12.00 

However, again the differences between the conditions where there is a 1%, 
2% or 5% chance of re-ordering do not reach statistical significance (p>0.05), 

although the 10% condition is significantly different from the 1% condition. 

Increasing the probability of re-ordering also increases the range of possible 
word orders expressed by Type B grammars - whereas at the 1% level, few 
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grammars expressed more than 4 of the 6 available possibilities, by the 10% 

level, most of them express nearly all 6. This result is entirely unsurprising 

-a higher probability of re-ordering increases the probability that a given 

word order will be introduced. 

A final feature to examine when considering the output from simulations 

with different probabilities of re-ordering is the proportion of those gram- 

mars emerging which are "optimal". Optimality is defined as containing 

permutations of only a single top level rule, plus appropriate lexical entries 
for each of the individuals and events in the meaning space. There is no re- 
dundancy: each meaning in the space of possible meanings can be expressed 
in one way and one way only (with the exception of permutations of word 

order). The following table shows the percentage of Type A and Type B 

grammars emerging that can be considered optimal, for different amounts of 

re-ordering: 

probability Type A Type B 

of re-ordering (1 noun cat) (2 noun cats) 
1% 61.54 29.55 

2% 35.29 19.44 

5% 36.29 11.11 
10% 40.62 4.00 

Two things are immediately apparent: that Type A grammars are much more 
likely to show optimal characteristics than Type B, even at very low levels 

of re-ordering, and that in both cases, the chances of an optimal grammar 
emerging decreases as the chance of re-ordering increases. 

Thus it would appear that although freedom of word order in the current sys- 
tem can act as a selective pressure for the emergence of "case-like" grammars, 
its effectiveness is only limited. The general trend of these results seems to be 

that a greater degree of re-ordering results in the emergence of a larger pro- 
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portion of two-noun category grammars relative to the number of one-noun 

category grammars, and a higher chance that those grammars which have 

two noun categories will use them inconsistently, coupled with a decrease 

in the incidence of "optimal" grammars. However, this trend is only weak 

and does not attain statistical significance. Furthermore, it is only the case 
for relatively low levels of re-ordering. Once the probability of re-ordering 

reaches the region of 10% this causes severe disruption to the emergence of 

minimal grammars, with a much larger proportion of simulations failing to 

converge on one type or the other. 

5.4 Modifying the Bottleneck 

As discussed in Sections 5.2 and 5.3, adding a degree of word order freedom 

to the current paradigm does seem to result in an increase in the frequency 

with which grammars containing two distinct noun categories, one used to 

express the subject of a sentence and the other the object, are observed. 
However, these results are far from dramatic - the number of two-noun- 

category grammars is still exceeded by the number of one-noun category 

grammars emerging under all the conditions tested so far, and moreover 
the differences between the different conditions struggle to attain statistical 

significance. Furthermore, when Type B grammaxs do emerge, they are 
generally far from optimal. 

It has already been discussed on page 66 how crucial the presence of a lan- 

guage "bottleneck" is to the emergence of compositional languages in models 
such as these. Simply put, if an agent cannot hope to sample utterances 
covering the entire meaning space during its lifetime, this will have the con- 

sequence that a language in which the meaning of a string can easily be 

predicted from the meaning of its parts will stand a much better chance of 

survival. In the experiments described so far, such a bottleneck is achieved 
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by virtue of the fact that meanings are drawn from the meaning space at 

random, with replacement, meaning that using a meaning space of 100 pos- 

sibilities, and requiring agents to produce 100 utterances per generation, it is 
highly likely that some of the meanings will be used more than once, whilst 
others will not be used at all. Kirby calculates the probability that a given 
agent will observe all possible meanings from the entire meaning space dur- 
ing its time as a learner as being 100! /100" [43]. Even so, this is cleaxly 
not a very tight bottleneck: given that the number of utterances per gen- 
eration equals the size of the meaning space, one would expect that a large 

proportion of the possible meanings will be seen during each generation. Us- 
ing the equation on page 100, we have been able to calculate that for 100 

utterances drawn at random from a meaning space containing 100 items, the 

estimated coverage is 0.6339. Thus we would expect the average agent to 

observe approximately 63% percent of the meaning space during its time as 
a learner. 

As discussed in Section 3.3 Brighton [9] has demonstrated that, under ap- 
propriate circumstances, the tighter the bottleneck, the greater the stability 
of compositional languages relative to holistic ones, and thus the greater the 
degree of selective pressure for the emergence of compositionality. Thus an 
attempt was made to exploit this finding in conjunction with freedom of 
word order in the hope that this would result in the more frequent emer- 
gence of Type B grammars. Previous experimentation to control the size of 
the bottleneck by either reducing the number of utterances per generation or 
increasing the size of the meaning space has proved unfruitful (unpublished 
data), thus the alternative approach taken by Vogt in [85] was applied. In 
this approach, the magnitude of the bottleneck is externally controlled by the 
experimenter by selecting at random a subset of the entire meaning space at 
the start of each generation, and allowing speakers to produce utterances only 
for the meanings within this subset. Additionally, in order to fully exploit the 

statistical effect of the quasi-probabilistic paxser, the number of utterances 
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made per generation was increased from 100 to 1000 to give learners a large 

pool of utterances to sample from. Thus, if the subset size is set at 50, there 

is a fairly high likelihood that in the course of 1000 utterances, most of this 

subset will be observed. ' Crucially, when a given agent makes the transition 

from learner to speaker, a new subset of the meaning space is chosen, from 

which utterances that are presented to the next learner will be drawn. It 

is highly likely that this subset will contain meanings that were not in the 

subset on which the new speaker was taught. This raises the possibility that 

the agent may have to present an utterance for a meaning to which it has 

not previously been exposed. This is important, as the need to creatively 

produce utterances for hitherto unobserved meanings is an important factor 

in the emergence of compositional behaviour (see Vogt [86]). 

In the first instance, in order to assess the impact of different bottleneck 

sizes on the model in general, a range of different subset sizes from 10% to 

100% of the total meaning space were used, in conjunction with the quasi- 

probabilistic parsing algorithm but without any re-ordering. The results are 

shown below: 
4Again, we can use the equation from page 100 to calculate the coverage: this time the 

value of N will be 50, and the value of R, 1000, giving a coverage of 0.999999998, which I 

think we can safely say is approximately 1! 
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subset size Type A 
(i noun cat) 

Type B 
(2 noun cats) 

non-converging 

10% 0 0 100 

20% 73.68 5.26 21.05 

30% 78.95 10.53 10.53 

40% 59.10 27.27 13.64 

50% 45.00 45.00 10.00 

60% 38-10 38.10 23-81 

70% 26-10 39.13 34.78 

80% 30.43 43.48 26.09 

90% 36.36 40.91 22.73 

100% 45.00 25.00 30.00 

What we can see from these results, is that using a very tight bottleneck, 

compositionality does not emerge - where only 10% of the meaning space is 

used by the speaker to instruct the leaxner, all the simulations fail to converge 

on a grammar of either Type A or Type B. Instead the grammars that result 

axe almost completely holistic, similax to those seen in the very early gener- 

ations of the simulations whose results axe described in Section 4.2 (see for 

example the grammar outlined on page 103). Occasional compositional rules 
do occur, as in that example, but they do not persist. This is largely due 

to the high probability that the set of utterances presented to a given agent 

when it is in its learning phase will have very few items in common with the 

meanings it will be required to express when it enters its adult phase. Thus, 

if a generalisation resulting in a small amount of compositionality has been 

made whilst the agent is a learner, first and foremost, it is unlikely that when 
the agent becomes a speaker it will be called upon to produce an utterance 
that requires those compositional rules in its production at all. Furthermore, 

even if such an utterance is required, it will be insufficient for the same gener- 

alisation to be made by the new learner, unless a second utterance that also 

uses the same compositional rule is presented, due to the fact that rules can 
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only be induced by comparisons between utterances. When agents axe each 

using only 10% of the total meaning space, this becomes incredibly unlikely. 
For this reason, it is generally the case that any compositional innovations 

that do occur in a given agent's grammar are not even transmitted to the 

subsequent generation. 

However, with a slightly less restrictive bottleneck, the situation changes 
drastically. With as little as 20% of the meaning space in use, the gram- 

mars which emerge switch from holistic to compositional. Compositionality 

is seen in 100% of cases. This is in some ways not highly surprising, for the 
learning mechanism employed by the simulation is strongly biased towards 

compositionality, as pointed out in [85]. However, what is interesting is the 

way in which this constraint effects the types of grammars seen. Using a 
bottleneck in which agents axe only presented with only 20% of the mean- 
ing space when they are learners results in 73-68% of simulations exhibiting 

a "Type A" grammar, that is to say a grammar possessing a single noun 

category used to express both subject and object of the sentence. This is a 

much higher proportion than that seen previously (recall from page 133 that 

when using the deterministic parser, only 58.33% of simulations converge on 

a grammar with type A characteristics, and that this percentage falls to only 
48.00% when the quasi-probabilistic parser is introduced). Furthermore, the 
Type A grammars that do emerge under the current conditions tend to be 

much more optimal than previously: the proportion of Type A grammars 
composed of just 11 rules - one for each of the five individuals in the mean- 
ing space, one for each of the five actions and one top level rule specifying 
how to combine the strings produced by the other rules (as in the example 

given on page 108) - is a massive 85.71%. By contrast, with the deterministic 

parser, using only 100 utterances per generation and no externally imposed 
bottleneck, as in Chapter 4, only 51.02% of Type A grammars show these 

optimal characteristics. When the quasi-probabilistic parser is used under 
the same conditions as in Section 5.1.3, the figure is fairly similar at 56.25%. 
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Clearly then, this represents a dramatic increase in the proportion of optimal 
Type A grammars emerging. 

However, when using this very tight bottleneck of only 20% of the meaning 

space, the proportion of Type B grammars emerging falls drastically, from 

19.05% with the deterministic parser using only 100 utterances per gener- 

ation and no imposed bottleneck, and 33.00% when the quasi-probabilistic 

parser is introduced, to only 5.26% with 1000 utterances per generation but a 

subset size of 20%. Interestingly, the number of simulations that fail to con- 

verge on either type of grammar is similar under all conditions: 22.62% using 
the deterministic paxser, 100 utterances per generation and no externally im- 

posed bottleneck, 19.00% when the quasi-probabilistic parser is introduced, 

and 21.05% under the present circumstances, with a subset size of 20% but 

with agents making 1000 utterances per generation. 

Relaxing the bottleneck to allow agents to use 30% of the meaning space does 

not appear to reduce this very strong driving force towards compositionality - 
if anything the results axe slightly better than with the 20% bottleneck: there 
is a slight rise in the number of simulations converging on Type A grammars, 
from 73.68% to 78.95%. Of these, 86.67% exhibit optimal characteristics. 
The number of simulations failing to converge on either a Type A or a Type 

B grammar falls from 21.05% to 10.53%. There is also a doubling in the 

number of simulations converging on a Type B grammar, from 5.26% to 
10.53%, which is interesting at this stage given the fact that we have not yet 
introduced any freedom of word order, and therefore that additional pressure 
for distinguishable subject and object noun categories would not be expected. 

Loosening the bottleneck further sees a gradual decrease in the number of 
Type A grammars, as well as a decrease in the number of them that exhibit 

optimal characteristics, in conjunction with an increase in the number of sim- 

ulations failing to converge on either a Type A or a Type B grammar. What 

is again perhaps a little unexpected is an increase in the number of Type B 
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grammaxs emerging. This effect seems to be most prominent for bottlenecks 

where between 50% and 90% of the meaning space axe in use: under these 

circumstances the number of Type B grammars emerging actually exceeds 
the number of Type A grammars. At a subset size of 80%, 43.48% of the 

grammars emerging are of Type B, which is a very similar result to that ob- 
tained with a 1% chance of sentence re-ordering in Section 5.2. Furthermore, 

although Type B grammars rarely display optimal characteristics, and cer- 
tainly never with the high frequency that Type A grammars do, the number 

of optimal Type B grammars does seem to increase notably in this bottleneck 

range. The following table shows the percentage of grammars of each type 

exhibiting optimal characteristics for each bottleneck value: 

subset size Type A 
(1 noun cat) 

Type B 
(2 noun cats) 

20% 85.71 0.00 

30% 86.67 0.00 

40% 69.23 0.00 

50% 77.78 11.11 
60% 62-50 12-50 

70% 66.67 22.22 

80% 28-57 10.00 
90% 62.50 22.22 
100% 66.67 0.00 

In conclusion, it seems that when agents are required to make 1000 utterances 
per generation rather than just 100, the external imposition of a bottleneck 

is most advantageous in the emergence of compositional behaviour. Further- 

more, this effect seems to be most pronounced for very tight bottlenecks: 

when speakers are allowed to use only 20-30% of the meaning space to con- 

verse with learners, there is a very high degree of convergence indeed on 

optimal Type A grammars. For moderately sized bottlenecks, for example 
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where between 50% and 90% of the meaning space is available to the learner, 

the optimality of the Type A grammars decreases, as does the frequency of 
their emergence, and perhaps slightly unexpectedly, frequency and optimal- 
ity of Type B grammaxs emerging increases. It seems that a tight bottleneck 

favours Type A grammars, and a looser one, Type B. 

5.4.1 A tighter bottleneck in conjunction with freedom 

of word order 

The next investigation was to determine what effect a degree of word order 
freedom will have if used in these revised conditions. We have shown in Sec- 

tion 5.4 that the introduction of an externally imposed bottleneck greatly 
favours the emergence of compositional behaviour. In the absence of word 

order freedom, this tends to result in large numbers of simulations converging 

on optimal grammars of Type A. What will happen when we add variability 

of word order into the mix? Will the putative addition of pressure for dis- 

tinguishable subjects and objects cause the optimal Type A grammars to be 

replaced by optimal ones of Type B? And what of the slightly unexpected 

effect of looser bottlenecks on the emergence of Type B grammaxs? Will this 
be reinforced or reduced by the introduction of word order freedom? In order 
to investigate these questions, the experiments described in Section 5.4 were 
re-run, again using 1000 utterances per generation, but this time including a 
1% probability of re-ordering as described in Section 5.2, the results of which 
are described below. 

Unfortunately, problems occurred with laxge numbers of simulations failing 

to complete in a reasonable timeframe. The reason for this was not quite 
the same as previous occurrence of this phenomenon, seen in Section 5.1.3, 
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which was due to rules of increasing string length as described by Smith in 

[70]. Instead it occurred even when there were just a few extra characters in 

the sentence level strings, for example: 

S/[P, X, Y] ) 8/X, n, a, 8/Y, a, o, 15/P 

This causes an explosion in the number of rules in a grammar, because of 
the sheer number of combinatorial possibilities: when a grammar contains 

only 3 non-terminals in its sentence-level rules, there axe only 6 possible 

permutations, thus the use of re-ordering can only potentially add six rules 
to the grammar. However, if there is a single terminal character in the rule, 
this already increases the number of permutations to 24. Adding another 
terminal character increases the number of permutations to 120, and for the 

example rule given above, where there are 7 items in the rule in total, the 

number of possible permutations is 5040! 

Why is this a problem under the current conditions when it was not when 

re-ordering was used previously at only 100 utterances per generation? The 

answer is simply because of the larger number of re-ordering operations that 

are likely to be made in any given generation: if there is only a 1% probability 

of a re-ordering event occurring, and only 100 utterances per generation, it 

is likely that there will only be one or two re-ordering events per generation. 
However, with 1000 utterances per generation, there could easily be 10 or 

more in every generation, which will cause a large number of additional rules 
to be added to the grammar. The severity of this problem seems to increase 

dramatically when the bottleneck is relaxed: for bottlenecks of 50% and 60%, 

the number of simulations successfully completing was so few, that it was 
deemed impractical to run any simulations for the bottleneck sizes beyond 

this. This is unfortunate, because as previously noted, it is simulations that 

axe in the range where 60% to 90% of the meaning space is in use that seem to 

result in the largest number of Type B grammars, at least when re-ordering 
is not present. The table below shows the percentage of simulations that had 
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to be terminated for a variety of different bottleneck sizes: 

subset size percentage of simulations 
terminated 

20% 30.77 
30% 46.15 

40% 26.92 

50% 57.69 
60% 53-85 

Of those simulations which did run to completion, the proportion which 

resulted in grammars of Type A, Type B or which did not converge for each 

of these bottlenecks are shown below: 

subset size Type A 
(i noun cat) 

Type B 
(2 noun cats) 

non-converging 

20% 55.56 27.78 16.67 

30% 50.00 42.86 7.14 

40% 42.11 47.37 10.53 

50% 54.55 27.27 18.18 

60% 58.33 33.33 8.33 

It is very difficult to draw any firm conclusions from these results, due to the 

low numbers of simulations actually completing. However, it does seem pos- 

sible to tentatively suggest that there has been a move towards the emergence 

of Type B grammars. For tighter bottleneck values, the numbers of simula, 
tions failing to converge on a grammar axe very similar with and without the 

introduction of re-ordering events. However, the distribution between Type 

A and Type B grammars is quite different: whilst for a bottleneck where the 

subset size is only 20%, without re-ordering only 5.26% of grammars emerg- 
ing are of Type B compared to 27.78% when the probability of re-ordering is 

set at 1%; for a bottleneck of 30%, these figures axe 10.53% and 42.86%; for 
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a bottleneck of 40% they are 27.27% and 47.37%. However, once the bottle- 

neck is relaxed further than this, the proportion of Type B grammars starts 
to fall again. As when there is no re-ordering, of the Type A grammars that 
do emerge, a very large percentage of them exhibit optimal characterstics 

when the bottleneck is very tight, but this falls off rapidly as the bottleneck 
is relaxed (with the exception of the value recorded when a subset size of 60% 
is used - presumably this is attributable to the low numbers of simulations 
actually completing). None of the Type B grammaxs that emerge display 

optimal characteristics, as can be seen from the following table: 

subset size Type A 
(1 noun cat) 

Type B 
(2 noun cats) 

20% 70.00 0.00 

30% 85.71 0.00 
40% 50.00 0.00 
50% 16.67 0.00 

60% 85.71 0.00 

To summarise, we can now compaxe the various conditions we have exper- 
imented with to date to determine which of them are most favourable for 

the emergence of Type B grammars. The following table shows the results 
from each of the different experimental conditions so far: the original model 
based on Kirby's [43] and using the deterministic parser, the same model 
with the quasi-probabilistic parser substituted for Kirby's deterministic one, 
the effect of a 1% probability of sentence re-ordering and finally the effect of 
an externally imposed bottleneck added to the probabilistic parser and 1% 

chance of reordering. 
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Type A 
(1 noun cat) 

Type B 
(2 noun cats) 

non-converging 

deterministic 58.33 19.05 22.62 

probabilistic 48.0 33.0 19.0 

with 1% re-ordering 50.98 43.14 5.88 

with 1% re-ordering 42.11 47.37 10.53 

+ 40% bottleneck 

Clearly from these results it is possible to say that we have been successful in 

our aim to promote the emergence of grammars with distinguishable subject 

and object categories, effecting a rise from 19.05% under the conditions of 
the original model to 47.37% when using the quasi-probabilistic parser, with 
1% re-ordering and an imposed bottleneck of 40% of the meaning space. 
However, it seems that it is not only the presence of alternative word orders 
that results in this change: as previously noted, simply switching from the 

deterministic to the quasi-probabilistic parser is sufficient to cause nearly a 
14% increase in the frequency of emergence of Type B grammars. Addition- 

ally, it has been noted that the introduction of a very loose bottleneck also 

seems to promote the emergence of Type B grammaxs, even in the absence 

of re-ordering, and despite the fact that in other respects it is disruptive to 

the emergence of compositionality (in that the number of simulations failing 

to converge on a grammar increases, and the percentage of those grammars 

which do emerge displaying optimal chaxacteristics decreases). With a very 

weak bottleneck where 80% of the meaning space is in use, 43.48% of gram- 

mars emerging are of Type B- this is actually a very similar figure to that 

obtained when re-ordering of sentences was first introduced. We will touch 

upon this point again later on in Section 5.5. 
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5.5 Discussion 

The current work has shown that it is possible for a primitive case system 
(i. e. separate noun forms to represent subject and object) to emerge from a 
population of learners equipped with a simple learning algorithm for gram- 
mar induction, but no language specific knowledge. When the initial system 
is changed to incorporate a quasi-probabilistic parsing and production algo- 
rithm, as opposed to the original deterministic one, and a degree of word 
order variability is included, where components of a sentence are re-ordered 
with a probability of 1%, the number of simulation runs exhibiting such a 
dual-noun system of case increases from 19.05% to 43.14%. Imposing an 
external bottleneck which limits agents to only 40% of the meaning space 
results in a further increase to 47.37%. Thus, the existence of variability in 
the word ordering of sentences appears to act as a pressure for the emergence 
of such languages. 

The type of language emerging also has an effect on the range of word-orders 
that a language will permit. Where there are two separate noun categories, 
one for the subject and one for the object, any of the six permutations of 
subject, object and verb are possible. However, in those populations in which 
this form of "case" does not emerge, the language need not be restricted to 
just a single word order, but to a very specific subset of those available: those 

which are easily distinguishable from each other by the positioning of other 
elements of the utterance. 

This is a little strange because such a pattern of restricted word order is 

quite unlike natural language, where it is generally the case that word order 
is either fairly strict, as in English, or allows a full range of possibilities, 
e. g. languages such as Turkish and Serbo-Croatian [69]. Even when lan- 

guages do exhibit a restricted set of word orders, such as Italian, which is 

predominantly SVO, but in which OVS, VSO and VOS are also relatively 
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commonplace, this subset often includes pairs of word orders for which other 

cues are required to specify subject and object. Interestingly, Italian does 

not have a particularly rich case structure, and these alternative word orders 

are generally only allowed when the meaning can be disambiguated from the 

context. Of course, in natural language, mechanisms other than the need 
to disambiguate are at work in the development of case. Otherwise there 

would be no reason why languages should exhibit completely fixed word or- 
der, and patterns such as that found in Italian would be somewhat unlikely. 
This may perhaps be related to sentence processing demands: as mentioned 
in Chapter 3, Lupyan and Christiansen [53] have done studies using simple 
recurrent networks, which demonstrate that certain word orders are easier 
to learn than others. In paxticulax, SVO and VSO are more readily acquired 
than SOV, but the addition of case maxkings aids acquisition of the latter. 
Therefore it is possible that case markings may originally have appeared in 

order to facilitate the acquisition of fixed word order languages whose under- 
lying word order is difficult to learn, but that their existence might enable 

more freedom in the word order used. These considerations are clearly not 
an issue in the current system, as all possible word orders are equally easy 
to learn and equally likely. 

So, the introduction of word order freedom into the current system does 

appear to create a selective pressure for the emergence of case. However, 

it would appear that this is not a very strong pressure: Firstly, whilst we 
are able to increase the proportion of grammars emerging with two noun- 
categories, we still only just manage to exceed the number of grammars with 
only a single noun category, meaning that this type of grammar is still per- 
fectly viable, even in the face of variable word order. Secondly, "case" is 

promoted simply by the use of a probabilistic rather than a deterministic al- 
gorithm for sentence generation, by mechanism(s) unclear, and also seems to 
be favoured by the imposition of a weak external bottleneck of the order that 

would normally be detrimental to the emergence of compositionality. Fur- 
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thermore, increasing the amount of word order freedom does not significantly 
increase the emergence of two-noun-category grammars. Even the existence 
in a grammar of both members of a supposedly "mutually exclusive pair" of 

word orders is not sufficient to guarantee the emergence of such a grammar. 

The proposed mechanism by which adding word order freedom was hoped 

to promote the emergence of case was in order to disambiguate potentially 

conflicting word orders. However, the system as it currently stands does not 
include any requirement for agents to understand each other, so in reality, 
there is no need for disambiguation: if the re-ordering produces an utterance 
that can be confused with a meaning other than that intended, rules for that 

word ordering are simply not acquired. There is nothing within the system 
that requires the speaker to make itself understood or the learner to be able 
to understand. It is simply a case of whether utterances can be parsed or not 

- if they can, then no action is taken, even if the wrong meaning is returned 
by that parse, and if they cannot then leaxning occurs. This means that if 

a grammar currently has just a single noun category, and if by invocation 

of the re-ordering procedure, the speaker happens to transpose the subject 
and object, the learner will just assume that the speaker meant something 

other than what was truly intended. There will be no pressure on speakers to 

express themselves in a way that learners will not misinterpret, such as using 
different noun forms for each individual to indicate whether it is subject or 
object of the sentence. 

Thus it seems that the need to disambiguate conflicting word orders is not 
a factor at play here in the emergence of Type B grammars. In that case, 
why axe they favoured by the introduction of re-ordering? Recall that in the 

end of Section 5.4.1 that we mentioned that the emergence of Type B gram- 
ma, rs is promoted simply by introduction of the quasi-probabilistic parsing 
algorithm, and again further when an external bottleneck is imposed, but 

only if this is a relatively weak one which in all other respects would be 
disruptive to the emergence of compositionality. So perhaps it is the case 
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that Type B grammars axe in fact the result of some degree of breakdown 

in compositionality, that occur when conditions make it difficult for a truly 

compositional grammar to emerge? This would certainly appear to be true 

of the first two conditions in which their emergence is promoted: the quasi- 

probabilistic parser represents a breakdown between the one-to-one mapping 

of meanings and strings, which Smith [70] has shown is so crucial to the 

emergence of compositional behaviour, and the size of bottlenecks at which 
Type B grammars start to predominate are the more relaxed bottlenecks at 

which compositionality is less favoured. So perhaps in the case of freedom 

of word order, rather than being the introduction of potentially ambiguous 

utterances at play in the emergence of Type B grammaxs, it may just be the 

disruptive effect of re-ordering sentences making 4t more difficult for agents 

to converge on a compositional grammar and thus resulting in a suboptimal 

solution. In Chapter 6 we will investigate this hypothesis further and see 

whether the introduction of measures that require agents to resolve ambigu- 

ous utterances makes a difference to these results. 

The other notable point about the results achieved thus far is that the "case 

system" that emerges in the current study is far from representative of the 

type of case found in natural languages, which normally takes the form of 
inflectional affixes. In the present results, subject and object forms of the 

same noun are completely unrelated. Whilst this might occur for certain 
irregular word-forms that are very frequently used in a given language (such 

as "we" and "us"), it is not the norm. In Chapter 7 we will attempt to extend 
the current system to generalise across any chance regularities that may occur 
between subject and object forms of a given noun, or across different nouns 

of the same case, in the hope that a truly inflectional case system may be 

derived. 
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5.6 Summary 

In this chapter, we have described modifications to Kirby's Iterated Learn- 

ing Model which enable agents to acquire and productively use multiple word 

orders. We have then introduced a degree of word order variability into the 

system to investigate what effect this has, if any, on the type of grammaxs 

emerging. It was discovered that this does indeed result in an increase in 

the number of "Type B" grammars, i. e. those with two distinct noun cat- 

egories, relative to the number of grammars of "Type A". The imposition 

of an external bottleneck on the proportion of the meaning space to which 

agents are exposed as learners also facilitates the emergence of "Type B" 

grammars under certain conditions. However, due to the fact that there is 

no requirement for agents to understand each other, the pressure imposed 

by the existence of multiple word orders does not seem to be as strong as it 

might be. In Chapter 6 we will attempt to address this by making changes 

to the system whereby the speaker is required to make itself understood, in 

the hope that this will cause a further increase in the incidence of case-like 
behaviour. 



Chapter 6 

Rejecting Ambiguous 

Utterances 

In Chapter 5 we demonstrated how the occasional re-ordering of utterances 

spoken by an agent can be used to create a selective pressure for the emer- 

gence of grammars exhibiting a primitive form of case. By this we mean 

grammars in which the rules determining the structure of a sentence use two 

distinct noun categories, one to express the subject, and the other for the 

object. We have termed a grammar of this type a "Type B" grammar, and 

noted that it allows complete freedom of word order: rules for any of the 

possible permutations of subject, object and verb order may be added to the 

grammax if such an utterance is heard. Conversely, for a "Type A" grammar, 
in which the rules for constructing a sentence all contain instances of only a 

single noun category used to express both subject and object, different word 

orders are permissible, but they are constrained to those that can be eas- 
ily distinguished from one another by the position of the non-noun elements 
(i. e. the verb, and any top level terminal characters). 

It was also discussed how the pressure created by this intervention appeared 

163 
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to be a relatively weak one, as the presence of re-ordered sentences in the 

languages being spoken by agents during the course of a simulation did not 

seem to guarantee the emergence of such case-like behaviour. Although their 

introduction certainly does result in an increase, it is noted that simply 

changing the parsing algorithm used by agents in the simulation so that it is 

quasi-probabilistic rather than deterministic is itself sufficient to promote the 

behaviour being sought to a certain degree. Further to this, increasing the 

frequency with which utterances are re-ordered, above and beyond the initial 

setting of a 1% probability does not produce a significant further increase. 

And finally, experiments with external manipulation of the transmission bot- 

tleneck showed that tight bottlenecks favouring the emergence compositional 
behaviour seem to swing the output of simulations almost totally in favour 

of Type A grammars, even in the presence of re-ordered sentences. However, 

looser bottlenecks, which axe otherwise detrimental to the emergence of com- 

positionality, do seem to favour Type B grammars. Unfortunately though, 

the absolute proportion of such grammars is only slightly greater than under 

circumstances where the bottleneck is not manipulated. 

6.1 Ensuring the Presence of Ambiguous Word 

Orderings 

The logic behind the introduction of occasional re-ordering of sentences is 

that this will create a pressure for Type B grammars by introducing ambigu- 
ity. When a chance re-ordering event occurs, the learner that witnesses this 

event will add rules to its grammar for parsing and creating sentences with 
that alternative word order. Under certain circumstances, this might lead to 

utterances where it is not possible to determine which noun was intended as 
the subject of the sentence and which the object, unless each noun exists in 

two different forms. 
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However, the vast majority of "re-order" operations do not result in any 

ambiguity at all - as already noted, even Type A grammars tolerate some 
freedom of word order: several rules for constructing sentences with the words 
in different orders are perfectly permissible as long as they can easily be dis- 

tinguished from each other. If the hearer can tell with ease which rule has 

been applied, then it will have no trouble interpreting the sentence correctly. 
Therefore, as long as any rule induced from a re-ordered utterance can be 

distinguished from the other rules currently in the grammar, no ambiguity 

results. There is only one circumstance under which ambiguity is the out- 

come, in fact: when the word order observed is exactly the same as one 

already encompassed by the agent's grammar, except with the subject and 

object inverted. Obviously, the greater the range of word orders a grammar 

already contains, the higher the probability that a re-ordering event will re- 

sult in such a rule, but it still remains the case that regardless of whether a 

grammar is of Type A or Type B, 50% of the possible word orders can co- 

exist in it without resulting in any ambiguity at all. Thus their introduction 

by a re-ordering event is not not likely to result in a selective pressure for 

the emergence of case. If an agent has not yet leaxnt any alternative word 

orders, then re-ordering will result in ambiguity in very few cases: take for 

example a sentence rule which contains just two nouns and a single verb, but 

no other characters, such as top-level terminals. This means that there are 
five alternative permutations of the elements of the sentence which could be 

created by a re-ordering event: only one of these will result in ambiguity - 
that in which the subject and object have been transposed. 

In order to try and increase the pressure for Type B grammars that might 
be generated by re-ordering, experiments were carried out in which it was 
guaranteed that it will result in ambiguity. This was achieved by creating 

an "invert" procedure, to be used in the place of the "re-order" previously 
described, which identifies the substrings associated with the subject and ob- 
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ject of the sentence, if such substrings exist, ' and swaps their positions. And 

rather than invoking this operation with a fixed probability, p, instead an 

absolute number of utterances to which it will be applied in each generation 
is specified. Thus, during its period as learner, each agent can be guaranteed 

to hear a certain number of utterances in which the meaning of the string 

according to the prevailing grammar is the opposite of what it appears to be. 

The experiments described in Section 5.2 were repeated, with agents using 
the quasi-probabilistic parser, and making 100 utterances per generation, but 

rather than invoking the "re-order" operator with a probability of 1%, they 

have the "invert" procedure applied to a fixed number of their utterances. 
In the simulations described below, this was set to one utterance per gener- 

ation in order to give some degree of comparability between the experiments 
described in Chapter 5 and the current ones. 

Thus it is hoped that by focusing on those transformations that will produce 

utterances that axe ambiguous, then if the re-ordering introduced in Chap- 

ter 5 is indeed having the anticipated effect, (i. e. creating a selective pressure 
for the emergence of Type B grammars, which use two distinct noun cate- 

gories to express subject and object of a sentence), this intervention should 

result in an even further increase in the behaviour being sought. 

6.1.1 Unexpected results 

However, this would appear to be far from the case. What is apparent im- 

mediately is the extent to which this simple step causes a significant decrease 

in the probability of convergence on a grammar of either type. Not only is 

there an increase in the number of simulations that need to be terminated 
(usually due to the accumulation of multiple very long rules containing many 

'In rules where either subject or object have not yet been lexicalised, i. e. those rules 
which are still holistic in part, no action is taken. 
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repeated segments, similar to those described in Sections 5.1.1 and 5.1.2), but 

also the number of runs which fail to converge according to our definition 

(i. e. those which do not arrive at a consensus regarding the categories being 

used to make up a sentence) also soars dramatically. These runs make up 

only 5.88% of the total under the conditions described in Section 5.2, where 
there is a 1% chance of re-ordering for each utterance, but rise to 44.62% 

where inversion is guaranteed in 1 utterance per generation. Furthermore, of 
those simulations which do converge, far from exhibiting an increase in the 

proportion of Type B grammars emerging, they actually appear to show a 

significant decrease. When there is a 1% chance of re-ordering, the number 

of grammars exhibiting two noun categories is roughly equal to the number 

of those with only one, but when one utterance per generation has had its 

subject and object inverted, there are only half as many two-category gram- 

mars as one-category ones. The following table shows the percentages of each 

grammar type emerging under each condition: 

Type A 
(I noun 
category) 

Type B 
(2 noun 
categories) 

non-converging 

with 1% probability 50.98 43.14 5.88 

of re-ordering 
per utterance 

with inversion of 36.92 18.46 44.62 

subject and object 
(one utterance 
per generation) 
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6.1.2 Why is this so? 

So why does the guaranteed presence of utterances in which the subject and 

object have been inverted not promote the emergence of Type B grammars? 
And why, in fact, does it result in a decrease in their emergence? As discussed 

previously, it was hoped that the introduction of re-ordered sentences in gen- 
eral, and those where subject and object have been transposed in paxticulax, 
would promote case-like behaviour by creating a need to disambiguate po- 
tentially conflicting word orders. Why is this not occuring? 

The failure seems to be due to the fact that the current system does not 
include any requirement for agents to understand each other. Thus, such 
disambiguation is unnecessary: an agent hearing an utterance which can be 

parsed by its grammar, regardless of the meaning returned, will accept that 

utterance quite happily and not take any further action. If the meaning 
returned by the parse is incorrect, this will have no bearing whatsoever; 
the hearer will not make known to the agent producing the string that the 

message has been misinterpreted, nor will it attempt to add the string in 

question to its own grammar in association with the intended meaning in 

any way. Thus there is no pressure on speakers to produce non-ambiguous 
utterances. 

Furthermore, because the alternative meaning for the string in question will 
not be added to the agent's grammar, it will not be propagated from one 
generation to the next. Such ambiguities can only exist when they arise 
de novo, from a re-ordering event for example. Thus, rather than promote 
the emergence of grammars with two distinct noun categories, pairs of rules 
allowing subject and object to occupy interchangeable positions in a sentence 
can in fact only exist in such grammars. In grammars with only a single noun 
category, they are lost as soon as they appear, and there is no pressure for 

the emergence of second category. 
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To put it simply: the presence of different word orders in a grammar does 

not have any effect on the number of noun categories a grammar contains, 
but rather the number of noun categories in existence constrains the range 

of word orders that will be acquired. 

Effectively then, the introduction of word order freedom into the system as it 

is currently will result in very little pressure for the emergence of two separate 

noun categories. It seems that the effects observed in Chapter 5 were thus 
brought about by some other mechanism. It would seem likely that this is 

related to the fact that merely changing the parsing algorithm that agents 

employ from deterministic to probabilistic also causes an increase in Type B 

behaviour. 

In many respects, Type B grammars can be considered suboptimal - they are 

a failure of a simulation to converge on a tidy minimal grammar with which 
it may express the meaning space required. A non-deterministic parsing 

algorithm is disruptive. It destroys the one to one correspondence between 

signal and meaning that Smith [70] found to be so crucial for the emergence of 
language-like behaviour. Thus it is perhaps no surprise that switching from a 
deterministic parser to the quasi-probabilistic one described in Section 5.1.3 

results in an increase in the sub-optimal behaviour that we refer to as Type 

B grammars. 

Presumably then, the introduction of word order freedom, as another disrup- 

tive influence, is propagating this behaviour further for a similar reason. 



CHAPTER 6. REJECTING AMBIGUOUS UTTERANCES 170 

6.2 A Learner That Does Not Tolerate Am- 

biguity 

Attempts were made to create pressure for the emergence of Type B gram- 

mars in the presence of word order freedom by changing the model to se- 
lect against grammars that contain ambiguities. The most obvious strategy 

seemed to be to have the leaxner reject any string that can be parsed by its 

grammar to yield a meaning other than that intended by the speaker, thus 
forcing speakers to produce unambiguous utterances. When a string is re- 
jected, the speaker must find an alternative way of expressing that meaning, 

and the counts associated with the rules that produced the original string 

are not incremented. Thus the experiments performed in Section 5.2 were 

repeated once again, with agents using the quasi-probabilistic parser, pro- 
ducing 100 utterances per generation and with 1% probability of re-ordering 

occurring. However, when paxsing utterances, learners compare the result 

of that parse with the intended meaning and if it is incorrect, the speaker 
is requested to produce another utterance for that meaning. The following 

table shows the percentage of simulations resulting in Type A grammaxs, 
Type B grammars, and also those failing to converge on either under these 

conditions. The results previously obtained in Section 5.2, where ambiguous 

utterances are not rejected, are also included for comparison. 

Type A Type B non-converging 
(1 noun cat) (2 noun cats) 

ambiguity tolerated 50.98 43.14 5.88 

ambiguity rejected 1 40.84 1 22.54 1 36.62 

Clearly then, this intervention is having a destabilising effect: the number 

of simulations failing to converge on a grammar has increased more than 

six-fold, and there has been a noteable decrease in both the number of Type 
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A and Type B grammars. Interestingly, Type B grammars seem to have 

suffered the greater losses, despite their being the type of behaviour that 

these changes were intended to promote. 

There is also a decrease in the number of optimal grammars emerging (i. e. those 

with a single top-level rule for creating sentences, plus one rule for each of 

of the events and individuals in the meaning space, or in the case of Type B 

grammars, one rule for each of the events and two for each of the textslindi- 

viduals): 

Type A Type B 
(I noun cat) (2 noun cats) 

ambiguity tolerated 61.54 29.55 

ambiguity rejected 13.79 0.00 

And of those grammars containing two noun categories, the chances of each 

of them being used consistently to express either subject or object of the 

sentence in all the rules of a given grammar is hugely decreased, from 75% 
in the former case to 18.75% in the latter. 

Figure 6.1 shows the relative proportions of Type A and Type B gram- 
mars under the two different conditions (ambiguity tolerated vs ambiguity 
rejected). What is clear immediately from this diagram is that, whilst the 

split between the two is approximately 50: 50 when ambiguity is tolerated, 
there is a slight change in favour of Ty'pe A grammars when agents reject 
any string that, according to the prevailing grammar, yields a meaning other 
than that intended. Thus it seems that rejecting utterances which may be in- 
terpreted ambiguously is actually having the opposite effect to that intended. 
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Figure 6.1: The relative proportions of simulations resulting in Type A and 
Type B grammars under conditions where a) ambiguity is tolerated and b) 

ambiguity is rejected by the learner, and the speaker is prompted to produce 

an alternative string for the required meaning. It can be seen that rejecting 

ambiguity causes a slight swing towards Type A grammars. 

6.2.1 An increase in redundancy 

How might be the decreased stability amongst the grammars emerging from 

these simulations be explained? It seems to be because the changes we have 

made promote and prolong the existence of redundancy. When an utterance 
is produced by the speaker which is wrongly interpreted by the hearer (per- 

haps caused by the invocation of the re-order procedure resulting in trans- 

position of subject and object in a rule using the same noun category for 

both) it is rejected. This causes the speaker to scan its grammar for another 

way of saying the same thing (more specifically, perhaps a rule which uses 
different noun categories to express subject and object). However, if there 
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is no other way of producing that meaning, it is forced to invent a string 
for it, thus adding new redundancy to the grammar. This of course means 

that new strings are constantly being introduced to the grammar when they 

would not otherwise be. And if another utterance does exist, this will have 

the effect of augmenting the counts on the rules used to produce this second 

utterance when they would otherwise not be augmented. This would be fine 

if the first utterance (and thus the rules used to produce it) were always likely 

to be misinterpreted by the heaxer, and thus always rejected in favour of the 

second utterance, but in a situation such as the hypothetical one described 

above, this has only occurred due to the chance inversion of the subject and 

object in a re-ordering event. Thus, in the majority of instances where the 

rules used to create this particulax utterance are used, the hearer will be 

able to correctly interpret the string without difficulty. As a result, forcing 

the speaker to produce a new utterance for strings which are misinterpreted 

merely has the effect of introducing and prolonging the existence of multiple 

ways of producing a string for a given meaning, slowing convergence, and in 

some cases preventing it completely due to a breakdown of the one-to-one 

correspondance between meaning and strings that Smith has shown to be so 

crucial. 

6.2.2 Greater intolerance by means of a penalty 

In an attempt to overcome this, a penalty was applied to each of the rules 
that the speaker used to create the utterance that was misinterpreted by the 
hearer. This was done by decrementing the counts on those rules by a fixed 

amount. This amount is specified parametrically. In the simple case, it is 
just 1. The table below shows the number of simulations that converge on 
Type A grammars, Type B grammars, or that fail to converge on a grammar 

of either type when this penalty is applied. The results of the experiment 

performed in Section 6.2, where ambiguous utterances are rejected but no 
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penalty is applied, axe included for the purposes of compaxison. 

Type A Type B non-converging 
(1 noun cat) (2 noun cats) 

no penalty 40-84 22.54 36.62 

penalty 43.24 16.21 40.54 

It appears that the introduction of a penalty does not have much of an 

impact - the percentage of simulations that fail to converge remains fairly 

similar and the number of the grammars containing two noun categories 

as opposed to just a single one actually shows a further decrease. Clearly 

then, penalising the rules which have produced these ambiguous utterances 

is not having the desired effect (i. e. creating a pressure for the emergence 

of distinguishable subject and object categories). Could this be because the 

penalties are not harsh enough? Decrementing the counts of the offending 

rules by just 1 is probably not sufficient to cause them to be removed from 

the grammar altogether, but may serve to reduce their dominance somewhat. 

This might have the result of further encouraging the redundancy discussed 

above. Therefore this experiment was repeated with a range of penalties of 

different sizes to investigate the impact of this. 

Figure 6.2 shows the number of simulation runs converging on either type 

of grammar, as a percentage of runs completed, for a variety of different 

penalties. 

This does not appear to be very promising - an increased penalty size does 

not appear to correlate with a decrease in the number of simulations failing 

to converge on either type of grammar. In fact, quite the opposite - although 
there is a slight increase in the number of simulations converging for a small 

penalty (the optimum appears to be axound 2), the overall trend is downward, 

especially for very large penalties (although not at a statistically significant 
level) - Generally, the percentage of simulations converging seems to fluctuate 
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Figure 6.2: The number of simulations resulting in a converged grammar, 

either of Type A or Type B, for a range of different penalty values, as a per- 

centage of runs completed. 

around the level of 60%, which is far inferior to the degree of convergence 

seen when ambiguity is tolerated, but other conditions are similar (that is, 

using the quasi-probabilistic grammar, and with re-ordering at a probability 

of 1%), where it occurs in 94.12% of cases. 

11rning our attention to the behaviour of those simulations which do con- 

verge on a grammar, Figure 6.3 shows the relative percentages of simulations 

resulting in a grammar containing just single noun category used to express 
both subject and object of the sentence (Type A), and those with two dis- 

tinct non-terminal categories, of which, for any given sentence, one is used 
to represent the subject and the other the object (Type B), respectively, for 

a range of different penalty values. 
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Figure 6.3: The relative proportions of runs resulting in Type A and Type 

B grammars as a percentage of those simulations which do converge on a 

grammar. 

It would appear that, although the introduction of a penalty in the first place 

appears to cause a slight increase in the number of Type A grammars, when 
the value of that penalty increased there is a slight swing towards simulation 

runs exhibiting Type B behaviour. At least for moderate values. With 
further increases in the size of the penalty, the swing is back towards single- 

noun category grammars. By the time a value of 20 is reached, (the highest 

tested here) the vast majority of those simulations which do converge on a 
grammar are of Type A. The optimal penalty value seems to be somewhere 
between 5 and 10. 

Disappointingly though, even for those runs using the optimum penalty, 
the proportion of simulations converging on a Type B grammar never even 

reaches 50%, and is at its very best only similar to that achieved when am- 
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Figure 6-4: The number of simulations resulting in Type A grammars for a 

range of different penalty values, as a percentage of the total number of runs 

completed. 

biguity is not rejected at all, merely ignored. 

Looking further at the numbers of Type A and Type B grammars emerging 

as a proportion of all completed simulations (as opposed to just those which 
converge) as in figures 6.4 and 6.5, we can see that the numbers of both 

types of grammar show an overall decreasing tendency. What is noteworthy 
though, is what happens in the region of the optimal penalty value mentioned 
before (between 5 and 10): whilst the number of Type B grammars do not 
appear to be increasing greatly in this range, there is a slight decrease in the 

number of Type A grammars. 
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Figure 6.5: The number of simulations resulting in 7ýpe B grammars for a 

range of different penalty values, as a percentage of the total number of runs 

completed. 

6.2.3 Reclassifying the output of the simulations 

So it would appear that neither rejecting ambiguity nor the introduction of 

a penalty for rules that produce ambiguous utterances is effective in creating 

a selective pressure for the emergence of case. Instead these measures seem 
to cause a great increase in the number of simulations that do not converge 

on a compositional grammax of either Type A or Type B. In particular, in 

the range of the optimal penalty value of 5 to 10, there seems to be a slight 

move away from Type A grammars, but this is not reflected in the number 

of Type B grammars emerging, and instead, a greater number of simulations 
fail to converge on either. But what of these unconverged grammars? Can 

examining them shed any light on the situation? 
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The tale they have to tell is fairly interesting, because many of them only 

contain slight irregulaxities, meaning that it is still possible to classify them 

as exhibiting either Type A or Type B characteristics. To elaborate, our 
definition of convergence states that of the top level rules in a grammar, all 
those that axe fully lexicalised should show consistency in the non-terminal 

category they use for the different parts of speech. So, for example, if cate- 

gory 3 is used to express the verb in one top-level sentence rule of a grammax, 
it must be used in all of those which contain a lexicalised verb category or 
the grammar will be considered not to have converged. Similarly, if there axe 

any terminal categories at this level, then the same terminal categories must 

appear in all the fully lexicalised tol>-Ievel rules of the grammar. However, 

in the case of many of the non-converged grammaxs resulting from simula- 
tions where ambiguity has been rejected, there axe often a number of fully 

lexicalised rules that contain the same non-terminal categories but differ in 

the number and/or type of any additional terminals, as is the case for the 

two top-level rules in the example given below: 
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S/[P, X, Yl 5/X, x, 2/P, 3/Y 

S/[P, X, Yl 5/X, x, n, c, 2/P, 3/Y 

2/sees d, i 

2/kisses p 
2/hates 0 
2/loves i) U, 9 
2/adores k 

3/mary r 
3/anna x, n, c, a, x 
3/john a, x, k, n, y, e 
3/kath a 
3/pete s, d 

5/pete d 

5/kath x, n, c, s, g 
5/anna r, x, d 

5/john t 
5/mary n, y, e, g 

Furthermore, even in those grammars in which all the lexicalised top level 

rules do not contain the same non-terminals, there is still often consistency 

over whether there is a single non-terminal used to express both subject and 

object of the sentence, or two. Thus, in the simple case where ambiguity is 

rejected but no penalty is applied, 29 of the 78 simulations run converged 

on a grammar of Type A, with only a single noun category, and 16 resulted 
in a Type B grammar, with two noun categories. 26 simulations resulted 
in did not converge on either type of grammar, according to the definition 

above. However, of these 26,10 are grammars which have the same three non- 
terminal categories in all fully lexicalised toplevel rules, and merely differ in 

the additional terminal symbols found in them. A further 3 show consistency 
in the type of the top level rules, even if the categories used are not the same. 
The remaining 13 are mixed - they contain top level rules of both types. 
Thus it is possible to go back over the results of the previous simulations, 
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Figure 6.6: The percentage of simulations resulting in grammars containing 

only Type A rules for a vaHety of different penalty values. 

and reclassify them: we shall consider any grammar that contains only Type 

A rules (i. e. those containing a single noun category used for both subject 

and object of the sentence) to be of Type A, nd similaxly, any that only 

contain Type B rules (with two distinct non-terminal categories for nouns, 

one used for the subject of the sentence and the other for the object) will be 

considered to be of Type B. Any grammar that contains rules of both Type 

A and Type B will be classified as "mixed7. 

The results of this re-classification are displayed in figures 6.6 to 6.8, which 

show how the numbers of Type A, Type B and mixed grammars emerging 

vary with the size of the penalty. 

These results appear to show that the number of simulations resulting in 

grammars with only Type A rules does not vary much as the size of the 
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Figure 6.7. The percentage of simulations resulting in grammars containing 

only Type B rules for a variety of different penalty values. 

penalty changes, although it does decrease a little for middling penalty lev- 

els, being at its lowest for values of between 5 and 10. By contrast, the 
initial introduction of a penalty appears to cause a slight decrease in the 

number of simulations resulting in grammars containing only Type B rules, 
but after this, there is a definite climb in their numbers as the penalty value 
increases, reaching a maximal level at about 5, beyond which the trend be- 

gins to decrease again. This is mirrored in a slight increase in the number of 
mixed grammars when the penalty is first introduced, followed by a decrease 

towaxds a the middling penalty values, and then a further increase for very 
large penalty sizes. 

So, in summary, it seems that introducing a penalty in the first place causes 

a reduction in the number of simulations resulting in grammars containing 

only Type B rules, but as the penalty size increases, these start to increase 
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FigUre 6.8: The percentage of simulations resulting in grammars containing 

a mixture of Type A and Type B rules for a variety of different penalty values. 

in number, being recruited mostly from the pool of simulations resulting in 
"mixed" grammars. However, this is only effective to a point, and once the 

penalty gets too large, the mixed grammars start to increase in number again, 
at the expense of those containing only Type B rules. 

Thus, when an agent is intolerant of ambiguous utterances, the introduction 

of a penalty does appear to create selective pressure for grammars containing 
only Type B rules, as shown in the table below: 
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penalty Type A Type B mixed 
(all top level rules (all top level rules (a mixture of 

contain 1 noun contain 2 noun 1 category and 

category) categories) 2 category rules) 

none 43.66 38.03 18.31 

1 43.24 25.68 31.08 

2 43.66 32.40 23.94 

5 34.78 44.93 20.29 

10 35.38 43.08 21.54 

15 41.43 37.14 21.43 

20 41.79 22.39 35.82 

However, the proportion of two-noun category grammaxs is still less than 

50%, and still not any higher than that achieved when the simulation was first 

implemented using a probabilistic grammar and 1% chance of re-ordering, 

with ambiguity simply ignored rather than rejected (where we achieved 43.14% 

Type B grammars). Furthermore, the introduction of intolerance to ambigu- 
ity results in a large decrease in the regularity of grammars causing very few 

to converge on a single set of terminal and non-terminal categories in their 

top-level rule. 

6.2.4 Highly irregular grammars 

It is possible to observe the decreased regularity by other measures too: 

when ambiguity is tolerated, in simulations using the probabilistic paxser, 
and re-ordering utterances with a probability of 1%, a significant number of 
the emergent grammars show optimal behaviour: that is, a grammar that 

contains only a single fully lexcialised top level rule and its permutations, 

plus one lexical entry for each of the individuals and actions in the meaning 

space (or in the case of Type B grammars, two entries for each individual, 
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Figure 6.9: The percentage of completed runs of the simulation which result 
in grammars with optimal behaviour, either of Type A or Type B, over a range 

of penalty values. 

one for the noun category used to express the subject of the sentence, and 

another for the noun category used to express the object). A total of 46.87% 

of the simulations runs exhibit this optimal behaviour, and of those optimal 

grammars, just under a third are of Type B. So already there is a dispar- 

ity in the degree of optimality displayed by each grammar type. Although 

Type A grammars are only slightly more numerous than Type B under these 

conditions, optimal Type A grammars are much more common. 

When an intolerance of ambiguity is added to the equation, optimal be- 
haviour suddenly becomes an infrequent occurrence. Just this simple change 

causes it to drop dramatically from 46-87% of all simulations, to only 8.89%. 

Introducing a penalty for producing a string that can be misinterpreted re- 

sults in a slight recovery in the number of optimal grammars emerging, but 
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not to its former level, and only for lower penalty levels. By the time the 

penalty reaches a size of 5, the percentage has started to decline again, as 

shown in Figure 6.9. What is particularly noteworthy, though, when looking 

at the percentage of converged runs that result in optimal grammars, is that 

all but one of these grammars are of Type A. Once intolerance of ambiguity 
is introduced, an optimal Type B grammar becomes exceedingly rare indeed. 

Another measure of a decrease in the regularity of the grammars that emerge 
from the system when agents are intolerant of ambiguity (in the case of 
Type B grammaxs) is whether or not each of the two noun categories is used 

consistently for one thematic role. That is to say, given two noun categories, 
1 and 2, if category 1 is used to express the subject of the sentence in one 

rule, is it also used to express the subject in all other top-level rules, or do 

some of them use it as the object? 

When ambiguity is tolerated, and agents use a probabilistic parsing algo- 

rithm, in conjunction with re-ordering of utterances with a probability of 
1%, non-terminals representing nouns are used consistently in 75% of those 

grammars which can be classified as having converged on Type B. When in- 

tolerance is introduced, this drops to 18.75% of converged Type B grammars. 
This behaviour is not reversed by the introduction of a penalty for producing 

strings with multiple interpretations. 

Thus it would appear that the use of penalties does create a selective pressure 
for the emergence of Type B behaviour, but that this is at the expense of 
regularity. 
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6.3 Applying Penalties Universally to all Per- 

mutations of a Rule 

The changes that have been made to the model, that is, the introduction of a 

penalty when utterances are produced that are parsed by the hearer to give 

an incorrect meaning, are designed to remove from the grammar those rules 

which can result in ambiguity, or at least significantly reduce the probability 

of their use. Primarily, it is expected that penalties will mostly be applied 
to those rules containing a single noun category used to represent both the 

subject and object of a sentence. Whenever the re-order procedure is invoked 

on an utterance resulting from such a rule, and happens to cause the inversion 

of subject and object, ambiguity will result, and the rule will be penalised. 
However, this neglects the fact that this rule may have other permutations 
in the grammar, in which subject and object have not been inverted, and 

which thus do not result in ambiguity. In an attempt to address this, the 

penalty mechanism was altered so that it is not just applied to the rule which 

created the ambiguous utterance, but also any other rules in the grammar 

which contain the same non-terminal and terminal characters in a different 

permutation. By penalising all permutations of a rule in this way, it is hoped 

that we will be more successful in removing single-noun category rules from 

the grammar. 

Figure 6.10 shows a range of penalty values, and for each, the percentage 

of simulations which result in grammars that have converged on a grammar 
that can be classified as either Type A or Type B according to our original 
definition. These results appear to show that when penalties axe applied to 

all permutations of a rule, the trend is similar to when they are applied only 
to the instance which caused an ambiguous utterance to be formed: that is, 

a decrease in the number of simulations converging on grammars of one type 

or the other either type as the penalty size increases. 
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Figure 6.10: The percentage of simulations resulting in converged grammars 
for a range of penalty values when the penalty is applied to all permutations 

of a given rule, not just the one that resulted in the ambiguous utterance that 

has been observed. 

Looking at the distribution of Type A and Type B grammars amongst those 

runs which do converge would suggest that such an application does not seem 
to further our aim of promoting separate noun categories to express subject 
and object of the sentence, as demonstrated in Figure 6.11. 

This is not promising at all: for all penalties, Type A grammaxs seem to far 

outnumber those of Type B, actually gaining in predominance as the penalty 
size increases, for low values. In the range of penalties that were producing 
the best results when only a single rule was being penalised (i. e. between 5 

and 10), the number of Type A grammars is nearly 80%. 

However, it may be recalled that, looking only at those grammars which can 
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Figure 6.11: The relative proportions of simulations resulting in Type A and 
Type B grammars as a percentage of those simulations which do converge on a 

grammar, when penalties are applied to all permutations of a rule, rather than 

just one form of it. 

be considered to be of either Type A or Type B according to our original 
definition was in some ways deceptive, as it disguised a trend towards gram- 
mars which only use Type B rules, but axe somewhat irregular, and thus do 

not necessarily use the same three non-terminal categories in each rule. Is 

the same thing happening again? 

Figures 6.12 and 6.13 show the number of simulation runs resulting in gram- 
mars containing only Type A rules, and only Type B rules respectively, as a 
percentage of the total number of completed simulations. 

Here we can see that the number of simulations resulting in grammars con- 
taining only Type B rules is consistently lower than those containing only 
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Figure 6.12: The number of simulations resulting in grammars which only 

use Type A rules, as a percentage of the total number of completed simulations, 

over a range of different penalty values. Penalties have been applied to all 

permutations of a given rule, not just that being used when the ambiguity 
being rejected occurred. 

rules of Type A. Furthermore, there is something of a decrease in the former 

when a penalty is introduced, which is mirrored by an increase in the latter 
for low penalty values, peaking at a penalty value of around 5. This is exactly 
the value that seemed to be an optimal penalty when being applied only to 
the rule which was directly implicated in the production of an ambiguous ut- 
terance. And yet when applied to all permutations of that rule, it seems to 
have the opposite effect: use of two separate noun categories, one to represent 
the subject of the sentence and the other to represent the object becomes 
increasingly unlikely. However, the number of simulations resulting in mixed 
grammars continues to increase with penalty size, this time at the expense 
of Type A grammars. Thus, contrary to expectations, the application of the 



CHAPTER 6. REJECTING AMBIGUOUS UTTERANCES 191 

100 

so 

0 w 
60 

44 
0 

8, 

4ä 
40 

20 

0- 
0 10 15 20 

Size of Penalty 

Figure 6.13: The number of simulations resulting in grammars which only 

use Type B rules, as a percentage of the total number of completed simulations, 

over a range of different penalty values. Penalties have been applied to all 

permutations of a given rule, not just that being used when the ambiguity 
beinq rejected occurred. 

penalty across the board, to all rules that are permutations of the one which 
was the source of ambiguity, seems apparently to lessen the pressure towards 
two-noun category grammars that we axe seeking to emulate. 

6.4 Modifying the bottleneck 

As in Section 5.4 further experiments were carried out in order to investigate 

the effect of manipulating the bottleneck of transmission on the results of 
these simulations. As before, bottlenecks were manipulated by selecting at 
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random a subset of the entire meaning space at the start of each generation, 

and allowing speakers to produce utterances only for the meanings within 

this subset. A range of different subset sizes was used, from 30% to 90% 

of the meaning space. In addition to this change, the number of utterances 

made per generation was increased from 100 to 1000 in order to give learners 

a large pool of utterances to sample from, in the hope that this would help 

them to fully exploit the statistical effect of the quasi-probabilistic parser. 

Recall that in Section 6.4 it was found that externally imposing a bottleneck 

in the absence of any word order freedom had a very favourable effect on the 
degree of compositionality emerging from the simulations. The greatest effect 

was seen for bottlenecks of between 20% and 30% of the meaning space, where 
the number of simulations failing to converge on a grammar was dramatically 

reduced and the proportion of the grammars emerging from successful runs 
that showed optimal chaxacteristics also increased by a large amount. 2 

What was perhaps a little surprising was the effect this had on the distribu- 

tion of Type A and B grammaxs. For very tight bottlenecks, where only a 

small subset of the meaning space was in use during any given generation, 
there is a massive swing towaxds Type A grammars. This is probably to be 

expected because a Type A grammax is the optimal form of a fully compo- 

sitional language. However, what was less predictable was the fact that at 
slightly more relaxed bottlenecks, Type B grammars were favoured. This 

was especially true for the range of subset sizes between 60% and 90% of the 

meaning space, which is particulaxly interesting because this is the size of 
bottleneck that the original simulation, with its coverage of 0.6339 falls into, 

2To recap: optimal grammars were defined as containing only a single top-level rule 
for creating sentences, plus one rule for each item in each syntactic categories: for Type 
A grammars (containing only a single noun category used as both subject and object of 
the sentence) this gives a total of 11 rules, and for Type B grammars, (which have two 
distinct noun categories, one of which is used to represent the subject of the sentence and 
the other the object) a total of 16 rules. 
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and yet the results axe very different. 

Once freedom of word order was introduced, in the form of chance re-ordering 

events at a 1% probability, things changed greatly. Unfortunately, due to 

practical constraints with runs failing to complete within a realistic timescale, 

it was not possible to test the full range of bottleneck sizes, but for values 

where between 20% and 60% of the meaning space was in use, there does seem 
to be a swing towards the emergence of Type B grammars as the bottleneck 

is relaxed. 

What will happen if we try this approach in conjunction with the work on 

rejecting ambiguity described in this chapter? A further set of simulations 

were run in with agents using the quasi-probabilistic paxser and making 1000 

utterances per generation as in Section 5.4. Once again, the probability of re- 

ordering was set at 1%. This time, however, whenever the speaker produced 

an utterance that was ambiguous to the learner, the rules were penalised 

as described in Section 6.2.2. The penalty value was set to 5. Bottlenecks 

allowing agents to use from 20% to 60% of the meaning space were applied. 

As with previous runs, increasing the number of utterances per generation to 

1000 in conjunction with the use of re-ordering resulted in large numbers of 

simulations failing to run for the full 5000 generations. The table below gives 
the percentage of simulations that had to be halted for each subset size: 

subset size percentage of simulations 
terminated 

20% 0.00 
30% 50-00 
40% 57.69 
50% 73.08 

60% 65.38 
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Of those simulations which did complete, the percentages resulting in Type 

A grammars, Type B grammars and those not converging are given below: 

subset size Type A 
(1 noun cat) 

Type B 
(2 noun cats) 

non-converging 

20% 0.00 0.00 100.00 

30% 69.23 15-38 15.38 

40% 81.81 9.09 9.09 

50% 14.29 57.14 28.57 

60% 0.00 88-89 11.11 

For a subset size of 20% of the meaning space, all the simuations run failed to 

converge on a grammar of either type. Rule systems remained almost entirely 
holistic and very little compositionality was seen. For subset sizes of 30% 

upwards, compositional behaviour was seen, and simulations resulting in both 

Type A and Type B grammars did occur. Once again, due to the very small 

numbers of simulations actually completing, it is difficult to draw any firm 

conclusions from these results, but it does appear that tight bottlenecks select 
for Type A grammars, and when middling-sized bottlenecks axe employed, 
Type B grammars are favoured. When a subset size of 60% was used, all but 

one of the simulations completing were of Type B grammar. The one that 

was not of Type B did not converge on a grammar of either type. 

6.5 The overall picture 

So, is it possible to draw any conclusions from the somewhat confusing picture 
presented by these results? 

One thing that is abundantly clear, is that causing agents to reject utterances 
that can be misinterpreted, instead of simply accepting them and assuming 
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that the perceived meaning was the intended one, causes a great deal of 

grammatical instability. Fewer simulations run to completion, fewer of those 

which do complete converge on grammars of either Type A or Type B, and 
fewer of the grammaxs which do emerge are optimal or use their two noun 

categories (if they have two) in a consistent manner (that is, with one cat- 

egory always expressing the subject of the sentence and the other always 

expressing the object). 

When a small penalty is introduced which reduces the counts on the rules 
used to create the misinterpreted utterance, these problems axe exacerbated 
further. However, increasing the penalty size does seem to go some way 
towards redressing the balance. This is effective up to moderate penalty 

values of between 5 and 10. Beyond this, the destabilising effect returns. 

However, the use of a penalty does indeed appear to create some degree 

of selective pressure for grammars using two distinct noun categories, one 
to express the subject of the sentence and the other to express the object. 
This is masked somewhat by the disorder that rejecting ambiguity causes 
in the first place - because there are fewer simulations resulting in what we 
consider to be of either Type A or Type B according to the original definition 

used, the trend only becomes apparent when we look inside the grammaxs, 

at the types of rule each contains. Then we can see that for low to medium 
sized penalty values, as the size of those penalties increases, the number of 
grammars using only rules that contain two noun categories also climbs. At 
high penalty values, the number of such grammars declines again. Once 

more, the optimum penalty value appears to be somewhere between 5 and 
10. 

However, this does not really represent much of an improvement over the eax- 
lier version of the model in which ambiguous utterances were simply ignored: 

although the proportion of grammars with two noun categories has increased 

relative to those with only one, the absolute number is actually very simi- 
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lax - 44.93% of all simulations with ambiguity rejected and a penalty of 5, 

compared to 43.14% when ambiguity is ignored. Furthermore, the quality 

of the grammars emerging is much poorer: they are messier and much less 

optimal. Attempts to tidy up the grammars by applying penalties to all 

permutations of a rule, (as opposed to just the version that resulted in the 

offending ambiguity) were not successful. 

The most significant improvement was achieved by using a bottleneck of 60% 

of the meaning space, in conjunction with a penalty of size 5, and agents 
making 1000 utterances per generation, resulting in 88.89% of the grammars 
emerging being of Type B. This seems to reinforce the earlier impression 
from Chapter 5 that very tight bottlenecks favour Type A grammars, whilst 

slightly more relaxed ones favour Type B. This is perhaps not an unlikley 

scenario, given that Type B grammars axe somewhat suboptimal in terms of 
compositionality: whilst they are fully compositional in the sense that the 

meaning of an utterance is a function of the meaning of its parts and the 

way they are combined, the very fact that they have two separate categories 
to represent nouns means that agents will have to observe a larger portion 
of the meaning space in order to be able to acquire the grammar in its 

entirety. Thus under circumstances where the bottleneck is extremely tight, 
it is quite likely that the pressure for a concise and minimal language that 

can be learnt in as few observations as possible will outweigh any pressure 
for distinguishable subject and object categories that we have succeeded in 

creating with our manipulations such as introducing word order freedom or 
penalising speakers for producing ambiguous utterances. 

6.6 Discussion 

The prime aim of this chapter was to build on attempts made in the previous 
one to use freedom of word order to promote the emergence of a primitive 
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form of case system. This was achieved by specifying that learners should 

reject any utterance which can be parsed by the rules in their own grammar 
to give a meaning other than that intended by the speaker. Speakers axe then 

required to apply a penalty to the counts associated with the rules that were 

used to create the utterance, and to find an alternative way of expressing the 

required meaning. 

In conclusion, it seems necessary to say that these changes have not resulted 
in a significant swing towaxds case-like behaviour. 

As discussed in Section 6.1.2, the original intervention made in Chapter 5, 

of introducing word order freedom by calling a re-order procedure on the 

speaker's utterances with a fixed probability, initially 1%, appears to cre- 

ate a selective pressure for the emergence of the case-like behaviour we are 

seeking. However, in the absence of any requirement for agents to be able 
to understand each other, and thus any need to be able to resolve ambigu- 
ities caused by variations in word order, it seems likely that this effect is 

axtefactual, and what is actually happening is that the introduction of the 
"disruption" caused by re-ordering results in a greater tendency of simula- 
tions to converge on the "suboptimal" Type B grammars. 

Changes that require agents to make themselves understood (that is, caus- 
ing rejection of ambiguous utterances, and applying penalties to the rules 
that created them) do appeax to result in some pressure towards Type B 
behaviour, but only against a backdrop of much poorer performance. The 

very best result obtained with the penalty system is for 44.93% of grammars 
to contain only Type B rules, (this was achieved using a penalty value of 
5), compared to 43.14% of simulations resulting in a full Type B grammars 
when ambiguity is tolerated and no penalty is applied. Thus, clearly, no sig- 
nificant gain has been made, and instead there has been a great cost in terms 

of a huge increase in the number of irregular, sub-optimal and unconverged 
gammars. 
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However, manipulating the bottleneck would appear to have some potential 
to overcome this. Although some of the problems that have blighted at- 

tempts to force agents to make themselves understood axe also exacerbated 
by manipulating the bottleneck in this way, namely the fact that large num- 
bers of simulations fail to run to completion, amongst those simulations that 
do complete there seem to have been some very promising results. 

6.6.1 Can further improvements be made? 

The major problem with the current work seems to be that, whilst the inter- 

ventions introduced are effective to some degree in creating a selective pres- 

sure for distinguishable subject and object categories, they are also highly 

disruptive, and seem to interfere largely with the emergence of compositional 

grammars themselves. Clearly there axe two approaches to resolving this 

problem: the first is to try and increase the selective pressure further still in 

order to overcome this disruptive influence; the second would be to try and 

remove the disruption. How can either of these ends be achieved? What ar- 

eas can be identified as sources of weakness in the current model? Are there 
implementational choices that could have been made differently that might 
have encouraged the emergence of the case-like behaviour we have failed to 

achieve? 

One major problem is the fact the random nature of the ambiguity being 

introduced by our "chance re-ordering events". In Section 6.2.1 it was dis- 

cussed how rejecting utterances that the hearer misunderstands will cause 
the speaker to scan its grammar for another way of saying the same thing, 

and how this might result in the selection of a rule using different noun cat- 
egories to express subject and object, a Type B rule, resulting in selective 

pressure for such grammars. However, it is entirely possible that the agent 

will select another Type A rule. If it does, there are two possible outcomes, 
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depending on the source of the original ambiguity: 

The ambiguity in the original utterance resulted from the invocation 

of the re-order procedure. In which case, the utterance created by the 

newly selected Type A rule is unlikely to result in any ambiguity, as 

another re-ordering event would have to occur for this to happen. With 

the probability of re-ordering at only 1 in 100, consecutive re-ordering 

events like this will be very rare. Furthermore, even if a re-ordering 

event does occur, there is no guaxantee that an ambiguous utterance 
will be the outcome: as discussed previously, 50% of the potential 

word orders are perfectly distinguishable from each other, simply by 

the position of the verb and any terminal categories that the string 

contains. Of the other 50%, only word orders which are identical to 

those already allowed by an agent's grammar, except with subject and 

object inverted, will result in any ambiguity. If an agent only has a 

single word order rule in its grammar, then only 1 in 6 re-ordering events 

will cause the new re-ordering event to be rejected, and this proportion 

will be even lower if the single rule contains top level terminal categories 
(thus increasing the number of possible permutations). 

The ambiguity in the original utterance was not the result of a re- 

ordering event. If this is the case, it must be because the agent has 

already learnt an alternative word order with subject and object in- 

verted, presumably from a previous re-ordering event, and succeeded 
in lexicalising the noun categories in that rule, before learning any 
rules for the actual word order exhibited by the speaker. When this 
happens, it effectively becomes impossible for the agent to learn the 

correct word order at all, and all utterances exhibiting it will be re- 
jected. However, as the lexicalisation of non-terminal noun categories 

will have to have happened before the correct word order is observed, 
this scenario is actually incredibly unlikely, because it would require 
several re-ordering events, each resulting in inversion of the subject 
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and object of the sentence, before any utterances that have not been 

re-ordered axe observed. 

Thus, in the overwhelming majority of cases, once an utterance has been 

rejected, the replacement string will be accepted by the learner, regardless 

of whether it was created by a Type A or a Type B rule. The rule which 

produced the original ambiguous utterance will be penalised, and this in itself 

will result in some selective pressure for the use of Type B rules, but there 

will be nothing to stop any other Type A rule in the grammar from being 

propagated, so that pressure will not be as strong as it could be. 

There are two potential approaches we could take to overcome this. The first 

would be to "carry over" the re-order event. If the string that is causing 
the ambiguity was created by a re-order event, then any alternative string 
that the agent produces will be re-ordered too. However, it is still highly 

likely that any utterance produced by Type A rules would be accepted under 
these circumstances because, as already discussed, at least 50% of the pos- 

sible orderings that a re-order event can create will not produce any conflict 

- the strings produced by them will be perfectly distinguishable from the 
"opposite" meaning by the position of the verb. The only strings that will 
be rejected will be those which result in inversion of subject and object in 

relation to the word order used by any other rule already in the grammar. 

The alternative approach would be to somehow preserve the word order 
choice made by the previous re-ordering event. This would require the "re- 

order" procedure to be somewhat more complex than it currently is: at the 

moment, it simply takes whatever elements are found in the top-level rule for 

composing a sentence, and re-orders them. It does not have any knowledge 

about or interest in whether those elements axe terminals or non-terminals, 

and whether the rule is fully lexicalised or not, it simply treats them all 

alike. However, to be able to create the same ordering of subject, object and 

verb components when applied a different rule, which may or may not be 
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lexicalised to the same degree, and may or may not have non-terminals at 
the top level, extra information would be required. This could perhaps be 

achieved by creating agents which, rather than re-ordering, choose to topi- 

calise one element of the meaning they axe asked to express, by placing the 
lexicalised string associated with it (if one exists) in a specific position in 

the sentence. Thus, the same action could easily be repeated with the new 

string created by whichever alternative rules axe chosen. However, this would 

potentially reduce the likelihood of subject-object inversion occurring, as it 

would limit the number of word order permutations that could occur. For 

example, if agent has a grammar whose basic word order is SVO, and topi- 

calisation is achieved by bringing string representing the semantic element in 

question to the first position of the sentence, the only other possible orders 

are VSO and OSV, neither of which would result in ambiguity. However, if 

original word order were SOV, then topicalisation of the object would indeed 

have this effect, by resulting in an OSV sentence. 

Another possible implementational weakness in our model as it currently 

stands lies in the way in which penalties are being applied. When an utter- 

ance is rejected, all the rules involved in the generation of the string associ- 

ated with that utterance axe penalised, including those lower down the parse 
tree, such as those which produce the substrings covered by the non-terminal 

categories. These rules are not themselves implicated in the generation of the 

ambiguity observed, and only represent different ways of expressing a given 
object or action within the meaning space. 

How this might affect the results of our simulations seems a little unclear. 
In more optimal grammars, there is generally only one way of producing 
a "word7 for a semantic element of a given category. Thus penalising the 

rule associated with this word will have little effect: when a choice needs 
to be made, it is still the rule that will be chosen, because no matter how 
low or high the count associated with it, it will still represents 100% of the 

possibilities. 
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However, in less optimal grammars, and earlier on in simulations, redundancy 

might occur, in which there are two strings of a given category with the same 

meaning. Under these circumstances, if one of them is penalised as a result 

of having been used to produce an utterance that resulted in ambiguity, then 

this will give the other a competitive advantage, and increase the likelihood 

of its being chosen in the future. This is somewhat undesirable, as in the 

case of ambiguity due to uncertainty over which noun in a given sentence is 

the subject and which is the object, neither of the two strings would have the 

power to disambiguate. One can forsee a situation in which the two forms 

engage in a power struggle of sorts, neither of them able to gain the upper 
hand and become the dominant form: one might manage to for a while, 

and then by chance will be selected for an utterance which will turn out to 

be ambiguous, causing the rule associated with that string to be penalised, 

and thus giving the other form a higher chance of being chosen for future 

utterances. This string might then assume dominance for a while until it 

finds itself in a similax situation, and the whole cycle is repeated, with neither 
form ever able to win and become the only possible way of expressing the 

given semantic element. Whilst this might not have any direct effect on the 

number of noun categories being used in the top-level rule, it is presumably 

a source of instability in the grammar, and may in part be to blame for the 

cost in terms of irregulaxity and sub-optimality that seems to be associated 

with rejecting ambiguity. 

Of course, the whole method of reinforcing and penalising rules, and the 

nature of the quasi-probabilistic parser itself are somewhat adhoc, created 
through a series of small modifications to Kirby's original algorithm and 
perhaps not the best design for the job. One way forward might be to try 

a more principled method of probabilistic learning, such as that employed 
by Vogt [85] in his investigation of the emergence of compositionality in 

grounded language agents. 

One final approach might be to try and create a different selective pressure for 
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the emergence of case other than the need to resolve ambiguous utterances: It 

could be speculated that the primary function of case is not to disambiguate. 

Multiple word orders do not make case-like behaviour necessary, but rather, 
the existence of case-like behaviour facilitates the use of multiple word orders, 

whilst case itself may have evolved to fulfil some other linguistic function. 
As discussed in mentioned in Section 3.4, Lupyan and Christiansen [53] have 

demonstrated that certain word orders are more easily learnt by a sequential 
learning device (in their case, recurrent neural networks) than others; how- 

ever, when presented with languages with case markings, languages with a 
much wider range of word orders are learnable. More specifically speaking, 
the only un-marked word orders that were perfectly learnt by their networks 

were SVO and VSO. Addition of case markings brings SOV languages (which 

is actually the most common word order amongst natural languages) within 
the sphere of those which are completely learnable. This is in-keeping with 
the Greenberg's universal number 41 [38] which states that the vast majority 

of SOV languages exhibit case, whilst the majority of those languages which 
turn out to be case-less have an SVO or VSO ordering. 

Lupyan and Christiansen postulate that the reason for this is due to the dif- 
ficulty in interpreting unmarked nouns prior to the verb: it is the verb that 

provides grammatical information about the number of nouns a sentence 
should contain (by whether it is transitive, di-transitive etc. ), and what se- 
mantic roles are required (agent, theme etc. ). However, in an SOV language, 

the verb is received last, and the nouns must be stored in working memory 
till the end of the sentence before roles can be assigned to them. With case- 
markings, the role is made explicit. Similarly, those word orders which they 
found to be easily learnt without case markings are those in which the verb 
features very early in the sentence, and thus the expected roles are already 
known before subsequent nouns are encountered. 

Of course, the current model is not a sequential learning device, and thus 

considerations regarding working memory, and the order in which elements 
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of the sentence axe presented to the learner have no bearing here. This is 

why, in the experiments described in this thesis, all word orders axe equally 
likely to emerge, and equally easy to learn, regardless of whether they exhibit 

case-like behaviour or not. 

Further results from Lupyan and Christiansen's study show that languages 

with free word order but a full case system, and languages with a strict word 

order and no case system are equally easily acquired: the learner has no need 
for a fixed word order once case maxkings axe present. This adds weight to 

the idea that it is case markings make freedom of word order possible, rather 
than existing to disambiguate between potentially conflicting word orders as 
discussed above. 

6.7 Summary 

In the current chapter we have attempted to promote the emergence of case- 
like behaviour by applying penalties to those grammar rules which result in 

utterances where the hearer is unable to successfully decode the intended 

subject and object of the sentence, in the hope of increasing the pressure 
for distinguishable subject and object forms that we tried to introduce in 
Chapter 5 through the introduction of freedom of word order. Although we 
have managed to achieve a moderate degree of success, paxticularly when 
externally manipulating the bottleneck of language transmission, the results 
presented are far from dramatic. We have discussed the possible reasons 
for this, both in terms of our implementation and the role that case may 
play in the learning and comprehension of language. However, the case-like 
behaviour that we have tried to model here has been very primitive, in the 
form of distinct noun categories being used to express subject and object of a 

sentence. In the next chapter, we will change the focus of our investigations 

slightly. We will move away from the idea that word order freedom is a 
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driving force for the emergence of case, and instead concentrate on trying to 

achieve proper inflectional case markings within fixed word order languages, 

which might themselves facilitate the use of a wider range of word orders. 



Chapter 7 

Simulating Inflectional Endings 

Chapters 5 and 6 described attempts to use word order freedom as a driving 

force for the emergence of case-like nouns. These attempts were not terribly 

successful: overall a modest increase in the number of simulations displaying 

the desired behaviour was seen in Chapter 5, but further analysis of the 

situation seemed to indicate that this was not actually due to the use of word 
order freedom, but in fact other changes to the model that were necessary in 

order to facilitate it. In Chapter 6, attempts were made to address this, but 

no significant further increase in the behaviour being sought was achieved. 
Furthermore, the type of "case" system which did emerge was not terribly 

convincing, in that "nouns" of one particular type would often be used to 

express the subject of the sentence according to one grammar rule, and the 

object according to another. 

Another shortcoming (albeit an anticipated one) of the results presented 
so far, is the nature of the case-like behaviour that we were attempting to 

promote. Whilst English is notoriously poor morphologically, many other 
natural languages have much richer morphologies, including the use of in- 
flectional case endings which determine the roles of nouns referred to in the 

206 
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sentence, as in the following example: 

Canis hominem. mordet 
Dog NOMINATIVE man ACCUSATIVE bites 

'The dog bites the man' 

Canem homo mordet 
Dog ACCUSATIVE man NOMINATIVE bites 

'The man bites the dog' 

In the above Latin sentences, the notion of a dog is expressed by the word 
"canis" in the first, and "caned' in the second, whilst the man is expressed 
by "homo" first, and then by "hominem7'. In both cases, the two words 

share a common stem, and but have different inflectional affixes, and it is 

these affixes which determine the roles each is playing in the event being 

described. Thus, although the word order is the same in both sentences, 

the meaning of each is quite different. The fact that the dog is doing the 

biting in the first sentence and being bitten in the second is indicated by the 

inflectional ending -is for nominative case and the ending -em for accusative 

case respectively. 

Clearly, to whatever extent that we can consider case to have emerged in the 

results of the previous chapters, this notion of stem plus affix is completely 

absent. The behaviour seen can at best be described as some form of primitive 
"proto-case": each individual in the meaning space is represented by two 
distinct strings, one used when it is the actor or originator of the event being 

described, and the other when it is the thing being acted upon. These two 

strings are completely unrelated, and in many cases axe quite different. 

It is proposed in the current chapter is to modify the simulations described so 
far in an attempt to achieve grammars exhibiting a proper inflectional system 

of case marking, using a common noun stem, to which an inflectional affix 
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is added to indicate the role of the individual. The intention is to abandon 
the idea of using freedom of word order as a selective pressure for case- 
like behaviour, on the basis that, in-keeping with Jackendoff's theory of the 

evolution of language [42] as well as the results of Lupyan and Christiansen 

[53] described briefly in Chapter 6, it is seems quite likely that case evolved 
first, and that the use of free word order was then facilitated by its existence. 

In Section 7.1 1 shall present a discussion of the possible reasons why in- 

flection cannot emerge in the current model, and go on in Section 7.2 to 

suggest possible changes which might enable it. Finally, in Section 7.4, the 

results of the modified system are described, followed by a discussion of their 

significance in Section 7.6. 

7.1 Limitations of the Current System 

The desired case system where nouns are made up of a common stem plus 
inflectional affixes cannot emerge within the current system as the inducer 

used in the work described previously is not capable of effectively learning 

inflectional grammars. To illustrate this point, the reader is asked to imagine 

a "toy" language something like English, but incorporating the inflectional 

marker a to indicate which participant is carrying out the action described 

in a given sentence, and the marker b to indicate the individual that is being 

affected by the action. These can be seen as markers denoting the subject and 
object of the sentence. Thus a string from this language representing the the 
English statement "John loves Mary" would be i, oh, n, a, l, o, ves, m, a, ryb. 

What happens if we present sentences drawn from this language to the cur- 

rent implementation of the inducer? As before, sentences axe presented as 

string-meaning pairs, where the meaning is represented by a three-place vec- 
tor, with the roles of participants implied by position in the vector: the first 
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position represents the action or event being described, the second the actor 

or originator of that event and the third the individual being acted upon. 

As described previously, the inducer takes each utterance presented and cre- 

ates a "holistic" production rule for it. Thus if we present the sequence of 

utterances covering the four meanings [loves, john, mary], [loves, bob, maxy], 
[loves, john, bob] and [hates, john, mary], we can follow the induction process 

as the grammar is built. 

The first two utterances presented are 

j, o, h, n, a, ], o, v, e, s, m, a, r, y, b meaning [loves, john, maryl 

and 
b, O, b, a, l, o, v, e, s, m, a, r, y, b meaning [loves, bob, mary] 

causing the following two rules to be added to the grammar: 

1 s/[Ioves, john, maxy] j, o, hn, a, l, o, v, e, s, m, a, r, yb 
2 s/[Ioves, bob, mary] b, o, b, a, l, o, v, e, s, m, a, r, yb 

Rules are then compared on a pairwise basis: if the semantic vectors repre- 

senting the meanings of the two utterances differ by the value at one location, 

and the two strings on the right-hand sides of the production rules differ by a 

single substring, then the difference in meaning is attributed to the difference 

in the strings. Thus in the case of the two rules above, the string j, o, h, n is 

interpreted to mean "john" and the string b, o, b is interpreted to mean "bob" 

resulting in the following new rules (which replace 1 and 2 above): 

3 s/[Ioves, X, mary] NT1/X, a, l, o, v, e, s, m, a, r, yb 
4 NT1/john j, o, h, n 
5 NT1/bob b, o, b 
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If the next utterance presented is 

j, o, h, n, a, l, o, v, e, s, b, o, b, b meaning [loves, john, bob] 

this will, again, initially result in the formation of a "holistic" rule as follows: 

6 s/[lovesjohn, bob] ) j, o, h, n, a, lo, v, e, s, b, o, b, b 

This rule will then be compared on a pairwise basis with the others in the 

grammax to see if any of the learning heuristics may be applied. Firstly the 

subrule operation will identify the substring j, o, h, n as being identical to the 

right-hand side of rule 4, and will change the rule to 

6 s/[Ioves, X, bob] ) NT1/X, a, l, o, v, e, s, b, o, b, b 

This rule will then be compared with rule 3, and a single difference found: 

the semantic value in the object position of the meaning vector, and the 

substrings m, a, ry and b, o, b respectively, resulting in the new rules 

7 s/[Ioves, X, Y] NT1/X, a, l, o, v, e, s, NT2/Y, b 

8 NT2/mary m, a, r, y 
9 NT2/bob b, o, b 

and the removal of rule 3. This will be followed by the merging of categories 
NT1 and NT2, as rules 5 and 9 axe identical but for the category name. Thus 

rule 7 becomes 

7 sl [loves, X, Y] ? NT1/x, a, l, o, v, e, s, NT1/Y, b 

Finally, if presented with the utterance 
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j, o, h, n, a, h, a, t, e, s, m, a, r, y, b meaning [hates, john, mary] 

after removal of the substrings "j, o, h, n" and "m, a, r, y" by the subrule oper- 

ator, we are left with the following: 

10 s/[hates, X, Y] ) NT1/X, a, h, a, t, e, s, NT1/Y, b 

which on comparison with rule 7, has only one difference - the value in the 

action or event position of the semantic vector, and the substrings "h, a, t" 

and "I, o, v". 

Thus we end up with the gammar 

10 s/[PX, Y] NT1/X, a, NT3/P, e, s, NT1/Y, b 

4 NT1/john j, o, h, n 
5 NT1/bob b, o, b 

8 NT1/mary m, a, r, y 

11 NT3/loves 1)0, v 
12 NT3/hates h, a, t 

This grammar contains a single noun category (NT1) which represents the 

noun "stem" and which is used interchangeably for subject and object roles. 
But the markers a and b axe stranded in the top level rule. They are not 

related in any way to the noun to which they belong (other than by juxtapo- 

sition) or the syntactic category they specify, thus rendering them effectively 

meaningless. It should be noted that this grammar will be able to success- 
fully parse and generate sentences from the target language, but clearly it 

does not capture it adequately as the meaning of the inflectional affixes has 

been lost. 

Thus modifications to the inducer are needed to enable it to learn inflectional 

affixes more effectively, if the emergence of case marking is to be achieved. 
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7.2 Modifying the Learning Inducer 

7.2.1 Similarities or differences? 

One step towards this might be to build an inducer that works on the basis 

of similarities between utterances rather than differences. Thus, given two 

utterances which have the the individual John in the subject position of their 

meaning vector, represented by the sequence j, o, h, n in the string associated 

with each of them, then the maximal similarity between the two strings will 
be j, o, h, n, a because the subject of the sentence is always followed by the 

inflectional marker a in this language. An inducer which partitions up the 

string on the basis of similarities rather than differences will therefore include 

the inflectional maxking associated with a given noun, rather than leaving it 

behind. 

This change to the induction algorithm requires a reworking of two of the 

four heuristics for comparing pairs of rules - findchunks and findchunk. To 

recap, the findchunks heuristic is as follows: 

Given a set of rules R representing the grammar of agent a, and a set of 

non-terminal symbols JV: 

for rl 172 ER where r, = jV1/m, ) a, and r2 = JVI/M2 I Or2 

if m, and M2 differ only by values v, and V2 respectively 

and a, and u2 differ only by substrings A, and A2 respectively 

add new rules JV21vj A, and Ar2/V2 A2 

where JV2 E JV 

replace rl, r2 with new rule JVI/M3 --'ý 65 

where M3 = ml with v, replaced by variable V 

and u5 = a, with A, replaced by JV21V 
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The heuristic findchunk is very similax, however, it requires m, and M2 to 

differ by value v and variable V, and a, and U2 to differ by substrings A and 

JVIV where JV is a non-terminal category. The substring A is then re-written 
in a new rule as an instance of that non-terminal. (A formal description of 

this heuristic can be found in Chapter 5). 

These heuristics are replaced with the new heuristic findsimr-hunks: 

Given a set of rules R representing the grammar of agent a, and a set of 

non-terminal symbols JV: 

for ri, r2 ER where ri = X11m, ) or, andr2 = -/VI/M2 L72 

if m, andM2 contain the common value v, 

and a, andOr2 contain the common substring A, 

add new rule jV2/v, Al 

where JV2E JV 
replace r, with new ruleArl /M3 U3 

replace r2with new rule Ar1/M4 a4 

where M3 ý-- M1 with v, replaced by variable V 

and M4 M2 with v, replaced by variable V 

and u3, a, with A, replaced by JV21V 

and o, 4, o, 2 with A, replaced by JV21V 

7.2.2 Evaluating the modified inducer 

It is important to ensure that the new inducer is capable of learning a com- 

positional grammax. This was tested by presenting sentences drawn from 

an optimal grammar. Sets of 100 sentences were presented over a total of 
20 trials; it appears that although the inducer is capable of learning such a 

grammax, this is crucially dependant on the order of sentence presentation. 
Previously unobserved semantic concepts must be presented in conjunction 
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with others that are also previously unobserved, as those concepts which have 

already been seen axe simplified to variables using the subrule heuristic. In 

3 of these trials, the minimal grammar was learnt, but in the remainder, at 
least one "semantic value" was not correctly lexicaliýed. 

For example: 

1 s/[P, X, Y] ) 2/X, 4/P, 2/Y 
2 2/pete ) q, r 
3 2/kath o' p 
4 2/john k, 1 

5 2/anna S, t 

6 2/maxy m, n 
7 4/hates c, d 

8 4/adores e, f 

9 4/kisses i, j 

10 4/sees g, h 

11 s/ [loves, X, Y] 2/X, a, b, 2/Y 

Here we can see that a lexical entry for the verb loves has not been learnt. 

Furthermore, there axe no additional sentence presentations that will allow 
it to be formed, as all possible nouns in the meaning space have already been 

learnt. Thus there is no utterance that can be presented which will have 

only one similarity to rule 11: any sentence containing the predicate loves 

will have its subject and object removed by the "subrule" heuristic, making 
it identical to rule 11. 

In order to overcome this, an additional heuristic was created, to produce 
these lexical entries by comparing rules such as 11 with top level sentence 

rules like rule 1: 

Given a set of rules R representing the grammar of agent a, and a set of 
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non-terminal symbols JV: 

for rl, r2 ER where r, = jVl/m, ? or, and r2 : -"-- 
M/M2 ý Or2 

if m, contains value v and variables V, and V2 (in any order) 

and M2 contains vaxiables V3, V4 and V5 
find variable V,, in M2 which occupies the position 

corresponding to value v in m, 
if a, and u2 differ by substrings A and JV21V. 

add new rule JV2/v ---+ A 

replace r, with new ruleJV2/M3 a3 

where 7n3 ý-- 7nI with v replaced by variable Vy 

and a3, = ol with A replaced by Ar2lVy 

With this additional heuristic, when the trials described above were repeated, 
the inducer was able to learn the correct minimal grammar in 20 out of 20 
trials. 1 

7.3 Allowing Further Generalisations 

Having created an inducer that is based on similarities rather than differ- 

ences, it would be instructive here to return to our hypothetical language 
discussed above (i. e. the one based on English, but including the inflectional 

markers "a! ' for subject and "b" for object). After being presented with a 
sufficient number of sentences drawn from this language, the new inducer 

would learn a grammar that looks something like this: 

'Occasional raisconvergences were observed, but not in any of the trials recorded here. 



CHAPTER 7. SIM ULATING INFLECTIONAL ENDINGS 

s/[P, X, Yl 
NT1/john 

NT1/bob 
NTI/mary 
NT2/john 
NT2/bob 
NT2/ma, ry 
NT3/loves 
NT3/hates 

NT1/X, NT3/P, NT2/Y 

j, o, h, n, a 
b, o, b, a 

p, e, t, e, a 
i, o, h, n, b 
b, o, b, b 

m, a, r, y, b 

l, o, v, e, s 
h, a, t, e, s 

216 

Unlike the grammar that would have been leaxnt by the original, difference 

based inducer, the similarities based inducer hypothesises two separate noun 

categories, NT1 and NT2, one of which is used to express the subject of 

the sentence (NT1) and the other used to express the object (NT2). Each 

"individual" in the meaning space is expressed twice, once as each of these 

categories, for example: 

NT1/john j, o, h, n, a 
NT2/john j, o, h, n, b 

These pairs of rules are unmergeable; 2 although they have identical left hand 

sides other than the category name, the right hand sides of the two rules 
differ. Both contain string joh, n but one is suffixed with the subject marker 

a, and the other with object marker b. 

However, looking more closely at these two rules, it is clear that something is 

missing. The string jo, h, n, a and the string j, o, h, n, b refer to the same individ- 

ual, certainly, but they do not mean exactly the same thing, as would appear 

2Recall that one circumstance under which the merge operation may be invoked is if 

changing the category name of the non-terminal on the left hand side of the rule would 
make the two identical. 
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from the semantics given - one represents John when he is the perpetrator of 
the action described in the sentence, and the other represents him when he is 

at the receiving end. The fact that these strings have been assigned identical 

meanings might suggest that they can be used interchangeably, when in fact 

this is not the case. 

Furthermore, it is clear that regularities between the strings do exist - as 

previously observed, both noun forms referring to the individual John contain 
the common root substring j, o, h, n. How can the inducer be altered so that 

this information is captured? 

7.3.1 An enriched semantic representation 

When looking at sentences (in English) such as John loves Mazy and Bob 

sees Mary it is cleax that there is something semantically similar about the 

involvement of John and Bob in these sentences - they both represent the 

perpetrator of the actions described - the person doing the loving or the 

seeing; the actor. Whereas Mary in both cases is the person being affected 
by that action: the acted-on paxty. 3 This is reflected in the semantic repre- 
sentations used thus far in the simulations described by the fact that John 

and Bob shaxe a common position in the vector, i. e. [loves, john, maxy], and 
[sees, bob, maxyl 

Returning to our hypothetical case marked language: the string associated 
with the meaning [loves, john, mary] would be j, o, h, n, a, ], o, ve, s, m, a, ryb. 
When comparison of this string with another results in association of the 

3As in Chapter 4, one could conceivably use the terms subject and object here. How- 

ever, I have chosen to avoid these, due to their syntactic nature, as I wish to avoid the 
implication that agents have any syntactic knowledge whatsoever. Role categorisations in 
this instance are being made on the basis of semantics: that is who is the perpertrator of 
an action or event (actor) and who the event is happening to (acted-on). 
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substring j, o, h, n, a with the semantic element "john" it is originally clear 
that this refers to John in his role as the perpetrator of the action because of 
his position in the semantic vector associated with the utterance. However, 

because this information is implied by position but never made explicit, it is 

lost once removed from its original context. 

Thus in going from the rule 

s/[Iovesjohn, mary] ) j, o, h, n, a, l, o, v, e, s, m, a, r, yb 

to 

s/[Ioves, X, mary] NT1/X, I, o, v, e, s, M, a, r, yb 
NT1/john jo, h, n, a 

the fact that the string j, o, h, n, a represented the perpetrator of the action 
has been lost. The rules of the grammar are such that this string can only 
be "plugged back in" to this role, but the rule 

NT1/john i j, o, h, n, a 

itself does not contain this information: it is held in the distribution of the 

category NT1. 

This results in a problem for our inducer when faced with pairs of rules such 

as 

NT1/john j, o, h, n, a 
NT1/ma, ry m, a, r, ya 

or 

NT1/john j, o, h, n, a 
NT2/john j, o, h, n, p 
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In the first example, the two rules appear to have completely different se- 
mantics associated with them, despite the fact that both substrings, in their 

original context were associated with the perpetrator or actor in the event 
described, as represented in both cases by the suffix a. 

In the second example, the two rules appear to have identical semantics 
associated with them, despite the fact that one substring, in its original 
context referred to John as the actor in the situation described and the 

other referred to him as the acted-on. However, both strings refer to the 

same entity, "Johný' as indicated by the common stem j, o, h, n. 

Thus the creation of subrules, and removal of semantic elements from their 
initial contexts, renders generalisations between such pairs of rules impossi- 
ble. For this reason, the semantic representation of sentences was augmented 
to make explicit the information that is held by position in the vector. Rather 

than a single vector, the representation is modified to be of a nested structure, 

showing the "role" of each participant as well as its value - the individual 

or action to which it refers. Thus the vector [loves, john, mary] becomes 

4 [[act, loves], [actor, john], [actedon, mary]]. And the vectors associated with 
the strings ilo, h, n, a and j, o, h, n, b would be [actorJohn] and [actedon, john] 

respectively. This enables generalisations of the type that were not possible 
before, as the two strings now share the common semantic element "johný' 

and the common substring j, o, h, n; a rule can now be formed relating the 
two. This rule is much more veridical than the previous two, as the string 

41t might have been possible here to use the terms "agent" and "patient"; however I 

have chosen to avoid these as some of the "actions" used in the meaning space, such as 
loves and hates axe non-agentive. However, despite the fact that the subjects of these 

sentences would generally be categorised as experiencers rather than agents, there does 

still appear to be something that they have in common with the agents of other predicates 
used, in the sense that they are still the doer. This was reflected in the original semantic 
representation by a common position in the semantic vector, and is similarly reflected in 
the new representation by the common designation, "actor". This is a point we will return 
to in Section 7.6.2. 
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j, o, h, n really does mean simply 'John", and can be used in any context (ac- 

tor or actedon). Similarly, the vectors associated with j, o, h, n, a and m, a, rya 
would become [actor, john] and [actor, maxy], again allowing generalisations 
that were not possible before: between the common semantic element "actor" 

and the common substring a. 

The important thing to note about this augmentation of the semantic rep- 
resentation is that no information is actually being added; we are simply 

making explicit that which was previously implicit. We have noted that 

there appears to be some kind of semantic similarity between the roles of 
John and Bob in sentences such as John loves Mary and Bob sees Mary and 

chosen to encode this in our semantic representation; however, it was previ- 

ously implied by the fact that in the semantic vectors representing these two 

events, John and Bob occupy the same "slot". 

In order to support these changes to the semantic representation, the follow- 

ing changes to the inducer must be made: 

When computing the similaxities between two semantic lists, the orig- 
inal findsimchunks heuristic requires any commonalities found to be 

atomic values rather than variables. However, with the new augmented 
semantic representation, it must allow non-atomic values, namely lists. 
Thus the heuristic was amended to check that the value contains no 
variables, whilst not necessarily being atomic itself. 

The original chunk-forming heuristics (findchunks and findchunk) oper- 
ated only on pairs of rules with the same non-terminal on their left-hand 

sides. The same requirement was extended to the new findsimchunks 
heuristic when it was first introduced. In fact, for reasons of efficiency, 
all three heuristics were implemented so that they would only consider 
rules of category s, that is top-level rules. This was quite adequate 
with the original semantic representation, as the meaning space does 
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not include any nested concepts, so there was no possibility of needing 
to be able to induce grammaxs with a depth greater than one, making 
comparisons of other non-terminal categories unnecessary. However, 
the new semantic representation, by effectively adding another level of 
recursion, makes deeper structures possible. Furthermore, in order to 
make generalisations across roles as well as between them, the heuris- 
tic must be able to compaxe rules with differing non-terminals on their 
left-hand sides, such as 
NT1/[actor, john] j, o, h, n, a 
NT2/[actedon, john] j, o, h, n, b 

By allowing allowing the heuristic to be applied to pairs of rules such as 
these, the common string j, o, h, n can be attributed to the the common 
part of the semantics, "john", and new rules created as follows: 

NT1/[actor, X] NT3/X, a 
NT2/[actedon, X] NT3/X, b 

NT3/john j, oh, n 

The lindsimchunks heuristic has been amended accordingly: the re- 
quirement for the non-terminals on the left hand sides of rules to be 
identical was relaxed, and it will now compare any pair of rules. 

Due to the new possibility of deeper structures, changes to the subrule 
heuristic have also been necessaxy. It is now possible for rules that are 
not "top-level" to also contain non-terminal categories on their right- 
hand sides. Thus it is not possible to simply look at the potential 
"subrule" and determine whether the string on its right-hand side is a 
substring of the right-hand side of the superrule. Instead, a determin- 
istic parser5 has been added, to find all possible expansions of the rule 
and determine whether any of those are substrings of the "superrule". 

5It would have been possible to use the probabilistic paxser already built into the system 
here, but it was deemed somewhat inefficient, since the task in hand is merely to find all 
possible parses and determine whether any of them are appropriate. 
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For example, when comparing the rules 

1 s/[[act, loves], [actor, john], [actedon, mary]] a, b, c, d, e, f 
2 NT1/[A, B] NT2/A, NT3/B 

if rules exist such as 
3 NT2/john c 
4 NT3/actor d 

then NT/1 can be expanded to the string cd meaning [actorjohn] and 
it can be seen that rule 2 is indeed a "subrule" of rule 1 according to 

the requirements of the subrule heuristic. 

Having made these changes to the inducer to accommodate the new seman- 
tic representation, the next important question is, can it still learn an opti- 
mal compositional language? The trials described above were repeated once 
again, and the inducer was able to learn exactly the same grammar for each 
sequence of sentence presentations as it had earlier. Thus ability to learn an 

optimal language has been in no way deteriorated by these further changes. 

In addition to this, a series of trials were performed in which the inducer was 
presented with sequences of utterances from languages with varying degrees 

of inflection, using the augmented semantic representation. 

The first language contained inflectional markings on only one of the noun 
roles, in this case the object: here the inducer was able to leaxn a grammar to 

cover this language, including attributing the correct meanings to noun-stem 
and inflectional affixes, in 19 out of 20 runs. In the run which did not fully 

converge on a minimal grammar, the inflection part had been leaxnt, but the 

noun stem had not, producing rules such as: 
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9/[A, mary] m, n, 6/A 
9/[B, john] k)1,6/B 
9/[C, kath] o, p, 6/C 
6/actedon o, b 

It is interesting to note that the number of rules in this apparently suboptimal 
grammar is fewer than that the number in the grammars evolving in the other 
19 trials (17 rules versus 18). 

The second inflectional language tested included inflectional markings on 
both subject and object roles: this complicates the issue slightly. If we 
present the inducer with sentences such as 

k1l) s, u, b, a, b, m, n, o, b 

which can be glossed as: 
john actor loves mary acted-on 

it will sometimes interpret the substring s, u, b as being a prefix associated 
with the string a, b meaning "loves", rather than a suffix attached to the 
string k, ]. 

For example, if the next observed utterance which shaxes one semantic value 
with the sentence above has "johný' in the role of actor, then the largest 
common substring will be kls, u, b and the inflectional marking will be as- 
sociated with the noun as it should be. However, if the common value is 
the action, such as in the utterance o, p, su, b, a, b, q, ro, b meaning [lact, loves], 
[actor, kath], [actedon, pete]], the largest common substring will be su, b, a, b 

which is interpreted as meaning lact, loves]. Sometimes such attributions are 
leaxnt alongside the correct ones. Thus, when presented with sequences of 
100 sentences from this language, the inducer learnt a grammar in keeping 
with an "inflectional suffix on the agent" interpretation in 8 out of 20 trials, 
and learnt a complete grammar for this interpretation, but which included a 
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few rules from the "inflectional prefix on the verb" interpretation in a further 
4 trials. In 4 of the remaining trials, it leaxnt a grammar for the "inflectional 

prefix on verb" interpretation, and the result of the final 4 trials was a mix- 
ture of rules in which neither grammar type were able to cover the entire 
meaning space. 

It should be noted that the grammars induced during these trials for both 
"interpretations" of the affix s, u, b, (whether as a suffix of the noun, or part 
of the verb), are "correct" in that they cover all and only utterances from 

the language. Thus production and reception behaviour of agents with both 

grammar variants will be identical - it is just the internal structure of the 
language which differs. In particular, the meaning attributed to the various 
affixes. 

Having satisfied ourselves that the changes to our model now allow it to 

effectively learn the types of languages we would like to see emerging, it is 
time to investigate the kinds of behaviour that are seen when it is employed 
in an iterated learning context. 

7.4 Employing the new inducer in the Iter- 

ated Learning Model 

Firstly the new inducer was tried with the original unaugmented semantic 
representation, to ensure that simple non-inflectional languages can indeed 

evolve using such an induction system. 

Simulations of 5000 generations, with 100 utterances per generation were 
performed, as before, using the deterministic parser. It quickly became ap- 
parent that the problem of increasing rule length and multiple top level rules 
occasionally encountered when using the difference based inducer (and as 
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described in [711) is much more prominent with the similarities based ver- 
sion. When attempting a run of 10 simulations, of 5000 generations, all but 

one of them failed to run to completion in a time of 15 hours. Inspection 

of grammaxs produced by these runs showed large numbers of top-level rules 
containing many (often repeated) non-terminal symbols. Thus to avoid this 
problem, a working memory limitation was added to the paxser, whereby it 
effectively ignores any rules with a left hand side of more than 8 characters 
in length. 

With this change in place, compositionality similar to that seen in the dif- 
ference based inducer does indeed emerge: nominal and verbal categories axe 
combined to form utterances whose meanings axe made up of the meanings 
of their paxts. As in Kirby's study on which this work is based [44], and 
eaxlier experimentation with the difference based inducer in Chapter 4, the 
grammars emerging from the simulation can be shown to make the transition 
from almost entirely holistic utterances in the first instance, to those with 
some compositionality as the agents have been able to make a small number 
of generalisations over chance similarities, to much more fully compositional 
systems, in which, in the optimal scenario, there will be a single rule govern- 
ing the structure of a sentence. Figure 7.1 shows the number of meanings 
that agents can express at each generation (from a total meaning space of 
100), as well as the size of the grammars. These results are averaged over 26 
runs. Figure 7.2 shows each of the runs separately over the first 50 genera- 
tions. It is clear that sufficient compositionality to be able to express almost 
100% of the meaning space emerges very quickly: for the first generation, the 
number of meanings expressible is generally just above 50%, but this quickly 
climbs to in excess of 90% within the first five generations. 

Returning to figure 7.1, we can see that the degree of compositionality con- 
tinues to increase long after the point at which the entire meaning space can 
be expressed, as the average size of grammars continues to decrease, until 
it reaches a steady value of around 20. This slightly high value indicates 



CHAPTER 7. SIMULATING INFLECTIONAL ENDINGS 226 

120 

loo 

60 

40 

20 

0 500 1000 1500 2000 250D 3000 3500 4000 4500 5000 
Generation 

Average Number of Meanings Covered by Grammar - 
Average Number of Rules in Grammar ------ 

Figure 7.1: The average number of meanings that can be expressed by agents 

at each generation of the simulation, and the sizes of their grammars, when 

using the similarities based inducer but the unaugmented semantic representa- 
tion. 

that some of the grammars emerging from the simulation are not optimal, 
as an optimal grammar for the meaning space used would have just 11 rules 
(one top level rule, plus five "noun" categories and five "verb" categories). 
Although we would not necessarily expect optimality from every run, unfor- 
tunately the new inducer does not appear to perform quite as well as the 

previous one. However, these results are sufficient to show that composition- 
ality has indeed been achieved. The following is a sample grammar from the 
final agent of one of the simulations: 

S/[P, X, Y] ) 3/Y, 3/X, 4/P 
3/pete t 
3/mary y 
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Figure 7.2: The number of meanings that can be expressed by the grammars 

of agents of each of the first fifty generations in the simulation, when using 
the similarities based inducer, but the unaugmented semantic mpresentation. 

3/john )a 
3/kath )d 
3/anna b 
4/hates o 
4/kisses g 
4/loves j 
4/adores V, p 
4/sees c 

Having established that compositionality can indeed emerge in a system using 
the new similarities based inducer, the augmented semantic representation 
was added. Again, runs were 5000 generations in length, with 100 utterances 
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Figure 7.3: The average number of meanings that can be expressed by and 

size of grammars for agents of each generation in the simulation, using the 

similarities based inducer, and the augmented semantic representation. 

per generation. To recap, the augmented semantic representation involves 

making explicit some information about the "role" of each paxticipant in 

the event. Thus the meaning [loves, john, mary] would become [[act, loves), 

[actorjohn], [actedon, maxy]]. Figure 7.3 shows the proportion of the meaning 

space that each agent can express, and the size of its grammar, averaged over 
26 runs, and figure 7.4 shows the number of meanings agents can express in 

each of the individual runs for the first 50 generations. As before, a sharp 

rise in the number of meanings that agents can express can be seen in the 

first few generations, coupled with a decrease in the size of the grammar due 

to an increase in the degree of compositionality. What is interesting is that 

the rise to being able to express almost 100% of the meaning space occurs 
much more quickly than in the previous experiments, and agents appeax to 

show less deviation from this value than before. Similarly, and even more 



CHAPTER 7. SIMULATING INFLECTIONAL ENDINGS 

100 

so 

to 

20 

a 

ew 

229 

05 10 15 20 25 30 35 40 0 50 

Generation 

FigUre 7.4: The number of meanings that can be expressed by the grammars 

of agents of each of the first fifty generations in the simulation, using the 

similarities based inducer, and the augmented semantic representation. 

strikingly, the decrease in the size of the grammar down to its minimum value 
happens exceedingly quickly - well within the first five hundred generations. 
This time, the average size of gran-unars is just over twenty - again, reflecting 
the fact that some of the grammars emerging are not optimal. The optimal 
grammar type for this representation would have 15 rules: one top level rule, 
five nouns and five verbs as before, plus one "actor" marker, one "acted-on" 

marker and two rules to combine these role markers with the noun categories. 

But what has happened as a result of including the enriched semantic repre- 
sentation into the system? Certainly "morphemes" representing the explictly 
represented "role" information were observed, as might perhaps be expected, 
for this is simply another level of compositionality. How close are the results 
to a proper case-marked inflectional system, however? Fý)xther inspection of 
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the final grammars reveals that of 26 runs, 17 exhibit case-like behaviour in 

the final generation, and a further 4 exhibit it in at least one of the final ten 

generations, with only 5 runs failing to exhibit this behaviour at all. The 

term "case-like behaviour" is being used to refer to a top level rule that com- 
bines a verb and two noun categories, where each of the noun categories is 

made up of a common noun "stem" plus affixes representing the role infor- 

mation, as in the sample grammar that follows. In this grammar, there is a 
"subject" maiker p, s, and an "object" marker o which are suffixed on to the 

noun stems to give nouns of the appropriate categories to build a sentence. 

S/[P, X, Y] 7/P, 1/X, 3/Y 
1/[A, B] 9/B, 6/A 

3/[C, D] 9/D, 5/C 

6/actor P, S 
5/actedon )0 
9/anna e, v 
9/kath n, s 
9/pete s 
9/mary u 
9/john b, h, s 
7/[E, loves] 11/E, k, r, e 
7/[F, kisses] 11/F, x 
7/[G, sees] 11/G, r, r, q 
7/[H, adores] 11/H, 1, g 
7/[action, hates] z, n 
11/action )k 

In this particular case, a common affix "k" has been identified as signalling 
the role of the action in 4 out of the 5 predicates in the meaning space. 

Those simulations which did not converge on grammaxs incorporating in- 
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flectional endings tended to exhibit one of two types of behaviour (or some 
combination of the two): 

The first is two entirely distinct noun categories, one used to express 
the subject of the sentence, and one used to express the object, as in 
the grammar fragment that follows. It can be seen that each of the 
two "versions" of the same noun are completely unrelated, i. e. there is 

no common noun stem which denotes the individual being referred to, 

and similarly nouns of the same class have nothing in common: there 

are no subject and object markers. This is essentially a grammar of 
the we called "Type B" in Chapters 5 and 6.6 

s/[P, X, Y] ---+ 3/P, 6/X, 1/Y 

6/[agent, john] --+ e, f, b 
6/[agent, kath] ---+ o, v, u, x 
6/[agent, anna] ---+ a 
1/[patient, kath] ----+ r, e 
1/[patient, john] g 
I. Qatie, anna] h 
3/[act, loves] q 
3/[act, sees] w 
3/[act, hates] y 

The second type of grammax does exhibit inflectional case markings to 
denote the subject and object of a sentence; however, the noun stems 
to which they are affixed axe unrelated. For example in the grammar 
fragment that follows, the suffix i denotes the subject of the sentence, 
and when combined with the string vs will denote the individual "john! ' 

6Note that the emergence of two distinct noun categories is now guaranteed by the 
augmented semantic representation, which renders rules for subject and ojbect nouns 
unmergeable. 
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in the role of event-perpetrator, whilst the prefix h signifies the object. 
But in order to represent "john" as the acted-on party in the event 
being described, this string is combined not with vs as before but with 
a different string. 

S/[P, X, Y] 1/Y, 13/X, 6/P 
13/[A, B] 16/B, 15/A 
1/[C, D] 3/C, 8/D 

15/actor i 
3/actedon h 
16/john v, s 
16/jane k, h 

8/john e, v, s, n 
8/jane s 
6/[E, F] 14/F, 7/E 
7/act i, b 

14/adores y, n, k 

14/loves j, v 
14/sees h, m, I 

It is interesting to note also that in this grammar the ordering of stem and 
affix is inconsistent: for the subject of the sentence, the stem occurs before 
the inflectional marking, whilst for the object it occurs after it. This is a 
common, though by no means universal, feature of the grammars emerging 
from these simulations, and happens as a result of the fact that there is 

nothing within the bias of the learner or its innate knowledge of the language 
to constrain it to a common stem-affix ordering. Clearly this is one aspect 
of case grammars in natural language that must be explained. 

Thus we have established that inflectional behaviour is common in the out- 
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put of the system using the new similarities based inducer in conjunction 
with the augmented semantic representation. However, it would appear that 
such grammars are not as stable, or not as reliably passed on from one gen- 
eration to the next, as those which form the output of the original system. 
Grammars of this type appear to formed and lost again many times during 
the 5000 generations of a single simulation, often remarkably quickly, hence 
the 4 runs which exhibit case marking at some point during their final 10 

generations, but not in the final one. This could simply be attributable to 
the fact that the augmented semantic representation makes sentences harder 

to learn, effectively dividing them up into six segments instead of only three. 

Another possible reason for the instability exhibited is the tendency of dif- 
ferent agents to segment the string in different places according to the order 
in which utterances are presented, as described in Section 7.3.1. Returning 
to the "toy" inflectional language presented in Section 7.1, in which the ut- 
terance [[act, loves], [actorjohn], (actedon, maxy]] is represented by the string 
j, o, h, n, a, l, o, v, e, s, m, a, r, y, b, we can see that the correct attribution of inflec- 
tional markers to roles is crucially dependent on the order of sentence pre- 
sentation. For example, if the next utterance presented were [[act, hates], [ac- 
torjohn], [actedon, kath]], represented by the string j, o, h, n, a, h, a, t, es, ka, th, b, 
then the substring j, o, h, n, a would be attributed to the meaning element [ac- 
torjohn], and the affix a will (ultimately) be correctly identified as an inflec- 
tional marker denoting the role of the participant John. However, if the next 
utterance were instead [[act, loves], [actor, pete], [actedon, kath]], represented 
by the string p, e, t, e, a, ], oves, ka, t, h, b then the result would be entirely dif- 
ferent: this time, the common semantic element [actloves] will be attributed 
to the common substring a, ], o, ve, s, thus transposing the inflectional marker 
a from a suffix of the noun to a prefix of the verb. 

Thus, once a grammar has emerged, the apparent "meaning" of affixes etc. 
can change dramatically in the process of transmission of the language, al- 
though the actual utterances produced by each grammar for a give meaning 
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should be the same. However, during the actual emergence of an incomplete 

grammar, this could have a dramatic effect on those utterances which axe 
produced by invoking the invention algorithm, and this might possibly be 

sufficient to prevent the grammar from ever stabilising fully. A fuller investi- 

gation of the stability of grammars emerging from the current set-up would 
be needed to establish whether or not this is indeed the case. However, 
the current results have amply demonstrated that the use of a similaxities 
based inducer and a richer semantic representation is sufficient to simulate 
the emergence of a primitive inflectional system of case markings within an 
Iterated Learning Model type paradigm. 

What also seems to be apparent is a lack of consistency in stem-affix ordering: 
in some grammars the stem and affix will have the same ordering for both 

subject and object constructions, and in others they will differ. This is 

unsurprising, because the original stem-affix distinction has to be made on 
the basis of chance similaxities between strings. If these similarities happen 
to be between noun stems, then consistent ordering of stem and affix is 

automatically guaranteed; however if a similarity between affixes is found 
before the stem has been identified, there is nothing to prevent a similar 
further chance similarity from occurring for the affix of the other type in 
which it has the alternative position with respect to the noun stem. 

7.5 Modifying the bottleneck 

Having established that inflectional behaviour is common in the output of 
simulations using the new similarities based inducer in conjunction with the 
augmented semantic representation, and based on the observation that such 
inflection is really just another layer of compositionality, once again, exper- 
iments were performed in which the transmission bottleneck was externally 
manipulated to see if tightening it would increase the occurrence of the types 
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of behaviour we are seeking here. 

As in previous experiments in Sections 5.4 and 6.4, the number of utterances 
per generation was once again increased from 100 to 1000, and the bottleneck 

was controlled by allowing agents to select meanings from only a randomly 
chosen subset of the meaning space of predetermined size. Each agent is 

allowed a different subset of the meaning space to use, therefore when an 
agent makes the transition from learner to speaker, the utterances that it 

will be called upon to produce will be a different set to those to which it 

was exposed when it was a learner. This set could well include meanings to 

which it has had no previous exposure, and which may not even be covered 
by the grammax it has leaxned. 

Once again, a vaxiety of subset sizes were tried, ranging from 20% to 100% 

of the meaning space. The table below shows the proportion of simulations 
that resulted in case-like behaviour in their final generation (of 5000). The 

proportion of additional simulations which showed this behaviour in at least 

one generation of their final 10 generations is also given, as well as those that 
failed to show it at all: 

subset size percentage exhibiting case-like behaviour 
in the final in the final 10 in none of 
generation generations these 

30% 30.77 7.69 61.54 
40% 48.00 32.00 20.00 
50% 64.00 36.00 0.00 
60% 69.23 15.38 15.38 
70% 58.33 16.67 25.00 
80% 46.15 23.08 30.77 
90% 32.00 36.00 32.00 

Figure 7.5 is a bar chart showing both the proportion of simulations which 
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FigUre 7.5: The proportions of simulations which exhibit case-like behaviour 

in the final (5000th) generation, and in also in the at least one of their final 

ten generations. 

exhibit case-like behaviour in their final generation, and also those that show 
it in at least one of their final ten generations. What is clear from both the 

graph and the table above is that the emergence of case-like behaviour seems 
to be most strongly favoured when agents select meanings from subsets of be- 

tween 50% and 60% of the entire meaning space. This is interesting because 
it represents a much more relaxed bottleneck than that which is optimal for 

the emergence of compositionality in the simple case where we are not trying 

to achieve inflection. This is perhaps to be expected - the degree of composi- 
tionality we are trying to achieve here is more complex than that encountered 
previously, and thus it follows that agents might require exposure to a larger 

proportion of the meaning space in order to make effective generalisations 
regarding how the meaning of a string may relate to the meaning of its parts. 
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Also worthy of note is that even with an optimal bottleneck, there is not a 
great deal of improvement seen on the results of the experiments described in 
Section 7.4, where agents only make 100 utterances per generation but have 

access to the entire meaning space at all times: recall that under those cir- 
cumstance, 17 out of 26 simulations (65.38%) were found to exhibit case-like 
behaviour at the end of 5000 generations, and a further 4 (15.38%) showed 
this behaviour in at least one of their final ten generations. These are very 
similar figures to those observed with a subset size of 60% above. The only 
subset size which shows any improvement on this is for 50%, where the pro- 
portion of simulations exhibiting case-like behaviour in their last generation 
is ever so slightly less, but where all other simulations show this behaviour in 

at least one of their final ten generations: there axe none that fail completely 
to exhibit it. 

The fact that the emergence of a basic compositional grammar, and the 

emergence of case-like behaviour are favoured by different bottleneck sizes 
suggests an interesting possibility for a way forward: perhaps altering the 
bottleneck during learning would prove fruitful. Agents would start life with 
a vary narrow bottleneck which might aid in the acquisition of basic com- 
positionality, and this could later be relaxed to facilitate the acquisition of 
case. This idea is clearly related to Elman's "'starting small hypothesis" [31]: 

an agent's experience of language is limited during its early life to only sim- 
ple constructions. This is achieved by limiting its working memory and then 

gradually allowing it to increase as the agent matures, thus allowing it to turn 
its attention to more complex linguistic phenomena. This has been found to 
greatly facilitate the acquisition of a grammar. It also seems that it might be 

a plausible feature of a child's learning environment: when children are very 
young it seems likely that topics of conversation to which they axe exposed 
might be quite limited and that this may well broaden as they mature and 
start to find themselves in a wider range of differents scenarios. 
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7.6 Discussion 

In this chapter, we have attempted to demonstrate the emergence of an 
inflectional system of case marking within an Iterated Learning Model type 

system. This system was based strongly on Kirby's [44] original model but 
incorporated two notable changes: 

Firstly, the induction algorithm used by the model was modified so that 

it operates on the basis of maximal similaxities rather than maximal 
differences. 

Secondly, the semantic representation employed was augmented so as 
to make explicit information that was previously only implied by the 

positioning of elements in the vector meaning. 

7.6.1 How plausible is the similarities based inducer? 

In his discussion over the choice of learning algorithm employed in [44], Kirby 

states that the difference-based inducer was chosen primarily for efficiency 
and ease of analysis. He emphasises that no claim is made as to its efficacy 
as a practical grammar induction tool. Is it reasonable to use an inducer 
that works on the basis of maximal similarities rather than differences as we 
have done here? Is there any evidence to suggest that early human language 
learners were equipped with either algorithm? 

As discussed in Chapter 2, Alison Wray [88,89], argues that eaxly language 

may have been "holistic", made up of phonetically arbitrary utterances, in 

which there was no phonological similarity between sequences with similar 
meanings. Such a system would have contained sufficient and necessary ut- 
terances for everyday communication, and thus would have been very stable. 
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Bickerton [7] has suggested the existence of a non-language specific cognitive 
module responsible for keeping track of thematic roles (the "who did what 
to whom") which he suggests might have arisen in pre-linguistic species to 

perform some kind of "social calculus". According to Bickerton's account of 
language evolution, this module has been exapted to assign theta roles to 

pre-existing referential vocabulary items, leading to order relationships be- 
tween referents and the action word they are combined with. Wray proposes 
that in her hypothetical holistic proto-language there are no words to which 
roles might be applied, thus the theta-role module instead tries to find them 
by segmenting the strings. This, so far, is in-keeping with both the differ- 

ence based inducer used by Kirby [44] and here in Chapters 5 and 6 and the 

similarities based inducer described in the current chapter. So which method 
might these hypothetical proto-language speakers have favoured? Wray her- 

self suggests similarities: "if in two or more sequences, there were chance 
matches between phonetic segments and aspects of meaning, then it would 
seem as if there was a constituent with that meaning" [89]. Further support 
for this idea can be found in the literature on child first language acquisition. 

Ann Peters [59] proposes that the initial units of language acquistion may 
include a significant number of larger phrases which are initially learnt by 

rote and unanalysed, but which will eventually be segmented into short word- 
length units. Whilst she believes that children primarily segment these larger 

units into smaller ones on the basis of phonological salience, e. g. by seg- 
menting off the first/last/stressed syllable from the rest, or by segmenting at 
rhythmically or intonationally salient places, she does go on to suggest that 
once this segmentation has occurred, comparison between units may occur. 
In particular, the subdivision into frames and slots: "if two (or more) units, 
after segmentation ... 

[on the basis described above] ... appear to share 
a common subunit, A, followed or preceeded by alternative subunits, B and 
C ... take note of this fact" (pg48). This would appear to have char- 
acteristics in common with our new findsimchunks heuristic. Furthermore, 
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she claims that such frames can be generalised from repeated instances of 

paxticular constructions, and can then be used as a further segmentation aid: 
as templates for the segmentation of newly heard utterances. 

This is only one of many methods that she suggests language learners may 
employ to break up these longer linguistic units into their constituent paxts, 
but it demonstrates that a similaxities based inducer such as the one pre- 
sented in this chapter is at least in keeping with the data on child-language 

acquisition. 

7.6.2 What does the augmented semantic representa- 
tion actually capture? 

As previously mentioned, it is important to stress here that we have not 

actually added any information with this change, only made explicit what was 

previously implicit. However, what was that implicit information? Are we 
directly specifying the "subject" and "object" of a sentence? And does this 

mean that in order to evolve such grammars, agents need innate knowledge 

of these syntactic categories? Or could it be that we are really marking 
an inherent property of individuals themselves and the way they take part 
in the interactions being described. One naive way to look at it might be 

as some kind of "thematic rold'. However, this is not really adequate, as 
the categories we are using axe applied universally to all subjects and to 

all objects of transitive verbs, regaxdless of the role types required by these 

verbs. For example, the verb kiss would usually be viewed as selecting an 
agent as its subject and a patient as its object, whilst a stative verb such as 
love is generally considered to have an experiencer in the subject position. 

Dowty [29] claims that the traditional view of thematic roles as a set of finite 
discrete categories is inadequate, and argues instead for proto-role types to 
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which arguments will have different degrees of membership. Thus only two 

categories axe needed, the proto-agent category and the proto-patient cate- 
gory. Each has an associated set of contributing properties (e. g. volitional 
involvement, sentience for proto-agents; undergoing a change of state, being 

causally affected for proto-patients), and subject and object of a sentence 
are selected according to the number of these contributing properties each 
argument possesses: the argument with the greatest number of proto-agent 

characteristics becomes the subject of the sentence, and of those remaining, 
the one with the greatest number of proto-patient characteristics becomes 

the object, and if there are further axguments, the one with the next greatest 

number of proto-patient characteristics becomes the indirect object. 

Thus if we consider our "actor" and "acted-on" categories to denote proto- 

roles such as these, we can get around having to make the concepts of subject 

and object explicitly available to learners: it will be possible to determine 

which role each argument has purely from the semantics of the event taking 

place, and no innate knowledge of syntactic categories will be required. 

7.7 Summary 

In this chapter, we have made changes to the original Iterated Learning 
Model implemented in Chapter 4 and based on Kirby [44] in an attempt to 

simulate the emergence of inflectional case markings. We have successfully 
demonstrated that it is possible to obtain such structure in a population of 

agents without any innate language specific knowledge, purely resulting from 

the biases of the learners and the dynamics of language transmission. This 

is perhaps not entirely unsurprising, because what we are looking to achieve 
is really no more than another level of compositionality. However, the inflec- 
tion that emerged is somewhat sub-optimal: agents seem unable to reliably 
determine to which element of the sentence an affix belongs, and there is no 
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guarantee of consistency of stem-affix ordering, and these respects it differs 

quite noticeably from the case systems which occur in natural languages. 
Attempts to promote the emergence of case-like behaviour by external ma- 

nipulations of the bottleneck of language transmission have shown that, like 

the other experiments described in previous chapters, case seems most likely 

to emerge in the presence of moderate sized bottlenecks. However, only a 
slight improvement over the condition where bottlenecks were not manipu- 
lated was seen. 



Chapter 8 

Conclusions 

In this thesis, attempts have been made to simulate the emergence of case- 
like behaviour to distinguish thematic roles in populations of communicating 
software agents, based on Kirby's Iterated Learning Model [44]. This un- 
dertaking was based on the observation that the outcome of Kirby's original 
simulations can be likened to the "proto-language" stage of Jackendoffs the- 

ory of incremental language evolution. That is, they result in populations of 
agents putting together meaningful symbols to form larger utterances whose 
meanings are a function of the meanings of the constituent symbols. The 
key elements of his proto-language stage axe all present (open vocabulary, 
concatenation of symbols, use of basic word order to express semantic roles) 
and the simulations also seem to show evidence of the emergence of syn- 
tactic categories, thus fulfilling the prerequisites, according to Jackendoff's 
hypothesis, for the emergence of case. 

243 
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8.1 Overview of Results 
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In Chapter 1 we introduced the notion of the Iterated Learning Model [46] 
(described in more detail in Chapters 3 and 4) and how it has been used to 
demonstrate the emergence of compositional and recursive syntax in popu- 
lations of agents with no explicit knowledge of the nature of language. This 
behaviour has been attributed to the interaction of the biases of the leaxner 

with the dynamics of language transmission, namely the learning bottleneck. 

Under circumstances where agents cannot hope to hear all possible utterances 
from a language during their lifetimes, languages in which the meaning of an 
utterance can be predicted from the meaning of its parts will have a strong 
selective advantage over a purely holistic language where there is no relation- 

ship between meaning and form. This notion is persuasive, but how great is 
its explanatory power? Can it be used to illustrate the emergence of other 
features of language? It is notable that in the results of these simulations, 
semantic relationships axe universally signalled using word order. None of 
the languages emerging exhibit any of the properties of case grammar. This 

is clearly a deficit as it does not reflect the true nature of human language. 
Thus attempts were made to investigate whether case-grammars were an 
equally plausible outcome of this kind of simulation. 

Firstly, in Chapters 5 and 6, attempts were made to create a selective pres- 
sure for the emergence of grammaxs containing two distinct noun categories, 
one used to express the subject of the sentence and one the object, using 
variation in word order. These grammars had already been observed to oc- 
cur spontaneously in the implementation of Kirby's Iterated Learning Model 
described in Chapter 4. It was hoped that the occasional reordering of el- 
ements of a sentence resulting in the presence of conflicting word orders in 

which subject and object have been inverted would result in linguistic selec- 
tion for distinguishable subject and object noun categories. Certainly, the 
changes introduced in Chapter 5 did indeed seem to increase the frequency of 
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occurrence of such grammars; however it was noted that simply changing the 

parsing and production algorithm used within the simulation was sufficient 
to cause a significant swing towards the behaviour being sought. Adding 

variability of word order to this increased its effect further, but the change 

seen was actually smaller in magnitude than that created by the change in 

production algorithm. 

Based on the observation that the learning bottleneck is crucial to the emer- 

gence of language-like behaviour, attempts were made to reinforce the results 

of these experiments by externally manipulating the size of this bottleneck. 

This was first implemented without any freedom of word order, under which 

circumstances, it can be seen that a tight bottleneck seems to indeed result 
in a greater drive towards compositional behaviour, and optimal grammars 

of Type A, containing a single noun category used to express both subject 

and object of the sentence. However, as the bottleneck is relaxed an inter- 

esting trend can be seen: as might be expected, the chances of a simulation 

converging on a grammar that can be classified into either group starts to 

decrease, as does the likelihood that any grammar arrived at will display 

optimal chaxacteristics; however, the notable corollary to this is the increase 

in the proportion of Type B grammars emerging relative to those of Type 

A, peaking at bottlenecks of between 50% and 90% of the meaning space. 
A similar effect is seen when occasional sentence reordering as discussed in 
Chapter 5 is re-introduced. Again, tighter bottlenecks favour Type A gram- 

mars, and as the bottleneck is relaxed, the quality and regularity of grammars 
decreases, in conjunction with the emergence of an increased proportion of 
Type B grammars, which seems to peak when approximately 40% of the 

meaning space is in use. 

Thus it was shown in Chapter 5 that the introduction of word order free- 
dom does indeed seem to result in the emergence of a higher proportion of 
grammars of Type B. However, what is also clear is that this behaviour can 
also be promoted by other means which would not be anticipated to cre- 
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ate a direct pressure for distinguishable subject and object forms, such as 
the introduction of a non-deterministic parsing and production algorithm, or 
manipulation of the transmission bottleneck. Furthermore, it seems that the 

mechanism by which the presence of alternative word orders results in the in- 

creased frequency of Type B grammars may not be as a result of pressure for 
distinguishable subject and object noun forms that was anticipated: because 

agents are not required to correctly interpret each other's utterances, there 
is actually no need to disambiguate conflicting word orders. And because 

agents will not seek to associate more than one meaning with a given string, 

on the whole these word orders can only be propagated in grammars which 

already have distinguishable subject and object categories. Ultimately then, 

the increase in the incidence of Type B grammaxs achieved due to the in- 

troduction of alternative word orders was deemed to be artefactual, perhaps 
the result of other factors such as the general disruption caused by these 
interventions, resulting in the greater emergence of suboptimal grammars. 

In Chapter 6, attempts were made to address the fact that there is no re- 
quirement for agents to understand each other, by making the learner agent 
intolerant of utterances which appear to mean something other than what 
the speaker intended. That is, if the learner parses the utterance and the 
wrong meaning is returned, the string is rejected, and the speaker must try 
again. Although this alone is not effective, when combined with a moderate 
sized penalty applied to the grammar rules used to produce the misinter- 
preted utterance, this does indeed appear to result in some pressure for the 
emergence of grammars with distinguishable subject and object. However, 
the rejection of ambiguous utterances is also highly de-stabilising, resulting 
in grammars that axe far more irregular, far less likely to fully converge on a 
compositional grammar of either type, and which are inconsistent in the role 
applied to each of the noun categories. Therefore, although this approach 
does result in an increase in the number of grammars emerging with two 
noun categories relative to the number with just one, the absolute numbers 



CHAPTER 8. CONCLUSIONS 247 

are still lower than before the freedom of word order and rejection/penalty 
were introduced. 

As in the previous chapter, the effect of manipulating the size of the bot- 

tleneck was again investigated to see if, by creating an increased pressure 
for compositionality, this would help counteract the disruptive effects of the 

use of penalties. Again, a trend was seen whereby Type A grammars are 
favoured by tighter bottlenecks, and as the bottleneck is relaxed, the pro- 

portion of Type B grammaxs emerging relative to those to those of Type 

A increases. This time the effect was much more dramatic, such that for a 
bottleneck size of 60%, there were no Type A grammars seen at all, and a 

massive 88.89% of grammaxs that did emerge were of Type B. However, a 

caveat to this is the fact that an extremely large proportion of the simula- 
tions that were run had to be terminated early due to problems experienced 

elsewhere with increasing rule length and grammax size. 

Finally, in Chapter 7a different approach was introduced. Rather than as- 

suming that the use of case in primitive natural language might have emerged 
in response to a need to disambiguate subject and object of a sentence due 

to use of multiple word orders, it is suggested that case may actually have 

emerged first, perhaps for some other other linguistic purpose, and that it 

was only after this that multiple word orders became a linguistic possibility. 
Thus we set about trying to generate proper inflectional case markings in the 

absence of free word order. This essentially involved making changes to the 

system such that it was able to view inflectional endings as simply another 
level of compositionality. Here some success was achieved, in that grammars 
that exhibited a common noun stem plus inflectional affixes specifying the 

role of the paxticipant in the event being described did emerge. However, this 
behaviour was not consistent - sometimes there were no inflectional endings 
at all, and in other cases, the endings emerged but different "stems" were re- 
quired when the subject and object of a sentence was being expressed. There 

was also a problem with the interpretation of which word an affix belongs 
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to: what is intended as a suffix on the subject might easily be interpreted 

as a prefix on the verb in a language where the verb follows the subject. 
Purthermore, grammars were often inconsistent in their stem affix ordering. 
Clearly, these issues are intimately related: if agents were constrained to 
expect a consistent ordering of stem and affix then both issues would be re- 
solved - agents would simply have to determine whether the language they 
are learning uses prefixes or suffixes. 

When experiments with bottleneck manipulation were carried out in this 

context, it was found that moderate bottlenecks produced the optimal results: 
for both very tight or very relaxed bottlenecks, the incidence of case-like 
inflectional endings was much lower. Again, the optimal value seemed to be 
between 50 and 60%. However, this did not represent a great improvement 

on the situation where the bottleneck was left untouched. 

Thus we must conclude that the evolution of case-like behaviour in a sys- 
tem like Kirby's iterated learning model is a non-trivial problem. On the 

whole, attempts to introduce pressures for the emergence of case are also 
disruptive to the emergence of compostional syntax itself. This is perhaps 
due to deficiencies in the model, both in the implementation of rule scor- 
ing and penalising developed here, and also the known problem with the 
induction algorithm and its tendency to leave semantically redundant non- 
terminal characters stranded in top-level rules, which can lead to escalating 
string length and grammar size [71]. When attempts were made to resolve 
some of these disruptions, in the form of experiments manipulating the trans- 
mission bottleneck, the interesting result was that non case-like grammars 
seemed to be favoured by very tight bottlenecks, whilst slightly more re- 
laxed bottlenecks seem to favour grammars with case-like properties (that is 
distinguishable subject and object categories). 

It is argued that this is because, from a compositional point of view, the 
types of grammar we are aiming to achieve are suboptimal: despite being 
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non-holistic in the sense that the meaning of utterance is composed from 

the meaning of its parts, these grammars will require agents to observe a 
greater proportion of the meaning space in order that they can be faithfully 

transmitted from one generation to the next than their counterparts which 
use the same form of the noun for both subject and object. Thus when the 
bottleneck is very tight, resulting in a very high pressure towards composi- 
tionality, then these simpler grammars will be favoured, regardless of what 
pressure there may be in the environment for distinguishable subject and 

object categories. After all, distinguishable subjects and objects are of no 

use to a language that cannot be passed from one generation to the next 

accurately. Or more specifically, even if distinguishable subjects and objects 

should arise in a language emerging under conditions where there is a very 
tight bottleneck, they are likely not to be accurately transmitted from one 

generation to the next, and will thus quickly be replaced by the common or 

garden kind of noun category that can be used in any semantic role. (This 

would presumably itself exert a pressure for word order to become fixed, al- 
though this would not be a visible outcome of the studies carried out here, 

because freedom of word order was externally imposed). 

However, once the transmission bottleneck is relaxed a little, languages axe 
freed from the constraint of needing to be as compositional as possible, and 
this allows other pressures to start pushing them in other directions. Thus, 

weaker bottlenecks may favour case-like languages because the selective pres- 
sure for compositionality they exert is no longer stronger than the need to be 

able to disambiguate in situations where word order cannot be relied upon 
to make semantic relationships explicit. 

One question that must be posed is whether a similar interaction of antago- 
nistic pressures could be at work in human languages and whether this could 
in paxt be an explanation for why some languages exhibit case whilst others 
do not, or at the very least why case is sometimes lost, for example the tran- 
sition made from strongly case-marked old English to the almost case-less 
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language that is contemporary English. It might also help explain why pid- 

gin and creole type languages tend to exhibit rigid word order [51 and other 
such phenomena that have led many researchers to believe that word order 
has primacy as a mechanism for signalling semantic relationships -a notion 
that is contested in some corners. 

8.2 Future work 

One important area for future study would be attempting to resolve the 
known limitations of the current model, with regaxd to problems in the pars- 
ing algorithm relating to the rewarding and penalising of rules, and also the 
issues with repeated semantically null sequences. If a different learning al- 
gorithm were used, e. g. that employed by Vogt (851 in his work on iterated 
leaxning in grounded agents, would the innovations designed to introduce 

pressure for distinguishable subject and object categories still prove disrup- 

tive to the emergence of compositionality? This is an important question: to 

what degree are the results seen here implementation specific? 

Another important avenue to pursue is the possibility that case did not evolve 
in order to aid disambiguation of subject and object categories where word 
order cues axe unreliable, but in fact for some other purpose, such as to fa- 

cilitate the acquisition of word orders that would otherwise prove difficult 
for sequential learning devices such as our human brains to master. Clearly 

Kirby's leaxners axe not sequential learning devices, and word order consider- 

ations have no relevance to them, but it would be informative to experiment 

with such leaxners in an iterated learning setting to see if case spontaneously 
evolves in languages with those word orders that are more difficult to acquire. 
It would also be of interest to pursue further experimentation with weak and 
strong bottlenecks in this context to examine whether the idea that strong 
bottlenecks favour no case and rigid word order, whilst weaker ones will allow 
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pressures that might result in case-grammar to come into play. 

Finally, another profitable avenue for future work in this area would involve 

grounded agents: it is clear from Vogt's [851 and Steels' [79] studies with 
situated agents (or simulations thereof) that shared contexts and the devel- 

opment of representations of objects and events can have a huge influence on 
the development of linguistic behaviour, as in Steels' agents' construction of 
syntactic categories, and the superior performance seen in "guessing games" 

over "observation games" in many aspects of the emergence of composition- 

alitY in Vogt's work. 

8.3 Conclusion 

Experiments have been presented in which attempts were made to demon- 

strate the emergence of inflectional case markings in populations of software 

agents. The model used was based on Kirby's Iterated Learning Model [44], 

with modifications to enable case-like behaviour to emerge. As in Kirby's 

model, agents have no innate knowledge about language or its structure. It 

was discovered that the use of word order freedom to as a selective pressure 
for case-like behaviour is not very effective. However, treating case as simply 
another level of compositionality does result in some degree of inflectional 
behaviour, but it tends to be irregular and not very reliable. Furthermore, 

experimenting with the language bottleneck has returned the interesting re- 
sult that very restrictive bottlenecks seem to select for case-less grammars, 
whilst slightly looser ones seem to favour case-like behaviour in the presence 
of word order freedom. This is attributed to the fact that when the bottle- 

neck is very tight, this will exert a strong pressure for compositionality, over 
and above any pressure for disambiguation that might result from variabil- 
ity in word order. Only when the pressure for compositionality is relaxed 
slightly will the sub-optimal (from a compositional point of view) grammaxs 
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with distinguishable subject and object categories start to emerge. It is pos- 
tulated that this may be a factor in the development of case also, or at least a 
possible explanation as to why languages sometimes lose their case-structure 
in favour of strict word order as in the transition from Old to contemporary 
English. 
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