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ABSTRACT

The work covered in this thesis 1s based upon the
design and development of flight control laws for a
particular aircraft application. The aircraft chosen 1is a
remotely piloted vehicle, the Machan, used as a development
vehicle by Marconi Avionics, Chatham. The initial stages of
the study are directed towards producing a fully non-linear
simulation of this aircraft on a dedicated microcomputer.
The aerodynamic data for this aircraft is known accurately
from wind tunnel testing" on the full sized vehicle. This
development work led to a non-linear model and a close-to
real time simulation of the aircraft with a realistic
display system. '

The latter parts of the work concentrate on the design
of flight control systems for the Machan and the robustness

aspects of a variety of closed-loop control strategies.
Conventional 'classical' s-domain analysis techniques are
first investigated and the likely performance of such

schemes assessed. In the later stages 'modern' control
philosophies are examined using state variable feedback

techniques. The asymptotic properties of optimal control
designs are exploited to provide an accurate method of

specifying system performance via an asymptotic solution of
the L.QP problem and the control designs are shown to display

desirable robustness properties. More recent work into
variable structure systems and the sliding mode are also
shown to be applicable to the design of flight control
systems and have some measure of robustness.

Throughout these studies the robustness properties of
the control are demonstrated by applying the control law to
the fully non-linear Machan simulation.

(vii)




INTRODUCTION

Over recent vears 1t has become increasingly apparent
that the design of aircraft flight control systems using

classical techniques may not be entirely appropriate for
modern combat aircraft. It is felt that the use of the vast
body of modern control theory, which has evolved over the
past decade, may allow aircraft performance to be bettered
when compared with current classical control designs. This
thesis covers work carried out at York in order to establish
an environment in which modern control designs may be
investigated and their applicability to the aircraft problem
assessed. The work undertaken at York complements an
already existing project at Marconi Avionics, Rochester,
under which modelling and control system design for a small
remotely piloted vehicle (R.;P.V), the Machan (7), is beilng
investigated. The modelling work at Marconi was preceeded

by wind tunnel testing of the R.P.V. at Cranfield College of
Aeronautics (8).

It was initially considered important to have available
some form of aircraft simulation, preferably running in real

time. The simulation facility would allow the investigators
to gain an insight into the 'feel' of the problem and also
allow for expansion 1into 'on-line' control 1law
implementation. The aircraft environment involves a high
degree of interaction between the operator, pilot, and the
system hence it was considered approp;iate to attempt, as

far as possible, to emulate this intéraction on the
simulation. |

In Chapter ‘1 of this thesis we consider the physics of
the aircraft with a view to developing a realistic non-
linear model for the Machan r.p.v. The aerodynamic

parameters for this model are taken directly from the
previously mentioned wind tunnel tests on the Machan and an

accurate model of this vehicle can be proposed. Chapter 3
presents a detailed discussion of the implementation of the
simulation in a laboratory environment. The principal aim
of this chapter is to detail the trade off's required in the

choice of a suitable simulation medium. Having made this




choice the actual task of implementing the simulation 1is
also examined in detail. The ultimate aim was to provide a
real time simulation with high quality 'head-up' type
display and inputs via a joystick type of control. How
closely this was achieved is covered in thils chapter. In
Chapter 4 some results from the open~loop simulation are
provided which indicate how pilot workload can be assessed
in addition to indicating how well the model matches the

actual aircraft.

In the later stages of the work the development of
control strategies for the Machan have been investigated in

some detalil. A linearised model of the Machan is derived by
intuitive arguments in Chapter 2. This model has been used
throughout the control design in order to facilitate the
development of linear classical and state variable feedback
schemes, Classical s-domain and frequency response
techniques are reviewed in Chapter 5 to provide an insight
into the control problem and how such simple controllers can
be developed for the aircraft. Chapters 6 and 7 then
examine the design of both optimal control and variable

structure system schemes. These techniques rely upon state
variable feedback and are examined with a view to assessing

the ease of implementation and their likely performance,
These schemes are employved with both linear and non-linear
models and the differences in achievable performance are
quantified.

The final chapter covers the robustness and sensitivity
of the linear and non-linear state feedback controllers. 1In
this context an examination is made of how closely the
schemes maintain a given closed-loop system property as the
system parameters vary. It 1is vital in the aircraft problem
that the control is robust and hence these aspects of the

state feedback schemes are of considerable importance.




CHAPTER 1

Vehicle Equations

In this chapter it is intended to develop the equations
governing the aerodynamic behaviour of an aircraft at sub-
sonic speeds. It will be appreciated that the aerodynamics
of an airframe are complex and inherently non-linear. For
the purposes of simulation studies it was found necessary to
simplify some of these dynamics but retain sufficient of the
non-linear properties to provide a realistic simulation.
The simplifications are indicated in the text and some brief
justifications are given. The interested reader is referred
to the many texts available for a more detailed analysis
(1,2,3,4,9,10).

l.1 Basic Concepts

An aircraft in flight may be considered to be a rigid

body immersed in a fluid medium (air). The forces acting on
the airframe are due to the motion of the aircraft through
the air and due to the inherent properties of the airframe
i.e. mass, etc. The major force required to maintain steady
flight is the 1lift force and this is generated by the
airflow over the wings, these being of an aerofoil section.

The 1ift force must counteract the weight of the aircraft,
any excess of lift acting so as to increase the vertical
speed of the aircraft. 1In order to provide lift, an airflow
must exist over the wings. This is generated by reason of
the aircraft's forward speed provided by a thrust force from
one or more engines of the jet or propeller type. The
thrust force must balance, or be in excess of, the induced
drag force on the airframe due to its forward motion. In
simple terms then, when an aircraft is flying straight and

level, these forces must be in equilibrium as shown in Figq.
l.1. This simple view ignores the forces acting in the

planes normal and perpendicular to the so called
longitudinal plane shown in Fig. l.1 which may be generated
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by deflections in the aircraft's control surfaces or changes
in wind speed.

In practice an aircraft contains a three axis system
and forces and moments will, in general, act in all three

axes, a six degree of freedom system. The two degree of
freedom steady state model shown in Fig. 1.1 does, however,

allow certain important aircraft performance figures to be
derived.

For a realistic simulation a full force six degree of
freedom model must be derived which acomodates most of the
non-linearities of the basic aerodynamics.

1.2 Axes Systems

To derive a more complete picture of the aircraft in
flight it is initially important to define a set of axes

which will act as a reference frame around which equations
of motion may be d‘éveloped. Remembering that the aircraft
is a free body in space its position may be defined with
respect to a set of earth or gravity fixed axes which remain
fixed with respect to the earth. This axis system 1is
inconvenient for analysis, a better choice being a set of
axes which remaiﬁ fixed relative to the airframe and form
the principal axes of inertia of the aircraft. This axis
set, often called the body fixed axes, is shown
diagrammatically in Figqg. 1.2 ‘and clearly remains fixed
relative to the geometrical distribution of the airframe.

We may now define forces and moments to act about this frame

of reference. To translate between body fixed and, say,
earth axes a transformation matrix may be used (see later).

Itt is conventional to define the nomenclature
associated with the body fixed axis system with some rigour
according to an agreed standard. Table 1.1 summarises this
standard and we introduce some_ definitions below with
reference to Fig l.2.




X Axis

_Fig. 1.2  Aircraft Axes System




Velocitlies
Forward B ¢
Side Vv
Vertical |, W .
Roll . P
Pitch 0
Yaw R

Table 1.1

Applied forces
and moments

X

Distances

X




a) OX- is termed the longitudinal axis. Linear
displacements from the steady state about this axis are
defined as x metres for an aircraft having a steady
state velocity along OX of U ms~l and incremental
velocity changes of u ms™l, Force components along OX

are taken as forward positive and termed X N. The roll
component of aircraft motion is about 0X and has

velocity P rad s~l, the resulting displacement being
¢ rad under the action of a rolling moment L, Nm taken

positive 1in the clockwise sense looking along OX from
O.

b) OY is the transverse or lateral axis. A steady state
sideslip velocity, V ms~t, produces a sideslip
displacement y metres under the action of a sideslip

force Y N. Pitching moments are generated about OY

having angular velocities Q rad s"l, angular

displacements of © rad and pitching moment M Nm. The
positive sense is defined as nose up or clockwise

rotation about OY looking along OY from O.

C) OZ 1s the normal axis. An 1incremental change in

downwards velocity of w ms ™1 gives rise to a downward
displacement of z metres with a downward force

component Z N, downwards being positive, Yawing
moments take place around 0Z producing yawing

velocities of R rad s~1, an angular displacement of
¥ rad and a yawing moment of N Nm. All taken positive

in the clockwise sense looking down.

¥

Angles, moments and angular velocities are taken to be

positive in the cyclyic sense and accelerations of the
moving axes relative to the fixed earth axes are denoted by

the dot notation.

Gravity fixed axes are a convenient reference set and
are considered to be centred on the vehicle's centre of
gravity. The 02, axis acts through the c. of g. towards the

centre of the earth. The OX, and OY, axes lie in a plane
tangiential to the earth's surface with OX, oriented

eastwards (or sometimes northwards) and oY, oriented




southwards (or sometimes eastwards). The velocities along
OXO, oY, and 0z, are defined as Usr Vg and LS ms~1
respectively, note that W, = -dh/dt where h is the
alrcraft's height in metres, downward velocity being
positive. The body-fixed axis set may be related to the

gravity fixed axis set using Eulers equations. The

rotational relationships between 0X, 0Y, 0Z and 0X,, OY4v
Oz, are best understood by considering an intermediate axis
set, OX;, OY;, 0Z;, initially coincident with OX,, OY., 0zZ,.
The orientation of 0X, 0Y, 0Z with respect to oxo, OYO, ozo
can then be built up as follows.

i) rotate OX;, OY,, 0Z, about the OZ; axis by an angle
Y(the azimuth or yaw angle).

ii) rotate OX;, OY;, OZ ; aboutl OY; by an angle 6 (the
pitch angle).

iil) rotate OX;, OY;, 0Z; about OX: by an angle @ (the roll
angle).

O0X;, OY,, 0%, 1s now coincident with 0X, 0Y, 0Z as
shown in Fig.l.3 with ¥ , © and ® , the Euler angles
defining OX, OY, 0Z's attitude with respect to OX5r OY,,

0Z,,.

By considering each of the rotations separately, as
above, we may derive a transformation matrix, T, as a 3x3
orthogonal direction cosine array viz.

cos Y cosé® sin Y cos @ -s1in@
cos ¥sin® sin @ sin¥Ysin®sin® cos ® sin @
T = - sin¥Ycoso + cosV¥Y cosd
cos ¥sin 0 cos @ sin¥sin® cosd cCos @ cos @
+ sin¥Y sin® - cos¥Ysind
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It can be shown (4) that the velocity components in the

reference and inertial axes are related by

U, U
Vo | © T V
Wo W
or
1 UO UO
W WO Wo

Additionally, the pitch, roll and yaw velocities,
Q,P,R, about O0Y,0X,07Z may be expressed in terms of the
pitch, roll and yaw rates, 6 / o , ‘I'}, in the gravity fixed
axes since (4)

P 1 0 -s1n @ o
Q1 = 0 cos® sin®dcos@® | |6 -1.2
R 0 -sin® cosQPcos O | |V
the inverse of equation 1.2 being
E) 1 sindtane@ cosdPtan® P
6| = 0 cosQ ~-sind 0 -1.2 a)
lf! 0 sindsecE cosdPsecCcH R

Equation 1.2 a) breaks down for 6=+ 90° and this may
be considered a disadvantage in simulation studies but this

may be tolerated providing manoeuvres requiring only
relatively small pitch angles are to be modelled. The

90° pitch condition could, of course, be easily trapped in
any simulation if it were required to model manoeuvres
leading to the establishment of larger pitch angles.

The velocity components in the body fixed axes U,V and
W may be resolved into a single total velocity vector Vm

whose direction 1is defined by the angles of sideslip, 8, and
incidence, @, as shown in Fig. 1.4.

It follows that

11
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Vi =V U2 + v2 + w? -1.3

and with « =sin”l__ w ; p=sin”l {v/vg] -1.4 a), b)

-

= Vm cosacosf
= VTlsinﬁ -1.5
W = Vp cosfsina

<\

To proceed further with the development of the dynamics
of the aircraft we must consider the aerodynamic forces and
moments which act on the airframe. These forces and moments
will produce changes in the aircraft's body velocities and
accelerations which may be translated to velocities relative
to earth axes using the equations 1.1 to 1l.5. The

resulting dynamic behaviour of the aircraft may then be
deducedf

1.3 Euler Equations

The next stage 1in the analysis requires the use of the
Euler equations. These equations are derived from a

consideration of Newton's Second lLaw of motion. Two basic
assumptions are required here namely :-

1) That the airframe may be considered as a rigfd body
i.e. that the distance bgtween any specified points
within the body does not change. All aircraft exibit
some structural flexibility but for the present

analysis this will be ignored.

ii) That the earth may be considered as a body fixed in
space such that motion may be considered relative to
the fixed earth. For most terrestrial applications

this is a valid assumption but for long term navigation
and extra-terrestrial flight its wvalidity 1s
questionable.

Given that the above assumptions are made then Newton's

13



Second Law 1s applicable within the given reference frame.

This states that the time rate of change of linear momentum
is the sum of all externally applied forces and that the
time rate of change of angular momentum is the sum of all

applied torques.

i.e. dG F and dH
dt dt

M

where G 1s a linear momentum vector and H is an angular

momentum vector both measured in the inertial co-ordinate
frame. The derivation of the Euler equations also assumes
that the aircraft may be considered to be moving in vacuum

and is acted upon only by external forces. The mass of the
displaced fluid is not considered and whilst this may be
valid for some aircraft, larger aerodynamic vehicles and
submarines may violate this assumption. The complete Euler
equations relate the forces X,Y and 2 and moments L,M and N

in the OX, OY and OZ axes respectively to the angular and
linear velocities in the inertial axes viz.

[0 + QW - RV = a,(R® + Q%) + a,(PQ - R) + a, (PR + Q)Im = X
[V + UR - PW - a_(PQ + R) - aY(P2 + R%) + a,(RQ - P)Im = Y
[W + VR = QU + ay(RP = Q) + a,(RQ + P) + a, (P2 + 0?)Im = 2
® 2 _ 2 _ e _ & _
IyP + (I, = IRQ = I,,(0° = R®) - I (R + PQ) - I, (Q - PR)
= L + Yaz - Zay
® _ _ ® _ _ 2 _ 2 _ ®
I,Q + (I, = I)PR = I (R - PQ) - I, (R® - P4) - I, (P + QR)
=M+ Za, - Xa,,
@ ® _ ® _ _ 2 _ 2
IR + (I, = I)O0R = I, (Q - RP) = I (P = RQ) - I, (P4 - Q%)
= N + Xay - Yaz
-l-6
Where I, Iy, I,, Ixy' Iyz' I,, are the moments of inertia

14



about the axes through the c.0f g. but parallel to 0X, OY

and 02Z, Ayr Ay, a, are the co-ordinates of the c. of g. with
respect to the origin of the 0X, 0Y, 0Z axis system and m is

the mass of the aircraft. P,Q,R,U,V,W are as defined

previously.

Equations 1.6 may be greatly simplified if we assume
that the origin of the inertial axis systenm, Ogyz! 1s at the

vehicle's c. of g. (ay,a ,a,=0) and that the vehicle is
symmetric i.e. the O0X, 0Y, and 0Z axes are principal axes

(Ixy= yz=Ixz=0)' l.6 then reduces to
m(U + QW - RV) = X
m(V + UR - PW) = Y
m(ﬁ+VP—QU) = 2

IyP + (I, = IRQ = L
Iy9 + (Ix - IZ)PR = M
IzR + (IY - Ix)QP = N

-l-7

The Euler equations thus allow us to define the body
velocities in terms of forces and moments acting on the
aircraft. We must now consider how to express these forces
and moments as a function of the aircraft's aerodynamics.
Firstly, however consider the effects of gravity on the

aircraft.

The aircraft will, 1n general, be subject to
gravitational forces since 1t will be oriented relative to

the local vertical. The gravitational components of the
forces and moments can be shown to be (4)

’S
]

- mg sSine@

g
Y, = Mg COS ©sind
Zg = mg cos®cosQ
I-g = (ay cosOcos® - a, cosOsind Img
Mg = (-a, sinB6- a, coOs O cosd)mg
Ng = ( ay sin® + dy COS O cos? )mg

-1.8

15




Clearly, i1f OX, OY and 0Z are taken as the principal

M and Ng components of

axes, ax=ay=az=0, and the L g

equations 1.8 are zero.

gf

l.4 Aerodynamic Forces & Moments

When a so0lid body moves through a fluid medium it
experiences a force due to the relative motion of the solid
and fluid. This force can, in general, be shown to be (1)

F=1/2 Cp va2 S -1.9

where p is the density of the fluid, Vn 1s the velocity of
the solid relative to the fluid, S is the characteristic

area of the solid and Cr 1s a dimensionless coefficient.
Considering the aircraft as a rigid body immersed in a fluid

medium, air, we may write down the resulting forces and
moments acting on the aircraft as

Xa = 1/2 C, pVT2 S = aerodynamic force along OX a)

Y, = 1/2 C, vaZJS = " oo " 0Y b)
Zo = 1/2 C; pVp? S = " " " 0z c)
L, =1/2 Cyp VT2 S b = rolling moment about O0X d)
My =1/2 CpVpé ST = " " " 0Y e)
N, = 1/2 C, pVp® S b = " " " 0z f)

-1.10

remembering that a moment is generated by the product of a
force and its associated moment arm. The constants S, b and

C are the wing area, wing span and mean aerodynamic chord

(4) respectively and clearly depend upon the aircraft
geometry.

The major steady aerodynamic forces which act on the
alrframe are the 1lift and drag forces. These forces

16



necessarilly arise in sustained flight. The lift and drag
components act along and normal to the direction of the
aircraft's total velocity vector since they are generated by
the relative wind. Equations 1.4 a) and b) defining the
incidence and sideslip angles may be used to calculate the
aerodynamic components of lift and drag along the aircraft
body axes 0X, 0OY and 0Z. We thus have

X, = L sina - D cos S cosa
Y, =D sina -1.11
2, = - L cosa - D cospf sina

where a and B are the incidence and sideslip angles as
given in 1.4 a) and b), L and D are the 1ift and drag forces
respectively and are given by equation 1.9 as

L =1/2C' pVp2 s -1.12 a)
D = 1/2 Cp' pVp? S -1.12 b)

where Cy' and CD' are the lift and drag coeficients
respectively and Vpgs S and p are as previously. Before

proceeding further we shall examine these lift and drag
force components in more detail.

l.4.l Lift

The lift forces acting on an aircraft are
principally generated by the wings and tailplane. Control

surfaces are also attached to the wings and tailplane and.
generate control moments by modifying the lift contribution

from each flying surface. The primary control surfaces are
the elevators, ailerons and the rudder. The effects of

control surface deflections will be indicated below. The
total lift force may be considered as being composed of the

wing lift, the lift contribution from the tail plane and a
tail 1lift contribution due to pitch rate.

17



The wing lift is as given in equation 1.12 a) 1i.e.
L, = C; 1/2 p Vqp? S -1.13

The dimensionless coefficient, Cy, can be shown (4) to be
proportional to the absolute incidence angle a and

where aj is a constant of proportionality (rads s~1 ) and
Cio is the lift coefficient at zero incidence.

The 1lift component due to the tail plane may be
considered to be made up of three components. Firstly a

component due purely to the lift generated by the tail
alone. Since the tail operates in the disturbed air behind
the wings and fuselage the velocity of the air flow over the

tail will generally be less than that over the wing section.
This effect is neglected for the present but may be
accomodated by defining a tail plane efficiency factor, 75,
this being basically the ratio of the relative wind speed at
the tail to the total velocity Vm. The tail 1ift may be
determined by evaluating the tail pitching moment and

dividing by the tail moment arm this being given by

where Cyp is the pitching moment coefficient from the tail
and is given by

where CMn is the slope of the tail pitching moment /

elevator angle curve, C
moment arm and 7 the elevator deflection.

is the wing chord, 1l is the tail

The second lift contribution is due to the fuselage and
is given by
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where Cyupp is the zero pitching moment due to the body and
the other symbols are as previously defined.

The final lift contribution at the tail is that due

to pitch rate. A non-zero pitch rate will produce a net
lift force at the tail due to the relative motion of the

tailplane and the relative wind. This force component is

given by

where Q is the pitch rate as above and ZQ is the 1ift force
to pitch rate coefficient. For our applications the above

three lift components are the only ones considered giving a
"~ total tail lift of

Lp = (Cyp = Cywsp) ~1/2pVp? s ©/1p - pS Vp 1 250 -1.19

Combining equations 1.13 and 1.19 the total lift force
acting on the airframe is given by

— 2 - 2 =
or

2 -
| -1.20 a)

with C, and Cyr given by equations 1.14 and 1l.l6.

1.4.2 Drag

The drag force acting on the airframe arises from a
number of sources but for the remotely piloted vehicle it is
satisfactory to consider a simple net drag force as given in
equation 1l.12 b) namely
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Here Cy 1s the drag coefficient and to a close approximation
may be considered to be related to the 1lift coefficient Cj

by

k being a constant, the induced drag coefficient and Cgz, 1S
the drag coefficient at zero lift. This type of drag is

termed 1ift dependent drag and can be shown to be (4) a
close approximation to the drag acting on the complete

aeroplane.

1.4.3 Pitching Moment

The pitching moment M_ is given by equation 1.10 e) as

_ 2 -
Ma = 1/2PVT S C Cm

The coefficient C_  can be considered to be made up of two
parts namely a contribution to pitching due to the wing and

a contribution due to the tail. Aerodynamic moments may be
considered to act at the aerodynamic centre of pressure and

this 1s not necessarily coincident with the vehicle's centre
of gravity. A moment is thus generated about the centre of

gravity and pitching motion will, in general, ensue. The
pitching moment due to the wing will clearly be dependent

upon the wing lift and the pitching moment coefficient of
the wing, Cyy» may be considered to be given by (4)

where Cy, is the aft pitching moment for zero incidence, Cpyy,
is the pitching moment derivative with respect to C, (i.e.
3Cy/3C;) and C; 1s the lift coefficient, as before.

The contribution of the tail to the pitching moment has
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already been indicated (egqn. 1l.15) and is dependent upon the

elevator setting. The tail pitching moment coefficient, Cy
1s glven in equation 1.16.

The total aerodynamic pitching moment is thus given by
My = 1/2 p Vp% S T (Cpyy + Cyp! -1.23
1.4.4 Rolling Moment

From eqn. 1.10 d) the rolling moment, L
|

47 18 given by

L, = 1/2CypVp2 S b

C1 being the rolling moment coefficient. Rolling moments
are generated by a number of factors including the

deflection of the aileron. Cy will thus, in general,
reflect the contributions due to each of these factors. To
model the rolling moment adequately it is thus necessary to
determine the rolling moment contribution due to each of the
possible aerodynamic variables considered separately and sum
these to produce an overall moment. This is done by
employing a first order Taylor series expansion of L, about
some nominal operating point. The more important terms may
then be identified either on purely intuitive grounds or by

evaluation. For our purposes we shall consider the rolling
moment to be made up of contributions due to pitching,

vawing, sideslip and aileron deflections. C, thus has the
form

Cy = l/2prP/VTS+l/2erCLR/VTS+

Ly V/Vp S + L, ¢ /s | -1.24

Where Lp = 3 La . ) ¢ »
— | is the rolling moment derivative

9 P
w.r.t. roll rate ( s rad"l )
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r < is the rolling moment derivative

w.r.t. yaw rate ( s rad~1l )

= = 1 g d . &
by .Eé — o La 1s the rolling moment derivative
\ : :
VT T3 A w.r.t. sideslip (8 )
L - aLa . . u e
$ is the rolling moment derivative

w.r.t. aileron deflection ¢

the remaiding symbols having their usual meaning. The above
aerodynamic derivatives will normally be functions of air

density, steady state velocity etc and are generally
determined from wind tunnel tests on a given aircraft.

The overall rolling moment is now given by equation
1.10 4d).

1.4.5 Yawing Moment

This momenthis given by equation 1.10 f) as
Ny = 1/2 C, p VT2 S b

Again, as with the rolling moment, the yawing moment
coefficient, C,, 1is determined by evaluating the
contributions to yawing of each of the aerodynamic variables
and determining the major contribution terms., For the
present application only the effects on yaw due to sideslip,
yaw raté, and rudder deflection are considered éiving

Chp =Ny V/Vp+1/2b N R/ Vp + Nyt -1.25

. and N_ are the ‘aerodynamic derivatives

relating yawing moment to sideslip velocity, yaw rate, and
rudder angle (t) respectively.

again N, N
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1.4.6 Side Forces

The final aerodynamic force equation required is the
side force, Y, equation. This is given by eqn. 1.10 b) as

- 2

As before the value of Cy is determined by evaluating
the values of the significant aerodynamic derivatives, The

rudder 1s the control surface which contributes most to the
value of this force component. For our application the

sideslip, yaw rate and rudder deflection components are the
only ones considered giving

Cy =2 Y,V /Vp+b Y R /Vp+ 2 ¥ -1.26

As before the values of Y, Y,  and Y, are determined from
wind tunnel testing and are the aerodynamic derivatives
relating sideforce to sideslip velocity, yaw rate and rudder

angle, T , respectively. Equation 1.10 b) then gives the
sideforce components.

l.4.7 Additional Pitching Moments

A pitching moment is also produced due to the action
of the wing lift and pitch rate 1ift about the aircraft's
centre of gravity. These components are essentially given

by the products of L and Ly ( eqns. 1.13 and 1.18 ) and the
appropriate moment arms.

The complete aerodynamic force and moment equations may
now be written. These equations also include the

gravitational components as given by equations 1.8 and the
lift and drag components of eqgqns. l.11. The value of the
sideslip angle, B8, is taken to be zero since, in general,
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the sideslip angle is small compared with the incidence, a .
We thus obtain the following equations:

X =Xp = D cosa + Ligt sina - mg sine@ a)

Y =Y, +mg cos & sin® b)

Z = = Ligt COSa = D sina + mg cos ©cos® C) -1.27
L =Lg + L, d)

M=M3 + L, (cg - 0.25) ¢ - (1, + 0.25 - cqg) Lq e)

N = N, £)

where the forces and moments are as defined above and cg is
the position of the aircraft centre of gravity. Xp is the
thrust force due to the engine whilst Lg is the rolling

moment component due to the engine. The model of the engine
will now be briefly examined.

1.4.8 Thrust Equations

All powered aircraft require to have at least one

propulsion unit whose primary purpose is to provide a thrust

force acting so as to increase (or decrease) the forward
velocity of the aircraft.

This forward velocity generates the lift forces
necessary to maintain flight., The engine thrust must also

overcome or equal the drag force incurred due to the
aircraft's motion through the air. The type of propulsion

unit used varies fromaircraft toaircraft but may be of the
piston engined propeller, turboprop, jet, etc type. To
devise a set of equations relating thrust to say pllot
throttle demand (or angle) presents considerable difficulty

and a generalised model is not possible due to the many
types and configurations of engines used. 1In the present

application we shall consider a specific vehicle
configuration, this being the Machan (6) remotely piloted
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vehicle refered to in the Introduction . The layout of this
alrcraft is shown schematically in Fig. 1.5 . Th e
propulsion unit is a small piston engine driving a four
bladed propeller. The propeller 1s housed in a nacel
mounted. at the rear of the aircraft and forming part of the
tailplane assembly. Airflow is directed over the propeller
through a duct, slightly forward of the nacel. The thrust
force provided by this arrangement is thus along the
longitudinal a, axis. The engine also develops a torque,
due to the airscrew rotation, about the 0X body axis and
this contributes to the rolling moment equation. The engine
power demand is controlled by the setting of the throttle

control, TH'

It is not intended to detail the derivation of the
thrust equations, but merely to. quote the results. The
nominal power delivered by the engine, P, .., is given by

Phom = Pmax T -1.28

where P .. is the maximum engine power and Ty the throttle
demand (0 - 100 % ). The actual power delivered by the

alrscrew, P_,. 1s given by

= P 7 -1.29

Pact nom P

where 17__ is the propeller efficiency.

P

The power delivered to the airscrew is related to the
resulting thrust force, Xg, by a simple 1lst. order lag viz

Ke

act

B

-1.30

where U5 1is the air flow rate, in ms'l, over the propeller,
i.e. through the duct, and K, 1s the engine rise rate in

metres, Xp U; then being the power supplied. We also have
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that the power supplied is the rate of increase in energy of
the working fluid and is given by

®
E =1/2 pAp Uy (U3¢ - ul) = Xp Uy -=1.31

where Ap is the duct area, U, is the flow rate 1in the
propeller wake and p and U are as defined previously. Re-

arranging l.31 and making Ui, the subject of the equation
U3 = (2Xp/p Ap + U2) 1/2 -1.32

The flow rate through the duct, U,, can be derived by
considering the thrust equation i.e.

Thus

-1,33
p AD (U3 - U)

Additionally the engine speed in rpm is given by

rpm = U2/Pp X 60 rev/min -1.34

where Pp*is the propeller pitch. The torque due to the
airscrew can be derived by relating this to the nominal
engine power as

LE = 271 X rpm/GO = Pnom

Le = Phom 60 -1.35
271 rpm

with Lz as in equations 1.27 .
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1.5 Summary

The above discussion and analysis has described a set
of non-linear equations on which to base a simulation study
of the aircraft. Whilst the equations are not entirely
general they are nevertheless considered satisfactory for
the application proposed and relate primarily to the

remotely piloted vehicle referred to in 1.4.8. For
simulation purposes a digital simulation will be undertaken,

the basic sequence of solution being

1) Resolve any wind forces into aircraft body axes using

equations 1l.1l.

ii) Evaluate the individual aerodynamic forces and moment
components using the current values of control angles
and aircraft attitude and angular velocities using the
results of section 1.3.

iii) Use equations l.27 to evaluate the X, Y and Z forces
and L, M and N moments including the gravitational

components.

iv) Integrate the Euler equations 1.7 at each time step

V) Evaluate the resulting aircraft attitudes in earth co-
ordinates using equations l.2 and evaluate the new
aircraft position, height, easting and northing

positions using equations l.l.

vi) Repeat for the next time step.

In the following chapters we will investigate the
development of this digital simulation in partiéular with
respect to the implementation machine and programming
languages. Before this, however, we shall briefly examine
the methods available for linearisation of the complete
ailrcraft equations of motion with a view to developing a
state space model of the aircraft.
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CHAPTER 2

Linearisation of Vehicle Equations

The compleﬁe aerodynamic equations developed in Chapter
1l are too cumbersome to employ directly for control system

design. To be useful, a set of linear equations must be
developed which preserve the essential dynamics of the non-
linear equations but are analytically tractable. It is
inevitable that in determining such a model some gross
simplifications must be made since the aircraft is
inherently a very difficult system to model accurately .
Indeed, some basic assumptions have already been made in
determining the equations of Chapter 1 which are not
necessarlly true in certain flight configurations. The
particular linear model which is obtained will largely be
determined by the assumptions which are made in it's
derivation and for this reason some care is necessary when
making these assumptions. 1Ideally for a complete linear
model the non-linear equations should be rigorously adhered
to and a linearisation undertaken at each point in the
flight envelope. This effectively leads to a time varying
linear model although it may be found that some model
parameters change little over the flight envelope or are

sufficiently small so as to be negligble. Conventionally,
however, a set of assumptions are first formulated, these
allowing certain gross simplifications to be made in
deriving a linear time invariant model. This method 1is
perfectly valid for small perturbations when, for example,
stability of the aircraft is of interest as we are only

interested in how, or indeed if, the aircraft returns to its
undisturbed equilibrium position after a small perturbation

in a control surface position.

Such analyses lead to the design of so called stability
augmentation systems and classical autopilots which aim to
alleviate the pilot's workload in controlling a potentially

unstable aircraft. For control of the aircraft 'in the
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large' i.e. when large changes in flight variables are
occurring due to possibly large deflections in one or more
of the control surfaces a more complete linear model of the

aircraft is needed.

In this Chapter it is intended to examine a typical
classical 'small perturbation' derivation of a 1linear

alrcraft model. The analysis presented will at least serve
to exemplify the characteristic aircraft modes and the
nature of the resulting control problem. Some physical
justification of the overall aircraft behaviour may then be
made and an 1insight gained into possible interactions

between motions.

2.1 General Techniques

The sfarting point for any linearisation is the
appreciation that any motion may be considered as being

composed of two parts. Firstly, a component which
constitutes an average steady-state or trimmed condition and
secondly a perturbation component about this nominal
operating point. ©Note that the trimmed condition in an

alrcraft necessarily implies 2zero rotational and

translational acceleration, although translational and
rotational velocities need not be zero under these

conditions. If we now perturb the motion we will, in
general, simply be adding a small additional component into
each of the trimmed conditions. As an example consider the
velocity component along say the OX body axis, U. Using the
o subscript to signify trimmed values and the lower case u
to signfy a small perturbation about U, then, in the
perturbed condition

similarly P = P, +p: = 6, + 0 ; etc. To obtain the
relevant dynamic equations of motion due to small
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perturbations in the variable we first evaluate the trimmed

equations and the perturbed equations. Subtracting the

former from the latter then gives the relevant dynamics.
Note here that since u, p, 9 etc. are small, second order

and product terms in these variables are neglected whilst
small angle formulae for trignometric functions can be
applied (i.e. sinf8=0; cosf=1; g small). Consider, as an
example. the simplified X force component equation (eqn. 1.7
a)) with the corresponding gravitational force component
(egqn. 1.8 a)) included i.e.

m(U + QW - RV) + mg sin® = X -2.1

The trimmed form of this equation 1s given by

m(W,Q, - ROVO) + mg sin O, = X, -2.2

the perturbed form of equation 2.1 can be obtained as

m((4 + Q W, + gW, + QW + qw) = (R V., + IV, +VR, + rv))

+ mg sin (6, + 6) = dX. -2.3
Subtracting 2.2 from 2.3 and neglecting 2nd. order products
m(U + Wo@ + QoW = Vor = Rov + 0g cos 6,) =dX = =-2.4 a)

Similarly the other five equations in 1.7 yield

o

e . .
miv + U,r + Rju = W p - Pw - (g cos 8, cos ®o)?
t+ (g sin 6, cos 0 ) 6] dy -2.4 b)

hm[:v + Vop + PV - qu - Qou + (g cos O, COs (I)O)tp
+ (g sin O, cos ®.) 0] dZ -2.4 ¢C)
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PI, + (Q.r + Ry@)(I, - I,) = dL -2.4 @)
qu + (Pr + Rop)(Ix - I,) = dM -2.4 e)
@

rI, + (P g + Qop)(Iy - I,) = dN -2.4 £)

A similar analysis applied to equations 1.2 relating P, Q
and R to®, 8and ¥ vyeilds

o o ®
P = ¢ - ¢sin eo—e(mo COS 60) -2.5 a)

q = 5cos®o - 9('{"0 sin B0 sin Oo) +

+ ¢(¥, COs B, cosq, + 6, sin ®,) + :zcos 8, Sin @,

-2.5 b)

@ &
r = ¢ Ccos 90 COS ‘Do - q:('I’o oo 90 sin mo + 90 COS @o)

- @ sin ‘Do - 9(':!’0 sin 6, cos <D0) -2.5 ¢C)

It is also possible to apply a similar analysis to the T
matrix of l.1 which yields a rather unwieldy set of

equations, 2.6, shown in Fig. 2.1.

We now note that the equations 2.4, 2.5 and 2.6 are
linear but represent a daunting set of equations from which
useful results can be derived. Note also that the
expressions for dX, d4dY, ......, dN have not yet been
considered and these will, in general, be more complex than
the above. The major reason for this complexity is the very
general set of trim conditions chosen. By restricting the
trim conditions to a specific flight confiquration, however,
the equations become somewhat more tractable.

: Let us now consider the linearisation of the
aerodynamic forces and moments, as mentioned above.

2.1.1 Aerodynamic Forces

The aerodynamic forces and moments acting on the
aircraft may in general be considered to be functions of (U,
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v, W, P, Q, R, 0, V, W, P, 8, R, Ug, Vg, Wg, Ugs Vgr Wg’ P’
in addition to any other variables such as Mach number,
Reynolds number, angle of attack and sideslip. (Note that
Ugsr Vgr Wg are wind gust velocity components in earth axes).
If the forces are continuous functions of all of the above
variables then each force or moment may be expressed as a
Taylor series expansion of the force about some nominal

operating point 1i.e.

F=F0 +(:f)al +(3F)a2 + ®o o0 s o0 o0 -2-7
1/, 9Aa/

here we neglect second order or higher derivatives since

these will, in general, be small for small perturbations a .

in the A;'s. Considering the potentially very large
number of dependent variables equation 2.7 looks formidably
complex. The situation is eased somewhat, however, by again
specialising the trim conditions and by an intuitive
knowledge of the likely values of some of the partial
derivatives. .These are termed the aerodynamic derivatives
and are evaluated holdind the remaining primary motion

variables constant.

As an example consider the aircraft trimmed so as to
maintain a steady incidence, a , in the XZ plane as shown 1in
Fig. 2.2. Neglecting sideslip, i.e. B = 0, then the lift
and drag components acting on the aircraft are as shown and

the aerodynamic forces X and Z are given by equation 1l.1l1
viz, :-

X - D cosa + L sina

a

Z - L cosa - D sina

a

replacing D and L by their equivalent expressions from
equations 1.12 a) and b) then

X, = 1/2 pVp2 S (- Cp cosa + Cp, sina )
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Assuming that Cp and C; are functions of only Mach number,

M*, and incidence angle, @« , then we may expand equations

2.8 as
X = X M + X V + X
‘ 32X, 2 Xy 3M + 3 X, 3 Vp 2L
i oA oM O BVTBA da oJA

where A is the glven primary motion variable. Thus

X, _ 1Vp2S - 3Cp @os ay -3Cp sin o, M
A 2 oM d M oA
+ pVp S ( -Cy cos a, + Cf sin a5 ) *?VI
oA
+ 3.- P VTZ S ( - 3CD COS & + aCI Sina'o + CD sin @
2 J o Y
+ C;, cos @, ) -2 .9

A similar expression is clearly obtainable for 3 2Z,.
9 A

The primary motion variables for this trim condition are U

and W and expressions for

BM B BVT .30: .BM .aVT X I 4
C— [ —— ;g T— P e ’
o U o U o U o W d W oW

may be obtained from equations 1l.l1l1l. For the case of W
constant dW = 0 and

aVT=cosao;aa=-sina0;3M=cosﬂr

d U 9 U Vo o U - a
and for U constant, AU = 0 thus

3 Vip = sin a, ; da = cos Xy IM = sin ag

oW oW \'4 oW a

-2.10

* := Mach no. is defined as the ratio Vp/a where a is the speeqd

of sound and Vm, the total aircraft velocity.
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where a is the velocity of sound. Substituting equations

2.10 into equations 2.9 gives

o~

3Xg =pVp S [ (-Cp -Cpy! cosZ X
o U
+'(1/2 (CDa -iCL) +ECL + CLu)Sin ao COS X
'ql/2(CLa + Cp) sin< a:o] o =2.11
a similar expression is obtainable for 53X, namely
oW
53X = pVgp S [ 1/2(CL - Cp,! cos? @q
oW ’
"+ (1/2(Cﬁa + CD) - Cy - CDa) sin a, COS a,
3 - (CL + CLu) Sin2$a0] | -2112

Note that the standard notation is used for the partial
derivatives i.e. 3Cp = Cp, 7 Cru = (M/2)( 3Cy) ;7 etc.
o R 3 o - 3 M

A similar analysis for 372, and gza gives |
| oU W

3Za = pVT S [(- CL - CLu) C032 ¥
9 UJ h
+;(1/2(CLa + CD) - CD - CDu) Sin ao COS ﬂb r
_*1/2 (CL - CD&) éinzwaol ¢,  | -2-131
%4 = pVp S [1/2(C;, + Cp) cos? ag -
oW

-(l/2(CDa -‘CL) + Cy, +ﬁCLu);sin a, COS ag

- (CD + CDu) sinz arol _2-14

37




The above example is quoted to indicate the degree of
complexity of the expressions for the aerodynamic
derivatives even for this relatively specialised trim

condition. The choice of a, = 0 does, however, simplify
the above expressions considerably. A choice of ay = 0

clearly influences the individual contribution each of the
aerodynamic derivative terms makes to the total value of

axa/ 9 U, for example.

Fig. 2.3 shows the analagous situation in the XY plane.
Here a continuous sideslip angle, B8 , exists giving rise to
a side 1li1ft force L and a drag force D. The aerodynamic
derivatives for this situation may be inferred from
equations 2.11 to 2.14 by replacing ay by B, and W with
V. The values of side 1lift coefficient, C; and side drag
coefficient, Cps W1ill normally be different however. Note
that in the. XZ plane lift is required to maintain steady
flight and a corresponding drag force is incurred. In the

XY plane side lift is normally undesirable whilst manoeuvres

requiring constant angles of sideslip to be set up are not
normally required.

It is thus convenient to separate the two planes of
motion into longitudinal (XZ) and lateral (XY) motions. It

is assumed here that the lateral trim conditions are such as
to render steady state values of roll rate, P, yaw rate, R,
sideslip velocity, V and azimuth angle (heading) ¢ of zero.
Additionally, it is clear that perturbed longitudinal motion
does not give rise to appreciable perturbations in the
lateral motion otherwise the above assumption is violated.
Also, control surface deflections do not necessarily give
rise to appreciable cross coupling between lateral and

longitudinal motions. Hence aileron and rudder control
actuation will only affect lateral motion appreciably whilst

elevator actuation on its own will affect longitudinal
motion.

This separation of the dynamics simplifies analysis and
will, in general, be valid for most aircraft manoeuvres., At

a later stage in the current project lateral/longitudinal
coupling will be considered in greater detail but it is
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Fig. 2.3 Lateral Lift and Lrag Forces
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convenient to adopt the uncoupled approach in the following

discussion.

2.1.2 Thrust Equations

To complete a general discussion of the linearisation
of the vehicle equations we shall finally examine the effect

of the thrust force acting on the aircraft.

In section 1l.4.8 the equations for the thrust force
specific to.a given aircraft were developed. Whilst it is
true that the equations for a given aircraft geometry are
relatively specialised we may nevertheless consider the
general case of a power plant developing a thrust force, T,
along a thrust line inclined at an angle en to the relative
wind as 1n F&guw2.4.l Only the longitudinal motions are
considered here and an init.ialh angle of attack (incidence)
is assumed. The thrust vector is normally displaced from

0 4
o
the origin of the body axes (often the aircraft's centre of

gravity) by a distance enq, the thrust eccentricity. For
this situation we may write down the pertinent force and

moment equations as

ZT=- T cos | ET-aO) -2.15

For the thrust considered to be a function of only the total

forward velocity Vg, power plant demand setting 4, and air
density then the perturbed form of equations 2.15 gives

oX =cos(€T-a) _:_;;_'E'_ 5VT+ 3_2 85.1.

T (o,
A 2 87



Relative Wind N

Fig. 2.4 Thrust Force Orientation
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similarly

3 5.

8Zp = - sin (ep = a )(dT Vp U + 3Vp W\ + 3T 88y
3V \QU W

and applying the results in equations 2.10 to determine the
overall aerodynamic derivatives gives

QEE = _33 Cos a, COS ( €m = ab) a)

oU BVT

EEE = _12 sin a, COS ( €m = ao) b)

oW o T

BXI = _EE cos ( €mp ao) C)

BZI = - .EI.COS @, Sin ( €m = ab) d) _2 16
aU 3 Vip

Zp = = _EE sin aq sin ( €m = aro) e)

-BZT = = aT sin ( ET - ao) f)

d . BVT

4

Eqﬁations 2.16 may now be combined with equations 2.11,

2.13, 2.14 and 2.12 to derive the overall value of the
respective- aerodynamic derivatives.

In the steady state the-pitching moment due to the
offset thrust line must be balanced by a corresponding
aerodynamic moment due to the control surfaces in order to

maintain steady state equilibrium thus,

My =T ep+ 1/2 p Vp2 ST Cp = 0 -2.17
where the aerodynamic pitching moment is as given in
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equations 1.23. Considering only variations in the thrust

due to V,, 4., and neglecting the fact that C, varies with
Mach number then

SMy = eq {a_-{-_ (aVT u + 3Vp w) + 3T aaT} +
U 9 W

avTBU 307
pPVg S TC [y Vp u+ 3}7_2 W —2.18
0 9 W
From equation 2.17
Vo

Thus combining equations 2.18, 2.19, and equations 2.3.10

gives
5Ma=eT[(_§£_ '2To) (u cos a, + w sin ag)
5 Vrp Vo |
+ 2T 351_ -2.20
- 38

where, as before, the o suffices refer to steady state
values of the variables.

As mentioned above the use of a very general set of
trim conditions leads to a very complex linear model of the
aircraft. A very useful insight into typical aircraft
response modes is to be gained by specialising thehtrlm
conditions. In particular, the stébility aspects of the
aircraft may be examined using the so called 'stability
axis' ltransformation. In this analysis the trim conditions
are chosen so as to reduce the complexity of the linearised
alrcraft equations sufficiently to allow classical stability
augmentation systems to be desiéned.

-Having thus guaranteed reasonable stability margins for
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the closed-loop system, autopilots, which attempt to
maintain given pitch rate, height, etc. demands can be
implemented as an outer loop design. Stability axis
analyses are generally restricted to small perturbations
about the specified trim condition but have been shown to
provide satisfactory performance over a relatively large
range of the aircraft flight envelope. For large signal
purposes, e€.g. navigation, this analysis technique is of
limited value,

In order to gain some insight into the stability axis
analysis and hence into the general control problem applied

to aircraft we shall now consider this approach in more
detail.

2.2 Stability Axes

For relatively small perturbations about the steady
state and for short term dynamic analysis it 1s often valid
to assume that the aircraft is trimmed to straight and level
flight over a flat earth. In addition, the previously
outlined assumptions which have been used to derive the
aerodynamic force and moment balance equations are taken to

hold. The principal reductions in the linearised equations

of motion then arise since o, = P, = Q, = Ry = 0 and
» ol ® o .

correspondingly ¥, =6, = &_ =0. Note that as indicated

above Py = P, = R, =V, =0 leads to the separation of the

aircraft equations into the lateral and longitudinal sets,
this will be clarified in the following discussion.

To complete our stability‘éxis model a final assumption
1s made that the body axes system is oriented such that the
forward speed, along OX, lies along the direction of the
aircraft's total velocity vector, Vn. The OX axis then lies

along this vector and V, = W, = 0. It may be convenient to
assume an intial orientation of the velocity vector of V.
as shown in Fig. 2.5 relative to the horizontal.

Perturbed motion then gives rise to the establishment of an
incidence angle between the OX body axis and the initial

direction of the total velocity vector Vgp. This initial

T
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orientation will change as a function of initial trim
conditions but perturbed motions are still measured with
respect to the body fixed axes. (Note that the 1initial

incidence angle a, = sin -1 Wo/‘\/Uoz + W02 =0

and that 65 =¥ + a5 = I'g)l.

Equations 2.5 now reduce to

&

P=9;-¢Sinro=q3-rtan1"o
L
&

r = ycos Iy

An even further simplification is possible if we take

I, = 0 i.e. the initial velocity vector lies along the

horizontal, the aircraft being in straight and level flight.
Equations 2.6 then become

p = @
qg= ¢ -2.22
r = ¢

It is normal to place theorigin of the stability axis
system at the vehicle's centre of gravity. Note, however,
that the stability axes are not necessarily the axes of
symmetry of the vehicle and hence, in general, we must
consider the changed moments of inertia and stability
derivatives by resolving their body axis values into the
stability axes. For relatively small deviations, however, it
is valid to assume that this effect is small and accordingly

we shall ignore it in the following discussion.

Continuing with the assumption that T, = 0 and that

lower case variables denote perturbed values, the linearised
Euler matrix of equation 2.6 can now be reduced to
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1 - +0
+ ¢ 1 -0 -2.23
-0 +0 1

Equation 1.1 now gives the velocities in earth axes

relative to the stability axes velocities, with Vg = W, < 0,
as

U 1 -9 + 0 U, +u

V= | t+9 1 -9 v

W -0 + ¢ 1 W

and, neglecting products of lower case varilables

U Uo + U
W - UOB + w 1

In addition the incidence, sideslip and total velocity are
given from equations 1.3 and l.4 as

- oa T MR L TMETLTE

Vp = Ug

5
‘ %
FT. n?
l‘.“.,.g
-2 ® 2 5 1@;-

i
-~ ¥

a = w/Us, B = v/Ug B

e

neglecting u, since this is small compared with U, and
taking sin a = «a , for small a .

Equations 2.4 now reduce to

mgd + m U = dX

~mg ¢ +m({7+Uo r) = dy
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m(W"Uo q) = d?Z -2.26
@
p I, = dL
7 I
8 | y—dM
[
rIz=dN

The thrust equations of 2.15 now reduce to

>3
-3

il

-3

-2.27

= N
H
I
H
(D ™
o
-

for small € m and ay = 0.

The vehicle height perturbations are often of interest
and since height is the time integral of the downwards
velocity in earth axes (downwards positive) then from
equation 2.24

- @
I}
=
il
&
D
+
-

_2 128

We now have an almost complete model of the aircraft in
stability axes. All that remains is to expand the
aerodynamic forces and moments on the right hand sides of
equations 2.26 in terms of the relevant aerodynamic
derivatives as indicated in section 2.2. The potentially
large number of such terms leads us to consider which of
these derivatives are likely to have the largest influence
on the aerodynamics under the assumed trim conditions, in

this case with o, = 0. This may be done on intuitive

grounds, given a knowledge of the likely values of various
derivatives for the particular aircraft or by calculation
and wind tunnel testing. The derivatives most often
considered to be significant are

1) for dX ; X,, X, Xy

2) for dY ; Y., Y., Y,
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3) for Az ; Z,, Z., Zq, 28 Zér Zﬂ
4) for dL 7 LV' Lp' Lr' Lf)' L:E.p Lg' LT
5) for dM Myr My, Mq' Me Mﬁ' Mq

6) for dN H Nv' Np' Nr; Nﬁf Nf.' Ng ’ NT

where the standard notation is used viz:

Ay = 3% 7 Yy = 8Y
ou 3

etc.

More or less of these aerodynamic derivatives may be
required for a particular aircraft but we shall consider

only the above for the present.

We may now combine equations 2.26 with the above
aerodynamic force and moment derivatives to yield

mﬁ=xuu+xww+an - mgé
m§=va+Yrr+YT-r+mg«p-mUor

mw=2%,u+ 2, w+ Zq 4 + Iy W+ 24 g + Z,n +m Uy g
PI,=L,V+L,p+L r+LsDp+Lzf+Lgg +Lo

q I, =Myu+M,w+M,q+Myw+ MG+ Mo
T I, =N, V+N,p+N r+Nyp+Ng£4Ng +No

-2 129

A natural development of the derivation of a
differential equation description of the aircraft dynamics
is that of finding the most appropriate state-space model
representation for subsequent analysis. Whilst the choice
of state variables for a given model is arbitrary, on closer

inspection of equations 2.22, 2.28 and 2.29 it should be
apparent that the most suitable state variables for this
system model are :

[w,v, w, P, q, X, 0,¢,0, hl
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Remembering that in section 2.2 it was indicated that a
natural separation of the dynamics into longitudinal and

lateral motions can be made, we may re-order the state
vector such that only those state variables affected by

longitudinal modes are in the upper portion of the state

vector. The state variables affected only by lateral motions
then form the lower portion of the state vector, viz:

T
[u, w, Qr91h|vr o8 rrﬂf’r‘p]

The input vector into the system is formed by the
control surface deflections and the change in thrust setting

from the power plant. This vector may again be separated

into longitudinal and lateral input vectors as

[anl"'rg]T

_‘-_-‘ll-

Note here that any actuator dynamics are ignored for
the present discussion but may be included by sultably
augmenting the state vector. Power plant dynamics are also

ignored. With this state and input vector structure the

system state equation may be formulated from equations 2.29,
2.28, 2.27 and 2.22 as
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This partitioned structure of the system equations has
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arisen naturally largely as a function of the many
assumptions made in its derivation. Principally, the total
decoupling of lateral and longitudinal modes has only been
possible by specialising the trim conditions as indicated
above. In some circumstances these trim conditions will not
be applicable and a more complete set of equations may be
required here. The structure of egquation 2.30 may, however,
be exploited to provide a useful insight into aircraft modal
responses. Consider first the longitudinal sub-system of

the state equations as follows.

2.2.1 Longitudinal Modes

The states associated with the longitudinal motion of
the aircraft are u, w, q, 8 and h these forming the upper
portion of the state vector in equation 2.30. The equations
corresponding to these states are, from equation 2.29, 2.22
and 2.28 :-

mu=X u+ X, + X,n = mgo a)

MW= Zy U+ Zywtlgq+iygqtoyw+ gy +mUy,qb)

q I, =M, u+M, w+M g+ My W+ Mg @ + M7 o)

6 =gq d)

h = =-Ug0 + w e)
"'2:31

Equation 2.31 c¢) gives for g

& ®
(l-mﬁ)q=muu+mww+mqq+ma,w+mqq -2 .32
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