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Abstract

The thesis deals principally with the separation of pitched sources from single-
channel polyphonic musical recordings. The aim is to extract from a mixture
a set of pitched instruments or sources, where each source contains a set of
similarly sounding events or notes, and each note is seen as comprising partial,
transient and noise content. The work also has implications for separating non-
pitched or percussive sounds from recordings, and in general, for unsupervised
clustering of a list of detected audio events in a recording into a meaningful set
of source classes. The alignment of a symbolic score/MIDI representation with
the recording constitutes a pre-processing stage. The three main areas of con-
tribution are: firstly, the design of harmonic tracking algorithms and spectral-
filtering techniques for removing harmonics from the mixture, where particular
attention has been paid to the case of harmonics which are overlapping in fre-
quency. Secondly, some studies will be presented for separating transient attacks
from recordings, both when they are distinguishable from and when they are
overlapping in time with other transients. This section also includes a method
which proposes that the behaviours of the harmonic and noise components of
a note are partially correlated. This is used to share the noise component of a
mixture of pitched notes between the interfering sources. Thirdly, unsupervised
clustering has been applied to the task of grouping a set of separated notes
from the recording into sources, where notes belonging to the same source ide-
ally have similar features or attributes. Issues relating to feature computation,
feature selection, dimensionality and dependence on a symbolic music repre-
sentation are explored. Applications of this work exist in audio spatialisation,

audio restoration, music content description, effects processing and elsewhere.
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Chapter 1

Introduction

“For me, every sound has its own minute form— 1s composed of small flash-

ing rhythms, shifting tones, has momentum, comes, vanishes, lives out its own

structure.”

- Annea Lockwood (1939 )

The work in this thesis can be described broadly as separating musical structure from single-
channel polyphonic recordings. The term ‘musical structure’ can be interpreted in several
different ways, from the most minute embellishments to large scale compositional structure
or even the musician’s intentions. Even at a level of comparable complexity, a myriad of
different ways of describing a piece of music exists. In terms of physical properties, an
example of a low-level structure is a set of harmonics; these give rise to the sensation of
pitch. An extended description regards music as a combination of partials, transients and
noise content. It should not be forgotten though, that these ‘structures’ are simplifications
of the real audio signal that can be difficult to define precisely but make it easier to converse
about the nature of the signal. As we step backwards other structures emerge: continuity
over time of a certain timbre, natural and articulatory sounds, notes, the spatial position of
these elements in the sound environment, and then motifs, harmonies, melodies, repeated
themes, compositional structures, crescendos, and then we enter a realm where higher level
structures are more difficult to define.

T'he majority of this work has been directed at separating what is loosely ‘mid-level’
structure. Specifically, separating pitched and non-pitched notes from polyphonic music
and, following on from this, organising these notes into sources or instrumental parts.
However, the means to extract mid-level structure involves much low-level signal processing.

S0, 1t has been stated that the recordings are single-channel or ‘mono’, and polyphonic.

‘Polyphony’ means that more than one pitch can sound simultaneously. This specification

has been made so that the work has general applicability to all recording conditions and

13



music in general. Typically, in a commercial recording the number of simultaneously sound-

ing pitched sources at any instant, which will be referred to as the degree of polyphony, is
sreater than one. As a single voice or monophonic recording is much easier to deal with,
then the requirement of polyphony is all encompassing. The single-channel specification
ensures applicability of these methods to all recording formats. It is always possible to re-
duce a multi-track recording into a single channel, or to apply methods designed for mono
files separately to each channel of the multi-track recording. Of course, this would be a
crude way to deal with spatial information, which could be used much more efficiently to
assist the separation. A logical development of these methods would be to adapt them to
make better use of spatial information in those situations where it is available.

The use of the term ‘separation’ must still be clarified, as our usage of this word may
differ from others. When a particular musical structure is separated from a recording,
there 1s as little as possible perceived trace of it lett in the residual signal, the residual
being the original minus the separated signal. At the same time, the perceived quality of
the separated signal must be optimised. Whilst it may seem that a high fidelity separated
signal directly implies an accurate residual, this is not always true. Some analysis/synthesis
methods attempt to re-synthesise the desired structure within the signal, with the intention
of achieving the best perceptual quality of this structure, but by discarding phase informa-
tion for example, an accurate residual is not obtained. If the residual i1s to be subjected to
further analysis, such as in an iterative subtraction scheme, then the quality of the residual
1s important to avoid error propagation between consecutive iterations.

T'he notion of prior information must also be introduced, as this can have a large
effect on overall quality. This consists of any information we have about the recording
prior to analysis, in the form of actual data, models or expectations. The main source of
prior information in this work i1s a symbolic score containing rough estimates of pitches,
and onset and offset times of notes in the recording. In practice, the amount of prior
information depends on the particular application and often the size of the data set. If
the objective is to restore a recording to maximum fidelity, we might use a transcription
or score of the recording, a list of instruments/voices playing, the degree of polyphony at
all times, knowledge of recording conditions, and so on. If we are only interested in this
single recording, 1t might even be worthwhile to do the restoration painstakingly by hand.
This amount ol prior information would generally not be available for a large database of
recordings, which would require a more automatic system for retrieving musical content.
However. even when trying to make the analysis as general as possible, expectations about
the nature of the signal are unavoidable. This work has tried to make balanced modelling

assumptions informed by the behaviour and characteristics of typical musical signals in
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different visual representations and by listening. However, given the complexities of a
real musical signal, it seemns an impossibly difficult task to construct a practical model of
sufficient complexity and flexibility. This is the principle reason that an adaptive filtering
methodology has been adopted rather than a parameterised signal model. The hope is
that filtering removes existing content or structures from the mix, rather than creating new
content or artifacts in the case that the recording 1s not well described by the signal model.
Much of the work tries to make these filters adaptive to the signal. However, we are still
working with the assumption that the recording is built from individual notes, which is
restrictive, especially when applied to recordings containing drone-like sources, feedback or
resonance interaction between different sound sources, gradual timbral changes as opposed

to localised notes, and synthetically sculpted sounds.

1.1 Applications

The quality of source separation determines the types of applications that this work might
lead towards. For the purpose of music information retrieval, a reduction of the audio signal
into a small set of descriptive parameters is usually the end goal. Thus, 1f we use a separation
of the signal to aid the extraction of these descriptors, the quality of separation need not
necessarily be of the highest quality. On the other hand, if the separated structure is
intended to be heard in isolation, then a much higher fidelity may be required. Applications
In which a separated source is scaled slightly and then re-mixed with the original recording
require a fidelity somewhere between these two limits, as fortunately, there is a tendency
for artifacts of the separation to be masked when re-mixing. A few potential applications

of source separation from music are listed below.

1.1.1 Spatialisation

Audio spatialisation is the processing of sound in a manner that creates the perceived effect
of sources coming from positions in 3-dimensional space around the listener. Once a set
of sources has been extracted from a mono recording, it is possible to re-mix them into
a. multi-track recording by including spatial information. There is a multitude of classic
music recordings and film soundtracks only available in mono, which could potentially be
spatialised in this way. The separation quality required for this type of application is likely

to depend partly on how far apart the extracted components are positioned spatially.



1.1.2 Audio Restoration

Audio restoration involves the removal of localised disturbances like clicks or sudden bursts
of noise, and global degradations such as background noise from corrupted audio. Under
conditions in which the degrading signal is additive, the opposite process of separating
the desired audio signal from the degraded mix could result in improvements of audio
quality. In an interesting example of audio restoration culminating in the compilation
Italian Songs|3], the desired signal was the voice of renowned tenor Enrico Caruso (1873-
1921), and the unwanted signal was his original orchestral accompaniment, both of very
poor audio quality. New recordings were produced by filtering and equalising Caruso’s voice

from the original, and then superimposing it on a modern orchestral accompaniment.

1.1.3 Music Content Description

Music content description and information retrieval are of increasing importance due to
a shift in the nature of music production, distribution and consumption, the need to effi-
ciently manage large databases of music recordings and samples, and to compute similarity
between different pieces of music. The possibilities of a heightened interaction with the
music contents in terms of classification, browsing, recommendation, retrieval, rendering,
personalising and editing are numerous, and are being, or have been, explored by projects
such as CUIDADO|(4], Semantic HIFI 5] and SIMAC|6].

The extraction of musically meaningful features or descriptors from a raw recording
can sometimes be assisted by low-level separations of the audio, such as transient, steady-
state and noise decompositions. For example, rhythmic descriptors can be computed on
the isolated transient component, and harmonically-related descriptors on the steady-state
component. Alternatively, given a higher-level separation of the recording into notes, chap-
ter 5 shows how different source attributes can be used to group notes into source types.
In theory, this makes it possible to extract a particular instrument or source from the mix,
which in turn allows the computation of source or instrument-specific descriptors. The
process could even be reflexive; separation algorithms could then be modified and informed

by extracted high-level information.

1.1.4 Creative Musical Applications

The applications of music signal separation that are possibly the most difficult to foresee
are the creative ones, as these depend on each individual composer/performer’s intentions.
A potential creative application is ‘targeted effects processing’. That is, applying a musical
effect to a structured component of a mix as opposed to processing the mix as a whole.

Some examples within this framework could be: a compressor that compresses only certain
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kinds of percussive onsets, a karaoke-like system that suppresses any desired instrument
in the mix, and an equaliser that amplifies different structures within the mix rather than
specific frequency bands. Another creative possibility is sample-based music: music that
re-uscs segments of existing audio material in new compositions. Rather than re-using a

complete segment of a recording, the sound artist may wish to extract only a particular

structure from within that segment.

1.2 Overview of the thesis

The content of the thesis is split into three main chapters: the first (chapter 4) treats the
extraction of harmonic content of pitched notes from polyphonic mixes. The second (chap-
ter 5) deals with the separation of non-partial content when multiple pitched or percussive
notes are overlapping in time. The third section (chapter 6) discusses some feature-based
clustering experiments for grouping sets of separated or segmented notes into different
source types. In unison, these chapters describe an approach to source extraction from
polyphonic mixes. The block diagram of the implemented system is shown in fig. 1.1b, and
an envisaged completely automatic system is given in fig.1.1a. In addition, chapter 2 estab-
lishes the basic theoretical foundations of subsequent chapters and gives a general review of
the context of this work when not covered in the above chapters. Chapter 3 discusses the
alignment of the recording with a MIDI representation, which is the main source of prior
information. Although MIDI data is an essential pre-processing component of the current
system, in future it is intended to replace this by an automatic music transcription system.
What follows is a break down of each chapter in slightly more detail.

Chapter 2 - This begins by reviewing alternative ways of representing sound other than
the standard time-domain waveform. This is important as the audio representation is the
substrate from which musical structures are recognised and isolated during separation. An
overview of time-frequency and time-scale representations with an emphasis placed on the
short-time Fourier transform (STFT) and wavelet analysis will be given. The chapter also
discusses various methods for de-constructing sound into elementary structures or build-
ing blocks, such as partials, noise envelopes, transients, time-frequency masks or atomic
decompositions.

Chapter 3 - Prior information consisting of note pitches, onset times and offset times
are required to ‘find’ the notes within the recording, as it will be assumed in later chapters
that this has already been performed. Whilst a fairly robust multi-pitch estimator has
been developed for simple test samples, processing real recordings can be tricky. Automatic

transcription is a difficult problem in its own right, and it is chiefly for this reason that

it is being avoided, thereby allowing all effort to be directed at other interesting areas.
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Figure 1.1: (a) An automatic system for source separation from musical recordings, (b)

The system implemented here using prior MIDI data.

This chapter describes how user-improvised MIDI data is aligned with recordings. Human
timing errors and limitations of the MIDI representation can be partially overcome by
aligning MIDI notes to the audio recording. A note onset detector is used to estimate a
set of note attack times from the recording, which are then matched to MIDI notes using
a dynamic programming algorithm, and MIDI pitches are refined using a pitch estimation
pProcess.

Chapter 4 - This chapter describes the separation of harmonic content of pitched
notes from polyphonic mixes by adaptive filtering in the spectral-domain. The process
1s described in detail, starting with parameter estimation of spectral peaks in the STF'T,
continuing with the tracking of note harmonics over time, and the design of adaptive filters
for separating overlapping notes. Particular emphasis is placed on the separation of har-
monics that are overlapping in the spectral-domain, and a review of previous methods for
separating overlapping partials is given. Results are also provided that compare adaptive
filtering with sinusoidal extraction techniques, validating the use of adaptive filtering for
source separation under certain conditions. Spectral subtraction of harmonics has also been
tested as a means of reducing filtered noise in noisy spectra.

Chapter 5 - This chapter treats the transient and noise components of the signal, and
describes three techniques for separating transient and noise content of notes in polyphonic
recordings. These include: a time-domain linear predictive method for transient extraction,
which is intended to retain the transient characteristics of isolated note attacks. Secondly,

a bandwise energy interpolation method|7| for separating overlapping and decaying noisy
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onsets. This is built upon three alternative signal representations: the DIFT followed by
processing in Bark bands, the discrete wavelet transtorm and the wavelet packet transform.
The third technique assumes a correlation between the shape of the harmonic amplitude
envelope and the noise envelope of cach pitched note, and attempts to split the noise
envelope of the mix between the overlapping notes.

Chapter 6 - The objective in this chapter is to find an automatic way to separate all
content belonging to a particular source or instrument type from the mix, as opposed to
de-constructing the audio file into a set of unlabelled note waveforms. This will allow us to
extract or transform individual sources within the recording. An unsupervised clustering
approach is taken, in which notes are grouped into clusters in a multidimensional feature
space. Feature selection will be discussed, although the detailed feature derivations are
given in appendix A, and the clustering algorithm uses model-based clustering (MBC)|8].
Results are reported both when the number of clusters or sources is provided a priori,
and when this must be determined from the data. A comparative study of clustering
performance when computing features on raw note segments versus separated notes from
the recording will also be given.

Chapter 7 - This contains a summary of the main contributions of the thesis, reflec-

tions, and suggestions for further work.
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Chapter 2

Music signal representation and

modelling

“The whole problem can be stated quite simply by asking, ‘Is there a meaning
to music?’ My answer would be, ‘Yes.” And ‘Can you state in so many words

what the meaning is?’ My answer to that would be ‘No.”

- Aaron Copland (1900-1990)

We are facing the task of separating musical structures arising from multiple sources
from a mono recording. As these structures are in general overlapping in both the time and
frequency domains, it might be useful to find one or more alternative representations in
which these structures are more easily separable. This leads naturally to a two-dimensional
representation with both time and frequency axes. Section 2.1 reviews three representations
which correspond to different samplings or tilings of the time-frequency plane. Firstly,
the discrete short-time Fourier transform (STFT), which is the main representation used
for separation of harmonic content in chapter 4, and has also been used for separating
non-partial content in chapter 5. Secondly, the discrete wavelet transform (DWT), and
thirdly, the wavelet packet transform (WPT), both of which have been used in chapter 5
for separating overlapping non-partial content.

Although the separation methods described in chapters 4 and 5 extract different musical
structures directly from the representation, it is a set of signal modelling assumptions that
informs how the energy in the representation is to be distributed between the sources. For
this reason, a review of some common signal models that have been applied to music and
speech processing 1s given 1n section 2.2. These include sinusoidal modelling and partial
tracking, which have much in common with the methods used for tracking harmonics of

pitched notes in section 1.3. Noise modelling is discussed in section 2.2.2. introducing the

idea of a time and frequency dependent noise power envelope. This idea is continued in
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section 5.2 where it is applied to the separation of decaving noisy onsets. and in section
5.3 where 1t is iinplicitly used in a technique for separating overlapping noise from multiple
sources. Models and extraction of transient content are discussed in section 2.2.3, providing

some context for the time-domain autoregressive (AR) method for separating transient

events proposed in section 5.1.

2.1 Music signal representation

If we plan to separate a musical structure from a recording, it makes sense to use a repre-
sentation of the sound in which this structure is evident, and can be seen to be separable
from other types of musical structure occurring simultaneously. Furthermore, for the rep-
resentation to be useful as a musical tool, sounds of perceptual importance should also be
salient in this sound representation, since it is generally these structures over which the
user wishes to have some control. It does not make much sense to use an audio represen-
tation in which the kinds of structure that are easily separable are difficult to interpret
or do not have much musical significance. Unfortunately, there is seldom a single audio
representation that concisely displays or sparsely represents all structures of interest. Even
for the well-known spectrogram, a compromise must be decided upon with regards to the
quality of representation of steady-state content and partials versus rapidly time-varying
content and transients. This motivates the use of multiple signal representations, or at least
multi-resolution and even adaptive signal representations, tallored for displaying a partic-
ular structure of interest. Multi-resolution methods such as wavelet analysis|9, 10|, the
constant-Q transform|11, 12|, and multi-resolution filter banks and decomposition trees|13|
have become fairly popular in music signal processing. The use of these methods 1s mo-
tivated by factors such as the desire to mimic the human auditory system, the fact that
our frequency sensitivity is more appropriately described by a constant relative frequency
resolution (Q = —A-%, where f = centre frequency, A f = frequency resolution at f) than con-
stant absolute frequency resolution (A f), the fact that musical scales follow a logarithmic
frequency pattern, and the knowledge that in addition to the signal's frequency envelope,
its phase information and shape of the timne-domain waveform are perceptually significant
as well.

If the representation is itself to be subjected to further processing, an immportant factor
is whether it is possible to re-synthesise sound from the transformed representation. and
what artifacts might be introduced by this transformation. For this reason there is interést
in perfect reconstruction analysis/synthesis methods.

A further desirable characteristic of the representation is that it is a linear system in

the following sense. It x; and xg are two sampled signals in vector notation. F{x;} and
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F{x2} are their transformed representations, and a; and a; are two constants, then the

principle of superposition holds:

F{Of1 X1 + (9 Xz} = F{Xl} 0%, F{Xz}. (2.1)

This ensures that the opposite process of subtracting the exact representation of one of the
signals, let’s say F'{x;}, from the mixture F'{x; + X2}, to produce a residual representation
F{x,}, satisfies:

F{x:} = F{x1+x2} - F{x1} = F{x3} (2.2)

and so the inverse (perfect reconstruction) transformation of the residual representation:
F HF{x:}} = FY{F{x2}} = xo (2.3)

yields the second signal xo without introducing any interference terms. In other words, if
the chosen source is subtracted from the original representation so that an inverse trans-
formation allows the perfect reconstruction of this source, the subtraction will not produce
artifacts that could hinder the extraction of further sources from the residual representa-
tion. Although we prefer to base our analyses on a linear representation for the reasons
of ease of interpretation and simplicity in terms of signal processing, there is evidence to
suggest that human listening is nonlinear. For example, the sum of two identical tones does
not sound twice as loud; if this were the case it might be very difficult to hear a solo violin
playing with a full orchestral background accompaniment.

In some representations such as the spectrogram or Cohen’s class of bilinear energy
time-frequency distributions|14|, if x; and x5 are sufficiently far apart in time and fre-
quency, the principle of superposition is nearly satisfied. However, this is generally not
the case given that sources in music are often overlapping or nearly overlapping in both
time and frequency domains. Cohen'’s class of time-frequency energy distributions|14] is the
class of distributions that measure the spread of signal energy in time and frequency which
are time and frequency covariant, i.e. a time or frequency translation ot the signal pro-
duces a corresponding simple translation of the energy distribution. The class includes the
Wigner-Ville distribution (WVD)[14], and smoothed versions of this such as the pseudo-
Wigner-Ville distribution|[15|, smoothed-pseudo-Wigner-Ville distribution|15], and modal
distribution|[16|. Whilst the WVD is capable of providing simultaneously verv high time
and frequency resolutions, and the modal distribution is designed specifically for the esti-
mation of the instantaneous frequencies of a multi-component sinusoidal model. this comes
at a cost. The representations do not satisty eqn. 2.1, and produce Interference terms
which can make them diflicult to interpret visually for multi-component signals. Fig. 2.1

compares the spectrogram and WVD for a sum of two chirp signals, one logarithmically
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Figure 2.1: A sum of two chirp signals (one logarithmically increasing and the other decreas-

ing in frequency) viewed in the: (a) spectrogram, (b) Wigner-Ville distribution (WVD)

increasing in frequency and the other decreasing in frequency. Both the excellent simul-
taneous time and frequency resolution, and average and difference frequency interference
terms of the WVD can be seen clearly. A review of time-frequency representations for the
analysis of musical signals is given in [16, 17]|.

One of the most popular music signal representations that satisfies eqn. 2.1, and from
which a perfect reconstruction can be obtained under appropriate sampling conditions,
is the discrete form of the STFT. This is an excellent way of simultaneously displaying
the crude time structure and resonance structure of the signal. Furthermore, many useful
signal transformations can be made in the STFT time-frequency-domain. A closely related
technique, the phase vocoder|18, 19, 20|, is well established as an analysis/re-synthesis tool
for speech and music signals, allowing a variety of transformations such as pitch-shifting
and time-stretching. It was thus decided to do the majority of audio processing within
the STFT representation except where this proved to be inadequate, such as for highly
non-stationary content. Wavelet analysis was used in section 5.2; this encodes the shape ot
the time-domain waveform as a sum of ‘bites’ of information at a set of sequentially larger
time scales. Both the DW'T and WPT can be implemented efficiently using filter bank
structures (sections 2.1.4 and 2.1.5). Wavelet packet analysis allows the construction of a
signal dependent basis providing an optimal multi-resolution decomposition of the signal.

Both the DWT and WP'L satisfy eqn. 2.1 and are invertible transformations. The following

N
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sections review the STFT, DWT and WP1.

2.1.1 The short-time Fourier transform

Music signals are characteristically non-stationary, meaning that the sound evolves over
time. In contrast. a stationary signal is one whose deterministic component can be exactly
modelled as a sum of sinusoids of constant amplitude and frequency, and the statistical
properties of its stochastic component do not vary over time either. In reality, music sig-
nals are nearly always non-stationary, but over sufficiently short periods of time are often
considered to be ‘quasi-stationary’. That is, the sinusoidal parameters and statistical prop-
erties of the stochastic component change negligibly over a short duration. This property
of local stationarity suggests the discrete short-time Fourier transform (STFT) as a sig-
nal representation. With a suitably chosen analysis window function, the STFT measures
the local time and frequency behaviour of the signal over durations in which the signal is
quasi-stationary. Fortunately, the weighted overlap-add method|21] allows a perfect recon-
struction to be obtained from the STEFT, and the STFT is also versatile to performing a

host of temporal and spectral transformations.
The origins of the STFT in Fourier theory are well known and so we will skip over these
and simply state the result. The (continuous) STFT of a signal z(¢) measured at some time

instant 7 and angular frequency w 1is:

STFT(r,w) = / T () B — 1) ety (2.4)

— OO0

where h(t) is the analysis window function. If h(¢) is chosen to be concentrated about t = 0,
then we can interpret the above as a measure of the signal content in a time-frequency
region centred around 7 and w. Eqn. 2.4 can also be seen as a filtering operation, where
the impulse response of the filter is the window function modulated at the frequency w.

In the real discrete signal case, z(t) — z|n| with n=0,...,L — 1, it is usual to sample
the continuous STF'T at discrete time and frequency intervals. The time axis is segmented
into time frames, which can be overlapping, with a step size between consecutive frames of
Npop samples. We denote r = 0,..., R — 1 as the time frame index. The frequency axis
is sampled at equidistant frequencies wy = 27k/N, where Kk = 0,...,N — 1, and N is the

transform length, whose meaning will soon become clearer. This yields the discrete STEF'I"
Slk,r] = ) z[n] - h[n — rNpop) €744" (2.5)

n——00

where h|n| is the discrete and real-valued analysis window function. Substituting s =

n — 1N, and specifying that h|n| is of non-zero length at most N

hin] >0 ;n=0,...,N -1

hin] = 0 ; otherwise
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then eqn. 2.5 can be rewritten as:

N —1
Sfkyr] = 3 als+ rNagp] - hls] emirNhor)
s=(}
N -1
e e—iwkT‘Nhop Z .I'[S + TNh.Op] _ h[S] e—zwks
s={)
i e-—iwkTNhOp _ Fr[k] (2'7)
where
N -1
Frlk] = Y z[s+rNhop) - h[s] e~ 2.8)
s=()

is the discrete Fourier transform (DFT) of the r'* block of N samples multiplied by the
window function h|s|. This is convenient, as the STFT is now written in a form that has a
direct implementation using the DFT of consecutive segments of the signal, as we slide the
window function across the waveform taking snapshots every Nj,, samples. Once again,
N is the transform length, which is chosen to be at least as large as the window length.
When N is larger than the width of the window, this is known as zero-padding, which can
be used to increase the density of sampling of the frequency axis, since Aw = wr 1 — wi 1
inversely proportional to V.

If a windowed segment of z[n] in the 7" time frame is defined as:
Irn| = z(n|-hin—rNyy (2.9)

and Ny, 1s chosen to be smaller than the width of the window function, then the non-zero
portions of z,[n| are overlapping, as shown in fig. 2.2.
Synthesis from the STFT representation can be performed in a similar manner. Let

S k,r| denote the STFT after some transformation has been applied in the time-frequency-

domain, and let F,[k] be defined as:

—

Fi.lk] = ewr™hop . Sk 7). (2.10)

The transformed signal z|n| can be obtained by weighted overlap-add synthesis|21] with a

synthesis window h[n| as follows:

l.R—1~ N—1 i
Flnl = = hin — rNpop] Slk,r| e“*"
=0 k=0
| Rl N-1
= hin — rNpop) E,.[k] ek (n=TNhop)
r=0 k=0
.R—1~
= i — v Ny %00 (2.11)
r=0

—

where 7,[n] is the inverse discrete Fourier transform (DFT™!) of F,.[k], translated to the

rth frame:

Zrn] = (2.12)
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Figure 2.2: Calculation of the discrete STF1 of a music signal using a sliding window
function. The lower three figures show overlapping windowed segments of the original

waveform. The hop size between frames, Ny,,, 1s halt the transtorm length, V.

z,|n| and z, n| would be identical in the absence of any transformations to the STFT data.
Similarly to z,|n] in fig. 2.2, Z,.|n] is a windowed and potentially transformed segment of
the signal. It is only necessary to calculate Z,[n] for sample values within the r'" frame,
i.e. n —1rNpo =0,...,N —1, as it is later multiplied by the synthesis window function
hin — rNhop) in eqn. 2.11 which is zero elsewhere. The condition on the analysis and
synthesis window functions for perfect reconstruction in the absence of any transformations,
i.e. z[n| = x|n], is:

R—1
3 Aln sl hln—gllg) = 1. ¥a=0..L-1 (2.13)
r<=t

[t happens that h[n| was chosen as a Hamming window of length N due to other consid-

erations, one being to obtain accurate estimates of spectral peak parameters (section 4.2).

Thus it was convenient to choose:
2Ny - 1
2l hop Hn| cm =0 0 — 1

hin] = SR (2.14)
0 - elsewhere

where t[n| is the triangular window function:

~ , 0<n<N/2-1
t[n} e Q(I\T?Vn)“‘l ]\7/2 <n< N — 1 (215)
0 . elsewhere
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Figure 2.3: Analysis (h|n|) and synthesis (h|n|) windows used for calculating the discrete

STFT with N = 256 and Np,, = N/2

h[n] now has the desirable property of tending towards zero at the frame boundaries, as
shown in fig. 2.3, which minimises edge discontinuities when spectral transformations are
made to S|k, r|. Actually, eqn. 2.13 is not entirely satisfied for n < N and n > L — N, but
this is not of much concern as the signal can be buffered with short segments of silence on
each end. It is worth mentioning that eqn. 2.13 can also be satisfied for certain combinations
of the window function and overlap factor (IN/Nj,,) with identical analysis and synthesis

windows. For example, a simple sine window h[n] = h[n] = sin(mn/N), n=0,...,N — 1

with with an overlap factor of m > 2, m € Z would satisty eqn. 2.13, as would a Hanning
window with m > 3, m € Z.

The DFT can be calculated very efliciently using a fast Fourier transform (FFT) algo-
rithm|22|. There are a number of different implementations of the FFT that depend on
how the transform length N is reduced to smaller factors called radices. It is common in
audio processing to choose N to be a power of 2 samples long. The radix-2 FF'T algorithm
requires O(N log, N) arithmetical operations in comparison to direct computation of the
DFT in O(N#) operations. N, was chosen as N/2™, where m € IN, and no zero-padding
has been used.

Finally, the familiar spectrogram is simply the modulus squared of the STFT, i.e.
S|k, r]|%. This is the spectral energy density of the signal within the time-frequency plane.

Some spectrograms of musical instrument sounds are given in figs. 4.6, 4.7 and 4.8.

2.1.2 Time-frequency resolution and multi-resolution approaches

The STFT was proposed as a way of representing the local behaviour of the non-stationary
musical signal, and it was shown how it can be calculated efficiently using the DFT and
synthesised from using the DFT~*. A consequence of using a finite length analysis window

is that the window is itself of non-zero bandwidth, and must obey the uncertainty principle.
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This is convenient to formulate in the continuous-time case. If the window function and its
Fourier transform are h(t) aud H(w) respectively, then the time spread and bandwidth of

the window function are respectively:

(2 h()2dt] Y
L [1h(®)]?dt |
r 2 H 2d 1/2
A - [J@ HW)[dw (2.17)
| J [ H(w)]2dw
and the uncertainty principle must be satisfied:
1

The equality is only achieved for Gaussian window functions. This is sometimes written in

terms of frequency rather than angular frequency, i.e.:

1
Alf > (2.19)

Eqn. 2.8 is the DF'T of the product of the signal and the analysis window, which due
to a well known property of the DFT, can also be written as the convolution of the DF'T
of the signal with the DFT of the window. A result of this convolution and the fact that
A, > 0 for any finite window length, is a broadening of all spectral lines. In other words,
since the window function is of finite spectral width, then when it is convolved with the
DFT of the signal, any spectral line in the original un-windowed signal would be replaced
by the spectral shape of the window function after convolution. At a given frequency wy,
eqn. 2.5 can alternatively be interpreted as filtering the signal with a bandpass filter having
a finite impulse response h{—n| modulated at the frequency wg. Both views indicate that
S|k, r| measures the signal’s behaviour in a finite neighbourhood around a time-frequency
point, i.e. roughly [t, — A¢, t, + A4, [wr — Ay, wr + AL, where {, is situated within the
rt" analysis frame. Since only a single type of analysis window is being used, and as Np,,
is constant, then ¢, and wy are spaced equally apart on a rectangular time-frequency grid
as illustrated in fig. 2.4a.

According to eqn. 2.18, there is clearly a trade-off between time and frequency resolu-
tion. The better localised the window function is in time, the worse the frequency resolution
of the STFT, and vice versa. This property is not circumvented by over-sampling the STEF'T
or zero-padding, and so must be used to greatest effect for the signal of interest with an ap-
propriate choice of the window function. The implications for musical signals are that long
window functions are required to accurately represent slowly time-varying partials, and

short window functions are required to represent quickly time-varving or non-stationary

segments. To make things worse, the nature of music is that both quickly time-varyving and
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Figure 2.4: The time-frequency sampling grid for (a) the STFT, (b) the DWT

slowly time-varying content often occur simultaneously. It is therefore difficult to find a
single STFT representation that captures all aspects of the signal’s behaviour.

Various multi-resolution representations exist, i.e. where A; and A,, vary with frequency
and /or time, such as the discrete wavelet transform (DW'T). The DWT (section 2.1.4) has
a dyadic time-frequency sampling grid as shown in fig. 2.4b, which can sometimes provide
a better representation of the signal. A signal-dependent and optimal representation of
the signal can also be obtained using wavelet packets (section 2.1.5). Another approach
is to use an adaptive representation such as the pitch-synchronous wavelet transform|23|,
or a pitch-synchronous Fourier representation|24|, which adapts to the periodicity of the
signal (assuming there is at most one dominant periodic source at any instant, which is
limiting for polyphonic music). Even so, multi-resolution and adaptive representations
are, on their own, still single viewpoints of the signal, which don’t always provide concise
representations of all the different kinds of content one typically encounters in music signals,
especially when different structures are overlapping in both time and frequency. Ideally,
multiple representations of the signal, or a multidimensional representation, would be better
suited to encoding all of the structured components of the signal. Of course, there would be
technical issues concerned with analysing, re-synthesising or extracting information from
such a representation. In this work, different signal representations have been used for
extracting different kinds of musical structure, including the time-domain waveform, STF'T,
DWT and WPT. Each produces its own characteristic artifacts upon re-synthesis if any

modifications are made within the transformed representation.

2.1.3 Wavelet analysis

Wavelet theory has become increasingly conspicuous in speech and music signal processing,
not to mention in a variety of other applications such as image processing, applied math-
ematics, quantum physics and seismic geology. Introductory material on wavelet theory

can be found in [9, 10|, and there are a number of books available on the subject, such as
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25. 26, 27 . A list follows of various past applications of wavelets to music, after which the
basic wavelet theory will be reviewed. The discrete wavelet transtorm (DWT) and wavelet
packet transform (WPT) will be introduced in sections 2.1.4 and 2.1.5.

We begin with the use of wavelets for signal representation and coding. Wavelets were
used in [28] to create a representation of musical audio based upon a sinusoidal plus tran-
sient model, and also in [29] to encode transient audio content after steady-state content
had been removed using a sinusoidal model{30|. Multi-resolution filter-banks and wavelet
representations were also suggested for improved sinusoidal modelling in [13|, particularly
to avoid the shortcomings of using fixed duration basis expansions such as the STFT, which
are inadequate at representing transient content. An adaptive switched filter bank scheme
was described in [31] for audio coding, that uses the discrete cosine transform (DCT) for
encoding stationary time frames and the DWT for encoding non-stationary frames. The
pitch-synchronous wavelet transform [23]| and its extension, the harmonic-band wavelet
transform|32|, provide a frequency decomposition of a periodic signal in such a way that
large scales encode the average periodic behaviour of the waveform and small scales encode
the fluctuations from the average periodicity at different rates. A 1/f-like noise model for
the spectral harmonic sidebands was discussed in (32, 33|. It was shown that the harmonic-
band wavelet transform provides a convenient multi-resolution decomposition for estimating
the characteristics of the 1/f decay, and creating synthetic sounds driven by white noise
with similar harmonic behaviour. It is also able to separate the deterministic from the noise
components of the sound.

One of the first accounts of applying the wavelet transform to speech and music pro-
cessing was given in |34/, where it was suggested that sound transformations such as pitch
shifting, filtering and cross-synthesis could be accomplished by altering wavelet coefficients.
[t was shown in |35| how simple linear musical effects such as filtering and delay could be
implemented accurately in the wavelet-domain using wavelet tables. De-noising of audio
signals was performed by thresholding DWT coefficients|36] and thresholding using complex
wavelets[37]. Wavelet transform derived features have also been used for instrument|38| and
genre[39] classification, and general audio classification and beat detection|[40].

The continuous wavelet transform (CWT) interprets the signal as a sum of time-

translated dilations and contractions of a single prototype basis function or mother wavelet,

(t). A scaled and translated copy of ¥(t) is:

Yra(t) = % Y (t - T) (2.20)

where 7 is the time translation, a i1s the scale factor and the factor ﬁ has been added to
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ensure that the wavelet is also of unit energy:

Like the STFT, W(r, a) measures the similarity between z(¢) and the basis function ¥, ,(t).
However, for the STET. the basis functions were translated and modulated versions of the
window function, i.e. did not involve any time scaling. Eqn. 2.22 can be interpreted as a
convolution of x(t) with the impulse response of a bandpass filter 1} ,(—t). If, for example,
we choose the mother wavelet to be the modulated window or Gabor atom (strictly speaking

this refers to a Gaussian shaped window) used in the STFT case:
Y(t) = h(t) ekt (2.23)

then:

Yo,a(t) o< h (E) eiat = h (E) et (2.24)

a a

This indicates that scale is inversely proportional to frequency: a = wi/w. The act of
expanding the mother wavelet (a > 1) would effectively decrease the modulation frequency;,
l.e. w < wi. However, although the modulation frequency of a basis function has a well-
defined meaning in the case of the STFT, in general there is no similar interpretation for
a wavelet, 1.e. w 1s rather meaningless on its own. Hence, scale is a more meaningtul
variable than frequency for wavelet analysis, and the CWT is referred to as a time-scale
representation rather than a time-frequency representation.

Associated with the CWT is the reconstruction formula:

o0 o0 d
r(t) = C;I/ / W(r,a) ¥rq(t) —-—gi dt (2.25)
— 00 JO a
which 1s valid as long as the admissibility criterion is satisfied:
o0 \Ij'ra, 2
Cyp = / L————(—Q—J)—L dw < o0 (2.26)
0 vy

where U, ,(w) is the Fourier transform of 1, ,(t). Eqn. 2.26 implies that ¥, ,(0) = 0, hence
the wavelet has a bandpass property.

The scaling property of wavelets (eqn. 2.20) and the inverse proportionality of scale with
frequencv. means that shorter wavelets will be used to represent the signal behaviour at
higher frequencies. and longer wavelets will be used to model lower frequency components.
This also means that the time resolution of the CWT is better/worse at higher/lower
frequencies respectively, and conversely. the frequency resolution is better /worse at lower/-

higher frequencies respectively. In fact, the CWT is an example of a constant-Q analvsis.
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where Q@ = w/A_, measures the relative frequency resolution of the representation at the
frequency w.

One could argue that a constant-() representation is well suited to musical signals. We
know that the distribution of critical bands in the human auditory systemn is roughly log-
arithmic above about 1 kHz, and that the frequencies of notes in a chromatic scale are
equally distributed on a logarithmic scale. These are both indications that less frequency
resolution is required at higher frequencies. At small scales the CWT is able to represent
very fine structure, which makes wavelet analysis particularly suited to modelling of tran-
sient signals|41|, whilst higher scales simultaneously encode larger temporal structures. On
the other hand, the extraction of stationary content or partials from audio is made easier
by using the same time and ifrequency resolution at all frequencies. Fig. 2.5 compares
the advantages/disadvantages of the CWT versus the STFT for a test signal containing a
sum of a delta function which is non-zero only at one sample, plus two sinusoids of equal
amplitude with frequencies of 2 and 10 kHz respectively (a Daubechies-6 (‘db—6’) wavelet
was used to calculate the CWT and the window length of the STFT was roughly chosen to
obtain the best overall representation of the signal). We see that excellent time localisation
of the impulse and a fairly good localisation of the higher frequency sinusoid along the scale
axis can be achieved from the CWT at small scales, although the lower frequency sinusoid
1s very spread out along the scale axis. The STFT is unable to discern details that are
much smaller than the time resolution of its window function, and so the delta function is
spread out in time. However, both sinusoids are represented very similarly and are fairly

well localised in frequency in the STFT.

2.1.4 Discrete wavelet transform

The CWT given in eqn. 2.22 is highly redundant in the sense that a one dimensional
continuous signal is mapped onto a continuous two dimensional time-scale plane. Thus, in
practice, the CWT is regularly sampled at discrete time and scale positions. We represent
the corresponding discrete set of wavelets as {¢; k() : j, k € Z} with:

1 — k1 d
Yik(t) = = Y (f_;rc)g_) (2.27)

J a
ay 0

ag > 1 is the fixed dilation step. and g ag is the time step, which depends on the scale j.
Similarly to eqn. 2.22, the wavelet coefficients at scale ;7 and translation k are defined as:
O
Wir = / z(t) 5 (t) dt. (2.28)
— XD
Two competing factors arise in sampling: to reduce redundancy the CWT should be

sampled sparsely. but as pertect reconstruction is required. the sampling should not be too
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sparse so as not to be able to reconstruct the signal from its set of wavelet coefficients.
There exist certain families of orthonormal wavelet bases for which dyadic sampling is
capable of perfect reconstruction. Dyadic sampling corresponds to a¢p = 2. and this non-

uniform sampling of the time-frequency plane 1s illustrated in fig. 2.4b. Reconstruction is

achieved from the wavelet coethicients using:

x(t) = ), Wik k(). (2.29)

jkEZ

Once again, eqn. 2.28 can again be interpreted as filtering the signal using a bandpass filter
with impulse response w;’-"k(—t). Each time 7 is incremented, the scale of w;f‘q .(—t) doubles
and its frequency support halves. Thus, the dyadic sampling of the CWT resembles an
octave spaced filter bank. For reconstruction we require that these bandpass filters provide
sufficient covering of the frequency axis. Thus they should be at least slightly overlapping
in frequency.

As j increases, the scale of the wavelet 1, ¢ (t) increases, i.e. the corresponding wavelet
coeflicients represent larger scale features. Therefore, let us define the following that encodes

the detail contained in the signal at level j:

Dj(t) = Z dj,k ij’k(t) (2.30)
keZ

where d; . = W, . are the detail or wavelet series coefficients. It follows from eqn. 2.29 that

the signal is the sum of all the details:
z(t) = » Djt). (2.31)
JEL
We can also say that at some level J, A;(t):
As(t) = Y  D;(t) (2.32)
7>J
1s the sum of all details of scales larger than 7, i.e. it is an approximation to the signal

lacking the finer structure of the smaller scale details 7 < J. Clearly the signal 1s equal to

a sum of the approximation at scale J plus all iner details:

x(t) = Aj(t)+ )  Dj(t). (2.33)

J<J

[t is also evident that the approximations at levels J and J + 1 are related via:
Aj(t) = Asn(t) + Dya(t). (2.34)

We return brieflv to the idea of an octave spaced filter bank. Instead of computing an infinite

series of bandpass filtered components where the centre frequencies of the bandpass filters
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are monotonically decreasing, at some point it may be useful to terminate this operation
and siimplyv lump all further bandpass components into one low-pass filtered component.
This low-pass approximation to the signal is A;(t). Now, similarly to the set of wavelets
{¢V;k(t); k € Z} being an orthonormal basis for the detail at scale j. we define a set of
scaling functions, {¢;(t); k € Z}, that are an orthonormal basis for the 7" approximation.

Hence, similarly to eqn. 2.30, the approximation at scale j can be written:

Ai(t) = Y ajk ¢(t) (2.35)

kEZ
where the approximation coeflicients are:
>C
Ajk = / z(t) ¢; () di. (2.36)
—C

We wish to go now from the continuous time case to the discrete signal case. This is not,
however, a simple case of replacing ¢ by kI where 1" is the sampling period. If this was the
case, we can see in eqn. 2.27 that wavelets obtained for 5 > 0 would yield non-integer sample
numbers. However, it is fortunate that the computation of the discrete wavelet transform
(DWT) does not explicitly require the wavelets or scaling functions. The link between the
continuous and discrete time cases was provided in the multi-resolution theory of 42| and
43]. It was shown that the DWT could be computed using a pyramidal filter bank, depicted
in fig. 2.6, by convoluting the signal with a pair of quadrature mirror filters (QMFs)|44].
Due to a property of the scaling function known as the two-scale relation, it turns out
that the approximation coefficients: {a;+1|k]; kK € Z}, can be computed as a weighted
sum of approximation coefficients encoding the next finer level of detail: {a;k]; k € Z}.
Incidentally, the notation has been changed from a; to a;|k] to indicate discrete signals,

in line with the filter bank interpretation of the DW'T. We have:
aj+1lk] = Z gln — 2k a;|n/|. (2.37)
ncz

This resembles a convolution, and is equivalent to filtering a;n| with a filter having an
impulse response g|—n|, and then down-sampling the result by a factor 2. The detail

coefficients at scale 7 + 1 can similarly be obtained from the approximation coeflicients at

level 7:

dj 1[]6] = Z h[n — Zk‘] aj[n]. (238)
nez

If we define the low-pass filter §[n] = g[—n] and the high-pass filter h[n] = h[—n], then

together they form a pair of QMFESs of length L (even) which are related according to:

h[L —1—n] (2.39)
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Figure 2.6: Digital filter bank implementation of the discrete wavelet transform (DWT)

If H(w) and G(w) are the DFTs of h[n] and §[n] respectively, the filters satisfy the condition

of power complementarity:

HW)”+|Gw)]* = 2 (2.40)

It can be shown that the approximation coefificients at the highest level of detail necessary
for a sampled signal are roughly equal to the sampled signal itself. If we initialise j = 0 at
the finest level of detail, then the sequence of filtering and down-sampling operations can
be initialised using ag{n] = z|n]. From eqns. 2.37 and 2.38, the approximation and detail
coefficients can be computed at any scale by a sequence of filtering and down-sampling by
factor 2 operations on the original signal z|{n|. This is illustrated in fig. 2.6 and is known as
the discrete wavelet transform (DW'T), where the word ‘discrete’ indicates that both time
and scale are discretely sampled. At each node in the decomposition tree the approximation
at this level is filtered into a low-pass signal encoding the larger scale teatures, and a high-
pass signal which is the difference between the two approximations. At some point the
sequence of filtering operations can be stopped, resulting in a set of detail signals at each
scale, and a final low-pass approximation to the signal, analogous to eqn. 2.33.

The decomposition tree in fig. 2.6 can be inverted to perfectly reconstruct the signal
from its approximation or detail coeficients. Like eqn. 2.34, it is possible to reconstruct
the approximation coefficients at level 7 from a sum of detail and approximation coeflicients
at level 7 + 1:

a;[k] = > glk—2n] ajia[n]+ Y hlk—2n] djy[n]. (2.41)
nez nEZ
Again this can be seen as a filtering process, but this time the approximation or detail
coefficients at scale j + 1 are first up-sampled by a factor 2 by inserting zeros between
consecutive samples, and then filtered using g|n| or hin| accordingly. The reconstruction is
shown in fig. 2.7 and is called the inverse discrete wavelet transform (DWT™1).

Up until now, we have not actually described what the wavelets look like and have only
used their properties. Fig. 2.8 shows a few sample wavelets from the Daubechies, symlets
and coiflets wavelet families. As expected from the variation of shape of these wavelets in the
time-domain, the choice of wavelet has a significant effect on the output of a wavelet-based
analvsis/svnthesis svstem. There are a number of factors influencing the choice of wavelet.

From the point of view of computational efficiency, wavelets characterised by short filter
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Figure 2.8: Some example mother wavelets, ¥ ()

impulse responses, h|n|] and g|n|, are advisable. However, longer impulse responses allow
sharper transition band widths. Other factors to take into consideration are the number of
vanishing moments, smoothness, symmetry, linear phase and time support of the wavelet.
For coding purposes, a ‘sparse’ representation of the signal (i.e. one in which the signal
is encoded using a minimal number of non-zero wavelet coeflicients) would be preferable,
leading to a different choice of wavelet than might be chosen if signal transformation or

separation was the main objective. Thus, the selection of a ‘best’ wavelet basis is application

and signal dependent.

2.1.5 Wavelet packet transform (WPT)

An obvious extension of the wavelet decomposition tree or pyramidal filter bank in fig.
2.6 1s a structure in which a two-channel sub-band decomposition is applied to both low-
pass/approximation and highpass/detail coefficients, as opposed to only the approximation
coefficients in the DW'T' case. This is illustrated in fig. 2.9, and as the filter bank structure
is equivalent to wavelet packet analysis, we will refer to this as the wavelet packet transform

(WPT). An advantage of this decomposition is that a huge amount of flexibility is afforded
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In the design of the binary tree structure (i.e. each node 1s either split into a high-pass
and low-pass signal or remains undivided), resulting in the notion of a "best tree’ or best
wavelet basis for a particular signal. For coding purposes, the best tree would be the one in
which the most cuergy compaction and decorrelation of the transformed signal is achieved.
In [45] it is described how to determine a best basis for decomposition from the point of
view of compression. A Lagrangian cost function is computed at each node which trades
off coding rate against quantisation distortion at a particular ‘quality factor’. However,
the particular best basis measure or cost function attributed to a decomposition is again
application dependent.

A search for a best tree requires two things: a way of computing the cost associated with
a particular branch, and a fast procedure for searching through the huge number of possible
tree configurations. An optimal tree structure can be determined by initially expanding
the tree fully to some maximal level, which can be chosen by the user or determined by
the length of the signal. The tree structure is then pruned by removing ‘child nodes’ of a
‘parent node’ when the sum of the cost functions or entropy-based measures of the child

nodes 1s larger than that of the parent node. In other words, if:

Epa'rent < Echildl - Echild? (242)

then the two children nodes are merged together. A number of entropy-based measures that
can be used in eqn. 2.42 and having an additive property exist. The Shannon entropy|46

has been used here:

E, = — ZSQ[’IZ] log (sg[n]) (2.43)

where s[n| are the approximation/detail coeflicients at a particular node.

Whilst wavelet packets have been shown to arise naturally from the filter bank structures
of section 2.1.4, there is a dual interpretation of the WP'T as a projection of the signal onto
an orthogonal wavelet basis. Suppose we represent the band-pass signal at any node within
the filter bank structure as ¢, k|, where j is the depth within the tree, n indexes the set of
nodes at a particular depth, and k is the translation coefficient. c;,|k| actually measures

the projection of the original signal onto the time and frequency translated wavelet at scale

7 centred at time t = 27 k:
'l/)j,k,'n(t) — 2_j/2 t/’n(2_j L — k) (2*44)

'n(t) has the same scale as the mother wavelet 1(t), but is translated in frequency according
to the value of n. In summary. wavelet packets allow highly non-uniform tilings of the
time-frequency plane. and thercby an expansion of the signal into a signal-dependent and

orthogonal basis. Like the DWT ™! an inverse filter bank structure exists for wavelet packets
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Figure 2.10: Reconstruction from the WPT using the inverse wavelet packet transform

(WPT-1).

allowing perfect re-construction of the signal, which will be referred to as the inverse wavelet

packet transform (WPT™1). This is shown in fig. 2.10.

2.2 Music signal modelling

Section 2.1 introduced the idea of a music signal representation, focusing on three alternative

views of the signal: the STFT, DWT and WPT. We now turn to the problem of modelling

the musical signal or extracting information from this representation.

It 1s natural to think of music as being a highly structured combination of smaller sonic
elements such as notes. For the human listener, these elements can usually be identified
fairly easily with their respective sources or instrument types, which seems to support the
notion that elements produced by a particular source are acoustically similar in some sense.
[f these elements are notes, each one can be characterised using convenient terms such as
‘attack’, ‘sustain’, ‘decay’, and be viewed as containing distinct components such as partials,
transients and noise. By modelling each of these components separately, we construct a
complex model of the musical signal. However, there are a number of inadequacies in this
approach. Firstly, it 1s debatable how structured the musical signal is even at a cognitive
level|47], let alone at the signal level. Although the music usually ‘makes sense’ at some level
or has some recognisable high-level structure, which usually goes in hand with a satisfactory
listening experience, as soon as we try to quantify the elements ot this structure, we 1gnore
all signal content that docs not fit these criteria. In relation to our description of the signal

in terms of notes, we have probably failed to account for reverberation and other effects
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processing, other non-instrumental sources in the recording environment, instrument sounds
produced by unconventional gestures or perhaps muffled or shortened, and svuthesised or
acoustic ambient-like sources that are better described as continually changing timbres
rather than sounds of finite duration. The existence of a potentially infinite variety of
synthesised sounds and the reasons above makes any useful symbolic description of the
signal in terms of a standardised set of ‘sound events’ incomplete. Even if we discard
this idea, and regard the signal as containing distinct and mutually-exclusive non-symbolic
components such as transients, partials and noise, there are still problems. For example,
when exactly does the transient excitation that eventually settles into a stable vibrational
mode become a partial? Also, if transient content is characterised by rapid increases in
broad-band energy, when is the energy considered to have subsided enough so as to be
labelled noise rather than transient content? Thus, an all-encompassing and descriptive
music signal model is realistically either unattainable or ambiguous. A sum of several
musical sources in a recording, where the number of channels is less than the number of
sources, 1s accompanied by a loss of information except in the most trivial of cases. Given
that we cannot extrapolate this lost information after mixing by using a musical signal
model whose parameters have (hypothetically) been estimated perfectly, the proposition
of perfectly separating a set of overlapping sources from a mono recording is implausible.
With these cautions in mind though, the question that should really be asked is whether
the musical signal model is sufficiently flexible and accurate to be useful in a particular
application, for example one of those listed in section 1.1, where the requirements of fidelity
differ from application to application.

Although signal representation and signal modelling are described here as separate
entities, there is some overlap between them. The STFT for instance, although generally
considered a representation, can also be seen as the estimation of model parameters in which
the signal is modelled as a weighted sum of Gabor-like time-frequency atoms. Similarly,
the DW'T finds the coefficients of a set of wavelets modelling the signal. If the signal 1s
reduced into a sub-set of atoms or dictionary elements as opposed to a complete basis,
such as when using the matching pursuit algorithm|48|, it is even more difficult to say
whether a representation or model of the signal has been obtained. Here, a representation
is considered to be complete in the sense that it provides a complete covering of the time-
frequency plane. All the representations used here will also be invertible, allowing pertfect
reconstruction of the signal. Conversely, a signal model is incomplete in its covering of the
time-frequency plane, and is able to produce a perfect reconstruction only in trivial cases.

As there seems to be suflicient evidence of qualitatively different structures in the musical

signal (e.g. partials, transients and noise), although their exact distinction is not very
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clear as mentioned above. different separation algorithms will be used to separate different
structures within the sound, rather than designing a unified signal model or separation
method. Iterative subtraction of multiple structures is pertormed to avoid separating the
same content more than once. This means that for each structure that is separated fromn
the recording, a residual is calculated, and all further structures are extracted directly from
the residual.

A thorough review of various approaches to audio signal modelling is given in [13].
These include sinusoidal modelling using multi-resolution representations and adaptive time
segmentation, perceptual models of the non-sinusoidal residual, complete and over-complete
basis expansions, atomic decompositions calculated using the matching pursuit algorithm,
and pitch-synchronous methods. We continue with a description of sinusoidal modelling
for the extraction of partials from audio (section 2.2.1). Then, noise modelling of the non-
sinusoidal residual (section 2.2.2) will be discussed, and transient modelling is reviewed
in section 2.2.3. Signal modelling in terms of atomic decompositions (section 2.2.4) and

masking of time-frequency cells (section 2.2.5) will also be mentioned.

2.2.1 Sinusoildal modelling

The sinusoidal model is probably the most widely used signal model in speech and music
processing, see for example [30, 49, 50, 51|. Any acoustic source that has resonance fre-
quencies or vibrational modes, or synthetic source containing a deterministic component is
a good candidate for sinusoidal modelling. In fact, any source at all can be modelled as an
infinite sum of sinusoids with coefficients given by its Fourier transtorm, but for practical
reasons the number of sinusoids is limited so that only the quasi-stationary deterministic
component of the sound 1s modelled.

The deterministic component of a sound can be modelled as a sum of M = M(t)
sinusoids with time-varying amplitudes a,,(t) and frequencies f,,(t):

M M

t(t) = 3 am(t) cos($m(t)) = > "’mz(t) [ gitm(t) 4 g=idm(®) | (2.45)

m=1 m=1

The phase of the m*" sinusoid is measured relative to an initial phase ¢,,(tg) at time t:

dm(t) = 21 [ fru(t') dt' + dm(to) (2.46)
to
and the instantaneous frequency of the m!" sinusoid is the time derivative of its phase:
1 d
(t) = — — t] . 2.47
) = 57 g5 ot (2.47)

The amplitudes a,,(t) should be allowed to be sufficientlv time-varying to model the attack

and decay of sinusoids and any amplitude modulations. Similarly. the frequency trajectories
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fm(t) should allow for small amounts of frequency modulation which could occur due to
vibrato, glissando or other effects. In [52] it is advised that the frequency behaviour should
be formulated in terms of variations of relative slope of the trajectory, rather than relative
value. The sinusoidal frequencics, amplitudes, and phases are typically measured within
each time frame with a hop size between consecutive frames of Np,, samples. In the
McAulay-Quatieri (MQ) method|30] the signal was split into time frames. and the DFT
was computed in each time frame after windowing the signal with a Hamming window. It
was shown that for perfectly voiced speech in idealised conditions, an optimal estimator of
the sinusoidal frequency is the corresponding DF'T" magnitude peak frequency. Given the
estimated sinusoidal frequency, its amplitude and phase can then be estimated from the
complex value of the DFT at the peak frequency. Given that in practice, spectral peaks
almost never occur exactly at a frequency bin, methods will be described in section 4.2 for
estimating spectral peak parameters in the non-ideal case. These estimnates can be used to
describe the evolution of the sinusoidal parameters over time.

A sinusoidal subtraction or synthesis method requires that the sinusoidal parameters be
interpolated across frame boundaries. A sinusoidal modelling method designed for speech

analysis and synthesis, the MQ algorithm{30|, uses a cubic phase interpolation function:
dm(t) = (+ 7t + at? + pt° (2.48)

which results in a quadratic frequency interpolation according to eqn. 2.47. The interpo-
lation coeflicients are determined by matching sinusoidal frequencies at consecutive time
frames with an additional requirement that the phase interpolation function be ‘maximally
smooth’. Although the M(Q model has been used on many occasions to good effect, it is
often the case that the variation of partial frequencies is closer to a sinusoidal evolution
than a polynomial one. Thus, it is important to choose a small enough hop size that a
quadratic approximation of the partial frequency between consecutive time frames is valid.

It should also be mentioned that artifacts of the sinusoidal model such as pre-echo
distortion (this occurs when an event that occurs at the end of an analysis time frame
is spread across the entire frame after a spectral transformation and upon re-synthesis)
and smoothing of transient events can partially be avoided by using analysis and synthesis
windows that are synchronised in time with transient event boundaries|53|. Adaptive time
segmentation for sinusoidal modelling is also discussed in [13|, and it is suggested how
appropriate time-frequency tradeoffs be applied in different regions of the signal by using
variable window lengths. Thus. shorter windows are used in transient regions and longer

windows are used 1n stationary regions.



Partial tracking

It is implicit in eqn. 2.45 that the number of sinusoids at any particular time, /. is
variable, i.e. the sinusoidal model allows for the birth and death of sinusoids. Partial
tracking algorithms are used to track the sinusoidal parameters from frame to frame, and
to determine when new partials begin and existing ones terminate. They should be robust
to noise, as the presence of noise and side-lobes can give rise to DFT peaks which can be
misconstrued as sinusoidal content. They also encompass rules which govern the allowable
frequency variation of partials between frames, particularly in the situation that multiple
sinusoids cross or become very close in frequency and the continuation of the trajectory
of each partial is not obvious. In [30| a simple rule-based svstem was used to track DFT
peak frequencies across consecutive time frames. A similar rule-based algorithm[54] predicts
sinusoidal frequencies in future time frames using a linear predictive model computed on
the frequency evolution of partials in past time frames. The partial tracking algorithm
in (55| projects sets of spectral peaks in consecutive time frames into states of a hidden
Markov model (HMM), and the optimum sequence of states is determined using the Viterbi
algorithm. Other approaches to partial tracking include synchronising adaptive oscillators
to the output of an auditory model 56|, Kalman filtering|57], and a pinching plane method
applied to the spectrogram|58].

Partial tracking algorithms can be aided using peak selection procedures that attempt
to discriminate between sinusoidal and stochastic spectral peaks. A sinusoidal likeness
measure is given in [52| which quantifies by computing a spectral correlation, the similarity
between a spectral peak and the shape of the Fourier transform of the window function. As
this method i1s not very robust to non-stationary sinusoids, a phase derived sinusoidality
measure designed with a model of linear frequency variation was given in [59|. To discrim-
inate modulated sinusoids from stochastic peaks, |60] used as a sinusoidality measure the
correlation between the measured spectrum and the spectrum of a frequency modulated

sinusoid.

Grouping of partial tracks

The previous section reviews the extraction of partials or sinusoids from a speech or music
recording. If the intention is to separate the partial or harmonic content of a single source
from the mix, some way of finding the subset of estimated sinusoidal tracks belonging to
the desired source must be devised. Some extracted sinusoidal tracks may have been due
to spurious spectral peaks, whilst others may have arisen from interfering sources. One
approach is to use Gestalt grouping cues|61] to measure the similarity between different

partial tracks, where it is assumed that partials from the same source are more similar
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than those from different sources. Some perceptual grouping cues are common onset and
offset timme, comimon amplitude/frequency modulation, spectral proximity and spatial prox-
imity. If the desired source is pitched, then we can also exploit the fact that its harmonics
are distributed at roughly integer ratios of the fundamental frequency or pitch. In [62]
the perceptual distance or similarity between pairs ot sinusoids was calculated using three
measures: the mean square error between the normalised frequency trajectories, the mean
square error between the normalised amplitude trajectories, and a measure of harmonic
concordance. The set of detected sinusoids was then split into classes having a minimum
total error between trajectories within the same class. Elsewhere|58|, onset synchrony of
sinusolds was used for grouping frequency components into notes in a system for hierar-
chical description of music. In [63]| the similarity between adjacent partial amplitude and
frequency envelopes was used to estimate a de-mixing matrix for overlapping partials from
multiple sources. A statistical a posteriori probability estimator is described in [64] for es-
timating a set of note events, given a partition of partial tracks into note events and those
not associated with any note event. A likelihood function reflects how well a particular note
event is described by a set of partial tracks, and exploits grouping cues such as onset /offset
synchrony, harmonicity, and partial density or support. It also favours the presence of the
first and second harmonic and an overall larger number of harmonics, and penalises missing

partials.

2.2.2 Sinusoidal + noise decompositions

Whilst the parameterised form of the sinusoidal model allows a variety of interesting musical
transformations such as time-stretching, pitch-shifting and timbral modifications, it is not
ideal for modelling noisy signals. Although theoretically it is possible to represent a noise
signal as a sum of sinusoids, 1t 1s impractical as noise potentially consists of components at
all frequencies within the band limits. This is the motivation behind the deterministic plus
stochastic decomposition known as spectral modeling synthesis (SMS)[50, 65, 66]. This gen-
eral analysis/synthesis method can be used for processing or transforming existing sounds,
or for generating new sounds based upon instrument models. In SMS, the deterministic
component of the sound is modelled as a sum of time-varying sinusoids, and the stochastic
component is approximated as white noise shaped by a time-varying filter. Synthesis of the
deterministic component is achieved by additive synthesis, i.e. by summing a set ot oscilla-
tor outputs with time-varying amplitudes and frequencies. The deterministic component 1s
then subtracted from the original sound in the time-domain[50| using the McAulay-Quatieri
algorithm{30] or in the magnitude spectral-domain|[66], to produce a residual signal. which

is assumed to be completely stochastic. The time-domain subtraction, although more com-
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putationally expensive, is favoured in [50]. It facilitates the use of a shorter window length
for analvsing the stochastic component, than that which 1s necessary for obtaining sufficient
frequency resolution in the analysis of the deterministic component. The stochastic compo-
nent is regarded within cach time frame as a frequency dependent power spectral deusity,
l.e. it is assumed that only magnitude information needs to be preserved in the residual
component. A noise magnitude envelope is obtained from a line-segment approximation to
the residual spectrum, but could equally well be approximated using another curve fitting
technique or linear predictive coding. The re-synthesised stochastic component is obtained
by applying the DFT~! to the noise envelope with added random phase, and then using
an overlap-add technique on the resulting time segments to avoid discontinuities at frame
boundaries.

T'he approximation of the stochastic or residual component as white noise shaped by a
Irequency dependent noise envelope is a theme which will reappear in chapter 5. In section
5.2 the noise component is split into frequency bands, and we will assume that the noise
content is adequately described by the energy envelope within each band. This is supported
by simple auditory models of noise perception when these bands are spaced according to
the critical bands of the human hearing system|[13]. Section 5.3 also considers the noisy

residual to be a frequency dependent energy envelope in much the same way.

2.2.3 Modelling transients

Whilst the sinusoidal plus noise decomposition known as SMS|50, 65, 66| overcame some
of the inadequacies of sinusoidal modelling by explicitly modelling the non-sinusoidal com-
ponent of the sound, it is founded upon the assumption that the residual or non-sinusoidal
component 1s purely stochastic, which at times s invalid. For example, the non-sinusoidal
component may be more complex or ‘textured’ than random noise, and we would therefore
expect that the phase content of the residual spectrum is also important. Secondly, at times
the sinusoidal subtraction is imperfect, and so a small component of the partial content can
remain in the residual. Furthermore, the processing of transients within the SMNS frame-
work can be unconvincing. Transients modelled as filtered white noise loose their sharpness
of attack and suffer from the artifacts of using finite window lengths. For this last reason
it 1s of interest to build an independent model for transient signals. Although a precise
definition of a ‘transient’ does not exist, it is usually used to describe rapid increases in the
temporal envelope of the waveform, visible in a time-frequency representation as an increase
in broad-band noise energy. I'his is usually followed by a slower decay of broad-band energy
after the initial attack. In an acoustic instrument a transient component is often present

at the note attack, and constitutes a perceptually significant part of the note. Without the



transient attack a note can sound quite dull, and its use in instrument identification by
humans has been noted (section 6.2).

The SMS framework was extended in [67| with a flexible model of transient signals
and renamed transient modeling synthesis. Transient modeling synthesis incorporates a
transient signal model directly into the SMS framework by using the existing techniques
for sinusoidal modelling, but applying them in the discrete cosine transform (DCT)-domain
instead of the time-domain. It is argued that, just as slowly varying sinusoids are impulsive
in the frequency-domain, transient signals, which are impulsive in the time-domain, should
be oscillatory in a properly chosen frequency-domain. In fact, the location of the transient
signal within a block of audio determines the sinusoidal frequency in the DCT-domalin.
The full analysis system of transient modeling synthesis begins by subtracting sinusoidal
content from the original waveform, resulting in a residual containing transient and noise
content. The transient content is then extracted from the residual as described above,
forming a second residual which contains only the noise component. However, it is not
always necessary to perform the three way decomposition unless there is actually evidence
that all three components exist in a section of audio. For this reason, a tonality criterion
is used to detect when sinusoidal or transient content is present. It was discussed in [67]
how time-scaling and pitch modifications could be performed, where separate control of
transient and sinusoidal content is necessary to retain the integrity of the signal.

We continue with some other approaches to transient modelling. Exponentially damped
sinusoids have been used to provide an efficient audio model for coding[68, 69, 70]. The

exponentially damped sinusoid (EDS) model|68] is of the form:

M
rin| = Z am €77 cos (Wmn + dm(to)) (2.49)

m=1

h sinusoid, and a,, e is its initial amplitude.

where ,, is the damping factor for the m?
It is clear that the stationary sinusoidal model is a special case obtained when v,, = 0V m.
The advantage of the EDS model is that attacks or fast time-varying signals can be modelled
efficiently with damped sinusoids. In the EDS model, an adaptive segmentation of the signal
is advisable to ensure that transient events occur near the beginning of the segment z|n|.
This facilitates an efficient representation as a sparse set of decaying sinusoids. The damped
and delayed sinusoidal (DDS) model[70] extended the EDS model to avoid artifacts such
as pre-echo distortion by introducing a delay parameter for each component. The partial
damped and delayed sinusoidal model|[69] is a special case of the DDS model. which groups
together DDS components with the same time-delay in order to model transient attacks.

Overcomplete dictionaries have also been used for modelling transient components|-11].

providing an efficient decomposition of the signal using the matching pursuit algorithm
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into a set of dictionary elements. In [41] the dictionary elements are the wavelet functions
that implement a wavelet packet filter bank. A wavelet packet decomposition is also used
to encode the non-sinusoidal residual signal in [29|, and it is explained how the residual
component can be split into high-frequency wavelet coefficients encoding trausient edges,
and wavelet coefficients determined by a noise model which encode the remaining noise
content.

ITransient attacks have been represented elsewhere as aggregates of time-frequency bins
within a STFT representation|71]. Non-steady-state content (transients plus noise) was
separated from steady-state deterministic content in |72]| by applying a threshold to the
phase increment between frequency bins of the STFT in adjacent time frames. The phase
increment of a frequency bin containing mainly partial content would be expected to vary

less than if it contained non-stationary or stochastic content.

2.2.4 Atomic decompositions and the matching pursuit algorithm

The STFT can be thought of as an expansion of the signal in terms of frequency and
time translated atoms, each atom being a modulated version of the window function. It
1s natural to extend this idea to other types of atoms or basis functions. An overcomplete
or redundant dictionary of atoms allows the coding of the signal in terms of a minimal set
of atoms that provide an optimal fit to the signal. Some examples of atomic dictionaries
are dictionaries of Gabor atoms|73, 74|, complex exponentials|75, 76|, wavelets[41], real
sinusoids|77] and damped sinusoids|13].

The expansion ot the signal into a finite sum of dictionary elements can be achieved
using the matching pursuit (MP) algorithm|48]. This is a greedy algorithm in the sense
that the residual at each iteration is projected onto the dictionary element with which it
has the closest match. The residual i the following iteration is the difference between the
residual at the present iteration and the projection of the current residual onto the best
matching element. The method will now be described in slightly more detail.

Let d;(,,) ] be the dictionary element from within a set of unit norm dictionary elements
D that best matches the m?" residual 7,,[n]. The notation j(m) shows explicitly that the
best dictionary element j is specific to the iteration number m. By the orthogonality
principle, it can be shown that d;(,,)|n] is the element that maximises the magnitude of the
projection:

arg max |(rm, di)| = arg ﬁ}g)lak\- (2.50)

To clarify, the constant o measures the projection of the dictionary element 45 onto the

residual r,. The (m + 1)!" residual r,,,;[n] can then be computed as previously stated:

Pme1n] = rpn] - a, d(m)l1}- (2.51)
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The iterative process 1s initialised with ro[n| = z[n|. At each iteration the residual decreases
according to:

H?“m+1H2 — H"“mH2 — \am\Q (2.52)

where we have used the fact that the dictionary elements are of unit norm. It can also be
seen that the dictionary element chosen in eqn. 2.50 minimises the 2-norm of the residual

|7m+1]|%. Providing that the dictionary is complete, the residual decreases at each iteration
and gradually tends to zero. After a number of iterations A/, the process can be terminated
according to a threshold criterion on the residual energy or a maximum preset number of

iterations. Finally, the signal can be approximated as a weighted sum of dictionary elements:

M
T(n| Z A dj(m) (1) (2.53)

m=1

Variations on the MP algorithm exist in which a sparse decomposition of the signal
1s required in terms of the dictionary elements that have the most perceptual significance.
These include the weighted matching pursuit algorithm|75| in which the dictionary elements
are allowed to have non-unit norms, and the psychoacoustic-adaptive matching pursuit
algorithm|77].

Whilst sparse atomic decompositions provide compact signal representations which have
obvious benefits for audio coding, they do not offer the same flexibility for music processing
as parametric models such as the sinusoidal and noise model. They have been included

here to make the discussion of musical signal models more complete.

2.2.5 Masking/grouping of t-f cells

We complete the section by mentioning an approach to musical signal modelling that in-
volves masking or grouping of time-frequency cells in an invertible representation such as
the STFT. A component of a signal can be represented by applying a mask to the STE'T
which is non-zero only at those cells in the STFT representation in which the signal is
expected to be present. The component can then be re-synthesised from the masked STEFT
using an overlap-add technique. On the one hand, this can be viewed as a sparse atomic
decomposition where the dictionary elements are the basis functions of the STFT (i.e. win-
dowed exponentials). Alternatively, we may think of it as a limited or filtered depiction ot
the signal. The shape of the mask, i.e. where it is non-zero, can be determined by fitting a
signal model or template to the STFT. This is basically the approach taken in chapter 4.
where the harmonic content of a particular note is extracted by multiplving the DF'T coet-
ficients in each time frame by a mask or comb-like filter. Alternatively. spatial information

in multi-track recordings has been used to identify those cells in which a particular source

is dominant|78, 79. 80|.
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The simplest case is a binary mask, meaning that the coefficients of the mask are
either zero or one. It is then assumed that the different sources or componeuts in the
signal are disjoint in the time-frequency plane, i.e. each cell contains energy from at most
one source. This condition is referred to as W-disjoint orthogonality[80], and is generally
more common in speech signals than in music signals. This is due mainly to the fact that
music sources often play harmonically related notes, resulting in a fairly large incidence
of overlapping harmonics in the time-frequency plane. In [81] low amplitude drum sounds
were separated from percussion tracks using binary time-frequency masks, aided by a prior
drum transcription and statistical instrument models. It was found that high-frequency
percussive attacks, such as hi-hats and cymbals, when overlapping with kick drums, could
be considered W-disjoint orthogonal.

Section 4.6 deals with the case where W-disjoint orthogonality is not satisfied, by con-
structing weighted masks at overlapping harmonics, which share the energy in a particular
time-frequency cell between the interfering sources. Along the same line, in [63] time-
frequency regions in a STFT representation containing one or multiple overlapping partials
from different sources are identified. These are then used to determine a mixing matrix for
a multi-channel mixture that allows the estimation of the individual STFT's of each source.
Elsewhere, aggregates or clusters of time-frequency cells which appeared at close tempo-

ral locations were associated with transient events, and were used for extracting transient

content|71].

2.3 Conclusions

This review chapter has established some foundations for further work, in particular the
STFT, DWT and WPT. It has also set the research context for much of the work in this
thesis, a large part of which is focused on music signal modelling. A number of different
signal representations and modelling frameworks for music signals have been mentioned.
The broad perspective is that the nature of music is often unpredictable and multi-faceted,
and is best understood by the use of multiple representations or modelling frameworks.
We have established the basic principles of partial, transient and noise modelling, which

reappear in chapters 4 and 5.
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Chapter 3

MIDI to Audio Alignment

“l don’t know anything about music. In my line you don’t have to.”

- Elvis Presley (1935-1977)

T'his chapter focuses on the inclusion of prior knowledge into the separation problem,
specifically note timing and pitch information. Without this prior information some means
of locating note segments within the recording would be necessary, and the note pitches
are also a pre-requisite for extracting harmonic content in chapter 4. When dealing with
polyphonic music, segmentation and multi-pitch estimation are difficult problems in their
own right. Automatic music transcription (AMT) is the area of research concerned with
automatically extracting a musical score or transcription from the recording. The transcrip-
tion usually consists of a set of notes with estimated onset times, durations and pitches,
very much like the conventional western stave notation or MIDI representation. It should
be noted though, that existing polyphonic AMT systems rarely identify or label each note
with a particular source or instrument track, whereas this identification is implicit in a
MIDI/score-based representation. We will return to this point in chapter 6, where cluster-
ing methods will be implemented for automatically grouping unclassified notes within the
recording into different source types.

Several approaches to AMT can be found in the literature, and a few of these will be
mentioned. One of the earlier approaches is a frequency tracking algorithm for separating
duet voices[82] based upon sinusoidal modelling using the McAulay-Quatieri algorithm|30].
The systems in (83, 58, 84| integrate bottom-up signal driven processing with high-level
prior information or expectations using blackboard architectures. In [64| a model of partial
behaviour is used to guide segmentation algorithms. The systems in [85, 86] incorporate
prior information into a statistical hierarchical Bayesian framework for estimating the pa-
rameters of a music signal model. A svstem designed specifically for transcription of the

dominant melody and bass line 1s described in [87]. Transcription of percussive instruments
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was dealt with in [81] by combining statistical blind separation tecliniques such as inde-
pendent component analysis with prior knowledge. Notes were identified as salient features

when applying non-negative sparse coding to STFT spectra|88], and [89] reviews several

transcription methods based upon blackboard models, multiple-cause models. independent

component analysis and sparse coding. Two iterative subtractive methods were presented in
90] for polyphonic pitch estimation and musical meter estimation. Finally, |91] gives a com-
parative review of several transcription systems, focusing on polyphonic pitch estimation
and musical meter estimation. Although a quantitative comparison of different complete
AMT systems was not found, comparative results are available for some polyphonic pitch
estimation and meter estimation systems|92|. In test mixes of randomly selected notes.
the multi-pitch estimator in [93] produced note error rates (number of pitches estimated in
error divided by the total number of pitches in the reference transcription) of 1.8%, 3.9%,
6.3%, 9.9%, 14% and 18% for polyphonies ranging from one to six notes when the degree
of polyphony was known in advance, although we could expect these to be lower for real
recordings.

IT'he task of AMT would require a large effort on its own to fully explore, so instead,
the intention has been to concentrate on separation algorithms given a prior transcription,
score or MIDI representation of the corresponding audio. The accuracy of the various
transcription systems above indicate that an AMT pre-processing system would in future
be a feasible alternative to the inclusion of this prior information. To be precise, a MIDI
representation has been used, although one could easily adapt the system to input a score
in standard Western music notation.

The alignment of audio with a symbolic music notation is known as score following.
We wish to provide a temporal alignment of the MIDI information with the audio, given
that the MIDI and audio file méy differ with respect to tempo and note durations. Two
main approaches to time-warping exist, the first uses dynamic programming|94, 95, 96,
97] or dynamic time warping algorithms[98], and the other uses hidden Markov models
(HMMs) 99, 100]. However, it is usually not possible to obtain a prior score or MIDI
information for a given popular recording, so it was not deemed to be worthwhile to pay too
much attention to the score following task, given that the intention in the longer term is to
replace this with an AMT system. Therefore, it was decided that the user would improvise
a MIDI accompaniment for each instrumental part to be separated, whilst concurrently
listening to the recording. The accompaniment is thus a near replica of each mstrumental
part contained within the recording. Practically speaking. the user does not produce a
perfect transcription. 1.e. there are normallyv slight note timing inaccuracies. Also, due

to the fact that a MNIDI note pitch is itself a static representation of what 1s generally a
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time-varying pitch envelope, it is still necessary to make some slight adjustments to the
MIDI data. We wish to refine the tuning and pitch inforination in the MIDI data to more
closely resemble the corresponding audio.

Although the user-improvised MIDI accompaniment has been suggested as a wav of
concentrating on the separation problem rather than on AMT, and a fully automatic AMT-
based separation system has not yet been developed here, the present system is already
useful in applications for which user-input is not a hindrance. There are certain applications
in which a user could realistically be expected to create a MIDI accompaniment for one or
more source/s, such as remastering a classic recording, or extracting a short sample from an
existing recording to re-use in a new composition. For any given application, there is often
an optimal balance between the amount of prior information that can be included and the
required fidelity, so the compulsory inclusion of prior information should not necessarily be

seen as a weakness of the system, as long as it is capable of yielding better results than an
equivalent fully automatic system.

The chapter proceeds by discussing two aspects of the MIDI to audio alignment: aligning
note onset times (section 3.2) and transforming MIDI pitch values into time-varying pitch

envelopes (section 3.3). Section 3.2 involves the use of the note onset detector described in

section 3.1.

3.1 Note onset detection

T'he alignment of a set of user-improvised MIDI note onset times with the audio recording
involves two stages: a note onset estimation stage, and an alignment stage which matches a
set of MIDI notes with the estimated note onsets, the latter of which 1s described in section
3.2. Many alternative methods for note onset detection exist, for example |53, 101, 102, 103|,
with comparative reviews given in [104. 105]. A general consensus is that the accuracy of
different onset detectors depends on the characteristics of the recording and difters from
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