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ABSTRACT 

The work covered in this thesis is based upon the 

design and development of flight control laws for a 

particular aircraft application. The aircraft chosen is a 

remotely piloted vehicle, the Machan, used as a development 

vehicle by Marconi Avionics, Chatham. The initial stages of 

the study are directed towards producing a fully non-linear 

simulation of this aircraft on a dedicated microcomputer. 

The aerodynamic data for this aircraft is known accurately 
from wind tunnel testing on the full sized vehicle. This 

development work led to a non-linear model and a close-to 

real time simulation of the aircraft with a realistic 
display system. 

The latter parts of the work concentrate on the design 

of flight control systems for the Machan and the robustness 
aspects of a variety of closed-loop control strategies. 
Conventional 'classical' s-domain analysis techniques are 
first investigated and the likely performance of such 
schemes assessed. In the later stages 'modern' control 
philosophies are examined using state variable feedback 

techniques. The asymptotic properties of optimal control 
designs are exploited to provide an accurate method of 

specifying system performance via an asymptotic solution of 
the LQP problem and the control designs are shown to display 

desirable robustness properties. More'recent work into 

variable structure systems and the sliding mode are also 

shown to be'applicable to, the design of, flight control 

systems and have some measure of robustness. 

Throughout these studies the robustness properties of 
the control are demonstrated by applying the control*law to 
the fully non-linear Machan simulation. 

(vii) 



INTRODUCTION 

Over recent years it has become increasingly apparent 
that the design of aircraft flight control systems using 
classical techniques may not be entirely appropriate for 

modern combat aircraft. It is felt that the use of the vast 
body of modern control theory, which has evolved over the 

past decade, may allow aircraft, performance to'be bettered 

when compared with current classical control designs. This 

thesis covers work carried out at York in order to establish 
an environment in which modern control designs may be 
investigated and their applicability to the aircraft problem 
assessed. The work undertaken at York complements an 
already existing project at Marconi Avionics, Rochester, 
under which modelling and control system design for a small 
remotely piloted vehicle (R. P. V), the Machan (7), is being 
investigated. The modelling work at Marconi was preceeded 
by wind tunnel testing of the R. P. V. at Cranfield College of 
Aeronautics (8). 

It was initially considered important to have available 
some form of aircraft simulation, preferably running in real 
time. The simulation facility would allow the investigators 

to gain an insight into the If eel' of, the problem and also 

allow for expansion into 'on-line" control law 
implementation. The aircraft environment involves a high 
degree of interaction between the operator, pilot, and the 

system hence it was considered appropriate to attempt, as 
far as possible, to emulate this interaction on the 

simulation. 

In Chapter 1 of this thesis we consider the physics of 
th, e aircraft with a view to developing a realistic non- 
linear model for the Machan r. p. v. The aerodynamic 
parameters for this, model are taken directly from the 

previously mentioned wind tunnel tests on the Machan and an 

accurate model of this vehicle can be proposed. Chapter 3 

presents a detailed discussion of the implementation of the 

simulation in a laboratory environment. The principal aim 
of this chapter is to detail the trade off's required in the 

choice of a suitable simulation medium. Having made this 
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choice the actual task of implementing the simulation is 

also examined in detail. The ultimate aim was to provide a 

real time simulation with high quality 'head-up' type 
display and inputs via a joystick type of control. How 

closely this was achieved is covered in this chapter. In 

Chapter 4 some results from the open-loop simulation are 

provided which indicate how pilot workload can be assessed 
in addition to indicating how well the model matches the 

actual aircraft. 

In the later stages of the work the development of 

control strategies for the Machan have been investigated in 

some detail. A linearised model of the Machan is derived by 

intuitive arguments in Chapter 2. This model has been used 
throughout the control design in order to facilitate the 

development of linear classical and state variable feedback 

schemes. Classical s-domain and frequency response 
techniques are reviewed in Chapter 5 to provide an insight 
into the control problem and how such simple controllers can 
be developed for the aircraft. Chapters 6 and 7 then 

examine the design of both optimal control and variable 

structure system schemes. These techniques rely upon state 

variable feedback and are examined with a view to assessing 

the ease of implementation and their likely performance. 
These schemes are employed with both linear and non-linear 

models and the differences in achievable performance are 

quantified. 

The final chapter covers the robustness and sensitivity 

of the linear and non-linear state feedback controllers. In 

this context an examination is made of how closely the 

schemes maintain a given closed-loop system property as the 

system parameters vary. It is vital in the aircraft problem 
that the control is robust and hence these aspects of the 

state feedback schemes are of considerable importance. 
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CHAPTER 1 

Vehicle Equations 

In this chapter it is intended to develop the equations 

governing the aerodynamic behaviour of an aircraft at sub- 

sonic speeds. It will be appreciated that the aerodynamics 

of an airframe are complex and inherently non-linear. For 

the purposes of simulation studies it was found necessary to 

simplify some of these dynamics but retain sufficient of the 

non-linear properties to provide a realistic simulation. 
The simplifications are indicated in the text and some brief 

justifications are given. The interested reader is referred 
to the many texts available for a more detailed analysis 
(1,2,3,4,9,10) . 

1.1 Basic Concepts 

An aircraft in flight may be considered to be a rigid 
body immersed in a fluid medium (air). The forces acting on 
the airframe are due to the motion of the aircraft through 

the air and due to the inherent properties of the airframe 
i. e. mass, etc. The major force required to maintain steady 
flight is the lift force and this is generated by the 

airflow over the wings, these being of an aerofoil section. 
The lift force must counteract the weight of the aircraft, 

any excess of lift acting so as to increase the vertical 

speed of the aircraft. In order to provide lift, an airflow 

must exist over the wings. This is generated by reason of 
the aircraft's forward speed provided by a thrust force from 

one or more engines of the jet or propeller type. The 

thrust force must balance, or be in excess of, the induced 

drag force on the airframe due to its forward motion. In 

simple terms then, when an aircraft is flying straight and 
level, these forces must be in equilibrium as shown in Fig. 
1.1. This simple view ignores the forces acting in the 

planes normal and perpendicular to the so called 
longitudinal plane shown in Fig. 1.1 which may be generated 
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by deflections in the aircraft's control surfaces or changes 
in wind speed. 

In practice an aircraft contains a three axis system 
and forces and moments will, in general, act in all three 

axes, a six degree of freedom system. The two degree of 
freedom steady state model shown in Fig. 1.1 does, however, 

allow certain important aircraft performance figures to be 

derived. 

For a realistic simulation a full force six degree of 

freedom model must be derived which acomodates most of the 

non-linearities of the basic aerodynamics. 

1.2 Axes Systems 

To derive a more complete picture of the aircraft in 
flight it is initially important to define a set of axes 

which will act as a reference frame around which equations 
of motion may be developed. Remembering that the aircraft 
is a free body in space its position may be defined with 

respect to a set of earth or gravity fixed axes which remain 
fixed with respect to the earth. This axis system is 

inconvenient for analysis, a better choice being a set of 

axes which remain fixed relative to the airframe and form 

the principal axes of inertia of the aircraft. This axis 

set, often called the body fixed axes, is shown 
diagrammatically in Fig. 1.2 'and clearly remains fixed 

relative to the geometrical distribution of the airframe. 
We may now define forces and moments to act about this frame 

of reference. To translate between body fixed and, say, 

earth axes a transformation matrix may be used (see later). 

It is conventional to define the nomenclature 

associated with the body fixed axis system with some rigour 

according to an agreed standard. Table 1.1 summarises this 

standard and weý introduce some, definitions below with 

reference to Fig 1.2. 
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Velocities 

Forward u 

Side V 

Vertical W- 

Roll P 

Pitch Q 

Yaw R 

Table 1.1 

Applied forces 

and moments 

x 

y 

z 

L 

M 

N 

7 

Distances 

x 

y 

z 



a OX- 
-is termed the longitudinal axis. Linear 

displacements from the steady state about this axis are 
defined as x metres for an aircraft having a steady 

state velocity along OX of U ms-1 and incremental 

velocity changes Of u ms-1. Force components along OX 

are taken as forward positive and termed X N. The roll 
component of aircraft motion is about OX and has 

velocity P rad s-1, the resulting displacement being 

(D rad under the action of a rolling moment L Nm taken 

positive in the clockwise sense looking along OX from 
0. 

b) OY is the transverse or lateral axis. A steady state 
sideslip velocity, V ms-ly produces a sideslip 
displacement y metres under the action of a sideslip 
force Y N. Pitching moments are generated about OY 
having angular velocities Q rad s-1, angular 
displacements of E) rad and pitching moment M Nm. The 
positive sense is defined as nose up or clockwise 
rotation about OY looking along OY from 0. 

c OZ is the normal axis. An incremental change in 
downwards velocity of w ms-1 gives rise to a downward 
displacement of z metres with a downward force 

component Z N, downwards being positive. Yawing 

moments take place around Oz producing yawing 
velocities of R rad s-1, an angular displacement of 

w rad and a yawing moment of N Nm. All taken positive 
in the clockwise sense looking down. 

- Angles, moments and angular velocities are taken to be 

positive in the cyclyic sense and accelerations of the 

moving axes relative to the fixed earth axes are denoted by 

the dot notation. 

Gravity fixed axes are a convenient reference set and 
are considered to be centred on the vehicle's centre of 
gravity. The OZO axis acts through the c. of g. towards the 

centre of the earth. The OXO and OYO axes lie in a plane 
tangiential to the earth's surface with OXO oriented 
eastwards (or sometimes northwards) and OYO oriented 
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southwards (or sometimes eastwards). The velocities along 
OXO, OYO and OZO are defined as Uo, Vo and Wo ms-1 
respectively, note that Wo = -dh/dt where h is the 

aircraft's height in metres, downward velocity being 

positive. The body-fixed axis set may be related to the 

gravity fixed axis set using Eulers equations. The 

rotational relationships between OX, OY, OZ and OXO, OYOP 

OZO are best understood by considering an intermediate axis 

set, OXi, OYi, OZi, initially coincident with OXO, OYO, OZO. 
The orientation of OX, OY, OZ with respect to OXO, OYO, OZO 

can then be built up as follows. 

rotate OXi, OYi, OZi about the OZi axis by an angle 
T(the azimuth or yaw angle). 

rotate OXi, OYi, OZi about OYi by an angle e (the 
pitch angle). 

rotate OXi, OYi, OZi about Oxi by an angle 0 (the roll 
angle). 

oxi, Oy,, OZi is now coincident with OX, OY, OZ as 

shown in Fig-1.3 with W, E) and (D , the Euler angles 
defining OX, OY, OZIs attitude with respect to OXO, OYO, 

Ozo. 

By considering each of the rotations separately, as 
above, we may derive a transformation matrix, T, as a 3x3 

orthogonal direction cosine array viz. 

Cos W Cos sin Wcos 0 -s in E) 

Cos W sin 0 sin 0 sin w sin 19 sin 0 Cos e sin(D 
sin Wcoso + Cos W Cosa) 

Cos W sin E) Cos (D sin W sin E) coso Cos e Cos 
+ sinWsin(D - cosWsin(D 
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It can be shown (4) that the velocity components in the 

reference and inertial axes are related by 

0 u 

vo] T 

[V] 

Yo W. 
or 

u0 uo IVWI 

2-- T-1 VJD = TT vo 

1-1.1 

YO- _WO 

Additionally, the pitch, roll and yaw velocities, 

Q, P, R, about OY, OX, OZ may be expressed in terms of the 
do 

pitch, roll and yaw rates, E) , in the gravity f ixed 

axes since (4) 

_P, 0sin E) 

Qo coso s in(Dcos E) 

_R_ 
0 -sino cos(Dcos E) 

the inverse of equation 1.2 being 

sin(DtanO cos(PtanE) p 

0 Cos (D -s inO Q-1.2 a) 
0 sinosece cososecE) 

_R] 

Equation 1.2 a) breaks down for E) 900 and this may 
be considered a disadvantage in simulation studies but this 

may be tolerated providing manoeuvres requiring only 
relatively small pitch angles are to be modelled. The 
90" pitch condition could, of course, be easily trapped in 

any simulation if it were required to model manoeuvres 
leading to the establishment of larger pitch angles. 

The velocity components in the body fixed axes U, V and 
W may be resolved into a single total velocity vector VT 

whose direction is defined by the angles of sideslip, A , and 
incidence, a, as shown in Fig. 1.4. 

It follows that 
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VT =VU2 + V2 + W2 -1.3 

and with a =sin-' W p=sin-1 IV/VTI -1.4 a), b) 

, ý_U__2+W2 

U= VT cosacosA 
V=VT sinp 

W= VT cospsina 
-1.5 

To proceed further with the development of the dynamics 

of the aircraft 
_we 

must consider the aerodynamic forces and 

moments which act on the airframe. These forces and moments 

will produce changes in the aircraft's body velocities and 

accelerations which may be translated to velocities relative 
to earth axes using the equations 1.1 to 1.5. The 

resulting dynamic behaviour of the aircraft may then be 
deduced. 

1.3 Euler Equations 

The next stage in the analysis requires the use of the 
Euler equations. These equations are derived from a 
consideration of Newton's Second Law of motion. Two basic 

assumptions are required here namely :- 

That the airframe may be considered as a rigid body 
i. e. that the distance b etween any specified points 
within the body does not change. All aircraft exibit 
some structural flexibility but for the present 

analysis this will be ignored. 

That the earth may be considered as a body fixed in 

space such that motion may be considered relative to 
the fixed earth. For most terrestrial applications 
this is a valid assumption but for long term navigation 
and extra-terrestrial f light its validity is 

questionable. 

Given that the above assumptions are made then Newton's 
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Second Law is applicable within the given reference frame. 

This states that the time rate of change of linear momentum 
is the sum of all externally applied forces and that the 
time rate of change of angular momentum is the sum of all 
applied torques. 

dG F and dH =M 
dt dt 

where G is a linear momentum vector and H is an angular 
momentum vector both measured in the inertial co-ordinate 
frame. The derivation of the Euler equations also assumes 
that the aircraft may be considered to be moving in vacuum 
and is acted upon only by external forces. The mass of the 
displaced fluid is not considered and whilst this may be 

valid for some aircraft, larger aerodynamic vehicles and 
submarines may violate this assumption. The complete Euler 
equations relate the forces X, Y and Z and moments L, M and N 
in the OX, OY and OZ axes respectively to the angular and 
linear velocities in the inertial axes viz. 

[5 + QW - RV - ax(R2 + Q2) + ay(PQ - 
k) + az(PR + ý)Im =X 

UR - PW - ax(PQ + A) 
-ay (p2 + R2) + az(RQ -y 

+ VR - QU + ax(RP - Q*) +a 2) ]m =Z y (RQ + P) + az(p2 +Q 

ixý + (I 
Z-Iy 

)RQ - jyz(Q2 - R2) _, xz(k + PQ) - Ixy(ý - PR) 

=L+ Yaz - Za y 

Iy6+ (ix - iz)PR - Iyz(; - PQ) - Ixz(R2 _ P2) - jxy(ý + QR) 

=M+ Zax - xaz 

10022 Zk + (I 
y- IX)QR - Iyz(Q - RP) - IXZ(P - RQ) - Ixy(p Q 

=N+ Xa 
y- Yaz 

-1.6 

Where Ix, Iy, Iz, Ixy, jyz, jxz are the moments of inertia 
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about the axes through the c. of g. but parallel to OX, OY 

and OZ, ax, ay, az are the co-ordinates of the c. of g. with 
respect to the origin of the OX, OY, OZ axis system and m is 

the mass of the aircraft. P, Q, R, U, V, W are as defined 

previously. 

Equations 1.6 may be greatly simplified if we assume 
that the origin of the inertial axis system, Oxyz, is at the 

vehicle's c. of g. (ax, ayaz=O) and that the vehicle is 

symmetric i. e. the OX, OY, and OZ axes are principal axes 
(Ixy =I yz =Ixz=o). 1.6 then reduces to 

M(5 + QW RV) X 

M(ý + UR PW) y 

moý + vp - QU) Z 

0 IXP + UZ -Iy )RQ =L 
16+ (Ix - IZ)PR =M YO 
IZR + (I 

y- IX)QP =N 

-1.7 

The Euler equations thus allow us to def ine the body 

velocities in terms of forces and moments acting on the 

aircraft. We must now consider how to express these forces 

and moments as a function of the aircraft's aerodynamics. 
Firstly, however consider the effects of gravity on the 

aircraft. 

The aircraft will, in general, be subject to 
gravitational forces since it will be oriented relative to 
the local vertical. The gravitational components of the 
forces and moments can be shown to be (4) 

xg =- mg sinE) 
yg = mg cos 0 sin (1) 
z9= mg Cos 0 Cos o 
L9= (ay cos 19 cosO - az cos e sin (V )mg 
mg = (-az sine- ax cosO coso)mg 
N9=(ay sine + ax cos 0 cos o )mg 

-1.8 
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Clearly, if OX, OY and OZ are taken as the principal 

axes, ax=ay=az=O, and the Lg, Mg and Ng components of 

equations 1.8 are zero. 

1.4 Aerodynamic Forces & Moments 

When a solid body moves through a fluid medium it 

experiences a force due to the relative motion of the solid 

and fluid. This force can, in general, be shown to be (1) 

F- 1/2 CF PVT 
2S 

where p is the density of the fluid, VT is the velocity of 
the solid relative to the fluid, S is the characteristic 
area of the solid and CF is a dimensionless coefficient. 
Considering the aircraft as a rigid body immersed in a fluid 

medium, air, we may write down the resulting forces and 
moments acting on the aircraft as 

Xa 1/2 Cx PVT 2S = aerodynamic force along OX a) 

Ya 1/2 Cy PVT 
2S = OY b) 

Za 1/2 Cz PVT 2S = Oz C) 

La 1/2 ClP VT 2S b rolling moment about OX d) 

Ma 1/2 Cm PVT 2S Z if it 11 OY e) 

Na = 1/2 Cn PVT 2S b= it of 11 OZ f) 

-1 . 10 

remembering that a moment is generated by the product of a 
force and its associated moment arm. The constants S, b and 
EF are the wing area, wing span and mean aerodynamic chord 
(4) respectively and clearly depend upon the aircraft 
geometry. 

The major steady aerodynamic forces which act on the 

airframe are the lift and drag forces. These forces 
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necessarily arise in sustained flight. The lift and drag 

components act along and normal to the direction of the 
aircraft's total velocity vector since they are generated by 
the relative wind. Equations 1.4 a) and b) defining the 
incidence and sideslip angles may be used to calculate the 

aerodynamic components of lift and drag along the aircraft 
body axes OX, OY and OZ. We thus have 

xa=L sin a-D cos A cos a 

Ya -, 4 D sin a -1.11 

L cos a-D cos A sin a 

where a and A are the incidence and sideslip angles as 
given in 1.4 a) and b), L and D are the lift and drag forces 
respectively and are given by equation 1.9 as 

L= 1/ 2 CL' PVT 2S 
-1.12 a) 

D= 1/2 CD' P VT 2S 
-1.12 b) 

where CLI and Cý are the lift and drag coeficients 
respectively and VT' S and pare as previously. Before 

proceeding further we shall examine these lift and drag 
force components in more detail. 

Lift 

The lift forces acting on an aircraft are 
principally generated by the wings and tailplane. Control 

surfaces are also attached to the'wings and tailplane and. 
generate control moments by modifying the lift contribution 
from each flying surface. The primary control surfaces are 
the elevators, ailerons and the rudder. The effects of 
control surface deflections will be indicated below. The 
total lift force may be considered as being composed of the 
wing lift, the lift contribution from the tail plane and a 
tail lift contribution due to pitch rate. 
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The wing lift is as given in equation 1.12 a) i. e. 

LW=CL 1/2 PVT 2S -1.13 

The dimensionless coefficient, CLF can be shown (4) to be 

proportional to the absolute incidence angle a and 

CL =C Lo + a, a 

where a, is a constant of proportionality (rads s-1 ) and 

CLo is the lift coefficient at zero incidence. 

The lift component due to the tail plane may be 

considered to be made up of three components. Firstly a 

component due purely to the lift generated by the tail 

alone. Since the tail operates in the disturbed air behind 

the wings and fuselage the velocity of the air flow over the 

tail will generally be less than that over the wing section. 
This effect is neglected for the present but may be 

accomodated by defining a tail plane efficiency factor, 77t, 
this being basically the ratio of the relative wind speed at 
the tail to the total velocity v T* The tail lift may be 

determined by evaluating the tail pitching moment and 

dividing by the tail moment arm this being given by 

LTI = CMT 1/2 P VT 2SZ/ lt -1.15 

where CMT is the pitching moment coef f icient f rom the tail 

and is given by 

CMT ý-- CM 
1717 

where CM17 is the slope of the tail pitching moment / 

elevator angle curve, F is the wing chord, lt is the tail 

moment arm and q the elevator deflection. 

The second lift contribution is due to the fuselage and 
is given by 

LTf ý- CMWBD 1/2 P VT 2S Z/ lt -1.17 
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where CMWBD is the zero pitching moment due to the body and 

the other symbols are as previously defined. 

The final lift contribution at the tail is that due 

to pitch rate. A non-zero pitch rate will produce a net 
lift force at the tail due to the relative motion of the 

tailplane. and the relative wind. This force component is 

given by 

Lq ý-- -PS VT lt ZQ Q 

where Q is the pitch rate as above and ZQ is the lift force 

to pitch rate coefficient. For our applications the above 
three lift components are the only ones considered giving a 
total tail lift of 

L= (C -c) -1/2 PV2Z T MT MWBD TS ý/'t - PS VT t 

Combining equations 1.13- and 1.19 the total lift force 

acting on the a irf rame is given by 

Ltot ý CL 1/2 P VT 2S+ (CMT- CMWBD) 1/2 PVT 
2S iF/ 1t 

- PS VT lt ZQ Q -1.20 

or 

Ltot = 1/2 PV2 S(C + (C MT -c )Z/l Q/V ) 
TL MWBD t- it zQT 

-1.20 a) 

with CL and CMT given by equations 1.14 and 1.16. 

1.4.2 Drag 

The drag force acting on the airframe arises from a 

number of sources but for the remotely piloted vehicle it is 

satisfactory to consider a simple net drag force as given in 

equation 1.12 b) namely 
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D= 1/2 CD P VT 2S 

Here CD is the drag coefficient and to a close approximation 

may be considered to be related to the lift coefficient CL 

by 

CD =C Do +k CL 

k being a constant, the induced drag coefficient and Cffo is 
the drag coefficient at zero lift. This type of drag is 

termed lift dependent drag and can be shown to be (4) a 
close a6proximation to the drag acting on the complete 
aeroplane. 

1.4.3 Pitching Moment 

The pitching moment Ma is given by equation 1.10 e) as 

Ma ý 1/2PVT 2S Zý Cm 

The coefficient Cm can be considered to be made up of two 

parts namely a contribution to pitching due to the wing and 

a contribution due to the tail. Aerodynamic moments may be 

considered to act at, the aerodynamic centre of pressure and 
this is not necessarily coincident with the vehicle's centre 

of gravity. A moment is thus generated about the centre of 

gravity and pitching motion will, in general, ensue. The 

pitching moment due to the wing will clearly be dependent 

upon the wing lift and the pitching moment coefficient of 
the wing, CMW, may be considered to be given by (4) 

CMW -2 CMO + CML CL -1.22 

where CMO is the aft pitching moment for zero incidence, CML 
is the pitching moment derivative with respect to CL (i. e. 

3CM/DCL) and CL is the lift coefficient, as before. 

The contribution of the tail to the pitching moment has 
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already been indicated (eqn. 1.15) and is dependent upon the 
elevator setting. The tail pitching moment coefficient, CMT 
is given in equation 1.16. 

The total aerodynamic pitching moment is thus given by 

Ma ý- 1/2 P VT 2SZ (CMW + CMT) -1.23 

1.4.4 Rolling Moment 

From eqn. 1.10 d) the rolling moment, Lal is given by 

La 2-- 1/2 Cl P VT 2Sb 

C, being the rolling moment coefficient. Rolling moments 
are generated by a number of factors including the 
deflection of the aileron. C, will thus, in general, 
reflect the contributions due to each of these factors. To 
model the rolling moment adequately it is thus necessary to 
determine the rolling moment contribution due to each of the 
possible aerodynamic variables considered separately and sum 
these to produce an overall moment. This is done by 

employing a first order Taylor series expansion of La about 
some nominal operating point. The more important terms may 
then be identified either on purely intuitive grounds or by 

evaluation. For our purposes we shall consider the rolling 
moment to be made up of contributions due to pitching, 
yawing, sideslip and aileron deflections. C, thus has the 
form 

cl 1/2 bLpP /VT S+ l/ 2b Lr CL R /VT S+ 

Lv V /VT S+LS -1.24 

where Lp =3 La 
is the rolling moment derivative 

apw. 
r. t. roll rate (s rad-1 ) 
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Lr =3La is the rolling moment derivative 
ar 

w. r. t. yaw rate (s rad-l ) 

LV =L DLa is the rolling moment derivative 
VT VT 3 

w. r. t. sideslip 

L La is the rolling moment derivative 
3§ 

w. r. t. aileron deflection § 

the remaining symbols having their usual meaning. The above 
aerodynamic derivatives will normally be functions of air 
density, steady state velocity etc andare generally 
determined from wind tunnel-tests on a given aircraft. 

The overall rolling moment is now given by equation 
1.10 d). 

1.4.5 Yawing Moment 

This moment is given by equation 1.10 f) as 

Na -'-- 1/2 Cn P VT 2S 

Again, as with the rolling moment, the yawing moment 
coef f icien t,, - Cns' is determined by evaluating the 

contributions to yawing of each of the aerodynamic variables 
and determining the major contribution terms. For the 

present application only the effects on yaw due to sideslip, 
yaw rate, and rudder deflection are considered giving 

Cn = Nv V /, VT + 1/2 b Nr R/ VT + NV T -1.25 

again Nvj, Nr and NT are the -aerodynamic derivatives 

relating yawing moment to sideslip velocity, yaw rate, and 
rudder angle (T) respectively. 
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1.4.6 Side Forces 

The final aerodynamic force equation required is the 

side force, Ya , equation. This is given by eqn. 1.10 b) as 

Ya = 1/2 Cy P VT 2S 

As before the value of Cy is determined by evaluating 
the values of the significant aerodynamic derivatives. The 

rudder is the control surface which contributes most to the 

value of this force component. For our application the 

sideslip, yaw rate and rudder deflection components are the 

om-ly ones considered giving 

cy=2 Yv V /VT +b Yr R /VT +2 YTT -1.26 

As before the values of Yv, Yr and YT are determined from 

wind tunnel testing and are the aerodynamic derivatives 

relating sideforce to sideslip velocity, yaw rate and rudder 

angle, T, respectively. , Equation 1.10 b) then gives the 

sideforce components. 

1.4.7 Additional Pitching Moments 

A pitching moment is also produced due to the action 
of the wing lift and pitch rate lift about the aircraft's 

centre of gravity. These components are essentially given 
by the products of Lw and Lq ( eqns. 1.13 and 1.18 ) and the 
appropriate moment arms. 

The complete aerodynamic force and moment equations may 
now be written. These equati ons also include the 
gravitat ional components as given by equations 1.8 and the 
lift and drag components of eqns. 1.11. The value of the 
sideslip angle, A, is taken to be zero since, in general, 
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the sideslip angle is small compared with the incidence, 
We thus obtain the following equations: 

XE -D cosa + Ltot sina - mg sine a) 

Ya + mg cOs e sin(D b) 

Z=- Ltc)t cos a-Ds in a+ mg cos e cos (D c) -1.27 

L= LE + La d) 

M= Ma + Lw (cg - 0.25) Z- Ut + 0.25 - cg) Lq e) 

N= Na f) 

where the forces and moments are as defined above and cg is 
the position of the aircraft centre of gravity. XE is the 
thrust force due to the engine whilst LE is th e rolling 

moment component due to the engine. The model of the engine 
will now be briefly examined. 

1.4.8 Thrust Equations 

All powered aircraft require to have at least one 
propulsion unit whose primary purpose is to provide a thrust 
force acting so as to increase (or decrease) the forward 

velocity of the aircraft. 

This forward velocity generates the lift forces 
necessary to maintain flight. The engine thrust must also 
overcome or equal the drag force incurred due to the 
aircraft's motion through the air. The type of propulsion 
unit used varies from aircraft to aircraft but may be of the 
piston engined propeller, turboprop, jet, etc type. To 
devise a set of equations relating thrust to say pilot 
throttle demand (or angle) presents considerable difficulty 

and a generalised model is not possible due to the many 
types and configurations of engines used. In the present 
application we shall consider a specific vehicle 
configuration, this being the Machan (6) remotely piloted 
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vehicle refered to in the Introduction . The layout of this 

aircraft is shown schematically in Fig. 1.5 . The 

propulsion unit is a small piston engine driving a four 

bladed propeller. The propeller is housed in a nacel 

mounted-at the rear of the aircraft and forming part of the 

tailplane assembly. Airflow is directed over the propeller 
through a duct, slightly forward of the nacel. The thrust 

force provided by this arrangement is thus along the 

longitudinal ax axis. The engine also develops a torque, 

due to the airscrew rotation, about the OX body axis and 
this contributes to the rolling moment equation. The engine 

power demand is controlled by the setting of the throttle 

control, TH* 

It is not intended to detail the derivation of the 

thrust equations, but merely to-quote the results. The 

nominal power delivered by the engine, Pnom, is given by 

Pnom " Pmax TH -1.28 

where Pmax is the maximum engine power and TH the throttle 
demand (0 - 100 % ). The actual power delivered by the 

airscrew, Pact is given by 

Pact ý-- Pnom 71p -1.29 

where 17 P is the propeller efficiency. 

The power delivered to the airscrew is related to the 

resulting thrust force, XE, by a simple lst. order lag viz 

(pact - XE U2) 

Ke 

m 

-1.30 

where U2 is the air flow rate, in ms-11 over the propeller, 
i. e. through the duct, and Ke is the engine rise rate in 

metres, XE U2 then being the power supplied. We also have 
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that the power supplied is the rate of increase in energy of 
the working fluid and is given by 

;= 1/2 pAD U2 (U3 2- U2) ý XE U2 -1.31 

where AD is the duct area, U3 is the flow rate in the 

propeller wake and p and U are as defined previously. Re- 

arranging 1.31 and making U3 the subject of the equation 

U3 `4 (2XE/p AD +U 2) 1/2 
-1.32 

The flow rate through the duct, U21 can be der ived by 

considering the thrust equation i. e. 

XE -2 p AD U2 (U3 - U) 

Thus 

U2 XE 
- U) -1.33 

D (U3 - 

Additionally the engine speed in rpm is given by 

rpm = U21pp x 60 rev/min -1.34 

where P P, is the propeller pitch. The torque due to the 
airscrew can be derived by relating this to the nominal 
engine power as 

LE = 2n x rpm/60 =P nom 

LE =P nom 
60 

-1.35 2 7r rpm 

with L. as in equations 1.27 . 
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1.5 Summary 

The above discussion and analysis has described a set 

of non-linear equations on which to base a simulation study 

of the aircraft. Whilst the equations are not entirely 
general they are nevertheless considered satisfactory for 

the application proposed and relate primarily to the 

remotely piloted vehicle referred to in 1.4.8. For 

simulation purposes a digital simulation will be undertaken, 
the basic sequence of solution being 

. 

Resolve any wind forcesl into aircraft body axes using 

equations 1.1. 

Evaluate the individual aerodynamic forces and moment 
components using the current values of control angles 

and aircraft attitude and angular velocities using the 

results of section 1.3. 

Use equations 1.27 to evaluate the X, Y and Z forces 

and L, M and, N moments including the gravitational 

components. 

iv) Integrate the Euler equations 1.7 at each time step 

v Evaluate the resulting aircraft attitudes in earth co- 

ordinates using equations 1.2 and evaluate the new 

aircraft position, height, easting and northing 

positions using equations 1.1. 

vi) Repeat for the next time step. 

In the following chapters we will investigate the 
development of this digital simulation in particular with 
respect to the implementation machine and programming 
languages. Before this, however, we shall briefly examine 
the methods available for linearisation of the complete 
aircraft equations of motion with a view to developing a 
state space model of the aircraft. 
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CHAPTER 

Linearisation of Vehicle Equations 

The complete aerodynamic equations developed in Chapter 
1 are too cumbersome to employ directly for control system 
design. To be useful, a set of linear equations must be 
developed which preserve the essential dynamics of the non- 
linear equations but are analytically tractable. It is 
inevitable that in determining such a model some gross 

simplifications must be made since the aircraft is 
inherently a very difficult system to model accurately . 
Indeed, some basic assumptions have ýalready been made in 
determining the equations of Chapter 1 which are not 
necessarily true in certain flight configurations. The 

particular linear model which is obtained will largely be 
determined by the assumptions which are made in. it's 
derivation and for this reason some care is necessary when 
making these assumptions. Ideally for a complete linear 

model the non-linear equations should be rigorously adhered 
to and a linearisation undertaken at each point in the 
flight envelope. This effectively leads to a time varying 
linear model although it may be found that some model 
parameters change little over the flight envelope or are 

sufficiently small so as to be negligble. Conventionally, 
however, a set of assumptions are first formulated, these 

allowing certain gross simplifications to be made in 
deriving a linear time invariant model. This method is 

perfectly valid for small perturbations when, for example, 
stability of the aircraft is of interest as we are only 
interested in how, or indeed if, the aircraft returns to its 
undisturbed equilibrium position after a small perturbation 
in a control surface position. 

Such analyses lead to the design of so called stability 
augmentation systems and classical autopilots which aim to 
alleviate the pilot's workload in controlling a potentially 
unstable aircraft. For control of the aircraft 'in the 
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large' i. e. when large changes in flight variables are 
occurring due to possibly large deflections in one or more 
of the control surfaces a more complete linear model of the 

aircraft is needed. 

In this Chapter it is intended to examine a typical 
classical 'small perturbation' derivation of a linear 

aircraft model. The analysis presented will at least serve 
to exemplify the characteristic aircraft modes and the 

nature of the resulting control problem. Some physical 
justification of the overall aircraft behaviour may then be 

made and an insight gained into possible interactions 
between motions. 

2.1 General Techniques 

The starting point for any linearisation is the 

appreciation that any motion may be considered as being 

composed of two parts. Firstly, a component which 
constitutes an average steady-state or trimmed condition and 
secondly a perturbation component about this nominal 

operating point. Note that the trimmed condition in an 
aircraft necessarily implies zero rotational and 
translational acceleration, although translational and 
rotational velocities need not be zero under these 

conditions. If we now perturb the motion we will, in 

general, simply be adding a small additional component into 

each of the trimmed conditions. As an example consider the 

velocity component along say the OX body axis, U. Using the 
o subscript to signify trimmed values and the lower case u 
to signfy a small perturbation about UO then, in the 
perturbed condition 

U 

similarly P=p0+p; E) = 6), +0; etc. To obtain the 
relevant dynamic equations of motion due to small 
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perturbations in the variable we f irst evaluate the trimmed 

equations and the perturbed equations. Subtracting the 
former from the latter then gives the relevant dynamics. 
Note here that since u, p, 0 etc. are small, second order 
and product terms in these variables are neglected whilst 

small angle formulae for trignometric functions can be 

applied (i. e. sin 0=0; cos O= 1; 0 small). Consider, as an 
example. the simplified X force component equation (eqn. 1.7 

a)) with the corresponding gravitational force component 
(eqn. 1.8- a)) included i. e. 

QW - RV) + mg sin8 =X 

The trimmed form of this equation is given by 

m(WOQO - ROVO) + mg sin eo = Xo -2.2 

the perturbed form of equation 2.1 can be obtained as 

QOWO + qWo + Qow + qw) - (ROVO + rVo +vRo + rv)) 

+mg sin (eo+O) =dX,, -2.3 

Subtracting 2.2 from 2.3 and neglecting 2nd. order products 

Woq + Qow - Vor - Rov +0g cos eo) = dX -2.4 a) 

Similarly the other five equations in 1.7 yield 

ml V* +u0r+R Ou - wop - Pow (g Cos 110 Cos (DO) (P 
+ (g sin E)o cos a)o) 0 dY -2.4 b) 

m[w + Vop + Pov Uoq - Qou + (g cos eo cos (Do)(p 

+ (g sin E)o cos (DO) 01= dZ -2.4 c) 
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6ix + (Qor + Roq)(Iz -Iy)= dL -2.4 d) 

ii 
y+ 

(P 
ar+ Rop)(Ix - Iz) = dm -2.4 e) 

0 
rIz + (Poq + Qop)(I y- Ix) = dN -2.4 f) 

A similar analysis applied to equations 1.2 relating P, 

and R to 0, E)and T yeilds 

; sin 80 - 0( ýo 
cos e. ) -2.5 a) 

d> -9 0 cos 00-0 (WO s in eo s in (D0) 

9010 Cos eo cosoo + 40 sin (DO) +; cos eo sin 00 
-2.5 b) 

r=; COSEO Cos (D -9( cos es in (P + Cos (DO) 00 ;o00 40 
00 

-0 sin 00 - O(Wo sin eo cos (DO) -2.5 c) 

It is also possible to apply a similar analysis to the T 

matrix of 1.1 which yields a rather unwieldy set of 
equations, 2.6, shown in Fig. 2.1. 

We now note that the equations 2.4,2.5 and 2.6 are 
linear but represent a daunting set of equations from which 
useful results can be derived. Note also that the 

expressions for dX, dY . ...... r dN have not yet been 

considered and these will, in general, be more complex than 
the above. The major reason for this complexity is the very 
general set of trim conditions chosen. By restricting the 
trim conditions to a specific flight configuration, however, 
the equations become somewhat more tractable, 

Let us now consider the linearisation of the 
aerodynamic forces and moments, as mentioned above. 

Aerodynamic Forces 

The aerodynamic forces and moments acting on the 
aircraft may in general be considered to be functions of (U, 
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V, W, P, Q, R, 6, ý, 'ý, ý, 6, R', UGI VG1 WGI UGI VG1 WG' P) 

in addition to any other variables such as Mach number, 
Reynolds number, angle of attack and sideslip. (Note that 

UG, VG, WG are wind gust velocity components in earth axes). 
If the forces are continuous functions of all of the above 

variables then each force or moment may be expressed as a 

Taylor series expansion of the force about some nominal 

operating point i. e. 

F, al +(a Fý a....... -2.7 F 
A 1), 

2 
3A� iA2) 

00 

here we neglect second order or higher derivatives since 
these will, in general, be small for small perturbations ai 
in the Ails. Considering the potentially very large 

number of dependent variables equation 2.7 looks formidably 

complex. The situation is eased somewhat, however, by again 

specialising the trim conditions and by an intuitive 

knowledge of the likely values of some of the partial 
derivatives. , These are termed the aerodynamic derivatives 

and are evaluated holding the remaining primary motion 

variables constant. 

As an example consider the aircraft trimmed so as to 

maintain a steady incidence, a, in the XZ plane as shown in 

Fig. 2.2. Neglecting sideslip, i. e. 0, then the lift 

and drag components acting on the aircraft are as shown and 
the aerodynamic forces X and Z are given by equation 1.11 

viz. 

Xa 2-- -D cosa +L sina 

Za -'4 -L Cosa -D sina 

replacing D and L by their equivalent expressions from 

equations 1.12 a) and b) then 

Xa = 1/2 P VT 2S (- CD Cos Ot + CL sin a) 
f -2.8 
ýf 2 cos a sin a Za = 1/2 PVT S (- CL - CD 
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Assuming thatýCD and CL are functions of only Mach number, 
M*, and incidence angle, a, then we may expand equations 
2.8 as 

3xa LXSý IM+ Lýa I VT + clý 
3A 3M DA a VT 3A aa 3A 

where A is the given primary motion variable. Thus 

2xa 
=I 

VT 2S-2 CD Cos a0-ý CL sin ao -3 M 

3A DM am 3A 

+ PVT S -CD cos ao + CL sin ao 3VT 
5A 

1 PV T2S DCD Cos ao + ; CL sinao + CD sin ao 
-i Da Da 

CL cos ao ) -2.9 

A similar expression is clearly obtainable for aZa* 
7A 

The primary motion variables for this trim condition, are U 

and W and expressions for 

5M -; 3 VT 
;aa; 

am 

DuauGuaw 

may be obtained from equations 1.11. 

constant dW =0 and 

a VT 3a 

awaw 

For the case of W 

VT = COS ao ;3a=- sin ao 3M= COS ao 
UaU VT aUa 

and for U constant, dU =0 thus 

qo Da = COS a am = sin a D H2 = sin 0 0 
aw aw VT aw a 

-2.10 

Mach no. is defined as the ratio VT/a where a is the speecl 
of sound and VTF the total aircraft velocity. 
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where a is the velocity of sound. Substituting equations 
2.10 into equations 2.9 gives 

3 Xa P VT S (-CD -CDa) COS2 ao 
aU 

+ (1/2 (CDa -' CL) -ý'CL + CLU)sin ao cos ao 

-, 1/2(CLa + CD) sin2 aol -2.11 

a similar expression is obtainable for aXa namely 
aw 

ax cos2 ao Z-wZ =P VT S 1/2(CL - CDa) 

aw 
+ (1/2(CLa + CD) CD CDa) sin ao Cos ao 

- (CL + CLu) sin2 aol -2.12 

Note that the standard notation is used for the partial 
derivatives i. e. 3CD CDa CLu (M/2)( a CL) etc. 

Ba 3M 

A similar analysis for ZZ, and aza gives 
au 3W 

aZa PVT S E(- CL CLu) cOs 2 ao 
U 

+ (1/2 (CLa + CD) - CD - CDU) sin ao Cos ao 

-'1/2 (CL - CDa-) sin2"aol -2.13 

3Za''""2 PVT S El/2( CL + CD) COS 2 ao 
aw 

(1/2(CDa -'CL) + CL +ýC Lu)' sin ao cos, ao 

7 (CD + CDu)., sln2 
-aO] 

-2. l4 
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The above example is quoted to indicate the degree of 
complexity of the expressions for the aerodynamic 
derivatives even for this relatively specialised trim 

condition. The choice of (to =0 does, however, simplify 
the above expressions considerably. A choice of ao =0 
clearly influences the individual contribution each of the 
aerodynamic derivative terms makes to the total value of 
3 Xa/ 3 UI for example. 

Fig. 2.3 shows the analagous situation in the XY plane. 
Here a continuous sideslip angle, p, exists giving rise to 

a side lift force L and a drag force D. The aerodynamic 
derivatives for this situation may be inferred from 

equations 2.11 to 2.14 by replacing ao by po and W with 
V. 

' 
The values of side lift coefficient, CL and side drag 

coefficient, CD1 will normally be different however. Note 
that in the,. XZ plane lift is required to maintain steady 
flight and a corresponding drag force is incurred. In the 
xy plane side'lift is normally undesirable whilst manoeuvres 
requiring constant angles of sideslip to be set up are not 
normally required. 

It is thus convenient to separate the two planes of 
motion into longitudinal (XZ) and lateral (XY) motions. it 
is assumed here that the lateral trim conditions are such as 
to render steady state values of roll rate, P, yaw rate, R, 

sideslip velocity, V and azimuth angle (heading) 0 of zero. 
Additionally, it is clear that perturbed longitudinal motion 
does not give rise to appreciable perturbations in the 
lateral motion otherwise the above assumption is violated. 
Also, control surface deflections do not necessarily give 
rise to appreciable cross coupling between lateral and 
longitudinal motions. Hence aileron and rudder control 
actuation will only affect lateral motion appreciably whilst 
elevator actuation on its own will affect longitudinal 
motion. 

This separation of the dynamics simplifies analysis and 
will, in general, be valid for most aircraft manoeuvres. At 
a later stage in the current project lateral/longitudinal 
coupling will be considered in greater detail but it is 
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Fig. 2. Lateral Lift and li Forces 
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convenient to adopt the uncoupled approach in the following 

discussion. 

2.1.2 Thrust Equations 

To complete a general discussion of the linearisation 

of the vehicle equations we shall finally examine the effect 

of the thrust force acting on the aircraft. 

In section 1.4.8 the equations for the thrust force 

specific to-a given aircraft were developed. Whilst it is 

true that the equations for a given aircraft geometry are 
relatively specialised. we may nevertheless consider the 

general case of a power plant developing a thrust force, T, 

along a thrust line inclined at an angle cT to the relative 
wind as in Fi g. 2.4 only the longitudinal motions are 
considered here and an initial angle of attack (incidence) 

ao is assumed. The thrust vector is normally displaced from 

the origin of the body axes (often the aircraft's centre of 
gravity) by a distance eT1 the thrust eccentricity. For 
this situation we may write down the pertinent force and 
moment equations as 

XT =T cos (CT- Oo) 

ZT -2 -T Cos ( CT - cýo) -2.15 

MT =T eT 

For the thrust considered to be a function of only the total 
forward velocity VTF power plant demand setting 3T and air 
density then the perturbed form of equations 2.15 gives 

SXT = COS ( CT - ao) DT SV T+ 3T 88T 

av Ta t5 T' 

ot sx T= Cos ( 6T ao) DT u+ý VUT W)+ aT 88T 

av T au awa8T 
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similarly 

45ZT sin (ET - ao)(ýT 
- 

16VT 

'- 
U+ 6VT ) + DT SST 

f5vq, Su k Sw 305 T 

and applying the results in equations 2.10 to determine the 

overall aerodynamic derivatives gives 

IXT DT cos ao Cos ý6T ao) 
au av T 

axT= aT sin ao Cos ( ET -a 0) ýW- a VT 

LX. T = 3T cos ( 'ET - ao) 

3 ST 3 VT 

3Z9, T Cos a sin Ea Lu 0T- o) 
DU 3 VT 

az T BTsinao sin ( ET-acd 
aWD VT 

QZT T sin ( cT a 

TvT 

a) 

b) 

c) 

d) 
-2.16 

e) 

f) 

Equations 2.16 may now be combined with equations 2.11, 

2.13,2.14 and 2.12 to derive the overall value of the 

respective-aerodynamic derivatives. 

In the steady state the pitching moment due to the 
offset thrust line must be balanced by a corresponding 
aerodynamic moment due to the control surfaces in order to 

maintain steady state equilibrium thus, 

Ma'= T eT'+ 1/2 p VT 2S -a Cm =0 -2.17 

where the aerodynamic pitching moment is as given in 
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equations 1.23. Considering only variations in the thrust 

due to VTr 3 T, and neglecting the fact that Cm varies with 
Mach number then 

45 M=eTu+ av w+ ýT B45 + a 31 a VT TT 
ab UaWT a VT( 

pV0s Z5 cm VT U+ VT 

Uw 

From equation 2.17 

p Vo S2 Cm =- 2TeT -2.19 
vo 

Thus combining equations 2.18,2.19, and equations- 2.10 

gives 

aT- 2TO Ma eT [( 

3VT vo 

(u cos ao +w sin ao) 

T8 'ST 2.20 

T 

where, as before, the o suffices refer to steady state 

values of the variables. 

As mentioned above the use of a* very ýgeneral set of 
trim conditions leads to a very complex linear model of the 

aircraft. A very useful insight into typical aircraft 
response modes is to be gained by specialising the trim 

conditions. In particular, the stability aspects of the 

aircraft may be examined using the so called 'stability 

axis' transformation. In this analysis the trim conditions 
are chosen'so as to reduce the complexity of the linearised 

aircraft equations Sufficiently to allow classical stability 
augmentation systems to be designed. 

, Having thus guaranteed reasonable stability margins for 

-2.18 
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the closed-loop system, autopilots, which attempt to 
maintain given pitch rate, height, etc. demands can be 
implemented as an outer loop design. Stability axis 
analyses are generally restricted to small perturbations 
about the specified trim condition but have been shown to 
provide satisfactory performance over a relatively large 

range of the aircraft flight envelope. For large signal 
purposes, e. g. navigation, this analysis technique is of 
limited value. 

In order to gain some insight into the stability axis 
analysis and hence into the general control problem applied 
to aircraft we shall now consider this approach in more 
detail. 

2.2 Stability Axes 
01 

For relatively small perturbations about the steady 
state and for short term dynamic analysis it is often valid 
to assume that the aircraft is trimmed to straight and level 
flight over a flat earth. In addition, the previously 
outlined assumptions which have been used to derive the 
aerodynamic force and moment balance equations are taken to 
hold. The principal reductions in the linearised equations 
of motion then arise since 00= PO=QO=Ro= 0 and 
correspondingly To go = 00 = 0. Note that as indicated 

above 00 = Po = Ro Vo =0 leads to the separation of the 

aircraft equations into the lateral and longitudinal sets, 
this will be clarified in the following discussion. 

To complete our stability axis model a final assumption 
is made that the body axes system is oriented such that the 
forward speed, along OX, lies along the direction of the 
aircraft's total velocity vector, VT* The OX axis then lies 
along this vector and Vo = Wo = 0. It may be convenient to 

assume an intial orientation of the velocity vector of Yor 
as shown in Fig. 2.5 relative to the horizontal. 
Perturbed motion then gives rise to the establishment of an 
incidence angle between the OX body axis and the 

, 
initial 

direction of the total velocity vector VT* This initial 
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orientation will change as a function of initial trim 

conditions but perturbed motions are still measured with 

respect to the body fixed axes. (Note that the initial 

0+ W02 =0 incidence angle ao = sin -1 Wo/, VFU 
-2 

and that E)o = Yo, + ao = ro). 

Equations 2.5 now reduce to 

60 p= (p sin ro = (p -r tan ro 

q=5 -2.21 

r cos ro 

An even further simplification is possible if we take 

00 vector lies along F i. e. the initial velocity the 
horizontal, the aircraft being in straight and level flight. 
Equations 2.6 then become 

p 

q -2.22 

r= 

It is normal to place the origin of the stability axis 
system at the vehicle's centre of gravity. Note, however, 
that the stability axes are not necessarily the axes of 
symmetry of the vehicle and hence, in general, we must 
consider the changed moments of inertia and stability 
derivatives by resolving their body axis values into the 

stability axes. For relatively small deviations, however, it 
is valid to assume that this effect is small and accordingly 
we shall ignore it in the following discussion. " 

Continuing with the assumption that ro =0 and that 
lower case variables denote perturbed values, the linearised 
Euler matrix of equation 2.6 can now be reduced to 
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-2.23 

Equation 1.1 now gives the velocities in earth axes 

relative to the stability axes velocities, with Vo = Wo = 0, 

as 

+0 uu 

lp v 

1- 

and, neglecting products of lower case variables 

uu0+u 

v uo +v -2.24 

w- UOO +w 

In addition the incidence, sideslip and total velocity are 

given from equations 1.3 and 1.4 as 

VT =U0 
-2.25 

W/uo v/UO 

neglecting u, since this is small compared with Uo and 
taking sin a=a, for small a. 

Equations 2.4 now reduce to 

mg 0+m u* dX 

-Mg (P + m(v* + Uo r) = dY 
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M(W* - UO q) = dz -2.26 

Ix = dL 

Iy= CIM 

Iz = dN 

The thrust equations of 2.15 now reduce to 

XT =T 
zT=-fTT -2.27 
MT =T eT 

for small cT and ao 

The vehicle height perturbations are often of interest 

and since height is the time integral of the downwards 

velocity in earth axes (downwards positive) then from 
equation 2.24 

-UO 0+w -2.28 

We now have an almost complete model of the aircraft in 

stability axes. All that remains is to expand the 
aerodynamic forces and moments on the right hand sides of 
equations 2.26 in terms of the relevant aerodynamic 
derivatives as indicated in section 2.2. The potentially 
large number of such terms leads us to consider which of 
these derivatives are likely to have the largest influence 

on the aerodynamics under the assumed trim conditions, in 

this case with ao = 0. This may be done on intuitive 

grounds, given a knowledge of the likely values of various 
derivatives for the particular aircraft or by calculation 
and wind tunnel testing. The derivatives most often 
considered to be significant are 

1) for dX ; Xul, Xw, x 77 

2) for dY ; YvF Yr, YT 

48 



3) for dZ ; Zu, Zwl Zql ZvP Z 4, Zq 

4) for dL ; Lv, Lp, Lr, Lý, Lt, Lý, LT 

5) for dM ; Mul Mwl Mql Mill M41 Mn 

6) for dN ; Nv, Np, Nr, Np, Nra, Ný, NT 

where the standard notation is used viz: 

xu =DX; Yv =1y 

au ýv 
etc. 

More or less of these aerodynamic derivatives may be 

required for a particular aircraft but we shall consider 
only the above for the present. 

We may now combine equations 2.26 with the above 
aerodynamic force and moment derivatives to yield 

mu = xu u + xw w +X 
77 17 - mg 0 

m; = yvv + Yr r + YT T + Mg (P - MU0 r 

0 
mw =Zu u +Zw w +Zq q + Z* + z4 q , +m Uo q + znn 

ix = Lv v +Lpp + Lr' r + Lý + Le r* +Lg9+LTT 

Iy = mu u + Mw w + Mq q + ne wo + m4 q* + mqe 

r Iz = Nv v +Npp +Nrr + Ný 5 + Ný + Ngg +N 
TT 

-2.29 

A natural development of the derivation of a 
differential equation description of the aircraft dynamics 
is that of finding the most appropriate state-space model 
representation for subsequent analysis. Whilst the choice 
of state variables for a given model is arbitrary, on closer 
inspection of equations 2.22,2.28 and 2.29 it should be 

apparent that the most suitable state variables for this 
system model are : 

[u, v, w, p, q, r, 0,0, (p , 
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Remembering that in section 2.2 it was indicated that a 

natural separation of the dynamics into longitudinal and 
lateral motions can be made, we may re-order the state 

vector such that only those state variables affected by 

longitudinal modes are in the upper portion of the state 

vector. The state variables affected only by lateral motions 
then form the lower portion of the state vector, viz: 

[ u, w, 

The input vector into the system is formed by the 

control surface deflections and the change in thrust setting 
from the power plant. This vector may again be separated 
into longitudinal and lateral input vectors as 

[ 77, 

Note here that any actuator' dynamics are ignored for 

the present' discussion but may be included by suitably 
augmenting the state vector. Power plant dynamics are also 
ignored. With this state and input vector structure the 

system state equation may be formulated from equations 2.29, 

2.28,2.27 and 2.22 as 
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-2.30 

This partitioned strudture of the system equations has 
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arisen naturally largely as a function of the many 
assumptions made in its derivation. Principally, the total 
decoupling of lateral and longitudinal modes has only been 

possible by specialising the trim conditions as indicated 

above. In some circumstances these trim conditions will not 
be applicable and a more complete set of equations may be 

required here. The structure of equation 2.30 may, however, 
be exploited to provide a useful insight into aircraft modal 
responses. Consider first the longitudinal 

-sub-system 
of 

the state equations as follows. 

2.2.1 Longitudinal Modes 

The states associated with the longitudinal motion of 
the aircraft are u, w, q, 0 and h these forming the upper 
portion of the state vector in equation 2.30. The equations 
corresponding to these states are, from equation 2.29,2.22 
and 2.28 :- 

Xu+ xw +x 70 - mgo a) 

m; = Zu u+ Zw w+ Zq q+ Z4 j+ Ze Z+z. n +m Uo q 

ýIy= Mu U+ Mw W+ Mq q, + M,: ýr + mi j+ My, 71 c) 

U0 

-2.31 

Equation 2.31 c) gives for j 

&0 
mu u+ Mw W+ mq q+m, ý w+m 7777 -2.32 

where mu = MU/I y; mq = Mq/Iy ; etc. 

in 2.31 b) this gives 
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TZ (1-ZZ) = Zu U+ Zw W+ Zq q+ z�i7 + Uo q+ 

zi (mu U' + Mw W+ mq q+m, ý + 

-2.33 

where as above zu = Zu/m ; etc. 

Z4 ni; =( zu + ze mu)u+ (Z w+Zi mw) w 
( 1-me) (1-m i) 

(zq +U+ z- m)q+(z+ ze m) 0q2 17 q2 71 
U-M4) U-V 

-2.34 

similarly for i we obtain 

U-V - ni'; Z4 = (mu + m,:, zu )u+ (mw +W zw) w 
(1-M, (1-n) 0 (1-m,: r) 

(mq + 'Ri z. (1+UO q+ (m 77 + mjý z 
(1 -M, ý) (1-m,; ) 

-2.35 

It is often the case that mq, mp zi and z- are w 
small and in this case the r. h. s. coefficients in 2.34 and 
2.35 may be approximated by zu, mu, zw, mw ; etc. whilst the 

l. h. s. coefficients tend to unity. Pursuing this line of 

reasoning and letting xu = XU/m ; xw = XW/m ; etc. we may 
derive a state space model of the longitudinal dynamics from 

2.34,2.35,2.31 and the thrust equations of 2.27. 

xu xw 0 -g 0 U, x 71 1 

1; zu Zw Zq+Uo 00 w z 17 ze 
77 

mu mw mq 00 q + m, 7 me xe 

0 00100 0 00 

0 -1 0 U0 10 h 00 

-2.36 
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Note here that the thrust force T is replaced by the 

specific thrust xe= T/m and 6T and eT in equation 2.30 are 
replaced by ze and me' these being normalised coefficients 
determined by including the thrust equation in the 
derivation of 2.34 and 2.35 and 

ze za eT + 'ET Zj M; 

Me mýr 'T + eT (1-mq) - zi mý, 
(1-M 40. ) w 

The open-loop response of the system of equation 
2.36 will be dictated by the eigenvalues of the state 'A' 

matrix, this being determined by inspection and comparison 
with the standard description of a linear system in state- 
space form : 

0 Ax+Bu 

The characteristic equation for the open-loop system 
is given by det(sI - A) = 0, where s is the Laplace 

variable. The values of s which satisfy the characteristic 
equation are the eigenvalues of the A matrix. For most 
aircraft the longitudinal fifth order characteristic 
equation of 2.36 has the form 

s(s2 +2 Tp Ap s+A P2)(s2 +2 is As s+ As 2) =0 

-2.36 a) 

i. e. a single pole (root) at s=O and two complex pole pairs. 
The complex poles normally give rise to stable oscillatory 
responses but having, significantly different response times. 

One pole pair is generally termed the phugoid mode, suf fix 

p, the other being the short period, or quick, mode, suffix 
S. The single pole at s=0 corresponds to a pure 
integration and arises due to the height integration action. 
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It is instructive to consider the approximate orders of 

the two oscilatory modes. To do this consider the zero 
input form of equation 2.36 i. e. with 17= Xe 'ý 0- We first 

note that the height equation, h, does not couple into any 

of the remaining equations. The last row and column of the 

A matrix may thus be removed leaving 

xu xw 0u 

zu zw zq+Uo 0w 

-2.37 
mu mw mq 0q 

00100 

Short period aircraft -motions always take place rapidly when 
compared with changes in forward speed, u. These motions 

may thus be considered to take place with constant-speed 

giving 4=0. The first row and column of 2.37 may thus be 

removed leaving 

zw 

Zq+U 00w 

mw mq 0q -2.38 

-- .0ýiý�, ,o0. 

The last row and column of 2.38 may now be deleted since 
0 does not couple into the w and q equations. 

zw Zq+Uo' w 
-2.39 

mw mq qI 

The characteristic equation associ ated with 2.39 is thus 

s2 - (Z w -+ M q) s+ (zwmq - Mwzq - mwU0) = 
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This equation is normally found to be close to the 

(S2 +2 gs 'Ons s+ Ons 2) 

factor in 2.36 a). Table 2.1 details the values of the 
longitudinal and lateral modes for the Machan r. p. v., 
evaluated using the relevent aerodynamic derivatives for an 

airspeed of 33 ms-1 and zero incidence, according to the 

equations derived above and in the following sections. From 
this table the Machan's short period mode has a natural 
frequency, wnsr of 3.5 rad - s-1 and damping, ýs, of 
0.44. These values are fairly typical of short period 
aircraft motions which are reasonably rapid and relatively 
well damped. 

Returning to equation 2.37, the assumption required for 
the phugoid approximation is that the w and q dynamics are 
sufficiently fast for their respective differential 

equations to be instantaneously satisfied, i. e. ;=j=0. 

Under these conditions the 2nd. and 3rd. rows of 2.37 give 

zu u+ zw w+ (z. + u. ) 

0= mu u+ Mw W+ mq q 

solving for q and w in terms of u gives 

q= (zu Mw - Zw Mu) U; w=- (zu Mq - Mu(zq + Uo» U 
(mqzw - (zq + Uo)mw (mqzw - (zq + Uo)mw) 

substituting these values into equation 2.37 yields 

u xu - Xw(Zumq -_Mu(zq + Uo)) -9 u 
(mqzw - Mw(zq +u 0» 

l' 

- (Z umw - muzw 

-(mqzw 
- Mw(zq + Uo» 
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Table 2.1 

Machan Dynamics Evaluated at 33 ms-1 and Zero Incidence 

Longitudinal 

Short period -1.57 + 3.16j 0.44, O)n 3.52) 

Phugoid -0.116 + 0.73j 0*16p 'n 0.74) 

Lateral 

Roll subsidence -8.524 Tý0.1173 s, 

Spiral mode 0.1279 T= 7.81 s 

Dutch roll -0.2984 + 3.453j 0.0 8 6, ()n = 3.4 6: 

(frequencies in rad, 
_,, 

s-1), 
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The characteristic equation associated with 2.40 is now 
given by 

s2 +[- Xu + Xw (zumq - Mu(zq + UO» s 
(mqzw - Mw(zq + Uo»_ 

9 -1 z umw - muzwl 0 

Mqzw - Mw(zq + E. ) 

-2.40 a) 

It is often found that equation 2.40 a) is a reasonable 

approximation to the phugoid term in 2.36 a) i. e. 

, (s2 +2 ýp tOnp s+ O)np 
2) 

Again referring to Table 2.1, the Machan's phugoid mode 
is'clearly lightly damped compared with the short period 

mode but of a considerably longer period, ýp = 0.16, 'np ý-- 
0.74 rad 

_s-1. 
The phugoi d mode is normal ly so s low that 

the pilot is well able to correct this long term oscillation 
in height/pitch attitude. 

The longitudinal modes have the following simple 
physical interpretation 

i) The height integration mode is a natural consequence of 
the geometry of the aircraft. If the vertical velocity 
has a finite value then the aircraft's height will 
increase or decrease indefinitely since there is no 
feedback of height into the vertical velocity. 

The short period mode is a result of the "arrow 

stability" of the aircraft. This is due to the effects 

of the offset of the aircraft's centre of gravity from 

the-aerodynamic centre of pressure. I 

iii) The phugoid mode has a quite subtle interpretation. 
Its fundamental origin is due to the exchange of 
kinetic and potential energies of the airframe. When 
flying in straight and level flight a lift force is 

generated primarily due to the airflow over the wings. 
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This lift force increases the aircraft's upwards 

velocity and consequently its height at the expense of 
the forward velocity. This reduces the airflow over 
the wings reducing lift and upwards velocity and hence 

reducing height. This loss of height, potential 
energy, is converted into kinetic energy which acts so 

as to increase the forward velocity of the aircraft, 
increasing the airflow over the wings and hence 

increasing lift and height, the process then repeating 

with a relatively long time constant and relatively 
light damping. The aircraft thus exhibits sinusoidal 

variations in height when flying straight andlevel, 
its pitch attitude clearly also varying in a sinusoidal 
manner. 

2.2.2 Lateral Modes 

The equations concerned with the lateral dynamics are 
those associated with the lower portion of the state vector 
of equations 2.30 namely the equations in v, p, r, (p and 
0. These 'are: 

m Yv v+ Yr r+ YT T+ Mg (P m UO r a) 

Ix = Lv v+ Lp p+ Lr r+ Lp + Lf to + LT T+ Lý b) 

r Iz = Nv v+ Np p+ Nr r+ Nb + Nf i+ NT T+N 

'P d) 

e) 
-2.41 

We may treat 2.41 b) and c) as was done for the longitudinal 

modes to obtain 
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1(1-lp) -, I= lv + 1ý nv v+ Up + 1ý np) p 
(1-nP (1-ný) (1-nt) 

('r + lf nr r+ (lT + 1ý nT)T++ 
(1-q) (1-ný) (1-ni) 

*j(1-nf) (n + n-l )v+ (n + n- 1)p n6llf vvppp 
(1- (1-14b - (1-1ý) 

p 

(nr + ný lv )r+ (nT + n6 'T T+ (ný + np- 1, 

-2.42 

By employing a similar technique to that used in 

section 2.2.1 we may derive the state equation for the 
lateral motions as : 

v Yv 0 Yr-Uo 90 v YT 0 

1v-1p1r00 p 'T 

nv np nr 00 r + nTn, 

01000 (P 00 
;j 

[0 010 01 LOJ LO Oj 

-2.43 

Again proceeding as in section 2.2.1 we may derive the 
fifth-order characteristic polynomial associated with the 

system of equation 2.43 as det (sI - A) = 0. For most 
aircraft this characteristic polynomial is factorisable into 

a number of modes as follows :- 

S(S + 
-1/T r) (s 2+2Ld 

(Od s+ tAld 2)(s + 1/TS) 

We note here the presence of three open loop real poles 
(roots) at s=O, S=1/T 

r and S=-l/TS. These modes are termed 
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heading integration, roll subsidence and spiral divergencel, 

respectively. The final quadratic factor yields two complex 
poles giving rise to an oscillatory response mode termed 
'Dutch Roll'. 

Approximate expressions for the factors of equation 
2.43 a) may be obtained as follows. Consider the zero input 
form of 2.43 and delete the last row and column of the 'A' 

matrix since the heading' integration, 0, mode does not 
couple into any other state. We thus obtain, f or the 
impulse response of the lateral motions :I 

v Yv 0 Yr-Uo 9v 

iv 1p 'r 0p 

-2.43 b) 
nv np nr 0r 

Li Lo 1001 opi 

For the majority of aircraft the rolling mode 'decays 

rapidly compared with the spiral and dutch roll modes. This 
being the case we may assume that the states v, r, and (p are 
zero for short term rolling motion and hence the roll 
subsidence equation is approximated by 

0 

i. e. a first order mode of time constant -1/1 p seconds. 
This is normally a good approximation to the roll subsidence 
mote of equation 2.43 a). Note that 1P is normally 
negative, the roll subsidence mode being stable in this 
case. 

If the roll mode is considered to be rapid then the 
differential equation in ý may be considered to be 
instantaneously satisfied giving 
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Yv 0 Yr-Uo '3 V. 

01v, 1p lr 0p 

r nv np nr 0r 

PI 0100jj 

Solving row 2 of 2.44 algebraically gives 

(1 lr r) -2.44 a) 

-2.44 

and neglecting gravitational effects the p state will have 

no effect on any ensuing motion thus we obtain. 

v Yv 

r nv-n 1 : 2Z-v 
1p 

Yr-uo v 

nr- * nplr r 
1p 

Equation 2.45 has a characteristic polynomial 

s2 + yv - nr +n1s+ (yvnr - nv(yr - Uo) =r 
p 

- yvn 1-n1 (yr - Uo)) 2-- 0 : E-, r "P-v 
lp 1p 

-2.45 

-2.46 

It can be shown that equation 2.46 is a good approximation 
to the dutch roll mode of equation 2.43 a). Dutch roll has 

a similar origin to the short, period dynamic of the 

longitudinal equations, however it is accompanied by a 

rolling motion owing to the coupling into roll from equation 
2.4 4 a) . 

The final mode, the spiral divergence, is a slow mode 
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and we may thus consider the differential equations in P. v 
0 40 0 and r to be instantaneously satisfied giving p=v=r=0 

and 

0 yv 0 Yr-Uo 9 v 

0 iv 1p lr 0 p 

0 r -2.47 0 nv np nr 

0 1 1 
ýpj 0100 La a- (p 

Solving this equation algebraically yeilds, for 

g(p yv(nrlp - irnp) + (yr - Uo)(nvl p 

(nrlv - lrnv) (nvlr - lvnr)' 

-2.48 

For most flight conditions the (yr - Uo) term in 2.48 may be 

considered to'be much greater than the yv term and hence' 

g (P (n n vrvr 

(yr Uo)(nvl p- lvnp) 

This is often a reasonable representation of the (S + l/T s 
factor of equation 2.43 a) and clearly 

TS (yr - Uo), (nvl p lvn p 

9 (lrnv - lvnr) 

Note*that Ts will be large and may for some aircraft be 
negative leading to a divergent mode. For, the Machan the 
lateral modes, evaluated as in the above expressions, are 
given in Table 2.1. Note that the spiral mode is unstable 
with a relatively long time constant of 7.8 secs. The Dutch 
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Roll is lightly damped, ý = 0.086, and of reasonably short 

period, 10d = 3.45 rad s 1d -, and the roll subsidence has a 
time constant of 0.117 s. The divergent spiral mode is 

often tolerated since it is easily controlled by the pilot, 
it being extremly slow and a stable spiral mode may often 

only be attained at the expe nse of a less well damped Dutch 
Roll mode. 

The physical interpretation of the lateral motion modes 
may be stated as : 

As with the height integration mode the heading 

-integration mode is the result of the aircraft's 

geometry, no local feedback of heading angle into side 

velocity-taking place. 

The roll subsidence mode is the response of the 

aircraft due to aileron deflection and decays rapidly 
owing to the damping action of the wings. 

iii) The spiral divergence mode arises due to the effect of 
gravity on the aircraft. In forcing the aircraft to 

roll gravity will induce both sideslip and yaw. For a 
divergent spiral mode this yaw and sideslip will 
further increase the roll angle, (p , leading to a 
further increase in yaw angle and sideslip velocity. 
The ensuing motion, if uncontrolled, results in ever 
increasing yaw and roll, the aircraft then entering a 
high speed spiral dive. The mode is, however, so slow 
that it is easily controlled by the pilot. 

iv) The final mode, the Dutch Roll, arises from much the 

same source as the short period pitching mode in the 

longitudinal motion. Dutch Roll consists of a 

combination of roll, yaw and sideslip about some 

equilibrium position. The aircraft first rolls from 

the equilibrium inducing yaw and sideslip. This 

sideslip then induces a righting rolling moment which 
forces the aircraft back through the original 

equilibrium position leading to yaw and sideslip in the 

opposite sense. The resulting oscillatory response may 
be stable and die away relatively quickly. In fact, as 
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the Dutch Roll mode gives rise to such a physically 

unpleasant sensation it is important, particularly for 

passenger aircraft, to design the airframe carefully to 

provide adequate Dutch Roll damping. An alternative 

approach is to use a stability augmentation system 
(S. A. S) in the form of a control system autopilot. 
Both of these approaches can improve Dutch Roll but 

often at the expense of reduced spiral mode stability. 

2.3 An Alternative Linearisation Technique 

By way of a contrast to the above 'classical' 

aerodynamic decomposition of the response modes of the 

aircraft the following section presents a brief description 

of a possible alternative approach. This is based on the 

evaluation of the first partial derivatives for each of the 

state variables, using the non-linear equations of Chapter 
1, and forming these into the appropriate (first 'order) 

state A and B matrices for the system. These expressions 

retain the functional dependence of the elements of the A 

and B matrices on the set of state variables, X. The A and 

B matrices may then be locally linearised about the actual 

state trajectory of the non-linear aircraft model. Consider 

first the longitudinal dynamics. 

2.3.1 Longitudinal Dynamics 

Table 2.2 is a list of the elements of the state space 
matrices, A and B, written in functional form and for the 

longitudinal dynamics of the model. The subscript notation 

on the left-hand side has been used to clarify the 

significance of each matrix element without recourse to a 

standard numbering system. 

It should be noted that by retaining the functional 
dependence of these parameters on the set of state variables 
x, the locally linearised A and B matrices corresponding to 
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Table 2.2 

Table of Locally Linearised Parameters for Machan (R. P. V. ) model 
(Longitudinal Dynamics) 

A, B Matrix First Variational Expressions 

parameters 

A(A, U) PSVT (CDO + kCL 2) 

m 

2) A(ý, YW) PS VT CL 
2m 

A (Ü, q) -w 11 + PS 'T Zq ý 

m 
0asw -> 0 

4) A (a, 0) -g Cos 0 

->. -g as 0+ 0 

5) A (4, h) 0 

6) A(ý'X ) 1/m e 

7) A (1ý, U) - PS V - T CI, +6 (CMT - CMWBD) 

mT 

8) A(; 7, W) pS VT a, + CDO 
2m 

9) AOý, q) VT I' +PS 'T zq 

10) A(T:, 0) g sin9cosq -* 0 as 94- 0 

11) Mxý, h) 0 

12) A Xe) 0 

13) Mju) PS VT ý5 [CM11 770 + CM W+ CL (c 9- 0.2 5)] 

y 

(where 10 = trim elevator angle, 
typically 0.11 rads. ) 
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14) A(j, w) P-2 f CMLal3VT + ýU(cg - 0.25)12wCLo + alVTI 
21 

y 

+ 2w&( CMO + CMLCLO) 

+2 W'T Zq q I'T + '6(cg - 0.25)l 

T 

pSa laVT ICML + cg -0.251 
21 y 

as w->- 0 

15) A(;, q) P SlT ZqVT('T + 'a(0.25 - cg)) 
Iy 

16) A(4, O), A(ý, h), 

A( ý'Xe) 

17) A(ý, u), Mj, w), A( b, h), 

A(j'Xe ), A(b, O) 

0 

0 

18) A( 5, q) 

19) A(ý, U) 

20) A(ý, W) 

21) A(ý, q), A(ý, h)j 

A( ý'Xe) 

22) A(A, O) 

cos (p 4 1, as (p->. 

sino 2 0, for small 0 

cos(pcos 0-* 1, for (p, 0 small 

(sign convention for integrated 

downwards velocity) 

-*0 for small u, v, w 

u coso +v singsinO- w cosgsino 

u-Ow for small (p., 'O 

23) A(ke'Xe) -2XPpAn(M U) + Xe 2 /M 

P2 AD 2(M* U)2 IxKe 

where M* 2Xe +p ADU 2 

PA D 
and Xel u are the operating point variables 
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24) A('elu) Xe 2(l + U/M*) 
IxIqADIYM* _ U)2 

2- 2S 25) B 71) Cmzl P SVT c VT P 
2m 'T m 

26) B(j,? j) [ý-Maý VT 2 Sa CMZj 

y 
ýa 717) 21y 

27) B(ýeTH) Pmax qp 
K 

eIx 

Note: - VT 
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a linear time-varying system can be generated ; the 

linearisation being computed for the state vector at a given 

step of the simulated response. It follows also that the 

computation of constant A and B matrices corresponding to 

the given trim flight can be achieved in this manner. The 

elements of the A and B matrices then relate directly to the 

unnormalised aerodynamic derivatives, e. g. :- 

A(U, U) aXPS VT (CDO +k CL 
ý-u m 

= 

B(W, 1 DZ Zil VT 2pS Zq 

M all m 

etc...., to first approximation. 

An example of the longitudinal motion state-space 

matrices for an elevator trim setting of q= no = 0.11 rads. 

and for an airspeed of VT =U= 33 ms-1 is :- 

Alo x+B 10ý11 

where x= xi ,i=1,2,3 6; u= uj ,j= ll 2 

-0.059 0.147 0. -9.81 0. 0.0125 

-0.475 -2.93 32.77 0. 0. 0. 

Alo 0.166 -0.416 -0.645 0. 0. 0. 

0. 0. 1. 0. 0. 0. 

0. -1. 0. 33. 0. 0. 

L -19.74 0. 0. 0. 0. -2.275 

0.0. 
5.318 0. 

-13.58 0. 
and Blo 0.0. 

0.0. 

L 0.1600. 
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The open-loop poles are -1.811 ±j3.47, -2.17, -0.0596 ±j 
0.675,0. and the ordering of the state and input variables 
is as follows 

u -* xi i. e. A(u, u) = A(l, l) 

W 4. x2 A(w, u) = A(2,1), etc.. 

q x3 

0 x4 
h X5 
Xe x6 
17 Ul 

TH u2 

The above pole values should be compared with the 
approximations derived in section 2.2 and listed in Table 
2.1. Note that the thruster pole at -2.17 is not modelled 
in section 2.2 and thus is not included in Table 2.1. 

2.3.2 Lateral Dynamics 

Table 2.3 is a list of the elements of the A and B 

matrices of the lateral motion dynamics using the notation 
of section 2.3.1. 

An example of these lateral motion state-space matrices 
for a rudder and aileron trim setting of T 7- 0,0, and 
for VT=33 ms-1 is :- 

ý= Ala 2S + Bla 

where x= xi i=7, 8,9 ..... 11 ;u = uj ,j = 3,4 

-0.277 0. -32.9 9.81 0. 

-0.1033 -8.525 3.75 0. 0. 
A1a ý'- 0.3649 0. -0.639 0. 0. , and 

0. 1. 0. 0. 0. 
0. 0. 1. 0. 0.1 
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Table 2.3 

Table of Locally Linearised Parameters for Machan (R. P. V. ) Model 

(Lateral Dynamics) 

Al B Matrix 

parameters 

First Variational Expressions 

A(ý, V) PS (YVVT 2+ V2yv + (b/2) Yrrv 

vTrn 
+ 2YTT VT 2) 

PS YvVT as v, r, T-* 0 

m 

2) A(;, P) W/M= 0 

3) A(;, r) -u +p Sb Yr VT 
2m 

4) AO, (p) g cosOcosp g as 0 (p smal 

5) A(;, 0) 0 

VV 
2 

6) A (ý, v) p bS v (L pp+ Lr CLr) +LT 
2VTIJ 2 

+ Lvv2 + 2LtývVT 

P bSVTLv as v, w- -* 0 
21X 

7) A(ý, p) p- b2SLpVT 
41 

x 

8) A(6, r) p b2SV L4+ (ix iz) q T rcT, 
41x Ix 

P b2SVTLrCT, as q-+ 0 

41X 

9) A(6, ip), 0 

10) A(ý, v) SbVTNv 

21Z 
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11) 

12) 

13) Mý, (P), A(ý, 0) 

14) A(;, p) 

15) A(ý, r) 

16) A(;, v), A(ý, 0) 

17) A(;, (p) 

18) M ;, r) 

19) A(j, V), A(ý, P) 

20) A(j',? ) 

21) (41 

22) B (p, 

23) B(ro, T) 

Note: - VT "2 
ýU2 

+ V2 + W2 

q(IZ - ix ) 
-> 

0, as q -> 
IZ 

p Nr SVTb2 
41 

z 

(where N . 046-0.015C 2 and -0 L 
CL ý-- CLo + ala 

0 

1 

cos(ptan0 , -> 0 as 0 -> 0 

0 

q cosgtan0 r tanOsing 

cos (P 
cos 0 

0 

q cos(p -r sin(p 

Cos 0 Cos 0 

p SV-- 2y 

m 

P VT 2bSL 

21 
x 

PS VT 2bN 
T 

21 
z 
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-5.432 0. 
0. -28.64 

la -9.49 0. 
0.0. 

L 0.0. 

The open loop poles are -0.4983 ±j3.5, -8.5579,0.0, 
0.119 and the ordering of the state and input variables is 
as follows :- 

v X7 

p X8 
r x9 

Xio 

Xii 
T u3 
§ ->. N 

A(v, v) = A(7,7) 
A(p, v) = A(8,7), etc. 

(Note :- for Machan rudder actuation couples into yaw only 
whilst aileron actuation couples into roll only. The B 
matrix thus has zero's as the B(p, T) and B(r, §) elements, 
c. f. equation 2.43. ) 

2.3.3 Cross-Coupling Dynamics 

Table 2.4 gives a list of the state space elements 
providing the functional cross-coupling between longitudinal 

and lateral motions of the aircraft model. It should be 

noted that, whilst it is usual to neglect the effect of 
these terms for small perturbations about trim flight 

conditions, for large incidence flight or manoeuvering 
motions some of the cross-coupling dynamics terms become 

significant. This information is to be used to predict the 

range of parameter changes expected from an actual aircraft 
in flight. The study will be useful in assessing the 

robustness of autopilot designs and also in determining the 

validity of some analytical redundancy techniques for sensor 
failure detection. The cross-coupling terms are also likely 
to be used in an improved numerical integration method for 
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Table 2.4 

Table of Locally Linearised Parameters for Machan (R. P. V) model 
(Cross-coupling Dynamics) 

Ar B matrix First Variational Expressions 

parameters 

1) 4 A(uov) r 

2) A(ý, r) v 

3) A(ýi, v) -P 

4) A(, ý,, p) -g cososing 

5) A(j, v) 1 3 Ma 11 vPSc(CMW + CMý01 ( ) 

y 

6) A(j, p) r (Iz - IX) 

Iy 

7) A(j, r) P (Iz - IX) 

I 

8) A(O, r) - sinp 

9) A( j, 
p) -g sin(p -r cosp 

10) A(;, u) Yvv + (b/2)yrr + 2yTT r +p_2V T 
_ 

I 

m VT 

11) A(v, w) P+ Splyrvw + (b/2)vyrr + 2WY 
TT 

VTI 

VTM 

12) A(;, 0) -g sinosin(p 

13) A(6, U) 13L) 
_ý. 

Le as Le -ý- 0 

m 
(iaýug 

C r) + Lvvw + 2L§ § 14) A(P, W) p bS (bw(L 
pp+ Lr L wVT 

iIxvT 120 

A( ;, 
q) sin(ptanO 
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16) A( 
;, 

q) sin (p 

Cos 0 

17) A( 
;, 

0) tanOsecO(q sinp +r cos(p) 
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solving the non-linear model equations. 

The A matrix elements of Table 2.4 give rise to the 

cross-coupling matrices A,, A2 Of the partitioned state- 
space equations as follows :- 

Alo, Al Blo 

x+u 
A2 Ala Bla 

6. 

2.4 Summary 

In this chapter the linearised equations of motion for 

the aircraft have been developed from the basic non-linear 
six degrees of freedom equations outlined in chapter 1. 

Under the very general trim conditions of a typical aircraft 
the resulting linearised equations are formidably complex as 
indicated in section 2.1. To derive an analytically 
tractable set of linear equations it proved necessary to 

specialise the trim conditions of the aircraft and to limit 

the analyses to small perturbations about these 'steady- 

state' conditions. Of particular importance is the 

separation of the aircraft motions into longitudinal and 
lateral modes, this being possible by specialising the 

aircraft trim. A further simplification was made by 

suitably aligning the initial body axes of the aircraft to 

straight and level flight. The resulting stability axis 

model is sufficiently simplified to allow a state space 
model of the aircraft to be derived. This state space model 

may then be decomposed to provide approximations to the 
dominant response modes in both lateral and longitudinal 

motions. At each stage of the derivation it was necessary 
to make a number of assumptions and this' necessarily implies 

that the linear state space model is only valid under a very 
specialised set of aircraft flight configurations (i. e. for 

a given airspeed and for small perturbations about trimmed 
flight). For relatively short term control analysis, 
however, this type of analysis is valid and has been shown 
to provide adequate performance over a fairly wide range of 
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aircraft manoeuvres. It is also worth noting that the 

analyses presented are by no means the only methods 

available but nevertheless provide a useful insight into 

aircraft response and the potential control problem. 
Interested readers are referred to the standard texts 

(1-5,9,10) for further information on aircraft modelling. 

In the following Chapter a discussion is presented of 
the requirements for simulation of the non-linear equations 

of motion of the aircraft. The problems of control system 
design are treated in Chapters 5,6 and 7. 
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CHAPTER 

Implementation 

In the previous chapters we have developed a set of 
equations which are considered to be a sufficiently detailed 

model of an aircraft to allow them to be used for simulation 
studies. Perhaps, at this point, it would be useful to 

recap the principal requirements of an aircraft simulator 
for use in control system studies in a University 

Laboratory, as mentioned in the introduction. 

An important aspect of the aircraft system is the high 
degree of interaction between the pilot and the system, 
the pilot often forming an integral part of the control 
loop. It was felt important that any simulation study 
should attempt to emulate this highly interactive 
environment in order to allow pilots to assess the 
handling qualities of the aircraft and any control law 
designs implemented. This level of interaction would 
also allow the investigators to gain a 'feel' for the 

problem. one implication here is that a close-to real 
time simulation is required with pilotic 'joystick' 
interaction. This is-a severe constraint not only on 
the type of simulation used but also on the machine 
used to run the simulation. 

In order to emulate closely the 'type of environment 
found in a typical aircraft it was felt desirable to 

allow the simulation to 'stand-alone' on a dedicated 

machine whilst any control laws were implemented on a 
second dedicated machine emulating, say, a flight 

control computer and passing control signals to and 
from the simulation on a standard data link. This 

allows, for example, sensor noise or sensor failures to 
be emulated in addition to possibly allowing controller 
parameters to be changed 'on-line'. 
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iii) Since a large number of variables are available within 
the simulation it is important to have available 

adequate display facilities which provide displays of 
important aircraft parameters in 'real time'. One 

possibility is to use a 'head-up' type of display 

typical of those used in a cockpit. Again this aspect 

severely restricts the choice of simulation machine. 

With the above in mind a brief specification of the 'ideal' 

simulation machine could be drawn up. It was, however, 

initially important to decide between an analogue or digital 

simulation. Basically, an analogue simulation was rejected 

on the grounds that an analogue or hybrid computer was not 
immediately available and that the number and non-linear 

nature of the aerodynamic equations would lead to unwieldy 
patching and scaling and probably require a reasonably 
powerful analogue machine. An analogue simulation would, 
however, have advantages for the real time aspects. 
Limiting the discussion then to purely digital computers our 
'ideal' machine can be envisaged as follows : 

A single user computer capable of being programmed in a 
high level language and compiling and running the resulting 

code under some form of executive in a realistic real time 

environment. The machine would also require high speed 
input/output facilities accessible from the high level 

language in order to interact with say a joystick type of 

pilotic input in addition to communicating with a second 
controller computer. The machine should also have high 

resolution fast access graphics in order to provide for say 

a headup type of operator display. A reasonable amount of 

main memory would also be required considering the likely 

size of code and backup high density file storage facilities 
for data and program storage. The machine must clearly also 
be reasonably 'fast' to handle the necessary 'number 

crunching' in something close to real time. 

The above specification would probably be most easily 
met using a dedicated minicomputer such as a PDP-11, this 

was not however, a feasible solution since such a machine 
was not, at the time, available at York. A remote mainframe 
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computer could be used but the requirement for high 

interaction and real time computation could not easily be 

met. A mainframe facility is, however, useful for 'off- 

line' control system design and assessment (see later). A 

compromise thus had to be arrived at which basically made 
best use of the available resources whilst sacrificing some 

of the 'real time' requirements. 

Two machines were f inally decided on which could 
provide the facilities required in the areas of interaction, 

graphics and ease of programming, these being : 

An 8-bit CP/M based TUSCAN using the Z 80 processor 

with disc storage, medium resolution graphics and 

running a compiled Pascal language. 

A desk-top HP 9826 microcomputer using a 16-bit 

microprocessor (68000) with backup disc storage, medium 
resolution graphics and running the interpretive BASIC 
language. 

Both machines were f itted with 64K bytes of RAM. 

To evaluate the potential usefulness of these machines 
two computer programs were written, one in Pascal, the 

second in BASIC, to run on the above machines. These 

programs solved the set of non-linear aerodynamic equations, 
outlined in Chapter 1, for the aircraft simulation. The 
basic structure of these programs will be outlined below. 

It became clear that despite the fact that the HP machine 

was running interpretive BASIC the execution times of the 

algorithm was considerably faster on this machine than on 
the TUSCAN. The use of the TUSCAN as a simulation machine 

was thus rejected and the HP machine was used as the 

simulation facility in all subsequent work. It is worth 
mentioning here that the HP machine would only run in 

something close to real time by making the integration step 
length quite large. This has some undesirable effects for 

reasons which will be made clear later. The HP as used is 
therefore by no means an ideal machine to use in this 

application. The addition of a compiled language to the HP, 
Pascal is available, would be a considerable advantage and 
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allow an order of magnitude improvement in execution speed 
to be realised. The additional overhead of graphics 
generation and display was later found to considerably 

reduce the execution speed of the HP machine, however, and 
this is again a disadvantage which will be discussed later. 

We shall now move on to examine the development of the 
basic simulation program and the variations around the 

program to enable it to be used on the various computers 
indicated above. 

3.1 Program Developmen 

The fundamental requirement of the simulation program 
is to solve the non-linear equations of motion for the 

aircraft at discrete points in time. The values of the time 

varying variables within the program are updated at each 
time point, the time step length being chosen to follow 

adequately the dynamics of the system. The choice of step 
length is a crucial factor if a real time simulation was to 
be realised. Basically the program will require a finite 
time to execute a single loop through the algorithm and this 

time will represent the smallest practical time step 

achievable. An execution time (solution time) of say 100 

ms. would be inadequate for real time simulation if the 
dynamics of the simulated system required that we sampled at 
say 50 ms. intervals. The choice of integration method used 

was allied to this requirement. A brief discussion of this 

problem is included below but basically a compromise between 

numerical stability and execution time must be met. For the 
initial work a simple discrete integration method was chosen 
namely : 

Xn+l ý xn + At f(xn"n ) 

where At is the integration step length. It should be 

noted that, for stability in any one mode : 

11 + AtAil <1 
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Thus the overall stability of this method is guaranteed 
if and only if :- 

At Amax 1'ý 1 

i. e. JAtAmaxl <2 

or At <1 2/ A max I 

For very widely separated modes this imposes a large 

constraint on the maximum usable step, an anomalous 
requirement since the fastest modes in the system are not of 
interest to the control system designer. This property 
alone suggests that a more suitable numerical integration 

method be chosen for this problem. It is felt appropriate 
to use an A-stable method such as the Trapezoidal Rule, 
based on the locally updated Jacobian matrix of the non- 
linear system. This would guarantee left-hand half-plane 

stability for large step lengths with the only penalty being 

one of accuracy. In the later work on control system design 

the real time aspects were not important and a fourth order 
Runge Kutta Merson algorithm was used as the integration 

technique. A FORTRANversion of the simulation was evolved 
based around this algorithm. 

A number of generations of program were evolved, each 
differing from the previous generation basically in the 
input and output facilites provided. As mentioned above two 

versions of the program were necessary, one written in 

Pascal for the TUSCAN and DEC-10 and one written in BASIC 
for the HP 9826. Additionally, a FORTRAN version of the 
program was developed for the 'off line' design and 
assessment of various control schemes and to investigate 

alternative integration techniques. 

Chronologically, the different generations of the 
program evolved as follows : 

Vers. 1) A Pascal program developed around a tree 
structure. This version had only simple input and 
output facilities. Input being from data stored 
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on a disc file, read at run time, output being 

numerical to a v. d. u. This allowed an assessment 

to be made of the capabilities and shortcomings of 

such a structure. 

2) A BASIC program having the same structure as 

version 1 and similar input and output formats. 

This, BASIC version was required for assessment of 

the capabilities of the HP 9826 machine. 

3) A modified version of 2 which allowed improved 

output facilities in particular the ability to 

display graphical plots of a number of the 

simulation variables vs. time or any of a number 

of other simulation variables. 

4) An improved version of 3- which removed much of the 

tree structure in favour of a modular structure. 
In addition the arithmetic operations were 

optimised such that only changing variables were 

updated at each time step. This optimisation was 
basically done to improve the speed of execution 

of the algorithm. 

5) An identical program to. V. 4 except for the 

inclusion of better input facilities. This was 

achieved by interfacing simple joystick and trim 

controls to the HP via. the GPIB. It was thus no 
longer necessary to read the input data from a 
disc-file at run time. Output was still as in 

version 3. 

6) An identical program to version 5 but with 
improved output displays. Principally a typical 

head-up type of display was developed indicating 

pitch, yaw and roll attitudes in addition to 

height, heading, wind speed and direction and a 

number of other simulation variables. Input to 

this program was as in V. 5. 
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7) A FORTRAN version of the simulation based on a 

fourth order Runge Kutta Merson algorithm from the 

NAG library (166). The real time aspects were not 

considered important for this version. Input is 

via disc file, output is to a disc file for later 

processing by a graphics generating program. This 

version was used for the non real time studies of 

control law performance. 

of the above version 6 was considered to be as close 
to the ideal real time simulation program as could be 

achieved at this stage. Its major shortcoming was found to 
be the execution time overhead imposed by the head-up 

display. It would be considered desirable to off-load this 

overhead onto a dedicated graphics processor for future 

work. A BBC computer has recently been purchased primarily 
for this purpose and a project on this aspect of the work 
has already commenced. 

In order to examine the program structure in more 
detail we shall consider, initially, the vers. 1 program and 

examine how this solves the non-linear equations of motion 

and how data is input and output. Subsequent version 

numbers will then be considered and the areas in which these 

differ from vers. 1 indicated. Note that all except 

versions 1 and 7 of the program were written in BASIC to run 

on the HP 9826 and exploit the 9826's input and output 
facilities. 

Simulation Program Vers. 1 

The first generation of the simulation program is 

written in Pascal and a listing is provided in Appendix 1. 

We may decompose the program into a tree type structure 

consisting of a main program part which calls various 
procedures. Each of these procedures may then call a number 
of other procedures thus implementing a specific function. 
This structure is shown diagrammatically in Fig. 3.1. in 
the following discussion the function of each of the 
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procedures will be briefly indicated starting with the main 

program and working down. Line numbers referred to in the 

text are those given in Appendix 1. Internal variable names 

are fully described in the Pascal variable declaration part 

of Appendix 1. 

The Pascal main program, lines 682-688, calls four data 

initialisation procedures before handing over control to the 

MAINSIM procedure. The initialisation procedures function 

as follows. 

Indata :- The pertinent simulation data are stored on 
three disc files (VARl-3. DAT). Prior to commencing the 

simulation these data are read from file by this 

procedure and used to initialise the relevant 

variables. The run time files contain the following 

data. 

a VAR1. DAT :- This file holds the initial values of 

a number of run time variables. The total 

simulation time, integration step length, and 

printing time interval are followed by the vehicle 

c. of g. position, wind speed and direction, 

initial earth axis velocities, initial pitch, roll 

and yaw angles and initial height. These 

variables will normally be set to reflect the 

initial conditions pertinent to the given 

simulation run. The sequence of data which should 
be provided in this file are as follows : 

length of simulation 

Integration step 

print step 

c. of g. position 

wind speed 

wind direction 

secs. 

secs. 

secs. 

fraction of wing chord 

m S-1 

degrees (0* = headwind) 
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initial northerly speed 

of easterly of 

if vertical of 

roll attitude 

pitch -" 

yaw if 

heading 

height 

ms -1 

m S-1 

m s-1 (down = positive) 

degrees 

it 

we 

degrees from north 

meters 

b VAR2. DAT :- This file contains the sequence of 
pilotic inputs for the particular simulation run. 
Each sequence basically contains the time point 
for the change in pilot demand, throttle, 

elevator, aileron and rudder demands. The file is 

read repeatedly and each sequence stored for use 
in the simulation. This file may be changed by, the 

user to simulate pilotic commands for a given run. 
For example a launch simulation may require data 

such as 

time =0 secs. 0., 1., 7., 0., 0. 

ff =2 secs. 2., 1., 5., 0., 0. 

The initial time (time =0 secs. ) settings are 
always required and in this case command full 
throttle (=1.0), elevator angle of 7.0 degrees, 
zero aileron and zero rudder. The elevators are 
backed off by two degrees to 5 degrees after 2 
seconds. Up to 10 of these sequences may be 
input, although this may be extended by modifying 
the program. 

c VAR3. DAT :- This file contains all of the fixed 
aerodynamic and physical variables for the 
particular aircraft and these may be set prior to 

running the simulation. 
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The Indata procedure reads each of these files 

sequentially and stores each of the values read in the 

appropriate variables. The VAR2. DAT file is read In' 

times until the end-of-file marker is found. The value 

of In' is used as an indicator of the number of changes 
in pilotic demand which are required. The initial 

values of aircraft attitude, control surface 
deflections and wind direction are also converted to 

radians for later use. 

2) Transf :- This procedure simply evaluates the direction 

cosine matrix of equation 1.1 (transform) using the 

current values of pitch, roll and yaw angles (theta, 

phi and psi). The inverse i. e. transpose of this 

matrix is also evaluated and stored in transpose. 

3) INIT :- This procedure simply initiates a number of 

simulation variables to zero in addition to setting up 

the value of air density (rho) and gravitational 

acceleration (gravity). The initial inertial body 

velocities are also evaluated using the direction 

cosine matrix of equation 1.1 and the initial values of 

earth axis velocit. ies (Ug, Vg and Wg). Note that a 

variable stall is used to indicate a stalled aircraft 

conf iguration. This variable is initially set to zero 
but may be set to 1, indicating stall, by the lift 

procedure. Note also that the inertial body velocities 

(Ub, Vb and Wb) are not identical to the aircraft axial 

airspeeds (Uc, Vc and Wc) the airspeeds being related 

to the ground speeds by the direction cosine matrix in 

the Air procedure. 

4) Air :- The relevant body airspeeds are evaluated here 

using the d. c. m. and the current ground speed values 

given by Ma, Va and Wa) these being evaluated from Ug, 

Vg and Wg and the appropriate headwind and vertical 

gust velocities. The in cidence (alpha) and sideslip 
(beta) angles are also evaluated using equations 1.4. 

88 

hkh, 



The aircraft's total velocity is evaluated using the 

uc, vc and Wc velocities in equation 1.3. 

After calling the above four procedures the simulation 
proper is commenced by calling the MAINSIM procedure. 

The body of the MAINSIM procedure consists of a 
REPEAT/UNTIL loop which calls the procedures required to 
implement the simulation at each integration time step. A 
loop counter is used to increment the simulation time 

counter (T) and a decision is made as to whether data should 
be written to the v. d. u. using OUTDATA. Data are written 
only at fixed time points determined by the value of the 
Itprint' variable. The loop is terminated only if the total 

elapsed simulation time exceeds the simulation end time, 

tend, or if the aircraft stalls, indicated by the stall 

variable being equal to 1. Before entering the main 
simulation loop two routines are called, CONTRO and OUTDATA, 

which set up the initial control surface deflections and 
throttle demand and write out a header sequence to the 

screen as indicated below. The procedures called from 

MAINSIM which have not been described above function as 
f ollows : 

5) CONTRO :- This procedure simply reads the values of the 

control surface deflections and the throttle setting 
from the arrays set up by Indata. These data will only 
be changed when the current time equals or is in excess 

of the time at which the control settings are to be 

changed indicated by the elements of the 'time' array. 

6) Forces :- This procedure is used to call a number of 
procedures which evaluate the aerodynamic forces acting 

on the aircraft as indicated in chapter 1. These are 

as follows : 

a Lift :- Evaluates the wing and pitch rate lifts 

using equations 1.13 and 1.18. Additionally the 
lift coefficient, CLr is determined using equation 
1.14 and if this is above a value of 1.2 the 
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aircraft is considered to be stalled, 'stall' then 
being set to 1. 

b) Drag :- Evaluates the aircraft's drag force using 

equation 1.12 b) and the drag coefficient, CDI 

value given by equation 1.21. 

c Side :- Determines the side force, Yar using 
equation 1.10 b). 

d) Roll :- Evaluates the rolling moment LA as given 
by equation 1.10 d). 

e Pitch :- Evaluates the pitching moment MA and the 
taillift given by equations 1.10 d) and 1.15. The 

pitching moment coefficients CMT and CMW are as 
given in equations 1.16 and 1.22. 

f Yaw :- Determines the yawing moment NA as given by 

equation 1.10 f). The NR aerodynamic derivative 

is given by 

Nr ", -- Nro + Nrl CL 

where Nro is the yawing moment coef f icient at zero 
lift, Nrl is the yawing moment derivative w. r. t. 
CLI the lift coefficient. 

g) Thrust :- The thrust force XE is given by equation 
1.33. This procedure evaluates XE as per section 
1.3.8. The procedure also evaluates LE according 
to equation 1.35. 

h Forsum :- This procedure simply evaluates the 
total forces (X, Y and Z) and moments M, M and M) 

according to equations 1.27 in addition to 

evaluating the total lift force acting on the 

aircraft, Utotal). 

Accel :- The time derivatives of the body inertial 
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velocities (UBDOT, VBDOT, WBDOT) and the pitchr roll 

and yaw rates (PDOT, QDOTj RDOT) are evaluated by this 

procedure according to equations 1.7. These values are 

clearly the respective linear and angular accelerations 

of the aircraft in the inertial axes. 

8) Integrate :- This procedure calls a number of other 
procedures which together perform an integration on the 
time derivatives of body velocities and rates. These 

procedures also transform the resulting body velocities 
into the earth co-ordinate system and integrate the 

resulting ground speeds to give heading, downrange and 
height values. The particular procedures called here 

are as follows : 

a) Rates :- This procedure integrates the body pitch, 
roll and yaw accelerations (QDOT, RDOT, PDOT) 

using the simple lst. order integration method of 
equation 3.1. The procedure also converts the 

radian measures of these rates into degrees. 

b) Attitude :- The pitch, roll and yaw angles in 

earth axes (Theta, phi and psi) are evaluated 

using equation 1.2 a) and integrating the 

resulting time derivatives (Thetadot, Phidot and 
Ps idot). These angles are also evaluated in 

degrees (Thetadeg, Phideg and Psideg). 

c Resolve :- This procedure integrates the linear 

accelerations in inertial body axes and evaluates 
the linear velocities in inertial axes (UBI VB and 
WB). These velocities are then resolved into the 

ground axes to give the groundspeeds (UG, VG and 
WG) using the direction cosine matrix of equation 
1.1, updated by the Transf procedure. 

d Posn :- This procedure simply integrates the 
ground velocities to give the ground positions 
namely XN, northing position, YE, easting position 
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and Height, the aircraft height. Note that height 

is measured as the negative integral of up/down 

velocity,, WG. 

e) Outdata :- This procedure outputs the values of 

various variables to the currently assigned output 
device, in this case a v. d. u. An integer 

parameter is passed by the calling program which 
indicates which one of three possible output 
format options is to be used. The pass parameter 

controls the output as follows. 

option =1 :- In this case a header sequence 
is output followed by the initial values of 

total simulation run time, tend, time 

integration step length, Tstep, print time 

increment, c. of g. position, initial 

aircraft attitude and control surface 

positions. This option is used only once on 

the initial pass through the simulation loop. 

option =2 :-A header sequence for the run 

time output variables is output for this 

option. The variables currently output are 

the current time, easterly air speed, total 

air speed, northerly airspeed, heading, 'roll 

rate and roll angle. These output variables 

and headings may be chosen by editing the 

program. 

iii) option =3 :- This option simply outputs the 

variables as indicated above to the v. d. u. 

The Outdata rout 
, 
ine is called at the print 

interval time points from the MAINSIM procedure. 

The body of the MAINSIM procedure Is reasonably self- 
explanatory and simply consists of a REPEAT/UNTIL loop which 
calls the appropriate procedures for the simulation in 
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addition to controlling the outputting of data via. Outdata. 
The simulation is terminated by the simulation time 

exceeding the defined end time or by the aircraft stalling 
(indicated by the stall variable). 

3.1.2 Simulation Prog. Vers. 2-6 

For the initial TUSCAN and DEC-10 studies the above 
describe Pascal program proved adequate as an evaluation 
tool. For the HP 9826 machine a BASIC program was necessary 
and this formed the version 2 generation of the program. 
The original version 2 program which was developed was very 
similar in structure to the Pascal version 1 program 
described above. In order to exploit the many graphics 
features of the HP machine a version 3 form of the program 
was evolved. Additionally, it was decided, at this point, 
that the execution speed differential between the TUSCAN and 
the HP machines was such that the HP machine should be used 
in all subsequent simulation work. 

Versions 4 to 6 of the simulation program were thus all 
written in BASIC for the HP machine and all share a similar 
main simulation structure. The principal areas in which the 
four versions differ is in the type of input and output 
facilities available. These differences are apparent from 

the listings of versions 3,5 and 6 given in the appendices. 
Note that the limited memory available on the HP required 
that various subroutines be loaded from disc at run time and 
deleted after use to allow the main simulation program to 

reside in the available memory at run time. This 

restriction requires a fairly elaborate driver program to 

manage the loading and unloading of the memory. This driver 
segment thus forms the only program loaded and run by the 
user. 

We shall now briefly examine the extended input and 
output facilities afforded by the HP machine and how these 
have been exploited in version 4,5 and 6 of the simulation. 
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i) Facilities for graphical output of data :- 

Appendix 2 details the structure of version 4 of 
the program. It will be noted that the main simulation 
has the same, general structure as the Pascal version 1. 

The procedures used by 'Forces' (see 6 a) - d) above) 

are , however, now concatenated into, one large 

subroutine 'Forces'. This was done in order to 
increase the speed of execution of the program by 

eliminating a number of-CALL statements. As noted 

previously a limited amount of memory was available on 
the HP machine. For this reason a menu is provided by 

the PREAMBLE routine which allows the user to set up 
the axes and scaling and define the plot channels for a 

particular run. Two files "AUTOPLT311 and "DEFXY" are 
loaded from disc to provide these facilities and are 
subsequently deleted to allow the main simulation 

program, in files "MACHl", "MACH21' and "INITIALISE", to 
be loaded into the memory at run time. The graphics 
screen of the HP is entirely separate from the alpha 
screen and hence a simple DRAW instruction, called at 

each time step in MAINSIM, plots out the required data 

on the graphics screen assuming that this has 

previously been initialised via. a call to Gset or 
Setxy in AUTOPLT and DEFXY. An indication of the 

channels for plotting are stored on disc in a file 
"XYCHAN" which is intialised by the subroutines 
contained in AUTOPLT3 and DEFXY and read by MAINSIM at 
run time. 

Using this system a two dimensional plot of 
any of 10 predefined simulation variables against any 
of the same 10 variables is achievable with interactive 

user axis scaling. Some results of simulation runs 
using this system are given in the following chapter. 
Note that runs may be repeated using the same axes and 
plot channels to provide multiple plots on the same 
axes. The graphics screen is only erased after a call 
to Gset or Setxy and hence re-initialising the graphics 

or re-defining plot channels will erase the graphics 
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data. 

A number of further points are worthy of 
mention here which relate to specific features of the 
HP machine and HP BASIC. Firstly, unlike Pascal, 

variables in HP BASIC are local unless declared 

otherwise. For this reason a COM (common) statement is 

provided which allows variables to be communicated 
'globally' in a similar manner to the FORTRAN COMMON 

statement. Named common blocks are thus extensively 
used in the simulation programmes, these simply 
allocating data storage space at pre-run for all of the 
'commoned' variables. The HP machine allows for 

programming of 'soft keys' on the keyboard and the 

execution of subroutines on depression of these 

programmed keys via. the ON KEY statement. This 
facility is used extensively to provide the interactive 

graphics user operation. The alpha display on the HP 
is still used by the Outdata subroutine and hence alpha 
and/or graphics data may be displayed during a 
particular run. 1/0 path names are used for all data 

transfers to and from the disc. This basically 
increases the speed of transfer. 

For further specific information on the HP 
9826 the reader is refered to references 161,162,163 

and 164. 

ii) Facilities for Joystick type Interactive inputs :- 

In versions 1 through 4 of the program control 
surface demands are define 'off-line' and read from a 
data file "VAR2. DAT" or 11VAR2. BDAT11 as described above. 
An interactive facility using a typical joystick type 

of input was required for vesions 5 and 6 of the 

simulation. This facility was provided by a joystick 

potentiometer providing elevator and aileron commands 
in addition to trim pots. for rudder, aileron, elevator 
and throttle demands. The interface for these analogue 
(d. c. ) signals was provided by an eight channel A/D 
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converter (RS type 305-545) of which only six channels 

are used in this application. The A/D was scanned 
through the six analogue inputs by the HP 9826 via. the 
GPIB interface bus. Data from the A/D was also read by 

the HP via. this bus. A circuit diagram and brief 

description of the A/D unit is given in Appendix 3. 
Scaling is applied to all of the A/D outputs by the 

simulation program as it is read from the GPIB. 
Version 5 of the program exploits this feature and the 

primary area in which the program differs from version 
4 is in the Contro routine. This routine is listed in 

Appendix 4. It will be recalled that the Contro 

routine assigns values to the control surface positions 

and updates these at each time step. Whereas before 

these values were preset by the contents of a data f ile 

"VAR2. BDAT" the values are now assigned by scanning the 

A/D on the joystick module, reading the resulting data 

and applying appropriate scaling to each of the 

elevator, aileron, rudder and throttle settings. The 

simulation program now uses these settings as 
previously. Note that the GPIB interface is device 12 

on the HP and this is assigned to the 1/0 path 
@Gpio-Path. 

iii) Facilities for Head-up type output display :- 

To provide a more comprehensive display0of 
simulation variables a head-up type of cockpit display 

was devised for the version 5 program. This display 

uses the graphics facilities of the HP to provide a 
'moving horizon', height and heading dials and displays 

of the various aircraft attitudes, control deflections 

and airspeeds. A typical output format is shown in 

Fig. 3.2. Version 6 of the simulation is provided with 
this output format via. routines held in a disc file 
"HEADUP". This version also has the joystick type 
input format as version 5. The headup facility is 

provided primarily by a suite of routines on two disc 
files, IIHEADUPII and "UPDATE". The routines within 
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"HEADUP" basically initialises the graphics display for 
the run by drawing the horizon, dials and boxes and 
labelling these accordingly (see fig 3.2). In order 
that the MAINSIM routine may update the horizon 

position, boxes and dials a suite of routines in 
"UPDATE" are provided. These routines first have to 

undraw any updated line positions on tha display, based 

on the old positions of the lines and then draw any new 
lines at the positions indicated by the new values of 
the variables passed to these routines in a common 
block. A listing of these files is provided in 

Appendix 5 along with the modified MAINSIM and driver 

routines. The MAINSIM subroutine is now modified so 
that the new simulation variables are written into a 
'New' array before updating the display. The previous 
values of these variables are held in an array 'Templ 

which is updated to the values in the 'New' array after 
re-drawing the display. The main body of the 

simulation remains the same as that in version 4 and 
the joystick input facility in retained. 

3.1.3 Simulation Prog. Vers. 7 

This version of the simulation was developed 

principally in order to carry out investigations into the 

performance of various closed-loop control laws. To this 

end the real time aspects were largely neglected in favour 

of an improved integration technique. The program was 
intended to run on the remote DEC-10 mainframe computer and 

a listing of this version is provided in Appendix 6. The 

investigation of a different integration technique was 
desirable to provide a comparison with the previously used 
Euler technique and in order to ensure accurate modelling of 

any fast modes brought about by the closed-loop feedback. 

The particular integration method chosen was a fourth order 
Runge Kutta Merson algorithm from the FORTRAN NAG library 

(D02 BBF). Employing this routine imposes a set structure 

on the simulation which is basically of the top down form of 

vers. 1. Referring to the listing of Appendix 6 we note 
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that the routine, D02 BBF, is called from the driver routine 

which initially establishes from the user the simulation 

length and time step size between successive 'samples' of 

the system 'states'. The 'states', X(I)Is, and derivatives, 

XDOT(I)Is, are also initially set to values read from a data 

file on disc (INSTAT. DAT) by the INITAL subroutine. This 

routine also reads and sets up the aerodynamic constants 

from a disc file (CONT. DAT) in addition to reading the 

pilotic demand data (DEMAND. DAT) and the state feedback 

gains (FEEDBK. DAT). Note that in these closed-loop studies 

we are normally concerned with state feedback structures and 

hene we require two state feedback gain matrices defining 

the state and reference feedback gains. The data files 

INSTAT, DEMAND and CONT are of roughly the same format as 

the VAR1, VAR2 and VAR3 files in previous versions of the 

simulation. 

The call to D02 BBF specifies the initial time, T, end 

time, TEND, number of states, N, and an overall error bound 

on the itteration, TOL. The routine also requires the 

calling program to nominate two subroutines, FCN and OUTPUT 

which D02 BBF calls at each user specified time step, TSTEP. 

FCN must contain the computation necessary in order to 

determine the values of the XDOTM variables at each 

integration step. For this example FCN calls the 

appropriate routines to evaluate the states, X(I)1s, from 

the non-linear equations of motion for the aircraft using 

much the same subroutines as for the Pascal and BASIC 

versions. The CONTRL routine provides for closed-loop 

control by evaluating the control surface demands via the 

set of state and reference feedback gains. The DIFFS 

routine then evaluates the XDOTM values from the set of 

state variables, X(I)1s. The OUTPUT routine provides a 

means of outputting simulation data at each time step. In 

this case the values of the states are written into a large 

array, RESULT, whose column count is updated at each step by 

the loop counter RESCNT. On exit from D02 BBF this result 

array is written to a disc file, nominated by the user, for 

later processing by a graphics program which provides the 

state responses in graphical form. 
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3.2 Summary & Further Work 

In this Chapter the implementational aspects of the 
non-linear aircraft model have been considered. Initially 
it was felt that a close to real time simulation was 
required in order to allow an 'on-line' assessment of the 

aircraft performance to be made by interacting with the 
simulation via joystick type controls. A digital simulation 
technique was chosen and a number of machines were 
investigated with a view to providing this function. 
Ultimately, a dedicated desktop machine was chosen, an HP 
9826, which provided a close to real time simulation. The 

addition of improved graphics to this machine, however, 

severely compromised the real time aspects. It is felt that 
the addition of a compiled language to the HP 9826, namely 
Pascal, and the off loading of the display generation to, 
for example, a BBC micro would provide greatly enhanced 
performance. A third computer may also be required to carry 
out any closed-loop control and interface to the pilotic 
joystick. The Pascal version 1 of the simulation running on 
the 9826 would then provide a real time simulation facility, 

closer to the initial objectives of section 3.1. 

The problem of integration method was briefly mentioned 
above. A simple first order Euler approximation is 

currently used in the real time work so as not to compromise 
the execution speed. In later work a fourth order Runge 

Kutta Merson routine has been used with a FORTRAN version of 
the simulation, version 7, to provide an improved 

integration technique but this clearly degrades the real 
time aspects. Version 7 of the simulation has, however, 
been used to provide 'off-line' assessments of various 
closed-loop controller configurations prior to implementing 
these in a real time environment. With improved real time 
computing power it may be possible to employ a somewhat more 
accurate integration method based on, for example, the 
trapeziodal rule or a low order Runge Kutta. Inevitably, 
however, a compromise must be found with respect to step 
length vs. computational time and stability of the 
integration routine. These aspects are currently under 
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review as improvements in the real time simulation are being 
developed. 
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CHAPTER 4 

Open-Loop Simulation :- Results 

In this chapter the results of a number, of simulation 

runs using version 4 of the program and the graphical output 
facilities are detailed. The pilotic demand signals are 

generated by editing the VAR2. BDAT file whilst initial 

conditions are defined via. the VAR1. BDAT file. 

The particular simulation runs considered emulate the 
landing and take off manoeuvres. The sequence of control 
inputs-required was determined by repeated simulation and 

editing of the pilotic input 
-sequence. 

In this'way an 

appropriate sequence of pilot demands was developed-for each 
of the runs. of particular interest was the landing and 
take off behaviour since these would allow the pilotic 

workload during these manoeuvres to be easily assessed. Two 

situations will therefore be considered these being 

i) Take off from launch to steady flight 

ii) Landing with regard to the flare and float times 

The results are presented for each of the above and 
some indication made of the degree to which these results 

compare with actual telemetered results from the real 
aircraft. 

i) Take Off 

The remotely piloted vehicle which formed the basis of 
the simulation is launched using a pneumatic launcher which, 
it is assumed, raises the aircraft's forward velocity to the 

stall speed of 25 m s-1 and initial nose up pitch attitude 

of 7 degrees. The aircraft would normally be launched under 
full throttle. 

To assess the potential pilot workload on launch, a 
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series of runs were undertaken for a range of elevator 
settings, zero wind speed and full throttle. The simulation 

step length was chosen as 0.01 s and the print increment as 
0.1 s. The results of these simulations are shown in Figs 
4.1. The time-height histories demonstrate that a launch 

elevator setting of about 7 degrees may be tolerated before 

the aircraft stalls on launch. This corresponds to about 1 
degree forward of the trim setting of 6 degrees for 25 m s- 
1 Attempting to climb the aircraft from launch (elevator 

settings of <6 degrees) resulted in stall on launch. 

Attempting to hold the aircraft's nose down on launch 

(elevator settings >6 degrees) resulted in the launch 

trajectories of Fig 4.1 a) for elevator settings from 7 to 
12 degrees. An elevator setting of, say, 7 degrees would 
thus result in a, condition in which the aircraft could 
probably be pulled into the air 4 seconds after launch. The 

variation in air speed with an elevator angle of 7 degrees 
is also shown in Fig. 4.1 b). 

For the condition of launch with a headwind and full 

power the time-height trajectories are shown in Fig 4.2. 

Fig 4.2 a) shows launch with a5m s-1 headwind, b) shows 
the results for a lo m s-1 headwind. In both cases a launch 

elevator angle of 5 degrees or less now results in a stall 
at take off. The aircraft will tolerate a smaller stick 
forward demand and still climb to altitude. As expected the 

aircraft climbs more rapidly with the larger headwind value. 

Power loss on take off was also examined for a range of 
headwind values. These results are shown in Figs 4.3 a) and 
b) for elevator settings of 6 and 8 degrees respectively. 
We note that with 6 degrees of elevator the aircraft stalls 
for zero wind speed but climbs adequately for wind speeds of 
5 and 10 m s-l- For 8, degrees of elevator (4.3 b)) the 

aircraft remains landable even for zero power and, zero 
headwind. For 5 and 10 m s-1 the trajectories show that the 

pilot could have landed the aircraft relatively easily after 
about 4 seconds. 

The above results indicate that launch is a relatively 
easily controlled manoeuvre demanding little of the pilot. 
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Even for the case of zero power on launch the aircraft would 

appear to be recoverable. The results also correlate with 
those provided by Marconi Avionics who flew the remotely 
piloted vehicle at Bedford. This would thus indicate that 
the simulation provides a relatively good model of the 
launch manoeuvre. 

Landing 

The landing manoeuvre requires that the aircraft looses 

altitude by diving, levelling out to a trimmed condition 
close to zero altitude and finally descending the remaining 
distance to the ground. This manoeuvre may be broken down 
into the flare and float, the flare being the period 
required to recover from the descent from cruise altitude, 
the float being the subsequent descent to touchdown. To 

simulate such a manoeuvre requires a resonably complex 
sequence of elevator commands. For our simulation initial 

values of 30 m s-1 forward air speed and 30 meters height 

were chosen, all initial attitudes being zero and zero 
headwind. Fig. 4.4 a) shows a typical landing profile. 
Figs. 4.4 b) through f) detail the pitch angle, pitch rate, 
height, elevator angle and airspeed time histories 

respectively. The points to note here are that the aircraft 
was trimmed for a power off glide with an initial elevator 
angle of 8 degrees , this being slighty forward of trim at 
30 m s-1 and the aircraft thus pitches nose down after an 
initial transient. The aircraft loses height and the flare 

manoeuvre is initiated after 7 seconds by the pilot pulling 
back on the stick, an elevator angle of 7 degrees being 
demanded. The float period for the run then ensues after 
approximately 10 seconds, lasts for 6 seconds and touchdown 

occurs after 16.3 seconds. The elevators are trimmed during 
the float and the aircraft lands with a slight nose up pitch 

angle of 2 degrees at an airspeed of 25 m s-1. 
Significantly, Fig 4.4 a) shows that the flare starts at 
about 220 m downrange finishing at about 300 m, the float 
then lasts for a further 130 m, touchdown occuring at 460 m 
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downrange. 

By contrast, Figs. 4.5 a) through f) show the effects 
of the pilot attempting to 'dive off height' from the same 
initial settings. The pilot initially demands a 10.5 degree 

elevator setting which is well forward of the trim condition 
for 30 m S-1. The flare manoeuvre now begins after 
approximately 4 seconds, the flare lasting 4s and the float 

a further 5s Again the landing profile of Fig. 4.4 a) 
shows that the flare must be started at a height of 15 m and 
lasts for approximately 100 m. The float lasts for some 200 

m with touchdown occuring at 420 m downrange after a 14.2 

second flight and at an airspeed of 25 m s-1. 

The 'dive off height' philosophy may thus be considered 
to increase the pilot workload significantly, this being 

evident from the larger number of pilotic elevator commands 
of Fig 4.4 e). 

The results obtained above show good correspondence 
with the flight trials undertaken by Marconi (6). 
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Fig. 4.3 Launch =jectories, no power 
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CHAPTER 5 

Closed-Loop System Design - Classical approach 

5.1 Introduction 

Thus far the development and implementation of an open- 
loop simulation of an aircraft has been considered. This 
simulation has been shown, in Chapter 4, to allow pilotic 
workload to be assessed under various manoeuvres. It was 
also demonstrated that the simulation was a valid one by 

comparing the results obtained with those from remote 
telemetry on the actual aircraft. Attention must now be 
turned to the likely requirements of a closed-loop control 
system when used with the aircraft in addition to surveying 
the techniques available for such closed-loop control. 

In this Chapter 'classical' control systems design 
techniques are investigated, particularly with regard to 
differentiating between so called stability augmentation", 
systems (SAS) and autopilot designs. This discussion will 
then be broadened in Chapters 6 and 7 into a comparison of 
'modern' control schemes and their application to flight 

control systems. 

5.2 Classical Control 

One of the earliest applications of control systems 
theory to the aircraft problem. was in the provision of 
stability enhancing or augmenting systems (139,158,169). 
This type of system was found to be necessary as a result of 
the increasing demands for high performance aircraft and the 
consequent reduction of the inherent stabilty of the 
airframe. Reduced airframe stabilty can impose a heavy 
burden on the pilot since he may be required to correct a 
poorly damped or unstable aircraft mode. SAS systems 
provide improved stabilty by automatically compensating for 
these poorly damped or unstable modes. In effect this 
compensation is provided by feeding back aircraft motions 
into the control surface deflections, possibly via. filters. 
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Typical of this type of SAS would be a yaw damper which 
corrects for possibly unstable lateral modes (e. g. spiral 
divergence) and ultimately assists the pilot in executing a 
turn, for example. A requirement also developed for 
attitude hold systems which essentially act as autopilots by 

maintaining say a given pitch attitude or heading (yaw) 
angle. Whilst the requirements for both systems are 
similar, it is often the case that the SAS design is 

undertaken as an inner-loop design whilst the autopilot 
conventionally acts as an outer-loop controller. The trend 
today is towards a more unified approach with a single unit 
providing SAS and autopilot functions, the design then being 

undertaken as a 'single' step process. (This will be 
discussed in more detail in Chapters 6 and 7). It is also 
worth noting that a simple SAS system will consider the 

pilot's actions as a disturbance and hence will reject 
these. The autopilot is normally arranged so as to allow 
the pilot to interact with the aircraft by setting required 
values of heading, etc. Having thus identified the 
desirability of some form of automatic flight control, from 
the pilot's viewpoint, it is important to establish what 
performance criteria can be applied to the design of flight 

controllers and what a pilot might expect from such systems. 

5.3 Performance Criteria 

The aircraft environment is one in which a close 
interaction normally occurs between the pilot and the 
dynamic system, i. e. the aircraft. This type of "pilot-in- 

the-loop" system can impose a heavy burden on the pilot 
particularly when faced with a poorly behaved aircraft. As 

mentioned above the addition of a6 SAS may assist the pilot 
in his task but may also reduce the 'feel' of the aircraft 
since pilotic demands will normally be interpreted and 
executed by the control system. This situation may be 

alleviated by reducing the authority of the SAS and allowing 
the pilot more direct contact with the control surfaces. 
The SAS then only operating at perhaps the extremes of the 
aircraft's performance envelope. This does however detract 
from the inherent ability of an SAS to provide markedly 
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better performance than the pilot in addition to providing 
additional facilities such as gust alleviation, decoupling 

of structural modes, etc. The foregoing remarks raise the 
issue of the role of the pilot in the aircraft system and 
this has been the subject of much work (11,12,13). If a 
somewhat more pragmatic view is adopted and the likely 

requirements of a 'stand-alone' flight controller are 
considered then a number of points become clear. 

The aircraft is a complex dynamical system, 
additionally, the parameters of the dynamic equations 
of motion change as a result of changes in flight 

condition. Any control system must be able to cope 
with these changes without an undue difference in the 

aircraft 'feel'. 

The system must operate successfully within the 

constraints imposed by the aircraft environment. 
Control surface demands, for example, must be within 
the capabilities of the servo-actuators and must have 
sufficient freedom to allow for additional attitude 
command signals. The limited measurements available 
must also be borne in mind with regard to the 

achievable system performance. 

iii) Any automatic system is capable of failure and hence 

the pilot must be able to effect a successful recovery 
from potentially dangerous system failures. 

Alternatively the system must be made highly reliable 
by using analytical or hardware redundancy. 

iv) Along with iii) the degree of overide provided for the 

pilot is important as is the authority given to the 
automatic system in manoeuvring and 'stick-fixed' 

regimes. 

V) A somewhat more detailed aspect is the actual hardware 

and, increasingly today, the software implementation 

and display systems provided for the pilot. 

Whilst the avionics system designer' must be aware of 
the above factors and will, ultimately, 'be influenced by 
them, the principal function of the control system will be 
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to provide adequate 'performance' from the overall system. 
How we define 'performance' will, to some extent, depend 

upon the designer and his view of the system and the 

constraints imposed by the specification. Traditionally, 
flight control systems have been developed using servo- 

mechanism theory and the analytical tools of frequency 

response plots (Bode diagrams) and s-domain plots (root- 
loci) and hence traditionally derived figures of merit are 

applied to the design, for example, peak -overshoot,, 10-90% 

rise-time, phase margin, gain margin, etc. These techniques 

generally rely upon single-loop designt the loop being 

formed between a. measurable output variable, which it is 

desired to control, and a, control surface deflection. Where 
interaction between loops occurs this may be removed by 

introducing appropriate compensation into the loop or by 

viewing the cross-coupling as a disturbance. 

The effects of the changing dynamics 
, 
of the aircraft 

over the flight envelope are normally accounted for by using 
root-locus techniques and investigating the likely effect of 
the movement of the poles and zeros of the appropriate 
transfer function in terms of the effects on the locus. if 

potentially unstable or unsuitable regions are identified 

then the system closed-loop gain, for example, may be 

changed by linking this to say the current airspeed or air 
density. what is effectively being done here is to modify 
some of the aerodynamic derivative terms, which determine 

the pole/zero locations, in such a way as-to retain 
stability of the closed-loop system (whence stability 
augmentation). It is therefore quite possible to adopt 
these traditional performance criteria and ensure that, for 

example, damping of the aircraft Dutch roll mode is adequate 
over all possible flight conditions. This does not of 
course guarantee that the pilot will favour the feel of such 
a control law but the system may be tuned 'on-line' by 
flight trials. 

With the advent of modern control techniques and their 
application to flight control we may be led to investigate 

the applicable performance figures of merit when using-these 
systems. The model reference technique, for example, 
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requires that the system performs in an arbitrarily close 
correspondence to an idealised model (14-17). In later 

chapters it will be indicated how the techniques to be 
discussed perform initially with regard to traditional 
figures of merit. It may be useful, therefore, to 

' investigate a typical control system design for our 
particular application i. e. a remotely piloted vehicle. 

5.4 Requirements 

The requirements for a control system for a remotely 
piloted vehicle are, to some extent, unique in that the 

aircraft may spend a considerable amount of time flying with 
no pilotic intervention. This type of situation is typical, 
for example, when blind flying via. a radar table. The 

automatic control system must thus be capable of 
implementing long term attitude control, e. g. height hold, 
in addition to well controlled manoeuvre demand systems, 
e. g. turn rate and pitch rate control. The performance of 
the automatic control must thus be quite stringent since the 
'pilot' will have little direct feedback of the aircraft 
attitude. There are also constraints placed upon the 

measurement devices carried on-board. Normally a rate gyro 
pack is carried but no positional data is available since no 
accelerometers are carried on-board. The rate gyro data is 

also of rather poor quality hence simple integration to give 
positional data is subject to long term drift. The use of 
flight control quality rate gyro's does however provide a 
relatively inexpensive flight control system implementation. 

The Machan typically requires the following manoeuvre 
and attitude hold systems. 

i) Pitch rate control 
ii) Roll rate (turn rate) control 
iii) Height hold 

iv) Yaw damping 

These systems must produce adequate performance in 
terms of responsiveness and stability. By way of an example 
of controller design consider cases i), ii) and iv) above. 
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5.4.1 Pitch Rate Controller 

The aircraft pitch attitude is controlled directly by 

elevator deflections and the open-loop response is largely 

determined by the longitudinal set of equations derived in 

Chapter 2. The pilot would normally demand a given pitch 
attitude is set up by forward or backward movement of the 

stick. The control system then establishes the elevator 
def lection required. As indicated earlier a very powerful 
technique for control system synthesis is the single-loop 
feedback type of structure as in Fig 5.1. 

The design of the compensator element is of interest 

since it is this which largely determines the closed loop 

response of the system as shown. One fairly simple approach 

which has been shown to be acceptable in practice is to make 

Gc(s) a purely proportional gain Kqc , hence 

Id 
= Kqc deg/deg/s 

qE 

and qe "2 (qd - q) 

In this case qd is taken to be the pitch rate demand from 

the autopilot system. The pilot's demand would normally 
have higher authority and be capable of overiding the 

autopilot. Taking the above as a basis for analysis some 
idea of the Ga(s) transfer function is required. This may 
be derived directly from equations 2.36 by applying 

Ga(s) = Cllo(sI - Allo)-'Bllo 

with the modified matrices at 33ms-1 airspeed 

-0.059 0.147 0. -9.81 

-0.475 -2.93 32.77 0. 
lo 0.166 -0.416 -0.645 0. 

0. 0. 1. 0. 
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Fig 5.1, Archetypal Pitch Rate Controller 
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0. 

5.318 
B'10 

-13.58 
L 0- j 

cl lo = 1,0.0.1.0.1 - 5.1 

ignoring the height integration and thrust equations and any 

actuator dynamics and taking the state vector as : 

u X1 

w X2 

q X3 
0 X4 

The input: is q, the elevator deflection. Thus : 

Ga(s) = 
K, s(S + l/Tl)(s + l/T2) '- 

-5.2 
(S2 +2 ýs coSs +(»S2)(s2 +2 gpwps + toP2) 

Note that the fourth order dynamics give rise to the 

two complex pole pairs, the short period and the phugoid and 

three real zeros at s=O, s=-l/Tl and s=-l/T2 . The zero at 

S=O is a natural consequence of' the derivative action 

required between elevator demands (degrees) and pitch rate 
(degrees/sec). The two' remaining zeros for the Machan are 
at 

1/Tl = 0.08 and 1/T2 = 3.07 

and Kq ý- 13.58 deg/deg/s 

of for a stick-fixed configuration at an airspeed, VTO 
33ms-1. 

A root locus plot for the above system with the loop 

closed with unity negative feedback and a proportional 
forward path controller is shown in Fig 5.2. Note from this 

that :- 
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The phugoid poles move towards the real zeros at s=O 
and s=-l/Tl. For very large gains the damping of 
the phugoid mode can be, made large however, this may be 

undesirable sinc e it may lead to poor short period 
response. For the relatively low gain cases normally 
considered the phugoid mode is little affected. 

The short period poles move onto the real axis for 

relatively low values of gain. To maintain short 
period response, therefore, requires the use of 

relatively low gain systems since the short period 
motion will normally be required to have a specified 
damping and natural frequency. 

The simple proportional pitch rate control law can thus 
be seen to have a desirable effect on the damping of the 

short period dynamics but little effect on the phugoid mode 
for low proportional gains. Using this type of feedback 

system is analagous to increasing the mq stability 
derivative term and from equation 2.39 note that this will 
directly affect the damping of the short period motions 
since : 

2 gs 's = -(Z w+ mq) 

A choice of Kqc = 0.25 gives approximately critical damping 

of the short period mode, as shown in Fig 5.2. A typical 

system step response for a demanded pitch rate of 1 

degree/sec is shown in Fig 5.3 and from this note that 

whilst the short period dynamic is well damped, the phugoid 

mode is still evident as a long term oscillation about the 

steady state. Another disadvantage of this controller is 

that the steady state value of pitch rate is zero due to the 
zero at s=O. Since it is normally required to have attitude 
control, i. e. pitch angle control, this configuration would 
seem undesirable since no feedback of pitch attitude is used 
and no direct control is thus available over this variable. 

It is normal to provide feedback of both q and 0 either 
directly or by the introduction of integral action into the 
controller as shown in Fig 5.4. The P+I controller 
introduces a pole at s=O and a zero at s=-KI. This modifies 
the root locus for the system so that the phugoid poles now 
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move rapidly to the two zeros at s=-l/Tl and s=-l/T2 as 
shown in Fig 5.5. The zero at s=O is cancelled by the pole 
from the controller. Fig 5.5 has l/KI=0 .1 and for 

moderately low values of gain the phugoid mode may be made 
well damped. The short period mode can also be arranged to 
have a reasonable degree of damping. 

Typical system step responses for a closed-loop gain of 
1.0 are shown in Fig. 5.6 and the suppression of the phugoid 
mode is clear along with the rapid decay of the short period 
mode. In the steady state the pitch rate approaches the 
demanded value although a slight offset is still evident. 

The pitch rate controller described above is typical of 
an inner-loop stability augmentation system and provides 
acceptable performance from the pitch dynamics. An 

autopilot system could now be used to provide the qd signal, 
the magnitude of which may be made proportional to the error 
in pitch attitude, for example. 

Now consider the effects on the system designed above 
of a change in say the airspeed of the aircraft. For 
'stick-fixed' operation at 50ms-1 the aerodynamic 
derivatives will change and as a result the Allo and B'lo 
matrices of equations 5.1 will be modified. Evaluating 
these matrices gives :- 

-0.0965 0.2685 0. -9.8f 
-0.8664 -3.81 49.7 0. 

A'10 
-0.531 -0.503 -0.9387 0. 

L 0* 0. 1. 0. i 

0. ' 

12.2 
B'10 

-52.8 

The open-loop pitch rate dynamics of equation 5.2 now 
give the approximate pole/zero locations 

phugoid poles s= +0.176 0.716j 

short period poles s= -2.37 4.79J 
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1ý11` "ll 

system zeros .s0.0 ,s= -3.849 and s= -0.16 
system static gain, Kq 52.8 

Note the increased static system gain indicating the 
increased effectiveness of the elevator at higher airspeeds. 
Note also that the phugoid mode is now open-loop unstable 
and hence some form of compensation is needed. 

By employing the P+I pitch rate controller described 

above a closed-loop system which retains reasonable damping 

of the phugoid and the short period modes is obtained. The 
dynamic response of the system is, however, somewhat 
different from the 33ms-1 case as shown in by the step 

response of Fig. 5.7. To regain a similar dynamic response, 

a simple change in the controller gain could be made which 
would provide a modified response. Over the entire flight 

envelope a gain vs. airspeed curve could be def ined which 
gave similar performance as the aerodynamic derivatives 

changed in value. Such gain-scheduling schemes are commonly 
employed to provide adequate system stability and 
perf orman ce. 

A secondary consideration of such pitch rate autopilots 
is vertical gust alleviation. Since gusts will normally be 

considered to be a system disturbance, the closed-loop pitch 

autopilot will, for a high gain, tend to reject any gust 
disturbances and hence render the pitch attitude insensitive 

to gusts. This, however, is not sufficient to ensure that 
the height, for example, will not be affected adversely by 

vertical gusts. In manoeuvres requiring tight control of 
the vehicle's height a pitch rate controller can do little 
but improve short period and phugoid damping and an outer 
loop closure of angle of attack or normal acceleration to 

elevator will be required (see- section 5.4.3) 

It is normal to include a short time constant f ilter in 
the pitch rate loop in order to remove any noise due to the 

pitch rate gyro, in addition, the elevator gain and transfer 
function may be included giving the complete block diagram 
of Fig. 5.8. 

As stated above pitch attitude/rate autopilots give 
desirable improvements in short period and phugoid damping 
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in addition to providing improved pitch 'stiffness' and 

normally form an integral part of an inner-loop SAS design. 

5.4.2 Lateral SAS Systems 

Aircraft lateral motions consist primarily of yawing 
(about the OZ axis) and rolling (about the OX axis). 
Motions about these axes give rise to changes in the 

aircraft's heading and bank angles. In executing a turn 

manoeuvre, for example, the aircraft is banked into the turn 
by aileron deflection and the ensuing sideslip gives rise to 

a yawing moment which turns the aircraft about the OZ axis 

onto the new heading. The aircraft is then returned to 

neutral or zero bank angle flight. The rudder may also be 

used to assist the turn but is, often used as a stabilising 

surface to 
-counteract the possibly unstable lateral modes, 

principally the spiral mode, and hence improve directional 

stability. This so called turn co-ordination system is 

normally provided automatically. Two control surface 
deflections must thus be considered in addition to the two 

motions, roll and yaw. Attention is given first to the 

control of bank angle. 

5.4.2.1 Roll Control 

A tight and well controlled roll attitude loop is 

required in order to provide adequate response in turning 

manoeuvres. To this end it is normal to provide direct 
feedback of roll attitude to the ailerons. Referring again 
to the Machan model system the transfer function 

(p (s) -ý (s) may be derived by evaluating : 

Gla(s) '-4 C'la(s, - A'la)-'B'la - s. 3 

using the modified lateral matrices A'lap BIla and C'la, from 

equation 2.43, namely :- 

-0.277 0. -32.9 9.81' 

-0.1033 -8.525 3.75 0. 
A'la 0.3649 0. -0.639 0. 

0.1.0.0. 
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0. 

-28.64 
B'la 0. 

0. 

cl la' 1 0- 0.0.1.1 
5.4 

for stick fixed flight at 33 ms-I with the state vector: 

V -> X] 

P X2 
rx3 

(P x4 

Note that the above ignores the yaw (0) integration, assumes 
that the rudder angle is zero and the actuator dynamics are 

neglected. Application of equation 5.3 now gives : 

K (P (S2 + 2ýz &)Zs + (OZ2 )-5.4 
a) 

(s + 1/TS)(S + 1/TR)(S 2+2 ýd cods + (A)d 
2) 

Using the results of section 2.2.2 the Dutch roll, spiral 

and roll subsidence modes have values of : 

T `0 0.189 secs. TS = -8.55 secs. R' 

Dutch roll modes s= -0.5 ± 3.5j 

The numerator polynomial has roots : 

-0.458 ± 3.46i 

and Kp = 28.64 

- 5.5 

From the above it can be noted that the open-loop Dutch 

roll poles lie in close proximity to the two zeros. These 
two quadratic factors thus approximately cancel giving :ý 

(s =K lp 
(s + 1/TS)(s + 1/TR - 5.6 

to a good approximation. Note that the spiral mode is 
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normally close to the origin and for most analyses may be 

considered a pure integration term giving a simplified 
dynamic 

K9 
- 5.7 

s (s + 1/TR) 

The Dutch roll mode may however be excited by gusts or 
rudder def lections. 

A complete root locus diagram for the transfer function 

of equation 5.4 a) is shown in Fig 5.9. From this note that 

the Dutch roll poles lie in close proximity to the complex 

zeros and hence low amplitude Dutch roll motions are to be 

expected. The two remaining poles at s=-l/TR and s=-l/TS 
form a quadratic pair at reasonably low values of gain. For 

relatively high values of closed-loop gain a satisfactory 
performance in terms of roll demand, roll angle may be 

expected. A typical system response to a unit step demand 
in roll angle for a closed loop gain of 1.5 is shown in Fig. 
5.10. The absence of spiral instability and Dutch roll 

modes is clear. A purely proportional controller would thus 

seem to be capable of providing reasonable performance in a 
roll attitude loop as in Fig. 5.11. 

In the above analysis any actuator lags have been 
ignored and these may, in some circumstances, give rise to 
less than satisfactory performance. Additionally, the 

position of the complex zeros of equation 5.4 a) mayr for 

some aircraft and flight conditions, be different from the 
'well behaved' aircraft considered. This may lead to poorer 
Dutch roll damping in addition to possible instability. 

With this in mind it is normal to introduce rate feedback 
into, the controller such that the controller transfer 
function becomes 

Gc(s) = Kqc (s + 1/ T9 )-5.8 

Alternatively, integral action may be introduced into a 
roll-rate SAS system, as was done for the pitch rate system 
of section 5.4.1. This also yields desirable changes in the 
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achievable system performance by allowing higher gains to be 

employed and improving the responsiveness of the loop. Fig. 
5.12 shows a complete root locus for the closure of the roll 
loop with a controller of the form of equation 5.8 with 
T9 =0.1 secs. Note that the spiral and roll subsidence poles 
now move to the zeros at -1/T 9 and -co and an improvement in 

system response speed and damping may be expected. This is 

confirmed by the step response of Fig. 5.13 for a unit step 
demand in roll attitude and controller gain, K(pc = 50.0. 

The effects on the system of a change in aircraft 
flight configuration can be demonstrated by considering say 

a change in airspeed from 33ms-1 to 50ms-1. The modified 
matrices of equation 5.4 now become :- 

- 0.419 0. -49.98 9.81 

-0.1565 -12.92 5.68 0. 
A'la 

0.553 0. -0.968 0. 
0. 1. 0. 0. 

-12.47 0. 
0. -65.75 

B'la = 
-21.62 0. 

- 
0.0. 

ci la =f o* 0.0. 

and the poles and zeros move such that : 

TR ý-- 0.079 secs. : TS = -12.94 secs. 

Dutch roll mode = -0.723 ± 5.28i 

zeros at s= -0.69 ± 5.25j 

and Kv = 65.75. 

- 5.9 

For the proportional roll attitude controller developed 

above the root locus now becomes as shown in Fig. 5.14. 
This locus is of the same general form as that'of Fig 5.9 
for the 33ms-1 case but the closed loop roots have reduced 
damping owing to the increased I- (p static sensitivity K9 . 
This is borne out by the step response of Fig. 5.15 which 
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exhibits slight overshoot when compared with Fig 5.10. Some 
form of gain-scheduling would clearly be necessary here in 

order to preserve the dynamic response of the roll channel 
as the airspeed changed. Parameterising the gain Kqc by 
1/U may be possible, for example. 

For the case of a lead compensator controller, as in 

equation 5.8, the roll attitude root locus for 50ms-1 

airspeed is shown in, Fig. 5.16. From this note that the 

Dutch roll poles are almost exactly cancelled by the two 

zeros, the spiral mode moves to the compensator zero at s=- 
10 s-1 and the roll subsidence mode moves to the left along 
the negative real axis. For high gains the roll subsidence 

mode will dominate the response whilst the spiral and Dutch 

roll modes are moved close to the compensator and system 

zeros. For a closed loop gain, K 9C = 50., as before, a 
typical system step response is shown in Fig. 5.17. This 

shows a very rapid response, compared to Fig. 5.13, owing to 
the increased roll channel static sensitivity, K(p - The 

presence of a second order type overshoot comes from the 

subsidence pole joining with a pole from the lead 

compensator which has the exact form : 

Gc(s) 
K(pc (s + a, ) 

-5.10 (s + a2) 

with a, = 10 s-1 ; a2 = loo 

Again a reduction in compensator gain may be desirable in 

order to maintain the roll channel response. The closure of 
the roll channel loop does, however, provide stabilisation 
of the unstable spiral mode for reasonably high loop gains 
over a range of flight configurations. 
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5.4.2.2 Yaw Control 

The provision of yawing control on an aircraft is 
important since yaw angle (heading angle) is used as a means 
of steering the aircraft. Any yaw controller must thus 

provide accurate control of yaw angle in addition to 

removing any tendency to excite undesirable modes when 

executing a turning manoeuvre. It is important to provide 
adequate Dutch roll damping and removal of any spiral 
instability in yaw since rudder deflections in turns or side 

gusts can excite these modes. One might therefore consider 

closing the loop from yaw angle, 0y to rudder deflection, T. 
For the Machan at 33 ms-1 trimmed flight the appropriate 
transfer function may be derived from equation 5.3 with : 

A'la (as eqn. 5.4) 5.43' 
0. 

B0 la 9.49 

L 0-i 

and cu la '= 1 0.0. 

noting that the yaw rate to yaw angle is a simple 
integration and that yaw rate does not couple into the other 
lateral states and again ignoring actuator dynamics,, gives 

0 
(S) 

Ko (s + 1/To ) (S2 +2ý; wz s+ coz_ 
_2) 

T s(s + 1/T R)(S + 1/TS)(s2 + 2td O)d S +, Od 2) 

- 5.11 

For the Machan the roll subsidence, spiral and Dutch roll 
modes are as in equations 5.5 whilst the zeros become 

s= -8.55 ;, s = 0.236 ± 0.287j 

and Ko = 9.49 5.12 

A root locus plot for the above loop is given in Fig 5.18. 
From this we note that the roll subsidence pole moves to the 
real zero at s=-8.55, the Dutch roll poles move out to 
follow second order asymptotes and the spiral mode and the 
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free Is' term come together in the right half plane to form 

a complex pair which move to the complex zeros in the left 
half plane. Clearly, to ensure stability the loop gain must 
be sufficiently high to ensure that this complex pole pair 
move onto the left half-plane but high gains will inevitably 

reduce the damping associated with the Dutch roll mode. 
Nevertheless, for adequately damped open-loop Dutch roll 
modes a low gain loop can be employed provided that the slow 
and marginally stable complex pair can be tolerated. For 

aircraft having poor inherent Dutch roll damping such a 
scheme may be undesirable in addition to the relatively poor 
response from the loop. The feedback of yaw angle with a 
proportional control element does have disadvantages 

although augmenting the control action by introducing 

additional feedback of bank angle has been shown to have 
desirable ef f ects. 

A far more satisfactory performance can be achieved by 
employing direct feedback of yaw rate, r, to the rudder. In 
this case the free Is' term in the denominator of equation 
5.11 is removed giving : 

I(S) Ko (s + 1/To )(S2 + 2ýz wz s +, )z 2) 

T (s + 1/T RMS + 1/TS)(s2 +2 ýdd S+ 'd 

with the roots of th I enumerator factors as in 5.12 for the 
Machan. 

A root locus plot for the above transfer function is 
shown in Fig. 5.19. Note that the absence of the pole at 
s=O removes the complex pair formed by this and the spiral 
mode. The Dutch roll poles now move rapidly onto the 
negative real axis and split, one to combine with the spiral 
mode, the other moves to the zero at s=-l/T 0 The roll 
subsidence pole now moves rapidly to the left along the 
negative real axis. The pole-pair formed by the spiral and 
one Dutch roll pole leave the real axis and move to the two 
complex zeros for reasonably high values of gain. For low 
values of gain the Dutch roll damping can thus be improved, 
however, the spiral mode may still be divergent. For higher 
values of gain the response will be dominated by the complex 
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pair formed by the spiral and one Dutch roll pole. This 

implies that a heavily damped and slow response is likely 

owing to the close proximity of the dominant complex pair to 

the origin. A closed-loop step response for a proportional 

controller gain of 10.0 is shown in Fig. 5.20 from which it 

can be noted that the response is typically slow and heavily 

damped. This value of gain gives approximately 0.9 damping 

in the dominant complex pair (see Fig. 5.19). This type of 
feedback can thus be s, een to have a very significant effect 

on the Dutch roll mode and this may be made heavily damped 

at relatively low values of gain. The spiral mode however 

is troublesome in that it moves only very slowly into the 

left half-plane and high gains are thus required to provide 

an adequately stable spiral mode. Even then the closed-loop 

response may be poor and exhibit large steady state offsets. 
Some form of compensation may thus be desirable. 

In steady turns when the pilot may demand that a given 
rudder angle be set up the yaw damper control system 
described above will tend to oppose this action. For this 

reason many yaw dampers include a washout term in the 

forward path. A washout term essentially provides zero 

output in the steady state and has a transfer function of 
the form : 

s 
W(S) (s + 1/Tw) - 5.13 

Introducing this in cascade with the aircraft yaw rate 
dynamics gives an overall yaw channel transfer function 

I 
(S) = 

Ko s (s + 1/To ) (S2 +2 ýz coz s+ wz2) 
T (s + 1/T 

w 
)(S + 1/TS)(S + 1/TR)(S +2 9d 'A)ds +"'d 

The modified root locus for this system is shown in Fig. 
5.21 for a washout pole placed at s=-5. From this note that 
the Dutch roll poles move to the complex zeros, the washout 

pole moves to the real zero at s=l/To , the roll subsidence 
moves left along the negative real axis and the spiral mode 
moves to the zero at s=O. For reasonably small values of 
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f1 

gain the Dutch roll damping can be considerably improved 
however the spiral mode remains on the right half plane for 

all values of gain and gives rise to a slow divergence. For 
high gain this divergence can be made a very slow root. To 

provide adequate Dutch roll damping however smaller gains 
are required and the spiral mode is likely to provide 
difficulties as is the slow root from the washout pole. 

Broadly speaking then the presence of a divergent 

spiral mode provides a difficult coatrol problem when using 

either 0-T or r-T feedback. The situation is aggravated 
by the need to include a washout term to preclude the 

possibility of yaw feedback opposing steady turns. It would 
therefore seem to be difficult to provide a stable, 

responsive performance from a yaw damper. Alternative 

feedback schemes have been tried such as sideslip and 
lateral acceleration feedbacks but these still suffer from 

poor spiral stability. If the spiral instability can be 

tolerated however, and in many cases this slow divergence is 

easily corrected by the pilot, then significant improvements 

in Dutch roll damping may be gained from a washed out r- 

T loop for relatively low values of closed-loop gain. The 

provision of a roll damper also assists in stabilising the 

spiral mode since it effectively provides augmentation of 
the 1p stabiltiy derivative and changes the disposition of 
the open-loop poles and zeros. It is also normal to provide 
precise turn coordination by introducing a rudder to aileron 
cross-feed term, normally via. a lag/lead type compensation 
element. 

To illustrate the likely effects of a change in flight 

conditions on the yaw damper described above consider a 
change in airspeed from 33ms-1 to 50ms-1 as was done for the 
roll damper in 5.4.2.1. Using the results of equations 5.9 

with : 

(as in 5.9) ; BI la la «2 

la 

-12.47 
0. 

-21.62 

L 
0. 

-1 
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gives : 

0 Ký s (s + 1/To)(S + 1/T, )(S + 1/T2) 
-0. (S) = 2) T (s + 1/Tw)(s + 1/TR Ms + 1/Ts)(S'z +2 Ld 'ds + OJd 

where the roll subsidence, spiral and Dutch roll modes are 

as in equations 5.9 and the zeros are at : 

0.0 ;s= -0.139 ;s= -0.867 ;s= -12.652 

and Ko = 21.62 

A root locus plot for the above is given in Fig. 5.22 and is 

broadly speaking similar to Fig. 5.21. Note however that 

the Dutch roll poles now move to the zeros at s=-0.139, 

s=-0.867, this for very high values of gain. The damping of 

the Dutch roll mode can still be improved for relatively low 

gains but again the spiral mode remains divergent for all 

gain values. The increased aircraft gain does however imply 

that gain-scheduling is required in order to provide 

reasonably constant Dutch roll damping with varying 

airspeed. 

5.4.3 Height Hold 

Returning briefly to the longitudinal control problem a 

height hold function is desirable in vehicles like the 

Machan in order to provide long term height following. The 

feedback loop here could be formed from height to elevator 
but the closure of this loop normally drives the phugoid 

mode unstable for all but very low values of proportional 

gain. A potentially more suitable scheme is the feedback of 
height rate to the elevator. For the Machan the appropriate 
transfer function can be evaluated as in equations 5.1 for 

33ms-1 stick fixed flight and with 

ci "4 [ lo « 

treating ý=wi. e. zero pitch attitude, thus: 

(S) = 
Kh (s + 1/Tl)(S + 1/T2)(S + 1/T-1) 

71 Ts2 +2 Ls toss + ws2) (S2 +2 ýp &)ps + wp2) 

153 



Fig 5.23 Root Locus - Height Hold Loop 
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The zeros are at s=-0.027, s=-15.34 and s=15.12 and Kh 
5.318 

The height to elevator transfer function can then be 

obtained by the introduction of a pole at s=O giving : 

h 
(S) 

Kh (s + 1/T, )(s + 1/T2)(S + 1/T,, )_ 

71 S(S2 + 2ýS coss + O)S2)(S2 + 2Kp &)p s +o)p2) 

A root locus for the above is shown in Fig. 5.23 from which 
it is clear that the phugoid poles move onto the right half 

plane for very low values of gain and that the pole at s=O 
is approximately cancelled by the zero at s=-0.027. The 
introduction of a lead network in the controller would, 
however, improve the system performance. 

Consider then the introduction of a compensator of the 

orm 

G (S) 
Kc (s 

c (s +a 2) 

with a, = -1., a2 2-- -10- 

The modified root locus plot is now shown in Fig. 5.24 and 
from this note that it is now the short period mode which 
moves into instability. The phugoid damping may also be 

slightly improved at lower gain values. For a closed-loop 
controller gain, Kc, of 0.1 a step response is shown in Fig. 
5.25. The lightly damped short period mode is clearly 
evident along with the slight steady state offset. Higher 

gain values than Kc=0.26 will drive the short period mode 
into instability and hence are not desirable. Changes in 
flight condition, e. g. forward speed changes, will 
necessitate the scheduling of the controller gain in order 
to avoid the effects of the unstable short period mode. 

The above discussion indicates that the use of the 
elevator to control height is generally undesirable, 
although achievable. Rate of climb systems using airspeed 
or Mach number feedbacks are normally more effective. 
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5.5 Alternative Schemes 

It is fair to say that the feedback of almost every 
measurable flight variable to the control surfaces has been 
investigated at some time or another. The most effective 
loops are generally retained since these are most likely to 

provide improvements in performance. The discussion above 
has indicated the control problems associated with some of 
the Machan systems, bearing in mind the limited measurements 
available on this vehicle. The particular loops chosen are 
by no means exhaustive. The lack of acceleration data 

precludes the use of acceleration feedback. Thisl however, 
has been shown to have desirable features in many aircraft. 
Equally, the feedback of angle of attack or sideslip to the 

appropriate control surface can be shown to yield 
improvements in performance. Airspeed hold is also very 
useful in manoeuvres requiring accurate control of airspeed, 
e. g. autoland, etc. The reader is referred to the many 
texts available on this subject for further information 

(1-4,167). To complete this section a brief examination 

will be made of the performance of the Machan with the above 
designed controllers. 

5.6 Perfomance Assessment 

In order to assess the potential usefulness of the 
classically designed control schemes derived above they were 
incorporated into the non-linear Machan simulation which was 
fully described in Chapters 1 and 3. The results were 
obtained using the FORTRAN version of the simulation running 
on the DEC-10 mainframe. This simulation includes actuator 
dynamics along with the appropriate rate and saturation 
limits. 

The loops which have been considered are pitch rate 
control and roll and yaw dampers. These loops are closed 
around the elevator, aileron and rudder control surfaces and 
are shown pictorially in Fig. 5.26. No control is applied 
to the throttle although this could be provided by an 
airspeed - throttle loop. Furthermore, no provision has 
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Fig 5.26 Loop Closures on Machan 
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been made for the height hold loop since this presents some 
problems, as noted in 5.4.3 above. The controller 

parameters were largely as designed above and are summarised 

as ; 

pitch rate Kqc 0.074 rad/rad/s 1/Kj = 1.0 s-1 

roll damper Kqc 1.75 rad/rad ;= 10 s-1 
1 cý2 10 0s 

iii) yaw damper Kcr 0.5 rad/rad/s ; 1/TW 5 s-1 

No attempt has been made to provide gain-scheduling since 
the airspeed variations over the simulation are slight. 

Fig. 5.27 gives the time histories of the aircraft's 
principal flight variables over a 30 second simulation with 
the non-linear model. The initial conditions imposed on the 

simulation were zero other than the following : 

forward velocity, u= 30,40 and 50 ms-1 f'or the three cases 
height h= 30 m 
thrust xE= 50 N 
elevator angle ,q= 11" 

side velocity ,v= 1.0 ms-1 
roll rate p= 0.5 rad s-1 
throttle TH ý - 100% 

In addition a step pilotic demand in elevator of -3* is 

provided after 2 seconds. 

In the longitudinal axis, Figs. 5.27 a) to g), the 
initial forward airspeed is lost to give a steady state of 
30 ms-1 for all three initial airspeeds, this being an 
equilibrium condition with the given steady state thrust of 
roughly 130 N. This initial energy is largely transferred 
into increasing the aircraft's height since no height hold 
loop has been employed. The pitch rate loop tends to drive 
the pitch rate, q, to zero after an initial transient and a 
transient due to the change in elevator demand. Note that 
the fast short period mode is evident in the q response and 
is well damped. The phugoid mode is also apparent as a long 
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term oscillation in q and the damping of this mode is poorer 
for larger initial airspeeds. The phugoid mode also shows 
strongly in the pitch, 0, height, h, forward velocity, u, 
and vertical velocity, w. The demands placed on the 

elevator 
' 

are clearly small and the aircraft adopts a steady 

state elevator trim offset of approximately 80, as desired. 
With no height hold loop the pitch rate autopilot can do 
little other than improve the phugoid and short period 
characteristics. The aircraft will inevitably trade off 
forward speed against height for fixed elevator trim. The 

pitch rate loop does, however, provide reasonably stable 

short period and phugoid responses. 

In the lateral axis, Fig. 5.27 h) to n), the provision 
of both roll and yaw damping yeilds a stable and rapid 
response in these loops. The initial roll rate, p, is thus 

rapidly removed with little overshoot and the roll angle, (p , 
transient is reduced to zero with a fairly long time 

constant, this being the now stable long term spiral mode. 
The yaw loop also provides a well damped and fast response 
in the Dutch roll mode as evidenced by the side velocity, v, 
and yaw rate, r, responses. The provision of spiral 
stabilisation in roll clearly assists the yaw loop to 

provide fast and stable Dutch roll responses. The yaw angle 
exhibits a steady-state offset since no attempt has been 

made to control yaw attitude directly. Actuator responses 
are small, Figs 5.27 m) and n), with the rudder dominantly 

controlling Dutch roll in yaw and the aileron dominantly 

controlling the roll channel. 

5.7 Summarv 

This Chapter has dealt with the provision of improved 

aircraft performance by employing closed-loop feedback of 
primary aircraft flight variables to the control surfaces. 
The discussion has demonstrated that the problem can be 

treated as a number of single-input single-output control 
loops, each of which can be designed separately using 
classical frequency or s-domain linear analysis. The system 
performance may be improved in terms of stability, time 
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response, etc., by the inclusion of appropriate compensation 
in each of the loops, again designed using a classical 
linear systems approach. The need for gain-scheduling in 

such a scheme has also been demonstrated since many of the 

aircraft's aerodynamic derivatives change with flight 

condition. Such SAS systems can, and indeed do, provide 
acceptable performance from the airframe and are 
analytically a relatively simple design problem. 

In the following chapters a demonstration of the way in 

which modern control theory may be applied to the aircraft 

problem is presented and the likely benefits of employing 
such control schemes described. 
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CHAPTER 

Optimal Control and its Application 

6.1 Introduction 

in the following chapters it is intended to broaden the 
discussion of closed-loop control of aircraft in flight to 
include so-called modern control techniques. In this 
context state variable feedback techniques of various forms 

are investigated with application to the aircraft flight 

control system design problem. It is hoped that the use of 

such techniques will provide significant advantages compared 
with the classical approaches discussed in Chapter 5. In 

particular, the ease in handling the system's variations 
with changes in flight condition will be demonstrated. This 
is clearly an important design feature. The adaptive form 
of control has previously been considered for aircraft 
flight control applications (14,17-20), however, gain- 
scheduling along with state feedback should provide 
parameter insensitive control action. In addition, the 
reconstruction of unmeasurable states in the aircraft is 
important although this aspect has not been considered in 
the current work. In this Chapter the use of optimal 
control strategies will be investigated and the problems of 
using such schemes will be discussed. 

6.2 Optimal Control 

The classical control designs developed in the previous 
Chapter provided, to some extent, a system response which 
fulfils a given set of performance criteria. Principally, 
these criteria relate to the stability, response time, 
steady-state error, etc. of the closed-loop system. It has 

also been indicated that in aircraft flight control these 
criteria would normally be based upon considerations of the 
likely flight envelope in addition to the manoeuvre demands 
placed on the aircraft. The use of - classical control 
techniques enables us to design controllers which, to some 
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degree, satisfy these performance criteria although some 

engineering trade off's may be necessary (110). The 

controller thus developed will normally be non-unique and 

will probably owe much to the skill and expertise of the 

designer. The fact that many aircraft fly very well with 

controllers designed using classical tools is therefore 

something of a tribute to the ingenuity and skill of the 

design engineer. 

In recent years the problems of satisfying a given 

performance requirement with a unique controller has 

received considerable attention (21-30,135). This goal is 

desirable since such design techniques rely less on the 

engineering compromises than, for example, classical 

techniques do. It is to this end that much modern control 

theory development has been directed. 

6.3 Performance and objectives 

The performance of any given system can be assessed by 

its ability to fulfil a chosen set of performance criteria. 

These criteria being defined by a consideration of the 

likely demands placed on the system. It is the function of 

any control system to modify the system performance such 

that these criteria are met more accurately. In classical 

control it is the designers task to evaluate the system 

performance and assess how well it fulfils the chosen 

criteria and subsequently modify the system, by the 

introduction of compensators, in order to improve its 

performance. To provide a more unified approach one may 
define performance criteria and employ mathematical 
techniques to produce a unique controller design capable of 

meeting these criteria exactly (109,111,132-134). This is 

fundamentally the approach of so-called optimal control 

techniques since an attempt is made to minimise a chosen 

performance measure as closely as possible. Classical 

designs are generally non-unique and may thus, in this 

sense, be considered sub-optimal. The price to be paid in 

order to achieve such optimal policies is that the 

controller requires much more information about the system 
than an equivalent classical design. The ability to provide 
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greatly improved performance is, however, leading to the 

adoption of optimal control in many areas (123,124). 

An underlying concept common to all optimal control 
schemes is that of state feedback. This requires that all 

system states are measured and fed-back, via. some form of 
feedback gains, to the input. With the aircraft environment 
in mind it is often difficult, if not impossible, to sample 

some of the system states, e. g. thrust, sideslip, etc., 

although measurements of axial accelerations, body rates, 

etc. are commonly available. This problem may however be 

overcome by employing observer techniques. In the following 

discussion it is therefore assumed that all system states 

are measureable or, at worst, reconstructable. 

The desirable objectives of any automatic flight 

control system (139) are summarised as follows 

i) To 'optimisel the aircraft by providing stability 
augmentation in addition to allowing. precision 

manoeuvres to be executed. 

Reduction of the effects of external disturbances on 
the aircraft principally, gust alleviation and the 

reduction of the effects of velocity and flight 

conf iguration variations. 

iii) Reduction of structural modes due to the non-rigid 
airframe. 

iv) Robust control when faced often with very large changes 
in plant (aircraft) dynamic performance. 

The classical control design of Chapter 5 sought to satisfy 
i), ii) and iv) using a fairly pragmatic approach. Using 

optimal control the above would be satisfied by careful 
choice of a performance index (PI). It is worth noting that 
by using state feedback the so called regulator problem is 

evolved in which each state is forced to zero. The problem 
encountered in i) is that many system states should not be 
forced to zero as some states might be required to follow a 
pilotic demand e. g. in a turn manoeuvre. This latter 

problem requires a tracking ability and the control design 
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is based on the more complex servomechanism or model- 
following control problems. Initially the application of 
optimal control and its likely performance is considered 
with reference to a particular example. 

6.4 Optimal Control Theory (25,27,32,33) 

Consider the n th. order linear system described by the 
state equations : 

; (t) = X(t) +B U(t) +G w(t) - 

. Y(t) =C X(t) +W V(t) - b) 

- 6.1 

where x(t), y(t), w(t) and v(t) are state, output, input 
disturbance and output disturbance vectors of dimensions (n 

x 1), (m x 1), (1 x 1) and (p x 1) respectively. A,, B, C, G 
and W are contant coefficient matrices of orders (n x n), (n 

x m), (m x n), (n xj) and (p x m), the system having n 
states, m inputs, m outputs, J input disturbances and p 

output disturbances. For deterministic systems the G and W 

matrices are zero giving : 

0- x(t) =A x(t) +B u(t) 

. Y(t) =C X(t) - 
- 6.2 

This is a proper system representation i. e. the output 
equation, 6.2 b), contains no contribution from the input 

vector, u(t). In the normal state feedback schemes we aim 
to provide control such that : 

U(t) = f(x(t)) - 6.3 

where the function f is chosen so as to minimise a 
performance index 

tf 
fh(xiR, 

tf) dt - 6.4 
0 
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The function h represents a given function of the states, 

2E(t), inputs u(t) and the final time, tf and requires to be 

chosen to reflect the constraints imposed by and on the 

system. We may for example require that the deviations from 

zero of some or all of the system states are penalised 
heavily i. e. a control action is initiated which will 
rapidly drive the state or states to zero. It would also be 

normal to ensure that excessive control actions are not 
demanded by weighting the controls, u(t), heavily. Since we 

require to minimise J it is clear that we normally drive 
both states and controls to zero. Such schemes are thus 

admirable for aircraft SAS systems where demand following is 

not required (regulatory action).. Where, for example, the 

system must follow a pilotic demand other techniques may be 

used (see section 6.6). 

The choice of h in equation 6.4 clearly affects the way 
in which the system responds. To provide analytically 
tractable solutions a quadratic form is often chosen for h 

thus : 

tf 
f(xt(t) 

Q x(t) +p ut(t) R u(t)) dt - 6.5 
0 

where Q and R are (n 'x n) and (m x m) real symmetric 
weighting matrices and p is a scalar design parameter. 
Considerable freedom exists in the choice of Q and R 

although diagonal forms are often used'giving xtQx'and utRu 
the form of a weighted sum of squares. Fortunately, this 
choice of cost function, J, is not only mathematically 
tractable but also reasonably practical. The final time, 
tf, can, for many problems includin. g the aircraft, be chosen 
as infinity. 

The use of this formulation gives rise to a control law 

of the form 

u(t) K x(t) 6.6 
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where the constant (m x n) matrix K is given by 

PB R-1 lp - 6.7 

and the (n x n) matrix P is the solution of the algebraic 
Ricatti equation 

ý=PA+ AT P-PB R-1 BT P /P - 6.8 

In the infinite time problem, tf =w, the steady state 
solution of equation 6.8 is sought, i. e. with P=0. In 

most 'long' term control problems this is indeed the case 
but in fixed end point problems, e. g. target tracking, tf 

must be made finite. Even with ý=0 the solution of 
equation 6.8 is difficult for higher order systems (n>3) but 

several relatively simple methods are available for 
implementation on a digital computer (31,112). 

In order to fully investigate the application of 
optimal control schemes of the form discussed above to the 

aircraft problem an interactive CAD package was developed. 
This package allows optimal feedback laws of the form of 

equation 6.6 to be evaluated and the time response of the 

resulting closed-loop linear system to be assess - ed. This is 

particularly valuable when chosing the elements of the Q and 
R weighting matrices of equation 6.5. The algorithm used in 

the package is more fully detailed in Appendix 7 but 
basically employs an eigenvector solution of the steady 

state Ricatti equation (6.8 with ý= 0). (Note that to 

guarantee a unique solution to 6.8 the (A, B, C) triple is 

assumed controllable and observable, R must be positive 
definite and Q at least positive semi-definite, symmetric). 

To illustrate the application of the above synthesis 
techniques consider an optimal control design based on the 
Machan r. p. v. as described previously. The type of control 
initially considered is an optimal state regulator arranged 
such that all states are driven to zero subject to certain 
control constraints. In flight control this is often 
undesirable, however, considering only the lateral motion 
model and ignoring longitudinal/lateral cross-coupling then 
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it may be desirable to drive all lateral states to zero for 

SAS purposes. This is clearly not the case in longitudinal 

motion where pitch, height, etc. are required to have f inite 

non-zero steady state values. Considering then the 

linearised lateral state space model for 33ms-1 stick fixed 

flight we have : 

-0.277 0. -32.9 9.81 0. 

-0.1033 -8.525 3.75 0. 0. 

Ala 0.3649 0. -0.639 0. 0. 
0. 1. 0. 0. 0. 

L 0. 0. 1. 0. 0. 

-5.432 0. 

0. -28.64 
Bla 

-9.49 0. 

L 0.0. 
-1 

Cla = 
10. 

Note that, in this case, the actuator dynamics have been 
ignored. 

The measurement vector is chosen as roll and yaw rates 
since these are normally available via. rate gyros. In 

order to derive a set of state feedback gains (K matrix of 
equation 6.6) we must initially choose the Q and R weighting 

matrices of equation 6.5. 

Several techniques for deriving appropriate Q and R's 
to satisfy specified closed-loop modal responses have been 

proposed (22,34-38,113,114). In particular the work of 
Harvey & Stein (34) and Grimble (36) provide simple methods 
for deriving these weighting matrices. The 

eigenvalue/eigenvector assignment techniques of Harvey and 
Stein and others (28,37-44) will therefore initially be 

examined and then a somewhat simpler approach based on 
output assignment. 
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6.5 The Choice of Q and R 

) 

Eigenvalue/Eigenvector Techniques (22,34) 

An inherent part of the optimal control design is the 
need to employ state feedback. It is this technique which 
gives rise to one of the virtues of optimal control in as 
much as full state feedback allows arbitrary closed-loop 
eigenvalue (pole) placement along with eigenvector 
assignment. This result was established by Moore (45,46). 

It is relatively simple to demonstrate this result by 

considering the m-input, m-output system of equation 6.2 a) 
and with full state feedback as in equation 6.6. If the 

closed-loop system has n distinct complex eigenvalues, Ai, 
1<i<n, and associated eigenvectors, ýi, then by 
definition ; 

(A +B K) ei = Ai ei - 6.10 

rearranging 6.10 gives ; 

(AiI- A) ei -2 -BK ei 

thus ( Ai I- A)-l B pi ý ei - 6.11 

where ui =-K ei 

For equation 6.11 to hold we assume Ai is not an eigenvalue 
of the matrix A. It is therefore clear that the m vector pi 
acts so as to distribute the associated modal response, Ai, 
between the states, the x1s, and the outputs. A more 
rigorous proof of 6.11 is presented in reference (45). 
Further, it follows that 

Aj) vi =0i=1,2 ...... n-6.12 

where T(s) = (I - G(s)) is the system return difference 
operator with G(S) =-K (s A)-l B. This being the case 
then it is easily shown that 

Pi ý-- Yi i=1,2 
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after appropriate normalisation. 

Recall that it is required to evaluate values of Q and 
R in equation 6.5 which satisfy arbitrary closed-loop pole 
placement and eigenvector adjustment. The following Lemmas 
due to Harvey & Stein (34) are required : 

Lemma 6.1 The quadratic function of equation 6.5 is 

expressed equivalently as 

tf 
f(. 

yTy + pRTRU) dt - 6.13 
0 

with y as in equation 6.2 b) defined by the (m x n) matrix 
C. Equivalence in this case denoting that the two criteria 
produce the same gain matrix, K, as solutions of their 

respective quadratic optimization problems. We note from 
this that only Q matrices of the form CT C need be 
considered. It is also possible, in general, to rearrange 
states and normalise C such that 

C=W CO - 6.14 

where Co = [cl, Iml and W is a non-singular (m x m) matrix. 

Lemma 6.2 Consider the linear quadratic regulator problem, 
equations 6.6,6.7,6.8, with criterion 6.13 normalised as 
in 6.14 and assume that 

Rank (CB) =m; 
the roots of detiC (s I- A)-1 BI are distinct, have 

negative real parts and do not belong to the spectrum 
of A; 

then the optimally controlled system has the following 
properties : 
i) Asymptoticaily finite modes 

As p-> 0 there are (n-m) eigenvalues of the form 

Si(P) -> sio 
Isiol< o- i=1,2,..., n-m 

with associated eigenvectors 
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2i(P) -> (SiO - A)-l B ViO 

where siO and vio are defined by 

C(SiO - A)-' B ViO =0-6.15 

ii) Asymptotically infinite modes 

As p-> 0 there are m eigenvalues of the form 

si(p) ST, Irp 
Is j=1,2 

with associated eigenvectors 

ýýj (p ) -> B vj' - 6.16 a) 

where sj (V and vj' are defined by 

R= N-T S-2 N-1 - 6.16 b) 

WTW = (COB)-T N-T N-1 (COB)-' - 6.17 

with 

co 
ýLj 2 '****** 

Co 1 V 
-- M 

diag{s' 1 s' 2 Sao m 

Go The sj Is are real and negative. 

The above lead us to the following proposition. As 

p-> 0, then (n-m) eigenvalues of the closed-looP system 

will tend asymptotically to finite values, siO. These 

values correspond to the 'transmission' zeros of the 

response matrix 

O(s) =C (s I- A)-l B 

Additionally, the associated eigenvectors (ýio, v-0) 
distribute the response between the states and outputs. 
Equation 6.15 then provides a complete specification for Co 
via. 6.14. The asymptotically inifinite modes are 
associated with the remaining m eigenvalues and eigenvectors 
and the parameter p. Choice of these modal directions then 
yields the R and W matrices of equations 6.16 b) and 6.17. 
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The value of the p parameter thus allows a trade off to 
be made between control weighting and the degree to which 
the asymptotically finite modes are achieved. 

The design technique thus relies on the development and 
construction of Co in order to satisfy given closed-loop 
pole positions and eigenvector directions. In addition, the 
R and W matrices must be defined giving a complete solution 
to the Linear Quadratic Performance problem. It then 

remains to evaluate the K matrix by a suitable algorithm. A 
technique for the development of a suitable Co matrix has 
been proposed by Harvey & Stein and essentially is as 
follows : 

'Choose' aB matrix structure such that B has the 

partitioned form 

[0 
-M) BB --I 

(n 

2. m 

This is possible using a similarity transform from the 

original system into so called 'controllable' form with 
the (m x m) matrix B211 non-singular. 

Alternatively, the B 21 rows may be chosen as the 

actuator rows for the particular problem. This is 

often possible in many control systems where the 

actuators can be considered essentially as input 

'filters'. An advantage of such an approach is that 
the resulting actuator modes fall within the range 
space of B and hence form the asymptotically infinite 

modes (follows from equation 6.16 a)). The physical 
constraints placed upon actuator responses may thus be 
borne in mind when choosing the p parameter and the R 

and W matrices such that excessive demands are not 
placed on these devices and any cross-coupling exactly 
defined. 

2) Select values for the (n-m) asymptotically finite 
modes, siO, consistent with the design objectives. The 
associated eigenvectors must also be defined such that 
a desired distribution in the state space may be 

178 



achieved. It is implicitly assumed that the designer 

can specify these vectors but note that these 
objectives may not be achievable by linear quadratic 
design since we are constrained to eigenvectors which 
satisfy equation 6.11 viz. 

ýio = (Sio I- A)-' B vio 

It may also be that only 'a 'few components of the 
desired eigenvectors are specified, the rest being 
arbitrary. Given this and taking the desired 

eigenvector to be el*, the mode distribution in state 
space will be given by 

(So t) x(t) = ei* e1 i=1,2 ..... n-m 

and if only some of the elements of the ei* are to be 
specified we may reorder ei* and partition to give 

(ei* 1 6.18 
)Ri Y, I 

V 

where Ri indicates a row reordering, Yi*, is the 
specified sub-vector and the v's are the unspecified 
elements. 

3) Determine the achievable set of eigenvectors eiO from 
those specified. Since we know from 6.11 that the 

achievable eigenvectors are given by 

eiO = (sio I- A)-' B yio 

then using 6.18 we obtain 

((Sio I- A)-' B))Ri V. o 

= [ýý] vio 
- 6.19 

we are free to choose viO so as to best If it' YiO to 
Yi One possible solution is to approximate Yi with 

a least. squares fit corresponding to the normal 
equations 

yiO L 6.20 
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This solution may be ill-conditioned for some systems 

and in these cases alternative techniques such as 

singular valued decomposition (22) may be more 

appropriate. 

4) Form the (n x (n-m)) eigenvector matrix E from the 

eiO's such that 

[e, O� e20�, .... t fýn-m 01 - 6.21 

and form the (n x n) projection matrix P via. 

P= In - E[(I)TEI-'('ff)T 

The P matrix is partitionable into the sub-matrices 

p 12 
- 6.24 pT 

[P12 

2 

where P1, is (n-m) x (n-m)) 
P12 is ((n-m) x m) 
P22 is (m x m)' 

The (m x n) Co matrix is now obtained via. 

Co = EP22-1P12 T IM] - 6.25 

where it can be shown that the P22 matrix is non- 

singular for non-singular B21' 

It now remains to consider the m asymptotically infinite 

modes and select the eigenvalues and eigenvectors of the 

asymptotically infinite modes. Equations 6.16 b) and 6.17 

then give the R and W matrices. The required Q is then 

given from equation 6.14 as 

CTC = C. T WT w Co - 6.26 

The above procedure whilst being fairly complex is easily 
undertaken on a digital computer and has several advantages, 
e. g.: 

The eigenvalues and associated eigenvector directions 

uniquely specify the closed-loop system response. 
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Hence the designer can achieve decoupling of the modes 
in addition to providing pole placement. 

The asymptotically infinite modes may be assigned and 

manipulated. This may be of value since these modes 

may be made to correspond to the actuator dynamics and 

hence specific bandwidth and cross-coupling constraints 

may be included in the design. 

iii) Unique values of the Q and R matrices are obtained in 

one step with little iterative design required. 

A number of shortcomings are equally apparent viz. : 

The system is assumed to be minimum phase and both 

controllable and observable (i. e. rank(CB) = m) ; these 

restrictions may not hold for many systems and the 

technique is thus not directly applicable. The case of 

r(CB) <m is mentioned by Harvey & Stein since this 

implies that there may be less than or greater than m 

asymptotically infinite modes and the first order 

asymptotic behaviour is not guaranteed. This detracts 

from the inherent visibility of the method. 

The technique relies on state feedback and hence the 

desired output map does not enter into the formulation. 

It may thus be difficult to guarantee the output 

response of the system. 

iii) The design relies on the choice of (n-m) asymptotically 
finite eigenvectors of the clos 

' 
ed-loop system. It may 

be possible, in some systems, to completely specify 

these but in many. cases it may be difficul. t, 

particularly where output regulation is desired (see 

ii) above). 

iv) The resulting structure of the Q and R matrices may be 

quite complex. 

Despite these shortcomings the technique does allow 

unique specification for Q and Rand is a powerful method of 

providing solutions to the LQP optimal control problem. In 
later sections some possible extensions into the output 
regulator problem are examined. 
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To provide an assessment of the method it will 
initially be applied to the design of a closed-loop SAS 

system for the lateral motion model of the Machan aircraft. 
It is required to demonstrate the likely performance of the 

resulting controller with regard to adequate Dutch roll 
damping, reduced roll/yaw cross-coupling and realisable 

actuator demands. The 'robustness' aspects of the resulting 
controller will also be investigated by applying the control 
to the non-linear model with varying airspeeds. Firstly, 

consider the linear design. 

6.5.1 Lateral SAS Design 

The lateral state space model for the Machan for 33ms-1 

"stick fixed' flight was given in equations 6.9. Note that 
the actuator dynamics have not been included however step D 

in the design procedure requires that the B matrix has the 

form :- 

((n-m) x m) 
B 21 (m x M) 

For the present purpose two first order actuators for the 

rudder and aileron have been introduced : 

-La = 
20 ga 10 

- 6.27 
Td (s + 10) ýd (s + 5) 

These are comparable with the actuator dynamics included in 

the non-linear model which has unity gain first order 

actuators of time constant 1/20 and 1/10 s for the 

rudder and aileron, respectively. The modified state 

matrices are thus : 

-0.277 0. -32.9 9.81 -5.432 0. 

-0.1033 -8.325 3.75 0. 0. -28.64 
0.3649 0. -0.639 0. -9.49 0. 

A'la «ý 0. 1. 0. 0. 0. 0. 

0. 0. 0. 0. -10. 0. 
0. 0. 0. 0. 0. -5 . 
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0.0. 
0.0. 

0.0. 
B'la 

0.0. 

20.0. 
0.10. 

6.29 

In this form the (A, B) pair is controllable. Since we are 
dealing with state feedback, as opposed to output feedback 

we shall assume that aC matrix can be chosen which makes 
the (A, C) pair observable with r(CB) = m, and m=2 in this 
case. Note that this choice of C will not necessarily be 
that resulting from the physical measurement system and that 
Co must be given by 

WC 

with Wa non-singular (m x m) matrix as in equation 6.17. 
This implies that the measurement vector, y, may contain 
combinations of the state responses and may not necessarily 

provide 'good' output regulation, as noted earlier, although 
state regulation will be 'optimal'. 

Given that the system is now in the desired 

controllable form we must choose values for the (n-m) (4 in 
this case) asymptotically finite eigenvalues and 
eigenvectors. To do this we shall, for convenience, adopt 
the approach of Harvey & Stein and consider the desirable 

closed-loop mode distribution from MIL spec. F8785B (47) for 

the lateral dynamics of 

Roll subsidence -4.0 

Dutch roll mode 
0.63 + 2.42j 

6.29 
1 

-0.63 - 2.42j 

Spiral mode -0.05 

(Note that this military specification has been superseded 
by MIL spec. F8785C (1980),, the principal change being the 
provision of improved Dutch roll damping. The minimum 
acceptable damping ratio for this mode being raised from 
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0.25 to 0.4). The desired eigenvectors for the above modes 

must also be defined. For this particular example the 

elements of the desired eigenvectors are easily defined 

since the states are related to physical variables within 
the system whose modal coupling can be defined. For 

example, consider the roll subsidence mode. In this case 
the mode should appear dominantly on roll rate and not on 

yaw rate or side velocity. Banking manoeuvres should thus 
not incur yaw -. or side velocity penalties. Hence turn 

entries, which are normally initiated by banking, will, not 
give rise to side velocities. The ordering of the states in 

equation 6.28 is as follows : 

Xi V side velocity 
x2 -P roll rate 

x3 -r yaw rate 

x4 -P roll angle 
x5 -T rudder deflection 

x6 -§ aileron deflection 

hence a suitable choice of eigenvector for the subsidence 
mode would be : 

vi 

where the v's indicate that the magnitude of the element is 

unimportant. The corresponding eigenvalue is s, O=-4.0. 
Note that the eigenvector is effectively normalised to give 
a '11 in the appropriate mode. 

The Dutch roll mode consists of a complex pair of 
eigenvalues correspondingly we would anticipate two complex 
conjugate eigenvectors to be required to define the modal 
coupling. Dutch roll is a phenomenon associated with the 
v, r sub-system of the lateral equations (see section 2.2.2). 
Consequently, we require no coupling of Dutch roll into 
either roll rate or roll angle. Considering first the real 
part of the eigenvector and remembering that the vectors 
occur in conjugate pairs, then a desired eigenvector would 
be : 

22 10v0v vi 
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and the corresponding imaginary part would be 

23 Ev 010v vi 

again the v's denote arbitrary elements. This eigenvector 
pair constitutes the real and imaginary parts of the 

eigenvector associated with one of the Dutch roll modes, 

e. g. s2o = -0.63 + 2.42j, the conjugate eigenvector is then 

associated with the conjugate eigenvalue, i. e. s3o = -0.63 - 
2.42j. Note here that the Dutch roll does not couple into 

the roll rate, p, and bank angle, (p, states, as desired. 

This choice of eigenvectors may not be an exactly achievable 

set 

The final mode, the spiral, is associated with roll 

angle only and should not appear on side velocity in order 
to avoid sideslip in steady turns. The mode may, of course, 

appear in yaw and roll rates. The eigenvector to achieve 
this would be 

e4 * -' 10 vv11v vl 

The associated eigenvalue being s4o = -0.05. Note that in 

all cases the mode will occur on the actuators since we are 
using these states to control the mode. 

On the basis of these intuitive arguments a set of 
desirable eigenvectors associated with the specified 

eigenvalues has thus been derived. It now remains to 

evaluate the achievable eigenvectors which best fit those 

desired. Using the results of equations 6.19 and 6.20 we 

can obtain the following achievable eigenvectors (ei0's) : 

. tjo = [0.007 0.995 -0.069 -0.249 -0.0243 -0.1591 

t2o = 10-995 -0.0016 -9.145 0.002 -0.209 -1.2 1 

ýt3o = [124.99 -0.0047 1.0064 -0.0002 2.472 -0.3181 

240 = 10-0 -0.05 0.3 1.0 -0.0187 0.0541 
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Note that in all cases the objectives have been closely 

achieved. Some iteration was required in order to 'f it' the 

elements of the complex eigenvector associated with the 

Dutch roll mode due to the two degrees of freedom available 
in the choice of the v's in rows 1 and 3. 

The E matrix of equation 6.21 is now formed and hence 

Co derived through the partitioned projection matrix, P, of 
equation 6.24. This gives 

c c) 
[-0.0196 0.0297 -0.25 0.0277 1.0.1 

- 6.30 
0.0036 0.149 -0.13 -0.0073 0.1. 

The final step in the design is to choose the asymptotically 
infinite modes and directions. Recall that in the example 

considered here these modes are associated with the 

actuators. It is required to, decouple these modes 

asymptotically such that at high gains no aileron to rudder 
(or vice-versa) coupling occurs. It is desirable also to 

maintain a 2: 1 ratio of aileron to rudder bandwidth as 
dictated by the physical system (recall the bandwidth ratio 
is 20: 10). To this end choose 

I 
()D 

21 = [0 0001 01 

e'= [0 0000 11 2 

and the ratio sl : S2 2: 1, say sloo S20 0.5. 
Thus from equation 6.16 a), 6.16 b) and 6.17 

Er = [1/20 01 

v- = [0 1/101 2 

and N= 
[1/20 00 

0' 1/1 

diag {si'o s20 
0 10 

0.5] 

R= N-T S-2 N-1 = 400 12 

and WTW = (COB)-T N-T N-1 (COB)-l "= 12 
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since WTW = 12 the Q matrix becomes 

COTCO 

and this gives 

0.0004 -0.00005 0.00002 -0.00057 -0.0196 0.0036 

-0.00005 0.023 -0.02 -0.00026 0.0297 0.149 
0.00002 -0.02 0.0178 0.00026 -0.025 -0.131 Q 

-0.00057 -0.00026 0.00026 0.00082 0.0277 -0.0073 

-0.0196 0.0297 -0.025 0.0277 1.0. 

L 0.0036 0.149 -0.131 -0.0073 0.1. 

- 6.31 

With the Q and R matrices thus f inalised the p parameter is 

now chosen to satisfy the achievable actuator bandwidths of 
20 and 10 rads s-1. This is considered best done 

interactively by evaluating the closed-loop eigenvalues for 

a range of p values. In this case a computer package was 

written (see Appendix 7) which allows this interactive 

design to be achieved and a value of p of 0.00275 gives 

closed-loop actuator poles of -13.0 and -21.2 with the 

remaining closed-loop poles at 

-0.81 ± 2.72j, -4.39, -0.1 

Note that these are close to the desired values. 

The state feedback gains for the case of p= 0.00275 

are 

0.016 -0.025 0.0432 
910. -0.057 0.0724 

-0.023 -0.6 -0.0211 
0.035 -0.01 -0.413 

] 

these being evaluated from the infinite time solution of the 

algebraic Ricatti equation (equation 6.8). 

The above state feedback gains were used with a linear 

model in order to assess the degree of modal decoupling and 
responsiveness achieved. Figs. 6.1 a) to f) give the state 
responses for initial conditions of 0.5 rad s-1 in roll 
rate (p) and 0.1 ms-1 in side velocity (v). It should be 
noted that : 
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The roll rate response has the desired first order 
transient with approximately a 1/4 second time 
constant. There is little evidence of Dutch roll 
cross-coupling. 

The v, r responses are dominated by the Dutch roll mode 
which has approximately the desired damping of 0.25 and 
period of around 2.5 s. Both responses contain 
evidence of the long term spiral mode although this is 
far less evident in the v response. 

iii) The roll response comprises the rapid roll rate 
transient along with the spiral mode which for this set 
of gains has a time constant of roughly 10 s. There is 
little evidence of Dutch roll on this response. 

iv) The actuator responses are formed from a mixture of the 
modes, the aileron being the dominant control in the 

roll axis whilst the rudder, with more of the Dutch 

roll mode evident, is dominantly controlling the 

yaw/sideslip axis. This decoupling is as desired 

although incomplete due to actuator dynamic constraints 
and consequent use of relatively low gains. The actual 
demands placed on the actuators are within the physical 
limitations of the devices, however. 

It is of interest to note that the Q matrix of equation 6.31 
is close to that obtainable by choosing 

Q= CT C 

with the elements of C arranged so as to pick off the 
actuator states only viz.: 

00001 

00 

10 

00 

01 

the elements of the Q in 6.31 being << 1 except for elements 
(5,5) and (6,6). This simple choice of Q yields closed-loop 
eigenvalues which are close to those obtained above and is 
investigated further in the next section. Note, however, 
that this choice of C implies that the asymptotically finite 
eigenvectors lie within the null space of C whilst the 

188 



Fig 6.1 State Responses for Linear Lateral Model 

(linear LQP controller, . 33 ms-1 airspeed) 
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Fig 6.1 cont. 
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Fig 6.1 cont. 
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asymptotically infinite eigenvectors lie in the range space 
of C. This indicates that for the asymptotic case the 

output response will be dominated by the infinite modes 

which in this case would be the actuators. One may thus 

arrange that desired asymptotic output directions are 
achieved by suitable choice of the m asymptotically infinite 

system eigenvectors. The consequences of this observation 
will be discussed below. 

One aspect of this design not yet considered is its 

robustness, i. e. how the modal distribution and couplings 
change as a result of changes in the system. As was 
demonstrated in Chapter 5 the aircraft model parameters may 

change drastically as the aircraft flight configuration 
changes. The Q and R matrices derived above lead to a set 

of state feedback gains which are valid for the nominal 
'stick fixed' 33 ms-1 linear model considered and yield the 
desired mode distributions as has been demonstrated. This 

set of gains may clearly not provide the same modal 
distribution if, for example, the model parameters change as 

a result of changing airspeeds, etc. It may equally be 

unrealistic to expect the state feedback law to perform well 
when faced with the non-linear system. The robustness 
aspects of LQP controllers have been investigated 

extensively. In particular the results of Anderson and 
Moore (27) demonstrate that single-input LQP regulators have 

t 60" phase margin, infinite gain margin and 50% gain 
reduction tolerance. The work of Safonov et al (23) has 

shown that 'these results may be extended to the multi-input 

case. It may thus be concluded that LQP control designs can 

exhibit improved robustness properties when compared with 
say a classically designed single-loop controller. To 

assess how well the above designed controller performs in 
terms of its robustness, the control was implemented on the 

non-linear simulation of the Machan as described in Chapter 
3. The lateral motions only are considered, the 
longitudinal motions being held sensibly constant. For the 

case of 33 ms-1 airspeed and initial conditions of 0.5 rads 
S-1 roll rate and 0.1 ms-1 in side velocity, the state 
responses are shown in Figs. 6.2 a) to f). These may be 

compared with Figs. 6.1 a) to f) for the linear model. From 
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Fig 6.2 State Responses for Norr-linear Lateral Model 

(linear LQP controller, 33 ms-1 airspeed) 
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Fig 6.2 cont. 
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these note that : 

The roll rate, p, response is close to the desired 
first order transient with approximately the desired 

time constant of 0.25 s. Note that some evidence of 
Dutch roll is present in addition to a slight steady- 
state offset. 

The v and r responses show clear evidence of Dutch roll 

although the associated damping and period is somewhat 
different from those achievable with the linear model. 
The damping being somewhat lower and the period 

slightly shorter (approx. 2 s). The spiral mode is 

also evident on the r (yaw rate) response and this 

appears to be of larger time constant than that 

desired. Nevertheless this mode has clearly been 

stabilised. 

iii) The (p response shows a very slowly decaying mode along 
with slight Dutch roll coupling. This is considerably 
different from the linear model and may be due to a 
badly modelled spiral mode. 

iv) The actuator responses are broadly similar to those for 

the linear model. A reasonable degree of cross- 

coupling suppression has been achieved. The rudder 

response shows evidence of the Dutch roll mode which is 

less well damped than desired. 

Whilst these responses do not exactly match the linearised 

model we still achieve a reasonable, stable response with 
the desired modal decoupling. Figs. 6.3 a) to f) show the 

state responses for the non-linear model with the same 
initial conditions as Figs. 6.2 but at 50 ms-1 airspeed. 
The dominant effect is to increase the Dutch roll period and 
slightly reduce its damping. Note, however, that the spiral 
mode time constant is reduced and is now quite close to that 
desired. 

It would thus appear that the use of a single set of 
state feedback gains to cover all flight conditions leads to 
significant changes in aircraft response although, in this 
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Fig 6.3 State Responses for Non-linear Lateral Model 
(linear LQP controller, 50 ms-1 airspeed) 
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case, stability would appear to be maintained. Since the 
objective is to provide parameter -insens it ive control the 
use of this design technique would require a gain-scheduling 
scheme to change the feedback gains for specific flight 
regimes. Nevertheless the ability to specify the desired 

eigenvalue/eigenvector structure may be valuable in addition 
to the unique specification of the Q and R matrices. 

The output regulator problem mentioned above will now 
be investigated briefly and again the choice of Q and R to 

achieve desired responses indicated. 

6.5.2 Output Assignment 

In the previous section a useful design technique was 
demonstrated which allows state assignment to be achieved 
via the LQP problem. It was indicated that using state 
assignment provides no guarantee 'of desirable output 
response this being due to the ommission of the output C 
matrix-from the design. A more desirable situation would be 
to provide desired output response without recourse to full 
state assignment (36,137,138). In the following discussion 

a technique due to Grimble (36) will be described which 
extends the work of Harvey & Stein into the output regulator 
problem. 

Again begin by considering the linear time invariant 
system of equations 6.2 a) and b) subject to the quadratic 
cost performance index 

tf 
(Y-t(t) Q, Y(t) p ut(t) R' u(t) ) dt - 6.32 

(c. f. with equation 6.5) where y(t) is an m vector of 
responses (outputs) and Q' is an appropriately dimensioned 
(m x m) weighting matrix. It is also required that the 
system be stabilisable (48) and square and also that r(CB) 
M. 

Consider, initially, ý the asymptotic behaviour of the 
system. For r(CB) =m there will be m asymptotically 
infinite eigenvalues which will approach infinity in m first 
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order Butterworth patterns (36,54,118) and associated 

eigenvectors (s Q0 00 The relationship between the Q1 j !j 

and RI matrices of 6.32 and (s. 00, výo ) can be derived as 
f ollows. 

The frequency domain version of the return difference 

relationship for the optimal LQ regulator is given by (49) : 

p TT (-S) RI T(s) =p R' +F T(-S) Q'. F(s) - 6.33 

where T(s) = (I - G(s)) 

G(s) =-K O(S) B 

O(s) = (s I- A)-' 

PB R-1/p 

F(s) =C O(s) 

The return difference operator, F(s), may be expressed 
as a power series in s-1 (50) thus : 

1A A2 
F(S) c-I+-+-+B-6.34 

IS 

s S2 o*****)I 

Equation 6.33 may thus be expressed as :" 

p TT (-s) RI T(s) =p R' -1 (CB)T 0' '(CB) +0 (1) 
6.35 

1sv2s 

where O(l1s) indicates terms in 11s, 1/s 2,.... and sl-=sN/P-. 
In the asymptotic case, i. e. as p -> 0 then for a given 
finite frequency sl, Isl -> ,,, and 

TT(-S) R' T(s) -> R' -1 (CB)T Q' (CB) 6.36 

sv2 

Now we have from equation 6.12 that 

T(si) vi = 

Pre multiplying by TT(-Si) RI gives 
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TT(-S, ) R' T(si) vi =0-6.37 

Hence from 6.36 for the asymptotically infinite eigenvalues 
s ý, 

1 and associated eigenvectors v, 11* we have 

R' -1 (CB)T Qv (CB) v90 1 
(si - )2 

Factoring the Q1 matrix such that Qo=WTW with Wa non- 
singular (m x m) matrix then 

R' -1 (WCB)T (WCB) v Co = 
(S )2 

(WCB) T[ (WCB) -T R' (WCB) -' -11 (WCB) Po = 

(WCB)-T R' (WCB)-'] (WCB) v? o =1 (WCB) Vý' 

(sr 

6.38 

Note that equation 6.38 is in the form of an 
eigenvalue/eigenvector relationship with the positive 
definite, symmetric matrix (bracketed) having positive, real 

eigenvalues, (1/s 00 )2 i and associated orthogonal eigenvectors 
(WCB v This being the case the following relationship 
holds 

(WCBN)T (WCBN) =I - 6.39 

where the matrix N is formed with its columns being the 
z' Is, i. e. 

CO Co Co 
[vl"o 1 Z2 1 Z3 VM 1 

and the eigenvectors (WCBv? ) are arranged to have unit 1 
magnitude. The matrix Q1 then follows directly from 6.39 
since 

(CBN) T WTW (CBN) = Im 
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Qo = WTW = (CBN)-T (CBN)-' 

also from equation 6.38 we obtain 

00 -1 00 N-11 N- V- 1N vi, 
(Sll )2 

By choosing w= (CBN)-', thus 

R' = N-T S-2 N-1 

where S is formed such that 

diag (SI» CO 
1.. 0F s- ) , s2 m 

- 6.40 

- 6.41 

- 6.42 

Also note that the asymptotically infinite eigenvalues are 
; 5ý given by si= si 1,, Ip- and the associated eigenvectors may be 

established from equation 6.11, namely 

ei = (Ai I- A)-' B Mi 

01 and ei 01- A)-l B vi sl'* B vi 

4 ýP 

00 CO as p -> 0 thence B vi ; provided that si (A) 00 
Aý 

The above establishes the results of Lemma 6.2. 

The Q' and RI matrices have thus been characterised in 

terms of the asymptotically infinite modes of the closed- 
loop system. The design of the output regulator thus 

requires the values of W GO ) to be specified and in (si 'vi 
the limiting case (p -> 0) these modes will dominate the 

output response. To choose (sico 3Li CO ) Note that the 

asymptotic output directions, yr , are given by : 

Co CX) 
«yj 

C ei CB vi 

or V (CB) yý 
_i - 6.43 

The s' * may thus be chosen to satisfy given output (input) 
bandwidth requirements whilst the vi" may be chosen so as to 
reduce output interactions. Q1 and RI then follow from 
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equations 6.40 and 6.42. 

It now remains to determine the significance of the 
(n-m) asymptotically finite eigenvalues and eigenvectors 
(siO, eiO). It can be shown (45) that for the minimum-phase 
system, G(s), the asymptotically finite eigenvector 
directions lie within the null space of C, i. e. : 

eiO == 0, i C-(1,2 ...... (n-m) 1. 

Further, the (n-m) finite eigenvaluess, AjO, correspond to 

the zeros of S(A, B, C) and the vectors eiO correspond, except 

possibly for magnitude, to the zero directions (Hj) of the 

system. The proof follows from Lemma 6.2 (51,53,54). 

This result is important in that in the limiting case 
(-p-> 0) (n-m) finite eigenvalues approach the invariant 

zeros of S(A, B, C) and the assosiated eigenvectors are 

constrained to lie within the null space of C whilst the 

remaining m infinite eigenvalues and assosiated eigenvectors 
lie within the range space of C. All uncontrollable modes 

will thus become unobservable (52). 

Notice, however, that as p_ -> 0 then the closed-loop 

system gain increases. The demands that this may place on 

actuator responses, for example, may be a limiting 

constraint. At lower values of ýp, the degree to which the 
infinite modes are removed from the output response may be 

reduced. In many systems a compromise may be achievable but 

poorly behaved systems, i. e. systems with low gain 

sensitivities, may not be handled well by this technique. 

Also in the high gain case unmodelled system modes may. be 

excited. 

The discussion may be extended to cases where r(CB) = 
m. In these cases the calculation of the Q1 and RO matrices 
is more complex. For a system in which the first k Markov 

parameters are zero Grimble- (36) shows that by considering 
higher order terms in the Laurent series (equation 6.34) the 

following results are obtained : 

(CAkBN)-T (CAkBN)-' - 6.44 

RI = (N)-T Sk+j N-1 - 6.45 
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where 

Sk+l*"I (_l) k diag{(l/si )2(k+l) ........ (, Is m 
)2(k+l) 

- 6.46 

with the (k+l) Markov parameter, CAkBj non-zero. 

To illustrate this technique consider the lateral 

motion SAS design as was done in section 6.5.1. 

6.5.2.1 Lateral SAS Design 

Consider the linearised lateral dynamics of equation 
6.9 and again choose actuator dynamics of the form given in 

section 6.5.1. This gives the A and B matrices as in 

equations 6.23. For convenience, we shall choose a somewhat 
impractical C matrix but one which gives r(CB) = 2. In this 

case choose the system outputs to be the actuator states, X5 
and x6 and C is then given by 

1000 01 

For the asymptotically infinite eigenvalues and eigenvectors 
choose : 

Co Ei =[ 1/20 01 

00 0 1/10) 

W, say s, W=1, s 00 = O. S. This with sioo twice as fast as s2 2 
gives : 

/20 
1/0 diag{sl"o #s2"o 010 

10 

0 
Note also that r(CB) =2 and CB = 

ro 

10001 

Thus Q1 (CBN)-T (CBN)-' 

12 

and RI =rOOO 
4000] 

= 400 12 

0051 - 6.47 

The p parameter allows some flexibility in the design and 
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Fig 6.4 State and Output Responses for linear model at 

33 ms-1 Airspeed (p = Q. 0025, output assignment) 
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should be chosen so that, in this case, actuator bandwidths 

are not exceeded. Recall that the rudder and aileron 

actuators have 10 and 20 rad s-1 bandwidths, respectively. 
A choice of p= 0.0025 gives actuator poles at -11.18 and - 
20.36 s-1, respectively, and disposes the remaining four 

closed-loop poles at 

-8.359, -0.122, -0.5 ± 3.5j 

These poles correspond to the (n-m) transmission zeros of 
the system. 

Figs. 6.4 a) and b) show the output and state responses 
for the optimally controlled linear system with p= 0.0025 

and with initial conditions of 0.1 ms-1 in side velocity, 
0.5 rad s-1 in roll rate and 0.1 rad in rudder and aileron 
deflections. Note that the output responses approach their 

desired 0.1 and 0.05 s first order time constants with no 

evidence of the four asymptotically finite modes, as 
desired. 

Consider now a more. realistic choice of the C matrix, 

as : 

01000 
la 00100 001 

which picks off the two aircraft lateral axial rates, i. e. p 

and r. These are normally available via. on-board rate 

gyros. Maintaining the A and B matrices as in equations 
6.23, note that the first Markov parameterl CB, is not full 

rank but r(CAB) =2 hence we must employ the results of 

equations 6.44,6.45 and 6.46'with k=l. For convenience 
again empl'oy the choice of asymptotically infinite 

eigenvectors so as to provide asymptotic decoupling between 

roll and yaw, namely 

01 
=2 

and for the asymptotically infinite eigenvalues we again 
choose s17 = 1, s: = 0.5, i. e. choose output 1, roll rate, 2 
to be twice as fast as output 2, yaw rate. Now, from 

equation 6.46 
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(-1)1 Idiag{(l/sloo)4, (1/s oo)4)) 
2 ý-- 2 

i. e. S2 =- diag (1,16.0) 

and note that CAB =0 -286.4] 
[ 

-189.8 0 

thus Q-0 -286.4] -1 0 -286.4 [ 

189.8 0[ 189.8 0 

1.2 x 10-5 0 
0 2.775 x 10-51 

and from equation 6.45 
1-1 0 

R' =I 

L° -16 

It now remains to choose the value of p and this is probably 
best done by interactive simulation or reference to a 
multivariable root locus diagram. Note, however, that in 

this case it is not as simple to decide upon the likely 

asymptotic behaviour since the system may have more or less 

than m transmission zeros. Equally, the degree to which 
interactions may be suppressed depends much more on the 

choice of p. There is also no guarantee of asymptotic 

stability in this case. This was confirmed by applying 
designs corresponding to successively decreasing values of 

pto the linear model. 

Figs. 6.5 a) and b) show the state and output responses 
forp= 10-3. Note that the output response is fast with 

approximately the 2: 1 bandwidth ratio desired. The state 
responses are also reasonably fast, however, the actuator 
demands (states 5 and 6) may be considered a little 

excessive. Reducing p to 10-1 produces the output and state 
responses of Figs. 6.6 a) and b). Note the reduced degree 

of modal decoupling in addition to a slower response speed. 

In summary then it would appear that the technique 

outlined above provides a useful method of specifying the Q, 
and RI matrices via the asymptotic behaviour of the outputs. 
It would, however, seem to be limited to a class of systems 
where r(CB) = m. In other cases some of the elegance is 
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Fig 6.5 State and Output Responses for'linearmodel 

at 33 ms -1 Airspeed (p - 0.001, i. c. of 0.1 
T in roll rate) 
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lost due to complex asymptotic behaviour. Nevertheless 
there is much to be said in favour of such a relatively 
simple design technique. In the aircraft problem it is, 
however, of limited value since it is desirable to maintain 
given modal responses since these are often felt directly by 
the pilot and passengers. Using output regulation will not 
guarantee 'ride quality' as will the techniques discussed in 

section 6.5.1. 

6.6 Demand Following 

It was indicated in the initial discussion that in the 
aircraft problem we frequently require that the control be 
designed to allow a demand signal to be followed arbitrarily 
closely. In the optimal control context this requires that 
the controller should track a reference signal. This may be 
the case in, for example, turning manoeuvres or where a 
given height must be maintained. Since the normal aim, with 
optimal control, is to drive all the states of the system to 

zero the design equations for the controller must be 

modified in such a way as to provide this 'following' 

action. There are many methods available which provide this 
action but here we shall consider only one (55). 

Recall that the cost function for the quadratic case is 

given as in equation 6.5 as 

tf 

jf (xt Qx+p ut R u) dt 
0 

If the states, x1s, in this equation are replaced by 
deviations, i. e. (x-r)ls, then the following is obtained 

tf 

i= Z( (x - r) tQ (x - r) +p 31t R u) dt 

- 6.48 
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Fig 6. As Fig 6.5 with p-0.1 
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where r is an n vector of reference signals. Note that now 
the deviations of the states from the references are driven 

to zero in minimum time subject to certain control 

constraints. This is desirable but the solution of the 

problem via. the- Ricatti equation must be modified as 
follows. 

Consider an augmented state vector formed from the 

states, X(t), and the references, r, i. e. 

fxt 
z(t) = I- - 

Lr 
Assuming that r is a constant, time-invariant vector then 

the augmented state equations may be obtained as 

=A 0] z(t) + [B] u(t) 
- 6.49 

10 

00 

It then follows that in the infinite time case 6.48 may be 

expressed as 

tf 
zt (t) Q -Q Z(t) +P jjt(t) R U(t) dt I- IQ 

QI-6.50 

Recall that from equation-6.8 the solution of the infinite 
time LQP problem is given by 

PA + ATP - PBR-lBTp 

Substituting for our augmented state and weighting matrices 
of equations 6.49 and 6.50 and appropriately partitioning 
the P matrix yields : 

11 p12 

?]0 

01 
+T 

0] [pll p12 
QQ 

IP 

20T2 
0Q -Q] p12 

T P2 00 p12 P2 
21 

ii 
T 

p12 

0 

R-1 [0 BTj p11 
T 

p12] 

12 p22][BI 
[p12 

P22 
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Note that Pl, and P22 are (n x n) and (m x m) whilst P12 is 
(n x m). Solving this set of equations gives 

0=Q+ P11 A+ AT pl, - P11 B R-1 BT pil - 6.51 

0= -Q + AT P12 - P11 B R-1 BT P12 - 6.52 

0=Q- P12 TB R-1 BT P12 - 6.53 

The optimal control law is given by 

U(t) =- R-1 [BT 0] 11 p12 z(t) 
p12 T p221 

U(t) =- R-1 B-1 IP11 1 P12] Z(t) 

Solving equation 6.51 for Pl, (55) then gives P12 by direct 
substitution into 6.52, i. e. 

P12 ý-- (AT - P1, B R-1 BT )-l 

The closed-loop state equations for the system may then be 

expressed as 

; (t) = (A +B Kj) x(t) +BK2r 

where 
K, =- R-1 BT pil - 6.54 

K2=- R-1 BT(AT - P11 B R-1 BT )-l Q-6.55 

The resulting control thus comprises a closed-loop 
configuration as shown in Fig. 6.7 with the reference vector 
acting as the demand vector for the system. 

To illustrate this technique consider the linearised 
longitudinal state equations for the Machan as given in 

equations 2.36 for 33 ms-1 'stick fixed' flight. 

Firstly, an optimal control design for the system is 
required and this is undertaken using the Harvey & Stein 
technique of section 6.5.1. For convenience the thruster 
dynamic is neglected and an actuator dynamic for the 
elevator of 
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17 
S) 

20 

l7d (s + 10) 

is introduced giving state (A, B) matrices of : 

-0.059 0.147 0. -9.81 0. 0. 

-0.475 -2.93 32177 0. 0. 5.318 

0.166 -0.416 -0.645 0. 0. -13.58 
Alo 0. 0. 1. 0. 0. 0. 

0. -1. 0. 33. 0. 0. 

L 0. 0. 0. 0. 0. -10.1 

0. 

0. 
Blo 0. 

0. 

L- 
20. 

j 

Note. that the Blo matrix has the required form and that the 

pair (A, B) is controllable. Since there is now only one 

actuator row in Blo then a suitable choice of C matrix will 

give r(CB) =m=1, i. e. full rank. This being the case 
there must be only one asymptotically infinite closed-loop 

eigenvalue and eigenvector with the five remaining finite 

eigenvalues corresponding to the transmission zeros of 
S(A, B, C). 

Initially, these five finite closed-loop modes for the 

system must be specified. Recall from Chapter 2 that 
longitudinal motions consist of two complex-pole pairs, the 

phugoid and the short period., The usual aim is to improve 
the phugoid damping and reduce its period in addition ýto 
providing a well damped and fast short period response (57). 
A choice of closed-loop modal distribution was thus made 
such that : 

Phugoid mode -1± ij 

Short period mode -2.8 ± Sj 

Height 
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This gives 45* damping of the phugoid mode and 60" damping 
in the short period. The height 'integration' was chosen to 
be first order with 10 secs. time constant. The choice of 
the finite asymptotic eigenvector direction set must also be 

made and here we may apply similar arguments to those used 
in section 6.5.1. The ordering of the states in this case 
is 

Xi u forward velocity 

x2 -w vertical velocity 

x3 -q pitch rate (axial) 

X4 - 0 pitch attitude 
X5 - h height 

x6 - I elevator deflection 

For the phugoid mode recall that this is largely derived 
from exchanges in the kinetic and potential energies of the 

airframe hence it would be expected that the height, h, and 
forward velocity, u, responses be dominated by this mode 
with little coupling into pitch. A suitable desired 

eigenvector pair would thus be 

el [v v001 VI 

22 1v00 VI 

Since height, h--. fw dt, it would be unrealistic to expect 
the mode not to appear in W. 

For the short period mode note that this is a result of 
the 'arrow stability' of the airframe and hence is 

characterised by change in pitch rate, q, and vertical 
velocity, w. The mode should not be apparent in forward 

velocity but clearly will in height and pitch attitude. 
Hence, a suitable choice of a desired eigenvector pair would 
be : 

23 01vvv vi 

24 *" 10 V1vv1 vi 

The final real mode is the height integration which shows up 
dominantly on height with no pitch coupling and hence a 
suitable desired eigenvector would be : 
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ý5 *= [V v0011 VI 

Note that in all cases we would expect some of each mode to 

show on the elevator since this is the only control. 

The achievable eigenvectors, evaluated as in section 
6.5.1, are as below : 

ýt, O = [-0.045 2.42 0.17 -0.07 0.99 -0.0681 

ýt2o = 1 1-0 0.533 -0.029 0.099 -3.74 0.00761 

230 = [0.028 1.11 0.00035 0.025 -0.047 0.0271 

e4o = 10-0011 0.00035 0.166 -0.014 0.083 0.0261 

250 = [-0.48 0.067 0.0001 -0.001 1.0 -0.00791 

Note that in the case of the phugoid and height integration 

modes the desired objectives can be met quite well. The 

short period mode poses some problems and the best 

achievable eigenvector is a relatively poor fit for e4* in 
particular. This reflects the relatively large degree of 
cross-coupling between forward velocity, u, and short term 

pitch variations for our particular example. A better fit 

may be had by a different choice of desired eigenvector. 
The design was completed by evaluating the Co matrix of 

equation 6.25. 

It remains to choose the eigenvalue and asymptotic 
direction of the infinite mode. In this case the task is 

trivial since only one control input is available. Taking R 
400 satisfies equation 6.16 b) and gives WTW = 1. 

A straightforward application of the optimal control 
design package then allows a choice to be made of the 

pparameter value so as to satisfy actuator bandwidth, etc. 
constraints. A value of 0.0025 gives a closed-loop 
actuator pole of -23.35 and this is within the physical 
constraints placed on the elevator actuator. The remaining 
closed-loop poles are then disposed at : 

- 2.86 ± 6.3j, -0.972 ± 0.98j, -0.1 

which will be seen to be close to the desired eigenvalues 
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for the closed-loop system. 

Recall that the objective of this exercise is to 

examine the performance of the demand following optimal 

control policy as developed in the preceding discussion. 

The application of the design technique gives the two state 
feedback gain matrices Kl, K2 of equations 6.54 and 6.55. 

Note that K, corresponds to the standard optimal control law 

with no reference input. For the control design outlined 
above we obtain 

Kj = [0.432 -0.03 0.459 3.77 0.2 -0.8751 
K2 = [0.43 -0.02 0.31 3.63 0.2 -1.0 1 

In Figs. 6.8 a) to f) the state responses of the system are 

shown corresponding to a change in the height state from an 
initial condition of 20 metres to a reference of 30 metres. 

This may be a typical requirement of such an SAS system, 
i. e. to execute a step change in height. From the figures 

the following can be noted : 

The phugoid mode appears dominantly on the u and h 

responses. Note that this is a relatively slow mode 

with critical damping. Note also that the long term 

height integration mode appears on both u and h, as 

expected. The response of the height to the step 

change is reasonable although some offset is evident 

after 23 secs. This may indicate that some form of 
integral action is desirable although this aspect has 

not been considered further. 

The short period mode is largely distributed between 

the w and q states although it appears on both the 

pitch attitude and actuator responses. This mode is 

slightly underdamped and relatively fast, as desired. 

i) The overall response is acceptable but the demands 

placed on the actuators are quite large in terms of 

magnitude. This is largely to control the short period 

mode and hence a better choice of damping and period 
may be desirable. The pitch attitude change is also 

quite large and again a better choice of short period 

may be suggested. 
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Fig 6.8 State Responses for Linear Longitudinal Model 

(33 ms -1 airspeed, demand following) 
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The above example illustrates that the optimal control 
design technique can be extended to include demand following 
in the case of constant demand signals. This is 

particularly important in the aircraft problem when many of 
the system states cannot be driven to zero to fulfil 

physical constraints (e. g. to maintain lift, etc. ). In these 

cases then we may still apply optimal control to provide 
given performance and stability. One important point is the 

steady state offset which may arise and was mentioned above. 
The provision of integral action (56,58,59) in the optimal 
control design is possible but has not been considered in 
the current work and will therefore not be discussed. 

6.7 Reduced order Aircraft Models 

Before leaving this section a brief discussion will be 

presented of the possibility of using a reduced order model 
for the aircraft. We are prompted to examine this 

possibility since, inevitably, this will lead to a less 

complex state feedback structure in addition to requiring 
fewer measurements. It may also be recalled that in Chapter 
2 the linearised model of the aircraft was derived and it 

was shown that it was possible to decompose the state-space 
model into a number of weakly interconnected sub-systems 
which allowed us to derive approximations for the modes of 
the open-loop aircraft. This would seem to suggest that 
each sub-system could be treated independently and control 
provided by state feedback around each sub-system. This, of 
course, ignores any cross-coupling terms but these may be 
suf f iciently small so as not to unduly degrade the control 
action. 

To illustrate the type of scheme envisaged here we 
shall consider again the lateral dynamics of the Machan 
vehicle as discussed previously. From section 2.2.2 the 
parameterised lateral state equations were derived as 
equation 2.43 a) and are repeated below for convenience. 
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v Yv 0 Yr-Uo 90 v Yr 0 

v1p1r00 
p 'T 1 

r nv np nr 00 r + nT n, 

oioo6 (p 00 

-0 
010 oj 0J Lo 0j 

The state variables and inputs are as defined previously. 
Recall that this equation has been derived from a direct 

consideration of the physical system equations. The 

approximations to the four dominant lateral modes were then 

obtained by intuitive arguments. Let us pursue this line of 
reasoning further here by considering the control of the 
dominant oscillatory mode, the Dutch roll, only. This 

motion is generated by the v and r states and can be 

considered slow when compared with rolling motions, hence it 

can be assumed that Dutch roll takes place at constant roll, 
i. e. ý=0. Equally, neglecting gravitational effects 
removes the coupling of the spiral mode into Dutch roll. A 

simplified form of the state equations may thus be used 
namely : 

yy0 (yr-uo) v YT 0 
[T] 

01v11p+1T it ý-6.56 

-nv 
n nr r nT nt p 

Solving row 2 algebraically and eliminating p from row 3 

gives : 

v v Ypv 

(nv-n 

1p 

(yr-uo) v 

(nr-n p1r) r+ 
(n, 

1p 

Yr 0 

-n p It (n, -nplj 
1p lp 

- 6.57 

For the Machan both n and np are zero and hence the B(2,2) 
term is zero indicating that only the rudder may be used to 
control Dutch roll, Note that this is not the case in 

general and hence a two-input v, r sub-system would have to 
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be considered. Substituting in 6.57 the aerodynamic 
derivative values for the Machan and taking UO=33 ms-1 gives 

[-0.277 
-3 2.9 

98] 
v -5.432 T 6.58 

0.365 -0.319 

[vrl 

-9.49] 

and introducing a single actuator dynamic for the rudder of 
the form of equation 6.22 a) gives : 

0- -0 Td v -0.277 -32.98 -5.432 v 
0.365 -0.319 -9.49 r+0 

0.0. -5. T 10. 

- 6.59 

The open-loop poles are close to the actual Dutch roll poles 
for 33 ms-1 airspeed at - 0.298 ± 3.5j and an actuator pole 
at -5.0. 

The optimal control design technique can now be applied 
to the state equation of 6.59 with a desired choice of 
closed loop pole position as in section 6.5.1 of -0.63 + 
2.4 2 j. Note that the single actuator pole will be the 
asymptotically infinite eigenvalue. To maintain actuator 
bandwidth requirements of 10 rads s-1 the p parameter in 

the design can be adjusted and a choice of p=0.0025 gives 
closed-loop poles at 

-10.72 ; -0.75 ± 2.75i 

The resulting state feedback gain matrix is 

Kj = [0.018 0.045 -0.661 

Figs 6.9 show the three state responses of the closed-looP 
system due to an initial condition of 0.1 ms-1 in v. Note 
that the design achieves an underdamped response with 
approximately 2.3 secs. period, as desired. 

This third order design has thus produced a set of 
gains which may be employed in the non-linear system with 
the remaining states open-loop. If the approximations made 
are reasonable then the reduced order controller may be 
expected to perform tolerably well. Note, however, that no 
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Fig 6.9 Reduced Order Dutch Roll Responses 

(linear model at 33 ms-I , LQP controller) 
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Fig 6.10 Reduced Order Controller State Responses 

(non-linear model at 33 ms- 
1 

airspeed) 
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attempt has been made to control the rolling motions and 

additionally, in our example, the aileron channel is left 

open-loop. One fairly clear point is that the actuators are 

normally reasonably well decoupled at least as far as the 

rudder/aileron are concerned. This is largely due to the 

particular values of aerodynamic derivatives for the Machan. 

In order to test the likely performance of this reduced 

order controller it was implemented on the non-linear 
simulation discussed previously. To provide roll channel 

control a reasonably tight loop was provided from roll angle 
to aileron. Recall that the spiral mode for the Machan is 

open-loop unstable hence stabilisation should be possible if 

the mode is decoupled and controlled by aileron only. Figs. 

6.10 a) to f) show the lateral state responses obtained for 

initial conditions of 0.5 rad s-1 in p (roll rate) and 0.1 

ms-1 in side velocity, v, with 33 ms-1 airspeed. Note that 

the Dutch roll mode shows up primarily on the v and r states 

and has close-to the damping and period required. Note also 
that reasonable decoupling of the roll and yaw channels has 

been achieved with a rapid first order roll response and 
little evidence of Dutch roll coupling. The actuator 

responses also demonstrate the relatively high degree of 
decoupling achievable in this example. Since no feedback of 

yaw angle has been provided this exhibits a steady state 
offset but this is small (< 0.01 rad). 

It would thus appear that for this example the 

application of intuitive arguments has led to a reduced 

order controller with apparently desirable performance. It 
is only necessary to measure v, rjo T and ip to provide an 

acceptable SAS system. This is clearly desirable but may 
not, in general,, provide such a useful design technique. A 

compromise is, in fact, being provided between classical 
single-loop control and state feedback which, in this case, 
is valid. The robustness of this scheme is, of course, not 
guaranteed but it may be speculated that the control would 
be sensitive to changes in the aerodynamic derivatives 
directly concerned in equation 6.59 with np =n0 and 
hence may be less sensitive to parameter values than a full 

state controller which considers all the aerodynamic 
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derivative terms. 

6.8 Summary 

In this Chapter the application of optimal control and 

state variable feedback to the aircraft problem has been 

demonstrated. In this context the derived controller should 
be capable of providing SAS and autopilot functions, i. e. 

should provide both demand-following and regulatory action. 

The ability of state feedback and optimal control to provide 

arbitrary pole placement and eigenvector assignment has been 

clearly demonstrated and a number of design techniques 

discussed in some detail. The ability to provide demand- 

following has also been indicated. Whilst not wishing to 

denigrate the power of such techniques a number of 

shortcomings have been indicated. These are principally : 

The inability to guarantee robustness in the presence 

of time-varying systems. 

ii) The relatively complex controller structure. 

iii) The limited applicability of most design techniques 

when faced with, for example, non-minimum phase 
systems. 

iv) The lack of guaranteed stability margins, again due to 

parameter changes in the controlled system. 

The above aspects lead us to question the applicability 
of these design techniques to aircraft flight control 

particularly when coupled with the likelihood of 
unmeasurable state variables. The power of such schemes, 
however, must not be underestimated and in Chapter 8 the 

robustness problems are considered in greater detail. 
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CHAPTER 7 

Variable Structure Systems 

7.1 Introduction 

Over the past 30 years a vast body of control systems 
theory has been developed around essentially linear 

analysis. The motivation behind using such techniques is 

principally to provide analytically tractable designs which 
retain some measure of elegance and simplicity. With such 
simple design tools engineers can provide control systems 
which fulfil specific requirements in terms of stability, 
speed of response, steady-state error, etc., i. e. the 

classical measures of system performance. In order to apply 
such linear design tools to a given problem one must, 
necessarily, have available a suitable linear model of the 
particular system under consideration. Such models can 
normally be formulated by tests on the system or by 

straightforward physical analysis. To a first order 
approximation the resulting model is then linear, or at 
least linearisable. This latter modelling technique is 

exemplified by the discussion of Chapter 2 where the 
physical system model of an aircraft was developed from 
first principles, together with a discussion of suitable 
linearising approximations and the derivation of a linear 
state space model. We are now open to employ any linear 
control design technique we have available (examples are 
classical s-domain/w-domain analysis as in Chapter 5 and 
state feedback as in Chapter 6) to provide closed-loop 
controllers capable of satisfying, in some sense, a set of 
performance objectives. The hope is then that by employing 
this controller with the real system (which is likely to be 
highly non-linear) a similar performance can be produced. 
In many cases these linear controllers achieve adequate 
control of the physical system and have been shown to 
provide good stability margins. A further aspect of the 
linear model is that it may be time-varying, i. e. some 
Parameters of the physical system may change as a result of 
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steady-state operating point changes, etc. How the linear 

controller now performs is then open to some speculation. 
Much work has been done in the general areas of system 

modelling and identification (5) in addition to the 

robustness and sensitivity of given controller/system 
structures. Chapter 8 discusses some of these aspects with 
regard to the aircraft example. It is however generally 
true that a controller designed around a nominal linearised 

model at a particular operating point will not provide the 

specified performance when faced with the physical non- 
linear time-varying system. Schemes have been proposed 
which are adaptive and change the controller parameters as a 
result of changes in the system to be controlled (14). The 

stability aspects of such systems are, however, a problem. 
For the modern avionic system environment, where a high 

degree of confidence in the control-loop is required, there 
is still little confidence in the value of such adaptive 
schemes. 

The inability of simple linear control theory to 
provide parameter insensitive control has led to the 

examination of other possible techniques. Notable amongst 
these are the non-linear or switched mode control designs 

which are receiving attention in the literature at present 
(60-66,125-130). Such schemes are characterised by a 
control structure which may be considered as a switched 
'gain' element in the loop. This switching gives rise to 
discontinuities in the control law, these being determined 
by a consideration of a 'switching function' which is 

normally chosen as a function of system states and/or the 
derivatives of these states. The simplest form of such 
control can be conceived of as relay switched or 'bang-bang' 
type control which has some highly desirable features in 

some applications and is characterised by a switching 
control action. A considerable amount of theory is 

currently being developed to provide analytical design tools 
for Such systems (67-73). of particular interest is the so- 
called 'Sliding model behaviour in which the closed-loop 
response becomes insensitive to changes in certain plant 
parameters. Changes in the nominal operating point, for 
example, thus have no effect on ultimate system response, a 
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highly desirable feature. The stability of such schemes 

must, of course, be examined carefully. 

To assess these techniques and provide an insight into 

the design aspects, the following discussion considers a 

number of design schemes principally with application to the 

Machan aircraft example. Initially the ZOC and VICTOR 

(18,74,75) schemes will be investigated along with simple 

switched mode control and some recent sliding mode theory. 

Firstly, however, consider the problem itself by examining 

the aircraft system and likely performance requirements. 

7.2 Linear Aircraft Flight Control and its Compromises 

In Chapter 5 the use of classical design tools for the 

development of linear closed-loop flight control systems was 

examined. It will be recalled that these heuristic designs 

consisted of the application of frequency domain techniques, 

principally the s-domain diagram, to the analysis of a 

number of single-loop controllers providing acceptable 

responses in pitch, yaw, roll, etc. The performance of the 

resulting controller being assessed with regard to 

stability, steady-state error, damping of oscillatory modes, 

etc. This type of essentially linear modelling and design 
is typical of conventional flight control system synthesis. 
It was also pointed out that as a secondary consideration 
the disturbance rejection of the system was important. The 

aircraft in flight being subjected to external disturbances 
from, for example, atmospheric turbulence and also to 
internal influences such as noisy measurement devices. To 

minimise the response of the aircraft to such effects 
requires that a relatively low bandwidth be set on the 

controlled system's response. This is undesirable since we 
degrade the responsiveness of the aircraft control system 
itself. Such conflicting objectives lead to inevitable 

engineering compromises which must provide adequate 
responsiveness whilst maintaining good disturbance 

rejection. 

An additional problem in the aircraft system is that, 
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as mentioned previously, the parameters associated with the 
aircraft, principally the aerodynamic derivatives, change as 
a result of changing flight regimes. To maintain control in 
such systems as these gain-scheduling techniques are 
invariably used in which the controller gains are linked to, 
for example, airspeed and thus change in some well defined 

manner with these variables. It is the designers' task to 
consider a number of different flight conditions and 
determine the gain values which provide a sensibly constant 
response from the airframe. The gains may be changed 
continuously, according to some law, or in discrete steps. 
Such scheduled systems provide adequate perfomance but may 
be Somewhat conservative and not allow the maximum to be 

achieved from a given aircraft configuration. 

To provide adequate system performance designers have 
used the techniques of linear system analysis to develop 

compensating networks which may be cascaded with the 
controller, these aiming to provide a trade off between the 

gain and phase characteristics of the closed-looP system. 
Such techniques can often provide a 'better' control 
structure and improve the ultimate performance achievable. 
The gain-scheduling problem still remains however and the 

need for such systems was discussed in Chapter 5. 

The need for parameter insensitive control in this 

application is thus clear. If, along with this, improved 

disturbance rejection is provided then so much the better. 

The gain-scheduling type techniques may already be 

indicating how such control may be achieved. The change in 

controller structure as a result of scheduling may be a 
desirable attribute of any parameter insensitive control. 
How then are we to extend this apparently advantageous 
property to a generalised design technique and how might 
such systems perform? Initially, let us review two 
techniques which, although heuristic, would appear to show 
some promise of insensitivity, namely the ZOC and VICTOR 

control schemes. 
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7.3 ZOC and VICTOR 

7.3.1 ZOC (Zero overshoot Control) (75) 

Whilst heuristic by nature this control Policy is based 
on the intuitive observation that for systems with lightly 
damped oscillatory responses the likely occurence of an 
overshoot in the response is predictable by evaluating the 
rate of change of the system error signal. The error signal 
in any closed-loop linear system will tend to either zero or 
some Steady-state offset. For oscillatory systems the error 
will exhibit oscillations about this steady value and the 
rate at which the error is approaching equilibrium will 
indicate the likely occurence of a transient overshoot. 
Hence, by monitoring the error rate it should be possible to 
predict overshoot and modify the system structure suitably 
to avoid this occurence. Note here the implication that it 
is required to evaluate the error signal derivative. 

For a particular structure of system a mechanisation of 
the above scheme can be obtained in a reasonably 
straightforward manner. Consider the archetypal system 
shown in Fig. 7.1. The measured variable, q, is 

contaminated by sensor noise, n, and is also affected by 

external disturbances on the system. To remove the sensor 
noise a first order low-pass filter is included in the 
forward path. A simple proportional controller, gain Kc, is 
also included and a first order actuator then delivers the 
control action to the system. 

The response of the system due to external disturbances 
improves markedly as the gain, Kc, is increased. The gain 
is however also constrained by system performance 
requirements such as stability, damping of dominant modes, 
etc. It is therefore desirable to provide some form of 
compensation to improve the system response. one standard 
technique is to provide phase advance compensation by 
replacing the noise filter by a generalised lead-lag network 
Of the form 

(1 +s Ti) 
T, > T2 - 7.1 

(1 +s T2 ) 

237 



q 

external 
disturbances 

q 

external 
disturbances 

B 

q 

sensor noise 
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This has the advantage that the actuator mode, which may 
introduce undesirable phase lag at low frequencies, may be 

removed and replaced by a faster mode with consequent 
improvement in response and stability. The disadvantage of 
such a solution is that the actuator activity due to 
measurement noise is increased and hence overall measurement 
noise rejection is degraded. To solve this problem it can 
arranged that the phase advance is introduced only when 
control action is required and removed otherwise. To do 
this a solution such as that in Fig 7.2 may be adopted. 

When the switch S, is open the system retains the form 

of Fig. 7.1. When S, is closed, however, the phase advance 
is introduced with consequent improvement in system 
response, some freedom being afforded by the choice of the 
Nal parameter. The problem of identifying when S, should 
change state still, of course, remains. To solve this a 
second observation is used in th at when control system 
response is required, the system error' signal is normally 
decaying towards its equilibrium, as noted above. 
Remembering that ultimately it is desired to reduce 
overshoots sl would thus be closed when the onset of an 
overshoot is indicated by too rapid a decrease in the 
$error' signal, y, this action modifying the system 
structure. This should also improve the noise rejection of 
the system since sensor noise will- normally give rise to 
rapid increases in the 'error' signal, y. The state of S, 
can thus be determined from a control law of the form 

close S, if (sign(k, y+ ý) ý sign (y)) - 7.2 

where kl is a design constant determined heuristically. 
Note that the value of §, the derivative of error signal, is 

required. Inspection of Fig. 7.2 should reveal that this is 

available at the input to the switch Sl- 

The performance of this system is relatively easily 
demonstrated by initially neglecting the system dynamic and 
investigating the closed-loop form of Fig. 7.2 i. e. with 
Points A and B joined. For the purposes of this exercise an 
arbitrary choice of TN=0.1 S, TA = 10 s and Kc = 700 
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gives, for the unswitched system, a second order underdamped 
response with closed-loop poles at approximately 

- 5.0 26 j(g=0.19, &)n 26 rad s Additive 
sensor noise, n, was also provided as zero mean Gaussian 
white noise with 0.01 rms amplitude. The k, and 'a' 
parameters were chosen as kl=0.75, a=10., which provided 
reasonable overshoot control in the ly' response. Figs. 7.3 

a) and b) show the y and q responses due to an initial 
condition of 1.0 in q for the unswitched system. Note that 
the y response shows large overshoots about the steady state 
as would be expected. Noise rejection is also fairly poor. 

For the switched system, Figs. 7.4 a) to c) show the 
system response for the same initial conditions in q. The 
reduced overshoot in the y response is clear although the 
Output noise performance is arguably worse than in the 
unswitched case. Note however that the overall actuator 
rate demands are reduced. A better choice of k, and 'a' may 
improve this still further. Fig. 7.4 c) shows the S, 
activity for the responses (Sl being closed is indicated by 
a '1' on the plot). 

It would therefore appear that employing this type of 
'piecewise linear' controller affords some measure of 
improvement in general system performance in the sense of 
decreased settling time, better steady state accuracy since 
higher gains may be used, improved noise immunity, etc. 
There does remain the question of system stability, however. 
Since the inclusion of ZOC affects only the zeros of the 
open-loop system and phase advance compensation will improve 

stability margins, it may be speculated that the ZOC policy 
will improve system stability. It was recently demonstrated 
in a paper by McLean (76) that this is indeed the case and 
application of Popov's stability criterion shows that ZOC 

may be asymptotically stable, this depending upon the 
particular system it is used with. Some care may however be 

necessary when applying this control policy. 

The second policy, namely VICTOR, will now be examined. 
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7.3.2 VICTOR 

VICTOR is an acronym for Variable Integral Control To 

Optimise Response and again is a largely heuristic 

technique. The scheme itself was devised by Gill (18,74) 

for application to flight control systems. 

In some senses this control policy may be likened to 
adaptive control since some of the controller parameters are 
varied as a result of an on-line measurement of the system 
performance. As its name suggests the controller structure 
is nominally of the Proportional + Integral type. The 

amount of integral action introduced may however be varied 
as a direct result of a measurement of system performance. 
A P+I control structure is chosen since this, in general, is 

capable of providing improvements in system response in 
terms of steady-state error, rise-time, etc. Making the 
integral action variable on-line does allow loptimisation, 

of the system response subject to the choice of the 

variational law. There are, clearly, a number of possible 
controller configurations which may provide the desired 

structure, equally, the choice of performance measure is 

open to the designer. For the purpose of the current 
discussion one possible configuration due to McLean and Gill 
is examined which is based on the application to an aircraft 
Pitch rate autopilot. 

Recall from Chapter 5 that (classically) for pitch rate 

control a P+I controller is introduced and the controller 

parameters chosen to provide acceptable performance. Gain- 

scheduling was also shown to be required in order to 

preserve the system response and stability as a result of 
varying flight conditions. The system would appear to be a 
prime candidate for VICTOR. Consider then a controller of 
the form 

(S) 1+97.3 
s+ (ag -p 

where a and u are constants which allow some flexibility in 
the design and g is a gain whose value depends upon the, as 
Yet undefined, performance measure. The choice of a and 
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,u will, for a given g, affect the effective integral action 
time and g will affect both the action time and proportional 
gain. The gain, g, is normally constrained to lie within 
some specified region (e. g. 0<g<1.0). 

To define a performance measure it may be wished to 
consider arguments similar to those of the ZOC scheme. 
Principally, the size and rate of change of closed-loop 
error signal can give an indication of system performance. 
Large values of error are undesirable and may be reduced by 
increasing the system gain. Additionally, the rate of 
change of error signal should not be excessive since limited 

actuator rates are normally required. In McLean's example 
(76) a performance measure is chosen such that 

g=E-N-7.4 

with E max (Y ly, 11, Sjý, 'J) - 7.5 

NA 4ý II, c Yl - 7.6 
Ac +s 

where Y, A, S are constants which require to be chosen with 
regard to the likely, system constraints and Ac is the 
inverse actuator time constant. yll and ; 

11 are the error 
and error derivative signals respectively. The latter 
signal is derived by applying the error signal, yl, to a 
pseudo differentiator of the form : 

a(s) =1+ ST - 7.7 

and yl is arranged to pass through a first order filter of 
time constant T to preserve the magnitude and phase 
relationships. 

The controller can be considered to have the form of a 
generalised lead-lag element since rearranging equation 7.3 
gives 

G (S) s+( ag - 0) +g7.8 
cs+( ag -ju) 
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Fig 7.5 VICTOR Bode Plots for Varying g (a = 100, p- 10) 
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Fig 7.5 cont. (a = 200, p= 10) 
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The relative pole and zero position may be changed by 

changing g whilst the absolute pole/zero position is 
determined by a,, p and g. Note that to guarantee that the 
pole has a negative real part we must have that 

(ag- P) >, 

/g - 7.9 

A representbtive family of curves of amplitude and phase vs. 
frequency for equation 7.8 are shown in Figs 7.5 a) to d). 
Figs. 7.5 a) and b) have u= 100, p= 10 and g varies from 
0.11 to 0.51. Figs. 7.5 c) and d) are with u= 200, u= 10 

and the same range in g. Note from these that the low 
frequency gain is close to unity but decreases as g 
increases. 7be phase plots show that the maximum phase lag 
is introduced at low values of g and this lag reduces and 
the peak moves towards higher frequencies for increasing g. 
It might be concluded from this that the controller tends 
towards an ideal P+I structure for low g whilst higher g's 
produce almost unity transmittance. 

The performance criteria of equations 7.4,7.5 and 7.6 
imply that g decreases as a result of large ýl values and 
increases due to large yj values, depending upon the choice 
Of Y, A and S. The implication here is that excessive ýYl 

demands introduce more integral action whilst excessive yl 
values introduce pure gain. This would seem to be 
intuitively reasonable since excessive control rates will be 
reduced by increased integral action, excessive error 
deviations being reduced by increased loop gain. 

From the above discussion it should be clear that this 
essentially heuristic technique requires the designer to 
select a large number of controller parameters. These must 
all be chosen with regard to the specific system application 
and the likely values of actuator rates, etc. Additionally, 
the stability of this technique is difficult to assess. In 
Gill's example it is necessary to include both the ZOC and 
VICTOR schemes within the design of a particular pitch rate 
SAS system. McLean (76) goes on to demonstrate that the 
System then can be shown to be globally stable. The 
parameter sensitivity of this type of controller structure 
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is also questionable and scheduling of some of the 

controller parameters, principally u and p, may be 

necessary as the flight conditions vary. 

7.3.3 Summary 

Whilst based on intuitive arguments it is felt that 
these sYstems, ZOC and VICTOR, cannot provide a general 
solution to the problems of parameter insensitive control. 
In the next sections the so-called sliding mode controllers 
are investigated with a view to assessing their performance 
in the aircraft environment. 

7.4 Sliding Mode Theory 

The theory of sliding mode behaviour in linear 

dynamical systems is a natural extension of the intuitively 

appealing concept of variable structure systems. In such 
Systems the aim is to provide desirable closed-loop 
performance by changing the controller structure in response 
to a set of switching criteria based on measures of the 

system states. This idea is by no means new and typical of 
such schemes would be relay switched systems using 'bang- 

bang, control, the switching here being controlled by, for 

example, the sign of the closed-loop error signal. These 

switching schemes may combine desirable features from each 
of the system structures in addition to possessing 
properties which neither structure alone can exhibit. 
Typically, for example, an asymptotically stable system can 
be formed from two non-asymptotically stable structures. 
(The ZOC scheme described above can be considered as a 
switched mode type of controller, VICTOR is more akin to 
adaptive control). Characteristic of these switching 
systems is the fact that the overall system trajectory in 
the state space is composed of the trajectories of each 
structure, the trajectory changing at a switching surface. 
In this way the overall system trajectory can be made to 
converge on an equilibrium point, notionally the origin in 
the state-space, and hence achieve asymptotic stability. An 
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extension of this theory is to drive the system in such a 
way as to force the states to follow a trajectory in the 

state-space which is not inherently part of any of the 
switched structures. 

This is the so-called sliding mode behaviour since, on 
reaching a defined switching surface, the state trajectory 

will 'slide' along this surface towards the equilibria of 
the system. An important aspect of such behaviour is that 
the motion in the state-space is invariant once the sliding 
surface is reached. This fundamental observation is 
important since it implies that the system response when 
sliding becomes invariant to changes in the underlying 
system. Hence, time varying parameters in the system will 
not affect the system's response. much work has been 

undertaken in the general areas of variable structure 
systems and the sliding mode over the past 40 years. The 
sliding mode technique itself seems to have gained 
acceptance in control system design as a result of the work 
of Utkin (70,71,116) and Itkis (67) and the paper of 
reference (70) gives a good introduction to the topic. In 
recent years a significant body of research has led to the 
development of a generalised theory and design technique for 
sliding mode controllers (62,66,68,69,77-82,120). 
Additionally, these techniques have been applied to a number 
of problems, mostly in robotics (62-65). 

The parameter insensitivity of the sliding mode regime 
would appear to be very desirable in the aircraft problem. 
It has already been shown that with many of the linear 

control designs (Chapters 5 and 6) applied to aircraft 
flight control it is difficult to provide parameter 
insensitive control without resorting to gain-scheduling 
techniques, for example. The possible benefits of employing 
non-linear sliding mode control should therefore be 
investigated. The ZOC and VICTOR techniques have already 
been discussed and in the following section the sliding mode 
design techniques will be investigated further. 
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7.4.1 introduction 

The design of a particular sliding mode controller may 
be considered in three stages. Firstly a desired sliding 
surface in state space must be chosen with due regard to the 

required system performance. Secondly, we must ensure that 
there exist sliding modes at every point along the surface 
by choice of the discontinuous control law, this is often 
termed the existence problem. Thirdly, we must ensure that 
the surface is reached along any trajectory of the non- 
sliding system, this being termed the reachability problem. 

To illustrate the essentials of the design process 
consider the linear time-invariant system defined by : 

Ax+Bu XCR n; uCRm 
CX 

_y 
CRm - 7.10 

The objective is to provide a feedback control law of the 
form 

u=- KT x 

with KT = MT +A kT) 

- 7.11 

i. e. the control matrix KTF is the sum of the f ixed and 
switched matrices kT and AkT. The switching is governed by 

a switching function defined by 

HxSE: Rýn - 7.12 

and the condition S=O is maintained along the switching 
surface. To do this we must ensure that the state 
trajectories on either side of the surface are directed 
towards the surface. The resulting motion is therefore 
confined to an infinitesimally small region on either side 
Of the surface and the state 'slides' towards the 
equilibrium at x=0. To establish this we must have 

lim si <0 and lim si >0 

si -> 0+ si -> 0- 

i=1,2,..., m - 7.13 
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or eqiuvahently si Si <0-7.13 a 

The switched part of the control is arranged such that 

switching occurs if S deviates from 0 and the sense is such 
that the ensuing motion is directed towards the switching 
surface, hence satisfying 7.13. 

The behaviour of the system in the sliding mode may be 
found by noting that during sliding 

S=Hx=0 and S=Hx=0-7.14 

substituting for x from 7.10 gives 

;=H (A x+B u) 

i. e. u =ueq=- (H B) -1 HAx-7.15 

where Req is defined as the equivalent control which governs 
the response during sliding. Substituting back into 7.10 

then gives 

ý=Ax-B (H B) -1 A 

= (A -B(H B)-l H A) 

= Aeq x - 7.16 

where now the Aeq matrix is the equivalent system matrix 
during sliding. Note that equation 7.12 expresses m. of the 

states in terms of the remaining (n-m) and hence a reduction 
in system order is possible, i. e. from n to (n-m). Note 

also that r(HB)=m so that (HB)-l exists. When on the 

switching plane the control is not switched and hence it can 
be deduced from equations 7.11 and 7.15 that 

KT = (H B)-l HA-7.17 

Consider the case when, without loss of generality, the 

switching equation is chosen to be the output equation of 
the System, equation 7.10. Hence H=C and the equivalent 
control becomes 

u (C B) -1 CAx-7.18 =eq 
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with Aeq _'ý (in - B(C B)_1 C)A - 7.19 

where r(CB) =m to ensure non-singular control. Now, during 

sliding the behaviour of the system states is governed by 

;= Aeq - 7.20 

with the equivalent control as in equation 7.18. The n 
eigenvalues, Ai, and associated eigenvectors eiO of the Aeq 
matrix will determine the responses during sliding. Note, 
however, that only (n-m) of these will be not necessarily 
zero valued since, during sliding, m of the states can be 
expressed in terms of the remaining (n-m) via. 

c. = 0 

We also know that 

y=Cx=0-7.21 

Any of the eigenvectors of Aeq which satisfy 

C ejO =0-7.22 

must lie within the null space of C and hence eio must be a 
zero direction of the system S(A, B, C) and the associated 
eigenvalue must correspond to an invariant zero of S(ABC) 
(116). For the case of (CB) full rank, then, for a square 
system, there must be (n-m) system zeros. Hence (n-m) of 
the (not necessarily) zero eigenvalues of the Aeq must 
correspond to the invariant zeros of S(A, B, C) with 
associated zero directions as in equation 7.22. The zero 
eigenvectors lie within the null space of the 'output map C 
(117-119). This result was established recently by Zinober, 
Billings, et al (83,84) and is proposed as a method of 
evaluating system-zeros. It can further be demonstrated 
that the action of the equivalent control, equation 7.18, is 

such as to assign some of the closed-loop pole positions to 
coincide with the system zeros and hence render the closed- 
100P system unobservable. This is easily shown by 
considering the standard observability criteria for the 
equivalent system, viz : 
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O(C, Aeq) = [C, C Aeq ,C Aeq 2 
......... C Aeq n-1 IT 

Note, however, that from equation 7.19 

C Aeq ý-- C(In -B (C B)-l C)A = 

and hence by implication 

CA eqi = 

and thus 

rank[O(C, Aeq)] = rank (C) =m<n 

It is worth comparing this control action with the 

eigenvalue/eigenvector placement techniques discussed in 

Chapter 6. Note here that it is again desired to provide 

specific closed-loop pole positions which, under high gain 
feedback, correspond to the system zero locations. The 

remaining poles then constitute the output response. A 

recent paper by Young, et al, (85) has demonstated the 

fundamental property that 'cheap' control, high gain 
feedback, etc. policies all tend to reduce the system order 

at high gains and may thus be analysed by singular 

perturbation theory. All of these high gain techniques 

possess desirable measures of robustness and disturbance 

rejection (86,87). With sliding mode control the objective 
is clearly similar in as much as the aim is to drive (n-m) 

eigenvalues to the invariant system zeros and hence the 

output response will be governed by the remaining m closed- 
loop eigenvalues. 

Thus far the behaviour of the system when on the 

sliding surface has been considered via the so-called 

equivalent control method (67,71,115). The equation of the 
ideal sliding mode is obtained from a consideration of the 

time derivatives of a switching function, equations 7.13, 

7.15 and 7.16. The existence problem can be considered as 
the ability to maintain the system arbitrarily close to the 

switching surfaces. This is achieved by ensuring that the 
direction of the velocity vector is towards the sliding 
surfaces, equation 7.13, and conditions to guarantee this 
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can be obtained via stability theory (67-69). Utkin (70) 
demonstrates that the existence problem can be solved given 
a certain set of conditions on the (m x m) matrix HB, 
derived via Lyapunov theory. Recall, however, that the H 

matrix determines the characteristics of the sliding mode 

and cannot, in general, be chosen arbitrarily to ensure 
existence. These two problems, i. e. existence and desirable 

sliding mode characteristics, can be decoupled through the 

results of Utkin (70). This decomposition of the problem 
relies on the following theorem due to Utkin : 

Theorem 7.1 :- The equation of the sliding mode is invariant 

with respect to non-singular transformations : 

S*= Hs(x, t)s ;u*= Hu(x, t)u 

det(HS) :; 6 0; det (HU) :; 1 0-7.23 

The implication here is that the sliding mode is governed by 

equation 7.16 if the components of the control vector 
undergo discontinuities on new surfaces si* =0 or the 

components of the new control vector, u*, undergo 
discontinuities on the chosen sliding surfaces si = 0. Also 
the equation of motion projected onto subspaces 

(sl*,, s2 *I. 
F sm 

in the first case and on 
(SlI s2f... 0, sm) 

in the second depend upon Hs,, HU respectively. 

In general therfore, for any switching function defined 
by the H matrix of equation 7.14, HS or Hu may be chosen 
such that the matrix (HIB) is diagonal (or diagonally 
dominant) whence the problem may be decomposed to m scalar 
cases. Existence conditions of equation 7.13, may then be 

applied to each of the m switching hyperplanes. 

Allied to the existence problem is the reachability 
problem, the two being very similar in that the first refers 
to asymptotic, 

_ 
stability in the small, the second to 

asymptotic stability in the large. Utkin (70) has shown 
that for multivariable time-invariant VSS control with 
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systems of the form of equations 7.10, then the control is a 
piecewise linear function of some, k, of the states, namely 

u=_T xk -8 

(xk)T = (xll x2l ., "xn) 

'f s. x. >0, i=1,2 m Wij aij 113 

ýij if si xj <0, j=1,2,... k 

are constants 

and 8T 8m) 8i o5oi sign(si) 
- 7.24 

with Boi, small positive scalars. For the existence of m 

sliding hyperplanes with asymptotically stable sliding modes 
it is a necessary and sufficient condition that the system 

of equation 7.10 and 7.24, with Wij = Oij, where f2ij has 

some constant value between aij and pij r has (n-m) 

eigenvalues with negative real parts. 

The implication here is that the system with partial 
state feedback retains (n-m) eigenvalues with negative real 
parts over a bounded range of feedback gains. 

The reachability of the sliding hyperplanes can also be 

guaranteed by suitable choice of the control parameters of 
equation 7.24 subject to conditions depending on the HS and 
Hu matrices (71). The design process then consists 

, 
of 

chosing a linear control law of the form u=K xk which 
places (n-m) of the eigenvalues at desired locations and 
then choosing the parameters of equation 7.24 to ensure 
reachability. 

In general the invariancy of the sliding mode depends 

not only on the switching matrix, H, but also upon the 
system and disturbances and the choice of H can be optimised 
to provide maximum insensitivity to the likely disturbances 
and system parameter variations. For a class of system 
governed by equations of the form 

;=Ax+ h(x, t) +Bu-7.25 
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where h(x, t) E Rn is a function of the states, disturbances 

and time varying parameters, it has been shown (72) that the 
sliding mode, S=0, is insensitive to h(x, t) if 

rank (B, h) = rank (B) - 7.26 

Note that systems in canonical form satisfy the above 
relationship. 

In the general multivariable VSS problem it is 
therefore clear that the design process is quite complex and 
is best undertaken by computer aided design packages. The 
design may, to some extent, be iterative in that desirable 
invariancy may require an iterative choice of H. The 
results of a multivariable VSS controller applied to the 
lateral motion model of the'unmanned aircraft previously 
discussed is investigated in section 7.6. Initially, it is 
instructive to investigate some simplistic SISO systems and 
the performance of VSS sliding control applied to these. 

7.5 SISO VSS 

Consider the third order system defined by the 
following state equation 

10 100 

2= 10 01x+0u 
L-6 -11 -6 1 

y= [20 9 11 - 7.27 

which is in phase canonical form. It is required to produce 
a VSS design for this system. The system has eigenvalues of 
-1., -2. and -3. and two real invariant zeros at -4. and - 
5. (84). By choosing the output equation to be the 
switching function, i. e. 

[20 9 11 - 7.28 

we note that r(HB)=l (i. e. full rank). 

Evaluating the Aeq matrix for this system from equation 

9 
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7.19 we have that 

010 

Aeq 001-7.29 
0 -20 -9- 

also the equivalent control, ueq, becomes : 

ueq -ý [ -6 9 31 - 7.30 

The eigenvalues of the Aeq matrix are 0., -4. and -5. with 

corresponding eigenvectors of 

0.061 0.039 

0 e2 = -0.242 e3 = -0-196 

. 
0. 

ý. 
0.968 

_ 
0.979. 

Note that, Cel yiO, Ce '= 01 Ce3 =0 and hence the zeros of 2' 
the system are at -4. and -5. and these have corresponding 
eigenvectors lying in the null space of C. A choice of 
linear gain vector of 

31 - 7.31 

will therefore provide the desired sliding mode with the 

null space response determined by the second order system 
given by : 

;= Aeq x 

with S= CX=0 

For SISO systems in phase va riable controllable 
canonical form the existence condition will be fulfilled for 

an arbitrary choice of C provided that r(CB) = 1. The 

reachability conditions do, however, have to be considered 
with some care. Consider control of the form of equation 
7.11 with : 

-(k 
T+ AkT ) 

then a choice of kT as 7.31 guarantees the sliding mode by 
placing (n-m) =2 of the closed-loop sytem eigenvalues at 
the invariant sytem zeros and hence in the null space of C. 
The remaining eigenvalue, An' governs the range space 
response and can be selected to guarantee reachability by 
suitable choice of AkT , the switched gain vector. White 
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(88,89) has considered reachability in systems of this type 

and shown that for the case of full state switching, i. e. 

Aki t 
then for reachability 

Ak 
I> An ci f or s xi >0-7.32 

Aki < An ci for s xi <0 
i=1,2, . ., n 

for the case of An > 0, where An is the range space 
eigenvalue. Note that in this example An ý-- 0. A choice of 

Aki >0 for s xi >0 
1 7.33 

Aki <0 for s xi <0 

will therefore guarantee that the sliding mode is reachable. 

The state trajectories for the above system are shown 
in Figs. 7.6 a) to c) for an initial condition of 1.0 in xl,, 
the Ak's being chosen as 10.0, in accordance with 
equation 7.33. The sliding mode is reached after 
approximately 0.7 secs. and the x, state then displays the 
dynamics of the null space since, for this example, in 

sliding : 

Cx= 20 x1+9 X2 + X3 '= 0 

00 xi +9 ;l+ 20 xi =0 

7.6 Multivariable VSS 

The simplistic ideas of the previous section for Siso 

systems may be extended to the general multivariable case by 

using the results of section 7.4.1 and more recent work by 
Ryan et al and Zinober et a-l (61,69,77,79). This latter 

work has led to the development of a CAD package (78,80) 

which has been used to provide VSS control designs for the 

examples which follow. In the following attention is turned 
to the lateral motion model of the Machan aircraft used 
previously and an investigation of the performance and 
robustness aspects of VSS applied to this example is made. 
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Consider then the lateral motion model of the aircraft 
as given in equations 6.23 (section 6-5.1) with the 
inclusion of two first order actuators. A VSS sliding mode 
control design for this two input six state system is 

required. The design technique initially generates a 
suitable hyperplane switching matrix, H, as in equation 
7.12. The choice of this matrix determines the system 
behaviour during sliding and the sliding mode eigenvalues 
and eigenvectors are given by the eigenstructure of the A eq 
matrix of equation 7.16 as discussed previously. For the 
purposes of the design a similarity transform is initially 
introduced such that the system of equations 7.10 becomes 

0 -1 TAT7.34 

C T-1 Z 

A2 
where TB=0; TA T-1 = 

r" A12] [B 

AA 

0 

2j 21 22 

C T-1 [Cll I C123 

thus 

- Z1 z 6 1 Ajj 1, A, 2 ": 
] z1 Z 1 7 35 

0 
+ 

0 

2 

k 
-I 

1 

21 A 2 

[ 

K 2] 
. 

[B 

2 

Y- ý- EC11 C123 Z1 1 [ ] 
7.36 

Z2 z 2 

where z, and z2 are ((n-m) x 1) and (m x 1) partitioned 
vectors o f the z state vector. In this form the equivalent 
control, u eq is given by equation 7.15, assuming that the 
switching matrix, H, is given by the output matrix, (CT-1) , 
as : 

Eeq (Cl2B2)-l [(CllAll + C12A21)zl + (C11A12 + C12A22)-z2l 

The system behaviour during sliding is now determined by the 
first set of equations in 7.35 i. e. 

lp z, = All Kl + A12 12 - 7.37 
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and recall that during sliding 

0==C "2 0-7.38 'Cll C121 K1 11 ll + C12 
-K2 

Iz 

2] 

Substituting for z2 in 7.37 from 7.38 then gives the 

equivalent sliding mode sub-system as 

a K1 
. 
Kl = (All - A12 C12-1 Cll) 

-zl - 7.39 

The results 'of Utkin and Young may then be used, 

principally, if C 12 is chosen as Im, the (m x m) unit 
matrix, then the eigenstructure of the ((n-m) x (n-m)) 

matrix 

(All -A 12 Cll) 

determines the system performance during sliding, provided 
that the (All, A12) pair is controllable. It can further be 

shown (63) that' (AllA12) is controllable if (A, B) is 

controllable. Hence, the sliding modes can be chosen 

arbitrarily by suitable choice of Cll- Note also that with 
C 12 ý Im then 

[Cll Im] T 

hence , si(x) = ci x=0 i=1,2.... Im 

The performance of the system away from the sliding 
mode is governed by the remaining sub-system of equation 
7.35. Reachability can be guaranteed by ensuring that this 

sub-system has trajectories in -the state-space which cross 
the switching hyperplane at some point. By choosing this 

m th. order sub-system to have eigenvalues with negative 
real parts, reachability is guaranteed. 

Proceeding in this manner for this example, the (n-m)=4 

eigenvalues and eigenvectors for the sliding part of the 

controller must initially be assigned via equation 7.39. 

This may be achieved by employing an eigenvector assignment 
technique for the equivalent system similar to that used in 

section 6.5.1. Using the same arguments as in section 6.5.1 

with the same eigenvalues/eigenvectors an equivalent system 
having eigenvalues of : 
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-4.0, -0.05, -0.63 ± 2.42i 

is obtained with corresponding normalised eigenvectors 

el - 0.0068 e2 0,0000 23,4 - 0.997 ± 0.0 i 
0.9552 -0.0477 -0.0151 ± 0.0074j 

-0.0666 0.2877 0.007 + 0.0711j 

-0.2388 0.9549 -0.0013 ± 0.0066j 

-0.0233 -0.0179 0.0202 + 0.0017j 

c- 0 . 15 97_ L0 . 0518 0 . 0009 ±0 . 006 jj 

Comparison of this eigenstructure with that obtained in 

section 6.5.1 shows that whilst the real eigenvectors are 

almost identical the complex pairs are somewhat different. 
This is largely due to the slight differences in the 

assignment algorithms used. Taking the above to be an 
acceptable design, however, gives a switching matrix, C, of 

0.0196 0.0297 -0.0125 0.0276 1.01 

0.0022 0.1561 -70.1023 -0.0156 0.1 

On comparing this with equation 6.30 the similarity can be 

seen; the major difference being in element (1,3). Equation 
6.30 would also be a, possibly better, candidate for the 

switching hyperplane. 

The design then proceeds by selecting the remaining two 
range space eigenvalues. These should be made fast and 
stable since they will determine how quickly the system 

reaches the switching 'hyperplane. Remember, however, that 
there will be limitations on the physical actuator rates and 
amplitudes which restrict this choice. For this design a 
choice of -10.0 and -15.0 was made in order to remain within 
the limitations of the actuator bandwidths of 10 and 20 rad 
S-1. The controller structure has been shown to be 

equivalent (69) to a summation of a linear state feedback 

and a scaled 'unit-vector' (non-linear) which is equivalent 
to the relay type structure used previously, equation 7.11 
for example. The control thus becomes 
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Lx+Nx 
IImx 

- 7.40 

where x is the system state vector and the L, M and N 
matrices are derived as follows (69). 

Consider a second transformation applied to the system 
of equations 7.35 and 7.36 such that : 

H= T2 z-7.41 

with T2 non-singular, orthogonal and specifically choose 

n-m 
im ; where F= C12-1 Cll - 7.42 

Partitioning Hl=[w 
-w2'3 

with wl 6 Rn-m and H2 6 Rm it 
then follows that : 

3ý1 '= 11 ; H2 =Fz1+ 12 - 7.43 

The conditions on H2 corresponding to S=O, i. e. sliding, can 
be derived from equations 7.38 and 7.43 as 

Cll Hl + C12(-W2 -F wl) =0 

hence C12 H2 ": 0 

from which it follows that the conditions S=O and w2=0 are 
equivalent in the sense that the points in the state space 
at which S=O are precisely the points at which w22--O* 
Combining equations 7.35 and 7.36 with 7.43 then gives the 
transformed state equations as : 

I wi + Al 2 W2 - 7.44 

'ý2 19 
-wl 

+7 
MW2 

+ B2 u-7.45 

where Z=All-Al2 F; OýF-r -A22 F+A21 ; 

ty =F A12 + A22 - 7.46 

To attain the sliding mode it is necessary to force; 2 
and H2 to become identically zero. To do this the linear 
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part of the control may be chosen as : 

UL(W) =-B2-1 (Owl + (T - ')*)w2l - 7.47 

with 0* as any (mxm) matrix with left half-plane 

eigenvalues. In particular, given a spectrum 
{ pi: Re( ui)<O; i=l,..., M) 

may be chosen as 0* = diag( yi 
Transforming back into the original W state space gives 

L=- B2-1 10 T- (D* 1 T2 T - 7.48 

This linear control law, UL, serves only to drive the state 
component H2 to zero asymptotically; to attain the null 
space of C in finite time, the non-linear control component, 
RNF is required. This non-linear control must be 
discontinuous whenever w2=0 and zero elsewhere. Letting P2 
denote the positive definite unique solution of the Lyapunov 
equation : 

p2 0* + (Dk 1p2+ im. = - 7.49 

then P2 H2=0 'ff w2=0 and the non-linear control component 
may be taken as -. 

UN =-7.50 -P B2-1 P2 H2 (-W? 0) 

P2 W2 11 

with pa scalar design parameter selected by the designer. 
When H2ý0, RN may be arbitrarily defined as any function 
satisfying IIRNII, < p Transforming back into the original 
(x) state space then gives the N and M matrices of equation 
7.40 as : 

B2-1 10 P21 T2T 

[0 P21 T2 T 

- 7.51 

- 7.52 

The control law is thus formulated as a summation of UL and 
UN as in equation 7.40. 
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For this example the following are obtained : 

0*015 -0.011 -0.0202 -0.0111 -0.267 0 . 0426 
0.0032 -0.0215 0.0444 0.0315 -0.0959 -0.0529 

0.0001 0.0078 -0.0051 -0.0008 0.0 . 05 

-0.0007 0.001 -0.0008 0.0009 0.0333 0. 

0* 0,0* 0. -0.0017 0. 
0. -0.0008 0.0005 0.0001 0. -0.005] 

In order to evaluate the performance of the VSS 

controller derived above the non-linear control law of 
equation 7.40 was initially implemented with a linear 

simulation of the lateral motion model of the aircraft as in 

equations 6.23. 

The state responses for initial conditions of 0.1 ms-1 
in v and 0.5 rad s-1 in p are shown in Figs. 7.7 a) to f). 

From these the following can be noted: 

The Dutch roll mode appears dominantly in the v and r 
responses. The mode has approximately the desired 

period of 2.3 s and damping of 0.25. The control 

action for this mode appears dominantly on the rudder, 

as desired. 

The spiral mode appears on the roll state, (p , and is of 
the desired time constant of approximately 20 s. The 

mode also appears to some extent in r. The aileron 

response shows that this surface is largely responsible 
for providing control of this mode. 

iii) The roll subsidence mode is associated dominantly with 
the roll rate, p, and has the desired fast, first 

order, response with approximately 0.25 s time 

constant. I 

iv) The actuator demands are acceptable although very 
slight 'chatter' is evident due to the discontinuous 

nature of the control. The sliding regime is reached 

almost immediately, as desired. 
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The VSS controller clearly provides acceptable control 

when employed with this simple linear simulation and yields 

modal assignment and actuator decoupling similar to that 

obtained via the optimal control scheme of section 6.5.1. 
To assess the performance of the VSS controller when faced 

with a non-linear system it was implemented with the non- 
linear aircraft simulation developed in Chapter 2. Figs. 
7.8 a) to h) show the resulting state responses of the 

lateral motion states with initial conditions of 0.1 ms-1 in 

v and 0.5 rad s-1 in p. Also showne for comparison are the 

results of the linear simulation (dotted lines) subjected to 

the same initial conditions and drawn to the same time 

scale. A comparison of the VSS controller's performance 

with the linear and non-linear system models reveals that 

the responses are broadly similar, the major differences 

being in the amplitude and period of the Dutch roll mode (v 

and r states). overall, however, the responses are 

acceptable and provide adequate control for both the linear 

and non-linear systems. Note that the actuator demands 

(Figs. 7.8 g) and h)) show more evidence of 'chatter' in the 

non-linear simulation. 

To provide a feel for the tolerance of the VSS 

controller to changes in system parameters (i. e. how 

parameter insensitive it is) the design corresponding to the 

nominal 33 ms-1 airspeed was applied to the non-linear 

simulation at 45 ms-1 airspeed. Note that this will 
radically alter the 'A' matrix for the system (a discussion 

of this is included in Chapter 8) and hence some variation 
in system performance is to be expected. 

Figs. 7.9 a) to h) show the resulting system responses 
for both the 33 ms-1 and 45 ms-1 airspeed cases (45 ms- 

1 

shown dotted). The controller clearly does not provide 
identical performance for these two cases, the differences 

principally being a slight increase in Dutch roll frequency 

and amplitude, damping remaining approximately constant, and 

a decrease in the spiral mode time constant, as evidenced by 

the roll angle, (p, response. Note however, that the 

actuator motions remain very similar. One of the main 

consequences of increasing the aircraft's airspeed is to 
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increase the effectiveness of the control surfaces in 

addition to changing the modal structure. This can be 

considered as effectively changing the gain in the actuator 

channels. Our VSS controller is only guaranteed insensitive 

to parameter changes which lie within the null space of the 

B matrix, since it is these which are contained in the 

sliding mode design. Changes in the effective actuator 

gains will hence affect the system response since these will 
lie within the range space of the B matrix. It is therefore 

none too suprising that the responses of Figs. 7.9 show such 
a degree of disparity, bearing in mind the fact that the 

control surface 
' 
deflections are broadly similar. Given the 

fact that the spiral mode is now. somewhat faster than 

desired, the overall response at 45 ms-1 is acceptable and 
clearly stable with the desired Dutch roll decoupling into 

the v and r states. Control surface demands are small in 
both cases. 

It is unrealistic to consider the robustness properties 

of this control policy in isolation and Chapter 8 
investigates the robustness achieved by VSS with that of the 

olutimal control policies of Chapter 6. 

In the above design recall that we employed full state 
feedback with 'switching' based, on attaining two six- 
dimensional hyperplanes. This leads to a rather complex 

controller structure, even when equation 7.40 is employed. 
In addition it is necessary to have available all states for 

this implementation. Section 6.7 discussed and demonstrated 
the use of a reduced state model for the v and r Dutch roll 

subsystem with simple proportional gain employed in the roll 
channel. This decomposition was shown to provide acceptable 

performance when implemented via an optimal control policy. 
A reduced order (SISO) Dutch roll VSS controller as applied 
to the aircraft problem will now be examined. 

7.7 Reduced order Dutch Roll VSS Control 

Dutch roll is largely constituted by the v and r states 
of the lateral motions. In section 6.7 a reduced model for 
these two states was derived with the inclusion of the 
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control surface, the rudder, actuator. This gives a third 

order single input sub-system of the form of equations 6.59, 
i. e. 

-0.277 -32.98 -5.432 v0T, 
0.365 -0.319 -9.49 r0-7.53 

1 

T- 0.0. -5.10 

Deriving the state 'A' and IBI matrices from the above 
equation and applying the VSS design technique to this 
simple system a VSS controller may be derived as was done 

previously for the complete lateral system. For the null 
space dynamics we again choose the Dutch roll mode to have 
two complex eigenvalues of -0-63 + 2.42j the 
eigenvectors being fixed in this case. This second order 
null space dynamic will then govern the behaviour of the 
system during sliding. After suitable transformation and 
partitioning, a consideration of the eigenstructure of the 
(2 x 2) equivalent system matrix, equation 7.39, gives the 

switching hyperplane matrix, C, as 

[-0.002 -0.0059 0.11 

in order to achieve the desired sliding mode. As before, 
the range space dynamics (first order in this case) are 
chosen to be fast and stable to ensure reachability and with 
due regard to the actuator bandwidth constraints. A choice 
of -10.0 for this range space eigenvalue should maintain 
resonable actuator demands for, in this case, the rudder. 
Employing the control design as in equation 7.40, i. e. a 
scaled unit-vector type of control, the following LF M and N 
matrices are obtained 

[0.0213 -0.0083 -0.56641 

[0.0001 0.0003 -0.005 1 

C-0-001 -0.0029 0.05 1 

The performance of such a controller was initially 
investigated by simulation with the simple third order model 
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of equation 7.53. The controller should provide the desired 

eigenvalues for the complex Dutch roll pair and ensure rapid 
reaching of the sliding hyperplane. Figs 7.10 a) to e) show 
the responses of the nominal third order simulation (solid 
lines) with the non-linear controller for an initial 

condition of 0.1 ms-1 in v. Note that the Dutch roll mode 
is evident on both the v and r responses in addition to the 

actuator response. Note, however, that there is some 
'chatter' on the actuator demand signal (Fig 7.10 d)) due to 
the discontinuous nature of the control. Note also that the 

switching function (7.10 e)) is close to zero, clear 
evidence that the sliding mode is achieved and maintained. 
Also shown in Figs. 7.10 are the system responses due to a 
representitive + 20% variation in the system 'A' matrix used 
in the simulation. The Dutch roll period is clearly changed 
by this action but damping remains similar in both cases. 
The actuator demands remain small, however. 

To assess how this reduced order controller performs 
when used with the complete lateral motion' model the 

controller derived above was employed with the linearised 

simulation of the lateral dynamics used previously for 33 

ms-1 airspeed. The results of this simulation run are shown 
in Figs. 7.11 a) to f) (dotted response). For the purposes 
of this simulation the roll loop was closed from roll angle 
to aileron with a simple proportional gain. The roll loop 
is therefore a linear control loop and the roll rate, p, 
roll angle, v, and aileron, tp responses reflect this fact. 
The non-linear controller is implemented in the yaw channel 
and uses the rudder as the control surface. The v and r 
responses demonstrate an acceptable Dutch roll performance 
with approximately the desired 2.3 sec. period, although the 
damping may be considered to be slightly more than desired. 
Also shown in Figs 7.11 a) to f) are the corresponding state 
responses when an identical control strategy was employed 
with the non-linear lateral motion model. The proportional 
roll loop clearly remains stable although with a changed 
dynamic. The Dutch roll mode is reasonably close to the 
linear simulation although the control activity is clearly 
increased. The control action is, however, roughly similar 
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Fig 7.10 cont. 

1.3023 

1.0418 

? ei 4 

0.5209 

0.2603 

0.0000 
"0 
r. 

-0.2405 

(V 
10 
u -o.? i14 
I 

-1 R4 IS 

-1-3023 

0.0002 

0.0002 

0.0001 

X 0.0001 L) 

rT 0-0000 
0 

., -I 

4J -0-0000 

4-4 0.0000 

-0.0001 

41 -0-0001 
., q 
. nt 
Ea 

-0-0002 

-0-0002 

0.0 

0.0 

d) 

e) 

277 



0.21of 

0.1641 

0.1266 

0.0644 

0.0422 

0.0009 

C) -0.0422 

> 
-0.0944 

(1) 
10 
, r4 -0.1266 

EO 

-0.168? 

0.2109 

0.5055 

0.4044 

0.3033 

0.2022 

Ea 
0.1011 

0.0000 

. 0.1011 

-0.2022 

-0.3033 

- 0.4044 

-0.505S 

(0 
Id 

4-J 
cd 

cl 
P-. 

Fig 7.11 Reduced Order Dutch Roll State Responses 

for VSS Control (lateral model at 33 ms-1 

airspeed, linear vs. non-linear) 

0.0155 

0.0124 

0.0093 

0.0062 

0.0031 

0.0000 

-0.0031 

-0.0062 

-0.0023 

-0.0124 

-0.0iss 

6.0 

i 

n-linear model 

near model 

1.0 

b) 

6.0 

c) 

278 



0.05311 

0.0431 

0.0323 

0-0108 

0.0000 "0 
:i 

-0.0108 

0 -0.0323 j4 

0.0431 

0.0539 

0.0061 

10 

10 

ß4 -O. ooii 
Q) 

0.0317 

0.0413 

0.0310 

10 
Co 0.0207 

0.0103 

,0 

0.0413 

-0.051 F 

1.0 

d) 

-linear model 

ear model 

1.0 

e) 

8.0 

f) 

279 

Fig 7.11 cont. , 



in both cases. The relatively large demands placed upon the 
actuator, the rudder, by the discontinuous control may be 
considered a disadvantage of this scheme although much of 
the 'chatter' could be filtered out prior to the actuator. 
The larger degree of 'chatter' in the non-linear simulation 
is probably due to the influences of the lunmodelled' system 
states. 

The reduced order controller would thus appear to 
provide reasonable control of the Dutch roll mode when 
employed with the full non-linear system. It would, 
however, appear that the demands placed on the rudder are 
quite severe. It is also important that the cross-coupling 
inherent in the actual system between roll and yaw cannot 
force the v, r subsystem away from the sliding mode. These 

aspects require further investigation in order to ensure the 
stability and robustness of this scheme. 

7.8 Summary 

In this Chapter a variety of non-linear control schemes 
have been investigated and the 'performance' of each 
assessed. Of the schemes examined the VSS sliding mode 
theory would appear to be the most promising when compared 
with the heuristic approach of ZOC and VICTOR. This type of 
control scheme has a considerable mathematical foundation, 
as has been shown, and has very desirable robustness 
properties. The investigations of the VSS control applied 
to our particular application, the Machan aircraft, have 
demonstrated that the achievable performance is also 
acceptable in addition to the provision of a degree of 
parameter insensitivity. 

These initial studies now require extending to provide 
a quantitative assessment of the improvements in parameter 
insensitivity achieved. In the following chapter the 
robustness aspects of both the VSS and optimal control 
schemes are briefly considered with a'view to providing a 
critical comparison of these techniques. 
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CHAPTER 

Aircraft Sensitivity Analysis 

8.1 Introduction 

To facilitate the analysis and design of control 

systems for physical systems we must, in general, derive a 

linear mathematical model of the particular system. This 

model will inevitably be an abstract simplification of the 

real system which will in practice probably be highly non- 

linear or physically highly complex. The motivation behind 

even attempting such a gross simplification is to enable us 

to apply relatively powerful mathematical techniques to the 

control 
_ 

design and synthesise suitable controller 

structures. We must, inevitably, lose some of the inherent 

properties of the physical system when such models are 
derived. For example, the non-linear nature of the system 
is always lost when we derive a linear or linearised system 
description. The resulting linear model will no longer, be 

applicable to the physical system if, say, the operating 

point of the system changes. It is therefore inevitable 

that a control system designed for one particular system 

model will not perform as desired when implemented on the 

physical system which is highly unlikely to exactly match 

the simplified model for which the controller was designed. 

Such a statement does, naturally, raise the question as to 

why control systems are designed on the basis of linear 

models ? one is led to suppose that the answer to this 

question is "we have to start somewhere", which probably 

satisfies the pragmatists or engineers faced with practical 

problems. The purist would probably point to the fact that 

the controller designed for the linear system will provide 
lacceptablel control over a bounded range . 

'of plant 

variations. Outside this range the performance will fail-to 

be acceptable in some sense# e. g. poor stability, poor time 

response, etc. This latter approach has led to the 
development of a large body of theory which attempts. to 

answer the question 'how well does a given controller 

strategy perform when faced with the real time-varying or 
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non-linear system' ? This property of control systems is 

generally termed sensitivity or robustness (i. e. the 
controller can be considered insensitive to a bounded set of 
changes in the system model). 

One underlying concept of control system theory, is that 
of feedback. ' Feedback is a very useful tool since not only 
does it all, ow a desired input-output relationship to be 
realised but it also reduces the effects of uncertainties on 
the system performance. Employing feedback thus reduces the 
overall effects of changes , 

in the system parameters and 
allows a given performance to be maintained. This is a very 
important property and provides the motivation behind much 
control system theory in general. The provision of feedback 
control therefore improves the system performance and 
reduces the degree to which this performance changes as a 
result of system uncertainties. 

Returning tp our'specific problem, that of the aircraft 
system, this is a highly 'uncertain' system. Primarily, 
this uncertainty is due to the non-linear nature of the 
aircraft equations of motion in addition to the external 
influences on the airframe, e. g. measurement noise, wind 
gusts, turbulence, all give rise to plant uncertainty. 

In Chapter 2a linearised model of the aircraft was 
derived making certain gross simplifications regarding the 
aircraft operating point and conside'ring only small 
perturbations about this nominal operation. The linear 
model thus derived will therefore only be applicable at, or 
close to, this operating point. As an aircraft normally 
passes through a range of such operating points in any given 
manoeuvre, the model will be invalid over the majority of 
the aircraft operations. 

In Chapters, 5,6 and. 7a number of di ff erent control 
strategies have been developed. Some pains have been taken 
to illustrate how these controllers perform with the non- 
linear system using a non-linear simulation. To provide a 
somewhat more rigorous analysis of the likely robustness 
properties of these controllers, the following discussion 
examines the degree to which each improves the 
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eigenvalue/eigenvector sensitivity and hence provides 

insensitive modal assignment. Perhaps initially we should 
differentiate between the terms robustness and sensitivity. 

Whilst both of these terms have been used to refer to 

the ability of a system to tolerate uncertainties in 

modelling or non-linearities there is a definite difference 

between these measures. The following definitions due to 
Frank (90,91) serves to clarify this difference : 

Parameter Sensitivity :A system function (or system) 

is said to be sensitive to parameter variations if S is 

unlike 0. In the special case S=0 the function (or 

system) is said to be zero sensitive. If a measure of 

S is small,, the system function (or system) is termed 

low sensitive or insensitive. 

Robustness :A system is called robust if the system 

property of interest remains in a bounded region in the 

face of a class of finite bounded perturbations. 

From the-above it is clear that sensitivity refers 

principally to the local properties of the system around 

which the sensitivity measure S is evaluated at the nominal 

operating point of the system. This measure is of 

importance but provides little idea of the global properties 

of the system as a result of parameter variations which may, 

of course, change the nominal operating point. Robustness 
is a more general measure in as much as we define a 

particular system property to lie within a given-Iregion as 

opposed to at a fixed point. The parameter chosen may, for 

example, be a measure of relative stability or a measure of 

admissible control demands. Equally, the classes of 

perturbations may be quite broad and cover changes in system 

structure in additon to variations in plant parameters. 

Clearly then, one would in general, and certainly in the 

aircraft problem, be more interested in the robustness of 

the system as opposed to, its sensitivityl, although the two 

go hand in hand, to some extent. 

A robust, controller can be defined as one which 

maintains, a given measure of system performance within 

prescribed limits in the face of a bounded set of parameter 
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variations. much work has been conducted into providing 
specified robustness properties from conventional control 
design methodologies, for example LQP, etc. (90-108). These 
state or output feedback structures inevitably provide this 
robustness by sacrificing performance (90). The technique 
of VSS control changes the feedback structure dynamically 

and this may provide more desirable robustness properties 
(60,62,77,81). 

The mathematical complexity which accompanies the 
robustness/sensitivity problem is somewhat intractable in 

all but the simplest of cases. For the present discussion 

a somewhat; more pragmatic viewpoint is adopted and an 
examination made of the degree of 'robustness' achieved by 
the controller designs already considered. (A considerable 
body of literature is available on this topic and a short 
list of applicable work is included in the references (90- 
108,121,122)). Previous Chapters have developed both LQP 
and VSS controllers for the lateral motion sub-system of the 
aircraft model. It is these which will now be examined with 
a view to assessing the robustness achieved in both cases. 

8.2 Robustness of Lateral SAS Controllers 

Before moving on to examine the robustness aspects of 
the lateral SAS controllers a measure of a particular system 
property which it is required to be robust in some sense 
must be defined. There is clearly a considerable choice 
available here. It might, for example, be required that the 
time response of the system remain within certain bounds or 
that the demands placed on actuators be within prescribed 
limits. obviously, these bounds will depend to a large 
extent upon the particular application and will probably be 
derived from a consideration of the performance requirements 
placed upon the real system. In the aircraft, problem it is 
normal, to specify, for example, that the Dutch roll 
transient response be bounded so that over the flight 
envelope this mode retains the_specified degree of damping, 
etc. An alternative way of looking at this is to require 
that the system poles which constitute the Dutch roll (v and 
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r) remain within some bounded region on the s-plane as a 

result of changing flight conditions. This places a 
requirement primarily on maintaining the eigenvalues at 
prescribed locations. Allied to this must be a need to 

maintain prescribed eigenvector directions such that the 
'designed for' degree of motal decoupling is achieved. It 

will be recalled that in both the LQP and VSS designs both 

eigenvalue and eigenvector assignment was provided based on 
a nominal lateral system model. A reasonable measure of 
robustness for these systems may thus be the degree to which 
the eigenstructure of the closed-loop sytem is maintained 

with typical variations in aircraft parameters. If such a 

measure is to be used limits for the variations which will 
inevitably occur in say the closed-loop eigenvalues must be 
initially def ined. 

For the purposes of the present discussion a fairly 

pragmatic view is adopted and an investigation made of the 

eigenvalue and eigenvector variations brought about by a 
typical manoeuvre in the non-linear aircraft simulation 
using the LQP and VSS designs. Before moving on to these 

aspects it -is instructive to examine how the open-loop 
aircraft eigenvalues vary over a typical manoeuvre and for 

various airspeeds. 

8.2.1 Open-Loop Aircraft Eigenvalue Sensitivity 

From a practical viewpoint it would appear to be quite 
difficult to determine the aircraft eigenstructure over a 
typical manoeuvre. It would , for example, be difficult to 

carry out such a procedure 'on-line' in a real aircraft and, 
indeed, the results would reflect the closed-loop structure 

since, *presumably, some type of SAS system would be 

operative. The only practical method is to examine the 

aircraft dynamic properties using simulation techniques as 
has already been demonstrated. A fully non-linear 

simulation would embody the aircraft structure and hence 

behave as the aircraft in flight. The real advantage here 
is that one has immediate access to all of the system states 

and variables. Even with this access it, is difficult to 
determine any results regarding actual system modes and 
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distributions of these. Remember that in Chapter 2 two 

alternative techniques were reviewed for deriving linearised 

models for the aircraft. In each case a state space 
description of the aircraft was produced either via. purely 
intuitive arguments, given the physics of the aircraft, or 
by deriving the first order approximations to the non-linear 

equations. ý From such a state space model it is a relatively 

simple matter to compute the system eigenvalues and 
eigenvectors. of the two techniques reviewed the 

linearisation using first order approximations to the 
individual elements of- the system 'A' and IBI matrices 

appears to be the most promising. This is largely due to 
the fact that the functional dependence of each of these 

elements on the set of state variables x is retained. In 
this way a locally linearised model results but this 

linearisation may be done at each point in the aircraft's 
flight envelope. If this is the case a set of A and B 

matrices for the system may be determined, each of which is 

applicable for a given set of the states, X. The 

eigenstructure of the system represented by these A's and 
B's may then be found. 

The technique adopted in the present studies has been 

as follows :: 

i) Choose a particular flight configuration and manoeuvre 
schedule for the aircraft. 

ii) Using the non-linear simulation evaluate the elements 

of the system A and B matrices via. the results of 
Chapter 2 for a number of discrete time points. 

iii) Evaluate, at each time point, the eigenstructure of the 
A matrix. 

iv) Plot-the eigenvalues graphically. 

Using this technique gives a clear indication of how 
the 

_eigenvalues 
of the system- vary over the particular 

manoeuvre chosen in D. 

To demonstate this technique a typical aircraft 
manoeuvre demand, is considered. The discussion is limited 
to the lateral motion sub-system of the aircraft for which 
both VSS and LQP controllers have already been derived. In 
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the following results the aircraft simulation is employed 
with closed-loop feedback via. one of the above control 
schemes. The oPen-loop A matrices are derived from a 

straightforward application of the first variational 
expressions of Chapter 2. The eigenvalues and eigenvectors 
then follow. The closed-loop eigenvalues and eigenvectors 
may be derived by evaluating det((sI - (Ala + BlaKla))) 

where the open-loop A and B are evaluated using the above 
techniques and Kla is the nominal state feedback gain 
matrix. The locally linearised open-loop A's and B's are 
clearly valid whether the aircraft is employed in an open- 
or closed-loop configuration. 

The particular manoeuvre chosen is an initial condition 
of 1 ms-1 in side velocity and 0.5 rad s-1 in roll rate. 
This will provide relatively large perturbations in all the 
lateral states with realtively large changes in the lateral 
A and B matrices. It will also maintain consistency with 
the time responses obtained previously. This manoeuvre was 
carried out at a range of airspeeds, namely 30,40 and 50 

ms-1. The longitudinal motions have not been considered 
here but these were held approximately constant over the 
lateral manoeuvre. Note, however, that some 
lateral/longitudinal coupling is inevitable. A reference to 
Table 3, Chapter 2, should make this clear since the 

majority of the aerodynamic derivatives change with 
airspeed, equally, some pitch coupling into lateral motions 
is inherent in the_structure of the actual aircraft (a non 

zero pitch angle is normal during static flight). In 

evaluating these linearised equations, and hence the 

eigenvalues, cross-coupling effects are included implicitly. 

To demonstrate the typical magnitude ranges of the 
elements of the open-loop linearised lateral state A and B 

matrices a number of samples are shown in Table 8.1. These 
were derived from the non-linear simulation using the 
locally linearised equations of Table 2.2 (Chapter 2) and 
are evaluated for various values of yaw and roll attitudes. 
These should be compared with the results of section 2.3.2 
where the longitudinal cross-coupling has been ignored. The 
results of Table 8.1 were obtained for 33 ms-1 forward 
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Table 8.1 

Lateral A and B matrix variations with 

roll and yaw attitude : 33 mS-1 airspeed 

9= 0.0 

-0 . 254 7.429x10-3 -30.339 9.805 0. 

-9.35x10-2 -7.862 3.82 0. 0. 

0.3366 6.273x10-2 -0.3075 0. 0. 

0. 1. -3.247x10-2 -3.08x10-3 0. 

0. 0. 1. 9.499x10-2 0. 

-4.62 0. 

0. -24.359 

-8.009 0. 

0. 0. 

0. 0. 

(P =0 . 15 rad 

-0.2562 -8.74, x, 0-3 -29.788 9.7932 0. ' 

-0.111 -7.79 2.994 0. 0. 

A 0.333 -5.04x10-2 -0.2799 0. 0. 

0. 1. -5.844x10-2 4.23x10-3 0. 

0. 0. 1.0017 -7.25x10-2 0. 

-4.54 0. 

0. -27.95 

-7.87 0. 

0. 0. 

0. 0. 
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Table 8.1 continued 

0.25 rad 

-0.2667 -1.775x10-3 -29.08 9.8 

-0.1222 -7.765 3.94 0. 

0.332 -0.215 -0.288 0. 

0. 1. -2.496x10-2 7.9x, 0-3 

0. 1. -0.317 

-4.5 0. 

0. -23.7599 

-7.812 10. 
0.0. 

0.0. 

0=0.0 

-0.2564 3.29x10-3 

-9.437x10-2 
_-7.8735 

0.3371 0.1143 

0.1 . 
0. 

, 
0. 

L. 

-4.634 

0. 

-8.03 

0. 

0. 

0. 

0. 

0. 

0. 

0. 

-30.39 9.8 

3.358 0. 

-0.3 0. 

-4.023x10-2 -6.77x10-3 
1. 0.16844 

0. ' 

-24.43 

0. 

0. 

0. 
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Table 8.1 continued 

O= 0.15 rad 

A= 

-0.254 -8.324x10-3 

-9.638x10-2 -7.79 

0.334 -0.209 

0. 
- 

1. 

0. 
,- 

-30.088 9.6855 0. 

3.45 0. 0. 

-0.28 0. 0. 

-4.33x10-2 1.3 3xl'O-' 2 0. 

0.98921 -0.306 0 

- 4.542 0. 

0. -23.944 

-7.874 0. 

0.0. 

0., 0. 
- 

O= 0.25 rad 

-0.2527 -4.884x1()-4 -30.003, 9.492 0. 

-0.11 -7.77 3.94 0. 0. 

0.333 -0.183 -0.29 0. 0. 

0. 1. -1.14x10-2 3.08x10-3 0. 

0. 0. 0.9677 -0.2614 0. 

-4.513 0. 

0. -23.794 

-7.824 0. 

0.0. 

0.0. 
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speed, u. Inevitably, side velocity, v, and vertical 
velocity, w, components will be produced in the non-linear 

model and these will be reflected in the total airspeed, VT* 
Hence the differences between the linearised state matrices 
and those derived in section 2.3.2 can be noted. 

Figs. 8.1 a) to f) show the variation in the lateral 

motion open-loop eigenvalues over a ten second simulation 

with the initial conditions as above, for 30,40 and 50 ms-1 

airspeeds. These plots were obtained using the technique 

outlined above. The nominal lateral open-loop eigenvalues 
for 33 ms-1 Istick-f ixed' f1ightgnoring 

longitudinal/lateral cross-coupling, are 

-0.49983 ± 3.5j ; -8.5579 ; 0.0 ; 0.119 

It should be expected that the linearised lateral A matrix 
had eigenvalues close to these but some variation is to be 

expected as the airspeed varies in addition to the effects 
of pitch cross-coupling. This latter effect is most 
strongly evident on the real parts of the Dutch roll 
eigenvalues and the spiral mode by the large initial 

transient swings in these , Figs 8.1 a) and e). Consider 
the effects on each of the modes seperately : 

a The Dutch roll mode has a complex eigenvalue pair. 
Over the three airspeeds these eigenvalues vary 
dominantly in their imaginary parts, Fig. 8.1 b), the 

real parts remaining relatively constant, 8.1 a). 
After ten seconds of simulation these Dutch roll modes 

are at -0.36 + 3.64j ( L=0.098, con=0.58Hz) and -0.41 + 
4.84j ( L=0.085, &)n=0.77Hz) for the 30 and 50 ms-1 
airspeeds respectively. The damping of these modes 
decreases by 13.3% and the frequency increases by 32.8% 

over this 66% change in airspeed. Poorer damping being 

a consequence of the higher airspeeds. 

b) The roll subsidence mode exhibits fairly large 
variations over the airspeeds chosen. Slight evidence 
of pitch cross-coupling is present initially. After 
ten seconds this mode has values of -8.9 and -11.6 for 
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the 30 and 50 ms-1 airspeeds respectively. This 
indicates a 30.3% increase in response time for this 

mode. Note, however, that the higher airspeeds tend to 
increase the 'stability' of this mode. 

C The spiral mode exhibits quite marked cross-coupling 
from pitch in its initial transient response. It also 
is sensitive to changes in the airspeed, but higher 

airspeeds tend to improve the stability of this 

unstable mode. Again, after ten seconds the spiral 

mode has values of 0.069 and 0.043 for the 40 and 50 

ms-1 airspeeds respectively. This representing a 

reduction of 60.2% in this eigenvalue. 

The remaining three eigenvalues are invariant to 

airspeed, changes. These are the two actuator modes at 

-10.0 and -20.0, Figs. 8.1 e) and f), which are simply 
modelled as first order invariant eigenvalues and the yaw 
integration which remains a simple integration over all 
flight conditions. 

The open-loop eigenvalues thus exhibit quite marked 
variations in value over the particular manoeuvre chosen and 
vary with varying airspeed, the largest variation in mode 
being from the spiral divergence. After the ten seconds of 

simulation most of the eigenvalues appear to have settled to 

steady state values although evidence of the long- term 

spiral decay shows through in some modes. 

In order to decrease the succeptability of the 
eigenvalues of this system to changes in airspeed and to 
provide a given modal distribution, some form of closed-loop 
control would normally be employed. It would also be 

expected-that this action would reduce the quite clear 
longitudinal/lateral cross-coupling. Because the system 
parameters change so radically with airspeed it is 

unrealistic to expect a,, fixed control structure to provide 
completely insensitive eigenvalue assignment, some variation 
will thus still be evident. To provide some idea of the 
insensitivity properties of fixed closed-loop state feedback 
the following section examines how well the previously 
designed optimal control state feedback law preserves the 
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system eigenstructure with changing airspeed. 

8.2.2 Closed-Loop Aircraft Eigenvalue Sensitivity 

Both LQP and VSS controllers have previously been 
derived for the lateral motion model of the Machan aircraft. 
State feedback should reduce the sensitivity of the system 
to changes in aircraft parameters as a result of changing 
flight configuration in addition to providing a prescribed 
eigenstructure. In the open-loop case it has already been 

demonstrated that the aircraft parameters vary quite widely 

with airspeed and one is now prompted to examine the degree 

to which fixed state feedback can minimise the resulting 
changes in the closed-loop eigenstructure. Recall that it 

is possible using the non-linear simulation to evaluate the 
locally linearised 'A' and IBI state matrices at a number of 

time points over a prescribed aircraft manoeuvre and hence 
derive the open-loop eigenstructure. For the closed-loop 

state feedback case it is simply required to evaluate the 

eigenstructure of the equivalent closed-loop 'A' matrix i. e. 

(Ala + Bla Kla) with Kla being the nominal state feedback 

gain matrix. It is clearly possible to do this and, 
following the procedure adopted in section 8.2.1, produce 
the eigenvalue variations over the manoeuvre in graphical 
form. It is, not possible to use-'this approach for the VSS 

controller since the effective state feedback gains change 

as a resultof variations in the states and hence an 

equivalent Kla matrix is not available. For the moment, the 

discussion is confined to the LQP state feedback control law 

and its likely performance. 

The results of Figs. 8.1 are repeated, for the closed- 
loop case, in Figs. 8.2 a) to f). Note that the state 
feedback gains are those derived via. the 

eigenvalue/eigenvector assignment technique of section 6.5. 

For this design recall that the closed-loop poles were 
disposed at : 

-0.81 ± 2.72j ; -4.39 ; -0.1 

for the nominal 33 ms-1 'stick fixed' linear model. 
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Considering each mode separately, as before, it should be 

noted that : 

a The Dutch roll mode, Figs. 8.2 a) and b), again varies 
over the three airspeeds but the variations in the 
imaginary part are reduced with respect to Fig. 8.1 b). 
The degree of pitch cross-coupling 'is also reduced, as 
evidenced by the smaller initial transients in the real 
part of this mode, Fig. 8.2 a). The mode has values of 

-0.64 + 3.2j (ý =0.2, wnýo . 52Hz ) and -0.94 + 4. Oj 
( L=0.23, wn=0.6511z) after ten seconds of simulation 
for the 30 and 50 ms-1 airspeeds respectively. This 
represents a 15% increase in damping and 25% increase 
in frequency for this motle. Note that in both cases 
the eigenvalues are fairly close to, but somewhat 
above, 

- 
the achievable -0-81 + 2.42j (ý =0.32, 

W n"20.4lHz) eigenvalue. 

b) The roll subsidence models, Fig. 8.2 c), variation with 
airspeed is now reduced although slightly more pitch 
cross-coupling is evident at higher airspeeds. After 
ten seconds of simulation the mode has values of -7.14 
and -8 .25f or the 33 and 50 ms-1 a irspeeds 

respectively, this representing an increase of 15.5%. 
The mode is, however, somewhat faster than desired. 

c Th Ie spiral mode, Fig. 8.2 d), is somewhat improved over 
the open-loop case since, for the most part, it is 

rendered stable. In the 30 ms-1 airspeed case, 
however, note that the mote is initially slightly 
unstable although after six seconds it becomes stable 
but is relatively slow, even after ten seconds of 
simulation. Pitch cross-coupling is still clearly 
evident in this mode (c. f. 'Fig. 8.1 d)). After ten 

seconds of simulation the mode has values of -0.1 and 

-0.146 for the 40 and 50 ms-1 airspeeds, this 
representing an increase of 46% in response speed. 
This mode is clearly rather poorly behaved and could 
present something of a problem to control at lower 

airspeeds. At higher airspeeds, however, the mode has 

approximately the desired closed-loop value. 
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The f inal modes are the two actuators and the yaw 
integration. The two actuator modes are shown in Figs. 8.2 

e) and f) and are generally rather faster than desired and 

show very little variation over the three airspeeds. The 

rudder actuator is nominally around -15.0 s-1 whilst the 

aileron actuator is around -31.0- s-',, these being somewhat 

faster than the desired -13.0 and -21.0 s-1. The yaw 
integration is left open-loop and hence remains an 

integration over all flight conditions. 

The actual time histories of the lateral states and 

controls for the non-linear model are shown in Fig. 8.3 a) 

to i) for the particular manoeuvre and for the three 

airspeeds chosen. These support the general conclusions 

drawn above principally the increase in Dutch roll frequency 

and, damping at higher airspeeds and the relatively small 

variations in the roll subsidence mode (p response). The 

behaviour of the spiral mode (V response) also demonstrates 

that this is a relatively slow mode at low arispeeds whilst 
its stability-and response speed is improved for higher 

airspeeds. 

Also of interest is the degree to which the 

eigenvectors of the closed-loop system vary over this 

typical manoeuvre. The state feedback structure used should 

provide prescribed eigenvector assignment and this should 

remain insensitive to changes in airspeed, etc. The 

eigenvectors of interest are those associated with the v, p, 

r and (p states since it is these which were considered in 

the LQP eigenvector assignment. For the 30 ms-1 airspeed 

condition, which was chosen as the nominal case, the 

closed-loop eigenvectors are given in Table 8.2 for the 

manoeuvre considered above at 2.0,5.0 and 7.0 seconds into 

the manoeuvre. These eigenvectors can be compared with 
those obtained for the linear design in section 6.5.1. 

Overall, the eigenvectors provide close to the desired modal 
decoupling although the coupling from the imaginary part of 
the Dutch roll into roll rate is larger than desired. The 
time histories of Fig. 8.3 also indicate that the prescribed 

modal coupling has been closely achieved. Over the 

manoeuvre chosen the eigenstructure is preserved quite well, 
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the (p eigenvector, governing the spiral mode distribution, 

probably undergoing the largest variations in its coupling 
into the remaining states. 

The eigenstructure also varies with the three airspeeds 
considered and Table 8.3 details the degree of misalignment 
of the eigen vectors from the 30 ms-1 airspeed case for the 
40 and 50 ms-1 airspeed cases. The misalignment angles were 
evaluated by treating the 30 ms-1 eigenvectors as the basis 

set and using the relationship 

cos 01 ei, wi 1 

11 ei 11 

with ei the base eigenvector and wi the eigenvector of 
interest. Note from Table 8.3 that all of the misalignment 
angles are small indicating that the eigenstructure is 

preserved quite well. The worst offender in this respect 
being the spiral mode and the imaginary part of the Dutch 

roll mode. This result is supported by the time histories 

of Fig. 8.3 which show little variation in modal coupling 

with airspeed and attitude variations. 

It is evident from the preceeding discussion that the 

eigenstructure robustness properties of the system have been 

improved by the inclusion of the fixed optimal state 
feedback law. Boththe eigenvalues and eigenvectors of the 

system change by a smaller amount in the. closed-loop case 
as compared with the open-loop case and the system's time 

response is maintained tolerably well over the three 

airspeeds considered. Far better results can be achieved by 

employing a gain-scheduling philosophy which changed the 

state feedback gains with changing airspeed, for example,, 
but this is arguably more difficult than using simple 
classical gain-scheduling schemes. 

8.2.3 Robustness of VSS Controller 

As mentioned above it is impossible to determine 

quantitatively the eigenstructure of the VSS lateral motion 
controller using the approach outlined above. This is due 
to the discontinuous nature of the control and the 
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Table 8.2 

Lateral Eigenvectors for 33 ms-1 airspeed 

Time = 2.0 secs 

p el = [0.0218 0.9865 -0.0358 -0.1448 -0.0231 -0.0594) 

v1Re e2 = [0.9946 -0.0252 0.0047 
, 
-0.0098 0.0102 0.0006) 

r im e3 = 10-0 -0.3514 -0.9284 0.1091 -0.0419 -0.0953) 

0 e4 " 2 [0.1866 0.042 0.2872 0.9379 -0.0051 0.03631 

Time = 5.0 secs 

p el = [0.016 0.9871 -0.0346 -0.1418 -0.0237 -0.0596) 

výRe e2 [0.995 -0.0214 0.0055 -0.0068 0.0101 0.0006) 

r Im e 3 10 -0 -0.2639 -0.9585 0.0898 -0.0454 0.0924) 

e e4 - 2 [0.1163 0.0035 0.2819 0.9515 -0.0071 0.0284) 

Time = 7.0 secs 

p el [0.006 0.9874 -0.036 -0.1396 -0.0244 -0.069 1 

výRe e2 [0.9951 -0.0207 0.0059 -0.006 0.01 0.0005) 

r Im e3 = [o*O -0.2464 -0.9636 0.085 -0.0457 0.0917) 

e e4 = [-0.0904 0.0 -0.2777 -0.9556 0.0 0.0155) 
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consequent lack of a nominal set of state feedback gains. 
Perhaps the most instructive assessment of robustness for 

the VSS controller is by way of a comparison with the LQP 
design already considered. Againt however, a problem is 

encountered here in as much as the insensitivity properties 

of VSS are only guaranteed when sliding, the initial 

reaching dynamics will, inevitably, also be manifested in 

the time responses. It would therefore not be expected that 
the system time responses with VSS and LQP should be 

identical, nevertheless it may be instructive to consider 

such a comparison. 

Consider the lateral manoeuvre chosen above at the 

three airspeeds 30,40 and 50 ms-1 with the non-linear 
simulation. A comparison of the state responses after a ten 

second simulation, for the LQP and VSS controllers are given 
in Figs. 8.4,8.5 and 8.6 for the 30,40 and 50 ms-1 

airspeeds respectively. Considering first the 30 ms-1 case, 
Fig. 8.4, note that the responses are broadly similar. The 
Dutch roll mode is however somewhat less well damped with 
the VSS controller in addition to having a slightly shorter 

period. Recall that the LQP design provided close to the 
desired response in Dutch roll and hence it may concluded 
that the VSS controller provides a slightly poorer Dutch 

roll performance in terms of damping and frequency. The 

roll response for the VSS controller is very similar to that 

achieved by the LQP design, note however that some Dutch 

roll coupling into roll is apparent. The VSS controller 
also appears to demand more of the aileron than the LQP 
design whilst requiring less of the rudder. These trends in 

the VSS control are also-reflected in the responses at 40 

ms-1 and 50 ms-1, Figs. 8.5 and 8.6, with reduced Dutch roll 
damping and period and increased Dutch roll coupling into 

roll. Over the three airspeeds then the VSS controller's 
response varies quite widely. This is demonstrated in Fig. 
8.7 which shows the state responses of the system under VSS 
control over the three airspeeds. A straightforward 
comparison of Figs. 8.7 and 8.3, giving the corresponding 
state responses of the LQP controller, perhaps indicates 
that the LQP design may have the better robustness 
properties in terms of preserved Dutch roll, spiral and roll 

306 



1.1929 

9.11343 

*. M? 

-4 0.4?? 2 
I 
ril 
El 

4-) 
. 0-0000 

., 4 
ci 
0 

-0-2386 

10 
., 4 
U) 

-0.? ISF 

-0.4543 

-1.1929 

0.5219 

0.4173 

0.3132 

0.0000 

-0.1044 

-0.4175 

-0.5219 

0.128? 

0.1030 

0.0772 

0.0237 

-0.0000 

-0.025? 

41 
-0.0315 

-0- 124p 

Fig 8.4 State Responses for Non-lineavLateral Model 

(33 ms-1 airspeed, VSS vs. 'LQP control) 
L- -1 

0.0 

a) 

0.0 

b) 

10: 0 

c) 

307 



0. OIFO 

0.0832 

Q) 

0.0413 
41 

., l 
4j 0.0555 
4.3 

0.04te 

0 

0.0277 

0.0131 

0.0000 

0.0082 

0.0065 

-TJ 0.0049 

0.0000 

,0 -0.0016 

-cj -0.0033 

0.065S 

0.0324 

0.0393 

0.0262 

0.0131 

-0.0000 
u 
c) 

1-4 
4-4 "o*O, 31 
Q) 

Ici 

r. - 0.0262 

0 

-0.0393 

O. os24 

-0.06ss 

0.0 

10.0 

d) 

e) 

f) 

303 

Fig 8.4 cont. 

0.0 2.0 4.0 6.0 8.0 to. 0 

t'me, s 



Fig 8.5 As Fig 8.4 for 40 ms-1 airspeed 
$. #044 

0.4r34 

ý4 

CO 0.23? r 
Ei 

ýZ, -0.0000 
41 

-0.23? 7 
-0 

> 

ci 
,0 -0.7131 
., 4 

(0 

-0.1504 

-9.1884 

0.5030 

0.4024 

0.3014 

0.2012 

,40.1006 

0.0000 

CO 
ý4 -0.1006 

C; 
4J -0-2012 
Cd 
14 

"4 
- 0.3018 

ý4 
0 

-0-4024 

-O. SO30 

0.1180 

0.0944 

0.0708 

0.04? 2 

r4 
0.0235 

ra 

, li -0-0000 
Cd 
$4 

- 0.0236 

a; 
41 
CO -0-0472 

-0.0708 co 

-0.0944 

-0.1180 

10.0 

a) 

0.0 

10.0 

c) 

309 



oloort 

0.0801 

0.0704 

0.0606 

cu 
ý4 0-0304 

0.0490 

0.0392 
41 
4-J 
Cd 

0.0294 

ý4 
0 0.0196 $4 

0.0090 

0.0000 

0.0075 

0.0060 

0.004S 

10 
cd 0.0030 
p 

CT O-Ools 
0 

. r4 
4J 0.0000 

-4 
44 -0.0015 a) 
10 

-0,0030 

-0.0045 
ý4 

-0-0060 

-0.0075 

0.063? 

0.0510 

ITJ 
Cd 0.0342 

0.0255 
0 

., q 
41 0.012? 

44 -0.0000 
(1) 

ro 

0 -0-012? 
0 
$4 

-0-025S 

Cd 
-0-0382 

-0.0510 

-0-0637 

0.0 2.0 4.0 6.0 8.0 10-0. 

t ime, s 

VSS 
LQP 

I V. 1 10.0 

e) 

10.0 

f) 

310 

Fig 8.5 cont. 



8. #434 

0.944? 

0. Ploo 

0.4p34 

rn 

u 
0 -0.2367 

"0 

0.48P3 

0.2924 

0.1949 

0.09rs 

"0 0.0000 

0.1134 

0.090? 

0.0680 

0.0453 

to 

10 

0.0000 

4. J -0*022P 

0.0453 

0.0680 

-0.0907 

-0.1134 

Fig 8.6- Jks Fig 8.4 for 50 ms- 
1 

airspeed 

10.0 

a) 

0.0 

b) 

0.0 

c) - 

311 



I 
Fig 8.6 cont. 

0.0930 

0.0431 

0. OPOO 

10 0.0645 

Co 0.0028 

.a0.0014 

.0 

0.0000 

0 

-0.0014 

10 

,0 -0.0042 

0.062? 

0.0502 

0.03? 6 

"0 0.0231 

0 
.H 

m4 -0.0125 44 
Q) 

,Z 
-0.0251 

0 
0 
p -0.0376 

d) 

vss 

LQP 

0.0 

e) 

0.0 

f) 

312 

0.0 2.0 4.0 6.0 6.0 10.0 

t ime, s 



1.1921 

0.0543 

Q-FIS? 

0.2386 

0.0000 

-0-2386 

-0 O. Fls? 
.,. 4 
ca 

-1.1929 

0.5219 

0.41ps 

0.3132 

0.2088 

03 
0.1044 

10 
Cd 
14 0-0000 

41 0.1044 

0.2080 

'0-3132 

-0.41? S 

-0.521* 

0.128? 

0.1030 

oloppa 

0.0515 

r-i 
1 

rA 0.023p 

-0 
-0.0000 Co 

le -0. Oppa 

-0.1281 

Fig 8.7 Time Histories for Non-linear Lateral Model 

(VSS controller) 

time, sý 

4.0 Wo 

a) 

ms-1 
-1 ms 

ms- 1 

10.0 

b) 

0.0 

c) 

313 



0.1346 

0.1106 

0. Otto 

0.0032 

10 

0.002r 

0.0022 

10 

c) 

-0.0000 

10 

,0 0-0011 

0.0655 

0.0524 

0 
., 4 0.0131 
41 

-0-0000 p1 44 
0 

-0.0131 

0 0.0262 

-0.0393 

0.0524 

-0.0655 

0.0 2.0 4.0 . 6.0 ... 8.0 10.0 

time, s, 

3a ms- 

---= 50 ms-1 

'' j-0 '/4.0 6.0 0.0 10.0 

time, s 

a) 

10.0 

314 

'o. ' -0 '7 -- 



subsidence performance. it is, however, difficult to 

provide a quantitative assessment of the inherent robustness 

properties of the two designs without recourse to a more 

rigorous mathematical analysis. It must also be remembered 

that the VSS controller is,, to some extent, at an early 

stage of development and a more. robust design may be had by 

a more careful investigation of the likely changes in the 

system 'A' and IBI matrices with airspeed and perhaps a 

better choice of null space dynamics. The VSS technique 

does, however, provide a stable and acceptable performance 

with relatively small actuator demands. 

8.3 Summary 

In -this Chapter the robustness aspects 'of the two 

closed-loop state feedback'schemes applied to the lateral 

motion sub-system of the aircraft have been investigated. 

In the above discussion a quantitative assessment has been 

made of the degree to which a linear state feedback, law 

maintains the eigenstructure of the closed-loop system as 

the system parameters vary about some nominal operating 

point. This was made possible by employing the results of 

Chapter 2 to provide a locally linearised model of the 

aircraft at a number of time points over a typical lateral 

manoeuvre. The non-linear controller has also been assessed 

although in thisý case some difficulty was encountered 

principally due to the discontinuous nature of the control. 

A purely qualitative assessment revealed that the non-linear 

controller provided somewhat poorer performance than the LOP 

design. Since these result are to some extent preliminary 
it is now necessary to consider a more thorough analysis of 

the VSS-design particularly bearing in mind the likely 

parameter variations in the actual system. The LOP design 

has, however, been shown to be of a robust nature and 

capable of providing desirable improvements in system 

performance. 
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CHAPTER 

Conclusions and Discussions 

The main aim of -this project has been to provide a 
critical assessment of flight control system design using 
'modern' control- techniques based on a comparison with 
conventional classical design strategies. At a very early 

stage it was clear that to provide such an assessment would 
require that the contol -systems be employed in a realistic 
aircraft environment. Here two alternative approaches were 
possible. 

Firstly, the control laws could be designed around a 
'linear' model of an aircraft and their performance assessed 

with a view to later implementation on the real aircraft. A 

number of -disadvantages are clear principally due to the 
inherent non-linear nature of the aircraft system which 
would not be reflected in the linear model and hence little 
feel could z-be gained, at the design stage, for the 
'sensitivity' of the control law to these non-linearities. 
Allied to this is the fact that the aircraft is subject to 

relatively large changes in its parameters as a result of 
changes In flight configuration which again are not manifest 
in the linear aircraft model, this being applicable-ýat only 
one specific flight condition. In addition, the role of the 

pilot in any fl-ight control scheme requires careful 
consideration. The "pi lot- in -the-loop" aspects of the 

proposed, control scheme are important and any assessment of 
flight control laws should include the pilot as an active 
element. It is often the case that the pilot's initial 

reactions, to a flight control scheme are obtained 'on-line' 

#, so to speak, during flight trials. This can be a costly 
and dangerous. method of assessing the flight controller's 
performance. t 

The*second approach is based upon the use of real time 
and non-real time simulation facilities at an early stage in 
the design work., A number of advantages are to be accrued 
here since the control scheme can be provided with 'a 
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realistic non-linear environment without recourse to costly 
flight trials. '' Additionally, the "pilot-in-the-loop" 

aspects can be more thoroughly explored through real time 
simulation without the flight controller actually being 
flown. The relatively high capital outlay for such 
simulation facilities is something of a disadvantage but the 
rewards 'are much higher since the simulator can be 

reconfigured for a large number of individual airframes. of 
prime importance for such simulation work, however, is an 
accurate mathematical description of the aircraft 
encompassing all of the inherent non-linearities and 
parameter changes. 

It was with the development of the second approach in 

mind that the project moved initially towards the provision 
of a small scale real time simulation upon which to base all 
subsequent assessment work. The motivation here was 
provided by some work by Marconi Avionics who had available 
a small remotely piloted vehicle (RPV), the Machan, which 
was flown as a 'test bed' for flight control system design. 
An accurate mathematical model of this aircraft was derived 

and is detailed in Chapter 1. The aerodynamic data for this 
vehicle was derived from wind tunnel tests on the actual 
airframe., As mentioned above the real time aspects of such 
a simulation- facility are important if the pilot's input to 
the control is to be included. From the outset then it was 
decided to attempt, as. f ar- as' possible, to provide a real 
time response from the simulation. 

The aircraft industry has also appreciated the 

relatively large gains to be made in providing cockpit-like 
environments on the ground using simulations, so much so 
that a great deal of time and money have been invested in 
the development of such facilites. The trend today is 
towards using very sophisticated digital computing power to 
provide powerful simulators. For the purposes of this 

project, which- had a somewhat lower budgetr a number of 
different microcomputers were investigated with particular 
regard to their ability to provide a close-to real time 
simulation. As the development of this facility proceeded 
it became apparent that some form of display system and 
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provision for pilot inputs would be required in addition to 
flight control system implementation. Chapter 3 considers 
these points in some detail. To provide all of these 
facilities on a relatively low power, but inexpensivel 

machine ultimately proved a difficult proposition without 
severely compromising the real time aspects. A far better 

solution would be to distribute the computational workload 
to several small machines with a single dedicated computing 
engine forming the nucleus and solving the non-linear 
vehicle equations of motion. Peripheral computers could 
then be'dedicated to tasks such as flight control,, display 

management, etc. This should allow a far better real time 
facility to be realised and work on a system such as this is 

currently being undertaken. This work will eventually lead 
to a relatively inexpensive but-powerful flight simulation 
facility upon which a variety of avionics work can be 

undertaken. 

Having completed an evaluation study into the real time 
simulation aspects, the problem of addressing the control 
systeirL design still remained. There was little alternative 
at this stage but to- attempt an essentially 'off-line' 

examination of the control system design methodologies. To 
this end the non-linear vehicle equations of motion for the 
Machan were used in a FORTRAN implementation of the 

simulation and this is used almost exclusively in the latter 

parts of the work (Chapters 5-8). Since the majority of 
control system designs rely upon essentially linear systems 
theory, it was vital to provide a linearised model-for the 
Machan, aircraft. ,A number of approaches are possible here 

and Chapter 2 considers two of these. 

The first approach is a so called stability axis 
derivation of a linearised state space system description. 
This technique relies upon specialising the trim conditions 
of the aircraft to 'straight-and-levell flight and applying 
intuitive arguments and an 'a-priori' knowledge of some of 
the aerodynamic derivative terms. Whilst this technique 
provides a relatively good idea of the small perturbation 
behaviour of the aircraft large perturbation effects are,, 
for the most part, ignored. The result is a linear system 
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description which can, and indeed is, used as a basis for 
the design of stability augmentation systems which aim to 
provide acceptable stability margins from the basic 
airframe. An alternative tech"nique, if somewhat more 
involved, is to consider 

,a 
first order linearisation of the 

vehicle non-linear equations.. Here the functional 
dependence of each of the elements of the system 'A' matrix 
on the set of system state variables is retained. In this 
case the resulting system description is 'locally linear' 
i. e. linearisation is updated at each point in the flight 

envelope and the resulting linear model is directly 

applicable at that point. This technique is thus a means of 
proViding a more 'global' system description than the very 
specialised classical small perturbation analyses. The 
results produced by both of these techniques are, however, 

very similar and may explain why controllers designed using 
the small perturbation models provide acceptable 
performance. The small perturbation model does, however, 

retain some functional dependence on, for example, airpeed 
since the majority of the aerodynamic derivatives change 
with airspeed, air density, incidence, etc. and these are 
retained in this system description. 

It would be difficult to provide a meaningful 
examination of modern control, policies without some form of 
'yardstick' to compare them against. The purpose of the 

work of Chapter 5 is to provide this 'yardstick' by 
examining the classical approach to flight control systems 
design., -ýFor many years such techniques have provided 
acceptable designs, for flight controllers and engineers in 
the avionics industry, have developed more than a passing 
familiarity with classical performance measures. Modern 
aircraft demand more from the controller in order to realise 
improvements in handling qualities. The work embodied in 
Chapter 5 provides a baseline stability augmentation system 
for the Machan RPV. This is an original design exercise 
based principally upon the applicat I ion of root locus 
techniques to the linear small perturbation state-space 
model developed in Chapter 2. The Machan is a fairly unique 
control problem since long term attitude stability is vital 
for any remotely piloted vehicle. Performance requirements 
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f or any aircraf t are brief ly reviewed in Chapter 5 but it is 

normal to require that the characteristic modes of the 

aircraft have some specified degree of damping and/or a 

specifed rise time or natural frequency. Given that the 

aerodynamic derivatives vary with varying airspeed, etc. it 

is important that this modal disposition is maintained and 
that a reasonable stability margin can be guaranteed. The 

root locus provides a very visible tool in this application 
since the poles and zeros of a system may be maintained 

within given regions of the s-plane as a result of changes 
in flight 

' 
variables. Gain-scheduling is often employed to 

maintain the stability and responsiveness of the aircraft. 
The closure of a number of loops around the Machan and the 
design of suitable compensation elements within these loops 

results in an acceptable performance from the vehicle. The 

aircraft response has been shown, however, to be sensitive 
to changes in airspeed although adequate stability margins 
are achieved. The design process in the classical problem 
is thus relatively straightforward, if somewhat heuristic. 

Firstly, a number of loops must be identified (measured 

variable control surface deflection) around which to 

provide a controller structure. The loop is then analysed, 
its transfer function determined, and a suitable controller 
developed which provides prescribed modal properties and 

adequate stability margins. In developing any modern 

control schemes it is important to ensure that these not 

only provide the specified performance but also that the 

design methodology is not tooýfar removed from the classical 
techniques. ý This will ensureýthe easy acceptance, of these 

new schemes in the avi'onics industry which is, 

understandably, somewhat resistant to change. - 

The identification of applicable modern control 
techniques which, in some degree, fulfilled the criteria 
above proved difficult. In Chapters 6 and 7 two state 
feedback schemes have been examined in some detail. Chapter 
6 covers optimal control (LQP) whilst Chapter 7 is concerned 
with non-linear (variable structure, VSS) control. Optimal 
control has previously been examined as a means of designing 
flight control systems. , Much of this work, however, 
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concentrates on the application to linear models. In this 

project these control schemes have been applied not only to 
the linear model but also to the non-linear simulation 
developed in the early work. A major problem with optimal 
control is in the choice of the Q and R weighting matrices 
for a particular problem and how the elements of these 
matrices relate to the properties of the final design. In 
Chapter 6a technique has been developed which obviates the 
need to provide Q and R explicitly and requires the designer 
to specify only the desired eigenstructure of the closed- 
loop system., Further, the ability to only specify partially 
the eigenvectors of the system is of considerable 
importance. This allows some measure of flexibility in the 
design process but required the development of a least 

squares fitting. algorithm to determine the 'best fit' to 
these partially specified eigenvectors. This is very 
similar to the classical design techniques where the 
designer specifies a given set of modes (eigenvalues) and 
implicitly imposes a given modal (eigevector) decomposition 
by suitable choice of the control loops around various sub- 
systems of the aircraft. For the aircraft problem this 

particular design technique would seem highly appropriate 
since the choice of the Q and R matrices is implicitly 

contained within the algorithm. The choice of modal 
coupling is easily determined from intuitive arguments 
regarding the airframe and#, by careful choice of the state 
structure, actuator limitations may also be included. 

The applIcation of this technique to the Machan has 
been shown to provide very acceptable performance when used 
with the non-linear simulation at various airspeeds. A 

major drawback is that a set output structure isýimposed by 
the design. The technique may, however, be extended to the 
output assignment problem and again it has been shown that, 
given certain restrictions on the system structure, the 
output assignment problem can be solved if 1imitations are 
imposed by the available measurement set. Output assignment 
is, however, undesirable in the aircraft problem since 
defined state coupling is required. 

A possible difficulty with any state feedback scheme is 
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the need to measure all system states. This may not be easy 
on aircraft, particularly RPV'so, where a limited 
instrumentation pack is carried. observer techniques may be 

used but another possibility is to employ a state feedback 
design based on a reduced measurement set. This is worth 
considering with aircraft since the state equations are 
readily partitionable into sub-systems each associated with 
one or more of the characteristic airframe modes. By way of 
an example a reduced order Dutch roll controller is 

considered for a third order model of Machan using 
eigenstructure assignment techniques. It has been shown 
that this type of control is feasable by applying it to the 

non-linear simulation with classically designed loops closed 
in the other major aircraft sub-systems. This type of 
'hybrid' configuration is seen as a very powerful method of 
combining both the modern and classical design approaches. 

A more speculative design technique is examined in 
Chapter 7. This is basically an extension of some already 
existing work on non-linear control structures applied to 

aircraft flight control (ZOC and VICTOR). These control 
philosophies promise much in terms of better performance in 
the presence of plant uncertainties. Relay switched or 
'bang-bang' control systems are by no means new but the 

sliding mode theory developed in recent years is only just 

begining to provide a more rigorous theoretical background 
for non-linear control design in general. In Chapter 7 the 
theory of the sliding mode is reviewed. A design technique 
has been described for multivariable VSS design. The aim of 
this technique is to force the system to follow a trajectory 
in state-space which the designer may specify. Along this 
trajectory the closed-loop response becomes insensitive to 
bounded, changes in the underlying system. The technique is 
in, many respects similar to the optimal control design since 
both exploit the high gain (asymptotic) properties of the 
system. This being the case the technique is the first real 
attempt to combine the elegance of the eigenstructure 
assignment methods within a novel non-linear controller 
structure. The significance of the eigenstructure in each 
case is slightly different although the ultimat e response 
achieved is similar. There is a very strong parallel 
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between the sliding mode and the optimal control policies. 

Both exploit the asymptotic properties of the system in 

order to provide improvements in parameter insensitivity and 
prescribed modal decomposition. This would also seem to be 

a possible area in which multivariable root locus techniques 

could be usefully employed by providing a visual indication 

of the asymptotic properties of the locus. 

The sliding mode design has been applied to the non- 
linear Machan simulation for a variety of airspeeds. The 

results obtained are similar in many respects to the optimal 

control designs considered in Chapter 6. A major criticism 

of any switched control design is the relatively high 

actuator activity which accompanies the discontinuous 

control applied to these devices. The results of Chapter 7 

do not show this 'chatter' particularly well. This is 

primarily due to the filtering effects of the actuator, 

modelled as first order lags. The design allows for the 

magnitude of the discontinuities to be reduced somewhat 

although this affects the degree to which the sliding mode 
is maintained. Ideally very large discontinuities in the 

control are required to maintain the sliding mode but this 

would be very undesirable from the actuators' viewpoint. It 
is possible in the design to avoid the discontinuous control 

action although this implies that the sliding regime is only 

reached asymptotically, in infinite time. The results of 
Chapter 7 also attempt to compare the VSS responses when 

employed with an approximate linear model of the Machan 
dynamics with the fully non-linear simulation. This is 

perhaps a little unrepresentitive since both the initial 

reaching behaviour of the two systems and the subsequent 

sliding behaviour will be different. Similar time responses 

are, however, obtained. The reduced order Dutch roll 

control pro-blem 
I 
is again addressed, this time with a VSS 

controller. The results of this comparison show that a 

reduced order VSS controller is possible but actuator 
activity is very large. There is also the possibility that 

the sub-system may be forced away from the sliding regime by 

coupling from other sub-systems. Further work is clearly 
required on this aspect of VSS control. The development of 
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the VSS design technique and its application to the flight 

control problem is felt to provide a major contribution to 
this area of work. 

An underlying theme of much of the work on f light 

control system design is the need to provide parameter 
insensitive control. This is vital in aircraft since 

adequate stability margins must be maintained in the 

presence of large parameter variations due to changes in 

flight condition. This general problem is one0of 

robustness. This being a large scale measure of parameter 
insensitivity. Chapter 8 considers the problem of assessing 
the robustness achieved from both the LQP and VSS 

controllers. Whilst much theoretical work has been 

undertaken on parameter sensitivity and robustness measures 
this has largely been confined to linear systems analysis 

with a limited variation in the underlying system. The 

reasons for this are simply to provide analytically 
tractable solutions to the problem. For the aircraft 

example these techniques were considered inapplicable since 
the system 'is highly non-linear and all the parameters vary 

over large ranges. The robustness assessment is thus based 

on a fairly pragmatic 'brute-force' approach which uses the 

locally linearised aircraft dynamics of Chapter 2 and 
determines quantitatively the variations in the 

eigenstructure of the system due to changes in airspeed, 

etc. It proved difficult to display this information in a 

meaningful manner and a graphic approach was adopted. The 

use of this approach has demonstrated that the LQP design 

provided a robust eigenstructure over the relatively small 

range of maneouvres investigated. As a result of this work 
it has become apparent that there is no simple way of 

providing robustness measures for VSS control schemes. The 

sliding mode approach is, howeverr based on a strong 

mathematical structure whereas the more heuristic ZOC and 
VICTOR schemes provide no way of assessing robustness 

properties. Initial examination of these results indicates 

that the LQP design is more robust than the VSS' design 

although refinement of the VSS design may- provide 
improvements in this respect. 
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The results of this comparative study of modern control 
designs applied'to the Machan can broadly be summarised as 
follows 

The classical design techniques are well understood in 
industry. An extension of these basic methodologies into 

optimal control has been shown to be possible using 
the eigenstructure assignment techniques of Chapter 6. In 

addition, these optimal control strategies have been shown 
to have desirable robustness properties by employing them 

with a non-linear simulation of the aircraft and providing a 

quantitative assessment. of the degree to which the 

eigenstructure is maintained. The application of LQP 

designs to reduced order sub-systems of the aircraft has 

also been shown to provide a 'half -way-house' form of 

control by combining both classical and optimal control 

strategies in the one design. In contrast, the VSS 

controller provides a very similar route into the design and 

again exploits the asymptotic eigenstructure properties of 
the system. In this respect the designs are very similar. 
Some penalty is associated with VSS since the control is 

discontinuous by nature and this may place heavy demands on 

actuators. There would appear to be little to be gained 
from VSS in the nature of improved robustness although this 

may be an unfair criticism since the design is somewhat 

provisional. VSS may have other disadvantages particularly 
in terms of its implementation. Using sampled data flight 

control systems may give rise to unexpected complications in 

any switched control structure. Additionally, certain 

classes of non-linearity (e. g. hysteresis, dead-band) may 

generate unpredictable behaviour (e. g. limit cycle 

oscillations). on balance then the optimal control 
strategies would seem to be the most appropriate 
alternative. Further work into the VSS controlp in 

particular the aspects identified above, may, however, alter 
this balance toward VSS. 

The present project work is likely to be extended in a 
number of ways. Firstly the real time simulation will be 
further advanced to provide a distributed system. This will 
allow some further work to be undertaken into the 
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development of the flight control hardware. In the initial 

stages of this work the classically designed compensators 
will be implemented. Later the work will be extended to 

encompass the state variable type structures and sliding 
mode control. Further. work is also required on the VSS 
designs. In particular it would be desirable to be able to 

specify prescribed degrees of robustness due to known 

changes in some or all of the elements of the system 
matrices. -The ability to investigate the effects of 
introducing simple non-linearities into the system is also 
desirable. The provision of realistic small scale 
simulation facilities in addition to the development of 
modern control schemes, which are based on classical design 

methodologies, will be of major value to the avionics 
industry. 

11 
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Appendix I :- Pascal Program Version 1 Listing 

A1 



1 
2 
3 
4 

7 
B 
9 

le 
11 
12 
-13 
14 
15 
16 
17 
18 
19 
2e 
21 
22 
23 
24 
25 
26 
27 
28 
29 
3e 
31 
32 
33 
34 
35 
36 
37 
39 
39 
4e 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
5B 
59 
6e 
61 
62 
63 
64 
65 

(* Segsent contains 4 procedures used in MAINSIM 1) 
(f NDW also contains main program f) 

VAR tend real ; (f length of simulation (secs) f) 
tstep real (# time increment per iteration (secs) 0 
tprint real 0 time between data outputs 0 
T: real ;0 incremental time 0 
wspeed : real ; (# mind speed 0 
Ndirndeg : real (# wind direction (degrees) 0 
wdirnrad : real (f mind direction (rads) 0 
wgust : real (I vertical gust (positive upwards) 0 
CS : real ; position of centre of gravity 0 
mass : real (# aircraft mass 0 
IX : real ;0 moment of inertia, X-axis 
Iy : real ; (f moment of inertia, Yaxis 0- 
IZ : real ; (f moment of inertia, Z-axis 0 
Us : real ; (f I-speed #) 
Ve : real ; (f Y-speed U 
LIS real ; (f 2-speed, vertical downwards 0 
P real (f roll rate #) 
9 real (f pitch rate 0 
R real (f yaw rate #) 
FDEG : real ; R. roll rate deg/sec 0 
ODES : real ; (I pitch rate deg/sec U 
RDEG : real ; (f yaw rate deg/sec 0 
phi : real roll angle 0 
theta : real (f pitch angle 0 
psi : real ; yaw angle f) 
phideg : real (# poll angle degrees U 
thetadeg : real ; (f pitch angle degrees U 
psideg : real ;R yaw angle degrees 10 
IN real If X- north position metres 0 
YE real (f Y- east position setres 
height - real ; (# hei-ght metres 
eta : real ; (f elevator angle rads 1) 

rzeta : real ; (f aileron angle rads 1) 
tau : real ;R rudder angle rids 0 
etadeg : real ; (f elevator angle degrees 0 
zetadeg : real ; (* aileron angle degrees 0 
taudeg : real ; (f rudder angle degrees 0 
UC : real R I-airspeed in body axis filsec #) 
UB : real (# X-inertia speed in body axis alser 0 
VC : real (f Y-airspeed in body axis a/sec #) 
VB : real (f Y-inertia speed in body axis I/sec 0 
WC : real 0 I-airspeed in body axis e/sec 0 
WB : real (# Z-inertia speed in body axis a/sec 0 
VT : real (f total speed a/sec 0 
UWC2 : real (# UC*UC + UWIUW 0 
UWC : real ; (f sqrt (UWC2) 1) 
U C2 : real (f UC#UC + VC#VC + WC#WC #) VWC 
UVWC : real (f sqrt (UVWC2) f) 
alpha : real (f incidence angle rads #) 
beta : real (f side slip angle rads 0 
UA : real ; (t X-component of airspeed m/sec #) 
VA : real ; (f Y-component of airspeed m/sec 1) 
WA : real ; (f Z-component of airspeed s/sec f) 
I: real If I-force newton's 0 
Y : real (f Y-force newtons 0 
2: real (f Z-force newtons 0 
L: real (f rolling moment newton setres 1) 
M: real (f pitching moment newton metres 0 
N: real (f yawing motent newton setres f) 
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U 
67 
68 UBDOT rea l (f X-acceleration a/sec/sec 0 
V VBDO T rea l (# Y-acceleration m/sec/sec #) 
70 WBDOT rea l (f I-acceleration alsec/sec f) 
71 PDOT real It roll acceleration rad/sec/sec 0 
72 HOT real (# pitch acceleration rad/sec/sec #) 
73 RDOT real I# yaw acceleration rad/sec/sec #) 
74 rho real (f air density Kg/metre##3 0 
75 Al real ; (f lift curve slope radff-l f) 
U CLO : real ; I# lift coefficient (alpha: O) 
77 CLET A: rea l; if lift coefficient/elevator angle radff-l f) 
78 surface : real ; (f wing area af#2 f) 
79 LT : real I# tail moment are setres 0 
Be ZQ : real (f lift force/pitch rate sec/rad 0 
81 CL : real (f lift coefficient 0 
82 LV : real I# lift 4rom, wing 0 
63 LQ : real (f lift from pitch rate f) 
84 CDe : real It parasite drag coefficient f) 
85 CD : real if drag coefficient 0 
86 K: real I# induced drag coefficient 0 
87 drag iorce real ; (f drag force newtons f) 
BB YV : real (f sideforce/sideslip derivative f) 
89 YR : real (f sideforce/yaw rate derivative f) 
90 YTAU : real .; (f sideforce/rudder angle coefficient 0 
91 YA : real ; (f aerodynamic side force newtons f) 
92 D: real ; (f wing span 0 
93 LA : real ; (f aerodynamic rolling moment We f) 
94 AIT : real ; If lift curve slope of tail due to alpha Had f) 
95 A2ETA : rea l; It lift curve slope of tail due to roll rate /rad 0 
96 CUBD : real ; If zero pitching moment of ming+body+duct 0 
97 CMT real ; I# pitching moment from tail 0 
98 CMETA : real ; (f slope of tail pitching moment 0 
99 CMO : real ; (f pitching moment aft for alpha=O f) 

lee CML : real ; (f pitching moment derivative wrt CL 0 
101 CBAR : real ; (f wing chord metres f) 
Ie2 LV : real ; (f rolling moment derivative due to sideslip 0 
163, LS : real ; if rolling moment derivative due to aileron 0 
M LP : real (f rolling moment derivative due to roll rate f) 
105 LR : real I# rolling moment derivative due to yaw rate #) 
106 "A : real I# aerodynatic pitch moment We f) 
107 tail lift real ; I# tail lift newtons 0 
les Itotal : real ; if wing+tail lift newtons f) 
Ie9 CMW real I# pitching moment coefficient of wing 0 
110 CLT real I# lift coefficient of tail #) 
III NV real I# yaw moment coef/sideslip velocity sec/m f) 
112 NR real (f yaw moment coef/yaw rate sec/rad f) 
113 NRO real (f yaw moment coef at zero lift f) 
114 NRL real If yaw moment derivative wrt CL f) 
115 NTAU real If yaw moment coef/rudder angle radff-l f) 
116 NA : real ; it aerodynamic yawing moment We f) 
117 U2 : real ; If flow through duct m/sec f) 
IIB AD : real If duct area at*2 f) 
119 throttle real ; (# throttle setting 1) 
120 ptax : real ; (# maximum engine power watts f) 
121 etap : real ; (f propeller efficiency f) 
122 KE : real ; (# engine rise rate #) 
123 PP : real ; If propeller pitch 0 
124 XE : real ; (f engine thrust Newtons U 
125 LE : real ; I* engine torque We 0 
126 pact : real ; (# actual engine power watts 0 
127 pnom : real ; if nominal engine power watts 0 
12B U3 real (f propeller wake speed m1sec 0 
129 rps real (f angular engine speed revs/sec 0 
l3e rpm real R angullar engine speed revs/@in U 
131 
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132 
133 
134 gravity : real ; If gravitational acceleration alsec/sec 0 
135 UGDOT : real 0 I-acceleration 1) 
136 MOT : real (f Y-acceleration #) 
137 WGDDT : real (f Z-acceleratiDn 0 
138 FHIDOT : real If roll rate 1) 
139 THETADOT : real ; (f pitch angle rate 0 
140 PSIDOT : real ; (f yaw angle rate #) 
141 pi : real ; (f mathematical constant - PI 0 
142 
143 iter integer 
144 stall integer (i stall indicator 0 
145 breikpoints : integer ; (f number of control input breakpointi 0 
146 
147 transform : array of real ; 
14B transposie : array of real ; 
149 time : array M. 1001 of real ; 
ISO throtleset : array M. 1001 of real ; 
151 etaset : array 10.1603 of real ; 
152 etadegset : array 10-1001 of real ; 
153 zellasEt . array of real ; 
154 zetadegset : array le.. 1001 of real ; 
155 tauset : array M. leel of real ; 
156 taudegset : array 10-1001 of real ; 
157 
Ise 
159 pRo. rEDURE INDATA 
160 
161 VAR I integer 
162 f text 
163 
164 BEGIN 
165 reset (f, 'VARI. DAT') 
166 readIn (f, tend) 
167 readIn (f9tstep) 
168 readln (f, tprint) 
169 readIn (f, CG) ; 
170 readIn (f, wspeed) 
171 readIn (f, wdsrndeg) 
172 readln (f, UG) ; 
173 readln 1f, VG) ; 
174 readIn (fows) ; 
175 readIn (f, phideg) 
176 readIn (f, thetadeg) 
177 readln (f, psideg) 
178 readln (f9height) 
179 
He I :=0; 
181 reset (f, 'VAR2. DATI) 
182 REPEAT 
IB3 rEadIn (f, time Ell) 
IB4 readIn (f, throtleset Ell) ; 
IB5 readln (f, etadegset Ell) ; 
186 readIn (f, zetadegset 111) ; 
187 readln (f, taudegset 111) ; 
188 1 :2 1+1 
189 UNTIL EOFM 
19e 
191 breakpoints: cl 
192 time lbreakpointsl: z tend 
193 
194 pi: --3.14159265 
195 
196 reset (f, 'VAR3. DATI) 
197 
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19B 
199 
200 readln (flaass) 
201 readIn (f, IX) 
202 readIn (f, IY) 
203 readin (f, IZ) 
204 readln (f, AI) 
M readln (f, CLO) 
206 readln lf, CLETA) 
207 readIn (f, Zo) ; 
20B readln (f, surface) 
2e9 readln (f, LT) ; 
210 readln (f, CBAR) 
211 readln (f, CDO) 
212 readIn (f, K) 
213 readln (f, YV) 
214 readIn If, YR) to 
215 readIn (f, YTAU) 
216 readln (f, LV) 
217 readIn (f, LS) 
218 readln (foLP) 
219 readIn (f, LR) 
220 readln (f, B) 

& readln (fjAIT) 2 "1 
222 readln (f, A2ETA) ; 
223 readln (f, CMO) ; 
224 readln (f, CML) ; 
225 readln (f, CMWBD) ; 
226 readln (f, CMETA) ; 
227 readln (flNV) 
228 readln (fjNRe) 
229 readIn (f, NRIL) 
230 readln (fpNTAU) ; 
231 readIn (f, AD) ; 
232 readln (f, plax) ; 
233 readln (f, ETAP) ; 
234 readln (f, KE) ; 
235 readln (f, PP) ; 
236 
237 wdirnrad: =pi#wdirndeg/1B0.0 
238 phi: =pitphideg/lBe. 0 ; 
239 theta: =pitthetadegliBe. 0 
240 psi: =pifpsideg/180.0 
241 
242 FOR I: =6 TO breakpoints DO 
243 BEGIN 
244 etaset[ll: cetadegsetlllfpi/180.0 
245 zetasettll: =zetadegsetlll#pi/180.0 
246 tauset[l]: ctaudegsetElItpi/180.0 
247 etadeg: zetadegset[Ol ; 
248 zetadeg: zzetadegsetEO] 
249 taudeg: ztaudegsettel 
250 END 
251 END; 
252 
253 PROCEDURE INIT 
254 BEGIN 
255 7: 20 
256 iter: =6 
257 P: ce. O 
25B Q. -ce. 0 
259 R: ze. e 
260 ugust: =O. e 
261 rho. zi. 18 
262 gravity: =9.81 
263 



264 
265 
266 pi: =3.14159 
267 stall: =9 
26B 
269 *XN: =O. o 
270 YE: =O. b 
271 XE. --8.6 
272 U2: =O. e 
273 u3: 4.0 
274 
275 UB: ztransposeEt, l]*US+transposell, 23*VG+transpDse[1,33*WG 1 
276 VB: =transposer2,13*UG+transpose[2,1&]*VB+transposet2,33#WS ; 
277 WB. =transpose[3,11*UG+transpose[3,2]fVG+transpose[3,31#WG ; 
278 
279 END; (f of INIT 0 
2BO 
281 
2B2 PROCEDURE OUTDATA (option integer) j 
283 
284 VAR I: integer 
2B5 
2B6 BEGIN 
287 IF option=l THEN 
288 BEGIN 
2B9 writeln 
290 #riteln 
291 writeln 
292 mriteln 
293 writfln MACHAN SIMULATION PROGRAM 
294 writeln 
295 writeln ('f #1) 
296 writeln 
297 writeln 
298 toriteln 
299 writeln 
300 writeln TEND = l, tend: 10: 5) 
3el writeln 
302 writeln TSTEP ', tstep: 10: 5) 
30 writeln 
304 writeln TPRINT l, tprint: 5: 2) 
305 writeln 
306 writeln 
307 writeln CS z ', CG: 4: 2) 
308 writeln 
309 writeln ETA = l, etadeg: 4: 2, '-(DEG) 
310 mriteln 
311 writeln ZETA = I, zetadeg: 4: 2, ' (DES) 
312 writeln 
313 writeln TAU = l, taudeg: 4: 2,1 (DES) 
314 writeln 
315 Nriteln 
316 writeln PHI x lgphideg: 4: 2, ' (DES) 1) ; 
317 writeln 1 318 writeln (I THETA r l, thetadeg: 4: 2,1 (DES) 1) 
319 writeln 
32e vriteln PSI a l, psideg: 4: 2, ' (DES) 1) ; 
321 writeln 
322 mriteln 
323 ior i teln 
324 END 
325 ELSE IF (option=2) OR topticn=3) THEN 
326 BEGIN 
327 IF option=2 THEN 
328 BEGIN 
329 



330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
35e 
351 
32 
353 
354 
355 
356 
357 
358 
359 
360 
361 

363 
364 
365 
366 
367 
369 
369 
370 
371 
372 
373 
374 
375 
376 
377 
37B 
379 
3BG 
3BI 
382 
383 
384 
385 
386 
387 
3BB 
389 
390 
391 
392 
393 
394 
395 

writeln 
writeln 
write V TIME YE 
writeln V HEADING 

END (f of inner if f) 

SPEED XN SPEED') ; 
ROLL RATE ROLV) 

ELSE 
BEGIN 

writeln ; 
Nriteln V ', T: 8: 4, ' ', height: 8: 4, ' 
write (VT: B: 4, ' l, phideg: B: 4, ' 1) 
writeln (thetadeg: B: 4, ' Olpsideg: 8: 4) 
wri tel n 

END (f of ELSE f) 
END 

END ; (I of procedure f) 

PROCEDURE AIR ; 

VAR UW, VW, WW, UVWA2 : real ; 
Dppalpfia, adjalphi, tanalpha : real 
oppbeta, adjbeta, tanbeta real 

BEGIN 
UW: zwspeed*CCS(wdirnrad) 
VW: =wspeedfSIN(wdirnrad) 
WW: =wgust ; 

UA: =UG+UW 
VA: =VG+VW 
WA: =WB+WW 

99IN-8: 4) , 

UC: ztranspose[l, l]*UA+transposell, 23*VA+transposerl, 3]fWA 
VC: =transpose[2,13*UA+transpose[2,21#VA+trinsposer2l3]*WA 
WC: ztranspose[3,11#UA+transpose[3,2]fVA+transposer3,31#WA 

UVWA2: =UA*UA+VA*VA+WA*WA 
VT: =SDRT(UVWA& 
UWC2: =UCfU'C+WC#WlC 
UWC: =SDRT(UWC2) ; 
UVWC2: =UWC'21+VC#VC 
UVWC: =SGRT(UVWC, I) 

CISORT(UWW'2)) oppalpha: =(WIW 
a djalpha: 0-oppalphooppalpha 
adjalpha: =SVRT(&djalpha) ; 
tanalpha: coppalphaladjalpha 
alpha: =ARCTAN(tanalpha) ; 
IF tanalpha-U. 0 THEN alpha: =alpha-pi 
oppbeta. =VCIYT ; 
a djbeta: zl-oppbetafoppbeta 
adjbeta: =SQRTladjbeta) ; 
tanbEta: =oppbeta/adjbeta 
beta: =ARCTAN(tanbeta) ; 
IF tanbeta(0.0 THEN beta: zbeta-pi 

END; (t of procedure AIR *) 

PROCEDURE CONTRO ; 

VAR l, taatch : integer i 

BEGIN 
I: ce ; 
teatch: =e 
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396 
397 
398 REPEAT 
399 IF Mmtiselll) AND (T(tieell+ll) THEN 
40e BEGIN 
401 throttle: zthrotlesetlil 
402 eta: =etaset[l] ; 
403 zeta: =zetaset[Il 
404 tau: =tauset[l] ; 
405 etadeg: metadegsetIll 
406 zetadeg: =zetadegsetill 
407 taudeg: --taudegsetlll 
408 
409 tmatch: =1 
410 END 
411 ELSE I: =I+I 
412 UNTIL (tsatch=l) OR (I)breakpoints-1) 
413 
414 END of procedure CONTRO 0 
415 
416 
417 PROCEDURE ACCEL 
418 
419 BEGIN 
420 UBDOT: =Xlsass-WB*Q+VB*R 
421 VBDOT: =Y/oass-UB*R+WB*P 
422 WRDOT: =Z/tass-VB*P+UB*9 
423 
424 PD0T: =(L+QY-IZ)#R*Q)/I1 
425 ODOT: =(M+(IZ-IX)*P*R)/IY 
426 RDOT: =(N+(IX-IY)#Pfg)/IZ 
427 
4 "B END ; (t of procedure ACCEL 0 
429 
430 
431 
432 
433 PROCEDURE LIFT 
434 
435 BEGIN 
4416 stall: =e 
437 CL: =CLO+Alfalpha 
438 writeln (CL) ; 
439 Nriteln (alpha) 
440 
441 IF CL)=1.2 THEN 
442 BEGIN 
443 M=0 
444 stall: =1 
445 END ; 
446 LW: =0.5*rho*UWC2#surface*CL 

'*LT#Zgfg 447 LQ: z(-I. 0)*rho#surface*UW1C 
448 
441 END ; (f of procedure LIFT #) 
458 
451 PROCEDURE DRAG 
452 
453 BEGIN 
454 CD: =CDO+K#CL#CL 
455 dragforce: =0.5#rho#UWC2*surface*CD 
456 END ; (f of procedure DRAG 0 
457 
458 PROCEDURE SIDE 
459 
460 BEGIN 
461 
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462 
463 
464 
465 
466 
467 
469 
469 
470 
471 
472 
473 
474 
475 
476 
477 
478 
479 
480 
481 
482 
4S3 
40W4 
485 
486 
487 
438 
4199 
490 
491 
4941 
493 
494 
495 
496 
497 
499 
499 
500 
501 
502 
503 
504 
505 
566 
507 
50B 
509 
5le 
511 
512 
513 
514 
515 
516 
517 
518 
519 
520 
521 
522 
523 
524 
525 
526 
527 

YA: mrhotsurfacetUVWC#(YV#VC+0.5*B#YR*R+UVWC#YTAU#tau) 
END ; (f of procedure SIDE 0 

PROdDURE ROLL ; 

BEGIN 
LA: =0.5*rho*UVWC*Bfsurfate# 

(0.5*B*(LP#P+LR*R*CL)+LV*VC+UVWCfLS*Zeta) 
END (# of procedure ROLL 0 

PROCEDURE PITCH ; 

BEGIN 
CMW: =CMO+CML*CL i 
IF stallml THEN CMW: =-0.3 
CMT: =CMETA#elia ; 
taillift: z(CMT-CMWBD)*0.5#rhofUWý'2*surface*CBAR/LT+Lg 
MA: =O. S*rho#UWI, 2*(CMW+CMT)*CBAR*surface 

END ; (f of procedure PITCH f) 

PROCEDURE YAW ; 

BE61K 
WR: =NRO+NRL*CL*CL 
NA: z0.5*rho*surlacefUVWC 

(NV*VC+0.5#BfNR*R+UVWC*NTAUftau) 
END ; (f of procedure YAW #) 

PROCEDURE THRUST ; 

VAR TDOT, expression : real ; 

BEGIN 
pnowptafthrottle 
pact: cpnom#ETAP i 
TDOT: =tpact-XE*U2)/KE 
XE: =XE+TDDT#tstep ; 
expression: =(2.0*XE)/(rho*AD)+UC*UC 
W. -SORT(expression) ; 
U2: =IEI(rho*AD#(U3-UC)) 

writeln (expression. B: 41' ', UC: 8: 4, ' ', U2., 8: 4lU3. *8.4) 
VPP rps: =U, 

rpm-rpsfbO. 6 
IF rps=0.0 THEN LE: =O. O 

ELSE LE: =pnoml(2. efpi*rps) 
LE: =O. O 
END ;0 of procedure THRUST f) 

PROCEDURE FORSUM 1 

BESIN 
ltotal: =LW+taillift 
1: =XE-drigiorce*CBS(alpha)+ItDtal*SIN(alpha)- 

eass#gravity#SIN(theta) ; 
Y: =YA+aassigravity*COS(theta)*SIN(phi) 
Z: =(-I. O)fltcital*COS(alpha)-dragforce#SIN(alpha) 
Z: =Z+tass*gravity*CDS(theta)*COS(phi) ;I 

L: =LE+LA ; 
M. =MA+LW#(CB-0.25)*CBAR-(LT+(0.25-CS)*CBAR)#Lg 
K: =NA 
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528 
529 
530 END ; (t of procedure FORSUM 0 
531 
532 PROCEDURE RATES 
533 
534 BEGIN 
535 
536 P: =P+PDOT#tstep ; 
537 D: zg+QDDT*tstep ; 
538 R: =R+RDOT'tstep ; 
53,9 
540 PDE6: =Pf180.0/pi 
541 QDEG: =Q'18e. 0/pi 
542 RDE6. -R*180.910 
543 
544 END ;0 of procedure RATES 0 
545 
546 PROCEDURE ATTITUDE 
547 
548 FUNCTION TAN tangle real) : real 
549 BEGIN 
550 TAN. -SIN(angle)/COS(angle) 
551 END 
552 
553 BE61K 
554 PHIDOT: =P+SIN(phi)#TAN(thEta)#Q+CDS(phi)fTAN(theta)*R 1, 
555 THETADOT: =CDS(phi)*Q-SIN(phi)#R ; 
5 PSIDOT: =SIN(phi)*D/CGS(theta)+R*CDS(phi)/COS(theta) a56 
557 
558 phi: =phi+PHIDDT*tstep 
559 theta: =theta+THETADGT*tstep 
560 psi: =psi+PSIDOT*tstep 
561 phideg: =phiflBe. 01pi 
562 thetadeg: =thetaflB0.0/pi 
563 psideg: =psm8e. e/pi 
564 
565 END ; (f of procedure ATTITUDE 0 
566 
567 PROCEDURE TRANSF 
56B 
569 VAR IIJ : integer 
570 
571 BEGIN 
572 
573 transforsEl, ll: =CDS(theta)*CDS(psi) 
574 transforall, 21: cSIN(phi)*SIN(theta)*CDS(psi)-COS(phi)iSIN(psi) 
575 transforgll, 33: =CDS(phi)*SIN(theta)#CDS(psi)+SIN(phi)#SIN(psi) 
576 transfortl2,11: --COS(theti)#SIN(psi) ; 
577 transform[2,21: =SIN(phi)*SIN(theta)#SIN(psi)+CDS(phi)fCOS(psi) 
578 transfortE2,31: =CDS(phi)#SIN(theta)*SIN(psi)-SIN(phi)*CDS(psi) 
579 transfors[3,11: =(-I. O)fSIN(theta) ; 
580 transfort[3,21. =SIN(phi)*COS(theta) ; 
5BI transforarý3,33: =CCS(phi)#COS(theta) ; 
582 
593 FOR I: =1 TO 3 DO 
5B4 BEGIN 
585 FOR J: =I TO 3 DO 
5B6 transpose[I, 31: ctransformlJ, 13 
507 END 
588 
58q END ; (f of procedure TRANST 0 
590 
591 PROCEDURE RESOLVE 
59A 
593 
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594 
595 
596 BEGIN 
597 UB: =UB+UBDOT#tstep ; 
598 VB: =VB+VBDDT*tstep ; 
599 MB: =WB+WBDOT*tstep ; 
6e0 
601 UG: ztransforo[l, l]*UB+transforii[112]#VB+transforatl, 31#WB 
602 VS: ztransfor@12,11#UB+transforol2,23*VB+transfors[2131*k'B 
603 WB: ztransform[3,13*UB+transfore[3,21#VB+transforo[393]fWB 
604 
6es END ; (I of procedure RESOLVE 
606 
607 PROCEDURE PDSN 
608 
09 BEGIN 
610 IK: =IN+u6*tstep ; 
611 YE: =YE+VG#tstep ; 
L12 height: =height-MG#tstep 
613 writeln (IN. B: 4) 
614 writeln (YE: B: 4) 
615 writeln (height: B: 4) 
616 writeln (UG: 8: 4, ' 1, V6: B: 4, ' ', WG: B: 4) 
617 
618 END of procedure POSN f) 
619 
620 PROCC 'EDURE FORCES 
621 
622 BE61N 
623 LIFT 
624 DRAG 
625 SIDE 
626 POLL 
627 PITCH 
628 YAW 
629 THRUST 
630 FORSUM 
631 END ; (f of procedure FORCES 0 
632 
633 PROCEDURE INTEGRATE 
634 
635 BE61N 
636 RATES 
637 ATTITUDE 
638 TRANSF 
639 RESOLVE 
640 POSN 
641 END ; (t of procedure INTEGRATE f) 
642 
643 
644 PROCEDURE MAINSIM 
645 
646 VAR I: integer 
647 printinc : real 
649 
649 BEGIN 
650 CONTRO 
651 OUTDATA (1) 
652 REPEAT 
653 IF iter08 THEN 
654 BEGIN 
655 AIR 
656 CONTRO 
657 FORCES 
658 ACCEL 
659 
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bbe 
661 
662 INTEGRATE 
663 END 
6&4 ELSE 
665 OUTDATA (2) 
666 iter: citer+l ; 
667 writeln (iter) 
668 baiterftstep 
669 mriteln (T) ; 
67e printinc: zprintinc+tstep 
671 writeln (printind 
672 writeln (still) ; 
673 IF printinc>= tprint THEN 
674 BEGIN 
675 CUTDATA (3) 
676 printinc: zprintinc-tprint 
677 END ; 
67B UNTIL M=tend) OR (stallcl) 
679 
680 END; (f of MAINSIM 0 
681 
68" BEGIN I 683 INDATA 
684 TRANSF 
685 INIT 
686 AIR 
687 MAINSIM 
688 END. 
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'o ýTrN wo 
21. ", -rUN7ýf, E1 
30 TSIS SIORU IS "ONlRit" 
4,11 ! 
50 M' /%rol/ : TAL , Io--. Ix. 1y. Iz. Al. C]O. Cleta. 2ci. Surface 
60 CY /Aero2/ FEA- Lt. Coar. CdO. K. Yv. Yr. Ytau. L LP. Lr 
70 34, /Aero3/ REAL B. Alt. A2eta. CmO. Cal. Cmkod, Cwta ""Ls* 
90 Me. /Aero4/ Wk ký. NrO. Nrl, Ntau. k. P&ax. Etao. Ke. Op 
90 ! 
100 COM /Inltl/ ; fk 7end. 7stE*. Tprint. Cg, WmeEý. Wdridpg 
110 a, /Init2/ IEA- Lý, Vg, iqg. Phiwg, Tiip-tawg. Psjwg. ýL-ight 
120 ! 
130 Com Arrays/ FUL Time(IO), Thro ttleset(IOUtaý_*wtOO) 
140 CY, Arraysl/ WA ZetaumwtdO). Tau-dqgwt(IO) 
150 Com /Trans/ W-qL TII. TI2.113. T21, T22, T23.731, Tl!, T33 
1 GO ! 
170 04, IMISCI/ FUL Wdrrrad. Phi. Theta, Psi. Etaopg, 2etatieg. Taxvo 
181, M' ftsO WA Eta-set(10). Zeta-set(IO). Tau 

- set(IO), INT. EGER firswooints 
190 Cal Msc3/ REFL T, ý4et. P. 0, R. Pdpg. O(ieg, Rwg. Xn. Ye 
200 CY, AIWQ FEk Eta, Zeta. Tau. Uc, [L, Vc. Vt,. ic, ýb. Vt 
210 COM /Misc5/ RFA LLc2, Lkc. Lkowc2, LkAc. Alpha. Beta. Ua. Va. ka 
220 a),, AluscGl RFA X, Y. Z, L, fl, N, Lboot. Vodot, 41xiot. Pmt, Ddot, Rdat 
M Cam Msc7/ RIFL RhD. Cl. Lm, LQ, Cd. Dragforceý. Ya. La. Cot 
240 a, /MjscB/ ICA- Pa, Taillift, Ltotal. rAw. Cit, hr, Na, 12. Throttle 
250 Cam /Mlscsl RFA )(eLe. Pact, Pnoa. U3. Rx, Rpa. Gravity, LýdDt, VgdDtAdot 
2GO a, AlscID/ WA Phjdot, ThEtaoot, Psidot. BTEGER Iter. Stall 
261 Com AiscIll Sintheta, CmthLtaýSinpsi. Cosp6j, SjrvN, CosphI 
270 ! 
2BO CY, /Lim/ Limjts$f241, Dff1uTR Ljiuts(0: 3) 
290 CY Aiessl/ PaminSIELWA Xvwm(0: 3) 
300 COP PiesO REAL Tjcs(0: 1), DffO licsl(0: 1) 
310 ! 
320 RErun: LDFM ALI FROM "RFtý 
330 MýL preamýle 
340 DGSE Premble 
850 LDVA FLI RY "INITIPLIT' 
10 L5TU ALL ROM "MXHI' 
670 01-L Irzata 
BOO CR-1 Transf 
Mrj Ck- Init 
W, CIL Air 
910 F-&E Imata. Init 
0 LDMB ALL 9T. "MAG2" 
MCI 01-1 fainslo 
540 ! 
950 DELSLE Air TO E. % 
%0 GOTO Reru- 
a1 , 70 
990 pill 
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10 S& Preamcle 
20 1 
30 CD! /Lim/ LimitsS(24LINTEGER Lbuts(0: 3) 
40 COV Messl/ Ma)min$[1ol. FEA_ Xysmr(0: 3) 
50 CD, I*ss2/ RA Tjrs(0: 1). DffEGER Ticsl(0: 1) 
60 INTEGER Rst 
70 ! 
BO ON RCR GOTO Reset 
90 DEATE BMT '5TK", 10 
100 OFF ERU 
110 PSSIGN @Write-data TO "S1X: IN1FJW'; FORfT OFF 
120 OUTPUT &riteý_data: 0.1.1,0.0,1.1 
130 OUTPUT @WritEý-data. 133.0,0,100, S., -I.. SO., -30... 1.1.. 9,4 
140 ASSI% @krite-d, 3ta rJ 
150 Rst-1 
160 Reset: V ERRJ; 
170 1 
IBO ON ERROR GMD Resetl 
190 CUTL VT *M'. 3 
200 OFF ERROR 
210 nIGN Write-data TO *M: IN7FRýA%FU? VT OFF 
220 17PUT &rite_oata: 1,2*. " TK 5 CGHT tO'. 
230 PBSIGN Write-data TO 
240 Rst=1 
250 RES00: OF ERROR 
260 ! 
270 On 

- 
km: OUTPUT 2, M(255)Vr; 

290 PRINT TPBN(1,1) 
290 PRINT USING -Selert cption from keys- 
3DO PRINT USING, -14ote: Define plot channels ane set uo"" 
310 PRINT USING """ graphics before ruming programe-X 
32LI PRIM USING -Default is latest w4inec valum"' 
330 ! 
340 ON KEY 0 LAEEL " GSETUP , GM Setup 
10 ON CZY 1 LFIF_ " D'r-T()J " GOTO Defch 
360 ON ITY 2 AE "0" GOTO Run 
370 ON CY 5 LKEL " END " GOru End 
3BO ! 
390 Wait: DISP *O=w option" 
400 GM Wait 
410 
420 
430 Defch: OFF KEY 
41 LDME kL PRY, WT., W 
450 CALL Sptxv 
46n DF__SUE Setxy 
470 Setup: LOTSUB ALL FROM WOPLT3* 
490 011 Gse t 
490 Rst-l 
500 IND-SLE Gset TO END 
510 GOTO OrLkevs 
SN Run: V0 
530 IF RA DEN 
540 LOIVU FLL FRY WORM" 
550 M-L InjtQ 
591 DIU Gset TO ENr 
570 Rstý 
S90 ENC F 
SBI SUffXIT 
5132 Ent: STOP 
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10 SLE Irc; ata 
20 ! 
30 Com, Avrol/ REAL MaM, lx. IV, lz. AJ, CJO. Cleta. 2q, Surface 
40 Car /Aem2/ REAL Lt, Cbar, CdO, K, Yv. Yr. Ytau. Lv, LsLD. Lr 
50 MM /Aero3/ RFA B, Alt. F2eta, CmO. C&l. Cmk, &, CmEta 
60 CY, /Aerov REk t4vt4rG, t4rl, t4tau. k, Psm, Etap, Ke, Po 
70 i 
Bo Mm /Inltl/ REAL Tend. IstE! P, Tprint, Cg. Wspeed. kirtý 
90 COM /InitV WA iJG. Vg, Wg. %deg. The-t"g, Psicieg, height 
100 ! 
110 Cam ArraW REA Tiw(*), Thro-: Uleset(*). Etý-degmt(*) 
120 COM, Arraysl/ REft- Zetajogset(*), Ta. Lo9g%t(*) 
13D 1 
140 com /Miscl/ REA Wdrrirad. Phi, Theta. Psi. Eta6eg, 2etadpg. TaidE! g 
150 c1r. Misc2l WA. Eta-set(*), Zetaý-set(*), 1,3u-sLt(*). P; FtG-tR Breakpoints- 
1611 ! 
170 INTEGER 1 
190 FEIGN @Input-di3tal TO 'M: DffGW". FLWT OFF 
190 FEIGN @lrmtjata2 TO "M: WtR&', FDMT (FF 
200 FEIGN @Ircutjata TO W: IKUM*; FDMT OFF 
210 i 
220 Eve ýIriputdata: TL-nd. Tstep, TprjntA, W-ed. wdmeg 
ZC ENTER @lTiput-dat@: Ug, Vg, wg, %mý9, Tk-taaeg. Psiaeg. heiOt 
240 ! 
250 ENTER @Irput_data2,, %ss. lx, lv, lz. Al. C]O, Cleta, 2q. Surf ace 
260 MR @Inputdata2: Lt. Cbar. CdO, K. Yv, Yr, Ytau. Lv. Ls. LP, Lr 
2? 0 ENTER @Irputdata2,. B, Alt. Petý3, CmO, Cml, Ca", Cmeta 
2BO ENTER @InputLdata2: hv, NrO, Nrl, Ntau. Ad. Pim. Etap, Ke. Pp 
290 1 
300 I=O 
310 i 
320 ON END Knputdatal GMO Labl 
330 Rweat: ENTER @Iriput-Otal; Tne(I), Thro-ttleset(I) 
340 ENTER @Inptt_datal. EtaLciggwt(I), Zetacýcýt(l), Tau-&-gwt(I) 
R 1-141 
360 GGTO Repeat 
370 ! 
3BO Labl: OFF END Knputdatal 
390 Bre*polnts-I 
4ou Time(Breakpoints)-Tend 
410 1 
420 WdrnracýýPl*kirrý180.0 
430 Phi-PI*Phde9/lBO. D 
440 Theta=PI*The taoeq/190.0 
ig Psi-Pl*PsidojM80. C 
460 
470 FEIGN Knputdata TO 
4BO FEIGN @I=A-datal TO 
49D ASSIGN Krvutdata2 70 * 
Soo 
sio FOR 1--C TO Breakpoints 
SN Etýkset(I)-EtaLflec-set(l)*PI/180.0 
sl 7eta 

- set(D-ZetaoPwet(D*PI/lBo. o 
540 7aLLset(D-Tau 
550 EtadeTfta. 

-&ý6w-tiO) 5GFj ZetaboTZet 
- amoset(O) 

w TariýrTau-MTSWO) 
580 NEX I 
5N SUBEIC 
600 i 
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610 &E Inj t 
620 1 
630 ar MiscY WA T. Wgust. P, O, R. Pdeglýg, Raeg, Xn. Ye 
640 CY. MsW Wk Eta, ZL-ta. Tau. Uc. Lb. Vc. ýb. k,; L. Vt 
0 COM Msc7/ WfL Rho. Cl. Lm. Lei. Cd. Dragforce-Ya. La. Cat 
651 a AiscS/ WA- Xe. LePact, Pnom. U3. RPS, FCX, GT&ItY. UgCbt, V=t, idgMt 
GW COM /MisclO/ WA Phi dot, ThetadDt, Psidat, 1141EGER ltp-r, Stall 
670 ! 
MO COM /Init2/ REFL Lý, Vg. Wg, Pludeg, Ttiý-tadE! g. Ps! dEg. Height 
so ! 
700 COM /Trarr. / FU Tll. T12. TI3, T21, T22. T23, T31, IT, T33 
710 i 
711 Stall-O 
?A T-0. 
730 Iter-O 
An P-0. 
7YI 0-0. 
roo K. 
770 iigust=o. 
790 RN-1.16 
790 Gravity-S. Bl 
MCI ! 
B10 Ub-111*Ug4VIN94T31%ý 
820 Vb-Tl2*Uq4T220g+TP* 
930 Wb-TJ3*[jg4T23*Vg4T33*Wg 
810 i 
ffig SEND 
RI ! 
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10 &E Oufzata(INTEGER Option) 
20 ! 
30 COM Miscl/ REPL Wdrnr3d. N. ThLta. Psi. Etaoes, Zetaorg, TaLmg 
40 CR' AllixY RFA I. iigust. P. C. R. Par,, Ooeg. bN. Xr,. Ye 
50 COM /4i-c4/ 11 Eta. Zeta, Tau, Uc, ib, Vc. Vb. Wc. Wb. Vt 
60 ! 
70 MM /Irdtl/ REFt Tend, TsteD. lDrint, CQ, Wsxft, krmq 
BO C[lv. /Init2/ WA Ug, Vg, Wg, PhidEg, The-ta*. Psiaeg. Height 
90 ! 
100 INTEGER I 
110 ! 
120 IF Optimrl THEN 
130 PRINI USK Fetl 
140 PRINT USING Fmt2 
150 PRINT USK Fmt3 
1GO PRINT USING Fmt2 
170 PRINT USK Fffitl 
190 PRINT USING FM4 
190 PRINT USK, "SX. -TEV - "". 'AD. 4C. /": Terid 
200 PRINT USK, "SX, "*TST--'O '". 44CAd". 7stem 
210 PW USING "Sk""TPRINT '", M10"Oprint 
220 PRINT USING Fmt4 
230 PRINT USING "SX. *"CG '", M2D. 40. /: Cg 
Al PRINT USK "SX. *"ETP "', K! D. 4C, '" (DEG) "". /": Eta6K 
250 PRINT USING "K*711A -, MMAD. - (DEG) '". /": Zetadeg 
2GO PRINT USING- "SX, *TFiJ - MEG D -d", laidec 
270 PRINT USING F04 
280 PRINT USING "SX. -Phl (DEG) *". /". %dpg 
291, PRINT USK "SX. -TUA (OF-13) "". r: Tfw-t3wg 
300 PRINT USING "SX, ""PSI (DEG) "", r; PsjdEq 
310 PRINT USK Frt4 
220 0-9 
330 IF (OptiomD OR (CiPtjort-3) TO 

lw F Cbtim-2 M, 
3SO PRINT USING FmA 
370 ELSE 
390 PRINT USING FsA 
400 PRINT USK FmtG*. UbAbA. Vt, Lk-, VcJc 
410 PRINT USING Fipt6aP*, Ddpg. Rdpg. PhidEýg, DIEý_tadeg. Psideg 
411 PRINT USING FmtGb'. EtaijF,, Zetawg. Taiceg. Height. Xn, Ye. Xe 
120 END IF 
430 ENE F 
440 END IF 
160 i 
460 Fmtl: M 
470 Fmt2: I%-, 
480 Fatl Iht'a WM SAUTION PROUP 
490 Fat WE 
SOO Flits: M 1X. TItl*. 3X, 'YE", 2X. "YEr, 3(. ")N SPOr 
510 Fitt5a: WE 2WýMIC, 4', Mll WTE". 3X, *R7-L*. / 
0 FmtG: DM 7(lX, U. SD). L 
S30 FmtGa: ME 30V2D. G[)), 30YqK1C. SM, L 
0 Fat6b: M 3(IX. Kl). SD), lX,, 4el). 4D. 2(lX. M30. GD), lX. MSD. 3D 
S40 ! 
541 PRINTER IS I 
SSA 
560 
570 SUB Forcm 
571 ! 
SOO COM /kml/ REAL hissglx. ly. lz. Al. CIO, Cleta. ZQ. Surface 
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a CY, /Amm2/ FUL Lt, Q)ar. CdD, K, Yv. Yr. Ytau. Lv, Ls. LD. Lr 
600 COM AnLl REFL B, AIt, A2eta. CmG, CmJ. Cwmd. Cmeta 
610 CY /Aeru4/ WA WNrO. Nrl, Ntau, Ad, P&u, Etap, Ke, Pp 
G20 ! 
E30 Cam /Injtl/ REAL Tend, Tstep. Tprint. Cq, Wmeed. kirý 
A CY /Init2/ WA Lý. Vg. W,. Phiaeg. Tir-tamgPsideg, height 
so I 
w COM /Trmm/ WA 711. Tl2, ll3, T21, T22. T23. T31, T22. T33 
670 ! 
680 C2M Piscl/ RErL kdrnrad. Plu. Theý, Psi. Etadeg. 2etadpg, Taimq 
E90 CIP ftscPJ FEFL EtaLset(*), Zetaý_set(*), Tau set(*). DflEGER BreiToints 
700 Cam /Misc3l PEAL T, kýmist, P, D. R, Pdego*, Rd; g, Xn. Ye 
710 c1r, /MisW REFL Eta. Zeta. Tau. Uc. tb, Vc, ýb. Wc. ýb, Vt 
720 COM MuscS/ PUL L6r2. LLcLktc2, Uvjic. Alpha. Beta, Ua, Ya, Wa 
7M CY, AiscG/ WA X. Y. Z. LV,. N. Lbdot, ýbmtR=t. Pdot. Odot, Rdot 
740 com /Misc7l REFL Ri3, CI, Lio. Lq, "DragFarce. Ya, La. Cot 
750 CY. M'scR/ REFL Ma. laillift, Ltotal. Cmw, Clt. hr. Na, 12. Throttle 
7GO COM /4j-sc9/ REI Xe. Le, Pact, Pnm. LB. Rps. Pfa, Gravity. Ugdut, vgdDt. Wgibt 
770 COM AisclG/ WA Phiclot, Thptamt. Psiciot. WTEGER Iter. Stall 
7BO COM, /MiscII/ RUL Sintheta. CoEtheta. SiTipsi, Cosp-ri. Sirgiu, Cmphi 

790 ! 
W, WA TdDt, ExpreEsion. Corist. Cortl, Caist2. CDnst3 
B10 WA Cosalpha. Sinalphajantheta 
820 ! 
MO Usalpha=CM(Alpha) 
BM Sinalohr-SIN(Alpha) 
OSO Tanttrta-TAN(ThLta) 
0! 
B? o Cbmt-Resurface 
B90 Constl-Dimt*Diar 
a) Comt->=MasEz*Gravity 
900 COISQ-1BOPI 
910 ! 

920 Lift: StalH 
930 Cl-ClO+Pl*AIPK3 
sm IF Cl)-1.2 THEN 
so Cl-G. 
%0 ROM 
S70 EW F 
9BO ! 
990 L,, -. 5*Ijhc2*CDrst*Cl 
1000 Lcr-(-1. G)ewrtstkko-t*zq< 
1010 1 
1020 Drag: C&=Cdm*Clmcl 
1031, Drag(orce-. 9br-2*Comt*3dI 
1040 ! 
1050 Side: Ya-fDrstkk%c*(Yv*Vc4.5*B*Yr*R4L"oYtau*Tau) 
1 06n ! 
1070 Roll: La-. 5kk"*Comt*(. 54*(Lpif'4Lr*R*Cl)+Lv*Vc+Lkw*Ls*Zeta) 
I OBCI ! 
1090 ritm. UM-LAKAI*cl 
1100 F Stall-1 DEN 
1110 Cal--. 3 
1120 ENE IT 
1130 Cat-Cmeta*Eta 
1140 Tail lif t-(CiRt-C%W)*. 5*L6c2*Corstl4t+Lo 
1151) Ha-. 5*jwc2*(C&t+Qk, )*Const1 
1160 i 
1170 Yaw: Nr-NrO+Nrl*C]*Cl 
11BIJ Na-. 9CDmtkkmc*B*(W*Vc4.5*B*Nr*R+Lk%cmNtau*Tau) 
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1190 ! 
1200 Thnist: PnarPmax*ThrDttle 
1210 Pact-hm, *Etw 
1220 Tdot-(Pact-*, jQ)Ae 
123D XP=Xe+Tdot*Tstec 
1240 Fxpressimr(2.0*Xe)/(Rm*Ad)4ik*Uc 
1250 M=MR(ExDresslon) 
1260 L2-Xe/Rv*A&(LG-tk)) 
1270 Ros-MA) 
IN ýA 
1230 F Ros=0. TO 
MO Le=O. 
1310 LF 
1320 Le-Prý(2.0*Pl*fim) 
1330 Le-0. 
1340 

1360 Forstm: LtotaltoTaillift 
1370 X=)L-Dragforce*CDsalpha+Ltotal*Sinalav-ComLýGirti-eta 
1300 V=Ya#CcmQXmtheta*Sirvbi 
1390 7-(-1.0)*Ltota]*Cosalpha-DragforcL. *Slnalpha 
1400 Z-Z+Cmst2*Costheta*, rmc)hi 
Imo i 
10 Lýa 
1430 "b+Lw* (Ci-r-. 25) *Cbar- U4 (. &CO *Char) *La 

1443 
1450 
W Pccel: Uxiot-X/Mass-Ob~ 
1470 vbmt-YAlbeS-iw4bjp 
14BO kmt-ZAassýO)NNK 
149C, 
ism Pd[it, (L+(lrl2)*R*G)/Ix 

1S20 Rdot-(Nt(Ix-ly)*P*G)/Iz 

1540 Rates: NP+Pdot*Tstep 
15yj &Q+Gmt*Tstoo 
1560 R=R+Rmt*TstEP 
1570 
iS86 PdW*Comt3 
1590 (kpu-o*Ckmt3 
1600 RdE! g-R*Corist3 
1610 ! 
1620 Attibitie: Phidot=P+Sirutu*Tantvb*D+CDsphi*TanthetaA 
lG30 betadot-Cmphl*O-Slrphi*R 
1640 Nidot-SiTOj*Zostheta+R*Cosptu/Costfieti3 
1650 
1 G-6 0 %-PN+Pfuck3t*TstE! p 
1670 ThEtrThetebetadot4steo 
1680 Psi-Fýi0siciDt*T-step 
16% Pludeg-phocn"SQ 
1700 TktadeTThetac=0 
1710 Psidoa-Psl*, 'ast3 
1720 1 
1730 OIL Iransf 
1740 ! 
IT)O Resolve: Lb-LbiLb6c)t*Tstep 
17GO vAb+vawt*7step 
1770 Wb-k+kmt*Tstep 
1781) ! 
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1790 Ug-lllCb4Tl2**fTlNb 
1800 Vp-T21kJb+T224b4T23Nk 
1810 Wg-T31*LL4T2N&TD* 
1 gal ! 
1 B30 Posn: Xmk* O_Tstep 
1w Ye=Ye+W*Isteo 
iffio Hei4t-4jght-Wq*Tstep 
1EGO ! 
1870 SWC 
1890 i 
1090 SE OIntro 
IS ! 
1092 COM ArraW REPL Time(*). Thm-ttlewt(*). EtaLOýgsF? t(*) 
M CY, Arravsl/ WA ZeLamqset(*), TaLLdegwt(0 
1900 i 
1910 C3, /Miscl/ FUL Wdrnrad. Diu. lheta. Psi. Etaoep. Zetadpg. Taxeg 
1911 a. MisD WA EtaLset(ik). Zeta_get(*), TaLset(*). IN'FrGER fimamoints 
1920 COM Misc3/ REPL T, Wqust. P, O, R. Pmg, Dmg. Rm-g, Xn. Ye 
lmo Cy. /MiscV FEk Eta, Zeta, Tau, Uc. Lb. Vc, ýb. ic, ib. Vt 
19ki cam M-90 FUL Ma, Taillift. LtDtal. Cma. Clt. Nr. Na. L2, Throttle 
1950 ! 
19W MGER 1, Tmatch 
1961 i 
19P 1-0 
19W TffatcK 
1%4 ! 
M5 Testl: IF (Tmatrtri) OR (I>Breakmints-1) THEN 
1966 sm- 11 
1967 ELSE 
19E2 IF (T>-Tiw(I)) RC (T<Tjw(141)) TtCIN 
19M Throttle-ThrcLttleset(I) 
190 Eta=Eta wt(D 1971 zetirzeiý-Seta) 
lw TaLFTau_set(D 
im Etawg-Eta-degset(I) 
1974 ZetadeTZetawgmt(D 
13TS 1&bR7Tau_degset(I) 
Eon Tmatch-I 
1577 ESE 
197B 1-141 
195 DE F 
imo END IF 
19BI GOTO lestl 
1903 1 
13B4 SJB-x 
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10 
20 
30 
40 
50 
60 
711 
90 
90 
100 
110 
120 
130 
140 
150 
160 
170 
100 
190 
200 
210 
220 
230 
240 
250 
2GO 
270 
2EP 
29CI 
300 
310 
320 
330 
34LI 
350 
3GO 
370 
3EO) 
390 
400 
410 
420 
430 
440 
450 
CA 
47n 
490 
49.1 
500 
sio 
511 
S20 
530 
sm 
sm 
534 
51 
S35 
537 

iE Alt 

COM /lrdtl/ ZAL Tend. Istop. Iprint, Cg. Wmen, Wdrrxrg 
Com lln! t2/ UL 

MM Prars/ qA 111,112. T13. T2l, T22, T23,131, T32. T33 

COM, Aüscv XA- 
com /mlsc4/ WA Eta. Zeta, Tau. UcUb. Vc, Ub. Wr. k. Vt 
CY- /I'tisc5/ WA 
1 
RA 1', 'JW, WW. Lk42 
FER- 
WA Goýveta. Adjmta, lanDeta 

k-1 11 Kä+121 *Virf T31 *Wa 
Vc-112*LWT22*ýa+T32*; ý3 
Wc-713gUa+123*Va4T33*Wa 

Vt-SORUP. 2) 
Lk2-iýý 
Lhr-SD3(Lkc2) 

Lk%C-. MR(L"r2) 
OMalpha=(k/5OR(Ukc2)) 
kjalpha=I-Gmmlohaýlýa 
AdjalawSOR(WjabFa) 
TanalOwfpval4a&3alpha 
AlOia--ATN(lanalpha) 
GXOEta-kJVt 
Adjbet, r-I-ammLi*Dx)b--ta 
AdpeLrUAjoeta) 
Tarbetaýkýta/AdOta 
Geta-ATN(TanbeW 

&E Trard 
i 
COM /Miscl/ RFA Wdrnrad. Phi, Theta., Psi. Eta*. Zetadeg. Taxipg 
CY /Trar. 1 Wk Tll. Tl2, Tl3, T21, T22.723. T3l, T32. T33 
COM Misrll/ REFL Sintheta. Cwtheý. Sirpsi. Cmpsi, Sirvh!. Cosphi 

MGER I. J 

Sindvta-1SIWTheta) 
CosthEta-COS(Theta) 
Sirpsi-5IN(Psi) 
cospsi-COSPSO 

Sinphi-SIN(Phi) 
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51 Cosphj-M(Dhi) 
5m i 
550 Tll=Cxtheta*Cosmj 
560 TlMlTphi*Sintheta*Cmmi-C=tu*SlrPsI ' 
570 Tla-r-ýj*SjnthetrmCmr)sj+SjrpN*SjrvsI 
SBO T21-Costheta*Slrpsj 
590 T, 2-Sirph! *Sintheta*Sirpsj4CDsplu*Ccs)sI 
600 T23-CosphjC)inthE! ta*Sjnpsi-Sinphi*Cowsi 
610 T31--SintFeta 
G20 T32-Sitphi*Castheta 
630 Tl)-Cmiu*Costheta 
GM 1 
710 SH)c 
720 i 
730 RE Mainsim 
740 ! 
750 COM Aerpl/ REAL Mass, Ix, ly. Iz, Al. CIG. Cleta. Zq. Surface 
7GO COM &ro2/ UL Lt, Coar, C&, K. Yv, Yr. Ytau, Lv, Ls, LP. Lr 
770 COM Aero4/ REAL 44, Nro. Nrl, Ntau, Ad. P&IX, Etap, KE!. Pp 
7w all, Aeml/ REX 0, Alt. A2L-ta, CmO, W, Cmibd. Caeta 
790 1 
BOO CUM /Irdtl/ FU Tend, Tstep. Tprint. Cg, W%eed. WdrndEg 
810 Cy, finity WPL Ug, Vg. wg, Phideg. Tilý_tadBg. PsicL-9, Height 
0! 
830 COM Arrays/ RFA Tlw(*), RTaLttleset(t). Etkdogset(*) 
am Mý Arravsl/ RFA ZetLadegset(*), Tau_dBgset(*) 
ED COM /TrarrJ REA Tll, T12. TI3, T21, T22. T23,731,132. T33 
froo ! 
870 MM Muscl/ RFA Wdrnrad. N, Theta, Psi. Etadeg. Zetadee. TaixiE! q 
890 U, hliscV REFL EtaLset(m). 2e4-set(*). IaLLset(*), A7L-GER Breakpoints 
B90 COM. /4, jsc3/ REAL TI\ýmt, P. 0, R, Pdm, Odeg, Pcxa-, Xn. Ye 
w CY /MiscV REA Eta,? eta. Tau, LicUo, Vc. ýb, W-. ýL, Vt 
910 MM MiscS/ REAL L6r2, L6cUvc2, Lýw. Alph. 3. Beta. Ua, Va. ka 
920 CY AiscG/ REFL X, Y. Z. L.?,, N, Lbdot, Vbmt, W3ciot. Paot, Ut. Rdat 
930 COM Misc7l RFA Rho, CI. Lid. Lq, "Drapgforce. Ya, La. Cot 
SM a, AiscE/ REAL Va. Taillift, Ltotal, CAu. Cit, hr. ha, U2, Throttle 
950 CIM /Misc9/ RFA Xe, Le. Pact, Pnim, U3, Rps, Pce-GravitvLkOt. vg&t, WgdDt 
960 allr, ftsclO/ RFA Ph! dot. Thetacbt. Psldot, BlEGER Iter. Stall 
961 i 
9G3 RIOCATE FU Xyco_prd(1: 10) 
S70 ! 
9BO INEGER I, Xdw, Ydian 
990 REAL Printinc 
991 ! 
992 ASSIGN @ReaCcýata TO 'M: INTDW'; FUNT OFF 
M3 DIU Wi-ad data: Y&an, Ychar 
994 ASSIGN @Reaý_data TO 
CE ! 
957 CALL Contro 
998 CALL Butdata(l) 
999 ! 
1000 Repeat: IF (T)-Tend) OR (Stall-D THEN 
1010 &EEXIT 
1020 a5 
1030 IF Iteroo Ta 
im Mi Par 
iffio CFk-l CDntro 
1060 CALL Forces 
in ELK 
1100 CALL Outdata(2) 
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1101 ENE F 
WO iter-Iter-fi 
1120 1=Iterbist-- 
1130 Printirr-PriTitinclstep 
1132 XvccLqrd(1)-1 
1133 Xym_t)ra(2)-einht 
1134 KcMrd(3)-kn 
11.35 Kyco-cm(4)-0ä-9 
UTE 4coLord(S)-The-tacieg 
1137 Xym_ord(6)-%eg 
1138 Xyx-m-d(7)-Phiaeg 
1139 Xyw-ord(8)-Etadpg 
1140 )ýýrd(: Zetaar, 
1141 Xvw_Drd(10)-Vt 
1142 F Iter-1 TfB 
1143 ýr54 A 
1144 EI-9- 
1145 DEN 1 
11 E E)c F 
1147 M Xyco_mýd(Xdm), KyccLord(Ydian) 
lite F Fýintiric>-lprjnt TiEN 
iiso CPLL "ta(3) 
1160 Printirr-Printinc-Iprint 
1170 Dü F 
119C1 EK F 
In = Remat 
1210 ! 
1220SM. D 
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10 SLE setxy 
11 CIO' XvS121 
20 F EY 
30 PLACATE XymentSHOLNEGER Wm(0: 1) 
31 XYS-'XY" 
40 i 
50 OLRI 2: Ofs(2SS)A"r; 
Gn ! 
70 FRE 1-0 TO I 
BO ON 00 LFEEL * TIf " GMD Time 
90 IN KEY 1 LW- ' EIGHT " GOTO height 
100 ON KEY 2 LAWI; 'H DIST * GOTO Mist 
110 ON 03 LPFEL ,p RITE " GOTO Pitrhr 
120 ON KEY 4 LFEEL "P MLE * COM p! tcha 
130 Dý 05 LAEL 'R RUE , GGTG Rollr 
140 ON KEY 6 ML "R MaE " 00 RD113 
lso D4 ®r 7 LAKL "Ev K, 00 Elv 
U ON KEY 9 UWL *ArL RC " GM A! I 
170 Oý 09 LFW- ,M, GOTO 5pee 
190 i 
190 Waitl: DISP USINC -Select chwml"""; XNI+ll 
200 GM kaitl 
210 
220 Tim: Kychan(D-1 
Z10 Xviwnt$[149KD=" TK S 
240 GM Fin 
250 height: Xvdm(D-2 
2W Xyiwnt! 9149*I]--" HEIGHT M" 
270 GM Fir.. 
2BD Mist: Xychan(D-3 
29(f &ident$[1+9*Il="tM CIS F" 
300 G`uT0 Fin 
310 pitchr: Xghan(D-4 
3? 0 XvidEnt$114I*9)-TM D17 
M@ GM Frn 
340 Pitcha: Xychan(D-5 
350 Xyicent$[14I*91="P ANG, W. ' 
360 GOTD Fin 
370 Rollr: XYL+M(I)-io 
380 XvioentS11'I*91-"RO1-RT D/V 
390 GOT3, Fin 
400 Rolla: Xychan(D-7 
410 Xvicients[1+l*9l--RJV4G IFEG 

io GOTO Fin 
430 Elv: xvdM(D-E 
440 Xy1dpr. t$[1+I*91--"0. VANG DG" 
45f) GOTO Fin 
460 All: xKfan(D-9 
470 Xyiopnt$[1+l*91="ALK DT' 
480 GM Fin 
4N 509--: Xychan(D-10 
SM XvjdentS1j4l*91-"TD M/S 
sio ! 
0 Fin: NEXT I 
530 Oý-- 0 
540 ! 
550 ASSIGN @Save data TO "*W: 1KrERA'; FWfT OFF 
SW OUTPUT @Sa%ýdata*. kydm(*)Xiaent5 
570 ASSIGN @5ave data TO 
580 &FA - 
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10 SUE Gwt 
20 ! 
So C3p /Lim/ jmjt$[24I. INTEGER Limit-0: 3) 
70 CY /he%l/ VawinS, 11ý: ]. UL Nv3x-(0: 3) 
80 CUM Atss2l ; fA Ticsl(0: 1) 
90 DIM. on-CF(SIGI. Axislabs1181 
100 INTEO Ind1. Inr2. IniG. IrvA. 1k=y 
110 INTEGER Ird5. IncE , Iw7. IndG. )(ritic, Ymitic 
120 RFA X&u. Xun. Ymax, Yoin. Xojtic. Ymjtjc 
130! 
w! 

, 
ýdata To "STOFE: D4TUW"; FORMAT OFF I to PSSIGN @Rp 

143 ENTER Oqaao-data: lndl. lid2, lncrj, Ind4, IridS, Indb-. Ird? 
144 94TER 
196 ASSIGN @Rucý-(Iata TO 
146 ! 
147 OrLoff3o"OF-FON 
150 Limits-" TIFTTM LETT R13-T' 
160 'Wmir6-"XM1WINYMWTW 
170! 
190! 
190 Retype: 17M 2: M(255)6V. 
200 Retml: PRINT IM(21,14"ALM P101" 
210 PRINT TAB(21). *-" 
220 PRPJ USK "/" 
230 F9INT USING --, Sn CLII), *, 2X. 3n. lX. e: OrLoff$fl't3*lndlI 
240 PRINT USING, -1013 - -. K1), 1X. -TTTOM I -, M3C", L1mitS(0). LixitS(1) 
250 PRINT USING "j4X, **LEFT - "*. 0,2X, -RIG1ff - -. M2C. /", L1oits(? ). L1iuts(3) 
2GO PRINT USING ... X AXIS M -. fl4O. 4C`; XvsPec(0), Y+-. 13ec(1) 
770 PRINT USING 'A. 'MCS -. 3A. 1X. e; On Dff3[j43xIrd2I 
290 PRINT USK- - DIST. FliEN TIC WýS - -. 4C. Sr; Tics(0) 
29CI PRINT USIX *1ED(. -NO. OF MINOR TICS - "*, 4D. /"; Tjcs1(0) 
300 PRINT USK -'Y AXIS Y"1' - -, tW-4C. 1X, -YMDý, - -, "4C-4L"-'. XysPw(2), XvsDec(3) 

310 PRINT USING 'A, '"TICS -. 3R. 1X. e; On-off$11+3xIrd3I 
320 PRINT USK - DIST. ffikEN TIC WoZ - **, 4C. 9r; Tics(1) 
330 PRINT USING *1@(. V. OF MINOR TICS - -, 4D, /*. Tics1(1) 
W PRINT USK 'A.! GRID -, 39.2OX. -FRRIME ", 3A, /". Ch-off$[l-t3*lnd4l, OrLoff$1143KInc5I 
350 PRINT USING 'A. -PEN TYPE (I thru 10) 1", 2D. 5X, e; IndG 

... -Op 10 PRINT USK ""UTZ 3A", 
_cff$[143*lnd7l 370 ! 

3BO OFF KEY 
290 ! 
410 ON ITY 0 LABEi " CLIP , 00 clip 
410%0 1 LABEL , IFX ' GOTO Defx 
420 ON rLY 2 LABEL DO . GCTO Defy 
430 ON 03 LABEI GRID * GOTO Grid 
440 ON KEY 4 LABEL Ftfff " GM Fraw 
J60 %05 LABEL PEN ' GM Pen 
4GO ON KEY 6 LABEL LABEL ' GO11) Label 
470 ON KEY 9 LFW-- EXI'l * GOTO Exit 
400 ! 
490 Waitl: DISP "Select KPY, 
500 GM kaitl 
510 ! 
5X Clip: 1 
S30 ! 
540 YF KEY 
550 OUTPUT 2: M(2SSWK"; 
560 PRINT TrW(1,2) 
570 PRINT USING ... SOFT CLIP IS *'. 31. ** TWU ? -, /"; OrLoff$(143*Ind1I 
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sac, 
590 CA, YeS nD(IrCI. ArS$) 
600 IF NOT (Indl) THEN Retyw 
610 NM "DEFU L14M 7 
G20 IrxE-1 
; 30 CALL Yes-nD(IndB. AnsS) 
64C, F In& TO Retyx 
650 Rpt2: ON KEY 0 LFEEL " TOP * GM Top 
w Dý 01 LFEL " GOTTY ' 00 Etir 
0 ON 10 2 ML * LEFT " GOTO Left 
GEP ON 03 LFW-' " RIGHT * GOTO Right 
690 ON KEY 9 LAE 0 DaT " WTO Retym 
700 kait2: DISP "Select W 
710 GOTO W3jt2 
720 ! 
730 Top: OIL Prntoess(O) 
741 CM Rot2 
750 eta: CFLL Prntmem(D 
roo GOTO Rpt2 
770 Left: QU Prnt mew(2) 
790 GM RA2 7 
790 Right: CPU Prntmess(3) 
900 GM Rpt2 
810 1 
820 Grid: Irr+NOT (InA 
00 GM retypel 
B40 ! 
E50 Frame : Ind5-NOT (Ind5) 
8GO GOTO Retywl 
B70 1 
BOB LaDel : 10=0 (Ind7) 
890 Gala RetyDel 
900 ! 
910 Defx: 1 
920 OFF KEY 
930 OLM 2: M(255)A"r. 
WD PRIM TfEXY(1,2) 
950 i 
%0 Rpt3: ON KEY 0 ME "W" MTO Xmax 
970 ON 01 LFEL " W5 * GOTO Mir 
9w ON 02 OTL ' TICS " GOTO Tics 
99fj M CY 3 VIBEL " *1UTIC" GOTO UO 
1000 ON 04 'AEL " WINTIC" GOTO Yjrantic 
1010 ON 09 LNE " D(IT ' GOTO Retym 
1020! 
1030 Wait3: DISP "Select key" 
1040 GOTO 1,1ait3 
1050 Xpkix: M-L Dmt wssl (0) 

lffio GOTO fbt3 
1070 Yain: CnL Pmt mmsl(l) 
1090 GM Rptf 
1090 lics: lnrP-NN (Ind2) 
1100 pRINT USING ... TICS ff "1,3A*: qrLr)ffs[1i3*lnd2l 
1110 GCTO RA3 
1120 Yaaj: CAL Pmt weso(O) 
113n GM Rot37 
1140 YAlntic: CPLL Prnt moss3(0) 
1150 MTO RAf 
1160! 
1170 Defy:! 
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1190 v- C-Y 
1190 OLqPjT 2: M(25S)Vr. 
1200 PRINI TVYQ. 2) 
1210 ! 
1Z? O RPM ON 00 LADEL * Y1fx " GM Ym 
1230 [N 01 LFEL ' VVJN " GOM Y1k1r1 
1240 ON KEY 2 LAE ' TICS * GOTD Ticsy 
1250 ON KEY 3 ME * VWTIC" GM Vffaj 
12@ ON KEY 4 LFFEL VINTIC" GOID Yaintic 
1270 ON KEY 9 AEL BIT I GOU Retype 
1290 1 
1290 Waitt DISP "Select key" 
1300 MM hait4 
1310 1 
1320 Y53X: CFLL Prntmml(2) 
1330 MM RPA 
1340 Yam: OIL' Prntmessl(3) 
1350 GOTOO RPt4 
1360 Ticsy: IncWT (Ind3) 
1370 PRINT USING ... TIM fff -. 3A"; OrLoffS[1+3*lnd3l 
1300 GM RPO 
1390 Ymaj: DU PrntmemXl) 
1400 GM Rpt4 
1410 Ymuntic: CALL Prnt messYD 
1420 GOTO RPW 
1430 1 
1440 Pen: 1 
1450 OFF KEY 
1460 D, M, 2; 0f6(2SS)8*K", 
1470 PRINT TAOXY0.2) 
1490 ! 
1490 ORINT LEM -9ERV PEN 15 -, 20, "" W4 PEN IS "', r": Ird 
1500 RptS: PPJT *1 Thru 10". I-, KE 
1510 IF IrvEMO OR IndG<1 TO 
1520 BEF gro. SG,. 3 
1530 DISP "Rubbish" 
1 SM WIT 1 
1550 GOTO RPt5 
1 SRI EW F 
1S70 PRINT USM W; Ird 
13K, GMj Retype 
15% ! 
16M Exit: OF 0 
1610 aJTP0 2: Of5(25S)&V; 
162S PIJU "STMINTUM" 
1630 CUTE- BDAT "STOW". 10 
1G31 
16M FEIGN @write data M "STGff: PMTtA%FCWT OFF 
1GSO BARIT @wri"ta: Indl, IrK2. IrtE. Ind4. lr6. IncE, Ind7 
1GGO JTPLJT Writý-data; Liluts(*), 4spm(*). Tics(*). Ticsl(*) 
1 O-n FEIGN @Write-data rj 
1671 M In1tg 
1672 WO 2 
1674 DISP "O. K. 7" 
1 Grt WIT 2 
1676 affoy-1 
10 M-1 Yeq-no(Wmw, Ans5) 
167B GMICS OFF 
1GBO IF 1knov TfB GOM Retype 
IGB4 SER 
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1 E90! 
17M SE Yes-nD(MGB Ind, AnEi) 
1710! 
17X gptl: IRq "WWAtS 
171 IF PEGS-Ir ItEN 
1740 Ircoov (Ind) 
1750 GM End 
1760 ME 
1770 IF plry)"w WN 
1790 UP srb. SE.. 3 
1790 DISP "RubbisV 
1900 WAIT 1 
1810 MTO RDtl 
10 DC F 
1830 ET IF 
18M End. SWC 
1850! 
1860 SE Prntwss(INIECER D 
1670 1 
1WO MH Aim/ UsitS124LINTEGER Lauts(w) 
1030 PRINT IEDC V, - LM IS -. KF, - 0 Aff IS -. #"; L"it$[146KII, Ljzits(D 
1300 Dm Llluts(l) 
00 PRIV ISDC YXLimits(D 
1320 Sim 
1930 1 
1940 RE Prntwssl(NEGER 1) 
iso ! 
1960 CDM /N? ssl/ &DWr51lGI. RFA X/wm(*) 
1970 PRINT USDC 'DOI. - IS -, M4C. 4C, - NEN Mff 15 
19BO IWO Xyww(D 
193) PRINT USK, 141C. 4r; Xymm(D 
ml swc 
2010 
2020 U RmLoess2UNIEGER 1) 
20 
2W MM hmV WA Tics(*), MFGER Ticsl(*) 
2050 PRINT USDC -TIC DTLRA- IS -, 4D. SC, - NEkAff "". e'; Tlcs(I) 
2160 INU WING: Must be >0 ! ', Tirs(l) 
2070 PRINT USDC- '4C. Sr; Tics(D 
2000 SKND 
2090 ! 
2100 &E Prnt-mesOINTEGIR 1) 
2110 ! 
2120 ýZH Mp-%V REFL Tics(*), MGLR Ticsl(*) 
2M PRINT LEN -%. [F flNF TIM IS -AC, - 0 Aff -, #". Ticsl(D 
2140 14UT 'kt be intKyr >-O *, Tjcsl(l) 
2150 PRPJ LEM, '4V": Ticsl(D 
2160 &EEND 
2170 ! 
2180 &E Irutg 
2230 1 
2231 Fl-LOCATE Xvid-ntUlBLINTEGIR 4, dm(0: 1) 
2240 IWGER Indl, Ind2. H3. Ind4. ITKS. IncE. Ind7 
2250 NTETR licsl(0: 1). Livits(0: 3). Mntic(0: 1) 
22GO INTEGER I. J, K. L. Vaaotx. MidPtY 
2VO 9FA Xyspec(0: 3), brs(0: 1), X, Y 
2200 1 
2290 FGSIGN N; ead-data To "STH: INIDW*; FDRfT IFF 
2300 ENTER I Ind4. InL, IrKE, Ind7 

MR 
=wIndl. Ind2 rd3 2310 

- 
ti3; Llmits(*): Xyspm(*), Ijcs(*). Ticsl(*) 
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TEXT BOUND INTO 

THE SPINE 



! %I(N Mead-clata M* 

ESIGN @Read data To -MYEWL". FWAT OFF 
NTER NBad ýata: Xvchw(*). XyId9nt$ 
CS101 ffie, ýd data TO * 

JD41T RRICS M 
ý12E 4,75 
IF 49 (11,01) TJU4 
a ]p OF 
MM 0,1M. 44816054.0.0 

i% 
ýDffli 0.133.0,100 
Midptx-(L-imits(3)-Lisits(2))/2+L. Lalts(2) 
-"ic0ty-(Limits(O)-Uaits(l))/2+Liauts(l) CSUE 6,33 
W tidpbr1O. L13uts(D-7 
LAEL LfjDC "9A, #'*. XviaentS111 
Vk L1muts(2)-?.. 4lcJptv-9 
LUIR (PL/2) 
-AfL LSDC "9n, r;, Xyi6entS1101 
IJIR 0 
CS12E 4,75 
CLIP Linuts(2). Ll3its(3). Linuts(l), Linuts(O) 
VGFORT Liai ts(2). Lizi ts(3). Lial ts(I ), Lill ts(O) 

'o T 

oD((U Xv,, C(I), Xyspm(o). Xysw(3), Xyspec(2) 

IF 
ý%7 (Lna2) TrES 

X-O. 
ISE 
X-Tics(O) 

IF 
NGT (Ind3) TO 
Y-0. 

ELSE 
Y-Tics(l) 

DC IF 
-$t1c(o)-1jcs1(o)f1 "Atic(D-Tics1M41 
I 
XS X. Y. 0.0, *t1c(O),, 'fnt1c(D. 4 
IF InA THEN 
Of W4 
GRID X*ntic(W, Yftt1cM, 0-0-,,, 
LDE TYPE 1 

DO IF 
IF IrdS TIEN POE 
IF %T ar4q) To 
GOM Exit 

ELSE 
FER K-0 M3 

IF K-0 OR K-1 THEN 
M-0 

ELSE A-31 
661 

uF 

I-INT(PE(Xyspm(K))ITICS(M)/"Ptlc(N)) 



27W FLF A T-1 1 
2770 F K-0 OR K-2 DE4 
27tT, L-41 
2790 ELSE 

2610 E"T y 
28a, F r, THEIý 
2931, MM Tics(ý-1)/2, L*Tics(M)*Mntic(M)+Tjcs(M)/2 
2B4D DS 
2541 LK 3 
2950 W L*Tics(M)'0lntjc(M)-Tjcs(M)/2.0 
2B5A UF 
29n LVI IN 'K. e:,, *TicsM*? irtir(M) 
2ED I fal 
2N, va K 
29LY, BE F 
LOIG i 
20 Exit: UPC 
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Appendix 3 

Joystick Interface 

Circuit Description 

The basic requirement for this unit is to provide an 
interface between the General Purpose Interface Bus (GPIB) 

of the H. P. 9826 computer and a number of analogue voltages 
derived from the user controls. These controls comprise : 

A2 axis joystick control fitted with 2 10ka linear 

potentiometers (RS type 162-732), this giving pilot 

elevator and aileron commands. 

Four 100k linear slider potentiometers giving trim 

settings for the elevator, aileron and rudder in 

addition to a throttle control. 

An A/D converter is thus required, capable of 
multiplexing six analogue inputs and producing an eight bit 

data word for each of the six-channels in response to an 

address'supplied by the computer. An eight channel 

multiplexed A/D converter thus forms the basis of the 

circuit. ' The device chosen was an RS type 303-545 (165) 

but only six of its eight possible channels are used in this 

application. 

ý The circuit diagram is shown in Fig A. 1 and roughly 
follows the RS data sheet for the A/D converter running in 

the bipolar (offset binary) mode. 

The six analogue inputs are derived from the joystick 
and trim pots which, with the exception of the throttle 

control, VR1, are strapped between the +5V and -5V power 

rails. 2kogain trimmer pots, Tl - T6 , are included in each 
of the analogue input channels and the two unused inputst 6 

and 7, 
_are 

taken to analogue ground. With this arrangement 
channel 0 becomes the joystick aileron demand,, 1 the 
joystick elevator demand, 2,3 and 4 are the elevator, 
aileron, and rudder trims respectively and 5 is the throttle 
demand. 
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Channels 0,1,2,3 and 4 thus give binary output words 
between 0 and 255, although the joystick channels, 0 and 1. 
have a relatively limited travel of + 27 binary about zero 
(binary 128). Channel 5 binary output is limited to 
Positive excursions only i. e. binary 128 - 255. A summing 
amplifier arrangement (IC1 etc. ) is used to provide for 
offset adjustment via. trimmer T7 and the reference voltage, 
VREF" for IC2 is derived from the -10V stabilised supply. 
The converter also requires a 1.6 MHz clock and this is 
derived from a simple oscillator comprising 1/4 IC3, Rl and 
Cl. Analogue and digital grounds are commoned at pins 11 
and 14 of IC2. 

The A/D is interrogated by providing a three bit 

channel address on AO-2 which may be latched into IC21s 

address latch by taking the ALE input low. The current 
value of the selected channels eight bit output is then 
placed on the data bus provided that the chip select, U-S, is 
low, enabling the tri-state output buffers. Any channel may 
be interogated in this way irrespective of the conversion 
process since an 8x8 bit memory is used to store the A/D 
converter's outputs as the analogue inputs are continuously 
scanned. Data may thus be read from the bus at any time 
during the multiplexer's scan. A status pin is also 
provided which indicates the currently selected analogue 
input and may be read by the host computer although this is 

not used in this application. 

The supplies for the circuit are provided by a mains 
transformer, rectifier and smoother. Voltage stabiliser 
IC's are then used in each supply rail, thse being at + 10V 
and +5V as shown in Fig. A. l. The unit is housed in a small 
case with the connections to the host computer brought out 
via. a 25 way D-type connector. The pin designations for 
this connector are given in Table A. l. Fig. A. 1 also shows 
the connections to the GPIB which are required. Note that 
Pull up and pull down terminating resistors are required on 
the GPIB output lines,, DOO-15" and buffered TTL input 
drivers are also required, DIO_15* 

The HP 9826 basically interrogates the unit by sending 
a3 bit word on AO-2 specifying the analogue channol 
currently being accessed. With ALE held high and E-S low IC2 
then responds by placing the appropriate channel's curront 
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output on the data bus. The BASIC program which reads the 

analogue inputs (see Appendix 4) is sufficiently slow to 

allow IC2 to place valid data on the data bus, after a 
change of address on AO-2 , before this data is read by the 

computer. The ENS and ALE lines are thus tied low and high 

respectively to permanently enable IC2. 
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Table A. 1 

D-type Connector Pin Designations I 

D-type pin no. Function 

Data Bit 0 Usb) 

2 1 

3 2 

4 3 

5 4 

6 5 

7 6 

8 7 (msb) 

9 Es- 

14 Gnd (digital) 

15 Status 

16 A2 

17 Al 

18 Ao 

19 ALE 
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.* 0 

ci -4 
5a 

U 

43 

ri 

44 

'I 

I 

110 

7�> 
9 "l 0 
1" 0 
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Aaendix 4 :- Contro Routine version 5 Listing 
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I in RE Contra 
11-03 ! 
10,10 COM /. 4, iscl/ IREAL mdrnrac. Phi. Theta. Psi. Etadeg. ZetaMg. TaxjeQ 
1920 CUM /Misc3/ WA I. iqmt, P. O. R. PcL-g, GbegRiegXn. Ye 
IK30 CCM /Misc4/ REAL Eta. Zeta. Tau. Uc. Lb, Vc. %, Wc. Wb, Vt 
1940 CUM MiscfV RFA Ma, Taillift. Ltotal. CawClt. Nr, ha, U2, Throttle 
1550 i 
1960 INTEGER 1 
1970 ! 
19BO flLLOCATE INTEGER Para(G) 
1990 ! 
2000 AMIG4 @Gpia-path TO 12: FUNT OFF 
2010 1 
2020 FOR 1-0 TO S 
2030 WW @Gpio-path: l 
20M ENTER Omp_path USING "I. W", Para(I) 
2050 HT I 
2060 ! 
2070 ttadeT((Para(i)-129. )*20. /27. )4((Para(2)-120. )*20. /128. ) 
2090 Zetader((Para(O)-128. )*20. /27. )+((Para(3)-126. )*20. A29. ) 
2090 TadeT(Para(4)-12B. )*20. /12B. 
2100 Throttle-(Para(S)-127. )/120. 
2110 1 
2120 Eta-Etadegfl/loo. 
2130 Zeta-Zetadeg*PI/180. 
2140 Tau-Ta&, gwI/j8o. 2150 1 
2160 AMIGN @Gpip_path To 
2170 
2180 
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Appendix 5 :- Head-up Display 
'Routines 

Version 6 Listing 
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10 OPTION W0 
20 PRINTER IS I 
30 VSS STMRGE IS ": INTERA" 
40 
50 a /Perol/ REAL Milss, lx, ly, IzAl. CIO, Cleta, Zq, SLirface 
60 COM /Aem2/ REA- Lt, Qiar. CdO, K, Yv. Yr. Ytau, Lv. Ls. I. NLr 
70 CCM /Pem3/ REAL B, A1tA2eta. W, Cal. Cmobd, Cmeta 
80 COM /Aero4l RER. Nv, NrO, Nrl, Ntau, Ad, Pwx, Etap, Ke, Pp 
90 ! 
100 CD1 /Initl/ REAL Tand. Tstep. Tprint. Cg, kpeed, kirdeg 
110 COM /Init? J REA Ug, Vg, Wg. PliidegTtr-tacbg. Psideg. Height 
120 ! 
150 CD1 /Arravs2J RUL Trnsform(1: 3,1: 3). Trnwm(1: 3,1: 3) 
1GO ! 
170 CDI Miscll WA Wdrnrad, Phl, Theta, Psi, EtadE? g. Zet. K]KTaL&g 
190 MM Aisc3/ RFA T, WgLrt, P, O. R, Pdog, Odeg, Rdeg, Xn, Ye 
200 CD1 Misc4/ RFA Eta. Zeta. Tau, Lk. LbVc. Ub, WcWb, Vt 
210 COM Misc&/ WPL 6c2, Uwc, Lkw2, LkAcAlphaBeta. Ua, Va, Wa 
220 CM Misc6l REFL X, Y, Z, L. MN. LbdotUxbtgxbtfttUt, PdDt 
ZJO COM hiiscy WA Rho, CJ, Lw, Lq, Cd, Dragfa=, Ya, La, Cot 
240 CM MiscB/ REAL Ma, Taillift, Ltotal, QwClt, Nr, Na, U2. Throttle 
250 COM Miscl-V REAL Xe, Le, Pact, Pnm. U3, Pps. Rpa. Gravityugdot, Vgdot, Wgdut 
260 COM /Miscio/ REFL Phidot, Thetadot, Psidat. INTEGER Iter, Stall 
270 1 
2BO COM /Old/ REA Tew(0: 9), *w(0: 9), INTEGER Int(0: 3) 
310 1 
320 Rerun: LDW Ail FROM IfAW 
330 Mi. he, ýp 
340 DELSW [badw 
EO LDAM ALL FROM "INHYLISE" 
Wo LWM ALL FROM "MDn* 

. 870 Mi Indata 
BBO CR. L Transf 
890 Crti Init 

*900 MLL Air 
910 DELSUB Indata, lnit 
920 LOIMB ALL FROM '4110 
921 LDM 1U FRM IMAO 
S ML Mainsim 

vý SSO DEM Air M EW 
970 ! 
990 EEW 
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730 52 Mainsim 
740 ! 
7SO COM /Perol/ REAL Mass, lx, lv. lz. 91, ClO. Cleta. Zq, Surface 
760 COM Aero2/ REft- Lt, Cbar, CdO, K, Yv, Yr, Ytau, Lv, Ls, LP, Lr 
770 COM /Aero41 REAL Nv, NrO, Nrl. Ntau, N, Pmax. Etap, Ke, pp 
790 COM /Aero3/ REAL B. Alt, P2eta, CmO, Ctl, Cmwbd, Cmeta 
790 ! 
BOO CON /Initl/ FFA Terd, Tstep, Tprint. Cg, W%)eed, Wdryideg 
BIO COM /Init2/ REAL Ug, Vg, Wg, Phideg, Rik-tadegPsiaeg, Height 
820 ! 
OSO COM Arrays2/ REAL Trnsfom(*), Trnspcw(*) 
8GO ! 
970 COM /Miscl/ REAL Wdrnrad, Phi, ThE! ta, Psi. Etadeg, ZetadEg, Tatideg 
0 COM /Misc: 3/ REAL T, 4st, P. Q, R, Pd9gOdeg, Rdeg, Xn, Ye 
900 (IM /Misc4/ REAL Eta. Zeta, Tau, Ur, Ub, Vc, Vb, Wc, Wb. Vt 
910 COM Alisc5l WA LLr2, LýcgLkw2, LýýAlphagBeta, Ua. Va, Wa 
TO COM /MiscG/ REA1. X. Y, Z, L, M. N, Lixiot, Vxbt, Wbdot, Pdot, O&t, Rdot 
MO COM Misc7l REAL Rho, C1, Lw, Lq, Cd, Dragforce, Ya, La, Git 
940 COM /MiscEV REAL Ma, Taillift, Ltotal, CmwC14Nr, Na, t2, lhmttle 
950 C91 Alisc9/ REAL Xe. Le, Pact, Pnm, U3, Rps, Rpm, Gravitv, Ugdot, VW 
960 COM /MiscIO/ REA Phddot, ThetadDt, Ps1dDt, INTEGER Iter, Stall 
9G1 CaM /Old/ REAL Temp(*). New(*), YM Int(m) 
963 1 
970 ! 
9BO INTEGER Flag 
990 REA Printinc 
991 
9s 
997 CALL Contra 
998 CALL Outdata(l) 
999 Flag--1 
. 
1001 1 
1002 Repeat: IF (T)-Terd) OR (Stall-D 10 
1010 SUBIT 
1020 ELSE 
1030 IF IterOO DEN 

, 1040 DLL Air 
1050 CALL Contra 
IOGO CALL Forces 
1070 CR-L ALcel 
1080 CALL Integrate 
1090 ELSE 
1100 CALL Outdata(2) 
1101 END IF 
1110 Iter-Iter4l 
1120 T-Iter*Tstep 
1130 PrintircPrintinc+Tstop 
1131 IF Printinc)-Tprint M 
1132 New(0)41%ý 
1133 New(l)-Vt 
1134 New(2)=Etadeg 
1135 New(3)-Zetadeg 
1136 New(4)-Tax* 
1137 New(D-Dr-tadeg 
1138 New(G)=Psideg 
1139 New(7)-Phideg 
1140 *w(B)-Heiqht 
1141 New(9)-Psideg 
1142 CALL Update 
1143 CALL Updatel(Flag) 
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1144 CrLL Lbdate2 
11C OU Reset 
1146 CFLL Fuse 
1147 RIV 
1150 CrLL Outdata(3) 
1160 PrIntirc-fr intlw-Tprint 
1170 EM F 
1190 END F 
1200 GGTO Repeat 
1210 1 
1220 SUBM 

H 
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10 SUB Heaaw 
20 
30 fILLOCATE Lar)el$1G41, RdnO141 
40 '3be3--"W. SiTEVA. SFEEDELEVATOR AILERM RUB 
41 ftvs--sar, 
50 1 
51 INIEGER Flag. Yord, I, M, Tcp, Bte 
52 INTEGER Theta, K, SteD, Stepl 
53 REAL Yorq 
61 DEG 
70 GINIT 
80 GRfMCS ON 
90 ! 
100 LINE TYPE I 
110 ! 
120 MURT 0.130.16.67.83.33 
130 RPM -71.6,71.6, -200,200 140 ! 
150 ME 01101-551-01115 
1GO VIEWURT 19,1124,100 
170 MES 10,0, -100, -210.5,0 190 VIEWMT 0.130,0.100 
190 WDIM -71.6.71.6, -300,300 200 ! 
210 CSIZE 4,. 3 
220 LIM 2 
230 1 
240 FOR 1-2 M2 
250 MM -63, INIOO 
260 LAU USING IW; ImIOD 
270 NEXT I 

- 290 UM 5 
290 RIR 1-1 M1 
300 W @xl-l, -227 '310 LABEL USING 'tW; I*50 
320 ND(T I 
330 CSIZE 4,. 4 
340 LUC 1 
350 FOR PO M7 
360 IF D4 TO 
370 Yord-2GS 
380 M=I-5 
390 ELSE 
400 Yard-267 
410 M-1 
420 E? V F 
430 W 1.1*((23-tlM)-GS), Yord 
440 LABEL USING "W; Labels[l+8*D 
450 11071 460 LORG 1 
470 CSIZE 4,. 4 
490 FOR 1-0 M7 
490 IF 1>4 TO 
sw BW-90 
510 Tw-94 
0 M. 1-5 
SM ELSE 
sm otm-1 
&W TOMS 
SGO M. I 

PITCH YFw RILL " 
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570 END IF 
580 VIBM IBW+23,18*M+35. Btm. Top 
Sm FOE 
Boo ým 1 
690 i 
710 VIEWW 100,130,60,100 
720 SHOW -1.5,1.5, -3. S, 3.5 
730 LIN 5 
740 CME 3,. 4 
750 ! 
760 FOR Yorcr2 TO -I. S STEP -3. S 
770 MOW O, Yorg+l 
? B0 FOR Theta-0 TO 3GO STEP 5 
790 DIM SIN(Theta), Yor. q+(XS(Theta) 
800 4YT Theta 
810 IF Yorgm2 10 
020 Step-72 
830 End=324 
840 Stepl-36 
950 ELSE 
BGO Stepl-90 
670 Stm-90 
8BO End-270 
890 END IF 
900 FOR Theta-0 TO 3GO SIEP Step/2 
910 HOW TAIN(Theta), Yorg+. ffiK0S(Theta) 
920 DW SIN(Theta), YorgýMS(Theta) 
930 NEKT Theta 
940 FOR ThetA TO Erd STEP StEPI 
950 MM 1.2iG]N(Theta), Ym-g*I. NMS(Theta) 
960 IF Yorr2 REN 
970 LABEL K 

.0 K-K+l 
990 ELEE 
-1000 LABEL USX oR'; Mi9l+Thetw%l 
1001 END IF 
iolo C(T Theta 
1020 ýW Yorg 
1030 1 
1040 ME 4,35 
1050 HM -. 025,. 3. 
1060 LABEL IIEIGIT M*I(r 
1070 HOW 0, -3.2 ., 1080 LABEL "GIODC 
1081 1 
1082 lErd of setup procedure 
1083 !, 
1064 HEND 
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1420 SLE ýýte 
1430 Mi /Old/ REAL Tew(. *), *w(*), INTEGE; 
1431 A-LDT-E INTEGER Intl(0: 3) 
1440 INTEGER I. J 
1441 REA Yl. Y2 
1450 DEG 
14GO LINE TYPE I 
1470 UK I 
1490 CSIZE 4,. 4 
1490 VIBM is'lls, 18,83 
15W WDU -SS.. SS.. -192,204 islo i 
IS20 Intl (0)=3S*COS(New(7)) 
IS30 Intl (D-MIN(NoWWRITD4.18T 
1540 Intl (2)--S*S]N(New(7)) 
lsso Intl O-SCS(NEWWRATIO0.1 BE 
1551 1 
1560 FOR J-1 TO 1 STEP 2 
is7o PEN i 
1SBO IF J-1 TO 
15N Yl-Temo(S) 
isgi Y2-Tew(G) 
15M ELSE 
IS93 YI=NN(S) 
1594 Y2-New(G) 
159S Int(O)-Intl(O) 
lS9G Int(l)-Intl (1) 
1597 Int(2)-Intl(2) 
159B Int(3)-Intl(3) 
IS99 EM IF 
1GOO FOR I-1 TO -1 STEP -2 1601 MDIE olyl 
1GO2 BW I*Int(O), Int(l)*I4Yl 
1GO3 ND(T I 
1604 mv- O. Yl 
IGOS DN Int(2), Yl+Int(3) 

1GOG ME TYPE 9 
IG07 PER J 
IGOB FOR I-I TO -1 STEP -2 1609 MWE Y2, -182 1610 mw 0110*i 
1611 mm -S0. Yl 
1612 BIN 2*1,0 
1613 ýw I 
1614 LDE TYPE I 
1616 tw i 
1617 swc 
195 1 
1665 SIB Rewt 
1GGG 1 
1669 CON 10ldl REAL Tew(*), NEw(*), NEGER 
1 G79 INTEGER I 
ISBB FOR I-0 TO 7 
16% Tew(D-New(D 
1700 011 
1718 SLUM 
1729 1 
1729 SLO Updatel(INTEGER Flag) 
1730 COM /Old/ REPL Tewo(*). New(*), NrEGER 
1740 1 

Int() 

Int(*) 

Int(N) 
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17SO INTEGER I. Btm. M, Sijbpen 
1760 ! 
1770 DEG 
1780 LINE TYPE 1 
1790 LORG I 
1900 CSL! E 4,. 4 
1810 vMfORT 01130.01100 
1020 WDCOW 0,130,0,100 
1830 1 
1840 FOR 1-0 TO 7 
loso IF AGS(Temp(D-New(D)>-. 1 OR (Flag-D THEN 
18GO ir IA Pa 
1870 etorm9o 
1890 M-1-5 
1890 RE 
1900 etm-i 
1910 M-I 
1920 END IF 
1930 HM 1B"23, N 
1940 FOR Stbpen--l MI STEP 2 
1950 PEN &jbpm 
19GO IF SLbpw-1 TIEN 
1970 LABEL USING "M4D. D": Teep(D 
1900 ELSE 
1990 MWE 19*Mf23, Btm 
2000 LABEL USING IHC. 1r; New(I) 
2010 END IF 
2020 ýw suhrm 
2030 END IF 
2040 NEXT I 
2050 ! 
20GO VIEWORT 15.115,18,83, 
2070 WDM -55,55,192,204 2071 Flag-O 
2090 1 
2090 SIWV 

! 2100 ! 
2110 SUB Lk6te2 
2120 1 
2130 M4 /Old/ REAL Teop(, (), New(*), DUGER Int(*) 
2131 INTEGER L, J 
2132 REAL Lngth, Angle, Anglel, Angle2 
2140 1 
2150 DEG 
21GO LINE TYPE 1 
2170 VIE)FORT 100,130,60.100 
2190 SO -l. S. I. S, -3.5,3.5 2190 1 
2200 Angle-3.6*New(g) 
2210 FOR J-71 TO 1 STEP 2 
2220 PEN J "' "- '-' "' 
2230 IF J-1 10 
2240 Arglel-Teop(O) 
2250 Angle2-Temp(g) 
2260 ELSE 
2270 Anglel-Amle 
2280 AngleMBVS) 
2290 END IF 
2300 Lnoth-. 7 
2310 RIR L-0 TO 2 

A-47 



2320 GE 0.2 
2330 DYN LngthmSIN(Anqlel/10'L). 2+Lngdi*CDS(Anqlel/10*L) 
2340 Lnobi-Lnoth-. 2 
2350 hM L 
23GO MUVE 0, -I. S 
2370 DW . 7*SIN(Angle2). -1.5+. 70MS(Angle2) 
23BO NEU J 
2390 lemp(9)-Now(9) 
M Temp(G)-Angle 
2410 1 
2420 VIEIM 15,115,18,63 
2430 RNDUW -55,55, -192,204 2440 1 
2450 S" 
2460 1 
2470 SUB Fum 
24BO MEGER Theta. Phi, I 
2481 RER- Xmrd, Ycard 
2402 1 
2499 LDIE TYPE 1 
25M PEN 1 
2500 1 
2518 VEWW 45,85.40,60 
2520 SHOW -2.2, -1,1 2S3B 1 
2549 DEG 
21M NNE OS2.0 
2568 UIRG 5 
2578 CSIZE 10,1 
258B LABEL 'T 
2618 1 
262B IIAE . 32,0 
2G38 Do 1.5,0 
M tIM -. 32,0 
2MB DWO -1.5,0 
2668 HIVE 0,32 
120 DW 0,. 82 
26BO ME -. 22,67 
208 DRAW . 22.. 67 
2699 IIM . 222, -. 232 
2700 M . 424, -. 424 
7m WE -. 222. -. 232 
2705 DRAW -. 424. -. 424 
2710 1 
2711 VIINW 15.115,1B. 83 
2712 RDUIW -S, 55, -192,204 2716 1 
2717 REM 

A. 48 



Appendix 6 :- FORTRAN Program version 7 Listing 
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c 

M 
I- - t. 0 v 

ýA. LO) 

N " -cc a L.: 1- 1.1 
14 I- w = it -4 a 

a W _; -. 13 ýt 'a w W lz I., c ': 
(4 fý CA - M .2 -C 

.3 t5 %4 1 ý; -1 1- - r- 
C_ 

Sý = 96 " " tj v .4 w -1 < 42 - C .3 
UHIH L. 

W) F- .3 0 .3 C> W .4 %4 

o. 

C_ dc UM- 
1.4 .. Lý cý 

Eý ;. o) % % rm K -C x 
m 

0 S ;- X xK 760 CL 1- .3 1- 
:! ý - . = ; ; " -C 

,, -. r 6 P. Ml s C4.3, w V w Z 
--tn = It 5! ý, -C -C - m :D _ => =) 

I- - k- CA. it cu LA V. L. =. n t. ýr =- Or. r. Q0 V3 -D u -C ul X " Lu -1 -C ! 3=W .4 mi C ww .1 -C -C ix ILI 0 u = Q I-) Q x0K; " .I It .2 t. 0 I- t. x ""t. vj x 3L ch. a I- &L :; 
-0 mi x IL SIC 

mt 94 k. 4c W -3 - ta .3" = t- = k. = LLI " -4 0 mx Q w -4 c2 CA. tj b. x a. al. owo 41 6. it If -C tý Eý = oý 00 0 a. = cr .2 >D= t. Z-3. = 0 - _: ) zQ 
L.. = :.. vi Tj x uu :cG U33 xu 1ý :.. w Lo 

: sI LM 0 1% 
U * lb flo 0 0 0 tn m %) Q 

U VU .4 ýuv u tn Uý um-s UM ti"Ic"I L)UUUUUUU u u u uu 

cc 

x 

loc bc 

.3 

-C .4 u ri 

I z 1ý z I 

-2 Q I- 
X 

li :i X LA. w ;m 

__ 3 I- -Z 1ý U 0- tj w 
W C. N 

ý. c M ýj L; 
ý u 10 -, 

W =61.1 :.. 7ý x :ý I': -. -. c 

O 1ý ý C.. 3 t4 .. C, = )'- %. %- - .4U". P_ 
ýj U. _* t; %. V w 
-t : %- I- wwý %I. JF4 ý 77 t 

% dCC bd W%% ý3 %.. 3 's lr ýj V%Mw0C 
.3V 

1ý w 

"D %. %= to r- .3 U" -C .2 .3ý, Xz=ý. a 1* = -"I 
.2 L) X 1ý x tol wC --C= -C v3 t ; 

.3C. -C It Lý I- L.. Lý r_ I. C'. L 
0 Vmvv :4 .2x C m Li 

rs 
I 80 
M 

uv I- vU La uvu L q 

' - 1. 0. 
cr 

x F. : iC 1ý =i .2= Ll -C :; -4 C X. ". 2 
:r ) Of C r. C r_ .3 dle = .3 .Ct 

C 9x 000 CL 0W LL as 96 It 
-C 13 

to . 40 

kn vA W -C 14 Am it X LC .9==A=j4aAmaAw 44 " ro .0 c vu x %> 0 Q. Q00uuvvu0u00vW, oj -4 w -C 
w- W XxxxXZ. X ýL X X; x XZ. 3L ILK IL IL36JL36w_ P. a. Lb V. 3L L3 

L6 t- I- V x x 3ý XX 3L Xx JL JL X IL JL a. ac X 3L X IL 3L a: 3L XX AL b. AL 3L A CA A -. 4 &L -4 .4 IL -. 9 
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Appendix 7 

This appendix provides a listing of the LOP optimal 
control CAD package which was developed in connection with 
the current work. The package is intended to allow 
interactive design of control systems employing LOP 
techniques and has been used extensively to provide the 

controller designs presented in Chapter 6. The development 

of the optimal control gain matrix relies on a well known 

eigenvector solution of the infinite time algebraic Ricatti 

equation (31). The package is thus only applicable to 

systems with 'infinite time' end points when the steady 

state Ricatti formulation is required. The system is also 
required to be controllable and minimum phase. 

The package is currently under revision and hence it is 

not intended to examine its structure in great detail. A 

purely functional description is thus provided in the 
following discussion. 

The package has been structured around a previously 
developed suite of routines for the evaluation and display 

of multivariable root loci (160) and system time responses. 
The majority of root locus routines have been removed 
however due to core limitations on the DEC-10 machine on 
which the program was developed. The program is structured 
'top down' and is essentially menu driven with sub menus 
presented to the user at each stage of decision making. The 
initial main menu provides the user with the following 

options : 

INP - inputs system A, B and C matrices either from the 
keyboard or disc file (from previous store). 

OUT - exits to system 

CHE - displays current system data 

MOD - allows existing data to be modified 

COM - allows a forward path compensator, defined in state 
form, to be introduced 
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STO - stores current data on disc file (retrievable via 
INP) 

OPT - enters optimal control design routines 

Typing any of the above allows the appropriate option 
to be executed. Note that in all cases the system data is 

required in state space form and the system must be strictly 
proper. The compensator may, however, be proper. Each 

option prompts the user to input either data or a response 
before returning to the main menu. The OPT option is 

somewhat different, however, since it allows the user to 
design the optimal control gains and investigate the time 

responses of the optimally controlled system. On entry to 
OPT the user is required to input the Q and R matrices of 
the quadratic performance criteria which may be chosen as 
CTC and I respectively. A sub-menu is then presented which 

allows the following options : 

1- modify either of Q or R 
2- display any of QF R, system matrices or optimal 

control gains, if already evaluated 
3- evaluate and display the two optimal gain matrices 
4- evaluate and display optimally controlled system time 

responses 
5- store or retrieve data to disc file 
6- return to main menu 

Note that both the state optimal control gain and the 

state reference matrix (see Chapter 61 section 6.6) are 

evaluated in option 3. Option 4 again provides a sub menu 
to allow the user to specify the time steps, type of input, 

device for display, etc. This option also allows the user 
to introduce a random disturbance into the system, defined 
by a coupling matrix. The type of disturbance introduced is 

somewhat specific to the aircraft problem since it is based 

on the well known Dryden (149) model of atmospheric 
turbulence. For deterministic systems the user would not 
use this facility. 

A normal itterative procedure may be adopted for the 
design, the user first specifying the Q and R and, after 
evaluating the optimal control gainst checking that the time 
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response is satisfactory. If it is not Q and/or R must be 

modified and the time response checked again. This 
itterative choice of Q and R is undesirable and it would be 

more usefull to employ, for example, and 

eigenvalue/eigenvector assignment technique, such as 
reviewed in Chapter 6, to assist in the choice of Q and R 

and to provide prescribed time responses. It is intended to 

provide this facility in addition to allowing multivariable 
root loci to be plotted for the optimally controlled system 
and its asymptotic properties investigated. 

The following pages provide a listing of the package 

written in FORTRAN V7. Note that extensive use is made of 
both NAG and GINO routines for matrix handling and graphics 
control. Some elementary matrix handling, e. g. addition, 
multiplication, transposition, etc., is provided by a 
smaller suite of routines. A routine,, PHIDEL, is used to 

evaluate the system time response and this relies on the 
discrete time solution of the state equations. 
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