
A FORMAL TECHNIQUE

FOR THE LOGICAL DESIGN

OF ORGANISATIONAL INFORMATION SYSTEMS

ANSAR AHMAD KHAN M. A, M. PHIL

THESIS SUBMITTED FOR THE DEGREE OF D. PHIL AT THE UNIVERSITY OF YORK

DEPARTMENT OF COMPUTER SCIENCE

APRIL 1984

i

BEST COPY

AVAILABLE

00

V ri ble print

qI ity

PAGE

NUMBERING

AS ORIGINAL

CONTENTS

CHAPTER 1: INTRODUCTION TO THE THESIS 1

1.1 INTRODUCTION

1.2 SUMMARY OF RESEARCH

1.3 AN INTRODUCTION TO THE"METHODOLOGY (SSDM) 12

1.4 A BRIEF SUMMARY OF THE CHAPTERS OF THE THESIS 17

CHAPTER 2: HISTORICAL SURVEY

2.1 INTRODUCTION

2.2 DEVELOPMENT UP TO 1975

2.3 RECENT TRENDS FROM 1975

2.4 FUTURE PROSPECTS

2.5 CONCLUSION

19

20

21

25

27

29

ii

CHAPTER 3: SURVEY OF METHODOLOGIES 31

3.1 INTRODUCTION 32

3.2 PREVIOUS COMPARATIVE SURVEYS 34

'3.3 SYSTEMATICS 44

3.4 STRUCTURED ANALYSIS AND DESIGN 48

3.5 JSD 51

3.6 USE 56

3.7 NIAM 59

3.8 ISAC 62

3.9 CONCLUSION 67

CHAPTER 4: CLASSIFICATION OF METHODOLOGIES INTO CATEGORIES 69

4.1 INTRODUCTION 70

4.2 APPROACHES OBSERVABLE IN THE METHODOLOGIES SURVEYED 72

iii

4.3 OTHER RELEVANT VIEWPOINTS 80

4.4 CONCLUSION 87

CHAPTER 5: SURVEY OF TECHNIQUES 88

5.1 INTRODUCTION 89

5.2 DIAGRAMMATIC REPRESENTATIONS OF FLOW OR PRECEDENCE 90

5.3 NON-DIAGRAMMATIC PROCESS REPRESENTATIONS 98

5.4 DATA REPRESENTATIONS 102

5.4 CONCLUSION 108

CHAPTER 6: REQUIREMENTS DESCRIPTION FOR A SYSTEM DEVELOPMENT

METHODOLOGY 109

6.1 INTRODUCTION 110

6.2 PRINCILPLES WHICH SHOULD UNDERLIE A DEVELOPMENT

METHODOLOGY

iv

6.3 SUBSET OF METHODOLOGY ADDRESSED IN THIS THESIS 123

6.4 CONCLUSION 124

CHAPTER 7: GENERAL CONCEPTUAL MODEL OF THE METHODOLOGY 125

7.1 INTRODUCTION 126

7.2 CONTEXT 110DEL 127

7.3 INFORMAL MODELS OF PRODUCT SYSTEM 129

0

7.4 FORMAL MODEL OF PRODUCT SYSTEM 133

7.5 DEVELOPMENT MODEL 140

7.6 GENERAL MODEL OF SYSTEM EVOLUTION 142

7.7 CONCLUSION 144

I

CHAPTER 8: APPLICATION OF THE SYSTEM MODEL TO AN EMIPLE SYSTEM 146

8.1 INTRODUCTION 147

V

8.2 REQUIREMENTS DESCRIPTION FOR EXAMPLE INDIVIDUAL SYSTEM 147

8.3 SYSTEM MODEL OF EXAMPLE INDIVIDUAL SYSTEM 149

8.4 SAMPLE VERIFICATIONS FROM SYSTEM MODEL OF EXAMPLE SYSTEM155

8.5 SSDL REPRESENTATION OF THE EXAMPLE INDIVIDUAL SYSTEM 160

8.6 COMMENTS ON SSDL 168

8.7 CONCLUSION 170

CHAPTER 9: SOFTWARE TOOLS REQUIREMENT 171

9.1 INTRODUCTION 172

9.2 OVERVIEW OF THE TOOLS 174

9.3 DEVELOPMENT DIALOGUE PROCESSOR 175

9.4 ANALYSER 176

9.5 LOGICAL SIMULATOR 177

vi

9.6 DEVELOPMENT DATABASE DECOMPOSER

9.7 CONCLUSION

178

179

vii

CHAPTER 10: FUTURE AND RELATED WORK

10.1 INTRODUCTION

180

181

10.2 CHARACTERISTIC FEATURES FOR COMPARING METHODOLOGIES 182

10.3 MODELS 184

10.4 SYSTEM SPECIFICATION AND DESIGN LANGUAGE 185

10.5 SOFTWARE TOOLS 186

10.6 SEPARATE CONCERNS 187

10.7 OTHER ISSUES 188

CHAPTER 11: CONCLUSIONS 189

11.1 REVIEW OF PAST WORK 190

11.2 PROPOSALS FOR A NEW APPROACH 192

11.3 FINAL REMARKS 195

viii

REFERENCES

APPENDIX A: FEATURES LIST FOR THE PRESENT SURVEY

APPENDIX B: SURVEY OF METHODOLOGIES

196

ix

LIST OF FIGURES

Figure 3-1: output/recipient table 44

Figure 3-2: output and conditions
44

Figure 3-3: decision table 44

Figure 3-4: output items coding 45

Figure 3-5: item identification 45

IY
Figure 3-6: derivation dictionary 45

Figure 3-7: given/derived items and decision table 46

Figure 3-8: primary identification dictionary 46

Figure 3-9: input set description 46

Figure 3-10: input dictionary

Figure 3-11: JSD data flow diagram

Figure 3-12: relational schema

figure 3-13: entity action list

46

49

49

52

x

Figure 3-14: entity structure diagram 52

Figure 3-15: specification-and processes 53

Figure 3-16: structure text of function 54

Figure 3-17: system specification and schedular 55

Figure 3-18: USE data flow diagram 56

Figure 3-19: transition diagram 56

Figure 3-20:, transition diagram encoding 56

Figure 3-21: database normalised relations 56

Figure 3-22: function specification 57

Figure 3-23: DBMS - Troll 57

Figure 3-24: module structure chart 57

Figure 3-25: module specification in PDL 57

Figure 3-26: specification in Plain 58

xi-

Figure 3-27: activities model 59

Figure 3-28: activity'information list 59

Figure 3-29: high-level function description 59

Figure 3-30: functions relationship 59

Figure 3-31: decomposition of functions 60

Figure 3-32: NIAM information flow diagram 60

Figures 3-33, 3-34: NIAM ISDs 61

Figure 3-35: conceptual grammar in RIDL 61

Figure 3-36: problem table 62

Figure 3-37: list of interest groups 62

Figures 3-38, 3-39* 3-40: A-graphs and text pages 62

Figure 3-41: property table 62

Figure 3-42: table of objectives 62

xii

Figure 3-43: needs for change 62

Figure 3-44: alternative study of change 63

Figure 3-45: formalizability text 63

Figure 3-46: special property table 63

Figure 3-47: prerequisites and requirements 63

Figure 3-48: cost-benefit analysis 63

Figure 3-49: I-graph 64

Figure 3-50: C-graphs 64

Figure 3-51: dictionary of terms 64

Figure 3-52: subsystem functions process list 64

Figure 3-53: process table 64

Figure 3-54: measurable subsystems features 64

Figure 3-55: D-graph 65

xiii

Figure 3-56: record type contents 65

Figure 3-57: D-structure diagrains 65

Figure 3-58: program/process description 65

Figure 3-59: control structures 65

Figure 3-60: raw program operation list 65

Figure 3-61: program structure 65

Figure 3-62: work task table 65

Figures 3-63,3-64: E-graph 66

Figure 3-65: physical layout of input/output 66

Figure 3-66: physical layout of records 66

Figure 3-67: work descriptions

Figure 5-1: program flow chart

Figure 5-2: structure diagram

66

91

91

xiv

Figure 5-3: system run chart 92

Figure 5-4 (a), (b): data flow diagram 92

Fifure 5-5: procedure graph 93

Figure 5-6: Jackson structured diagrams 94

Figure 5-7 (a): 'Petri net graph 95

Figure 5-7 (b) dynamic petri net 95

Figure 5-7 (c): modelling of computer systems 95

Figure 5-8: decision trees 97

Figure 5-9: decision table 99

Figure 5-10: pseudo code

Figure 5-11: formal logic

Figure 5-12: relational schemas

Figures 5-13,5-14: conceptual schemas

100

101

103

104

xv

Figure 5-15: Bachman diagram 105

Figure 5-16: identification matrix 106

Figure 5-17: data abstraction 106

Figures 5-18,5-19: manual and automated data dictionaries 107

Figure 7-1: context model 127

Figure 7-2 (a): informal model of product system

with functional structure 129

Figure 7-2 (b): informal model of product system

with subsystem structure 132

Figure 7-3: development model 140

Figure 7-4: General model of system evolution 142

Figure 8-1: Individual system model

Figure 9-1: Software tools model

149

174

xvi

ACKNOWLEDGMENTS'

I am indebted to my supervisor, Mr. C. J. Tully for his continuing

help and encouragement from my joining the department until the

completion of the thesis. I most particularly thank him for his keen

interest and insistence that I explore and understand most of the

notable existing methodologies, research problems and other relevant

literature which served as a knowledge base of concepts for proposing

a new methodology. He also continually assisted me in the development

of the proposed methodology. Apart from this I am also grateful to

him for taking a keen interest in my other problems as a foreign

student, which enabled me to continue with and concentrate on the

research.

I am grateful to the secretarial staff and all the members of the

teaching staff, specially Dr. I. C. Wand and Prof. I. C. Pyle,

for their encouragement and very friendly treatment throughout my

studies in the department.

I also wish to thank NED University of Engineering and Technology,

Karachi, and the Ministry of Education, Pakistan, for granting leave

and awarding the scholarship, which together made it possible for me

to pursue the research.

Finally I must express my appreciation of all the help given to me in

the preparation of this thesis, in particular Mr. R. P.

Whittington, a research collegue, who discussed the topics for

refinement, and who has given me, together with my wife and children,

xvii

every encouragement and assistance in my studies and research.

xviii

ABSTRACT

A complete information system, when conceptually modelled, always

comprises a virtual database and a set of derivation processes. It

may be decomposed into subsystems; the first level subsystems into

which it is decomposed may include intermediate sub-systems (capable

of being further decomposed) or elementary sub-systems (not further

decomposed) or both. An information system always receives inputs

from its environment and provides outputs to it; these comprise its

external interface.

The development, of an information system involves its initial

creation, its application usage, and its evolution. The development

process is complex, and its efficiency (in terms of both the quality

and the efficiency of resultant systems) has a significant effect on

all users of the information system. It is therefore desirable that a

complete, consistent, coherent and formal framework be made available

for guiding and supporting that class of people who are involved in

information system development. Such a framework is termed a

methodology, and the class of people as system developers. A

methodology permits the unambiguous specification of information

systems through formal models and languages. Further to this, a

methodology has associated software tools which assist the developer

in producing and maintaining documentation, and in verifying and

carrying out other operations on the system specifications.

Just as a system developer investigates the particular activities of

people in a particular organisation, generalises them and specifies

xix

and designs, a target system, to be embedded within that organisation,

so this thesis investigates the particular activities of system

developers, generalises them, and specifies and designs a-special kind

of target system to be embedded in their (developers,) development

system.

The proposals made in the thesis, which together specify such a

methodology for information system development, are summarised as

f ollows.

1. A development context which captures the purpose and scope of

the methodology and its relationships with other methodologies.

2. A formal conceptual model of the information system

development process which encapsulates the worlds inhabited by

system developersý The model constitutes a generalisation of

these worlds as perceived by the developer, and provides a basis

for the capture of information system structures and processing.

3. A system specification and design language SSDL permits the

developer to make necessary and sufficient statements about a

target system, based on the formal conceptual model. This

language enables a developer to specify and design information

systems throughout their development stages.

4. A set of software tools which will operate on Statements in

that language, and assist the developer in producing systems of

higher quality and/or in less time.

xx

Although the proposed methodology (SSDM) is under development, the

proposals of this thesis are argued to be original and significant.

The originality stems from a rigorous conceptualisation of information

systems and their development, an exercise characterised by both

comprehensiveness and flexibility. The significance of the

recommendations is claimed to be their collective provision of a basis

for a system of development which offers users information systems of

unprecedented effectiveness.

xxi

CHAPTER 1.

INTRODUCTION TO THE THESIS

CONTENTS

1.1 Introduction

1.2 Summary of research

1.3 An introduction to the methodology (SSDM)

1.4 A brief summary of the chapters of the thesis

1

1.1 INTRODUCTION

The ultimate measure of the success of an information system

development methodology is the extent of the general improvement in

the resultant target systems. A developer needs better methods to

produce target systems which meet the organisation's requirements, are

delivered on time and to budget, and are reliable and adaptable.

Management are not receiving the information they require and they

cannot have changes made within a reasonable time., Systems do not

meet their requirements and have errors in them. Predicted trends, -as

described in MACDONALD (1983) and BODART (1983), may be summarised as

follows:

- user demands and dissatisfaction will rise even more, generating

an increasing application backlog;

- improvements in technology will be of little relevance (ie. we

are solving the wrong problems);

- conventional methodologies are obsolete and will not cope.

In most organisations, however well managed, the admitted backlog is

between two to four years and is still growing. ALLOWAY and Quillard

(1982) estimated that a hidden backlog of about 168% of that on record

exists, because users no longer even voice their requirements.

ALLOWAY (1982) also discovered that user managements are asking for

six times as many analysis systems to support decision making, three

times as many query systems for flexible inquiry and reporting and

2

twice as many exception reporting systems as are currently installed.

Data processing staff generally implement the kind of systems they

have built before, because they feel confident with them.

One important way in which a methodology should help is to speed up

system development. In order to control the system development

process, most of the existing methodologies concentrate on rigid

documentation and the administration of development tasks. They are

not capable of adapting to new styles and theories of accelerated

development, which particularly emphasise the use of software tools.

The following are the essential objectives which must be met.

- User management must be involved in defining organisational needs

and priorities, and also in the subsequent approval and review of

systems.

There must be good communication between end users and system

developers.

- The evolution of the information systems of an organisation must

be linked firmly with its business goals, objectives and

priorities.

- New developments (eg. in computing power, user languages, and

communications) must be exploited to bring about more effective

systems. ý

A complete, comprehensible, coherent, flexible and formal

methodology must, be available to gain control over information

3

system development.

Achieving the last of those objectives is critical to the achievement

of the others. Among the features suggested in the literature as

being important for a system development methodology are the

following.
,

- Maximum machine assistance should be made available to system

developers. In particular, all information relating to system

development should be maintained in a development database.

- Maximum use should be possible of techniques (eg. prototyping,

code generation) to shorten development lead time.

It should be possible to modify systems with the maximum speed

and ease and minimum probability of error.
I

- There should be the maximum capability for verification at each

stage of system evolution.

- Users should be able to check at each stage of system evolution.

- It should be possible to use the methodology for the development

of new styles of systems (eg. decision support systems, enquiry

systems, expert systems) as well as conventional systems, and to

enable several styles to be contained in a single system.

- The methodology should reduce and simplify the developer's work

rather than increasing and complicating it.

- The methodology should permit diversity of design styles (eg.

4

top-down or bottom-up, data-oriented or function-oriented,

entity-oriented or event-oriented, etc.).

- The methodology should permit the use of a diversity of

individual techniques (such as diagramming and tabular

-- techniques),, where this is possible without sacrificing

coherence.

- Software tools embodying the concepts of a methodology should

constitute an integrated support environment for system

developers, users and project management.

Comparing the above requirements with previous proposals for the

management of information system development, it is argued that no

existing methodology goes far enough in supporting -the development

process, and, consequently, in serving the user. Even extensions of

existing methodologies would be inadequate, because they are based on

inadequate models of systems and of the development process.

We have used the term information system to mean a computer-based

system which receives information from and transmits information to

human beings working in an organisation. There are certain

differences between information systems and products such as operating

systems, compilers or real time (embedded) systems. Systems of this

latter kind interface largely with equipment (such as monitoring or

control gear, radar etc). It is increasingly the case, however, that

they have characteristics in common with information systems, and it

is to be expected that methodologies for their development may share

5

common features with information systems development methodologies.

Attempts to develop tools, techniques and methodologies, to assist the

designer throughout the development life cycle, have proliferated

during the past decade. The following statements are believed to be

true for such attempts.

- They have been confined either to information systems

(interactive or batch), or embedded systems.

- They have covered varying stages of the complete life cycle.

- They have been based on inadequate or non-existent models of the

life cycle.

- They have been based on inadequate or non-existent models of the

class of systems to which they relate.

- They have been based on varying viewpoints (e. g. programming

languages, databases, mathematical modelling, project management,

etc.).

- They have in various ways been unfriendly to their users (i. e.

system developers).

- They have not contributed to significantly improved correctness

or reliability.

- Communication between users and developers has not been

significantly improved.

6

- Developers are uncertain about the amount of testing and checking

required; frequently redundant tests/checks are conducted which

are costly or totally ignored.

7

1.2 SUMMARY OF RESEARCH

The research undertaken assumes that a system specification and design

methodology (SSDM) should operate at three levels to support the

developer:

(a) through the provision of a model (or conceptual framework), in

terms of the activities involved and their relationships,

(b) through the provision of a language (system specification and

design language, or SSDL) to allow the expression of the

results of development activities,

(c) through the provision of a set of software tools, which

supports the developer in decision making, evaluation,

verification and documentation management.

The model determines how one thinks about systems that are to be

specified and designed, and the process of specification and design

within the complete life cycle. The language enables the designer to

record specifications and design decisions made in accordance with the

model. The tools enable the designer to manipulate the statements in

the language (to perform, say, checks, decisions, and inferences on

them) and thus receive machine assistance which makes the process of

specification and design more effective.

8

The research undertaken falls into two parts which are described as

f ollows.

PART 1 extensive and detailed review of existing work in the f ield

(chapters 2 to 6, appendices)

A new and improved "features list" is presented for comparing

methodologies, which has been prepared after surveying several such

sets of features. A survey of a large number of methodologies (larger

than any other survey) is presented, based on this features list. An

attempt has been made to identify a number of approaches which

underlie existing methodologies, or which are potentially relevant to

future ones. Finally, there is a review of individual techniques

relevant to system development, grouped into three simple categories.

PART 2 proposal for a new methodology-(chapters 7 to-11)

It is argued that a unified theory in terms of models is necessary.

The validity of the models can be established by using them as the

basis of a development language and a, set of-software tools. Although

work could be developed in the long term to the point of, achieving

fully usable products, the primary purpose of this research is to show

how a set of models can be developed and described to serve as the

basis both for the evaluation or comparison of existing methodologies

and for developing new and improved methodologies.

The formality, flexibility and rigour inherent to the proposed,, mo4els

make possible the proposal of a single and powerful, system

specification and design language (SSDL). This, SSDL, has capabilities

9

(both semantic and syntactic) for defining target systems in terms of

objects and their properties; domains and restrictions on permissible

states of the objects; derivation rules; inputs and outputs.

The availability of such a SSDL makes possible the specification of a

set of software tools constituting an integrated support environment

for the system developer. The set of software tools specified

consists of: a development dialogue processor, an analyser, a logical

simulator and a development database decomposer.

The substance of the second part of the research is therefore

summarised as follows.

(a) An informal description of requirements for an improved

methodology has been presented, which is based on the standard

features derived from the survey of methodologies, to serve as

the foundation for building the conceptual model of the

improved methodology proposed in the thesis.

(b) An overall original conceptual model of the proposed

methodology, and an easy, concise and structured notation to

describe the model, have been presented.

(c) A new and improved language for system specification and design

has been presented on the basis of noting the strengths and

weaknesses of such languages during the survey of

methodologies. This language has the capability of being

accessible to people with a variety of backgrounds and for

describing systems of a variety of categories. It offers an

10

economy to the designer in making statements and ease both in

writing and reading.

(d) A functional specification of a set of software tools which

will constitute an integrated system development environment

has been presented.

11

1.3 AN INTRODUCTION TO THE METHODOLOGY (SSDM)

The research work undertaken proceeds from the survey of existing

methodologies, noting their weak and . strong points, to suggest an

improved computer-based information system development methodology.

The development model of the life cycle proposed in the thesis is

based on a recognition of an interplay between specification and

design activities, and is described as follows.

1. System development is initiated by a requirements

description. It describes what the user (client) wants. Both

the user and the developer may be involved in writing this

document, but the user must understand it clearly. It will

therefore be in natural language, and may be incomplete and

contradictory, and contain much material which is not directly

relevant to the system developer. This requirements

description will be subject to repeated updating throughout the

subsequent stages of system development.

2. If a requirements description describes what a user wants, a

specification describes what he will get. Specifications will

be written by the system developer, in a formal language. , It

will beý machine processable, and subject to automatic, checks

for completeness and consistency. It is for the developer's

subjective judgement to decide to what extent a specification

matches the requirements description.

3. Corresponding to the specification of what a system will do, a

12

design describes how it will be structured to do it.,

A requirements description is developed at one level only - the

level of the complete system - but the specifications and

designs are produced not only for the whole system but also for

each of the levels of subsystems into which it may be

decomposed. Design at one level yields specifications for the

next lower level.

5. Specifications can generally be subjected to verification for

logical consistency and completeness in two ways: "horizontal"

(i. e. internal verification of a single specification), and

"vertical" (i. e. verification of a set of specifications at

one level against the parent specification at the next higher

level).

The language (SSDL) in which specifications and designs are

expressed is designed to be usable by people of a variety of

backgrounds, since system developers vary a great deal in terms

of their academic discipline and their past experience.

Among the software tools already mentioned is one called a

"logical simulator". While this will be discussed at. more

length later, it is important at thisýstage to note that its

purpose is- to provide, a feedback channel which will enable

users to confirm that the developers have correctly captured

their requirements in the formal specifications.

8. The final output of the process of logical specification and

13

design- is a complete and consistent set of specifications for

subsequent, physical design of (a) the target system database,

(b) the set of internal and external interfaces, (c) the

programs which are the ultimate embodiment of the system logic.

These specifications serve as the starting points for

specialised processes of software - assisted design, one of

which (for databases) has been dealt with by my research

colleague WHITTINGTON RP (1982,1983).

A great deal of work has been undertaken in the last twenty years

which is relevant to the problem area addressed by this thesis. Three

approaches seem especially appropriate, and have excercised great

influence on the research reported in this thesis.

The relational data model.

(2) Automated data dictionaries.

(3) Systematics, GRINDLEY (1975), which is directed toward logical

-system design and has an appealing simplicity. .

The, proposed methodology has the following characteristics.

- It concentrates efforts in the earlier stages of development, and

gives much greater opportunity for verifying logical completeness

and consistency. As a result errors should be less likely to be

introduced, and should be detected earlier.

- It is applicable to a wide range of application systems.

14

- It is employed from the moment when the formal specification is

first drawn up, and consistently thereafter.

- It supports as much variation as possible in the sequence of life

cycle events, recognising that individual systems may justify

different approaches and individual designers may demand them.

There must, notwithstanding, be some clear general life cycle

framework.

- It is recognised that a methodology is likely to be incomplete

and does not occur in a vacuum, but must have a well defined

context within a broader if less precise methodology for system

development.

- The conceptual model identifies a minimal set of concepts which

are necessary and sufficient to describe the essential features

of a system completely and precisely.

- It has the capability to evolve over time in accordance with

developing technology and experience.

- It does not prescribe a particular project management system or

set of documentation standards.

Because of the broad scope of this subject matter, and the fact that

it begins from first principles, the implementation of software tools

will require considerable further effort. It is suggested that the

work presented is a sufficient contribution to the understanding and

development of the field of study in its own right, and indeed that it

15

offers considerable possibilities for further work of both a

theoretical and implementational nature.

16

1.4 A BRIEF SUMMARY OF THE CHAPTERS OF THE THESIS

This thesis is presented in eleven chapters and two appendices. The

sequential development is as follows.

- It presents a historical review of evolutionary improvements in

the development of methodologies, and a survey of the current

trends in the 1980s.

- It reviews published surveys of methodologies, and presents a

study of six representative methodologies.

- It presents a classification of, broad approaches, or viewpoints,

which can be seen to underlie existing methodologies, together

with others which could be valuable for future methodologies.

- It presents a survey of techniques to note their suitability for

application in a good methodology.

- On the basis of the above description, the need for an improved

methodology is argued.

-A conceptual model is proposed on the basis of the preceding

arguments.

- It presents an application of the model to an example individual

system and shows the transformation of a system schema into a

structured matrix which facilitates several types of checkings,

analyses, inferences. It also presents comments on "system

specification and design language" (SSDL).

17

-A software toolkit is specified in outline to assist the

developer in developing his system.

- Future related research is specified.

- Conclusions are presented.

- There are two appendices. Appendix A defines the feature list

used for the comparative survey. Appendix B contains a survey of

fortythree methodologies based on the feature list in appendix A.

The above sequence can be divided broadly into two main parts

(corresponding to the two main subdivisions of the research work

undertaken, as described earlier in this chapter). The first part

presents a requirements analysis for a new methodology, and consists

of chapters 2,3,4,5,6 and appendices A and B.

The second part describes the proposed methodology in terms of a

conceptual model, a language (SSDL), and a set of software tools; it

outlines future work and presents conclusions. It consists of

chapters 7,8,9,10, and 11.

18

CHAPTER 2

HISTORICAL SURVEY

CONTENTS

2.1 Introduction

2.2 Development up to 1975

2.3 Recent trends from 1975

2.4 Future prospects

2.5 Conclusion

19

2.1 INTRODUCTION

The objective of the survey which constitutes the first part of this

thesis (chapters 2 to 5) is to lay the basis for the requirements

description of an improved and original methodology for developing

information systems. This requires an understanding of past proposals

and of present predictions of requirements for information systems and

for their development.

A detailed summary of the main features of many existing methodologies

is presented in the appendices. The survey includes both products in

commercial use and projects, currently under development in

universities and software organisations. A small number of

methodologies are studied in greater detail in chapter 3. The aim of

this chapter is to give an introductory account of existing

methodologies in their historical context.

The survey by COUGER and Knapp (1974) is based on an unsatisfactory

historical framework, and includes a good deal of not very relevant

material. The survey presented in this chapter attempts to provide a

straightforward account partitioned simply into two periods, before

and after 1975. Like any historical dividing line, the choice of 1975

is to some extent arbitrary; yet it can be observed to be a fairly

clear boundary after which there has been a rapid growth of interest

in methodologies and a significant increase in the sophistication of

approach.

20

2.2 DEVELOPMENT UP TO 1975

In the early years of computing (roughly corresponding to the

so-called "first generation"), the emphasis of universities and early

manufacturers was on the invention and improvement of hardware, and

the emphasis of the few users (mostly scientific) was on identifying

possible applications and on the details of programming. There was no

concept of what is now called "system analysis and design", even among

the very few early "commercial users".

Although certain graphic and descriptive techniques existed in the

fields of work study, 0 and M, punched cards and tabulating systems,

these techniques were hardly if at all used in early commercial

applications, because of the understandable preoccupation with the

difficult and fascinating task of programming. The most that was done

to combat the difficulty of understanding complicated machine code

programs was to annotate coding sheets.

As volume production of computers grew, and commercial applications

spread, the most common tendency was for users to try to reproduce

existing applications on computers, rather than redesigning them. In

the USA, -where punched card techniques were more widely used than in

the UK, this resulted in systems which comprised a large, number of

small programs. In the UK the applications being replaced were more

likely clerical in nature and therefore both less well defined and

made up of larger grouping of functions: for these reasons perhaps

more attention was given to the design of efficient systems in the UK

than in USA. But even so it remained true that the primary emphasis

21

was in analysing the way in which things were already done, rather

than in designing completely new systems. This accounts for the birth

of the term "systems analysis" around 1960.

Another factor accounting for the lack of good design was the

dependence of users on computer manufacturers, and their acceptance of

manufacturers' attempts to offer standardised solutions and to suggest

that system development was not a major problem.

In user companies, only the most primitive methods of chartingo

decision tables, other tabular methods and narrative descriptions were

available for the new task of systems analysis. A very few people,

working in isolation, attempted to develop theories which they hoped

would lead to the design of better systems, either because systems

might be described more formally and therefore be better understood,

or because some aspects of system performance might be optimised.

These efforts included Information Algebra (CODASYL, 1962), Young and

Kent Algebra (1958) and Langefors Algebra (1963).

The mid-1960s saw the introduction of IBM's system/360, marking what

is often called the third generation of computers. This was typified

by a degree of maturity in hardware, and much greater effort (and

success) in the provision of system software. Computer manufacturers

recognised how much effort users were having to devote to system

development, and tried to offer methods in this field which would

improve user productivity (in the same way that programmer

productivity was being improved by high-level languages) and assist in

their sales. Examples of such efforts include ADS, TAG, BISAD and

22

HIPO. Consultancy firms, together with the management services

departments of very large users, soon began to develop so called "life

cycle" concepts; these were aimed at improving management control over

system development, and applied the traditional "scientific

management" approach of breaking a big task down into many smaller,

well-defined sub-tasks. This approach, however, was generally

perceived as imposing a bureaucratic burden on system development and

was not widely accepted.

Manufacturers also recognised the scale and difficulty of the task of

developing their own system software and tried to develop in-house

support tools (e. g ICL's CADES). Although the problem of developing

system software is different from the problem of developing

application software, there is some overlap; manufacturers could have

tried to adapt their methods to the user community but they did not do

SO.

The growth of specialist consultancy services and of software houses

from the late 1960s opened up a possible alternative to the computer

manufacturers as a source of system development techniques; by their

nature, however, these companies tended to be involved in "advanced"

or "state-of-the-art" applications, and not to be closely involved in

what they saw as the more mundane problems of information systems.

Computer science in universities also paid little attention to the

problems of information systems development, with a few exceptions,

e. g. ISDOS (Teichroew, 1977) and CASCADE by Solvberg (INFOTECH 1975);

(note that both projects had started much earlier than the publication

23

dates). These, however, were perhaps over-ambitious and founded on

inadequate theory. There were very few attempts to provide

theoretically sound approaches; one was Systematics (Grindley, 1966,

1972).

Something which was to prove of great significance was the development

from 1973 of the relational model, which provided a coherent and

powerful theory of data. While much of the work which has since been

done in this field has been too narrowly academic, relational theory

has had a deep impact on ways of thinking about information systems

and is likely to continue doing so.

24

2.3 RECENT TRENDS FROM 1975

Since about 1975, a number of general trends have been observable in

computing which have had, or are likely to have, important influences

on system development methodologies. They include: renewed interest

in programming languages including particularly languages for logic

programming, of which several have been developed; widespread

development of operating systems and application packages for micros;

the development of primitive programming support environments; the

spread of DBMS, in particular those based on the relational model and

incorporating query languages; the diversification of technology and

its penetration into all areas of applications and sizes of

Organisation; the spread of word processing and the introduction of

primitive office automation; the (largely experimental) introduction

Of expert systems; a steadily increasing shift in total data

processing expenditure from hardware to software; and a similar shift

in expenditure from software development to software maintenance, and

from in-house software development to packages.

There has also been a growing recognition of a "systems crisis",

comparable to the earlier recognition of the "software crisis".

The growth of the world economy in recent years has generated enormous

demands -for data processing systems and services. In order to

maintain orderly economic and technical development of the data

processing industry, a number of conditions, including management

awareness, a substantial improvement in total data processing quality,

reliability and security, increased cooperation between the industry

25
UNIVERMY
OF YORK
L"Imly

ml

and the higher education system, and a sound program of standards

development, are recognised to be necessary.

There has been a corresponding explosion in systems methodologies.

This comes from leading consultancies and software houses, from the

advanced state-of-the-art users, and from the academic community

(despite the continuing dominance of traditional computer science and

the relative weakness of information systems studies). Compared with

earlier efforts there is a much greater emphasis on software tools to

assist the system developer. -

The majority of the methodologies reviewed in this thesis have

originated in this period and it is therefore not appropriate to give

a long list of them here. They reflect a wide diversity of viewpoints

on the part of their developers. on the whole they do not show signs

of being based upon a coherent conceptual model of the system

development process. Nevertheless such a diversified and pragmatic

approach is to be expected at this stage on the growth curve of a new

technical development.

This "generation" of methodologies reflects a recognition that system

development is evolutionary and incremental in nature, that it is not

confined to mainframe computers, and that it must take into account

developments such as office automation, expert systems, knowledge

bases, decision support systems and end-user system development.

26

2.4 FUTURE PROSPECTS

Although the fifth generation has been under discussion for the last

few years, since the concept was introduced by the Japanese, and

although some significant programs of research are under way in the

leading western countries, the fifth generation cannot yet be said to

have arrived. The main characteristics expected of the fifth

generation are availability at affordable cost of very great computing

power through VLSI; software capability to go much further in

emulating human intelligence using new styles of information

representation and of programming (for which the developments in VLSI

are essential prerequisites); and a quantum leap in the accessibility

of computer systems to ordinary people through the engineering of much

better interfaces (particularly involving speech handling).

Although the cost of VLSI development is recognised to be high, it is

realised that the main problem will lie in the field of software.

Great emphasis is therefore being placed on the need for much more

effective programming support environments. On the whole, inadequate

attention is being paid both to the useful applications of this

advanced technology and to the systems-level problems that will be

encountered in developing such applications.

There has been little if any discussion of the way in which

methodologies will adapt in parallel with the technological changes of

the fifth generation. One can express the following hopes.

1. Methodologies will be based on sound models of the system

27

development process.

2. There will be some convergence of these models and therefore of

methodologies.

3. There will be relatively greater emphasis on understanding the

information needs of the organisation as opposed to just

understanding the problems of developing machine-based systems.

28

2.5 CONCLUSION

In a rather imprecise and unquantified way, one can suggest that

software progress has lagged one generation behind hardware, and that

systems progress has lagged one generation behind software. This

generallsation can be roughly supported In at least the following two

ways

1. Computer hardware was developed out of its -immediate precursors

(e. g. ENIAC, Mark 1, Colossus, differential analysers) in the

first generation; computer software was developed out of its

primitive beginnings (loaders) in the second generation; and the

first attempts at coherent solutions to the systems development

problems occurred in the third generation.

2. Hardware arrived at a stage of relative maturity, af ter a period

of excessive diversity and confusion, and offering a base for

subsequent steady evolution, in the third generation; software,

after the recognition of the software crisis, reached a similar

stage In the fourth generation; and it is to be expected that

systems development methodologies and techniques will also

achieve maturity and stability in the f if th generation.

It has to be said, however, that information systems users, throughout

the whole of the historical period surveyed in this chapter, have

suffered (a) from a rate of technological change which has been

excessive from their viewpoint, and which has placed them under

continual pressure to adapt to external technical factors, (b) from

29

the dominance of the supplier side in determining broad strategies of

use of the technology. These factors, together with (as already

noted) the weakness of information systems studies in universities,

may largely account for the lag described above; but these factors are

equally unlikely to abate in the near future. In particular, one can

anticipate that users (and therefore developers of methodologies) will

have to accommodate the effects of considerable diversification

through the spread of office automation, expert systems, end-user

involvement and so on, and that it will require a lot of determined

effort to overcome the strong technology-oriented drive already

apparent in the fifth generation.

30

CHAPTER 3

SURVEY OF METHODOLOGIES

CONTENTS

3.1 Introduction

3.2 Previous comparative surveys

3.3 Systematics

3.4 Structured design

3.5 JSD

3.6 USE

3.7 NIAM

3.8 ISAC

3.9 Conclusion

31

3.1 INTRODUCTION

This chapter does two things. First, in section 3.2, a summary is

given of a number of published comparative surveys of systems

development methodologies, indicating ths scope of each in terms of

the number of methodologies surveyed and the features used for

comparison. Then, in sections 3.3 to 3.8, six selected methodologies

are described. The description Is at what might be called a "detailed

summary" level - that is, in much more detail than is possible in

appendix B of this thesis, but in much less detail than in the

published accounts (and omitting their extensive coverage of

examples). The detailed summaries are confined to the significant

steps of each methodologies, accompanied in each case by figures

illustrating the kind of documentary output from each step.

The following reasons led to the selection of the six methodologies

for detailed sil-ary.

- They are all fairly (or very) well-known and influential, in the

research community or in the practitioner community or both.

- Three of them are In common use (Structured design, JSD, ISAC);

the other three are important sources of ideas of varying kinds

(Systematics, USE, NIAM).

- Three of them were included in CRIS 1 (USE, NIMI, ISAC); the

other three were not (Systematics, Structured design, JSD).

- Three of them are available commercially, appropriately packaged

32

with books and training courses, etc. (Structured design, JSD,

ISAC); the other three are not (systematics, USE, NIAM).

The purpose of the detailed summary of these six methodologies is to

give an Idea of what Is offered by a cross-section of the best of what

is currently available and under development, and also to indicate the

diversity of approaches and styles adopted.

In the appendices, a much larger number of methodologies is surveyed

in less detail. Appendix A describes the features used for this

survey, and appendix B is the survey itself.

33

3.2 PREVIous co"ARATivE suRvEYS

Twentyone published surveys are identified, some of which are

associated with CRIS 2. CRIS 2 was part of the comparative review of

information system design methodologies carried out by WG8.1 of HIP

and reported in OLLE (1983). A very brief summary of each of these

surveys follows.

(1) TEICHROEW (1970)

Methodologies surveyed: 6.

Features Included: problem statement, life cycle phases covered,

objectives.

(2) TEICHROEW (1972)

Methodologies surveyed: 7.

Features Included: problem form input, problem form output, data

relationships, computational relationships,

notation used, other information.

Comment: (1) and (2) are similar. Teatures lists are 'brief.

Surveys are mostly concerned with system specification

and design and with justifying PSL/PSA-

STRUNZ (1973)

Methodologies surveyed: 7.

Features included: analysis of the problem; design,

implementation, application area. -

Comment: The survey is Insufficient -and does not reflect all

34

aspects of a development methodology.

(4) LUDEWIG (1978)

Methodologies surveyed: 14.

]Features Included: specification of tools, specification of

methods, range of aids within the system life

cycle, kinds of tools, language used, types of

software for which the aids are designed.

Comment: The features mostly cover the classical life cycle,

software development tools, and real time software

development systems.

(5) BREWER (1979)

fiethodologies surveyed: 13

Features Included: systems survey, systems evaluation, systems

specification, systems programming, systems

Implementation.

Comment: The features are based on conventional life cycle stages.

The survey does not provide any new concepts or useful

Ideas to the developer.

(6) DoI (1981)

Methodologies surveyed: 21.

Features Included: summary, life cycle coverage, notation used,

procedures, automated tools, checking,

configuration control and maintenance,

35

experience, applicability and transferability.

Comment: The survey provides an improved set of features depending

on the classical system development life cycle.

Concentration is mostly on software development (real

time systems) and Ada applications. The survey is brief

and does not cover all aspects of a complete methodology.

(8) FREEMAN AND WASSERMAN (1982)

Methodologies surveyed: 24.

Features Included: Identification, general methodology issues,

technical aspects, automated support,

management aspects, usage aspects,

transferability.

Co=ent: The features have a broader coverage and are not based on

a particular system development life cycle. They mostly

concentrate on software development, and ignore

environment considerations. The survey deals mostly with

those aspects which are relevant to the Ada programming

language.

(8) TSE TH (1982)

Methodologies surveyed: 6.

Features Included: goals, user verification, file design, process

design and optimisation, maintenance.

Comment: The survey mainly concentrates on classical ideas of file

design, optimisation and maintenance problems, and

36

Ignores many Important concepts of an information system

development methodology.

(9) ASPROTH AND HAKANSSON (1983)

Methodologies surveyed: 13.

Features Included: applicability of method, service measurement,

phases of system design covered, role of the

end users, condition and results,

documentation.

Comment: The survey deals with a limited number of features. it

recognises end-user participation, and deals with the

efficiency aspects of system design by mathematical

notation; but it Ignores many important concepts of an

information system development methodology.

(10) BODART AND OTHERS (1983)

Methodologies surveyed: 4.

Features included: abstraction problems, decision problems,

control problems.

Comment: 'The survey considers only three features; while they are

each potentially very broad, they are in fact considered

in a fairly limited way.

(11) BRANDT AND SOLVBERG (1983)

Methodologies surveyed: 13.

Features Included: origin and experience, development process,

37

model, iteration and test, ' representation

means, documentation, user orientation, tools

and prospects, comments.

Comment: The survey deals with some important aspects, e. g.

models, notations, user participation and tools.

Modelling concepts are confined to the E-R and relational

models.

FALKENBERG (1983)

Methodologies surveyed: 4.

Features Included: brief description of methodology, major

principles and concepts, weak points of

methodology, suggestions for improvement.

Comment: The survey concentrates mostly on the weak points of

methodologies and suggestions for improvement. It lacks

the provision of a uniform and precise set of features,

and gives poor coverage of modelling and environmental

concepts,

(13) GUSSON AND HODGSON (1983)

Methodologies surveyed: 13. ý

Features included: background study, systems requirements, systems

design, systems specification, program design,

system implementation, systems maintenance- and

evaluation.

Comment: The survey offers a fairly detailed treatment strictly in

38

relation to the classical system development life cycle.

It is influenced by Hawryszkiewkis criteria for

evaluating design. It is weak in modelling, abstraction

and other modern concepts.

(14) IIVARI AND OTHERS (1983)

Methodologies surveyed: 4.

]Features Included: set of eighty-five questions which are mainly

concerned with theoretical interest,

measurability and answerability,

structurability, neutrality.

Comment: The complicated and lengthy set of eighty-five questions

make the survey difficult to understand. The features

are based on a sociocybernetic approach. It is weak in

modelling concepts.

(15) IKUNG (1983)

Methodologies surveyed: 3.

Features included: understandability, - expressiveness, processing

independence, checkability, changeability.

Comment: The survey considers temporal aspects of modelling in a

limited sense. only a few features, though well

structured, are used, and a very small number of

methodologies is compared. It is rather general in its

approach.

39

(16) MADDISON (1983)

Methodologies surveyed:

Features included: scope, - objectives and deliverable products,

philosophy, and assumptions, pre-requisites and

starting points,, '' lif e cycle phases,

maintenance, application.

Comment: This is a fairly detailed and, critical survey, covering, a

relatively small number of methodologies in depth.

Sometimes the analysis becomes inconsistent with the

features, perhaps because of the number of different

authors.

(17) MALMBORG (1983)

Methodologies surveyed: 9.

Features included: specification of-static and dynamic universe of

discourse,, specification of static and, dynamic

environment, specification of , static ýand

dynamic information systems. '

Comment: The survey deals with a limited number of features at -a

high level of abstraction.

(18) HOULIN (1983)

Methodologies surveyed: 13.

Features included: simplicity of concepts and techniques,

- usability, of methods, completeness, role of

users- and analysts, software aids, graphic

40

aids, -language for system description, nature

of pre-requisites necessary to use the methods

surveyed, concepts and techniques.

Comment: The survey provides a fairly good set of features based

on the traditional system development life cycle,

although the details of the features are not always

clear. It concentrates more on philosophical aspects and

less on technical aspects.

(19) NISSEN (1983)

Methodologies surveyed: 3.

Features included: specification of some part of the world outside

computerised part; knowledge/ignorance, actual

or potential, of some part of the world

mediated by the computerised parts of

informationý system and knowledge about the

access of knowledge by users; design of formal

systems to support knowledge' of the outside

world to become mediated between people;

design/implementation and choice of physical

systems.

Comment: This gives a fairly detailed treatment of aspects of the

universe of discourse and of perceived entities, with

some empasis on user participation. There is little

emphasis on lower level considerations of system

development. It provides some useful concepts and ideas

41

about system development aspects in relation to the real

world.

(20) OLIVE (1983)

Methodologies surveyed: 11.

Features used: levels of abstraction, model description, type of

information system.

Comment: Features are mostly based on the concepts of Young and

Kent Algebra (1958), Langefors Algebra (1973) and

Systematics (Grindley, 1972,1975). The features are

limited and insufficient for a complete survey of modern

system development methodologies.

(21) SWIGCHEM AND ESSINK (1983)

Methodologies surveyed: 10.

Features included: scope of the method, levels of abstraction,

object system modelling, aspects of information

system modelling, decomposition, validation,

role patterns, communications and learning,

automatic tools.

Comment: The feature list consists of a mixture of classical and

structured life cycles and concepts of modelling. The

analysis of methodologies using the features is sometimes

not clear. The black box matrix technique used for

specifying relationships between entities is not

convenient - especially for large systems.

42

From the above brief analysis, we can conclude that there is very

great variation in the features lists used in the different surveys,

and that individual surveys are based on limited and insufficient sets

of features. Any individual set of features is not representative of

modern information system development requirements. Therefore, a

fuller set of features is required. The set of features proposed for

the purposes of this thesis is given in appendix A.

43

3.3. SYSTEMATICS

System specification in Systematics is carried out in the following

seven steps. (Note that these steps are a synthesis of the steps

explicitly or implicitly stated in the book, which is less than

completely clear about the precise sequence in which tasks should be

performed.)

Step 1: List the outputs

This step comprises the production of a table showing (a) all the

outputs of the proposed system; (b) for each output, its recipients;

(c) for each recipient, the use to which the output will be put.

See figure 3-1.

Step 2: Specify the main trigger conditions

This step comprises the production of a table showing (a) all the

outputs of the proposed system; (b) for each output, its main trigger

condition. Main trigger conditions are system inputs. There may be

alternative triggers for a given output. Date and/or time (ie. input

from calendar/clock) is allowed as a trigger, and so is the operator

activity of loading a program.

See figure 3-2.

Step 3: Specify the subsidiary trigger conditions.

This step is carried out wherever the main trigger is not a sufficient

condition for the production of an output. The further (subsidiary)

44

OUTPUT SET RECIMENT

1. Despatch Stores
Instruction

Wspalch

Order processing

2. Invoict- Cu%ionirr

Order proce. %sing

Accounts

3. Statement Customrr

Accounts

OUTPUT SET
Despatch Instruction

Invoice
Statement

'I .o fell stores it) pick stock.

To tr1l despatch departmetit to

th-live-i- wwds to I particular addros.
l'-1 It'll 11.11 gl)(KIS he i-,

ri-4.6% ing.

To tell order processing clerks the
current position on the orders so that
they can dval with qucrit-%.
To tell customer %hat lie has received
and wlim he o%-, t-s so thatt fie may paý.
To tell order processing clerks the
current lx)sition on the order %o that
the%- can dcal %%ith queries.
To keep accounts informed regarding
customer's account position so that
the)- can deal with queries.
To tell customer the amount
now due for payment on his

account so that fie may settle
the balance.
To keep accounts informed or
customer's account balance so
that they can deal with queries
and identify customer's payments.

Figure 3-1

MAIN CONDITION
Customer Order

OR Production Advice
Despatch Advice
Statement Request

Figure 3-2

1-*4)r 4-acla (vilain condition): Customer Order
Where (rurthcr limi(ilig
conditiom? - Anticipated Accouitt jjjjj,,, j(. e 'E Crrdit Limit Free Stock >0

D"Tatch Instructim,

PURPOSE.

Figure 3-3

conditions are shown in a table which is a variation of an extended

entry decision table.

See figure 3-3.

Step 4: List the contents of the outputs

This step identifies the data items making up each output. Each item

is coded to indicate its use: A (to be acted upon by the output's

recipient), I (to identify other items) or N (to provide useful

additional information).

Figure 3-4 gives an example of the results of step 4. (It also

repeats the information from steps 2 and 3 in a slightly revised

orm.)

Figure 3-5 gives an example of the results of steps 1-5 in a

different notation. (It also includes some information, on item

identification, which is added in step 6.)

Step 5: List all data items

This step involves partitioning the union of all output data items

into (a) given items, (b) derived items. The derivation for each

derived item must be specified, in terms of other items which

themselves are either given or derived. This derivation analysis is

continued untill all derived items have been specified in terms of

given items.

Figure 3-6 gives an example of the derivation dictionary partially

45

Output Set Description Shoat i
Role ;I

Output Set Name A? CW&A 1A41rUaAlf bate
70

System Order ACCOM, , 119 Analyst #

Trigger: Fcw Each rujyowr Ado hoduelfon

04w4wily Qýf-
Me

lzeiedtfimit

0

zCffda, &; K;, t
>0
;P0

DATA SETS USE
AISSAMICA(Mv.

Caf MA IF e NO, % 04' "r
-

W '4-
t IV V 4=

-
A

C11fromu ozxx jv*. Af
01011 011re * --w-

gPI1AA'rIr rN YM 0", own 7
- &VI Ma. :± 7

Figure 3-4

1. DESPATCH INSTRUCTION

Customer Order: Anticipated a/c Bal. 11 <Credit Limit
A Free Stockll > "0"

ET'
V Production Advice: Outstanding 'Product No. ' ll> -0-

Qty.
_. _Our

Order No.

giving Our Order No.

A AnticiPated ET'
a/c Bal. Customer Our Order

I'
I

No. '

<Credit ET'
Limit Customer Our Order T'

No. T No. '
A Free Stockll > "0"

Despatch No.
Customer No.

Customer Name ET'

- -Customer
No. I'Our Order No. '

Delivery Address
Customer Order No.
Order Date
Product No.
Qty. to Despatch
Our Order No.

2. INVOICE

Despatch Advice: Outstanding Qty. !I<
Invoice No.
Customer No.

Customer Address ET I
'Our Order No. '

ICustomer
No.

I

Delivery Address
Customer Order No.
Order Date
'Product No. '
'Qty. Despatched'
Price
Item Total
Discount Total
'Our Order No. '
'Despatch Date'

Customer Name ET Our Order No. '
I

Customer No.
Invoice Total
Piscount

Figure 3-5

DERIVATION DICTIONARY

Sot"- 0 Or, *) ; r0carring r 43
CHECK DERIVED DERIVATION

V 00pakh #0 for tacit Despatch Ins1ruction
V wy, b free JITUISIan4ji 5 NY] >0 *A< Cutstandwy Qý y

&Xpakh CUUMM4611; Ot f1reftoct

where:
k 'Product h1o. fret Sto j c fr[-0U, pJ1; chN0. -

Er Der [patchwo. N ,,.. Outstalidinji? ty-l'Our. Ordt'
. 'product No. '

I/ Invoice No. for each Invoice

V Ittm Total Qty. Despatchedl 'product No.
N Price ; Product

DespatzhNo. fInvoice o.
JET[InvofeeM

Dacruntrobl Mscouxt
In voia Jola I X lltmf retal - Discount Total
Nalance E PaymentslInvoict No. I'Customef No. '-JInvotee lotallInvoia No. j'Cuslome,

D4count 'Product No. ' Item Total x Discount ?,? t--l Des , V.; ta4 N0.11 ', voice No.,
Atft4: ipakd hlana - fhpelint ValuelDespalch NojOur Wei &. 14uslomer No. '
aft 821a=
Outstanding

l 471y. Order id -I tity. Despatched T; *rldu-^t No. *
.1 Pespjk* No. I-Our Cider No. - e y. ploduct NO. I Z APe"n' Oty-J j Vur 0rd tN '
'Oes

atch No . e o. . p .
frttstoct Stock - rPt*Unt Oty. 1'Product N4*

V Apelint Oty 1014 to Perpalch I Atoduct No.
I perpaw, /10.

Per patelf I 1 dkfix , ns ru
it Pexpatch 4dpt*ce

I/ stock feectipts1gatch No. j'froduct Afo. '-, VQty. Pespakhedj? rodgd #A'.
Ptscountfa& Customer Type 'Wholesale 'Molesale vitall" , 7raw - Area AforHe 0 1901w* Wow, allonao oavort 0

Oly. Ordered 111 Quota <0uotj

/ / / /

Z-F "23V *20% *40%v

where'.
Custo met ýYINJC[urstomfeih. [Our Order 1, -J-0esPa&h

No-.

. 4re4le'u'slonal Nal0af Order NaloopPalch NO. '

Oty. Ordered 'froductAlo. *
Our order Cmst0ftef Afa Our Ordet No.. rPespalch No. ' 11,110rihi.,

ea,
l

Er
auotajýfu'sjomel N0.10ur

Ordet No.
1'0"Pach No-'

'or, *Pfodmet No*

Pipth; ie Oty. it Prtýt I'Product No. -.
A ETfDCSP, 7tch No.

Figure 3-6

produced during this step. (It includes entries only for derived

items, and includes some information, on item identification, which is

added in step 6.)

Figure 3-7 gives a related, but different, example, in which all data

items in the system are shown, whether given or derived. (For derived

items, cross-references to decision tables are shown where

appropriate. For given items, cross-references to inputs are shown;

this information is added in step 7.)

Step 6: Specify primary identifiers

In this step, the primary identifiers (equivalent to primary keys in

the relational model) are specified in a primary identification

dictionary.

See figure 3-8.

Completion of this step allows the completion of documents initiated

in steps 4 and 5.

Step 7: Design inputs

All given data items are now grouped into inputs. Some inputs will

already have been identified as triggers (step 2); some new inputs

will need to be identified. Given items in the dictionary in figure

3-7 can now be cross-referenced to their appropriate inputs.

Figure 3-9 shows one form in which the results of this step are

documented. Each item is coded to indicate its use: I (to identify

46

1131)

Is 3z

It: z
IZb

zA

H

I

'! 2 -, e -M u

D L

21 ý
v -Z, L-, j

ci

4)
ý4
:3
bo

. r4
P4

t*l

.
%.

Zz

:, ý . , -: - 78 iiý
3z LN Itz

-ZI
1

I I f
I lcb ýNl N ý 4 64 64 kri 'A I kA

I
t, t",

4 -V
zl% I I

9 z-
k. 1ý % z za 0! ý % X - 1"t,

I'
. Z.

M
4ý-,

ýR I
. -I:

ý
,

ýa ý ýt
tj
< ,

-cý -zs
v
- 11ý

-k;
vz

4

4
11

-F
Z

; ', t ý EIR

,: 4
, ;; ý

lc: ýr t
4

1
Xý
4.

", 1 Z r
. . - . ,. . I .

I j

PRIMARY IDENTIFICATION DICTIONARY

I O, cte, E'oees'riny Ii]

DATA SET S-

FT

-
1ý3 4

tyl wo oustomer Customef Name
Dt"e Address l/
elatolýwf
Order Pate
Product Alo.
Oly. to Pespaldt
Our Order No.
Invoice No.
Cuflomer Xddrerj V' I
, QV.
pil. ce

. -Iltm rotdI

Uta Total
Usatelt D te

al It, voice ro I F.
ftcount

Orea limit
0! ý& ýndfi Zu aIw f f f

Revej ts ,v free PoCk I1 1 f I I

Ytvck
Pftoutd Aate
Ail?
Owtolner
QUOIR -ýIr7

Pý ent
pi'velille Palue

0

L,

......... .

i
./(,

/. i:

Figure 3-8

Input Set Description Sheet Reference

Input Set Name Date Order
System Analyst Oda 18roar-eby DATA SETS

Tyro

, TE, e PA7E
P. COPMCT NO.

T OR0,69 No.
011ANAITY OZPFCrP N

Figure 3-9

INPUT SET DICTIONARY

I System

Order Process-ing I Page
II

INPUT SETS

DATA SETS Order A&ia
froducth
Advice ý.? yintna

Cuflomer
petalls

Product
Petai&

ftateml
Aquift

IF 7-
Cuslowr No. V/ Peliýety Xddross I/
euilmýef Or&r No.

Pro due I No
Our Order No.
aty. Orlered

Desp otckoate

swch No
Invola

0a6wi Nante
Owmwr Xd4reir
Credit lbild
Area

au0b
Price

Figure 3-10

other items)'or N (new information).

Figure-3-10 shows an alternative form, in which all given items for

the system are cross-referenced to the inputs in which they are given.

A final comment on Systematics is that the developer is responsible

for carrying out any checks for consistency and completeness. Its

unique and powerful feature is that it proposes new types of checks,

but they are quite difficult in practice to comprehend and carry out.

47

3.4 STRUCTURED ANALYSIS AND DESIGN

Under this heading fall a number of approaches which differ in detail

but which are related by their common link with Yourdon. The variant

described here is Gane and Sarson (1979). It has two features in

common with Systematics. First, it concentrates on the task of

producing "a logical functional specification, a detailed statement of

what the system is to do, which is as free as possible of physical

considerations of how it will be implemented". Second, it offers a

two-level account of how this task is to be carried out; and it is not

easy to-reconcile the two accounts. ýWhereas for Systematics, in the

previous section, an attempt was made to merge the two accounts, in

this section only the more detailed and clear-cut account will be

summarised. It consists of four steps.

Step 1: Draw logical data flow diagrams

Data flow diagrams are used to represent the flow of data between

"real-world" entities, processes and data stores. They are first used

to document existing systems, and then to specify possible new

systems. Automated systems boundaries can be indicated on data flow

diagrams. Process boxes in a data flow diagram can be "exploded" to

lower-level diagrams.

See figure 3-11.

Step 2: Construct data dictionary

1, ,

A data dictionary is used to hold information about all objects named

48

during system development. Data flow diagrams identify both data

flows and data stores; they are composed of intermediate data

structures (cf Cobol groups), which in turn are composed of atomic

data elements. -All-these are named, and entered in the data--., --

dictionary with appropriate"information about them. In addition, the

data dictionary is used to hold entries for objects other than data

objects: "real-world" entities, and processes. More general glossary

entries may also be included. A-data- dictionary may be in either

manual or automated form.

See chapter 5 for a further discussion of'data dictionaries, and for

example figures.

Step 3: Define process-logic

Cane and Sarson (1979) offer a variety of tools for use in defining

process logic: - decision' trees, decision tables, structured English,

pseudo-code and tight English. They discuss the relationships between

these tools, and the strengths and weaknesses of each.

Again, see chapter 5 for further discussion and example figures.

Step 4: Define the contents of data stores

This step provides a logical database schema, in relational third

no , iinal --form, 'Consistent with Cane and'Sarson's purpose of remaining

independent of physical considerations. Steps 3 and -4 between them

complete'the detail logical specification of the new system.

See figure 3-12.

49

%

BOOKS PUBLISHERS 12
Book Address
details

Verify Orders Orders Assemble Purchase
CUST. Orders order valid batched rs requisition orders'

is to
valid publisher

so Purchase rc P
S Credit PENDINEOFEDERS I ý

order
status details

USTOMERS IPUBLISHER ORDERS
Orders It

11 Address for

ss

details title
Shipping

f 2/ note Details of el- Publishers %I
individual Assign Titles. C le (with consignment

p

books) Assemble orders shipment quantities Verify note 11
customer -0- to - c? rr2ct

VII r

"J
orders pending shipment

Fsh

?
or mI

c
t

orders

PUBL. I

Accepted I
shipment

Shipping. details
note ------------------ Invo

I

ic Payment copy
Accepted invoice

erify
Create accuracy

Apply invoice A/C PAYABLE of
payment

I
invoice

to Accounts
due invoice(s)

Invoice
Payment copy Prepare
details

vendor
payments Checks to publishers

A/C RECEIVABLE

Figure 3-11

ORGANIZATION- (ORG-I ORGANIZATION-NAME. ORGANIZATION-ADDRESS,
MASTER BILLING-ADDRESS. MAIN-PHONE, DATE-ACCOUNT-OPENED,

BALANCE-OUTSTANDING, NUMBER-OF-ORDER-TO-DATE)

CONTACTS (CONTACT-NAME, ORG-1 D, CONTACT-PHONE, JOB-TITLE)

BOOK-INVENTORY (ISBN, BOOK-TITLE. AUTHOR. PUBLISHER-NAME, PRICE,
QUANTITY-OWHAND, QUANTITY-OWORDER, REORDER-LEVEL)

AUTHOR- (AUTHOR, ORGANIZATION-AFFILIATION)
AFFILIATION

INVOICES (INVOICE-NO, ORG-ID. INVOICE-DATE. INVOICE-AMOUNT)

PAYMENTS (CHECK-NO, ORG-ID, PAYMENT-DATE, PAYMENT-AMOUNT)

Figure 3-12

A final comment on structured analysis and design that it offers more

down-to-earth notations than Systematics but, like Systematics it

relies entirely on the developer to apply verification for consistency

and completeness.

50

3.5 JSD

"A JSD project has three main phases. In the first phase, consisting

of Le
entity action and entity structure steps , an - abstract

description of the real world is made. In the second phase,

consisting of the initial model, function, and system timing steps,

the abstract description is realised as a process model, and the

currently known functions are specified on the basis of this model.

The third phase consists of the implementation step, and converts the

specification into a practical set of executable programs matched both

to the response requirements of the specification and to the number

and power of the available processors. A major checkpoint should

occur at the end of each phase. At the end of the first and second

phases, the check is concerned to establish the fit between the

specification and the user's needs; at the end of the third phase, the

check is primarily technical, addressing questions of convenience and

efficiency of system execution, and the correctness of the

implementation with respect to the specification. The first two

phases are focused on the user, on his world, on his view of his

world, and on what help he wants from the system. The third phase is

technical, and concerned with the computer". (JACKSON 1982.)

The following is a brief description of the six steps identified in

the quotation above.

Step 1: Entity action step

The developer identifies "real-world" entity types which are relevant

51

to the system to be developed (the criterion is that the system will

produce or use information about them); for each entity type he

identifies actions that it performs/suffers. Entities and actions

must exist in the real world (not in the designed system) and must be

atomic. The actions for a given entity type must be capable of being

ordered in'time, a. nd must be capable of being thought of as occurring

at a point (rather than over a period) of time.

The result of this step is an initial system model. The entities and

actions which are listed constitute a definition of the model

boundary.

See figure 3-13.

Step 2: Entity structure step

I

For each entity type, the actions which have been listed as occurring,

during its lifetime are now expressed as a sequential process, using

the diagramming notation familiar in JSP. If it proves impossible to

express an entity's action in this way (ie. if more than one diagram

would be necessary to do so), then the entity type must be decomposed

into a set of entity types such that the diagramming conventions are

adequate. (An example in the book is of a -soldier, who pursues two

concurrent careers: a promotion career and a training career. The

sets of activities for each career need to be shown separately, as

attributes of "separate" entity types.)

See figure 3-14.

52

The Widget Warehouse Company

ENTITY AND ACTION LISTS

CUSTOMER: PLACE, AMEND. CANCEL. DELIVER
CLERK: DELAY, ALLOCATE
ORDER: PLACE, AMEND. CANCEL, DELIVER, DELAY, ALLOCATE

PRODUCT: ALLOCATE, DELIVER

2 ACTION DESCRIPTIONS

PLACE: convey an order to the company for allocation and delivery. Action
of CUSTOMER and ORDER.
Attributes: product-id, quantity, requested date, ...

AMEND: change the quantity or requested date of an order; product-id
cannot be changed. Action of CUSTOMER and ORDER.
Attributes: code (new quantity or new requested date), quantity or
date,...

CANCEL: cancel an order. Action of CUSTOMER and ORDER.
Attributes: ...

DELAY: delay an order because stock is not available for it to be allocated.
Action of CLERK and ORDER.
Attributes: ...

ALLOCATE: allocate product stock to an order. Action of CLERK, ORDER, and
PRODUCT.
Attributes: quantity, ..

DELIVER., deliver ordered product to a customer. Action of CUSTOMER,
ORDER, and PRODUCT.
Attributes: date, quantity....

Figure 3-13

CUSTOMER

CUSTOMER
ACTION

PLACE (o) II AMEND (p) II CANCEL (q) II DELIVER (r)

PRODUCT

1

41

AVAIL

Figure 3-14

Step 3: Initial model ste

The next step is to produce an initial model of -the system -, to be

designed. This comprises a set of processes, each one matching a

real-world entity process as modelled in step 2, extended by the

provision of a connection between the two so that an, action of the

real-world process (referred to as a level 0 process) causes relevant

information to pass to the system process (level I process). These

inter-process connections are of two types: data streams, and state

vector inspections. They are shown by system specification diagrams.

Each system process can now be expressed in the form a structure text.

This is a textual form of the corresponding real-world process

structure diagram from step 2, with the addition 'of operations for

data stream or state vector communication.

See figure 3-15.

Step 4: Function ste

The initial model is one which simply (passively) tracks'events in the

real world; it does not do anything of its own accord. The purpose of

a designed system is, of course, that it should perform useful

functions. Such functions are added to the system model in'step 4.

They are specified in the form: "When such - and - such a combination

of events has occurred in the real world, 'the system should produce

such - and - such outputs". The specification is documented first as

an elaboration of the appropriate system specification diagram,

showing how the new function is connected to the existing system

53

PRODUCT-0 I ---< Pv) 0' PRODUCT-1

(0) SIAI(.
A" Cee +-dt-

ou-jn. ý &663wf ah-jl! vee)-04- CVj4m,. Ct-4., 4,

CUSTOMER-0
ý--(

C
-ýý

CUSTOMER-1
ý---(CO , ý44-ý

ORDER-1

(1) s y4jý, ý 4? 006fýr-ý- d; -Arx- AIAQýy Aak Mýý
.

PRODUCT-1 seq
getsp PV;
PRODUCT- 1 -BODY Itr

AVAI LAB ILITY-AT-DATE-I seq
AVAIL; 1: =j (where PV = DATEj);
getsyPV;
AVDATE-BODY itr while (DATEO

getsy PV;
AVDATE-BODY end
AVAI LAB ILITY-AT-DATE-1 end

PRODUCT- I -BODY end
PRODUCT-1 end

CUSTOMER-1 seq
read C;
CUSTOMER- 1 -BODY itr

CUSTOMER-ACTION sel (PLACEW)
PLACE; write PLACE to COW; read C;

CUSTOMER-ACTION aft (AMEND(l))
AMEND; write AMEND to CO(j)); read C;

CUSTOMER-ACTION aft (CANCEL(k))
CANCEL; write CANCEL to COW; read C;

CUSTOMER-ACTION aft (DELIVERM)
DELIVER; write DELIVER to CO(l); read C-,

CUSTOMER-ACTION end
CUSTOMER- I -BODY end

CUSTOMER-1 end

ORDER-1 seq
read CO;
PLACE; read CO;
ORDER- I -BODY itr while (AM END)

AMEND; read CO;
ORDER-1-BODYend
FINISH sel (CANCEL)

CANCEL; read CO;
FINISH sit (DELIVER)

DELIVER; read CO;
FINISH end

ORDER-1 end

SýOctt he'lf. Figure 3-15

processes, and second by structure text showing the detailed

specification of the function.

See figure 3-16.

Step 5: System timinR ste

Based on his knowledge of the structure of the system, model, the

developer now specifies the timing constraints which must be met by

the system when implemented. This specification is expressed

informally. Constraints may be of various kinds, including the

f ollowing.

- Response time between an input' and its corresponding output.

- Frequency with which the system is updated with respect to the

real world.

- Frequency with which state vectors must be inspected.

Step 6: Implementation step

This final step is concerned with producing a system implementation

diagram which is a transformation of the set of system specification

diagrams. The structure texts produced in earlier steps may be

retained for implementation, thus substantiating Jackson's claim that

the activity of programming is no longer a separate stage of system

development but is dispersed throughout the development activity.

One feature of the earlier steis of JSD that has not been made

explicit in this brief description is that the modals assume the

54

lEfol-tr4--d OJAI. - 4ýcbý'eclm-
ALLOCR itr

AGROUP seq
read TA-.
getst, PAV; apailable: = quantity in PAV;
AGROUP-BODYsecl

getsi, OAV:
DELAY-GROUP itr while (DELAYED)

DELAY-ORDER sel (requested. < available)
amilable := available - requested.
write ALLOCATE to AO (OAV);

DELAY-ORDER alt (else)
write DELAY to AO (OAV).

DELAY-ORDER end
getst, OAV;

DELAY-GROUP end
NORMAL-GROUP itr while (not end-of-0,4 Vs)

NORMAL-ORDER sel (requested < amilable)
available := aivilable - requested.
it-rite ALLOCATE to AO (OAV)-.

NORMAL-ORDER alt (else)
ii-rile DELAY to AO (OAV)-.

NORMAL-ORDER end
getsp OAV;

NORMAL-GROUP end
AGROUP-BODY cnd

AGROUP end
ALLOCR end

(C SLt- f frcL.
'Figure 3-16

existence in the system of a separate processor for, each real-world-

entity (not entity type). Thus, for most practical systems, there

would be thousands or millions of processors. The essential task of

the implementation step is to remove this abstraction, by determining

(a) how many real or virtual processors will be used for system

running, (b) which processes will be allocated to each processor, (c)

how each processor's time will be scheduled among the processes which

it is to execute. Corresponding to each processor, therefore, there,

will be a set of processes which are controlled by a scheduler. The

detail of the scheduler is defined again by means of structure text;

the dependent processes are transformed by the technique of inversion

as defined in JSP.

See figure 3-17.

Assessment of JSD is made particularly difficult by Jackson's

determination to distance himself from all other approaches. There

are unique features in JSD (eg. system processes which exactly model

real-world processes; assumption of one process per entity), and he

deliberately ignores approaches which are commonly thought to be

useful (eg. data dictionaries, relational analysis). But he also

goes out of his way to dismiss ideas which it is not hard to see are

really present in JSD, in disguise (eg. stepwise refinement,

conceptual modelling). JSD is similar to Systematics and Structured

Analysis and Design in its coverage of the life cycle, but is very

idiosyncratic in its model and expression.

55

"G-

Qth". dlzaý . SCHEDULERseq
list: = null; ptr: = head oflist;
SCHEDULER-BODY itr

SCHEDULER-PHASE sel (SCIN empýv)
POSSIBLE-ALLOCR sel (list is null)
POSSIBLE-ALLOCR all (list is not null)

activate ALLOCR (pir);

query ALLOCR (pir):
POSSIBLE-ALLOCR-DELETE sel (read TA in ALLOCR (ptr))

remove ALLOCR (ptr)from list:
PO SSI BLE-ALLOCR- DELETE all (read TOA in ALLOCR (pir))
POSSIBLE-ALLOCR-DELETE end
pir: = next in list;

POSSIBLE-ALLOCR end
SCHEDULER-PHASE all (SCIN not empýr)

read SCIN;
SCfN-RECORD sel (TAREC)

query ALLOCR (TAR EC-id);
TARECORD sel (read TOA in ALLOCR (TAREC-1d))

(allocation already in progress: ignore TARECI
TARECORD all (read TA in ALLOCR (7*A R EC-id))

actit, ate PROD-1 (TAREC-ld).
activate ALLOCR (TAREC-1d):
add ALLOCR (TAREC-1d) to fist:

TARECORD end
SCIN-RECORD al((EREC)

activate ENQ-.
SCIN-RECORD all (CREQ

activate CUST- I (CREC-id):
SCIN-RECORD all (TLREC)

activate LISTER:
SCIN-RECORD end

SCHEDULER-PHASE end
SCHF D1 It fR RODY end

SC14EDULER cnd Figure 3-17

(t) Stt4x" -fwtf ArAtiou..

3.6 USE

The description of USE upon which the following account is based is

given In the CRIS I Conference Proceedings. That description is not

laid out as a set of steps (these have been inferred from the

description), and indeed the Impression Is gained that the methodology

was at that time still in a process of experiment and development.

All the examples relate to the standard CRIS I test case.

Step 1: Analysis

A requirements analysis is carried outs using the Structured Systems

Analysis (SSA) method, to generate a set of dataflow diagrams (see

figure 3-18) and a conceptual database model.

Step 2: User/system dialogue specification

All dialogues between user and system are specified using transition

diagrams (see figure 3-19).

Step 3: Run interface prototype

The transition diagram are encoded (see figure 3-20) and executed

using a software tool called TDI (transition diagram interpreter).

This step gives feedback to the user at an early stage of system

specification.

Step 4: Database specification

The database for the system Is specified as a set of normalised

relations with accompanying domain definitions (see figure 3-21).

56

a er Registe a erno AUTHO paper

0

0 Oe
el CO

AUTIMS PAITRS

RGANIZ. rogram Form

COMM. sessions

Send \
PaPer name, address for
review

PC LIST

Select
papers

titles, titles,
authorsl

]
authors

TlMEANUSFACE ACCEPTEDPAPERS

Figure 3-18

issue invite

wpp

HELP

nrw

elper -
e paper

START GREET PROMPT

a

qui # add_ref

accept ar
_.

pape

Messages
START "Welcome to CONMAN"
PROMPT "$"
HELP = "Valid commands are
X= "Byebye

receipt

Actions
1 Open database; import

relations needed by PC
2 Close database
3 write 'illegal command'

Transition diagram for "transaction level"

of CONMAN for Programme Committee

I --I

-'new_Elperl

'receive'

Transition diaeram showino valid inputs
to cause transition receipt

x

Figure 3-19

Diagram Start Node

Figure-S SrART

Nocle Message

GREEr "Welcome to CONMAN"
Ppompr "$"
HELP "Valid ccmmands are (entire text not shown)
X "Byebye"

Source node input selector destination action rpturns

START GREET
GREET PRDMPT I
PROMPT invitation <issue invite>
PROMPT receipt <new Fýiper>
PROMPT newreferee <add ref>
PROMPT choose <ac6e-pt_. paper>
PROMPT helper HELP
PROMPT 'quit' x2
PROMPT PROMPT 3
HELP PROMPT

Action Number Action

1 Open database; liport relations nee
2 Close database
3 write 'illegal command'

Diagram Start Node

receipt SrARr

Node Message

Source node input selector destination action returns

START $nps x
START Inew paper* x
SIART 'receive' x

Action Nuffber Action

ranrv-- Ccrynitl

Figure 3-20

domain weekday: scalar (14on, Tue, Wed, Thu. Fri);

do-min clock: integer (80U. -2000)

d Una I II date: intiger (U. -JI12).

d oma xn muney: flOaE (0.06-200. UU);

domain paperstatus: scalar (received, inreview, accepted, insession, rejected);

d Orla 111 pezz; uii: striLng;

relation acceptedL_papeis [key paperno) of
paperno: paperrange;
Eltle: string;
sessionnun: sessionrange;

end;

relat. lun aticuadoce (key nanel)I

ndc. e: person;
driEpaid: money;

end;

relation auttior -
list (key name, paperno) of

nane: person;
paperno: paperrange;

end;

relation railing_list (key name) ot
name: person;
affiliation: string;
detail_address: string;
postcade: string;
city: string;
ccuntry: string;

evd;

rftlation papers [key paperno) of
paperno: papermnie;
title: string;
resp_-pc_! member: person;
status: papeistatus;

end;

relation pc_11st [key nane) of
name: person;
papercount: intWer (0-10) ; (no Fr mnber handles more than If) papemý

end;

relation priori ty..
_:
Iis t (key name] of

nane: person;
role: strire;

end;

relation referee list (key name] of
name: perso'n;
number assigned: inteper (0.. 6); (limit on papers to be refereed)

end;

relation reviewirr, (key refnane. paperno) of
ref nare: person;
paperno: papervinge;
daEesent: date;
da tecf reply: da t e;

e nd;

relatIon sessions Ikey sessionnumber) of
'figure 3-21 sessionnumber: sessionrange;

title: string;

Step 5: Operations specification

The functions to be performed by the system are specified in two ways.

The first is informally, using narrative text. The second is

formally, using a notation with axioms and verification conditions

(see figure 3-22).

Step 6: Run functional prototype

The database and operations specifications are then coded using a

database management system called Troll (see f igure 3-23), and the

system can now be run in prototype form using stored data and actual

functions.

Step 7: Architectural design

The system is now decomposed to modules (apparently equivalent to

programs), each of which is defined in terms of its interfaces and

functions., The module structure is shown in a structure chart (see

figure 3-24).

Step 8: Detailed design

The logic for each module is specified using a program design language

(PDL) (see figure 3-25). Also apparently at this stage detailed

databse design is carried out.

Step 9: Programming

Based on detailed specifications from step 8, programs are written in

the Plain language. This is a Pascal-based language, with facilities

57

0

object paper
abstract imaRe

<title. authorlist. papernumber,
abstract invariant
abstract 92ýtratf2n-k

receive paper...
pre
post

review paper
accept paper
assign paper to session
reject paper
accepted?
change paper title
change authorship

If we consider the operation "assign paper to session". we can identify some pre-

conditions on the operation, including:

the session name is valid
the paper has not already been assigned to another session
the session does not have more than some maximum nurber of papers

Postconditions might specify:

the session is noted as containing that paper
the paper Is noted as having been assigned to a session

More formally, the above conditions might be specified as:

abstract operations
assign_paper -

to
- session (paper, session)

pre valid_session - name (session) & 'assigned (paper)
& paper -

count (session) < MAXPAPERS
Post assigned (paper) & contains (session, paper)

Figure 3-22

open conference;
import referee-list;
import mailing_119t;
Insert referee

'
list [<$refname, 0>1;

(initially ýeferee has no papers to review)
(must also obtain Information for mailinfý_llst relation)

if exists (mailln&_Iist J$refnameD then
insert malling_liat [<$ref name, $ref af f il, $ref adress, $ref postcode,

end If;
$refcIty, $refcountry>J;

export referee_11st, mailing-list;
quit;

: igure 3-23

. Manage
Programme
Committee
Activitiesl

4
49

Get User Issue Process Add new ept papers Provide
Command I itation new paper referee for User

-
sessions sistance]

2567 11 12 13

Get User Record Assign Assign Select Form Select
Input Receipt number referees best papers session'

of paperl

I

to paper

1paners

into chairman
sessions,

INPUT

ic

11
12

13
14

ccmmand_id
input

mailing_list mailing-list
- - - papers, referee

-
list, reviewing,

pc;
_Iist,

author_list, mailing_., list
pajý r s, rFe feree

-
list, reviewing,

pcý_jist, author_list, mailing_., list

papers, authorý_list, mailing-jist papers, author_list, inaflii; Uilst

-
papers, authorýlist papers, authorý list, paperýjnumber

- papers, pcýjist rs, pq_list paýii

papers, referee_list, reviewing,
paperý_number

papers, refereeý_list, reviewing

referee_list, mailing_., list referee_listr mailing_., list

papers, accepteq_papers
author

-
list, mailing_list, times,

sessions, session_chair

papers, accepte"pers,
sessions, session_chair

papers, accepted__papers papers, accepted_. papers

acceptekpapers, papers, sessions#
times

accepteýapers, papers,
sessions

sessiorL. chair, sessions session &. air
L uessageý_number I I

Figure 3-24

MODULE Assign Iteferees
INPUr

paperno: paperrange;
papers, referee list, reviewing: relation;

OUrPE? r
papers, referee list, reviewing: relation;

(all three relations modified by this module)
CALLS
CALLED BY

new paper
LCCAL DATA

input: string; [user input of name(S)l
countrefs: integer (0-5); (number of referees assignedl

FUCrION
For the given paper number, Assign Referees prompts the user to assign
one or more referees for the paper, accepting names until the user types
an empty line (<cr> only) or until 5 names have been collected.
The module increments the count of papers assigned to the referee,
limiting the number of papers to six, and changes the status of the
paper after the referees have been assigned.

write 'Select referee(s) for paper number 1, paperno;
write papers[papernol. title;
countrefs :-0;
write 'Name: ';
read input;
while input and countrefs <5
loop

if exists (referee_list [input))
then

if referee_list. numberý_assigned <6
then

referee
I

list. number-assigned := referee list. number assiqned + J;
insert Feviewing [ýinput, paperno, 100*da-y+month>j;
papers. status := inreview;
countrefs := countrefs +1

else
write 'Referee has too many papers. Try again. ';

end if
else

write 'Name not in referee list. Try again. ';
(***Design problem: note that minor misspellings of
referee names or use of last name only may fail to

end if
find name in referee_list relation***l

end loop
write countrefs, 'referees assigned';
if countrefs -- 0
then write 'Paper ', paperno, I in review. '
else signal noneassigned
end if;

EXCEPrIONS
noneassigned

END MODULE

Figure 3-25

for string handling, pattern matching, exception handling and database

management.

See figure 3-26.

Use offers a prototype project support environment. It is

conceptually sound, and uses sensible software tools which are

interconnected via UNIX. Primitive configuration management

capabilities are offered via a tool called MCS (module control

system).

58

0 00
Ow 60
10

0@
0
ra > 40
41

%. 0 90

ein

CD

CL

w0

u 4)
0u "' 1

96 4) *f4

0)
10

10
(L)

V-4
. r4
Co

10

0

0
e. i

9)

0

0
-r4
ca

, ýo

cn

3.7 NIAM

The following are the steps to be followed in applying the NIAM

methodology, as synthesised from the available account. Again the

examples relate to the CRIS 1 test case. '

Step 1: Object system activities

First, all activities to be performed jointly by the "object system"

and the information system are shown. (The object system is that part

of the total human activity system which supplies information to, and

receives information from, the mechanised information system.) The

activities are drawn from a prior unformalised stage of requirements

description.

See figure 3-27.

Step 2: Information requirements

For each activity identified in step 1, a list of information sets is

given. Each information set is an input message stream needed to

perform or control the activity.

See figure 3-28.

Step 3: Information system functions

The scope of the information system is now defined by identifying the

set of high-level functions which it will perform (see figure 3-29).

The relationships between these functions are then shown in the form

of an information flow diagram (IFD), which is essentially the same as

59

organize IN
conference

Ls blish onsure
r ro ram attendance

T send calls
for a ers

s select persons
to call

,

tend

calls is

register let-
r tegs of intentl -C

register
papers

-1

select paperb
or presentati n

JS distribute pa
aillo nr.

egister
, pc --feports

p p

L__[select

papers
t

establish Esestsions
I

group papers
into sessions

appoint

L-Ichairmen
7

nd invitatidns

select person
t

ifiv I tat iow,

reg is ter
a cc ep tanc t2 s

produce list
of attendees

Figure 3-27

Activity

Send calls

Distribute papers among
referees

Select papers

Information needed

- Information on callees

- Information on conference
- Information on call-layout

Information on papers
Information on referees

- Information on conference

- Information on reports

- Information on papers

- Information on conference

- Acceptance criteria

Figure 3r28,

CON F [RENC I
INFORMATION
SYSTEM

REGISTER REGISTER
IFIP INFO ON
STRUCTURE

I lCONFERENCE REGISTER
INFO ON
PERSON

SUPPORT
ORGANIZING
COMMITTEE

Figure 3-29

selection criteria/
distributions/

Figure 3-30

a data flow diagram in the structured methods (see figure 3-30).

Step 4: Functional decomposition

Each function is now decomposed into subfunctions. The subfunctions

f or each function are again related in an IFD as bef ore (see f igure

3-31). The process of decomposition continues until each individual

information flow is capable of being expressed as an information

structure diagram (ISD: see step

Step 5: Analysis of information flows

Each individual information flow in the set of lowest-level IFDs is

now analysed in terms of its component information items. This is the

distinctive step in NIAM. The result of the analysis for any

individual information flow is a "conceptual grammar" for that

information flow, shown in a complex diagrammatic form (see figure

3-32). These diagrams permit the identification of LOTs (lexical

object types) and NOLOTs (non-lexical object types), ideas

(relationships between NOLOTs), bridges (relationships between a LOT

and a NOLOT), relationships between types and subtypes, identification

relationships, relationships between, sets and subsets, and constraints

of uniqueness, equality, disjunction, etc.

Step 6: Integrate ISDs

The set of ISDs is now taken and integrated for the whole system.

This is done at two levels: an overview level comprising a single ISD

for the system; and a series of lower-level ISDs, each centred on a

60

SUPPORT
PROGRAM
COMMITTEE

I REGISTER
CREATE M INFO ABOUT

LETTERS OF

-- J-

INTENT'

StiM REGISTER
CALit[!. LETTERS

PRINT LIST
CALLS INTENDED INTENDED

LP
CAIPS

ET RS

LIST CAME

REGISTER SELECT INFO ABOUT
SUBMITTED PAPERS FOR
PAPERS PROGRAM

REGIS TER

t

REGISTER
EPAPERS I

PAPER
DISTRIBUTION

LIST
- SUBMITTED

PAPERS

PRINT

REMINDERS

REGISTER
REPORTS

SELECT
PAPERS FOR
PRESENTATION

R SIER
%rER Imt i r24 PJEGI I: etýz

015, TRIDUTION al 11

(V

I-

oUce

SELECT
PAPERS FOR

tj
f

PRESENTATIONýU8
f JT e li of fie

e ed. pape; s pted
pp P(, rt apert

cý a-

ORGANIZE

SESSIONS

H
ROUP

PAPERS INTO
SESSIONS

CHA N

M
REGISTER
CHAIRMEN
APPONTMENT

LIST

PROGRAM

PRINT

APPOINTMENTS

F"
"1

7

re

REGISTER
REPORTS

Figure 3-31

paper- inr: i: fo::
l

PRIUNTS,,
REQ

0

REQUESTS

ref\ýrcc , nt oI PR I

PF m1 11411F R

9

((CPERS
N

(PERSON-NR)

CHAIRMAN

I-eading

(SUBJECT-NAME)

SUBJECT

t

uided-
y

DATE of
ýon

(CALENDER-DATE)

start- ýtart-
of

linq I

r f0pening- 0 for i
T

QTM
E

(CLOCK-TIME

duration-
of

SESSION

discussed-
C) n

0 T compri sin

du ing 4 CONFERENCE)

u

C, 1ý rl 11 () ttN -

oalpf. Is

u

uring
With RANKING

(SEQUENCE-NR)

II
Lopenings-
address-takin
#I lp

asting

LECTURE about ACCEPTED 17
k

PAPER Lpresented-

during

(PAPER-NR)
SUBMITT

Pp

PAPER

APER

'Figure 3-32

major NOLOT.

See figures 3-33 and 3-34.

Step 7: Re-express conceptual grammar in RIDL

RIDL is a language of fairly conventional form into which the

integrated ISDs from step 6 can be rewritten. Software tools within

the ISDIS toolset are available to verify RIDL statements for

completeness and consistency.

See figure 3-35.

Step 8: Check RIDL specification against original requirements

This step is carried out informally by the developers.

Step 9: Compile information dictionary

This step is only mentioned in passing. It is probably, in fact,

carried out in parallel with earlier steps (say steps 5 to 7).

NIAM is distinctive (a) because of its strong and sound conceptual

framework, (b) because of the complexity and difficulty of its

conceptual grammar diagrams. It has -rightly attracted a good deal of

favourable attention. It appears that the ISDIS toolset is available

for use.

61

during

Figure 3-33

(EVENT-
nr-, rofDTTAN%

LOCiTION PERIOD ADDRESS EVENT S

(LOCATION-NAME) (PERIOD-NOTATION)

of
mailbox

of of -for of

corre-

at
spon- for held- during
dence-

3

Ir I

to "I-- 'i

organizing tied-to

TC CONFERENC DEADLINE

organized- applied-to
(TC-NR) by CON E NCE R)

starting-at
CONF- T TITLE of with

on

coinr)r in a

about uring 0

covered
SUBJECT ending-at

lend-'ý
DATE

(SUBJEC-T- about (CALENDAR-
mAmE) DATE)

discussed- SESSION on Of
on

U

k
SESSION)

lof

with]- NR
CHAIRMAN

guided-by leading

PERSON

(PFRSON-NR)

Figure 3-34

begin granywr

add conceptual granrmr IFIP-CONFERENCE;

cz-14 itolot PERSON, PAPER, CONFERENCE, CONTRIBUTION,

INVITATION

add nolot REFEREE subtype of PERSON;

Note: other nolot and subtype declarations omitted here.

add lot PERSON-NR'; PAPER-NR, SURNAME, TITLE,

NoW other lot declarations omitted here.

add idea type CONFERENCE-SOMEWHERE

roles (CONFERENCE held-at and LOCATION of);
Note: other idea type declarations oinitted herv.

PERSON- IDENTIFICATION

(PERSON bearing apk-l SURNAME of);
Note: other bridge type declarations omitted here.

add ooýwpaint PERSON-SURNAME

condition
PERSON bearing only one SURNAME

holds;
Note: other identifier-constraints omitted here.

CO NT ER ErKV -

CONFERENCE always during PERIOD

holds;

Note: other total-role constraints omitted here.

add constraint SESSION-IDENTIFICATION

condition
SESSION is identified by

SESSION-NR of SESSION

CONFERENCE comprisinq SESSION

holds;

Note: other uniqueness constraints omitted here.

add constraint BOTH-START-AND-END-DATE

condition
CONFERENCE starting-at DATE

ie equaZ to

CONFERENCE ending-at DATE

holds;

Note: other equality constraints omitted here

rrriii -lxii fl[

... I

... I

Figure 3-35

3.8 ISAC

ISAC is by far the most extensive and comprehensive of the

methodologies studied in this chapter. A complete account is not

possible. The following includes the most significant steps and

representations.

There are f ive main stages: change analysis (steps I to 3), activity

studies (steps 4 to 6), information analysis (steps 7 to 9), data

system design (steps 10 to 12) and equipment adaptation (steps 13 to

15).

Step 1: Analysis of problems and needs in the current situation

This step generates problem tables (see figure 3-36), lists of

interest groups (see figure 3-37), descriptions of the activities of

the affected interest groups using A-graphs with associated text pages

(see figures 3-38,3-39,3-40), property tables showing measurable

properties of activities and sets identified in the A-graphs (see

figure 3-41), tables of objectives-(see figure 3-42) and tables of

needs for change (see figure 3-43).

A-graphs are extremely important through many of the steps in ISAC.

As indicated in figure 3-40 they are able to show real sets (people,

material), message sets, composite sets, real flows, message flows,

composite flows, and activities. A-graphs can be decomposed through

several levels of detail. Another representation which recurs many

times, and in many different detailed forms, is the property table.

62

PI Bad order
procedures

P2 Difficult
invoices

P3 Late distri-
bution lists

P4

p5

P6

P7

p8

p9

Plo

Laborious

order

summaries

Laborious

economy

routines

Different

order

processing

Outdated data

entry equipment

Deficiencies in
the material

processing

Poor basis for

transportation

planning

Late and poor
basis for

production

planning

The customers think that it takes too long a time to order.
that it is easy to make mistakes and to forget articles.

The customers think that the invoices are difficult to
work with, e. g., to compare with the delivery papers.

The distribution function obtains the distribution lists
too late. which means that the personnel driving the distri.
bution trucks are pressed for time.

The personnel at the order offices of the dairies find it
laborious to manually summarize different customer
orders into distribution lists and dairy summaries.

People in the economy function are not satisfied with
the present laborious routines for invoices, payments,
and ledgers.

There are many ways in which the order processing is

performed in DAIRCO. This makes cooperation between

the different dairies difficult.

The equipment for data entry is outdated, expensive to
work with, and difficult to maintain.

The forms for material processing are undeveloped and
expensive. New packet units and distribution packings
are, e. g., needed.

Planning tools for administering internal transportations
between dairies are lacking.

The dairy's summaries of the customer orders are inaccu-

rate and are obtained too late in order to plan the
production. A lot of "intuition" and "rules of thumb"
are used instead.

Figure 3-36

A ct; v; tes in
Problem A -graphs (current

Interestgroups (See figure 3.3.1) situation)

End users at dairies:

II Order personnel Pl. P3. P4. P7 C41
12 Ledger personnel P5 C43
13 Invoice personnel P5 C43
14 Punching personnel P4. P5. P7 C41. C43
15 Production planners P9. Plo C42
16 Transport leaders P3, P9 C44
17 Load personnel P3 C44
18 Drivers P3, P6 C44. CS
19 Accountants P2. P5

End users at central office:

110 Raw products controllers Plo C3
Ill Internal transport planners P9 C3
112 Order analysts P3, P4, P6, P8 C3
113 Auditors P2. P5 C3

The public (env; ronment):

1 14 Customers Pl. P2 C5
. 15 Owners (i. e., deliverers of milk) Pi-Plo C2
116 Other dairy corporations Pl-P10 C1

Funders tw; th result responsibility):

117 Dairy managers Pi - Plo C4
118 Market department at central office Pl, P2 C3

Specialists:

119 "Prognosis analysts" (forecasters) Pl. P3. P10 C3
120 Systems analysts/systems designers Pl-P7. P9-P10 C3
121 EDP-operations personnel

I
PI -P7. P9-PIO C3. C41

Figure 3-37

CORRESPONDENCE IN DESCRIBED
SYMBOLS IN A-GRAPHS ACTIVITY

Real Set
Set of persons and/or material.

kfes". " set
Set of messages, e. g., documents or

r7

information by telephone.

Composite Set

Set comprising persons/material
as well as messa($! ý

Real Flow

Flow of persons/material only,

Message Flow LTJ
Flow of messages.

Composite Flow

Flow of persons/material as well
is messages

Activity
People and other resources take
part in the activity.

All flows are assumed to go from top to bottom on the graphs, arrows
are needed on upward and (possibly) horizontal flows only.

Explanation of symbols used in A-graph
.

Figure 3-38

Sal 387 583 38

G fie ti-es

C4

fj

ft. 's
l-o ep loc

I 'N C. FNV, ()I(C ING .
j)LF!)GfR

4A

kiess, ges
atmul
fietu ns

. "I O'de's

t. ' 'j Hur 'I', na, Hu.. r

21 PRODUCTION

2A

1". Led
Ploducts

dr %flim
HANDLING 4 DIS IRI BUT ION

4H

Returns.
Ouant. tv
." Store

I-o'ces Protluct P, od"cl,
and

J[

: ad Papers

to 0 Cu'lonter
Requests . th Truck

. a,

ClIz:

I- or Payment I Custorner C. Sto,

4A 463 4wd

Figure 3-39

0

Analyst:
MOB
Subject.
Current order system:
Dairy

2A Raw products
2AI Cow milk
2A2 Added ingredients
2A3 Product packings

TEXTPAGE
A-GRAPH
Date:
1981-04-15 No. C4

381 Production plans
3BIl Long-range production plans
3612 Short-range control information for the production

382 Guidelines
3B21 Customer advertisements per driver (to 44)
31322 Guidelines for invoicing e. g.. payment conditions and campaign reports Ito 43)

581 Change contacts per telephone from customer
5BI I Direct changes of driver's order
5B12 Order of extra delivery

5B2 Return goods. Delivery papers in return. Customers' orders.
5B21 Ret

,
urn goods on truck with driver

5822 Signed delivery papers (from customer) with note about returns
51323 Order papers from customers (driver's order)

5B3 Remittances

4 Dairy (- a typical dairy)

-1 Order processing

-IA Real bases for Production and distribution

iH Bj,,. S Ir.. -nvo, ,:

2 f"offut ! wn
2A Packed products in external packings

Invoicing. Ledger accounting

-4 Store handlinq Distribution

4A Messages ahout retuem and customer ordevs
4AI Signed drilverv Valli-Is ffoll, customer

-4A2 Return papers about approved return goods

-4A3 Order papers from customer (driver's order)

AB Return goods and quantity oil store

-481 Return goods

-482 Quantity in cold store

4A Financial reports about invoicing and ledger accounting

4BI Telephone contacts to customer when orders are missing or abnormal

482 Products and delivery papers with truck to customer

483 Invoices and poss4ble requests for payments

Figure 3-40

Property: a Verage con tact volume
Sets between dairy and customerlday

Number of Number of Number of
Reference customer articlesl order
c6de Name contacts customer lines

C44A2 Return papers 20 2 40

C44A3 Order papers 800 20 16000

C481 Telephone contacts
with customer:

-No orders 4 20 80

-Abnormal orders 4 5 20

C51311 Direct order
changes 8 5 40

C5812 Order of extra
delivery 40 10 400

Sum 876 - 16580

Activity operries Pr

Referenro Number of Hours of
code Name Personnel Business

C41 Order processing II
(order personneO 69 am-4 pm

Source. Investigation of the effects of the current order system at the
Charlestown Dairy December 1975.

Figure 3-41

01 High level The order processing. invoicing and information distribution
41 of customer should be considered as a service instrument and thereby gives

service the customer confidence in DAIRCO.

02 Suitable Planning tools that facilitate a rational flow of products from
planning farmer to consumer should be developed and maintained.
tools

03 High level Stimulating work tasks should be strived for; boring and
of work laborious manual work tasks should be avoided.
satisfaction

04 Coordinated The activities in the dairies of DAIRCO should be coordinated
activities with due regard to possible differences in ambition levels between

large and small dairies.

05 Suitable Equipment for material processing and data entry that is adapted
equipment to users' needs and technological development in these areas

should be purchased and maintained.

06 Profitable Operating costs must permit acceptable prices for the farmers and
activities a suitable investment level.

Problem I ObJective
Needs for changes (Proiect goals) Ifigure 3.3.1) 1 (figure 3.3.11) Priority

NI Better Simpler, faster,

I

PI
101.06

1
order and more accu-
procedures rate order

proceduresfor
customers

N2 Better Simpler and P3
distribu- faster distribu.
tion basis t ion basis via

summaries of
customer
orders

N3 More effec. Rationalization P4
tive order of laborious
office order summa.
work ries at the

order offices

N4 Common A common order P6
order system that can
system be extended to

fulfill different
levels of ambi-
tion

NS Better P7
order entry
equipment

N6 Better Faster and PIO
production better aids for
planning production plan-
basis ning in form of

suitable prog-
noses based on
customer order
statistics

02.06 2

03.06 1

04.06

05.06

02.06 3

'Figure 3-42

Figure 3-43

Step 2: Study of change alternatives

First, alternative means of meeting the needs for change are

considered and listed in an alternatives table (see f igure 3-44).

Each alternative is then investigated, by means of A-graphs (with

associated text pages) and property tables. Social and economic

evaluations of each alternative are carried out.

Step 3: Choice of change approach

A choice is made between various alternatives identified in step 2.

The chosen alternative is further documented by, among other things,

time schedules and resource plans.

Step 4: Partitioning into information subsystems

The A-graphs for the alternative chosen in step 3 are now decomposed

into greater detail, to a level at which (subjectively) subsystems are

identified. The A-graphs are as usual accompanied by text pages and

property tables. Then all subsystems are assessed for

"formalizability" in a special property table (see figure 3-45).

Step 5: Study of information subsystems

Each subsystem is now studied in more detail. More detailed A-graphs

are produced. Special property tables show properties such as

contributions (see figure 3-46), prerequisites and requirements (see

figure 3-47), and the results of cost/benefit analysis (see figure

3-48).

63

AO Current. anner The driver brings customer orders to the order office. These are
(driver's order) considered for the next day's delivery. This is the current

system and thus represents the zero alternative.

Al Telephone A pure telephone order system can be developed in two
order different ways:

-the order office calls the customers.

-the customers call the order office.

A2 Purchase A prognosis (forecast) adapted to each customer is produced
proposal and mailed from the central office. e. g.. once a week. This pur.

chase proposal is structured per article and delivery day within
the prognosis week. In such cases when the customer is not satis-
fied with the prognosis, the customer calls the order office
the day before delivery and gives the changes to the proposal.

Figure 3-44

information systems Property: Type of in forma t; on Processing

Formalizable parts
Non.

Auroinatah4' AIM Narti Infill.),
r Ity ally table

Reference Calcu- Transport of manual pirts

code Name lations messages only parts (manuaIJ

PP41 Order processing:

PP411 Proqnosis processing x

PP412 Of(f,., 'ect-4voin and
010W SLIMMWIZIM9

PP4121 Order receiving

PP4122 Order summarizing x

PP4123 Filing of delivery
papers x

PP413 Return processing x

PP42 Production.

PP423 Produciliq Pla"111,19

A practical test of formalizability. Figure 3-45

Activltv Measure results

Contribution Mer-76 Apr-76
Refer- lbenefts) -simple- -complex-
ence to sub- Measure Feb. -76 prognosis prognosis
Code sctivity Measure unit Curren t model model

PP44 Store hondling
and
distribution:

PP441 I Out-of-stock Stock- Number of 10 4 8
taking occasions/

week

PP441 2 Stock Stock- Number of 15 7 5
surplus taking occasions/

week

PP442 3 Rapidness Avail- Number of 112 3 21/2
in distribu- ability hours
tion basis before

start of
distri-
bution

PP442 4 Variation Differ- Number of so 30 50
in order ence ordered

I fl ow be- units (in
(ý work tween thousands)
load) maxi-

mum
and
mini-
mum/
month

PP442 5 Personnel Inter- % positive 5 80 10
attitudes views
of drivers,

tr: nsport
le ders

I. xtjjcl troill taill, ot ollirlhillioll, Figure 3-46

Prerequisite$ for order processing (PP4 W

PI Correct information of In the A-graph PP41 (figure 4.3.2) that contains prog-
sufficiently high quality nosis processing (PP41 1) we find two Input sets:
must be given to guidelines (PP3823) and information about adjusted
prognosis processing daily delivery (PP413A). Guidelines for prognosis
in time. preparation must be available at each preparation

occasion. Before we arrive at an adjusted daily delivery
(PP413A) there are several error possibilities e. 9 .
an erroneous change (PP581) of purchase proposal
(PP41 I Al I) or an erroneous entry of returns (PP413).
Good motivation on the part of the customers and the
order personnel is a necessary prerequisite for

rnt-ci Prnniin%es

Pa. ilroqtmsiý, notivis
Icalculation methods)
that "forecast" the
outcome with
acceptable accuracy.

P3 The volume of the In such cases other types of order systems will be more
change contacts may profitable (see figure 3.3.18). 30% can be seen as a
not exceed maximal load when determining the size of the tele-
approximately 30%. phone order receiving personnel.

Set Ret, itiorements (properves)

Age of under-
Refef- Extent of lying sales
ence prognosis Number of statistics
code Name Frequency period customers (PP413A)

PP481 Purchase At least Delivery days 24 000 (out Maximum

proposal once/ one week of a total of one week
to week ahead 27 000) and old
customer 800 (out of

a total of
900) per
average dairy

Tables of prerequisites and requirements. Figure 3-47

Information system: Prognosis
processing
(PP41 1)

Property: Cost1beriefit

calculus

"Simple- prognosis
model Ithousand
$1yead

'Complex- prognosis
model Ithousand
$1yead

Separate benefits per typical
dairy and year:

I Direct monetary benefits
(based on figure 4.3 10

among others):

-Personnel savings at order 3* 14 - 42 2' 14 - 28

office (salary costs per year
14000$)

-Savings at overtime pro- (100 - 10) (100 - 30)

tion (8 $ per hour) 0 52 * 0.008 37 * 52 * 0.008 29

-Out-of-stock in cold (10 - 4) * (10-8) 0

storage (appr. 100 $ 52 * 0.1 - 31 0 52 * 0.1 - 10

sales loss per occasion)

-Stock surplus in cold 1115 - 7) (15 - 5)

storage (appr. 60 S loss 52 0.06 25 52 0.06 31

per surplus occasion)

2 Nonmonetary benefits

such as

-Improvements at the
customers

-Personnel attitudes and
social effects

-The effects of the varia-
tion of the order flow

on distribution loads

Sum of separate benefits 135 98

Costibellefit Calculus.

Figure 3-48

Step 6: Coordination of information subsystems

The main task in this step is to rank subsystems in priority order for

development.

Step 7: Precedence and component analysis

and component analysis is carried out for each subsystem in

turn. Precedence analysis shows how the outputs from a subsystem are

derived from its inputs and is represented in I-graphs (see figure

3-49). Component analysis shows the composition of message sets, and

is represented in C-graphs (see figure 3-50). As in the case of

A-graphs, I-graphs are accompanied by text pages. The atomic items,

or terms, identified in C-graphs are entered into a table of terms (or

data dictionary) (see figure 3-51).

Step 8: Process analysis

The processes (or functions) to be performed in a subsystem are now

listed in a process list (see figure 3-52), and each process defined

in a process table using (where appropriate) decision table techniques

(see figure 3-53).

Step 9: Property analysis

The measurable features of the subsystems as thus far specified are

recorded in further property tables (see figure 3-54).

Step 10: Determine processing philosophy

"Processing philosophies" include, for instance, manual, computer

64

IAIPP412A) 2A(PP3823)

Figure 3-49

7A(PP4AI) 6A(PP41 IA 11 68 IPP4 IA 11,48 (PP41 I AWI
PP4 BII PP4lA21.

PP41 IA 12)

I-graph PQO.

4

6A

Purchase
Proposa I

-11 Customer
Name

-12 Telephone to
Order
Offic,

14 Dj, r,

-2 1 -33

Ofder Head

ý

'A, t I *',

-

(A, I (

P-)', -s

......
7

-21 Article -31 Article
Name Name

- 22 Price
-24 -32 -32 Per unit

-15 Customer
23 order Unit

Prognosis (Customer
Address (Customer. 7 year . Year. Prognosis

Year, Prognosis is
Week)

Week)

- 151 Street
Address -241 Number\of Customer

-152 ZipCode Packets Message*

- 153 City
_242 -242

lDvhve, ý
Day"

Number of
Packets

C-gijpli ior pkiichase ilroiwsal.

Figure 3-50 ý

Term
Information

set Data term Type'
Number of
occurrences Value scope Sort

Article P06A Article ID See article
number file

Cus- 27000 See customer
tomer file

P06A Customer ID Appr. See customer
number 24000 file

Dairy P06AI4 Dairy P 30

name

PQ6B Dairy ID 30

name

District PQ6AI3 District P Maximum 20 See dostrict

-. 1taloguo. fnt

Clilry in
question

P068 District ID 1-20

number

Model PQ2A4 P 2 Holiday week.

type normal week

Number PQ6A241 P 0-30000

of P06A242 P 0-5000
packets

Order P06A23 P 0-500

Price P06A22 P 000-999
per
unit

Produc- P06B25 P
tion
quantity

P06832 P

Piece

Piece

(even)

ol 11mil
ber of
packets

Dollars
+ cents
per
packet

Packet

unit
litre

10 - identification term P- property term.

Figure 3-51

Re terence code Name

P042 Selection of purchase proposal
customers and production of
alarm list

P043 Calculation of raw prognosis
per week

P044 Spreading of raw prognosis to
delivery days

Prerequisites

Find a message in 2A4.

Find messages in 41 A for the same customer.

Figure 3-52

Calculations 23

Prognos, scus? om- --. 4lAl1 y y

First prognosis week 141A121) N y

" Prognosis week 12AM -4
" Last prognosis week (4 1A 122)

4B-5 :- 41 A2 x x

Prognosis week (486) Prognosis week (2A4) x x

Reason (4 86) "Not prognosis customer" x

Reason (406) "Outside prognosis interval" x

Prognosis week (42A) Prognosis week (2A4I x

Customer (4 2A) Cust omef (41 A) x

Process table , Figure 3-53

Figure 3-54

m

E E > E
(U 2

> 0 > 0 a >0u>
.5w w 'ro T Wý :3ý mX
C, C)

Lf) ID

E
CL cx

> C 0 >
W QL

a
1- q,

->r
- a) 0 t

CX. m I- z I :
U- .CE ýj 0

c 0 E

CY u c 0 c 0
c 0

c I - - .0

.z Q) E =0
m

m

1ý
- fz
M

vj Q.
4. a
a

-M ý; > rj

I z
0. Q LU .

-

IL ca <

ýIql a .t fu j ra 0-

batch, computer direct, etc. Appropriate decisions are made for each

subsystem.

Step 11: Design computer-based routines

Like step 1, this step involves the use of many representations.

First are D-graphs (data system design graphs), roughly equivalent to

conventional program run charts (see figure 3-55). They identify data

sets (of various kinds) and programs. These are then designed. For

data, first a data set description is produced showing the contents of

each record type (see figure 3-56) and then D-structure diagrams are

produced for each record type. A D-structure diagram (see figure

3-57) is taken straight from Jackson's JSP. For programs, first a

program/process list-is produced showing, for each program, which-

processes it incorporates (see figure 3-58) and then P-structure

diagrams are produced for each program. A P-structure diagram is also

taken straight from Jackson's JSP, although there there is no

discussion about whether Jackson's techniques (eg inversion) are used

to derive P-structures from D-structures. ISAC does follow JSP,

however, in that the P-structures are derived in three stages: first a

control structure is produced (see figure 3-59), then a list of

operations (see figure 3-60) and then a final program structure with

the operations attached to the control structure (see figure 3-61).

Step 12: Design manual routines

The representation used in this step is the work task table (see

figure 3-62).

65

Figure 3-55
Data Set

Sequential Data Set

Data Set with Direct Access

Data Set with Direct and Sequential Accen

Computer Process

Manual Process

Computer Program

Subject:
Order processinq:
Decentralized order processing

2A 6E
-

4A 5A 3A so

Purchase
Propo"Is. P-

D I
/ // //

APPr*wd
§

Imentory Changes Return Signal

//

how
all Summaries. Papers C U I Alarm List

I OP7

1

Order and
Return

Receiving

IA -18 - 2A'

Request for Entered Order

Delivery Changes, Extra Deliv V

Paper Deliveries. Fit
Returns

-SA

Customer
-2

File. Article UPDATING OF DELIVERY STATUS
File

-2A

-48' Delivery
File

H. Stor, cal
Del, very
Papers

-4
-3 ORDER AND RETURN SUMMARIZING

Filing of
Delivery
Papers

-4A -48

Requested Historical
Delivery Delivery
Paper Poperli

A'Wal
LX-hwe v U&Jy liewtva ul. wers U, ea

Ree
v

at' rn

§

Summaries Papers nd summary
F it.

7A 78 7Cl 7C2 7C3 7D

Customer*
II

Customer*
LI

Customer
*

ProTgnOSi
0

PrON
t0

Article
Cu t6

W0 F

L
Article Prognoosis Customer Customer

ly
eekly

00

D Dej Prognosis Oýosis ve is fir 11 t al li iv 11 ery os
Weekly Daily Weekly Daily Within Outside

elivery

r

Delivery Progn Oýgnosis
Xterval

Inuttalo

I

s

Dýeliwe, y
Day

0

Delivery Delivery
Day Day

6E3

Alarm
List

IA A

Guideline
Prognosis Customer

"k

Figure 3-57

622A 62A 61AI

R. - p
Pr

r.
Sales Custrer

14 le

-1 I
Uata IF IF Is

Prognosis processing

Program

Reference Processes from the Information

code Name analysis model

OP61 Storing of sales date PQ31. PQ32

OP62 Raw prognosis calculation PQ33. PQ42. PQ43. PQ44

OP63 Production of Purchase PQ51, PQ53. PQ55. PQ57.

proposals PQ62. PQG4. POW

OP64 Preparation of evaluation basis P072. PQ74

List of program S/processes for prognosis proc.

Raw Customer Guideline
Prognosis File Prognosis

Weekly Holiday
0 Figure 3-58

Daily day
Prognosis Week Prognosis ek

Calculation of
Raw Prognosis
(Main Module)

11

1.

mer Custo]

Customer
F rame

Sli ----
b1 11

0 0
Not Prognosis

Prognosis Customer
Customer

S21 S22

0

is

S31 S32

0
Normal Holiday
Week Week

12 12

Article rticle

Daily Daily
Prognosis Prognosis

IT 13

Oehverý Figure 3-59
Day

Calculation operations

1. Customer number (OP62A) : -Customer number (OP61 A)
2. Article number (OP62A) :- Article number (OP61A)
3. Prognosis week (OP62A): -Prognosls week (OPIA)
4. Delivery day (OP62A) :- Delivery day (OP622A)

16. Reason (OP6E3) :- "Not prognosis customer"
17. Reason (OPSEW : -"Outside prognosis interval"

Input/output operations

20 Read guidelines (OP1A)
21 Read customer file (OP61 A)
22 Read sales data (OP622A)
23 Write alarm lost (OP6E3)
24 Write raw prognosis (OP62A)
25 Termination

Conditions

Iteration conditions

11 Until end of customer file
12 Until end of customer/article records (for certain customer) or until end of customer

file

13 Until delivery day counter >6

Ol,, vioms code iOPG I A) -No-

S12 Prognosis code (OP61 A) "Yes"
S21 First prognosis week (OP6 1A> Prognosis week (OP1 A) or

Last prognosis week (OP61 A) < Prognosis week (OPI A)

S22 First prognosis week (OP61 A) 4 Prognosis week (OPI A) or
Last prognosis week (OP61 A) > Prognosis week IOPI A)

S31 Model type (OPIA) - "Normal week"
S32 Model type (OPI A) - "Holiday week"

Conditions operations

26 Delivery day counter 0

ý7 Dw-verv day critintef Delivery day counter +1

(111mlil"IIN list lol r. ik% 11141griobis cilculition.

Figure 3-60

Calculation all
.. owwms

Main Module)

20 21 25
11

C..

21

Customer
Fram

II S17

N. 1 0 0
Pfognosis

Prognosis Custorrwr
custoý

6 23 S21 S22

Out%-deO 0 =
Prognosis .s Prz
Interval I nterval

9-15 17 23 S31 S32

0 0
No-al Hohd. v
V, "k

An. cle

Weeklv II Daily
Prognosis Prognosis

12 12

Article

W-klv
PrZnol sit P'. 9

Dadv
No9z's

13 13

Del.. e, v Del. -, v
Wv

IIW. I

Figure 3-61

Main Order Receiving

IA customer calls (PP"I. 01`41A)
2 Determine if it is a

direct change of purchase proposal (PP581 1. ONA I)
order of extra delivery (PPSB12. OPAIA2)

extra deliveries are issued for "alarm list" customers
or ordinary customers who call too late. i. e.. after the
order summarizing (PP4122, OP73) has started.

I Chalyge ot Purchase Pýoposal IPP5BI 1. OP4A 11 1

I Ask for customer nime and number
2 Find copy of purchase proposal

(PP41 1AI 1, OP6EI)

For each anicle the customer wants to change:
3 Ask for desired quantity change (i. e., not

the new order quantity) (PP581 1, ONA 1)

4 Check the reasonableness 4 50%). If
unreasonable- ask the customer if it is

correct

5 Check if the inventory signal (PP44A3
OP3A) can affect the change

6 Enter definite change on
type writer terminal (PP4121 8 1, OP71 B 1)
purchase proposal copy (PP41 IA 11, OP7E 1)
for "back-up" reasons

I EAlrj Oeliverv (PP5B? 2, ONA21 I

I Ask for customer name and number

2 It "alarm list customer" make a mark on
the alarm list (PP41 I A2. OP6E3)

For each article the customer wants to change:

3 Ask for desired extra delivery quantity
(PP58 IZ OP4A2)

4 Check if the inventory signai (PP44A3
OP3A) can affect the order

5 Enter definite order (PP4 1,1182.
PP412183. OP7182) on typewriter
terminal

Background Work Order Receiving

I Enter approved return papers (PPAIA2. OPSA) on type-
writer terminal (OP7183)

2 Analyze purchase proposal summaries (PPAII IA12. OP6E2)
if they seem reasonable. The "know-how" of the order
personnel is used in the study of old delivery papers
(PP4123A, OP74A)

Figure 3-62

Step 13: Equipment study

In this step, the record types and programs designed in step 11 are

mapped onto physical equipment. This is done by means of E-graphs

(equipment graphs) (see figures 3-63 and 3-64).

Step 14: Adaptation of computer-based routines

This step is primarily concerned with detailed physical layouts of

inputs/outputs (see figure 3-65) and records (see figure 3-66).

Step 15: Creation of side routines

This step defines the manual tasks to be performed in conjunction with

the computer-based routines (eg. operation, data control). They are

recorded in the form of work descriptions (see figure 3-67).

As already indicated, ISAC is notable for its comprehensive coverage,

particularly for the fact that it covers the study of both the human

activity system and the designed system in unusual detail. It

stresses the user-view in addition to the developer's viewpoint; the

project management view-point is also accomodated, but not so strongly

as the other two. ISAC draws from a variety of different approaches,

including Langefors (precedence and component analysis), Jackson,

decision tables and cost-benefit analysis. A-graphs are similar to

data flow diagrams, and there is a strong flavour of functional

decomposition throughout the methodology. ISAC seems to be widely

used and well accepted.

66

CORRESPONDENCE
SYMBOLS IN IN DESCRIBED

E-GRAPHS SYSTEM

Document

CR r-
Terminal
(InputJ

CR r-
7'ert?), nij
(ourpur)

Punched
Card

Punched
Paper

Microfiche

Disc Memory

Drum Memory

CORRESPONDENCE
SYMBOLS IN IN DESCRIBED
E-GRAPHS SYSTEM

0

Tape Memory

Telephone 7 Message

Computer
Processing

Manual
, qou(; ne

Computer
qram pro<

Computer Program
with Adaptation
Routine

Combined Marwal
and Computer
Processing

Relation

Indication of
Permanent
Storage Med; &

All flows are assumed to go from top to bottom on the graphs. arrows are needed
on upward and (possibly) horizontal flows only.

Explanation of symbols used in E-graphs.

Figure 3-63

2A GE 4A SA 3AI 3A2 so

Ch:

Ordef end
Retum

-IA
Request for Entered 0 der

Changes, E'xtra - 2A'
Delivery Returns Deliveries Paper , Delivery Fit*

Transaction
Log

-2
-46'

MINI UPDATING OF
- - COMPUTER Y STATUS DELIVER N
Iuz 01 BETA 7976

Delivery 2B -2A
Papers

Confirmation. Delivery File
Error Messages Transiaction ---------

-4 Unreasonable Log -A
Filing of Guantity
Delivery Wrong Article
Papers Number Customer

-4A "11-11 -3
File.

Article
0 (3 (3 0 13

MINI-
COMPUTER File 1

Requested BETA 7976
Delivery

Pape,

-3A

Delivery
Papers

11 D a, Iy\ Actual j Reserva,, on
I Drivers' I

De I ry I)a, iv Basi. VIO, I
Rej rn Summar, B. - ýFd. urn ea...

,_

:1L!
7i,

L! jM

-C.::
7A C1 7C2 ? C3 ?D

E-graph of the decentralized order processing,

Figure 3-64

Figure 3-65

-% c4 CI) cr
0 0 w

Z
w

-2 w t't

0
c

- LZ- 0- c (2) 4)

:a 4) 2E
e
r4

0 ja
Ci. 0

Os
0
Z c3 11 cc

l l, c Ln
CL

ýr Z;

z. 0 0

E
«o q

m
le ý

b- 02

p t 0
ý

Ln to

.; i ., i m2 3Z e 1 e 0 0 c 1

w Ir z
Lu L4 a)

V) cr
a =) w
cr z
<0

cc <

. 25 CO

cr
wz >. W
Z cr cl
ZE - cr-
CL <0

0 L) ww K dý a,
j LL) LL
I. a0
I-- cr cc 0w

C13
cr cr 00
LL V) z

Data term
Number of
occurrences

Number of
characters

Type of
characters

Customer
number 1 4 Numeric

Article

number 1 3 Numeric

Prognosis

week 1 4 Numeric

Number of
packets/
week 1 4 Numeric

Number of
packets/
day 6 5 Numeric

Record

Block size 20 records - 900 characters

Preparation of evaluation basis (OP64)

1 Get the 4 or 5 different weekly tape series of
purchase proposal (OP63A) that concern the current
monthly processing for one dairy at a time.

2 Get the disc packs of sales data (OP61A) that
concern customers for the dairy that shall be
processed.

3 Mount/demount necessary tapes and disc packs
during the run.

4 See to it that the data lists for evaluation basis (OP6C)
are postprocessed.

Figure 3-66

Figure 3-67

3.9 CONCLUSION

The detailed summary of six selected methodologies, in section 3.3 to

3.8, permits a number of conclusions to be drawn.

There is no agreement, on development models (as manifested by the step

structure of methodologies).

There is no agreement on product system models (as manifested by the

representations of systems produced at various stages of the

methodologies).

There is great diversity of representations (though some recur: for

instance decision tables, data flow diagrams in several guises, data

dictionaries) and of terminology.

The relational model and functional decomposition occur fairly

frequently. Methodologies tend to have one (sometimes a few) key

concept(s) - for instance triggers, entity life cycles, conceptual

grammar, prototyping.

There is a lack of attention to important "separate concerns" such as

performance, error management or project management.

There is a lack of effective tools to support the developer.

There is a lack of attention to verification.

The detailed summary approach seems to be more effective (though more

demanding both of the author and of the reader) as a means of

summarising a set of methodologies than the use of a features list (as

67

used in the appendices and in published comparisons). The main reason

is probably that the detailed summary permits a methodology to be

described in its own terms, subject to the imposition of only the

broadest framework, rather than under a number of headings which may

be more or less appropriate and which may conceal its most important

characteristics.

68

CHAPTER

APPROACHES TO THE DEVELOPMENT OF METHODOLOGIES

CONTENTS

4.1 Introduction

4.2 Approaches observable in the methodologies surveyed

4.3 Other relevant viewpoints

4.4 Conclusion

69

4. LINTRODUCTION

The purpose of this chapter is to indicate the variety of viewpoints

which might be relevant to the development of an information system

development methodology.

Section 4.2 proposes a number of approaches which can be observed as

underlying some of the methodologies surveyed in Appendix-B. This set

of approaches was generated as follows. Each of the entries in

Appendix-B was studied to see whether it suggested any candidate

viewpoints. The resulting list of candidate viewpoints was then

reviewed to eliminate synonyms and to merge viewpoints which

significantly overlapped. The result was a set of nine viewpoints,

each of which represents a background set of ideas which authors of

methodologies have brought to bear upon their task. (It is often the

case, of course, that a particular methodology can be seen to be based

on more than a single viewpoint.)

While this classification tries to be reasonably empirical, insofar as

it is based on an analysis of existing methodologies, it nevertheless

has obviously a strong subjective element, (a) because it is based

upon a subjective evaluation of the methodologies surveyed, (b)

because subjective judgement was used for the final selection of

categories.

Section 4.3 presents a smaller set of approaches which either can be

seen to have influenced methodologies not surveyed in this thesis or

which, in the author's view, could yield useful ideas for the

70

development of methodologies. This section is necessarily more

subjective and speculative in nature. than section 4.2.

71

4.2 APPROACHES OBSERVABLE IN THE METHODOLOGIES'SURVEYED

The following nine broad approaches can be identified as a result of

analysing the methodologies surveyed in Appendix-B.
I

1. Modelling of human activity systems

This approach is concerned with the description, or modelling, of

organisations in terms of the activities of individuals or groups, the

information objects which they use (e. g. forms, files), existing

information systems regarded as black boxes, and the flow of

information between people and between peopole and systems. It is an

approach which views organisations in terms of human activities, flows

and stores of information, and is distinct from viewpoints which see

the organisation in mechanistic terms (see 10 below) or which model

entities and/or events-within an organisation (see 4 below). Using

the -terminology of CHECKLAND (1981), such descriptions are soft

systems models: they are relatively informal and in general it is not

possible to attach metrics to them or to carry out formal

manipulations on them.

Methodologies illustrating this approach include: CORE, EDM, DADES,

ISAC, NIAM.

2. Fomal problem/requirement specification

This approach is concerned with describing the external

characteristics required of a designed system. Not surprisingly it

underlies many methodologies. Individual approaches may vary

72

according to, for instance, what should be included in such a

description and the type of notation (graphic, mathematical etc.) in

which it should be expressed. It is common to all instances of this

approach that the-specification is seen as being distilled from a

variety of sources of informal information about system requirements.

In most cases this distillation is to be carried out by systems

developers free of any constraints. In a methodology such as LEGOL,

however, the distillation process is based on information which is

already fairly well structured, and has to be carried out in a fairly

systematic and constrained manner. Yet again, there are those who

envisage the possibility of creating formal specifications

automatically asý the output of a natural language understanding

process.

Methodologies illustrating this approach include: ASSET, ADS, CASCADE,

ACM/PCM, CORE, DADES, EDM, HOS, ISAC, INFORMATION ALGEBRA, LBMS-SDM,

NIAM, PRISMA, PSL/PSA, REMORA, SYSDOC/SYSTEMATOR, SYSTEMATICS, SDM,

SDS, TAT, YOUNG AND KENT ALGEBRA.

3. Mathematical modelling of designed systems

This approach is concerned with providing mathematical notation for

describing the internal characteristics of designed systems, in terms

say of information sets, precedence relationships or sets of axioms.

It would normally the case that some useful mathematical manipulation

could be performed on such system descriptions.

Instances of this approach have often been thought of as very high

73

level languages, abstracting from the implementation detail of

conventional programming languages. In this respect they have

something in common with recent developments in program specification

languages and non-procedural programming languages (although they are

at a level below that of formal problem requirements specification

languages described in 2 above).

Methodologies illustrating this approach include: INFORMATION ALGEBRA,

CASCADE, IML-INSCRIBED NETS, HOS, LANGEFORS ALGEBRA.

Conceptual schema

Database theorists and practitioners were for a- long time concerned

only with limited problems of designing and implementing the database

itself, which is a subset of the total problem of system development.

More recently, however, their recognition that a database is a model

of reality has led them to an interest in that reality, which

parallels the interest of system developers. In ANSI-SPARC the term

"conceptual schema" was proposed to refer to the level of analysis and

modelling
-concerned

with reality, abstracting from any consideration

of representation or storage.

This database approach sees reality in terms of entities,

relationships between them, events involving them, and properties of

these things. It is increasingly the case that this approach is being

broadened to include the modelling of processes as well entities, at

least as far as those processes can be defined in terms of constraints

to be maintained by a DBMS.

74

Note that a methodology such as JSD, which explicitly ignores the

traditional database approach, but nevertheless models entities and

events, can properly be seen as an example of this approach.

Methodologies illustrating this approach include: ACM/PCM, CSE-DBD,

CIM, DADES, D2S2, JSD, NIAM, PRISMA, REMORA, SYSDOC/SYSTEMATOR,

SOLVBERG.

5. Data dictionaries

This approach is a means of organising information about all data

items in a system, which may be regarded as an important part of any

modern methodology. A brief description of data dictionary systems is

presented in chapter 5. At present, data dictionary systems tend to

be freestanding and to vary considerably as to the information that

can be held. Their use in practice tends to be correlated with the

existence of a data administration function, and to be concerned with

relatively mundane (though not unimportant) problems such as

controlling names and picture definitions.

Methodologies illustrating this approach include: D2S2, MASCOT,

PSL/PSA, SD, TAG, USE.

Commercial program design methods

The writing and testing of programs is an unavoidable part of the

system development process (irrespective of whether any methodology is

used). The activity of programming is the best understood of all the

75

activities that constitute system development. Early development in

"commercial" programming concentrated on languages and on compilers

and other software tools to assist in program writing. Subsequently

attention moved to the earlier activity of program design, and a

number of methods were proposed (notably including Jackson's JSP,

Warnier's LCP and the structured approaches of Yourdon et-al). Since

program design itself depends upon the yet earlier activities of

systems analysis and design, it was not surprising to find the authors

of program design methods shifting their attention "backwards" to

systems analysis and design. A similar shift of attention is

observable in the Ada language community.

A common shortcoming of this viewpoint is the temptation to suppose

that concepts and structures appropriate for program design are

sufficient at the higher level of systems analysis and design.

Methodologies illustrating this approach include: JSD, GEIS, HIPO, SD.

Project manaaement

It has been generally recognised for two decades at least that system

development projects overrun estimated costs and times, and that the

resulting products do not meet user's requirements. The project

management approach responds to these problems by applying well

established principles of management to development projects: the

complete activity is decomposed into a large number of small tasks;

the outputs ("deliverables") of tasks are defined, in standard forms

wherever possible; traditional project scheduling and control

76

techniques are employed; and management decision points are specified

at key stages throughout the project. This approach is entirely

pragmatic, and is in distinction to those which seek to improve our

understanding of the development process or to develop better software

support tools. It places great emphasis on documentation and

standardisation, and is often seen as imposing a big bureaucratic

overhead on a project. Methodologies based on this approach tend to

be used in large organisations and/or large projects.

Methodologies illustrating this approach include: LBMS, SREM, SDS.

Prototyping

This approach is based on a view which sees system development as a

process which produces a succession of models of the eventual system,

each model more detailed than the one before. It should then be

possible to take some model from this sequence, provided it meets

certain criteria of completeness and detail, and submit it to a

software tool which will interpretively animate it, thus simulating at

least some aspects of the behaviour of the ultimate system. In rare

cases, provided it is functionally complete, development beyond the

prototype stage may not be necessary; usually, however, it is

necessary to proceed to normal implementation for reasons of

efficiency. The real benefit, then, is that a prototype permits both

developer and user to investigate the behaviour of the eventual system

in advance of its implementation. It is thus a technique for

considerably reducing the length of the feedback loop from developer

77

to user.

Some proponents of prototyping claim that it is a complete alternative

to specification. This view is usually associated with the adoption

of some existing software package for prototyping purposes (e. g.

NOMAD, PROLOG). Other advocates recognise that, at least for systems

of significant size, it remains necessary to specify before

prototyping, and that prototyping is simply a very useful addition to

the techniques available within the traditional system development

approach.

Methodologies illustrating this approach include: USE, GEIS.

investment aDDraisal

Investment appraisal refers to methods for measuring and comparing the

benefits and costs associated with an investment project. If the

ratio of benefits to costs is judged satisfactory, according to

whatever criterion, the project should be undertaken. The biggest

problems with such techniques arise with those costs and benefits

which cannot, or cannot easily, be measured in money terms. Such

analysis may be limited to "internal" costs and benefits - ie. those

which affect only the organisation which is considering the

investment. Alternatively the analysis may attempt to take into

account full social, costs and benefits - ie. including those external

to the organisation: in this case the term cost - benefit analysis is

used, particularly for public sector projects.

78

Cost - benefit analysis is conventionally described as being

undertaken in five steps (which are equally applicable to any form of

investment appraisal). They are:

(1) identification of effects;

(2) quantification of effects;

(3) monetary quantification of effects;

(4) aggregation (discounting);

sensivity analysis.

The main criticism of such methods is that they feign an objectivity

which they lack, in attempting to express all costs and benefits in

money terms. Public sector cost - benefit analysis has specially

attracted this criticism because of the visibility and large scale of

the projects for which it was employed. Provided it is recognised

that such decisions cannot be reduced to the terms of economic

calculus, however, such techniques are the most scientific we have.

They are of obvious application to information system development

projects, in connection with which they are sometimes used. A

methodology which -aimed to be comprehensive in its support of system

development activities should incorporate such techniques.

.1 .1
Methodologies illustrating this approach include: ISAC.

79

4.3 OTHER RELEVANT VIEWPOINTS

The following six approaches can be identified as additionally

relevant to the development of methodologies.

10. Cybernetic modelling of organisations

This approach views an organisation in terms of control theory, where

management decisions control processes, and where the network of the

decisions determines the values of one or more variables which measure

the performance of the organisation as a whole. The best known

example of this approach is Forrester's industrial dynamics. A key

characteristic of this modelling method is the identification of

information flows as inputs to decisions. Its weakness is that only

highly programmed decisions, based on quantitative measurements, can

be represented.

11. Svstems theor

Systems theorists study systems per se of any kind, seeking

characteristics common to all systems or to classes of systems. They

may be most concerned with the development of theory forAts own sake,

in which case their work is most often called general systems theory;

or they may be more concerned with the applications of systems ideas

within particular disciplines or problem areas, to solve problems

which are not amenable to traditional "reductionist" approaches.

Systems theory has been called the study of organised complexity.

There have been a number of attempts to categorise systems; perhaps

80

the simplest and most useful is by CHECKLAND (1981), who proposes four

categories - natural systems, designed physical systems, designed

abstract systems, and human activity systems. He also proposes four

concepts which are central to systems thinking; "the notion of whole

entities which have properties as entities (emergent properties ..);

the idea that the entities are themselves parts of larger similar

entities, while possibly containing smaller similar entities within

themselves (hierarchy ..); the idea that such entities are

characterised by processes which maintain the entity and its activity

in being (control ..); and the idea that, whatever other processes are

necessary in the entity, there will certainly be processes in which

information is communicated from one part to another, at the very

minimum this'being entailed in the idea 'control"'.

In the USA especially, the term "systems analysis" is often used to

mean the application of the systems approach to large, complex and

otherwise intractable problems, with extensive resort to operational

research and computing techniques. It has in general been of doubtful

success.

In systems analysis as more conventionally understood, and in computer

science, although systems concepts are ubiquitous, systems theory has

had little or no impact. Despite the distinction of -many of its

practitioners, and the attraction of many of its ideas, it has not yet

demonstrated that it is a practical discipline for handling the

different problems which-it claims to address.

81

12. -Programming theory

Academic computer science has seen a considerable amount of activity

in the past few years directed at providing a more formal and rigorous

basis. for the construction of programs. At least four strands of

thought, --distinctýbut interrelated, may be detected.

First is the use of non-procedural languages for program

specification. Reasoning about the properties of programs is easier

in such languages than in procedural ones, and they have the further

advantage that the specification is executable, even if inefficiently.

Transformation into a procedural language can be carried out if

necessary, Although some non-procedural languages were developed

quite early (eg. LISP), there has been a considerable recent renewal

of interest in them.

Second, there is an interest in proving correctness of programs in

procedural languages. This is much more difficult than proving

correctness in non-procedural languages, and it is commonly thought

that work in this area will remain of specialist academic interest for

some time yet.

Third is an area of interest known as data abstraction. This is

concerned with the provision of facilities to permit the statement of

properties of abstract data types (ie. data types described quite

independently of their means Of representation) and of the operations

associated with them, and to permit reasoning about these abstract

types and operations.

82

Fourth is the attempt to develop notations for defining the semantics

(as opposed to the syntactics) of languages.

While none of the strands of thoughts is directly observable in any of

the methodologies surveyed in this thesis, and while they are intended

to be applicable to the programming process rather than at the systems

level, it seems most unlikely that systems development methodologies

will remain uninfluenced by these important ideas, with their emphasis

on specification and verification.

13. Application program generation

An application program generator-(APG) is a member of "a class of

software products .. concerned with producing data processing

applications. The main objective of the APG is to enable such

applications to be produced more easily, cheaply and quickly than

hitherto possible". That description is from LOBELL (1983), on which

the rest of this passage is based. As is apparent, APGs have similar

objectives to those of prototyping. Rather than animating early

design models, however, they aim to translate into executable code.

It was recognised early that there were a number of standard tasks

which were common to all or most applications. Among them were

sorting and reporting, and these became the subjects of successful

attempts to provide program generators. Areas of - later

standardisation, though by means of standard packages, were

teleprocessing monitors and database management. These tasks are all

"house-keeping" functions, which are common to applications of all

83

types. What distinguishes one application from another are the

procedures to be carried out. Associated with the approaches already

described has often been the provision of high level language

facilities (ie. above the level of COBOL) for procedure definition;

these facilities might be specific to applications of a certain type

or general to all types of applications.

The new generation of APGs offers an integrated means of defining a

program in terms of its inputs, data files, outputs and procedures.

(Sorting may be incorporated in either data definitions or procedure

definitions.) LOBELL (1983) identifies sixtyseven APG products.

This practical approach is of obvious relevance to the development of

methodologies, which could at least allow for the use of APGs at the

programming stage. A more interesting question is the extent to which

it is possible to apply the techniques developed at the program level

to the system level.

14. Management st)rles

There is a considerable literature of styles of management and their

effects. Specially well known is McGregor's distinction between

Theory X and Theory Y management, primarily concerned with operational

efficiency and with worker motivation respectively. System

development involves the management of often large project teams; it

involves communication with users during development; and its outcome

affects users work patterns. For all these reasons the style of

management employed in system development is significant. Since, to

84

over simplify, a Theory Y approach involves more adaptability in

system design and in project planning, its adoption or otherwise is

likely to have technical implications. In other words, a methodology

to support a theory X approach could afford to take a more

authoritarian and thus simpler view of development projects.

On the whole, such behavioural views have been developed in isolation

from the main stream of methodologies. ETHICS (Mumford - 1979) is a

good example. The behavioural approach, not surprisingly, is

explicitly Theory Y. The approach of the traditional methodologies,

with their emphasis on rationality, is implicitly Theory X, though

many authors would be upset to be told that. It is important that the

two different cultural backgrounds should be amalgamated, and that the

technical implications of management styles should be taken into

account.

15. Artificial intelligence

One way of classifying problems is according to whether their

solutions are more or less "programmable". Put at its weakest, the

objective of artificial intelligence (AI) is to discover ways of

programming which can be used for problems to which the solutions have

been regarded as less programmable. Decisions made in organisations,

particularly management decisions, range all the way from the highly

programmable to the highly non-programmable. Since programmable

decision making in organisations has commonly been delegated to

computers, there is a natural interest in ways of shifting computer

85

capability further towards the non-programmable end of the scale.

Recent developments in decision support systems are evidence of such

an interest. The general objectives of AI are also clearly relevant,

although in practice AI research is too often directed to problem

domains which are so remote from those of management as to make its

applicability obscure. Nevertheless, "expert systems" are a rather

mundane spin-off from Al which has some promise of being useful in

this respect. Opinions differ about the application domain of expert

systems and whether they represent a radically new approach or merely

a new style of implementation. It is undoubtedly the case that an

expert system knowledge base is quite different from a conventional

database, and that logic programming, if used, is quite different from

conventional procedural programming. (It in fact represents one way

of prototyping: see 8 above.)

Whatever the final judgement on expert systems may be, the objectives

stated for them make expert systems techniques relevant both to

information systems and to the system development process; and it can

therefore can be expected that they will have an increasing impact on

methodologies. Whether the much more ambitious work in mainstream AI

will have the effect on information systems which it should, must

remain to be seen.

86

4.4 CONCLUSION

While opinions will vary on the relative values of the f if teen

viewpoints identified in this chapter, it would probably be accepted

that none of them is without relevance to the task of developing a

methodology. This diversity of relevant viewpoints should not come as

a surprise: it is a measure of the richness and complexity of the

activity of developing organisational information systems.

The diversity indicates two points. First, many methodologies,

particularly the earlier ones, were based on a single or a very few

viewpoints; to that extent their capability to assist was limited to a

relatively a small part of the total system development effort.

Second (the reverse of the same coin), a methodology which offers to

assist in a major proportion of system development effort must be

based on a rich amalgam of viewpoints or approaches.

87

CHAPTER 5

SURVEY OF TECHNIQUES

CONTENTS

5.1 Introduction

5.2 Diagrammatic representations of flow or precedence

5.3 Non-diagrammatic process representations

5.4 Data representations

5.5 Conclusion

88

5.1 INTRODUCTION

A methodology involves an integrated approach to tackling a linked set

of system development activities in relation to the system development

process. A technique, on the other hand, may be regarded as offering

a means of tackling a specific class of problems, of fairly limited

scope, within the complete development process. In some cases, a

technique may have been proposed as part of a methodology, but may

nevertheless be usable on its own; most techniques are methodology

independent.

This chapter presents a review of classes of techniques which have

been found useful in addressing problems arising during system

development. Individual techniques are discussed briefly but not in

detail; many of them are too well-known to justify detailed

description, and, references are available for others.

89

5.2 DIAGRAMMATIC REPRESENTATIONS OF FLOW OR PRECEDENCE

The common characteristic of graphic representations in this class is

that the concept of sequence is involved, although that is not

immediately obvious in every case. There is a wide variety of such

representations, and the differences between them are more apparent

than real. They include the following, which are specifically

considered in this section.

- Program flowcharts

- Program structure diagrams

- System run charts

- Data flow diagrams

- Precedence graphs

- Jackson structured diagrams

- Petri nets

- Decision trees

Program flowcharts

Program flowcharts were the earliest form of graphic representations

and have been most widely used. Despite the development of various

sets of standards (e. g. ASME, ECMA, NCC) they are subject to

considerable variation in their detailed use. The characteristic that

all such flowcharts have in common is that nodes represent some action

90

(at a greater or lesser level of detail), that arcs represent time

sequence or flow of control, and that the constructs of branching and

iteration can be represented. Figure 5-1 shows an example.

Additional references are CHAPIN (1970,1981).

Program structure diagrams

With the development of better designed programming languages and more

disciplined approaches to programming, program flow charts have

increasingly become regarded as unnecessary adjuncts to program source

text. Nevertheless in all but the, most trivial programs it remains

necessary to represent the relationships between program components

(e. g. modules, sub-routines, procedures, functions etc.). A program

structure diagram provides such a representation. It is commonly in

the form of a tree and, although it may not be immediately thought to

show sequence, the fact that it represents a calling structure means

that the sequence is implicit. Figure 5-2 shows an example: it is in

fact a HIPO diagram.

fyLtem run charts

These show the time or precedence relationships among a set of

programs constituting all or a part of a system. The nodes represent

program runs. In the minimal case the arcs represent not only time

but also data files or messages passed from one program run to

another. In other cases such files and external interfaces are shown

by separate symbols, and the arcs linking them to program runs

91

I ?- 15-

Figure 5-1: example of a program flow chart.
Source: NCC (1971).

37A RX

7WI

Wf3-4/W47WL j

File -acuoh
C&nb-bl

6 7
3.4/07 P2- -3. W, 6"7 P 2ý 3. -*+/vJ07P+. . 3. W07PS- 3.4/ W 07 PG

C, &VjcrcA
r; erý Prbccdurts &11e1j r1eAX

10

recoat P-Oczdura

ue? i6s-c- cdluel.

Pri t%t rise
clw- I*tr\--

w3. ftjwO7w'l
Rr\Aise Aebils

(el C*d

2-

Figure 5.2: example of a program structured diagram.
Source: SASS CJ (1979).

HIERARCHY FOR PAYROLL

Calculate
Employee

Pay

Calculate Calculate
Gross Net
Pay

II

Pay

Find Determine
Use Hours

Calculate Write
Hours Pay and Rate Employee

Worked Rate to Find Deductions Check

III

Gross Pay

III

represent data movement. Figure 5-3 shows an example.

Large systems may comprise too many runs to be shown in a single

diagram in which case (as with program flowcharts) there may be a

hierarchy of diagrams in which, at the higher levels, the nodes

represent subsystems, or groups of runs, rather than individual runs.

Data flow diagrams

Data flow diagrams are particularly associated with the Structured

Design group of methodologies: DEMARCO (1979), GANE and Sarson (1979),

MYERS (1978) and YOURDON (1979). Figure 5-4(a) shows the meanings of

the symbols employed. Data flow diagrams have the following

characteristics.

- They are primarily intended for use at the so-called "logical

design level", meaning that they represent processes and data

both in the designed system and in its environment.

- They allow the representation of (groups 'of) human beings as

sources/recipients of data.

- They allow the possible boundaries of designed systems to be

shown - see figure 5-4(b).

- There is no single starting point (as there is in the types of

chart described earlier in this chapter).

- In common with other forms of flow chart, process boxes can be

decomposed on lower-level charts.

92

Fi gure 5.3: example of system run chart.

. ýftpat2 eRa44 Cka tr
Source: NCC (1971).

Ge5ih poý noil;

PIT

3
3A W09P 4.3 t-P8

Gross SaLallr8.
t7o Net aolvices

4A w &P
11 S (4ý

M-T

7
3 A/ W09 P

;-I., Iý. ; Analbscs -- -- .- --- -- --

; ! _E Orbect

.........

9 to

W 3. -q+ W 10 W

Figure 5.4: example of data flow diagram.
Source: GANE and Sarson (1979).

BOOK DATA

Orders
Process 'CUSTOMER DATA CUST.
orders Credit

at

D;

n; vaic status
I 1wr tj with bawks)

Figure 2.1 Logical date flow diagram

Source or destination of data

Arrow Flow of data

Process which transforms flows Of
data

10pen-*nded
rectangle Store of data

(a)

--
BOOKS PUBLISHERS 2

I Book Address
details

41
Verify Ord Orders Assemble Purchaie

CUST.
drd;

fs order vali batched requisition orders 1 PUBL.
to

void publisher IL
6

"11, Purchase
I Credit PENDIN ORDERS order

status details It

2u
I"

PUBLISHER ORDERS

-
STOMERS

Orders
ddross for

details title
%1- 7 ___10 Is

Shipping
2/- note Details of Publishers

(with individual Assign Titles, c signment
books$ Assemble orders shipment quantities Verity 0

customer to correct
orders pending shipment

Invoices
orders

Accepted
shipment I

Shippinol detiiis

pay t "My Inve. ce
note

Accepted invoice
Verify

create accuracy
Apply invoice A/C PAYABLE of

Payment
Accounts

invoice

invcýloce(s) due
Invoice

Zails COPY Prepare
vendor

AJC RECEIVABLE payments
Checks to publishers

4 1(

Precedence graphs

The idea of a precedence graph was introduced by LANGEFORS (1973), but

was not much developed by him. It was used more extensively in some

of the Scandinavian methodologies based on Langefors's founding work;

the example shown in figure 5-5 is from Solvberg's CASCADE project.

As can be seen f rom the example, a precedence graph can be used to

show the decomposition of a system into subsystems and files

(similarly to a system run chart), and subsequent decomposition down

to the level of individual programs, which can be represented purely

as precedence graphs of data elements. This last form is in a sense

the opposite of a conventional program flowchart: whereas the program

flowchart shows the sequence of operations, leaving the passing of

data between them implicit, the data precedence graph shows the

sequence of production of data element values, leaving the operations

(functions) implicit. Of the two forms, the precedence graph is more

concise and satisfactory: it is implementation - independent, and each

implicit function is specified in terms of its arguments.

Precedence graphs can be alternatively represented as precedence

matrices. Langefors is far more concerned with the matrix

representation and with operations that can be performed using it.

The matrix form is most suitable as an internal (database)

representation of precedence relationships.

93

Figure 5.5: example of precedence graph.
Source: BUBENKO, Langefors, Solvberg (Edtrs) (1971).

z

[siI

'7
f.

SVS2 "E-

The PAYROL-system

YHO7 OURS

ZGI FSS

/PAYROL

_7 SYS2 Is detailed, EMFILE Is decomposed

REKItM t46L4t

CHANGE CHANGES IN EMPLOYEEIFILE INF.
EmFILE EMPLOYEE FILE INFORMATION
GROSSI GROSSPAY CALC
GROSS2 GROSS PAY
NAME EMPLOYEE NAME
NAME2 EMPLOYEE NAME (OUT)
NETPAY NET PAY
NHOURS NORMAL WORKING HOURS PR WEEK
NOPAY NORMAL PAY
NPAY NORMAL HOURLY PAY
NWHOUR NORMAL WORKING HOURS
OPAY OVERTIME HOURLY PAY
OVPAY OVERTIME PAY
OWHOUP OVERTIME HOURS WORKED
PAYHOU INFO. ON PAY AND NORMAL WORK.
PATROL PAYROLL
TAXOED TAX DEDUCTED
TAXINF TAX INFORMATION
TAXPAY TAX PAID
WHOURS REPORT ON HOURS WORKED PR. WEEK

IDENTIFIERS USED IN THE GRAPHS WITH CORRESPONDING
LONG NAMES.

Precedence graph of SYS21. with PAYJIOU decomposed

Jackson structured diagrams

Jackson is as important an influence in the user community in the UK

as the Yourdon school is in the USA. An important difference at the

programming level is that Yourdon emphasises functional decomposition

whereas Jackson emphasises the derivation of program structures from

data structures. JSP diagrams allow the representation, for both data

streams and programs, of the structures of sequence, branching and

iteration. Unlike program flowcharts, these diagrams are hierarchical

in form. As with the more generalised program structure charts,

however, control flow can be followed by traversing the tree in the

appropriate order.

Entity structure diagrams in JSD are of the same form but are

concerned with the structure, and therefore implicitly the sequence,

of events and actions 'generated by or happening to real world

entities. An example is shown in figure 5-6. It is important to note

that these diagrams cannot handle parallelism in real world events.

The inadequate justification is offered (1) that events are the source

of data to be handled by the programs, (2) that event models must be

isomorphic with data and program models, (3) that few current

programming languages support parallelism, and therefore (4) that it

is not necessary for an event model to do so. These diagrams are

worth including in this survey, however, because (together with JSP

diagrams) they, are of a form which has become fairly well known and

influential. The same cannot be said of system specification diagrams

in JSD, which are highly specific to that particular methodology.

94

Figure 5.6: example of Jackson structured diagram. Source: JACKSON (1983).

I -I- --

up DOWN*
FLOOR FLOOR

7%ý

UP 0 No Do'
LV

u1sp,
Tjo PASS IT PA

Petri nets

A Petri net is an abstract formal model of information flow. As

described in PETERSON (1977), the theory of Petri nets has developed

from the work of Carl Adam Petri, AW Holt, Jack Dennis and others.

The structure of a Petri net is formally defined as a four-tuple, c-

(Ps T, 1,0), where P stands for process, T stands for transition, I

stands for input function and 0 stands for output function. The

components of the above structure may be defined as follows.

P= lpil (* shows the set of processes *)

T- ftj} (* shows transitions or mappings *)

- llý
(pi, tj) (* shows that input of transition tj is pi

0= lpi, tj} (* shows that output of transition tj is pi *)

In a Petri net graph there are two types of nodes corresponding to (a)

places and (b) transitions. A circle represents a place, and a bar

represents a transition. The input and output functions are

represented by directed arcs from a place to a transition and vice

versa. Figure 5-7(a) shows the Petri net graph corresponding to the

formal structure defined above.

A Petri net in addition to its static properties has dynamic

properties that result from its execution. The execution of a Petri

net is controlled by movement, markers (called tokens), which are

95

Figure 5.. 7 a, b, c: examples of Petri-net.
Source: PETERSON (1977).

P4

14

PX

-m ar1, -4peýri v% 41 kf1 *14 Og- -5-7
(&)

a -,
ko-d

set 's f'*2 S-- Z-U)

4

74tE 5_Z)

1
j-i e» ý- s Ite oy s ýe m

b i4 in 94 C*11/1 14t
Z:

1
t /xi ýpore SSO r

4--, idl,

. To i-
-broces. sixy is

zooess
e -I

da j. 4 lye- . 4, Yglem

represented by dots residing within the circles.

A Petri net with tokens is called a 'marked Petri net'. Tokens are

moved by the firing of the transitions of the net. A transition is

called 'enabled' when all of its input places have tokens in them, and

only enabled tokens can be fired. The transition fires by removing

the enabling tokens from their input places and generating new tokens

which are stored in the output places of the transition.

Figures 5-7(a) and 5-7(b) show the dynamic properties of a Petri net.

Both the figures represent marked Petri nets. In figure 5-7(a)

transition (t2) is enabled since it has a token in ýits input place

(pl), while (0) is not enabled since one of its inputs (p3) does not

have a token.

If (t2) fires, the marked Petri net of figure 5-7(b) results. The

firing of (t2) in figure 5-7(a) removes the enabling token in (pl) and

generates tokens in (p2) and (p3).

The distribution of tokens in a marked Petri net defines the state of

the net, and is called its "marking'. In different markings,

different transitions may be enabled. In figure 5-7 (b), three

transitions (U), (0) and (0) are enabled, none of which were

enabled in figure 5-7(a).

Petri nets were devised for use in the modelling of specific classes

of problems, such as discrete-event systems with concurrent or

parallel events, systems of distributed control with multiple

processes occurring concurrently, and systems in which events occur

96

asynchronously and independently.

They are used to take the description of the system and analyse it for

the presence of desirable and undesirable properties. Figure 5-7(c)

shows the modelling of a computer system.

Decision trees

Decision trees are used to represent complex decision structures where

the final design is reached by a process of successive partitioning of

the solution space. They are traditionally laid out horizontally.

Each path from the root to a leaf node represents an ordered sequence

of condition evaluations, or branches in programming terms. Figure

5-8 shows an example. Additional references are DEMARCO (1979),

YOURDON (1979) and MYERS (1978).

97

Figure 5.8: example of decision tree.
Source: GANE and Sarson (1979).

Area
Weight

Less than or 11-ý

E- ast of Miss Flat 6 units

equal to 2 lb '-ý
Flat 12 units West of Miss.

,ý

East of Miss.
More than 2

3u 1)

' Air but less than
20 lb

"ýý

6 UI West of Miss P

East of Miss.

\

Flat 60 units +
2 units for each

More than 20 lb pound over 20

Method West of Miss Flat 120 units +
2 units for each

Service pound over 20

Ex press 2 u/p
Local area

Normal ?

lVelght
SU rf ace, Destination Less than or -

equal to 20 lb
3 uip

Express
Outside Local'---" More than 20

area 2011) - 2 u-'p
Normal 2 u., p

Complete decision tree

5.3 NON-DIAGRAMMATIC PROCESS REPRESENTATIONS

By far the major emphasis of the diagrammatic techniques in the

previous section was on activities or processes, although some of the

techniques provided for the representation of data. In this section

we look at further -techniques, of a non-diagrammatic nature, for

representing processes. They comprise the following.

- Decision tables

- Pseudo code-

- Techniques based on fomal logic

Decision tables

Like decision trees, decision tables are used to represent the

relationships between a complex set of conditions and a set of

outcomes. Whereas decision trees can only be used where there is a

partial ordering of decisions into a tree structure, there is no such

constraint in the case of decision tables. Each rule is to be

regarded as an independent statement mapping from a particular set of

conditions to a particular set of actions. Although the conditions

must necessarily be set out in some order, that ordering is not

regarded as significant in the evaluation of conditions; nor is the

ordering among rules significant.

Apart from the major distinction between limited entry and extended

entry decision tables, there is a considerable variety of detailed

98

rules for their construction. In particular it is necessary to

observe certain conventions if decision tables are to be checked for

non-ambiguity and completeness, whether manually or by machine.

Decision tables may be used equally to record decision processes in

the real world or those to be carried out in a computer program. In

the latter case software tools may be available to convert decision

tables into source code modules. An example is shown in figure 5-9.

Additional references are KING PJH (1966,1967b), POLLACK (1974),

GANE and Sarson (1979), DEMARCO (1979) and FERGUS (1977).

Pseudo code

Pseudo code, of which many detailed variants have been proposed, is an

abstraction of 'certain features common to many programming

languages ie. the standard control structures of sequence,

branching and iteration. Pseudo code defines the way in which these

constructs are recorded; beyond that, there are few if any other rules

and there is freedom in the naming and description of data and

processes. -Pseudo code thus stands between natural language and

compilable programming languages. The structured English of the

Yourdon school may be regarded as a major variant of pseudo code,

omitting some of the program-oriented detail.

Like decision tables, these approaches can be used earlier or later in

the system development process, offering. a semi-formal means of

recording either human activities or tasks to be carried out by a

program. In the latter case they form a class of program

99

Figure 5.9: example of decision table.
Source: NCC (1971).

C= S'

A= 12

R= 16 1 2 3 4 5 6 7 S q lo 11 12 13 lit 15

I MRIF Lvrade= v Y Y Y Y Y 11 11 N* y Y N, N
U411-kill-4, lIfIIII-S

2 volle = . 1, Y Y Y Y Y Y N N N N N \V Y N

3 M1121 ai-ade v N* Y \ N* N Y Y Y \' N N Y N Y

If llasit! /merit Y - N Y - N J* N Y N -

5 nasic/merit 2 - Y N - Y N N N -

hisert grade and
I operator type x x x x

111SCIA next
2 review (late x x x x x x x N

3 Apply formula 1 x x x

11 Apply formula 2 x x x

Get input. amount x x x x x x
Get. result of 6 formula x x x x x x

7 Negate x x x x

8 Put in basic rate x x x x

9 Put in addit. rate x x x x x x x x
Print sterling 10 amendment x x x x x x x x x X X X
Print name

11 amendment x x x x
Print (late

12 amendment x x x x x x x x

Formulae are applied to the amount in the transaction
file record (4.7/MR5F)

Formula 1 Result amount standard working hours

13 36.25

Formula 2 Result amount x standard working hours
11 110

specification and design languages. They are of more general

application than decision tables, since they are not confined to

representing the evaluation of a set of conditions.

Strict pseudo code (not structured English) can be employed In the

stepwise refinement method of program development. In some cases

software tools are available which will carry out a transformation

from pseudo code to source code skeleton in a given language.

Examples of pseudo code and structured English are shown in figure

5-10.

Techniques based on formal logic

The concepts and notations of formal logic are used in a number of

contexts to provide a non-procedural means of describing rules and

processes. In addition to Its use In some of the methodologies in

appendix-j (e. g. DADES, In-inscribed nets), formal logic is the

basis of Prolog and other logic programming languages, IPL

(interpreted predicate logic -a proposal for specifying constraints

In databases), the relational calculus (for specifying database

queries), Legol (a system for recording and simulating the effects of

a complex set of regulations), and formal program specification

methods. Although formal logic approaches are non-procedural, there

Is a mapping from formal logic constructs to conventional programming

language constructs. ' For Instance implication maps if... jhen; and the

similarity between Prolog rules and decision table rules has been

observed.

100

Figure 5.10: example of pseudo code and structured English Source: GANE and Sarson (1979).

GENFRATE INVOICE
DO COMPUTE -INVOICE-TOTAL
DO COMPUTE DISCOUNT
DO COMPUTE -SHIPPING-HANDLING
Subtract discount from invoice-total to get invoice-net
Add shipping-handling-iee to -invoice-net to get total-payabl
Writiinvoice.

COMPUTE-INVOICE-TOTAL
REPEAT EXTEND-ITEM-LINE UNTIL all itefn-lines have been extendedded
Add all itern-line-totals to get invoice-total -

EXTEND-ITEM-LINE
Multiply quantity by unit-cost to get item-line-total.

COMPUTE-DISCOUNT
IF invoice-total is GE$ 1000

discount is 5% of invoice-total
ELSE IF invoice-total is GE $250 bu t LE S 1000

discouWt -is 2%% of invoice-total
ELSE IF invoice-total is GE S100 but LE $250

discount is 1% of invoice-total
ELSE (invoi otal is LT ý_l 00)

SO discount is nil

COMPUTE -SHIPPING-HAND LING
IF order specified air shipment

THEN DO COMPUTE-AIR-FREIGHT
ELSE (order specifies surface shipment or method is open)

SO DO COMPUTE-SUR FACE-F R EIGHT
Multiply rate by current-unit-value to get shipping-handling-fee

COMPUTE-AIR-FREIGHT
IF !!! ýýht is LE 2

rate is 6 units
ELSE IF ! ±ght is GT 2 but LE 20

Multiply each pound of ! ýýht by 3 units to get rate
ELSE (±1ý2ht is GT 20)

SO Subtract 20 from weight to get excess
Multiply excess by 2 -units per pound and add 60

(20 poý-n-ds at 3 units per pound) to get rate

COMPUTE -SURFACE -F RE IGHT
IF destination is local

and-IF service-code is express
THEN Multiply each pound of weight by 2 units to get rate

and so on

4h; ZKtured English

Initialize the program (open files, set counters)
Read the first order-record
DO-WH ILE there are more ordef-records

DO-WH ILE there are more items on the order

Compute item-total
Add item-total to invoice-total

END-DO

Compute discount
Compute shipping and handling fee
Compute invoice-net. total-payable
Print invoice
Write invoice to accounts -receivable file
Add invoice-detail to summary counters
Read next order record

END-DO

Print summary of day's invoices
Terminate program

5- /L) (j) - Top4avel pseudocode

Formal logic tends to be a far more concise form of representation

than a procedural programming language. Software tools can be defined

to "animate" sets of formal logic statements: they are slow in

execution but nevertheless can be valuable for prototyping purposes.

An example of formal logic, as used in IPL, is shown in figure 5-11.

101

Figure 5.11: example of formal logic.
>-. Source: ISO (1982).
r-O

0
E!

ý-4

0 f-4

Q) -a I
1:

C:
0 110

Co C . 1 to S
$-4 0 >-. Co

4-j

(1)
Ca
CM (n

0
4-J

"a
C".

P-4

ýj
.0 0

0
E!
cc

-r4 60
0)

4-J
Co P

Co
C:

ý-4 4J
(n C W

-r4
to

0 P
0

'
4) 0 Q)

ITJ
44

())
-01

Pn r- 0 Co 4)
d)
bo

C:
0

Co
ýJ

r-Q

Ej
to
cc

cc
ý-4 C)

110

Aj
0

to
0
0

0
to

$4

cc
1

C3
w

4-j E3
Co

P -. 01
w

01 4-j
0 %. -1

Z
-, U 1 4-1 %

-::) I
cc

C M 0
rJL4 r-4

r-4
c)
-Lj

60
C:
0

--4 0
r-4 ýj a;

. ý4 ý-4

C13
m

S
Co

0
0-% 0

00
w

P-
0

0)
0, -,

% -0 1

01 P
0

P (1)
0 U) Co

ý-4 -A
4j

$4 W
0 00

M

N

ýZ.. Co

c)
ýý

U1

C:

ý- 4
cc

4j
0

rX4 CO

w
Ulu

0
C. - UI C.) Iu

00
a) r-j -4 C. D I C:

w
(U

1z
w 0 I C:

bo
Ca

V-4
Cz

V-4
(d 444

0)
a

bo
C1

r-4
Co t-W

w
r-

$-A
Co

ýý E-4 $4
go

>
C: W %-. o,

E-4

0 0 0 U 0

v-4
-. 1

Cr)
-. 7

-ýT
--T

Ln
--T

%D
-ZT

5.4. DATA REPRESENTATIONS

This section includes techniques, both diagrammatic and

non-diagrammatic, for representing the relationships between data

items or data structures. Just as the techniques in sections 5.2 and

5.3 cover between them both real world activities and machine

processes, so the techniques in this section cover both real world

entities and the data items which represent their properties within

the computer. The following are included.

- Relational schemas

- Conceptual schemas

- Bachman diagrams

- Identification matrices

- Data abstraction

- Data dictionaries

Relationalschemas

A relational schema permits the declaration of one
_

or more

relation-types, where a relation-type declaration defines a set of

associated data types (or attributes). In any relation there must be

one or more key attributes and zero or more non-key attributes.

Relations must be declared in such a way that non-key attributes in a

relation are functionally dependent on the key-attribute(s), and that

102

duplicate values of the key at any moment of time are impossible.

Key attributes are most commonly thought of as identifying real world

entities or events; they may also, though less frequently, identify

abstract properties. A multiple-key relation defines the

relationship(s) between the entities, events or properties represented

by each of the elements of the key and any properties of these

relationships. A foreign key is said to exist where a non-key

attribute in one relation is a key attribute in another.

The keys and foreign keys that exist in a relational schema imply a

network of real world relationships; but the relational model provides

no mechanism for displaying that network of relationships explicitly.

The relational model provides the basis for a rich field of

theoretical studies on data semantics. It is also used practically as

a sound starting point for record design, and a number of DBMSs have

been implemented on the basis of this model. They have the advantage

of relative simplicity of schema definition, and of concise and

powerful query facilities, but the disadvantage of relative

inefficiency in execution. An example of a relation is shown in

figure 5-12. Additional references are DOBOSZ (1981), GLAGOWSKI

(1978), HUTT (1979), KENT (1983), MACLEOD (1981), RONALD (1982) etc.

Conceptual schemas

A conceptual schema is a way of representing all or most of the data

in a system at a relatively high level of abstraction - ie. without

103

Figure 5.12: example of a relation.
Source: GANE and Sarson (1979).

Cc

>

OR
CN

LU
5;

LLJ
cr-

cr- 0 C) 000 C) C) 0
0 LO 0 Lp U-) 0 LO U-)

1
i LO C4 CN CN CN tr) r%. (4

- 103 CO CC) LO LO IRT CN
<
f^ V- T- r. - r- T-

L--- -- - --
CN

-- WO

LLi -i _De Je 0 -o c 'n' a E
' L' L' 00 E

cr,
Cb -- -=

(» cu
CL a2 c: , 0

m
r- 7

(D
Co cu

2E :3Z (L) (U "
0

% 2 (A u) (n cn a.
Uil
(D
z
-5 (D tO co (D LO tO qql (D

Fý r- r- r- r- r- r- r-

Lr) LO
LL C0 C) CD
o q- q- CN 00 CN IK: r C%4 C. 0

off CD C). ý C) T- 0 T- 0

Z;
co Lfl c I

C: E
E "

Q) o

,a
0C C) C)

C) C) C) 00
Lr) C::) Lo LO LO
CD . q- CD (M CC)

'D "D &-

ý: ý: M Vb
.
4A

L- -
C2.

0 F-

W LC)

C*4 r_ (0 (0
- CD CD CD

0

Z cn
:F -ý t 'c 'T tl' .

LLJ
LLJ Z

r- r-
C%4 CN

" CN CN " CN
CN C%4 CN CN C14

-IT q: T q: t T r
0000000

-J z CD CT) (D (D (Dý (D (C) (0 (. 0 (D (D 8 (0 (C)
0 C) F- o CD 0

C%4 CN
(D (D (D (D (D
CN CN CN CN CN

00 C) 0
m [C-) CY) CY) CV) CY) CY)

US

Lu

0 0
L)

tu

a:
CU

4A

E

m
tu

0 42

consideration of syntactic or physical representations and in

relationship to the real world entities etc. from which the data

derives. These approaches have usually been strongly influenced by

relational theory, while not limited by the constraints of that

theory. Two of the best known models are the entity-relationship

model and the binary relationship model. Using different conventions

both models permit the representation of both real world and data

objects, the relationships between them, and the attributes of both

objects and relationships. In each case the representation may be

either graphic or textual. Graphic representations, for systems of

any size, become extremely large, and difficult to draw and to read.

Textual representations consist of many individual statements, any one

of which may be easy to read but which are difficult to grasp as a

totality and need the support of software tools for their effective

use by the developer.

One has the impression that, whereas the simpler relational model is

employed in the user community for primitive conceptual modelling,

these more sophisticated conceptual schemas are still confined to the

research community. An example of a conceptual schema using the

entity-relationship model is shown in figure 5-13 (diagram form) and

5-14 (textual form).

Bachman diagrams

These are closely associated with network database models, which are

in extensive practical use. They permit the representation of record

104

Figure 5.13: example of conceptual schema (diagrar. form).
Source: ISO (1982).

Figure 5.14: example of conceptual schema (textual form).
Source: ISO (1982).

A description of the conceptual schema in the language of the grammar defined
In section D. 3, is as follows:

CONCEPTUAL SCHERA car-registration

ENTITY-TYPE manufacturer
IDENTIFIER manuf-id
DESCRIvrION manuf-id

is-operating

ENTITY-TYPE car-model
IDENTIFIER model-id
DESCRIPTION model-id

fuel-cons-spec

ENTITY-TYPE car
IDENTu IER reg-no
DESCRIPTION reg-no

serial-no
destroyed-date

ENTITY-TYPE fuel-consumption-rate
IDENTIFIER year-id
DESCRIPTION year-id

max-cons

ENTITY-TYPE garage
IDENTIFIER garage-id
DESCRIPTION garage-id

is-trading

ENTITY-TYPE person
IDENTIFIER person-id
DESCRIPTION person-id

ENTITY-TYPE transfer
IDENTIFIER transfer-car, transfer-date, seq-no
DESCRIPION transfer-car

transfer-date
seq-no

RELATIONSHIP-TYPE manuf-by
DIMENSION 2
COLLECTION manufacturer

car-model
CARDINALITY manufacturer O, n

car-model I'l

RELATIONSHIP-TYPE made-by
DIMENSION 2
COLUCTION manufacturer

car
CARDINALITY manufacturer O. n

car 1,1

types and of set membership and ownership (using CODASYL terminology).

While they are initially intended for use at the more detailed stages

of database design, they have more recently been used also for

conceptual modelling, and perhaps may be seen as occupying an

intermediate position between the two. An example of a Bachman

diagram is shown in figure 5-15.

Identification matrices

The early versions of Systematics (see Grindley 1972,1975) preceded

relational database theory in realising the importance of the

key/non-key relationship. In Systematics, key attributes are called

primary identifiers and non-key attributes are called secondary

identifiers. The concept of grouping non-key attributes with a common

key into a named relation is not developed in Systematics. Instead it

provides a notation for recording identification relationships between

data items and for combining these in a matrix form (identification

dictionary). There is a matrix column for every primary identifier

and a matrix row for every identifier whether primary or secondary.

The relational concept of foreign keys is not explicitly discussed.

The matrix provides a concise tool for analysing possible access

paths, which in the relational model must be specified by use of

operations of relational calculus/algebra.

The purpose of identification analysis in Systematics (for which no

software tools exist) is to permit the design of a system to be

validated for consistency in the particular sense that a given trigger

105

Figure 5.15: example of Bachman diagram.
Source: NCC (1971).

.5 pe t
, Dwri#-r

I Yhem Ler

er pool

Entry points for possible seardws

input is sufficient to produce a given output. The technique was not

intended to apply to databases, which indeed are essentially ignored

in Systematics. An example of an identification dictionary in

Systematics is shown in figure 5-16.

Data abstraction

Data abstraction is an attempt by the programming research community

to develop ways of describing and handling data objects independently

of their syntax and physical representation. (Conceptual schemata, as

already noted, are the outcome of a similar attempt by the database

research community.) The main thrust of data abstraction has been

concerned with general data types (e. g. stacks); with asserting their

properties, the operations that can be carried out on them, and the

effects of these operations; and with demonstrating useful proofs of

correctness. Such general types, with their associated proofs, are

seen as useful building blocks in the design of provably correct

programs.

Less attention is paid to what might be called specific data types

(e. g. product number, marital status), which it is equally possible

to design and study at a similar level of abstraction. An example of

data abstraction is shown in figure 5-17.

Data dictionaries

A data dictionary offers a structure for holding information about

named objects in or related to a system; in practice these need not be

106

Figure 5.16: example of identification dictionary.

Source: GRINDLEY (1965).

PF41MAIIY 1PENTIFICAISON U44'r4ONAN/

oldel /1,01'en-Ifly

DATA SE 15 'y
ET
bi-ipiýc-w b Vj

21'3 4

ouslooter No.
Customer Name
DeMyty Address
Custolitt Order No. t
Ordei, A? Jý
Product No. f
Oty. to DeSp3lell

Our Order No.
Invoice No
Olulolwr hdrers I
OtV. defa7tched
pil*ce -
HIM rotal II II

,
dtýcount Totc7l
Oespatch Date
In vvlýe TONI
Rolance f
, O&coun t
ktAýipated

, 4eeount blame
Ohodlý I imit

OUtStc7ndiAl jQtlj.
Q! ý., OzdereR

A0eceipts
Free. 9lock
Apelim oty-
Rock

Am
Customer Ttive
ýUOIR
Payment
Pipel(ne Pdlue
,
Z&h No

Figure 5.17: example of data abstraction.
Source: DARLINGTONS and others (edtrs) (1983).

NOTES ON US. NG TYPES AND TYPE ABSTRACTION IN FUNCTIONAL PROGRAMMING

Abstract Type GradeBook

Operators

create: any --ý GradeBook
addGrade: GradeBook X Student X Test X Grade . -> GradeBook
remGrade: GradeBook X Student X Test GradeBook
inCourse: GradeBook X Student Boolean
sGrades: GradeBook X Student Sequence[Grade]
tGrades: GradeBook X Test Sequence[Grade]
allStudents: GradeBook Sequence[Student)

Axioms

for all s, s': Student, t, t': Test, g: Grade, gb: GradeBook

remGrade-[create, s, t] = create
rernGrade -[add Gradeo [g b, s, t, g], s', t')

Student$eqo[s, s'] A Test$eq(t, t')
remGrade,, [gb, s', t'] ;
addGradeo[remGradea[gb, s', t'], s. t, g]

in Course* [create, s] =F
inCourse,, [addGradeo[gb, s, t, g], s']

StLident$eqo[s, s'] V inCourseo[gb, s']

sGrades-[create, s]
sGradesc, [addGradea[gb, *s, t, g], s']

Student$eqo[s, s']--4
apndlo[g, sGrades-[remGradea[gb. s, tl, s']];
sGrades-[gb, s']

tGra(leso[create, t] =[]
tGrades,, [addGradec, [gb, s, t, gl, t']

Test$eq(, [t, t']-
apndi-, [g, tGrades,, [remGradeo[gý, s, t], t']];
tGradeso[gb, l]

allStudents,, create --* []
allStudents,, addGradeo[gb, s, t, gI

inCourseo[gb, sl--+
allStudentsogb;
apridlo[s, allStudents-gb]

confined to data objects (though they will predominate) but may also

include processes and real-world entities (physical and abstract). A

data dictionary may be in manual or automated form.

Figure 5-18 shows one approach to organising a manual data dictionary,

using index cards, with a different card layout for each of following

entity types: data element, data structure, data flow, data store,

process. The layouts indicate the information which might usefully be

collected for each type of entity.

Automated data dictionaries offer obvious advantages over manual ones,

in terms of ease of editing, searching, production of listings, etc.

Many such systems are on the market, and a recent survey indicated

about 2,000 users for the top fifteen products in this field.

DATAMANAGER is one such product, and figure 5-19 shows some sample

listings produced by it.

The American National Standards Institute and the National Bureau of

Standards have initiated projects for the standardisation of data

dictionary software. Additional references are FRANK WA and others

(1982), LEONG HONG (1982), LOMAX (1977), WINDSOR (1980), BCS (1977)

and EHRENSBERGER (1977).

107

Figure 5.18: example of manual data dictionary.
Source: GANE and Sarson (1979).

'SIT-LAiliE-I---, 'P-'LPRIOIVIIlt4lclc! -Iclo: DIEI Ii11

TWO
-111

LJ-J-LJ Daw Element
Sjj()rj leS(: rqjjjojj ICtt-Of COdr-, fOf Sr&. Te_1-rr-fr; 'r0o- 4 Of U. S. Of
proVince, cof CAI%Ad4L

Type 0 AN N
Aliases (contexts) C-STAT5 NAL) WAlr- CODE &SALF!; -5Y$TEM)

'ShcorT-ý; 'TAfr-
(MAJI I room)

IF Discrete IF Continuous
Value Meaning Range Of

values

-AK A et-5 kA

-AL
A 14 barnaL Typical

AR value

Length 2 Chinicrers
AS WIM Internal representation

A 7- An zonýL He ya 456; qnd
V (if more than 5 values, continue on reverse or give referencle

to separate sheet) _5CC -folal lo3

Other editing information 4-- rgoi. -ed to malz, 'h ;z io -60d--
Related data structures/elements CUs. -t0&jFne.. r gddrrge. , : SValir-o aCtdr&5! 5

li 110r4a 57- Jog (, Q) . Specimen form for recording data elements

10PRIPIf Data Structure

Short description (05t0mv O(L fly I Of Pidd WAS-
Qq- I RE it -I 1011COTIFIC-ATIM Related ddtJ flows/structures

IIII
IOKIIDE I It- I PATE 5AP)

L-13,6-71 13- P7)

U IbT
10 M: ELI - PErA Ij-, 5 j, 3-DjL), P9-i&) Ib-7

I lOZIrfAiNI IIZATON-NAME
006 IONi- AOMOý17 IN6-1 Volume information
lFill'otile 1

1
A vcrA a *In 3 1601dAy irl

154 11PI-TIO-AODU60 cum-A-T qe, -rem.
tSI

ILL', -TlO- ADDU651 tye., Mm Mly
I

0 ri6e.

feg"re- 5-19 Specimen form for recording data structure

ý Cj U're- 5-- /q Co " tl!)l C, ad

It-1-9 It! L-11114111PIF I A, OIýJl- II IT I ý1! 11; 1 IiI DAT AFL OW

SourLe ref: (o Descrilmon 11"fify ", vt4tOry WMIALAC

Desm. rel: 13 Description Crcqre býý 0(ýC(or rqvl!, it,,,
Expanded description 'pe-t_M16 0(CACh itf-M for whiek An auqubic. o, & U5

C4 (! 4t)rr 00 Q5te A. '15 OqT

it is not C4 ýid iqwA 1-"q
Included data structures: Volume information:

-Ork, Out O-C !, TCCJC -a bout 5 Fcr Wzt
&hj4, is daeeftb6

t) mAl"T"CO)

"lav"fory ifUNS

-"boar
sopdýr wea

I "Y-u re
-'5-

1ý Specimen forrý for recording data flow

Ill 11 I'S tf io lKAY. " Iii1111111111 Data Store ref:

Description A 11 orders acce p-U for Tv If llme. A-t 6r 61y, Months

Data flows in:

&- vq
-

All OrAvs

Contents.

Ordcr
New- i dcA-ri f im-fim

(v,, rpmrr - dc; rct i
5oc, k- defai Is *t

Data flows out (search arguments)

-Dq-lo OrdCr del-dik &x-fowr
o(kr data)

PJ-11 ! WC15 4(C'rAil(($BtJ, pVbllEheetnAftv_)
Dq-q PAst dernotnd (ISBN)

lillillf-didti- ICC(ýSS dllJlVSiS is to be found on

F L)nc 1-ton a1 -spal 66ccl on 3.17
Physical organization:

Not dt 44eelffed

ýQ'&re-
5-- /8 (. j) Specimen form for recording data store

N; E'k I F*j'-'C'IF'-tI0
.I IT-

I11 1: Process ref:
Descripticiii RCC-J!, kshefht ir Ordc-(*5 without pfe-MVMCAr CAn sh
2" pfcj'ayme -al fibould bl- dc(onda ; (0m --v storm. -r.

Inputs Logic summary OuIputs

1-3 Once!, *t(-ew)4ymcnt hisTory Tr- P(epav"'rt rcl(r4t
* '

-1; ne,,) CA&TOOVý ACM ffff4V'? IeA- (UmIlAder of 'W4nXI
1)", fav -A lAyMNII

-t'Aj(
eq%,!, i-I

fe t;), ', CL)bt(Wf 3-P3 New 641"e- Or'Or*r l
c 'ave A NO Cfde-15 ce,

01ý
ýrorjcr

tirlets Wance cw-, d,, t. 3 -4 with ad; f M Orde VAYMEA. "
I., new tk4n jký rwioitht, Old

(ok f(EADV6 ewttomcM
4 ' OK TIr 042 CIP . 0ilk" týCy ftt dft/ WNWI

Pl'vsICdl ft. # rT ow-rdue-
ykr e0fj ýN 77

f`Ull detdilS Of this logic cdo be fouii(f oil Functimial CI Ct eAti, 'A
.

6CCrI6A 7 7-

f e- 5- 18 (, e) Specimen form for recording process

Figure 5.19: example of automated dictionary.
Source: CANE and Sarson (1979).

I IT rf mFmraFps
mr-4KFQ NAMF TYPE USAGE CCND ITION Ar- ALT REM CWNER

arTIpN_CV()F ITEM 5 SCE ENC 0 0 0
Anf)PEI%S ITEM 2 SCE ENC 0 0 0
AnPkE', S-llP0ATF GROUP 1 SCE ENC 0 0 0
PASIC-11POATE GROUP I SCE ENC 0 0 0
nF0ljCT-r. noE ITEM 2 SCE ENC 0 0 0
OELETE GROUP 1 SCE ENC 0 0 0
DEPARTIOENT ITEM 5 SCE ENC a G o..
FmPtnYEE-HISTnRY-LIST FILE I SCE ENC 0 0 0
EmPtOYFF-HISTnRY-MASTER FILE 3 SCE ENC 0 0 0
EmPinYEF-HISTnRY-REPORT PROGRAM I SCE ENC 0 0 0
EmPinYEE-HIST. 'IRY-UPDATE PROGRAM I SCE ENC 0 0 0
EMPLOYEE-LIST FILE 1 SCE ENC c 0 0
EMPtnYEE-MASTER FILE 4 SCE ENC 0 0 0
Empt nYEE-MAST ER-UP DATE PROGRAM I SCE ENC 0 0 0
EMPLnYEE-N(JMSER ITEM 5 SCE ENC 0 0 0
EMPLOYEE-RFCnRo GROUP I SCE ENC 0 0 0
EMPLnYEF-RFPnRT PROGRAM I SCE ENC 0 0 0
EmPinYEE-TRANSACTIONS FILE I SCE ENC 0 0 0
EmPt nYEE-TRANSACTI CNS-Sr)RTED FILE 3 SCE ENC 0 0 0
EMPtOYEE-VET PROGRAM I SCE ENC 0 0 0
FILtER00002 ITEM 13 SCE ENC 0 0 0
HISTnRY-RFCnRD GROUP I SCE ENC 0 0 0
HISTnRy-PEPnRT-RFCCRC GROUP L SCE ENC 0 0 0
. jnR-C(IIINT ITEM 2 SCE ENC 0 0 0
J118-FNTRY GROUP 1 SCE ENC 0 0 0
jnR-STtTlJS ITEM 5 SCE ENC 0 0 0
. 10R-T I TL E IT EM 5 SCE ENC 0 0 0
PAINTATN-FMPLnYEE-r4TA SYSTEM 0 SCE ENC 0 0 0
MAINTAIN-FuNnYFE-HISTORY SYSTEM 0 SCE ENC 0 0 0
NAMF ITEM 4 SCE ENC 0 0 0
AFPr-RT-rOlJNT GROUP I SCE ENC 0 0 c
PEPrRT-RFrnRn GROUP 1 SCE ENC 0 0 0
', AL ARY ITEM 5 SCE ENC 0 0 0

ýnr jaL -sF-rt)i; ITY-NUMBEP ITEM 3 SCE ENC c 0 0
'rAxCnnE ITEM 2 SCE ENC 0 0 0
TRANl; ACTInN-kFC0r%r GROUP 2 SCE ENC 0 0 0
TYPE ITEM 6 SCE ENC - C c 0

LI', T C. fifliTt I NS

CT0ýITrmý
oor-Apk fjAMF

14 ITEMS
10 GROUPS

6 FILES
5 PROGRAMS
2 SYSTEMS

37 mFMBF. qS IN TOTAL
ftýtdf'e-

5-ly DATAMANAGER output

TYPF ijSAGF C'CNUITIUN AC ALT REM CWNER

A(TI ON -r. on F IT F14 5 SCE ENC 0 m 0
tnraEss ITFF 2 SCE ENC 0 0 0
riFr)llr. T -r nnF ITEM 2 SCE ENC 0 0 0
nFPAAT'AENT ITEM 5 SCE ENC 0 0 c
C-OPLOYEE-WIMHEA ITEM 5 SCE ENC 0 0 0
FIIIEPOrO07 ITEM 13 SCE ENC 0 0 c
. 11111-MINT ITFM 2 SCE ENC 0 0 0
. jnR-1; T ATIJS I TEM 5 SCE ENC 0 0 0
. inR-TITIE ITEM 5 SCE ENC 0 0 0
NAmr- ITEM 4 SCE ENC 0 0 0
C-ALARY ITFM 5 SCE ENC 0 0 0
r, nr. fAt-', E(. UQITY-NUMHFk I TEP 3 SCE ENC 0 0 0
Ir, 8 xr-'InF ITEM 2 SCE ENC 0 0 0
TYPF ITFM 6 SCE ENC 0 c c

1111-T rnNTAIN% 14 ITFMS

ylýCý, Ore- J- lg. (Z)L.
IST ITEMS output

WtA I(ii fIL. CS tjiý- PiP, ARlvi NT.

THr
,
4ý()Ll J"IWI NG ll-', C I TEN I. t. VtPTMFNT

EPPL(-YFE-MASTER FII FS,
EPPLOVE C-III STORY-MASTER
EPPLCYEE-HISTORY-LIST
EPPLCYEF-LIST
EMPLOYEE-TRANSACTICNS
FMPLOYEE-TRANSACTIONS-SORTED

onni-4 woHirp PROGPAMS USE DEPARTMENT.

THF F('ItLr-WIN(. IISF ITFM CEPAOTMENT

, PpnrrA. MS EMPLrYEE-HISTCRY-REPCRT
EPPLOYEE-MASTER-UPDATE
EMPLOYEE-REPORT
EPPLCYEE-HISTORY-UPCATE
FPPLOYEE-vET

fc: fure. s--lqcc)
wHAT USES DEPARTmENT.

ITFM DFPARTMENT IS USED BY
GA (It IP EMPLOYEE-RECORD
('. Rntjp HISTORY-RECCRO
GROOP HISTORY-REPORT-RECORC
Gprl)p REPORT-RECORC
rRnlip

r, lznlip EMPLOYEE-RECORD IS USED BY
FIlF EMPLOYEE-MASTER

Gw, l(JP HISTORY-RECORD IS USED BY
FTtF EMPLOYEE-HISTORY-MASTER

GRnijp HISTCRY-REPORT-RECCRO IS USED BY
FILF EMPLOYEE-HISTORY-LIST

rcrilp REPORT-RECORD IS USED BY
FIlF EMPLOYEE-LIST

(', Prljp TRANSACTION-RECORD IS USED BY
r-IlF EMPLCYEE-TRANSACTIONS
FIlF EMPLOYEE-TRANSACTIONS-SORTED

FILF EMPLOYEE-MASTER IS USED BY
PRnr, Ram EPPLOYEE-HISTCRY-PEPORT
PROGRAM EMPLOYEE-MASTER-UPDATE
PprGRAM EMPLOYEE-MASTER-UPDATE
PRnGRA14 EMPLOYEE-REPCRT

FILF EMPLOYEE-HISTORY-MASTER IS USED BY
PRnGRAM EMPLOYEE-HISTORY-REPORT
PRnGRAM EMPLOYEE-HISTORY-UPDATE
PRnr, RAP. EMPLOYEE-HISTORY-UPDATE

FTtF EMPLOYEE-HISTORY-LIST IS USED BY
PRnGRAM EMPLOYEE-HISTORY-REPORT

FILE EMPLOYEE-LIST IS USED BY
PRnr. RAM EMPLOYEE-REPCRT

FILF EMPLOYEE-TRANSACTICNS IS USED BY
PRnr, RAM EMPLnYEE-VET

;: [tF EMPLOYEE-TRANSACTIONS-SORTED IS USED By PAnGRAM EMPLOYEE-HISTORY-UPDATE
PRnGRAM EMPLOYEE-MASTER-UPOATE
PAnn, RAM EMPLOYEE-VET

PAOGRAM
'; V'%TFm EMPLOYEE-HISTORY-REPORT IS USED BY

MAINTAIN-EMPLOYEE-HISTORy

PRnGAAm
e*YSTFM FMPLOYEE-MASTER-UPDATE IS USED BY

4AINTAIN-EMPLOYEE-CATA

-a re WHATUSESoutput

5.5 CONCLUSION

In reviewing the techniques covered by the above classification, one

is struck by the following points.

A technique may be adapted for use in various activities in the

system development process.

(2) There is a small number of basic types of notation among which

diagrammatic notations predominate.

(3) The duality between process and data is implicit in most

techniques; but most techniques are strongly oriented towards one

or the other.

(4) Any individual technique is likely to be closely related to, and

overlap with, one or more other techniques.

(5) Taken together, this network of overlapping techniques, and the

concepts (arising from various different view points) which

underlie them, can constitute to a coherent conceptual model

relevant to information system development.

108

CHAPTER 6

REQUIREMENTS DESCRIPTION FOR A SYSTEM DEVELOPMENT METHODOLOGY

CONTENTS

6.1 lntroduction

6.2 Principles which should underlie a development methodology

6.3 Subset of methodology addressed in this thesis

6.4 Conclusion

109

6-I. INTRODUCTION -

This chapter presents an informal description (based on the review of

theý previous chapters) of the ideals of a system development

methodology. It introduces the main part of research covered in this

thesis, and concludes by identifying the need for a new development

methodology.

110

6.2 PRINCIPLES WHICH SHOULD UNDERLIE A DEVELOPHENT METHODOLOGY

For a whole system, or for components at any level, it is necessary to

understand:

- its function, and

- how its structure enables it to perform that function

and to integrate these understandings across all levels. POLANYI

(1969) elaborates at some length on this basic notion.

In order to achieve such understanding, it is important that our

knowledge of complex systems is well-structured; and that in turn

relies on (a) good models of systems of the type under consideration,

(b) information being presented to us in a well-structured way which

accords with those models.

Langefors (1973) discusses the design of complex systems. In his

eighth theorem he concludes:

"A system can only be designed to specified properties through a

hierarchical system of design processes, in each of which every

subsystem specified in a previous process is designed by organising a

workable subsystem structure for it; and the system so designed will

itself have a hierarchical structure".

A workable subsystem structure is previously defined as a subsystem

structure such that the properties of the subsystems together with the

iterations between them result in the properties specified for the

ill

system as a whole.

This theorem stresses two key points.

(i) the importance of the design process being structured;

(ii) the importance of verification that each design step is

consistent with the previous ones.

The activity of system development may be classified into four classes

of intellectual activity, as follows.

Conjecture

This is the traditional "design" approach; the specialist thinks about

the problem and searches for a solution.

Observation

The developer must discover a great deal of information about the

problem domain in which he is working, and build up a rich mental

model.

Analvsis

Observations or conjectures are submitted to analysis, to deduce

further information or to uncover errors.

112

Experiment

In this approach, f or which the term "prototyping" or "piloting" maybe

used, designs are implemented as rapidly as possible, may be with

little initial concern for efficiency, and tested operationally. This

approach stresses user participation and the learning nature of the

development process. It reflects the diminishing distinctions between

specialists and non-specialists and between development and operation.

As in science, in other branches of engineering, and in many other

human activities, these approaches are complementary and difficult to

separate in practice.

CHECKLAND (1976) distinguishes between "human activity systems" and

"designed systems". For a designer it is essential to distinguish

these two types of systems.

Designed systems behave predictably, can be described formally and are

used to tackle "hard" or convergent problems. Human activity systems,

by contrast, do not behave predictably, cannot be described precisely,

and have diverse and conflicting aims. There do not exist unique

(testable) accounts of human activity systems. These systems are

faced with "soft" or divergent problems. They may incorporate

designed systems as components. They may to some extent themselves be

designed; but such design as they display does not fully reflect their

behaviour.

The job of the designer is to understand the human activity system, to

improve its effectiveness by embedding an appropriate number of

113

designed systems in it, and then to develop, install and maintain such

systems.

A system developer, when designing an information system, can be

viewed as inhabiting three distinct worlds, which are summarised as

f ollows.

World 1 is the product system or target system (TS), the system which

he is developing. It is a world of data and functions, programs and

schemas, volumes and frequencies, discs, processors, terminals and

lines, reliability calculations, and so on. It is a precise and

measurable world. The focus is on information, and the physical

objects (eg. people and machines) are there because of their

information handling roles.

World 2 is the world of the environment host (HS), the human activity

system within which the target system will be embedded. World 2 is

the world which produces and consumes the information handled by the

target system. It is a world of multiple, competing, imprecise,

unagreed and changing objectives; a social, political and economic

world; a world of people, each with a set of roles; a world of

multitudinous objects (factories, products, orders, weapons,..) and

events. Information, however important, is likely to be mostly of

secondary importance in this world; and the most important information

is often informal and unpredictable.

World 3 is the world of the development system (DS), the system of

which the developer's work forms a part. Like the environment system,

114

the DS is a human activity system; and, just as the TS is embedded

within the HS, so it is embedded within the DS, but in a different

way. World 3 is a world of project budgets and schedules, project

teams and objectives, documentation and standards, and so on.

While inhabiting world 1, system developers collaborate with

non-technical colleagues in the activity of requirements analysis,

with the purpose of producing a document which we may call a

requirements description for a new target system. It has the

following characteristics.

1. It records only a subset of knowledge acquired during requirements
analysis.

2. It is described in natural language, understandable by all
categories of users.

3. The requirements expressed differ in nature and precision, from
the ambiguous and organisationally directed to the accurate and
technically directed.

4. The document will contain much background information and argument
to Justify the requirements.

5. Its function will be as much political as technical.

6. It will be unsuitable for completeness, consistency and ambiguity
checking.

System developers then extract from the above informal document a set

of formal statements (called a system specification) which serves as

the starting point for the task of developing the "designed

information system".

A very clear recognition of the difference between the informal

115

requirements description and the formal system specification is vital.

In most of the current literature of methodologies this distinction is

insufficiently recognised.

It can be further argued that a system specification, and any

subsequent subsystem specification, and should pass through three

stages of refinement:

- outline specification (initial, or "key features", specification,

in which the developer's first ideas about the object are

expressed);

- complete specification (in which the required characteristics of

the object are completely expressed); and

-verified specification (in which inconsistency, ambiguity and

incompleteness have been detected and eliminated).

The concept of specification is crucial In thinking about system

development. A specification isýthe description of what an object is

to do (or does), as opposed to a design, which is a description of how

it does it. Design involves selection between alternatives. Many

methodologies see specification as an activity which occurs early in

the "life cycle" and does not occur thereafter. On the contrary, it

is not only the system as a whole that needs to be specified; if it is

decomposed into subsystems, and into components (such as databases,

interfaces and programs) then each of these needs to be specified at

an appropriate point of time during system development.

116

As just indicated, corresponding to the specification of any object is

the design of that object. Except at a very lowest level of

decomposition, a design is expressed as a set of specifications for

objects at the next level of detail. Specification, verification and

design can thus be seen as activities which go hand in hand throughout

the development process.

A logical specification may be expressed as a set of functions of

various types, which we call (they will be explained later) dependency

functions, derivation functions, composition functions, deletion

functions, selection functions and trigger functions.

A system or (subsystem) specification consists of the following:

- logical specification, and

- performance specification (time and space constraints).

(Performance specification, estimating and monitoring are not

considered further in this thesis.)

Design - decomposition into subsystems - results in a boundary

specification for each subsystem. Where a subsystem boundary

coextends with part of the whole system boundary, the specifications.

must match; and where one subsystem interfaces with another subsystem,

their boundary specifications must again match.

Verification is of two main types.

Verification of specification (verification that boundary and

117

functional - specifications taken together are complete'ý and

consistent: "horizontal verification").

At any level of development, one may either perform a static

analysis of a specification or perform a dynamic execution of it.

At all stages prior to final execution on an actual machine,

operational verification requires the provision of an appropriate

virtual machine.

(ii) Verification of design- (verification that - a, set of

subsystems meets its higher-level specification in terms of (a)

function, M performance: "vertical verification"), -,

The final outcome of the process of decomposition is a complete and

consistent set of low-level specifications of the following types.

1. Database specification

2. Interface specifications

Program specifications

To this point, development has been in abstract terms; now the

abstract specifications must be made concrete. For programs, this is

relatively straightforward; the function networks can be transformed

into code (Jackson-like formalism may be used). The more difficult

problems lie with the database and the interfaces; each of these must

be physically designed, independently of the programs which use them.

Each requires a specialist development method.

118

Another very important feature of a' methodology is that it should

permit separation of concerns. The discussion so far has concentrated

on what might be called the pure capabilities of a system - those

functions which At would contain if it were to operate in a perfect

world. In fact, it will operate in a world' where things go wrong;

and, as we all know, a very large and important part of system

development'is concerned with capabilities for dealing with things

that go wrong. These may be classified as (a) error handling, (b)

recovery from breakdown, (c) access control, (d) measures to increase

reliability by building in redundancy. As a group, they may be

referred to as "error, failure and misuse". Other separate concerns

include performance (specification, estimating, maintaining: referred

to earlier in this section), and both project and product management.

Fully recognising their importance, it is desirable that a methodology

should nevertheless enable and encourage designers to deal with these

issues separately from the pure logic and from each other. These

separate concerns are not further addressed in this thesis.

What we may call the style of a methodology may vary on a spectrum

from authoritarian to liberal. In the absence of any strong reason

otherwise, methodologies should seek to be liberal. 'The following

comments relate to this observation.

M To prescribe system development work exactly, in terms of tasks

involved and their sequence, is tempting; but it is neither desirable

(given the varying characteristics both of the system and project

teams) nor likely to succeed (given human nature).

119

There are varying views about, the starting point of system

development. To some it is a *statement of the system inputs and

outputs; to some it is the analysis of entities and/or events in the

system environment; to some it is an analysis or model of the internal

data objects that correspond to those entities and events; to some it

is the statement of the system's functions. A methodology which took

the authoritarian view that the starting point can only ever be one of

those would have severely restricted the probabilities of its

acceptance; worse, since the reasons for such diversity of starting

points are as much objective (in the nature of the object systems) as

subjective (in the prejudice of the developer), an authoritarian

methodology applied to some projects could lead to counter-productive

distortion of the development process.

(iii) Nevertheless, there is one aspect in which a methodology should

be clear, unambiguous, dogmatic - and thus authoritarian. It is the

aspect of the conceptual framework, or model, which it embodies, both

of systems and of the system development process. This is the most

important aspect of any methodology; and liberalism or fuzziness will

lead to uncertainty and confusion. Most methodologies are liberal

where they should be authoritarian in their conceptual framework; and

authoritarian where they should be liberal in the extent to which they

prescribe in, detail the developer's tasks. ,I

A methodology may be described at three "levels of abstraction".

The model is primary, a conceptual structure on the basis of which a

system is viewed, and determines "what can be said about the system".

120

The language defines how that, will be said; and there can be a choice

of language forms to support any particular model. The chosen

language in turn defines the primary inputs to a variety of software

tools to meet particular requirements of developers. This implies

that the better the initial model, the more likely it is that tools

can in fact be specified to meet actual needs.

It is a fair comment on methodologies as a whole that their conceptual

basis is either ignored or inadequately defined, that their notations

are often informal, and that tools are absent, or inadequately

powerful.

The more that effort and precision can be shifted towards the early

phases of system development, the less likely it is that problems will

occur later. Thus a formal and precise notation should be provided,

in which precise statements can be made from the earliest stages of

thinking, as well as software tools which can process those statements

to the maximum benefit to the designer. This permits the early

detection of errors and leads to a saving in cost and time in

correcting these errors in the subsequent phases of system

development.

However f ertile the human mind may be, in dealing with large complex

problems it needs strong frameworks. This constitutes the

justification for the authoritarian element in methodologies. Man is,

and needs to be, a classifier, a model builder; it enables him to make

sense of natural or artificial reality when it would otherwise be too

hard to grasp. That is what science does; science underlies all

121

engineering, and in talking about conceptual frameworks for systems

methodologies we are talking about the scientific basis for the better

construction of better systems.

122

6.3 SUBSET OF METHODOLOGY ADDRESSED IN THIS THESIS

The methodology proposed in this thesis is concerned with logical

specification and design, within the overall system development

process. It does not deal with physical design, with other subsequent

development stages, or with the separate concerns identified in

section 6.2. The aim is to provide a complete, consistent and

coherent framework, which guides and supports a developer in his task

of managing the development of product (or target) systems.

Just as a system developer investigates the activities of people in a

particular organisation, generalises them, and specifies and designs

target systems to be embedded in that organisation, so in this thesis

we seek to investigate the activities of system developers, generalise

them, and specify a conceptual model for a special kind of target

system (a development support system).

123

0

6.4. CONCLUSION

It has been clear from the previous chapters that an ideal methodology

does not exist at present.

It is argued that a methodology can be completely described on three

levels: its conceptual framework or model; the languages or notations

which it offers to developers; and the tools (software or intellectual

techniques) which are provided to assist the developers. In one sense

it is the tools that count; without them, the developer has nothing to

enable him to do his job better. In another sense, it is the

frameworks or models that count, for without good models there will

not be good tools.

The essence of what is attempted is the provision of a comprehensive,

robust and flexible framework for the development of an information

system, founded on an evolutionary notion, which will support an

appropriate notation and a set of software tools.

The previous chapters provided a foundation for the requirements of a

methodology. The following chapters describe the methodology which

has been developed along these lines.

124

CHAPTER 7

GENERAL CONCEPTUAL MODEL OF THE METHODOLOGY

CONTENTS

7.1 Introduction

7.2 Context model

7.3 Informal models of product system

7.4 Formal model of product system

7.5 Development model

7.6 General model of system evolution

7.7 Conclusion

125

7.1 INTRODUCTION

According to KENT (1978), "A model is a basic system of constructs

used in describing a reality. It reflects a person's deepest

assumptions regarding the elementary essence of things. It may be

called a world view. It provides the building blocks, the vocabulary

that pervades all of a person's descriptions. In the broad arena of

human thought, some alternative models might be composed of physical

objects and motion, or of events seen statically in a time-space

continuum, or of interactions of the mystical or spiritual forces, and

so onfl,

A small set of models is proposed, in this chapter and the next, which

it is suggested go a long way toward providing a coherent conceptual

framework for system development. A key feature of these models is

that they are intended to support methodologies which give system

developers the maximum flexibility in using them for developing target

systems taking account of the unavoidable differences of approach

between developers, and of differences in requirements from one

project to another.

126

TEXT BOUND

INTO

THE SPINE

CONTEXT MODEL (Fig Ure 7.1)

Lß

-2
17

ý
0 -.

cr
c5

0.

ol: 0
P

ZI - A ý

(T1

At
$4

JP 1

li %0 -'3 4& L

-.. - oý 4" 0- 22

0 11) (4 4
sq

IQ
Mg

am

ý- ý-

ul r ,
iý4

"

-41

ui

Cd* & 9- - -1 a.
Lk

cc 7u

z ý to -Z p RI
N
97

0

ci

jC1,21) >AU

i

�I)
v)

N1

7.2 CONTEXT MODEL -

This model (figure 7-1) is designed to show the target (or product)

system within its organisational context, and in relation to the

development system which manages its evolution.

The model shows a number of information systems, each consisting of:

a human, activity system,, and

a designed system.

Each human activity system. in turn comprises (a) a group of people and

(b) a universe of discourse.

The three Anformation systems on the left hand side of the figure (ie.

SS1, SS2, SS3), each consists of:

-a subject system (which is the human activity system and is the

subject of study for the purpose of system development);

-a product System (which is the designed or target system and is

the product of the system development process).

The remaining information system, on the right hand side, consists of

a development system (the human activity system within which technical

system development is carried out) and a development support system (a

designed system which constitutes the software tool set of a

methodology).

Non-technical staff are shown interfacing to the subject system

127

universe of discourse, to the technical staff, and to the product

system; not all of them will be active on all interfaces. Technical

staff are shown interfacing to the subject system and development

system universe of discourse, to the non-technical staff, to the

product system and to the development support system; again, not all

of them will be active on all interfaces.

A subset of technical and non-technical staff constitutes the project

team (which may change through time). It is also possible, though not

shown, that non-technical project team members may interface with the

development support system.

An evolutionary dimension is also shown in the figure, which indicates

the development through time of all the systems shown.

128

INFORMAL MODEL OF PRODUCT SYSTEM SHOWING FUNCTIONAL STRUCTURE

Figure 7-2(a)

i: Ll-

1"-- -'-

H
-'-.

Ii

I.

L.

II

II

II
I'

IL_

r

ut

ca

7.3 INFORMAL MODELS OF PRODUCT SYSTEM

The model (figure-7-2 (a)) showing the functional structure of a

system is described as follows.

This is a partial refinement of a product system (ie. target system).

It refines the three components shown in that higher-level model (ie.

context model), which are: (i) I (interface), (ii) P (processes),

(iii) V (virtual database) - and does so in terms of classes of

functions.

The interface should be regarded as a line rather than a space, and

inputs and outputs should be seen as having only an instantaneous

existence as they cross it. Nevertheless, inputs and outputs, and the

"trigger" relationships between them, are so important in specifying

systems that it is useful to have a space within which they can be

represented; for -the reasons given, however, they are represented

using-broken lines. It should be added that trigger functions are

abstract, functional relationships, which are only actualised by

sequences of other functions (of the classes shown in the lower part

of the diagram).

The decomposition class of functions receives input messages and

distributes their elementary components in the database. Note that

these may be new values (insertions) or replacements f or existing

values (amendments).

The deletion class of functions are triggered by inputs, pass access

arguments to the database, receive required data in return, and pass

129

the effected deletion back to, the database.

The computation class of functions are triggered by inputs, pass

access arguments to the database, receive required data in return,

compute values of data items, and pass the computed values back to the

database. Note that the item for which a value is computed may be

different from any of the input items of the function, or it may be

the same as one of them. In the latter case, we commonly call the

computation an update.

The composition class of functions are triggered by inputs, pass

access arguments to the database, and compose output messages from the

elements supplied.

The filter class of functions -'apply selection criteria to -tuples

supplied by the database (this class Of functions is often thought as

being part of database management activity; in practice, however, it

is often important to be explicit about selection criteria as part of

the logical-specification of a, system and therefore, for the purpose

of this ýmodel, they are shown as separate from the database (though

close to it).

The dependency class of functions relate data items in the database,

and specify what it is logically possible to retrieve from any given

access argument.

There exist two main abstractions in the model, defined as follows.

(i) The database is considered to contain every data type

130

necessary for the definition of the system, irrespective of

whether or not it will figure in the actual database as

subsequently designed and implemented: it is therefore

referred to as the virtual database. Every value, when input

or computed, is considered as being immediately stored in the

virtual database; and every value required for composition or

output is considered as being retrieved from the virtual

database. This proves to be a very useful simplification,

and also enables the virtual database schema to incorporate

all data types and their interrelationships, rather than just

those in the actual database.

(ii) The model assumes that every separate deletion, derivation

and output is separately triggered by some input; in

practice, of course, a single input will probably trigger a

cluster of such functions. That cluster is in fact a

particularly ordered set of functions, of which the first

function is triggered by an input, the second function is

triggered by the first, and so on through the cluster.

This model provides the basis for horizontal verification checks.

131

INFORMAL MODEL OF PRODUCT SYSTEM SHOWING SUBSYSTEM STRUCTURE

Figure 7-2(b)

I Of I

IE

LO

;1 IV-)
-4 11

44

:r
ul

A
0
x
3

The model (figure 7-2 (b)) showing the subsystem structure is

described as follows.

This is a different way of refining a product system, by decomposition

into subsystems and the channels which connect them, which it would be

difficult to combine with the detail shown in the previous diagram (ie

the informal model showing functional structure).

The relationships between a parent (sub)system and its component

subsystems is as follows.

- The input/output messages of the parent system are partitioned

between the subsystems.

- The virtual database remains global to the set of subsystems.

- The processes of the parent (sub)systems are partitioned between

the subsystems. In each subsystem there are additional

decomposition and composition functions corresponding to the

inputs and outputs crossing the internal interface.

This model provides the basis for vertical verification checks and

additional horizontal checks.

132

7.4. FORMAL MODEL OF PRODUCT SYSTEM

This model expresses the relationships of the informal models of

section 7.3 with greater clarity and precision, using straightforward

notions of sets and functions. The notation employed is as follows.

Symbols

consists of

is defined in terms of

set of

or

A algorithm

C computation process

D deletion process

F filter process

I input (external interface)

I* input (internal interface)

133

0 output (external interface)

0* output (internal interface)

P process

R relation

S system (whole)

SIF subsystem (intermediate)

S" subsystem (elementary)

trigger

V virtual database

C. bijective (candidate key) element

e element

k key element, -

n non-key element

134

row (in relation)

s statement

Formal model,

V, fp}l fsl}l (S'll :: {III 10}1 fI*I, {0*} 000 G(
1)

fplllfsl}l fs"I :: V, M, to)$ (I*),

fp) :: V, (II, fo}, (1*), 10*1 999o

D/F

T, fRI, F oooo

T, (R), F

A :: JR1, (C /D/0/ 0*)

0 (R) :: T, F000 41

Note: the composition function is implicit in the

statement 0- (R).

135

0* - JR) :: T, F

Note: as for 0.

so

I-f R) 0 00 0

Note: the decomposition function is implicit in the

statement I= IR}.

I* = fR) 0090 (11)

Note: as for I.

T- (RI

V= 'f RI

A- (s) (note: s is primitive)

R

r Jk}, (bl,, {n), (r) (16)

k (e) (17)

b fe) (note: e is primitive) *see (18)

136

U {e} ... � (19)

Notes on the equations

A whole system consists of its virtual database V, a set of

processes {Pj, and a set of subsystems both intermediate

{S') and elementary JS"J.

It is defined in terms of a set of inputs fI) and outputs

{01 which cross the external interface, and a set of inputs

fI*j and outputs {0*) which are linked by internal

interfaces.

(S'), (S") may each be null.

(3) The virtual database V is not partitioned among subsystems

(S'!), but remains global to them; it therefore

appears in the-right-hand parts of (2) and (3).

S" is shown as consisting purely of a set of processes (P),

in which form it maps directly onto an individual (logical)

program. -

(2) is recursive, in that S' appears in the left-hand part

and in the middle part. This allows for an indefinite

number, of levels of decomposition.

(4) - (7) A process may be a computation process C, a deletion

process D, or a filter process F.

137

A computation process consists of an algorithm A and is

defined in terms of a trigger T, a set of relations serving

as its input or argument fR}, and a filter process F which

may select the particular rows from the virtual database

which are to enter into the computation.

A filter process consists of an algorithm A and is defined

in terms of a set of relations JR1 retrieved from the

virtual database, from which it will deliver selected rows

to C, D, 0 or 0*.

The algorithm for a deletion process is standard in all

cases (ie. "delete") and can therefore remain implicit or

unspecified. A deletion process is defined in terms of a

trigger T, a set of relations fRI which are to be deleted,

and a filter process F which may select the particular rows

from the virtual database which are to be deleted.

(9) OUtputS, both across external and internal interfaces,

consist of sets of relations (RI, and are defined in terms

of triggers T and filter processes F.

(10) - (13) Inputs, both across external interfaces and internal

interfaces, consist of sets of relations (R), as do

triggers and the virtual database.

A trigger may be a named input, or an unnamed collection of

elements, or an output from the "system clock".

138

The virtual database is considered to contain every data

type necessary for the definition of the system, in a

single level of storage, irrespective of whether or not it

will be part of the actual database as subsequently

designed and implemented. Every input or computed value is

considered as being immediately stored in the virtual

database; and every value required for computation,

deletion or output is considered as being retrieved from

the virtual database. This a very useful simplification,

which enables the virtual database schema to incorporate

all data types and their interrelationships, rather than

(conventionally) those which are just in the actual

database.

An algorithm is a set of statements (sl in any convenient

notation.

(15) - (19) A relation is a set of rows (r), which break down into key

elements (k), bijective candidate key elements (c), non-key

elements (n), and nested rows {r): unnormalised relations

are thus permitted.

139

DEVELOPMENT MODEL

Note Dotted lines indicate possible
iteration paths.

Figure 7-3

U

H' I-

Fag C AL

.j

uj
x I tu 0.

A, L A
ft

t
cl i
P. r

a -v

Lis
r

0
J
kd
: 01
ul
A

1 x
�I)

0

2

j>e-

,Z2 w

ei U >,

J
-) - u % u

3 r9 le -9

.
t) e

UD W to
.

ý
0. 00

7

2

' I j > -c A
weý -a-= -i -= rr-. -= --- : :i

I L----
7
0
P

ý
ge 'o

LU 5 i g 4"-U 41 1

bA

40 ;
cc

us Loi 4EE4--------f---- -- Zx9
06

UJ AL.

Ju
f7l

7.5 DEVELOPMENT MODEL'

The development model (figure 7-3) shows the activities by which a

specification is produced for the whole system and then decomposed,

via intermediate subsystems, to elementary subsystems. That is the

point at which detailed (physical) development, which is outside the

scope of this lthesis, commences.

The purpose of this model is to provide a context for the requirements

description for a development support system.

The model is summarised'as follows.

Requirements development involves non-technical as well as technical

staf f The requirements description is an informal document, in

natural-language,, ranging over many issues concerning the proposed

product system in addition to its technical characteristics. It may

address 'issues of corporate objectives and strategy, organisational

structure, motivation, and so on, and thus to a considerable extent be

a political document.

The first technical task is to extract an outline specification for

the whole proposed system from the requirements description: this is a

design-task, in-the sense that alternative solutions will usually

present themselves, from which the "best" must be chosen. Working

from-now on in a formal notation, the developer says as much as he

can, on, the basis of what he has been given, about what the system is

to do. It is unlikely, however, that this can amount to a complete

specification: so he must embark on the analytical task of elucidating

140

the missing components and/or the contradictions in the outline

specification. This complete specification is then ready to be

verified: (i) informally "confirmed" against the requirements

description, (ii) submitted to a formal "horizontal" (internal)

verification for completeness and consistency.

A further design task may be then to decompose the system into

subsystems, each one of which will then pass through the same sequence

of steps, with the exception that formal "vertical" verification (ie.

verifying the set of complete specifications against the parent

specification from which they derive) replaces informal confirmation.

When decomposition has reached the point when subsystems , can be

equated with programs (a subjective decision), detailed (physical)

development starts. Specialist sub-methodologies are required,

including an optimisation capability where necessary, for the detailed

development of programs, interfaces and the database.

The model shows the processes through which an individual version of

the product system is developed. It applies not only to the "pure

logic" of the product system, as modelled in sections 7.3 and 7.4, but

also to the various "separate concerns" identified earlier, such as

performance, errors, faults and misuse, etc. it is signiticantiy

different from the conventional life cycle "water fall" model, in that

its foundation is a "canonical step" which integrates specification,

analysis, design and verification.

141

GENERAL MODEL OF SYSTEM EVOLUTIOý
(Figure 7-4)

Z- ei

c, - u-

A

2
0

16

.. 16
9L a.

7.6 GENERAL MODEL OF SYSTEM EVOLUTION

Section 7.5 offered a model of the development process for one version

of a product system. This section presents a very simple model

showing the relationships between the development and operational

stages of a version, and between successive versions.

The model (figure 7-4) is summarised as follows.

The main purpose of the model is to show that, although there is

(usually) a fairly clear cutover point for a version of a system from

development to operational status, it is not the case that all

activities preceding the cutover are wholly non-operational in nature,
0

nor that all succeeding activities are exclusively operational.

Operation is -loosely I defined as computer processes carried out on data

which the product system is designed to process (or dummy versions of

such data), irrespective of whether the processes concerned reside

within the product system itself or in the development support system.

Development is def ined as the activities and computer processes

carried out on information about the product system and its

development.

A version is loosely defined as a product system which embodies

significant function differences from its immediate predecessor

version. (Terms like release or issue may be used for small-scale

variations within versions.)

A prototype run involves "animating" some model of the product

142

system - ie. interpreting a representation Of the system in a

higher-level notation than the one in which it will ultimately go

operational. It is usually primarily concerned with enabling users to

verify requirements and early specifications.

A test run involves running an individual component, or a set of

components, and is primarily concerned with verification at the

detailed program level.

A Pilot run involves running a cut-down version of the product

system - ie. either' with reduced functionality or with reduced data

volumes. A pilot run is usually primarily concerned with verifying

overall coherence and usability. Pilot running can be a much more

significant overall strategy - ie. the whole of version x might be a

Pilot for version x+l, which itself might be an extended pilot, and so

on.

The model achieves its maximum "depth" toward the right-hand side of

the page, with versions 1,2 and 3 playing concurrent roles.

143

7.7 CONCLUSION . : --, 1. iI

The propose d set of models is a representation Of what are felt to be

the important features of the methodology (SSDM) under development.

Models of product systems and of the system development process may be

classified on (at least) the following four dimensions.

sub ect (what is it a model of a static system or process, and

of what broad category of system/process?)

- degree of generality (ranging from models general to all
I

systems

of a certain type, through those general to a class Of systems of

a certain type, to those of an individual system, and those

applicable to parts of individual systems which have their own

specific characteristics)

- degree of formality (from the more formal, using, say,

mathematical notation, to the less formal, using, say, graphic

notation)

- degree of authoritarianism (from the more authoritarian,

constrai ning the developer's freedom, to the more liberal)

The models occupy a variety of points in that four-dimensional space.

There is certainly room for others to be developed, but it is believed

that the present set is sufficient for the limited purposes of this

thesis.

In order to test the validity of the models (which are in effect

144

hypotheses), prototype development of notations and of software tools

is being undertaken (by other members of the research team); but the

expectation, 'realistically, is not that the outcome will be a complete

methodology in practical use (though if it is, so much the better).

The result of this research should permit (a) the evaluation,

comparison and classification of existing methodologies, (b) the

development, of new methodologies based on sound and formal principles.

Science underlies-all engineering; and, in talking about models for

development of methodologies, we are talking about the scientific

basis for the better construction of better systems. It is in

studying these , problems (with -a keen appreciation of practical

realities) that the academic community can best serve their

practitioner colleagues.

145

Chapter 8

APPLICATION OF THE SYSTEM MODEL TO AN EXAMPLE INDIVIDUAL SYSTEM

CONTENTS

8.1 Introduction
I

8.2 Requirements description for example individual system

8.3 System model (DDIR) of example individual system

8.4 Sample verifications from system model of example system

8.5 SSDL representation of the example individual system

8.6 Comments on SSDL

8.7 Conclusion

146

k

8.1 INTRODUCTION

This chapter presents a requirements description for an "example

individual system" (ie. students' continuous assessment mark system),

a formal specification of the "example system" in the form of a

matrix. This matrix is a proposed structure for part of the

development database internal representation (DDIR), which is in a

highly structured form and supports several types of verification;

examples of some types of verification are shown. In the case of any

particular target system, the DDIR,, is set, up fromýa set of statements

in a System Specification and Design Language (SSDL); the SSDL

statements for the example system are shown next (section 8.5). The

chapter concludes with some brief general comments about SSDL.

8.2 REQUIREMENTS DESCRIPTION FOR EWIPLE INDIVIDUAL SYSTEM

Title of the system: students' continuous assessment mark system

(Note that this example is a small part of a small system to handle

students, continuous assessment marks over a two-year period. It has

been selected because it permits the presentation Of a reasonable

selection of features at the level of the individual system model and

its equiva1ent representation in SSDL. It is obvious that not all

features which it would be necessary to model for a representatively

large and complex system will appear in this example. It is claimed,

however, that within the one side of A occupied by the requirements

description it effectively illustrates the power and variety of the

modelling approach.)

147

For each degree course covered by the system, a list of
constituent course units is held; corresponding to each course
unit is a weighting factor which is used when combining the mark
for that unit with marks for other units in the degree course.
(Any given course unit may have different weightings in different
degree courses.) These degree details may need to be updated at
any time.

2. At the start of each academic year, basic details are input (from
a terminal keyboard) to the system for all new first-year students
taking any of the relevant degree courses, and a hard-copy listing
is produced. At the same time, previous first-year students are
automatically changed to being second-year, and all previous
second-year students are deleted. Information corresponding to an
individual student can be deleted at any. time.

3. A set of marks for the students taking a given course unit can be
input to the system at any time. These marks will update the mean
mark and the number of fails for each student concerned, which are
maintained by the system. The fail mark is standard for all
course units, but may change from time to time.

At any time, an authorised user may request a borderline list.
This will list students who have a weighted mean mark to date
which is equal to or less than a given value (to be specified by
the enquirer), and/or who have a number of fails which is equal to
or greater than a given number (again to be specified by the
enquirer). The enquirer must also state'whether he is concerned
with first-year or second-year students.

5. Students are identified by student numbers; it is assumed that
student names are not unique. Courses are identified by course
numbers only. Degree courses are identified both by degree codes
(e. g. BCS for Biology and Computer Science) and by full degree
titles; there is a one-to-one correspondence between degree code
and degree title.

148

2

3

'1

5

C
I

ii

SYSTEM MODEL Figure 8-1

4ekis CL e-

IZ
Flz

WLQ. 'k tftpa i k
LCL kI

13 dts"-AL ctttaý6 I. -
Ij k

ICL k
oi LISE- i I

a, e-
II

r- C- I r- I a- Ck-
1

0-
1

oz
ýbý

-
Ti t

L
If

Pi 5 bAý me" cl. k

P2 $Wc-ý Pa, 6 o- k

ab
i
12 R

P3 aýuAlk Vr a k

X)i W.
'j--jw vllký e- P- e_

e-

D2 zqd; VýW shje. ý i e e e- e-
e e-

8.3 SYSTEM MODEL (DDIR) OF EXAMPLE INDIVIDUAL SYSTEM
(pI tl* re 8-1)

The above system is now formally described in the form of a structured

matrix called the "Development Database Internal Representation"

(DDIR). As its name suggests, such a matrix would only be used

internally by the software tools associated with the methodology; it

would not be visible to the developer, who would operate at the level

of the System Specification and Design Language (SSDL). For the

purposes of this thesis only, the DDIR precedes the SSDL

representation in this chapter, in order to demonstrate its direct

relationship to the general formal model in chapter 7.

(Note that ý the example system is regarded as a complete system, with

no decomposition into subsystems and therefore no internal

interfaces.)

There are four function types, having function labels Ix (input

functions, corresponding to decomposition functions, rows I to 5),

Ox (output functions, corresponding to composition functions,

rows 6 to 11), Cx (computation functions, rows 12 to 22), and

Dx (deletion functions, rows 23 to 30). Filter functions are treated

as subsidiary; where they occur, they are included as part of a major

function definition.

The item names from the fourth column onwards (from student-number to

student-number-for-deletion) are the data types in the virtual

database. For the purpose of this level of abstraction, the virtual

database contains all variables used in the system - many of which

149

will not be part of the actual database. As soon as the value 'of a

variable is supplied (unless it is being used for triggering purposes

only), whether via an input function or via a processing function, it

is considered-to be -stored in the virtual database. Similarly,

whenever the value of a variable is to be retrieved, whether for an

output function,, for a processing function or for a deletion function,

it is considered as being retrieved from the virtual database. There

is, in other words, no communication of data except via the database.

This is a useful simplifying assumption.

Definition of the terms used in DDIR: statement 2arameter column

J'a' denotes 'a' occurrences of one or more attributes.

ab' denotes a set of 'b' occurrences of one or more attributes for

each of the 'a' occurrences of one or more "higher-level" attributes.

Example (rows 12 and 13): process C1 computes Oa' occurrences of

student -mean; each occurrence is computed from 'b' occurrences of the

pair (mark, weight).

'1' denotes a single occurrence of one or more attributes.

la' denotes a set of 'a' occurrences of one or more attributes

corresponding to a single occurrence of one or more "higher-level"

attributes,

Example (rows 2 and 3): input 12 consists of a single occurrence of

course number, together with 'a' occurrences of the pair (student

number, mark).

150

An input label indicates 'that the, specified input triggers a

particular output, process or deletion. If the label is not in

parentheses (example: row 11), then the contents of the input are

significant for triggering, purposes; 'if the label isýin, parentheses

(example: -row-22), then it'is not the contents-of the input that are

significant for triggering purposes but simply its arrival.

Definitions of the terms used in DDIR: remaining columns

'k' -denotes a, key attribute- (in normal relational database

terminology).

'b' denotes a candidate key attribute: a candidate key has a bijective

relationship with a key.

'a' denotes an argument for a filter function.

c' denotes a comparand for a filter function.

Ot"denotes-a component of a trigger.

'i' denotes an input to a computation function.

O'e' denotes an element'(where its role can be inferred from its

context and does not need to be explicitly defined).

Interpretation of the matrix

Il (student details) consists of 'Pa' occurrences of: student number

(key), name, degree code.

151

12 (mark-input) consists of 'one' occurrence of: course number (key);

and 'a-occurrencesrof: studentýnumber (key), mark.

13 (degree details)- consists of 'one' occurrence of: degree code

(key), degree, title -(candidate key);, and 'a' occurrences of course

number (key), -weight.

01 (borderline, list) consists of 'one' occurrence of: year number,

borderline mean, borderline number of fails; and 'a' occurrence

of: name, degree title, student mean, student number of fails. A

filter function, is necessary to select these 'a' occurrences; the

arguments for -this function -are: year number, borderline mean,

borderline number of fails. These -arguments are compared against

elements: student year, student mean, student number of fails. The

trigger for- the borderline list is: year-number, borderline mean,

borderline number of fails; these trigger elements are not named as a

predefined input.

02 (new-student list) consists of 'a' occurrences of: name, degree

title. It is triggered by the arrival of an occurrence of I1, from

which one element (student number) is significant for selection

purposes. -, ý

Cl computes 'a' occurrences of student mean, for which the key is

student, number. Each occurrence is computed from 'b' occurrences of:

mark, weight. The computation is triggered by the arrival of an

152

occurrence ý of 12, from which one element (student number) -is

significant for, selection purposes.

C2 computes 'a' occurrences of student number of fails, for which the

key is- student number. - Each occurrence is computed from 'b'

occurrences of mark and 'one' occurrence of fail mark. The

computation' As ý triggered by the arrival of an occurrence of 12, from

which'one' element (student number) is significant for selection

purposes. - -

C3 computes 'a' occurrences of student year, for which the key is

student number. Each occurrence is computed from one (- a/a)

occurrence of student year. A filter function is necessary to select

these 'a' occurrences; the argument for this function is a pair of

constants (0,1) to be compared against student year - ie. students

of year 0 (just input) will be assigned year 1, and students with year

1 will be assigned year 2. The computation is triggered by the

arrival of an occurrence of II, though no elements of II are

significant for selection purposes.

Dl deletes 'a' occurrences of the tuple (student number, name, degree

code, student year, student mean, student number of fails); for each

of these occurrences it deletes 'b' occurrences of the tuple (course

number, mark). A filter function is necessary to select these 'a'

occurrences; the argument for this function is a constant (2) to be

compared against student year - ie. students with year 2 will be

I

153

deleted. The'deletion is triggered by the arrival of an occurrence of

II, though no elements of Il are significant for selection purposes.

D2 deletes 'one' occurrence of the tuple (student number, name, degree

code, student year, student mean, student number of fails) and "a'

occurrences of the tuple (course number, mark). A filter function is

necessary to -select this one occurrence; the argument for this

function is student number -for ýdeletion, to be compared against

student number. - The deletion is triggered by the submission of a

value of student number for deletion, which is done via a

non-predefined input.

154

8.4 SAMPLE VERIFICATIONS FROM SYSTEM MODEL OF EMOLE SYSTEM

A number of types of verifications are described below. It is not

claimed to be an exhaustive enumeration of verification types.

(1) Derivation dependency checks

The basis f or this check is the hypothesis that the key of a derived

item must be the same as the key of the set of arguments from it is

derived. No proof of this hypothesis is offered. However, (1) it is

intuitively convincing, (2) it has been found to be true

experimentally. Two alternative methods for the derivation function

it student mean" are presented respectively in the following. Note that

"F" denotes "function of" and 'W' denotes "key of". -

(i) Derivation function, student mean - F((mark, weight}) (ie. the

function as specified in section 8.3)

LHS: K(student mean) = student number (given)

RHS: K (mark) - student number, course number (given)

K (weight) - degree code, course number (given)

K (degree code) - student number (given)

K (weight) = student number, course number

K (mark, -weight) - student number, course number

K ((course number, mark, weight)) - student number

155

(Imark, weightl) = student number

K (LHS) =K (RHS)

(ii) Derivation function student mean = F(, oieighted sum, sum of

weights, -fmark, -weight)) ,

(ie. an alternative specification of the same function)

LHS: K (student mean) = student number , (given),

RHS: K (weighted sum) student number (given)

K (sum of weights) student number (given)

" (mark) - student number, course number (given)

" (weight) degree code, course number (given)

K (degree code) - student number (given)

K (weight) - student number, course number

'-K'(mark, -weight) student number, course number

K ((course number, mark, weight)) - student number

K ((mark, weight)) - student number

K (weighted sum, sum of weights, (mark, weight)) = student number

K (LHS) =K (RHS)

156

(2) Trigger consistency checks

An overall trigger function specifies the triggering input

corresponding-to each individual output. The composition function

specifies the'items constituting an individual output. Each item -is

either given or derived; and eachý derived item is the root of a

derivation tree', the leaves of which-are all given items. The root,

and each intermediate node between the root and the leaves, represents

a derivation process, for which a trigger may or may not be specified

(at the developer's discretion). A-property of, this tree is that the

overall output triggerýpropagates backwards from -the rootý to all

nodes, unless and until a node is encountered with a different

specified trigger; that trigger then propagates backwards similarly

within the remaining subtree for which that node is a root. In this

way, triggers can be associated (by specification or by inference)

with every derivation process in the system being specified.

Consistency checking can then be 'carried out for each derivation

process-, separately, and follows the derivation dependency check. The

derivation dependency check says that the key of the variable computed

by the ýprocess-, must be the same as the key of the arguments(s); the

trigger check says that the key of the argument(s) must be present in,

or reachable from, the trigger of the process. Computation C1, as

shown in (1) above, has arguments with the key student number. Values

of this key are necessary to select the particular students for whom

student mean is to be computed; and a set of values of student number

are indeed present in the trigger (12).

157

Dependency check

If'a non-key attrýbute occurs in more than one -input, and 'is shown

with different keys then it must be possible to account-for that

difference. This can be done if, a "bijection" is 'known to exist

between the different keys, whether that bijection is specified as

part of an input definition or as part of a computation definition.

For example, if students are numbered within each year, then

stuýent-year is part of the key for all attributes of student, but

year-of-entry has a bijective relation with student-year and can be

computed from it, and therefore could be used in place of student-year

as the key.

(4) Derivation completeness check

As described in (2) above, the. items comprising each output are either

given or derived. Each derived item is the root of a derivation tree.

This check simply says that all leaves of all derivation trees must be

given items.

(5) Domain consistency check

Filter functions are defined in terms of arguments and of elements (in

the virtual database) against which arguments are to be compared.

This check ensures that pairs of arguments and comparands have

consistent domains. (For domain definitions, see section 8.5 below.)

158

Internal interface consistency-check

This check applies to all non-elementary subsystems once they have

been decomposed, and ensures that the output f rom one system is

consistent with the input(s) to one or more other subsystems.

159

. 8.5 SSDL REPRESENTATION OF THE EXAMPLE INDIVIDUAL SYSTEM

students' continuous'assessment marks

system ýI

outputs are borderline, -list
new student list

inputs are student details
degree details
mark input

end

borderline list output

triggered by year number, borderline mean
borderline number of fails

consists of year number, borderline mean,
borderline number of fails,
set of (name, degree title,
student mean, student no. of
fails

filter option clause 1

cardinality 1 (0 .. 120)

frequency occasional

ordering student mean ascending

end

option clause 1 filter if student number = year number and

(if student mean < borderline mean

or student number of fails >

borderline number of fails)

then select

160

end

new student list output

triggered by student details

consists of set of (name, degree title)

cardinality 1 .., 120

ordering name ascending

end

Note: frequency (1 per year) can be inferred from the frequency of
the trigger (student details).

student details input

consists of set of (student number; name,

degree code)

cardinality 1 .. 120

frequency 1 per year

ordering random

end

mark input input

consists of

cardinality

frequency

ordering

end

course no., set of (student-

number; mark)

1 (1 .. 120)

max. 36 per year

student number ascending

161

degree details input

consists of

cardinality

frequency

ordering

end

degree code: degree title;
set of (course number;

weight)

1 (1 .. 60)

occasional

course number ascending

delete third year students
I

deletion

consists of set of (student number,
name, degree code,
student year, student mean,
student number of fails,
set of (course number, mark))

triggered by

filter

end

student details

option clause 2

Note: frequency (1 per year) can be inferred from the frequency of
the trigger (student details).

option clause 2 filter if student year -2
then delete

end

delete individual student

deletion

consists of student number, name,
degree code, student year,
student mean, student num-
of fails, set of (course

number, mark)

162

triggered by

f ilter

frequency

end

option clause 3 filter

end

borderline mean item

domain

function of

comment

end

borderline number of fails

item

domain

student number for deletion

optionýclause 3

occasional

if student number =
student number for deletion
then delete

real (1 .. 10)

given

this scalar is used to define the
criteria for selection of students
who are the members of borderline
list

real (1 .. 5)

function of given

comment this scalar is used to define
the criteria for selection of
students who are members of
borderline list

end

163

course number item

domain integer (101 .. 512)

function of given

comment courses are numbered sorthat
first digit represents term
within the year,
other two digits stand for course
within the term

end

weight item

domain real (0 .. 1)

function of given

comment a student may offer 12 courses
in a term, where each course has
a corresponding weight,
depending on the degree offered

end

0 degree code item

domain string

function of given

comment department offers 13 degrees and
each degree has a unique code
for its identification

end

164

degree title item

domain

function of

comment

end

mark item

domain

subdomain

function of

end

student number for deletion

item

domain

function of

end

student mean item

domain

function of

depends on

triggered by

end

string

given

for each degree code there exists
a corresponding degree title

integer (0 .. 25)

fail (0 .. 4), pass (5 .. 25)

given

integer (0 .. 999)

given

real (0 .. 25)

set of (mark, weight)

student number

12

165

name item

domain string

function of given-

end

student number item

domain integer (0 999)

function of given

end

student number of fails

item

domain integer (0 .. 60)

function of fail mark, set of (mark)

depends on student number

triggered. by 12

end

year number item

domain integer (1 2)

function of given

comment year number is used as a
selection scalar to
determine the members of
borderline list

end

166

student year item

domain

function of

depends on

filter

triggered by

end

integer (0 .. 2)

student year

student number

option clause 4

11

option clause 4 filter if student year =0 or
if student year =1
then select

end

fail mark item

domain integer (0 25)
current value is 4

function of given

comment each year a prescribed
integer is set to serve
as fail mark to select
marks obtained
by students in courses

end

167

8.6 COMMENTS ON SSDL

The previous section gave an example of SSDL (system specification and

design language). The purpose of this section is to make some brief

comments about the language. In an earlier draft of the thesis, a

formal definition of the syntax of part of SSDL was provided; that was

such a straightforward exercise, however, that it has been omitted in

the interests of space.

SSDL is the second componený of the SSDH methodology (models,

language, tools). It is indeed to be capable of expressing all

formally-expressible information generated during system development:

information about "separate concerns" such as performance, error

handling and project management, as well as about the "pure logic" of

the system; and information about detailed (physical) development as

well as about logic development. The example in section 8.5 showed

some fairly straightforward pure logic, with-the addition of some

ývolume and frequency metrics.

The expressive requirements for SSDL are given from the model level:

every relationship identified in a model must be capable of being

expressed in the language. The other requirement is that the language

should have a convenient and user-friendly syntactic form. This is

met by adopting the following general form.

168

paragraph:: =

object name' 'robject type'

#relationship 1' 'clause 1'

0 relationship 2' 'clause 2' etc.

All objects named in clauses must appear on the left-hand side of a

paragraph (except terminal objects). Relationships are named by

reserved terms such as "triggered by", "consists of", "cardinality",

"function of". Object types include "system! ', "output", "filter",

"deletion", "item", etc.

The language thus follows the general structure of BNF, in which

everything occurring on the right-hand side of a statement must appear

on the left-hand side of another statement (except for terminal

objects). The difference is that in BNF there is only one type of

relationship identifier whereas in SSDL there are many. The

language also follows the general structure of a data dictionary.

Both these structures are known to be easy to work with.

169

8.7 CONCLUSION

The model presented in this chapter is the application of the general

model (chapter 7) to a particular example target (or product) system,

providing an internal representation in matrix form of the set of

statements that might be made about it by a system developer. This

matrix is shown to be in a highly structured form, consisting of all

the necessary and sufficient information about the product system, and

to be verifiable for completeness and consistency. It is derived from

a formally expressible language SSDL.

170

CHAPTER 9

SOFTWARE TOOLS REQUIREMENTS

CONTENTS

9.1 Introduction

9.2 Overview of the tools

9.3 Development dialogue processor

9.4 Analyser

9.5 Logical simulator

9.6 Development database decomposer

9.7 Conclusion

I

v-I

171

9.1 INTRODUCTION

Software support is a vital aspect of the proposed methodology,

providing a level of automation for the noný-trivial development

activities of specification, design and verification.

A specification language can be viewed as the expression of an

underlying system model. In a similar sense, software tools can be

viewed as being the expression of a development model.

The process of system design is argued to be largely heuristic in

nature, involving:

(a) creation of tentative versions,

(b) verification and testing of proposed versions,

(c) selecting the best version,

(d) documenting design decisions.

In particular processes (a) and (c) require creativity, inventiveness

and the capability to make value judgements and, consequently, these

are best performed by human developers. Tasks (b) and (d) on the

other hand are usually algorithmic and are, therefore, best automated.

It follows therefore, that the design of an information system is best

performed interactively by the pair (man, machine).

The provision of as much automation as possible makes the

specification of a system, as a normal evolutionary process, safer and

faster. Such support can be viewed as an extension of the modelling

172

and linguistic aspects of the proposed methodology.

This chapter presents an outline requirements description of the main

software tools necessary to support the developer. The tools together

constitute an Integrated information system development support

environment.

173

14
cu I. - Iu im. - 9-1

SOFTWARE TOOLS IAODEI.
U)

U) $4 0
aj 0 0

., I

Q)
41

0i u cl

0 (n -, 4
Cl 044

44 0
$4 -4 1-4

(Xs TI
0
m 00 .0 -4 ON 0) tj 4. j

F

cd u -W RM
ca CL

cn
.

-

co tko r-4

'If 0 m c co) -4 ., 4
0 Q) M a

-ýl C) r4 ý%
4j - '0 P r- -
w Q) 0 ý4
U0 W0 -r4 (1)

-ý4 4j -ý4 bD 4-)
44 -ý4 cyi

9)
fn -4

r-4 0)
Q) C13 a
P r- -

0 m 0
E (1) - CL
om I

-0
E: W

CN %D
> 4J um
W C13 Q) 0

ý4 Cl) V)

C14

cli r-
C13

IV
-4

I

-u

0 CL) 41
w 12. cu

- c24 ul c)

Co

tu
41
ce

10

0 :1
In 41 41

0

0 10

Ul)
ZD

9.2 OVERVIEW OF THE TOOLS

Figure 9-1 shows the architecture of the software "environment"

offered by SSDM to the developer to support work, in the logic

development phase. It consists of three tools: a development dialogue

processor (DDP), an analyser, and a logical simulator. Three

databases are used: a development database external representation

(DDER), a development database internal representation (DDIR), and a

prototype virtual database. The figure shows the relationships

between the tools and the databases.

A further program, the development database decomposer, is used to

extract information from the DDER and DDIR and set'it up for each of

the three successive stages of database development, interface

development and program development (see figure 7-3).

The DDP, the analyser and the logical simulator each have an

interactive interface with the developer (U1, U3 and U5 respectively)

as well as hard-copy output capability (U2, U4 and U6 respectively).

174

9.3 DEVELOPMENT DIALOGUE PROCESSOR (DDP)

Throughout the development process, the developer makes specification

and design decisions which can be recorded in SSDL- DDP (figure 9-1

component 1) is an intelligent editor which receives SSDL statements,

edits them individually for syntactic correctness, and enters them

into a database called the DDER (development database external

representation) (figure 9-1 component 2). If a statement appears to

duplicate or contradict a statement already present in the database,

DDP will report the fact.

From time to time, on request, another tool (the analyser: see section

9.4) will "compile" the DDER into a compact form suitable for analysis

and verification. DDP will keep statements made since the last

compilation in a separate section of the DDER, in order to minimise

the analyser's recompilation task.

The DDP will offer selective display facilities. That is to say that,

on request f rom the developer, it will display (say) all inputs, or

all items, or all derived items, or all items having a given domain,

or all functions triggered by a given input.

175

9.4 ANALYSER

As indicated in the previous section, the first task of the analyser

(figure 9-1 component 3) is to "compile" a set of statements from the

DDER into a format in which they can be added to the DDIR (development,

database internal representation) (figure 9-1 component 4). Figure

8-1 provides a small example of the style of the DDIR. Separate

compilation of different sections of a developer's work is an

important feature to eliminate redundant processing.

On completing a compilation, the analyser will on request subject the

current schema to a complete verification procedure. This will

include the checks discussed in section 7.3, as well as more mundane

checks. Reports will be fed back to the developer, indicating (a)

incompleteness - where further SSDL statements need to be made, (b)

inconsistency - where apparent errors exist. These reports must be

made in "source - language - compatible" form; in other words, the

analyser must have access to the DDER. Further, the reports

themselves need to be added to the DDER, since the developer is likely

to want to refer to them frequently in subsequent periods of work.

Again, the developer will be able to request selective displays from

the complete set of reports.

176

9.5 LOGICAL SIMULATOR

The logical simulator (figure 9-1 component 5) offers a powerful

prototyping capability. The purpose of prototyping is to show one or

more users how the system will behave if it is implemented according

to its current specification. At the level with which this thesis is

concerned, it is appropriate to use the term logical simulation, since

only the logic of the system-exists to be simulated. Other forms of

prototyping - eg. performance simulation - could be provided to

correspond to separate concerns during development.

For a system of any size, it is likely that different users will know

about different aspects of the system's required function. A

prototyping session, therefore, needs to animate a part of the system

corresponding to the interests and knowledge of the particular users

who are observing it; and the logical simulator must be able to accept

parameters which delimit the part of the system to be animated in any

one run. Animation may be at two levels of detail: without data, and

with data. Animation without data simply displays the sequence of

steps to be performed by the system on receipt of each of the inputs

which fall inside the simulation boundary. Animation with data

handles sample data values and carries out computations; for this to

happen, appropriate data values must be submitted to a prototype

virtual database (figure 9-1 component 6), and the logical simulator

will prompt for values of data items which will be required.

177

9.6 DEVELOPMENT DATABASE DECOMPOSER

When the developer believes that logic development is complete, and

that detailed (physical) development is ready to begin, the

development database decomposer (figure 9-1 component 7) is invoked.

This simply takes both the DDER and DDIR and extracts from them the

information that is-required for each of three subsequent parallel

activities (database development, interface development and program

development) and sets up the appropriate databases (figure 9-1

components 8,9,10) in the format required by the different software

tools.

178

9.7 CONCLUSION

The tools outlined in this chapter are regarded as the essential

strategic tools to give strong support to the developer when working

on the "kernel capabilities" of a system. Undoubtedly other tools

will be necessary within this area, to provide an effective

development environment; and further tools will be necessary to

support other aspects of development, such as performance estimating

and monitoring, and project management.

179

CHAPTER 10

FUTURE AND RELATED WORK

CONTENTS

10.1 Introduction

10.2 Characteristic features for comparing methodologies

10.3 Models

10.4 Systems specification and design language

10.5 Software tools

10.6 Separate concerns

10.7 Other issues

180

10.1 INTRODUCTION

The study of existing methodologies, and the proposed model, language

and software tools, are claimed to offer a necessary and sufficient

basis for an improved methodology. However, due to the very scale, of

the topic, only the kernel of the methodology has been presented here,

and there are many relevant problems which require further study.

This chapter presents a summary of such problems and other related

work together with some suggestions.

181

10.2 CHARACTERISTIC FEATURES FOR COMPARING METHODOLOGIES

As seen in the study of methodologies in the appendices and in

chapters 3 and 4, the task of evaluating methodologies is extremely

difficult. One cannot provide rigid accurate and sufficient

"characteristic features" for an ideal methodology in all

environments.

The description, evaluation and comparison of existing (and future)

methodologies is, however, a task of great importance. Users will

need to evaluate them, and to choose (and perhaps adapt) one or more

of them to fit their particular needs, style of work and perceptions

of problems; or alternatively consultants and academics may carry out

such evaluations on their behalf. This thesis maybe seen as making

two contribution in this direction, not only by carrying out forms of

comparison but also in proposing desirable characteristics for models

on which good methodologies might be based.

Certainly, though, this task needs to be carried further, using

empirical methods to the greatest extent possible. That is to say,

representative test cases, of a size and complexity which are at once

manageable and challenging, should be defined, and then a range of

methodologies should be applied to them. This approach would surely

lead to continuing refinement of the features list, and perhaps lead

to some capability for ranking features in order of significance, for

identifying inter-feature conflicts, and for associating metrics with

some features. It might also lead to the recognition that features

differ in their relative importance for different classes of target

182

systems.

A further important task is to study the possible partitioning of

methodologies into separate techniques or methods, which might be

recombined with others to provide a good "fit" with users' needs. In

this activity, the definition of the interfaces of a technique/method

becomes extremely important.

183

10.3 MODELS

A classification scheme for models, and a number of models within it,

have been proposed. There is a need to investigate the role and

usefulness of further models (maybe in particular making use of

graphic notations). I

The existing model set, plus any extensions as indicated above, needs

auditing by application to the same representative set of test cases

suggested in section 10.2. This activity should lead to the

identification and elimination of inadequacies in individual models.

Although the models proposed all relate to the domain of target

systems and their development, the idea of the application of some of

them, maybe with modifications, to the wider domain of the

organisational environment, and to the more specialist domain of the

development support system, should be investigated.

184

10.4 SYSTEMS SPECIFICATION AND DESIGN LANGUAGE

Further study of the language (SSDL) is necessary in two directions.

First, extensions and changes in the models resulting from further

work proposed in section 10.3 need to be incorporated. Second, only

the minimum attention has been paid to the syntax of-the language,

which could be improved to make it more accessible to system

developers.

185

10.5 SOFTWARE TOOLS

In the thesis, only a basic set of tools has been proposed, and each

has been specified only in bare outline. A large amount of work needs

to be done to develop each of these, at least in prototype form) and

then to investigate empirically their usefulness. This will represent

a major feedback loop, and can be expected to lead to revisions of

models and the language, as well as to recognition of the need for

additional software tools.

Eventually a major design task will be to engineer the software tools

into a coherent systems development environment, with an integrated

control language, to be used in an evolutionary manner for yet further

empirically-based experimentation.

One particular central problem to be solved at an early stage in the

development of software tools is the content and structure of the

development database, in which all language statements and associated

information will be stored and which will serve as the chief means of

communication between individual software tools. This task is akin to

the problem of USE database design which is currently receiving much

attention.

186

10.6 SEPARATE CONCERNS

This thesis has been concerned with what might be called the "kernel

capabilities" of target systems - ie. the pure logic of how they

would behave in a perfect world. This aspect of'a system must always

be an important concern of the developer, but as a practical engineer

in an imperfect world he must also pay careful attention to issues

such as error detection and correction, access control, recovery from

failure, concurrency control, etc. Further he must be deeply

concerned with questions of performance, from the initial

specification of the requirements, through progressively more detailed

estimates as development proceeds, to eventual operational monitoring.

Finally, any methodology, to be useful, must incorporate configuration

management capabilities.

It is the contention of this thesis that these matters; are properly to

be regarded as separate concerns; but clearly they each represent an

area of major further study. (It has been noted in chapter. 3 that

they receive little or no attention in existing methodologies.)

187

10.7 OTHER ISSUES

The topic of this thesis is the engineering of useful systems in the

real world. Some mention has already been made in this chapter of the

need for empirical research in relation to specific matters. In

general, however, far too little is known of current practice,

experience, intentions and problems in information systems

development; and one might say that any attempt to develop

methodologies in such circumstances is at best foolish. Nevertheless,

the work here reported at least represents a coherent set of

hypothese. s, and it is hoped that anyone conducting empirical studies

in this field would benefit from them as a basis for investigation.

Reference has also been made several times to the need for test-case

systems to serve as experimentAl material, as well as to the need to

develop a prototype toolset. The ideal objective would be to develop

a demonstration development environment together with at least one

fully developed and operational target system which would be subjected

to continuing evolution.

Finally, there are two specific issues which need to be addressed.

The first is prototyping, about which much is said that is glib: we

need to clarify our ideas and develop our practices in this area. The

second is expert systems: how do we extend our development support

systems so as to take account of expert systems techniques both within

target systems and within development support systems themselves?

188

CHAPTER 11

CONCLUSIONS

CONTENTS

11.1 Review of past work

11.2 Proposals for a new approach

11.3 Final remarks

rl

189

11.1 REVIEW OF PAST WORK

There has been a notable absence of any serious recent attempt to

study the large and continually growing field of information systems

design methodologies. Published studies are invariably limited in

their coverage and lacking any effective systematic approach. While

such a review was-not the primary objective of this research project,

it was seen to be an important preparatory stage; and in addition to

its value in influencing the proposals for a new approach, it seemed

to be an academic task worth carrying out for its own sake, and worth

the effort of seeking some improved descriptive framework.

The original elements claimed in this first part of the thesis are as

f ollows.

The historical review is simple and straightforward. The

causality implied in the idea of the two-generation

"sophistication lag" from hardware to methodologies is

intuitively appealing.

(2) The "detailed summary" of six leading methodologies is a means

of comparison which has not been attempted elsewhere, and which

has proved illuminating. It would be valuable to extend its

scope both in terms of the individual summaries and of the

number of methodologies covered.

(3) The comparative survey of methodologies breaks new ground both

in the number of methodologies included and in the feature set

used for their description. It is far more comprehensive than

190

any other survey, and concentrates more on essential features.,

(4) The classification of the various approaches which have been

adopted by methodology originators, while not claiming

completeness, casts a new' light on the diversity of -view

points, both technical and organisational, that a serious

worker in this field has to encompass.

(5) The grouping of individual techniques is also regarded as an

original and illuminating contribution.

Iý

191

11.2 PROPOSALS FOR A NEW APPROACH

It should be apparent from the review of past work that the large

majority of proposed methodologies have not been well-founded on a

sound theoretical basis, itself derived from a thoughtful analysis of

requirements. While methodologies are certainly practical tools,

intended for use by practical people to solve-practical problems, it

is a mistake to suppose that they can be successfully designed in an

ad hoc manner. The size and complexity of the problems with which

methodologies are supposed to be of assistance is such that good

theoretical foundations are essential.

The original elements in the second part of the thesis are as follows.

The proposals are based on a comprehensive but simple

architecture, involving (a) levels of abstraction (models,

notations, tools), (b) separation of concerns (pure logic,

performance, error handling, etc.). The very large scale of

the proposed enterprise inevitably dictated that work should be

confined to a small part of the whole - primarily to the level

of models and to the pure logic of target systems. Enough is

said, however, about other levels and concerns to indicate the

viability and power of the architecture.

(2) The highest-level model presents a picture of broad categories

of systems within an organisation, and of the "worlds"

inhabited by systems developers and others, which is richer and

more realistic than other models of this kind - which are in

192

any case rarely offered. A deep understanding of this

organisational context is an essential starting-point for the

development of methodologies.

(3) The models of the development process represent a major step

forward from the traditional life-cycle ("waterfall") family of

models, which is becomming increasingly discredited. Their

most notable features are (a) the emphasis on the

interrelatedness of development and operational activities; (b)

the success of the more detailed model in integrating analysis,

specification, design and verification within a single

"canonical step"; (c) the definition of clear interfaces

between requirements development, logic development and

detailed physical development; (d) the idea of developing the

logic of the whole system, and verifying it, before embarking

on subsystem decomposition.

(4) The product system models are original in their identification

of a small number of classes of functions, and their expression

of the structure of systems using set notation. The

translation from these models into a corresponding language

(SSDL) is easy and straightforward. The models have received

some (albeit very limited) empirical testing.

(5) The proposed classes of verification checks are also an

original contribution. In particular, the so-called

"derivation dependency check" has as far as is known never been

proposed before.

193

(6) The proposals obviously owe a primary debt to the work of

GRINDLEY in Systematics. Major improvements on his work are

(a) the virtual database, (b) the technique of propagating

triggers to individual processes to facilitate trigger

consistency checking, (c) the introduction of filter functions.

194

11.3 FINAL REMARKS

In sum, it is claimed that this thesis, while leaving large

areas of its subject matter unaddressed, presents an original

and successful overall approach, and many original ana

successful ideas within the limited area which it is has been

-possible to develop in detail. An extensive programme or

further work has been mapped out. It is worth noting that one

of the areas of detailed physical development, which is

designed to interface to the logic development phase - that of

database design - is the subject of a parallel piece of work

carried out by my-colleague RP Whittington, whose thesis was

recently successfully presented. I very much hope that other

workers will now take up more of the problems identified

earlier in this thesis, and that they will find the work as

challenging and rewarding as I have done.

195

REFERENCES

ACKOFF R L, "Towards a System of Systems Concepts", in Couger and

Knapp (op cit, 1974).

AFIPS (American Federation of Information Processing Societies),.

"Proceedings of Fall Joint Computer Conference 1972" (1972).

ALFORD M W, "A Requirement Engineering Methodology for Real Time

Processing Requirements" IEEE Transactions on Software Engineering

Vol. SE-3 No. 1 (January 1977).

ALLOWAY RM and Quillard, "User Managers Systems Needs", CISR Wp 86,

Massachusetts Institute of Technology (1982).

ARNON J and others, "Software Documentation - an Automated Approach,

Trends and Applications", IEEE (May. 1982).

ASCHIM F and Mostue, "Sysdoc and Systemater", in Olle (op cit, 1982).

ASPROTH V and Hakansson, "A Declaration as a means to compare

Information Systems Design Methodologies", unpublished paper (1983).

ASWE (Admiralty Surface Weapons Establishment), "MASCOT Operating

System Manual", (1979).

ATWOOD J W, "The Systems Analyst", Hayden (1977).

BATINI C and Lenzerini, "A Computer Aided Methodology for Conceptual

Data Base Design", Information Systems Vol. 7, No. 1, (January 1982).

196

BCS, (British'Computer, Society), "Data Dictionary Systems Working Party

Report" (1977).

BENCLE and others, "Concepts for the Design of Conceptual Schema"kin

Nijssen (op cit, 1976).

BENN R and others, "Data Base Driven System Design"t in Cotterman and

others (op cit, 1981).

BERNSTEIN P A, "Synthesizing Third Normal Fom Relations from

Functional Dependencies", ACM Transactions on Database Systems, Vol-1,

No 4 (December 1976).

BILLER H, "Concepts of Conceptual Schema", in Nijssen (op cit, 1977).

BIRKS E, "Requirements Analysis and Specifications", in Cotterman and

others (op cit, 1981).

BODART F and others, "Evaluation of CRIS I Methodologies Using Three

Cycles Framework", in Olle (op cit, 1983).

BOEHM B. ' "Software Engineering", IEEE Transactions on Computers, Vol

c-25, No. 12 (1976).

BOEHM B W, "Software Engineering Economics", Prentice-Hall (1981).

I
BOOT R (editor), "Computers and the Professionals" (Proceedings of the

Workshop on Approaches to Systems Design), NCC (1973).

BOSMAN A and others, "Evolutionary Development of Information

Systems", in Hawgood (op cito 1982).

197

BOWERS R J, "Structure and Flowcharts :a Suggested Notation ",

Computer Bulletin (December 1981).

BRACCHI G and' others, "Constraints specification in Evolutionary

Database Design", in Schneider (op cit, 1979).

BRADLEY J, "File and Data Base Techniques", Holt, Rinehart and Winston

(1981).

BRAMER M A, "A Survey and Critical Review of Expert Systems Research",

BCS (1981).

BRANDT I, "A Comparative Study of ý Information -System Design

Methodologies", in Olle (op cit, 1983).

BREWER T, "Improving Systems Productivity", Butler Cox Foundation

Report No. 11 (1979).

BRITTAN'J N G, "Design for Changing Environment", Computer Journal,

Vol. 23 No. 1 (Feburary 1980).

BRODIE ML and Silva, "Active and Passive Component Modelling -

ACM/PCM", in Olle (op cit, 1982).

BROWN J L, "Logical Design of Computer Based Information Systems", in

Cotterman and others (op cit, 1981).

BUBENKO J A, Langefors, Solvberg (Eds), "Computer Aided Information

Systems Analysis and Design", Studentlitteratur (1971).

BUBENKO J A, and others, "IAM : An Inferential Abstract Modelling

198

Approach to Design of Conceptual Schema", in Smith (op cit, 1977).

BUBENKO J A, "Information Modelling in the Context of System

Development", in Lavington (op cit, 1980).

BUCHMANN AP and Dale, "Evaluation Criteria f or Logical Database

Design Methodologies", Computer aided Design Vol-11 No. 3 (May 1979).

CAMPAGNE JP and others, "Introduction of Change in Data Systems

within an Organisation : the pre-design stage", in Rawgood (op cit,

1982).

CARLSON W M, "BIAIT : Business Information Analysis and Integration

Technique" IBM - San Jose, CA ACM-80, (October, 1980).

CHAMBERLIN D D, "Relational Data-Base Systems", Computer Surveys

Vol. 8, No. 1, (March 1976).

CHAPIN N, "Flow Charting with ANSI Standards :a tutorial", Computing

Surveys Vol. 2, No. 2 (1970).

CHAPIN N, "Graphic Tools in the Design of Information Systems", in

Cotterman and others (op cit, 1981a).

CHAPIN N, "Structured Analysis and Design : an overview", In Cotterman

and others (op cit, 1981b).

CHECKLAND Ps "Systems Thinking, Systems Practice", Wiley (1981).

CHEN P, "The Entity Relationship Model- Toward a Unified View of

Data"q ACM Transactions on Database Systems, Vol. 1, No. 1, (March

199

1976).

CHEN P (editor), "Entity Relationship Approach to Systems Analysis and

Design" (Proceedings Conference at Los Angeles; 1979), North-Holland

(1980).

CODASYL, "An Information Algebra phase 1 report", Communications of

the ACM Vol. 5, No. 4, (April 1962).

CODASYL, "DBTG Report" (1969).

CODD E F, "Relational Database :A Practical Foundation for

Productivity" (The 1981 ACM Turing Award Lecture), Communications of

ACM, Vol. 25, No. 2, (February 1982).

CORNER M, "Structured Analysis and Design Technique", in Cotterman and

others (op cit, 1981).

Cotterman WW and others, "Systems Analysis and Design :a Foundation

for the 1980s", North-Holland (1981).

COUGER J D, "Evolution of Business System Analysis Techniques",

Computing Surveys Vol. 5, No. 3 (September 1973).

COUGER JD and Knapp, "System Analysis Techniques", Wiley (1974).

DARLINGTON J, Henderson and Turner (editors), "Functional Programming

and its Applications", Cambridge University Press (1983).

DATE C J, "An Introduction to Database Systems" (3rd edition),

Addison-Wesley (1981).

200

DATE C J, "Null Values in Database Management",. Ln Deen and Hammersley

(op cit, 1982).

DATE '-C J, "An Introduction to Database Systems - Volume 2" 9

Addisori--Wesley (1983).

DAVENPORT R A, - "Data Analysis for Database Design", Australian

Computer Journal, Vol. 10 No. 4 (November 1978).

DEARNLEY PA and others, "In Favour of System Prototypes and their

Integration into the System Development cycle", Computer Journal

Vol. 26, No. 1 (Feburary 1983).

DEEN SM and Hammersley, "British National Conference on Databases"$

(Proceedings First British National Conference, July 1981), University

of Cambridge (1981).

DEEN SM and others, "The Design of a Canonical Database System

(PRECI)", Computer Journal Vol. 24 No. 3 (1981).

DEEN SM and Hammersley, "British National Conference on Databases",

(Proceedings Second British National Conference, July 1982), Bristol

University (1982)-.,

DE11ARCO T, "Structured Analysis and System Specification",

Prentice-Hall (1979).

DOBOSZ J and Symanski, "An Implementation of Relational Interface to

an Information Retrieval System", Information Systems Vol. 6 No. 3 (June

1981).

201

DoI (Department of Industry), "Report on the Study of an Ada-based

Systems Development Methodology" (2 volumes) (1981).

DOLOTTA TA and others, "Data Processing in 1980-1985", Wiley (1976).

DOWNES V and Goldsack, "Programming Embedded Systems with Ada",

Prentice-Hall (1982).

EHRENSBERGER M, "Data Dictionary - More on the impossible dream", in

Gilchrist (op cit, 1977).

FALKENBERG E, "Concepts for Modelling Information", i-n Nijssen (OP

cit, 1976).

FALKENBERG E and Nijssen, "Feature Analysis of ACM/PCM, CIAM, ISAC,

NIAIV, in Olle (op cit, 1983).

FALLA M E, "An Introduction to Gamma System", Software Sciences

Ltd. (1981).

FERGUS R, "Decision Tables, What, Why, How", in Couger and Knapp (op

cit, 1974).

FLAVIN M, "Fundamental Concepts of Information Modelling", Yourdon

Press (1981).

FRANK WA and others, "The Integrated Dictionary / Directory System",

Computer Surveys, Vol. 14, No. 2 (June 1982).

FREEMAN M, "Software Design Representation Analyses and

Improvements", Software Practice and Experience, Vol. 8, (1978).

202

FREEMAN P and Wasserman, "Report on Software Development Methodologies

and Ada", University of California, San Francisco (1982).

FRY JP and' Sibley, "Evolution of Database Management Systems",

Computing Surveys Vol. 8, No. 1 (March 1976).

FURUTA R and others, "Document Formatting Systems : Survey, concepts

and Issues", Computer Surveys, Vol. 14, No. 3, (September 1982).

CANE C and Sarson, "Structured Systems Analysis : Tools and

Techniques", Prentice-Hall (1979).

GILBERT M H, "Functional Decomposition of Real Time Systems", Computer

Science and Systems Division AERE Harwell (1982).

GILCHRIST'B N (editor), "Information Processing 1977" (Proceedings of

the IFIP Congress, August 1977), North-Holland (1977).

GILDERSLEEVE T R, "Successful Data Processing Systems Analysis"

Prentice-Hall (1978).

GLAGOWSKI TG and White, "A Relational View of a Software Design

Model"IEEE (1978).

GLASSON BC and Hodgson, "Information System Design Methodologies: an

Analysis of Scope", unpublished paper (1983).

GRINDLEY CBB, "Systematics :a Non-programming Language for

Designing and Specifying Commercial Systems for Computers", Computer

Journal Vol. 9, No. 3 (1966).

203

GRINDLEY CBB, "A Language for Describing Formal Management Systems is

(Ph. D Thesis), London School of Economics (1972).

GRINDLEY K, "Systematics :a New Approach to Systems Analysislit

McGraw-Hill (1975).

GRINDLEY CBB, "The Role of the Trigger in Systematics", in Schneider

(op cit, 1979).

GROCHLA E and Szyperski, "Information Systems and Organisational

Structure", Walter de Gruyter (1975).

GROIENHUIS G and Brock, "A Conceptual Model for Information

Processing", in Nijssen (op cit, 1976).

GUSTAFSSON MR and others, "A Declarative Approach to Conceptual

Information Modelling : CIM", in Olle (op cit, 1982).

HALL P and Todd, "Relations and Entities", in Nijssen (op cit, 1976).

HALL'J, "LBMS-SDM : Learmonth and Burchett Management Systems - System

Methodology", LBMS London (1981).

HAMILTON M and Zeldin, "A Relationship between Design and

Verification", The Journal of Systems and Software (1979).

HAMMER M and McLeod, "Database Description with SDM :A Semantic

Database Model"q ACM. Transactions on Database Systems, Vol. 6 No. 3

(Sept 1981).

HANNAFORD D, "The BIS Data Analysis Methodology", Database Journal

204

Vol. 10, NO. 4 (1980).

HANSEN JV and Mekell, "A Computer Aid for Analysis of Complex

Systems", Computer Journal, Vol-23 No. 2 (may 1980).

HARTMAN W and others, "Grid-charting", in Couger and Knapp (op cits

1974).

HAWGOOD J (editor), -"Evolutionary Information Systems" (Proceedings of

the IFIP TC-8 Conference September 1981), North-Holland (1982).

HERSHEY E A, "A Survey of Systems Design Aids", in Teichroew (op cits

1977).

HICE CF and others, "System Development Methodology", revised

edition, North-Holland (1978).

HIGHER ORDER SOFTWARE, "Conceptual Description ISDS/HOS" (TR -

(1977).

HIGHER ORDER SOFTWARE, "AXES SYNTAX DESCRIPTION" (TR - 4) (1976).

HIGHER ORDER SOFTWARE, "Verification of an Axiomatic Requirement

Specification" (TR - 10) (1977).

HIGHER ORDER SOFTWARE, "Algebraic Specification of Data Types in HOS"

(TR - 13) (1978).

HIGHER ORDER SOFTWARE, "Axiomatic Methodology Requirements" (TR - 14)

(1978).

HIGHER ORDER SOFTWARE, "Properties of User Requirments" (TR - 20)

205

(1978).

HIGHER ORDER' SOFTWARE, "The Relationship between Design and

Verif ication" (TR - 21) (1978).

HONEYWELL, "Business System Analysis'and Design : BISAV', in Couger

and Knapp (op cit, 1974).

HUBBARD G U, "Computer Assisted Logical Database Design", Computer

Aided Design, Vol. 11 No. 3 (May 1979).

HUTT ATF, "A Relational Data Base Management system", Wiley (1979).

IBM "SOP : Study Organisation Plan Documentation Techniques", in

Couger and Knapp (op cit, 1974a).

IBM "TAG : The Time Automated Grid"q in Couger, and Knapp (op cit,

1974b).

INFOTECH, "Info Software : proceedings", (1975).

INFOTECH, "State of the Art Report: Data Base technology", Volume 2

(1978).

INFOTECH, "Data Design" (2 volumes) (1980).

ISHIKETA T and Yokoyama, "A Managerial Decision Making Tool - Computer

Assisted Problem Solving System (CAPSS)", HIP Congress Proceedings

(1971).

ISO (International Standards Organisation), "Concepts and Terminology

for the Conceptual Schema and the Information Base" (Report of TC

206

97/SC5/WG3), edited Griethuysen (1982).

JACKSON M, "Principles of Program Design", ýAcademic Press (1975).

JACKSON M A, 11some Principles Underlying a Systems Development Method"

in Cotterman and others (op cit, 1981).

JACKSON M, "System Development", Prentice-Hall (1983).

JOHN D, "Project Management of Systems Management", in Cotterman and

others (op cit, 1981).

JOHN P and others, "Ethical and social Responsibilities of the Systems

Analyst", in Cotterman and others (op cit, 1981).

JOHNSON-R G and Prowse, "A Natural Language Database Interface to

User" Computer Journal Vol. 23 No. 1 (Feburary 1980).

JONES "The Practical Guide to Structured Systems Design", Yourdon

PresS, (1980).

KAHN B K, "A Method for Describing Information Required by the

Database Design Process", in Rothnie (op cit, 1976).

KANTER J, "Management-oriented Management Information Systems",

Prentice-Hall (1979).

KERA V, "GEIS : Gradual Evolution of Information Systems" in Freeman

and Wasserman (op cit, 1982).

KENT W, "Entities and Relationships in Infomation", in Nijssen (op

cit, 1977).

207

KENT W, "Data and Reality", North-Holland (1978).

KENT W, "Future Requirements on Data Modelling",
_Ln

Shaw (op cit,

1979).

KENT W, "A Simple Guide to Five Normal Forms in Relational Database

Theory", Communications of the ACM, Vol. 26, No. 2 (Feburary 1983).

KEROLA P and Taggart, "Human Information Processing Style in the

Information Systems Development Process", in Hawgood (op cit, 1982).

KING PJH, "Conversion of Decision Tables to Computer Programs by

Rule Mask Techniques" Communications of the AGM, Vol-9* p796-901

(1966).

KING PJH, "Some comment on Systematics "Computer Journal, Vol. 10,

p. 116 (1967a).

KING PJH, "Decision Tables", Computer Journal, Vol-10, p135-141,

(1967b).

KNUTH and others, "SDLA : System Descripter and Logical Analyser", in

Olle (op cit, 1982).

KUNG C H, "An Analysis of Three Conceptual Models", in Olle (op cit,

1983).

LAAGLAND PTJ, "PRISMA : Planning and Requirement Analysis for

Information Systems, Modelling Approach", unpublished paper (1982).

LAND F F, "Concepts and Perceptions -a review", Ln Hawgood (op cit,

208

1982).

LANGEFORS B, "Computation of Parts requirements for production

Scheduling", BIT BIND 2, Hefte, No. 2 (1962).

LANGEFORS B, "Theoretical Analysis of Information Systems" Oth

edition), Auerbach (1973).

LANGEFORS B, "Theoretical Constructs of Information Processes",
_In

Cotterman and others (op cit, 1981).

LANGEFORS B, "Models and Methodologies", in Hawgood (op cit, 1982).

LARCHER P, "Transaction Analysis Technique (User Guide)", The Plessey

Company Ltd. (1980).

LAVINGTON S H, "Proceedings Information Processing 1980's",

North-Holland (1980).

LEHMAN M M, "Program Evolution", Research Report, Imperial College

London, (December 1982).

LEONG-HONG B W, "Data Di ctionary/Di rectory System", Wiley (1982).

LOBELL R F, "Application Program Generators", NCC (1983).

LOCKEMANN PC and Neuhold (editors), "Systems for Large Data Bases"

(IFIP Working Conference on Very Large Data Bases, September 1976),

North-Holland (1977).

LOMAX J D, "Data Dictionary Systems", NCC (1977).

209

LUCAS and others (editors), "The Information System Environment"

(Proceedings of the IFIP- TC8 Conference, June 1979), North-Holland

(1980).

LUDEWIG J and Streng, "Methods and Tools for Software Specification

and Design -A Survey Report", European Purdue Workshop (1978).

LUNDEBERG M, "Utilization of New Information Systems Development

Methods in Practice - Perspectives and Prospects", in Gilchrist (op

cit, 1977).

LUNDEBERG M and others, "Information Systems Development",

Prentice-Hall (1981).

LUNDEBERG M, "The ISAC approach to Specification of Information

Systems and it's Applications", in Olle (op cit, 1982).

LYNCH H J, "ADS :A Technique in System Documentation", in Couger and

Knapp (op cit, 1974).

MACDONALD IG and Palmer, "D2S2 : System Development in Shared

Environment", in Olle (op cit, 1982).

MACDONALD I G, "What Must We Look for in a Systems Development

Methodology", The DMW group, unpublished paper (1983).

MACLEOD I A, "The Relational Model as a Basis for Document Retrieval

System Design" Computer Journal Vol. 24 No 4 (1981).

MADDISON RN and others, "Feature Analysis of Contemporary System

Methodologies :a collective view", unpublished paper (1982).

210

MAIMBORG E G, "An Analysis of Systems Design Methodology Using ISO

Frame Work", in Olle (op cit, 1983).

MARTIN J, "Principles of Database Management", Prentice-Hall (1976).

MARTIN J, "An End User Guide to Data Base", Savant Research Institute

(1980).

MARTIN J, "Information System Manifesto", Savant, Carnforth,

Lancashire (1983).

McCRACKEN D M, "A Guide to NOMAD for Applications Development",

Addison-Wesley (1980).

McCRACKEN D and others, "A Minority Dissenting Position", in Cotterman

and others (op cit, 1981).

MICHAEL F, "An Integrated View of Computer Software Application

Development Life Cycle", in Cotterman and others (op cit, 1981).

MILLINGTON D, "Systems Analysis and Design for Computer Applications",

Wiley (1981).

MOULIN P and others, "Conceptual Model as a Data Base Design Tool", in

Nijssen (op cit, 1976).

MOULIN B, "A Comparative Review of Information System Design

Methodologies Using EPAS/IPSO Approach", in Olle (op cit, 1983).

MTRIFORD E and Weir, "Computer Systems in Work Design
.-

the ETHICS

Method", Associated Business Press (1979).

211

MURDICK R, "MIS Development Procedures", Journal of Systems Management

(December 1970). -

MYERS G J, "Computer Structured Design", ýVan Nostrand Reinhold (1978).

NCC (National Computing Centre), "A system documented - in accordance

with the standards in the systems documentation manual", (1971).

NCC (National Computing Centre), "Introducing System Analysis and

Design" (2 volumes) (1982). -

NIJSSEN GM (editor), "Architecture and Models in Data Base Management

Systems" (IFIP Working Conference on Modelling in Data Base Management

Systems), North-Holland (1976).

NIJSSEN GH (editor), "Modelling in Data Base Management Systems"

(IFIP Working Conference on Modelling in Data Base Management

Systems)", North-Holland (1977).

NIJSSEN G M, "Current Issues in Conceptual Schema", in Nijssen (op

cit, 1977).

NISSEN H E, "When People Design Information System - Then Information

System Design People",. Ln Hawgood (op cit, 1982).

MULLERY G P, "CORE :A Method for Controlled Requirement Expressions",

Systems Designers Ltd. (1979).

NORMAN L and others, "Classical and Structured Systems Life-cycle

Phases", in Cotterman and others (op cit, 1981).

212

NUNAMAKER J F, "A Methodology for the Design and Optimisation of

Information Processing Systems", in Couger and Knapp (op cit, 1974).

NUNAMAKER JP and-others, "Formal and Automated Techniques of Systems

Analysis-and Design", in Cotterman and others (op cit, 1981).

OLIVE A, "DADES : A-, Methodology for Specification and Design of

Information, Systems", in Olle (op cit, 1982).

OLIVE, "Analysis of Conceptual and Logical Models in Information

Systems Design Methodologies", in Olle (op cit, 1983).

OLIVE'A, "Information Derivability Analysis in Logical -Information

Systems", Communications of the acm, Vol. 26, Number 11, November

(1983).

OLLE TW and others (editors), "Feature Analysis of Information System

Design Methodologies" (Proceedings of the working Conference, June

1982)', North-Holland (1982).

OLLE TW and others (editors), "Feature Analysis of Information System

Design Methodologies" (Proceedings of the working Conference, July

1983), North-Holland-(1983).

OSAMU S, and others, "A Software Design System Based on a Unified

Design Methodology", Journal of Information Processing, Vol. 3,

Number 3, (1980).

OSTERWEIL LJ and others, "ASSET :A Life Cycle Verification and

Visibility System", Journal of Systems and Software (1979). ýý

213

PARNAS D L, "The Use of Precise Specifications in the Development of

Software", in Gilcrest (op cit, 1977).

PARSLOW R- ýD (editor), "Information Technology for the Eighties"

(Proceedings of BCS '81, July 1981), Heyden (1981).

PAUL W, "Privacy, Security, and Auditing of Automated Systems" in

Cotterman and others (op cit, 1981).

PAWLAK Z, "Information Systems Theoretical Foundations", Information

Systems Vol. 6, No. 3 (1981).

PETERSON J L, "Petri Nets", Computer Surveys, Vol. 9, No. 3 (1977).

POLANYI M, "Knowledge and Being", Routledge and Kegan Paul (1969).

POLLACK S and others, "The Languages used in Decision Tables", in

Couger and Knapp (op cit, 1974).

PROWSE P, "The Data Base Approach", Computer Journal, Vol. 23 No. 1

(Feburary 1980).

PRYWES NS and others, "Use of a Non-Procedural Specification Language

and Associated Program", ACM Transactions on programming languages and

systems, Vol. 1 No. 2 (October 1979) pp 196-217.

REINWALD L. T and others, "Conversion of Limited-entry Decision Tables

to Optimal Computer Programs : Minimum Average Processing Time"Journal

ACM No. 3, Vol. 13 pp 339-358 (July 1966).

REISNER P, "Human Factors Studies of Database Query Languages :A

214

Survey and Assessment", Computer Surveys Vol. 13, NO-1 (March 1981).

RHODES J, "Beyond Programming : Practical steps toward the Automation

of D. P Systems Creation", in Couger and Knapp (op cit, 1974).

RICHTER G and Durchholz, "IML-inscribed nets", in Olle (op cit, 1982).

ROCK-EVANS, "Data Analysis", IPC Business Press (1981).

ROLLAND C, RICHARD C, "The REMORA Methodology for Information Systems

Design and Management", in Olle (op cit, 1982).

ROMAN G C, "On Reducing Ambiguities in Methodology Definitions", IEEE

(1982).

RONALD F, "A Simplified Universal Relation Assumption and its

Properties", ACM Transactions Database Systems, Vol. 7, No. 3,

(September 1982).

ROSENQUIST C J, "Entity Life Cycle Models and their Applicability to

Information Systems Development Life Cycles", Computer Journal,

vol. 25, No-3, (1982).

ROSS R G, "Data Base Systems", AMACOM (1978).

ROTHNIE JR (editor), "Data Modelling" (SIGMOD Proceedings of the

working Conference June 2-4,1976), -ACM (1976).

ROUSSOPOULOS N, "Tools for Designing Conceptual Schemata of

Databases", Computer Aided Design, Vol. 11 No. 3 (May 1979).

RZEVSKI G and others, "The Evolutionary Design Methodology applied to

215

Information Systems", in Olle (op cit, 1982).

SASS C J, "COBOL Programming and Applications", Allyn and Bacon

(1979).

RZEVSKI and others, "A Recursive Approach to the Comparison of Systems

and Software Methodologies", Kingston Polytechnic Report (1983).

SCHMID H A, "An Analysis of some Constructs for Conceptual Models", in

Nijssen (op cit, 1977).

SCHNEIDER HJ (editor), "Formal Models and Practical Tools for

Information Systems Design", North-Holland (1979).

SDL (Systems Designers Ltd), "Life Cycle Support in the Ada

enviroment" (1982).

SENKO E, and Michael E, "Information Systems : Records, Relations,

Sets, Entities, and Things", Information System Vol. 1 (1975).

SERNADAS A, "Temporal Aspects of Logical Procedure Definition",

Information Systems Vol. 5 (1980).

SERNADAS "Systematics : its syntax and semantics as a query language",

Computer Journal, Vol. 24 No. 1 and 2 (1981).

SHAW B (editor), "Proceedings of the Joint IBM/University of Newcastle

Seminar", University of Newcastle (1979).

SHIGO OSAMU and others, "A Software Design System Based on a Unified

Design Methodology", Journal of Information Processing, Vol. 3, No. 3

216

(1980).

SMITH DCP (editor), "ACM SIGMOD : Management of Data", (Proceedings

International Conference, (August-1977).

SMITH J and Smith "Data base Abstractions, Aggregation",

Communicatin ACM (June 1977a).

SMITH J and Smith, "Database Abstractions: aggregation, and

Generalisation", TODS (June 1977b).

SMITH DCP and Smith, "Computerised Database Design", Infotech State

Of the Art, series 8, No. 4, (1980).

SOLVBERG A, "A Draft Proposal for Integrating Systems Models", in Olle

(op cit, 1982a).

SOLVBERG A, "Introduction to Workshop Session on Methods and Models

for Evolutionary Information -Systems", in Hawgood (op cit, 1982b).

STAMPER R, "Physical Objects, Human Discourse, and Formal Systems",. In

Nijssen (op cit, 1977).

STEYER F, "A Uniform Formal Description of Data Base Management

Systems"Information Systems Vol. 5 (1980).

STL (Standard Telecommunication Laboratories), "Formal Design

Methodologies" (Proceedings of the Symposium, April 1979) (1979)..

STRUNZ M, "A Review of the Current State of the Art", Boot (op cit,

1973).

217

SWANSON E B, "A View of Information System Evolution", in Hawgood (op

cit, 1982).

SWIGCHEM C VAN and Essink, "Systems Design and Evaluation Criteria",

in Olle (op cit, 1983).

TAGGART WM (Jr) and Tharp M 0, "A Survey of Information Requirements

Analysis Techniques", Computing Surveys, Vol. 9 No. 4 (Dec 1977).

TEICHROEW D and Hasan, "Automation of System Building", Datamation

(August 1971).

TEICHROEW D, "A Survey of Languages for Stating Requirements for

Computer Based Information -Systems", Fall Joint Computer Conference

(1972). -

TEICHROEW D, "Problem 'Statement Analysis : -requirements 'for the

problem-statement analyser", in Couger and Knapp'(op cit, 1974a).

TEICHROEW D, "Problem Statement Languages in MIS", in Couger and Knapp

(op cit, 1974b).

TEICHROEW D and- others, "An Introduction to Computer Aided

Documentation of User Requirements for Computer Based Processing

Systems", in Grochla and Szyperski (op cit, 1975).

TEICHROEW D, "Computer-aided Software Development", Infotech (1977).

TEICHROEW D, "Improvements in the Systems-Life ýCycle", in,, Teichroew

(op-cit, 1977a).

218

TEICHROEW D, and Hershy, "Computer Aided Software", in Teichroew (op

cit, 1977b).

TEICHROEW and Hershy, "Computer Aided Structered Documentation, and

Analysis of Information Processing'Requirements-ISDOS working paper",

in Teichroew (op cit, 1977c).

THOMAS RJ and Kirkham, "MICRO-PSL Project Report, University of

Bradford (1983).

'A Management Concern", n THURNER R, "Systems Development Technology, _.
L_

Proceedings of Butler cox Foundation Conference (October 1978).

TSE TH and Pong, "A review of Systems Development Systems",

University of Hong kong (1982).

TULLY C J, "Definition of a Language for System Specification and

Design and a comparison with other approaches", paper presented in IKD

Berlin (1982).

TURN R, "'Computers in the 1980s", Columbia University Press (1974).

ULLMAN J D, "Principles of Database Systems", Computer Science Press

(1980).

VERHEIJEN GMA and others " NIAM Methodology", in Olle (op cit,

1982).

WALTER M and Carlson, "Making your Work, Effective",. In Cotterman and

others (op cit, 1981).

219

WARNIER J D, "Logical'Construction of Systems", Van Nostrand Reinhold

(1981).

WASSERMAN A I, "A Methodology for the Design and Development of

Interactive Information Systems", in Olle (op cit, 1982).

WASSERMAN A I, Freeman and others, "Characteristics of Software

Development Methodologies", in Olle (op cit, 1983).

WELDON J L, "Using Data Base Abstractions for Logical Design", The

Computer Journal, Vol. 23 No. 1 (Feburary 1980).

WHITTINGTON RP and Tully, "A Seven--Subschema Model for Evolutionary

Database Development", in Deen and Hammersley (op cit, 1982).

WHITTINGTON R P, "A Comprehensive and Flexible Methodology for the

Development of Effective Database Systems", D. Phil thesis, Department

of Computer Science University of York (1983).

WILLIAMS H H, "A Flexible Notation for Syntactic Definitions", AM

Transactions Vol. 4 No. 1 (January 1982).

WINDSOR A, (editor), "Using the ICL Data Dictionary", Shiva (1980).

WIRTH N, "Algorithms + Data structures - Programs", Prentice-Hall

(1976).

WOOD-HARPER A T, and Flynn, "Action Learning for Teaching Information

Systems BCS Computer Journal Vol. 26, No. 1, (Feburary 1983).

YEH RT and others, "Database Design - an approach and some issues" in

220

INFOTECH (op cit, 1978).

YOUNG JW and Kent, "Abstract Formulation of Data Processing

problems", Jouinal of Industrial Engineering (November 1958).

YOURDON E and Constantine, "Structured Design : Fundamentals of a

Discipline of Computer Program and System De'sign", Prentice-Hall

(1979).

I

221

APPENDIX-A

THE FEATURE LIST ADOPTED FOR THE PRESENT COMPARATIVE SURVEY

The starting point was the union of features from the comparative

surveys in section 3.2 of chapter 3. This was both unnecessarily

large and insufficiently embracing. The following set of features

aims to be necessary and sufficient to present an essential

description of methodologies for the purpose of evaluation and

comparison.

PART 1: METHODOLOGY SUMMARY

Short name: acronym; if developer does not provide

one then create one.

Full name: full name as given by the developer.

Author(s) and institution(s): developer/organisation identification.

Date of first reference: date of first reference on the basis of

available literature.

Application field(s): the main types of application to which

the methodology is relevant, from the

following set: data processing, defence,

embedded, , systems software,

telecommunications.

1

Life cycle stages: the main life cycle stages in which the

methodology may be applicable, from the

following set: requirements analysis,

outline specification, functional

specification, structural design,

detailed design, programming.

(The above six stages are a fairly

arbitrary generalisation from the many

variants of the life-cycle model. They

are intended to be readily

understandable to the reader. They do

not match the life-cycle model (if any)

of any individual methodology; nor do

they match t he model of the system

development process proposed later in

this thesis.)

Requirements analysis This involves the

answers to three questions, which are:

what is the new system required to do?

within what constraints must the new

system operate? how is the new system's

performance evaluated? The typical

output'is a requirements definition for

the new system agreed by all parties.

Boundary specification This is a precise

2

set of all anticipated outputs and

inputs of the proposed system followed

by comments, if any.

Functional specification This is the

process of defining the functions that

are necessary in order to derive the

required outputs from the available

inputs, together with the relationships

between them.

Structural design This is an iterative

process of: decomposition of a system

into subsystems, boundary specification

of subsystems, functional specification

of subsystems, decomposition into

components, analysis into elements.

Detailed design This is a description of

how the system is to achieve its

specifications i. e the selection of

algorithms, data structures and

equipment that will fulfill the system

functions.

Programming

Software support: provision of computer aids, from the

following set: data dictionary, analysis

3

and checking, detailed design aids,

prototyping, code generation.

(The above six types of software support

are not intended to be an exhaustive

set, 'but rather to cover the main

observed area in which software tools

are currently offered. Explanatory

comments are only needed for two of

them.)

Analysis and checking This is a

mechanism for checking automatically the

completeness and consistency of a

specification or design at semantic and

syntactic levels.

Detailed design aids These are tools and

techniques which automatically generate

supporting documents and messages to aid

the developer in developing his target

system.

Development status: one of the following set (with variants

and comments): published but not used,

used but obsolete, in use, in use and

still , under development, under

development.

4

Comment: brief notes on all the important aspects

of part 1, an& any other relevant

remarks.

PART 2: LIFE CYCLE MODEL A brief description of the major stages

prescribed for target system

development.

PART 3: ENVIRONMENT MODEL

Concepts used to describe

the system environment: description of conceptual entities and

constraints used to describe the

Universe of Discourse including

entities, objects, events, triggers,

functions, relationships etc.

Notation used: types of notation used to describe the

environment model (e. g. textual,

graphical, mathematical, etc.)

PART 4: SYSTEM MODEL

Concepts used in

specification and design:

Notation used:

description of conceptual entities and

constraints used to describe target

systems.

The types of notation used to describe

5

the system model (eg. textual,

graphical, mathematical, etc.)

PART 5: COMMENT

Completeness:

Economy:

Ease of use:

Additional comments:

PART 6: REFERENCES

6

APPENDIX B

SURVEY OF METHODOLOGIES

INTRODUCTORY NOTE

This appendix presents a survey of fortythree methodologies. The

survey is based on the list of the features described in appendix A.

The main headings for each methodology are numbered (after the decimal

point) to correspond with the part numbers identified in appendix A.

I

1-11METHODOLOGY SUMMARY

Full name

ACM/PCM

Active and Passive Component Modelling

Author(s) and institution(s) Brodie ML and Silva; University of

Maryland

Date of first reference

Application field(s)

Life cycle stages

Software support

1982

data processing

requirements analysis

functional specification

structural design

detailed design -

Dev lopment status under development as-a research project,

being applied in criminal scheduling,

university registration and hotel

I reservations.

Comment

It supports the functional decomposition, data decomposition,

interface definitions, data flow, sequence control flow,

concurrency and formal program verification. The approach is

2

claimed to have three consequences, which are; (a) equal emphasis

on Integrity of structured and behavioural properties of an

application, (b) complete life cycle coverage, (c) modelling

through the levels of abstraction. The principle of abstraction

is a powerful tool which allows development to be carried out

systematically by suppression of some details in order to place

more emphasis on others.

1.2 LIFE-CYCLE MODEL

- Requirement formulation: an informal description of the real

world knowledge of application,

Logical design/specification: specification of an abstract

semantic data model of the application ie global conceptual data

and process models,

ý'ý - lmplementation design: definitions of- schemas- and programs in

terms that fits the data model of the target system,

- Implementation: encoding and testing the implementation model,

Operation, maintenance and monitoring: installation of the

system,

Evolution, adaptation and modification: meet the changing

requirements.

3

1.3, ENVIRONMENT MODEL

Concepts used to describe the system environment

The conceptual schema captures the following.

- Basic objects of the problem,

- Classification of each object as temporary or permanent, and

either dependent or independent,

- Construction of individual object schemas by considering various

relationship forms,

- Construction of object schema, and an identification of

constraints.

Extensive use of the abstraction approach has been followed for both

structural (data and static) and behavioural (process and dynamic)

properties. The behavioural property refers, to'state transitions and

dynamics (ie operations and their relationships). The structural

property refers to both static and dynamic, properties.

Notation used mostly graphical, some textual, and mathematical.

1.4 SYSTEM MODEL

Con epts used in system specification and design

predicate logic, BNF and transform techniques. I

4

Notation used BETA language (sometimes graphical assistance is taken)

contains difficult axiomatic and predicate transform techniques.

1.5 COMMENT

Completeness above average

Economy below average ,, I

Ease of use low

Additional comments

Methodology covers mostly the logical design and specification

stages of the system life cycle. The purpose of the methodology

is to build an abstract model (requirements of the information

system) as such it is more closed towards the activity of system

de scription. Specificaion and logical design phases are

procedural while other phases are fairly ambiguous. Logical

design and specification phases describe "abstraction

specification" of a system, whereas the analysis phase describes

the real world informally and may be regarded as a fact-finding

activity. Facilities for schema generation and program

generation from the schema actions and transactions are not

provided. It does not deal with boundary specification of the

system, automation aspectst or management aspects. There is a

lack of guidence for selecting object classes for integrating

various object schema, selecting relationship abstractions for

redundancy checking, and overall completeness and consistency

5

checking. It is not clear how using Pascal-R could be mapped to

the implementation model. The developer requires skill to

synthesize each object class and cope with the various

relationships and schemas, constraints and assertions. The

language (BETA) requires mathematical skills. The methodology is

quite difficult from a user's point of view, the abstract model

is not clearly attained, there is no clear distinction between

things and their names.

1.6. REFERENCES

ý 1. BRODIE ML and Silva (1982)

2. FREEMAN P and Wasseman (1982)

6

2.1 METHODOLOGY SUMMARY

Short name ASSET

Full name Automated Systems and Software

Engineering Technique

Author(s) and institution(s) Osterweil LJ and others; University of

Date of first reference

Application field(s)

Life cycle stages

Software support

Development status

Comments

Colorado and Boeing Computer Company

USA.

1979

embedded

requirement analysis

functional specification

detailed design

analysis and checking

prototyping

detailed design aids

code generation

under development

Early efforts related to methodology are focussing on an

implementation of the key analytic capabilities (and front-end)

to process requirements, design, and specific coding languages.

7

It recognises a need for, and incorporates the use of, iteration

in systematic definition, refinements, and verification of

requirements and design. It uses four implementation tools:

syntax and standards checkers, DAVE (for static analysis), PET

and prototype (to monitor executing Fortran and PL/1 programs),

and symbolic execution technique (for source code, design and

requirement specification).

2.2 LIFE CYCLE MODEL

- phase 1: requirement analysis

- phase 2: preliminary design

- phase 3: detailed design

- phase 4: coding

Testing and verification are included throughout the phases of

software development.

2.5 COMMENT

Completeness low

Economy above average

Ease of use average

8

Additional comnents

The heart of the ASSET is a database containing all the

information needed for making and implementing management

decisions about a given program. The database contains source

code, object code, documentation, support libraries, and project

utilities. Requirement and design specification for the program

also resides in the database. The important principle in ASSET

is verification and testing during each phase of development and

maintenance cycle, which provides the assurance that the software

product is developing correctly. It may be regarded more as a

verification methodology than an information system development

methodology. It does not provide any assistance to capture and

describe inputs, and does not describe different phases of

development. BCS is also actively engaged in developing IDAP

(system improving visibility and providing design verification),

and to create and analyse SAMM diagrams (SAMM is a technique for

hierarchically decomposing by the use of graphic tools). From

the available literature notation used is a mix of graphic and

texts, and no specific notation is prescribed.

2.6 REFERENCES

OSTERWEIL LJ and others (1979)

9

3.1 METHODOLOGY SUMMARY

Short name ADS

Accurately Defined System

Author(s) and institution(s) Lynch H J; NCR

Date of first reference 1966

Application field(s)

Life cycle stages

Software support

Development status

data processing

requirement analysis

functional specification

detailed design

programming

analysis and checking

used but obsolete

Comments

ADS is a general purpose tool and functions with an equal

effectiveness for any type of computer system.

3.2 LIFE CYCLE MODEL

- Study the feasibility of the application

- Survey of application

- Specification of time and cost factors,

- Development of computer programs

10

- Implementation and installation of the system,

All the above mentioned activities are performed in a circular

sequence resembling the face of the clock.

Notation used forms and tables

3.5. COMMENT

Completeness low

Economy average

Ease of use high

Additional comments

ADS facilitates the definition and communication of the

objectives criteria and specification of an EDP system. It

approaches the system definition by starting with specification

of a report-form which is to be output. From this point,

separate-integrated-forms are completed to specify input records,

history records, computation and logic operations. All the

system elements are tied together by a cross reference table, and

the result is a precise set of system definition

3.6 REFERENCES

LYNCH HJ (1974)

11

4.1 METHODOLOGY SUMMARY

Short name BISAD

Full name Business System Analysis and Design

Author(s) and institution(s) Honeywell

Date of reference 1968

Application field(s) data processing

Life cycle stages requirement analysis-

functional specification

detailed design

Software support prototyping

detailed design aids

Development status used but obsolete

Comment

The developer performs definite tasks in his efforts to analyse a

business and to design an information system that responds to the

needs of the management. An information matrix is used to

represent the activities of data processing, which has five

connections between inputs, outputs and files of the functional

model.

Background analysis is the foundation upon which the future

12

system work is build up. Functional analysis implies the

breakdown the total operation into logical groups of tasks to be

carried out. A logical group of tasks is called a function, and

each task therein is an activity. Once the model is approved and

priorities areas-are selected then prototypes are-converted to a

working model. Much of the problem associated with the systems

work is implementation for which a plan should be established

with detailed implementation criteria. All the documents

resulting from the previous steps are collected and together are

known as a "system specification". The last step is then to make

the system operational.

4.2 LIFE CYCLE MODEL

- background analysis,

- functional analysis,

- designing the prototype

- designing the working system,

- operational planning,

- system specification,

- implementation and control.

13

4.4 SYSTEM MODEL

Concepts used in system specification and design

document, files, processing steps (activities), flow and their

directions, generator functions, user functions, inputs and

ouputso

Notation used graphical and matrix form

4.5 COMMENT

Completeness average

Economy high

Ease of use average

Additional comments

The central point of BISAD is system prototype design which is

performed either by a decision table or flow chart or by an

information matrix. This matrix shows five connections between

input, the files and the output of the functional model. This

matrix is specified completely, it is used for tracing the flow

of information through the activities.

In order to show to the management that the required system is

complete and meets their objectives, the system prototype is

presented for their approval. This system prototype describes

the functional model, business logic, the total system and the

14

general equipment requirements. BISAD does not have a specific

notation of its own, the use of the information matrix may become

complicated in large systems.

4.6 REFERENCES

1. HONEYWELL (1974)

2. COUGER and Knapp (1974)

15

5.1 METHODOLOGY SUMMARY

-Short name

Full name

CASCADE

Computer Aided Systems Construction and

design Evaluation

Author(s) and institution(s) Solvberg A; University of Trondheim,

Norway.

Date of first reference

Application field(s)

Life cycle stages

Software support

Development status

Comments

1969

data processing, Science/Engineering

requirement analysis

boundary specification

detailed design

analysis and checking

detailed design aids

code generation

used but obsolete

A software tool CASCADE/2, has been developed containing the

modules for system specifications and presentation, specification

analysis and program system production. A computer aided design

module is also under development. Syntactic checks, consistency

checks, and checking for the compatability of levels are

16

performed. The outcome of system analysis can partly be used for

the definition of the new system. The designed system can

automatically be documented in different ways eg. flow charts,

lists and matrices.

5.2 LIFE CYCLE MODEL

- system specification,

- system description, and

- analysis by mathematical methods.

5.4. SYSTEM MODEL

Concepts used in system specification and design

P= process; Al, A2= information objects; IPS= information

processing system; INF= information; I= input; O= output.

Notation used graphical and textual and symbols of its own.

5.5. COMMENT

Completeness high

Economy high

Ease of use low

17

Additional comments

The statements of the system description are written in a formal

language, which describes the information obtained through

interviewing. This set of DATAWRITE is automatically controlled

and combined to form a model file. All the work is limited by

the features and characteristics of DATAWRITE language, which was

designed to allow a static, formulised description of data

systems. DATAWRITE has seven operations copying,

accepting, despatching.

The most important problem in system design is that system

documentation is not used for the direct benefit of designer and

therefore may be felt as burden to him. Moreover subsystems are

described and analysed by mathematical methods. A traditional

life cycle model has been adopted for system development, no

environment modelling is considered, and the notation used is

difficult.

5.6 REFERENCES

1. INFOTECII (1975)

2. STRUNZ H (1973)

18

6.1 METHODOLOGY SUMMARY

Short name

Full name

CORE

Controlled REquirement Specification

author(s) and insttution(s) Mullery GP and others; System Designers

Ltd.

Date of first reference 1979

Application field(s)

Life cycle stages

Software support

Develo2ment status

Comments

defence and data processing

requirement analysis

boundary specification

functional specification

detailed design

analysis and checking

prototyping

in use

The methodology leads to an early identification of subsystems

which are of assistance in team structuring and control, but does

not assist in areas of planning or budgeting. It was initially

developed for avionics project, but can be used in other large

and complex systems.

CORE allows the designer some degree of choice in the way in

19

which the proposed concepts are applied to a problem. The

notation of CORE has been used to draw the view point diagrams

for the hospital system as seen in DOWNES (1982).

6.2 LIFE CYCLE MODEL

- Examine the view points from which the requirements may be

considered. These are the requirements as seen by various

parties who interact to form the system.

- Specification of the requirements required by each view point

from the proposed system.

- Drawing a table showing operations and the flow of data necessary

to achieve the desired outputs. The table has five columns;

sources, inputs, actions, outputs and destination. Each action

has atleast one input, and each input has a source. Similarly

each action must generate atleast one output and each output must

have a destination. The data flows are shown by arrows.

- Using CORE diagrams to describe the implied action sequencing for

each view point. These diagrams are known as data and action

diagrams,, and provide simplicity, quality control, and an

assistance in providing description.

- Checking of completenes and consistency of different view points

is performed against: inputs, outputs, actions, sources, and

destinations.

20

6.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

events, actions

Notation used graphical

6.4 SYSTEM MODEL

Concepts used in system specification and design

data, action, store, item, composite item, activate, validation,

data pool, request data.

Notation used graphical and textual

6.5 COMMENT

Completeness high

Economy low

Ease of use low

Additional comments

CORE is based on answers to three questions, which are; (a) What

are we trying to achieve? (b) Why we do fail to achieve that

often? (c) What should we do to improve ?

CORE is more concerned with file design system rather than a

21

database' system, and does not mention the technique of data

integration. CORE diagrams may be regarded as a combination of

SADT and SREM diagrams.
. CORE accomodates different points of

view, but the mechanism to aviod redundancies due to- different

points of view of the same data is not mentioned.

6.6. REFERENCES

1. MULLERY GP (1979)

2. DOWNES V (1982)

22

7.1 METHODOLOGY SUMMARY

Short, name

Full name

CSE-DBD -,

Constraint Specification in Evolutionary

Database Design

I
Author(s) and institution(s) Bracchi G and others; Instituto di

Electtrotecnica, Milans, Italy.

Date of first reference

Application field(s)

Life cycle stages

Software support

Development status

Comments

1979

data processing

requirements analysis

boundary specification

functional specification

detailed design

under development as a research project

Methodology concentrates mainly on requirement analysis and, to

some extent, deals with the boundary and functional

specifications. It also provides an assistance in specifying

conceptual and quantitative requirements for database design.

Static and dynamic requirements are defined.

23

7.2, LIFE CYCLE MODEL

The developer subdivides the elements into two classes, (a) conceptual

requirements, and (b) quantitative requirements. These are summarised

as follows.

- Specification of conceptual requirements: data schema

(entities, relationships, attributes, static constraints;

functional schema (operations, transactions, parameters, dynamic

constraints); evolution schema (events, rules).

- Specification of quantitative requirements: for each entity

type (number of instances of entity type, number of instances of

entity type associated via a relationship); for each relationship

type (number of tuples associated via a relationship type); for

each attribute (size of possible values, number of different

values), for each operation (frequency of execution, frequency of

execution inside each transaction); for each transaction

(frequency of execution); for each parameter (specification of

elements to be used for process and access).

7.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

entities, attributes, static and dynamic constraints, and

parameters*

Notation used mainly graphical and some textual

24

7.4 SYSTEM MODEL

Concepts used in specification and design

data schema, functional schema,, transactions.

Notation used textual and graphical

7.5 COMIENT

Completeness high

Economy average

Ease of use above average

Additional comments

Methodology represents an integrated approach to requirements

analysis, and shows that the conceptual requirements may be

collected in three schemas: data schema, functional schema, and

evolution schema.

Methodology is independent of any data model, design method, and

database techniques. It can be used as conceptual foundation of

an integrated methodology for collecting and expressing

requirements needed to take specific design decisions.

7.6 REFERENCES

BRACCHI and others (1979)

25

8.1 METHODOLOGY SUMMARY

Short name

Full name

cim

Conceptual Information Modelling

Author(s) and institutions(s) Gustafsson MR and others; University of

Goteborg, Sweden.

Date of first reference

Application field(s)

Life cycle stages

Software support

Development status

Comments

1982

data processing

requirements analysis

functional specification

detailed design

programming

detailed design aids

under development as a research project

CIM is mainly concerned with the conceptual modelling phase of

information system development. , It is-a set of definitions of

assertion types, rules and constraints which govern the

relationship between assertions. CIM supports an incremental

development during the initial phases of system life cycle. Two

software tools are mentioned: CIPS (conceptual information

processing system), and DBMS adaptation but not explicitly

26

defined. CIM supports the initial activities, and presents

equations of the universe of discourse. The second role of CIM

together with requirements (including layouts, response time, and

timeliness requirements and interactions patterns) is to act as a

formal base from which an information system model can be

defined. This design step is analoguous to devising a set of

numerical solution procedures for a set of mathematical

equations, and it also involves storage and effeciency decisions.

8.2 LIFE CYCLE MODEL

- Development of an initial conceptual model

- Function and activity analysis

- Inference analysis

- Global constraints specification

- Consistency, completeness and satisfiability tests

8.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

entity type, attribute, function, events (external and internal),

constrints, time, relationship type, data type.

Notation used

textual (use of mathematical terms) and graphical

27

8.4. SYSTEM MODEL

Concepts used in specification and design

All those which are used in environment modelling.

Notation used textual and mathematical

8.5. COMMENT

Completeness high

Economy low

Ease of use low

Additional comments

CIM contains useful theoretical concepts which are generally

expressed in mathematical concepts and notation, as such may not

be very suitable for data processing organisations. CIM is

similar to NIAM except that NIAM is more user oriented, and CIM

lacks a graphical representation, but both are data oriented.

CIM describes a conceptual model, and a conceptual information

processing system, but lacks in establishing the goals of the

information system being developed, and the technical design

consideration (estimates of machine load). Concentrates on a

top-down approach, use of predicate calculus, clear conceptual

model with time over which associations and attributes hold,

declarative model between organisational and procedural models

28

and inference analysis. It also supports man-machine interface,

data analysis, functions, files and database, programs and

modules, and data set specifications. Mathematical view adapted

provides the equations of theýsystem which forms the basis for

various processing solutions, -and gives a real sense to the

temporal dimension and insights into data and process behaviour.

Processes are given secondary importance; there are no algorithms

for validation, completeness/consistencyý checking, there is no

provision of a particular graphical representation, the design

phases are ambiguous, there are too many artificial entities and

events produced due to inference analysis, and, as such, CIM

becomes very large and unmanageable. Specificaion of global

constraints is separated from events, relationships, and entity

types which may cause inconsistenciesý- or incompleteness in

specifications, as the rule is not associated with its

constituent parts. The identifier of an entity type consists of

attribute functions, which is an unnecessary restriction on

naming convention, the ability to use more complete means of

reference are desirable. Data model is described by first order

predicate calculus, events by separate system object, constraints

by identifier, value set, generalisation, and derivation rules

are described by formulae of predicate calculus.

8.6 REFERENCES

GUSTAFSSON MR and others, (1982).

29

9.1, METHODOLOGY SUMMARY

Short name CADES"

Full name Computer Aided Design and Evaluation

System

Author(s) and institution(s) Warboys B; ICL

Date of first reference

Application field(s)

Life cycle stages

Software support

Development status

Comments

1970

data processing and operating system

functional specification

detailed design

analysis and checking

detailed design aids

code generation

used but obsolete

The methodology and its associated high level languages obviate

the need for using any other methods in parallel. Its database

holds all information relevant to the project throughout the

development process.

30

9.2, LIFE CYCLE MODEL

Tasks to be performed, by the developer-

High level design: -providing an initial abstract analysis of

holons which form the operating system, data entities, external

and internal interfaces. At this level the holons are humans,

devices and jobs etc; the data entities are messages, sets,

events and job control programs.

Low level design: providing a high level language representation

of the operating system. The' holons areýhigh level language

procedures and macros.

- High level design implementation: providing a loadable binary

representation of the operating system. At this level holons are

regarded as loadable binary modules, and data entities are

loadable binary areas. The information in a CADES database

describing this level determines how the loadable binary objects

(areas and modules) are collected together to form various

loadable binary versions of the system.

- Loading: provides the loaded version of operating system. At

this level of abstraction the holons and data entities are

hardware orientedýentitieso' The information at this level in the

CADES database determines how the operating system is mapped to

the hardware entities.

31

9.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

data, entity and relationship

Notation used graphical and some textual

9.4 SYSTEM MODEL

Cconcepts used in system specification and design

holons, mapping, responsibility, data used, function.

Notation used textual

9.5 COMMENT

Completeness above average

Economy average

Ease of use low

Additional comments

CADES is based on top-down hierarchical decomposition of data

handled by the system, and a tree structure of data

decomposition. Holons (functions applicable to data) are

decomposed producing a functional design tree. Any level in the

data tree, and the corresponding functions in the holon tree

constitute an abstract machine. Holon descriptions are entered

32

into the CADES database using a SDL and allow a formal syntax but

it does not provide a formal semantic description. Method

refines the data and holon trees from the highest requirement to

the lowest implementation level. Development of this methodology

took 750 man years, spread over five years. CADES is useful for

large projects, being used for operating system development. The

methodology and computer aided system would have to facilitate

all stages of operating system development ie. high level

design, low level design, implementation and maintenance. They

would have to encourage the codes of good practices which

prevailed within the computer industry ie. structured

programming, data entity driven design, delays fixing and

binding, design of resilience etc. Structural modelling supports

certain characteristics such as modularity, top-down abstraction,

top-down detail, database view and management control.

9.6 REFERENCES

1. DoI (1981)

2. INFOTECH (1975)

33

10.1. METHODOLOGY SUMMARY

Short name D2S2

Full name Development of Data-sharing Systems

(System development in shared data

environment)

Author(s) and institution(s) Palmer IR and others; DMW group, London

Date of first reference 1982

Application field(s)

Life cycle stages

Software support

Development status

Comments

data processing

requirements analysis

functional specification

detailed design

programming

data dictionary

detailed design aids

in use and under development

D2S2 is still being improved under the guidence of IR Palmer.

The original work was undertaken by Tozer E (Scicon) in 1973. it

was first used by CACI on consultancy projects in 1975, and being

inhanced continuously by the above mentioned team. The extent of

its use is not known. Up to 1978 it was purely data analysis

34

oriented, during 1979 it was extended to include certain process

analysis techniques eg. DFD, functional aecomposition euc.

After this, D2S2 being revamped to integrate fully its data and

process analysis aspects. In its current form it contains six

phases of development life cycle of which analysis and design are

defined in detail.

10.2 LIFE CYCLE MODEL

- Strategy stage in which the organisation is documented in terms

of entities and functions,

- Analysis stage, consisting of the analysis of; decompositions,

interactions, decisions, application, transition), and test for

completion.

- Design stage, (consolidation, global design, data design,

application design, operational design, program design and

transition design).

- Construction stage, (new equipment, database construction,

program construction and system construction).

- Transition stage, (user preparation, data conversion, parallel

operation, user acceptance, operational documents).

- production stage, (evaluation, documentation adequacy, running

system cost, user reactions).

35

10.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

entity, attribute, relationship, and event.

Notation used graphical and matrix

10.4 SYSTEM MODEL

Concepts used in system specification and design

entity type, relationship type, optional relationship types,

contingent relationship type, mandatory relationships, degree of

the relationship, function type, identifier, entity function

matrix, functional dependency diagram, data dictionary,

decomposition of functions and entities, logical and physical

data models, input forms, report layout, screen layout.

(Methodology uses most features of entity-attribute-relationship

approach with some extension).

Notation used graphical, tabular and textual

10.5 COMMENT

Completeness above average

Economy low

Ease of use average

36

Additional comments

D2S2 is most suitable for shared environment of data for its

development. Six fundamental principles constitute D2S2, which

are:

-a clear distinction between analysis and design phases,

-a complete separation between analysis and design tasks,

- an orientiation towards producing a strategy for system

development,

- decomposition into well defined tasks,

- emphasis on simple diagrams with structured specifications,

- interactive use of data dictionary system, and

- Production of business specification, system design and program

specification.

About forty tasks are defined respectively for design and

analysis. The data analysis is based on a conceptual data model

in terms of entities, attributes and relationships. The process

analysis is similar to "YOURDON" structured analysis technique.

No allowance appears to be made for iterative work. Each

selected area is analysed in detail until its complexities are

understood, through functional decomposition, detailed entity

model diagram, functional logic model.

37

Design objectives are to produce the outputs, entity usage

analysis, entity usage matrix, database schema, entity usage

cluster analysis, transaction control matrix, program flow

diagram for data, and test plan. D2S2 is defined at three level

of decomposition, external, logical and physical.

10.6 REFERENCES

1. OLLE T W, (1982)

2. FREEMAN P and Wasserman, (1982).

38

11.1 METHODOLOGY SUMMARY

Short name

Full name

DADES

A method for specification and design of

information systems

Author(s) and institution(s) Olive A; Universitat Politecnica de

Barcelona.

Date of first reference 1982

Application field(s)

Life cycle stages

Software support

Development status

Comments

data processing

requirements analysis

boundary specification

functional specification

detailed design

analysis and checking

under development as a research project

Requirement analysis covered broadly as in ISAC and is data

oriented. Methodology is based on the concepts of "precedence

between sets" (Langefors, 1973), Young and Kent Algebra (1958).

DADES supports data decomposition, interface definition, and

formal program verification. Specific tool support is TBD which

39

is being developed. It does not support management aspects.

Completed system is validated against original requirements by a

consistence/derivability analysis.

11.2. LIFE CYCLE MODEL

- list input requirements,

- develop an abstract conceptual schema,

- decide naming conventions,

- develop the conceptual schema,

- define final input/output requirements,

- define derivation rules,

- validate specifications,

- architectural design.

11.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

conceptual schema, universe of discourse, assertion time,

extrinsic and intrinsic time.

Notation used graphical

40

11.4 SYSTEM MODEL

Concepts used in system specification and desLgn

time functions, derivation rules, activities, output

requirements, domains of schema, points of interval of life

cycle, relation schemes, time ordering.

Notation used diagrams and tables

11.5 COMMENT

Completeness high

Economy average

'P.. qqp nf IIqp low

Additional comments

The current version is still in reseach stage, and the useful

features are: specification of information system without making

assumptions about the system structure or database; validation of

the logical consistency by using precedence analysis (Langefors)

at static and dynamic levels; verification of decisions before

making further decisions; focuses mainly on data and little on

processes; consists of a formal language. DADES notation for

specification is ambiguous, being a combination of some existing

notations.

Its precedence analysis method is similar to Langefors (1973);

41

derivation analysis and consistency checking is similar to

Systematics-Grindley (1975) and treatment of time and predicate

expressions are similar to Young and Kent (1958). Prescribed

workproducts are formal specifications and architectural design.

11.6 REFERENCES

OLIVE A, (1982).

42

12.1 METHODOLOGY SMIARY

Short name EDM

Full name Evolutionary Design Methodology

Author(s) and institution(s) Rzevski G and others; Kingston

Polytechnic U. K.

Date of first reference

Application field(s)

Life cycle stages

Software support

Development status

Comments

1982

data processing, embedded, science/engg.

requirements analysis

boundary specification

functional specification

detailed design

programming

analysis and checking

prototyping

under development as a research project

EDM is strongly based on functional decomposition. The research

study has been empirical. Hypotheses are made on the importance

of various factors, dealt one at a time, and then these

hypotheses are claimed as tested during information development

project. The aim of the project has been to improve the quality

43

of information systems and the productivity of engineering

personnel. EDM prescribes that, before any agreement on user

requirement is finished, the developer should develop, with full

participation of users, a model of the total information system

of which the target system is a subset.

12.2 LIFE CYCLE MODEL

- Formulate the functional specification of the total information

system.

- Formulate the data structures of the total information system.

- Apply the above activity to each newly created function, in turn,

until the functions are designated to be either manual or

interactive (ie until there is no function left which needs to be

performed by a combination of these two methods).

- Summarise the model of the total system by a diagram depicting

its hierarchicalýstructures.

- Formulate man-machine system design (9 tasks are mentioed); form

data flow structures of man-machine system, and design control

structures of man-machine system.

- For each man-machine system, formulate the functional

specification as described in stepl, above.

- Decide which system is to be designed first.

- Design data flow structures of the selected man-machine

44

subsystem.

- Design externalýdata- structures for the selected man-machine

subsystem (ie. for each set of data entities which is

transmitted between the user and the machine in one transaction).

- Design control structures for selected man-machine subsystem (ie.

for each function to be performed by machine).

- summarise the design of maný-machine subsystem by means of

diagrams depicting its hierarchical structure.

- Software design (ten steps are summarised), which are: formulate

functional specification; define input/output data sets; design

the conceptual data structures; design data flow structures;

design external data structures; design control structures;

define functional specification for each subsystem; design the

software subsystem which supports the first man-machine

subsystem; define constraint module of the subsystem; carry out

implementation design.

12.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

entity, attribute, relationship, domain.

Notation used textual (not defined explicitly)

45

12.4 SYSTEM MODEL

Concepts used-in system specification and design

domain description, data type, range, functional decomposition,

data floWs, conceptual data structures, hierarchical structures

and man-machine system, entity sets, relation sets, group.

Notation used graphical, tabular, relational.

12.5 COMMENT

Completeness average

Economy above average

Ease of use average

Additional comments

EDM concentrates- more on processes and less on environment

modelling. Specification of quality parameters is comprehensive

to determine the quality of information system, traditional life

cycle phases are followed, and contains a set of constituent

activities of information engineering. Participation of users

and designers guarantees the success of the target system. The

importance of requirements specification in the system life cycle

is widely recognised. It may be difficult to users to visualise

by just agreeing on a textual document how the system will

actually work in their environment. Moreover the correctness of

46

the requirement analysis is not guaranteed.

EDM lacks in formality and gives several solutions of a problem

at a time, and sometimes system design stages may become clumsy

to follow. The factors during that affect the completeness Of

the requirements specifications'and changes in user requirements,

which are in partial control of the developer, are: inability of

users to anticipate their needs; inability of users to anticipate

the direction of their future requirements; : land the lack of

designers appreciation of users needs. EDM is similar to SADT,

CIM in the early part of modelling of the life cycle. Automated

support is provided for design document preparation and some for

testing the design solution.

12.6 REFERENCES

1. RZEVSKI G and others, (1982)

2. FREEMAN and Wasserman (1982)..

47 -

13.1 METHODOLOGY SUMMARY

Short name FAGIN

Full name FAGIN design and code inspection

Author(s) and institution(s) Fagin M E; IBM

Date of first reference 1975

Application field(s)-, -
data processing (only for determining

the check points for inspection) -

Life cycle stages detailed design

Software support analysis and checking

Development status developed in IBM

Comment

This is not a design methodology, but a set of methods for

finding errors in designs, code and test plans. These test plans

are called inspection plans, and are applicable to design and

implementation and test planning stage of system development

process*

13.2 LIFE CYCLE MODEL

- Overview: where the developer describes the product to the

remainder of the inspection team,

48

- Preparation: study of individual products by the inspection team

members,

- Inspections: user describes his understanding of the product, and

the moderator writes the inspection-report within one day,

- Rework: all the errors noted by inspection teams are resolved by

the developer,

- Followup: moderator verifies the quality of the rework, if the

rework is > 5%, then a complete reinspection is carried out.

13.4 SYSTEM MODEL

Concepts used in specification and design

Since it in not a design methodology, therefore only check points

which require inspection are mentioned.

Notation used textual

13.5 COMMENT

Completeness low

Economy average

Ease of use low

49

Additional comments

FAGIN is a technique only for checking and can be applied to any

methodology. Designs are checked for compliance with

requirements, code is checked for the compliance with design and

test plans. Procedures are checked against requirement and

designs. All the checks are performed for internal consistency.

Once a product has passed its inspection then it is bonded

(frozen).

These inspections can constitute to the technical control aspect

of software project management. A status reports can be produced

from inspections, enabling project management to monitor the

state of each product. Since this inspection continues

throughout the design and implementation phases, progress can be

monitored continually in the early phases of the project

development., I

13.6 REFERENCES

DOI, (1981).

50

14.1 METHODOLOGY SUMMARY

Short name

Full name

GEIS

Gradual Evolution of Information System

Author(s) and institution(s) Keha V; Finland

Date of first reference 1981

Application field(s)

Life cycle stages

Software support

Development status

Comments

d/p, o/s, and tools

requirements analysis

functional specification

programming

analysis and checking

prototyping

under development

-GEIS does not provide very clear definitions of disjoint stages

of development process, and supports functional hierarchy, data

hierarchy and interface definitions, seems to be weak in boundary

specification and detailed design. The work product is a

specification library.

51

14.2 LIFE CYCLE MODEL

- Initial phase to determine general schema,

- Limitation of the system: specification of limitation schema,

- Description of objects: specification of object schema,

- Descriptions of transactions and associated functions:

specification of transaction schema,

- Specification of fields,

- Specification of programs,

- Testing and interacting.

14.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

instance, object and relationships.

Notation used graphical

14.4 SYSTEM MODEL

Concepts used in system specification and design

general schema, limitation schema, object schema, transaction

schema.

Notation used graphical with some textual

52

14.5 COIZMNT III

Completeness low

Economy low

Ease of use average

Additional comments

Methodology seems to have ideas from JSP and relational database

model. The main objectives of the methodology are to provide the

information system acceptable to the users, and also that the

users understand the working of the information system.

It lacks in some technical concepts e. g. response time, security,

integrity etc; there does not exist specific constructs to build

the information system on evolutionary basis; it lacks in

theoretical foundations and may be suitable for simple data

intensive applications. The purpose of schema tools is not

clearly defined, no clear definition of automated generating

functions.

The strength appear to be its emphasis on an incremental design,

and its accessability to both user and developer, the provision

of software tools for interpretative execution and program

generation. It has same type of tool kit as the structural

design school, but is very much vaguer. It also resembles to the

Cobol program generator school, specially in its identification

of functions (ie. selection, projection, sort, match); while

53

inputs, outputs,, Cobol generator tools are not well defined.

Author has incorporated JSP in his standard practices for

creating Cobol programs which seem to be similar to WARNIER

,
(1981). GEIS do not support management aspects, quality

assurance methods applied to work product is "author reader

cycle" and the completed system is validated against original

requirements by end user feedback.

14.6 REFERENCES

KEHA V, (1982),

2. FREEMAN and Wasserman (1982)

54

15.1 METHODOLOGY, SUMMARY

Short name GAMMA

Full name GAMMA

Author(s) and institution(s) Falla M E; Software Sciences Ltd

Date of reference 1980

Application field(s) defence and data processing

Life cycle stages requirements analysis

functional specification

detailed design

programming

Software support analysis and checking

prototyping

detailed design aids

code generation

Development status under development

Comments

There is no distinction between the design and coding stages of

implementation. It does not contain an effective set of tools

and techniques to cover all stages of system development life

cycle. GAMMA philosophy is evolutionary is based on empirical

development, and is more a documentation technique. The tools

55

are: language to state design, design documentation system, a set

of extra tools to the developer, and computer based tools f or

correctness and performance.

15.2 LIFE CYCLE MODEL

- Determine resources,

- Determine the system model,

- top-down design,

- Project work bench.

15.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

class, data class, modules.

Notation used graphical

15.4 SYSTEM MODEL

Concepts used in specification and design

procedures, data structures, implementation techniques, system

structures, processes, decision tables.

Notation used textual (mainly)

56

15.5 COMMENT

Completeness average

Economy average

Ease of use low

Additional comments

Gamma is more suitable for medium to large size projects. The

number of code generators available limits the number of suitable

applications. Its database contains tools for creating, amending

and inspecting abstract modules together with some checking

tools. It is available on IBM 360/370. It uses-a planning for

modification of sequential upgrades of a product supplied to a

single user. The design of a -software product with variants

produced parallel for several users has not been dealt, and do

not provide facilities to define global constants. It allows

each user to evolve a language closely adapted to each

application area.

15.6 REFERENCES

1. FALLA ME (1981)

2. DoI, (1981)

57

16.1 METHODOLOGY SUMMARY

Short name HIPO

Full name Hierarchy plus Input, Process, Output

Author(s) and institution(s) Welf W; IBM

Date of first reference 1972

Application field(s) data processing

Life cycle stages functional specification

structural design

detailed design

programming

Software support- analysis and checking

prototyping

Development status used but obsolete

Comments

HIPO was developed as a documentation package consisting of four

parts: a visual table of contents (VTOC); an overview diagram; a

detailed diagram and an extended description. It is used to

support the use of stru ctured programming as a design approach.

58

16.2 LIFE CYCLE MODEL

First the developer identifies-a function and enters it as a new

box in the VOTC; prepares an overview diagram (to do this first

he lists all the outputs on the RHS of a sheet of paper) and then

specifies the inputs needed to produce these outputs, which are

noted on the LHS of the same sheet; rearranges the processes in a

logical order; summarises the columns in a format of an overview

diagram. After this the developer prepares detailed diagrams,

and an extended description of each box is entered in reviewed

VTOC. This process is like the preparation of overview diagrams

but with a rearrangement of data within the input and output

columns, and linking with connecting arrows, and data items are

similarly linked with processes. The preparation of detailed

diagrams has two added middle stages: (a) course tuning, and (b)

fine tuning; to simplify the appearance of detailed diagrams.

After another review the detailed diagrams-tand VTOC can -be

further amplified and the extended descriptions enable the

programmers the implementation by using HIPO charts, as a, basis

for programming and testing. ' .I

16.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

input, process, output, data, control.

Notation used graphical

59 ,

16.4 SYSTEM MODEL

Concepts used in specification and design

identification of"'Idata and processes, overview and detailed

diagrams, visual table of contents.

Notation used mainly graphical

16.5 COMENT

Completeness low

Economy average

Ease of use average

Additional comments

HIPO concentrates on processes and their hierarchy. A process is

completely described by graphical notation. It is mainly limited

how to use forms and templates and a narrative means to represent

design. HIPO charts are useful for defining major program

functions, but they provide a disjointed view what, a program is

doing as a whole. it ignores the sequential nature of

programming. It is difficult to estimate the degree of

complexity and the amount of coding required.

It is claimed that HIPO can be used as a design tool to improve

communication with users; as a means to provide documentation;

and as an aid for maintenance.

60

16.6 REFERENCES

1. TEICHROEW D, (1977)

2. BREWER T, (1979)

3. COTTERMAN and others, (1981)

LUDEWIG and others, (1978).

r

61

17.1 METHODOLOGY SUMMARY

Short name

Full name

HOS

Higher Order Software

Author(s) and institution(s) Hamilton M and Zeldin S; Higher Order

Software Inc I

Date of first reference

Application field(s)

Life cycle stages

Software support

Development status

Comments

1976

defence, science/engg, O/S' tools,

experts systems-

requirement analysis

functional specification

detailed design

programming

analysis and checking

detailed design aids

code generation

in use

USA and Isreal defence departments have recently funded the

project for further development to suit their demands. HOS

requirements in terms of design are stated as in SADT and ISDOS.

62

There is 'no specific aspect of methodology for modification,

evolution and control. It can be used with other methodology

which addresses configuration control or top level requirements

analysis. HOS specification ultimately becomes of the form which

can be used by Ada, Simula and ALGOL-68.

HOS developed after APOLLO-11 with the aim to develop techniques

to apply -to -some of sky-lab software, which was a kind of

maintenance mode to APOLLO, and later on the shuttle flight

software. Some anomalies were noted during configuration

control: (a) 70% problems occurred due to interface and timing;

(b) conflicts between software and hardware and between man and

machine. Tools to support the development process are: RAT

(resource allocation), Analyser (to make sure the rules are

followed), Collector (to collect hardware to execute system on

the higher order machine)*

17.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

empirical data, control axiomss control map.

Notation used graphical

I

63

17.4 SYSTEM MODEL

Concepts used in system specification and design

data types, primitive operations, control structures, graphical

control map, functional hierarchies,, -, set partition, union and

intersection and set category theory.

Notation used textual, graphical and mathematical.

17.5 COMMENT

Completeness average

Economy high

Ease of use low

Ir
Additional comments

It supports: top-down design strategy; correctness of design at

successive' levels of decomposition; information of users through

control map; encourage a dialogue for requirement formation. HOS

may be used as a meta-methodology in the sense that one can

define the syntax of SREM, MASCOT graphics in terms of the HOS

notation (ie. AXES).

HOS mechanisid is to read library that currently exists for

building systems and to evolve new mechanisms to obtain more

abstract control structures, abstract data types, and operations.

This process continues recursively until the library is complete.

64

HOS supports the technical concepts such as function and data

decomposition, interface definitions, data flow, sequence control

flow, concurrency, and formal program verification. Its products

are: formal specification in a library, graphic control map, and

program code. It also supports the management aspects: project,

technical and validate work products and system evolution. HOS

determines inputs/outputs keeping in view that one does not know

before hand and an interactive procedure is adopted to achieve

thi s, HOS has two aspects one as a realtime, and the other is the

system development itself In order to make the deliverables. The

language "AXES" used is quite difficult and unsuitable for data

processing community, control map and axioms are ambiguous and

also difficult for an average developer.

17.6 REFERENCES

TEICHROEW D, (1977)

2. DoI, (1981) x

3. LUDEWIG J, (1978)

4. FREEMAN and Wasserman, (1982)

65

18.1 METHODOLOGY SUMMARY

Full name

Information Algebra

Information Algebra

Author(s) and institution(s) Bosak R and others; CODASYL.

Date of first reference 1962

Application field(s) dp, sc. /engg, tools, expert systems.

Life cycle stages requirements analysis

functional specification

detailed design

Software support

Development status published but probably never used

Comments

The language, structure group (LSG) of CODASYL formed in 1959
.
to

provide a formal thepretical base to programming languages and

theory of data processing. LSG has not produced a comprehensive

theory, but many concepts in the report could contribute to such

a development and further research in this area. The algebra

cannot be applied to data processing as a methodology, but

certainly it provided valuable concepts which are reflected in

most of modern methodologies.

66

18.2 LIFE CYCLE MODEL

- Specify the property space (entities, relationships),

- Determine areas (files to be used),

- Determine value set of properties,

- Define function of glumps,

- Describe the glumping function of the system,

- Describe areas glumped,

- Take union of or cartesian product or join (as appropriate) of

the areas which determine the outputs.

18.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

entity, property, event, instance.

Notation used mathematical

18.4 SYSTEM MODEL

Concepts used in specification and design

property space, line, bundle, glump, bundling function, function

of glumps, datum point, and area.

67

Notation used mathematical and tabular, textual.

18.5 CommENT

Completeness low

Economy high

Ease of use low

Additional comments

It provides manual design method, but might be developed to

permit automatic generation of programs, and provides a good

formal theoretical analysis of problem domain. It is an

important initiative and requires further research to make it in

a more usable form for the data processing community to describe

the models of information systems. LSG has not been able to

produce a user oriented easy language for defining problems,

neither it provides algorithms to translate I. A statements into

machine level programs, but these efforts do contribute to

further refinement and extension of the I. A, by incorporating

essential functions and operators.

18.6 REFERENCES

CODASYL, (1962)

2. TEICHROEW D, (1972)

68

19.1 METHODOLOGY SUIOIARY

Short name ISAC

Full name Information Systems work and Analysis of

Changes

Author(s) and institution(s) Lundeberg M; The Institute of

Development of Activities in

organisations, Sweden.

Date of first reference

Application field(s)

Life cycle stages

Software support

Development status

Comments

1879

dp, tools, science/engg.

requirements analysis

boundary specification

functional specification

structural design

detailed design

prototyping

in use

It is process oriented and covers all stages of system

development process, except operation and maintenance, and deals

in detail the early part of system development process. Problem

oriented work is concerned with requirements analysis to analyse

69

the problems of organisation and to determine changes which are

needed, such as the development of a new version of information

system. Data oriented work is concerned with implementation

aspects of the system. The outputs of ISAC are: A-graph, text

pages, property tables, and other tables. ISAC is not based on a

particular data model.

19.2 LIFE CYCLE MODEL

- Change analysis, (description of changes in the problems of the

enterprise)

- Activity analysis, (different ambition levels are specified),

- information analysis, (specification of the aims of the target

system).

Each of the above mentioned levels may further subdivided into a

number of steps.

19.3 ENVIRONMENT MODEL

Con epts used to describe the system environment

A-graph, activity, set, flows.

Notation used mainly graphical

70

19.4 SYSTEM MODEL

Concepts used in specification and design

A-graphs, I-graphs, C-graphs, process tables, -D-graphs.

Notation used graphical

19.5 COMMENT

Completeness average

Economy high

Ease of use low

Additional comments

It provides: an understanding of the application; identification

of socio-technical and economic problems; can solve complex

problems by decomposing it into subproblems; concepts taken from

Langefors (1973) of separating infological and data logical

problems; triggering mechanism is similar to Grindley (1972). It

stresses the learning of information system design; investigative

and diagnostic aspects; user participation; environment modelling

(through change analysis and activity study); a sequence of

systematic activities of specification and design.

ISAC does not provide any commercially available hardware or

software support, and the details of developing software are not

specified; computer aspects are not considered as a part of

71

documentation; graphical notation is sometime clumsy. The rules

for consistency checking and decomposition of activities;

algorithms to specify different type of graphs; rules for data

modelling and user interface are- not clearly described.

Complexity of ISAC can be in the order: NIAM, EDM, ISAC. ISAC is

based on the importance of people in the organisation and

provides structured walkthoughts inspections and prototyping for

checking against original specifications.

19.6 REFERENCES

LUNDEBERG M, (1982)

2. FREEMAN P and Wasserman, (1982).

72

20.1 METHODOLOGY SUMMARY

Short name

Full name

IML

IML-Inscribed High Level Petri nets

Author(s)ýand institution(s) Richter G and others; West Gemany*'

Date of first reference 1882

Application field(s)

Life cycle stages

Software support

Development status

Comments

dp and real time

functional specification

detailed design

programming

analysis and checking

detailed design aids

under development as, a research project

IML emphasises the distribution and concurrency aspects in the

design of information systems. Although hardware development

made the distribution commercially attractive there remains still

some engineering problems intrinsicly tied to the idea of

distributing processing autonomy. Such an approach must first

establish the casual structure of the problem and only then to

proceed to the problem of designing a system which is complete

73

with the casual-structure.

In a Petri net, a channel represents a predicate, the set of

things for which the predicate holds (interpreted as the

representative of the contents of the channel). Agencies

represents all possibilities of coincidence change of the

predicate extensions, and are known as transactions. The

methodology provides insights into distribution and concurrency

aspects in the design, used to obtain a distributed solution (if

required). The casual system structure is elaborated with

minimal data structure. Very few details are given about a

method which enables the analyst to desgn Petri nets, and also do

not give the information regarding conceptual modelling.

20.2 LIFE CYCLE MODEL

- Specify first overview nets (channel agency nets) to provide a

general overview of the information flows in the proposed

information system problem.

- Specify high concurrency net (to arrive at a more detailed

description of the information flow and introduce a stricter

interpretation of the nets to arrive at a predicate/ transition

net namely Petri net).

- Specify second overview net (to understand and survey the entire

Organisation).

- Specify low concurrency nets (for implementation, making decision

74

as to which functions and data are to be grouped into functional

units).

20.4 SYSTEM MODEL

Concepts used in specification and design

first overview channel agency net, double arrow convention ý for

Petri nets, convertion for a non-destructive read operation,,

inscription macros, IML box representation, second overview nets,

low concurrency net. ,

Notation used mainly graphical some textual

20.5 COMMENT

Completeness low

Economy average

Factp nf ii. qp low

Additional comments

User particaipation in the system development phases entails new

requirements for system design methods and tools, the most

conspicuous requirement being a Iligti jLevei. empnasis ULL

modifiability of design due to interface adaptation and

evolution. Thus at each step in the development process, the

design and implemented product must be alterable and hence

mentally manageable on any level of detail. This approach f irst

75

identifies the conditions of application (to be created during

any distribution), and then identifies the casual structure and

proceed to a design compatible with casual structure. The

description tool is a cross between two independent conceptual

systems: predicate/transition nets, and information management

concepts, for which a suitable language IML has been specified.

In channel agency nets nothing is mentioned about the packaging

of information into messages, sequencing, information

transformation; and the nets are also unspecific with regard to

the disposal of used information (ie- whether it is retained or

eliminated).

Notation is difficult and insufficient to describe the entire

development process.

20.6 REFERENCES

RICHTER G and Durchholz, (1982)

76

21.1 METHODOLOGY SUMMARY

Short name

Full name

JSD

Jackson System Development

,z

Author(s) and institution(s) Jackson M; M. Jackson Ltd.

Date of first reference

Application field(s)

Life cycle stages

Software support

Development status

Comments

1980

dp, o/s, tools, embedded.

requirements analysis

functional specification

structural design

detailed design

programming

in use, though still under-development

JSD being relatively new, there is little experience upon which

to base the judgement. it is based on simulation modelling. It

may be regarded as an extension of JSP, into the areas of systems

analysis, specification, design and implementation. It is used

as a basis for program design, and system design by providing a

representation of the structure of the data handled by the

system.

77

Technical concepts supported by JSP are: data hierarchy,

interface definitions, data flow, sequence control flow and

concurrency, but do not support formal program verification, and

functional hierarchy.

Work products are: entity and action list, entity structures

(trees), system specification structure texts., system

implementation diagrams, executable texts and database design.

Quality assurance methods are: 'author/reader cycle, structured

walkthoughts and inspections. Completed system is validated

against original requirements by manual checking, specific tool

support is under development. ý JSD system building of the

information system comes before describing any function, because

it assumed that model itself implies functions, change can be

easily incorporated in the model, and the model is more stable

than functional description and improves developer/user

communication.

21.2 LIFE CYCLE MODEL

- Entity action step: specification of real world entities and

actions. 11

- Entity structure step: actions suffered or performed by each

entity are arranged in their ordering of time.

- Initial model step: description of reality in terms of entities

and actions and the connections between the model and real world.

78

- Function step: functions are specified to produce the required

outputs of the system.

- System timing step: considerations of the process scheduling

which might affect the correctness or the timeliness of the

system's functional outputs.

--lmplementation step: specification of hardware and software

(transformation, scheduling, database definition techniques are

applied to run the system efficiently).

21.3 ENVIRONMENT MODEL

Conc.
_epts used to describe the system environment

entities, action, process.

Notation used graphical (strucured diagrams)

21.4 SYSTEM MODEL

Concepts used in specification and design

reality, functional specification, time dimension, static and

dynamic models, process connections, channel, data stream,

inversion, levels 0,1 and 2, state vectors, sequential data

streams and dismembering.

Notation used mostly graphical and some textual

79

21.5 COMMENT

Completeness low

Economy low (for large systems specially)

Ease of use , average

Additional comments

Model in term of processes is expressed as: (a) specification of

the processes to be contained in the model, (b) how the processes

to be connected with data streams, and after this the developer

consider the functions. The model is chosen with some idea of

functions, but this idea is articulated in terms of model itself,

and as such some functions become possible while others

impossible. The impossible functions are those referring to

entities and actions which are omitted from the model.

JSD recognises that the specification lies at the process level;

a sequential process is regarded as an entity; the process

scheduling is determined at specification rather than when the

system is implemented.

It supports that the complete reality should be mirrored by the

model, but the parallel and intermediate ways are not clearly

defined. Three types of functions are specified which are:

embedded, imposed and interactive. JSD embodies the JSP

implementation technique of process scheduling by program

inversion; and it shares underlying principles and concepts which

80

in JSP are not" so clear but in JSD they are more explicit.

JSD in the initial step of his procedure enables the designer to

have the specification of functions in his mind, which is an

ambiguous state in the methodology. JSD allows sequential

processes while in the real world there are processes which are

not sequential. Real world fighter plane fire and fly at the

same time, while JSD models the reality in sequential way because

programs are sequntial. outputs are of primary importance in the

design, while-JSD considers them in fifth step of his method.

21.6 REFERENCES

1. COTTERMAN and others, (1981)

2. FREEMAN and Wasserman, (1982)

3. JACKSON M, (1983).

81

22.1 METHODOLOGY SUMMARY

Short name

Full name

LBMS

Learmonth Burchett Management Systems

Development Methodology

Author(s) and institution(s) Hall J; LBMS London.

Date of first reference 1981

Application field(s)

Lif cycle stages

Software support

Development status

Comments

data processing

requirements analysis

functional specification

structural design

detailed design

programming

data dictionary

in use

Methodology is structuredon the lines of Gane and Sarson, and

includes some concepts from Codd, Martin and Bachman, and covers

most of the stages of traditional development life cycle. The

input to the methodology is initial study, and the outputs are

program specification, user procedures, operating instructions

and database design. It introduces a set of rules (first cut)

82

which automatically converts the logical design to a physical

organisation for DBMS; uses DFD, logical data structuring

techniques and 3NF synthesis.

22.2 LIFE CYCLE MODEL

- Analysis of current automated or manual system (initial report),

- Outline the design of the proposed system (both processing and

data),

- User management selection of the service required, based on the

cost, time, and available resources,

- Detailed data design

- Detailed process design,

- physical design

A detailed design set of steps is also provided.

22.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

events, state, change.

Notation used graphical some textual

83

22.4 SYSTEM MODEL

Concepts used in system specification and design

audit control, logical data structures, process, user options,

3NF relations, composite logical structures, function catalog,

first cut program outline, program specification, operating

procedures and DBMS or file definitions.

Notation used graphical, textual

22.5 COMMENT

Completeness average

Economy low

Ease of use average

Additional comments

Methodology may be regarded as a mixture of both data and process

analysis, and represents data in three forms: DFD, entity model,

and transaction histories. The logical data structuring

technique overview runs in parallel with creation of DFD's. The

idea is that the detailed investigation should be complete before

other subphases are started. There is no specific mention of

boundary specification. The developer outlines the design of the

target system followed by data design, procedure design and

physical design. One tool is specifically mentioned ie. data

84

dictionary, Checking' is performed in four phases: program

testing, system testing, acceptance testing and volume testing.

All documentation is prepared manually and creates a test

strategy. Full system documentation is built up as analysis and

design process. Approach is independent of any hardware. No

major software aids seem to required except for standard

utilities for testing/checking. No specific SSDL is mentioned.

22.6 REFERENCES

HALL J, (1981).

85

23.1 METHODOLOGY SUMMARY

Short name Langefors Algebra

Full name Langefors'Algebra

Author(s) and institution(s) Langefors B; Stockholm University

Date of first reference 1964

Application field(s) dp, O/s, AI/Exp., embedded and

science/engg.

Life cycle stages requirements analysis

boumdary specification

functional specification

detailed design

Software support

Development status published but probably not directly used

Comments

It gives over emphasis on data transport and less on design, no

unified notation for system specification and design, does not

provide a complete system model. Precedence analysis and other

theoretical concepts provide a very strong theoretical base to

the developer for his system development work. ' The fundamental

principle of systems work is the key point suggested for the

design considerations.

86

23.2 LIFE CYCLE MODEL

Fundamental principle of system work, is defined as follows:

- Definition of the total system as a set of parts,

- Definition of system structures (ie. -interconnections between

the parts),

- Specification of the system parts and properties of each part,

- Specification of the properties of the total system, and

repeat the above mentioned procedure until system

specification is satisfied.

Divide the system work among several people who have

experties in the particulr task.

3. Formulise the tasks mathematically: this is known as most

efficient way in which the "fundamental principle" can be

applied, and successfully experimented in electrical networks and

elastic structures, and is performed by applying matrix algebra

and algebraic topology.

4. If a mathematical model of working principle is not possible,

a strict adherence to the principle led to successful systems

work, making extensive distribution of labour possible and yet

leading to no incompatibality problems when connecting design

parts, a problem which is otherwise common.

87

23.3 ENVIRONMENT MODEL

Concepts used to describe the system envirorunent

pre-knowledge, e-message, e-facts, event.

Notation used graphical mathematical and textual

23.4 SYSTEM MODEL

Concepts used in system specification and design

precedence, succedence, process, crude analysis, eighth theorem.

It deals mainly with processes and data to be handled in these

processes and there is no a specific technique for the design.

Notation used textual, mathematical, matrix.

23.5 COMMENT

Completeness low

Economy high

Ease of use low

Additional comments

Langefors Algebra assumes that an information system is designed

to handle such functions as collecting, storing, processing and

displaying of data, which implies that the information system

grows in a way dependent on the development of data processing

88

machinery. It provides low level design considerations,

difficult mathematical notation. The importance of

methodological concepts lies mainly in its influence on other

successful work such as: ISDOS and real time systems. The

e-record represents e-messages of e-concepts which will have a

type design based on e-message type, but requires still further

decisions about representation, and further schema design; ie.

choice of value domains, their representations say size, picture,

to use Cobol terminology. It is not clear whether e-records will

be stored directly or separately or will be embedded in large

records or structures.

The precedence analysis concept is a most practical tool being

adapted in some form by most of the system development

methodologies. Petri-net which is the most active current area

of research may be regarded as a dynamic model of precedence

analysis.

Langefors stresses the early stages of system development and

establishing algorithms for solutions to specific problems rather

than a formal description of a system development methodology.

The relativity principle mentioned is also appealing for the data

processing community which is "every system which is subject to

influence from its environment is a subsystem of some large

system and, every system part is potentially a system".

89

23.6 REFERENCES

1. LANGEFORS B, (1973).

LANGEFORS B, (1981).

3. LANGEFORS B, (1982).

4. TEICHROEW D, (1971).

5. GRINDLEY CBB, (1972).

6. COUGER and Knapp, (1974).

90

24.1 METHODOLOGY SUMMARY

Short naine

Full name

MASCOT

Modular Approach to Software

Construction, Operation and Test.

Author(s) and institution(s) Jackson K; TRE Malvern.

Date of first reference 1976

Application field(s)

Life cycle stages

Software support

Development status

Comments

embedded, real time.

requirements analysis

functional specification

structural design

detailed design

data dictionary

analysis and checking

detailed design aids

in use

Software comprises a "Kernel" which contains a schedular, intrupt

handler, system clock, error handler, process synchronisation,

monitor, organiser and a driver for input/output devices and a

link driver. The functions specified are represented by circles

which enables the developer to postulate data flow network from

91

input through to output. It is then processed by a set of

processors on the way, and in that the processing may need to

remember internal information as the journey proceeds. Software

development has three phases: overall software design, detailed

software design, implementation and test.

24.2 LIFE CYCLE MODEL

- Divide the system into subsystems,

- Specify activities within each subsystem, and then draw an ACP

diagram,

- Produce specifications for each activity,

- Specify a detailed design structure (of access, initialisation

and point procedures).

24.4 SYSTEM MODEL

Concepts used in system specification and design

ACG diagram (activity channel pool diagram), detailed diagrams of

structures, connection diagram, source, sinks, data paths.

Notation used graphical

92

24.5 COMMENT

Completeness average

Economy average

Ease of use low

Additional comments

Formulation of software structure and methods for designing,

implementing and testing using the formulism of the network

diagram is similar to SREM. MASCOT has the same goals as HOS,

WALMADE and SREM, but MASCOT and WALMADE may be regarded as

complementary to eachother. GAMMA misses out, in common with a

lot of. others, is that there is no top, and no way of getting an

overall picture of the scheme, and if anything, that the network

diagram really does. There are run time facilities provided

within the Kernel, specially for scheduling and synchronisation

aspects, and monitoring facilities which permit a detailed

snapshot of realtime events. MASCOT is concerned with those real

time systems where whole data is in main memory. One can map a

channel or a pool into the backing memory, but the problem of

memory swapping of activities is not mentioned.

MASCOT has been used on whole range of machines from INTEL 8080

microcomputer with 700 bytes, to IBM 370. The majority of

implementations for defence have been in mini-computers.

MASCOT use Pascal and other languages and recently a Pascal

93

implementation' is reported at Imperial college. There is a

strong 1-1 relationship between the user requirements and

software modules, in that it is comparable with SADT. Petri-net

work also seems to contributed to MASCOT developm&nt', because

Petri-nets are concerned with the flow of tokens and controls,

whereas MASCOT is trying to de-couple entry from that, and is

based on data.

MASCOT supports languages which recognises activities, channels,

pools and messages.

24.6 REFERENCES

ASWE, (1979).

Dol, (1981).

94

25.1 METHODOLOGY SUMMARY

Short name

Full name

NIAM

Nijssen Information Analysis Method.

Author(s) and institution(s) Nijssen GM and others; Control Data

B. V, Netherlands

Date of first reference

Application field(s)

Life cycle stages

Software support

Development status

Comments

1982

dp, tools, A. I,

requirements analysis

functional analysis

structural design

detailed design

programming

data dictionary

analysis and checking

detailed design aids

in use

NIAM supports the concepts of: functional decomposition, data

decomposition, interface, definitions, sequence control flow,

formal program verification. Its main emphasis is on information

analysis, makes an inventory of all functions of the target

95

system, decomposition of these functions to a level where

information flows and transformations become clear, every level

of decomposition is specified in terms of a hierarchy of IFD's,

functions and constraints are described formally. All the

results are expressed in a formal language.

NIAM does not support system development in a strict system

development life cycle, but adopts the idea of a framework in

which three main components are distuinguished; the object

system, information system, and the environment. There is no

feasibility study phase, and the methodology is based on a binary

relationship approach, it does not consider concurrency problems.

25.2 LIFE CYCLE MODEL

- Specification of a conceptual model,

- Function decomposition,

- Specification of sentence model,

- Decomposition of sentence type,

- Specification of constraints,

Specification of subtypes,

Express the above in a graphical notation (IFO's),

- Specification of population and set oriented diagrams,

96

- Express IFD's in a conceptual grammar,

- Formulise the constraints.

25.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

abstraction system, object system, conceptual grammer,

information base, and meta-conceptual grammer.

Notation used graphical

25.4 SYSTEM MODEL

Concepts used in specification and design

lexical objects (string for representing real objects),

non-lexical objects (object in the real world), idea, subtype

(objects sharing a property), constraints, identifier, set, total

role, information flow, bridge type, lot, non-lot.

Notation used textual (RIDL) and graphical.

25.5 COMMENT

Completeness high

Economy average

Ease of use above average

97

Additional comments

The following tools are supported: enforcer to enforce the rules

of grammer; interpreter between environment and enforcer;

Collector of request from the environment; presenter of the

requirements from the environment. -There are some similarities

with AGM/PCM; both gives equal emphasis on the analysis of

structural and functional similarities; both employ the principle

of abstraction. The abstraction used in ACM/PCM helps in

managing the complexity of the overall system which is also true

in NIAM.

NIAM is remarkbly in its resemblence to structurel analysis, and

its philosophy is based on a perception of the real world in

terms of: object system, abstraction system, conceptual grammer,

information base and environment.

The authors claimed that they have met the objectives of the

designed system by defining its concepts on the principle that

all functions performed by an information system can be

completely described by a conceptual grammer which is the only

communication between the user and information system. NIAM is a

process oriented and is concerned with the information flows

between user and information system and between the processes

within these systems, but it makes a little mention of the

organisation structure. NIAM maintenance of analysis and design

is done in a specific language RIDLE, definitions and changes are

stored in ISDIS which acts as a data dictionaty which stores and

98

updates the conceptual statements of NIAM, shows the implications

of the specified conceptual grammer, and compile the conceptual

grammer to make it suitable for enforcer.

NIAM work products are: knowledge based integrated software

information; generating system documentation; cross references,

reports and process description. Representation schemes used

are: IFD, ISD, dictionary, and formal specification language.

Completed system is validated against original requirements by

the acceptance test ie verification of: IFD's and constraint

definitions; walkthoughts; impact of change in specification.

Investigative, creativity and feasibility aspects are not dealt.

It also do not deal the technical design of data systems and is

more mechanistic due to emphasis on reality modelling. Its

theoretical base is mainly from computer science and linguistics

and contains a high data complexity. Data structures represents

a conceptual view of the database and may be implementated by

using ISDIL, but little information is given how these diagrams

to be drawn, and what happens when the developer faces naming

problems. NIAM excludes the decision for computerisation

strategy, feasibility, implementation.

99

25.6 REFERENCES

1. VERHEIJEN G M, (1982).

2. FREEMAN and Wasseman, (1982).

100

26.1 METHODOLOGY SUMMARY

Short name PRISMA

Full name Planning and Requirements Analysis for

Information Systems (a modelling

approach)

Author(s) and institution(s) Laagland PTJ and others; Klynveld,

Kraayenhof and Co. Netherlands.

Date of first reference 1981

Application field(s)

Life cycle stages

Software support

Development status

Comments

data processing

requirements analysis

functional specification

detailed design

under development

It seems to be stronger on organisational and requirements

analysis aspects and weaker in system specification, design and

implementation.

101

26.2 LIFE CYCLE MODEL

- System planning phase (information structure plan, information

system plan, feasibility study),

- Development of business model (identify scope of: business system

and subsystems, information needs, data stores and analyse the

data flows),

Development of information model (identify the scope of

information system, definition of information functions, usage of

data stores),

System development (system specification, design and

implementation).

26.3 ENVIRONMENT MODEL

Concepts used to describe system environment

environmental units, generates, generated by, receives, received

by, GSD flow etc.

Notation used graplical.

26.4 SYSTEM MODEL

Concepts used in system specification and design

N-square chart, business function matrix, organisation units.

102

Notation used matrix, textual

26.5 COMMIT

Completeness low

Economy average

Ease of use average

Additional comments

PRISMA may be regarded as a set of two methods: a business system

and a model of the information system. A structured model

description language together with modelling concepts is

described. To describe business model, business functions are

identified and linked by data flows of goods and services with or

without data stores, and the descriptions of data stores and

flows are ambiguous. To describe the information model,

information functions of data generation, enquiry update and

recording are defined together with their sources and

destinations. Information system modelling is very briefly

defined and gives static and mechanistic view of the business

reality. Methodology is a set of N-square charts, a binary

relationship model. The transition from business model to

information model is not demonatrated. The binary relationships

to describe data stores becomes lenghty, and this can be solved

if n-ary relationships are also used. It provides no rule as how

to get output from given inputs. In some respects it may

103

regarded similar to NIAM, BISAD, and ISAC. Its environment

modelling and physical levels are not clear. N-square mtrix may

become unmanageable for large systems. PRISMA has not yet

reached to a state where 'it should merit as a complete

methodology.

26.6 REFERENCES

LAAGLAND T M, (1982).

104

27.1 METHODOLOGY SUMMARYe

Short name

Full name

PSL/PSA

Problem Statement Language and Problem

Ststement Analyser

Author(s) and institution(s) Teichroew D; University of Michigan

Date of first reference 1969

Application field(s)

Life cycle stages

Software support

De elopment status

Comments

dp and embedded

requirements analysis

functional specification

detailed design

analysis and checking

prototyping

detailed design aids

in use, though

development

under continual

It provides a model of information systems, present and future

needs of the organisation, requirements specification and

analysis, a basis for making decisions in the current and

subsequent stages of the system, development process. It provides

a basis for integrating and extending automated design

105

methodologies.

27.2 LIFE CYCLE MODEL

- Study and describe the current system,

- Improve the current system,

- Propose an improved system,

- Divide the proposed system into subsystems,

- Identify required information,

- Express the requirements in PSL,

- Specify a computerised database,

- Specify capability to display data to users,

- Specify the capability to check consistency and completeness,

- Specify the capability for analysis and evolution,

- Specify decision making aids.

27.4 SYSTEM MODEL

Concepts used in system specification and design

entity name, attribute name, attribute value, cardinality,

identified by, consists of, security, relation, synonyms.

Notation used formal textual notation (PSL)

106

27.5 COMMENT

Completeness average

Ease of use average

Economy high

Additional comments

It contains a number of tools which fall into three categories,

namely: report generator, database enquiries, and completeness

checkers. The report generators are the largest group and

consist of a collection of programs that traverse the database

and prints out various parts of it in a variety of ways.

There is not a fixed way of using PSL/PSA as demonstrated by

Teichroew and others by using the tool kit with various

procedural methodologies, and also they claimed that it is

possible to use the tool kit to support any methodology, and aids

in the organisation of the large project teams. It is an

evolving system, do not have the capability for the modelling of

conceptual schema. It incorporates three important concepts: all'

information of the target system is to be kept in a computerised

development information system database; processing of this

information is done by the computer to a maximum extent; and

specifications are to be given in "what" and not in "how" terms.

The automated analyser, PSA, operates on the database of

development information that has been built up out of PSL inputs.

107

It provides reports indicating changes to the development

database. It also performs some analyses of information in the

database to indicate such things as gaps in the specified

information flow, unused data objects and the dynamic behaviour

of the target system.

27.6 REFERENCES

1. DoI, (1981)

2. TEICHROEW D, (1976)

3. KAHAN B K, (1976)

4. LARCHER, (1980).

108

28.1 METHODOLOGY SUMMARY

Short name REMORA

Full name The REMORA methodology for information

systems design and management

Author(s) and institution(s) Rolland C and others; University of

Paris

Date of first reference

Application field(s)

Life cycle stages

Software support

Development status

Comments

1982

dp, tools, embedded

functional specification

detailed design

programming,

analysis and checking

detailed design aids

under development as a research project

Information system development process is completely assisted by

an automation system organised around the pair (man, automation).

A set of models have been proposed, describing the system from

the conceptual description through implementation. The approach

may be regarded as structuralist type and not functional type,

corresponds to the development of databases, DBMS and build the

109

system'-through the definition of its structure, and is claimed to

be more complete than most of existing approaches. Information

system development process is split up into two steps: (a)

conceptual step, and (b) internal step (includes the technical

aspects of the solution ignored in the first step and takes into

account -the participation of users). In both of these steps a

solution is, obtained through modelling using theoretical

concepts, methods, logical rules and then describing the model by

using a formal language. There are eight phases of the

modelling: static, dynamic, using ISDEL language, module and

trigger concepts, control-integrate document system functions to

add the application specifications from the process

synchronisation subschema to the previous ISDEL statements;

derivation of a logical data schema from static data subschema;

and specific logical data
'schema.

28.2 LIFE CYCLE MODEL

- Choose a typical relational model,

- Represent each class of phenomena and each class of associations

by relations,

- Specify each property of a class of phenomena by an attribute of

relation,

Specify each category of the class of phenomena by its relation

type ((c-object, c-operation, c-events),

110

- Describe the above relation type in temporal normal form.

28.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

object, event, trigger, operation, modify, ascertain. A state

change expresses the passage from one state to another; event is

a state change and triggers determined operations; assertion is

an assertion between event and one or more objects; and a trigger

is a an association between event and operations.

Notation used graphical

28.4 SYSTEM MODEL

Concepts used in system specification and design

relation type and description, relation specification, list of

all-attributes, integrity constraints, domains.

Notation used formal textual (ISDEL) and graphical

28.5 COMMENT

Completeness high

Economy high

Ease of use -above average

Ill

Additional comments

A number of notations are used, each to describe a specific

level. Schema Programming and schema like languages describe the

static and dynamic levels of conceptual schema and also a

specific graphical notation may be used for dynamic subschema.

The relationship between ISMS, computer aided system and the

pilot is obscure. The DBMS and SOCRATE and syntax should have

been defined. The project management is based on a formal model

derived from conceptual schema which is widely recognised for the

design of large and complex information systems employing

automatic data processing, network communication and real time

responses. Automated tools are not defined, however conceptual

design specification for these tools is comprehensive. REMORA

deals logical design, storage structure, access, program

decisions, but their description is not provided in relation to

development phases rather described in a mixed up format, and

some time becomes ambiguous. REMORA contains ideas similar to

DADES, ISDOS, NIAM and Systematics. Events and triggering

condition;, specifications are difficult to apply. It contains a

static schema and a dynamic schema of ACM/PCM, and identifies two

levels of abstractions ie. conceptual and logical, which

respectively deal with semantic representation of the real world

and a definition of the technical solution. Validation and

simulation tools include CAD with original architecture, the

design process is controlled by an automation PILOT which

coordinates man-tools interventions. Tools perform: control,

412

integration, simulation and documentation. In the dynamic schema

the border of the universe of discourse may be difficult to

recognise because of schema structuring style. REMORA seems to

be practical, well justified, reasonably -complete and computer

aided, and may be considered as a promising candidate for future

development. Investigative/diagnostic and creativity aspects are

not dealt, and use ANSI sparc to specify levels of abstraction.

There is no enough information about: empirical experimentation,

the specification of the project report, roles of users and

developers, the methods to obtain static and dynamic subschema.

The project covers both the aspects, academic and industrial

while some definitions are not very clear such as event = state

change of an object. It does not support management aspects, and

supports: consistency checks, implementaion, function/data

decomposition, interface definition, data flow, sequence control

flow, currency and formal program verification.

28.6 REFERENCES

1. ROLLAND C, (1982)

2. FREEMAN P and Wasserman, (1982).

113

29.1 METHODOLOGY SUMMARY

Short name Sysdoc/Systemator

Author(s) and institution(s) Aschim F and others;, Central Institute

of Industrial Research, Norway

Date of first reference 1982

Application field(s) data processing

Life cycle stages requirements analysis

functional specification

detailed design

programming

Software support analysis and checking

prototyping,

detailed design aids

code generation

Developmentýstatus in use

Comments

Sysdoc is an information design methodology which contains a high

level language SYSDUL, and Systemator is a software tool which

provides computer aids to all phases of information system

development. It also contains modules: to provide designs from

requirements; storing; modifying; documenting; and analysing

system requirements. It has, anýanalysis capabilty of PSL/PSA and

114

SREM. Methodology may be regarded as data oriented, the results

of analysis are stored in a data dictionary supported by

SYSTEMATOR, which translates the design results in a prototype

implementation, generating a schema and programs to manipulate

the database. Sysdoc concentrates on analysis, user interface

specification and design, and technical design., It does not

support strategic planning and feasibility study.

29.2 LIFE CYCLE MODEL

- Identify the users of the proposed system,

- Prepare a list of the entities involved,

- Specify relationship types and construct a data model,

- Compile a list of inputs and outputs,

- Define the entity types and associated data elements.

Sysdoc covers the design and implementation phases as follows:

- Form the definition of the problem and list the classes of

end-users,

- Interview users and management to find: the list primitive

(preliminary) entity, types; relationship types.

- For each transaction type specify input and report lists,

Specify the occurrences of representations of each entity type

115

identified by end-users and computer systemp

- Describe each transaction type giving screen data content, screen

data layout, and processing rules as abstract programs in SYSDUL,

- Generate a prototype runable system by generating a primitive

database design, a primitive physical design, appropriate Job

control language (JCL), generating application programs in

Fortran or Cobol from the abstract programs, evaluate and modify

the primitive system, and improve the physical design.

29.3 ENVIRONMENT MODEL

Concepts used to describe the sXstem environment

entity type, relationship type, data element type (attribute)

Notation used graphical

29.4 SYSTEM MODEL

Concepts used in system specification and design

conceptual data modelling technique is used for requirement

specification, elementary entity tyes, data element types,

relationship type, mixture type, description of: processing

rules, end users, data contents, data structures, screen layouts,

time and volume, transactions.

Notation used tabular (forms) and textual (SYSDUL language)

116

29.5 COMMENT

Completeness above average

EcOnomy- average

Ease of use low

Additional comments

Conceptual data modelling is the main technique used for

requirement specification in consultation with users, and the

corner stone of Sysdoc is a specification of requirements, a set

of tools. No formal language has been made in Sysdoc to provide

a functionally oriented description (other than abstract

programs). It generates a correct database design but no

emphasis is given to optimal database design. End-user

particaipation is not comprehensive except in the discussion of

requirements and the data model. The main result of Sysdoc

analysis is a conceptual model which can be expressed as

submodels, the models and submodels are represented graphically

and input directly to the dictionary. The transactions are

expressed in a VHL SYSDUL with entity names used in the data

model, and the user interface is defined by describing the

screens and user dialogues. Sysdoc makes no reference to the

design of any network of terminals and processors, privacy,

security, integrity, recovery, conventional file design and

distribution of processing and storage. It does not provide a

detailed design (which depends on prototype), nor any manual

117

techniques to tranform the conceptual data model into a logical

database design.

29.6 REFERENCES

ASCHIM F, (1982)

118

30.1 METHODOLOGY SUMMARY

Short name

Full name

SREM

I

System Requirement Engineering

Methodology

Author(s) and institution(s) Alford M; TRW Defence and Space SystemS

Group

Date of first reference

Application field(s)

Life cycle stages

Software support

Development status

Comments

1975

embedded

requirements analysis

functional specification

detailed design

data dictionary

analysis and checking

prototyping

detailed design aids

in use

Requirement phase is under-development. SREM may be labelled as

-'a methodology, because, it includes necessary tools, techniques

and procedures. It is applicable throughout the system

development process. SREM has been used for specifications; and

119

no software has been developed from these specifications, the

reason may be long lead time associated with projects. In the

case of tools REVS has approached sufficient maturity to be used

in real projects in terms of things like run time, memory size

and availability on some computers.

30.2 LIFE CYCLE MODEL

Translate and interpret system specifications to produce flows

and data messages,

Complete functional requirement details (inputs, outputs,

processes),

Develop functional models and note model inconsistencies,

Allocate performance requirements in relation to paths and timing

and test,

- Develop candidate algorithms.

30.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

entity, event, relationship, attribute, stimulus.

Notation used graphical and tabular

120 '

30.4 SYSTEM MODEL

Concepts used in system specification and design

stimulus, response, processing path, class, optional word,

structure and structure sequence, file, source, synonym, -version,

associate, connect, compose, destroy, create, sub-net, validation

path.

Notation used graphical and textual

30.5 COMMENT

Completeness, average

Economy high

Ease of use low

Additional comments

SREM supports step by step approach, and top-down development,

while considerable design freedom is provided. SREM emphasises a

separation of concerns between static consistency checks,

functional simulation and performance prediction. Central to the

system are support software tools, project database. Support

tools include: RSL analysers, static completeness and consistency

checkers, simulation generation aids, performance predictors, and

interpretative graphics for manipulating R-nets. The support

system is 45K Pascal statements, and 10K Fortran statements for

121

the graphic support. Four basic aspects are claimed to be

achieved which are: requirement statement language (RSL);

requirement engineering and validation system (REVS); formulism

by defining terms based on extension of group model; and the

procedures and milestones. It uses ISDOS data management system.

SREM with SREP tools is very powerful to handle Ballistic missile

problems but has no ability to handle data processing/file

processing and man-machine interaction. it deals first

identifying the interfaces, the things one deals with and the

messages that cross the interface both in and out, which

corresponds to the Jackson approach of identifying inputs and

outputs. Its weakness lies in its abandonment of traditional

functional decomposition, its inability to cater for systems with

human operators in the process, loop and its heavy reliance on

sophisticated computer facilities. Prescribed workproducts are;

requirements definition, software requirements specification,

documentation from queries to requirement database. Quality

assurance methods supported are: design reviews, automatic data

flow analysis of R-nets, static consistency, completion checks on

requirement database. Completed system is validated against

original requirements by dynamic validation of performance

requirements using simulation and post processing. SREM also

addresses management aspects, such as: project, technical, team

and system evolution.

122

30.6 REFERENCES

DoI, (1981)

2. LARCHER, (1980)

3. TEICHROEW D, (1972)

4. FREEMAN P and Wasserman, (1982)

123

31.1 METHODOLOGY SUMMARY

Short name

Full name

Solvberg

A draft proposal for integrating systems

specification model

Author(s) and institution(s) Solvberg A; University of Trondheim

Date of first reference

Application field(s)

Life cycle stages

Software support

Development statu6

Comments

1982

dp, science/engg, Expert, and general

functional specification

structural design

programming

under development as a research project

Like EDM, Solvberg does not deal with problem study phase. The

levels of abstraction dealt are: external, conceptual, logical

and physical. User interface design is treated explicitly. No

concrete tools are specified, and neither deals the problem study

phase. There is no practical experience of its use and employs

several existing techniques. Model has elements from both data

and process, contains entity-relationship structures. ý

124 ,

31; 2 LIFE CYCLE MODEL

- Terminology development phase: concepts and environment are

classified,

- Processing specification phase,

- Information resource definition: necessary contents of operations

on information system are specified,

- Error analysis,

- Responsibility analysis,

- Process resource allocation,

- Marr-machine interface design,

- Resource management system design,

- Operational design to determine the procedures for restart and

initialisation,

- Database design,

- Program structure design.

31.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

entity-relationship model: entity type, connection type, events,

change (active and passive), tasks.

125

Notation used graphical and mathematical

31.4 SYSTEM MODEL

Concepts used in systemspecification and design

task, message, interface, data store, task responsbility, message

allocation to performance resources.

Notation used textual, graphical pseudo-code

31.5 COMENT

Completeness low

Economy low

Ease of use average

Additional comments

Special object types are introduced for functional

specifications. Data types, stores, messages are the means of

specifying the contents and structures of data transmitted and

stored in the system. Data type objects are defined independent

of time, while messages consist of data having time-limited

-existence.

The methodology does not support boundary specification,

derivation rules, and no roles of users are def ined and any

computer aid. It mentions the activity of identification of

126

A

system objectives and constraints including conflicts of interest

among user groups; makes reference to decision analysis,

activities studies, user requirement definition, but do not

include concepts or models and tools. I

This can be efficiently implemented or used in an organisation if

these, aspects integrated with automated design tools. The

presentation provides a broad idea of the most of concepts and

techn - iques used in modern information system design (data flow

diagrams, control flow diagrams, forms specifications and

application control diagrams).

31.6 REFERENCES

SOLVBERG A, (1982)

127 ý

32.1 METHODOLOGY SUMMARY

Short name

Full name

Systematics

Systematics: a new approach to systems

analysis

Author(s) and institution(s) Grindley CBB; Urwick Diebold Ltd.

Date of first reference 1966

Application field(s) data processing

Life cycle stages requirements analysis

boundary specification

functional specification

detailed design

Software support data dictionary (manual)

Development status published, probably still under

development and in limited use

Comments

An output is defined in a systematics sentence consisting of a

trigger, an output item and an identifier. A set of dictionaries

is specified, a derivation dictionary which describes the formula

for each derived output item, an input dictionary providing the

entries of all input items involved, and an identification

dictionary for the specification of all primary identifiers.

128

-- Methodology is mostly suitable for control systems.

32.2 LIFE CYCLE MODEL

- Specify outputs,

- Specify main trigger conditions,

Specify subsidiary trigger conditions,

- List all the contents of the output set,

- List the data sets,

Specify derivation formula,

Design the contents of the input set,

Specify and construct identification and derivation chains.

32.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

given set, derived set, trigger, relationship.,

Notation used graphical and set theoretic

'r.

129

32.4 SYSTEM MODEL "I

Concepts used in specification and design

item, state, identifiers, derived items and given items,

information set, effective time, trigger, descrete and continuous

identification and time substitute.

Notation used tabular,: textual; graphical

32.5 COMMENT

Completeness average

Economy high

, Ease of use average (some time clumsy)

Additional comments

It does not support database/files in the model, identifier

concept is not clear, statistical information is ignored,

notation is clumsy and insufficient, error and consistency

mechanisms are not clear, absent items are ignored ie. whether a

set contains all items of the set or only those given to the set,

do derived items exist other than as outputs. The concept of

sequence or ordering is missing which some time leads to

illogical identification (derivation chain ordring is absent).

If a series is to be outut it is not clear in which order it

should be produced, similarly if a series of derivations is to

130

performed then its order should have been mentioned, how to

identify items within a series eg. maximum, minimum, mode etc.,

and how to count the population of a series.

Dictionaries are limited in scope and there is no provision of

type, domain, frequency, volume etc; the decision tables are also

inadequate as described in KING PJH (1967), the treatment of

time is unnecessarily clumsy, identification chains are ambiguous

and difficult to construct, determination of given and derived

items is manual and may not be suitable for systems with

extensive data. The language is based on three propositions: (a)

certain items are given to the system as relatives being input

together; (b) all outputs are triggered by an input; (c) all

items have an effective time for establishing relationships.

This shows that the Systematics describes: how system components

are described and identified, what relationships explored and how

they are derived. It may regarded as a major step for providing

formal concepts for the development of modern information system

methodologies.

131

32.6 REFERENCES

1. GRINDLEY CBB, (1975)

2. KING PJH (1967)

GRINDLEY CBB, (1973)

4. GRINDLEY CBB, (1966)

5. TEICHROEW D, (1971)

33.1 METHODOLOGY SUMMARY

Short name

Full name

SDM

A Semantic Database'Model

Author(s) and institution(s) Hammer M and - others; Massachusetts

Institute of Technology

Date of first reference

Application field(s)

Life cycle stages

Software support

Development status

Comments

1981

data processing

requirements analysis

functional specification

detailed design

under development

It serves as a formal specification mechanism for describing the

meaning of database, provides a precise means of documentation

and communication medium for database users, provides a basis for

a high level semantic based user interfaces to a database to

norr-programmerse It also provide a foundation for supporting the

effective and structured design of database-intensive application

Systems. It does not mention any facility for boundary

specifications.

133

33.2 LIFE CYCLE MODEL

Write all items of the system.

- Determine class name. and names of the members of the class.

Describe whether the class is a base class or nonbase.

Take each item of the class and specify the items mentioned as

follows: the value class, may not be null, not changeable, member

attribute name, class attribute name, multiple or single valued,

exhaust the value class, type, member attribute interclass

relationship (inverse or match), mapping, derivation (ordering,

boolean, recursive combinations, collections of members,

sub-value, and set operators, exponential, max, min, average,

sum).

33.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

entity, relationship, attribute.

Notation used textual

134

33.5 COMMENT

Completeness average

Economy low

Ease of use low

Additional comments

SDM is a database description model and describes the database in

terms of the kind of entities that exist in the application

environment, the classifications and groupings of these entities

and structural interconnections among them. It does not deal

with the mechanism of defining inputs and outputs and neither the

notation is simple and usable by an average developer. Moreover

the notation becomes clumsy and tedious due to several

subdivisions into classes, subclasses.

33*6 REFERENCES

1. DOI, (1981)

HAMMER M and Mcleod, (1981)

135

34.1 METHODOLOGY SUMMARY

Short name

Full name

SDLA

System Descripter and Logical Analyser

Author(s) and institution(s) Knuth E and others; Academy of Sciences

Budapest.

Date of first reference 1982

Ap lication field(s)

Life cycle stages

Software suRport

data processing

requirements analysis

boundary specification,

functional specification

detailed design

analysis and checking

prototyping

detailed design aids

Development status under development

Comments

It is similar to PSL/PSA, and Chen entity-relationship model. It

.,...,
has been developed in a cooperation with ISDOS project and is

claimed that it is being used throughout the development process$

SDLA may be regarded as a set of fundamental tools for

information system design, but do not constitute a methodology in

136

itself

34-. 2 LIFE CYCLE MODEL

- Environment specification,

Formation of top-down hierarchic structures from data

descriptions of above,

Input/output specifications ie. the data structures produced or

consumed by the software components,

Specify system functions (processes, procedures* routines,

functional modules; and function input data, output data, and

other data utilised by the function),

Implementation design (this phase is not covered because it is

a. ssumed that the logical design should be fine enough to tell

what is fundamental and functional.

34.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

__entity, relationship, attribute.

Notation used textual and some graphical

137

34.4 SYSTEM MODEL

Concepts used in specification and design

information structures to be stored (set, list, elements, type,

inclusion and relationship with other data, derivation

relationships, initialisation, update and usage, activisation and

time conditions, restoribility constraints, integrity properties,

security limitations)

- Input/output specifications,

.- System functions (function input/output data, other data to be

utilised, and the description of function).

Notation used graphical and textual

34.5 COMMENT

Completeness average

Economy average

Ease of use high

Additional comments

The objects to be stored in the database is an instant of the

abstract concept; objects are described by attributes; an

abstract concept is described by its associated set of

attributes. The actual set of objects as instances to a given

138

concept can always be considered as relative to subset of the
11

Cartesian product of the attribute value ranges. This approach

gives original idea about a versatile tool, which would enable

the developer to specify concepts they plan to use during the

design process. The notation used is difficult and not formal.

It is more process oriented, establishes required controls,

revise logical inputs and outputs, define logical operations,

supports man-machine interface, define functions, file/database,

programs and modules.

34.6 REFERENCES

KNUTH E and others, (1982)

139

35.1 METHODOLOGY SUMMARY

Short'name SADT

Full name Structured Analysis and Design Technique

Author(s) and institution(s) Douglas T Ross; Softech

Date of first reference 1974

Application field(s)

Life cycle stages

Sof tware support

Development status

Comments

embedded, dp, science and engg., o/pj

tools and expert systems.

requirements analysis

functional specification

detailed design

analysis and checking

. in use

SADT is more concerned with functional decomposition of business

activities emphasising on the presentation of data processing

aspects in order, to facilitate the thinkin& process of the

developer, and a communication of the results to users. It

mainly concentrates on study requirements and constraints,

analysis of system functions, and representing them by models

based on SADT diagrams. For double checking purposes the dual

representation of the system is elaborated independent of
I

140

activity, diagrams.

It is not used for software module design, because the constructs

such as sequence, selection and iteration are missing in SADT.

It is used in the planning analysis and general design phases,

and use the techniques of Jackson, Warnier, and Constantine for

detail design activities. It is a general purpose technique

applicable to a wide range of problems and not only to computer

applications. It was developed to provide a disciplined approach

to achieve users understanding of his needs prior to a design

solution. It did not evolve from design technique but by

examining the problems associated with defining systems

requirements.

35.2 LIFE CYCLE MODEL

- Specify the model or models of the required system showing the

justification, activities and data that make up the system,

- Determine the needs for the new system,

- Functional description: what should be done to resolve the

existing issuesq needs and influences; identify all activities

and data which is to be used,

- Realisation of the system: model showing the software

architecture is used to present a structure to be used to

identify software functions (activities and data), and also an

organisation of software systems to satisfy the requirements,

141

- Requirements and design traceability: determine redundancy and

overlap by cross referencing the models,

- View points: a separate SADT can be beveloped for each view point

of current operations as future operations,

- Logical and'physical models: specify the purpose of the model,

and then decide which of the two models communicate most clearly

with the intended audiance and provide best answers to questions.

35.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

subject, model (assumption is that a model W is the model of a

subject if 'M' can be used to answer the questions about the

subject).

Notation used graphical

35.5 COMMENT

COMpleteness low

Economy average

Ease of use average

142

Additional comments

The process of 'design in SADT is the process of stating off with

some current, but abstractly expressed, notation and refining it

into greater and greater level of detail., What one produces is

called a model in terms of structured analysis "a pyramid of

diagrams" with boxes which themselves-be broken down into further

diagrams. - The advantage of the technique is that, if a

man-machine, interaction aspect of a system is required then, give

a complete model, start at the top and proceed down the levels

until the first mention man-machine part is seen, and then follow

it through (because the right section of the model is achieved).

The establishing of a system development framework (a standard

system life cycle) provides the users, developers, programmers a

basis upon which a variety of software development tools,

techniques and methods can realise their full potential. The

principles of structuring are a combination of common sense and

proven concepts, and each principle stresses a different aspect

of organising and presenting information about a given system.

SADT is an analysis and design methodology and focuses on how the

analysis and design can be performed. The development of

software systems is a necessary pre-requisite for the effective

utilisation of SADT. Complementary analysis approaches are used

to build on the activity/object duality of most situations. It

does not provide a clear definition of system boundary, and

emphasises on conceptual definition of users requirements. It

then concentrates on functional analysis and the result of

143

requirements analysis ends at "what" and particularly "how it

should be done", instead of what should be achieved in the

environment. Activity diagram is similar to HIPO. SADT diagrams

are not a concise form of expression and, especially in large

systems, they may spread over hundreds of pages. Other

structured approaches such as Gane and Sarson, Yourdon,

Constantine and Demarco have more descriptive capabilities having

diagrams, structured English, data dictionaries and decision

tables etc.

SADT seems to quite rich in technical concepts and supports:

function and data hierarchy decomposition, interface definitions,

data flow, sequence control flow, concurrency and formal program

verification. Work products of SADT are: model kit, node

indexes, large schematic. Quality assurance methods are:

author/reader cycle, structured walkthrough, automatic

consistency checks, and graphical notation. The completed system

is validated against original requirements by cross referencing:

from notation or diagramst walkthrough sessins with users. SADT

also supports management issues; project9 technical teamo

validate work products.

35.6 REFERENCES

1. DoI, (1981)

BREWER T, Report series number 110 (1979)

144

3. ' LARCHER, (1980)

4. INFOTECH, (March 1977)

145

36.1 METHODOLOGY SUMMARY

Short name

Full name

SD

Structured Analysis and Design

Author(s) and institution(s) De-Marco T, Yourdon E, Constantine L,

Myers, Gane and Sarson.

Date of first reference

A plication field(s)

Life cycle stages

Software support

Development status

Comments

1974

dp, embedded, science/engg, o/p, tools

requirements analysis

functional specification

structural design

detailed design

programming

in use and under continuing development

Method was introduced by Constantine (structure charts), then by

Myers (composite design), and in an elaborated form by Yourdon

and Constantine (1975) and Cane and sarson (1979).

SD covers mainly analysis and design but not strategy and

feasibility, though some implementation techniques are suggested.

As described in Yourdon (1979), that SD is not a methodology but

146

0

a, set of process oriented techniques ie. data flow diagramst

structure diagrams, structured English, data dictionary and

decision tables/trees etc. The analysis and design phases are

broken down into well defined subphases. The completeness is

checked by referring back to users. The basic aim of SD is to:

produce maintainable documentation, reduce the size of the

problem by a suitable partitioning, increase understandability by

using graphic, and distinguish logical and physical design

phases. DFDs play a central role in allowing the developers to

demonstrate the model to users and the use of decision

tables/trees.

36.2 LIFE CYCLE MODEL

- Initial study of the organisation, a detailed study of the

organisation,

- Build a logical model,

- Define a minu of alternatives,

- Refine physical design.

36.3 ENVIRONMENT MODEL

Concepts used to describe the system environment

DFD, data (its a general purpose methodology and the environment

can be extracted from the above concepts). A technique

147

reflecting activities and data also reflects the reality.

0

Notation used graphical

36.4 SYSTEM MODEL

Concepts used in system specification and design

data flow diagrams, data store, data dictionary, logic of

process, decision table/trees, structured English, tuples,

relation, normal form, security.

Notation used textual and graphical

36.5 COMMENT

Completeness above average

Economy low

Ease of use above average

Additional comments

The data flow diagrams of SD are similar to SADT diagrams, except

the, decomposition is used loosely and the graphical

representation includes data stores directly in the DFD's. The

development' of computer-based systems is a creative process, and

there does not exist a unique soluton to all problems, and

therefore, no structured method can be a substitute of

intelligence, thinking and experience. However, a structured

148

method may make their absence embarrassingly apparent. SD design

terminology is: apparent modules ie. handling input data; main

data transform process; strength of processing activities within

a module and coupling. The DFD's depicts the system into network

of activities, inferences, origins, destinations, and data

stores; fan-in and fan-out ie. number of superiors and

subordinates; activity of DFD transforming input data flows to

output; structuring of charts for the decomposition system into

modules and a communication between them. Methodology does not

provide any computer aid but the design procedure can be

supported by PSL/PSA. The top-down development is attractive,

and the criterian for terminating decomposition provides a

management flavour and the concept of abstraction introduced by

Dijkestra ie. the description of design concepts independent of

hardware realities is also appealing. In the "Walston and Felix"

study of the productivity of an IBM project which did not use a

top-down approach had 196 lines per-man month; projects which did

use it averaged 321 lines per-man month ie. an improvement of

about 60%.

The looser syntax of SD data flow diagrams makes for easier

visibility and understandability than SADT, but SD still suffers

from its business data process origins, in that it does not

provide full solution to the problems inherent in the real time

systems. The work products of SD are for analysis (structured

specifications, data dictionary, mini-specification, state

transition model): for design (specification for design, database

149

design, operational constraints, physical constrints); and for

implementation (structured code). Representation schema used

are: data flow diagrams, structure charts, data structure

diagrams, finite state diagrams, decision tables/trees, and a

program design language PDL. The technical concepts supported

are: function and data decomposition, interface definitions, data

flow, sequence control flow and concurrency.

36.6 REFERENCES

1. GANE C and Sarson, (1979)

2. DEMARCO T, (1979)

3. MYERS G J, (1978)

4. YOURDON E and Constantine, (1979)

5. FREEMAN and Wasserman, (1982)

6. LARCHER, (1980)

7. TEICHROEW D, (1977)

150

37.1 METHODOLOGTSUMMARY

Full name

SDS

Software Development Systems

Author(s) and institution(s) Royal Signal and Radar Establishment

Malvern

Date of first reference

Application field(s)

Life cycle stages

Software support

Development status

Comments

1978

embedded

requirement analysis

functional specification

detailed design

analysis and checking

prototyping

detailed design aids

in use

It can be used at all stages of a project development but is

mostly used for specification and design. It may be regarded as

a flexible tool which imposes very few restrictions and could be

used to support a wide range of methodologies. It is currently

available on ICL 1900 computers, and is currently being

implemented on a wider range of hardware.

151

37.2 LIFE CYCLE MODEL I

General guidelines, based on a top-down decomposition approach,

using SDS are available but these are not given in the

literature. Since it is intended to assist with a wide range of

problems and approaches there is not a standard set of procedures

for its use.

37.4 SYSTEM MODEL

Concepts used in system specification and design

components, categories, requirements, key words, standard field.

Notation used graphical

37.5 COMMENT

Completeness average

Economy high

Ease of use low

Additional comments

SDS is of value to large projects, and the lack of explicit

configuration control mechanisms may limit the usefulness of SDS

where a large number of variants are to be produced. There is a

considerable amount of work required by any user organisation

152

before any useful results can be obtained. In addition to the

facilities for updating the database model, a number of checking

tools are available including a query language. A number of

completeness and consistency checks are provided from simple name

checks to checks on hierarchic consistency, and also further

checks may be performed by using query language facilities.

Project planning and control facilities are also provided.

37.6 REFERENCES

DoI, (1981).

153

38.1 METHODOLOGY SUMMARY

Short name

Full name

SARA

System Architect Apprentice

Author(s) and institution(s) University of California

Date of first reference 1978

Application field(s)

Life cycle stages

Software support

I
Development status

Comments

embedded, science/engg., dp, o/s, tools

requirements analysis

functional specification

detailed design

programming

analysis and checking

prototyping;

detailed design aids

in use

It gives more emphasis on implementation and less on analysis and

design. However, System design stage supports functional

decomposition, data decomposition, interface definition, data

flows, sequence control flow, concurrency and program

verification, and consists of a package for semantic, syntax and

consistency checking. It has been implemented on Vax-Berkley,

154

Unix.

38.2 LIFE CYCLE MODEL

- Preparation of requirement document,

- Preparation of functional analysis specification or description,

- Preparation of design models: structural data description,

behaviour (graph model of behaviour), module interface,

- Preparation of implementation document: concurrency and

parallelism, sequence control flow, formal program verification,

Initially a control flow model of the system is constructed and

investigated by analysis (searching for potential deadlocks,

liveness, problem etc) or a simulation (ie token movement around

the graph). Then a data flow model is constructed by specifying

processes and data structures, which can in turn be simulated by

linking control model to processes. High level system models may

be decomposed into lower level subsystem models for further

investigations or constructed from the predefined models resident

in a library. When the complete set of models is build and

validated, these forms appropriate specifications for

implementation activities and provide benchmarks for unit and

integration test.

155

38.4 SYSTEM MODEL-

.
S. oncepts used in system specification and design

module, sockets, interconnection, control flow, data flow,

interpretation dynamics.

Notation used textual and graphical

38.5 COMMENT

Completeness average

Economy low

Ease of use average

Additional comments

SARA does not describe management aspects, boundary
I

specifications, system evolution or version control. The basic

objective is to build various models of the proposed system and

its components along with the models of the corresponding

environment. Staticaly-checkable attributes and constraints can

be specified as the communication parts between various building

blocks. The main automated tools are: mark graph analyser,

simulator generator, compiler and consistency checker. The use

of the tools is limited in real world enviroment because the

conceptual schema is completely ignored by SARA. It supports

semantic and syntactic consistency checks of the requirement

156

documentation, module interface definition, behaviour models,

interactive simulation, evaluation using the test environment,

control flow analysis of the test environment, automated tools.

it provides automated support requirement, and design

specification documents, testing and checking and also an

optional tool for simulation/prototyping.

38.6 REFERENCES

1. DoI, (1981)

2. FREEMAN P and Wasserman, (1982).

157

39.1 METHODOLOGY SUMMARY

Short name

Full name

SDL

Specification and

Logic-process

Description of

Author(s) and institution(s) CCITT

Date of first reference 1976

Application field(s) embedded,

telecommunication

science/engg.,

Life cycle stages functional specification

detailed design

.
Software support analysis and checking

Development status in use

Comments

It is used in telecommunication and switching system. Despite

some claims that it is used as a specification tool, there is a

strong indication in the form of solutions that it is, in

reality, applicable to bottom level design only. Data

abstractions and interface representation are not handled.

158

39.2 LIFE CYCLE MODEL

No methodical procedure for using the methodology is laid down in

the CUT guidelines, but the developer has to specify his own

procedure depending on the nature of the problem. The inherent

nature of the notation leads to the solutions expressed in terms

of state machines. Specification and design are not separated,

because the separation of development concern is not emphasised

by SDL insofar as it expresses the behaviour of a system by means

of an operational (state machine) model.

39.4 SYSTEM MODEL

.
Concepts used in system specification and design

functions of system, functional block, process, signal,

communication path, level of functional block, state machine,

inputs/output, actions and decision.

Notation used graphical and textual

39.5 COMMENT

Completeness low

EconomV average

Ease of use not known (being used only in telecomm.)

Additional comments

159

SDL is applicable to real time concurrent processing, and could

be used for process control and military applications in addition

to its market in telecommunications. It can describe the

software carried in a multi-processor or distributed processor

environment. SDL is not suitable for database systems or complex

sequential numeric algorithms (ie. not applicable out of those

concurrent processes applications in which component processes

are simple in function). It does not provide any specific

support for management functions, and is not suitable for

database systems or complex numerical algorithms.

39.6 REFERENCES

DoI, (1981)

160

40.1 METHODOLOGY SUMMARY

Short name TAT

Full name Transaction Analysis Technique

Author(s) and institution(s) Larcher J; The Plessey Company Ltd.

Date of first reference

Applicatio field(s)

Life cycle stages

Development status.,

Comments

1980

embedded and data processing

requirements analysis

boundary specification

functional specification

detailed design

published but probably little used

TAT provides maximum attention on requirements analysis. The

main function of TAT is to define the problem for the buyer, user

or developer in a complete and precise way.

40.2 LIFE CYCLE MODEL

- Establish the requirement base line,

- Construction of a logical model,

- Validation of the logical model,

161

- Analysis of the external interfaces.

40.3 ENVIRONMENT MODEL

Concepts used to describe the, system environment

trigger, event, object, transaction.

Notation used textual and graphical

40.4 SYSTEM MODEL

Concepts used in specification and design

responses, events, transactions, stimulus/trigger, system

condition or time trigger, constrints, DFD, -thread diagrams,

existence,, property, independence, modifier, subsetting,

operation. ý I

Notation used graphical and textual

40.5 COMMENT

Completeness - average

Economv low

Ease of use average

162

Additional-comments

It takes into consideration the customer satisfaction but does

not provide any method how the user will be involved throughout

the system development. It supports a cooperation between

requirement analyst and customer in analysing the operational

requirements, specifies each required system action, so that

these actions may be used to map the system requirements on to

the system design. Grouping of documents is a precise and

manageable way of describing different components of the system

e. g group A: project context; group B: system facilities; group

C: constraints; group C: functional operations; group E:

man-machine interface. Techniques used are mainly DFD's, complex

and inconvenient thread diagrams, which is the key concept and

shows, how the individual transactions are liked together in

time, to achieve the overall system objective. It is a graphical

equivalent of a verbal walkthrough of data flow diagrams, and

fills the place taken at the detailed programming level by the

flow chart. A thread corresponds to an event based coordinated

sequence which may be executed partially in parallel. These

activities are performed by the people within the development, in

order to progress a particular piece of work through the

organisation and thus assisting the overall objective of the

organisation.

163

40.6 REFERENCES'

ý LARCHER, (1980).

164

41.1 METHODOLOGY SUMMARY-

Short name

Full name

TAG

Time Automated Grid

Author(s) and institution(s) Myers D H; IBM

Date of first reference 1966

Application field(s) data processing

Life cycle stages

Software support'ý

Development status

Comments

requirements analysis

functional specification

detailed design

data dictionary

analysis and checking

prototyping

used but obsolete

TAG is an interactive tool, its function is to develop an

integrated system flow and to maintain that integration, no

matter how many changes or how much additional data the user

introduces. This is a third generation technique developed as a

manual system and later automated by IBM in 1966.

41.2 LIFE CYCLE MODEL

165

- Specification of -the activities around which the development of

the new system begins, these details are then coded in an

input/output analysis form and then reviewed by the developer,

- The automated analysis will produce the errors in the data which

must be corrected by the developer,

- Assigning the priorities of the system outputs, where all outputs

for a given time, period are received together. With reports

created by the TAG, the developer redefines the time intervals at

which the output must be produced,

- Using the reports of the unsolved conditions as a checklist, the

developer now considers the question of the availability of input

data, and then analyse the nature of each input by using his own

technique,

By examining the TAG generated glossary, specify, when in time to

introduce the document or file and the problem of what other

elements key-fields and additional data fields are to brought in

with the required input items,

- Specify the world picture of the system: after TAG has processed

the required information on user inputs/outputs and files, data

and Job description reports are created that help analyst in

providing a world picture of the users system,

- Working from the format definition supplied by TAG, the analyst

must develop a database compatible with these figures, hardware

166

and configuration of the proposed system.

41.4 SYSTEM MODEL

Concepts used in specification and design I

data type, frequency, period, priority, volume, survey period,

data name, data size, input/output analysis form, chart for

coding of class use, input/output results form.

Notation used textual and graphical

41.5 COMMENT

-Completeness average

Economy average

Ease of use low

Additional comments

User is assured of defining only pertinent input elements and

bringing them into the system at their proper place, all with a

minimum efforts on his part. Superfluous and repetitious data

can be identified and eliminated from the system, and

descriptions are corrected. Af ter all the inputs and outputs are

defined to TAG, the next iteration of the program provides file

formats and system flow descriptions, based on time (the time

data enters the system and produced by it). The user gets an

167
f

overview of the, system including all relationships of the system.

The creative ability of the developer is also enhanced because of

knowing all relevant data and relationships.

TAG is a general purpose technique applicable to the design of

any data processing system in the commercial environment, and in

the development of management information system, particularly

where diversified activities, requiring several outputs are to be

brought together and supported by an, integrated database. The

outputs of TAG are a set of ten reports.

41.6 REFERENCES

IBM: TAG, (1974b).

168

42.1 METHODOLOGY SUMMARY

USE

Full name User Software Engineering

Author(s) and institution(s) Wasserman A I; University of California.

Date of first reference

Application field(s)

Life cycle stages

Software support

Development status

Comments

1979

data processing, science/engg., tools,

AI.

requirement analysis

functional specification

structural design

detailed design

programming

data dictionary

analysis and checking

prototyping

detailed design aids

under development as a research project

Supports entire system development process$ except conceptual

modelling phase. The aim is to provide tools and techniques that

can lead to systematisation of an interactive information system

169

development process. It describes a software subsystem through a

programming language called namely "PLAIN". 'User centredness'

during theý system development process is the central idea. It

seeks to form an integrated system development environment

addressed to specification and implementation of interactive

information system development.

42.2 LIFE CYCLE MODEL

Identify system objectives and constraints, including the

conflicts of interest among user groups, based on the problem

statement,

- Model the existing system using the requirement analysis method,

- Construct the conceptual model of the database, using semantic

hierarchy model of Smith and Smith,

- Produce a system dictionary with all operation names, data items

and data flows,

- Review the above steps, the analysis results within the

development group, and insofor as possible, with users/customers,

- Build prototype of user dialogue tool through transaction

diagram,

- Complete the architectural design,

- Complete the detailedýdesign.

170

Notation used textual (Plain language)

42.4 SYSTEM MODEL

Concepts used in system specification and design

relational database, management facilities, lexical ordering

function, strings, exception handling, input/output features,

TDI, troll etc.

Notation used textual and graphical

42.5 COMMENT

Completeness average

Economv average

Ease of use above average

Additional comments

USE provides to the developer with a method and tools that

improve the quality of the system, and the processes used in

system development. The tools specified are: transition-Diagram

Interpreter for dialogue design, a programming language, a DBMS

and an editor. It is highly pragmatic depending on traditional

life cycle and software tools and can be defined as a mechanism

combining all, notions of software engineering and user

involvement. The central focus is on the development of

171

interactive information system and specification of user dialogue

for the development of such systems through prototyping. Formal

specification techniques and ýnormalised relations, as, seems

increasingly mandatory, which play,, important roles: so do the

transition diagram, for user interface, definition. Though one

would like to need moreýdiscussion of their idea of extended use

"inside" the system and how they relate to data flow diagrams.

It provides an integrated approach using data flow diagrams, and

in studying man-machine interfaces. The transition diagram

describes the interfaces, and may be encoded for the simulation

needs, but little information is provided about the methods

provided to the developer for obtaining data structures.

USE does not describe information analysis but discusses how a

set of programs may be developed to support a particular case

study. There is a plea for iterative approach like SADT, and

ISAC. conceptual modelling has not been dealt explicitly. USE

is low in data structuring aspects and high in technical aspects;

system development phases are not clearly defined; cross

referencing is difficult and lacks when dealing with parallelism.

The technical concepts supported by USE are: function and data

decomposition, interface definitions, data flow, sequence control

flow, concurrency and formal program verification. The work

products are: specification, architectural design, detailed

design, source code; and the quality assurance methods are:

structured walkthroughs, design, transition diagrams and

172

consistency checks. It does not provide a technique for the

validation of the finally developed system against the original

requirements. It supports tools; and the equipment required is:

unix V7 of 4.1 BSD and specialised automated support provided is

consistency checking. The, management aspects dealt are: version

control, coding management, and system evolution.

42.6 REFERENCES:

1. WASSERMAN A 1, (1982)

2. FREEMAN P and Wasseman (1982)

3. WASSERMAN AI and others, (1983).

173

43.1 METHODOLOGY SUMMARY

Full name

Young and Kent Algebra

Abstract formulation of data processing

problems

author(s) and institution(s) Young JW and Kent

Date of first reference 1958

Application field(s)

Life cycle stages

Software support

Development status

Comments

data processing

boundary specification

functional specification

detailed design

published but probably never used

Provides little assistance- in system development process,

derivation relationships are established using algebraic

notation, and these derivations are similar to Systematics

(GRINDLEY, 1975) derivation chains and LANGEFORS (1973)

precedence analysis, but Young and Kent method is difficult.

Model is based on simple-relationships and networks but notation

is difficult. Ideas presented are useful, which are used in

PSUPSA and DADES methodology (OLIVE, 1982).

174

43.2 LIFE CYCLE MODEL

- Specification of information sets

- specification of abstract statement of the problem which consists

(a) information sets, and (b) a list of documents (ie. input

document, output document),

Graphical notation is also used to specify these documents.

43.4 SYSTEM MODEL

Concepts used in system specification and design

Information sets, documents, relationships (morphisms, defining

relationships, producing relationships), items, conditions,

operational requirements (volume, time).

Notation used graphic, tabular and textual

43.5 COMMENT

-Completeness average

Economy high

Ease of use low

Additional comments

Notation is mathematical and graphic, and provides sufficient

accuracy but is difficult. The designer receives assistance in

175

the determination of the organisation of files, subroutines and

redundancy checks. Since the "morphisms" are transitive, other

relationships can also be derived. Though the notation is

difficult, a tool is available to the designer for the

description of his problem in pseudo-mathematical form, which

also assists in ensuring that all inputs are utilised to produce

outputs, and that a programmer gets a precise document. The

number of files, record lengths, file densities, volumes and type

of computations can be determined. This may be regarded as a

good early effort for problem specification, and the concepts to

be used in the development of a modern methodology.

43.6 REFERENCES

1. YOUNG JW and Kent (1958)

2. TEICHROEW D (1972,1§74b,)

176

