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Abstract

Consumers of modern avionics and automotive systems expect many, well integrated
features. Efforts are continually being made to make engineering processes better
equipped to adapt to enhancement requests. Within both the avionics and automo-
tive industries, standardisation of hardware and interfaces has allowed software to
be mapped to hardware at a later stage of the design process and for this mapping
to be more easily changed.

Tools which automatically perform the mapping of tasks and messages onto a
hardware platform are called task allocation tools. The primary requirement of a
task allocation tool for hard real-time systems is to find a mapping and schedule
such that all tasks and messages respond before their deadlines. However, there are
other qualities which can be used to further differentiate between solutions, two of
the most important being flexibility and adaptability.

This thesis builds on previous task allocation work by extending a heuristic search
algorithm to produce solutions with improved flexibility. Inspiration is drawn from
scenario based architecture analysis methods. These methods interrogate an archi-
tecture model to see how it will react to different change scenarios. This idea is used
within a search algorithm to encourage it to produce solutions which can meet the
needs of provided scenarios with no or very few changes. It is shown that these solu-
tions are also more flexible with respect to upgrades which differ from the scenarios.

Run-time adaptability is another quality which can be affected by the choice
of task allocation. Real-time systems can specify multiple task sets representing
different modes of operation. The system will switch between modes at run-time
to adapt to environmental changes and must do so efficiently. The task allocation
algorithm is adapted for multi-moded systems and it is shown that solutions can be
found which allow the system to transition between modes with minimal disruption.

Safety-critical real-time systems have become dependent on software to pro-
vide critical functionality such as fly-by-wire control and engine emission regulation.
These systems must be fault-tolerant and support graceful degradation, another form
of adaptability. In the final part of this thesis, the task allocation algorithm is mod-
ified to select a number of replicas for each task as well as their allocation so that
the system can withstand as many processor failures as possible before the level of
service provided by the system falls below a safe threshold.
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1
Introduction

The greatest strength of using software as a component of an engineered system is
the ease with which it can be modified to enhance functionality and improve the
performance of the system. At the same time, this flexibility also presents one of the
greatest challenges in constructing a software based system; as a system grows and
becomes more complex, so does the problem of managing change.

The majority of software systems continually evolve throughout their lifetime.
David Parnas used the following phrase to describe those that don’t.

“The only programs that don’t get changed are those that are so bad that
nobody want to use them. Designing for change is designing for success.”

– David Parnas [1]

“Designing for change is designing for success” is the adopted motto of this thesis;
it is a study of how the statement can be applied to the selection of software task to
hardware mappings for safety-critical real-time systems. The problem of finding a
good mapping, also known as the task allocation problem, is well suited to automated
optimisation and constraint satisfaction techniques. Research into algorithms for
distributed multiprocessor scheduling has been active since the late 1970s [2]. The
popular papers of Ramamritham in 1990 [3] and 1995 [3] as well as Tindell’s much
cited 1992 paper [4] made it a core topic of real-time systems’ research. This thesis
describes algorithms for allocating real-time tasks which treat flexibility of solution
as a key requirement.

This introductory chapter gives a broad view of the relevant topic areas of archi-
tecture flexibility, automated software engineering tools and safety-critical real-time
systems. These provide background and motivation for the thesis aims presented at
the end of this chapter.
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1.1 Maintenance In Software Engineering

Reducing the costs of software maintenance is a major motivation for improving
flexibility of software architectures. This section explains the reasons why software
maintenance is needed, why it is so expensive and current methods of managing it.

1.1.1 Software Maintenance

A topic of concern at the NATO software engineering conference in 1968 was the
cost of maintaining software systems.

“The economics of software development are such that the cost of main-
tenance frequently exceed that of the original development.”

– Harold R. Gillette. [5], p. 111

Since this time, maintenance costs have continued to grow as a proportion of total
life-cycle costs. Based on a number of surveys, Pigoski [6] suggests that, by the
1990s, 90% of life-cycle costs were devoted to maintenance. This value had risen
from around 40% in the 1970s. As the number of architectural components increases,
and the number of lines of code grow, the larger the potential of a change having
an undesired side effect. Gaining a good understanding of the rationale behind the
choice of the architecture and design of the system is essential to prevent this and
accounts for up to 60% of maintenance costs [6].

Software engineers have often tried to gain insight from other engineering dis-
ciplines such as bridge building [7]. One of the areas where these comparisons fall
down is the way in which the engineered artefact is used throughout its lifetime. A
bridge will need to be maintained to withstand the effects of the environment and
possibly to increase its strength if the volume of traffic exceeds original expectations.
The purpose of a bridge — to allow its load to traverse above an obstacle — will
not change. For software systems, the inducements to carry out maintenance are
much more varied. Bennett [8], citing Lientz and Swanson [9], gives the following
categories of maintenance for software systems: corrective, perfective, adaptive and
preventive.

Corrective maintenance is fixing errors that were not discovered during the test-
ing phase of development. An implementation mistake and an incorrectly specified
requirement are both classed as errors.

Perfective maintenance is enhancing existing features and adding new ones based
on user feedback. The word “perfective” is misleading since it suggests adding the
finishing touches to a system. For many systems, more development will be done
following the first release than prior to it. In an iterative development method, where
the customer is closely involved in the development process, perfective maintenance
and development are parallel activities [6].
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Adaptive maintenance is the activity of modifying the system to support a change
in the operating environment. A common reason for this type of maintenance is
obsolescence of system dependencies and components. This has been a problem
in avionics systems which use old hardware technologies for their reliability and
predictability. For example, some space shuttle upgrades were due to the risk of
components becoming obsolete [10].

Preventive maintenance is taking action before it is needed in order to make future
maintenance tasks easier. This applies to source code, formal designs and other
documentation. As new features are added which weren’t originally planned for, the
quality of the architecture will gradually degrade [1]. Preventive maintenance ensures
that the software continues to be comprehensible and the architecture maintains its
integrity.

1.1.2 Processes And Technologies Supporting Maintenance

By the late 1960s, it had been recognised that the size and complexity of software
systems had outstripped available software engineering technologies.

“We undoubtedly produce software by backward techniques.”

– Douglas McIlroy [5], p. 17

This remark was made in reference to the “rudimentary stage of development” of
software engineering at the time. Since then, software engineering practitioners and
researchers have improved software engineering processes and put tools at the dis-
posal of engineers which help manage these processes and automate parts of them
where possible. Many of the advancements made have been driven by the need to
reduce the effort required to perform maintenance tasks.

1.1.2.1 Processes

The first widely adopted software engineering process was the Waterfall model [11]
which was highly influential throughout the 1970s [12] and is still used for some
large scale projects [13]. Whilst it acknowledges iteration between adjacent refine-
ment steps [12], it is still mainly a linear process beginning with requirements and
working through to implementation and deployment. In this model, maintenance
is seen as something that begins after deployment [6, 14]. The trouble with this
is that fixing errors later in the development process is significantly more expen-
sive as shown in Boehm’s COCOMO cost estimation model [15]. It also depends
on accurate requirements for the system being known in advance and not changing
substantially throughout its development and deployment. As commented on by
Parnas [1], accurately predicting the future and expecting requirements to remain
stable is unrealistic. Problems with waterfall style development were acknowledged
in the early 1980s and lead to Boehm’s spiral model of software development and
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enhancement [12] which specifically included maintenance in the process. More re-
cently, iterative and incremental processes [13, 16, 17] have gained popularity. One of
the key concepts of these processes is to release software to the customer early in the
product life-cycle and to keep the customer closely involved in development [13]. A
perceived benefit of this tighter feedback loop is to find errors earlier in the life-cycle
so that the cost of fixing them is lowered [18]. This results in maintenance activities
proceeding in parallel with feature development prior to deployment.

1.1.2.2 Technologies

Improvements in compiler technologies such as machine level optimisations and au-
tomated garbage collection have allowed development at higher levels of abstraction.
Model driven engineering is an effort to further raise levels of abstraction. A model
is constructed in a language which is often graphical and transformed into lower level
code automatically. Schmidt [19] states that “complexity stems from the semantic
gap between the design intent [ . . . ] and the expression of this intent [ . . . ]”. Model
driven engineering aims to close this gap. If the translation process is not fully auto-
mated then there is a risk of the model and implementation diverging when changes
are made [20].

Compilers, model building tools and automatic code generators are all examples
of Computer Aided Software Engineering (CASE) tools. A software engineering
environment is a collection of CASE tools which support the software process [21].
The benefits from the use of CASE tools have not always been as great as expected.
Sommerville presents this criticism against existing CASE tools.

“Software engineering is, essentially, a design activity based on creative
thought. Existing CASE systems automate routine activities but attempts
to harness artificial intelligence technology to provide support for design
have not been successful.”

– Sommerville [13]

Tools with a creative ability are not in mainstream use within the software industry.
However, improving intelligence in software engineering tools is an active area of re-
search and progress has been made. Search Based Software Engineering (SBSE) [22]
treats software engineering problems as design optimisation problems and then em-
ploys search algorithms to find a high quality design. Although there is a significant
human influence in defining suitable heuristics to guide search algorithms, they have
the potential to find solutions which a human may not. In particular, SBSE can be
used to optimise a manually constructed design as a form of preventive maintenance.
An example is reassigning methods and attributes in a class hierarchy to improve
coupling and cohesion [23].

Figure 1.1 outlines the process of automated model improvement. The model
is only partially specified and free parameters are set using a design tool. During
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Figure 1.1: Automated model improvement

maintenance, previously chosen parameter values may be used to initialise optimisa-
tion algorithms. One of the prerequisites to using automated design tools is having
suitable quantitative measures for the qualities of interest. Decomposing system
qualities into measurable attributes is one way to overcome this. As part of a larger
hierarchy of system qualities, Boehm stated that maintainability could be decom-
posed into understandability, modifiability and testability [24]. Maintainability is
hard to assess directly, but it is possible to construct metrics for architecture level
modifiability [25] and code understandability [24].

A specific domain will have its own architecture selection problems. Automotive
systems’ architectures contain a number of difficult design optimisation problems [26]
that are well suited to CASE tools since automotive systems are comparatively well
specified and system models can be quantitatively analysed [27].

1.1.3 Flexibility And Adaptability

To deal with the problem posed at the beginning of this chapter, that of managing
change, the ability of a system to handle change must be viewed in a number of differ-
ent ways. This ability is sometimes less elegantly, but more conveniently, described
as “changeability” [28, 29]. Maintainability is chiefly concerned with changes made
by software engineers within development iterations. Changeability also encompasses
changes when the system is operative.

There have been different approaches to decomposing changeability [28, 29].
Fricke and Schulz consider four different aspects: flexibility, adaptability, agility and
robustness. The definitions of flexibility and adaptability are consistent throughout
the literature. Flexibility describes how easy it is to change the system where the
instigator of the change, known as the change agent [29], is external to the system.
In the context of development, flexibility relates closely to maintainability.

Adaptability is the ability of the system to autonomously change itself to cope
with a changing environment. Note that this is inconsistent with the definition of
adaptive maintenance where the change agent will usually be external.

Agility describes how much time is required for a change process to complete.
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Figure 1.2: Effort / effect relationship for modifiable and robust systems

Fricke and Schulz only associate it with flexibility [28] but a system should also
adapt promptly to deal with a changing environment, especially in an emergency
situation [30]. Ross et al. do not include agility within their definition of change-
ability [29] viewing it as a modifier to changeability. Something which is easy to
modify, does not necessarily mean it can change quickly. For example, correcting
loop bounds on a critical buffer overflow may only require changing a few characters
but rebuilding and redeploying the system might take several days. Financial cost is
related to changeability in a similar way. A component can be physically easy, but
prohibitively expensive, to replace.

Ross et al. [29] break down change into a three stage process.

1. A change agent, which can be external or internal, instigates the change.
2. This initiates a change mechanism which
3. has an effect on the system

Within this scheme, it becomes clear that cost and time are attributes of the change
mechanism. Cost and time can both counteract ease of modification so are an essen-
tial component of overall changeability.

Robustness, the final aspect of changeability in Fricke and Schulz’s taxonomy [28]
is dealt with alongside modifiability and scalability by Ross et al. [29]. If a system is
robust to a particular change, then the change has little or no effect on the parameters
of the system. For example, a bridge may be said to be robust to an increase in
wind speed if its movement is sufficiently limited to still allow traffic to pass over
it. Modifiability is the opposite of robustness. A system which is modifiable with
respect to a change will exhibit an effect with relatively little effort. Robustness
and modifiability are shown pictorially in figure 1.2. Scalability is a special case of
modifiability. It describes the ease of changing the level of a parameter as opposed
to changing the set of parameters available [29].

It is common for a module of a system to be robust and modifiable at the same
time depending on the change. Changing the implementation of one module should
not be arduous but an associated module should be robust to the change and hence
reduce ripple effects. The opposite is true if the other module needs to be changed.
All changeability related terms are usually used in a positive context. Therefore if a
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Figure 1.3: Terms related to changeability

change did adversely affect a related module, it is said to be not robust to the change
rather than being modifiable.

A component can also be modifiable internally to increase robustness externally.
Electromagnetic radiation can cause bit flips in computer memory [31]. The memory
can be made robust to this by physically shielding it. However, if a bit flip does
occur, then making the memory modifiable to an error correction mechanism allows
it to be corrected [31]. If the memory is correctly returned to its original state, no
change has occurred from an external viewpoint and so the memory is robust to the
radiation.

A summary of the terms relating to changeability are shown in figure 1.3. This
combines both the models of Fricke et al. [28] and Ross et al. [29]. The link with
maintainability is also shown. The hollow arrow linking maintainability to flexibility
represents a specialisation. Maintainability requires the same attributes as flexibility.
In addition, testability and understandability are specific to maintainability.

Changeability has links with several other qualities. Dependability is a motivation
for internal adaptability and reconfiguration [32]. Barbacci et al. [33] also associate
maintainability to dependability with the view that better maintainability reduces
the mean time to repair (MTTR) and hence improves availability. Modifiability is at
the heart of many architecture trade-off methods [34]. If a modification to a system
adversely affects qualities such as performance or security to a significant extent then
further work and architectural analysis will be needed. In this sense, changeability
is linked to every system quality, though some of these links will be stronger than
others depending on the importance of each individual quality in a particular system.

1.2 Real-Time And Safety-Critical Systems

Although there are a number of common challenges to engineering flexible and adapt-
able systems, each project will have domain specific issues. The fields of real-time and



28 Chapter 1. Introduction

safety-critical systems garner particular attention in literature related to changeabil-
ity. There is interest in real-time systems since timing gives an additional architecture
trade off point [35] which must be taken into account when evaluating an architecture.
Safety-critical systems are expensive to build and expensive to change [36] due to the
long and rigorous validation and verification processes required for system certifica-
tion. The challenges undertaken in this thesis relate to the changeability of systems
which are both safety-critical and real-time. This section explains terminology used
to describe these types of systems.

1.2.1 Safety-Critical Systems

There is lack of agreement on a definition for safety-critical systems [37]. Debating
borderline cases is not necessary since the work in this thesis is directed at systems
which fall comfortably inside any commonly used definition. Some definitions re-
lating to safety, safety-related systems and safety-critical systems are provided by
Storey [37] and by Leveson [38].

“Safety is a property of a system that it will not endanger human life or
the environment.”

“A safety-related system is one by which the safety of equipment or plant
is assured.”

– Neil Storey [37]

Safety-related system is used as a synonym for a safety-critical system [37].

“Safety is freedom from accidents or losses.”

“Software system safety implies that the software will execute within a
system context without contributing to hazards.”

“Safety-critical software is any software that can directly or in-directly
contribute to the occurrence of a hazardous system state.”

– Nancy Leveson [38]

The texts of both Leveson [38] and Storey [37] feature sections on the importance
of timing requirements in safety-critical systems. This is unsurprising since many
safety-critical systems have roles which are also time critical. Examples include flight
stability systems, airbag deployment in cars and anti-lock braking systems. All of
these systems control actuators which must respond within a given time window;
reacting too early or too late could have disastrous consequences.

1.2.2 Real-Time Systems

A real-time system is one where its timing requirements are an integral part of its
behavioural specification. The following definition is given by Kopetz.
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“A real-time computer system is a computer system in which the correct-
ness of the system behaviour depends not only on the logical results of the
computations, but also on the physical instant at which these results are
produced.”

– Hermann Kopetz [39]

A real-time system is made up of a set of software tasks scheduled to run on one or
more processors. Timing requirements are specified in terms of task deadlines. A
deadline is the instant by which a task must complete relative to an earlier point in
time. Tasks are often periodic meaning that they run repeatedly at a given frequency
whilst the system is operative. The times at which a task is executing will depend
on the length of its period and the way in which it is scheduled with other tasks
in the system. Although high performance is a feature of many real-time systems,
predictability is the more dominant characteristic. As noted by Liu [40], a task
completing in advance of its deadline may offer no benefit and a large amount of
variation in the completion time of a task, its jitter, can be detrimental in many
systems. Task attributes such as deadlines and periods are often derived from the
responsiveness of sensors and actuators [40] and control loops [39].

An important classification of real-time systems is hard real-time versus soft real-
time. There is more than one characteristic which can be used to decide whether a
system is soft real-time, hard real-time or a mixture of the two. All revolve around the
potential effects of task deadline misses on the system, its users and the environment.
Some characteristics for differentiating between soft real-time and hard real-time
are [40]:

1. The usefulness or utility of data which is output by a task which completed
after its deadline — if stale data is either useless or potentially harmful, then
the system is hard real-time. If its utility gracefully decreases with time, then
the system is soft real-time.

2. The expected number of deadline misses in a given time period — if the number
of deadline misses per unit of time which can be tolerated is zero or nearly zero
and this is predictable, then the system is hard real-time. If the system is able
to tolerate a moderate number of deadline misses and / or the number is not
predictable then the system is soft real-time.

3. The potential effects on the system, its users and the environment if task com-
plete unexpectedly late — if a timing error in the system could cause harm to
humans or the environment then the system is hard real-time. If a timing error
causes a decrease in level of service that is not catastrophic then the system is
soft real-time.

4. The level of validation of timing properties which would be expected during
development or maintenance — if every change to the system must undergo a
rigorous validation and verification procedure requiring formal proof of correct-
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Characteristic Hard Real-Time Soft Real-Time

Utility of result after deadline Zero or negative Reduced
Number of deadline misses Extremely small and predictable Unpredictable
Severity of deadline miss Very high / fatal Low to medium
Validation of timing properties Provable / exhaustive testing Confidence building

Table 1.1: Characteristics for classifying hard real-time versus soft real-time systems

ness or exhaustive testing, then the system is hard real-time. If testing is only
undertaken as a confidence building exercise, then the system is soft real-time.

These characteristics are summarised in table 1.1. The first two items in the list
above are broadly accepted. The third one, which links hard real-time systems to
safety-critical systems, is common though not universal. A system may be hard real-
time according to the first two classifiers but not safety-critical. Kopetz makes this
distinction, calling such a system firm real-time as opposed to hard real-time [39].
The final classification, linking hard real-time systems to a requirement for rigor-
ous validation is given by Liu [40]. If predictability is essential, then this must be
demonstrated at some stage of development.

1.3 Trends In Automotive And Avionics Systems

The aviation and automobile industries are two of the most visible producers of
safety-critical systems. Modern examples of these systems are heavily reliant on
safety-critical hard real-time software [41, 42]. Although the same problems relating
to flexibility and adaptability are also present in other systems with similar prop-
erties, these industrial domains provide a wealth of motivation and examples which
will be used to help ensure relevance and applicability of the methods proposed in
this thesis.

Since the 1970s, both aircraft [42] and automobiles [41, 43] have become in-
creasingly reliant upon digital control systems. This section draws on a number of
examples to illustrate the following trends in avionics and automotive systems:

1. Systems are expected to provide more functionality and are increasing in size
as a result.

2. There is an increasing amount of interaction between components.
3. Systems have moved from centralised to distributed architectures.
4. Systems have become dependent on software based systems for critical func-

tionality and also to meet regulations.

1.3.1 Automotive Technologies

Modern (post circa 2004) automotive systems contain between 20 and 80 Electronic
Control Units (ECUs) [41]. These control everything from critical functionality such
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Subsystem Functionality

Powertrain Engine control, transmission, powertrain diagnostics, immobi-
lizer

Chassis Antilock braking system (ABS), electronic stability control (ESC),
traction control, 4 wheel drive

Body Dashboard, wipers, lights, doors, windows, seats, mirrors, cli-
mate control

Telematics Mobile telephones, entertainment, navigation, toll collection,
tracing stolen vehicles, traffic information, remote vehicle diag-
nostics

Safety Belt pre-tensioner, airbags, tyre pressure monitoring, adaptive
cruise control, lane departure warning

Table 1.2: Automotive features summarised from Cook et al. [41] and Navet et al.[43]

as engine and chassis control through to radio volume and windscreen wiper speed.
An automotive system is divided into separate subsystems. These subsystems and
some of the functionality they provide are shown in table 1.2. Of the subsystems
listed, the real-time and safety-critical elements are concentrated within the pow-
ertrain, chassis and safety subsystems [43]. Currently steering and braking can be
controlled mechanically but future systems may choose to rely entirely on electronic
control. There are a number of motivating factors for using software based systems
to provide such a large amount of functionality. New regulations on emissions could
not be met without advanced engine management systems which control air-fuel ra-
tios [41]. At the same time, there are increasing demands for better fuel efficiency for
both economic and environmental reasons. A key technology in this area is variable
cam timing (VCT), part of the powertrain subsystem, which also requires electronic
control [41]. Dynamic chassis control allows manufacturers to improve handling for
performance and safety reasons. Many of the increases in complexity of these systems
are driven by a desire to gain a competitive advantage in the marketplace [41, 44].

There is a demand for subsystems to be well integrated. For example, wheel
speed sensors can affect steering effort, suspension control and even wiper speed [41].
Central locking has to interact with security systems, door open sensors, interior
lights and collision detection so doors do not remain locked in the event of a crash [41].

Early automotive systems tried to contain functionality within a single ECU [43,
44]. The increase in functionality and requirements for increased integration between
functions led to firstly point to point links and then eventually shared data buses [43].
Developed in the 1980s, the Controller Area Network (CAN) bus [45], has been by
far the most popular communications bus used in automotive systems [43]. Stan-
dardisation has helped integration of systems from different subcontractors. Newer
communications buses are now being developed to allow for more network traffic
whilst still meeting hard real-time requirements [26].

These technological advances have had a significant effect on the development and
maintenance of automotive systems. Cars are mass market items and minimising the
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number of ECUs used can generate huge cost savings over the production period [44].
This means that code is often tightly optimised making maintenance more difficult
due to reduced understandability and modifiability. The size of a modern automo-
tive platform makes it impractical for a manufacturer to develop and maintain all
components themselves. Therefore, subsystem development is often outsourced or
commercial off-the-shelf (COTS) components are used. This can lead to difficulties
at the time of integration, especially with timing and synchronisation [26]. In addi-
tion to this, each vehicle model is made available in several different configurations
to meet different demands [44]. A premium car could realistically have 280 different
possible configurations [44] so it is essential that components can be easily composed
with predictable behaviour.

The use of model based development is being introduced into the automotive
industry to help alleviate these problems. AUTOSAR [46] is an industry wide effort
to develop a common automotive architecture with well defined interfaces to improve
composability of components. A return to a more centralised general purpose archi-
tecture would reduce the number of ECUs required and simplify development [44].
Further to this, a standardised platform allows separation of the application layer
from the hardware layer allows for reuse of software across multiple vehicle pro-
grams [26]. This separation leaves the mapping of software to hardware as a free
parameter in the architecture as was depicted in figure 1.1. Any method for select-
ing this mapping must ensure that all real-time, fault-tolerance and other quality
requirements are still met. A further layer of separation can be introduced by de-
signing functionality separately from the mapping of functions onto software tasks.

1.3.2 Avionics Technologies

Avionics technologies have evolved in a similar manner to their automotive counter-
parts. Architectures were originally centralised, evolving from analog systems [47].
Requirements for new functionality have been driven by removing mechanical sys-
tems to reduce weight and improve efficiency and improving safety standards in the
presence of increasing air traffic. Table 1.3 lists some functionality commonly found
in civil avionics systems. Military systems have additional requirements for weapon
control and mission planning. Many modern aircraft no longer have a mechanical
backup for the flight control system [42]. With so much safety related functionality,
avionics systems must be certified before they can be put into operation. The cost
of certification is the largest single cost in the development process, with verification
taking up as much as 50% of the cost [36]. It is weight rather than cost which drives
hardware requirements since certification expense far exceeds that of hardware [48].

Avionics systems initially moved from a centralised architecture to a federated ar-
chitecture with major subsystems spread between a number of interconnected Line
Replaceable Units (LRUs) [47]. Placing these units closer to their related sensors
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Subsystem Description

Flight control Primary flight control and autopilot controlling roll, pitch and
yaw.

Flight management Navigation via air data, radio, intertial referencing, GPS.
Fuel status. Airport, flight plan database.

Engine control Engine start, fuel control, cooling, electrical power.
Environmental control Provision of bleed air, cabin pressure, avionics conditioning,

oxygen supply.
Landing gear Extension/retraction, steering and braking.
Communication Radio, satellite, air traffic identification, Traffic Collision And

Avoidance System (TCAS).
Displays Process and display data from all systems on flight deck

displays
Maintenance Built-In Test (BIT), provide capability to download and/or

display flight data from all systems.

Table 1.3: Common civil avionics functionality collated from Moir and Seabridge [42]

and actuators reduces the amount of cabling required. However it can make physical
accessibility for maintenance more difficult and can be more difficult to develop soft-
ware for [47]. Avionics system designers must also take into account issues such as
heat dissipation and separation of redundant units when deciding how to physically
package the avionics system into the aircraft. As in automotive software, decentrali-
sation brought about development of standardised communication buses. These were
ARINC 429 for civil aircraft and MIL-STD-1553B for military purposes [42]. More
recently ARINC 629 has superseded ARINC 429 [42].

Faced with the same system integration problems as the automotive industry,
the Integrated Modular Avionics (IMA) platform was developed [47, 42]. Avionics
has tended to lead the automotive industry given that IMA development began in
1988 [49] where as AUTOSAR was launched in 2003. Planes such as the Boeing 777
are already in operation using IMA [42, 49].

IMA is a cabinet based architecture. The LRUs of a federated architecture are
replaced with Line Replaceable Modules(LRMs) which slot into the cabinet. Mul-
tiple cabinets can be used to provide redundancy and to place functionality in the
most convenient physical location. Each cabinet contains a built in communications
bus such as ARINC 629 and also provides power to the LRMs. This brings reduc-
tions in volume, weight and power usage [42]. Standardisation of processor types
across LRMs helps to ease application development and improve reuse. IMA archi-
tectures also make more efficient use of the available processing power by combining
separate functions on to the same LRMs. This has implications to the certification
process since it raises the possibility of a task affecting others in unexpected ways
especially if a fault occurs [50]. Part of the IMA specification are Application Ex-
ecutives (APEX) which should provide robust partitioning of time and memory for
applications running on the same processor [42].
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In order to improve design flexibility, IMA contains the concept of blueprints [50].
Blueprints provide a way of delaying and more easily changing design decisions in
how the system is configured. This includes definition of the schedule and software
/ hardware mapping. The ability to change the set of tasks running in the system
and their location via blueprints raises the possibility of reconfigurable IMA systems.
Reconfiguration mechanisms can be limited to manual reconfiguration on the ground,
or dynamic, so that the aircraft can reconfigure itself whilst in flight. This latter
option has the potential to enhance adaptability but there are significant challenges
in ensuring the safety of such a system [50].

1.4 Thesis Aims

1.4.1 Summary Of Requirements

The trends listed in section 1.3 have led to the development of standardised dis-
tributed platforms for hard real-time systems such as AUTOSAR and IMA. Both
of these leave the open problem of how to map software tasks and messages to
a hardware platform. Tighter integration increases task dependencies and, at the
same time, demands for enhanced functionality requires distribution of tasks over
a large number of processors. Providing engineers with an efficient way of find-
ing a valid, high quality allocation and schedule for complex systems gives great
benefits to both the avionics and automotive industries. This has already moti-
vated a substantial amount of research which features hard real-time task alloca-
tion [4, 3, 51, 52, 53, 54, 55, 56]. Further details of this previous work are given in
chapter 2.

How tasks are placed and scheduled can impact performance, tolerance to faults,
design flexibility and run-time adaptability. Allocation algorithms should therefore
consider these goals in addition to finding a solution which is valid in terms of timing
requirements. Changing requirements must be managed throughout several itera-
tions of the development process, not only in a post deployment maintenance stage.
CASE tools need to evolve existing solutions as well as develop initial ones. Costs of
recertification prohibit starting with a new design for every small enhancement.

It is intended that the method of selecting a suitable task mapping will be an
automated optimisation method, building on previous work on task allocation. There
are a number of requirements which are readily apparent for any CASE tool which
is concerned with changeability. In keeping with a flexible development process, the
method of generating a suitable solution to the problem must itself be flexible. If the
design provides sufficient flexibility to allow the system to grow, then the method of
building it should also take account of how future systems will be maintained. More
formal requirements and a thesis hypothesis is given in chapter 3 following a more
in depth review of related literature in chapter 2.

In the context of this thesis, both flexibility and adaptability are measured in
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terms of how many individual changes need to be made to the allocation and schedule
of tasks to complete a change to the system instigated by a change agent, internal
or external. The change to the system could be a design change caused by a feature
enhancement or a run-time reconfiguration initiated by the system itself.

Figure 1.3 shows flexibility and adaptability as dependent upon modifiability,
robustness, cost and agility. Reducing the number of changes between two task
mappings will aid all of these qualities. If a design change is needed then reusing parts
of a solution will make other activities enforced by the changes, such as recertification,
cheaper and faster. The reimplementation and testing of the system will be simpler
if the change is contained in a small part of the system. If few allocation changes
are needed for changes to the properties of tasks then the system is more modifiable
with respect to these consequent changes. With respect to the allocation changes
themselves, the system is more robust if fewer are needed.

1.4.2 Benefits

The desired outcomes of this work are related to viewing task allocation in the context
of all aspects of changeability. The choice of task allocation is by no means the only
factor affecting the flexibility of a hard real-time system’s architecture. However, a
task allocation tool which meets the above requirements would generate solutions
which:

1. re-use parts of allocations and schedules from previous development iterations;
2. are flexible — they have the ability to withstand requirements changes without

severe disruption to the design;
3. are adaptable — they require few changes to the allocation and schedule when

a system reconfigures itself;
4. aid system robustness in the presence of faults by suitable arrangement of

redundant tasks.

In general, task allocation tools also assist the development process and improve
maintainability because they:

1. automate the task mapping design stage for successive development iterations.
2. help manage complexity by separating task specification from scheduling and

task mapping.
3. allow fast what-if analysis to gain insight into new requirements.

1.5 Thesis Structure

This section summarises this chapter and outlines each of the remaining chapters
that make up this thesis.
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Chapter 1. This chapter has introduced the software architecture qualities of main-
tainability, flexibility and adaptability and the idea of improving them via auto-
mated tool sets. This was then put into the context of hard real-time systems,
specifically automotive and avionics systems. The real-time task allocation
problem was identified as one which is amenable to automated optimisation
methods and is part of the real-time architecture decision making process which
can affect the flexibility of real-time systems.

Chapter 2. This chapter reviews related literature and previous work concerned
with enhancing flexibility of real-time architectures and solving task allocation
problems. Experimental methodologies for assessing optimisation algorithms
are also assessed.

Chapter 3. Following the review of related work, this chapter presents require-
ments for a tool to produce flexible solutions to task allocation problems and
a hypothesis stating that certain techniques will be successful at meeting these
requirements.

Chapter 4. This chapter presents the real-time architecture model that will be
assumed throughout and gives a method of synthesising problem instances for
experimentation.

Chapter 5. This chapter explains the design of the basic task allocation algorithm
which will be extended in later chapters to support flexibility. The algorithm
is configured and evaluated using problems generated by the problem synthesis
algorithm from chapter 4.

Chapter 6. This chapter is concerned with the problem of finding similar task al-
location solutions for different task sets. This is motivated by multi-moded
systems where the task configuration in each mode should be as similar as
possible to reduce mode change overheads.

Chapter 7. This chapter shows how change scenarios can be used with the task
allocation algorithm developed in chapters 5 and 6 to produce solutions with
greater flexibility.

Chapter 8. In this chapter, the task allocation algorithm is extended to generate
solutions which degrade gracefully when permanent processor faults occur.

Chapter 9. This chapter summarises the work done in this thesis and assesses
whether experimental results support the hypothesis set out in chapter 3.



2
Task Allocation And Real-Time

Architecture Optimisation

2.1 Introduction

This chapter reviews literature which will help to uncover the nature of the task
allocation problem. The goal is to find strengths and weaknesses of current task
allocation work with respect to changeability issues. More general optimisation of
flexibility and other real-time architectural qualities is also studied outside of the
context of task allocation.

Section 2.2 explains real-time system models and some of the schedulability tests
which are used by task allocation algorithms. This leads to a definition of the task
allocation problem. This section also covers mode change and fault tolerance mech-
anisms which are directly related to making systems adaptable.

Section 2.3 presents previous work on task allocation and the solution methods
which were used to solve problem examples. This includes a range of work on basic
task allocation as well as that which tries to optimise solution qualities.

Section 2.4 covers the definition, modelling and analysis of software architectures.
This includes scenario based analysis, a method of predicting how architectural qual-
ities will be affected by possible changes. Section 2.4.4 casts task allocation as a
traditional software architecture selection problem and discusses the applicability of
scenario based analysis to task allocation. Section 2.4.5 looks at existing work on
automation of real-time architecture selection and quality trade-offs.

Section 2.5 summarises the content of the work reviewed in the chapter and
identifies the areas of research to be taken forward throughout the rest of the thesis.



38 Chapter 2. Task Allocation And Real-Time Architecture Optimisation

Symbol Description

T set of all tasks
M set of all messages
S S = T ∪M, the set of all schedulable objects
τi a schedulable object, i.e. an element of S
P set of processors
N set of networks
σj a scheduling resource, i.e. an element of P ∪N
σj lat latency of a network σj

σjban bandwidth of a network σj

Ci worst case execution time (WCET) (or message communication time)
Di deadline
Ti period
Si maximum size for messages

Table 2.1: Symbols relevant to real-time architecture model components and attributes

2.2 Real-Time Systems Software Architectures

A real-time system is one where the time at which computational results are produced
is an integral part of the system’s requirements. Definitions of hard and soft real-
time systems were previously given in section 1.2.2. This section establishes the
main architectural components of a hard real-time system and how models of real-
time system architectures can be analysed.

The information is built up as follows. The real-time task model is explained in
section 2.2.1. The scheduling of tasks on a single processor, known as uniprocessor
scheduling, is described in section 2.2.2. The system model and scheduling policies
are extended for distributed scheduling in section 2.2.3. This gives the necessary
background with which to define a task allocation problem in section 2.2.4.

Sections 2.2.5 and 2.2.6 look at mode change and fault tolerance mechanisms.
These are two areas which link a real-time architecture to the system’s run-time
adaptability. Both impact the task allocation problem.

2.2.1 The Real-Time Task Model

Real-time software is decomposed into functional units called tasks [57, 58, 59]. Tasks
are activated by an interrupt, generated, for example, by a sensor or clock tick,
causing them to release a job which is executed on a processor [58, 59]. While
this terminology is common, it is not universal, for example Liu [40] uses the same
terms differently. Sometimes “task” is used more loosely to describe both the unit of
functionality and the executing objects they generate. The set of all tasks is denoted
T in this thesis. A full list of symbols related to the real-time system model used in
this section and future chapters is given in table 2.1.

At the design level, tasks are assumed to be able to run concurrently unless an
explicit dependency requires that one cannot start until it is triggered by a message
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from another. The system may also contain shared resources when one task is blocked
waiting for access to a resource another task is currently using.

2.2.1.1 Periodic Task Model

The simplest recognised real-time task model is the purely periodic model where each
task τi has a worst case execution time (WCET) Ci and period Ti. All tasks run in
a continuous loop releasing a job every Ti time units which executes for a maximum
duration of Ci time units. Such a model is suitable for pure control systems [60] such
as a PID (Proportional, Integral and Derivative) controller [40]. Each task uses a
proportion Ci/Ti of the processing resource. This quotient is called the utilisation of
the task. If Ui is the utilisation of each task τi then the total utilisation,

∑
i Ui, is

the task set utilisation.

2.2.1.2 Sporadic Task Model

The maximum amount of time allowed from the point a job can be released to the
point it completes execution is the relative deadline of the task, denoted Di. In the
simple periodic task model, a task set is said to be schedulable under a particular
policy if every job released by a task always completes before the task releases another
job. That is, the relative deadline of a task is equal to its period so Di = Ti for all i.

In some systems, deadlines are allowed to take arbitrary values making Di an
explicit task attribute. An obvious motivation is to specify requirements for applica-
tions containing tasks which need to respond in a shorter time-frame than the length
of the task’s period. Setting arbitrary deadlines is also used to influence other timing
properties. It is often the end-to-end deadline, the time taken for data captured by
a sensor to be processed by a chain of tasks resulting in actuation, that is important
rather than intermediate deadlines for tasks in the chain. Intermediate deadlines can
be set to achieve this and may be both longer or shorter than periods [61].

Sporadic tasks [57] also motivate arbitrary deadlines [62]. Sporadic tasks are
those which do not need to run continuously but are activated to respond to an event
such as a button press. For a sporadic task, the value Ti represents the minimum
inter-arrival time of two successive jobs. The maximal response time required by
the application may be significantly lower than the minimum inter-arrival time so
sporadic tasks can have deadlines which are much smaller than periods [62].

2.2.2 Scheduling Policies And Analysis For Uniprocessor Systems

A major design decision in the construction of a real-time system architecture is the
choice of scheduling policy. There are many scheduling policies to select from and
some systems use more than one. Partitioned systems can take a hierarchical ap-
proach where each partition is scheduled using one particular policy and then each
partition is assigned time on the processor by a separate policy [63]. This is the
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Task Ci Ti

τ1 150 500
τ2 200 1000
τ3 250 1000
τ4 150 1000

Table 2.2: Example task set with four tasks

0 1000500 1500 2000250 750 1250 1750

600 400

(a) Schedule with task jitter

0 1000500 1500 2000250 750 1250 1750

(b) Schedule with jitter removed

Figure 2.1: Possible static cyclic schedules for task set in table 2.2

approach used by the APEX standard in IMA systems. The tasks within each par-
tition are scheduled using a fixed priority policy and each partition is allocated time
within a static cyclic schedule. There are three major categories of scheduling policy:
static cyclic scheduling, fixed priority scheduling and dynamic priority scheduling.
All three are now explained in the context of single processor systems.

2.2.2.1 Static Cyclic Scheduling

A static cyclic schedule is one where each task executes at a pre-determined time
relative to a time chosen to be time zero. If all tasks have the same period then tasks
can be laid end-to-end and then the sequence is executed at times 0, T1, 2T1, 3T1, . . .

where T1 is the period of the first and every other task. System requirements usually
dictate that there are tasks which need to run at different rates. For example, an
engine temperature sensor does not need to sample as frequently as a rotation speed
sensor [40]. Enforcing all tasks to run at the rate of the task with the shortest period
requirement is highly inefficient. Therefore, a cycle of length equal to the lowest
common multiple (LCM) of the task periods is created with each task repeated the
correct number of times within each cycle.

Table 2.2 shows a task set containing four tasks where the LCM of the periods
is 1000. Figure 2.1a shows two repetitions of a possible cyclic schedule for this task
set. Since task τ1 has a period half the length of the cycle, it features twice within
one repetition of the cycle. As shown in figure 2.1a, the gap between two executions
of this task is never exactly equal to its period of 500 but alternates between 400 and
600. This feature of a task’s schedule is called jitter. Tasks can exhibit both input
and output jitter [64], defined as:
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Task Figure 2.1a Figure 2.1b
WCRT Jitter WCRT Jitter

τ1 250 100 150 0
τ2 350 0 850 0
τ3 600 0 400 0
τ4 900 0 1000 0

Table 2.3: Worst case response time calculations for schedules in figure 2.1

• input jitter — variation in the interval between start times of successive jobs
• output jitter — variation in the interval between end times of successive jobs

Due to the assumptions of control algorithms, jitter can cause degradation in con-
trol performance and possibly instability [65]. Therefore, static schedules should be
constructed to minimise jitter for tasks related to jitter sensitive applications.

An alternative schedule is shown in figure 2.1b where the gap between start time
of all tasks in exactly equal to their periods. In general, it is not always possible to
achieve this but, at the same time, not all tasks will be part of an application where
jitter is of paramount importance.

Once a static cyclic schedule is constructed, each job of a task within the schedule
can be checked to find the worst case response time (WCRT) of the task. The worst
case is given by the job which has the longest duration between the start of the period
and the end of its execution. For the example in figure 2.1, this results in examining
two instances of task τ1 and a single instance of tasks τ2, τ3 and τ4. The WCRTs for
both of the possible schedules shown in figure 2.1 are given in table 2.3. This shows
that the reduction in jitter for task τ1 comes at the expense of an increase in WCRT
for some tasks with task τ4 only just meeting its deadline assuming D4 = T4.

Architectural decisions for hard real-time systems are driven by timing pre-
dictability over and above absolute performance. Static cyclic scheduling excels in
this regard since the execution of each task is pre-determined. The schedule can also
be optimised for tasks related to jitter sensitive applications.

There are drawbacks to a static cyclic scheduling policy. The static-by-design
nature of this policy can lead to fragile schedules which need to undergo a large
amount of redesign and retesting when new tasks are added or task execution times
change [66, 67].

As in the example previously given with a temperature sensor and rotation speed
sensor, periods can vary widely within a system. Locke [66] identifies a number
of problems of engineering static cyclic schedules containing tasks with different
periods. If the periods of the highest rate and lowest rate tasks are different orders
of magnitude then a very long schedule must be created with several repetitions of
some of the tasks. Slow running tasks can be split into several parts, with a different
part running in successive cycles. However, this increases the number of tasks and
their dependencies and hence shifts rather than reduces the engineering overheads.
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Figure 2.2: Fixed priority scheduling with preemption

A long cycle can also be generated if the task periods are not harmonic. This can
lead to task periods being selected according concerns regarding the engineering of
the schedule as opposed to the best design for the control application.

2.2.2.2 Fixed Priority Preemptive Scheduling

Fixed priority preemptive scheduling is a commonly used scheduling policy in hard
real-time systems. Under this policy, each task is assigned a priority as part of the
design process and this priority remains constant while the system is running. When
more than one job is active, the highest priority one is chosen to execute. If a job
becomes active while a lower priority job is executing, then the lower priority job is
suspended until there are no higher priority jobs currently active. Figure 2.2 shows
the task set in table 2.2 scheduled using a preemptive fixed priority scheduling policy.
Task τi is assigned priority i with the task at priority 1 being the highest priority
task. After 500 time units, a job of task τ3 is executing but is preempted by τ1 when
it becomes active.

Unlike the static cyclic schedule, where tasks release a job at a predetermined
time, a job of τj is released at every multiple of its period 0, Tj , 2Tj , 3Tj , . . . . Execu-
tion of the job will begin when all higher priority jobs have completed their execution.
This means that the time at which higher priority jobs complete and a lower priority
job begins its execution will vary from one period to the next possibly leading to
higher levels of jitter than a static cyclic schedule, especially for lower priority tasks.
This can be mitigated by the use of offsets [58].

Compared to static cyclic scheduling, fixed priority preemptive scheduling has
reduced engineering overheads whilst retaining predictable timing properties. In
particular, fixed priority scheduling is more readily able to handle tasks with a wide
range of periods [66].

Static cyclic scheduling takes a correct-by-construction approach to ensuring all
tasks meet their deadline. This cannot be said of fixed priority scheduling since there
are many possible interleavings of tasks which must be verified for any particular
chosen priority ordering. The seminal work of Liu and Layland [60] established two
important results regarding single processor fixed priority preemptive scheduling.
Firstly, the optimal priority assignment is a rate monotonic assignment where higher
rate tasks are assigned a higher period. The term “optimal” is used in the sense that
if there exists a priority ordering which allows the task set to be scheduled, then it
will also be schedulable using a rate monotonic ordering. Liu and Layland [60] also
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proved that, using a rate monotonic priority ordering, any task set with the property

K∑
i=1

Ci
Ti
≤ K(21/K − 1) (2.1)

will be schedulable where K = |T |, the number of tasks in the task set.

If deadlines are not equal to periods, then a rate monotonic priority ordering is
no longer optimal [67]. Audsley [67], citing Leung and Whitehead [68], states that
Deadline Monotonic Priority Ordering (DMPO) is optimal when all task deadlines
are less than or equal to the task period.

Inequality (2.1) gives a least upper bound on the utilisation of schedulable task
sets. Task sets with higher utilisations still have the potential to be schedulable but
require further schedulability tests.

An upper bound of the WCRT of each task can be calculated and compared to
its deadline. Since the pattern of task interferences will repeat after a duration equal
to the lowest common multiple of the task periods, tasks can be laid out using the
rules of fixed priority preemptive scheduling policy as shown in figure 2.2 and then
each instance of each task can be examined to find the WCRT. This method does
not scale well to systems with several tasks running with different periods. A more
efficient form of analysis for calculating Ri, the WCRT of task τi, is given by Joseph
and Pandya [69] based on the following equation

Ri = Ci +
∑

j∈hp(τi)

⌈
Ri
Tj

⌉
Cj (2.2)

where hp(τi) is the set of values which index tasks with a higher priority than τi. Ri
is on both sides of this equation. Joseph and Pandya proved that the lowest valued
solution to the following recurrence relation will solve equation (2.2) and provide the
correct value for the response time of task τi.

R
(q+1)
i = Ci +

∑
j∈hp(τi)

⌈
R

(q)
i

Tj

⌉
Cj (2.3)

The following value for R(0)
i can be used since the duration of the WCRT has to

include at least one execution of all higher priority tasks as well as the task itself.

R
(0)
i =

∑
j∈hp(τi)∪{i}

Cj (2.4)

Equation (2.3) is calculated for q = 1, 2, . . . until R(q+1)
i = R

(q)
i or R(q)

i is greater
than the deadline Di in which case the task set is not schedulable. This equation
only holds for independent tasks on a single processor with task deadlines less than
or equal to periods. Table 2.4 gives the WCRT values for the task set previously
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Task Ci Ti πi Ri

τ1 150 500 1 150
τ2 200 1000 2 350
τ3 250 1000 3 750
τ4 150 1000 4 900

Table 2.4: Worst case response time calculations for fixed priority preemptive scheduling

given in table 2.2 with the priority of task i, πi, set to i.

Other elements can also be introduced into the response time analysis. A more
general form of equation (2.3) is

Ri = Ji +Bi + Ci +
∑

j∈hp(τi)

⌈
Ri + Jj
Tj

⌉
Cj (2.5)

This equation includes the term Ji to represent the release jitter of task i and Bi

which is the longest possible time a task can be blocked by a lower priority task
when competing for a shared resource. Jitter terms can also be used to model delays
caused by precedence constraints. This is the case for the multiprocessor scheduling
analysis given in section 2.2.3.5.

It is also possible to use a non-preemptive fixed priority scheme where, once
a job begins to execute, it will always continue to completion, potentially causing
higher priority tasks to be blocked. A good example is scheduling messages on a
CAN network where communications cannot preempt each other. Davis et al. [70]
provide schedulability analysis for this case. The longest amount of time a task can
be blocked is equal to the maximum WCET of lower priority tasks

Bi = max
j∈lp(τi)

Cj (2.6)

Using equation 2.5 to calculate WCRT values for non-preemptive systems is not
valid in all circumstances. It can give a result which is overly optimistic and not a
true worst case. The situation which causes this is when a lower priority task blocks
the release of a higher priority one which in turn delays the start of the next job of
the lower priority task. In effect, jobs released by the same task are simultaneously
active and interfere with each other. To overcome this, the analysis must be run for
multiple instances of each task and the maximum response time can then be used for
the worst case. Analysis which achieves this is presented in section 2.2.3.5. Similar
reasoning can also be used for analysis of systems with deadlines greater than periods
and the analysis is also valid for this situation.
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2.2.2.3 Dynamic Priority Scheduling Policies

Another class of scheduling policies are dynamic priority based policies which allow
priorities to change at run-time. Liu and Layland described a deadline-driven ap-
proach [60] whereby the job currently executing is always the one with the earliest
deadline from the current point in time or the processor is idle. That is, the job with
the earliest deadline is given the highest priority. Using this scheme allows all tasks
to be scheduled as long as the condition

K∑
i=1

Ci
Ti
≤ 1 (2.7)

holds. This policy is optimal in terms of scheduling task sets since no policy can
schedule a task set which requires over 100% over the processor’s resources.

Earliest Deadline First (EDF) scheduling is far less commonly found in automo-
tive and avionics systems than static cyclic and fixed priority scheduling. It is a
more complex policy to implement, requiring more kernel support than fixed priority
policy implementations [71]. In overload situations, it becomes difficult to predict
which task will be running and is likely to miss a deadline [72] though improvements
in analysis of EDF have given cause to dispute this [71]. In comparison, it is known
in advance that the lower priority tasks of a fixed priority system are more likely to
miss deadlines. Although some work in the automotive domain has considered the
use of EDF scheduling for engine management [73], this thesis will concentrate on
the historically more dominant static priority and static cyclic policies.

2.2.3 Distributed Scheduling

For uniprocessor systems, the major real-time architectural components are tasks and
the single processor. When this is extended to a distributed multiprocessor platform
then networks and messages as well as further processors must also be modelled.

Messages can be scheduled using static cyclic, fixed priority or hybrid policies [74,
75]. The commonly used CAN bus [45] schedules messages using a fixed priority
non-preemptive policy [70]. It is also possible to use preemptive policies for real-time
communications [76]. For example, the ARINC IMA standard assigns messages to
channels and allows preemptions [77] within channels.

The time taken to transfer a message on a CAN bus is [70]

(k + 10si)σjbit (2.8)

where σjbit is the time taken to transfer an individual bit on network σj , si is the
size of the message in bytes and k is a constant which depends on whether standard
or extended frame identifiers are being used. The frame identifiers also contain the
message priority in order to perform bus arbitration [70]. By setting a latency value
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σj lat = kσjbit and a bandwidth value σjban = 1/(10σjbit), equation (2.8) can be
rewritten as

σj lat +
si

σjban
(2.9)

In the case of CAN , σj lat represents an overhead for frame headers and bit stuffing
which enables error detection [70]. More generally, this formula expresses a trans-
mission time dependent upon the size of the message with some constant overhead
which could be for data overheads or generation and delivery delays [76]. If si is
substituted for Si, the maximum size of a message, then equation (2.9) becomes an
expression for the message worst case communication time (WCCT) Ci.

Ci = σj lat +
⌈

Si
σjban

⌉
(2.10)

Values of Ci are usually specified as integers. Equation (2.10) uses a ceiling function
to always round values up since Ci represents a worst case value.

Static cyclic policies are also used in automotive systems. Flexray, a more mod-
ern standard than CAN, uses a hybrid policy with two transmission windows, one
containing a static cyclic schedule for control tasks requiring low jitter and the other
intended for scheduling sporadic event driven tasks [75]. Similarly Time Triggered
Controller Area Network (TTCAN) [78] is an evolution of the CAN protocol which
allows a hybrid scheduling approach to be used. Search optimization methods, specif-
ically genetic algorithms, have been used to optimise how resources are divided be-
tween different policies within TTCAN [79]. Note that purely time triggered system
are poor at handling sporadic events [66] since the all tasks must be included in a
pre-defined schedule and run continuously.

2.2.3.1 Messages And Task Dependencies

Tasks may need to receive data from multiple tasks, for example a task which com-
pares or combines values from separate sensors. Similarly a task may generate in-
formation which needs to be processed by multiple tasks as in the case of a speed
sensor being used for both engine management and cruise control. Such dependencies
between tasks can described by a directed graph, as shown in figure 2.3, with tasks
represented as graph nodes and messages forming the edges connecting the nodes.

The restrictions on the structure of the graph depend on the ability to analyse the
model and verify that timing requirements are met. Figure 2.3 shows an acyclic graph
with a single initiating task which allows tasks to both send and receive multiple
messages. Dependencies in task graphs can also have different semantics. Two
important variations are [40]:

• AND / OR relationships. When a job receives multiple messages, does it
depend on all of them (AND) or any one of them (OR)?
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Figure 2.3: Example acyclic task graph

• Temporal precedence constraints. Does a job need to wait until a predecessor
completes or can it start as soon as the predecessor produces some output?

Once again, in the context of a hard real-time system, it is the ability to analyse the
model which impacts implementation decisions. A common assumption is that a job
does not produce any output until it completes and successors cannot use any of the
information until they have received a message from the previous job. A sequence of
dependencies forming a task graph is called a transaction.

2.2.3.2 Event Triggered Versus Time Triggered Architectures

Periodically activated tasks are described as time triggered since they release a job
according to a timer event. Sporadic tasks, activated by an external event are event
triggered. In a distributed system, where information must pass through a chain of
tasks across several processors, the release of a job or the sending of a message can
also be time triggered or event triggered [74, 43, 75]. Each approach has advantages
and disadvantages, and combinations of the two approaches are possible [74, 75].

A completely time triggered system with asynchronous communication is simple
to implement and easy to analyse. All tasks are periodically activated reading from
and writing to shared buffers [80, 81]. Periodically activated messages transfer the
most recently written data from a task’s output buffer to the input buffer of the
destination task. In such a system, changing one schedule does not directly effect
when tasks or messages will run on other scheduling resources.

The time triggered approach goes hand-in-hand with a static cyclic schedule
resulting in a system with a small amount of jitter [75]. However, the end-to-end
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response time referring to how long it takes a piece of information to be processed by
the entire chain of tasks can be affected by any change to a schedule on any processor
or network. Asynchronous buffered systems tend to have typically poor end-to-end
response times [75] since it is possible for a task to run just prior to new data arriving
resulting in it having to wait nearly a whole cycle to be processed.

It is difficult to support sporadic tasks in a purely time triggered system. If time
triggered messaging is used to support event triggered tasks then the messages must
be sent continuously regardless of whether an event has occurred. This results in a
lot of wasted communication but also makes it far easier to detect a failed node. If
messages are event triggered then it is not known whether an absence of messages is
due to no event occurring or a failure [43].

An event driven system with a priority based scheduling policy is better suited
to incremental design [43]. However, all tasks and messages dependencies also be-
come response time calculation dependencies and so changes to schedules propagate
throughout the system [75].

2.2.3.3 Analysis Of Time Triggered Multiprocessor Static Cyclic Schedules

Multiprocessor systems using asynchronous communication can be analysed with
simple extensions to uniprocessor response time calculations in order to calculate
end-to-end response times. The longest time that a piece of data will take to be
processed by a task or transferred by a message is its response time, Ri, as calculated
from uniprocessor scheduling analysis plus its period, Ti. The worst case situation
occurs when every task throughout a chain of tasks takes this amount of time [81].
Therefore the worst case end-to-end time is the longest path through the task graph
with the cost of each node and edge being Ri+Ti. If, however, the system is assumed
to be synchronised with a global clock then this can be reduced [64].

2.2.3.4 Multiprocessor Schedulability Tests For Priority Based Policies

Constructing simple sufficient schedulability tests with a reasonable degree of pes-
simism, as in equations (2.1) and (2.7) for uniprocessor systems, is much more difficult
in the multiprocessor case. This stems from the fact that any schedulability test must
be in the context of a task to processor allocation as well as priority assignment pol-
icy. Leading work on multiprocessor schedulability tests assumes the sporadic task
model but without dependencies [82, 83]. Schedulability tests can be divided into
four categories based upon the priority assignment and allocation policies:

1. static priority assignment / partitioned scheduling
2. dynamic priority assignment / partitioned scheduling
3. static priority assignment / global scheduling
4. dynamic priority assignment / global scheduling
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With partitioned scheduling, each task is pre-assigned to a processor at design time
and then each processor can use any uniprocessor scheduling policy. Global schedul-
ing policies maintain a single job queue and each job is dynamically assigned to a
processor according to a particular policy [83]. Global scheduling policies may also
allow job migration, whereby a job can migrate between processors during its exe-
cution [83] though this typically introduces overheads, especially when cache is not
shared between processors [84].

With a combination of partitioned scheduling and EDF dynamic priority assign-
ment on a homogeneous platform, the task allocation problem becomes a bin packing
problem [82] since it is known that each processing resource provides 1 unit of utili-
sation. This type of problem is NP-hard. Baruah and Fisher give a polynomial time
partitioning algorithm [82] which will schedule any feasible task set on processors
which are 3 − 1/|P| times as fast as would be needed using an optimal allocation
policy. This result applies to task sets with all periods less than or equal to deadlines.

2.2.3.5 Analysis For Event Triggered Multiprocessor Fixed Priority Scheduling

Palencia and Harbour [59], building on the work of Tindell and Clark [85], developed
schedulability analysis for fixed priority scheduling with static and dynamic offsets.
This is used to model an event triggered multiprocessor system where the static
offset is the minimum amount of time an object has to wait for preceding objects to
complete and the dynamic offset is the maximum amount of additional waiting time.
This analysis is a schedulability test for a system using partitioned allocation / fixed
priority assignment scheduling policies for tasks and messages with dependencies. As
long as WCETs are known for the chosen allocation, there is no restriction on the
heterogeneity of the hardware platform. The analysis is suitable for a sporadic task
system with both Di < Ti and Di > Ti as well as Di = Ti.

The objects in the system are grouped into transactions so that τab is object b
within transaction a. The dynamic offset for τab is represented as a jitter term, Jab.
The static offset, Φab, is the minimum delay a task can cause to others. This can be
any lower bound on the best case response time of the task. A suitable estimate is
the sum of the task’s best case execution time (BCET) and the shortest path leading
to that task where the cost of each node and edge is the BCET of each task and
message. The calculations rely on the period of all objects within a transaction being
the same. Ta is the period of all objects within transaction a.

Equation (2.12) calculates Wik, the interference on τab due to objects in trans-
action i up to time t. This is in the context of a continuous period of execution,
initiated by τik, of objects on the same processor and with a higher priority than τab.
τik is called the critical object. Equation (2.13) finds the maximum value of Wik over
different values of k to calculate an upper bound on the worst case interference.

φijk = Ti − (Φik + Jik − Φij) mod Ti (2.11)
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Wik(τab, t) =
∑

j∈hpi(τab)

(⌊
Jij + φijk

Ti

⌋
+
⌈
t− φijk
Ti

⌉)
Cij (2.12)

Wi
∗(τab, w) = max

k∈hpi(τab)
Wik(τab, w) (2.13)

φijk gives the time between the critical instant defined by τik and the last activation
of τij before it. The situation for worst case interference is when the critical object
is delayed as much as possible and then activations of tasks after the critical instant
have 0 delay [59].

Since this analysis covers cases with deadlines and jitter larger than periods, a
task can have multiple jobs active at one time. Equation (2.14) calculates wabc(p)
which is the longest period of time where instance p of τab is delayed by instances of
higher priority tasks and other instances of τab for a period of continuous execution
initiated by τac.

wabc(p) = Bab+ (p−p0,abc+ 1)Cab+Wac(τab, wabc(p)) +
∑
i 6=a

Wi
∗(τab, wabc(p)) (2.14)

Equation (2.14) is a recurrence relation which is solved when the value of wabc con-
verges. To obtain an initial value, at the beginning of the analysis calculation, all
response times and jitter values are set to 0. Afterwards, the jitter value for a task
can be taken as the response time of its incoming message. If there are multiple
messages, the one with the highest response time is used. Similarly the jitter for a
message is set by the WCRT of the task sending it.

To obtain a response time Rabc(p), wabc(p) is adjusted according to the instance
number and the phase relationship with the critical object τac.

Rabc(p) = wabc(p)− φabc − (p− 1)Ta + Φab (2.15)

The WCRT is then found by checking all instance values between p0,abc and pL,abc

for possible critical objects in the same transaction as the object being studied. The
first possible activation is

p0,abc = −
⌊
Jab − φabc

Ta

⌋
(2.16)

The final task activation which needs to be checked is initialised to p0,abc and, in
future iterations, updated to be

pL,abc =
⌈
wabc − φac

Ta

⌉
(2.17)

Finally, the WCRT of object τab is

Rab = max
c∈hpa(τab)∪b

(
max

p=p0,abc,...,pL,abc

Rabc(p)
)

(2.18)
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2.2.3.6 Pessimism and Efficiency Of Scheduling Analysis

Scheduling analysis that is not based on constructing a static schedule is generally
not able to calculate exact WCRTs. Since scheduling analysis is typically used in
hard real-time systems where there must be certainty that deadlines will be met,
most analyses, including that in section 2.2.3.5, produce a pessimistic result. This
results in some feasible schedules being declared infeasible. If pessimism is too high,
the only task sets which will be accepted will use only a small amount of the available
hardware resources leading to inefficient system designs.

For automated task allocation algorithms, the schedulability analysis is at the
heart of the objective function. More pessimistic analysis will generally be more
efficient to calculate so more configurations can be evaluated in a certain duration.
However, more accurate analysis has the potential to increase the number of valid
configurations in the design space.

More accurate versions of the Worst Case Dynamic Offset (WCDO) analysis
in section 2.2.3.5 are available. Palencia and Harbour improved upon it with Worst
Case Dynamic Offset with Priority Schemes (WCDOPS) analysis [86] but this did not
allow branching in the task graphs. Redell introduced WCDOPS+ [87] which reduced
pessimism further and also allowed for branching in the task dependency graph.
Kany and Madsen made further adjustments to take account of task dependency
graphs which had tasks receiving more than one message with analysis they call
WCDOPS++ [88]. All versions of WCDOPS rely on the concept of H-segments which
are sequences of dependent objects running on the same processor and preceded by
the same lower priority object. None of the WCDO variants are able to cope with
cycles in task graphs since the delay caused by a task waiting for an incoming message
to trigger it could be dependent upon the response time of the same task creating
a never-ending loop in the analysis. Loops can be broken by splitting a task into
separate instances [59] but all task graphs in this thesis will be acyclic.

2.2.4 Task Allocation

The task allocation problem is the problem of allocating tasks and messages to a
hardware platform and constructing a suitable schedule which ensures all tasks and
messages meet specified deadlines. As is evident from the different possible real-time
models, this statement alone is not sufficient to precisely define a problem which can
be solved algorithmically. Some of the questions which need to be answered to define
the problem are: Are there task dependencies? Are communications synchronous or
asynchronous? Are the processors homogeneous? What is the scheduling policy and
which schedulability test should be used? Are there constraints other than timing?

Fixed priority scheduling with DMPO and without dependencies is an allocation
only problem since the priority ordering is decided efficiently by a deterministic
algorithm. However, the utilisation based schedulability test given in section 2.2.2.2
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is a sufficient but not necessary test. The problem is more complex than a simple bin
packing problem because schedulability is not determined by resource usage alone.

If a static cyclic scheduling policy is to be used, then the schedule as well as
the allocation must be constructed. This can be done with the use of an ordering
attribute [53] in which case the algorithm for converting a task ordering into time
slots becomes part of the problem.

When dependencies are introduced, then constructing a schedule to meet end-to-
end deadlines becomes an issue. Use of fixed priority scheduling requires a suitable
priority ordering as well as allocation since DMPO is no longer necessarily optimal.
With asynchronous communications, changing priority of tasks on one processor
will not affect the schedulability of tasks and messages with respect to local dead-
lines. However end-to-end deadlines can be affected by any change which affects the
schedule of objects in the transaction. For an event triggered synchronous system,
changing priority of a task can affect schedulability of tasks and messages on other
processing resources with respect to both local and end-to-end deadlines.

Even when two task allocation problems are constructed from the same system
model, the difficulty can still vary depending on the schedulability test being used.
For example the admissible set of solutions will vary between the WCDO test [59]
and WCDOPS+ test [87] for certain task sets.

In light of these variations in the nature of task allocation problems, this thesis
defines a task allocation problem as follows.

Definition 2.1. The task allocation problem is the discovery of a mapping of tasks
and messages to a well defined hardware platform and selection of task and message
attributes required by a chosen scheduling policy so that all tasks and messages are
deemed schedulable by a schedulability test appropriate to the scheduling policy.

A well defined hardware platform is a collection of processors and networks for
which task and message execution times are known for all potentially valid software
to hardware mappings. If a mapping assigns a message to a network in a way that
does not allow it to be transmitted between its source and destination tasks according
to the network topology then it has an infinite execution time.

This definition is applicable to all hard real-time task allocation problems. Par-
ticular problem instances may place additional constraints on the solution such as
allowing a particular task to only be assigned to a subset of the processors. The
above formulation is a constraint satisfaction problem since all valid solutions are
considered equivalent in terms of quality. It can be converted into a constrained op-
timisation problem by the addition of a metric which differentiates between solution
qualities. The system model, scheduling policies and schedulability tests used in task
allocation problems in this thesis are stated in chapter 4.
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2.2.5 Modes And Mode Changes

2.2.5.1 Definitions Of Modes

For many hard real-time systems, the design of task allocations and schedules is fur-
ther complicated by mutually exclusive phases of operation called modes where the
system will need to provide different functionality or perform differently (e.g. provide
same functionality slower but with fewer errors). A commonly given example of a
multi-moded system is an aircraft taking off, moving into level flight and then land-
ing [30, 89, 90, 91]. Real and Crespo identify some generic operational modes which
can be found in complex hard real-time systems: initialisation mode, maintenance
related modes (running diagnostics, data downloads), low power mode, emergency
mode (running with reduced resources), alarm mode (reacting to a high risk situa-
tion), high reliability mode and fault recovery mode. Another more subtle and more
specific example is found in the analysis of an automotive electronic height control
system by Stauner et al. [92]. This system automatically adjusts chassis height via
pneumatic suspension so that the chassis remains in the same position relative to the
wheels within specified tolerance levels. Three modes are analysed: stopped, driving
normal and driving in a bend. For safety reasons, the height adjustment must be
suspended whilst driving in a bend.

As discussed in section 2.2.3, purely time triggered systems with pre-defined
schedules are unable to adapt to changes in environment since tasks cannot be in-
serted into the schedule once the system is running. Creating a set of pre-defined time
triggered schedules corresponding to different modes and allowing events to trigger
changes between modes can make a time triggered architectures more adaptable [90].

A change in the behaviour of the system does not necessarily imply a change to
the schedule. For a time triggered system, a slot can be maintained for all tasks in
all modes whether needed or not. This could be the case in the electronic height
control example where the height adjustment actuation task could be made to cause
no physical effect when driving in a bend. In general, however, the “all modes in
one schedule” approach is impractical since it results in severe under utilisation of
resources [91, 93]. Fohler [91] defines a mode as “an operational phase which is
performed by a single schedule”, referring to a uniprocessor multi-moded system.
This is a view echoed by Pedro who also emphasises the mapping between a schedule
and the set of functions and performance the system can provide using that schedule.

“A mode is defined by the behaviour of the system, described by a set of al-
lowable functions and their performance attributes, and hence by a single
schedule, containing a set of processes and their timing parameters.”

– Paulo Pedro [93]

To define the modes for a distributed multiprocessor system, Pedro uses all com-
binations of uniprocessor modes which are a valid system configuration [93]. Whilst
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this view is sensible from the perspective of analysing timing requirements of multi-
moded systems, the requirements for operational phases from which modes will be
derived will arise prior to task allocation in the design process. Therefore it seems
preferable to define a mode in terms of the set of tasks and messages and their
attributes involved in the operational phase which will need to be allocated and
scheduled rather than the schedule itself.

Giotto is a programming language for time triggered real-time systems which
includes semantics to support several modes within a system [89]. Within Giotto, a
mode is defined as follows.

“Formally, a mode consists of a period, a set of mode ports, a set of task
invocations, a set of actuator updates, and a set of mode switches.”

– Henzinger et al. [89]

The period of the mode is the length of the schedule associated with the mode. Mode
ports provide a way of communicating data from one mode to the next. The set of
mode switches is the set of possible mode transitions from the current mode. A
mode will periodically check exit conditions triggered by sensors which will cause it
to perform a switch to a different mode. Giotto requires a compiler to assign tasks
to processors and construct schedules after the completion of the system design at
the Giotto level of abstraction which includes modes.

2.2.5.2 Mode Changes

During a mode change, a task can stop, start or continue to run. If it continues
to run, some of its attributes, (Ci, Di, Ti), may change or it can continue as before.
If the execution time, Ci, changes then it may be easier to model the task as two
separate tasks with one stopping in the old mode and the other starting in the new
mode [30]. If the task set changes, then the messages sent across the bus are also
likely to change. As with other scheduling issues in a hard real-time system, it must
be analysable and predictable [91, 93, 30]. Real and Crespo outline four requirements
for a mode change [30]:

1. Schedulability — during the mode transition, task deadlines must continue to
be met for tasks in the task sets of both modes

2. Periodicity — periodic control tasks must continue to run with the same acti-
vation pattern, i.e. not suffer excess jitter during the mode change

3. Promptness — there may be a deadline on completing the mode change, espe-
cially when transitioning into an emergency mode

4. Consistency — steps must be taken to keep all shared data consistent

Something which is given little attention in the literature on analysing mode
changes is the possibility of a task continuing to run but migrating to another pro-
cessor during the mode change. Of course, this can be modelled as a task stopping
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on one processor and a new one starting on another though this ignores the overhead
of migration. An area where task migration becomes useful is that of reconfigurable
real-time systems which is usually discussed at a more abstract architectural level
than mode changes. In IMA systems, run-time reconfiguration is a way of improving
system dependability [94, 50]. If a processor shows signs of a fault then there is
the possibility of migrating tasks away from it which may require other non-critical
tasks to be stopped. Therefore, the concepts of mode changes for providing different
functionality and reconfiguration to improve dependability are closely linked. Both
are key to making real-time systems adaptable.

If task migrations are not supported, then a task allocation must be found which
allows tasks which are common between modes to remain on the same processor.
If tasks are continuing to run between modes, then maintaining the same priority
level will make the system easier to analyse and is less likely to affect the amount
of jitter the task typically experiences. If however, the system is reconfigurable then
task migration should be taken advantage of to maximise functionality. At the same
time, unnecessary migration should be minimised due to the overheads involved. This
introduces extra difficulty to the basic task allocation problem defined in section 2.2.4.

2.2.6 Fault Tolerance

Given the close relationship between hard real-time systems and safety-critical sys-
tems, it is, perhaps, not surprising that there is an emphasis on fault tolerance in
hard real-time systems’ architectures. To construct a fault tolerance mechanism that
will ensure the system remains in a safe state, it is important to understand the types
of faults that can occur and how they can be handled.

2.2.6.1 Faults And Failures

If a system deviates from its specification, then it is said to have failed. A fault, such
as a software bug, can be present in a system without causing a failure if the system
does not receive inputs which cause the fault to produce an undesired effect. In this
case, it is said to be dormant [95]. The intermediate state between a fault and a
failure is an error [39, 95]. An error is an unintended internal state [39] that still may
be corrected before it manifests itself as a failure. In a hierarchically decomposed
system, a failure of one component can cause a fault in another [95].

Faults can be transient or permanent. A transient fault is one which is temporary
and only present in the system for a short period of time. Transient faults are common
in communications channels which are subject to electromagnetic interference [96].
A permanent fault cannot be removed from the system without repair [95].

Since the correct system behaviour depends on both the value of a result and the
time it is delivered, there are two possible types of failure: a timing failure and a
value failure [39, 95]. A timing error has occurred if a resultant output is too early,
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too late or never arrives [95].
When a component fails, there are a number of ways it can behave. If a com-

ponent is fail silent [96, 39] then it produces no output once it has failed. This is
preferable to an uncontrolled failure such as the babbling idiot problem where a node
on a network continues to send data possibly causing further failures or overload-
ing the system [39]. However, a fail silent node can be hard to detect, especially
if the system is event triggered and not otherwise sending data [97]. The fail stop
paradigm [98] acts like fail silent except that the failure is detectable. A possible im-
plementation is given by Schlichting et al. [98] based on a set k of processors acting
as a single fail stop processor which can detect up to k failures.

2.2.6.2 Fault Tolerance Techniques

Transient faults where, for example, a task produces an incorrect output, can be
overcome by rerunning the task. This relies on there being sufficient slack in the
schedule to be able to do this without causing other tasks to miss their deadlines [99].
This is a form of time redundancy.

N-Modular Redundancy, for example Triple Modular Redundancy (TMR), repli-
cates subcomponents and then uses voting mechanisms to detect and correct er-
rors [95]. This is a form of static redundancy which masks subcomponent errors [95,
100] such that the component as a whole still produces valid output. Static redun-
dancy requires a large amount of resources [99] since all components run continuously.
In contrast, dynamic redundancy allows an error to occur and then takes steps to
recover from it, assuming it can be detected.

The MARS (MAintainable Real-Time Systems) architecture [97] proposes redun-
dant shadow components as a compromise between resource usage and fault toler-
ance. A shadow component receives the same data as the component it is shadowing
but does not send any data [96] so the communications bus is not replicated. If the
main component fails, then the shadow component is in a suitable state to take over
from it. Because the shadow component is not sending data, it is hard to detect if it
itself has failed. For this reason, the shadow components occasionally send a heart
beat message.

For safety-critical systems which must run for a long period of time with high
availability, there comes a point at which errors can no longer be masked or recovered
from [95]. At this point, it is necessary for the system to gracefully degrade. A grace-
fully degrading system is one which is still able to operate after some components
have failed, albeit with reduced functionality or performance [95, 101]. This is closely
linked with the previously introduced idea of reconfigurable systems. Architectures
such as IMA which use standardised hardware are particularly well suited to recon-
figuration [94]. Allowing some degradation of non safety-critical services combined
with reconfiguration allows hardware to be used much more efficiently compared with
traditional static redundancy [94].
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Redundancy not only enlarges the task allocation problem by introducing new
tasks and messages but also introduces the additional constraint of not allocating
replica tasks to the same processor. Whilst it is possible to find an allocation for the
original set of tasks and then replicate the entire system, this may not be the most
efficient use of hardware. Graceful degradation introduces the need for modes con-
taining subsets of tasks which provide critical functionality. Allowing task migration
during these mode changes raises the possibility of moving critical tasks away from
failing processors to improve the fault tolerance of the system.

2.3 Approaches To Solving Task Allocation Problems

In this section previous work on task allocation is collated according to the type of
algorithm used to solve the problem. Each optimisation method is briefly explained
and followed by a review of work on task allocation which has used that technique.

2.3.1 Problem Specific Heuristics

A heuristic, deriving from the Greek word euriskein meaning “to find”, is a guide
to solving a problem. The guide can be a sequence of steps expected to lead to a
good solution or a function estimating the distance from the current solution to an
optimal one. Reeves and Beasley define a heuristic in the context of an algorithm:

A heuristic is a technique which seeks good (i.e. near optimal) solutions
at a reasonable computational cost without being able to guarantee either
feasibility or optimality, or even in many cases to state how close to
optimality a particular feasible solutions is.

– Reeves and Beasley [102]

Another use of the word “heuristic” is to describe functions which are an inexact
guide to the quality of a solution, or its distance from being an optimal solution [103].
A heuristic function can be combined with a search algorithm to guide the search
towards good solutions. Search algorithms which can solve a range of problems but
require a problem specific heuristic function are called metaheuristics. Examples of
metaheuristics are hill descent, simulated annealing and genetic algorithms. These
are covered in sections 2.3.2 and 2.3.3.

The heuristic function used with a metaheuristic algorithm is called an objective
function. Objective functions to be maximised are usually referred to as fitness
functions whereas those to be minimised are called cost functions [104]. In this work,
unless otherwise specified, a minimisation problem is assumed and the cost function
terminology is preferred.
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2.3.1.1 Examples Of Task Allocation Specific Heuristics

A good heuristic that is well matched to the problem can offer extremely good per-
formance. Researchers working on task allocation in the 1980s had limited access to
compute power compared to modern (2009) standards and hence spent time analysing
the problem and developing problem specific heuristics.

Many authors [105, 106, 51, 107] have developed heuristics for soft real-time
allocation problems. The aims being to minimise response time [106, 51, 107] or
balance load [105] rather than find a solution which ensures deadlines are met. The
problem formulation is that of an optimisation rather than constraint satisfaction
problem as given in the definition in section 2.2.4. Valuable insight can still be
gained from the design of the heuristics.

Chu and Lan [105] present an algorithm separated into two stages: clustering
of tasks and assignment of clusters. This is a strategy to reduce the size of the
assignment space [106, 3, 107]. The clustering algorithm tries to group pairs of tasks
which transfer a large amount of data between themselves to reduce communication
overheads and balance this utilising the available processors efficiently.

Lo [106] uses heuristics based on graph theory to reduce the overall processing of
tasks and messages that is required. Other than the heuristic, Lo’s work differentiates
itself from Chu and Lan by allowing tasks to have processor dependent execution
times, i.e. a heterogeneous hardware platform. The method, published in 1988, was
shown to be effective on task sets of 4 to 35 tasks on a VAX 11/780.

A more recent piece of work with a similar model to Chu and Lan was published
by Peng et al. in 1997 [51]. The aim is to minimise the maximum task response
time. This uses a branch and bound [108] approach with an appropriate heuristic
for exploring high quality parts of the solution space first and allowing much of the
search tree to be bounded. The exhaustive nature of branch and bound algorithms
mean an optimal solution is guaranteed. The algorithm was shown to be feasible
on task sets of up to 140 tasks, requiring only a small fraction of the entire possible
solution space to be checked in order to find an optimal solution.

One of the first pieces of work on task allocation specifically aimed at safety-
critical hard real-time systems was published by Ramamritham in 1990 [109] with
an extended version of the work later published in 1995 [3]. Like Chu and Lan,
the algorithm takes a two stage approach of first clustering tasks and then assign-
ing clusters to processors. In the assignment stage, the algorithm also constructs
a static cyclic schedule with deadlines assumed equal to task periods. The model
includes varying numbers of replicas for the different tasks and a valid solution must
also separate replicas onto different processors. The clustering stage of the algorithm
is based on a heuristic which clusters tasks depending on whether the ratio of task
computation times to the communication time of messages passing between the tasks
exceeds a threshold value. The best value of this threshold is highly problem depen-
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dent and so the algorithm tries several values. This heuristic relies on computation
and communication times being known prior to allocation. This makes it unsuitable
for a heterogeneous hardware platform where times are processor dependent. The
algorithm was shown to be efficient on systems with 24 tasks taking only 12s for the
main assignment and scheduling portion of the algorithm on an Intel 386 processor.

Work also falling into the category of specific heuristic solutions to task allocation
problems are those employed for EDF schedulability tests [82]. These are generally
efficient deterministic heuristics which benefit from the simple EDF schedulability
test given in section 2.2.2.3. These algorithms take no account of precedence con-
straints. As previously stated in section 2.2.2.3 static scheduling policies are still
dominant in safety-critical systems and allocation algorithms related to partitioned
EDF policies are considered outside the scope of this thesis.

2.3.2 Local Search Algorithms

Local search algorithms are a class of metaheuristic search algorithms which explore
the solution space by moving between solutions which are considered neighbours of
each other [103]. The set of neighbours of a solution is its neighbourhood. In addition
to a cost function, the definition of a solution’s neighbourhood is a way of providing
problem specific information to a local search metaheuristic since it defines the set
of possible next steps.

If a neighbour is evaluated and is in some sense considered a poor move for the
algorithm, it is rejected and a different neighbour is tried. The criteria for accepting
or rejecting a neighbour is the key differentiator between different types of local
search algorithm.

Figure 2.4 shows an imaginary landscape generated by the cost function of a
one dimensional optimisation problem. Features which are considered important to
local search algorithms are labelled. The aim of the search is find a local optimum
of sufficient quality which is not necessarily the global optimum. Flat areas of a
landscape can cause problems for a search since it provides no information as to
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whether the search is moving towards a high quality solution. A landscape may also
be deceptive if there is a steep downward gradient leading to a poor local optimum.

The problem trying to be overcome by all search algorithms is achieving the
correct balance between exploration; covering a sufficiently large proportion of the
solution space; and exploitation; intensively searching a small, but promising area of
the search space [110]. If an algorithm is over explorative then it is likely to bypass
good solutions. If an algorithm is too exploitative, then it will not move far from its
starting point before becoming trapped in a local optimum.

2.3.2.1 Hill Descent Algorithms

A first-choice hill descent algorithm selects a solution at random from the neighbour-
hood and only accepts it if it is better than the current one [103]. A steepest descent
hill descender will evaluate every possible neighbour and select the best one. This is
only possible if the neighbourhood can be enumerated and isn’t too large. Steepest
hill descent is a very exploitative search. Variations are possible where a smaller
sample is taken.

To stop hill descent algorithms from becoming trapped in local optima, the search
can restart from a randomly generated solution. Criteria need to be set for doing
this. A sensible strategy is to restart after there has been no improvement in cost
value for a certain number of moves.

2.3.2.2 Simulated Annealing

Simulated annealing [111, 102] is a popular local search method inspired by the
physical annealing process. Like hill descent, any chosen neighbours which are better
than the current solution are always accepted. In other cases, a random value r ∼
U(0, 1) is generated and a poorer solution is accepted if

r < e
−∆C

t (2.19)

where t is a temperature parameter and ∆C is the difference between the cost of the
neighbour and the last accepted solution. As the search proceeds, the temperature
is decreased, making it less likely for worse solutions to be accepted. Therefore
the search is more explorative at the beginning. There are several possible cooling
strategies [112]. One of the most common methods is to decrease the temperature by
a factor α so after a particular number of cooling steps c, t = t0α

c. α is known as the
cooling rate and t0 is the initial temperature. The choice of values for α and t0 change
the exploration and exploitation characteristics of the algorithm. Ingber [113] notes
that slower cooling schedules give statistical guarantees of convergence to a global
optimum but are often not used in real applications because convergence can be
extremely slow and impractical.

Modifications to the standard algorithm such as random restarts or reheating are
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sometimes used to escape local optima [102]. If the simulated annealing algorithm is
implemented where the temperature remains constant (α = 1) then it is called the
Metropolis algorithm.

2.3.2.3 Tabu Search

Hill descent and simulated annealing are both memoryless. That is, the neighbour-
hood construction and acceptance criteria do not make use of the information gained
from evaluating previous solutions. It is possible to return to the same solution
several times. Tabu search [114] keeps a history either of previous solutions or infor-
mation about those solutions. It uses this information to prevent the search returning
to solutions or classes of solutions it has previously visited. The history is normally
of limited size so that after some time the search can return to a previously investi-
gated area of the solution space. A search can be prevented from revisiting solutions
because it has recently been there or because solutions with a particular character-
istic have already been evaluated a certain number of times [114]. The design of the
history structure and acceptance criteria will depend on the problem.

Since it is a local search method, Tabu search also requires a neighbourhood to
be designed. It is often applied to problems where the entire neighbourhood can be
enumerated. The neighbour is then chosen by steepest descent, except that moves
which are considered taboo; those excluded by the history; are omitted from the
neighbourhood. Tabu search of this form, with a number of extensions, has been ex-
tremely successful in solving job shop scheduling problems [115]. Job shop scheduling
is not within the scope of this thesis but, being an allocation and scheduling problem,
has a number of aspects in common with real-time task allocation.

2.3.2.4 Use Of Local Search For Task Allocation

Tindell et al. [4] apply simulated annealing to a real-time task allocation problem.
The system model uses fixed priority scheduling with event triggered messages (sent
upon task completion) and time triggered tasks. Priority assignment is decided
by DMPO so the problem is reduced to an allocation only problem. The model
also includes memory constraints, task replicas which must be separated, and other
allocation constraints. The objective function is a weighted sum of functions which
penalise each type of missed constraint as well as a function which increases the cost
for solutions with more network bus usage. The algorithm was successfully applied
to a problem with 42 tasks. It was also demonstrated that a balanced processor
utilisation could be achieved by modifying the cost function.

Tindell et al. state, “Simulated annealing is not a heuristic algorithm — it is
sufficient to state what makes a good solution not how to get one”. This is also
the view given in the original simulated annealing paper by Kirkpatrick et al. [111].
However, there is evidence which disputes this claim for practical applications of
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simulated annealing. The design of the cost function and neighbourhood generally
require problem specific heuristic information in order to get good performance.
Indeed, Tindell et al. themselves include a heuristic for reducing network usage within
their cost function. Their aim is to differentiate between feasible solutions in order to
produce a higher quality solution but omit to mention that this element of the cost
function may in fact force the algorithm to find feasible solutions more efficiently
in the first place. A similar point is made by Dowsland [102] commenting on cost
function design for graph coloring algorithms. She says that authors have found cost
functions, whose minimisation does not necessarily lead to a global optimum, but
give guidance to the search greatly enhance performance for practical applications.

Cheng and Agrawala [53] apply simulated annealing to a task allocation problem
with static cyclic scheduling. Their model allows jitter limitations to be specified
for tasks and for the task graph to contain circular dependencies. The simulated
annealing algorithm uses different neighbourhoods at different stages of the search
depending on properties of the solution. For example, if the processor utilisation
is very unbalanced, the neighbourhood is constructed to only contain moves which
improve load balancing. Therefore heuristic information is being encoded into the
neighbourhood structure rather than the cost function. The scheduling order of tasks
on a processor is a deterministic algorithm based on the latest possible start time
of a task calculated from its relative deadline and jitter properties. The simulated
annealing algorithm is therefore solving an allocation only problem. The method
was applied to an avionics platform with 155 tasks and 951 messages. The total task
utilisation was 5.14. A valid allocation was found for a hardware platform with 6
processors, the minimum number possible, connected with a single network bus.

Attiya and Hamam [54] use simulated annealing to solve a non real-time task
allocation problem with a reliability objective. The cost function measure reliability
by combining the time tasks are executing on a particular processor with an assumed
known failure rate of that processor.

2.3.3 Genetic Algorithms

Local search algorithms trace a path through the solution space by making small
modifications to a single solution. In comparison, population based solutions move
from one set of solutions to another. A genetic algorithm is one of the most pop-
ular forms of population based metaheuristics. Inspired by the theory of evolution,
Holland [116] developed an algorithm which would improve the fitness of a set of so-
lutions by mirroring the natural processes of mating, selection (survival of the fittest)
and mutation.

A set of solutions, known as individuals, are created, usually at random. This
set is the initial population. The following steps are then repeatedly applied to the
population [102]:
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1. select fittest individuals according to a fitness function and selection mechanism
2. combine fittest individuals with other individuals to create a new generation

using a crossover mechanism
3. mutate random selection of new generation
4. replace some or all of existing population with new generation depending on

number of children produced by step 2.

The above steps illustrate that genetic algorithms require genetic operators to be
defined for selection, crossover, mutation and replacement. These all provide ways of
using problem specific information within the metaheuristic. It also means that there
are several feasible implementations of a genetic algorithm for a particular problem
and knowing which one to choose can be difficult.

Crossover functions use part of the solution from both parents in order to create
one or more children. It is possible that the resulting children will not be valid
solutions in the sense that they fall outside of a constrained solution space which the
fitness function can evaluate. There are different ways of handling this [117]. The
fitness function can be adapted to recognise every possible child which can result from
crossover and apply an appropriate penalty for an invalid solution. The alternative
is to enforce crossover to produce only valid solutions. Whilst it may seem preferable
to avoid evaluating several invalid solutions, the former is often preferred as the
crossover function is usually much less computationally intensive.

Selection strategies are usually probabilistic with probabilities related to fitness
values. Fonseca and Fleming [118] point out that the value of the fitness function for
an individual does not equate to its fitness. Instead, its fitness is the ability of the
individual to survive and reproduce. Blickle and Thiele [119] provide a comprehensive
survey of selection strategies.

Mutations are small random changes made to the solution similar to those that
would be made to generate neighbours in a local search algorithm.

There are many further variants of genetic algorithms. Elitism ensures that
the fittest individuals are not replaced by weaker individuals from the next genera-
tion [110]. Genetic algorithms are a subset of evolutionary algorithms. Evolutionary
strategies [120] are another type of evolutionary algorithm. Some forms of evolution-
ary strategy allow children to be produced by a single parent without using crossover
relying on selection and mutation alone.

As well as the design of genetic operators, the behaviour of genetic algorithms is
affected by several parameters such as population size and mutation rate [102].

2.3.3.1 Use Of Genetic Algorithms For Task Allocation

Bicking et al. [52] use a genetic algorithm to solve a non real-time task allocation
problem with an emphasis on dependability. They use a weighted sum cost function
including metrics for availability and reliability. Reliability block diagrams are used
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to describe functional dependencies so individual component availabilities can be
combined into an overall system measure.

Costs for different aspects of the design problem are combined using a hierarchy
of weightings to achieve an overall cost. Components for reliability and availability
are combined into a cost value for dependability whilst a weighted sum of memory,
throughput and communications costs give another cost value. These two values are
then combined with another weighting to obtain the final result.

Yin et al. [55] solve a problem with the same objectives as Bicking et al. They
use a particle swarm optimisation technique, not detailed here, and a weighted sum
objective function.

Axelsson [121] evaluated simulated annealing, tabu search and a genetic algorithm
on an architecture synthesis problem. The target is real-time systems with fixed
priority scheduling though the scheduling semantics are not described in detail. The
algorithm is not only concerned with task allocation but also choice of components.
This includes the number and type of processing units with a choice between ASICs
(Application Specific Integrated Circuits) and regular general purpose processors.
Axelsson’s cost function includes timing constraint penalties and also a minimal
required processor speedup heuristic to guide the search. This latter cost calculates
the minimum increase in processor speed required in order to reduce execution times
sufficiently to make the tasks on it schedulable.

Axelsson concludes that the local search methods outperform the genetic al-
gorithm with tabu search being the best overall method. However, it is hard to
extrapolate from algorithm comparisons such as these. No only do task allocation
problem formulations vary widely but there are many design choices to be made in
the implementation of metaheuristic which can drastically change their behaviour.

Nicholson [122] also studied task allocation within a broader architecture syn-
thesis problem for hard real-time systems. He decided upon the use of simulated
annealing from the choice of simulated annealing, tabu search and genetic algo-
rithms. However, this was based on reasoned argument rather than any empirical
investigation.

2.3.4 Optimisation Via Alternative Formulations

There are a range of off the shelf tools for certain formulations of constraint satisfac-
tion and optimisation problems. The algorithms used by these tools are beyond the
scope of this thesis and in some cases may be proprietary. A number of recent task
allocation research papers [56, 81, 123] have suggested reformulating task allocation
problems so that they can be solved by off the shelf tools.

Metzner et al. [56] formulate task allocation as a satisfiability problem. The
scheduling policy is fixed priority with time triggered tasks and messages and asyn-
chronous communications. Zheng et al. [81] use a very similar model but transform
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the problem into a mixed integer linear programming (MILP) problem. Their work
also includes the packing of signals sent between tasks into messages rather than
assuming one message per communication.

Hladik et al. [123] use constraint programming tools to solve task allocation
problems. They identify the problem of converting schedulability tests into the ap-
propriate format. They develop two separate algorithms. The first converts the
schedulability test into the appropriate format but with increased in pessimism. The
second algorithm uses an external schedulability test which feeds information back
to the constraint solver which is able to make deductions based on the result.

Bannister and Trivedi [124] formulated task allocation, with task replicas for
fault-tolerance, as a constrained linear programming optimisation problem. The
scheduling policy is either pre-emptive fixed priority scheduling or EDF dynamic
priority scheduling. The mathematical formulation relies upon a simple utilisation
based scheduling test for each processor. This is effective for the EDF case since,
by equation (2.7), any task set with a total utilisation less than or equal to 1 is
schedulable. The limit used for pre-emptive fixed priority scheduling is log 2 since
this is the limit of equation (2.1) as the number of tasks tends to infinity. This is
obviously pessimistic for small task sets. Since the condition in equation (2.1) is
a sufficient but not necessary test, any utilisation based test for pre-emptive fixed
priority scheduling will often be pessimistic. The system model does not include task
dependencies.

2.3.5 Multi-Objective Optimisation

Local search and genetic algorithms decide quality of solution based on a single value
returned from a cost or fitness function. If there are multiple competing objectives,
then metrics for those objectives are combined together, usually using a weighted
sum approach [125].

A multi-objective algorithm does not combine metrics for each objective into a
single value but uses the concept of pareto-dominance to decide whether one solution
is better than another [126]. If a solution is better in at least one objective and better
than or equal to another solution for all other objectives then it is said to dominate
that solution. If it is better in some objectives but worse in others then neither
solution is dominant. Rather than seek a single best solution, a multi-objective
algorithm builds up a set of non-dominated solutions and it is up to the engineer to
select a final solution from that set. The pareto front is the set of solutions which are
not dominated by any others in the solution space. For a multi-objective algorithm,
the global optimum solution is the pareto front or a subset of it.

The first recognised multi-objective metaheuristic search algorithm was VEGA
(VEctor Evaluated Genetic Algorithm) by Schaffer [127]. More recent algorithms
are NSGA, NSGA-II, SPEA and SPEA2 [126]. The algorithms differ in how scores
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are assigned to solutions based on pareto dominance. Multi-objective algorithms also
distinguish themselves on how they ensure that the returned set of solutions is evenly
spread across the pareto front rather than emphasising one objective in particular.

The multi-objective algorithms listed above are examples of population based
Multi-Objective Evolutionary Algorithms (MOEAs). This is the largest class of
multi-objective algorithms. An exception is the Pareto Archive Evolutionary Strat-
egy (PAES) [128] which is an evolutionary strategy which, in its simplest form, uses
a population with a single individual, effectively making it a local search strategy.

The weighted sum approach can also be used to generate a non-dominated set
of solutions. To achieve this, the algorithm must be run several times with different
weightings. A downside to this approach is that it is not able to find all possible
points on the pareto front if it is non-convex [125].

2.3.5.1 Use Of Multi-Objective Optimisation For System Design

Dick and Jha [129] use a purposefully designed multi-objective genetic algorithm for
embedded systems synthesis. The hardware platform, task allocation and schedule
are all chosen by the algorithm. The objectives are price and power usage. Scheduling
is done by constructing static cyclic schedules.

Hamann et al. [130] use the SPEA2 algorithm to optimise multiple robustness cri-
teria by varying task priority assignments though not actual task allocations. These
robustness metrics use sensitivity analysis to find the limits of task WCETs in the
system with the maximisation of the largest feasible WCET of each task being a
separate objective. They state other objectives could be minimising CPU clock rates
or maximising input data rates.

2.3.6 Discussion Of Techniques For Solving Task Allocation Problems

Making performance comparisons between task allocation solvers is a futile exercise
because there is no standard set of benchmark problems and no standard definition
of the system model, schedulability test and other problem constraints which define
a particular type of task allocation problem.

Of the methods covered, only simulated annealing, problem specific heuristics and
the method of reformulating the problem to a standardised form have been applied
to hard real-time task allocation problems.

Designing a tailor made heuristic for a problem intuitively seems most likely to
achieve best performance but this comes at the price of a reduction in flexibility.
The more problem specific information which is used (e.g. Ramamritham assumes a
homogeneous platform to design a heuristic), the better performance is likely to be
but the smaller the class of problem to which the algorithm can be applied.

A similar argument can be made regarding algorithms which reformulate the
problem into a standard form such as a satisfiability or MILP problem. The examples
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of work in this area [56, 81] assume a system model and schedulability test which
is possible to put in the correct form. Changing the schedulability test requires
significant work and it is not clear whether it is even feasible for a more complex
platform that, for example, uses a hybrid scheduling policy.

Simulated annealing has been applied with some success to hard real-time task
allocation [4, 53, 122]. It is also used as the basis of comparison for other algo-
rithms [56, 123] as it is simple to implement. In common with other metaheuristic
searches, it is easy to include any type of schedulability test as it can be directly
implemented with no reformulation. There is plenty of scope to include problem
specific information in a simulated annealing algorithm via cost function penalties
and the neighbourhood structure. The problem specific heuristic approaches provide
suggestions for heuristics such as load balancing and grouping of dependent tasks. If
these heuristics are included in the cost function they need to be weighted correctly
relative to the main constraint satisfaction measure.

Genetic algorithms are harder to implement and configure, mainly due to the
large number of possible choices in the design of genetic operators. Bicking’s work
with genetic algorithms is notable for including dependability as an objective and
using a hierarchical objective function which helps manage the problem of weighting
configuration.

There is a reasonable amount of work relating task allocation with dependability
and related qualities [52, 55]. Other work is less explicit but recognises that task
replicas may exist within the system and need to be allocated to separate proces-
sors [4, 3]. Work in this regard is related to the property of adaptability since it is
giving the system the ability to adapt to faults and continue to function.

No work has been found which explicitly considers design time flexibility as a key
objective of task allocation. The research which comes closest is that by Hamann
et al. [130] who use sensitivity analysis as a robustness metric but only allow task
priorities to vary.

2.4 Software Architectures

2.4.1 Why Study Architectures?

Software engineering is the development of software to meet cost and quality con-
straints. In a piece of work which was fundamental in establishing software archi-
tectures as an artefact of software engineering, Perry and Wolf give the following
benefits of software architectures.

“Some of the benefits we expect to gain from the emergence of software
architecture as a major discipline are:

1. architecture as the framework for satisfying requirements
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2. architecture as the technical basis for design and the managerial basis
for cost estimation and process management

3. architecture as an effective basis for reuse
4. architecture as the basis for dependency and consistency analysis”

– Perry and Wolf [131]

Understanding the flexibility of software necessitates a good understanding of the
dependencies involved in the system and how changes to certain modules will ripple
through the system [132]. Ideally as many modules as possible should be reused with
no changes. When new features are required, the changes should be minimal and
cost efficient. It is a widely held belief [133, 134, 25] that the software architecture
is a suitable level of design at which to measure quality. Clements states

“architecture can either allow or preclude the achievement of most of a
system’s targeted quality attributes”

– Paul Clements [135]

In an idealised top-down software development model [13], the architecture is
the first step in translating requirements into an implementation [135, 136]. In the
context of change, a modification to an architectural level component will potentially
affect many lower level sub-components. Choices made at an architectural level are
far reaching and poor decisions can be costly [137].

2.4.2 Architecture Definitions

There is no agreed single definition for a software architecture. What constitutes
the architecture may vary from system to system or change to coincide with a par-
ticular development model. That is, the stage of development which is considered
architecture and the stage which is considered lower level design is not always clearly
separated.

The earliest, widely accepted definition of architectural level elements was given
by Perry and Wolf [131]. They state “we use the term ‘architecture’, in contrast
to ‘design’, to evoke notions of codification, of abstraction, of standards, of formal
training (of software architects), and of style”. Their definition of an architecture is

Software Architecture = {Elements,Form,Rationale}

Elements are said to be one of processing elements, data elements or connecting ele-
ments. The form of an architecture is the way in which the components fit together.
For example, the topology of a network. Perry and Wolf also define form as includ-
ing properties to constrain the choice of elements such as whether an architecture is
permitted to contain layers, pipes, etc. Finally, the rationale describes the reasoning
behind choices made. The rationale behind design choices may link to requirements
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for certain non-functional properties which will constrain the choice of architectural
elements and form.

Newer definitions have given emphasis to different subtleties of software archi-
tecture but none have deviated far from Perry and Wolf. Bass et al. [136] define an
architecture as follows.

“The software architecture of a program or computing system is the struc-
ture or structures of the system, which comprise software elements, the ex-
ternally visible properties of those elements, and the relationships among
them.”

– Bass, Clements, Kazman [136]

This definition places more emphasis on element interfaces. The interface of an
element separates what is internal, and must be considered at a later design stage,
to what is visible to other architectural elements.

Soni, Nord and Hofmeister clearly and concisely sum up an architecture in the
following way.

“Software architectures describe how a system is decomposed into compo-
nents, how these components are interconnected, and how they communi-
cate and interact with each other.”

– Soni, Nord, Hofmeister [134]

This definition makes no mention of “high level” design and can be applied to several
levels of system design as long as a suitable abstraction can be made to define the
components. However, it is important not to omit the rationale behind the choices
made so that the architecture remains a means by which to communicate information
between stakeholders.

2.4.3 Architecture Modeling And Analysis

To quantitatively assess an architecture prior to system development, it is necessary
to create a suitable model of the architecture. A significant proportion of work on
architecture analysis has a background in real-time systems. One of the reasons
for this, as noted in Barbacci et al.’s taxonomy of quality attributes [33] is that
schedulability tests provide a good basis for quantitative analysis.

2.4.3.1 Model Views

Kruchten [138] considers four possible views from which to model and analyse an
architecture: logical, process, physical and development.

The logical view is intended to bring out functional requirements. It has to
consider what the data items are and how they are acted upon. It is often the first
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view to be considered in meeting a set of requirements as it answers, “What does
the system need to do and what does it need to do it to?”.

The process view considers how the functionality should be divided into concur-
rent tasks and which tasks need to communicate with each other. The view helps to
answer, “How will the system interact with its external environment and its users?”.
For example, it may help to see the effects of multiple users simultaneously trying to
access a shared resource. This view will be important in assessing timing properties
and concurrency issues.

For a full understanding of the process view, it must be considered alongside
the physical view. This view describes the underlying hardware architecture. Tasks
which are shown as needing to communicate in the process view may be running on
the same processor or on two separate nodes of a network. This will obviously have
an impact on communication time. While the process view can describe how tasks
interact, the actual system behaviour will be dependent upon the physical view and
how the process view is mapped onto it.

Finally, the development view answers, “How will the system be built?”. It shows
how the architecture is divided up into programming modules, what interfaces are
required and dependencies such as library and compilation dependencies.

Kruchten ties these four views together with the use of scenarios. If the impact
of a scenario can be assessed for each view of the architecture model, it should give
a firm idea of the impact of the scenario on the system.

2.4.3.2 Quality Attributes

Before any notion of software architecture was formalised, Boehm et al. [24] discussed
quality attributes in terms of program code. This work analyses some of the qualities
in terms how easily they can be measured autonomously from the code. In particular,
it is pointed out that metrics which take hours of manual inspection are unlikely to
be used. It is also argued that it is impossible to combine the quality of a system
into a single value since it is likely that systems with similar quality values would
have vastly different properties [24].

Nearly two decades after Boehm et al.’s work, Barbacci et al. [33] give a taxonomy
of quality attributes with more emphasis at the architectural level. They have the
same aspirations as Boehm with regards to quality; “The ultimate goal is the ability
to quantitatively evaluate and trade-off multiple software quality attributes to arrive
at a better overall system”.

Despite Boehm’s warning that quality cannot be expressed as a single value,
Daniels et al. [139] look at a number of systematic and methodical ways of doing
this. There are three aspects to consider in constructing an overall quality metric.
Stakeholders find it difficult to consider more than seven quality metrics at one
time [139]. Therefore, the first aspect to creating a quality value is to break down
qualities into a hierarchy [140]. This allows higher level decisions, such as choosing
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whether performance or dependability is most important, to be made before deciding
how to trade-off individual performance characteristics.

The second aspect to creating a quality value is to decide on the shape of the
quality metric functions. For example, does the perceived quality benefit increase
linearly with the metric.

The final aspect is the method of combining individual scoring functions. Weighted
linear combination is commonly found in literature but a number of alternatives do
exist [139].

2.4.3.3 Scenario Based Analysis

A scenario describes a possible change that might occur to the system in the future.
There are a variety of analysis techniques based on applying scenarios to architecture
models and evaluating the effects of those scenarios with quality metrics provided by
the model.

In 1994, Kazman et al. [25] introduced the Scenario Based Architecture Analysis
Method (SAAM) where the method is described mainly by way of example. This
paper presents some classes for modifiability which are relevant to understanding
flexibility.

• “Extension of capabilities
• Deletion of unwanted capabilities
• Adaption to new operating environment
• Restructuring”

– Kazman et al. [25]

A later paper by Kazman et al. [141] adds more detail to SAAM. A scenario is
described as a “brief narrative of expected or anticipated use of a system from both
development and end-user viewpoints.”. By applying scenarios to an architecture
model, it is possible to count how many components each scenario affects and how
many scenarios apply to each component. This can be aligned to coupling and
cohesion. If a scenario affects many components, then there is high coupling between
components. If many scenarios affect a component then there is low cohesion.

SAAM is principally a method for assessing modifiability. It is stated that asking,
“How modifiable is this architecture?” is of little use but instead the question that
should be asked is “How will this architecture accommodate a change of the following
class?”. Work by Lassing et al. [132] shows that even this question is too broad. A
system may react differently to two changes from the same class depending on the
complexity of the components involved. Therefore, scenarios which are too broad
are of less use, while precise future changes are harder to predict:

“Our ability to design for change depends on our ability to predict the
future. We can do so only approximately and imperfectly.”
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– David Parnas [1]

The benefits of SAAM are said to be largely social [141]. It requires an architect
to be able to apply the scenarios to the model and understand their effect. This
style of analysis is in conflict with Boehm et al.’s point (from section 2.4.3.2) that
quality metrics which require lengthy manual inspection are not likely to be useful.
It also leaves the question of the relevance of methods like SAAM to automated
architecture improvement. There is nothing explicit in the method, however, that
states architecture analysis should be manual. In particular, the relationships be-
tween scenarios, the components they effect and the system’s modifiability is valid
outside of the SAAM process.

2.4.3.4 Tradeoff Techniques

The quality of an architecture is often predicted based on previous architectures built
in a similar style [35]. To assess new styles of architecture, Kazman et al. propose the
Attribute-Based Architecture Style (ABAS) [35]. An ABAS has four parts: problem
description, stimuli/responses, architectural style and analysis. The ABAS associates
a section of the requirements with a part of the architecture and provides a way to
analyse that part of the architecture. In a sense it defined an architecture view in
terms of the quality attributes it makes accessible.

By using ABASs, the Architecture Tradeoff Analysis Method (ATAM) expands on
the SAAM to include qualities other than modifiability and make trade-offs between
them. It is acknowledged that metrics will not be exact but are expected to identify
trends [142] which allow trade-offs to be calculated.

Like the SAAM, mapping a scenario to the architecture requires an architect
familiar with the design and is done in an ad-hoc manner. Scenarios are separated
into abstract and specific scenarios [143]. An abstract scenario can be applied to
many systems. For example, “response times for users must be bounded”. An
instantiation of that scenario for a particular system would describe the maximum
number of users, the required response time and possibly map this onto a response
for a particular architectural component.

A survey by Dobrica and Niemelä [144] on architecture assessment methods in-
cludes the SAAM and ATAM as well as some extensions to these methods and other
alternatives. The conclusion drawn is that the ATAM is the dominant technique
and fulfills most criteria for an analysis method. It is also noted that modifiability /
flexibility is the primary aim for many methods.

2.4.4 Task Allocation As An Architecture Selection Problem

To put task allocation in a software architecture context, it is best to return to the
concept of architectural views previously discussed in section 2.4.3. A software task
graph, shown in figure 2.5a, falls clearly into the process view showing interactions
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Figure 2.5: Process and deployment architecture views

between separate threads of execution. The deployment or physical view, shown in
figure 2.5b, shows both the hardware platform and the mapping of task and messages
on to the hardware. The physical view includes information about component types
such as specialist graphics hardware. This assumes a static task allocation chosen at
design time as opposed to runtime allocation as in the case of global EDF scheduling.

Scenarios are used to tie views together, evaluate architecture qualities and per-
form trade-offs. Change scenarios for a task allocation problem would be additions
of tasks, changes to task attributes such as periods or a hardware platform upgrade.

Scenario based analysis and trade-off methods need set of qualities of interest and
metrics to measure them with. The two leading quality metrics used in previous task
allocation work are timing, an essential part of the problem, and dependability [52,
55]. Flexibility can be measured directly with sensitivity analysis [130]. The indirect
method used in the SAAM of counting how many components are affected by a
scenario is also applicable. In the context of task allocation, this could be interpreted
as counting processors with an unchanged schedule or tasks whose allocation does
not need to change when the scenario is applied.

2.4.5 Automating Architecture Optimisation

This section reviews previous work which has used automated optimisation as a
means to selecting an architecture and improving architecture qualities.

Architecture development requires selection of components, connection topologies
and component attributes. Automated tools do not develop a complete architecture
from scratch but usually concentrate on a smaller selection problem for chosen quality
constraints and objectives. With reference to section 2.4.2 the rationale behind an
architecture is also part of its definition. The reasoning behind the choices made by
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a tool should be well understood just as they would be for manual design processes.
This is essential for easy maintenance of the system.

2.4.5.1 Bayesian Belief Networks

The subject of Bayesian statistics and decision theory are closely intertwined. The
theory behind Bayesian networks is that of conditional probability. According to
Jensen [145] a conditional probability statement is one which takes the pattern:
“Given the event B, the probability of the event A is x”. By gathering data from
previous experience and simulation, researchers hypothesize that similar statements
can be made relating to decisions made about architecture development. For exam-
ple, “If we choose a network of type T, the probability that fewer than 5% of packets
are lost or corrupted is p”.

A Bayesian network allows several such statements to be combined into a knowl-
edge base so that probabilities of system quality constraints being met can be calcu-
lated. For example the previous conditional probability statement along with several
others could be used to calculate a probability for the system having acceptable re-
liability. Jensen [145] gives further information on how these probabilities can be
efficiently calculated. Figure 2.6 shows a section of a hypothetical Bayesian network
taken from van Gurp and Bosch [146]. This structure of this network indicates that
the quality of configurability is dependent upon the qualities of understandability
and component coupling. The probability values show that systems with loosely
coupled, well understood components are easier to configure than those which are
either poorly understood or have static coupling. If (unconditional) probabilities
were assigned to the system for its understandability and type of coupling, then the
probability of the configurability being good could be calculated.

Constructing a Bayesian network and assigning conditional probability values
to nodes is not something that can be calculated precisely. Both the structure of
the network and the probability values will be estimates based on experience and
collected data. For this reason van Gurp and Bosch recommend the Bayesian network
approach to architecture optimisation as qualitative rather than quantitative. They
specifically say that it would be useful in an iterative architecture trade-off method
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like ATAM [146]. Scenario based analysis requires a model of the architecture to exist
in order to detect effects of scenarios. A Bayesian network model of architecture
qualities is complementary to this since it can be built prior to and during the
architecture model construction process.

Parakhine et al. [147] also use a Bayesian network as a tool to trade-off architec-
ture qualities. They use simulation as a means to setting probability values within
the network. Figure 2.7 is taken from Parakhine et al. [147] and shows the proba-
bility of the system being usable to be conditional on reliability and performance.
Agent based modelling is used to decide whether a system with different reliability
and performance characteristics is considered usable or not.

2.4.5.2 Heuristic Search

Thompson et al. [148] construct a multi-objective real-time architecture design prob-
lem. The parameters which are adjustable by the algorithm are the choice of compo-
nents, number of components and bus topology. The algorithm can choose between
smart sensors which are all-in-one modules which can connect straight to the bus
and dumb sensors whose output requires processing by a so called smart module.
The choice affects system cost, weight (mainly due to wiring required), development
risk and maintainability. A MOEA was able to find a number of interesting solutions
which could the be further analysed by an engineer.

The work of Axelsson [121] and Nicholson [122], which were both previously dis-
cussed in section 2.3 in the context task allocation algorithms, looked more broadly
at the topic of architecture synthesis. Both favour single objective local search meth-
ods. Axelsson’s objective is to minimise financial cost and Nicholson combines both
cost and reliability.

2.5 Summary

This chapter has surveyed work on analysis of real-time systems, task allocation and
software architecture development. The key findings of this survey which are relevant
to the remaining chapters are described below.

Section 2.2 included the sporadic task model and fixed priority and static cyclic
scheduling policies. Both of these policies are used in hard real-time systems. The
distributed event driven scheduling model produces difficult design problems since
changing the scheduling attributes can have far reaching consequences. A task allo-
cation problem centred on this policy is one of the most challenging and is chosen
for the majority of work in this thesis. However, it is clear that a task allocation
algorithm needs to be flexible to changes in scheduling policy which could be made
throughout the lifetime of a system.

Real-time systems adapt to environmental changes and the requests of users
with mode changes. Mode changes are also part of a larger set of fault tolerance
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mechanisms which use redundancy to enable graceful degradation.
Section 2.3 reviewed existing approaches to solving task allocation problems.

Comparing performance is difficult due to differences in problem formulation. Use
of problem specific heuristics and certain reformulations of the problem appear to
provide good performance but with a reduction in flexibility. Local search methods
such as simulated annealing are more flexible and are widely used.

Fault tolerance related metrics are common in work on task allocation. However
the aim is always to produce a single fault tolerant design. There does not appear to
be any work which produces a series of task allocation solution which allows a system
to gracefully degrade as the number of faults increases. Bicking et al. [52] recognise
the need to measure system functionality so that the impact of a processor fault on
the overall system can be understood. No work has looked at solving task allocation
problems for multi-moded systems whether modes are used for fault tolerance for
just for increasing functionality.

No task allocation work has included an explicit measure of the flexibility of the
design with respect to future changes. An unavoidable problem with attempting to
do this is correctly predicting future changes. Section 2.4 explored the way this has
been traditionally done in the field of software architecture design with the use of of
scenarios and quality attributes.

Tools have been developed to support scenario based architecture analysis. In
particular, the work of van Gurp and Bosch [146] and Parakhine et al. [147] uses
Bayesian Belief Networks to model the system’s qualities and understand the effect
of scenarios. An interesting suggestion would be use a Bayesian model as a quality
metric within the objective function of a search algorithm. However, the current
models are not aimed at producing quantitative quality measures simply classing
systems as “good” or “bad”. These models are also aimed at a considerably broader
problem than real-time task allocation. This thesis remains focussed on the more
restricted problem of flexibility in the context of task allocation as opposed to flexible
architectures in general. Constructing a tool which could automatically solve the
latter problem seems overly ambitious at this stage.

It is hoped that the following areas, though currently unexplored, will be a prof-
itable direction in which to build on existing task allocation work, specifically with
the aim of producing systems with good flexibility and adaptability:

• support for mode changes
• support for the use of scenarios to decide between solutions
• support for producing gracefully degrading systems

In order to ensure that the method itself is flexible, it should be able to support
different real-time platforms and scheduling policies. Meta-heuristic search is the
most applicable optimisation technique for meeting this requirement.



3
Requirements And Hypothesis

It is proposed that existing work on task allocation can be extended to support a
range of changeability requirements. Section 1.4.2 stated that good task allocation
solutions:

1. re-use parts of allocations and schedules from previous development iterations;
2. are flexible — they have the ability to withstand requirements changes without

severe disruption to the design;
3. are adaptable — they require few changes to the allocation and schedule when

a system reconfigures itself;
4. aid system robustness in the presence of faults by suitable arrangement of

redundant tasks.

This chapter lists the requirements for a task allocation tool to provide these
benefits. This motivates a hypothesis on the ability of chosen techniques to meet the
requirements. These chosen techniques are motivated by the review of existing work
in the previous chapter.

3.1 Requirements

A problem specification is defined as the section of the system requirements which
contains input data for a task allocation problem. A configuration is a mapping of
tasks and messages to a hardware platform which is a solution to a particular problem
specification. The precise contents of problem specifications and configurations are
provided in chapter 4.

3.1.1 Reuse Of Existing Solutions (Req. 1)

Assume a configuration, C1, satisfies all constraints for a problem specification, S1,
which was refined from a past set of requirements. C1 is called the baseline config-
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uration. A new solution is now needed for a problem, S2 which is defined by an
evolution of those requirements. To reuse C1, the following optimisation problem
must be solved.

Find a new configuration C2

which minimises the difference between C2 and C1

such that C2 meets all constraints defined by problem S2.

A metric to measure the difference between two configurations must be devised.
This must take into account changes in allocations of tasks to processors and also the
schedule within a processor. If allocation changes are necessary, then some may have
a smaller impact others. The difference metric should also include this information.

3.1.1.1 Rationale For Requirement 1

Reuse of a section of a system design has benefits for perfective maintenance. Even
though an automated optimisation method can make it easy to generate a new con-
figuration which meets all constraints for a new specification, there are still reasons
for this new configuration to be similar to the old one. Firstly, timing issues often
emerge during integration. If the previous system worked well, then the fewer tasks
whose timing properties change, the less chance there is of unexpected consequences.
Secondly, engineers become familiar with and possess knowledge about a particu-
lar design. In section 1.1, it was described how understandability is a key part of
maintainability. Decisions may have been made either consciously or subconsciously
which depend on a particular configuration. The more a design changes, the more
knowledge which must be relearnt and the greater the chance of mistakes being made
due to unfamiliarity.

The rationale for different allocation changes having a different impact is as fol-
lows. Processing units are often grouped together. A good example is a set of LRMs
within the same cabinet in an IMA architecture. Moving a task between modules
within the same cabinet is not as big a change to the design as moving a task to a
different cabinet located elsewhere in the aircraft. This latter case has larger poten-
tial for ripple effects to cause undesired functional changes as well as an increase in
recertification costs.

3.1.2 Implementation Of Systems With Multiple Configurations (Req. 2)

Some system requirements contain multiple related task allocation problem specifica-
tions for which a set of similar configurations must be found. This can be expressed
as the following optimisation problem:

Given a set of specifications, {S1, . . . ,Sn},
find a set of configurations, {C1, . . . , Cn},
which minimises the differences between each pair of configurations
such that each Ci meets the constraints of problem Si
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Some problems may require certain pairings of configurations to be emphasised over
others when minimising differences.

3.1.2.1 Rationale For Requirement 2

There are two situations when solving the problem above aids system design. The
first is for systems which have product line variations. Each specification contains a
common set of tasks providing basic functionality but vary in additional features. A
set of similar configurations will be easier to maintain than several disparate ones.
Secondly, some systems use more than one mode of operation at run-time to perform
different functions and also to adapt to environmental changes. Some systems will
dynamically decide how to configure themselves. However, for hard real-time systems
where timing and safety guarantees are required the configuration for each mode is
chosen during the design process. Using similar configurations for each mode reduces
the overheads required to perform a reconfiguration as well as making the system
easier to maintain.

The key difference between this requirement and that in section 3.1.1 is that
here several problem specifications are presented to the engineer at the same time
and a group of configurations must be generated which solve them. In section 3.1.1,
problem specifications are given in a sequence and a configuration must be found for
each one in turn.

3.1.3 Consideration Of Future Changes (Req. 3)

When a configuration is generated, it should consider future requirements changes.
The method should acknowledge that information on how requirements will change
will be imperfect and that some parts of the problem specification will be more likely
to change than others.

The optimisation problem is the same as that given in section 3.1.2. In this
situation, the set of specifications will contain both current and future requirements.
The configurations generated for current requirements should then require a minimal
amount of changes to satisfy the specifications derived from future requirements.

3.1.3.1 Rationale For Requirement 3

The requirement in section 3.1.1 is about reusing as much of an existing design as
possible. This will be made easier if, at the time previous configuration was gener-
ated, allowances were made for the problem specification changes now taking place.
Although all future requirements cannot be predicted perfectly, some information
should be available based on preplanned phased development and requirements as-
sessment methods which give an indication of where to target flexibility [149].
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3.1.4 Robustness In The Presence Of Faults (Req. 4)

A hardware fault within a system causes a change in environment for the software
running on it. Use of task replicas, reconfiguration and graceful degradation of
functionality are all ways in which a system can tolerate a fault without catastrophic
failure. These methods raise further optimisation problems related to task allocation.

• Minimise the effect of a fault by varying the number of replicas of each task,
their allocation and schedule.
• Select subsets of tasks which maximise the level of service provided by a system

when insufficient resources are available to support all tasks.

These optimisation problems require the functionality of the system to be measured
and this must be balanced with other non-functional constraints.

3.1.4.1 Rationale For Requirement 4

In previous requirements, it was assumed that the task sets in each problem specifi-
cation were completely predefined and static. Relaxing this assumption significantly
increases the difficulty of the related optimisation problems but also allows more of
the development process to be automated. This requirement does not address the
general problem of assigning functionality to tasks but does allow the number of
replicas of each task to be varied in order to improve robustness of the system. The
first optimisation problem considers this issue in the context of a single fault. The
second optimisation generalises the problem to selecting a subset of tasks, including
replicas, for a given level of available resources. This is asking the design tool to gen-
erate alternative problem specifications for changing environments as well as finding
configurations which solve them.

Since the objective is to keep levels of functionality high, the functionality of a
particular configuration must be measured. There can be tension between the level
of functionality provided and non-functional requirements. When the number of
processors is reduced due to faults, it may be necessary to remove non-critical tasks
from the system so that remaining tasks can continue to meet their deadlines. The
aim is to remove a set of tasks so that the minimum amount of functionality is lost
and deadlines are still met.

3.1.5 Task Allocation With Multiple Objectives

It is eminently possible that all requirements set out above will be relevant to a
single system. This would be the case in following scenario. A system has multiple
modes of operation. This makes the requirement in section 3.1.2 relevant. Following
an enhancement request, as much of the existing design should be used as possible.
The requirement in section 3.1.1 is now appropriate with the key difference that the
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minimisation problem now involves sets of problem specifications and configurations
instead of individual ones. At the same time as using past design choices, the new
design should be flexible in case of more enhancements and therefore the requirement
of section 3.1.3 is applicable. Finally, since the target for these requirements are
hard real-time systems, it is likely that there will be fault tolerance requirements as
in section 3.1.4. When selecting the number of task replicas to use, and selecting
subsets to use as the system degenerates, it may be necessary to consider all modes
of operation, previous designs and possible future changes.

Combining these optimisation problems increases the size of the solution space
exponentially and introduces multiple objectives which may be in tension with each
other. This makes solving such a problem a formidable challenge. It is left as a
secondary requirement which will be revisited after each of the previous requirements
has been addressed individually.

3.1.6 Guiding Principles

This section contains some non-functional requirements which will guide choices
made in the design of the optimisation tool.

3.1.6.1 Performance

Performance in terms of speed and memory usage should be sufficient for the tool
to be of practical use within an industrial software engineering process. The tool
must also support research involving a large number of experiments. Improvements
in performance over and above these requirements is not a primary concern.

3.1.6.2 Solution Quality

Solution quality must be balanced with performance. Obtaining a globally optimal
solution (or solution set for a multi-objective problem) is not necessary. Indeed,
the optimality of a solution cannot be known unless the design space has been ex-
haustively searched or an efficient mathematical optimisation method exists for the
problem.

A solution’s flexibility will be measured by how many changes to a solution are
needed to support a change in the problem specification. This requires a suitable
metric to measure the difference between solutions for each axis of variation in the
task allocation problem, e.g. task assignment and task priorities.

There are no benchmarks available to compare solution quality with for the spe-
cific flexibility and adaptability issues which will be included within the optimisation
methods. The quality of solution should be shown to be significantly better, accord-
ing to statistical tests, than an alternative algorithm which does not consider these
issues.
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3.1.6.3 Repeatability

If the algorithm used to produce a solution is non-deterministic then there can be
variations in the quality of solution produced from one run to another. If quality
variance can be reduced by running the algorithm for longer or running it multiple
times then this may be done as long as performance requirements are still met.

3.1.6.4 Flexibility

Functional and quality requirements should be met for a wide range of problem
specifications with different characteristics. The tool should be evaluated against a
range of problems whose characteristics are relevant to current systems and those in
the foreseeable future.

3.2 Hypothesis

From the requirements listed above, it is evident that generating task configurations
with good flexibility and adaptability involves dealing with multiple problem specifi-
cations and the configurations which are solutions to them. This includes generating
configurations which are:

• similar to configurations from the past for reuse (Req. 1)
• similar to configurations from the present for product line variations and multi-

moded systems for maintainability and performance (Req. 2)
• similar to configurations which solve predicted problem specifications from the

future for design flexibility (Req. 3) and run-time fault tolerance (Req. 4)

3.2.1 Hypothesis Statements

The following statements form the hypothesis of this thesis:

1. A local search algorithm, extended in appropriate ways, is an efficient and ef-
fective method for producing feasible task configurations which are similar to
previous ones and for finding sets of similar configurations for multiple task al-
location problem specifications representing alternatives for present and future
system designs.

2. A configurable hierarchical cost function allows the method to be easily modi-
fied for problems with a wide range of characteristics.

3. Using scenarios which represent predictions of future problem specifications
within the search problem can produce more flexible configurations, even when
predictions are imperfect.
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3.3 Scope

These requirements and hypothesis are set in the context of a hardware architecture
model which contains a set of general purpose processors connected with bidirectional
networks. It is possible that not all processors will be interconnected. Communica-
tion between tasks is by message passing only. The methods chosen for satisfying
these requirements should allow processors and networks to be heterogeneous and
also not be dependent upon scheduling tasks and messages in any particular way.
With such general hardware and software models, experiments can only be conducted
on a limited set of examples. The restrictions put on the hardware and software
models for experimentation are given in chapter 4. However the algorithm design in
chapter 5 purposefully does not make optimisations dependent on these restrictions.

For the work on fault tolerance relating to requirement Req. 4, faults are limited
to permanent processor faults which have a known probability of occurring in a
chosen time frame. The fault model is expanded on in chapter 8.





4
Architecture Model And

Problem Generation

4.1 Introduction

The real-time system architecture design process consists of a sequence of decisions
which refine natural language requirements into a precise architecture with sufficient
detail to be implemented. Some decisions may need to be re-evaluated as require-
ments evolve throughout the lifetime of the system. To be in a position where some
decisions are taken by automated tools, a prototype architecture model must exist
which can be further configured via parameters which are amenable to automated
optimisation. Also, there must exist a way to quantitatively analyse the model to
assess any particular settings of those parameters.

The prototype architecture model contains sets of components and connections
whose attribute values are decided prior to automated optimisation. Figure 4.1 shows
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Set Component
Attributes

Select Components

Set Component
Attributes

Automated
Architecture
Optimisation
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Architecture
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Paramaterised Model

(Problem Specification)

Parameter Values

(Configuration)

Figure 4.1: Architecture development design iterations
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design iteration loops contained within the development of the architecture. The first
design loop is the selection of components and their attributes to create the prototype
architecture model. This includes design trade-offs such as, for example, selecting
the number of processors and processor speeds based on cost, energy consumption
and heat dissipation. Some attribute values such as task execution times are a
consequence of other design decisions and are measured or calculated rather than
chosen explicitly.

The prototype architecture model is then refined by an automated optimisation
tool. Depending on the nature of the problem, this can involve adding and remov-
ing components as well as altering their configurable attributes. If the automated
optimisation tool is not able to achieve an architecture with the qualities required
then changes must be made to the prototype architecture outside of the configurable
parameter domain of the automated optimisation tool.

Each design optimisation problem has four major elements:

Given an architecture model (i.e. a problem specification) S,
find a set of values for the configurable parameters (a configuration) C
which minimises a cost function f(C;S)
subject to a constraint function Λ(C;S) indicating that C is valid.

The task allocation problem fits into this pattern. This chapter describes a form for
the problem specification, configuration and constraint function which defines the
task allocation problem to be solved in this thesis. The cost function is dealt with
in chapter 5.

Given the choice of real-time architectures given in section 2.2, section 4.2 de-
scribes a set of components and attributes and schedulability tests which define a
task allocation problem. Section 4.3 explains possible variations in the configurable
parameters of the model which depend on the nature of the task allocation problem.
To gain a good understanding of a task allocation algorithm, it must be experimen-
tally evaluated on a range of problem instances with different characteristics. The
usefulness of conclusions drawn from experimental results is highly dependent upon
how test problems are generated. This is the subject of section 4.4.

4.2 Architecture Model And Problem Specification Definition

The structure of the architecture model for each task allocation problem is simple
yet easily extendible. The intention is for the task allocation algorithm to only
be dependent upon a small core model and easily adjustable for specific project or
domain features. Design and evaluation of the algorithm with respect to this aim is
the main subject of chapter 5. The model components are processor, networks, tasks
and messages.
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(a) Completely interconnected processors
with redundant network

(b) Two processor clusters

(c) Two clusters connected via a single
processor

Figure 4.2: Example network topologies

4.2.1 Hardware Components

Networks are connected to processors to form a communications topology. Each
network is assumed to allow bidirectional communication between tasks allocated to
any of the processors the network is connected to. Three example topologies for 6
processors and 2 networks are shown in figures 4.2a, 4.2b and 4.2c.

Figure 4.2a shows a set of completely interconnected processors. Networks N1

and N2 are both connected to every processor. Network N2 may act as a backup
for N1 to improve fault tolerance or, in another case, a high volume of messages
may need to be spread between the two networks. Decisions on how to use available
resources are part of the task allocation problem.

Figure 4.2b is an example of two separate clusters of processors for different
subsystems. In terms of the task allocation problems, these types of topologies
present the challenge of ensuring all tasks which need to communicate are allocated
within the same cluster.

Figure 4.2c shows two clusters with processor P2 being a member of both. In this
situation tasks on processor P2 can send messages to tasks on any other processor.
However, tasks on processors P1 and P3 cannot send messages to tasks on P4, P5 and
P6 or vice-versa. Automatic relaying of messages via processor P2 is assumed not to
be possible. This would add a routing element to the task allocation problem which
is not considered in this thesis. For two tasks on separate processors to be able to
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Object Attributes

Processor Id
Network Id, Bandwidth, Latency
Interface Processor Id, Network Id
Task Id, WCET, Period, Deadline
Message Id, From Task Id, To Task Id, Maximum Size

Table 4.1: Problem specification objects and attributes

communicate, there must exist at least one network connected to both processors.

Each processor Px is also joined to network labelled N Px. This is used to model
any intra-processor communication overheads rather than ignoring communications
sent between tasks allocated to the same processor. Networks are used to represent
any communication mechanism whether it be a communication bus, such as CAN, or
shared memory message passing. Network bandwidth and latency attributes, intro-
duced in section 2.2.3, affect the time required to transfer a message on a particular
network. No broadcast ability is assumed. If a task sends the same message to
multiple tasks on different processors, then this is modelled as separate messages.

4.2.2 Software Components

Task dependencies are implied by the passing of messages which creates a graph with
tasks at the nodes and messages on the edges. See figure 2.3 for an example.

Each task τi has WCET Ci, deadline Di and period Ti for i = 1, . . . ,K. Each
message has a maximum size Si, which is converted into a WCCT Ci for i = K +
1, . . . ,K + L. The WCCT Ci of a message assigned to a network σj is calculated
with equation (2.10) except that a floor rather than ceiling function was used to
round to an integer. This allows intra-processor communications to have 0 time if
the desired behaviour is to assume they are negligible. Note that these times are
based on synthesised message sizes so they cannot be said to be either optimistic or
pessimistic. If undertaking a real world case study with non-negligible intra-processor
communication, more care is needed on the rounding of values to ensure no optimism
is introduced into the worst case.

Throughout this work all tasks are given a BCET of 0 which leads to the highest
possible levels of jitter. Offsets for all tasks are also set to 0. The objects and
attributes contained within a problem specification are summarised in table 4.1.
Interface objects are used to connect networks to processors. An XML format which
can describe a problem specification is given in appendix A.

4.2.3 Schedulability Tests

The architecture model also contains a system wide schedulability test attribute to
indicate how to check for a valid solution and which scheduling policy to assume. In
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chapter 5, experiments will be conducted using both static cyclic and fixed priority
scheduling models. This will demonstrate how metaheuristic local search algorithms
can solve problems with different scheduling models without a significant reformu-
lation of the problem as previously discussed in section 2.4.5. The core part of this
work which is concerned with evaluating and improving the flexibility of solutions
will only use the fixed priority model.

The main fixed priority schedulability test used is the WCDO analysis by Palencia
and Harbour [59] which was given in section 2.2.3.5. This assumes an event triggered
synchronous communications model. Under this model, changing the priority of an
object anywhere in the system has the potential to affect objects on other processors.
This makes it one of the most interesting and difficult forms of the task allocation
problem. A small number of experiments in chapter 5 will use the WCDOPS++
schedulability test by Redell [87] and extended by Kany and Madsen [88]. This will
show the trade-off between the more computationally efficient WCDO analysis and
less pessimistic WCDOPS++ analysis. Since all communications between tasks, even
when on the same processor, is modelled as a message sent on an external network,
some of the benefits of WCDOPS++ will be lost since it relies on the concept of
H-segments which are directly dependent objects executing on the same processor.

Experiments conducted with a static cyclic schedule use the algorithm of Cheng
and Agrawala [53] to convert a task ordering attribute into a slot position. This
algorithm assumes each task has a low jitter and high jitter attribute so that the
separation between consecutive jobs of a task τi is in [Ti− low jitter, Ti+high jitter].
This constrains the movement of tasks within the schedule to accommodate other
tasks. Since jitter requirements are not currently included in the model, both low
jitter and high jitter are set to 10% of the task’s period.

4.2.4 Omitted Component Attributes

There are component attributes often found in architectural models for task alloca-
tion problems which have been omitted from this model. In particular, processors
have no attributes such as clock speed or available memory. There are no technical
reasons why these cannot be incorporated into the model. The decision to maintain a
homogeneous set of processors is linked to decisions on which set of problem charac-
teristics to investigate with a limited amount of compute power and time with which
to run experiments. Little is learnt from increasing generality of the architecture
model if the effects of changing attribute values is not then fully evaluated.

4.3 System Configuration

The system configuration is a table of object attributes which are left as free variables
whose values are to be found by the optimisation method. The layout of this table is
shown in table 4.2. It contains configuration information for both tasks and messages.
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Object Attr1 (= Allocation) Attr2 Attr3 . . .

τ1 v11 v12 v13
...

...
...

...
τK vK1 vK2 vK3

τK+1 v(K+1)1 v(K+1)2 v(K+1)3

...
...

...
...

τK+L v(K+L)1 v(K+L)2 v(K+L)3

Table 4.2: Configuration table

vij is the value of attribute j for object i. For the problem to be classed as a task
allocation problem, one attribute must be the allocation of the object. One or more
further attributes are used to define the schedule of objects on each processor or
network. These will depend on which scheduling policy used. For fixed priority
policies, the attribute is the priority number and for static cyclic scheduling, the
attribute is an ordering value which is converted into a slot position. In chapter 8 a
further attribute is used to allow variations in which tasks are present in the system,
looking particularly at task replicas to improve fault tolerance. An XML format for
system configurations is given in appendix B.

4.4 Problem Generation

Evaluation of a task allocation algorithm is performed in the context of a set of
problem instances in the form of system specifications as described in section 4.2.
Data must either be obtained from industrial case studies or synthesised. Both
approaches have advantages and disadvantages. A case study gives a true test of
the algorithm’s performance in an industrial environment. Since it only provides a
single data point, however, it does not allow the performance of the algorithm to be
extrapolated. In comparison, using a set of randomly generated problem instances
can evaluate an algorithm over a range of different characteristics. Even so, the
problem space is far larger than can be covered by any set of experiments and so the
characteristics of synthetic problems must be chosen so that results are relevant to
real world situations.

Since no fully detailed industrial data was made available for the work in this
thesis, all evaluation is based on synthesised problems. It is important therefore
that the method for generating these problems allows several problem characteristics
to be independently controlled so that patterns of behaviour of the task allocation
algorithm can be established. These characteristics can then be used to classify
problems. The algorithms for generating problems include random elements but
are also constrained so that problems have similarities to those found in industry.
An example is the algorithm described in section 4.4.6 which samples values for
task utilisations at random from a distribution which is chosen based on some real
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problem instances.

The problem generator described throughout the remainder of this chapter is
called Gentap. The parameters of Gentap define the set of problem character-
istics available with which to classify problems. To the author’s knowledge, the
only similar tool available in the real-time systems domain is Task Graphs For Free
(TGFF) [150, 151]. The Gentap tool includes more sophisticated algorithms for sam-
pling execution times and periods and is able to produce a variety of task graphs
with exact control over the number of tasks in the system which isn’t the case for
the task graph generation algorithms used by TGFF. Also, there are currently no
tools which generate a variety of hardware platforms in combination with a software
model for distributed scheduling and allocation problems.

Some previous task allocation work describes the methods by which they generate
problems. Hladik et al. [123] use a fixed hardware platform and only allow linear
task graphs. Task utilisations are generated with the UUniFast algorithm [152] even
though this is not suitable for multiprocessor systems as discussed in section 4.4.6.
It is assumed that they simply discarded invalid task sets.

Ucar et al. [107] create task graphs by randomly adding edges to a matrix of
points. This creates a variety of graphs but does not provide the user any control
over the shape of the graph for the purpose of linking problem characteristics to
results of evaluations.

Attiya and Hamam [54] randomly generate task graphs but do not give details
of the algorithm. Execution times are assigned using a simple uniform distribu-
tion. However, the systems are not hard real-time and the tasks are not periodic so
utilisation is not considered in the problem generation.

Yin et al. [55] ensure their test problems have a wide range of problem charac-
teristics. Both processor/network connections and task graphs are constructed to
have different topologies with different degrees of connectivity. However, there is no
indication of being able to automatically generate a large variety of problems. Also
the problems are not aimed at hard real-time systems and so issues of task periods
and total task utilisation are not dealt with.

Baker [153] and Bertogna et al. [154] have evaluated multiprocessor schedulability
tests on synthetic problems. They generate task sets of a particular utilisation by
continually adding tasks until a utilisation level is reached. This makes comparisons
of an algorithm on systems of the same utilisation difficult since they can have dif-
ferent numbers of tasks. This is avoided by the algorithm proposed in section 4.4.6
which changes the distribution utilisations are sampled from instead of changing the
number of tasks to achieve different utilisation levels.



92 Chapter 4. Architecture Model And Problem Generation

4.4.1 Overview Of Problem Generation Algorithm

The architecture model defined in section 4.2 requires the following problem charac-
teristics to be chosen for each specification generated.

• number of tasks, messages, processors and networks
• task WCETs, periods and deadlines
• task dependencies
• message sizes
• network topology
• network bandwidths and latencies

These are chosen by Gentap using one of the following three methods:

1. setting a characteristic directly from an input parameter
2. deriving a characteristic from multiple input parameters
3. random generation of the characteristic influenced by input parameters

A summary of all Gentap parameters is given in table 4.3. Each parameter
has a main element with a number of attributes which mirrors an XML format for
Gentap input files given in appendix C. Most parameters have min and max attributes
which gives Gentap scope to uniformly select from a range of values. Their precise
effect varies depending on the parameter. Parameters such as number-of-tasks and
tasks-per-processor only require a single value to be sampled per problem generated.
Repeated runs of Gentap would produce problems with different numbers of tasks
in the specified range. Both min and max can be set to the same value to ensure
that all problems generated have the same value for a parameter. Other parameters
such as period and network-bandwidth may need to be used more than once within the
generation of a single problem. In this case multiple values will be sampled from the
parameter range so that, for example, not every task period is the same if min and
max for period are different.

The number-of-tasks parameter is used to set a variable, K, which acts as a base
size parameter for the problem being generated. Using this value, the following steps
are taken:

1. the number of processors is decided by K and the tasks-per-processor parameter
2. the network topology is generated according to the number-of-networks and

processor-connectivity

3. tasks are separated into transactions using the tasks-per-transaction parame-
ter and then joined with messages to create task dependency graphs using
transaction-length and messages-per-task parameters

4. task periods are randomly generated based on period-range and period-granularity

parameters
5. WCETs are decided by sampling utilisation values from a distribution to achieve

a total utilisation which meets a utilisation-per-processor parameter value



Chapter 4. Architecture Model And Problem Generation 93

Parameter Attributes Description

number-of-tasks min, max Sets number of tasks.
period min, max,

granularity
Selects period values for tasks and mes-
sages. Attributes influence and value range
and LCM (section 4.4.5).

utilisation-per-processor min, max Sets the total task utilisation when averaged
over the number of processors.

distribution type, alpha Describes task utilisation sampling distribu-
tion (section 4.4.6.

utilisation-per-network min, max Sets total message utilisation based on num-
ber and type of networks. Not a straightfor-
ward mean average because of network het-
erogeneity (section 4.4.7)

distribution type, alpha Describes message utilisation sampling dis-
tribution.

tasks-per-transaction min, max Mean tasks per transaction. Each transaction
has as close to same number of tasks as pos-
sible.

transaction-length min, max Changes transaction shape by setting num-
ber of tasks in longest path through transac-
tion as a percentage of tasks in transaction
(section 4.4.4).

messages-per-task min, max Sets number of messages in system as a
multiple of number of tasks.

transaction-utilisation-distribution equal Boolean value indicating whether task util-
isations are set globally or per transaction
to even out utilisation per transaction. (sec-
tion 4.4.6.7).

tasks-per-processor min, max Sets number of processors according to
mean number of tasks per processor (sec-
tion 4.4.2

number-of-networks min, max Sets number of inter-processor networks.
processor-connectivity min, max Affects how many processors each inter-

processor network is connected to (sec-
tion 4.4.3)

network-bandwidth min, max Sets bandwidth of inter-processor networks.
network-latency min, max Sets latency of inter-processor networks.
processor-network-bandwidth min, max Sets bandwidth of intra-processor networks.
processor-network-latency min, max Sets latency of intra-processor networks.

Table 4.3: Gentap parameters for controlling problem characteristics

6. message sizes are assigned based on an estimate of transmission rates and a
distribution of utilisation values to achieve a total utilisation which meets a
utilisation-per-network value

Each of these steps are now described in more detail.

4.4.2 Step 1 — Processors

In keeping with the strategy of having a single parameter, K = number-of-tasks,
able to change the size of the system while preserving other characteristics, the
number of processors is decided by the parameter tasks-per-processor using the for-
mula dK/tasks-per-processore. Hardware generation needs to be performed first since
the number of processors influences the setting of other properties such as average
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utilisation per processor. Processors are assumed to be homogeneous and have no
attributes. There is some discussion of attributes not currently generated by Gentap,
such as processor speeds, in section 4.4.8. The set of processors is P and the number
of processors calculated by the above formula is |P|.

4.4.3 Step 2 — Network Topology

For a given number of processors and networks, there are a large number of possible
network topologies, the choice of which could have a significant effect on the difficulty
of the task allocation problem. Using an algorithm with a large degree of randomness
may allow several different topologies to be generated but the problems generated for
the same input parameters could have very different properties. Instead, Gentap uses
a mostly deterministic algorithm controlled by a number-of-networks and processor-

connectivity which restricts the set of possible topologies which can be generated. The
three topologies in figures 4.2a, 4.2b and 4.2c are all contained within this set.

N is the set of networks produced and the size of this set, |N |, is chosen by
the number-of-networks parameter. The connectivity of a processor is defined as
the number of other processors it is connected to per network and has values in the
range [0, |P| − 1]. The maximum total processor connectivity achievable per network
is |P|(|P| − 1). The processor-connectivity parameter is specified as a proportion of
this value. For example, a system with 6 processors has a maximum processor
connectivity of 6 ·5 = 30. In figure 4.2a the processor connectivity for both networks
is also 30 and so this topology would be generated by specifying a value of 1 for the
processor-connectivity parameter. The topology in figure 4.2b would be generated by
specifying a value of 0.2 since the processor connectivity of each network is 3 · 2 = 6.
In figure 4.2c, network N1 has a connectivity of 6, N2 has a connectivity of 12 and
the mean connectivity is 9. To obtain this topology a processor-connectivity value of
9/30 ≈ 0.33 should be given. Of course, other topologies with the same connectivity
values are possible and repeatedly running the Gentap tool with the same parameters
can produce different topologies in each problem generated.

The set of possible topologies which can be generated for given parameter values
is explained by the following network generation algorithm:

1. take an array of references to the set of networks which is indexed by k
2. take a randomly shuffled array of references to the set of processors which is

indexed by l
3. initialise k and l to 0
4. connect the network referenced at k to the processor referenced at l
5. increment k and l

6. if k = |N | then reset k to 0
7. if l = |P| then reset l to 0
8. if connectivity requirements are met or exceeded then end
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9. else return to step 4

The connectivity requirements also ensure that each network is connected to at
least two processors so the minimum connectivity value of the generated topology
will be 2

|P|(|P|−1) regardless of the processor-connectivity parameter. If |P| = 1 then
no networks are generated.

The communication time of a message is calculated based on the bandwidth
and latency attributes of the network on which it resides. The parameters network-

bandwidth and network-latency are used to guide the problem generator in the attribute
values it assigns to networks. Each parameter is actually composed of three values:
a minimum, maximum and granularity. The attribute value is chosen uniformly
from the set of multiples of the granularity between the minimum and maximum
values inclusive. The minimum and maximum should be multiples of the granularity
and are rounded if not. This style of random number generation is used for several
parameters which are selected from a range.

An additional network is added to each processor for intra-processor communi-
cation. Separate parameters are used to specify the bandwidth and latency of these
networks.

4.4.4 Step 3 — Task Graphs

The most prominent random task graph generator for real-time tasks is the Task
Graphs For Free (TGFF) tool [150] by Robert Dick et al. The original TGFF task
graph generation algorithm concentrated on generating a graph such that each node
met specific in-degree and out-degree criteria. More recently, as described in the
April 2008 version of the TGFF manual [151], a new algorithm has been developed
based on recursively generating multiple linear chains of tasks called parallel series.
Each recursive step is able to create a branch with tasks which can run in parallel
with the original chain. Additional messages can then connect chains together to
create more complex task graphs. Neither TGFF algorithm produces graphs with an
exact number of tasks but rather continually adds tasks to meet other criteria until
an upper limit on the number of tasks has been reached or surpassed.

The approach used in Gentap is also to generate parallel series of tasks and then
insert additional dependencies for systems which have a high ratio of messages to
tasks. The most significant difference is that an exact number of tasks per task
graph can be specified using the Gentap algorithm, allowing for precise control of
this variable when running experiments.

The shape of task graphs is affected by the transaction-length and messages-per-

task parameters. Some example task graphs generated by Gentap are shown in
figures 4.3 and 4.4. These parameters can be set based on characteristics of the type
of system being studied. For example, the AIMS Boeing 777 avionics platform is
said to have 951 messages and 155 tasks [53] which suggests that messages-per-task
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(a) transaction-length = 0.3,
messages-per-task = 1

(b) transaction-
length = 0.5,
messages-
per-task = 1

(c) transaction-
length = 0.8,
messages-per-
task = 1

Figure 4.3: Variations in transaction length

(a) transaction-length = 0.5,
messages-per-task = 1.5

(b) transaction-length = 0.5,
messages-per-task = 3

Figure 4.4: Variations in messages per transaction
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1 2 3 4 5 60

Figure 4.5: Task graph stages

should be set significantly above 1 if trying to randomly generate similar systems.

4.4.4.1 Task Graph Generation Algorithm

Tasks are divided into transactions according to the tasks-per-transaction parameter
which, along with the value of K, decides how many transactions need to be gen-
erated. Gentap distributes tasks as evenly as possible between transactions. Once
tasks have been grouped into transactions, the algorithm for generating each task
graph proceeds as follows. The length of a transaction, defined as the longest path
from the triggering task to a task with no dependents is given by a transaction-length

parameter. The parameter is specified as a proportion of the tasks in the transac-
tion. Values close to 1 will produce very linear transactions with little branching,
whereas lower values produce shorter transactions with more tasks able to operate
in parallel. The parameter can be specified with a minimum and maximum value
to allow different values for different transactions to be sampled randomly from a
uniform distribution. With the length of the transaction decided, a number of stages
are generated equal to the length of the transaction. These are shown by numbered
columns in figure 4.5. Following this, these steps are taken:

1. A single task is placed in each stage.
2. The remaining tasks are randomly distributed between stages other than stage

0 which contains the initial triggering task. Tasks are placed as if being dropped
into slots so that each task is one row above the previous task to be placed in
the same stage.

3. A dependency is created between all horizontally adjacent tasks from the lower
numbered stage number to the higher.

4. A dependency is added to all tasks which don’t have a predecessor (other than
the initial triggering task) from a randomly selected task in the previous stage.

At this point, the task graph has a dependency structure similar to that in fig-
ure 4.5 which has just sufficient messages to ensure that every task is connected to
at least one other. The algorithm now proceeds according to the messages-per-task

parameter. If there are x tasks in a task graph, the current number of messages per
task will be (x− 1)/x. If the messages-per-task parameter has a value greater than
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this, further messages must be added.

The next group of messages which are added reconnect any dangling task chains
into another chain. This is similar to the behaviour of the TGFF parallel series
algorithm. To do this, a list of tasks which aren’t in the final stage and have no
dependents is created. A task is selected at random from this list and a dependency
is added from this task to a randomly chosen task in the following stage. The task is
then removed from the list. This is repeated until the correct ratio of messages per
task has been reached or the list is empty.

If, at this point, further messages still need to be added, pairs of tasks from
different stages are randomly selected and a dependency is added from the task in
the lower numbered stage to the other task. If a dependency already exists between
the two tasks, another pair is selected. Before these final messages are added, the
maximum number of dependencies possible is calculated to ensure that the desired
number of messages per task is theoretically possible and the parameter is lowered
automatically if necessary.

4.4.5 Step 4 — Task Period Selection

Periods are assigned on a per transaction basis so that all tasks and messages within
a transaction will have the same period. Davis et al. showed that the distribution of
periods can bias the performance of schedulability tests [155] and, in particular, the
importance of the number of orders of magnitude in the sample set. It is quite com-
mon for a system to have tasks operating in different time bands [156], e.g. 1 – 10ms,
10 – 100ms, and 100ms – 1s, and hence have sets of tasks with significantly different
periods. For example, a task set used in an industrial case study by Bate [157] has
a sets of tasks with periods ranging from 25 · 103 to 106 (time units not given). An-
other important characteristic of the sample of period values is their lowest common
multiple (LCM) [53] which defines the length of a scheduling cycle. Both of these
are taken into account by Gentap when sampling periods.

The sampling is guided by minimum (Ta), maximum (Tb) and granularity (Tg)
parameters. Period values are selected from a log uniform distribution and rounded
according to the granularity.

ri ∼ U(log Ta, log(Tb + Tg)) (4.1)

Ti =
⌊

exp(ri)
Tg

⌋
Tg (4.2)

The random values ri produced lie in [log Ta, log(Tb + Tg)). Ta and Tb must be
multiples of Tg.

The maximum possible LCM of the sampled periods will decrease as the granu-
larity increases since the number of selectable values between Ta and Tb will decrease
as Tg increases. A lower bound on the maximum possible LCM can be found from
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the case where just two tasks values sampled:

max LCM ≥ Tb(Tb − Tg)
Tg

(4.3)

The values produced will follow a similar distribution to the method of Davis
et al. [155] who suggested sampling from separate bins such as [10, 100), [100, 1000),
[1000, 10000) but removes the need to define bins for different ranges. In comparison,
the TGFF tool selects periods from a finite list given by the user [151]. These are
given as a base period and a set of multipliers. Although TGFF can be set up to
produce similar results, Gentap allows a wide variety of realistic task periods to be
generated with three just intuitive parameters.

4.4.6 Step 5 — Task WCETs

One of the most important characteristics in real-time system design problems is
the total task utilisation per processor. Therefore, Gentap has several parameters
to control this value and also the distribution of task utilisations. The utilisation of
each task along with its period, assigned using the method from section 4.4.5, can
then be used to determine the WCET of each task.

Let s be the target utilisation per processor value. The total target utilisation
for all tasks is then

u = |P|s (4.4)

A utilisation value, Ui needs to be chosen for each of n tasks such that

n∑
i=1

Ui = u (4.5)

where u is the total target utilisation value. n may equal K, the number of tasks
in the system, but the method may also be applied to smaller subsets of tasks as
described in section 4.4.6.7. The WCET Ci for task i with period Ti can then be
calculated using

Ci = UiTi (4.6)

4.4.6.1 Overview Of UUniFast

The most prominent piece of work in the area of generating WCETs for synthetic
task sets is the UUniFast algorithm by Bini and Buttazzo [152]. The utilisations
of several sets of n tasks which adhere to the constraint in equation (4.5) can be
plotted in an n − 1 dimensional space. The UUniFast algorithm produces task sets
which are evenly distributed in this space. This is intended to allow schedulability
tests to be compared on a set of task sets without undue bias towards any particular
test. No claims are made about UUniFast regarding how representative the produced
utilisation distributions are of real task sets.
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The distribution of each Ui in the sets of utilisations generated by UUniFast is
defined by u − xi where xi has distribution equivalent to the sum of n − 1 inde-
pendent uniform random variables over [0, 1]. The probability density function for
this distribution restricted to the domain [0, 1] is proportional to xn−2 [158]. (It is
not true over the whole domain which is between 0 and n − 1). With appropriate
normalisation, the density function for the distribution of each xi is

DensSum(x;n, u) =
n− 1
u(n−1)

xn−2 x ∈ [0, u] (4.7)

with the condition u < 1. The distribution each Ui generated by UUniFast is now
seen to be

DensUUF (x;n, u) =
n− 1
u(n−1)

(u− x)n−2 x ∈ [0, u] (4.8)

UUniFast is an efficient algorithm for generating utilisations values which conform to
this distribution. However, UUniFast was designed for generating uniprocessor task
sets. When the total utilisation u > 1, as is possible for multiprocessor task sets,
UUniFast can generate invalid utilisation values, that is values greater than 1.

An alternative algorithm which would produce equivalently distributed task sets
as UUniFast can be constructed which involves sampling values from the distribution
in equation (4.8). This is the basis of the utilisation generation algorithm in Gentap.

4.4.6.2 Overview Of Gentap Utilisation Sampling

Gentap allows values to be sampled from a more general distribution, the beta distri-
bution. This is a flexible distribution with many applications [159]. The probability
density function for this distribution is 0 outside of the [0, 1] domain. This means
that sampling from it will never produce individual task utilisations greater than 1.

The probability density function of a beta distribution is

DensBeta(x;α, β) =
(1− x)β−1xα−1

B(α, β)
(4.9)

where B is the beta function [159]. Equation (4.9) includes two parameters, α and
β, which change the shape of the distribution.

If α = 1, β = n − 1 and the target utilisation u = 1 then this is the same as
the distribution generated by the UUniFast algorithm. Tasks utilisations which are
distributed in the same way as those generated by UUniFast can be obtained by
sampling from this distribution and then scaling all values by u. In that sense, the
methods presented here are a generalisation of UUniFast.

The parameters of the beta distribution, α and β, can be selected by fitting a
beta distribution to real task set data. This means that task sets sampled from it
are purposefully representative of situations where the algorithm will be applied ir-
respective of biases toward or against any schedulability test. Also, unlike UUniFast,
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the distribution enables task sets to be sampled with a total utilisation greater than
1 while the individual utilisation of any task is always less than 1.

Distributions other than the beta distribution could be used. However, most
would need to be truncated to ensure individual task utilisations were valid. For
example, Baker [153] and Bertogna et al. [154] both use a truncated exponential
distribution for sampling utilisation values. Neither give a method of parameterising
the distribution and arbitrarily choose a distribution with a mean of 0.25.

The fitted distribution is intended to be an approximation of the underlying real
data. If an exact fit to the original data is desired then it makes more sense to base
evaluations on the data itself rather than approximately fitted distribution.

The procedure for generating a distribution of task utilisations with Gentap is as
follows:

1. Obtain a set of task utilisations from an industrial case study and then use
the method of maximum likelihood estimation to fit a beta distribution to this
task set (section 4.4.6.3).

2. Generate further task sets by sampling from this distribution (section 4.4.6.4).

Initially the target utilisation per task, u/n, is assumed to be the same as that of the
mean of the distribution fitted in step 1. In section 4.4.6.5, the distribution fitting
method is changed for arbitrary values of n and u.

4.4.6.3 Fitting a Beta Distribution To A Task Set

The steps above are expanded upon by way of example using data from a case study
on a Rolls-Royce BR715 Engine Controller by Bate [157] as the initial representative
task set. This task set has 70 tasks with a total utilisation of 0.816. The bar chart in
figure 4.6 shows a histogram of task utilisation from this task set. The histogram has
been normalised so that its total area is 1 which allows it to be compared visually
with other probability density functions.

The parameters α and β for the beta distribution are chosen by the method of
maximum likelihood estimation [159] so that the distribution best fits the original
task set. Maximum likelihood estimation optimises a log likelihood function which
is a metric for how well the data fits the distribution. The log likelihood function for
the beta distribution is [159]

LL(α,β;V ) = m(log Γ(α+ β)− log Γ(α)− log Γ(β))

+ (α− 1)
m∑
i=1

log Vi + (β − 1)
m∑
i=1

log (1− Vi)
(4.10)

where V is the vector of task utilisations to fit the distribution to, m is the number
of elements in V , and α and β are the parameters to the beta distribution. Finding
values, α̂ and β̂ which maximise equation (4.10) can be done using the mle function
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Figure 4.6: Utilisation density of case study task set from Bate [157]

found in the R language [160]. Using this method, values of α̂ = 0.68 and β̂ = 57.13
were obtained. The probability density function from equation (4.9) is plotted on
figure 4.6. Also plotted is a smoothed version of the histogram which is an estimate
of the density function generated by the R density function.

A similar exercise was undertaken for a task set taken from Tindell and Clark [85].
This task set has 32 tasks and a total utilisation of 1.53 spread over 3 processors.
The results of fitting a beta distribution are shown in figure 4.7.

4.4.6.4 Sampling From The Distribution

Once a probability density estimate has been obtained, task set utilisations can
be sampled from it. One of the key features of the UUniFast algorithm is that it
guarantees that the sum of the task utilisations is equal to a target utilisation value.
The approach taken in Gentap is to repeatedly sample the distribution until the
obtained task set gives the required utilisation within a certain error bound. This
is compared with a sampling method for obtaining an exact total utilisation value.
In section 4.4.6.6, it is shown how estimates of the number of iterations for both
methods can be obtained and that either is feasible even for large (≈ 1500 tasks)
task sets.

The exact method samples n − 1 values and then the final task is allocated the
correct amount of utilisation to make up the total. If the sum of n − 1 utilisation
values is either less than u− 1 or greater than u then the sampling is repeated until
this condition is met.

The approximate method does not guarantee the precise total utilisation u will
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Figure 4.7: Utilisation density of case study task set from Tindell and Clark [85]

be achieved. Instead, it repeatedly samples n values until the difference between the
sum of the utilisations in the sample and u is within a specified error bound. Since
both methods discard some sampled values, the distribution of all accepted utilisation
values across multiple task sets will not be identical to the fitted distribution. An
exact match to the original distribution is not required since the aim is to produce
similar rather than identical task sets. The size of the discrepancy will depend on
the number of discarded values which is studied in section 4.4.6.6.

Figure 4.8 gives listings in the R language [160] for both approaches. The function
in figure 4.8a samples n utilisations in each iteration. The relerr parameter specifies
the relative error allowable for the sum of the sample utilisations in order for the
sample to be accepted. For example, a value of 0.01 requires all accepted task sets
to have a total utilisation within 1% of u. The function returns both the set of
task utilisations and the number of iterations required for the total utilisation to fall
within the acceptable limit.

Figure 4.8b gives a listing of a function which can be used to generate a task
set so that the exact utilisation target is achieved. It generates a series of task sets
containing n − 1 tasks until an iteration is reached where the remaining utilisation
for the final task is valid.

The parameter values corresponding to the best fitting beta distribution are α̂
and β̂. The population mean of a beta distribution in the general case is [159]

µα,β =
α

(α+ β)
(4.11)
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GenTaskUtilsErr <- function(n, alpha, beta, relerr) {
mu <- alpha / (alpha+beta)
u <- (n * mu);
err <- u * relerr
iter <- 0
repeat {

iter <- iter + 1
utils <- rbeta(n, alpha, beta);
if (abs(u-sum(utils)) <= err) {

break;
}

}
list(utils=utils, iter=iter);

}

(a) GenTaskUtilsErr function

GenTaskUtils <- function(n, alpha, beta) {
mu <- alpha / (alpha+beta)
u <- (n * mu);
iter <- 0
repeat {

iter <- iter + 1
utils <- rbeta(n-1, alpha, beta);
last <- u - sum(utils)
if (last > 0 && last < 1) {

utils <- append(utils, last)
break;

}
}
list(utils=utils, iter=iter);

}

(b) GenTaskUtils function

Figure 4.8: Functions for sampling task utilisations from beta distribution

This is also the expected per task utilisation when values are sampled from the
distribution using either algorithm. If it is also the case that this is the desired per
task utilisation when sampling for n tasks, then the desired total utilisation is

u = nµ (4.12)

where µ = µα̂,β̂.

4.4.6.5 Setting The Target Utilisation

Section 4.4.6.4 assumes that the desired per-task utilisation, u/n is µ, the mean of the
fitted distribution. This value should be extremely close to the per task utilisation
of the original data. For the Tindell task set it is approximately 0.048 in both cases.
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However, to create task sets for experiments with total utilisations set at say, 1.2, 1.8
and 2.4 and each with 40 tasks then the per task utilisations would be 0.030, 0.045
and 0.060 so the fitted distribution is no longer suitable.

If u/n 6= µ, then combining equations (4.11) and (4.12) shows that values of
α = α̂′ and β = β̂′ need to be chosen such that u/n = α/(α+ β) which implies

β =
α(n− u)

u
(4.13)

By using equation (4.13) to substitute β in equation (4.10), the maximum likelihood
optimisation can be repeated with just a single variable, α, to find α̂′. β̂′ can then
be set from equation (4.13) in order to specify the distribution. This distribution
will be the beta distribution which best fits the data (within the limits of the optimi-
sation method) and also meets the additional constraint of having the desired total
utilisation for a system with n tasks.

There may be occasions where values of α̂ and β̂ are known but the underlying
data these values were obtained from is unavailable and so it is not possible to re-fit
for different u/n. In these circumstances, a reasonable fit can be obtained by setting
α̂′ = α̂ and then obtaining β̂′ from equation (4.13). For the purposes of using Gentap,
if both α̂ and β̂ are given, they are used to parameterise the beta distribution. If
only α̂ is given, then α̂′ and β̂′ are calculated using this method and these are used
instead. When using this method of calculating β̂′, it should be noted that the shape
of the beta distribution changes more significantly when either parameter moves from
less than 1 to greater than 1 or vice-versa.

4.4.6.6 Estimating number of iterations

To ensure that the sampling methods of the GenTaskUtilsErr function in figure 4.8a
and the GenTaskUtils function in figure 4.8b are practical, an estimate is needed
for the number of iterations required by each to produce a valid task set.

The GenTaskUtils method which produces a total utilisation of exactly u will
be assessed first. Let tj be the total task utilisation for the sample of m = n−1 util-
isation values on iteration j. For sufficiently large m, the central limit theorem [161]
applies and the distribution of tj is approximated by a normal distribution. Since the
estimation relies on this, it will be less accurate when generating task sets with a low
number of tasks, say fewer than 20. The population variance for a beta distribution
is given by [159] as

σ2
α,β =

αβ

(α+ β)2(α+ β + 1)
(4.14)

Therefore all tj are normally distributed with mean mµ and variance mσ2 where
σ2 = σ2

α̂,β̂
.

tj ∼ N(mµ,mσ2) (4.15)



106 Chapter 4. Architecture Model And Problem Generation

For the task set to be valid, tj must be between u− 1 and u. The probability of this
is given by

P (tj is valid) = Φ0,1

(
u−mµ√
mσ

)
− Φ0,1

(
(u−1)−mµ√

mσ

)
(4.16)

where Φ0,1 is the cumulative distribution function for the Normal distribution with
mean 0 and variance 1.

For the GenTaskUtilsErr function, let uj be the sum of the n task utilisations
sampled on iteration j. Each value of uj has a corresponding error value, errj which
is the difference between u and uj . Using a similar argument to that which obtained
equation (4.15), these error values are normally distributed with mean 0 and variance
nσ2.

errj = u− uj (4.17)

errj ∼ N(0, nσ2) (4.18)

Let rerr be the value of the relerr parameter and err the absolute value calculated
from it. The probability of the task set being accepted is the probability that the
value of errj is between −err and +err.

err = u · rerr (4.19)

P (|errj | < err) = 2Φ0,1

(
err√
nσ2

)
− 1 (4.20)

For both methods, the expected number of iterations is given by

E(iter) =
1

P ( sample is valid )
(4.21)

where the denominator on the right hand side is replaced by the value of either
equation (4.16) or equation (4.20) depending on the sampling method being used.

A simple experiment was performed to validate these estimates. For varying
numbers of tasks from 10 to 1500, 1000 valid task sets were generated and the mean
number of iterations was calculated. This value was compared to the estimate given
by equation (4.21). The parameter values were taken from the distribution fitted
to the Tindell and Clark case study [85] such that α̂ = 0.699856, β̂ = 13.94309
and the values of µ and σ2 were 0.0478 and 0.002909 respectively. Experiments
were conducted using both GenTaskUtils which achieves the exact value of u and
GenTaskUtilsErr with relative error values of 1% and 5%. The results are shown in
figure 4.9. In each case the solid line gives the estimated number of iterations and
the plotted points are the mean number of iterations required for the 1000 task sets
generated at each point. In all cases, the estimated number of iterations provides
a very good fit, even for smaller task sets where the normal approximation is less
accurate.
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Figure 4.9: Iterations to find suitable task set

The key difference is that, for the method using a relative error, the number
of iterations falls as the number of tasks increases whereas it rises for the exact
method. In this case, the number of iterations is small so both methods are practical.
However, for distributions with a larger variance, more iterations would be needed
in both cases. If a large number of iterations are needed to generate large task sets,
then the exact method could become less practical. Gentap uses the approximate
method with a 1% error.

The graph in figure 4.9 suggests a hybrid method should exist so that performance
is as good as the exact method when using the approximate method for small task
sets. This is indeed the case. For the exact method, n − 1 values are sampled and
accepted when their sum is within 1 of the desired total so that the final task has
a valid utilisation. By allowing the total utilisation to be approximate but bounded
by an error, the acceptance criteria could be loosened so that the sum of the n − 1
utilisations could be up to 1+err below the target or err above it. The last value must
then be sampled from a truncated beta distribution. This method is not expanded
further since the previous algorithms perform adequately.

4.4.6.7 Assigning WCETs To Tasks

There are two ways in which utilisation values can be assigned to tasks. A set of
utilisation values can be sampled as described throughout this section with n = K,
the number of tasks in the system, and then assigned randomly to tasks. Once
utilisation values have been assigned, WCETs can be calculated using equation (4.6).
Time values, both periods and execution times, are integers and so the WCET must
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be rounded. This is a further source of error. Selecting a higher numerical period
values (by changing the unit of time) will reduce this rounding error.

The other method of assigning utilisation values is to sample values on a per
transaction basis. It is conceivable that the way in which system utilisation is shared
out between transactions could have an effect on problem difficulty. Therefore, util-
isations can be sampled for each transaction where n is set to the number of tasks
in the transaction and the target per-processor utilisation is divided by the number
of transactions in the system. Gentap allows a separate sample to be generated for
each transaction so that utilisation is divided evenly between transactions.

Using either method, within transactions utilisation values are assigned randomly
to tasks. A significant problem characteristic is the correlation between the stage
number of the task used in the transaction construction and its utilisation. If using
a jitter based distributed scheduling analysis such as WCDO analysis [59] then a
transaction with a bias of higher utilisation tasks at lower stage numbers will make
the transaction more difficult to schedule since the accumulation of jitter throughout
the transaction will be greater. This provides an example of a factor which Gentap
does not explicitly control and so must be taken account of using repetitions of
experiments.

4.4.7 Step 6 — Sampling Message Sizes

A sample of utilisation values for messages is constructed in exactly the same way
as that for tasks which can then be converted into a WCCT. However, converting
communication times to message sizes presents an additional difficulty since this
conversion will depend on where the message is allocated which is not known at the
time of problem generation.

An initial idea was to use mean bandwidth and latency values which would achieve
the correct utilisation if message utilisation was allocated evenly between networks.
However, systems typically have a small number of inter-processor networks com-
pared to the number of much faster intra-processor networks which is equal to the
number of processors. Therefore, systems using mean bandwidth and latency values
required most messages to be sent between tasks allocated to the same processor
which often isn’t possible. Whilst it would be possible to supply Gentap with a
very low total message utilisation to make generated problems easier, it is somewhat
counterintuitive.

The chosen approach uses double the mean bandwidth and latency of inter-
processor networks only. This means that if half of the messages (in terms of utilisa-
tion) are evenly distributed between inter-processor networks then the inter-processor
network utilisation will be as given in the utilisation-per-network parameter. Messages
will very rarely be distributed between networks in this way but choosing a sensible
network utilisation value, e.g. 50%, produced problems which could often be solved
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which was not the case when a simple mean was used.

Let ban be twice the mean inter-processor network bandwidth and lat be twice the
inter-processor network latency. Using these values, the following equation, where
Ci is the WCCT, can be used to calculate the worst case size, Si, of the message.

Si = max(0, ban(Ci − lat)) (4.22)

The max term is required since it is possible that the sampling of utilisations may
result in WCCTs which are smaller than lat and it must be ensured that all message
sizes are non-negative.

4.4.8 Additional Characteristics

There are a number of other problem characteristics and possible additions to the ar-
chitecture model. The number of parameters present in Gentap already exceeds the
number of problem characteristics which can be studied with thorough experimenta-
tion, especially when interactions between multiple characteristics are considered. It
is, however, worth noting additional characteristics which are likely to impact task
allocation algorithms but are not being considered.

The deadline of a task is currently set equal to its period. This is not an un-
common situation but enforcing tighter deadlines will certainly reduce the number of
feasible solutions. This value is also used as the end-to-end deadline for a transaction
since all tasks in the transaction have the same period and hence the same deadline.
Timing requirements are only specified in terms of WCRTs less than deadlines. No
restrictions are placed on task or message jitter.

4.5 Summary

This chapter has defined the system model for the task allocation problem instances
in this thesis. The model provides a framework for processors, networks, tasks and
messages and their attributes. Values for the majority of attributes are contained in
a system specification. The remaining ones are used to define the system configura-
tion. One of these configuration attributes is the allocation to a scheduling resource.
Others are used to define the schedule on each scheduling resource and must be com-
patible with the scheduling policy and schedulability test used. Finding a feasible
configuration which passes the schedulability test is the basic task allocation problem
to which further quality objectives may be added.

For single processor scheduling problems, the characteristics which describe a
scheduling problem are well studied. For multiprocessor task allocation problems
with different task dependency structures and network topologies, there is a large
increase in the number of possible characteristic measures for describing a problem.

Since there is little industrial data available, problem specifications must be gen-
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erated synthetically. The Gentap tool has been created for this purpose. It addresses
both software and hardware aspects of problem generation in greater detail than any
previous work in the field of real-time task allocation.

Gentap is controlled by a number of parameters which correspond to character-
istics of the problem specifications generated. This facilitates the classification of
problems so that interaction between task allocation algorithms and different types
of problem can be easily evaluated for either performance or solution quality. The
parameters are carefully chosen to give a good balance between having sufficient
control over problem generation and not having to set so many parameters that the
tool is awkward to use. For example many different shapes and sizes of task graphs
can be produced by adjusting just three parameters.

Particular emphasis has been placed on generating task utilisations which are
distributed in a similar fashion to those of real systems. This is based on fitting a
beta distribution to existing data and then sampling from the distribution. Algo-
rithms for sampling were demonstrated to be efficient and accurate estimation of the
number of samples required to achieve a particular target utilisation were given. The
utilisation level can be adjusted independently of the number of tasks by adjusting
the distribution.



5
Algorithm Design And Analysis

5.1 Introduction

This chapter is concerned with the engineering of a search algorithm for task alloca-
tion. In the review of task allocation solution methods in section 2.3, metaheuristic
local search was revealed to have been successfully used by a number of previous au-
thors [4, 53, 121, 122]. Simulated annealing, in particular, is often used as a baseline
comparison for development of new methods [56, 123].

A hierarchical cost function is used, which includes a configurable guidance heuris-
tic. The guidance heuristic includes a number of strategies for improving the per-
formance of the search algorithm. The No Free Lunch Theorem [162] establishes
that improved performance may be gained by configuring an optimisation algorithm
specifically for different classes of problem. This chapter describes an experimental
method for classifying problems and simultaneously assigning suitable biases to the
strategies in the guidance heuristic for each problem class. The algorithm is applied
to problems with different characteristics and the effects of changing the policy for
scheduling the system are also examined.

A need to retune the algorithm quickly for different classes of problem is mo-
tivated by the fact that software engineering tools must be readily adaptable to
new situations. The time taken to setup the tool for use with a particular problem
should be kept low. This was one aspect of changeability previously discussed in sec-
tion 1.1.3. If results show that it is possible to readily reconfigure the algorithm for
different problem types, then these results also support the claim made in hypothesis
statement 2 in section 3.2.1.

An efficient, systematic experimental approach is used for configuring the algo-
rithm. The efficiency of the method comes from the ability to analyse performance
based on prematurely terminated runs of the search algorithm using survival anal-
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ysis. Survival analysis was first applied to the study of heuristic search algorithms
performance by Poulding motivated by the need to configure an earlier version of the
algorithm presented in this chapter. This work was previously published in a paper
by Poulding and this author [163].

The cost function used in the work of Poulding et al. [163] used a single large
experiment for tuning all cost function weightings. The objectives in the cost function
used here are instead combined using a hierarchy of weightings. This gives a natural
way to group weightings and use separate experiments to tune each group. When
additional objectives are added in future chapters, the higher level weighings of the
hierarchy are then rebalanced without re-tuning all weighting values. This puts an
emphasis on engineering practicality over optimality of algorithm performance.

The techniques of Poulding et al. [163] are used to discover problem characteris-
tics which are most significant to the performance of the task allocation algorithm
presented. This information is used to create problem classes for which the algorithm
should be separately tuned. Previous work by this author [164] also tuned a task
allocation algorithm for different problem classes. However, the systematic method
of choosing the problem classes has not been published previously.

The main motivation for choosing search over other optimisation techniques is
flexibility. The other main categories of solution method are problem specific heuris-
tics and the reformulation of task allocation into a well studied optimisation prob-
lem such as integer linear programming [81] or satisfiability [56]. When the solution
method is built around a particular test, changing the test becomes non-trivial. It is
not clear that all schedulability tests are amenable to being reformulated, especially
ones based on the construction of a static schedule where worst case response times
do not have any obvious mathematical formulation. Reformulating the schedulability
test can also introduce more pessimism as previously discussed in section 2.3.4.

Many problem specific heuristics reduce the solution space by pre-clustering tasks
together and then assigning clusters of tasks to processors [3, 107]. This can be done
in combination with other task allocation problem solving strategies by including
multiple heuristics within the objective function of a metaheuristic search.

There are three major sections in the chapter. Section 5.2 introduces the local
search algorithm variations and cost function which will be evaluated and configured
for use on task allocation problems. Section 5.3 describes the experimental method
and analysis techniques that are used for configuring algorithm parameters. Sec-
tion 5.4 describes the sequence of experiments which were performed with discussion
of the results obtained. A summary of the work carried out in these sections is given
in section 5.5
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input : init ; /* the initial solution */
input : ssize ; /* sample size parameter */
input : inittemp ; /* initial temperature */
input : maxinner ; /* inner loop samples */
input : stop ; /* stopping condition function */
input : randrestart ; /* random restart samples */
output: bestconf ; /* best configuration found */
begin1

curconf = init;2

bestconf = init;3

curcost = costfn(curconf) ;4

bestcost = curcost;5

t = inittemp;6

randrestartcount = 0 ;7

repeat8

i = 0 ;9

repeat10

if randrestart ≥ 0 and randrestartcount ≥ randrestart then11

(newconf, newcost) = randsolution() ;12

randrestartcount = 0 ;13

curconf = newconf;14

curcost = newcost;15

else16

(newconf, newcost) = samplenei(curconf, ssize) ;17

randrestartcount = randrestartcount + 1 ;18

delta = newcost − curcost;19

if (delta ≤ 0) or (t > 0 and randuniform() < exp(−delta/t)) then20

curconf = newconf;21

curcost = newcost;22

endif23

endif24

i = i + 1 ;25

if newcost < bestcost then26

bestconf = newconf;27

bestcost = newcost;28

randrestartcount = 0 ;29

endif30

until i == maxinner or stop() ;31

t = t ∗ 0.99 ;32

until stop() ;33

return bestconf34

end35

Figure 5.1: Local search algorithm for hill descent or simulated annealing
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Algorithm Relevant Parameters

Simulated annealing randrestart = −1, inittemp > 0, ssize > 0, maxinner > 0
Hill descent with random restart randrestart > 0, inittemp = 0, ssize > 0
Random search randrestart = 0

Table 5.1: Input parameter configurations for algorithm in figure 5.1

5.2 Search Algorithm

Two forms of local search and a random search are used in experiments in this
chapter. All three types of search are implemented by the algorithm in figure 5.1 with
input parameters deciding which variation is used. The two local search algorithms
are simulated annealing and hill descent with random restarts. The parameters
relevant to each algorithm are shown in table 5.1. These parameters and others are
provided to the search tool using the XML file format given in appendix D.

For the hill descent algorithm, the initial temperature (inittemp) should be set
to 0 and the random restart parameter (randrestart) defines how many solutions are
evaluated without any improvement in cost value before a restart occurs. The sample
size (ssize) is the number of solutions from the neighbourhood which are generated
and evaluated per iteration. The best solution from the sample set is compared with
the last accepted solution. Therefore, increasing the sample size makes the algorithm
more greedy, giving the possibility of improved performance at the increased risk of
becoming stuck in poor local optima.

The simulated annealing algorithm works similarly to hill descent but with differ-
ent acceptance criteria. Although it needn’t be the case, random restart is switched
off whenever simulated annealing is used, achieved by setting the parameter to −1.
An initial temperature needs to be set for simulated annealing. Assuming geometric
cooling, there are two factors affecting temperature changes: the cooling rate and
the number of solutions evaluated between changes in temperature. The algorithm
in figure 5.1 fixes the cooling rate to 0.99 and the number of inner loop iterations is
left as an input parameter (maxinner).

Setting the random restart parameter (randrestart) to 0 causes a new random
solution to be generated on every loop iteration. This is an unguided random search.

The stop parameter is actually a function which evaluates a stopping condition
and returns a boolean value. It can use data external to the main search routine
shown in figure 5.1, such as a limit on the number of solutions evaluated. The
stopping conditions used are given alongside the description of each experiment.

The search algorithm requires two further functions, samplenei and costfn

which define the neighbourhood and cost function.
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input : config ; /* the current configuration */
output: config delta ; /* a change to the current configuration */
begin1

object = rand schedulable object(config) ;2

r = randuniform() ; /* value in [0, 1) */3

if r < 0.5 then4

config delta = modify alloc(object, config)5

else6

config delta = modify priority(object, config)7

endif8

return config delta9

end10

Figure 5.2: The modify config function which generates a configuration change

input : config ; /* the current configuration */
input : object ; /* the object to change */
output: config delta ; /* a change to the current configuration */
begin1

scheduler list = avail scheduler list(object) ;2

if (object type(object) == message) and3

(length(scheduler list) == 0) then4

/* If object is a message and no suitable schedulers to move it to, reallocate
source or destination task instead */

r = randuniform() ; /* value in [0, 1) */5

if r < 0.5 then6

config delta = modify alloc(object.from task);7

else8

config delta = modify alloc(object.to task);9

endif10

else11

config delta = new configuration() ;12

set alloc(config delta, object, rand object(scheduler list)) ;13

endif14

return config delta15

end16

Figure 5.3: The modify alloc function which changes the allocation of an object

5.2.1 Local Search Neighbourhood Design

The samplenei function generates ssize possible changes to the current solution
and returns the one with the lowest cost. The modify config function generates
modifications to an existing solution. Each change is applied, evaluated and then
undone so that the next change can be tested. The modify config function is shown
in figure 5.2. It flips a fair coin in order to decide whether a change to an object
allocation or object priority will be made. An object to be modified is also selected at
random. It is chosen from the set of all tasks and messages treated together as a set
of schedulable objects. Every object has an equal chance of being chosen. The way
in which either the allocation or priority of an object is modified is now explained.

Figure 5.3 shows the function for making a change to the object’s allocation. This
function’s first step is to generate a list of possible scheduling resources to reallocate
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input : object ; /* schedulable object to calculate list for */
output: scheduler list ; /* list of possible schedulers to allocate to */
begin1

scheduler list = {} ;2

current scheduler = object.scheduler;3

if object type(object) == task then4

scheduler list.add(all processors()) ;5

scheduler list.remove(current scheduler) ;6

else7

from scheduler = object.from task.scheduler;8

to scheduler = object.to task.scheduler;9

if from scheduler == to scheduler then10

/* both source and destination on same processor */
if from scheduler != current scheduler then11

scheduler list.add(intra proc net(from scheduler)) ;12

endif13

else14

/* source and destination on different processors */
/* add any inter-processor networks connected to both processors */
scheduler list.add( inter proc net(from scheduler) ∩15

inter proc net(to scheduler) ) ;16

if length(scheduler list) == 0 then17

/* no networks connected to both processors */
/* add networks connected to one or other */
scheduler list.add( inter proc net(from scheduler) ∪18

inter proc net(to scheduler) ) ;19

if length(scheduler list) == 0 then20

/* both processors must be lone processors */
/* add all inter-processor networks */
scheduler list.add(all inter proc net()) ;21

endif22

endif23

scheduler list.remove(current scheduler) ;24

endif25

endif26

return scheduler list27

end28

Figure 5.4: The avail scheduler list function for calculating possible allocation changes
for an object

the object to. If the object is a message and no suitable alternative schedulers exist,
then either the sending or receiving task is changed instead. The function which
generates a list of suitable schedulers for an object to move to is given in figure 5.4.

If the object is a task, then a list of all processors except the one the task is
currently allocated to is returned. If allocation restrictions are defined for an object
then the list is adjusted appropriately. For simplicity this is not shown in figure 5.4
since this feature is not used prior to the work in chapter 8.

The generation of possible networks for message reallocation uses a heuristic to
favour networks which provide a path between dependent tasks over those that don’t
and intra-processor networks over inter-processor networks.

If both the sending and receiving task are allocated to the same processor then a
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input : config ; /* the current configuration */
input : object ; /* the object to change */
output: config delta ; /* a change to the current configuration */
begin1

sort by priority(config) ;2

config delta = new configuration() ;3

/* select another random object from the set of objects in the configuration
minus the object to be changed */

shuffle object = rand schedulable object(config \ {object}) ;4

/* find index of objects within configuration */
shuffle index = config index(config, shuffle object) ;5

object index = config index(config, object) ;6

/* set object priority to be that of randomly chosen shuffle object */

set priority(config delta, object, shuffle object.priority) ;7

/* adjust priority of all objects in between input object and shuffle object
according to their relative positions within the configuration */

if shuffle index > object index then8

for i from (object index + 1) to shuffle index do9

config object = get config object(config, i)10

set priority(config delta, config object,
get config object(config, i− 1).priority) ;11

endfor12

else13

for i from shuffle index to (object index− 1) do14

config object = get config object(config, i)15

set priority(config delta, config object,
get config object(config, i + 1).priority) ;16

endfor17

endif18

return config delta19

end20

Figure 5.5: The modify priority function

list containing just the intra-processor network for that processor is returned. If the
message is already allocated to this network then an empty list is returned.

If the source and destination task of the message are allocated to separate proces-
sors then all networks connecting these processors are returned. If this list is empty,
then networks connected to either one of the processors is returned instead. As a
last resort all inter-processor networks are returned.

The modify config function may choose to make a priority change instead of an
allocation change. The function which creates a configuration which applies priority
changes is given in figure 5.5. All object priorities within the system are kept unique.
This ensures that when an allocation change is made, all priorities on each processor
are unique and there is no ambiguity in the ordering. To maintain a unique set of
priorities, priority changes are made by exchanging priorities between objects. To
change the priority of the random object provided to the modify priority function,
another object is selected and its priority is used as the new priority value. The
priorities of all objects with a priority between the two chosen ones are shifted one
slot to fill the gap left by the initial priority change. This is preferred over simply
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Cost Value

Schedulability Constraints Guidance

Figure 5.6: Cost function hierarchy

swapping the priorities of the two objects, since the aim is to cause minimal disruption
to the ordering of objects other than the one chosen to be modified. This aids the
extended version of this algorithm presented in chapter 6 which tries to solve a new
problem with as few changes as possible to the configuration.

This algorithm changes priorities of objects globally throughout the entire system.
A priority change will only have an immediate effect if it changes the relative priorities
of objects on the same processor or network. However, any priority change can have
an affect on subsequent object allocation changes.

5.2.2 Generating A Random Solution

A way of generating random solutions is needed for choosing an initial solution and
also for performing random restarts within the algorithm in figure 5.1.

To set allocations, the modify alloc function in figure 5.3 is applied to each ob-
ject at in turn. Since the heuristic for allocating messages in the avail scheduler list

in figure 5.4 depends on the positioning of the tasks, all tasks are allocated first.

Priority values from 1 to K + L, where K + L is the combined number of tasks
and messages, are assigned to each object in turn. To give some randomness to the
assignment the priority values are first shuffled using a Knuth shuffle [165].

5.2.3 Cost Function

The cost value is a weighted sum of the results of lower level functions, called cost
subfunctions. Subfunctions are grouped and then composed in a hierarchical fashion.
This allows the problem of assigning weights to subfunctions to also be decomposed
as is common when deciding between objectives in decision theory [140]. Bicking et
al. [52], whose work was previously described in section 2.3.3.1, used this approach
to combine penalties for unsatisfied constraints with a dependability objective.

A 3 level function hierarchy is used as shown in figure 5.6. The root node is the
final cost value. Below that there is a value for unsatisfied schedulability constraints
and a value for a guidance heuristic. The schedulability value is a simple measure
which is required to know when the constraint satisfaction problem has been solved.
For the experiments in this chapter, a search will terminate when this value reaches
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0 since there is no additional quality optimisation goal. All schedulable solutions are
deemed equal quality. The guidance heuristic provides a way of introducing problem
specific knowledge into the search.

The bottom level of the function hierarchy contains the measurable attributes.
The guidance heuristic subfunctions were developed based on experience and the
work of previous authors which was described in section 2.3.1. Examples are the use
of load balancing by Chu and Lan [105] and the grouping of communicating tasks by
Ramamritham [3]. The effectiveness of each subfunction is assessed in section 5.4.

Normalisation is applied at all levels of the hierarchy so that the final cost and
intermediate values lie in the range [0, 1]. The bottom level subfunctions are labelled
g1, . . . , g9. g1 is used to measure how many objects meet their timing requirements.
g2, . . . , g9 are combined into the value for the guidance heuristic as follows.

guidance(C) =
∑9

i=2wigi(C)∑9
i=2wi

(5.1)

where C is the configuration being assessed and w2, . . . , w9 are weightings used to
affect the size of the contribution of each subfunction to the guidance heuristic.

Since only a single value makes up the schedulability subfunction, no weighting
values are needed and it is simply defined as:

sched(C) = g1(C) (5.2)

Equations (5.1) and (5.2) are combined into the single cost value as follows

f(C) =
wschedsched(C) + wguidanceguidance(C)

wsched + wguidance
(5.3)

where further weighting values are used to balance the contribution of the guidance
heuristic against testing for schedulability constraints. If the guidance heuristic is
well designed then configurations which give low values of guidance should coincide
with those which give low values of sched.

5.2.3.1 Cost Subfunction Definitions

This section defines the cost subfunctions g1, . . . , g9. The notation used is the same
as that previously given in table 2.1. The sets of tasks, messages, processors and
network links are denoted as T , M, P, and N respectively. S = T ∪ M is the
set of all schedulable objects. The notation for the cardinality of a set X is |X|.
Directly dependent (DD) tasks are a pair of tasks which have a message sent between
them. Indirectly dependent (ID) tasks appear in the same transaction but are not
necessarily adjacent in the task graph. Functions labelled gi are the cost subfunctions
and functions labelled hi are helper functions for gi.

Subfunction g1 assesses the number of unschedulable objects, by comparing the
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calculated response time for each schedulable object, Rτ , with its deadline Dτ .

h1(τ) = 1 if Rτ > Dτ else 0 (5.4)

g1 =
1
|S|
∑
τ∈S

h1(τ) (5.5)

The method of obtaining response times depends on the system model and the
schedulability test used.

Subfunction g2 counts how many DD tasks are allocated to processors not con-
nected by an inter-processor network. Let al map a task to its allocated processor
and V map a processor to the set of processors to which it is connected by a network.
The functions src and dest give the sending and receiving task of a message.

c(τ, υ) = 1 if V (al(τ)) ∩ V (al(υ)) = ∅ else 0 (5.6)

g2 =
1
|M|

∑
ρ∈M

c(src(ρ), dest(ρ)) (5.7)

The next subfunction penalises objects which cannot receive their input or send
their output due to their allocation. For example, there may exist a network connect-
ing the allocated processors of a pair of DD tasks but the message isn’t allocated to
it. This situation is not penalised by g2 but is by g3. However all situations penalised
by g2 are also penalised by g3 so there is a strong dependency between the two sub-
functions. Interactions between subfunctions are accounted for when deciding the
values of subfunction weightings in section 5.4.

Firstly, two functions are defined which give objects connected to the input and
output of a schedulable object in the task graph. The definitions are conditional on
whether the object is a task or message.

in(τ) =

{ρ ∈M : dest(ρ) = τ} if τ ∈ T

{src(τ)} if τ ∈M
(5.8)

out(τ) =

{ρ ∈M : src(ρ) = τ} if τ ∈ T

{dest(τ)} if τ ∈M
(5.9)

The helper function h3 counts how many objects which are connected in the task
graph are not allocated to connected scheduling resources. g3 normalises h3 to give
the cost subfunction value.

h3(τ) = |{υ ∈ out(τ) : al(υ) /∈ V (al(τ))}|+

|{υ ∈ in(τ) : al(υ) /∈ V (al(τ))}|
(5.10)

g3 =
∑

τ∈S h3(τ)∑
τ∈S
[
|in(τ)|+ |out(τ)|

] (5.11)
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Subfunctions such as this can be normalised in more than one way. g3 is nor-
malised over the total number of inputs and outputs of all objects. This means that
each invalid connection contributes the same amount to the cost. An alternative
would have been to normalise the value for each object and then divide through by
the number of objects. This means that, for example, two objects with half of their
connections invalid would contribute the same amount to the cost though one could
have one input and one output whereas the other has three inputs and one output.
The decisions on how to normalise cost subfunctions are taken based upon what
this author believes makes the behaviour of each function easiest to comprehend.
No claims are made regarding the performance of the overall search algorithm with
relation to these decisions.

Grouping communicating objects onto the same scheduler to reduce communica-
tion overheads was the most popular heuristic of the work reviewed in section 2.3.
Both subfunctions g4 and g5 are designed to achieve this aim in slightly different
ways. g4 encourages objects within the same transaction to be allocated to a smaller
number of scheduling resources. However, this does not stop DD tasks exchanging
communications back and forth between processors. g5 penalises messages sent be-
tween DD tasks on different processors. Function g5 tries to get an immediate gain
by moving communicating tasks to the same processor. g4 is more forward looking
since moving tasks which are not DD may not immediately improve the solution but
should hopefully lead to a good solution after a number of such moves.

Let the set of all transactions be TRANS and the set of schedulable objects
contained in transaction r be TRANSr. Vr is the set of tasks in TRANSr. For each
τi ∈ Vr, the number of tasks allocated to the same scheduler as τi and also in Vr is
ari. A grouping value and its maximum for each transaction is:

γr = |Vr| −
|Vr|−1∑
i=0

ari
|Vr|

γrMAX =
|Vr|(|P| − 1)

|P|

The theoretical maximum value occurs when tasks are equally spread among proces-
sors and ari = |Vr|/|P| for all i. Similar formulae can be defined for messages with
Wr being all messages in TRANSr. Using γrMAX to normalise γr and then summing
over all transactions, the subfunction formula is

g4 =
|P|

2|TRANS|(|P| − 1)

[
|TRANS| −

∑
r

∑
i

ari
|Vr|2

]
+

|N |
2|TRANS|(|N | − 1)

[
|TRANS| −

∑
r

∑
i

ari
|Wr|2

] (5.12)

Function g5 penalises any DD tasks which aren’t allocated to the same processor.
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This is calculated by considering the source and destination task of each message.

g5 =
1
|M|
|{ρ ∈M : al(src(ρ)) 6= al(dest(ρ))}| (5.13)

g6 is a subfunction which performs sensitivity analysis on the WCETs of schedula-
ble objects. A value, SCALS , is calculated that is the largest factor by which WCETs
can be scaled while keeping the system schedulable. This value can be found using
a binary search and will be less than 1 when the system is unschedulable under the
current configuration or greater than 1 when it is schedulable. This is converted into
a cost value as follows.

g6 = e−αSCALS (5.14)

where α is a parameter for changing the shape of the function which is set to 2
3 . If

the system is not schedulable for any value of SCALS then g6 = 1. This will be the
case when the allocation does not allow objects to communicate as required.

A load balancing subfunction g7 is based upon the variance of the utilisations of
processors:

g7 =

√ ∑
σ∈P(Uσ − µ)2

(|P| − 1)µ2 + (u− µ)2
(5.15)

where Uσ is the utilisation of processor σ, u =
∑

σ∈P Uσ is the total utilisation, and
µ is the mean utilisation. The normalising denominator is the maximum variance
which occurs when the utilisation of all but one processors is 0. If the load is perfectly
balanced so that Uσ = µ for all σ then the value of g7 is also 0. Extremely unbalanced
solutions are usually avoided by the search as many task deadlines will be missed.
This makes high values of g7 rare. Applying the square root operator gives larger
differentials between cost values for reasonably well balanced solutions.

Note that this formula is encouraging the spreading of tasks between processors
putting it in direct conflict with the aims of the grouping subfunctions g4 and g5.
Which should be given the most weighting within the guidance heuristic function
will be problem dependent.

It is known that any processor with over 100% utilisation will never be schedula-
ble. Subfunction g8 supplements the load balancing function and counteracts group-
ing subfunctions g6 and g7 by giving an additional penalty to processors with greater
than 100% utilisation.

g8 =
|{l ∈ P ∪N : Ul > 100}|

|P ∪ N|
(5.16)

Subfunction g9 measures priority ordering which does not correlate with the order
of objects in a transaction. This generally leads to poorer response times since the
object waiting to receive data can cause interference to the object it is receiving data
from. In static cyclic scheduling, the priority value is used to influence the objects



Chapter 5. Algorithm Design And Analysis 123

Subfunction Parent Reason for cost penalty

g1 Schedulability Objects failing schedulability test
g2 Guidance Directly dependent tasks with no communication

path between them
g3 Guidance Directly dependent tasks with message not allo-

cated to network connecting tasks’ scheduling re-
sources

g4 Guidance Tasks in same transaction allocated to different pro-
cessors

g5 Guidance Directly dependent tasks allocated to different re-
sources

g6 Guidance Fragility of schedulability tests to changes in execu-
tion / communication times (sensitivity analysis)

g7 Guidance Unbalanced processor loads
g8 Guidance Schedulers with utilisation greater than 1
g9 Guidance Schedule ordering attribute not correlated with de-

pendency ordering

Table 5.2: Summary of cost subfunctions

position in the schedule so lower values (higher priorities) appear earlier.

post(τ) is the set of all objects that follow τ .

g9 =
∑

τ∈S |{υ ∈ post(τ) and Pυ < Pτ}|∑
τ∈S |post(τ)|

(5.17)

A summary of all the cost subfunctions in this section is given in table 5.2

5.2.4 Implementation Details

The software within which the search algorithm is implemented is named Toast
(loosely based on an acronym for Task Ordering and Allocation Search Tool). Toast
is implemented in the C language.

Experiments with Toast are conducted on a large network of machines connected
using the BOINC [166] infrastructure for grid computing. There is a range of plat-
forms within the network: 32 bit and 64 bit Linux as well as Windows machines. It
is a requirement that an experimental result does not depend on which machine a job
of the experiment is sent to. Decisions within the search algorithm are sensitive to
pseudo-random number generation and to comparisons of floating point values. Both
of these are platform / compiler dependent. Therefore, instead of using the default
library pseudo-random number generator, a Mersenne Twister implementation [167]
is used instead. This also provides access to the internal state of the random number
generator which can be used to checkpoint and restart jobs without affecting the
result. To deal with differences between floating point implementations and register
sizes, an error tolerance is used in comparisons. If values are within 10−10 of each
other, they are considered equal.
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5.3 Experimental Aims And Design

The reason for conducting an experiment is to increase understanding in the relation-
ship between factors, also known as covariates, which are inputs to the system and
one or more responses which can be measured. The aim of the experiments in this
chapter is to discover how both algorithm parameters and problem characteristics
affect the performance of the search algorithm.

Setting up a search algorithm is non-trivial. One point of view is that parameters
can be set manually by trial and error until performance is considered acceptable.
However, for a large number of parameters whose effect is not independent of each
other, this is infeasible. A one-factor-at-a-time (OFAT) approach where each param-
eter is tuned in turn is a systematic method but a poor one [168]. This does not take
account of dependencies between parameters which may have a significant effect on
how the algorithm operates in terms of performance or quality.

This section covers a suite of techniques which will be used to decide which
experiments to run and how to analyse the data generated. Further information on
all the topics in sections 5.3.1 to 5.3.3 can be found in Montgomery’s book [169] which
covers experimental design and response surface methodology in depth. Section 5.3.5
is covered by Lee and Wang’s book [170] on survival data analysis.

5.3.1 Response Surface Modeling

The method used to find the relationship between factors of interest and response is
response surface modelling, described at length by Montgomery [169] and advocated
by Ridge [171] as a good means for studying heuristic search algorithms.

Response surface modelling constructs a model relating factors to the response
from the data generated by a set of experiments. The type of model needs to be
chosen prior to the data being fitted.

The simplest model is a linear model which links the response, y, to each factor
x1, . . . , xq as follows

y = β0 + β1x1 + β2x2 + · · ·+ βqxq + ε (5.18)

where ε is an error term which captures variations due to factors other than x1, . . . , xq.
It is common for the influence of a factor on the response to be dependent on the

values of other factors. This can be modeled with the following interaction model.

y = β0 +
q∑
i=1

βixi +
q−1∑
i=1

q∑
j=i+1

βijxixj + ε (5.19)

The above equation only includes interaction effects for combinations of two factors.
It is also possible to include higher order interaction effects as long as there is suffi-
cient experimental data to fit the model to. This is discussed further in section 5.3.2.
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Some factors can have a quadratic relationship with the response. That is, there is
a value of the factor which minimises the response and either increasing or decreasing
the factor will increase it or vice-versa. The following is the quadratic effects model

y = β0 +
q∑
i=1

βixi +
q−1∑
i=1

q∑
j=i+1

βijxixj +
q∑
i=1

βiix
2
i + ε (5.20)

The interaction and quadratic effects models are still linear models in the sense
that a new factor xij can be used to substitute xixj and put in the form

y = βTx+ ε (5.21)

where β is the vector of regression coefficients to be found and x contains the factor
values. Assuming the first value of β is β0, then the corresponding first element of
x is 1 to create the intercept term.

When an experiment is conducted, each run r in the experiment uses a particular
vector of factor values x(r) = {1, x(r)1, . . . , x(r)q} and has a corresponding observed
response y(r). This results in a set of equations:

y(r) = βTx(r) + ε(r) (5.22)

where r ranges from 1 to the number of runs in the experiment. The method of least
squares regression finds a vector of values, say β̂, which minimises the sum of the
squares of the error values. Details of how to do this are found in Montgomery [169]
and also well supported by the R language for statistical computing [160]. Many
experiments in this thesis generate censored data for which more advanced tech-
niques, summarised in section 5.3.5, are required. However, the principle of finding
coefficients to minimise error between the assumed model and real data is the same.

Once a response surface has been constructed, the point on the surface which
minimises the response (e.g. time to complete, requirements not met, etc.) can
be found. Since the surfaces are relatively simple and mainly convex (depending
on how dominant interaction terms are), standard optimisation packages such as
LINDO [172], are suitable for finding minimal points on the surface.

5.3.2 Factorial Designs

Each experiment consists of a number of runs of the search algorithm with different
input factor values. An experimental design provides a framework for deciding how
many runs are needed and which combination of factor levels to use for each run. A
full factorial design runs all combinations of each level of each factor. Therefore, an
experiment with q factors at d levels requires dq runs. For example, a full factorial
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design for 3 factors at 2 levels can be described by the following matrix:

x1 x2 x3

−1 −1 −1
+1 −1 −1
−1 +1 −1
+1 +1 −1
−1 −1 +1
+1 −1 +1
−1 +1 +1
+1 +1 +1

(5.23)

where −1 represents the low value for a factor and +1 is the high value. The actual
values should be chosen based on experience around an area of interest in the design
space. Often a series of screening experiments are performed in order to to build up
knowledge of the factor space before more in depth experiments are run [173].

A full factorial design, though not the most efficient in terms of the number of
runs, is able to fit a model with any number of interactions between factors. In order
to fit a quadratic effects model, at least 3 factor levels should be used.

5.3.3 Mixture Designs

There are times at which an experimenter is not interested in absolute factor values
but in ratios of factors which optimise the response. This topic is covered since it
applies to finding values for normalised cost function weightings as in equation (5.1)
where the result is independent of the sum of the weightings.

Let there be q factors which are known to sum to a constant value. This constant
is chosen to be 1 without loss of generality.

q∑
i=1

xi = 1 (5.24)

Using equation (5.24), the linear model from equation (5.18) can be written as

y = β0

(
q∑
i=1

xi

)
+ β1x1 + · · ·+ βqxq + ε (5.25)

Therefore, a suitable linear model for a mixture experiment is

y = (β0 + β1)x1 + · · ·+ (β0 + βq)xq + ε

= β′1x1 + · · ·+ β′qxq + ε
(5.26)

which notably lacks the intercept term of equation (5.18).
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The form for a mixture model with first order interactions is

y =
q∑
i=1

βixi +
q−1∑
i=1

q∑
j=i+1

βijxixj + ε (5.27)

Smith [174] reformulates equation (5.27) as follows

xq = 1− (x1 + · · ·+ xq−1) (5.28)

y = βq +
q−1∑
i=1

(βi − βq + βiq)xi +
q−2∑
i=1

q−1∑
j=i+1

(βij − βiq)xixj −
q−1∑
i=1

βiqx
2
i + ε (5.29)

y = β′0 +
q−1∑
i=1

β′ixi +
q−2∑
i=1

q−1∑
j=i+1

β′ijxixj +
q−1∑
i=1

β′iqx
2
i + ε (5.30)

which is now in the same form as the quadratic effects model in equation (5.20) for
q− 1 factors. This formulation is used for estimating regression coefficients in Cox’s
proportional hazard model in section 5.3.5 which requires factor values not to be
linear combinations of each other in order to uniquely determine the coefficients.

A suitable experimental design for fitting data to mixture models is the simplex
lattice design. Assuming the sum of the factors is 1, the factor values are set at
0, 1

m ,
2
m , . . . , 1 in order to achieve a m+ 1 level design.

For 3 factors at 3 levels, the values used would be:

x1 x2 x3

1 0 0
0 1 0
0 0 1
1
2

1
2 0

1
2 0 1

2

0 1
2

1
2

(5.31)

In general a simplex lattice design for q factors at m + 1 levels requires (q+m−1)!
m!(q−1)!

runs [169].

Sometimes, a centre point is added to the design since all of the above only
include mixtures where at least one element of the mixture is unused. For q factors,
the centre point is at (1

q ,
1
q , . . . ,

1
q ). This would be (1

3 ,
1
3 ,

1
3) for the above example.

In order to focus on a smaller area of the design space, a constrained mixture
can be used. Let the minimum value of factor i be li. The values x′i are chosen
according to a simplex lattice. The factor levels used in the experiment, xi are then
set according to

xi =
x′i − li

1−
∑q

j=1 lj
(5.32)
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If all lower bounds are the same so that l = l1 = · · · = lq then this reduces to

xi =
x′i − l
1− ql

(5.33)

5.3.4 Factors And Response For Algorithm Configuration

The aim of the experiments in this chapter is to configure the parameters and cost
function weightings for the search algorithm in figure 5.1. The response of interest
for these experiments will be the number of solutions evaluated by the search before
a valid solution is found. This is a response corresponding to the performance of the
algorithm. Factors which can affect this result are:

1. algorithm parameter values and cost subfunction weightings
2. controlled problem characteristics
3. uncontrolled problem characteristics
4. the pseudo-random number generator initialisation seed

Algorithm parameters and weightings are the main factors of interest for the exper-
iments in this chapter. These are easily controlled since they are specified for each
experiment in an XML configuration file, whose format is given in appendix D.

Each individual problem has the potential to generate a different response. The
Gentap tool described in section 4.4 accepts a number of parameters such as for the
number of tasks and mean processor utilisation. These characteristics can therefore
be controlled and their effects can be studied with the appropriate experimental
setup. Other aspects of the problem will still vary even if the problem generation
parameters are set in the exact same way. These are factors which are uncontrolled for
these experiments. There are good reasons for not controlling more characteristics:

• As the number of problem characteristics increases, the size of a problem class
with particular characteristic values diminishes. There is a risk that parameters
become overfitted to a small group of problems.
• There are already more controllable problem characteristics than can be fully

investigated in a reasonable amount of time given the available compute re-
sources.

The technique of blocking [169] is used to reduce the impact of problem instance
on results. Under this scheme each combination of factor values are run on the
same set of problem instances. The ability to easily make exact replicas of problem
instances is one of the advantages experimental computer scientists have over other
experimentalists in physical sciences.

The pseudo-random number generator seed influences the generation of the ran-
dom starting solution and subsequent decisions made by the search. The random seed
is set as one of the input parameters to the algorithm. The seed itself is generated
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by another random number generator using time based initialisation. It is assumed
that there is no correlation between random seed assignment and runs for particular
factor levels or problem characteristics so that over the course of an experiment the
results are not biased by this factor.

Since experiments are run on a variety of platforms, the time taken will be de-
pendent on the machine a job is sent to and whether other processes are running
on that machine as well as the factors listed above. Using the number of solutions
evaluated removes these nuisance factors from the experiment. Mean running times
will be given at appropriate points as a guide to how long a problem takes to be
solved. Machines in the BOINC connected grid typically have Intel Xeon processors
ranging from 1.6GHz to 2.66GHz.

Another response of interest is the robustness of particular parameter settings.
This can be measured using the variance of the performance response over a number
of runs. The robustness response will not be explicitly optimised for but can be used
to test whether a highly performant algorithm is robust.

The aim of these experiments is to find good parameter values for problems with
certain characteristics. These values are found based on the model of the response
surface. This model will be imperfect and so there is immediately some inaccuracy
in the method. No claims regarding optimality are warranted or even of much use.

Parameters fitted to a single problem instance may well produce a very exploita-
tive search which works well for that problem but fail to find solutions for other
problems which require more exploration. On the other hand, parameters found for
a very large test set of problems may perform poorly on a majority of problem in-
stances since the search is unable to exploit problem specific information. For this
reason, part of the investigation will include the separation of problems into classes
based on problem characteristics to see how much, if any, benefit is gained from
tuning parameters for specific characteristics.

There are dependencies between different cost function weightings, algorithm
parameters and problem characteristics. A global approach, running experiments
which varies all of these factors simultaneously would allow these interactions to be
captured and analysed. Unfortunately, since the number of runs in an experiment
typically grows exponentially with the number of factors, investigating all factors
simultaneously is not feasible. To attempt to do so would also be a very high risk
strategy since any small mistake found in the experimental procedure could result in
several weeks of computation time being wasted.

Experiments are broken down into a sequence of manageable chunks. Whilst
some interactions between factors will be lost, it is hoped that parameters can still
be found which enable the search algorithm to solve task allocation problems in a
moderate amount of time, which, after all, is the main objective. The hierarchical
design of the cost function gives a natural way to break down experiments. Also,
algorithm parameters will be tuned separately from cost function weightings.
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5.3.5 Survival Analysis

Survival analysis [170] is an area of statistics most commonly associated with medical
research but has a wide range of applications such as analysing failure of components
in engineering. Survival analysis is concerned with the prediction of the point in time
an event will occur based on data which has been previously collected.

Consider the following experiment. A researcher wants to gain an understanding
of how diet affects the chances of someone getting a particular disease. The factors
of interest could be age, the amount of fish eaten and total calories consumed per
week. If the experiment is conducted over a period of 5 years, it is expected that
some patients will get the disease while others will not. For those who do not, some
may get the disease after the trial has ended and some may never suffer from it in
their lifetimes. The data collected is right censored since for some participants the
event will occur after the trial has ended but exactly when is unknown.

The statistician wants to be able to answer the following types of questions:

1. What is the probability of someone getting the disease in the next n years?
2. At what time in the future is someone most likely to get the disease?

The above situation directly translates to being able to make predictions on the
performance of search algorithms. Input factors are algorithm parameter values, etc.
The event of interest is the termination of the search because a valid solution has
been found. However, since there is finite time available to perform experiments, a
run of the search algorithm is terminated if a maximum number of configurations is
evaluated and no valid solution has been found. In this case, the search may have
found a valid solution after a larger number of configurations. Therefore, the data is
right censored.

When dealing with censored data, it is easier to consider median rather than
mean response values. If a sample is taken, as long as fewer than 50% of values are
censored, the median is not affected by censoring. However, no accurate value for
the mean of a sample is available if some values are censored. This makes it difficult
to compare predictions made by models to actual values taken from samples.

The following terminology is used in survival analysis. f(t) is a density function
for the probability of an event occurring at a time w in the interval (t, t+ ∆t].

f(t) = lim
∆t→0

1
∆t

P (t < w ≤ (t+ ∆t)) (5.34)

The cumulative distribution F (t) gives the probability of an event occurring any
time before t, P (w ≤ t).

F (t) =
∫ t

0
f(t)dt = P (w ≤ t) (5.35)
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The survival function gives the probability that an event happens after time t.

S(t) = 1− F (t) = P (w > t) (5.36)

S(t) is a non-increasing function with S(0) = 1. The value of w that solves S(w) = 0.5
gives the median survival time [170].

The hazard function gives the probability of an event occurring in the next instant
of time given that the individual has survived up to time t. It is defined as

λ(t) = lim
∆t→0

1
∆t

P (w ≤ (t+ ∆t)|w > t) (5.37)

Whereas the survival function decreases with time, the shape of the hazard function
can be much more variable. Imagine the case of the hill descent algorithm with
randomised restart. Just after a restart, the probability of the search terminating
might be quite low and then increase as it approaches a local optima before decreasing
again at the next restart.

The hazard function can be related to the survival function as follows

λ(t) =
f(t)
S(t)

=
−S′(t)
S(t)

(5.38)

This allows estimations of one to be derived from the other.

5.3.5.1 Cox’s Proportional Hazard Model

It is not possible to use standard regression techniques to fit data to the models
listed in section 5.3.1 since the data is censored. The proportional hazard model of
Cox [175], designed for modelling survival data, is used instead. This model can be
used to find factor values which should make the search terminate, because a valid
solution has been found, as early as possible.

The Cox proportional hazard model assumes a hazard function of the following
form

λ(t|x) = λ0(t) exp(βTx) (5.39)

It is written as a function of time, t, for particular factor values x. λ0 is the baseline
hazard function, dependent on t, which captures hazard due to factors not included
in x. It is assumed that the contribution to the hazard by the factors of interest
is not dependent on time and that the baseline hazard λ0 is the same for all values
of x. The vector β is the vector of regression coefficients as explained in section 5.3.1.
Note that the vector x does not include a 1 as its first entry in this case since any
intercept term is subsumed into the baseline hazard function, λ0.

Let x and x′ be two possible vectors of factor values. The ratio of their hazards
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is a value independent of λ0.

λ(t|x′)
λ(t|x)

=
exp(βTx′)
exp(βTx)

(5.40)

This property of the proportional hazards model is used in the estimation of the
regression coefficients, β. This is now briefly explained for the case where every
uncensored run of the search within a single experiment completes at a unique time.

Let t(r) be the time at which experimental run r terminated and x(r) be the set
of factor values used for that run. Let there be k uncensored runs. Runs are ordered
by increasing termination time. Since termination times are unique, t(1) < t(2) <

· · · < t(k). The at risk set R(t(r)) gives the set of runs which are still live at time t(r),
including the run which did in fact terminate at that time.

The data gathered from the experiment informs us that from the at risk set
R(t(i)), it was in fact individual i which terminated at time t(i). If a proportional
hazard model represents this data then the probability of this occurring is

P (i ended at t(i)|1 member of R(t(i)) ended at t(i))

=
exp(βTx(i))∑

j∈R(t(i))
exp(βTx(j))

(5.41)

To obtain the best fitting model, a β must be found which maximises the prob-
ability for all of the termination times being as observed. This creates a likelihood
function to be maximised.

L(β) =
k∏
i=1

exp(βTx(i))∑
j∈R(t(i))

exp(βTx(j))
(5.42)

The method of doing this and for handling tied termination times is left to other
texts [170, 176]. However, given that this equation is the basis for model fitting to
the proportional hazard model, it demonstrates two important points:

1. As intuition would suggest, the amount of data available on which to fit the
data depends on the number of uncensored values

2. Equation (5.42) relies on the proportional hazard assumption to cancel out λ0

terms and the fitted model will be less accurate if this is not the case.

All survival analysis carried out in this thesis uses the R Survival package written
by Terry Therneau [177]. This includes analysis for data with tied survival times. It
also provides estimations of the survival function and median survival time.

Once a model has been fitted, factor values must be found which maximise the
hazard function, hence increasing the probability of the search terminating earlier.
This is achieved using the LINDO optimisation software [172].
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5.3.5.2 Identification Of Significant Factors

The value of the regression coefficient βi indicates the significance of factor xi. If a
factor j does not effect the hazard then βj = 0. The Wald statistic [170] gives a test
of the null hypothesis that βj = 0. The R survival package provides a value for this
test for each j.

5.3.5.3 Safety Of Proportional Hazard Model Assumptions For Relevant Factors

The proportional hazard model assumes that any change in the value of a factor
will increase (or decrease) the value of the hazard function function by the same
proportion for all times t. For different values of cost function weightings, this
is, perhaps, a reasonable assumption. However, for algorithm parameters such as
the number of configurations evaluated between cooling and size of neighbourhood
sample, this condition is unlikely to hold. Any changes which make the search more
exploitative may improve the chances of finding a solution early in the search but
also make the search more likely to become trapped in a local optima and so no more
or even less likely to terminate in the later stages of the search. Of course, behaviour
will be dependent upon the problems in the test set.

If the proportional hazard condition does not hold, estimations of median survival
time are certainly likely to be inaccurate. However, it is still possible that finding
values of factors which improve performance according to the model correlates with
an improvement in real performance if the model is not wildly inaccurate. It should
be emphasised once again, that it is good, rather than optimal, parameter values
which are sought. Any predictions made by a model will be tested with further
experiments. Also, attention should always be paid to the actual data obtained from
the experiment where it would be expected that the best performing data point
included in the experiment should not be too dissimilar to the best factor values
predicted by a model.

5.4 Algorithm Configuration Experiments

This section describes a series of experiments which were conducted to configure and
then evaluate the algorithm given in figure 5.1. Nine experiments were carried out.
They can divided into four groups according to their purpose:

1. Algorithm configuration — Experiment 5.1 finds weightings for the subfunc-
tions in bottom level of the hierarchy in figure 5.6. Experiment 5.2 finds weight-
ings at the next level up. Experiment 5.3 tunes parameters specific to simulated
annealing. Experiment 5.4 compares simulated annealing to random search and
a tuned hill descent algorithm to decide which local search variant works best.

2. Investigate schedulability test variations — One of the main motivations given
in the introduction of this chapter for using heuristic search was the ability to
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Parameter Attributes

number-of-tasks min=max=48
period min=104, max=107, granularity=104

utilisation-per-processor min=max=0.6
distribution type=beta, alpha=0.7

utilisation-per-network min=max=0.5
distribution type=beta, alpha=0.7

tasks-per-transaction min=max=8
transaction-length min=max=0.6
messages-per-task min=max=1.5
transaction-utilisation-distribution equal=true
tasks-per-processor min=max=8
number-of-networks min=max=2
processor-connectivity min=max=1
network-bandwidth min=max=1
network-latency min=max=0
processor-network-bandwidth min=max=1024
processor-network-latency min=max=0

Table 5.3: Gentap parameters for problem generation in initial configuration experiments

easily change between schedulability tests. Experiment 5.5 tests whether this
is possible.

3. Investigate problem characteristics variations — The experiments in this group
both investigate the effectiveness of the cost subfunctions for problems with
different characteristics and also the relationship between certain characteristics
and problem difficulty. Experiments 5.6 and 5.7 find the best way of retuning
weightings at each level of the cost subfunction hierarchy for selected problem
characteristic combinations.

4. Check algorithm robustness and scalability — Experiment 5.8 checks whether
performance of the algorithm is consistent across a set of problems with the
same characteristics. Experiment 5.9 increases problem sizes to find the limits
of the algorithm.

For experiments 5.1 to 5.4, 50 problems were generated, all with the same con-
trollable characteristics. These characteristics are described by the parameter values
given to the Gentap task allocation problem generator described in chapter 4. The
parameter values, shown in table 5.3, were chosen so that the problems were non-
trivial but within bounds that would be unlikely to generate unsolvable problems.

5.4.1 Experiment 5.1 — Guidance Heuristic Weightings

The first experiment was designed to find some good weightings for the cost subfunc-
tions linked to the guidance heuristic. These are the functions labelled g2, . . . , g9 in
section 5.2.3.1. The search algorithm was configured to perform simulated annealing
with inittemp = 0.05, ssize = 1, maxinner = 3000, randrestart = −1. A reminder
of the meaning of each parameter is given in table 5.4. wsched and wguidance were
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Parameter Description

randrestart Number of loop iterations before restarting at random solution. -1
implies never restart

ssize Number of solutions sampled from neighbourhood per iteration
inittemp Initial temperature used for simulated annealing
maxinner Number of loop iterations between temperature reductions

Table 5.4: Parameters for search algorithm in figure 5.1

both set to 100 so that the guidance heuristic and schedulability constraints were
equally weighted. These values were chosen based on experience so that the search
would not be over exploitative and be likely to become trapped in local optima.
Subsequent experiments endeavour to modify these values to improve performance
further. The response used to measure performance is the number of configurations
evaluated before a solution meeting all schedulability constraints is found.

Values for the weightings w2, . . . , w9 were generated according to a four level
mixture design for 8 factors. Weighting values are set to integers for convenience
with

∑9
i=2wi = 90000. The mixture was constrained so that the minimum value

of any weighting was 3. If 0 was used it would mean that the cost subfunction
was effectively removed and would no longer provide guidance to the search. The
behaviour at the edge of the factor value design space may be quite different to
that predicted by behavioural trends of interior points and therefore need to be
modelled separately. Elimination of cost subfunctions allows an overall cost value to
be computed more quickly. This introduces the possibility that by removing some
subfunctions, a worse performing search in terms of solutions evaluated may find a
solution faster because of a reduction in time per evaluation. This is another reason
that 0 valued weightings should be investigated separately. It is not done in these
experiments.

The mixture design for 8 factors at 4 levels requires 120 runs. A blocked de-
sign [169] was used so that the 120 factor value combinations were run for the same
50 problems requiring 6000 runs in total.

The initial data analysis was based on studying the raw data rather than a statisti-
cal analysis. The 120 weighting combinations were labelled param000, . . . , param119.
The frequency with which a particular parameter combination gave the best response
for a problem is shown in figure 5.7. Only 7 of the 120 weighting combinations were
ever the best performing. According to the formula of Korwar and Serfling [178], 41
unique combinations would be expected if 50 random samples were taken from a set
of 120 with replacement. This strongly suggests that a change in weightings has an
effect on the search performance.

The leading weightings combination was param116 which was best for 22 of the
50 problems with param082 the second most frequent best combination.

Figure 5.8 shows how many times a weighting combination was any one of the
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Figure 5.7: Frequency of parameter combination giving best median performance
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Name Weight Values w2, . . . , w9 Median I.Q.R. Censored Predicted
Median

param082 3, 3, 29995, 59887, 3, 3, 3, 3 41516.5 21065.25 0/50 78624.0
param116 3, 3, 3, 89979, 3, 3, 3, 3 42040.0 33057.25 7/50 148420.0
param061 3, 29995, 3, 59987, 3, 3, 3, 3 56109.5 46452.75 3/50 137401.0
param068 3, 3, 59987, 29995, 3, 3, 3, 3 59453.0 23762.75 0/50 63615.0
param107 3, 3, 3, 59987, 3, 29995, 3, 3 62223.0 19812.25 0/50 80044.0
param097 3, 3, 3, 59987, 29995, 3, 3, 3 72203.0 27129.75 0/50 130582.0
tuned 3, 3, 40849, 37881, 3, 11255, 3, 3 64357.0 24256.00 0/50 58002.0

Table 5.5: Best performing weightings by median and tuned weightings

best three combinations for a problem. In this graph, the order of param082 and
param116 is reversed with param082 being one of the best 3 parameter combinations
for 42 of the 50 problems. This shows that it is fairly robust to the differences in
problems due to uncontrolled characteristics.

Table 5.5 shows the top 6 weighting combinations according to median response.
The interquartile range and number of censored responses are also shown to give an
idea of the robustness of each weighting combination. Recall that a censored response
is one where the search terminated after the maximum number of evaluations (5 ·105

in this case) without finding a valid solution. param082 is as good or better than
other weighting combinations on measures of performance and robustness. It has
high values for weightings w4 and w5 which are related to the cost subfunctions for
grouping communicating tasks.

A Cox’s proportional hazard model was fitted to all of the data and the weightings
which maximised the hazard were also tested by running them on all 50 problems.
Other algorithm parameters kept the same values as in the experiment which col-
lected data for the model. These weightings are labelled tuned in table 5.5. The
results utilised the grouping subfunctions and also brought in an element of the load
balancing subfunction. The result of using these weightings are good but did not
outperform the best performing data points from the experiment demonstrating the
imperfection fitted model.

The survival curve predicted by the model is shown in figure 5.9. It predicts
that the probability of a search lasting longer than 1.5 · 105 is close to 0. The
predicted median survival time is 58002 evaluations which is less than the tested one
of 64357. Table 5.5 also lists the median predicted by the model for each weighting
combination.

A boxplot of results from weighting combinations in table 5.5 is shown in fig-
ure 5.10. The extents of each box show the interquartile range and the median is
marked inside each box. The lines protruding from the boxes show the range of
values up to 1.5 times the I.Q.R. away from the median. Any points outside of this
range are outliers, marked with a dot. The plot clearly shows how param116 leads to
an aggressive but fragile heuristic working very well for some problems but poorly on
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others. The tuned parameters appear robust with a narrow range of response values
but are dominated by param082. A paired Wilcox test rejects the null hypothesis
that the mean response from param082 weightings is the same as tuned weightings at
the 99% confidence level. The p-value returned is approximately 2 · 10−5. A further
experiment was conducted which evaluated both the tuned weightings and param082

weightings over the 50 problems for 3 repetitions resulting in 150 runs of each weight-
ing combination. This confirmed the initial result that the performance improvement
given by param082 is statistically significant at the 1% level. In this latter experi-
ment the median for param082 was 43944.5 and 60565 for the tuned weightings with
similar interquartile ranges as before. The similarity to previous results with these
weightings goes some way to demonstrate that differences due to the pseudo-random
number generator seed do not greatly change the performance of the algorithm.

This experiment has shown that a response surface methodology with a Cox’s pro-
portional hazard model is an effective way of obtaining good cost function weightings
but at the same time has shown that better weighting combinations may exist due to
imperfections in the model. A large number of factors requires a model to be fitted
to high dimensional data and limitations in the shape of a quadratic mixture model
will not be a perfect fit.

However, there are a number of reasons which suggest that the method is effective.
Firstly, the tuned weighting combination is comparable or better than nearly all
sampled design points in the original experiment. Only one is significantly better.

Simply selecting the best design point from the experiment is not a recommended
strategy since each run only has at most 3 above-minimum weighting values whereas
the model uses information across all of the runs. A review of the fitted regression
coefficients (values contained in β in equation (5.42)) gives evidence that the model
has captured some of the algorithm’s behaviour. The two most significant factors
correspond to weightings for the two grouping factors with w4 having a higher co-
efficient (βw4 = 1.27 · 10−4) than w5 (βw5 = 7.23 · 10−5). The reason that this isn’t
made evident in the tuned weighting combination is due to the effects of interactions
between factors. If a model without interaction effects is used, then the weighting
combination suggested by the model is in fact identical to param116 which is highly
performant but not robust. The interaction model has been successful in recognising
some of the poorer runs from using param116 and similar weighting combinations
and produced weightings which have both good performance and robustness charac-
teristics.

5.4.2 Experiment 5.2 — Schedulability Versus Guidance

This experiment is concerned with finding good values for wsched and wguidance which
balance the effect of the guidance heuristic with penalising the search for unsatisfied
schedulability constraints. It is a continuation of experiment 5.1 and uses the same
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Figure 5.11: Results of screening experiment changing balance between schedulability
penalty and guidance heuristic

set of problems as a test set. The guidance subfunction weightings are set to the
tuned weightings combination found in experiment 5.1. Since there are only two
weightings at the second level of the weightings hierarchy in figure 5.6, it can be
treated as a single factor; wguidance is fixed at 100 and wsched is varied. The chosen
factor of interest is in fact wsched

wguidance
. Within this section b will represent this factor

which balances the guidance heuristic against schedulability constraints.

The first set of runs for experiment 5.2 varied b between 0.5 and 10. A bias
was placed towards favouring schedulability over the guidance heuristic since it was
expected that the heuristic would be imperfect and weighting it too highly would
lead to poor performance. The results in figure 5.11 show that this is not in fact
the case. The performance continued to increase for values of b as low as 0.5, the
smallest value tested, showing the heuristic to work better than expected.

Since it was still assumed that the guidance heuristic was imperfect, this first
set of runs was treated as a screening experiment and further runs with values of b
as low as 0.05 were used to supplement the data. Table 5.6 shows the results from
runs with b set between 0.05 and 2. It is not until the value drops below 0.3 that
performance begins to fall off. This shows that the guidance heuristic tuned in the
previous experiment is very well suited to this particular set of test problems.

The data is also plotted in figure 5.12 with box plots showing the experimental
data and the line showing the predicted median response from fitting a Cox’s pro-
portional hazard model. With only a single factor and a large amount of data (7
factor levels over 50 problems), the model looks to be a good fit to the data. The
predicted best value for b is close to 0.6 and so 60 was chosen as the value for wsched
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wsched/wguidance Median I.Q.R. Censored

0.05 71558.5 46839.75 0/50
0.15 42566.5 22128.75 0/50
0.30 35046.5 23190.75 0/50
0.50 35076.5 17127.00 0/50
1.00 57781.0 57781.00 0/50
1.50 81538.0 81538.00 0/50
2.00 97946.5 97946.00 1/50

Table 5.6: Results of experiment to tune balance between constraints and guidance
heuristic
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Figure 5.12: Box plot schedulability / guidance balance experiment data with median
response predicted by model

in the next experiment.

5.4.3 Experiment 5.3 — Simulated Annealing Parameters

Experiment 5.1 and experiment 5.2 have found weightings for the cost function which
already enable simulated annealing to solve task allocation problems in the test
set with adequate efficiency. In these previous experiments, algorithm parameters
(as opposed to weighting values) were chosen based on experience with other task
allocation problems. Experiment 5.3 tries to further improve performance of the
simulated annealing algorithm by tuning algorithm parameters specifically for the
problem test set and the weighting values found in previous experiments.

There are three factors, maxinner, ssize and inittemp. Refer back to figure 5.1 and
table 5.4 for an explanation of these parameters. A 3 level full factorial experimental
design was used. The values of ssize used were 1, 4 and 8. Once again, the censoring
level was set at 5 ·105 evaluations. Note that this implies fewer search loop iterations
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maxinner inittemp ssize Median I.Q.R. Censored

1000 0.005 1 24202.5 8344.00 1/50
1000 0.005 4 85782.0 * 24/50
1000 0.010 1 93672.5 11210.75 0/50
1000 0.010 4 28006.0 54985.00 4/50
3000 0.005 1 40660.5 20623.25 0/50
3000 0.005 4 443684.0 * 24/50
3000 0.010 1 246447.5 25021.50 0/50
3000 0.010 4 31372.0 49827.00 1/50
6000 0.005 1 54764.0 36449.75 0/50
6000 0.005 4 140804.0 * 16/50
6000 0.010 1 462828.5 37918.00 10/50
6000 0.010 4 27632.0 49883.00 1/50

Table 5.7: Data from screening experiment to tune simulated annealing parameters

for ssize > 1.

With ssize=8, all combinations of the other two factors had more than half the
runs censored resulting in a median at the censoring level of 5 · 105. This was also
the case for all runs with inittemp=0.002 which was tried at 0.002, 0.005 and 0.010.

The data for the remaining factor levels are shown in table 5.7. No interquartile
range values are given where the entire upper quartile is censored. The data show
a large interaction effect between inittemp and ssize. For each maxinner level, the
median responses when inittemp and ssize are either both high or both low are better
than when they oppose each other. A low value of inittemp and high value of ssize

make the search too exploitative and the reverse is over explorative.

The best design point on all criteria is the first one with maxinner = 1000,
inittemp = 0.005, ssize = 1. There does not seem to be any advantage in using
both temperature and sample size to control exploitation versus exploration.

Further experiments were conducted in the region of this good design point with
sample size fixed at 1. Four levels of each factor were used with maxinner ranging
between 500 and 2000 and inittemp ranging between 0.003 and 0.009.

The results of this experiment are shown in table 5.8 and a Cox’s proportional
hazard model fitted to the data is displayed in figure 5.13. The model appears to be
more accurate for high values of inittemp and somewhat pessimistic at lower values.
This is due to the points with a initial temperature of 0.003 having many censored
points though still maintaining a low median response. This is especially true for the
point at (500, 0.003). This is a highly exploitative search, the low median showing
many problems were solved quickly, but when a solution was not found early on in
the search it was unable to escape from local optima.

A minimum point was found on the fitted surface at maxinner = 1906, inittemp =
0.0035. Running a test with these parameters on the 50 problems gave a median
response of 14730 and interquartile range of 9947.25 with a single censored value.
This is a substantial improvement on the median response value of 58002 found
before experiments 5.2 and 5.3 tuned values to wsched and the simulated annealing
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maxinner inittemp Median I.Q.R. Censored

500 0.0030 18512.0 * 22/50
500 0.0050 18283.5 6716.75 1/50
500 0.0075 40463.5 9950.00 5/50
500 0.0100 51732.0 7318.25 1/50

1000 0.0030 15114.0 19301.50 9/50
1000 0.0050 25466.5 8135.75 0/50
1000 0.0075 64230.0 6799.50 1/50
1000 0.0100 94980.0 9128.25 0/50
1500 0.0030 12730.0 14494.00 6/50
1500 0.0050 31295.5 14122.25 0/50
1500 0.0075 88649.0 8529.00 0/50
1500 0.0100 131213.5 13098.75 0/50
2000 0.0030 13600.0 16401.75 7/50
2000 0.0050 36555.5 10117.25 0/50
2000 0.0075 112493.5 15988.75 0/50
2000 0.0100 168108.5 12606.75 0/50

Table 5.8: Data from experiment to refine simulated annealing parameters
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Figure 5.13: Model fitted from experiment to refine simulated annealing parameters
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parameters.

Repeated tests with these tuned parameters always resulted in 1 or 2 censored
values. Moving from this tuned design point along the diagonal valley of the surface
in figure 5.13 reaches the tested design point at (1500, 0.005) with a median response
of 31295.5. This point was found to be more reliable in terms of solving all 50
problems within the censoring limit at the expense of some performance.

5.4.4 Experiment 5.4 — Algorithm Variations

Experiment 5.4 tested the other search algorithm variants implemented by the algo-
rithm in figure 5.1 so that they could be compared with the tuned simulated annealing
algorithm.

By selecting randrestart=0, the algorithm performs a random search, generating a
new solution on every iteration according to the method in section 5.2.2 for generating
a random solution. This type of search has the advantage of being simple. It is
undirected so there is no benefit gained from taking the extra time to calculate
guidance heuristics making it more efficient per configuration evaluated. However,
within a censoring limit of 5 · 105 evaluations, the search failed to find one valid
solution for any of the 50 problems. Therefore further experiments with random
search were abandoned.

The alternative form of guided local search which is implemented is hill descent
with random restart. To be fairly compared to simulated annealing, it was necessary
to first tune the algorithm’s parameters. It is assumed that the weightings found
previously for simulated annealing are also good for hill descent since it is a similar
local search algorithm and the neighbourhood definition is also unchanged.

It is not possible to exhaustively evaluate all configurations in a neighbourhood to
detect a local optimum. The randrestart parameter sets the number of configurations
which can be evaluated without any improvement to the best solution before the
search restarts from a new random solution. This is therefore acting as a heuristic
for detecting local optima. If randrestart is set too high then the search wastes time
in a local optima when it could be exploring a new area of the solution space. If it
is set too low then the search will restart too soon, possibly missing good solutions.

The first set of runs used a 3 level full factorial experimental design with ssize

set to 1, 4 and 8 and randrestart set to 1000, 3000 and 5000. There was a continu-
ous pattern of improvement towards lower values of randrestart. Given the previous
explanation, it was expected that there would be a low level of randrestart where
performance would begin to worsen. Further runs of the algorithm were conducted
with randrestart set at 750, 500 and 250 with the same ssize levels as before. The
results for all factor combinations are shown in table 5.9.

Viewing the summary statistics in table 5.9, no obvious pattern emerges. With
ssize set to 1, then the behaviour with relation to randrestart is as expected. Perfor-
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ssize randrestart Median I.Q.R. Censored

1 250 169147.0 237283.00 5/50
1 500 71110.5 79170.75 0/50
1 750 52242.5 79581.75 1/50
1 1000 81872.0 115153.75 0/50
1 3000 73307.0 176858.00 2/50
1 5000 87324.5 220277.00 3/50
4 250 75638.0 97700.50 1/50
4 500 98348.0 155899.75 2/50
4 750 82910.0 112580.75 2/50
4 1000 143350.0 229969.75 3/50
4 3000 266107.5 393101.25 12/50
4 5000 360691.0 * 17/50
8 250 105072.0 138597.75 0/50
8 500 97225.0 176015.25 3/50
8 750 128844.5 288461.00 2/50
8 1000 106956.0 233376.75 5/50
8 3000 271893.5 394872.75 13/50
8 5000 460138.0 * 24/50

Table 5.9: Data generated for investigation of hill descent with random restart

mance is best for randrestart set to 750 but degrades either side of this value.

For larger sample sizes, this pattern does not emerge. Given that more solutions
are being evaluated per iteration, it is perhaps the case that fewer iterations are
required to detect a local optimum. Therefore, performance may improve further
for even lower values of randrestart at larger sample sizes though this has not been
tested.

The median response values in table 5.9 are competitive with the previous result
for simulated annealing but the interquartile range values are much higher. This
suggests that while simple hill descent with restarts can perform well, it is more fragile
to differences between problems and / or the choice of random number generator
initialisation seeds.

An attempt was made to a fit a model to the data. This is shown in figure 5.14.
Due to the large amount of variance at each factor combination, it is difficult to fit
a model that captures the behaviour. It can be seen that the median data points do
not lie near the surface of predicted values.

While it may be possible to achieve better results with higher values of ssize

and lower values of randrestart, the algorithm was rejected at this stage because its
performance is less predictable than simulated annealing.

5.4.5 Experiment 5.5 — System Model Variations And Time Required

The aim of experiment 5.5 was to test the simulated annealing algorithm tuned in
experiments 5.1 to 5.3 on systems using different scheduling models and schedulability
tests. The weightings were set to those labelled tuned in table 5.5, ssize was set to
1, inittemp to 0.005 and maxinner to 1500. wsched was set to 60 and wguidance to 100.
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Figure 5.14: Surface fitted to responses from hill descent with random restart algorithm

The algorithm was run once again on the same set of test problems which specified
WCDO as a schedulability test. All problems were solved with no censored values.
The median number of configurations evaluated was 30820 and the mean was 30567.
This median value matches closely with the value of 31295.5 obtained at the end
of experiment 5.3 supplementing the evidence that the performance is robust to
changes in random number seeds. Over all the problems, the algorithm evaluated
491 evaluations per second on average. This equates to 63 seconds at the median
response value.

WCDOPS++ is a less pessimistic but more compute intensive form of the WCDO
analysis. They were previously compared in sections 2.2.3.6 and 4.2.3. The problem
test set was replicated except that the schedulability test was changed from WCDO
to WCDOPS++. The algorithm was run on this replicated test set with identical
parameters. All 50 problems were solved with a median response of 23236.5 and
mean of 23048. The mean rate of configurations evaluated was 37.406 evaluations
per second. The is equivalent to 621 seconds at the median response.

These results clearly show the effects of changing the schedulability test. Using
the less pessimistic test, the algorithm required approximately 10 times longer to find
a valid solution even though fewer configurations needed to be evaluated. The more
pessimistic analysis is therefore preferable purely on the basis of the performance of
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the simulated annealing algorithm.

There are, however, good reasons why an engineer would prefer to use a less
pessimistic test. It could be the case that no schedulable solution can be found with
the WCDO test even when one exists which would be detected by WCDOPS++.
Furthermore, a more accurate schedulability test may allow a solution to be found
on a hardware platform with fewer processors saving costs and reducing energy usage.
WCDO is still the preferred choice throughout this work.

The final set of runs in this experiment tested the algorithm on problems using
a schedulability test based on the construction of a static cyclic schedule. The range
of period values in the test set used up to this point has a theoretical maximum
LCM of at least 9.99 · 109. This value comes from the data in table 5.3 and equa-
tion (4.3). Even though the LCMs of period values in the actual test set are below
this, constructing schedules whose length is this order of magnitude is not feasible
within a search algorithm which will need to evaluate many thousands of solutions.
For this reason, a new test set was generated. The parameters provided to Gentap
were the same as those in table 5.3 except period was given attributes min = 2.5 ·105,
max = 106 and granularity = 2.5 · 105.

The algorithm was run on this newly generated set of problems using static cyclic
scheduling. 42 of 50 problems were solved within the censoring limit. The median
number of configurations evaluated was 42961.5. This was done at a rate of 313
evaluations per second.

Experiment 5.5 has shown the flexibility of using a metaheuristic search based
approach to task allocation. If a new scheduling mechanism is used and a schedula-
bility test implementation is available then the same algorithm can be applied with
limited additional effort. For this experiment, the algorithm was not reconfigured
for each specific test and doing so may avail better performance.

The efficiency of a schedulability test is key to the overall performance of the al-
gorithm as was demonstrated by the comparison between WCDO and WCDOPS++.
A very complex or inefficiently implemented schedulability test is likely to push the
boundaries of what is considered acceptable performance.

The time taken to execute a test will not only depend on the test but also the
system it is being applied to. It is expected that larger systems will not only require
more configurations to be evaluated before a valid solution is found but the time to
evaluate each configuration will also increase. Experiments 5.6 to 5.9 look at the
effects problem characteristics have on algorithm performance.

5.4.6 Experiment 5.6 — Problem Characteristic Investigation

The aim of experiment 5.6 is to relate the performance of the simulated annealing
search algorithm to different task allocation problem characteristics. The config-
urable weights in the guidance heuristic are intended give the algorithm flexibility
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Parameter Attributes

number-of-tasks min=max=48
period min=104, max=107, granularity=104

utilisation-per-processor min=max=0.5
messages-per-task min=max=1.5
transaction-utilisation-distribution equal=true
number-of-networks min=max=2
network-bandwidth min=max=1
network-latency min=max=0
processor-network-bandwidth min=max=1024
processor-network-latency min=max=0

Table 5.10: Problem characteristics kept constant throughout experiment 5.6

Parameter High Value Low Value Factor Label

tasks-per-processor min=max=12 min=max=6 x1
processor-connectivity min=max=1 min=max=0.5 x2
utilisation-per-network min=max=0.90 min=max=0.45 x3
tasks-per-transaction min=max=12 min=max=6 x4
transaction-length min=max=0.6 min=max=0.3 x5

Table 5.11: Problem characteristics investigated in experiment 5.6

for problems with different characteristics. In the second part of the experiment, the
problems are classified according to the most dominant characteristics and parame-
ters are tuned for each class of problem. The hypothesis is that tuning the algorithm
separately for smaller classes of problem should increase overall performance.

Tables 5.10 and 5.11 list the Gentap parameter values used for these experi-
ments. Table 5.10 lists the problem characteristics whose values were kept constant
throughout the investigation. Table 5.11 lists characteristics which were varied be-
tween two levels in the experiment. Refer to section 4.4.7 for an explanation of
how the utilisation-per-network parameter is translated into message sizes. The algo-
rithm for generating a network topology from the processor-connectivity parameter
was given in section 4.4.3.

A concious decision was made not to vary the number-of-tasks and utilisation-per-

processor for this experiment but rather investigate the range of difficulty problems
of the same size with the same per-processor utilisation can present. The limitations
of the search algorithm with regards to problem size are studied in experiment 5.9.
It was not possible to vary all parameters simultaneously due to the limited resources
available for each experiment. Five problem characteristic parameters were varied
between two levels, creating 25 = 32 classes of problem. Three instances of each class
of problem were generated so the test set included 96 problems in total.

An 8 factor, 4 level mixture design could have been used for setting the guidance
heuristic weightings as in experiment 5.1. However the 120 ∗ 96 = 11520 runs re-
quired were judged to be too many to be completed in a reasonable amount of time.
A compromise was made to use a 3 level mixture design with additional interior
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Name Weight Values w2, . . . , w9 Median I.Q.R. Censored Predicted
Median

param043 4283, 4283, 4283, 56238, 4283,
4283, 4283, 4284

28685.0 48383.75 21/96 109624.0

param024 3, 3, 3, 44991, 44991, 3, 3, 3 36497.0 51723.50 19/96 75855.0
param028 3, 3, 3, 44991, 3, 44991, 3, 3 51660.0 122124.25 22/96 94173.0
param015 3, 3, 89979, 3, 3, 3, 3, 3 54021.5 320970.00 26/96 113361.0
param039 4283, 4283, 56238, 4283, 4283,

4283, 4283, 4284
55190.5 103565.00 23/96 109038.0

param013 3, 44991, 3, 44991, 3, 3, 3, 3 55581.0 322196.75 31/96 118577.0
group0 3, 3, 3, 38894, 33482, 4067,

13545, 3
37889.0 40140.75 16/96 72873.0

Table 5.12: Best performing weightings by median and tuned weightings

design points. A regular 3 level mixture experimental design of the type described
in section 5.3.3 was used for the first 36 runs for each problem. To this, a centroid
design point was added. Further design points were then generated as follows. For q
factors, a possible mixture is to have one factor level at 1

q + 1
2 and the other factors

set to 1
q −

1
2(q−1) . The matrix below shows these extra design points for 8 factors

along with the centroid point.

w2 w3 w4 w5 w6 w7 w8 w9

5
8

3
56

3
56

3
56

3
56

3
56

3
56

3
56

3
56

5
8

3
56

3
56

3
56

3
56

3
56

3
56

3
56

3
56

5
8

3
56

3
56

3
56

3
56

3
56

3
56

3
56

3
56

5
8

3
56

3
56

3
56

3
56

3
56

3
56

3
56

3
56

5
8

3
56

3
56

3
56

3
56

3
56

3
56

3
56

3
56

5
8

3
56

3
56

3
56

3
56

3
56

3
56

3
56

3
56

5
8

3
56

3
56

3
56

3
56

3
56

3
56

3
56

3
56

5
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

(5.43)

These 9 design points along with the previous 36 result in a total of 45 ∗ 96 = 4320
runs in total.

Table 5.12 lists the best design points from the experimental runs and an addi-
tional point generated from maximising the hazard based on a fitted Cox’s propor-
tional hazard model. For this experiment, this point is labelled group0. The quality
of the model is consistent with that obtained in experiment 5.1; the best couple of
design points have a lower median than the group0 design point but this latter point
appears more robust with a lower interquartile range and fewer censored results.
Actual medians were once again lower than those predicted by the model.

The weighting combination labelled group0 in table 5.12 was obtained by fitting
a model to the entire set of problems which had characteristic variations as listed in
table 5.11. The next step of this experiment divided problems into smaller groups,
know as problem classes, according to their characteristics. The aim was to improve
performance by finding weightings which are a good fit for certain characteristics.
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factor coef z p

x1 0.44121 3.9446 8.0e-05
x2 0.38951 3.5929 3.3e-04
x3 -0.14543 -1.3176 1.9e-01
x4 -1.13087 -8.9173 0.0e+00
x5 -0.60615 -5.1608 2.5e-07
x1:x2 -0.12162 -0.8837 3.8e-01
x1:x3 -0.11073 -0.7904 4.3e-01
x1:x4 0.44212 2.8961 3.8e-03
x1:x5 0.03653 0.2500 8.0e-01
x2:x3 -0.19725 -1.4953 1.3e-01
x2:x4 0.35177 2.3591 1.8e-02
x2:x5 -0.00380 -0.0267 9.8e-01
x3:x4 0.17192 1.1255 2.6e-01
x3:x5 0.17714 1.2250 2.2e-01
x4:x5 -1.82425 -8.9311 0.0e+00
x1:x2:x3 0.33862 2.3140 2.1e-02
x1:x2:x4 0.04626 0.2837 7.8e-01
x1:x2:x5 -0.18052 -1.1393 2.5e-01
x1:x3:x4 -0.28687 -1.7640 7.8e-02
x1:x3:x5 -0.13563 -0.8564 3.9e-01
x1:x4:x5 2.06867 11.1710 0.0e+00
x2:x3:x4 -0.09313 -0.6268 5.3e-01
x2:x3:x5 0.00426 0.0293 9.8e-01
x2:x4:x5 -0.31933 -1.9695 4.9e-02
x3:x4:x5 0.29784 1.8393 6.6e-02

Table 5.13: Output from R coxph function fitting model with problem characteristic factors

The issue of how to create problem classes from combinations of characteristic values
is now addressed. The issue of which characteristics to use and how many are dealt
with separately in the next two sections.

5.4.6.1 Choosing Characteristics For Problem Classes

The data obtained in the previous set of runs can also be viewed as performing a
full factorial over the five problem characteristics listed in table 5.11. In order to
decide how to classify the problems, an interaction model was fitted to the data
where problem characteristics were used as factors rather than weightings.

Table 5.13 lists partial output from the R coxph function used with the problem
characteristic interaction model. The first column labels match the factor labels
in table 5.11. x:y is the term for the interaction between x and y. The remaining
table columns are the regression coefficients, the Wald statistic, a measure of factor
significance, and a p-value. The p-value is related to the null hypothesis that the
regression coefficient for that factor is in fact 0.

The most significant individual factor is x4 followed by x5 and x1. These relate
to the tasks-per-transaction, transaction-length and tasks-per-processor characteristics
respectively. The most significant factor overall is the interaction between these three
factors. This was used as the basis to classify the problems.

Table 5.14 gives a different view of the data classified by combinations of the
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Problems Median I.Q.R. Censored

low tasks / proc., low tasks / trans., short trans. 110604.5 104148.25 41/540
low tasks / proc., low tasks / trans., long trans. 151019.5 182733.25 94/540
low tasks / proc., high tasks / trans., short trans. 201881.0 * 175/540
low tasks / proc., high tasks / trans., long trans. * * 485/540
high tasks / proc., low tasks / trans., short trans. 78730.5 90505.25 16/540
high tasks / proc., low tasks / trans., long trans. 123557.0 153931.75 56/540
high tasks / proc., high tasks / trans., short trans. 105709.5 173914.50 83/540
high tasks / proc., high tasks / trans., long trans. 131671.5 * 152/540

Table 5.14: Result data split by according to problem characteristic

Name Problems Weight Values w2, . . . , w9

group0 all 3, 3, 3, 38894, 33482, 4067,
13545, 3

group1 low tasks / trans. 3, 3, 3, 49407, 3, 40575, 3, 3
high tasks / trans. 3, 3, 3, 34682, 24264, 3, 31039, 3

group2

low tasks / trans., short trans. 3, 56619, 3, 33363, 3, 3, 3, 3
low tasks / trans., long trans. 3, 3, 3, 49600, 3, 40382, 3, 3
high tasks / trans., short trans. 3, 89979, 3, 3, 3, 3, 3, 3
high tasks / trans., long trans. 3, 3, 69400, 3, 3, 20582, 3, 3

group3

low tasks / proc., low tasks / trans., short trans. 3, 57393, 3, 32589, 3, 3, 3, 3
low tasks / proc., low tasks / trans., long trans. 3, 3, 3, 47009, 3, 42973, 3, 3
low tasks / proc., high tasks / trans., short trans. 3, 3, 3, 31582, 4393, 3, 54010, 3
low tasks / proc., high tasks / trans., long trans. 11137, 25323, 17713, 3, 3, 9614,

26204, 3
high tasks / proc., low tasks / trans., short trans. 3, 3, 3, 45993, 43989, 3, 3, 3
high tasks / proc., low tasks / trans., long trans. 3, 3, 3720, 43805, 42460, 3, 3, 3
high tasks / proc., high tasks / trans., short trans. 3, 3, 82794, 3, 3, 7188, 3, 3
high tasks / proc., high tasks / trans., long trans 3, 3, 72829, 3, 3, 17153, 3, 3

Table 5.15: Weightings derived from models fitted to classified problems

tasks-per-transaction, transaction-length and tasks-per-processor characteristics. Three
behavioural patterns which relate to these characteristics are evident. Problems with
more tasks per processor are easier to solve than those with few. This is explained by
the fact that a problem with the same utilisation per processor and more processors
results in a higher mean task utilisation and hence is similar to a coarser grained bin
packing problem. Problems with more tasks per transaction are harder to schedule
since it is more difficult to partition tasks in a way that removes inter-processor
communication. Long transactions are more difficult to schedule than shorter ones.
A shorter transaction allows more of the tasks to take advantage of the parallelism
offered by a multiprocessor system.

The strength of the interaction effect between these three characteristics is re-
markable in that it is larger than the effect of any of them acting alone.
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Name Median I.Q.R. Censored

group0 37889.0 40140.75 16/96
group1 44368.0 49057.75 13/96
group2 47874.0 61021.25 14/96
group3 31728.5 75781.25 14/96

Table 5.16: Results from weightings fitted to problem subsets

5.4.6.2 Choosing Problem Class Size

Three further sets of weightings were generated by fitting models to problems grouped
by problem characteristic. Three groupings were generated using the most significant
single characteristic (tasks-per-transaction), the most significant two way interaction
(tasks-per-transaction:transaction-length) and the most significant three way interaction
(tasks-per-transaction:transaction-length:tasks-per-processor). The weightings obtained
from the different problem groupings are given in table 5.15. The group0 weights
derived from a model fitted to all problems are repeated here for comparison.

The weighting values listed in table 5.15 gives some insight into the way in which
the algorithm is working. The weightings are listed in the same order as the cor-
responding guidance heuristics in table 5.2. Little attention should be paid to the
values in the fourth problem class of group3 since, as shown in table 5.14, there were
few uncensored responses in the results which the model was fitted to.

Apart from this one weighting combination in group3, the first weighting value
is never above the lowest possible value. This corresponds to g2, the subfunction for
penalising dependent tasks which cannot communicate. It was thought this heuris-
tic would be useful for some problem instances since some problems had hardware
platforms which were not completely connected. However, one of the two subfunc-
tions for grouping tasks, g4 and g5, have non-minimal values in all cases. It appears
that this does a sufficiently good job of placing tasks on the same processor that
there is little use for g2. Also, all tasks penalised by g2 are also penalised by g3,
the subfunction which penalises incorrectly allocated messages even though a valid
allocation which connects the two relevant tasks may be possible. Subfunction g3

was predicted to be useful for a number of the problem subsets.

The other subfunction with a consistently minimal weighting is g9 which penalises
tasks whose priority order does not match the dependency order within a transaction.
The other guidance subfunctions: sensitivity analysis, load balancing, and penalis-
ing over utilised processors, were all predicted to be useful for solving some of the
problems.

Each of these weighting combinations were tested by performing one run of the
algorithm per problem. In each case weightings were mapped to problem subsets
as in table 5.15 and then summary statistics were calculated over the entire set of
results. These are shown in table 5.16. The result for the group0 weighting combi-
nation from table 5.12 is repeated for comparison. The group1 and group2 weighting
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Name Problems Median I.Q.R. Censored

group0

low tasks / proc., low tasks / trans., short trans. 42565.5 34453.75 1/12
low tasks / proc., low tasks / trans., long trans. 44049.0 8894.75 0/12
low tasks / proc., high tasks / trans., short trans. 61095.0 70508.75 2/12
low tasks / proc., high tasks / trans., long trans. * * 10/12
high tasks / proc., low tasks / trans., short trans. 12800.0 12218.50 0/12
high tasks / proc., low tasks / trans., long trans. 28898.0 21466.00 0/12
high tasks / proc., high tasks / trans., short trans. 30060.0 31441.25 2/12
high tasks / proc., high tasks / trans., long trans. 20471.0 14074.50 1/12

group1

low tasks / proc., low tasks / trans., short trans. 36656.0 6882.75 0/12
low tasks / proc., low tasks / trans., long trans. 28558.5 8221.00 0/12
low tasks / proc., high tasks / trans., short trans. 78053.0 22315.75 1/12
low tasks / proc., high tasks / trans., long trans. * * 9/12
high tasks / proc., low tasks / trans., short trans. 40656.5 23067.75 0/12
high tasks / proc., low tasks / trans., long trans. 35215.0 24900.25 0/12
high tasks / proc., high tasks / trans., short trans. 36323.0 28336.00 1/12
high tasks / proc., high tasks / trans., long trans. 47880.5 52157.00 2/12

group2

low tasks / proc., low tasks / trans., short trans. 53189.5 37247.00 1/12
low tasks / proc., low tasks / trans., long trans. 31586.0 3841.50 0/12
low tasks / proc., high tasks / trans., short trans. 99947.5 26498.50 0/12
low tasks / proc., high tasks / trans., long trans. * * 12/12
high tasks / proc., low tasks / trans., short trans. 52698.0 23891.75 0/12
high tasks / proc., low tasks / trans., long trans. 41107.5 29315.25 1/12
high tasks / proc., high tasks / trans., short trans. 47611.0 49153.00 0/12
high tasks / proc., high tasks / trans., long trans. 18911.5 15947.75 0/12

group3

low tasks / proc., low tasks / trans., short trans. 40611.5 43921.50 2/12
low tasks / proc., low tasks / trans., long trans. 37342.0 16401.00 0/12
low tasks / proc., high tasks / trans., short trans. 93931.5 25195.00 0/12
low tasks / proc., high tasks / trans., long trans. * * 9/12
high tasks / proc., low tasks / trans., short trans. 10892.5 13721.50 0/12
high tasks / proc., low tasks / trans., long trans. 24071.0 14626.25 0/12
high tasks / proc., high tasks / trans., short trans. 11746.0 11997.50 2/12
high tasks / proc., high tasks / trans., long trans 18755.0 25336.25 1/12

Table 5.17: Results from test of weighting combinations separated by problem
characteristic

combinations gave surprisingly poor performance with worse median response than
the group0 weightings. In these cases, use of smaller problem classes is not improving
performance. The only possible explanation is a lack of fit in the models. The group3

weightings do give an improved median. Contrary to expectation, these results do
not give strong evidence that tuning the algorithm separately for smaller problem
classes leads to improved overall performance.

In an attempt to gain further understanding of the results, summary statistics
were calculated in each case for the problems separated by characteristic. This
is shown in table 5.17. Recall that only group3 used separate weightings for each
of these problem classes. For the other weighting combinations, problems mapped
to the same set of weightings were separated as required. The table shows that
group1 and group2 do perform well for some classes of problem but are not consistent
leading to lower overall median values. It is not clear that the group3 weightings are
sufficiently better than the group0 weightings to warrant the additional complexity of
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wsched/wguidance Median I.Q.R. Censored

0.25 42751.0 202933.25 24/96
0.60 41188.0 51733.75 19/96
1.00 42868.0 64557.50 19/96
2.00 49376.0 67563.50 20/96

Table 5.18: Results of changing balance between schedulability and guidance heuristic for
group0 weightings

wsched/wguidance Median I.Q.R. Censored

0.25 28706.5 99070.25 18/96
0.60 34348.0 69667.25 14/96
1.00 40959.0 68703.00 13/96
2.00 50094.5 74064.50 17/96

Table 5.19: Results of changing balance between schedulability and guidance heuristic for
group3 weightings

using more problem classes. However, median values for group3 are better in all but
one case. Weightings tuned to more specific problem classes would be expected to be
more sensitive to problems with characteristics which deviate slightly away from the
specific class. However, since the problems used for tuning and testing are the same,
this is not a significant issue. There is no clear pattern in the I.Q.R. values, which
represent the algorithm’s robustness, between class sizes. The group0 and group3

weightings are evaluated further in the next experiment.

5.4.7 Experiment 5.7 — Rebalancing Schedulability Versus Guidance

Experiment 5.7 evaluates changes in the balance between schedulability and guidance
using the same problem test set as experiment 5.6. Experiment 5.6 used a value of
0.6 for wsched/wguidance. The two weighting combinations: group0 and group3, which
were found to work well in experiment 5.6 are re-evaluated at this level along with
both higher and lower levels.

The results are given in tables 5.18 and 5.19. The results at the 0.6 level are re-
peats of the tests carried out in experiment 5.6 and confirm that the group3 weightings
outperform the group0 weightings at this level. For both sets of weightings, the per-
formance worsens with higher values of wsched/wguidance, i.e. less use of the guidance
heuristic. The most interesting result is at the 0.25 level. Using the group0 weight-
ings, the median and interquartile range both increase showing worse performance.
Using the group3 weightings, there is a smaller increase in interquartile range and a
decrease in median response. This is showing that increasing the bias towards the
guidance heuristic improves median performance when using the group3 weightings
suggesting it to be a better heuristic than the group0 weightings.

Given that the 0.6 level for wsched/wguidance continues to work well and appears
robust, this was maintained for future experiments and the group3 weightings were
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Name Problems Median I.Q.R. Censored

group3

low tasks / proc., low tasks / trans., short trans. 38397.5 39035.75 6/40
low tasks / proc., low tasks / trans., long trans. 38090.0 23874.25 0/40
low tasks / proc., high tasks / trans., short trans. 100833.0 16947.50 1/40
low tasks / proc., high tasks / trans., long trans. * * 33/40
high tasks / proc., low tasks / trans., short trans. 8447.0 12031.75 0/40
high tasks / proc., low tasks / trans., long trans. 20189.5 14341.50 0/40
high tasks / proc., high tasks / trans., short trans. 9809.0 4296.00 0/40
high tasks / proc., high tasks / trans., long trans. 14533.0 12049.50 2/40

Table 5.20: Evaluation of search algorithm on new problem test set

preferred over the group0 weightings.

5.4.8 Experiment 5.8 — Algorithm Performance Consistency Check

In all previous experiments, tests of the search algorithm have been conducted on
the same set of problems that it was previously tuned for. In this experiment, new
problems are generated to check the consistency of using the guidance heuristic with
the group3 sets of weightings which were obtained in experiment 5.6.

The Gentap parameters used were the same as those in tables 5.10 and 5.11
to create 32 different classes of problem. Therefore, the problems had the same
characteristics as those in experiment 5.6 but are newly generated problems. 10
problems were generated in each class giving 320 problems in total.

The results were separated into the same problem subsets as those used for each of
the group3 weighting combinations. The summary statistics are shown in table 5.20
and can be directly compared to those for group3 in table 5.17. The performance is
very similar for both sets of problems. This is pleasing because it not only shows
that the performance of the algorithm is consistent but also that the chosen problem
characteristics are good indicators of problem difficulty with respect to the algorithm
configured in this way.

5.4.9 Experiment 5.9 — Algorithm Scalability

In experiment 5.6, the effects of a selection of five problem characteristics on problem
difficulty with respect to the search algorithm were investigated. Compute resources
did not allow all characteristics to be investigated.

Two characteristics not chosen for experiment 5.6 were those controlled by the
number-of-tasks and utilisation-per-processor Gentap parameters. The effects of these
parameters should be predictable. Changing the number-of-tasks parameters scales
the problem. The problem characterisation was designed in terms of parameters
such as tasks-per-processor, tasks-per-transaction and messages-per-task. Therefore,
the number of processors, transactions and messages will increase proportionally
with the number of tasks. Increasing the size of the problem should make it harder
to solve in terms of the number of configuration evaluations since it is expected that
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number-of-
tasks

utilisation-per-
processor

Median I.Q.R. Censored

48 30 28309.5 15689.25 0/10
48 45 31103.0 42282.50 0/10
48 60 37651.5 8822.00 0/10
48 75 50722.5 9013.25 1/10
96 30 197951.5 19268.25 0/10
96 45 232268.0 51549.50 2/10
96 60 224374.0 232394.25 3/10
96 75 381065.0 * 5/10
144 30 311315.5 25134.75 0/10
144 45 428108.5 * 5/10
144 60 * * 8/10
144 75 * * 10/10
192 30 398191.0 * 0/10
192 45 466438.0 * 5/10
192 60 * * 10/10
192 75 * * 10/10

Table 5.21: Results showing effects of increasing problem difficulty via the number-of-tasks
and utilisation-per-processor parameters

the number of valid solutions will grow slower than the size of the design space.
Larger problems will also require more time to analyse per evaluation.

Increasing the utilisation per processor will reduce the number of solutions with a
valid schedule and therefore should increase the number of configuration evaluations
required. Changing the utilisation shouldn’t have any effect on the time required to
run a schedulability test on the problem.

Experiments were run using the parameters from table 5.3 except the number-

of-tasks and utilisation-per-processor were varied through 4 different levels each. The
guidance heuristics weightings used were the tuned weightings found in experiment 5.1.
Given the increased difficulty of larger problems in particular, the censoring level was
raised to 500000 evaluations and the initial temperature was raised from the 0.005
level used in previous experiments to 0.006.

Table 5.21 gives the median, interquartile ranges and number of censored results
for different numbers of tasks and utilisation levels. The pattern of results is as
expected with both increases in problem size and utilisation level increasing the
number of evaluations required. It is clear that increasing the problem size has a
larger effect. For large problems with high per-processor utilisations, it was not
possible to find a solution within the censoring limit in most cases. However, the
algorithm could solve larger problems with lower utilisation levels. Figure 5.15 shows
the median number of evaluations required for these lower utilisation levels. At
these lower utilisation levels, the number of evaluations required increases at an
approximately linear rate with the problem size though the solution space grows
much faster. It is not known however, how the proportion of valid solution changes
in relation to the size of the problem space.

These results show that problem difficulty should never be estimated by size alone
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Figure 5.16: Rate of configuration evaluation
for increasing problem sizes

but also take other characteristics into account such as the utilisation per processor
and those found to be significant in experiment 5.6.

For an overall view of algorithm performance and scalability, the time taken to
evaluate each configuration must also be taken into account. Figure 5.16 shows the
mean rate of configuration evaluation for the different combinations of characteristics
studied in this experiment.

As expected, performance decreases sharply as the size of the problem increases.
For the largest problem sizes, the rate of configuration falls close to one evaluation
per second. At this rate, the algorithm is running too slow to be of practical use,
requiring several days to complete.

Since overall performance is dominated by the rate of configuration evaluation,
it is interesting to analyse the schedulability test at a lower level. The schedulability
test used, given in section 2.2.3.5, calculates the interference on each task from each
of the other tasks in the system. Further to this, analysis is done with each task
as a possible initiator of the worst case busy period. This means that performance
is expected to be O(K−3) at best. The set of equations for the WCDO test is also
a recurrence relation and the number of iterations required to solve it will depend
on the attributes of each task and the dependencies between them. The number of
jobs of each task which need to be checked also varies between task sets. For these
reasons, calculating a precise performance relationship between the number of tasks
and rate of schedulability test is not possible.

From the plot in figure 5.16, it appears that problems with higher per-processor
utilisation are evaluated more quickly. It should be remembered that the plot is based
on mean evaluation rates over a whole algorithm run. The WCDO schedulability
test iterates until it converges or task deadlines are missed. One hypothesis for
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this behaviour is that searches trying to solve problems with higher per-processor
utilisations spend more time in areas of the configuration space where several tasks
are missing deadlines and the schedulability test is performing fewer iterations. No
further evaluation was done to test this hypothesis.

The smallest problems in this experiment are of the scale of an automotive subsys-
tem according to Zheng et al. [81]. These problems are solved in a matter of minutes.
Problems moving towards the size of a whole system are not currently within reach of
this algorithm. These results must be placed in the context of the WCDO schedula-
bility test being used. This is assuming a synchronous event triggered system. Using
an asynchronous time triggered system would likely have a simpler and more efficient
schedulability test. Similarly a more accurate test with less pessimism is likely to
reduce the rate of evaluation as was demonstrated in experiment 5.5.

The sensitivity analysis cost subfunction (g6) uses a binary search involving re-
peated application of the schedulability test and is therefore the most expensive part
of the guidance heuristic. As was stated in section 5.4.1, no test of the effects of
removing subfunctions from the guidance heuristic (giving them a weighting of 0)
was conducted in these experiments.

This experiment and previous ones have shown how problem characteristics effect
both the number of configurations which need to be evaluated before a solution is
found and the time taken per evaluation. If the effectiveness of removing subfunctions
was to be properly tested, experiments would need to take account of the trade-
off between possible increases in number of evaluations against increased rate of
evaluation. This optimal trade-off point will be problem characteristic dependent.
There could also be interaction with algorithm parameters as this has been shown to
significantly effect the number of evaluations required throughout these experiments.

It is reasonable to put forward the position that the sheer number of factors
involved is prohibitive to optimising algorithm performance in general. The fact that
changes to the per-processor utilisation characteristic appear to affect both problem
difficulty in terms of number of evaluations required and time per evaluation is subtle.
Such complexities in the relationships between factors affecting problem difficulty
and performance responses continue to be an issue in the use of metaheuristic search
algorithms.

5.5 Summary

A large amount of material has been covered in this chapter. This section recounts
the topics which were covered and underlines the main contributions made.

5.5.1 Overview Of Work Done

Section 5.2 introduced a local search algorithm. Parameters allowed it to run as a
random search, a pure hill descent algorithm with random restarts or a simulated an-
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nealing search. The neighbourhood definition in section 5.2.1 was used to instantiate
them specifically for a task allocation problem using the system model presented in
section 4.2. The neighbourhood uses a heuristic to favour sensible message allocations
which is also used for generating random solutions as described in section 5.2.2.

Section 5.2.3 introduced a hierarchical cost function. The cost value is a weighted
sum of cost functions for penalising broken schedulability constraints and for guiding
the search towards good solutions more quickly. The guidance heuristic function
is broken down into eight further cost subfunctions which are combined using a
weighted sum.

In order to determine values for these weightings and other search algorithm
parameters, a response surface modelling approach was taken. Models were fitted to
data generated from experimental runs and then the response surface function was
minimised to find the parameters which were predicted to give the lowest response
value. The response measure used was the number of evaluations needed to find a
valid solution.

The experiments required search runs to be stopped after a chosen number of
evaluations regardless of whether a valid solution had been found. This was needed
to conduct a large number of runs in a reasonable amount of time. The problem
generation algorithm may also generate problems with no valid solution so a search
for a solution would never complete. Stopping an experiment before the event of
interest, i.e. finding a valid solution, occurs is known as censoring. Survival analysis,
described in section 5.3.5, is a technique for analysing censored data and this was
used throughout the experiments.

A sequence of experiments were performed to investigate the relationship between
algorithm performance, algorithm parameters including cost function weightings, and
problem characteristics.

5.5.2 Overview Of Results

Following the tuning of cost function weightings for simulated annealing in experi-
ments 5.1 to 5.3, each of the search algorithms was tested in experiment 5.4. Random
search was found not to be a viable option. A hill descent with random restart al-
gorithm was able to find solutions to the problems it was tested with. However, the
median performance was below that of simulated annealing. Importantly, the varia-
tion in performance was larger than that for simulated annealing suggesting it was
less robust to the uncontrolled factors in the experiment which were random number
generator seeds and uncontrolled problem characteristics. Simulated annealing was
used in the remaining experiments.

During the tuning of guidance heuristic weightings in experiment 5.1 and exper-
iment 5.6, the best weightings predicted by the fitted response surface gave poorer
performance than the best design point used in the experiment. However, the weight-
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ings predicted by the model appeared more robust based on lower interquartile range
values and solved more problems before searches were terminated by the censoring
limit. This suggests that the fitted models use information from all experimental runs
as is intended by a response surface methodology and, though there are inaccuracies
in the model, are successful in finding good weighting values.

In experiment 5.5, problems were solved using different schedulability tests. The
tuned simulated annealing search algorithm was able to cope well with a test that
constructed a static cyclic schedule as well as the previously used fixed priority
event triggered test. Different fixed priority tests showed the trade-off between test
accuracy and time required to run a test.

The response surface methodology was used with problem characteristics as fac-
tors in experiment 5.6. Of the five tested, the three most significant characteristics
were mean tasks per transaction, mean transaction length and mean tasks per pro-
cessor. The interaction between tasks per transaction and transaction length was
more significant than any individual characteristic as was the interaction between all
three of the problem characteristic factors. The differences in median values between
problem classes show that several problem characteristics can affect difficulty, not
only those related to utilisation or problem size.

Experiment 5.7 showed that a guidance heuristic tuned for specific problem
classes was able to outperform one tuned over the entire set of problems. In partic-
ular, the search performance improved as weighting given to the guidance heuristic
increased. This was not the case for the heuristic which used a single set of weightings
for all problems.

Throughout the experimentation, the performance of the tuned simulated anneal-
ing algorithm was found to be robust to changes in random number generator seeds
and uncontrolled problem characteristics. For example, the same algorithm parame-
ters were used for one design point in experiment 5.2 as were used in experiment 5.1
and performance was extremely similar. An explicit test was done in experiment 5.8.
In this experiment, the performance was found to be consistent when the algorithm
was applied to different problems having the same characteristics.

The scalability of the algorithm was tested in experiment 5.9. Problems were
scaled by the number-of-tasks parameter and made more difficult by increasing the
utilisation-per-processor parameter. The number of evaluations required increases ap-
proximately linearly with the number of tasks. However, the speed of a schedulability
test decreases at a much faster rate as the number of tasks increased. This turns out
to be the main limiting factor with regards to the problem size which can be solved
in a reasonable amount of time.

An interesting side effect of increased processor utilisation was that the rate of
evaluation increased. This was put down to the fact that tasks were known to miss
their deadlines after fewer iterations of the schedulability test so that tests could run
more quickly. Valid solutions for systems with 96 tasks and 12 processors could be
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found in under 12 hours.

5.5.3 Aspects Of Hypothesis Satisfied

This chapter has clearly shown the benefits of using a hierarchical cost function which
can be tuned for problems with different characteristics and even allows switching
between scheduling policies and associated tests. This supports statement 2 of the
hypothesis in section 3.2.1.

It has been shown that benefit can be gained from using different guidance heuris-
tics for problems with different characteristics. A systematic experimental method
was given for configuring the guidance heuristic.

5.5.4 Additional Contributions

The primary aim of the work in this chapter was to support statement 2 of the
hypothesis as previously mentioned. In the process of achieving this, other contribu-
tions have also been made.

In order for a particular set of weights to be associated with a class of problems, a
suitable set of characteristics needed to be devised so that the algorithm would give
consistent performance with problems in the same class. The characterisation was
actually done in chapter 4 by the design of the parameters for the Gentap problem
generation tool. In this chapter, it was shown that the characterisation was suitable,
made evident by the consistent performance of the search algorithm on problems
within the same class. It was notable that problems of the same size with the same
mean processor utilisation can vary in difficulty quite substantially depending on the
structure of the task graph.

The work in this chapter also raises broader issues in the fields of task allocation
and search based software engineering. There is an issue of whether a method should
be made flexible or highly optimised for a specific problem instance. Clearly, this
author prefers a flexible approach believing that an automated algorithm needs to
be adaptable to changing requirements. A search based approach can, for example,
accommodate a change to the schedulability test since an implementation can be
used directly in the cost function without change.

The results of this chapter back up comments made in section 2.3.2.4 stating that
meta-heuristic search is ineffective if used without any guidance heuristic. Heuristics
should be incorporated into search algorithms to improve performance but the heuris-
tic must be flexible enough that it can be adjusted, e.g. with the use of weightings.
Such a heuristic was presented in this chapter for task allocation.

In the field of SBSE, there is often emphasis on finding software engineering
problems where search may be applied and setting out criteria which make problems
suitable [104]. While this addresses the search aspects of SBSE, there is little work
on the software engineering criteria for the introduction of a search tool. A full
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discussion of software engineering processes is somewhat beyond the scope of this
thesis yet has a large influence on its aims. The direction of software engineering
processes is towards iterative [12] and agile [16] processes which accept uncertain
requirements rather than making expensive but futile attempts to perfectly define
the system. Software engineering tools must be flexible and recognise that the nature
of a problem does not remain static throughout the lifetime of a project.

To meet the needs of modern software engineering processes, both the tools and
the solutions they produce need to be flexible. This chapter has tackled the flexibility
of a search tool for task allocation. Chapters 6 and 7 will now concentrate on
producing flexible solutions and taking advantage of flexibility in future development
iterations.



6
Task Allocation For Multi-Moded

Systems

6.1 Introduction

There are many real-time applications where the set of running tasks changes through-
out the lifetime of the application. When a system moves from one set of tasks to
another, it undergoes a mode change. There are typically two incentives for doing
this: a change in the mode of operation of the system or to adapt to a change of
environment. An example of a change in mode of operation is a flight control system
which has different modes for take-off, in-flight cruising and landing [91, 30]. Other
general operational modes can be identified including initialisation, maintenance,
low power, fault recovery and emergency [30]. More information on modes and mode
changes can be found in section 2.2.5.

Given requirements for two different modes, one of four things can happen to a
task when the system moves from the first mode to the second: it continues running
as before, it stops running, it starts running or it continues running but with a change
to its attributes (period, deadline, etc.). A change to the attributes of a task may
come from a task being required to read data from a sensor more quickly [179]. It
is also possible for messages to be removed from or introduced into the system as a
result of changes to the task set.

On occasion, it is necessary to run a task on different processors in different
modes. There are good reasons to try to select a task mapping for each mode that
minimises occurrences of this situation. Depending on the system model, the task ei-
ther has to be migrated between processors or a copy is maintained on each processor.
If the processors are of different types, e.g. one is an application specific integrated
circuit (ASIC) and the other is general purpose, then multiple implementations [180]
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are needed.

There is a considerable overhead to task migration, usually associated with trans-
ferring a large amount of state information [181]. Mode changes should be prompt
as tasks running in the new mode may be required to complete before a deadline
following the mode change request [30].

For systems where a large proportion of tasks are present in multiple modes,
configuring these tasks in as similar way as possible in all modes leads to a more
flexible system. In particular, the system is easier to maintain and enhance since
the impact of a change can be assessed for a group of modes simultaneously rather
than treating each one as a separate system. At run-time, adaptability is improved
by virtue of being able to transition between modes more quickly.

An alternative view should also be noted. A mode with fewer tasks may be able
to be scheduled on fewer processors allowing processors to be shut down, hence saving
power [180]. This creates a trade-off between moving a task in order to shut down
a processor and the speed of the mode change. The work in this chapter does not
consider power usage and solely concentrates on reducing mode change overheads.

There are also benefits to reducing the number of priority changes between modes.
Ideally, each task will have a single unique priority. Otherwise, during a mode change,
more priority levels may be needed to maintain the required priority ordering before
during and after the mode change. Significant changes to priority ordering are also
more likely to change levels of task jitter.

The focus of this chapter is to try to configure tasks and messages within a system
in such a way that task allocations and priorities remain constant throughout the
configurations for each mode.

6.1.1 Challenges

Finding similar configurations to a set of problem specifications is much more chal-
lenging than finding a single solution for a set of problems. If only a single solution
is needed then each configuration can simply be evaluated against each of the dif-
ferent problems until one is found which meets the requirements of all problems.
More generally, however, each problem specification can be mapped to a set of valid
configurations in the solution space. A visualisation of this with two problem speci-
fications is shown in figure 6.1. For each specification, there exists a number of valid
configurations. The number of differences between the configurations is visualised as
a distance in figure 6.1.

The optimal solution is the pair of valid solutions which have the shortest distance
between them. Finding this solution would require every pair of valid solutions to be
checked unless a pair of solutions are identical in which case they are known to be
an optimal solution. For more problem specifications, i.e. a system with more than
two modes, a measure of solution similarity for each possible set of solution needs to
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Figure 6.1: Depiction of mapping from problem specifications to valid configurations with
distances between configurations

be constructed from individual distances.

The work in the previous chapter has shown that finding a single valid solution
for a problem specification is already challenging. Finding several solutions for each
problem and checking for similar ones is not practical. Instead, an algorithm needs
to be developed which uses knowledge of the fact that a set of similar solutions is
needed and will move towards suitable areas of the solution space where such sets
exist. Such an algorithm is engineered and evaluated in this chapter. The features
developed address Req. 2, from section 3.1.2, on the implementation of systems with
multiple configurations.

To find configurations which are similar to each other, further cost subfunctions
are used to measure the difference between two configurations. These can also be
used for finding configurations which are similar to existing ones. This allows the
Toast task allocation tool to be used to evolve a design with few changes rather than
find a completely different one for each requirements change. Therefore, the work in
this chapter also addresses Req. 1, given in section 3.1.1, on the reuse of solutions.
This theme is also the main focus of chapter 7 which will make further use of the
algorithms developed in this chapter.

6.1.2 Goals And Chapter Structure

Statement 1 of the hypothesis in section 3.2.1 says that local search is an efficient
and effective method for meeting requirements Req. 1 and Req. 2. The evaluations
in this chapter and the next will test this statement.

Further examples which illustrate the issues of minimising change between con-
figurations are presented in section 6.2. These examples provide simple test cases
which are used to analyse the behaviour of algorithms suggested in section 6.3. An
evaluation of the proposed algorithm is performed in section 6.4. A summary of
results is given in section 6.5.
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Task
Utilisation

Mode 1 Mode 2

A 60 80
B 40 40
C 50 50
D 50 0

Table 6.1: Multi-mode task sets example 1

Task
Configuration

Mode 1 Mode 2 Unchanged

A P1 P1 3
B P1 P2 7
C P2 P2 3
D P2 – 3

Table 6.2: Possible configuration for example 1 task sets

6.2 Motivating Examples

Two small examples are used as simple test cases which guide development of an
algorithm which finds a set of similar solutions for a set of problem specifications. To
maintain simplicity of the example, task attributes are reduced to just the utilisation
of the task and it is assumed that the tasks on a processor may be scheduled if the
total task utilisation for that processor is less than 100%.

Table 6.1 shows the percentage utilisation requirements of four tasks in two
modes. In the transition from Mode 1 to Mode 2, task A requires an increase in
utilisation (e.g. from an increase in frequency or execution time) and task D stops
running. The platform on which these tasks must run has two processors available.
Assuming homogeneity of processors, so that processor labels can be swapped with-
out loss of generality, there is only a single possible configuration for Mode 1 that will
allow all tasks to be scheduled. Task A cannot be allocated to the same processor
as tasks C or D as this would require over 100% utilisation of the processor. This
results in task A being paired with task B in Mode 1. When the transition is made
to Mode 2, task B can no longer run alongside task A and must migrate to the other
processor where capacity has become available after task D terminated.

There are two ways in which the tasks may be allocated to be schedulable in
Mode 2. Either, as shown in table 6.2, with A on P1 and B and C on P2 or with A

on P2 and B and C on P1. Note that when selecting a configuration for the second
mode, the processors may no longer be considered homogeneous since the number of
migrations must be measured relative to the configuration chosen for Mode 1. These
two possible solutions for Mode 2 require 1 migration and 2 migrations respectively
with the former being identified in the right hand column of table 6.2.

A slightly modified version of the first example is shown in table 6.3. In this
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Task
Utilisation

Mode 1 Mode 2

A 50 80
B 50 50
C 50 50
D 50 0

Table 6.3: Multi-mode task sets example 2

Task
Configuration X Configuration Y

Mode 1 Mode 2 Unchanged Mode 1 Mode 2 Unchanged

A P1 P1 3 P1 P1 3

B P1 P2 7 P2 P2 3

C P2 P2 3 P2 P2 3

D P2 – 3 P1 – 3

Table 6.4: Possible configurations for example 2 task sets

example, all tasks have a utilisation of 50% in Mode 1. This means that there are
three possible ways of grouping the tasks in the configuration for Mode 1 so that they
all can be scheduled. Two of these possible solutions are shown in table 6.4.

If configuration X is selected then at least one migration is required for the tasks
to also be schedulable in Mode 2. However, if configuration Y is selected then it is
possible to move from Mode 1 to Mode 2 with no task migrations. This illustrates the
fact that, when selecting a configuration for a particular mode, information regarding
transitions to other possible modes is required to achieve minimal task migrations.
Note that there is only a single valid task grouping for Mode 2. If the configuration
for Mode 2 had been selected first, then this would have lead more naturally to using
configuration Y as a solution for both modes.

6.3 Solution Methods

Three approaches to minimising changes in mode transitions are identified for con-
sideration. All make use of the simulated annealing algorithm previously described
in chapter 5. Each of the methods are described in terms of changing from Mode

1 to to Mode 2. Extensions of the methods to cope with systems with more than
two modes are considered in section 6.3.5. The three methods are named sequential
method, simultaneous method and parallel method. The idea behind each method is
summarised below.

6.3.1 Proposed Methods

Sequential Method. The sequential method finds a solution for Mode 1 without
any consideration for Mode 2. It then tries to find a solution for Mode 2 using
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the solution found for Mode 1 as a starting point and in addition to finding
a valid schedulable solution for Mode 2, attempts to minimise the number of
changes between the solutions.

Simultaneous Method. The simultaneous method attempts to find a single con-
figuration which meets the requirements of all modes. Tasks and messages
found in both modes are configured in the same way in every mode. If such a
configuration cannot be found then, after a certain number of evaluations, the
search is terminated and the best solution found so far is used as a starting
point for further searches. In these subsequent searches, a valid solution for
each mode is found which is as similar as possible to the starting configuration.

Parallel Method. The parallel method, like the simultaneous method, tries to find
a configuration for all modes at the same time. However, a separate configura-
tion for each mode is maintained in separate searches. The searches exchange
information about their current best configurations according to a protocol
described in section 6.3.6. Each search can then try to minimise differences
between its own solutions and those of other searches.

The parallel method described in this chapter is an evolution of that found in a
previous paper by the author [182] on which the work in this chapter is based.
More details of the differences are explained in section 6.3.6. It is the same
algorithm as used in a more recent paper by the author [164].

6.3.2 Configuration Change Cost Subfunctions

All of the methods outlined above need a way of measuring by how much two con-
figurations differ. This can then be used as part of a cost function which penalises
change. Four new cost subfunctions are introduced: task allocation changes, message
allocation changes, task priority changes and message priority changes.

Let there be two configurations, C and C′. The sets of tasks and messages con-
tained in each configuration may not be the same. A change is only counted for
objects present in both configurations. T , M, P, N is the set of tasks, messages,
processors and networks in C and T ′, M′, P ′, N ′ are the equivalent sets contained
in C′.

The function used to measure task allocation changes (htac) and message alloca-
tion changes (hmac) are as follows:

htac(C, C′) =
|{τ ∈ (T ∩ T ′) : alC(τ) 6= alC′(τ)}|

|T ∩ T ′|
(6.1)

hmac(C, C′) =
|{ρ ∈ (M∩M′) : alC(ρ) 6= alC′(ρ)}|

|M ∩M′|
(6.2)

where alC (τ) is the current allocation of the object and alC′ (τ) is the allocation in
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the baseline configuration. These simply give the proportion of schedulable objects
common to both configurations which are allocated to a different scheduler.

There are two factors which prevent the use of a priority change metric based on
directly comparing priority values of equivalent objects. The assigned priority values
may be different between two configurations with very few differences between pri-
ority order. For example, two sets of tasks with the same priority order but different
numbering schemes should be considered equivalent as one can easily be remapped to
the other. Comparison of priorities between two configurations is therefore based on
the rank of a priority in an ordered list rather than the absolute value. The priority
difference metric is based on Spearman’s rank correlation coefficient [183].

Comparing priorities only make sense for objects allocated to the same sched-
uler and so the priority difference metrics only involve objects which have the same
allocations in both configurations.

Let X and Y be sets of schedulable objects and n = |X ∩ Y | is the number of
objects in their intersection. For each object τ ∈ (X ∩Y ), RANKX(τ) is the rank of
object τ in X and RANKY (τ) is the rank of the same object in Y . The basis of the
priority comparison metric is

q(X,Y ) =

 3
n(n2−1)

∑
τ∈(X∩Y )(RANKX(τ)− RANKY (τ))2 if n > 1

0 otherwise
(6.3)

For a given scheduler, σ, let OC(σ) be the set of objects on that scheduler in the
current configuration and OC′(σ) be the equivalent set in the baseline configuration.
The functions for measuring task priority changes (htpc) and message priority changes
(hmpc) are

htpc(C, C′) =
1

|P ∩ P ′|
∑

σ∈(P∩P ′)

q(OC(σ), OC′(σ)) (6.4)

hmpc(C, C′) =
1

|N ∩ N ′|
∑

σ∈(N∩N ′)

q(OC(σ), OC′(σ)) (6.5)

Note that all of htac, hmac, htpc and hmpc are commutative.

The actual cost subfunctions can be applied to a set of configurations rather than
just a pair. They use the functions just described above and apply them to every
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pair of configurations in the given set.

gtac({C1, . . . , Cl}) =
2

l(l − 1)

l−1∑
i=1

l∑
j=i+1

htac(Ci, Cj) (6.6)

gmac({C1, . . . , Cl}) =
2

l(l − 1)

l−1∑
i=1

l∑
j=i+1

hmac(Ci, Cj) (6.7)

gtpc({C1, . . . , Cl}) =
2

l(l − 1)

l−1∑
i=1

l∑
j=i+1

htpc(Ci, Cj) (6.8)

gmpc({C1, . . . , Cl}) =
2

l(l − 1)

l−1∑
i=1

l∑
j=i+1

hmpc(Ci, Cj) (6.9)

Separate subfunctions are defined for tasks and messages allowing the importance of
minimising change for each to be set as desired. The number of configurations in the
input set, l, is dependent upon the context in which these subfunctions are used.

As with previous bottom level subfunctions, they are combined using a normalised
weighted sum:

change({C1, . . . , Cl}) =
wtacgtac + wmacgmac + wtpcgtpc + wmpcgmpc

wtac + wmac + wtpc + wmpc
(6.10)

Each of the methods proposed in section 6.3.1 use the function in equation (6.10)
in a slightly different way. This is now explained along with further analysis of each
of the proposed methods.

6.3.3 Sequential Method

The sequential method assumes a solution, C1, for Mode 1 is found using a task
allocation algorithm such as that in the previous chapter. A second search then
finds a solution for Mode 2 in the vicinity of the solution for Mode 1. This search
uses C1 as its initial solution and looks for a solution which meets the requirements
of Mode 2 but remains as close as possible to the starting point according to the
change function in equation (6.10). Note that the idea of the change function as a
distance metric is only used in a loose sense, not a formal mathematical one, to give
a diagrammatic explanation of the problem.

To encourage the simulated annealing algorithm to intensively search the area
surrounding C1, lower starting temperatures and slower cooling schedules are used
compared to the search used which found C1. In addition to this, the change function
is added to the cost function hierarchy to penalise configurations with more differ-
ences. This new function hierarchy is shown in figure 6.2. It is an extension of the
hierarchy first shown in figure 5.6. The cost function f (equation (5.3)) is replaced
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Cost Value

Schedulability Constraints Guidance Change

Figure 6.2: Cost function hierarchy extended with subfunctions for measuring changes
between configurations

by one which represents the hierarchy in figure 6.2

fseq(C, D) =
wschedsched(C) + wguidanceguidance(C) + wchangechange({C} ∪D)

wsched + wguidance + wchange

(6.11)
D is a set of configurations to use as baselines to measure differences from. For two
mode problems, D = {C1}.

fseq includes one more weighting value, wchange , than the cost function in equa-
tion (6.10). This must be balanced with the other subfunctions at the same hierar-
chical level. If solution C1 is in fact near to a solution for the second mode then the
search should need little guidance and concentrate on finding a schedulable solution
with few changes. If no such solution exists, the weightings must be adjusted to
reflect this. Since it cannot be known in advance how many changes will be needed,
it is likely some experimentation will be needed to find weightings which give good
quality results and such values will almost certainly be problem specific.

The earlier examples and their solutions shown in tables 6.1, 6.2, 6.3 and 6.4 show
that the success of this method may depend on the order in which the configurations
are generated. For the example in table 6.1, both modes only have a single possible
grouping under which all objects are schedulable. In this case, the method would
be expected to achieve the optimal result of a single allocation change regardless of
whether a configuration for Mode 1 or Mode 2 is generated first. However, in the
example shown in table 6.3, Mode 1 has multiple solutions under which all objects
are schedulable. If configuration X for Mode 1 from table 6.4 is generated then it is
impossible to achieve the optimal solution in the second step.

This indicates that the quality of the overall solution is dependent on the order in
which individual configurations are generated. For the task sets in table 6.3, if Mode

2 is generated first, then as in the first example, there is only a single possible feasible
grouping and it is expected that the sequential method will obtain the optimal result.
This observation implies that trying all orderings of the modes may improve solution
quality. However, it also adds complexity and increases compute resources, especially
if the method is extended to more than two modes.

This method has the benefit of simplicity over the subsequent two methods anal-
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ysed in this section. However, it is expected that better results can be obtained
using an algorithm which considers all of the problem specifications of all modes
simultaneously.

6.3.4 Simultaneous Method

The first step of this method tries to produce a super-configuration which meets the
requirements of all modes. This configuration contains all objects from all modes.
Objects present in more than mode must therefore be configured identically in each
mode.

A new cost function is created which takes the mean cost value of each specifi-
cation evaluated with the super-configuration. Assuming two modes still this cost
function is

f̄(C) =
f(C;S1) + f(C;S2)

2
(6.12)

where f(C;Si) is the cost of configuration C in the context of specification Si. A
configuration is schedulable if and only if sched(C;S1) and sched(C;S2) are both 0.

It is simple to see that this method should successfully find an optimal solution
to the problem in table 6.3 since there exists a single configuration for which all
tasks are schedulable in both modes. In this instance, it has an advantage over the
sequential method whose result depends on which mode is processed first.

If no single configuration can be found which satisfies the requirements of both
specifications, then a secondary search must be performed with the fseq cost function
using the best super-configuration found as a baseline configuration to minimise
differences from.

Using this scheme, it can also be shown that the simultaneous method would
find an optimal solution for the problem in table 6.1. In this example, there is no
single configuration that can schedule both modes so the search should find a solution
which minimises the number of unschedulable tasks over both modes. The search
may conceivably produce one of two solutions. If it chooses to schedule all tasks
under Mode 1, then only task B will be unschedulable in Mode 2. Alternatively, it
may configure tasks A, B and C to be schedulable in Mode 2. With this configuration,
these tasks will also be schedulable in Mode 1, leaving only D unschedulable in Mode

1. The super-configuration can then be used as a baseline for the mode which it does
not solve to work from. If either of the two solutions are found, a feasible solution
can be found for the other mode with a single allocation change.

The task sets in table 6.5 give an example where this method may be less success-
ful. Once again, there is no single configuration where both modes can be scheduled.
Configuration W in table 6.6 shows how the modes can be scheduled with a single
task migration. However, if any of the Mode 2 configurations in table 6.6 are taken
and applied to Mode 1, all of tasks A, B, C and D will be schedulable leaving a single
unschedulable task, E. Ignoring the guidance heuristic, the Mode 2 configurations X,
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Task
Utilisation

Mode 1 Mode 2

A 60 80
B 40 40
C 5 5
D 5 5
E 80 0

Table 6.5: Multi-mode task sets example 3

Task
Configuration W Configuration X

Mode 1 Mode 2 Unchanged Mode 1 Mode 2 Unchanged

A P1 P1 3 P1 P1 3

B P1 P2 7 P1 P2 7

C P2 P2 3 P2 P1 7

D P2 P2 3 P2 P2 3

E P2 - 3 P2 - 3

Task
Configuration Y Configuration Z

Mode 1 Mode 2 Unchanged Mode 1 Mode 2 Unchanged

A P1 P1 3 P1 P1 3

B P1 P2 7 P1 P2 7

C P2 P2 3 P2 P1 7

D P2 P1 7 P2 P1 7

E P2 - 3 P2 - 3

Table 6.6: Possible configurations for example 3 task sets

Y and Z, have the same cost as configuration W but do not allow a transition to
Mode 1 with only a single migration.

There is only a single schedulable configuration for Mode 1. On some occasions
the search will output this configuration, which when applied to Mode 2, also leaves
only a single task, B, unschedulable. If this is the case then the second step of
the method should be able to find the Mode 2 allocation in configuration W which
requires only a single migration. This indicates that for example 3, it would be better
to concentrate on producing a schedulable solution for Mode 1 rather than Mode 2 in
the initial step.

Previous work by this author [182] suggested using weightings in equation (6.12)
to favour one of the modes when generating the initial super-configuration. Simi-
lar to trying different orderings of modes in the sequential method, several super-
configurations could be generated favouring different modes. However, this idea is
dismissed here since, as in the sequential method, there is no way of knowing which
mode to favour and the method becomes impractical.

In terms of processing required, the simultaneous method is more expensive than
the sequential method. The generation of the initial super-configuration requires
an evaluation of the cost function for each mode. The second step which finds a
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configuration for the second mode is equivalent.
By considering both modes in the initial step, the simultaneous method is more

reliable than the sequential method for finding identical solutions to both modes.
However, when this is not the case, it is more computationally expensive and still
leaves open questions of whether to favour certain modes to be configured first. The
parallel method, described in section 6.3.6, uses concepts of the simultaneous method
which make it good at finding valid identical configurations for multiple modes but
tackle some of its problems in cases where this is not possible.

Before the parallel method is described in detail some issues surrounding applying
the sequential and simultaneous methods to systems with more than two modes are
discussed. This will identify further issues which need to be tackled in the design of
a task allocation algorithm for multi-moded systems.

6.3.5 Extensions To Several Modes

Most multi-moded systems have more than two modes. The scalability of each
method with respect to the number of modes must also be considered. A system
with N modes has N(N − 1)/2 distinct pairs of modes. Therefore, the number of
mode transitions that must be dealt with increases quadratically with the number of
modes. In most systems, only a subset of these transitions will take place.

There are two conceivable ways of extending the sequential method for more than
two modes:

1. Configurations are generated one by one, minimising changes to all previous
configurations within which a mode transition may occur. This increases the
problem of knowing in which order the modes should be tackled. There are N !
possible sequences and it will become increasingly likely that picking a single
ordering at random will give poor quality solutions.

2. The first configuration is generated then all others are generated minimising
changes to this one configuration. If all configurations are near to the first one,
it could be hoped they were also similar to each other. However, this is likely to
be an optimistic assumption and results would probably vary quite considerably
between search runs. This method does have the advantage that the second
stage could easily be performed concurrently unlike a purely sequential one.

The first of these extensions is reliant on making an arbitrary choice for the mode
ordering or trying every possible order. Neither of these is satisfactory. The second
is also reliant on an arbitrary choice for the first mode and relies somewhat on the
randomness of the search producing similar solutions in the second stage.

The parallel method detailed in the following section overcomes the problem of
ordering the modes since all configurations in a created single step. Unlike the first
stage of the simultaneous method, these configurations are allowed to differ but are
increasingly penalised for doing so.
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6.3.6 Parallel Method

The concept of the parallel method is to run simulated annealing searches in parallel
with each search assigned a separate problem specification to solve. The search
threads∗ share information in an attempt to keep their solutions as similar as possible.

6.3.6.1 Requirements

The requirements for the parallel simulated annealing algorithm are as follows:

1. to allow there to be differences between configurations produced for each prob-
lem specification

2. to minimise the differences between the final configurations for each of the
input specifications

3. to be scalable in terms of the additional computation required for increasing
numbers of problem specifications

4. to produce repeatable results for a fixed set of inputs (including a random
number generator seed)

The first requirement is accomplished by assigning responsibility for each problem
specification to a separate search thread. Threads are penalised more as their current
solutions become increasingly different from the best solution of other threads but
configurations are not enforced to be the same. This mechanism is used to meet the
second requirement.

The third requirement is achieved by running each search thread in parallel.
This allows the algorithm to scale as long as the hardware platform provides suffi-
cient processing cores for the number of scenarios used. The implementation of the
algorithm for the Toast task allocation tool uses a shared memory multi-threading
model. Since 8 core machines are becoming commonplace, it is reasonable to state
that the algorithm scales to a problem with 8 problem specifications. An alternative
implementation, allowing distribution over networked machines, would provide fur-
ther scalability. Since a problem with more specifications must minimise differences
between more pairs of configurations, the number of evaluations required by each
search thread to obtain high quality solutions may also be larger.

Section 5.3.4 outlined the factors affecting search algorithm results for the single
threaded simulated annealing algorithm used previously. When a concurrent algo-
rithm is used, an additional uncontrollable nuisance factor, namely the interleaving
of threads, must potentially be added to this list. If the result of the algorithm is
dependent on the times at which threads communicate, then the results of the al-
gorithm can vary on subsequent executions for an identical problem using identical

∗The term threads is used here to mean separate threads of execution. The implementation could
use any mechanism of concurrency that can support the algorithm described.
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Figure 6.3: Solution representation for multi-problem search

parameters. The final requirement dictates that the algorithm is repeatable. This
is of benefit to researchers and practitioners. There can be more confidence in ex-
perimental results if nuisance factors are removed. For practitioners, the tool can
be ported between platforms without affecting results and the sequence of decisions
that led to a solution can be reproduced.

This final requirement is dealt with by the design of a mechanism which defines
synchronisation points in terms of the sequence of cost values produced by each search
thread rather than time based synchronisation which was used previously [182]. This
mechanism is described later in this section.

6.3.6.2 Representation And Cost Evaluation

Figure 6.3 shows the representation of the solution which would be held by three
search threads, labelled A, B and C, solving three specifications, SA, SB and SC .
The search algorithm which initiates the search threads considers itself to be working
on finding a single large configuration with sections for each specification. This is
different from the super-configuration used in the simultaneous method since objects
can appear multiple times and be configured differently in different sections of the
configuration. It is this configuration, labelled Global Best Configuration in figure 6.3,
which is output at the end of the search.

Each search thread maintains a configuration for all specifications but only op-
erates on one section of it for its specification. The other parts of the configuration
are filled with the best configuration found by other search threads for their speci-
fications. The global configuration is made up of the best configurations found for
each specification.

The cost function used by each search thread operates on the whole of its locally
stored configuration, not just the part pertaining to the specification it has been
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assigned to. Within each thread, the cost of the whole configuration is obtained by
applying fseq from equation (6.11) to each section of the configuration and taking a
mean value. The function which does this is fpar.

fpar({C1, . . . , CN}) =
1
N

N∑
i=1

fseq(Ci, {C1, . . . , CN} \ {Ci};Si) (6.13)

fpar applies fseq to each part of the configuration in the context of the relevant
specification. The difference set passed to fseq is the input set minus the configuration
currently being evaluated.

The results of the schedulability and guidance heuristic subfunctions will not
change for parts of the configuration assigned to other threads between synchroni-
sation points. This allows many values to be cached to speed up the calculation of
fpar.

For clarity, the cost function which thread A in figure 6.3 would use is

fpar({CAcur ,CBbest
, CCbest

}) =
1
3
[
fseq(CAcur , {CBbest

, CCbest
};SA)+

fseq(CBbest
, {CAcur , CCbest

};SB)+

fseq(CCbest
, {CAcur , CBbest

};SC)
]

(6.14)

When a thread using fpar for cost evaluation makes a change to a single configura-
tion, the size of the cost change is going to be affected by the number of specifications
involved. The probability of accepting a configuration within simulated annealing
is affected by the absolute magnitude of cost changes and parameters which set the
initial temperature and rate of cooling. To make the behaviour of certain values of
the temperature related parameters somewhat independent of the number of speci-
fications involved, line 19 of figure 5.1 is changed from

delta = newcost − curcost

to

delta = (newcost − curcost) ∗N

for N specifications.

The reason for each search thread using a cost value for all of the configuration,
not just the part it is modifying, is to enable comparisons between cost values from
different search threads and with the cost of the solution currently held as the global
best solution. This is essential to the working of the synchronising mechanism which
is now described.
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Figure 6.4: Synchronisation mechanism

6.3.6.3 Synchronisation Mechanism

The strategy for synchronising threads is to exchange information whenever a search
thread finds a solution better than the currently held global best solution. For a
given set of inputs, a search will find its first improvement on the initial solution
after the same number of evaluations on every run. This can be used as a basis for
creating a repeatable sequence of interactions.

When each search thread is first spawned from the main application, each thread
locally stores a copy of all its state variables which can affect the decisions it takes.
For simulated annealing, this includes the current temperature and inner loop count.
In order to achieve repeatability, the state of the pseudo-random number generator
must also be controlled. The implementation in Toast uses a separate instance of
the Mersenne Twister [167] in each search thread. These are seeded by the ran-
dom number generator in the main application which is seeded by a controllable
parameter.

The steps taken to synchronise the searches are best explained by way of the
example shown in figure 6.4. At the top of the diagram, the searches have just
passed a synchronisation point, which could be the start of the search. The next
synchronisation point is based on which search finds a solution better than the global
best solution in the fewest evaluations since the last synchronisation point. If more
than one search finds a better solution after the same number of evaluations, then
the one with the lower cost is preferred. After this, ties are broken based on a
deterministic ordering of the search threads. Figure 6.4 shows the following steps.

1. After 10 seconds, search A finds a new best solution and sets a global data flag
requesting synchronisation. It now waits for other searches to reach the same
number of evaluations.

2. Just after 10 seconds searches B and C read this synchronisation request.
Search B hasn’t performed enough evaluations and continues. Search C is
past the synchronisation point so stops and waits.

3. After 20 seconds, search B still hasn’t reached the synchronisation point but
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has found a new best solution. It sets the synchronisation point to a lower
number of evaluations. All searches are now at or past the synchronisation
point. Search B is the only search exactly at the synchronisation point so it
updates the global best with its solution. It then makes a copy of its local
state. The other searches restore their local state from the last copy made. B
sets a flag indicating synchronisation is complete and continues.

4. Searches A and C continue using the new best solution found by B as their
starting point.

Since each specification is expected to have a similar solution to the others, imme-
diately following a synchronisation, each search thread will try applying the current
best solution for other specifications to their specification. This solution can be
accepted or rejected using the usual simulated annealing acceptance criteria. This
optimisation means that the parallel method can often find a solution which has
identical configurations for each specification as is the case for the initial stage of the
simultaneous method.

A simpler repeatable parallel algorithm exists whereby all search threads run in
lock step so a thread cannot evaluate a new configuration until all other threads are
also ready to proceed. This requires threads to synchronise after every evaluation and
this communication would become more expensive if the implementation was scaled
up across several machines. In contrast, the synchronisation mechanism described in
this section only requires threads to synchronise when a new best solution is found.
This event becomes increasingly rare as the search proceeds.

There is, however, the possibility of the parallel method wasting computation if
one thread evaluates solutions more quickly than another but it is not the thread
that finds a new best solution after fewest evaluations. Therefore, it is most efficient
if the hardware platform provides all threads with roughly equal resources. This
wastage could be removed at the expense of losing repeatability but not necessarily
reducing solution quality. This is not evaluated in this thesis; only the repeatable
form of the algorithm is used.

When implementing the parallel method’s synchronisation mechanism, care must
be taken with the handling of stopping conditions to ensure perfect repeatability. If a
thread meets its stopping conditions and some other threads have not, then it cannot
simply exit. Another thread may improve on the global best solution and request
that threads synchronise. Threads which have met stopping conditions must wait and
listen for signals from other threads indicating a synchronisation is required or that
all threads have met stopping conditions. Stopping conditions based on a maximum
number of evaluations use the synchronisation point counter. The actual number of
evaluations performed by a thread can be larger than the maximum number requested
if, at some point during the search, the thread evaluates solutions more quickly than
the thread initiating the next synchronisation. The Toast implementation of this
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Class Problems

Class 1 low tasks / proc., low tasks / trans., short trans.
Class 2 low tasks / proc., low tasks / trans., long trans.
Class 3 low tasks / proc., high tasks / trans., short trans.
Class 4 low tasks / proc., high tasks / trans., long trans.
Class 5 high tasks / proc., low tasks / trans., short trans.
Class 6 high tasks / proc., low tasks / trans., long trans.
Class 7 high tasks / proc., high tasks / trans., short trans.
Class 8 high tasks / proc., high tasks / trans., long trans.

Table 6.7: Problem classes used in experiment 5.8

algorithm uses the POSIX pthread conditional synchronisation mechanism.

6.4 Evaluation

The evaluation concentrates on testing whether the parallel method is an efficient
and effective method for finding sets of similar solutions for a set of related problem
specifications. If this is the case, then the parallel method can be used to support hy-
pothesis statement 1 from section 3.2.1 and meet requirement Req. 2 of section 3.1.2
which states the need for a task allocation tool to support multi-moded systems.

The parallel method is compared to the sequential method for two mode systems.
The sequential method can also be applied in situations requiring the minimisation
of changes to an existing solution in order to meet new requirements. The need for
this was set out in requirement Req. 1 of section 3.1.1. The suitability of search for
this requirement is another aspect of hypothesis statement 1.

The simultaneous method is not included in this evaluation based on the analysis
in section 6.3.4. Previous work [182] contains some results which confirm that the
simultaneous method is good at finding a single solution for all modes but is not
practical in cases where this is not possible.

6.4.1 Selection Of Problem Specifications

The problem specifications used were taken from a previous experiment, namely
experiment 5.8. This experiment contained 32 classes of problem with 10 instances
in each class. The problem characteristic parameter values which were provided to
the Gentap tool to generate these problems are given in tables 5.10 and 5.11. All of
the problems contain 48 tasks.

These 32 classes were then grouped into 8 higher level classes each containing 4
subclasses. A separate guidance heuristic was tuned for each of the 8 classes in exper-
iment 5.6. These classes are shown in table 6.7. From the results in experiment 5.8,
valid configurations were found for the majority of problems in each class other than
Class 4. The problems used in this evaluation were taken from one subclass of each
of the remaining 7 classes. With reference to table 5.11, the subclass chosen from
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each class had low values of both the processor-connectivity and utilisation-per-network

parameters.

6.4.2 Experiment 6.1 — Balancing Objectives

Since the guidance heuristic was tuned for each problem class in previous experiments
this is not repeated. However, the cost function hierarchy, shown in figure 6.2 now
has three top level objectives: schedulability, guidance and change. These must be
balanced appropriately. There is no guarantee that the lower level weightings of the
guidance heuristic subfunctions won’t interact with these higher level weightings. It
has been a theme of this thesis, however, that the method should take a practical
approach to SBSE. Using the hierarchical weighting scheme and only retuning top
level weightings is consistent with this approach.

As described in section 5.3.4, previous experiments aimed to improve performance
of the algorithm and used the number of configurations evaluated as a response
variable. The situation in this experiment is different. The aim is to select a balance
of objectives which best minimises the differences between configurations produced at
the end of the search. The response variable used is the total proportion of allocation
changes as given by gtac + gmac. Priority changes are not included since they only
become significant once allocation changes are removed. If a search is successful at
reducing allocation changes, the reduction of priority changes should follow.

Note that the response value is used for analysis of results only. Within the change
function itself, weightings need to be chosen for balancing allocation changes and
priority changes. The values chosen were wtac = wmac = 100 and wtpc = wmpc = 10.
If corresponding schedulers only have 0 or 1 allocations in common then the priority
change functions will return lower values due to equation (6.3). Allocation changes
need to be penalised more than priority changes so that allocation changes are not
used as a device for reducing priority changes.

A slight alteration was made to the calculation for measuring priority changes.
In equations (6.4) and (6.5), q was replaced with q′ = 1 − exp(−5 · q). The reason
for doing this was to provide a greater differential in cost values when there were few
changes to priority ordering. This happens much more often during the search than
the opposite extreme where the priority ordering of one configurations is the reverse
of the other.

Separate experiments were conducted for balancing objectives in the sequential
and parallel methods since there is no reason why weighting values chosen for one
should work well with the other.

6.4.2.1 Balancing Objectives For Sequential Method

As previously stated, problems were selected from 1 subclass of the 7 problem classes
used for this evaluation. 10 problems were available in each class and valid configu-
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rations had been found for the majority of these in experiment (5.8). The sequential
method was tested by using one of the existing valid configurations as a baseline and
evolving it into a solution for a different problem within the same class. To follow the
terminology of section 6.3.3, the existing valid configuration represents configuration
C1 for Mode 1 and the other problem picked from the class represents the specification
for Mode 2.

As stated in section 6.3.3, C1 is expected to be a good starting point for the
solution to Mode 2 and therefore the search is run with a lower initial temperature
and is cooled slowly. This causes more intensive investigation of configurations similar
to C1. In these experiments, the following parameters were used: inittemp = 0.001,
maxinner = 20000. The maximum number of moves allowed for the search was
500000.

A 4 level, 3 factor mixture design with an additional centroid point was used to
set the levels of the weightings wsched , wguidance and wchange . The constant sum of
these weightings was arbitrarily chosen to be 1200 and the minimum level allowed
was 10. This resulted in 16 runs for each of the 7 problems used; 112 in total. See
section 5.3.3 for an explanation of mixture designs.

As already stated, the response used for analysis was the value of gtac + gmac at
the end of a run. If no valid configuration was found for Mode 2 then the response
value was set to 2.

Unlike previous experiments in section 5.4, no censoring of the response is taking
place and so there is no need to use survival analysis. Standard linear regression
techniques are appropriate for building a model of the data. After building such a
model and finding an optimal point on it, the suggested balance of weighting values
was wsched = 559, wguidance = 631 and wchange = 10.

After learning that this point lay in a good area of the design space, a second
set of runs were performed around this point to refine the result further. This used
a 3 level, 3 factor mixture with additional interior points (similar to experiment 5.6
without the centroid) requiring 13 runs per problem. In this experiment, the following
minimum values were used to constrain the mixture: wsched ≥ 500, wguidance ≥ 500
and wchange ≥ 10. Refer to section 5.3.3 for information on constrained mixture
designs. Analysis of results from this second set of runs recommended a weighting
combination of wsched = 690, wguidance = 500 and wchange = 10.

In contrast to the results of experiment 5.7 the guidance heuristic is given a lower
weighting than the schedulability objective. This is expected; the initial configura-
tion, C1, should be close to good solutions and so there is less need for a guidance
heuristic. This result is also in agreement with previous results published by this
author [164].
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6.4.2.2 Balancing Objectives For Parallel Method

The same pairs of problem specifications are used for the parallel method as with the
sequential method. The parallel method is simultaneously finding new configurations
for both modes. No configurations found in previous experiments are involved.

The search parameters found in experiment 5.3 are reused with inittemp = 0.005
and maxinner = 1500.

As with the experiments for the sequential method, 2 sets of runs using mixture
designs were carried to first find a good area of the design space and then refine the
result.

The results of the first set of runs recommended the design point wsched = 620,
wguidance = 570, wchange = 10. After refinement, this was adjusted to wsched = 500,
wguidance = 580, wchange = 120. Consistent with the results of experiment 5.7, more
emphasis is put on guidance over penalising missed schedulability constraints when
finding new configurations from a random starting point.

These results recommend a much higher weighting for the change subfunction
in the parallel method than in the sequential method. In the sequential method,
increasing this weight leads to the search becoming trapped near the initial con-
figuration and not able to find a valid configuration. The use of low temperatures
also makes it more difficult for the sequential method search to move away from the
starting point which complements the aims of the change subfunction. Neither of
these factors are relevant to the parallel method so the higher weighting value for
the change subfunction is sensible.

6.4.3 Experiment 6.2 — Comparison Of Methods For Two Mode Problems

Based on the analysis in section 6.3.3, it is suspected that the parallel method will
outperform the sequential method in finding a pair of configurations with fewer
differences for a pair of problem specifications. This hypothesis is tested in this
section.

Since a fair comparison of priority ordering changes is only possible when all
allocation changes are removed, the hypothesis will only be tested with regards to
allocation changes. For a sequence of test runs, let aci = gtaci + gmaci where gtaci
and gmaci are the values of gtac and gmac for the final result produced by run i. The
null hypothesis is

H0 : µseq = µpar (6.15)

where µseq is the population mean for values of aci produced by the sequential method
and µpar is the equivalent population mean for the parallel method.

This experiment used the same specifications taken from 7 problem classes as were
used in experiment 6.1. Each method was applied for 3 repetitions and the result
with the lowest total of allocation changes was selected. The sequential method used
the same baseline configuration in all 3 repetitions.
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Class gtac gmac gtpc gmpc gtac + gmac

Class 1 0.0417 0.0750 0.5168 0.2896 0.1167
Class 2 0.1458 0.2453 0.4594 0.4612 0.3911
Class 3 0.1042 0.0968 0.3738 0.1912 0.2009
Class 5 0.0833 0.1250 0.9571 0.5737 0.2083
Class 6 0.0208 0.0612 0.9436 0.5013 0.0821
Class 7 0.0208 0.0256 0.5794 0.5057 0.0465
Class 8 0.0000 0.0667 0.8034 0.3209 0.0667

Table 6.8: Values of change metrics for configuration pairs produced by sequential method

Class gtac gmac gtpc gmpc gtac + gmac

Class 1 0.0000 0.0000 0.0000 0.0000 0.0000
Class 2 0.0000 0.0000 0.0000 0.0000 0.0000
Class 3 0.1250 0.0323 0.2700 0.2226 0.1573
Class 5 0.0000 0.0000 0.6032 0.3559 0.0000
Class 6 0.0000 0.0000 0.8087 0.3114 0.0000
Class 7 0.0000 0.0000 0.0000 0.0000 0.0000
Class 8 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.9: Values of change metrics for configuration pairs produced by parallel method

The sequential method produced a valid configuration for Mode 2 on 20 of the
21 runs. The values of the change subfunctions for repetitions with fewest allocation
changes are given in table 6.8.

The equivalent set of results for the parallel method is shown in table 6.9. Using
this method, only 18 of the 21 repetitions produced a valid configuration for both
modes. However, a valid pair of configurations was found for every problem class
within the 3 repetitions.

As shown in table 6.9, the parallel method was able to find a perfect solution
with no changes for 4 of the 7 problem classes. Only problem class 3 required
any allocation changes. This problem class also required the greatest number of
evaluations in experiment 5.8 (table 5.20). This suggests that there are fewer valid
configurations in the solution space for problems in this class which could also be
why it is also more difficult to find a pair of nearby solutions.

Applying a paired exact Wilcox test to the final columns of tables 6.8 and 6.9
returns a p-value of 0.000156 given the assumption that the null hypothesis in equa-
tion (6.15) is true. The null hypothesis is rejected at the 1% level indicating that the
performance of the two methods is different.

Table 6.10 shows the allocation differences between the configurations previously
produced for the same specifications in experiment 5.8. No attempt was made to
minimise differences between the configurations in this experiment. A comparison
with other results in this section is unfair since they were taken from the best of 3
repetitions and these are from a single repetition. However, the results do suggest
that not attempting to minimise differences between configurations will lead to a
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Class gtac gmac

Class 1 0.8542 0.8500
Class 2 0.7708 0.8491
Class 3 0.9792 0.9355
Class 5 0.6250 0.7250
Class 6 0.8542 0.8980
Class 7 0.5833 0.7179
Class 8 1.0000 1.0000

Table 6.10: Allocation changes when no attempt is made to minimise differences. Results
from selected pairs of configurations found in experiment 5.8

large amount of change being required.

6.4.3.1 Performance Of Parallel And Sequential Methods

During the test runs, the sequential method averaged a rate of 253 evaluations per
second. This is consistent with the results for task sets containing 48 tasks shown in
figure 5.16 from experiment 5.9. Therefore, the schedulability test is still dominating
the rate of evaluation and the added cost subfunctions for minimising change have
little effect on performance.

5 · 105 evaluations were used per repetition and three repetitions took approxi-
mately 1.5 hours on average. The time taken for the sequential method should also
take account of the time needed to generate the initial solution. From the results in
table 5.20, this requires in the region of 104 to 105 evaluations. Therefore, the total
time needed to apply the sequential method to these problems is ≈ 2 hours.

Using a dual core machine, the parallel method with two threads operated at
an average rate of 166 evaluations per second within each thread. The reduction in
speed is due to the fact that each fpar evaluation needs two fseq evaluations. The
reduction isn’t greater since many values can be cached as previously explained in
section 6.3.6.2.

To perform 5 · 105 evaluations in each thread requires ≈ 1 hour or ≈ 3 hours
for 3 repetitions. Obviously, this time would approximately double for a single core
machine. If a valid solution with no changes between configurations was found, the
method terminated early since no better solution could be found.

Section 6.3.6.3 explained how the repeatable synchronisation mechanism of the
parallel method can waste some configuration evaluations. Of the 21 runs of the
parallel method, 12 did not terminate early. These 12 runs should have performed
2 ·5 ·105 evaluations each. On average they actually performed 1039821. This means
that approximately 4% of evaluations were wasted.

For two mode systems, the sequential and parallel method take a similar amount
of time with the sequential method being slightly quicker. The parallel method
evaluates solutions slower and relies on the availability of multi-core computing for
its performance. The sequential method is unable to take advantage of more cores.
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Class gtac gmac gtpc gmpc

Class 1 0.0000 0.0000 0.0000 0.0000
Class 2 0.0000 0.0000 0.2962 0.2826
Class 3 * * * *
Class 5 0.0000 0.0000 0.6977 0.5123
Class 6 0.2708 0.2628 0.7455 0.5570
Class 7 0.0000 0.0000 0.0000 0.0000
Class 8 0.0000 0.0000 0.1917 0.1857

Table 6.11: Values of change metrics for 4 mode configurations produced by parallel
method

6.4.4 Experiment 6.3 — Parallel Method With More Than Two Modes

This experiment applies the parallel method to 4 mode systems and an 8 mode
example. The problem specifications were taken from the same problem classes
selecting the required number of specifications from the 10 available.

The first attempt at applying the parallel method to 4 mode systems used the
same weightings as for the 2 mode experiment. Valid schedulable solutions were not
found on several occasions indicating the wchange weighting value was too high. A
new set of values was calculated by reducing this value and scaling the others up
in proportion. This resulted in a new set of weightings for balancing objectives:
wsched = 546, wguidance = 634, wchange = 20.

Once again, 3 repetitions for each of the 7 problem classes were run. Using
the new weightings, 16 of the 21 runs found a valid solution where all 4 modes were
schedulable. The best result from each of the three repetitions is shown in table 6.11.
For class 3, none of the 3 repetitions found a valid solution. Only the solution for
class 6 required any allocation changes between the 4 modes.

A repeat of the experiment for class 6 was performed with more emphasis on
minimising change. The weightings used were: wsched = 463, wguidance = 537,
wchange = 200. From three repetitions, this produced a best result of gtac = 0.0000,
gmac = 0.0000, gtpc = 0.4896, gmpc = 0.4691.

Efforts were also made to find a solution for class 3 by lowering the weighting
for minimising change further. A solution was eventually found with the weightings
wsched = 555, wguidance = 644, wchange = 1. With these weightings, the algorithm
is close to solving each mode completely independently without any minimisation of
change. The best resulting values for the change subfunctions were gtac = 0.7847,
gmac = 0.8174, gtpc = 0.0735, gmpc = 0.0460.

A single repetition of an 8 mode problem taken from class 1 was also solved using
the parallel algorithm. This used the same parameter setup as that which produced
the results for 4 modes in table 6.11. The results from this run were gtac = 0.0000,
gmac = 0.0214, gtpc = 0.2284, gmpc = 0.2262.
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6.4.4.1 Performance Of Parallel Method With More Modes

The experiments for 4 and 8 mode systems were run on an 8 core machine so all
threads could run in parallel. For the set of 21 runs of the parallel method on 4
mode systems, the algorithm averaged 87 evaluations per second per thread. At
this rate, 5 · 105 evaluations takes 1.6 hours or ≈ 5 hours for 3 repetitions. This
is a significant decrease on the rate of evaluation for the two mode system which
averaged 166 evaluations per second. After some investigation, it was found that the
implementation was not caching differences between unchanged configurations in the
calculation of fseq. This is compounded by the quadratic increase in the number of
pairs of modes to measure differences between.

The single run of the 8 mode system ran at a speed of only 15 evaluations per
second, taking over 9 hours to complete. The need to evaluate increasing numbers of
configurations inside each thread clearly has an impact on performance for systems
with many modes. As mentioned above, better caching of intermediate results should
improve this situation.

For the 4 mode systems, 19 of the 21 runs did not terminate early. These should
have used 2 · 106 evaluations in total. The mean actually used was 2251985, about
13% wastage. This is higher than the value found for 2 mode systems which could
be due to the machine running the experiments not giving equal resources to each
thread because of contention with other processes.

The 8 mode system required 4203168 evaluations though the maximum set was
8 · 5 · 105 = 4 · 106. Therefore ≈ 5% of evaluations were wasted.

6.5 Summary And Further Work

The main aim of the work in this chapter is to meet requirements Req. 1 and Req. 2
from section 3.1 and to test hypothesis statement 1 from section 3.2.1. While carrying
out the work other contributions were made and questions were raised which prompt
suggestions for further work.

6.5.1 Achievement Of Goals

Req. 1 stated that a method was needed to minimise differences between an exist-
ing configuration and one produced for new requirements. The sequential method,
described in section 6.3.3, was developed for this purpose. It is based on adding
a new subfunction to the cost function which penalises changes from an existing
configuration.

Req. 2 stated that a method was needed for implementing systems with mul-
tiple modes where the differences between configurations for each mode must be
minimised. In section 6.3.1, three algorithms were proposed for this purpose: the
sequential method, simultaneous method and parallel method. Analysis of each
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method suggested that the parallel method was most likely to succeed at minimising
change and most practical for systems with several modes.

Experiment 6.2 was performed to test the hypothesis that the parallel method
would outperform the sequential method with respect to minimising change between
configurations for two mode systems. The results confirmed the hypothesis. Experi-
ment 6.3 ran the parallel method on 4 and 8 mode problems where it was once again
successfully able to reduce, and in some cases totally remove, allocation and priority
ordering changes.

Hypothesis statement 1 questioned the efficiency and effectiveness of local search
for achieving requirements Req. 1 and Req. 2. Experiments 6.2 and 6.3 demon-
strated the effectiveness of the sequential method for achieving Req. 1 and the parallel
method for achieving Req. 2.

In experiment 6.2, the sequential method was shown to evaluate solutions at
the same rate as the standard task allocation local search algorithm used in ex-
periment 5.9 where minimising change was not an objective. The time taken to
calculate the new cost subfunctions for penalising change between a single pair of
configurations is negligible compared to the time required to run the schedulability
test.

The additional constraint of remaining near to an existing solution does mean
that the searches using the sequential method require more evaluations to find a
solution that has few changes and is schedulable. Previously, in experiment 5.8, the
search took in the region of 104 to 105 evaluations to find a valid solution. In these
experiments 5 · 105 evaluations were required. The additional constraints also made
the search less reliable at finding a valid schedulable solution and so the best result
from 3 was used. In total, a good solution that was schedulable and with few changes
from the original could be found in 2 hours on machines clocked at 2.66GHz. This
is well within the amount of time an engineer could expect a tool to take to produce
a solution and therefore hypothesis statement 1 is supported with regards to local
search being suitable to meet Req. 1.

The parallel method requires more resources than the sequential method and
relies on the availability of multi-core machines for its efficiency. On an 8 core
machine, 8 very similar configurations for 48 task systems were produced comfortably
within 12 hours. For 4 mode systems, 3 repetitions of the algorithm were possible in
under 5 hours. These durations are felt to be within bounds of what is reasonable
and so hypothesis statement 1 is also supported with regards to local search being
able to achieve Req. 2. Experiment 6.3 uncovered possible improvements to the
implementation of the parallel method which may substantially improve performance
with several modes.

As shown previously in experiments 5.6 and 5.9 the number of evaluations re-
quired and speed of the schedulability test are both heavily dependent on the charac-
teristics of the task allocation problem. This is still very much the case with regards
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to finding solutions with few changes between them. Reflecting on experiment 5.8,
the results of experiments 6.2 and 6.3 suggest that problem classes whose instances
are harder to solve also contain problem instances for which it is harder to find valid
configurations which are similar to each other.

6.5.2 Other Contributions

The repeatable parallel algorithm used in the parallel method in this chapter could
have more general applicability. The framework could be applied to any problem
where it is necessary to find similar solutions to a set of related problems. An
example is product line design where several similar products have slight feature
variations.

The parallel method has been built around a simulated annealing algorithm.
The same framework could be used with other heuristic search algorithms, including
population based algorithms. There are three requirements for using the parallel
method framework: being able to store and restore state, maintaining a solution
which is currently considered to be the best and being able to measure the difference
between a pair of solutions.

6.5.3 Further Work

It is unlikely that all mode transitions will be possible when a system is operational or
some may occur more frequently than others. When measuring differences between
pairs of solutions using equations (6.6) to (6.9) it would be possible to use a weighted
mean to place more bias on some transitions. However, this may not always be a
useful feature to have. If transitions Mode 1 → Mode 2 and Mode 1 → Mode 3 are
important then this will easier to achieve if the configurations for Mode 2 and Mode

3 are similar even if Mode 2 → Mode 3 is not an important transition.
The parallel method applies the same cost function (fseq) to each part of the

configuration with the assumption that the characteristics of each problem specifi-
cation are similar. If each mode had very different characteristics then it would be
desirable to use different guidance heuristics for finding each section of the overall
configuration for all modes. However, for situations where related configurations are
required, it is likely that there will also be a degree of similarity between problem
specifications.





7
Producing Flexible Solutions

Using Scenarios

7.1 Introduction

Flexibility is an important architectural quality for software based systems because
they rarely remain the same if they continue to be used. Section 1.1, which covered
the subject of software maintenance, gave some reasons why this is the case:

• correction of implementation errors,
• iterative development driven by changing customer requirements,
• obsolescence of hardware or software dependencies,
• change of operating environment.

Other than the first of these, the need to change the system is being caused by
another external change, termed a change agent in section 1.1.3.

The technique of scenario based analysis, described in section 2.4.3, is used in
the development of systems’ architectures. Scenario based analysis asks questions of
the form, “If X changes, what will happen to Y ?”. The answers to these questions
are discovered by applying scenario X to a model of the architecture and then using
simulation or theoretical analysis to learn how Y will react. If the answer is not
satisfactory, then the architecture must be modified.

It is hard to predict which scenarios will actually occur. Often, many scenarios
will be suggested and it will be impossible to accommodate them all given the avail-
able resources of the project at the time. In this situation, attempts are made to
design an architecture which can be easily changed to continue to meet requirements
if scenario X does come about. Scenarios can also be wrong. An external change
may occur which was not predicted. However, the modifications made to the archi-
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tecture to accommodate scenarios which were suggested may simplify adjusting the
architecture in future for other external changes.

The ease with which an architecture can change to meet the needs of an external
change, predicted by a scenario or otherwise, is its flexibility by the definition given
in section 1.1.3. By using scenarios in the process of selecting a task allocation, it is
hoped that the selected configuration will be more flexible to both changes predicted
by the scenarios as well as those which are not.

Requirement Req. 3 of section 3.1.3 states that task allocation tools should take
account of possible future changes, i.e. scenarios, when selecting a configuration for
a set of tasks and messages. This requirement is covered by the work in this chapter.

Hypothesis statement 3 from section 3.2.1 says that configurations which have
been generated with a set of scenarios will also be more flexible with respect to
unpredicted changes which are different from though have some similarities with the
scenarios. This statement is tested during the evaluation in this chapter.

This chapter now proceeds as follows. Section 7.2 describes how scenarios can
be involved in the selection of a configuration with the use of the parallel method
developed in chapter 6. Section 7.3 describes a series of experiments to test hypothesis
statement 3 above. Section 7.4 summarises the findings and suggests avenues for
further work.

7.2 Incorporating Scenarios Into The Search Algorithm

When using scenarios to produce a task and message configuration, the configuration
should:

• meet the requirements of as many scenarios as possible,
• need as few adjustments as possible to meet the requirements of other scenarios.

All of the algorithm features required to meet these requirements were developed in
chapters 5 and 6. In particular, the parallel method, described in section 6.3.6, can
be applied in this context.

The parallel method algorithm was originally designed to accept a set of problem
specifications which represented the run-time modes of a system and produce a cor-
responding set of configurations which met the needs of each mode but had as few
differences between them as possible. This allowed the system to transition between
modes efficiently. As recognised in section 3.1.3 the efficient mode transition optimi-
sation problem is of the same form as the one which needs to be solved to meet the
requirements listed above.

The algorithm can be supplied with a set of problem specifications which contain
the current requirements of the system and additional requirements which represent
possible change scenarios. The algorithm will then search for a set of valid configu-
rations which have as few differences between them as possible and reuse the same
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configuration where possible. One significant difference is that a valid schedulable
solution is only needed for the current problem specification. An extreme scenario
specification may be impossible to satisfy yet still guide the search to produce a more
flexible configuration for the current specification.

The configuration produced for the current problem specification as opposed to
scenario specifications is referred to as the baseline configuration. At some point in
the future, it is assumed that new requirements will cause the baseline configuration
to be reevaluated and possibly changed. These new requirements are referred to as
an upgrade specification.

The fewer changes which need to be made to the baseline configuration to be
valid in the context of an upgrade specification, the more flexible the baseline is said
to be in the context of that upgrade specification. Finding a new configuration which
differs from a previous one as little as possible can be done by applying the sequential
method, described in section 6.3.3. The application of the sequential method for this
purpose satisfies requirement Req. 1 of section 3.1.1 on the reuse of solutions.

7.3 Evaluation

The search algorithm for generating flexible baseline solutions makes the assumption
that if a configuration for a problem specification meets all or nearly all of the
requirements of a scenario, the solution produced will be more flexible with respect
to changes of a similar nature to the scenario. This assumption is tested in this
evaluation.

The results presented in this section are taken from a previous paper [164]. The
set of problem specifications used are different from those in chapters 5 and 6. They
were generated with a slightly older version of the Gentap tool than that described
in chapter 4. The only major difference is that message sizes were a constant value
rather than being sampled from a distribution for a particular network utilisation
level.

Parameter tuning was conducted in the same manner as was done in chapters 5
and 6 with different weighting values being used for different problem characteristics.
The low level cost subfunctions were the same though the hierarchical organisation
has since been improved to the structures which were given in figures 5.6 and 6.2.
Full details of the parameter tuning undertaken for this evaluation are available in
the original paper [164].

7.3.1 Problem Generation

Three types of problem specification need to be generated for the evaluation: baseline
problem specifications, scenario specifications and upgrade specifications.
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Problem
Specification

Parameter Values

utilisation-per-
processor

tasks-per-
processor

messages-
per-task

period max /
period min

01 0.40 5 1 10 (5.9)
02 0.65 5 1 10 (5.0)
03 0.40 8 1 10 (2.3)
04 0.65 8 1 10 (6.4)
05 0.40 5 2 10 (5.9)
06 0.65 5 2 10 (8.6)
07 0.40 8 2 10 (9.6)
08 0.65 8 2 10 (6.0)
09 0.40 5 1 1000 (30.8)
10 0.65 5 1 1000 (62.0)
11 0.40 8 1 1000 (39.3)
12 0.65 8 1 1000 (81.3)
13 0.40 5 2 1000 (110.6)
14 0.65 5 2 1000 (367.8)
15 0.40 8 2 1000 (14.9)
16 0.65 8 2 1000 (127.2)

Table 7.1: Values of varied problem characteristics

7.3.1.1 Baseline Problem Specifications

Baseline specifications were generated using Gentap, the problem generator described
in chapter 4. The parameters used are shown in tables 7.1 and 7.2. Four problem
characteristics were varied between high and low values to create the 16 problem
classes listed in table 7.1. These problem characteristics were the mean utilisation
per processor, mean tasks per processor, number of messages per task and period
range. The final column of table 7.1 gives the maximum possible ratio of periods
for the parameter values used and the actual ratio for that problem in parentheses.
The remaining Gentap parameter values, which were kept constant, are shown in
table 7.2.

Parameter Fixed Value

number-of-tasks 40
number-of-networks 1
processor-connectivity 1 (broadcast network)
network-bandwidth 2048
network-latency 0
processor-network-bandwidth 102400
processor-network-latency 0
utilisation-per-network approx 0.2 (not a Gentap

parameter at time of evaluation)
tasks-per-transaction 10 (implies 4 transactions)
transaction-length 0.4
transaction-utilisation-distribution equal

Table 7.2: Fixed problem characteristic values
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Scenario Num Scenarios Percentage
Tasks
Changed

Utilisation
Increase

noscen no scenarios used – –
scen1 1 scenario 40% 4%
scen2 1 scenario 40% 11%
scen3 1 scenario 40% 18%
scen4 1 scenario 40% 25%
scen5 1 scenario 20% 25%
scen6 1 scenario 60% 25%
scen7 3 scenarios 40% 11%

Table 7.3: Scenario profiles

A single problem instance from each class was generated. Each of these problems
were solved without using any scenarios to check the baselines were feasible.

The scenario and upgrade specifications were created by making random but
controlled alterations to these baseline specifications. The nature of these alterations
is described in sections 7.3.1.2 and 7.3.1.3.

7.3.1.2 Scenario Specifications

The profiles of the scenarios are shown in table 7.3. For each scenario profile, problem
specifications were generated by selecting a certain percentage of tasks in the baseline
at random and increasing their utilisation to cause the total utilisation of all tasks
to increase by the amount indicated.

The profile labels have the following meanings. noscen corresponds to generating
a baseline without the use of scenarios. Scenarios in profiles scen1, . . . , scen4 were
generated by randomly selecting an equal number of tasks from each transaction so
that 40% of the systems’ tasks were changed to achieve the utilisation increase levels
shown in table 7.3. Scenario profiles scen5 and scen6 change different proportions of
tasks and scen7 uses three separate scenarios, each generated in the same manner as
those from scen2.

Three instances of each scenario profile were generated for each baseline which
needed to be generated, i.e. three instances of a single scenario for scen1, . . . , scen6
and three sets of three scenarios for scen7.

7.3.1.3 Upgrade Specifications

Upgrade specifications were also generated with an element of randomness and were
different from the predicted scenarios which were generated in section 7.3.1.2. The
upgrades were limited to utilisation increases where the increase was spread evenly
between transactions.

The 5 levels of utilisation increase are given in table 7.4. Initially the utilisa-
tion increases used were the same for all problems. However, when large utilisation
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Utilisation
Increase Level

Actual Utilisation Increase

Low Starting
Utilisation

High Starting
Utilisation

1 4% 2%
2 8% 4%
3 12% 6%
4 16% 8%
5 20% 10%

Table 7.4: Utilisation increase levels for upgrade specifications

increases were applied to some problems which already had a higher starting utili-
sation, it was not possible to find valid configurations for the upgrade specifications.
Therefore, smaller utilisation increases were made to the baselines which have a
higher initial utilisation according to table 7.1. For each utilisation increase level
and each problem, 3 separate upgrades were generated to be used for repetitions in
experiments. There were 3 · 5 · 16 = 240 upgrade specifications generated in total.

Upgrade specifications were checked to be feasible by searching for a valid config-
uration for each of them without regard for any existing baseline. As a reference for
future experiments, the configurations found during these checks had a mean propor-
tion of task allocation changes of 0.842 from the configurations found when checking
the feasibility of the baselines. Given that there are several valid configurations for
each baseline and upgrade specification, this high value is not surprising.

7.3.2 Experiment 7.1 — Using A Single Utilisation Increase Scenario

Testing the effectiveness of the different scenario profiles is a 2 stage procedure:

1. Generate baselines configurations for each problem using the different scenario
profiles

2. Use the sequential method to upgrade these baselines. The resulting number
of changes required is used as a measurement of the baseline’s flexibility.

In these experiments only task, and not message, allocation and priority changes
were considered.

In this experiment, 3 baselines were generated for each problem using each of the
5 scenario profiles noscen, scen1, scen2, scen3 and scen4. Each baseline was upgraded
5 times for the different types of upgrade specification listed in section 7.3.1.3. There-
fore, across all 16 problems, 240 upgrade specifications were generated per scenario
profile.

The combined task allocation changes for all problems are shown for each of the
scenario profiles in figure 7.1. In the graph sections of each bar are shaded differently
to show the proportion of changes contributed by each upgrade type.



Chapter 7. Producing Flexible Solutions Using Scenarios 197

 0

 2

 4

 6

 8

10

12

noscen scen1 scen2 scen3 scen4

utilisation
increase level

1

2

3

4

5al
lo

ca
tio

n 
ch

an
ge

s

scenario

Figure 7.1: Allocation changes required to meet upgrade requirements

The first point of note is that the baselines generated without using scenarios
are more flexible than may be expected. This can be explained by the fact that
the sequential method parameter tuning experiments to find weightings which best
minimise change between baseline and upgrade configurations used these baselines.
This puts the new baselines generated with scenarios at a slight disadvantage. For
the other solutions, increasing the size of utilisation increase in the scenario gradually
improves the flexibility of the system. For scen4, nearly all allocation changes for
upgrades with lower level utilisation increases have been eliminated and allocation
changes required for higher level utilisation increases have been reduced.

Figure 7.2 breaks down the results of figure 7.1 by problem characteristic. This
shows a very clear pattern. The problems which have the least flexible solutions by
far are those with a high utilisation and a low number of tasks per processor. In
a problem with a lower number of tasks per processor, each task is using a larger
chunk of utilisation on average and so it is more difficult to fully utilise the available
resources of each processor. One problem in particular requires more changes but
there is insufficient data within a single cell to draw conclusions about its problem
class.

Because of the way cost subfunctions which penalise change, given in section 6.3.2,
are calculated, priority changes can only be compared once allocation changes have
been removed. Figure 7.3 shows the priority changes required to meet the upgrade
specifications but only for the 12 systems which were shown in figure 7.2 to have
negligible allocation changes. This graph once again shows that using scenarios
which stress the baseline configuration with larger utilisation increases reduce the
number of changes more than those with smaller increases.
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Figure 7.3: Priority changes required for upgrades

7.3.3 Experiment 7.2 — Using Scenarios With Other Stressing Patterns

For the four systems which had a high per processor utilisation and low number
of tasks per processor, further baselines were created using scenario profiles scen5,
scen6, and scen7. The flexibility of the baselines generated for just these four systems
is compared in figure 7.4.

Scenario profile scen5 increased utilisation per processor by the same amount as
scen4 but concentrated the change amongst fewer tasks. In general, if it were known
which tasks would change, then a more targeted scenario makes sense but for the
style of upgrade tested here, these scenarios do not perform well.

Scenario profile scen6 does the opposite, spreading the utilisation increase over
a larger number of tasks. This style of scenario actually generates the most flexible
baselines for these upgrades showing that diluting the utilisation increase over more
tasks does not have a negative effect. Finally, scen7 represents a combination of 3
scenarios each with the same characteristics as scen2. It has been shown that increas-
ing the amount of stress a scenario applies via a larger utilisation increase improves
flexibility. An alternative way of increasing the stress is to use multiple scenarios
with smaller utilisation increases. A comparison between baselines generated with
scen2 and scen7 validates this statement.

7.4 Summary And Further Work

In this chapter, the parallel method, developed in chapter 6, was used to generate
valid baseline configurations which were similar to configurations for possible change
scenarios. By doing this, when an upgrade is required, the baseline configuration
should require fewer changes if there is some similarity between the upgrade and
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Figure 7.4: Results of additional scenario evaluations

scenarios used.

When an upgrade needs to be performed, the sequential method, also developed
in chapter 6, can be used to find a new configuration as close to the baseline as
possible.

The primary aim of the work in this chapter was to test hypothesis statement 3
from section 3.2.1. This said that baseline configurations generated with scenarios
would be more flexible than those that weren’t even when the scenarios did not cor-
rectly predict changes. The results of experiments 7.1 and 7.2 have clearly shown that
baselines generated with increasingly more stressful scenarios require fewer allocation
and priority ordering changes when they are upgraded.

Four problem characteristics were studied throughout this chapter. Problems
with a high mean processor utilisation and low mean number of tasks per processor
proved to be the most difficult to generate flexible baselines for. The range of task
periods and the number of messages per task did not have a significant impact.

7.4.1 Further Work

Since the same algorithms are used in this chapter as in chapter 6, issues raised in
section 6.5.3 are still relevant. The weightings used for solving the current problem
specification and scenario specifications are the same. Allowing these to differ is
an implementation, rather than theoretical, issue and this issue did not cause any
problems for these experiments.

As in the application of the parallel method to mode changes, all transitions
between configurations are treated equally. This means that differences between
configurations for scenarios are minimised as much as differences between the cur-



Chapter 7. Producing Flexible Solutions Using Scenarios 201

rent problem specification and the configuration for a scenario. There is perhaps
a stronger argument for allowing the importance of these transitions to differ than
there was in the application to mode changes. However, the same argument regarding
finding groups of solutions given in section 6.5.3 is also still relevant.

Requirement Req. 1 stated that moving some tasks may have a higher cost penalty
than others. The sequential method used to satisfy this requirement does not cur-
rently address this. The Toast task allocation tool can take a constraint file as input
which restricts the allocation of a task to a single processor or group of processors.
The format of this file is given in appendix E. This would completely remove the
possibility of moving a task.

If values were assigned to the importance of not moving a task or message, then
equations (6.1) and (6.2) could be modified to use a weighted mean. This has not
been implemented or evaluated.





8
Extensions For Fault Tolerance

And Graceful Degradation

8.1 Introduction

The reliability of computer based systems has become more important as their use
as key components of critical systems has escalated. In particular, in section 1.3,
this was identified as one of the important trends in automotive and avionic control
system application development. Due to the severe consequences of these systems
failing, it is essential that they can provide an acceptable level of service and system
safety even when components have a permanent fault. A system which can continue
to run safely in the presence of faults but with a reduced level of service is referred
to as a gracefully degrading system [184].

There are a number of strategies which can be used to allow a system to continue
to function in the presence of faults. The most prevalent is replication. A system
with replication runs redundant versions of some or all of its tasks and will usually
require additional processors to do so. Systems using replication can use cold, warm
or hot back up [100] strategies. The difference lies in whether all task replicas are
always running and being kept up to date to allow an almost instantaneous fail-over
or if they are left dormant until needed. This work assumes a hot backup strategy,
commonly used in avionics [185].

The choice between dynamic or static redundancy also distinguishes fault-tolerance
mechanisms [100]. Static redundancy uses redundant tasks to mask faults whereas a
dynamically redundant system waits for the system to begin to error or give an indi-
cation an error is about to occur before taking steps to recover. This chapter is only
concerned with static redundancy which is commonly used in critical systems [185].

In this chapter, the Toast tool is extended to support fault-tolerance. By al-
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lowing the algorithm to vary the number of task replicas and their allocations, it is
able to alter the fault-tolerance properties of the system. Additionally, this should
find a better trade-off between hardware utilisation and fault-tolerance compared to
replicating each task the same number of times. There are a number of challenges in
doing this. When task and message replicas are added to the system, they must also
be allocated and scheduled, increasing the size of the problem. In addition to this,
the optimisation algorithm now has an additional axis of variation in determining
how many replicas should be used. Pure task allocation for hard real-time systems is
a constraint satisfaction problem where any solution in which all deadlines are met is
acceptable. In order to assess fault-tolerance qualities of a system, a fault-tolerance
cost function needs to be developed. This is non-trivial since there are many ways
in which a system can fail. In particular, a system can degrade in different ways
for increasing numbers of faults and the preferred degradation behaviour will differ
according to system requirements. Therefore, cost functions which can be adapted
to different situations are needed.

The chosen method of evaluation of fault-tolerance quality uses a measure of
system utility designed by Shelton [186]. This is a value assigned to the level of
service the system is currently providing based on which components are working
and which have failed. The system may be able to continue to work safely when all
versions of some tasks have failed if critical tasks are still running. Shelton’s metric
allows a task allocation algorithm to make decisions as to which combinations of tasks
must be kept running so that processor faults do not cause catastrophic failures and
the system degrades gracefully instead. How levels of service are mapped to system
utility values and safe thresholds are decided is considered outside the scope of this
work though a possible method is briefly discussed.

Fault-tolerant systems are designed with the aim of being t-fault-tolerant and/or
having a certain mean time between failure (MTBF) [187]. A t-fault-tolerant system
is one that can withstand t faults before failure. Objective functions are built upon
the system utility measure to support both the t-fault-tolerant and MTBF paradigms.

This chapter proceeds as follows. Section 8.2 briefly surveys related work which
brings together task allocation and fault tolerance. Section 8.3 extends the task al-
location algorithm to accomodate fault tolerance objectives. This includes changing
the search neighbourhood to allow the number of task replicas to vary and the de-
velopment of new cost subfunctions to achieve the pattern of degradation required.
Section 8.4 evaluates the modifications made to the algorithm and the results are
summarised in section 8.5.

Much of the work in this chapter was previously published in a paper by Emberson
and Bate [188]. In relation to this paper, this chapter further develops the expected
utility loss cost subfunction. Details of the changes are given in section 8.3.4.2. The
evaluation in section 8.4.2 reflects these changes.
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8.2 Related Work

Previous work combining automated real-time task allocation with fault-tolerance
has tended to concentrate on modifying the scheduling analysis to accommodate the
overheads needed for fault tolerance [189, 190, 191]. Often the work is specific to
scheduling policy such as static cyclic scheduling and optimises this schedule so that
the system can handle a single processor failure [189, 191]. The emphasis of this work
is in making higher level architectural decisions, in particular the number of replicas
to use and where they will be allocated. Previous work on static redundancy and
task allocation has been concerned with a fixed number of processor faults, and often
just a single fault. This work deals with task allocation in the context of a gracefully
degrading system and has the ability to differentiate between systems which can
handle the same numbers of faults before complete failure but degrade differently.

Oh and Son [190] discuss the need to consider schedulability and fault-tolerance
simultaneously. They prove that finding a schedule to handle a single processor
failure is NP-hard and give an algorithm to solve this problem. The system model
does not include precedence constraints.

Girault et al. [189] adapt an algorithm which generates distributed static sched-
ules to handle processor failures with fail-stop behaviour. However, the number of
replicas is pre-determined and allocated by making a copy of task sets on existing
processors to redundant processors. Qin and Hong [191] build on the work of Girault
et al. The system model includes precedence constraints and a more heterogeneous
environment. They introduce the concept of performability which is a combination
of schedulability and fault-tolerance. They allow for reliability heterogeneity by in-
cluding a failure rate for processors in their model.

Echtle and Eusgeld [192] use search, specifically a genetic algorithm, to find fault-
tolerant system designs. However, the approach is not aimed at real-time systems and
schedulability is not taken into account. Of some interest is the fitness function used
by the search algorithm. It considers how combinations of faults lead to failures and
in this sense has some commonality with the utility model introduced in section 8.3.
Bicking et al. [52] take a similar approach to [192], also using a genetic algorithm,
but once again the system model is not targeted at real-time.

Attiya and Hamam [54] also solve a non real-time task allocation problem using
simulated annealing with an emphasis on maximising reliability. System reliability
is measured based on the failure rate of processors and networks combined with
the utilisation of the scheduling resource. This approach takes no account of the
importance of each task to the level of service provided by the system.

Kany and Madsen have written a high quality study on design optimisation for
fault-tolerant real-time systems [88]. Their fault-tolerance design choice is the de-
cision between trying to re-execute a task or using a single task replica to mask
faults. This is in addition to selecting an allocation. Task priorities are pre-defined,
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unlike Toast which searches for a priority ordering in addition to allocation and
fault-tolerance decisions.

Izosimov et al. [193] look at a similar problem to that of Kany and Madsen where
decisions must be made on whether tasks will be re-executed or replicated to mask
transient faults. They look at a larger optimisation problem than Kany and Madsen,
considering task mapping, task scheduling and bus scheduling also. The algorithm
used is a combination of a greedy heuristic followed by tabu search, an optimization
method often used for job shop scheduling [115]. The work of Kany and Madsen and
Izosimov et al. differs from this work which is concerned with system behaviour over
an increasing number of permanent failures.

Ejlali et al. [194] present work which combines fault-tolerance with power man-
agement. They point out that a full hot backup mechanism uses a lot of additional
power. Instead a backup is used which consumes less power by taking advantage of
slack in the schedule. This suggest an alternative way to gracefully degrade systems;
allow the system to have worse performance in order to mask faults. In contrast,
this chapter presents a metric which measures functional degradation.

Nace, Koopman and Shelton [184, 186], as part of the RoSES (Robust Self-
configuring Embedded Systems) project, outline a framework for providing graceful
degradation using a combination of feature subsets, utility model and task allocation.

However the main results from the project provide only the utility model of Shel-
ton [186], and it is generally assumed that each feature subset is resident on its own
processor. The main aim of this chapter is to combine the task allocation algorithm
developed in chapter 5 with Shelton’s utility model and thereby contributing to the
overall framework envisioned by Nace et al. [184].

8.3 Extensions For Fault Tolerance

In order to embrace fault-tolerance as a core part of the automated architecture
design process, it is necessary to extend the system model and schedulability test as
well as both the neighbourhood and cost functions used in the search algorithm.

8.3.1 Extensions To System Model

An extra attribute is added to the problem specification which indicates the maxi-
mum number of replicas for each task. Since a hot backup strategy is being assumed,
if a message passes between two tasks, then an equivalent message must be passed
between all replicas of those tasks. Figure 8.1 shows a task with two replicas which
sends a message to a task with a single replica. If at least one version of each task is
on a processor which has not failed, then the functionality provided by these tasks
will still be present. When multiple versions of a task are present in the system other
tasks will receive messages from each of the replicas. In this chapter, the compu-
tational model assumes that the first message received is used. Other models are
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Figure 8.1: Messages sent by task replicas

feasible. For instance, tasks could wait for all messages of working replicas to arrive
in order to compare results.

8.3.2 Extensions To Neighbourhood

In addition to configuring the original set of tasks and messages in the system,
allocations and priorities must be found for all replica tasks and their messages. For
this purpose, replicas are simply treated as extra schedulable objects in the system.
The replicas increase the size of the neighbourhood making the possible solution
space much larger. In order for the algorithm to decide how many task replicas
should be used, a third axis of variation (in addition to allocations and priorities)
must be added. The neighbourhood function is given the option of enabling and
disabling replica tasks. A disabled task is effectively removed from the system for
the purposes of evaluating the system’s schedulability and fault-tolerance qualities.
When a task is disabled, all of the messages it sends and receives are also disabled
as these will not be needed as part of a design with fewer replicas. On completion
of the search, any disabled objects present in the solution judged to be the best will
not be included in the output.

During the evaluation it was found that it is better to favour enabling a disabled
task as opposed to disabling a working one. Therefore, the function chooses to
change the status of a currently working task with probability 0.1 and changes the
status of a currently disabled replica with probability 0.9. It should be noted that this
parameter’s optimal value is dependent upon the problem to be solved. Without this
bias, the search has a tendency to find local optima where all tasks are schedulable
but too few replicas are included in the solution.

8.3.3 The System Utility Metric

The system utility metric is taken from Shelton [186]. This section explains how it
is implemented efficiently and used as part of the cost function.

For a system, where some components may have failed, the utility of the system
is a measure of the functionality that the system is still providing. Calculating such a
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Figure 8.2: Example feature subsets from a braking system (based on Shelton [186])

value is difficult since failures are generally not independent. For example, consider
an automotive braking system with a brake on each of the four wheels. The loss
in utility can be considered equivalent for any single brake failure. If two brakes
fail, configurations where both failed brakes are on the same side of the car can be
considered to have less utility since this will cause the car to swerve when braking.

Assuming a fail-fast, fail-stop model [98], where each component can only have
a status of working or failed, there are 2N failure states for a system with N com-
ponents. Assigning a utility value to every one of these states is not a scalable
solution. To overcome this, Shelton [186] developed a method which uses hierarchi-
cal decomposition to reduce the number of utility values required. Shelton’s method
takes advantage of the existing design decomposition already present in the system
to group individual system components into feature subsets. These feature subsets
containing system components are grouped to form higher level feature subsets.

Figure 8.2, a simplified version of Shelton’s diagram [186], shows four feature
subsets for the left front brake subsystem of an automotive braking system. The
utility of each feature subset depends on the status of the components in it and that
of any feature subsets it references. Shelton’s example example utility values for
the LFAntiLock feature subset are shown in table 8.1. The utility value in each row
of the table corresponds to one or more failure configurations of the components in
the feature subset. All components listed in the configuration column must have a
working status in order to use the corresponding utility value. The utility value for
a configuration is written as a formula which can refer to the utility value of another
feature subset using the function U(·). This is shown in the first row of table 8.1
which uses the utility value of the Dynamics feature subset.

In order to involve utility as part of the cost function, it is necessary to create
both an internal representation for efficiently calculating system utility and also
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Feature Subset Configuration Utility

LFAntiLock LFAntiLockCom, LFWheelSpeed,
Pedal, Dynamics

0.7 + 0.3 ∗ U(Dynamics)

LFAntiLockCom, LFWheelSpeed,
Pedal

0.7

Others 0

Table 8.1: Example utility values for the LFAntiLock feature subset

LFAnt iLockCom

LFWheelSpeed LFWheelSpeed

BrakePedal BrakePedal BrakePedal BrakePedal

Dyn. Dyn.Dyn. Dyn. Dyn. Dyn.Dyn. Dyn.

working failed

working failed

w.

w. w. w. w. w. w. w. w.

w. w. w.f. f . f . f .

f . f . f .f . f . f . f . f .

working failed

Figure 8.3: Fully expanded utility decision tree

an external representation for conveniently providing input data which represents a
system utility model.

The internal representation for the utility of a particular feature subset is a de-
cision tree. Each node of the tree is one of the components of the feature subset. At
the leaves of the tree are the utility values. In order to calculate the utility value for
the feature subset, the tree is descended from the root selecting either the working
or failed branch from each node depending on the failure status of the node. For low
level components, the failure status is decided by whether the component has failed
or not. For higher level feature subset components, the failure status is failed if the
utility value of the referenced feature subset is 0 else the failure status is working.

In general, for a feature subset with k components, a utility tree will have a depth
of k + 1 and have 2k utility values on the leaves of the tree. An example of such
a tree for the LFAntiLock feature subset is shown in figure 8.3. However, it is clear
from table 8.1 that many configurations have the same utility value. In particular,
for configurations dependent on multiple components it is not necessary to check the
status of every component if any have failed. This allows the tree to be pruned as
shown in figure 8.4.
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LFAnt iLockCom , LFWheelSpeed, 
BrakePedal

Dynam ics

0.7+ 0.3*U(Dynam ics)0.7

0

working failed

w. f.

LFAnt iLockCom

LFWheelSpeed

working

BrakePedal

Dynam ics

0.7+ 0.3*U(Dynam ics)0.7

0

0

0

failed

working failed

working failed

w. f.

Figure 8.4: Pruned and compacted trees

The tree can be compacted further by allowing a decision node to depend upon
multiple components as shown by the transformation in figure 8.4. This form has
the advantage of being a more direct mapping from Shelton’s table of utility values
in table 8.1. It also forms the basis of an XML format for utility decision trees which
is not overly verbose. Appendix F provides further details of this format. All of
the lowest level components are linked to a task in the system specification. Each
decision node lists feature subsets on which to base the decision between following
the working or failed branch. Every node also has a require attribute which can be
set to any or all which indicates how many of the features must be working in order
to take the working branch. Every utility model input must include a feature subset
named System. This is assumed to be the root of the feature subset hierarchy and its
utility value is used to calculate the utility value for the system under a particular
failure configuration.

The derivation of utility values for each feature subset is not dealt with by this
work. One way in which to interpret these values is to map a loss in utility to the
expected monetary value [195] which will be the cost incurred by any failures caused
by the faults. When combined with probabilities of the faults occurring expected
monetary value is one method of quantifying risk.

Two cost subfunctions which both use the utility metric are described in the
next section. The first is based upon keeping the system utility above an acceptable
threshold for as many faults as possible. The other is motivated by the concept of
expected monetary value and uses probabilities of processor faults to minimise the
expected loss of utility.
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Task WCET Period Max Replicas

A 7 10 2
B 7 10 2
C 2 10 2
D 2 10 2

Table 8.2: Example problem

Feature Subset Utility

System 0.5 * U(A) + 0.3 * U(B) + 0.15 * U(C) + 0.05 * U(D)

Table 8.3: Utility model for example problem

8.3.4 Extensions To Cost Function

The system utility model can generate several values for all numbers and combina-
tions of faults. The challenge of using this model in a search algorithm is to create
a function which can map all of these values to a quality metric for fault-tolerance.
Two approaches are introduced here. The choice of which to use will depend on the
fault-tolerance requirements for the system.

8.3.4.1 Maximum Utility Loss Subfunction

The first cost subfunction is based on the worst case system utility value for an
increasing numbers of faults. This is clarified with the following example. Table 8.2
shows a small system with four tasks and no messages. Deadlines are set equal to
the period of the task. The timing requirements of tasks A and B dictate that they
cannot be allocated to the same processor. Each task can be replicated up to two
times so there may be up to three versions of each task in the solution. The utility
model for this system, given in table 8.3, uses a simple additive model such that the
utility provided by any particular task is independent of whether other tasks have
failed. In this instance, the amount of utility provided to the system decreases from
task A to task D.

Two feasible solutions, where all schedulability constraints are met, are shown
in figure 8.5. For Solution 1, the worst case single processor fault which can oc-
cur is when P1 fails since there are no versions of task B left in the system. The
worst combination of two faults is when processors P1 and P3 fail which removes
all versions of both tasks B and D from the system. The worst case system utility
values for increasing numbers of faults for both Solution 1 and Solution 2 are plotted

P4

A'' C'
P3

A' D
P2

A C
P1

B

Solution 1

P4

A' C'
P3

B' D'
P1

B C
P2

A D

Solution 2

Figure 8.5: Two solutions to example problem
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Figure 8.6: Worst case utility degradation

in figure 8.6. The answer to the question of which degradation profile is preferable
will depend on requirements. In order for the cost subfunction to be able to select
which solution is best, a threshold parameter, which is specified as part of the utility
model, is introduced. It is assumed that once utility falls below this threshold the
system in some sense becomes unreliable or unsafe. Therefore, the aim is to with-
stand as many faults as possible before the utility falls below this level. This is akin
to trying to maximise the value to t when designing a t-fault-tolerant system. Using
this model, Solution 1 is preferable for the low threshold value marked in figure 8.6
whereas Solution 2 is better for the high threshold. A cost subfunction which will
order solutions according to this scheme is given in equation (8.3).

Mt = min
F∈combs(P,t)

U(System|F failed) (8.1)

vt =

Mt if Mt ≥ V

−V otherwise
(8.2)

gmaxloss = 1−
∑|P|−1

t=0 2t(vt + V )
(1 + V )(2|P| − 1)

(8.3)

In these equations, t is the number of processor faults. The set combs(X, i) is the
set of all combinations of i items chosen from X. Mt is the worst case utility value
for t faults and V is the threshold utility value. In order not to differentiate between
solutions once utility has fallen below the threshold, if Mt < V then a value vt is set
to −V else it is equal to Mt. The 2t term ensures that systems which can withstand
more faults will always have a lower value of gmaxloss . Note that the initial value of
t is 0. The utility is not necessarily maximal for 0 faults since the search algorithm
has the design choice of not including any versions of a particular task in the system.

Given an arbitrary utility model, calculating vt requires every combination of
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possible processor faults to be evaluated. For systems with more processors, the
number of combinations will grow rapidly. One way of limiting this is to only iterate
up to a maximum number of faults. A suggested topic for future work is to investigate
approximations for vt for particular restricted utility models.

8.3.4.2 Expected Utility Loss Subfunction

An alternative cost subfunction for assessing the fault-tolerance quality of a system
is based on the system’s expected loss of utility.

Let P (F ) be the probability that processors in the set F have permanent faults.

hexploss = 1−
|P|−1∑
i=0

∑
F∈combs(P,i)

P (F )U(System|F failed) (8.4)

Equation (8.4) calculates a value for the expected utility loss over a unit of time. The
system utility for each possible fault combination is calculated and summed. P (F )
is calculated by combining the probabilities of individual processor faults. Processor
faults are assumed to be independent though any probability function which maps a
set of faults, F , to the probability of them occurring could be used.

hexploss lies in the range [0, 1] and could be used as a cost subfunction. However,
the probability of a processor failure is small, say 0.001, and so the values of hexploss
for possible solutions are typically very small in comparison to other cost subfunction
values. Further to this, the resulting value is dominated by terms for a single failure
since the probability of multiple faults is very low. Setting a weighting value for a
cost subfunction set to the value of hexploss is difficult since other subfunctions return
values which are orders of magnitude larger and have more variation.

In a previous paper [188] on which this work is based, the following transformation
was suggested

g′exploss = hexploss
0.075 (8.5)

to create a cost subfunction, here labelled g′exploss , which has larger values for solu-
tions typically encountered during a search. The mapping from hexploss to g′exploss is
shown in figure 8.7. This transformation does indeed map values of hexploss to values
whose magnitude is more comparable with other cost subfunctions. However, during
experimentation, it was found that the expected utility loss of most solutions fell in a
very small range between 0.0021 and 0.0022. As seen in figure 8.8, the plot of g′exploss
over this small range is nearly horizontal. This gives the search little guidance in
moving towards higher quality solutions. While experiments in previous work [188]
were able to reduce the expected utility loss using this cost subfunction, an attempt
was made to improve upon it using a function designed specifically designed for the
problem used in the evaluation in section 8.4. It is the same problem as was used in
the previous paper [188] by this author.
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The function used, gexploss , is given in equation (8.6).

gexploss =
1

1 + exp(−3 · 105(hexploss − 0.002135))
(8.6)

A plot of how gexploss changes with hexploss is shown in figure 8.9. It is displayed
over the same domain as in figure 8.8 for comparison. The form of equation (8.6)
and the coefficients used were chosen to achieve a steep gradient in the domain of
interest as viewed in figure 8.9. Alternatives which achieved the same effect would
be equally valid.

It should be noted that the cost subfunction in equation (8.6) has been designed
specifically for the problem in the evaluation assuming 0.001 to be the probability of
processor failure. In order to be able to design such a function, some screening exper-
iments need to be run to know the range of expected loss values which are of interest.
This can be determined by attempting to minimise a simpler cost subfunction such
as that in equation (8.5) or even the expected loss value itself from equation (8.4).

This approach is consistent with the conclusions of chapter 5 in section 5.5.4. The
use of search in SBSE does not remove the engineering aspect of the problem but
moves it into the design of the search algorithm. However, by providing a framework
with a heuristic that can easily be adjusted, this problem should be easier than the
original one. In this case, the measure for expected loss is established, but a suitable
transform still needs to be found to turn it into a cost subfunction which will guide
the search effectively.

The final issue in the design of the extended cost function is the balancing of
schedulability and fault-tolerance. Since schedulability is being treated as a con-
straint rather than an objective, the optimisation problem is a single objective prob-
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System Replicas Tasks Messages

evalsys 0 8 12
evalsys 1 16 48
evalsys 2 24 108
brakes 0 19 29
brakes 1 29 90
brakes 2 39 183

Table 8.4: Change in problem size as replicas are added

lem which can be stated as: optimise fault-tolerance such that all schedulability con-
straints are met. Weightings in the cost function must be set to achieve a good
balance between meeting all scheduling constraints, maximising fault tolerance and
making good use of the guidance heuristic.

8.4 Evaluation

The evaluation tests the effectiveness of the two cost subfunctions for fault-tolerance
given in equations (8.3) and (8.6). Two systems are used during the course of the
evaluation. The first is a randomly generated 8 task example called evalsys and the
other is a brake-by-wire example taken from Shelton [186] labelled brakes.

The increase in problem size as replicas are added is shown in table 8.4. Of
particular note is the number of extra dependencies which are generated. In the
brakes problem, sensors, software components and actuators are represented but
only software components are replicated. Separation constraints were also enforced
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Feature Subset Configuration Utility

System τ1, τ2, τ3 0.25 ∗ U(τ4) + 0.25 ∗ U(τ6) +
0.25 ∗ U(τ7) + 0.25 ∗ U(τ8)

τ1, τ5 0.25 ∗ U(τ7) + 0.25 ∗ U(τ8)

Others 0

Table 8.5: Utility values for evalsys

Num Replicas Procs V=0.8 V=0.4

1 3 1 (1.00) 1 (1.00)
2 3 unschedulable unschedulable
2 4 1 (1.00) 2 (0.75)
2 5 2 (1.00) 2 (1.00)

Table 8.6: Fixed number of replicas

for this problem with the assumption that wheel speed sensors and brake actuators
for each wheel would be on separate processors.

In order to conduct experiments using the fault-tolerance cost subfunctions, util-
ity models were needed for both systems. The model for the brakes system is taken
from Shelton [186]. The utility model for the evalsys system was constructed as
shown in table 8.5. It shows that task τ1 is critical to the system and that the
system can only run at full utility if tasks τ2 and τ3 are also present.

8.4.1 Experiment 8.1 — Evaluation Of Maximum Loss Subfunction

Experiment 8.1 used the evalsys problem to evaluate the worst case loss fault-
tolerance cost subfunction, gmaxloss . It compared two strategies of replication. The
first used a fixed number of replicas whilst the second allowed the algorithm to vary
the number of replicas used. Separation of replicas is not enforced but solutions
where replicas are allocated to the same processor should be heavily penalised for
poor fault-tolerance quality.

Table 8.6 shows results for systems with a fixed number of replicas. The number
of processors and threshold values were varied across different runs. The values in
the final two columns give the number of faults which could be tolerated before the
system utility fell below the threshold. The values in parentheses are the worst case
system utility after that many failures. The original problem requires two processors
to schedule all tasks. Therefore, a solution which duplicates this would require 4 pro-
cessors and handle a single fault. However, the results show that it is possible to find
a solution which achieves the same degree of fault-tolerance with only 3 processors.
These runs took about 25 minutes to complete. Although there is some overhead
from having to calculate worst case system utility values, this was insignificant com-
pared to the additional time spent by the search in finding a schedulable solution
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Max Replicas Procs V=0.8 V=0.4

2 3 1(1.00) 2 (0.50)
2 4 1(1.00) 2 (0.75)
2 5 2(1.00) 2 (0.75)

Table 8.7: Variable number of replicas

Task 0.8,3 0.8,4 0.8,5 0.4,3 0.4,4 0.4,5

τ1 1 2 2 2 2 2
τ2 1 1 2 1 2 2
τ3 1 1 2 1 2 2
τ4 1 1 2 1 1 2
τ5 0 1 0 1 2 1
τ6 2 1 2 1 1 1
τ7 2 1 2 1 1 1
τ8 1 1 2 2 1 1

Total 9 9 14 10 12 12

Table 8.8: Number of replicas used

since it had to balance this constraint with the objective of improving fault-tolerance.

Table 8.7 shows results when the search was able to vary the number of replicas.
These runs took longer still, taking up to an hour to find good solutions. Finding a
schedulable solution is now easier for the search because it is able to remove replicas.
To compensate for this and maintain a good level of utility, it was necessary to adjust
the balance of weights away from the group of schedulability cost subfunctions and
in favour of the worst case loss cost subfunction. For fixed numbers of replicas,
schedulability was weighted 10 times higher than fault tolerance but for this latter
table of results, fault tolerance was weighted more highly in a ratio of 2 to 1. This
difficulty is emphasised by the fact that the result achieved for a threshold of 0.4 and
5 processors is slightly worse than that of the equivalent result with a fixed number
of replicas. However, the benefit can be seen in that it was able to withstand an
additional fault with only 3 processors when the threshold was set at 0.4. Table 8.8
shows the number of replicas included in each solution for the results in table 8.7.
This shows that the algorithm correctly favoured the critical task, τ1, and increased
the number of replicas used when extra processors were available.

8.4.2 Experiment 8.2 — Evaluation Of Expected Loss Subfunction

The expected utility loss cost subfunction was tested with the brakes system. Since
this system did not have redundant sensors included in the example, it will not
withstand any faults in the worst case but the expected utility loss can still be
improved. The probability of each processor failing in a given time frame was set to
0.001. The search was limited to 50000 evaluations in all runs. Experimental runs
were conducted using both fixed numbers of task replicas and allowing the search to
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Minimise
Utility Loss

Replicas Vary
Replicas

Procs Expected Utility Loss

No =1 No

5 0.002606158134324
6 0.002273133081091
7 0.002134274843946
8 0.002384026767044

No =2 No

5 *
6 *
7 0.002134744579720
8 0.002134413256702

Yes =1 No

5 0.002134274843945
6 0.002134274843946
7 0.002134274843946
8 0.002134275561537

Yes =2 No

5 *
6 *
7 0.002134274888824
8 0.002134275007039

Yes ≤2 Yes

5 0.002134301776499
6 0.002134274850682
7 0.002134274870878
8 0.002134275027201

Table 8.9: Expected utility loss results for different parameters and platforms

vary the number.

The results are shown in table 8.9. The top two sets of runs solved the problem
without the use of the cost subfunction for minimising utility loss. These results
provide values for expected utility loss for comparison with other runs which hope
to improve upon them. A schedulable solution could not be found using 2 replicas
on platforms with 5 or 6 processors.

With 1 replica of each task and the use of the cost subfunction in equation (8.6),
the expected utility loss was as good or better in all cases. By adding another replica
of each task, it was hoped that the expected utility loss could be reduced further.
The search was not able to do this for the 7 processor case however. Also, using
8 processors gave a value slightly worse than using 7 in each case showing that no
solution could be found which benefited from the use of more hardware. In fact the
smallest expected loss value achieved throughout the whole experiment was using 1
task replica on a 5 processor system.

For the final set of runs, the search was allowed to vary the number of replicas of
each task. This was able to find good solutions but could not improve on the runs
which used a fixed number of replicas.
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8.5 Summary

This chapter has presented extensions to the Toast task allocation tool to make
architectural decisions influenced by fault-tolerance requirements. These decisions
are made using a utility model which assigns quantitative values to the system’s
utility in different failure states. The utility model is general enough to allow different
utility values to be assigned to every possible combination of task failures. However,
following the work of Shelton [186], hierarchical decomposition of the system design
makes this assignment of values a tractable problem. The use of such a general
model of system utility as part of an objective function for task allocation is a novel
contribution of the work in this chapter.

The neighbourhood for local search was extended to allow the number of task
replicas to be varied. Objective functions were designed based on the utility value of
a system after tasks have been eliminated due to permanent processor failures.

Suitable cost subfunctions were presented which allowed for gracefully degrading
systems to be generated. The pattern of degradation can be changed by setting a
threshold parameter for a worst case utility loss cost subfunction. A cost subfunction
for expected utility loss was also given assuming a known probability of processor
failure for each combination of processors.

For each of the new cost subfunctions, the search was run on problems with a
fixed number of task replicas and also on equivalent problems where the search could
vary the number of replicas.

Using the maximum utility loss cost subfunction, the search was able to make
more efficient use of the hardware platform when allowed to vary the number of
replicas. The search algorithm was not able to achieve the same result for the ex-
pected loss utility function within the maximum number of evaluations allowed. The
expected utility loss cost subfunction also needed to be engineered specifically for
the problem due to the very small changes in expected utility loss between different
solutions. From a search engineering point of view, the maximum utility loss cost
subfunction could achieve better results with less effort.

No hypothesis statement was made with regard to the results of this chapter.
The work performed is, however, directly aimed at meeting Req. 4 from section 3.1.4
of chapter 3. This requirement stated that the search should select subsets of tasks
which minimised loss of service when processors fail. The mechanism of enabling
and disabling tasks was not limited to changing the number of task replicas. All
copies of a task could be removed for a system with few resources so that critical
functionality is still provided. When using the maximum utility loss, tasks were
arranged so that the subsets remaining when a processor failed provided as much
functionality as possible.

The problems used for the evaluation in this section are relatively small. There is
a large amount of overhead in allocating scheduling the additional task replicas and
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messages. An alternate model which does not require all replicas to be concurrently
running may increase the rate at which systems can be analysed. The calculation of
the utility related cost subfunctions is also time consuming. This is due to the need
to consider all combinations of processor failures. As stated in section 8.3, this could
be improved by only considering up to a certain number of faults.

Communication failures have not been accounted for in this chapter. The utility
model approach is still valid if it is assumed a task fails when it does not receive a
message due to a network failure. Therefore, the cost function extensions could be
changed to measure utility loss for network rather than processor failures. This is
left as future work.



9
Conclusions and Future Work

The motivation for this work originates from the need to build hard real-time systems,
particularly automotive and avionics systems, which are flexible and easy to maintain.
One of the ways this is being done is through the use of standards such as AUTOSAR
and IMA which provide layers of abstraction between software and hardware. This
means that software can be:

• developed without full details of the hardware platform,
• bound to the hardware at a later stage of development,
• be upgraded more easily since the software can be remapped to the hardware

to accommodate new applications

One of the open questions in the design of these systems is how to map the
software onto the hardware platform and, in particular, how to map it in such a way
that new requirements do not cause severe disruption to the chosen mapping. This
is the task allocation problem which was studied in depth throughout this thesis.
Contributions were made in the field of creating flexible solutions to task allocation
problems and related areas.

9.1 Overview Of Work Done And Contributions

Chapter 1 surveyed issues relating to general software maintenance, changeability
and trends in avionics and automotive systems. It was found that these systems are
becoming larger and at the same time there is increasing integration of functionality
which increases complexity. This makes finding a task mapping and schedule a very
challenging task to perform manually. When a mapping is established, the high costs
of change in safety-critical hard real-time systems mean it is desirable to evolve the
existing solution rather than create a new one.
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Another trend in avionics and automotive system is the reliance on software for
safety-critical functionality. Systems must be fault-tolerant and adapt to environ-
mental changes at run-time. The ability to change the set of running tasks and
provide redundancy are relevant to task allocation. These topics, as well as design-
time flexibility, were also covered in this thesis.

Chapter 2 reviewed existing literature on task allocation and current approaches
to creating flexible architectures. While there is plenty of work on task allocation
algorithms, there is little in the area of hard real-time task allocation with support
for design-time flexibility or run-time adaptability. It was suggested that scenario
based analysis, a technique for improving architecture flexibility, could be linked
with algorithms for task allocation. Heuristic search was the optimisation approach
chosen because it itself is flexible and can work with task allocation problems using
different schedulability tests and system models. In this chapter, a new definition
of task allocation was given which emphasised the need to put the problem in the
context of the system model and schedulability test.

Chapter 3 gave requirements for a task allocation tool to support flexibility,
adaptability and fault-tolerance. A hypothesis was proposed as to whether meta-
heuristic local search algorithms would be able to meet these requirements. This is
addressed further in sections 9.2 and 9.3.

Chapter 4 described the hardware and software models which would be used
throughout this thesis. A task allocation problem generation tool, Gentap, was
developed in this chapter.

Contribution 1. — Multiprocessor allocation and scheduling problems have
many characteristics. The parameter set for the Gentap tool provides a
way of characterising task allocation problems and generating problems
with those characteristics. This characterisation can also be used to clas-
sify problems when tuning search algorithm parameters.

Contribution 2. — The problem generation technique included a novel
way of producing task sets with a given size and total utilisation. The
method fitted a distribution to task utilisations from an industrial case
study and then sampled from it to produce similar task sets.

Contribution 3. — A new algorithm for generating task graphs with dif-
ferent properties is also included in Gentap.

Chapter 5 described the design and configuration of a simulated annealing based
search algorithm for task allocation. The algorithm was shown to work well on a
range of problems with different characteristics and could also be easily modified for
different schedulability tests. The number of solution evaluations increased approxi-
mately linearly with problem size but the time taken to perform a schedulability test
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decreased much faster. This was the limiting performance factor for large problems.

Contribution 4. — A hierarchical cost function was given which can be
tuned to work well on problems with different characteristics using a sys-
tematic experimental method.

Contribution 5. — A Cox’s Proportional Hazard model was fitted using
problem characteristic covariates to find the characteristics most signif-
icant to algorithm performance. The most significant factors were then
used as a means to classify problems and tune the algorithm separately for
different problem classes. The classification was judged to be good based
on the algorithm giving very consistent performance on problems within
a class.

Chapter 6 presented a parallel simulated annealing algorithm for finding sets of
solutions with minimal differences between them for multi-moded task allocation
problems. This allows efficient mode transitions for run-time adaptability. The
parallel algorithm was compared with and shown to be better than an alternative
algorithm which found solutions for each mode sequentially.

Contribution 6. — The parallel algorithm used in this chapter is a new
algorithm for finding sets of similar solutions to related task allocation
problems. Its parallelism makes it scalable yet it is still perfectly repeat-
able, with only a small percentage of evaluations being wasted. It was also
shown to be highly effective at minimising changes between the solutions
produced.

Chapter 7 reapplied the parallel algorithm from the previous chapter to produce
solutions which tried to meet the needs of scenarios as well as a current problem
specification. It then used the sequential method to upgrade existing solutions with
as few changes as possible.

Contribution 7. — Solutions produced by the parallel algorithm with sce-
narios were more flexible than solutions produced by the standard simu-
lated annealing search algorithm. The flexibility was measured with re-
spect to upgrade specifications which differed from the scenarios.

Chapter 8 tackled task allocation from the aspect of fault-tolerance. The algo-
rithm was given the task of deciding how many replicas of each task to include to
maximise fault-tolerance given limited hardware resources. This new axis of varia-
tion, i.e. deciding how many replicas to include as well as allocating and scheduling
tasks, increased the difficulty of the optimisation problem and limited the size of
problems which could be solved.
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Contribution 8. — A new worst case utility loss cost subfunction was de-
signed based on previous work which assigned utility values to a system
based on which tasks had failed. The pattern of degradation with increas-
ing numbers of processor failures could be changed with a utility threshold
parameter. This subfunction was used to decide how many task replicas
to include in the system and where to allocate them.

9.2 Support For Hypothesis Statements

In chapter 3, three hypothesis statements were made regarding the work in this
thesis. These were:

1. A local search algorithm, extended in appropriate ways, is an efficient and ef-
fective method for producing feasible task configurations which are similar to
previous ones and for finding sets of similar configurations for multiple task al-
location problem specifications representing alternatives for present and future
system designs.

2. A configurable hierarchical cost function allows the method to be easily modi-
fied for problems with a wide range of characteristics.

3. Using scenarios which represent predictions of future problem specifications
within the search problem can produce more flexible configurations, even when
predictions are imperfect.

The first of these was supported by the work in chapters 6 and 7. The second
statement was shown to be true based on the work in chapter 5. The results of
chapter 7 support the final statement.

The most important caveat which needs to be placed on these results is that
the hypothesis statements were only shown to be true for the problems used in the
evaluations within each chapter as is true of most empirical results. The work in
chapters 4 and 5 mitigates against this somewhat by placing the foundations of the
work on systematically classifying problems and tuning the algorithm for particular
problem classes. This means that the methods should be able to adapt to problems
with different characteristics.

It was shown in chapter 5, however, that characteristics relating to problem size
can limit the algorithm performance as the speed of the schedulability test decreases.
Therefore, with regards to statement 1, the algorithm is only efficient for systems of
around 50–90 tasks depending on other characteristics. This is large enough to cover
the needs of an automotive subsystem but not an entire system with several hundred
tasks. Performance is also affected by the number of specifications, representing
modes or scenarios, being solved simultaneously. The method was tested, and shown
to be efficient, with up to 8 specifications.
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9.3 Satisfaction Of Requirements

Four primary requirements were listed in chapter 3 for the development of the task
allocation tool. These were:

• Reuse Of Existing Solutions (Req. 1)
• Implementation Of Systems With Multiple Configurations (Req. 2)
• Consideration Of Future Changes (Req. 3)
• Robustness In The Presence Of Faults (Req. 4)

Req. 1 was mostly satisfied by the sequential method in chapter 6. Req. 2 was
satisfied by the parallel method in chapter 6. Req. 3 was satisfied by the parallel
method in chapter 6 and the application of it in chapter 7. Req. 4 was satisfied by
work done in chapter 8.

One aspect of Req. 1 was not satisfied as described in section 7.4.1. This was the
placing of more emphasis on minimising changes for some tasks than others. Some
suggestions were made in section 7.4.1 on how this could be achieved. A method of
constraining allocation changes has already been implemented for situations where
a task cannot be moved whatever the cost.

A secondary requirement was specified which tied all of the above requirements
into a single optimisation problem. Each individual optimisation problem was found
to be challenging and no attempt was made at solving a single problem which included
all aspects of the primary requirements. This is still seen as a long term goal for task
allocation algorithms.

9.4 Further Work

Minor aspects of further work such as implementation improvements were suggested
at the end of individual chapters. This section covers broader long term goals.

A much larger study of scenario profiles could be conducted. The scenarios used
in chapter 7 applied changes throughout the system. It would be interesting to see
whether scenarios which only affect a small subset of tasks cause the flexibility of
baselines to be negatively affected with respect to changing tasks not included in
the subset. The problem of scenario selection certainly exists in traditional scenario
based architecture analysis and it would not be surprising if it was also relevant to
the use of scenarios with task allocation.

One of the great advantages of using scenarios is that a scenario is just another
problem specification and can capture any possible type of change. This includes
changes to the hardware platform and changes to the structure of task dependencies.
Indeed, these are just some of the types of scenario that might be included in a
longer study of scenario profiles. Each type of scenario can also be investigated in
the context of baseline and upgrade specifications with different characteristics.
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Some issues have been raised with respect to the scalability of the algorithms used.
By far the largest limiting factor has been found to be the speed of the schedulability
test. Using tests with different accuracy versus efficiency trade-offs at different stages
of a single search may make it possible to improve performance yet still find solutions
to tightly constrained problems. This would require finding suitable schedulability
tests and designing heuristics which make decisions as to when they should be used.

Each of the requirements in this thesis was described in terms of a single objective
optimisation problem with constraints. It was noted in the work on multi-moded
systems that another objective could be to move all tasks away from a processor
when possible so it could be shut down to save power. This links more generally
with problems which involve a trade-off between flexibility and resource usage. A
multi-objective optimisation search algorithm would be applicable in this situation.
The nature of these algorithms is quite different from local search algorithms with
weighted cost functions. A first step for work in this area would be to investigate
which multi-objective algorithm is best suited to finding valid solutions to difficult
task allocation problems with tight deadline constraints and several dependencies
between tasks.

The development of cost functions which measure system utility in the presence
of failed processors could also be used to make trade-offs between system utility and
power usage. For instance, it could be used to decide which tasks should be included
in lower power modes where the number of available processors is reduced and the
system is only required to provide a basic level of service.

It is well known that the parameter settings which make a heuristic search al-
gorithm work well are highly dependent on the characteristics of the problem it is
solving. Time must be spent on finding a suitable problem characterisation, dividing
problems into classes and tuning algorithms for classes of most interest. Systematic
ways of doing this will help with the deployment of search based tools into industry.
Using meta-heuristic search on a software engineering problem does not remove the
need for engineering, regardless of the meta-heuristic chosen.

9.5 Concluding Remarks

Task allocation algorithms for hard real-time systems have been studied for 20 years
but are still not in widespread use. Only now are systems: a) becoming large enough
to need automated task allocation and scheduling, and b) have suitable hardware
abstraction layers which makes the mapping easy to change. Flexibility is important
to all software systems’ engineering and task allocation is no different. Algorithms
cannot continue to merely find valid solutions but also must take other qualities like
flexibility, fault-tolerance and power usage into account.

The motto adopted at the start of this thesis was “designing for change is de-
signing for success”. Agile development methods and tools to automate software
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engineering are moving some of the responsibility for dealing with change away from
those designing software to those that manage projects and select tools. Designing
for change is necessary for success though not always sufficient as the changes pre-
dicted during the design many not come to fruition. Automated software engineering
tools must produce flexible designs but they themselves are pieces of software which
must anticipate change.





A
Problem Specification XML

Representation

A.1 Document Type Definition

<!ENTITY % system-object

"id ID #REQUIRED

name CDATA #REQUIRED">

<!ELEMENT tat:system (tat:hardware-module*, tat:network*, tat:interface*, tat:task*, tat:

message*, tat:dependency*)>

<!ATTLIST tat:system

xmlns:tat CDATA #FIXED "http://www.cs.york.ac.uk/atu/tat"

%system-object;

scheduling-model CDATA #IMPLIED>

<!ELEMENT tat:hardware-module (tat:object-details?, tat:available-resources?)>

<!ATTLIST tat:hardware-module %system-object;>

<!ELEMENT tat:network (tat:object-details?, tat:available-resources?)>

<!ATTLIST tat:network %system-object;>

<!ELEMENT tat:interface EMPTY>

<!ATTLIST tat:interface

module-id IDREF #REQUIRED

network-id IDREF #REQUIRED>

<!ELEMENT tat:task (tat:object-details, tat:required-resources?)>

<!ATTLIST tat:task

%system-object;

replicas CDATA #IMPLIED>

<!ELEMENT tat:message (tat:object-details, tat:required-resources?)>

<!ATTLIST tat:message

%system-object;

from-task-id IDREF #REQUIRED
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to-task-id IDREF #REQUIRED>

<!ELEMENT tat:dependency EMPTY>

<!ATTLIST tat:dependency

from-id IDREF #REQUIRED

to-id IDREF #REQUIRED

type CDATA #IMPLIED>

<!ELEMENT tat:object-details (tat:attribute+)>

<!ELEMENT tat:available-resources (tat:attribute+)>

<!ELEMENT tat:required-resources (tat:attribute+)>

<!ELEMENT tat:attribute EMPTY>

<!ATTLIST tat:attribute

name CDATA #REQUIRED

value CDATA #REQUIRED>

A.2 Example

<?xml version="1.0" ?>

<tat:system id="Test_Case" name="Test_Case" xmlns:tat="http://www.cs.york.ac.uk/atu/tat"

scheduling-model="fp">

<tat:hardware-module id="P1" name="Processor 1"/>

<tat:hardware-module id="P2" name="Processor 2"/>

<tat:network id="N_1" name="Network N_1">

<tat:object-details>

<tat:attribute name="bandwidth" value="1"/>

<tat:attribute name="latency" value="0"/>

</tat:object-details>

</tat:network>

<tat:network id="N_P1" name="Network N_P1">

<tat:object-details>

<tat:attribute name="bandwidth" value="1024"/>

<tat:attribute name="latency" value="0"/>

</tat:object-details>

</tat:network>

<tat:network id="N_P2" name="Network N_P2">

<tat:object-details>

<tat:attribute name="bandwidth" value="1024"/>

<tat:attribute name="latency" value="0"/>

</tat:object-details>

</tat:network>

<tat:interface module-id="P1" network-id="N_1"/>

<tat:interface module-id="P2" network-id="N_1"/>

<tat:interface module-id="P1" network-id="N_P1"/>

<tat:interface module-id="P2" network-id="N_P2"/>

<tat:task id="T_1_t0" name="Random Task 1">

<tat:object-details>

<tat:attribute name="period" value="30000"/>

<tat:attribute name="deadline" value="30000"/>

<tat:attribute name="wcet" value="1996"/>

</tat:object-details>

</tat:task>

<tat:task id="T_2_t0" name="Random Task 2">

<tat:object-details>

<tat:attribute name="period" value="30000"/>

<tat:attribute name="deadline" value="30000"/>
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<tat:attribute name="wcet" value="25"/>

</tat:object-details>

</tat:task>

<tat:task id="T_3_t0" name="Random Task 3">

<tat:object-details>

<tat:attribute name="period" value="30000"/>

<tat:attribute name="deadline" value="30000"/>

<tat:attribute name="wcet" value="586"/>

</tat:object-details>

</tat:task>

<tat:task id="T_4_t0" name="Random Task 4">

<tat:object-details>

<tat:attribute name="period" value="30000"/>

<tat:attribute name="deadline" value="30000"/>

<tat:attribute name="wcet" value="2075"/>

</tat:object-details>

</tat:task>

<tat:task id="T_5_t0" name="Random Task 5">

<tat:object-details>

<tat:attribute name="period" value="30000"/>

<tat:attribute name="deadline" value="30000"/>

<tat:attribute name="wcet" value="5701"/>

</tat:object-details>

</tat:task>

<tat:task id="T_6_t0" name="Random Task 6">

<tat:object-details>

<tat:attribute name="period" value="30000"/>

<tat:attribute name="deadline" value="30000"/>

<tat:attribute name="wcet" value="835"/>

</tat:object-details>

</tat:task>

<tat:task id="T_7_t0" name="Random Task 7">

<tat:object-details>

<tat:attribute name="period" value="30000"/>

<tat:attribute name="deadline" value="30000"/>

<tat:attribute name="wcet" value="15173"/>

</tat:object-details>

</tat:task>

<tat:task id="T_8_t0" name="Random Task 8">

<tat:object-details>

<tat:attribute name="period" value="30000"/>

<tat:attribute name="deadline" value="30000"/>

<tat:attribute name="wcet" value="3480"/>

</tat:object-details>

</tat:task>

<tat:message from-task-id="T_1_t0" id="M_1_t0_2_t0" name="Message M_1_t0_2_t0" to-task-id

="T_2_t0">

<tat:object-details>

<tat:attribute name="size" value="5198"/>

</tat:object-details>

</tat:message>

<tat:message from-task-id="T_1_t0" id="M_1_t0_3_t0" name="Message M_1_t0_3_t0" to-task-id

="T_3_t0">

<tat:object-details>

<tat:attribute name="size" value="2653"/>

</tat:object-details>

</tat:message>

<tat:message from-task-id="T_1_t0" id="M_1_t0_4_t0" name="Message M_1_t0_4_t0" to-task-id
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="T_4_t0">

<tat:object-details>

<tat:attribute name="size" value="3611"/>

</tat:object-details>

</tat:message>

<tat:message from-task-id="T_1_t0" id="M_1_t0_5_t0" name="Message M_1_t0_5_t0" to-task-id

="T_5_t0">

<tat:object-details>

<tat:attribute name="size" value="7586"/>

</tat:object-details>

</tat:message>

<tat:message from-task-id="T_1_t0" id="M_1_t0_6_t0" name="Message M_1_t0_6_t0" to-task-id

="T_6_t0">

<tat:object-details>

<tat:attribute name="size" value="5570"/>

</tat:object-details>

</tat:message>

<tat:message from-task-id="T_1_t0" id="M_1_t0_7_t0" name="Message M_1_t0_7_t0" to-task-id

="T_7_t0">

<tat:object-details>

<tat:attribute name="size" value="1409"/>

</tat:object-details>

</tat:message>

<tat:message from-task-id="T_1_t0" id="M_1_t0_8_t0" name="Message M_1_t0_8_t0" to-task-id

="T_8_t0">

<tat:object-details>

<tat:attribute name="size" value="936"/>

</tat:object-details>

</tat:message>

</tat:system>
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Representation

B.1 Document Type Definition

<!ELEMENT tat:configuration (tat:system-configuration+)>

<!ATTLIST tat:configuration

xmlns:tat CDATA #FIXED "http://www.cs.york.ac.uk/atu/tat">

<!ELEMENT tat:system-configuration (tat:object-configuration+)>

<!ATTLIST tat:system-configuration

id ID #REQUIRED>

<!ELEMENT tat:object-configuration (tat:config-attribute+)>

<!ATTLIST tat:object-configuration

id CDATA #REQUIRED>

<!ELEMENT tat:config-attribute EMPTY>

<!ATTLIST tat:config-attribute

name CDATA #REQUIRED

value CDATA #REQUIRED>

B.2 Example

<?xml version="1.0"?>

<tat:configuration xmlns:tat="http://www.cs.york.ac.uk/atu/tat">

<tat:system-configuration id="Test_Case">

<tat:object-configuration id="T_1_t0">

<tat:config-attribute name="allocation_id" value="P1"/>

<tat:config-attribute name="priority" value="2"/>

</tat:object-configuration>

<tat:object-configuration id="T_2_t0">

<tat:config-attribute name="allocation_id" value="P1"/>

<tat:config-attribute name="priority" value="5"/>

</tat:object-configuration>
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<tat:object-configuration id="T_3_t0">

<tat:config-attribute name="allocation_id" value="P1"/>

<tat:config-attribute name="priority" value="10"/>

</tat:object-configuration>

<tat:object-configuration id="T_4_t0">

<tat:config-attribute name="allocation_id" value="P2"/>

<tat:config-attribute name="priority" value="15"/>

</tat:object-configuration>

<tat:object-configuration id="T_5_t0">

<tat:config-attribute name="allocation_id" value="P2"/>

<tat:config-attribute name="priority" value="6"/>

</tat:object-configuration>

<tat:object-configuration id="T_6_t0">

<tat:config-attribute name="allocation_id" value="P2"/>

<tat:config-attribute name="priority" value="3"/>

</tat:object-configuration>

<tat:object-configuration id="T_7_t0">

<tat:config-attribute name="allocation_id" value="P1"/>

<tat:config-attribute name="priority" value="13"/>

</tat:object-configuration>

<tat:object-configuration id="T_8_t0">

<tat:config-attribute name="allocation_id" value="P2"/>

<tat:config-attribute name="priority" value="14"/>

</tat:object-configuration>

<tat:object-configuration id="M_1_t0_2_t0">

<tat:config-attribute name="allocation_id" value="N_P1"/>

<tat:config-attribute name="priority" value="4"/>

</tat:object-configuration>

<tat:object-configuration id="M_1_t0_3_t0">

<tat:config-attribute name="allocation_id" value="N_P1"/>

<tat:config-attribute name="priority" value="1"/>

</tat:object-configuration>

<tat:object-configuration id="M_1_t0_4_t0">

<tat:config-attribute name="allocation_id" value="N_1"/>

<tat:config-attribute name="priority" value="9"/>

</tat:object-configuration>

<tat:object-configuration id="M_1_t0_5_t0">

<tat:config-attribute name="allocation_id" value="N_1"/>

<tat:config-attribute name="priority" value="7"/>

</tat:object-configuration>

<tat:object-configuration id="M_1_t0_6_t0">

<tat:config-attribute name="allocation_id" value="N_1"/>

<tat:config-attribute name="priority" value="8"/>

</tat:object-configuration>

<tat:object-configuration id="M_1_t0_7_t0">

<tat:config-attribute name="allocation_id" value="N_P1"/>

<tat:config-attribute name="priority" value="12"/>

</tat:object-configuration>

<tat:object-configuration id="M_1_t0_8_t0">

<tat:config-attribute name="allocation_id" value="N_1"/>

<tat:config-attribute name="priority" value="11"/>

</tat:object-configuration>

</tat:system-configuration>

</tat:configuration>
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C.1 Example

<?xml version=’1.0’?>

<settings>

<hardware generate-hardware="yes">

<tasks-per-processor>

<range min="6.0" max="6.0"/><!-- Number, not percentage -->

</tasks-per-processor>

<number-of-networks>

<range min="2.0" max="2.0"/>

</number-of-networks>

<processor-connectivity>

<range min="50.0" max="50.0" granularity="1"/>

</processor-connectivity>

<network-bandwidth>

<range min="1.0" max="1.0" granularity="1"/>

</network-bandwidth>

<network-latency>

<range min="0.0" max="0.0" granularity="1"/>

</network-latency>

<processor-network-bandwidth>

<range min="1024" max="1024" granularity="1"/>

</processor-network-bandwidth>

<processor-network-latency>

<range min="0" max="0" granularity="1"/>

</processor-network-latency>

</hardware>

<tasks>

<number-of-tasks>

<range min="48.0" max="48.0"/>

</number-of-tasks>

<period>

<range min="10000.0" max="10000000.0" granularity="10000.0"/>

</period>

<utilisation-per-processor>

<range min="50.0" max="50.0"/><!-- Utilisation -->
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<distribution type="beta" alpha="0.7"/>

</utilisation-per-processor>

</tasks>

<messages>

<utilisation-per-network>

<range min="45.0" max="45.0"/>

<distribution type="beta" alpha="0.7"/>

</utilisation-per-network>

</messages>

<transactions>

<tasks-per-transaction>

<range min="6.0" max="6.0"/> <!-- Number of tasks involved in each transaction -->

</tasks-per-transaction>

<transaction-length>

<range min="30.0" max="30.0"/> <!-- Percentage of number of tasks in transaction

-->

</transaction-length>

<messages-per-task>

<range min="150.0" max="150.0"/> <!-- within each transaction -->

</messages-per-task>

<transaction-utilisation-distribution equal="true"/>

</transactions>

</settings>
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Search Parameters XML

Representation

D.1 Document Type Definition

<!ELEMENT tat:search-control (tat:search-parameter-list|tat:cost-component-list|tat:objective-

list)+>

<!ATTLIST tat:search-control

xmlns:tat CDATA #FIXED "http://www.cs.york.ac.uk/atu/tat">

<!ELEMENT tat:search-parameter-list (tat:search-parameter*)>

<!ATTLIST tat:search-parameter-list

table CDATA #IMPLIED>

<!ELEMENT tat:search-parameter EMPTY>

<!ATTLIST tat:search-parameter

type CDATA #REQUIRED

name CDATA #REQUIRED

value CDATA #REQUIRED>

<!ELEMENT tat:cost-component-list (tat:cost-component*)>

<!ELEMENT tat:cost-component EMPTY>

<!ATTLIST tat:cost-component

id ID #REQUIRED

name CDATA #IMPLIED

function CDATA #REQUIRED>

<!ELEMENT tat:objective-list (tat:objective+)>

<!ATTLIST tat:objective-list

constraint-bias CDATA #IMPLIED>

<!ELEMENT tat:objective (tat:cost-component-ref+)>

<!ATTLIST tat:objective

name CDATA #REQUIRED

weight CDATA #REQUIRED

type (objective|constraint) #IMPLIED

threshold CDATA #IMPLIED>

<!ELEMENT tat:cost-component-ref EMPTY>

<!ATTLIST tat:cost-component-ref

idref CDATA #REQUIRED

weight CDATA #REQUIRED>
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D.2 Example

<?xml version=’1.0’?>

<tat:search-control xmlns:tat=’http://www.cs.york.ac.uk/atu/tat’>

<tat:search-parameter-list>

<tat:search-parameter type="integer" name="seed" value="595455204"/>

<tat:search-parameter type="string" name="search_method" value="local"/>

<tat:search-parameter type="string" name="hill_climb_method" value="sa"/>

<tat:search-parameter type="integer" name="max_moves" value="500000.0"/>

<tat:search-parameter type="integer" name="moves_modify_param" value="1500.0"/>

<tat:search-parameter type="real" name="temperature" value="0.005"/>

<tat:search-parameter type="integer" name="sample_size" value="1.0"/>

<tat:search-parameter type="integer" name="init_sample_size" value="3.0"/>

<tat:search-parameter type="string" name="neighbourhood" value="allocation_and_priority

"/>

<tat:search-parameter type="string" name="multiple_system_method" value="

parallelrepeatable"/>

<tat:search-parameter type="boolean" name="try_diff_configs" value="true"/>

</tat:search-parameter-list>

<tat:cost-component-list>

<tat:cost-component id="unrt" function="cost_unreachable_tasks"/>

<tat:cost-component id="unio" function="cost_unconnected_io"/>

<tat:cost-component id="unso" function="cost_unschedulable_objects" />

<tat:cost-component id="aos" function="cost_all_object_sensitivity"/>

<tat:cost-component id="lb" function="cost_load_balance"/>

<tat:cost-component id="ous" function="cost_over_utilised_schedulers"/>

<tat:cost-component id="dt" function="cost_distant_tasks"/>

<tat:cost-component id="inco" function="cost_incorrect_transaction_order"/>

<tat:cost-component id="ungo" function="cost_ungrouped_objects"/>

<tat:cost-component id="tacsd" function="cost_task_alloc_system_diffs"/>

<tat:cost-component id="macsd" function="cost_message_alloc_system_diffs"/>

<tat:cost-component id="tpcsd" function="cost_task_priority_system_diffs"/>

<tat:cost-component id="mpcsd" function="cost_message_priority_system_diffs"/>

</tat:cost-component-list>

<tat:objective-list>

<tat:objective name="schedulability" weight="546" type="constraint" threshold="0">

<tat:cost-component-ref idref="unso" weight="1" />

</tat:objective>

<tat:objective name="schedobj" weight="634" type="constraint">

<tat:cost-component-ref idref="unrt" weight="3.0" />

<tat:cost-component-ref idref="unio" weight="57393.0" />

<tat:cost-component-ref idref="ungo" weight="3.0" />

<tat:cost-component-ref idref="aos" weight="3.0" />

<tat:cost-component-ref idref="lb" weight="3.0" />

<tat:cost-component-ref idref="ous" weight="3.0" />

<tat:cost-component-ref idref="dt" weight="32589.0" />

<tat:cost-component-ref idref="inco" weight="3.0" />

</tat:objective>

<tat:objective name="change" weight="20.0" threshold="0">

<tat:cost-component-ref idref="tacsd" weight="100" />

<tat:cost-component-ref idref="macsd" weight="100" />

<tat:cost-component-ref idref="tpcsd" weight="10" />

<tat:cost-component-ref idref="mpcsd" weight="10" />

</tat:objective>

</tat:objective-list>

</tat:search-control>
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Representation

E.1 Document Type Definition

<!ELEMENT tat:config-constraints (tat:allocation-constraint|tat:status-constraint)*>

<!ATTLIST tat:config-constraints

xmlns:tat CDATA #FIXED "http://www.cs.york.ac.uk/atu/tat">

<!ELEMENT tat:allocation-constraint (tat:allow-allocation|tat:forbid-allocation|tat:separate-

from)+>

<!ATTLIST tat:allocation-constraint

object-id CDATA #REQUIRED

forbid-all CDATA #IMPLIED>

<!ELEMENT tat:allow-allocation EMPTY>

<!ATTLIST tat:allow-allocation

allocation-id CDATA #REQUIRED>

<!ELEMENT tat:forbid-allocation EMPTY>

<!ATTLIST tat:forbid-allocation

allocation-id CDATA #REQUIRED>

<!ELEMENT tat:separate-from EMPTY>

<!ATTLIST tat:separate-from

object-id CDATA #REQUIRED>

<!ELEMENT tat:status-constraint EMPTY>

<!ATTLIST tat:status-constraint

variable CDATA #REQUIRED

set-all CDATA #IMPLIED

object-id CDATA #IMPLIED>

E.2 Example
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<?xml version=’1.0’?>

<tat:config-constraints xmlns:tat="http://www.cs.york.ac.uk/atu/tat">

<tat:allocation-constraint forbid-all="true" object-id="T_LFWheelSpeed">

<tat:allow-allocation allocation-id="P1"/>

</tat:allocation-constraint>

<tat:allocation-constraint forbid-all="true" object-id="T_LBWheelSpeed">

<tat:allow-allocation allocation-id="P2"/>

</tat:allocation-constraint>

<tat:allocation-constraint forbid-all="true" object-id="T_RFWheelSpeed">

<tat:allow-allocation allocation-id="P3"/>

</tat:allocation-constraint>

<tat:allocation-constraint forbid-all="true" object-id="T_RBWheelSpeed">

<tat:allow-allocation allocation-id="P4"/>

</tat:allocation-constraint>

<tat:allocation-constraint forbid-all="true" object-id="T_LFBrakeAct">

<tat:allow-allocation allocation-id="P1"/>

</tat:allocation-constraint>

<tat:allocation-constraint forbid-all="true" object-id="T_LBBrakeAct">

<tat:allow-allocation allocation-id="P2"/>

</tat:allocation-constraint>

<tat:allocation-constraint forbid-all="true" object-id="T_RFBrakeAct">

<tat:allow-allocation allocation-id="P3"/>

</tat:allocation-constraint>

<tat:allocation-constraint forbid-all="true" object-id="T_RBBrakeAct">

<tat:allow-allocation allocation-id="P4"/>

</tat:allocation-constraint>

<tat:allocation-constraint forbid-all="true" object-id="T_PedalSensor">

<tat:allow-allocation allocation-id="P5"/>

</tat:allocation-constraint>

</tat:config-constraints>
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F.1 Document Type Definition

<!ELEMENT tat:utilities (tat:feature+, tat:utility-tree+)>

<!ATTLIST tat:utilities

xmlns:tat CDATA #FIXED "http://www.cs.york.ac.uk/atu/tat">

<!ELEMENT tat:feature (tat:feature-ref+)>

<!ATTLIST tat:feature

id ID #REQUIRED

type (component|subset) #REQUIRED

threshold CDATA #IMPLIED>

<!ELEMENT tat:feature-ref EMPTY>

<!ATTLIST tat:feature-ref

idref CDATA #REQUIRED>

<!ELEMENT tat:utility-tree (tat:utility-node)>

<!ATTLIST tat:utility-tree

feature-id IDREF #REQUIRED>

<!ELEMENT tat:utility-node (tat:utility-value, tat:utility-value)>

<!ATTLIST tat:utility-node

feature-ids IDREFS #REQUIRED

require (all|any) #IMPLIED>

<!ELEMENT tat:utility-value (tat:utility-expr|tat:utility-node)>

<!ATTLIST tat:utility-value

status (failed|working) #REQUIRED>

<!ELEMENT tat:utility-expr (#PCDATA)>

F.2 Example

<?xml version="1.0" ?>

<tat:utilities xmlns:tat="http://www.cs.york.ac.uk/atu/tat">
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<tat:feature id="T1" type="component">

<tat:feature-ref idref="T_1"/>

</tat:feature>

<tat:feature id="T2" type="component">

<tat:feature-ref idref="T_2"/>

</tat:feature>

<tat:feature id="T3" type="component">

<tat:feature-ref idref="T_3"/>

</tat:feature>

<tat:feature id="T4" type="component">

<tat:feature-ref idref="T_4"/>

</tat:feature>

<tat:feature id="T5" type="component">

<tat:feature-ref idref="T_5"/>

</tat:feature>

<tat:feature id="T6" type="component">

<tat:feature-ref idref="T_6"/>

</tat:feature>

<tat:feature id="T7" type="component">

<tat:feature-ref idref="T_7"/>

</tat:feature>

<tat:feature id="T8" type="component">

<tat:feature-ref idref="T_8"/>

</tat:feature>

<tat:feature id="System" type="subset" threshold="0.4">

<tat:feature-ref idref="T1"/>

<tat:feature-ref idref="T2"/>

<tat:feature-ref idref="T3"/>

<tat:feature-ref idref="T4"/>

<tat:feature-ref idref="T5"/>

<tat:feature-ref idref="T6"/>

<tat:feature-ref idref="T7"/>

<tat:feature-ref idref="T8"/>

</tat:feature>

<tat:utility-tree feature-id="T1">

<tat:utility-node feature-ids="T1">

<tat:utility-value status="failed">

<tat:utility-expr>0</tat:utility-expr>

</tat:utility-value>

<tat:utility-value status="working">

<tat:utility-expr>1</tat:utility-expr>

</tat:utility-value>

</tat:utility-node>

</tat:utility-tree>

<tat:utility-tree feature-id="T2">

<tat:utility-node feature-ids="T2">

<tat:utility-value status="failed">

<tat:utility-expr>0</tat:utility-expr>

</tat:utility-value>

<tat:utility-value status="working">

<tat:utility-expr>1</tat:utility-expr>

</tat:utility-value>

</tat:utility-node>

</tat:utility-tree>

<tat:utility-tree feature-id="T3">

<tat:utility-node feature-ids="T3">

<tat:utility-value status="failed">

<tat:utility-expr>0</tat:utility-expr>
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</tat:utility-value>

<tat:utility-value status="working">

<tat:utility-expr>1</tat:utility-expr>

</tat:utility-value>

</tat:utility-node>

</tat:utility-tree>

<tat:utility-tree feature-id="T4">

<tat:utility-node feature-ids="T4">

<tat:utility-value status="failed">

<tat:utility-expr>0</tat:utility-expr>

</tat:utility-value>

<tat:utility-value status="working">

<tat:utility-expr>1</tat:utility-expr>

</tat:utility-value>

</tat:utility-node>

</tat:utility-tree>

<tat:utility-tree feature-id="T5">

<tat:utility-node feature-ids="T5">

<tat:utility-value status="failed">

<tat:utility-expr>0</tat:utility-expr>

</tat:utility-value>

<tat:utility-value status="working">

<tat:utility-expr>1</tat:utility-expr>

</tat:utility-value>

</tat:utility-node>

</tat:utility-tree>

<tat:utility-tree feature-id="T6">

<tat:utility-node feature-ids="T6">

<tat:utility-value status="failed">

<tat:utility-expr>0</tat:utility-expr>

</tat:utility-value>

<tat:utility-value status="working">

<tat:utility-expr>1</tat:utility-expr>

</tat:utility-value>

</tat:utility-node>

</tat:utility-tree>

<tat:utility-tree feature-id="T7">

<tat:utility-node feature-ids="T7">

<tat:utility-value status="failed">

<tat:utility-expr>0</tat:utility-expr>

</tat:utility-value>

<tat:utility-value status="working">

<tat:utility-expr>1</tat:utility-expr>

</tat:utility-value>

</tat:utility-node>

</tat:utility-tree>

<tat:utility-tree feature-id="T8">

<tat:utility-node feature-ids="T8">

<tat:utility-value status="failed">

<tat:utility-expr>0</tat:utility-expr>

</tat:utility-value>

<tat:utility-value status="working">

<tat:utility-expr>1</tat:utility-expr>

</tat:utility-value>

</tat:utility-node>

</tat:utility-tree>

<tat:utility-tree feature-id="System">

<tat:utility-node feature-ids="T1">
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<tat:utility-value status="failed">

<tat:utility-expr>0</tat:utility-expr>

</tat:utility-value>

<tat:utility-value status="working">

<tat:utility-node feature-ids="T2">

<tat:utility-value status="failed">

<tat:utility-node feature-ids="T5">

<tat:utility-value status="failed">

<tat:utility-expr>0</tat:utility-expr>

</tat:utility-value>

<tat:utility-value status="working">

<tat:utility-node require="any" feature-ids="T7 T8">

<tat:utility-value status="failed">

<tat:utility-expr>0</tat:utility-expr>

</tat:utility-value>

<tat:utility-value status="working">

<tat:utility-expr>sum(mul(0.25,U(T8)),mul(0.25,U(T7)))</

tat:utility-expr>

</tat:utility-value>

</tat:utility-node>

</tat:utility-value>

</tat:utility-node>

</tat:utility-value>

<tat:utility-value status="working">

<tat:utility-node feature-ids="T3">

<tat:utility-value status="failed">

<tat:utility-expr>0</tat:utility-expr>

</tat:utility-value>

<tat:utility-value status="working">

<tat:utility-node require="any" feature-ids="T4 T6 T7 T8">

<tat:utility-value status="failed">

<tat:utility-expr>0</tat:utility-expr>

</tat:utility-value>

<tat:utility-value status="working">

<tat:utility-expr>sum(mul(0.25,U(T8)),mul(0.25,U(T7)),mul

(0.25,U(T4)),mul(0.25,U(T6)))</tat:utility-expr>

</tat:utility-value>

</tat:utility-node>

</tat:utility-value>

</tat:utility-node>

</tat:utility-value>

</tat:utility-node>

</tat:utility-value>

</tat:utility-node>

</tat:utility-tree>

</tat:utilities>
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