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ABSTRACT 

The research work discussed in this thesis concerns the enzyme 

protein kinase C (PKC) and its biochemistry within the glial compartment 

of the CNS. Cells of the glial compartment (type-I and type-2 

astrocytes, oligodendrocytes and 0-2A progenitor cells) have been 

examined and their PKC activities measured. An assay for PKC has been 

developed and the activity of cultured glial cells assayed both in 

100,000g cytosolic (supernatant) and particulate (membrane-bound) 

fractions. 

Glial cell supernatants contain an inhibitory factor which is 

removed by DEAE-cellulose (DE-52) column chromatography. This inhibitor 

has a phosphatase activity and does not inhibit PKC Der se but 

dephosphorylates the type III-S histone phosphorylated by glial PKC. 

Thus the phosphatase is an inhibitor of the PKC assay; it is not 

regulated by either magnesium or manganese but can be inhibited by 

sodium fluoride. 

The specific activity of PKC in glia has been assessed using 

primary culture, subculture, and complement-mediated cytotoxicity 

methods. All glial cell types were shown to contain PKC activity. An 

hydroxylapatite column method was developed to resolve a, 0 and y 

subspecies of PKC, but the glial cultures examined did not contain 

either of these three subspecies. 

In keeping with the characteristics of the enzyme (i. e. calcium- 

and phosphatidylserine-dependent), phosphatidylserine was the most 

effective lipid for glial PKC activation; other phospholipids and 

arachidonate activated PKC less effectively. 

Phorbol ester treatment of cultures led to a translocation of PKC 

from cytosol to membrane. A similar effect was seen with platelet- 

derived growth factor. Analysis of cell proliferation and morphology 

following treatment with phorbol ester, PDGF or calcium ionophore 
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implicated glial PKC in activation of DNA synthesis with a resulting 

massive cell proliferation. TPA-treated cells appeared to lack a 

regulatory factor to control cell growth which was present in PDGF- 

treated cells. Such regulation is probably cAMP-mediated, but may also 

reflect activation of tyrosine kinase. 

Possible roles of PKC in glial cell function are discussed. 
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1. INTRODUCTION 

1.1. THE CENTRAL NERVOUS SYSTEM 

The brain is composed of specialised cells, part of whose function 

is to receive sensory stimuli and to transmit them to effector organs, 

thus regulating the function of the individual as a whole. To carry out 

these tasks of determining the many aspects of behaviour the central 

nervous system (CNS) possesses an immense network of interneuronal 

connections. A striking feature of the nervous system Is the high 

degree of precision with which neurones are connected to each other and 

to different peripheral tissues. The ordered nature of the connections 

formed during development Is a necessary prerequisite for all the 

integrative mechanisms the brain contains. 

I. l. a. Structure and functions of cells of the CNS 

Cells of the CNS are of two main types, impulse-transmitting 

neurones surrounded by satellite cells. The latter are divided 

according to anatomical criteria into neuroglial calls in the brain and 

Schwann cells In the periphery. Neuroglial cells make up almost one- 

half the volume of the brain, and, from counts of cell nuclei, have been 

estimated to outnumber neurones by at least 10: 1. They comprise 

astrocytes, oligodendrocytes and microglia. 

Neuroglia were first described in 1846 by Virchow who later named 

them (literal translation = "nerve-glue"). In the subsequent 100 years 

although neurones were investigated extensively the study of glial cells 

was practically non-existent. Even today, though the importance of 

glial cells is stressed frequently, relatively little is known of their 
I 

full functions. 

The cell types described below are shown in figure 1.1.1. 
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Figure 1.1.1. Glial cells of the central nervous system. 
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M Neurones 

Neuronal morphology varies greatly from the simple bipolar cell of 

the retina to the highly-branched Purkinje cell of the cerebellum. 

Basically they are typically eukaroytic, having a nucleus enclosing a 

distinct nucleolus situated within a bulbous cell body, or soma, from 

which dendrites project. The latter receive information transmitted 

along the axons, long membrane-enclosed cytoplasmic threads of the 

neurones which branch at one end. The main function of neurones is the 

transmission of impulses, over relatively long distances, along the axon 

surface to facilitate co-ordination within the organism. 

In the vertebrate nervous system the larger nerve fibres are 

myelinated. The myelin wraps itself around the axons during development 

such that, in terms of dimensions, the myelin occupies 20-40% of the 

overall nerve fibre diameter. This myelin wrapping, the myelin sheath, 

increases membrane resistance and decreases membrane capacitance, thus 

spreading a signal further over a shorter time period. The sheath is 

interrupted periodically by nodes of Ranvier, exposing patches of axonal 

membrane. The effect of the myelin sheath is to restrict current flow 

largely to the node, as ions cannot flow in or out of the high- 

resistance internodal region and the internodal capacitative currents 

are very small as well. Therefore, only the restricted portion of the 

axon membrane at the nodes of Ranvier become involved in impulse 

propogation and the impulse jumps from node to node. This impulse 

propogation is known as saltatory conduction. 

An additional consequence of myelination is that fewer sodium and 

potassium Ions enter and leave the axon during impulse propogation, as 

regenerative activity Is restricted to the nodes. Hence less metabolic 

energy is required by the sodium-potassium exchange pump to restore the 

Intracellular concentrations to their resting levels. Myelinated axons 

not only conduct more rapidly that unmyelinated ones but are also 
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capable of firing at higher frequencies for more prolonged periods of 

time. 

(ii) Astrocytes 

Two types of astrocytes have been identified in the CNS, 

protoplasmic or type-1 astrocytes and fibrous or type-2 astrocytes 

(Miller & Raff, 1984). Protoplasmic astrocytes are most commonly 

associated with the grey matter of the CNS, and are typically stellate 

with branched processes. Fibrous astrocytes are similar in shape but 

with finer processes, and are more commonly associated with the white 

matter of the CNS. 

Although a variety of functions have been ascribed to astrocytes, 

their role is not fully clear. One established function of type-1 

astrocytes is a response to injury within the CNS resulting in the 

formation of "scar" tissue, a process called reactive gliosis (Raff et 

al., 1987). This cell type is also important in the development of 

oligodendrocytes and type-2 astrocytes (see section 1.1. b). The latter 

have processes which surround the nodes of Ranvier in white matter 

where, in principle, they could help to stabilise local extracellular 

ion concentrations in the face of repeated nerve impulses (Raff et al., 

1987). 

Hertz (1981) has implicated astrocytes in potassium homeostasis 

and metabolism of gamma-aminobutyric acid (GABA) and glutamate, arguing 

that these processes occur in response to release of the substances by 

neurones, and that astrocytes and neurones may interact in a number of 

ways. Astrocytes have also been purported. to be involved in the 

phagocytosis and removal of degenerating myelin (Nathaniel & Nathaniel, 

1981) and in the carbohydrate metabolism of the nervous system 

(Haymaker, 1969). Type-I astrocytes are also known to attach processes 

(so-called 'end feet') to the basement membrane of endothelial cells of 
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the CNS allowing such cells to form the tight low-permeable junctions 

characteristic of the blood-brain barrier (Bradbury, 1979). 

(III) Oligodendrocytes 

First described before the turn of the century, It was not until 

the famous histological work of del Rio Hortega in 1921 that the "cell 

with few branches" was so-named the oligodendrocyte. This cell type 

exists In both white matter and grey matter where del Rio Hortega 

applied the terms interfasicular and perinueronal respectively. 

It is the interfasicular oligodendrocytes which are responsible 

for the huge burst of membrane synthesis which occurs at myelination and 

leads to the formation of myelin sheaths around axons in the CNS. The 

same oligodendrocytes probably maintain the integrity of the myelin 

sheath throughout life. Perineuronal oligodendrocytes in the grey matter 

aggregate closely around neuronal cell bodies and may be important In 

remyelination following axonal damage. 

A single oligodendrocyte may be responsible for the myelination of 

up to fifty nerve fibres (Noble & Murray, 1984). Myelin sheath 

formation generally occurs around axons close or adjacent to the parent 

oligodendrocyte, although the distances between the two can be over 30Pm 

(Sternberger et al., 1978). Such formation is dependent upon both the 

maturity of the oligodendrocytes and the presence of axons (Skoff et 

al., 1976), but how myelination is initiated and proceeds is unclear. 

In rats, myelin begins to appear in the optic nerve at postnatal day 6- 

7, rapidly increasing up to postnatal day 28, by which time 80% of the 

axons are myelinated (Tennekoon et al., 1980). Once established, the 

oligodendrocyte-myelin-axon relationship is maintained throughout the 

lifetime of the organism unless affected by damage or disease. 
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(iv) Microglia 

These cells comprise approximately 4-5% of white matter and 18% of 

grey matter (Fugita, 1980), and have been implicated to function in a 

number of diverse processes. These include regulation of astrocyte 

differentiation and mediation of immunological responses (Fujita, 1980). 

They may also function as antigen-presenting cells and represent the 

effector cell responsible for the recruitment of lymphocytes to the 

brain, resulting in an inflammatory response (Streit et al., 1988). 

Microglia have also been purported to be one of the CNS targets of the 

acquired immune deficiency syndrome (AIDS) virus (Gartner et al., 1986). 

l. l. b. Oriqln and development of the neuroglia 

Most of the neurones and macroglial cells in the vertebrate CNS 

are thought to derive from the neuroepithelial cells that form the 

neural tube. However, the actual lineage relationships between the 

different constituent cells of the CNS, the factors determining 

development Into a particular type of neurone or glial cell, and how 

such decisions are timed are still under investigation. The intense 

interest in this subject, notably over the last decade, has led to a 

reassessment of ideas concerning glial cell histogenesis. Much of the 

recent work has been conducted on short-term cultures of cells taken 

from developing rat optic nerve, one of the simplest parts of the CNS, 

notably by Raff and colleagues. This cell system contains only 

astrocytes and oligodendrocytes, with no neurones present, so allowing 

Investigation of glial cell lineage relationships without any possible 

interference from other cell types. 

In vitro studies using rat optic nerve suggest that the three 

types of macroglial cells arise by two distinct lineages; 

oligodendrocytes and type-2 astrocytes develop from a common bipotential 

progenitor cell (0-2A cell; Raff et al., 1983) whereas type-1 
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astrocytes develop from a different precursor cell (Raff et al., 1984). 

See figure 1.1.2. In the rat, type-1 astrocytes first appear at embryonic 

day 16, oligodendrocytes on the day of birth, and type-2 astrocytes 

between postnatal days 7 and 10 (Miller et al., 1985). However, 

although 0-2A progenitor cells continue to divide and differentiate, 

some persist into adulthood where their function is not clearly 

understood (ffrench-Constant & Raff, 1986; Wolswijk & Noble, 1989). 

This strict developmental sequence is disrupted when dissociated optic 

nerve cells are cultured in a defined medium; all the 0-2A progenitor 

cells stop dividing and differentiate into oligodendrocytes within 48 h. 

regardless of the age of the animal from which they were derived (Raff 

et al., 1985). Type-2 astrocytes do not develop in these cultures 

unless an inducing factor, such as that contained in foetal calf serum, 

is present (Raff et al., 1983). Correct timing of oligodendrocyte 

development can be restored in culture by growing embryonic rat optic 

nerve cells in foetal calf serum (0.5% or less) on a monolayer of type-1 

astrocytes, or in astrocyte-conditioned medium (Raff et al., 1985). 

Thus type-1 astrocytes contain (a) mitogen(s) that can keep 0-2A 

progenitor cells in division, preventing their premature 

differentiation. 

Recent work has shown platelet-derived growth factor (PDGF) to be 

strongly mitogenic for 0-2A progenitor cells in vitro, that cultured 

type-I astrocytes secrete PDGF dimers, and that mitogenic activity in 

astrocyte-conditioned medium is neutralised by anti-PDGF immunoglobulin 

(Noble et al.., 1988; Richardson et al., 1988). Together with other 

findings, these observations suggest that PDGF is secreted by type-I 

astrocytes and so plays a key role in controlling the proliferation and 

differentiation of 0-2A progenitor cells in the developing rat optic 

nerve (fig. 1.1.2). 
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Figure 1.1.2. Glial cell lineage in the central nervous system. 
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Two studies which indicate that the daughter cells of an 0-2A 

progenitor cell both go through the same number of divisions before 

differentiating into oligodendrocytes have led to contrasting 

hypotheses. Temple and Raff (1986) suggested that the timing of 

oligodendrocyte differentiation is controlled by a cell-intrinsic clock 

that counts cell divisions up to a fixed limit; when this division 

limit is reached, the cell then automatically differentiates. The 

second hypothesis contrasts with this postulated permissive role of PDGF 

in oligodendrocyte differentiation and suggests that PDGF may drive not 

only proliferation, but also, independently, some other kind of timed 

cellular process which, when terminated, would trigger differentiation 

and arrest of division (Raff et al., 1988). A simple explanation for 

the loss of responsiveness of the 0-2A progenitor cell to PDGF, 

characterised by the cell type dropping out of division and 

differentiating into an oligodendrocyte, would be the loss of PDGF- 

sensitive receptors from the cell surface of the progenitor cell. 

Recent work by Hart et al. (1980), however, has shown that the loss of 

mitotic responsiveness cannot be explained in this way. 

The type-1 astrocyte secretes at least one other growth factor 

which has a profound effect on cell differentiation. Ciliary 

neurotrophic factor (CNTF) has been shown, again in the rat optic nerve 

system, to induce type-2 astrocyte differentiation (Hughes et al., 1988; 

Lillien et al., 1988). It has been hypothesised that CNTF synthesis is 

initiated by a feedback signal from differentiated oligodendrocytes, 

generated when a sufficient number of oligodendrocytes have accumulated 

(Lillen et al., 1988). The signal would cause type-1 astrocytes to 

secrete CNTF, so driving new 0-2A progenitor cells along the type-2 

astrocyte pathway (fig. 1.1.2). CNTF action alone, however, Is 

apparently insufficient to promote stable type-2 astrocyte 

differentiation. Instead, a transient cell form is produced which 
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loses its astrocyte-specific marker expression after several days, and 

the cell apparently becomes an oligodendrocyte (Raff, 1989). This 

contrasts with the phenotypically stable type-2 astrocyte induced by 

FCS, suggesting the requirement for (an)other factor(s) to promote the 

development from a transient to a stable type-2 astrocyte. It has been 

suggested that PDGF may again be involved here (Anderson, 1989). 

Figure 1.1.2 summarises the present conclusions on glial cell 

differentiation in rat optic nerve. 

This work has recently been questioned by McMorris (1989) who 

believes that oligodendrocytes are indeed induced and that the factor 

responsible for this is Insulin growth factor. He believes that this 

induction follows the PDGF-driven proliferation of the progenitor cell 

and would replace the developmental clock proposed by Raff, and that 

Raff and colleagues mask the effects of the Insulin growth factor by 

always including it in their defined media. ' 

1.1c. Cell-specific markers for glial cell identification 

Identification of cells within the CNS used to depend largely upon 

morphological criteria using light microscopy, a method which can be 

both laborious and often inaccurate. An alternative approach is to 

employ call-specific markers. Each neural cell type expresses a unique 

pattern of extracellular and intracellular protein and lipid. By 

raising an antibody against the specific component of a given cell type 

and linking this to a readily visualised tag (for example, fluorescein, 

rhodamine, peroxidase, gold), microscopic analysis permits positive 

identification of cells, even when they occur in small numbers. Cell- 

specific markers are not only unique for a given cell type but may also 

be so for a particular developmental stage of that cell. This allows 

the investigation of origins and lineages of CNS calls. Some commonly 

used cell-specific markers for' neuroglia are listed In the remainder of 

this section. 
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Glial fibrillary acidic protein (GFAP), a 51kDa protein 

constituent of the microfilaments of astrocytes, was initially isolated 

by Eng at al. (19T1) from multiple sclerosis plaques, and is widely used 

as an Intracellular astrocyte-specific marker. A second marker used to 

identify astrocytes Is the enzyme glutamine synthetase which has been 

demonstrated in frozen sections of rat brain to be localised exclusively 

to protoplasmic and fibrous astrocytes (Norenberg and Martinez- 

Hernandez, 1979). S-100 protein and rat neural antigen-2 (ran-2) have 

also been used as putative astrocyte markers but are not specific to 

astrocytes alone (Kennedy, 1982). 

Both call surface and intracellular markers for 

oligodendrocytes have been described. Galactocerebroside (GC), the 

major glycolipid in myelin (Norton & Autilio, 1966), has been shown to 

be oligodendrocyte-specific in a variety of CNS cultures (see Raff et 

al.., 1978, for example). Myelin proteins specific to oligodendrocytes 

Include myelin basic protein (MBP) (Sternberger et al., 1978), a useful 

developmental marker as It is expressed later in the development of 

oligodendrocytes, myelin-associated glycoprotein (MAG) (Itoyma et al., 

1980), proteolipid protein (PLP) (Agrawal et al., 1977) and myelin- 

oligodendrocyte protein(MOG)(Linnington et al., 1984). Other frequently 

used oligodendrocyte specific markers include the enzyme 2', 3'-cyclic 

nucleotide V-phosphohydrolase (CNPase) (Nishizawa et al., 1981) and 

antibodies 01 and 04 (Sommer & Schachner, 1981). 

Despite the alleged specificity of these and other antibodies it 

Is important to be aware of the possibilities of cross-reactivity and 

transient expression. For example, transient expression of GFAP has 

been demonstrated in developing oligodendrocytes in vitro 

(Ogawa et al., 1985). 

AM, an antibody to ganglioside Gq (Kasai and Yu, 1983) has 

played an important role in the elucidation of glial cell lineage as its 
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antigen is expressed only by the 0-2A progenitor cell and 

type-2 astrocyte (Raff et al., 1983). A marker similar to 

this is monoclonal antibody LB1, which binds to GD3 

ganglioside of a glial progenitor cell type in postnatal rat 

cerebellar cultures (Curtis et al., 1988) similar to the 0- 

2A progenitor call of rat optic nerve. 

1.2 SIGNAL TRANSDUCTION MECHANISMS 

The regulation of different characteristic and specialised 

functions in cells is usually controlled by the binding of agonists to 

protein receptors located within the plasma membrane but accessible at 

the cell surface. A number of mechanisms exist by which a cell 

communicates with its environment, and not all are clearly understood. 

Information generated outside the cell arrives to effect a cellular 

response which Involves at least three components: a receptor to 

recognise the hormone growth factor or neurotransmitter; an enzyme 

system to liberate messenger molecules into the cytoplasm; a third 

component which acts to couple the receptor to this messenger-generating 

system. The cellular response elicited as a result of the interaction 

of these components will vary according to the Identity of the ligand 

binding to the cell receptor and the cell type in question, but may 

range from secretion to contraction to cell division. 

1.2. a. Adenylate cyclase 

A signal transduction system that has been extensively 

investigated and documented is the class of receptors that mediates its 

response through adenylate cyclase, causing an increased production of 

cyclic adenosine 31,5'-monophosphate (cAMP). Binding of an agonist 
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activates one of two distinct guanosine 5'-trisphosphate-binding 

proteins (G-proteins) leading to either an inhibitory or stimulatory 

effect on adenylate cyclase activity. The adenylate cyclase serves to 

convert adenosine trisphosphate (ATP) to cAMP; the latter acts as an 

intracellular or second messenger, activating cAMP-dependent protein 

kinase (protein kinase A or PKA) resulting in the phosphorylation and 

subsequent modulation of a wide variety of enzymes and regulatory 

proteins within the cell. 

1.2. b. The Phosphoinositide pathway 

It is now apparent, however, that another signal transduction 

system exists through which extracellular agonists exert their 

biological effects on cells. This is done by Increasing the levels of 

free calcium ions available In the cytosol, so affecting a wide variety 

of proteins such as kinases and phosphatases either directly or 

indirectly. Evidence has accumulated, largely within the last fifteen 

years, which implicates a specific class of phospholipid, the 

phosphoinositides, in such a process. 

Initial observations of Increased turnover of inositol lipids in 

response to an external signal were made by Hokin and Hokin in 1953 when 

they incubated pancreatic cells in the presence of acetylcholine. This 

discovery was investigated no further until work by Michell in 1975. 

Since then there has been a tremendous amount of interest in this 

subject area with the literature expanding constantly. 

Compounds that cause a biological response via activation of the 

phosphoinositide (PI) pathway stimulate a PI-specific phospholipase C 

(PLC), a phosphodiesterase, which breaks down lipids in the plasma 

membrane (Berridge, 1984). Experimental evidence again Implicates the 

Involvement of a G-protein (Joseph, 1985) although it still requires 

complete characterisation. In contrast to receptor-linked adenylate 
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cyclase activation which produces a single second messenger, inositol 

lipid breakdown produces two functionally distinct second messengers, 

inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DAG) 

(Berridge, 1984). The former, hydrophilic in nature, serves to mobilise 

intracellular calcium ions from an IP3-sensitive pool associated with 

the endoplasmic reticulum (Streb et al., 1983) whilst the hydrophobic 

DAG remains within the membrane and is involved in the activation of a 

calcium - and phospholipid-dependent protein kinase, protein kinase C 

(Takai et al., 1979b). 

1.2. c. Inositol Phospholipid metabolism 

The inositol phospholipids represent only about 5-10% of total 

plasma membrane phospholipids but they are the most metabolically active 

(Williamson, 1986). The major inositol lipid species is 

phosphatidylinositol (see fig. 1.2.1) and between 10 and 20% of the 

phosphatidylinositol pool in the plasma membrane is involved in cell 

signalling (Martin, 1983). Each of two phosphorylated derivatives, 

phosphatidylinositol-4-phosphate (PIP) and phosphatidylinositol 4,5- 

bisphosphate (PIP2) comprises approximately 1% of the total inositol 

phospholipids. 

When an agonist binds to its receptor a conformational change is 

induced. This activates a G-protein (Joseph, 1985) which in turn 

stimulates a PI-specific PLC. The latter hydrolyses PIP2 to form the two 

second messengers IP3, a cytosolic component, and DAG which remains in 

the plasma membrane (Berridge, 1984). Any intracellular signal molecule 

must be rapidly and specifically metabolised in order to terminate its 

activity when the stimulus is removed. This is achieved with the 

inositol phosphates by two separate mechanisms. The first is a simple 

dephosphorylation of IP3 by a 5-phosphatase (IP3 phosphatase) to form 

inositol 1,4-bisphosphate (IP2), a compound inactive in calcium ion 

22 



cy 
de 

C; R (often stearate) 
1 'Ný 

0.1.1 

H-C-0 Arachldonate 

% 
P-0 H H-C-0 

0 
1 

OH 
H 

H 

OH(P) 

H 

OH(P) 

(f= %jms et al., 1986) 

Figure 1.2.1. Structure of phospha. tidylinositol. 
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4 and 5 positions. The breakdown of phosphatidylinosit6l is 
initiated by phospholipase C cleavage of bond 3. The diacylglycerol 

can be further cleaved by lipases with bond 1 preceding bond 2. 
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release assay (Berridge, 1987). The IP2 is then directly 

dephosphorylated to inositol via inositol-4-phosphate. The second 

pathway involves a 3-kinase which phosphorylates IP3 to form inositol 

1,3,4,5-tetrakisphosphate (IP4) (Batty et al., 1985), which does not 

mimic IP3 but has been suggested to work in concert with it by 

facilitating calcium ion entry into the cell (Irvine & Moor, 1986). The 

IN is then dephosphorylated to inositol with inositol 1,3,4- 

trisphosphate, inositol 3,4-bisphosphate and inositol-3-phosphate as the 

major intermediates. Additional branch points exist that allow some 

rather more complex alternatives (for review, see Irvine et al., 1988). 

Contrasting with this agonist-sensitive formation of inositol phosphates 

is an agonist-insensitive metabolic pool of phosphates which appear to 

be linked to the formation of inositol 1,3,4,5,6-pentakisphosphate (IP5) 

and inositol hexakisphosphate (IP6) (Szwergold et al., 1987). IP5 

appears to be synthesised from the inositol 3,4,5,6-tetrakisphosphate 

precursor; what serves as the IP6 precursor is not yet known (Downes, 

1988). Vallejuo et al. (1987) have demonstrated profound effects of IP5 

and IP6 when applied to the CNS, suggesting a possible role as 

neurotransmitters, but work on these two inositol polyphosphates is 

still in its preliminary stages. 

(i) 1,4,5-trisphosphate 

A rise in cytoplasmic IP3 due to hydrolysis of membrane-bound PIP 2 

leads to a release of calcium ions from specialised regions of the 

endoplasmic reticulum (Berridge, 1984). The calcium will then function 

to regulate a variety of events including contraction, secretion and 

various metabolic processes. Some agonists will also trigger an influx 

of calcium ions across the plasma membrane, possibly via the combined 

actions of IP3 and IP4 (Irvine & Moor, 1986), the former acting to 

discharge the internal pool and the latter to promote an influx of 
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external calcium ions. 

(ii) Diacylglycerol 

DAG is the other Immediate product of the phosphodiesteratic 

cleavage of phosphoinositides. It remains in the plasma membrane only 

transiently where it activates a calcium - and phospholipid-dependent 

protein kinase, protein kinase C (PKC) (Kishimoto et al., 1980). 

Activation of PKC leads to phosphorylation of a vast number of cellular 

proteins resulting in both long- and short-term effects an the activity 

of the cell (Nishizuka, 1986). Like IP3, DAG can be metabolised via two 

separate pathways (Berridge, 1987). Phosphorylation of DAG by a DAG 

kinase may occur to form phosphatidic acid which is recycled to reform 

phosphatidylinositol, or DAG may be hydrolysed by a DAG lipase to form 

monoacylglycerol which is further hydrolysed to release arachidonic 

acid. Since the latter is the precursor for the eicosanoids, DAG may 

give rise to additional messengers which function as local hormones. It 

may also allow for a subsequent or prolonged activation of PKC as 

arachidonic acid has been shown to activate a subspecies of PKC (see 

section 1.3. k). The second messenger roles of IP3 and DAG are 

summarised diagrammatically in figure 1.2.2. 

A rapid transient accumulation of DAG associated with stimulated 

phosphoinositide turnover has been demonstrated in various cell types 

(for example, Bell et al., 1979; Martin, 1983; Cockcroft & Allan, 1984) 

where it has been derived from either phosphoinositides or phosphatidic 

acid. Some studies have suggested that only a part of this newly 

generated DAG is due to PI turnover, the remainder having arisen from 

other lipids (see Brown et al., 1984a). The potential of alternative 

pathways of phospholipid turnover in hormone signal transduction has 

only recently been appreciated. There is an Increasing body of evidence 

which suggests that phosphatidy1choline (PC) is an important source of 
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DAG (summarised in Pelech & Vance, 1989). The phosphatidy1choline 

cycles for generation of second messengers are presented in figure 

1.2.3. 

DAG can be generated directly from PC via another PLC. 

Alternatively it may be generated by the action of phospholipase D (PLD) 

to yield phosphatidic acid (PA), followed by cleavage by phosphatidic 

acid phosphohydrolase (PAP) to form DAG. Indeed, this PLD route may be 

the preferred one (Cabot et al., 1988 a, b). PC hydrolysis by 

phospholipase A2 (PLA2) will produce lyso-PC and arachidonic acid. 

Lyso-PC re-enters the cycle whilst arachidonic acid is converted to the 

eicosanoids. Lyso-PC may be re-esterified to PC; alternatively it may 

be catabolised to glycerophosphocholine (GPC) and further degraded to 

glycerol-3-phosphate (G-3-P) and choline. G-3-P can be converted back 

to DAG via PA synthesis. 

Much of the work investigating PC cycles has involved the use of 

tumour-promoting phorbol esters to activate PKC (this is discussed more 

fully in section 1.3. d). Hence PKC activation is leading to activation 

of phospholipases to produce DAG. As DAG Is the second messenger which 

activates PKC, this is, in effect, a potential pathway for the 

generation of a subsequent or prolonged activation of PKC or it possibly 

may allow regulation of activation of PKC subspecies (see section 

1.3. k). In addition, activation of PKC has been shown to enhance PC 

synthesis via activation of PC cytidyltransferase, the regulatory enzyme 

controlling the synthesis of PC at the endoplasmic reticulum (Pelech et 

al., 1984). 

In summary, cell-specific responses to an agonist may reflect the 

phospholipase specificity of the G-protein with which the activated 

agonist receptor associates, the fatty acid and polar head group 

composition of the membrane phospholipids, and the particular subspecies 

of PKC that is expressed in the cell (Pelech & Vance, 1989). 
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Whilst the role of PC has been emphasised above, other 

phospholipids such as phosphatidylethanolamine may contribute towards 

such a signal transduction process. An interesting observation made 

recently (Yamada & Kanoh, 1988) concerns the possibility of the 

existence of multiple species of DAG kinase. Each of these could exist, 

it may be argued, to inactivate a DAG derived from a different 

phospholipid source. 

1.3 PROTEIN KINASE C 

The investigation of the role of protein kinases in the CNS and 

the identification and characterisation of their specific substrates are 

active areas of research which have already provided valuable Intimation 

on the mechanisms involved in-many neurophysiological processes. 

Although the properties of the protein kinases of the CNS are generally 

similar to those of the PNS, there are important differences, especially 

in their relative concentrations and in their cellular and subcellular 

distributions. In addition, the brain appears to contain a greater 

diversity of substrates for most protein kinases. The substrate 

specificities of protein kinases and protein phosphatases fall into two 

general categories, those with narrow substrate specificities and these 

which exhibit broad substrate specificities (Nairn et al., 1985). Into 

the former group come cyclic quanosine monophosphate (cGMP)-dependent 

protein kinase, calcium/calmodulin kinase I, myosin light chain kinase 

and phosphorylase kinase, kinases which presumably are involved in 

specialised aspects of neuronal function. Those which are likely to be 

involved In many aspects of neuronal function, and hence have broad 

substrate specificities, include cAMP-dependent protein kinase, 

calcium/calmodulin kinase II and protein kinase C. 
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1.3. a. Occurrence of PKC 

PKC was originally isolated as its proteolytic fragment, protein 

kinase M (PKM), a peptide of approximately 64kDa from frozen bovine 

cerebellum (Takai et al., 1977). It was subsequently partially purified 

from the soluble fraction of fresh rat brain, and shown to be activated 

upon limited proteolysis by a calcium-dependent neutral protease, 

calpain, present in the same tissue (Inoue et al., 1977). The active 

protein kinase thus produced is indistinguishable in kinetic and 

catalytic properties from PKM purified from bovine cerebellum. 

PKC is widely distributed amongst the phyla of the animal kingdom 

(Kuo et al., 1980) and has also been detected in plants (Elliot & Kokke, 

1987). The enzyme is present in many tissues and was originally 

purified to near homogeneity from bovine heart (Wise et al., 1982), but 

is more abundant in brain, from where it is now more commonly Isolated 

(for example, Kikkawa et al., 1982; Wolf et al., 1984). The enzyme from 

these preparations exhibits a single protein staining band of 

approximately 80kDa upon sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE), behaves as a monomer upon gel permeation 

chromatography and has an isoelectric point of approximately 5.6 

(Kikkawa et al., 1982; Wise et al., 1982). 

1.3. b. Subcellular distribution of PKC 

The brain is the richest source of PKC, with a large proportion 

associated with synaptic membranes. This contrasts with other tissues 

where the enzyme is present mainly in the soluble fraction as an 

Inactive form (Kikkawa et al., 1982). Upon cell stimulation, the enzyme 

is apparently translocated to the membrane (Kraft & Anderson, 1983). 

Precise Intracellular localisation is difficult because the enzyme is 

pxtracted for assay in the presence of calcium chelators such as 

ethyleneglycol bis (0-aminoethylether) N, N, N', N'-tetraacetic acid 
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(EGTA) to prevent its calcium-dependent proteolysis. Hence, any 

contribution that calcium may give to membrane binding is negated. The 

enzyme may in fact be loosely bound to the membrane but then dissociates 

from it upon removal of calcium (Kikkawa & Nishizuka, 1986). The 

subcellular localisation of PKC is also sensitive to the growth state of 

the cell; in proliferating cells there is a greater proportion of 

membrane-bound enzyme than in resting cells which presumably reflects 

activation of PKC during the process of mitosis (Adamo et al., 1986). 

Recent attempts at enzyme localisation have used 

Immunocytochemical analysis, although this has not given any truly 

definitive results. Shoji et al. (1986) and Kikkawa et al. (1986) were 

two of many authors who employed this technique, with the latter 

investigation noting very poor or zero immunoreactivity in the nucleus. 

Evidence is accruing, however, that PKC may indeed have a nuclear 

localisation and that this presence is endogenous and not due to a 

translation event (see Masmoudi et al., 1989). This could easily 

explain the phosphorylation of nuclear proteins such as topoisomerase II 

by PKC (MacFarlane, 1986). 

An interesting theory concerning PKC localisation has recently 

been advanced by Bazzi & Nelsestuen (1988). They discovered two 

populations of membrane-bound PKC; one population was dissociated by 

calcium chelation but the other was not. The second population appeared 

to be inserted into the membrane and its activity was independent of 

calcium. The authors proposed that activation of PKC may lead to 

insertion into the membrane. Hence, when the second messengers have 

been degraded the Inserted PKC remains active until degraded by the 

protein turnover processes. This, they believe, may be important for 

long-term effects within the cell. 
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1.3. c. Biochemical and physiologicalactivation of PKC 

The activation of PKC normally depends upon calcium as well as 

phospholipids and DAG. However, DAG dramatically Increases the affinity 

of the enzyme for calcium and thus allows activation without a net 

increase in intracellular calcium concentration (Kishimoto et al., 

1980). Obviously the enzyme can also be activated effectively by the 

simultaneous increase in concentrations of calcium and DAG, but PKC 

activation, though biochemically dependent on calcium, is 

physiologically independent of calcium concentration. 

Many phospholipids have been tested for their ability to activate 

PKC in vitro. The enzyme appears to have an almost absolute requirement 

for phosphatidylserine (PS); other phospholipids show limited 

activation, and several show positive or negative effects on PS binding 

In the presence of low calcium concentrations, and hence on enzyme 

activity (Takai at al., 1979a; Kaibuchi. et al., 1981). Therefore In 

vivo the phospholipid composition of membrane may have profound effects 

on the requirements for activation of PKC in any particular call type; 

of particular interest here are studies of lipid arrangement which found 

PS to be positioned at the cytosolic leaflet of the membrane bilayer 

(Jacobsen and Saier, 1984). It is therefore likely that the lipid 

composition may determine which cellular membranes can support binding 

of PKC. In vitro, 1,2-sn diacylglycerols stimulate PKC by increasing 

the affinity of the enzyme for calcium and phospholipids (Takai at al., 

1979b). The enzyme exhibits specificity for the 1,2-configurations 

(Rando & Young, 1984). The structure of the DAG molecule Is shown in 

figure 1.3.1. 

Hannun at al. (1985) have proposed that one molecule of DAG can 

activate one molecule of PKC in the presence of greater than four, but 

less than ten, molecules of PS. Active PKC thus appears to exist as a 

quaternary complex comprising the enzyme, phospholipid, DAG and calcium 
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(see figure 1.3.2). In vivo, dissolution of the complex and 

Inactivation would occur primarily via phosphorylation of the DAG to 

phosphatidic acid by DAG kinases, although degradation by DAG lipases 

may also be important. 

The divalent calcium requirement is almost absolute. Of the 

divalent metal ions, only strontium will substitute for calcium and even 

then it is only 5% as effective in PKC activation (Takai et al., 1979a). 

Magnesium ions are essential for catalytic activity (5-10mM) but if 

manganese or cobalt replace magnesium (0.5-1mM), a half-maximal response 

may be attained (Takai et al., 1984). 

PKC can also be activated by proteolysis with a calcium-dependent 

neutral protease (Inoue et al., 1977). The smaller enzymatically active 

component produced is totally independent of calcium, phospholipid and 

DAG. Membrane-associated PKC is more susceptible to this limited 

proteolysis (Kishimoto et al., 1983), but whether or not this 

proteolysis Is of physiological significance is still a subject for 

debate (see Woodgett et al., 1987 for a discussion on this subject). Of 

interest here is a recent observation by Kishimoto et al. (1989) that 

calpain exhibits differential activity on the various PKC subspecies. 

1.3. d. 
-Diacylqlycerol and tumour promoters 

The tumour-promoting phorbol esters are tetracycline diterpine 

derivatives isolated from croton oil of plants of the family 

EuDhorbiaceae. Although not carcinogenic themselves, repeated 

application of phorbol esters following a single sub-threshold dose of a 

carcinogenic substance causes tumour outgrowth. The active derivatives 

of phorbol are esterified at the 12 and 13 positions, and contain a 

DAG-like moiety in their structure (see figure 1.3.3). The most potent 

of these is 12-0-tetradecanoylphorbol-13-acetate (TPA), also called 

phorbol myristic acid (PMA) by an alternative nomenclature system. In 
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Figure 1.3.2. Activation of protein kinase C. 

Left: Protein kinase C associated with a membrane surface complex of 
phosphatidylserine and calcium in an inactive form. 
Right: Membrane-associated protein kinase C activated by diacylglycerol. 
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1982, Castagna et al. reported that phorbol esters could substitute for 

DAG in activating partially purified PKC. Moreover, the relative 

potencies of a series of phorbol esters In tumour promotion tended to 

correlate with their relative potencies in PKC activation, with the 

doses required for both processes being very similar. Subsequent work 

showed that the phorbol ester receptor copurified with PKC (Kikkawa 
-et 

al., 1982; Parker et al., 1984). 

Kinetic analysis of the PKC activation by phorbol esters suggests 

that roughly one molecule of tumour promoter can activate one molecule 

of the kinase (Kikkawa et al., 1983; Uratsuji et al., 1985). TPA will 

produce its effects at the nanogram level however, in contrast to the 

microgram levels required for a similar effect by DAG. In addition TPA 

acts on PKC directly without involving activation of the PI pathway for 

example. However, whilst DAG is present only transiently in the 

membrane, its In vivo presence being carefully regulated, no enzymes 

exist to regulate levels of phorbol ester. It thus tends to persist in 

the membrane leading to a continuous activation of PKC, and so does not 

necessarily give an accurate reflection of the effects induced by PKC 

activation via DAG production, and indeed may distort the normal 

sequence of events (Kikkawa & Nishizuka, 1986). 

Tumour promoters structurally unrelated to phorbol esters such as 

teleocidin and mezerein also activate PKC (Fujiki et al., 1984; Miyake 

et al., 1984), thus suggesting that a DAG-like structure is not always 

essential. The lipophilic nature of these molecules causes 

perturbations of phospholipid bilayers at relatively low concentrations, 

analagous to that caused by DAG (Tran et al., 1983). Such changes in 

fluidity may affect a variety of membrane-associated proteins 

independently of PKC activation such as receptors, ion channels and 

cytoskeletal components. 
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1.3. e. Inhibitors of PKC 

A variety of compounds have been described that inhibit the 

activity of PKC. The first cited inhibitors were members of the 

antipsychotic drug family e. g. chlorpromazine (Mori et al., 1980). Like 

many other purported inhibitors of the enzyme these act by modifying the 

interaction between the enzyme and the phospholipid, and their action 

can be overcome by adding phospholipids in vitro (Uratsuji et al., 

1985). In addition, these compounds will also inhibit calmodulin- 

dependent protein kinases. 

Tamoxifen and polymyxin B, an antioestrogen and an antibiotic 

respectively, were also found to interact with phospholipids. Recently, 

sphingosine, a component of sphingomyelin phospholipids, has been shown 

to inhibit purified PKC competitively with respect to calcium, DAG and 

PS (Hannun et al., 1986). However, inhibition by sphingosine does not 

involve the active site of PKC (Farooqui et al., 1988); instead it 

appears that through competitive interactions with calcium, PS and PKC, 

sphingosine displaces activators such as DAG or TPA, thus preventing 

formation of the active lipid-enzyme complex. 

All protein kinases require nucleotide trisphosphates, usually 

ATP, as cofactors. Hidaka et al. (1984) have described the use of 

isoquinolinesulphonamide compounds which are competitive inhibitors with 

respect to ATP, but differ in their selectivity of inhibition of various 

protein kinases. 

The most potent inhibitor of PKC described to date is 

staurosporine, an antifungal microbial alkaloid, which exhibits half- 

maximal inhibition at 27nM (Tamaoki et al., 1986). Again, however, its 

action is not a specific one and it is also a potent inhibitor of PKA as 

well as being toxic to growing cells. 

Thus it would appear that although numerous inhibitors of PKC have 

been cited, none are specific for the enzyme, and the use of such 
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compounds requires justification by corroborating results with data 

obtained by other means. 

1.3. f. Requlation of PKC activity by various liDids 

The activity of PKC is regulated according to its state of 

association and dissociation with membrane lipids. These interactions 

control not only the amount of active enzyme but also its subcollular 

localisation. Redistribution of PKC to specific regions of cell 

membranes would occur if the lipid activator accumulated in localised 

regions of the cell membrane. A better understanding of the modes of 

action and mechanisms of activation of PKC by various lipids Is 

essential for elucidating the role of PKC in the regulation of multiple 

cellular functions. 

PKC activity may be regulated by phospholipids, neutral lipids, 

glycolipids and unsaturated fatty acids. Phospholipids, sulphatides and 

gangliosides interact with PKC through calcium, whereas unsaturated 

fatty acids such as arachidonate do not require calcium for this 

activation (Farooqui et al., 1988). 

(I) Diacylglycerol. 

This has been discussed above (see section 1.3.0. It is of 

Interest to note that besides PKC, DAG regulates other enzymes such as 

phospholipases A, and A2 (Dawson et al., 1985), glycogen synthetase 

(Bouscarel et al., 1988) and ornithine decarboxylase (Kido et al., 

1986). Dawson et al. (1985) believe that the stimulation of 

phospholipases Al and A2 Is caused by the ability of DAG to change the 

organisation or orientation of the phospholipid bilayer. Michel et al. 

(1976) have also indicated that high DAG concentrations can be 

detrimental to normal bilayer structures. 
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01) Phorbol esters. 

This has been discussed above (see section 1.3. d. ). 

(iii) Unsaturated fatty acids. 

McPhail et al. (1984) were the first to show that arachidonic acid 

and other unsaturated fatty acids markedly stimulated neutrophil PKC in 

the presence of calcium, and that stimulation was enhanced by DAG 

(diolein) but not by PS. Murakami & Rottenberg (1985), using a purified 

preparation of rat brain PKC, showed activation of the enzyme using both 

oleic and arachidonic acids, but that this activity was independent of 

calcium and phospholipid. Sekiguchi et al. (1987) have indicated that 

different subtypes of brain PKC respond differently to unsaturated fatty 

acids (see section 1.3. k). In all the above work however, non- 

physiological levels of the fatty acids were used; such levels of fatty 

acid do not occur in vivo even under pathological conditions (ischaemia 

and spinal cord trauma) in which unsaturated fatty acids and their 

metabolites have been reported to have perturbing effects on biological 

membranes (Williamson, 1986). According to Oishl et al. (1988), lyso-PC 

at concentrations of 20pm or less, possibly derived from membrane PC by 

the action of PLA2, will activate PKC; concentrations above 30PM cause 

inhibition of the kinase. These authors consider that lyso-PC may thus 

play a role in signal transduction via a dual regulation of PKC. 

(iv) Gangliosides. 

These are complex glycosphingolipids which form complexes with 

calcium through their negatively charged sialic acid moieties. Both 

stImulatory and inhibitory actions of gangliosides on PKC have been 

described (Chan, 1987a, b). This class of lipid has been ascribed a 

potential role in regulation of phenomena such as cellular division and 

differentiation through PKC and other kinases (Farooqui et al., 1988). 
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Such postulations are supported by observations that sphingosine, a 

catabolic product of gangliosides, will inhibit PKC by displacement of 

DAG or TPA, thus preventing formation of the active lipid-enzyme complex 

(Hannun et al, 1986). 

(V) Lipoxin A and other eicosanoids. 

Oxygenated products of the arachidonic acid cascade are known to 

have profound effects on cellular metabolism (Irvine, 1982). Lipoxin A 

(5,6,15L-trihydroxy-7,9,11,13-eicosatetraenoic acid), a recently 

discovered metabolite of arachidonic acid, activates human placental PKC 

at a 30-fold lower concentration than does arachidonic acid or DAG 

(Hansson et al., 1986). Other eicosanoids had either decreased (e. g. 

linolenic acid) or no effects (e. g. leukotriene B4) on PKC activity. 

(vi) Sulphatides. 

Sulphatides, sulphate esters of cerebrosides, will stimulate PKC 

to the same extent as PS in the presence of TPA (Fujiki et al, 1986). 

other sphingolipids were found to be without effect. In addition, 

substitution of TPA by DAG led to a fourfold lower activity in the 

presence of sulphatide than in the presence of PS. 

(vii) others. 

The active lipid moiety of lipopolysaccharides of Gram-negative 

bacteria, diacylglucosamine-1-phosphate, markedly stimulates PKC 

activity (Wightman et al., 1975), possibly due to the structural 

similarity of this active lipid moiety to PS. Tumour-promoting organic 

solvents such as benzene and toluene also activate PKC (Roghani et al., 

1987) but without competing with TPA for its binding. site, indicating 

that the mechanism of action of tumour promoter solvents is different 

from the phorbol esters. 
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1.3.9. Role of PKC in res onse to cellular activation 

PKC activation and calcium mobilisation can be induced selectively 

and Independently by the application of a permeable DAG or phorbol ester 

for the former and a calcium ionophore such as A23187 for the latter. , 

Use of such a system demonstrates that both limbs of the signal pathway 

are essential in order to elicit full cellular responses. Nishizuka's 

group first demonstrated this role for PKC in stimulus-response coupling 

(Kaibuchi et al., 1983). The system was subsequently employed in a 

number of cell types, and some of the postulated roles of PKC which have 

arisen as a result of this type of experiment are listed in table 

1.3.1., together with examples of workers who have undertaken such 

studies. The potential role of PKC in si gnal transduction at the cell 

surface has also been extrapolated to neural tissues, particularly in 

relation to neuropeptide and transmitter release In the CNS and PNS. 

The activation of cellular responses by PKC appears to be separate from, 

but often synergistic with, activation via an increase in intracellular 

calcium concentration (Kaibuchl et al., 1983, for example). 

While IP3 and DAG play a role in short-term responses, these 

second messengers are likely also to be of importance in long-term 

responses such as gene expression and cell proliferation. Both limbs of 

the pathway are essential and act synergistically to promote DNA 

synthesis, although an additional pathway is required to elicit maximal 

activation of cell proliferation as some growth factor must be added 

(Kaibuchi et al., 1985). Growth factors which operate through the DAG 

and IP3 signal pathways include PDGF (Habenicht et al., 1981), insulin 

(Rozengurt et al., 1984) and Interleukin-1 (Truneh et al., 1985). 

Expression of a number of genes has been reported to be induced by TPA 

and DAG including ornithine decarboxylase (Otani et al., 1985) and 

prolactin (Murdoch et al., 1985). 
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The relationship between PKC and oncogenes has received much 

attention. Nerve growth factor has been shown to induce the expression 

of Harvey and Kirsten cellular ras oncogenes (cH-ras and cKi-ras 

respectively) (Hagag et al., 1986) and to stimulate a PLC with the 

consequent activation of PKC (Cremins et al., 1986). Activated ras 

appears to give an overproduction of DAG, not the equimolar quantities 

of DAG and IP3 that would be obtained through the PI pathway, similar 

to an insulin-like effect on de novo synthesis of phosphatidic acid 

which Is rapidly converted to DAG (Wolfman & Macara, 1987). Evidence is 

also available that the src oncogene may utilise the DAG synthesis 

pathway in addition to PLC activation (Chiarugi et al., 1987). c-fos, 

c-myc and cKi-ras oncogenes are also potential targets of PKC action 

(Greenberg et al., 1985; Ballester et al., 1987). 

1.3. h. Requlation of PKC by feedback control 

In biological systems activation responses are normally followed 

by rapid deactivation responses to prevent an overshoot and so allow 

subsequent responses to signals received. The activity of PKC is no 

different in this respect; its function appears to be sensitive to 

feedback control on cell surface receptors. This is often termed 

downregulation. Feedback control involving receptors coupled to 

inositol phospholipid breakdown has been reported in astrocytoma cells 

(Orellana et al., 1985), hippocampal slices (Labarca et al., 1984) and 

platelets (Rittenhouse & Sasson, 1985) to name but a few systems. Not 

only does PKC regulate its own receptors but it also extends its action 

to receptors of other signalling systems. The epidermal growth factor 

(EGF) receptor is phosphorylated by PKC, resulting in a decrease in both 

its tyrosine-specific protein kinase and growth factor binding 

activities (Cochet et al., 1984). The receptors for Insulin (Jacobs et 

al., 1983), transferrin (May et al., 1984) and interleukin-2 
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TABLE 1.3.1. POTENTIAL ROLES OF PKC IN CELLULAR RESPONSES 

TISSUE OR 
CELL TYPE RESPONSES REFERENCE 

-lood 
Cell Systems 

Platelets Serotonin release Kaibuchi et al., 1983 
Arachidonate release Halenda et al., 1985 
Thromboxane synthesis Mobley & Tai, 1985 

Neutrophils Superoxide generation Serhan et al., 1983 
Mast cell Histamine release Katakami et al., 1984 

Endocrine Systems 

Adrenal medulla Catecholamine secretion Knight & Baker, 1983 
Adrenal cortex Aldosterone secretion Kojima et al., 1983 
Pancreatic islets Insulin release Zawalich et al., 1983 
Pituitary cells Growth hormone release Ohmura & Friesen, 1985 

Luteinising hormone Conn et al., 1985 
release 
Prolactin release Delbeke et al., 1984 
Thyrotropin release Martin & Kowalchyk, 1984 

Parathyroid cells Parathyroid hormone Brown et al., 1984a 
release 

Exocrine Systems 

Pancreas Amylase secretion du Pont & Fleuren- 
Jakobs, 1984 

Gastric gland Pepsinogen secretion Sakamoto et al., 1985 

Nervous Systems 

Ileal nerve, Acetylcholine release Tanaka et al., 1984, 
endings; caudate nucleus 1986 
PC12 cells; Dopamine release Pozzan et al., 1984; 
neurones Zurgil &, Zisapel, 1985 

Muscular Systems 

Smooth muscle Contraction Rasmussen et al., 1984 

Other Systems 

Adipocytes Lipogenesis van de Werve et al., 1985 
Glucose transport Kirsch et al., 1985 

Hepatocytes Glycogenolysis Roach & Goldman, 1983 
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(Shackelford & Trowbridge, 1984) may also be targets for PKC action. 

In short-term cellular responses, PKC may inhibit calcium 

mobilisation by blocking the receptor-mediated hydrolysis of inositol 

phospholipids, and hence, production of IP3 and DAG (Nishizuka, 1988). An 

alternative regulatory method would be stimulation of IP3 hydrolysis by 

activation of an IP3 phosphatase (Connolly et al., 1986). A third 

possible route is the stimulation of removal of Intracellular calcium by 

activation of the calcium-transport ATPase and the sodium/calcium 

exchange protein (Nishizuka, 1986). 

Feedback control may also apply to long-term responses such as 

cell proliferation, an example being phosphorylation of the EGF receptor 

mentioned above. An analagous situation appears to exist with the T- 

cell receptor present on T-lymphocytes. Stimulation of these cells with 

TPA and calcium ionophore results in the phosphorylation and subsequent 

downregulation of the receptor, preventing a further proliferative 

response to the antigen (Cantrell et al., 1985). 

1.3. i. Substrates for PKC phosphorylation 

The first step in identifying the mechanism of action of agonists 

which lead to PKC activation is to identify the proteins that are 

phosphorylated by this kinase. Such a task Is far from simple as PKC 

will phosphorylate a huge number of proteins in vitro of seemingly every 

function, subcellular localisation and structure. This has tended to 

complicate attempts to rationalise observations of effects of agonists 

In vivo with changes in the phosphorylation state of proteins 

phosphorylated by PKC in vitro. Some workers have tried to get around 

this problem by proposing certain criteria which must be satisfied 

before target proteins for PKC may be 'Identified' (see Woodgett et al., 

1987). Table 1.3.2 lists a number of postulated substrates of PKC, 
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together with some of the workers who have undertaken these studies. 

Activation of PKC in platelets by exposure to agonist leads to 

increased phosphorylation of a 40kDa component identified as IP3 

phosphatase (Connolly et al., 1986). Phosphorylation of this protein in 

response to agonists such as phorbol ester, synthetic diacylglycerols 

and platelet-activating factor parallels the release of various 

constituents of platelet granules. Another useful marker of PKC 

activation in intact cells appears to be an agonist-based change in an 

acidic phosphoprotein of approximately 80kDa that has been identified In 

a number of systems (for example, Rozengurt et al., 1984; Blackshear et 

al., 1986; Rumsby et al., 1988). The phosphorylation of this protein 

increases dramatically in response to phorbol ester and a variety of 

agonists believed by other criteria to act in part through PKC 

activation. The 80kDa protein appears not to be significantly 

phosphorylated by any other kinase and is present in all cells and 

species examined to date with the richest sources being the CNS and 

retina (Witters & Blackshear, 1987). The identity and function of this 

protein however are at present unknown. 

Phosphorylation of target proteins occurs at seryl and 

threonyl but not tyrosyl residues. In this respect PKC is similar 

to PKA, and indeed the two kinases share common substrates e. g. 

calf thymus histone (histone HO and myelin basic protein (MBP). 

Closer analysis however reveals residue specificity; PKA 

phosphorylates the serine-38 residue located close to the N- 

terminal end of histone HI for example, whereas PKC rapidly 

phosphorylates seryl and threonyl residues close to the C- 

terminus. Like a number of other protein kinases, PKC will 

autophosphorylate; this occurs in the presence of calcium, 

phospholipid and DAG, but the significance of this phosphorylation 

45 



TABLE 1.3.2. PROTEINS PHOSPHORYLATED BY PKC in vitro AND WHOSE 

PHOSPHORYLATION IS STIMULATED BY TPA in vivo 

Actin-binding protein Carroll et al., 1982 

Myosin light chain Castagna et al., 1982 

47kDa (IP3 phosphatase) Castagna et al., 1982; 

Connolly et al., 1986 

Ribosomol protein S6 LePeuch et al., 1983 

Glycogen synthase Roach & Goldman, 1983 

Vinculin Werth et al., 1983 

Tyrosine hydroxylase Albert qt al., 1984 

EGF receptor Cochet et al., 1984 

IL-2 receptor Shackelford & Trowbridge, 1984 

8OkDa Rozengurt et al., 1984 

pp6osrc Tamura et al., 1984 

Class 1 HLA antigens Feuerstein et al., 1985 

NADPH oxidase Papini et al., 1985 

Glucose transporter Witters et al., 1985 

Transferin receptor Davis et al., 1986 

p36/p35 Gould et al., 1986 

MBP Vartanian et al., 1986 
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remains to be determined. In many systems PKC-dependent 

phosphorylation is believed to be relatively resistant to 

phosphatase action (Chiarugi et al., 1989), so allowing substrate 

modification induced by PKC to persist. 

1.3. J. 
-Interaction of PKC with other signalling systems 

(i) Interaction with the cAMP pathway 

The transduction mechanism involving the generation of the 

second messenger 3', 5'-cAMP was the first to be extensively 

characterised (see Krebs and Beavo, 1979). The cAMP system 

operates by activating a serine/threonine-specific protein kinase, 

PKA. The two kinases PKA and PKC often interact with each other; 

Nishizuka (1986) has divided the cellular responses into two modes 

(see figure 1.3.4). In bidirectional control systems the two classes 

of receptor appear to counteract each other, whereas in 

monodirectional control systems one receptor class may potentiate 

the other. For example, in platelets and lymphocytes there is 

evidence that cGMP is elevated upon TPA treatment leading to cAMP 

inhibition (Coffey & Hadden, 1983; Nishizuka, 1983), a 

bidirectional control system. In cerebral cortex, in contrast to 

this, agonists of PKC stimulate the cAMP pathway (Hollingsworth et 

al., 1986). The molecular mechanisms responsible for this 

interaction between the two pathways are unknown but the complex 

cell-specific interrelationships displayed reflect the 

adaptability of control pathways (Nishizuka, 1986). 
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Figure 1.3.4. Modes of interaction of two major signal - 
transducing systems. 
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(ii) Interaction between PKC and tyrosine kinases 

Although little is known about how these two signalling 

systems are linked, a number of observations point to such a 

relationship. The two kinases have a number of substrates in 

common such as the EGF receptor (Cochet et al., 1984) and p36 

(Gould et al., 1986); the latter is both a major cellular 

substrate for protein-tyrosine kinases and a physiological 

substrate for PKC. In addition, a 42kDa protein is phosphorylated 

on tyrosine when certain cell lines are treated with phorbol 

esters (Bishop et al., 1983; Gilmore & Martin, 1983) indicating 

that PKC must either activate a protein-tyrosine kinase or inhibit 

a protein-phosphotyrosine phosphatase (Woodgett et al., 1987). 

Finally, TPA will act as a partial mitogen for certain cell lines 

in a manner analagous to some of the polypeptide mitogens that act 

through protein-tyrosine kinase receptors (for example, Dicker & 

Rozengurt, 1978). 

1.3. k. Multiple forms of PKC 

Until recently it was believed that the PKC detected 

throughout the animal kingdom was a single protein. It is now 

apparent, however, that far from being a single entity, there are 

at least seven subspecies of the enzyme. This is not a previously 

unknown phenemenon with kinases; PKA has two forms which differ 

in their mechanisms of regulation and tissue distribution (Nairn, 

1985). 

The existence of multiple forms of PKC was reported at about 

the same time by isolating four distinct cDNA clones of PKC 

(Coussens et al., 1986; Knopf et al., 1986; Ono et al., 1986; 

Parker et al., 1986). Two methods of nomenclature exist to 

describe the subspecies. The lettered variety now favoured by 
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most groups and originally proposed by Coussens et al. (1986). is 

used in this study. In this the four subspecies are termed a, D1, 

01, and X (corresponding to numerical types III, IIA, IIB and I 

respectively). These subspecies are products of three distinct 

genes, with 01 and 01, being formed by alternative splicing of a 

single gene (Ono et al., 1986). These subspecies can be separated 

into three distinct fractions by hydroxylapatite column 

chromatography (Ono et al., 1987). 

More recently, at least three further subspecies, delta (6), 

epsilon (E) and zeta (z) have been isolated from a rat brain cDNA 

library (Ono et al., 1988), but these cannot yet be isolated using 

chromatographic means. The newly-discovered subspecies have a 

common structure closely related to, but clearly distinct, from 

the four subspecies Initially described. See figure 1.3.5. The 

main difference between the a, 0, X and 6, e, z groups is that the 

latter subspecies lack the second conserved region, C2.01 and 

011 differ from each other only in approximately fifty amino acid 

residues at their carboxy-terminal end regions V5, and even in 

this area they possess a high degree of sequence homology (Ono et 

al., 1987). 

(I) Distribution 

Biochemical and Immunocytochemical approaches to Investigating PKC 

subspecies have been undertaken in a number of laboratories with the 

result that much is now known about the distribution of the a, 0 and 

forms but rather less about the remaining three. The most striking 

example of subspecies specificity in localisation is that the W- 

subspecies appears to be expressed solely in the brain and spinal cord, 

with particularly high concentrations in the hippocampus and cerebral 
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cortex (Nishizuka, 1988). Because of its localisation, X-PKC has 

been proposed to play a role In long-term potentiation (LTP) 

(Nishizuka, 1988). Levels of the X-subspecies appear to increase 

postnatally, reaching a maximum in the rat approximately three 

weeks after birth. 

01 and 01, are found in both the CNS and PNS, with 01, being far 

more prevalent. Each subspecies has a distinct pattern of cellular 

localisation, however. For example, in the rat cerebellar cortex 01 is 

found in the granule cell body and 01, in the molecular layer (Huang et 

al., 1987a). Many tissues contain 01 and 01, subspecies in varying 

amounts, but a appears to be the most widely distributed of the 

subspecies isolated to date (Shearman et al., 1987). In addition, most 

tissues contain more than one subspecies of PKC. 

(ii) Individual characteristics 

The presence of different subspecies of PKC suggests different 

biological roles according to difference in tissue distribution. This 

suggestion is strengthened if the subspecies exhibit differences in 

enzymatic properties; this indeed is the case. 01 and 01, subspecies 

are surprisingly active when stimulated by DAG and PS in the absence of 

calcium, and reach 60% of maximal possible activity. This contrasts 

with the 25% of maximal activity obtained with the a and y forms under 

the same conditions (Nishizuka, 1988). X-PKC can be significantly 

activated by arachidonic acid (AA) (Sekiguchi et al., 1988), activation 

being nearly 80% of maximal with 30pM arachidonic acid. Activation does 

not require Ca2+, nor does it depend upon phospholipid and DAG. 01 and 

011-PKC's show substantial activity without added Ca2+ in the presence 

of DAG and phospholipid, but respond much less to AA. a-PKC is similar 

to the X-subspecies in properties but responds to high levels of AA only 
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when Ca2+ levels are increased. The activation properties of the a-, 0- 

and X-subspecies are summarised in table 1.3.3. It is possible that 

some PKC subspecies may be activated at different stages of cellular 

responses by a series of phospholipid metabolites such as DAG, which may 

arise from various phospholipid sources, and AA and its metabolites 

which are formed subsequent to stimulation of the receptor. 

TABLE 1.3.3. ACTIVATION PROPERTIES OF SUBSPECIES OF 

PROTEIN KINASE C FROM MAMMALIAN TISSUES 

SUBSPECIES ACTIVATORS 

a PS + DA9++ Ca2+ 
AA + Ca 

ol PS + DAG + Ca2+ 

PS + DAG + Ca2+ 

PS + DAG + Ca2+ 
AA 
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(iii) PKC and the arachidonate cascade 

Arachidonic acid may be derived via PI turnover through two 

consecutive reactions catalysed by PI-PLC and DAG lipase (see figure 

1.2.2) (Bell et al., 1979). However, although this pathway produces 

arachidonate specifically, PI appears to be a relatively minor 

production source (Takai et al., 1984). A second pathway is a PLA2- 

mediated breakdown of phosphatidylcholine, phosphatidylethanolamine, and 

phosphalidylinositol (Sekar & Hokin, 1986). This enzyme has a lower 

affinity for Ca2+ than PLC, suggesting that PLA2 action on 

phospholipids is likely to be stimulated by agonist-evoked rises in 

Intracellular Ca2+ concentrations. such as those seen on IP3 formation 

from PIP2 (Billah et al., 1980). These same authors proposed a third 

pathway of AA formation via a PA-specific PLA21 the PA being derived 

from DAG during receptor-linked PI turnover by a DAG kinase. These 

pathways are summarised diagrammatically in figure 1.3.6. It is 

probable that pathways of arachidonate liberation employed vary widely 

according to tissue and cell type, with much depending upon the 

messenger Invoking phospholipid (especially PI) turnover. 

Arachidonate liberated by any of these pathways is rapidly 

converted to various biologically active metabolites (prostaglandins, 

thromboxanes and leukotrienes) which mediate or modulate numerous 

physiological functions. Thromboxane A2 in platelets may induce PI 

turnover and initiate another cascade of the activation of cellular 

functions while prostaglandins such as prostacyclin will interact with 

receptors to cause formation of cAMP and so lead to feedback control of 

cellular functions (Sekar & Hokin, 1986). Arachidonate has also been 

implicated in calcium mobilisation in a number of cell types (for 

example, Whiting & Baritt, 1982; Kolesnick & Gershengorn, 1985), and 
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PKC may be involved in the regulation of arachidonic acid metabolism via 

phosphorylation of the li0ocortins, proteins which inhibit the rate 

limiting step in prostaglandin synthesis (Khanna et al., 1986). 

1.4 PKC AND GLIA 

Much work has been carried out investigating the role of PKC in 

neurones (for example, Kikkawa et al., 1986; Miller, 1986), but there 

have been few investigations of PKC activity in glial cells. This is 

despite a number of observations linking the enzyme to this cell type: 

0) immunacytochemical observations by Girard et al. (1985) identified 

PKC activity in cells resembling oligodendrocytes in rat brain white 

matter; 

(ii) myelin basic protein, a major constituent of the myelin sheath and 

synthesised by oligodendrocytes, is a good substrate for PKC (Turner et 

Al., 1982); 

(iii) tumour-promoting phorbol esters enhanced the differentiation of 

astrocytes in cultures derived from foetal rat brain (Honegger, 1986); 

(iv) PKC has been identified in primary astrocyte cultures (Neary et 

al., 1986b); 

(v) receptor-linked PI turnover has been demonstrated in astrocytes 

(Pearce et al., 1986) and 

(vi) proliferation of glial cells in a primary neuronal cell culture 

led to significantly increased levels of phorbol ester receptor binding 

(Burgess et al., 1986). 

There is thus substantial evidence that PKC is associated with 

glia which would be in keeping with the role of-the enzyme in 

controlling regulatory processes in these active cells. 
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1.5 PLATELET-DERIVED GROWTH FACTOR 

A polypeptide growth factor recently implicated in the regulation 

of glial cell development in rat optic nerve has been identified as PDGF 

(Noble et al., 1988; Raff et al., 1988; Richardson et al., 1988). 

This work has been mentioned in an earlier section (see 1.1. b) but is 

discussed in more detail here. Information concerning the PDGF molecule 

and Its role in signal transduction is also presented. 

1.5. a. PDGF and qlial cell development 

The differentiation of an 0-2A progenitor cell in vitro is 

dependent upon the culture conditions employed. In the presence of 

concentrations of foetal calf serum of 10% or more the call, when 

cultured in the absence of other cell types, will differentiate Into a 

type-2 astrocyte (Raff et al., 1983). At concentrations of FCS below 

1%, however, an oligodendrocyte is produced. Thus it was proposed that 

0-2A progenitor cells would differentiate to become oligodendrocytes 

unless an inducing factor, mimicked in cell culture by FCS, were present 

(Raff et al., 1985). In vitro experiments by Noble and Murray (1984) 

indicated that type-1 astrocytes secreted one or more factors to keep 

0-2A progenitor cells proliferating and prevent their premature 

differentiation. However, at a given point in time (i. e. day of birth 

E21 in rats), the cells became unresponsive to this stimulus and 

developed into oligodendrocytes, a situation which can be reflected In 

vitro by culturing 0-2A progenitor cells from embryonic rat nerve with 

type-1 astrocytes, or in type-1 astrocyte-conditioned medium (Raff et 

al., 1985). 

Evidence to date suggests that PDGF is the growth factor secreted 

by type-1 astrocytes which stimulates 0-2A cells to proliferate. Noble 

et al. (1988) investigated a wide range of growth factors for their 
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ability to modulate DNA synthesis and differentiation of 0-2A progenitor 

cells in cultures derived from optic nerves of 7-day old rats. Only 

PDGF was found to mimic the effects of type-1 astrocytes. PDGF also 

promoted DNA synthesis in 0-2A progenitor cells as effectively as type-I 

astrocytes or type-1 astrocyte-conditioned medium, and inhibited the 

rapid differentiation of progenitor cells into oligodendrocytes that is 

otherwise seen when these cells are grown In the absence of type-1 

astrocytes. 

Richardson et al. (1988) made a number of observations supporting 

this proposed role for PDGF. Analysis of cultures of type-1 astrocytes 

showed that they secrete PDGF and contain messenger RNA which encodes 

for the PDGF-A chain (the structure of PDGF is discussed in section 

1.5. b). Purification of type-I astrocyte conditioned medium by gel 

filtration led to mitogenic activity comigrating with PDGF. This 

mitogenic activity competed with PDGF for receptors and was neutralised 

by antibodies to PDGF. 

PDGF has also been identified in extracts of developing optic 

nerve (Raff et al., 1988). The same authors have shown that the 

polypeptide can replace exogenous type-1 astrocytes or type-1 

astrocyte-conditioned medium in reconstituting the normal timing of 

oligodendrocyte development In cultures of embryonic rat nerve cells, 

and that antibodies to PDGF neutralise the ability of type-1 astrocyte- 

conditioned medium to reconstitute this normal timing. 

At a specific time the 0-2A cells become unresponsive to PDGF and 

drop out of division to become oligodendrocytes. Theories proposing how 

this might occur have been discussed earlier, as has the role of type-I 

astrocytes in development of type-2 astrocytes from 0-2A progenitor 

cells (see section I. I. b). 
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1.5. b. PDGF: structure and properties 

PDGF is an ubiquitous peptide regulatory factor which was first 

Identified when It was realised that whole blood serum was an essential 

component of culture media for the successful growth of mesenchyma 

connective tissue-forming cells (Ross et al., 1974). Cell-free, 

plasma-derived serum, lacking any components derived from circulating 

blood, lacks growth-promoting activity. Only the platelet can restore 

this activity, hence the introduction of the term platelet-derived 

growth factor. Despite this terminology, the molecule is synthesised 

and secreted by a number of cell types such as tumour cells and 

activated macrophages (Ross et al., 1986). Various roles have been 

attributed to PDGF including healing and repair of wounds and 

inflammation (Shimokado et al., 1985). More recently, roles In 

development have been proposed as a result of finding PDGF in the 

placenta (Goustin et al., 1985), the early mouse embryo (Rappolee et 

al., 1988) and the Xenopus embryo (Mercola et al., 1988). In addition 

PDGF has now been shown to play a major role in the differentiation and 

development of glial cells, as discussed in the previous section. 

PDGF from human platelets is a cationic glycoprotein of 

approximately 30kDa (Antoniades, 1981). Reduction of disulphide bonds 

destroys its mitogenic activity and generates multiple protein species 

of 14-17kDa. Sequence analysis revealed two distinct but related 

sequences in these multiple species suggesting that PDGF from human 

platelets is a heterodimer of two chains termed A and B (Johnsson et 

al., 1984), both of which can be mitogenic. This contrasts with porcine 

PDGF which consists of B-B homodimers (Stroobant and Waterfield, 1984) 

and the A-A homodimers of osteosarcoma cells (Heldin et al., 1986). In 

fact purified PDGF from human platelets contains about 70% PDGF-AB and 

30% PDGF-BB (Hammacher et al., 1988). 

The PDGF-AB chain has been found to have a stimulatory effect in 
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assays of chemotoxins and actin reorganisation of human fibroblasts 

(Nister et al., 1988). PDGF-AA is a potent mitogen for Swiss 3T3 cells 

(Kaslauskas et al., 1988). In addition, it is mRNA encoding the AA 

homodimer that is found in cultures of type-1 astrocytes (Richardson et 

al.,, 1988) and thus it is this homodimer that is mitogenic for the 0-2A 

progenitor cell (Anderson et al., 1989). 

1.5. c. Signal transduction by PDGF 

Analysis of binding of the various PDGF dimers to cultured 

fibroblasts led to the introduction of two distinct PDGF receptor types 

(Hart et al., 1988), denoted A and B. The A-type receptor binds all 

three forms of PDGF (homodimers AA and BB, and heterodimer AB) whereas 

the B-type receptor binds PDGF-BB with high affinity, PDGF-AB with lower 

affinity, and doesn't appear to bind PDGF-AA at all (Heldin and 

Westermark, 1989). The difficulty in Investigating signal transduction 

involving PDGF is its ability to act via two signal pathways, PKC and 

tyrosine kinase (Kaplan et al., 1987; Ek et al., 1982). Our knowledge 

of signal transduction involving the first pathway is growing all the 

time, but the second-named pathway is rather less well detailed. Work 

by Williams (see Williams et al., 1988; Williams, 1989) has attempted to 

remedy this latter fact and, in detailed studies, he has made a number 

of important observations: 

(I) the kinase-insert region of the receptor (Yarden et al., 1986) 

plays an important part in mitogenesis, but is not essential for many of 

the early responses to PDGF including tyrosine kinase activation, PI 

turnover, Increased intracellular calcium, receptor Internalisation and 

change in intracellular pH; 
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(ii) the tyrosine kinase activity of the receptor is essential for 

Mitogenesis and PI hydrolysis, but is not required for ligand-induced 

receptor downregulation; 

(iii) the transmembrane region of the receptor serves an important and 

specific role in signal transduction other than simply providing a 

membrane anchor for the receptor; 

(iv) when activated, the wild-type receptor associates with PDGF- 

sensitive PI kinase, but non-mitogenic mutants of the receptor failed to 

do this; 

(v) the receptor undergoes a nonconformational change when activated 

by PDGF. 

In investigating the PDGF receptor, all this above work was 

carried out using the PDGF-B receptor; the less well characterised 

PDGF-A receptor Is structurally related however (Heldin and Westermark, 

1989), and so similar properties might be expected. 

Recent evidence suggests that the PDGF-B receptor is not 

expressed, or is expressed only at very low levels, on normal connective 

tissue cells in vivo and that the receptor is induced in conjunction 

with inflammation in vivo (Rubin et al., 1988) or when cells are 

explanted into tissue culture Jn vitro (Terracio et al., 1987). Thus 

the in vivo response appears to be largely dependant upon type-B 

receptor induction and not merely the levels. of available ligand. How 

the type-A receptor functions is not yet known. 
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1.6. AIMS OF THE PROJECTS 

The aims of this study were to investigate CNS glia for the 

presence of PKC activity and to define the characteristics of the enzyme 

present. A further aim was to examine oligodendrocytes and astrocytes 

separately for evidence of PKC activity. Because of the complexity of 

separating glia from CNS tissue, primary culture systems derived from 

neonatal rat brain (Walker et al., 1985) were used as the basis of this 

work. 

Initially, an assay to measure PKC in this system had to be 

developed prior to Investigations concerning levels of PKC activity, 

localisation of this activity and enzyme characterisation could take 

place. Finally, this study aimed to postulate a role for PKC in glial 

cells. 
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2. METHODS 

2.1. CELL-CULTURE 

2-I. a. Preparation of mixed glial cell-primary cultures 

This method was performed essentially as described by Walker et 

al. (1985); the entire preparation was carried out under aseptic 

conditions. 

1-2 day old Wistar rat pups were decapitated and the cerebral 

hemispheres removed into culture medium consisting of Dulbecco's 

modified Eagle's Medium (DMEM) supplemented with 10% foetal calf serum 

(FCS), 2mM L-glutamine and 50 IU/ml penicillin and 0.05mg/ml 

streptomycin in a 10cm petri dish. The cerebra were dissected along the 

longitudinal fissure and the meninges removed by gently rolling the 

hemispheres across sterile filter paper. This technique significantly 

reduces contamination of cultures with fibroblasts. Cleaned hemispheres 

were placed inside a nylon mesh bag (212pm mesh; Swiss Silk Bolting 

Cloth Mfg. Co. Ltd., Zurich) which was resting in a petri dish 

containing medium. The surface of the bag was stroked gently with a 

glass rod to allow the dissociated tissue to pass out into solution. 

The suspension of tissue fragments and one wash of the bag were passed 

through two stainless steel sieves (230pm and 140pm mesh; Cellector E-C 

Apparatus Corp., USA) and the cells collected by centrifugation at 10OOg 

for 5 min. an a Sorvall RT6000 bench centrifuge. The cell pellet was 

resuspended In culture medium and cell viability determined by nigrosin 

dye exclusion using phase contrast microscopy. 

25cm2 tissue culture flasks (Nunc) were seeded with 1.75 x, 106 

viable cells per flask and cultures left undisturbed in a humidified 

incubator in an atmosphere of 5% C02 at 37*C for 5 days. The culture 

medium was then changed, and subsequent changes took place every 3-4 
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days. Figure 2.1.1. A shows the appearance of primary glial cells at 

four weeks in culture. 

2.1. b. Preparatlon of glial subcultures 

Oligodendrocyte-enriched cultures were obtained by following a 

procedure performed essentially as detailed by McCarthy and de Vellis 

(1980). 

Primary mixed glial cell cultures were grown for 9 days In 25cm2 

flasks as detailed above. The flasks were then placed on an orbital 

shaker (Gyrotory G2, New Brunswick Sci., Canada) positioned within a 

37*C incubator, the caps of each flask tightened, and the flasks shaken 

for 1h. at 190rpm. Flasks were then removed, the culture medium 

(containing mainly macrophages) discarded, and 4ml of fresh medium 

added. Shaking was then continued for a further 16h. 

At the end of this time call-containing supernatant was removed, a 

viable cell count performed, and the subcultures seeded at 1.75 x 106 

viable cells per 25cm2 flask. Flasks, were returned to the incubator and 

left for 5 days prior to medium change. Figure 2.1.1. B shows the 

appearance of glial subcultures at three weeks in subculture. 

2.1. c. Use of oliqodendrocyte-defined medium 

The medium used was as described by Espinosa de los Monteros et 

al. (1988) and termed OLDEM. The basal media were DMEM and Ham's F-12 

medium (HAM). OLDEM contained the following constituents (all given as 

final concentrations): 
DMEM : HAM 1: 1 (v/v) 

Sodium bicarbonate 3037 mg/litre 

D(+) - galactose 2500 mg/litre 

D(+) - glucose 1300 mg/litre 

L-glutamine 200 mg/litre 
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Streptomycin 

Penici II in 

Putrescine dihydrochloride 

Bovine insulin 

50 mg/litre 

50000 IU/litre 

16.1 mg/litre 

5 mg/litre 

Sodium selenite 0.008 mg/litre 

Approximate pH was 7.2 - 7.4 at 37*C. 

2.1. d. Preparation of type-I astrocyte cultures 

Cultures were prepared according to Noble and Murray (1984). 

Cells remaining following subculturing were essentially a population of 

type-1 astrocytes with a small number of contaminating 0-2A progenitor 

cells. The flasks were tapped against a solid surface 3-4 times and 

then washed with medium to remove any cells not tightly attached to the 

substratum; this further reduced the number of contaminant cells. 

Cultures then had 4ml medium added and were grown for a further 24h. 

at 37*C. 1OpM cytosine arabinoside was added for a further 24h. in 

order to preferentially kill any rapidly dividing cells. Cells were 

passaged either 1 to 2 or 1 to 4 using trypsin and grown to near 

confluency (3-4 days for 1 to 2 passage, about 1 week for 1 to 4 

passage). At this stage the cultures consisted of greater than 95% 

type-1 astrocytes as determined by phase contrast and immunofluorescent 

microscopy. Figure 2.1.1. C shows the the appearance of an astrocyte 

culture following treatment with cytosine arabinoside and prior to 

passage. 

2.1. e. Use of astrocyte-conditioned medium 

Medium was prepared as described by Richardson et al. (1988). 

Semi-confluent monolayers of astrocytes were washed three times with 

serum-free DMEM, and then incubated at 37'C in an atmosphere of 5% C02 

for 48h. in the same medium. The conditioned medium was then removed 

and stored at -20*C. 

65 



Figure 2.1.1. Glial cell cultures at different stages of 

development. 

A: 21-day old primary glial cell culture 

B: 21-day old glial subculture 

C. 12-day old primary astrocyte culture prior to passage 

(Magnification x 200) 
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For use of the astrocyte-conditioned medium, the method of 

Richardson et al. (1988) was followed. 24h. prior to use of the 

conditioned medium, cells were rinsed twice with serum-free DMEM and 

incubated in a modified Bottenstein and Sato (1980) medium. This 

consisted of DMEM with the following supplements; D-glucose (5.7 

mg/ml), bovine insulin (50ng/ml), bovine serum albumin (O. Img/ml), human 

transferrin (10.1mg/ml), progesterone (62ng/ml), putrescine chloride 

(1.6pg/ml), sodium selenite (40ng/ml), L-thyroxine (4ong/ml), 

triiodothyronine (30ng/ml), penicillen (10OU/ml) and streptomycin 

(100pg/ml). Conditioned medium was later added at the required 

dilution. 

2.2. IMMUNOFLUORESCENT LABELLING OF GLIAL CELLS 

Cell-specific markers for identification of glial cells have been 

discussed earlier (see section 1.1. c. ). 

, 
2.2. a. Cell specific markers 

The antibodies that were used routinely were galactocerebroside 

(GO, a marker for oligodendrocytes (Raff et al., 1978), the astrocyte- 

specific marker glial fibrillary acidic protein (GFAP; Eng et al., 1971) 

and the progenitor cell and type-2 astrocyte marker A2B5 (Raff et al., 

1983). 

Monoclonal anti-GC antibody (culture supernatant) was a gift from 

Dr. M. Noble (Institute of Neurology, London) and was used at a 1+19 

dilution. Monoclonal anti-GFAP antibody (ascites fluid) was a gift from 

Dr. N. Groome (Oxford Polytechnic) and used at a 1+99 dilution. 

Monoclonal anti-A2B5 antibody (ascites fluid) was a gift from Dr. F. 

Walsh (Institute of Neurology, London) and was used at a 1+159 dilution. 
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Fluorescein isothiocyanate (FITO-conjugated goat anti-mouse IgG 

(affinity purified) was purchased from Sigma and used at a 1+19 

dilution. Thimerosal (Sigma) was added to all antibody solutions to 

give a final concentration of 0.01% (w/v) in order to retard microbial 

growth. 

2.2. b. Procedure 

Cells were identified using cell-specific markers according to the 

method of Walker et al. (1985). 

Culture medium was removed from the 25cm2 flasks and the cells 

washed three times with Hank's balanced salt solution (HBSS), Ca2+ and 

M92+ free (Gibco), containing 20mM Hepes, pH 7.3, to remove all traces 

of media. 4mm diameter discs were cut from the base of each flask using 

a heated cork burner and taking care to prevent excessive drying of the 

cells during this process. An aliquot of HBSS-Hepes was added 

immediately after cutting each disc. The discs were then rinsed a 

further three times in HBSS-Hepes before fixing with 3.8% (v/v) 

formaldehyde in HBSS-Hepes for 5-10 min. at room temperature. Cells 

were then washed extensively in HBSS-Hepes prior to staining. 

Protocols varied according to whether the antigens under 

investigation were situated on the cell surface or were intracellular. 

For labelling with A2B5 or GC, cells were initially incubated with 3% 

(v/v) goat serum in HBSS-Hepes for 30 min. to block non-specific binding 

of antibody; cells to be labelled with GFAP underwent a second fixation 

step (10 min. in 5% glacial ethanoic acid/95% ethanol at -20*C) followed 

by washing in HBSS-Hepes prior to incubation with primary antiserum. 

Cells were then incubated with the appropriate monoclonal antibody for 

45 min.. At the end of the term of incubation the plastic discs were 

rinsed three times in HBSS-Hepes before a second 30 min. incubation in 

3% (v/v) goat serum in HBSS-Hepes. Incubation with goat anti-mouse 

IgG-FITC for 30 min. followed. Cells were then washed In HBSS-Hepes and 
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mounted with glass coverslips using a solution of glycerol/PBS (9: 1 

v/v), pH 8.6 containing 2.5% (w/v) DABCO (1,4 diazobicyclo [2,2,21 

octane; Aldrich). 

Cells were viewed with a Nikon Labophot microscope equipped with 

phase contrast and epifluorescence optics providing an excitation 

wavelength of 460nm. Figure 2.2.1. shows the appearance of cells 

stained with anti-AM, anti-GC and anti-GFAP antibodies. 

2.2. c. Photography 

Cells were photographed using Kodak Technical Pan 2415 film at 400 

ASA. A stock solution of Kodak HCIIO developer diluted 1+3 in water and 

kept at 4*C was further diluted 1+9 in 20*C water. Developing of the 

film in a Paterson developing canister was carried out for 24 min. with 

inversions every 30 seconds. After rinsing twice in water the film was 

fixed in Kodafix (1+3 in water) for 5 min. at 20*C. A 30 min. rinse 

in water followed prior to drying the film in a heated cabinet. 

2.3 COMPLEMENT-MEDIATED CYTOTOXICITY 

Normal guinea pig serum was used as a source of complement; blood 

obtained by cardiac puncture from anaesthetised Strain-13 guinea pigs 

was left to clot at room temperature for 20 min. and then centrifuged 

(10OOg for 30 min. ). Alioquots of serum were stored at -80*C for up to 

four weeks without any significant loss of activity. 

Flasks were rinsed with DMEM to get rid of any floating cells or 

debris and incubated with anti-AM antibody (1+639 dilution) for 3h. at 

37*C. Following two rinses with DMEM, a 20% (v/v) dilution of guinea 

pig serum was added and the flasks incubated for a further 30 min. at 

37*C. Control cells were treated with guinea pig serum only in order to 

determine the level of non antibody-mediated complement cytotoxicity. 
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Figure 2.2.1. FITC-fluorescent labelling of 10-day old (A, B) 

and 21-day old (C) primary glial cell cultures. 

A: using anti-A2B5 antibody (magnification x 200) 

B: using anti-GFAP antibody (x 200) 

C: using anti-GC antibody (x 400) 
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Serum from three guinea pigs was tested at dilutions ranging from 

1 to 50%; in all cases a 20% dilution was found to be appropriate. 

Cell damage was assessed using nigrosin dye exclusion and phase contrast 

microscopy. 

2.4 PROTEIN KINASE C ASSAY 

This method was adapted from that of Kikkawa et al. (1983). 

2.4. a. Principle 

PKC catalyses the transfer of the X-phosphate of ATP to the seryl 

or threonyl residues of various protein substrates. The enzyme was 

routinely assayed by measuring the incorporation of 32p from X-32P-ATP 

into calf thymus histone as a phosphate acceptor in the presence of 

Ca2+, phospholipid and unsaturated DAG. After incubation, the 

radioactive histone was separated from the reaction mixture by 

precipitation with 25% (w/v) TCA, followed by vacuum filtration on a 

glass fibre membrane. 

Basal activity was measured in the presence of ethylene glycol bis 

(0-aminoethylether) N, N, N', N'-tetraacetic acid (EGTA) instead of 

Ca2+, phospholipid and DAG; activity was also measured omitting 

phospholipid and DAG. In this way the assay measured three types of 

kinase activity; calcium-independent (in the presence of EGTA), 

calcium-dependent (in the presence of Ca2+) and calcium and 

phospholipid-dependent (in the presence of Ca2+, phospholipid and DAG) 

kinase activity. Because the histone is not a specific substrate for 

PKC, indeed to date none have been identified which might be suitable 

for such an assay, one must depend upon the demonstration of Ca2+- and 

phospholipid-dependence to identify PKC activity. 
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2.4. b. Procedure 

The reaction mixture (250pl) contained 5OmM Tris/HC1 pH7.7,50vg 

type HIS histone (Sigma), 10pg phosphatidylserine (Lipid Products), 

0.2pg diolein (Sigma), 1001M calcium chloride, 5OpM ATP, 2pCi X_32P-ATP 

(3000 Ci/mmol, Amersham International) plus the enzyme fraction. 

Before being added, the PS and diolein in chloroform/methanol (2: 1 

v/v) were mixed and the solvent removed under nitrogen. The residue was 

then resuspended in a small volume of 50mM Tris/HCl at pH 7.5 by 

sonication with a Decon sonifier FS100 for 10 min. at 4*C. The reaction 

was started by addition of enzyme to reaction mixture preequilibrated to 

the requisite temperature and the reaction continued for 10 min. at 300C 

In a shaking water bath. All assays were in quadruplicate and addition 

of 2ml of cold 25% (w/v) TCA to each sample terminated the reaction. 

Samples were left on ice for at least 1h. when acid-precipitable 

material was collected on a glass fibre membrane filter (Whatman GF/F, 

pore size 0.7pm) by vacuum filtration. The tubes were washed out three 

times, each time with 3ml of 25% (w/v) TCA, and the membrane filter was 

successively washed with 25% (w/v) TCA, 8% (w/v) TCA and 70% (v/v) 

ethanol. Filters were then dried in an oven set at 3T*C for one hour 

and placed in plastic minivials. 3ml of Optiphase liquid scintillant 

(LKB) was added to each minivIal and the radioactivity determined with 

an LKB Minibeta 1212 liquid scintillation counter using the 32P window 

for 6 min. or until an error of 1% was reached. PKC activity was 

determined by subtracting the level of 32p incorporation into histone 

noted in the presence of EGTA alone from that noted in the presence of 

Ca2+, phospholipid and DAG. Results were corrected for protein by a 

modification of the method of Lowry et al. (1951). 
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2.5. PREPARATION OF GLIAL CELL EXTRACT 

Flasks of cells were washed three times with 1ml of homogenisation 

buffer (5OmM Tris/HC1 pH 7.5,5mM dithiothreitol, 2mM EGTA, 100Pg/ml 

leupeptin and 2mM phenylmethylsulfonyl fluoride [PMSFI) to remove all 

traces of culture medium, and the cells harvested by scraping them into 

0.5 - 1ml homogenisation buffer using a rubber policeman. The cell 

suspension was disrupted by 20 strokes in a"Potter-Elvehjem teflon-glass 

homogeniser at 700rpm, and the homogenate spun at 100,000g for 60 min. 

at 4*C using a Beckman SW6OTi rotor in an L2-65B ultracentrifuge 

(Beckman). 

The supernatant recovered was employed as the crude cytosolic 

extract. To solubilise any PKC activity associated with the membrane, 

the particulate pellet remaining after the above spin was resuspended in 

homogenisation buffer containing 1% (v/v) Triton-X-100. The pellet was 

homogenised and left mixing for 30 min. at 4*C on a roller. The mixture 

was then centrifuged as before and the supernatant recovered employed as 

the crude source of membrane-bound PKC. 

2.6 DE-52 COLUMN PURIFICATION OF CRUDE ENZYME EXTRACT 

This method was previously described by Anderson et al. (1985). 

The entire procedure was carried out at 4'C. 

Glass columns were manufactured in the departmental workshops and 

were 12cm x 1cm i. d. A glass wool plug was located at the tapered end 

of the column and a 2cm length of autoclavable plastic tubing sealed 

with a jubilee clip attached to that end. 

DE-52 cellulose (Whatman) was equilibrated with 20mM Tris/HCI pH 

7.5, and 2ml of a 1: 1 (v/v) slurry of equilibrated DE-52 cellulose was 

poured into the columns to give a 1mI packed-bed volume. The packed 
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column was then washed with 10ml of column buffer (20mM Tris/HCl pH 7.5, 

2mM ethylenedlaminetetraacetic acid (EDTA), O. 5mM EGTA, 50mM 0- 

mercaptoethanol) and left for at least 12h. prior to use. 

Both cytosolic and particulate fractions (2-4ml) were applied to 

the DE-52 columns which had previously been washed with 15ml each of 

column buffer. Following sample addition, the columns were washed with 

10ml of column buffer prior to elution of bound PKC with 3ml of column 

buffer containing 120mM NaCl. An alternate method of Kikkawa 
-et 

al. (1986), eluting with a 10ml 0-0.3M gradient and collecting 0.5ml 

fractions was used at first, but later replaced with this method of 

Anderson et al. (1985). Fractions collected were assayed for PKC 

activity on the same day. 

2.7 TREATMENT OF CELL CULTURES WITH PHORBOL ESTER AND CALCIUM 

IONOPHORE 

12-0-tetradecanoylphorbol-13-acetate (TPA), 4-a-phorbol and 

dimethylsulphoxide (DMSO) were all obtained from Sigma. TPA and 

4-a-phorbol were diluted in DMSO to give a 1mg/ml stock solution. 100pl 

alIquots of the stock solutions were frozen at -800C, and stocks 

replenished monthly. 

Prior to use, aliquots of stock solution were diluted 

appropriately in tris saline and a 10-50pl aliquot added to the cell 

cultures. These dilution factors meant that the final concentration of 

DMSO added to the cultures was less than 0.001% (V/V). 

Calcium ionophore (A2318T) was obtained from Sigma and dissolved 

in DMSO to give a stock solution of 5mg/ml. The final concentration of 

DMSO added to the cultures was less than 0.01% (v/v). 

Extreme caution was necessary when using the phorbol ester and 

calcium ionophore. Suitable protective clothing was worn at all times, 

including two pairs of rubber gloves. All solutions containing phorbol 
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ester were brought to pH2: 11 after use to destroy their potential 

tumour-promoting activity (Wooge and Conn, 1987) and all contaminated 

material was left to soak in 1M sodium hydroxide for 48h. prior to 

disposal. 

2.8 USE OF HEAVY METALS 

The following compounds were used as sources of divalent heavy 

metal ions. All were of the purest grade commercially available: 

arsenous oxide (As203); barium chloride (BaC'2.2H20); cadmium chloride 

(2CdCI2.5H20); copper chloride (CuC'2.2H20); lead chloride (PbC12); 

manganese chloride (MnCl2,4H20); mercuric chloride (HgC12.2H20); 

nickel chloride (NiCI2.6H20); zinc oxide (ZnO). 

Due to the extreme toxicity of some of the above compounds great 

care had to be exercised in the handling of the solids and the solutions 

made up, and in the disposal of contaminated glassware and pipette tips. 

Suitable protection, including the use of two pairs of rubber gloves, 

was worn at all times. 

2.9 CELL PROLIFERATION ASSAY 

2.9. a. -Labelling of cells 

Methyl-3H-thymidine (5Ci/mmol; Amersham) was added to newly-fed 

cultures at 1pCi/ml for the appropriate time period. Cultures were then 

rinsed twice with tris saline to remove excess label and the cells 

scraped into a known volume of double distilled water using a rubber 

policeman. 

2.9. b. Determination of levels of Incorporated radioactivity 

The cell extracts were disrupted by 10 strokes in a Potter- 
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Elvehjem teflon-glass homogeniser at 700rpm. Triplicate 30pl aliquots 

were added to 2ml of ice-cold 8% (w/v) TCA and the tubes left on ice for 

at least 1h. Triplicate 10pl aliquots were taken for protein estimation 

as detailed in section 2.11. 

TCA-precipitable material was collected on a glass fibre membrane 

filter (Whatman GF/A, pore size 1.2pm) by vacuum filtration. Tubes were 

rinsed twice with 3ml of 8% (w/v) TCA and the membrane filter washed 

with 8% (w/v) TCA and 70% (v/v) ethanol. Filters were then dried in an 

oven set at 37*C for one hour and placed in plastic minivials. 3ml of 

Optiphase liquid scintillant (LKB), was added to each minivial and the 

radioactivity determined with an LKB Minibeta 1212 liquid scintillation 

counter using the 3H window for 6min. or until an error of 1% was 

reached. All results were corrected for protein . 

2.9. c. Photography 

Cells were routinely examined using a Nikon inverted microscope, 

and photographs taken using Kodak Technical Pan 2415 film exposed at 70 

ASA and developed at 50 ASA using Kodak HC110 developer (1+79 dilution 

with water for 8 min. at 18*0 with fixing as described earlier (section 

2.2. c. ). 

2.10 HYDROXYLAPATITE COLUMN CHROMATOGRAPHY 

2.10. a. Initial Method 

DE-52 purified fractions obtained from 100,000g whole glial cell 

extract or rat cerebral extract were applied directly to a packed Biogel 

hydroxylapatite column (Biorad, 0.78xlOcm with 0.4x5cm guard column) 

connected to a Pharmacia FPLC system as advised by M. Shearman (personal 

communication) and detailed by Kosaka et al. (1988). The column was 

previously equilibrated with 20mM potassium phosphate buffer pH 7.5 
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containing 0.5mM EGTA, 0.5mM EDTA, 10% (v/v) glycerol and IOmM 0- 

mercaptoethanol. At least 107 cells were required for the DE-52 

purification and resolution of the enzymes (M. Shearman, personal 

communication), representing a protein level in the region of 2-3mg. 

The column was washed with two column volumes of the buffer and the 

enzyme eluted by application of a linear 20-215mM potassium phosphate 

buffer gradient in 84ml at a flow rate of 0.4ml/min. collecting 1ml 

fractions. All procedures were carried out at 0-4*C. 

Aliquots of the collected fractions were then tested for PKC 

activity as detailed previously (see section 2.4). 

2.10. b. Refined Method 

M Sample preparation 

The 3ml DE-52-purified fractions obtained from glial cell extract 

or rat cerebral extract were dialysed overnight against 500ml of 20mM 

potassium phosphate buffer pH 7.5 at 4*C. 

(ii) Separation of multiple subspecies 

Sample (1-2mg protein) was loaded onto a packed ceramic 

hydroxylapatite column (Tonen, Tokyo, 0.78xlOcm with no guard column) 

connected to a Pharmacia FPLC system. The previously equilibrated 

column was washed with two column volumes of the same 20mM potassium 

phosphate buffer and the PKC eluted by application of a linear 20-3OOmM 

potassium phosphate buffer gradient in 84ml, at a flow rate of 

0.4ml/min. collecting 1ml fractions. Aliquots from collected fractions 

were tested as before. The whole process from homogenisation of glial 

cells or rat brain through to assessment of PKC activity by transfer of 

Y_ 32p from ATP to histone, and including overnight dialysis, took 

approximately twenty-four hours. 

A list of Important points to consider when using an HA column is 

included in the Appendix. 
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2.11 PROTEIN ESTIMATION 

The protein content of all samples was estimated using a 

modification of the method of Lowry et al. (1951). Four reagents were 

prepared: 

A. 2% (w/v) Na2CO3 in O. 1M NaOH 

B. 0-5% (w/v) CuS04.5H20 in 1% (w/v) sodium citrate 

C. 1ml of B mixed with 49ml of A just prior to use 

D. Folin-Ciocalteau reagent (Sigma) diluted 1: 1 with water to give a 

1M solution. 

An aliquot of the sample to be assayed containing 5-50pg protein 

was made up to 100pl with distilled water, and Iml of reagent C was 

added. The solution was allowed to stand at room temperature for 10 

min. when 10OVI of solution D was added and mixed immediately using a 

vortex mixer. The colour was allowed to develop for 60-120 min. at room 

temperature when its absorbance was measured at 750nm using a CE-292 

UV-spectrophotometer (Cecil Instruments) fitted with a microsipette 

attachment. 

Because the absorbance varies non-linearly with protein 

concentration using this method, a standard calibration curve was 

constructed each time using bovine serum albumin at concentrations 

ranging from 1-50mg/ml in distilled water. All estimates were conducted 

in triplicate. A typical standard curve is shown in figure 2.11.1. 
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Figure 2JI. 1. A typical protein standard curve produced using 

the method of Lowry et al. (1951). 

Each point represents the mean of triplicate samples. 
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2.12 SODIUM DODECYL SULPHATE-POLYACRYLAMIDE GEL ELECTROPHORESIS 

(SDS-PAGE) 

Proteins were separated using SDS-PAGE with a discontinuous buffer 

system as described by Laemmli (1970). 

2.12. a. Reaqents 

60% (w/v) acrylamide : 1.6% (w/v) N'N'-bis-methylene acrylamide in 

double distilled water. O. 1g of activated charcoal was added, 

stirred for 15 min. to absorb Impurities, and then removed by 

filtering twice through Whatman 541 filter paper. The solution 

was stored at VC. 

(11) 10% (w/v) sodium dodecyl sulphate 

(iii) Resolving gel buffer 1.5M Tris/HC1, pH 8.8 

Ov) Stacking gel buffer 0.5M Tris/HCl, pH 6.8 

(v) Running buffer : 25mM Tris, 192mM glycine, 0.05% (w/v) SDS, 

adjusted to pH 8.3 with HO 

(vi) NNN'N'-tetramethylethylenediamine (TEMED) 

(vii) 10% (w/v) ammonium persulphate 

(viii)Sample buffer : 65mM Tris/HC1, pH 6.8 containing 2% (w/v) SDS, 

5%(w/v) 0-mercaptoethanol, 10% (v/v) glycerol and 0.002% (w/v) 

malachite green 

(ix) Staining solution : 0.1% (w/v) Coomassie blue, 50% (v/v) methanol, 

7.5% (v/v) glacial ethanoic acid 

(X) Destaining solution : 5% (v/v) methanol, 7.5% (v/v) glacial 

ethanoic acid 
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2.12. b. Procedure 

Resolving gels were made with a gradient of 6-30% (w/v) 

acrylamide, with 6% (w/v) acrylamide stacking gels. Gradients were 

formed using a two chamber gradient maker attached to a peristaltic 

pump. Gels were of 0.75mm thickness and volumes sufficient for two such 

gels were mixed as follows: 

Reagent Volume Added 

6% acrylamide 30% acrylamide 

Acrylamide 1.50ml 7.50ml 

Gel buffer 3.75ml 3.75ml 

SDS 0.15ml 0.15ml 

Water 9.60ml 3.60ml 

Ammonium persulphate 30pl 30pl 

TEMED 15pl 15PI 

The ammonium persulphate was made freshly on each occasion a gel 

was run, and it and the TEMED were added to the gel mixtures just prior 

to casting the gel. An overlayer of butan-i-ol was added once the gels 

were cast; this was removed by rinsing four times with running buffer 

once the gel had set. 15-place combs were then inserted between the gel 

plates, and a 6% stacking gel solution (prepared as for the 6% 

acrylamide gel solution tabled above but with the replacement of 

resolving gel buffer by stacking gel buffer) added. Following full 

polymerisatlon of the stacking gel the comb was removed and the wells 

filled with running buffer prior to the loading of samples. 

2.12. c. Loading of samples and electroDhoresis 

Sample protein concentration (estimated by the Lowry method, see 

section 2.11) was adjusted to between 1 and 5mg/ml. Samples were boiled 

for 2-3 min. and then sonicated for 10 min. in a Decon ultrasonic 
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bath to achieve complete solubilisation. 10-40VI aliquots were applied 

to each well of the gel using a microsyringe and the gels assembled into 

the electrophoretic apparatus according to the manufacturer's 

Instructions. Top and bottom reservoirs were filled to the appropriate 

levels with running buffer and the apparatus connected to a Shandon- 

Southern Vokam power pack. Gels were run at a constant current of 4mA 

per gel for 15-20h. 

2.12. d. Recovery and staininci of qels 

Gels were recovered by removing the side spacers of the gel former 

and gently levering the glass plates apart using a spacer. Gels were 

then transferred to a plastic tray containing staining solution and 

shaken for 1h. At the end of this time the staining solution was 

replaced with destaining solution and shaking continued, with periodic 

renewal of destain, until excess stain has been removed. 

2.12. e. Detection of radioactivity in-Dolyacrylamide gels 

Gels to be autoradiographed were dried under vacuum onto 4MM 

chromatography paper. Radioactive ink was spotted onto the paper to act 

as a marker for later alignment. Under safelight (Ilford F904) a sheet 

of Hyperfilm P-max (Amersham) was placed against the gel in an 

autoradiographic casette, and the autoradiograph left exposed to the gel 

for up to two weeks. Films were developed under safelight for 5 min. in 

D19 developer (Kodak) with constant agitation followed by a1 min. rinse 

in running tap water, and then fixed for 5 min. in Kodafix (1+3 In 

water). Films were then thoroughly rinsed in running tap water and 

dried in a heated cabinet. 

2.12. f. Photograph 

Gels and autoradiographs were photographed using Kodak Technical 

Pan 2415 film at 100 ASA. A stock solution of Kodak HC 110 developer 
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diluted 1+3 in water was kept at 4*C. This was diluted 1+9 with water 

and the film developed in a Paterson developing canister at 20*C for 8 

min. with 10 inversions per min. The film was then rinsed twice with 

water (20*C) and fixed in Kodafix (1+3 in water) for 5 min., again at 

20*C. A 30 min. rinse in water followed prior to drying the film in a 

heated cabinet. 
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3. RESULTS AND DISCUSSION 

3.1. DEVELOPMENT OF AN ASSAY TO MEASURE-PROTEIN KINASE C IN GLIA 

INTRODUCTION 

Despite many suggestions concerning the likelihood that CNS glia 

contained PKC activity no biochemical investigations into such a 

possibility had taken place. Preliminary experiments (Rumsby and 

Murphy, unpublished) showed that nanomolar concentrations of phorbol 

ester caused a stimulation in 32P-orthophosphate uptake into protein and 

lipid In mixed glial cell cultures, inferring a PKC-mediated response. 

However, such a response required quantitating, and an assay for PKC was 

needed. Hence, the initial aim of the work was to develop a 

satisfactory and reproducible assay for measurement of PKC activity in 

glial cells to answer the question "Is there any detectable PKC activity 

in glia? ". Although a number of methods existed for assaying PKC in 

other cell types (e. g. Donnelly et al., 1985; Neary et al., 1986b; 

Kikkawa et al., 1986), there was considerable variability in technique 

so the assay had to be adapted and developed for use in glia. With a 

standardised procedure further investigations could take place and 

measurements be made. 

RESULTS AND DISCUSSION 

3.1. a. First Attempts 

Initially, for the sake of simplicity, the method of Neary et al. 

(1986b) was followed; a 23,0009 cytosolic extract was used as the 

source of glial PKC. This method purported to allow measurement of 

cellular PKC levels quickly using only a small number of cells. Levels 

of PKC were assayed In both rat cerebrum and in cytosolic extracts from 
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TABLE 3.1.1. KINASE ACTIVITY IN 23,0009 SUPERNATANT OF 4 WEEK OLD GLIAL 

SUBCULTURES USING HISTONE TYPE HAS AS SUBSTRATE 

cpm/pg protein 

EGTAa Ca2+ b Ca2+/pSc 

54.0±14.3 44.4±14.1 50.6± 7.6 

a Ca2+_independent kinase activity 

b Ca2+-dependent kinase activity 

c Ca2+-and phosphatidylserine-dependent kinase activity 

Results are expressed as mean ± standard deviation (S. D. ) from three 

separate sets of flasks. 

TABLE 3.1.2. KINASE ACTIVITY IN 23,0009 SUPERNATANT OF RAT CEREBRUM 

USING HISTONE TYPE HAS AS SUBSTRATE 

cpm/pg protein 

EGTAa Ca2+ b Ca2+/pSc 

38.5±3.0 168.5±9.1 174.5±12.0 

a Ca2+_independent kinase activity 

b Ca2+-dependent kinase activity 

C Ca2+-and phosphatidylserine-dependent kinase activity 

Results are expressed as mean ± S. D. from three separate sets of 

determinations using the same enzyme source. 
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TABLE 3.1.3. KINASE ACTIVITY IN 2-3,0009 SUPERNATANTS OF MIXED GLIAL CELL 

CULTURES OF DIFFERENT AGES USING HISTONE TYPE HAS AS SUBSTRATE 

CULTURE TYPE 
a 

cpm/pg PrQtein 
2+ b 2+ pSc AND AGE EGTA Ca / Ca 

PRIMARY CULTURES 
10-day old 304.5±12.8 295.0±21.5 350.9±68.8 

5-day old 321.5±77.5 378.3±7.5 377.1±49.4 

21-day old 227.7±11.6 272.0±13.3 279.5±38.6 

SUBCULTURES 

21-day old 320.1±17.3 331.4±120.3 357.9±15.4 

28-day old 355.7±43.0 484.3±65.9 501.8±17.6 

a Ca2+_independent kinase activity 

b Ca2+-dependent kinase activity 

c Ca2+-and phosphatidylserine-dependent kinase activity 

Results are expressed as mean ± S. D. from at least three separate 

experiments. 

mixed glial cell cultures with variable results as shown in 

tables 3.1.1. - 3.1.3. Table 3.1.1. gives the first results obtained 

using 4-week old glial subcultures. Neither these data nor the finding 

In table 3.1.2. where rat brain was employed as the source of enzyme 

seemed very hopeful results. However, results obtained when flask 

number per assay was increased from two to at least six, were far more 

encouraging. See table 3.1.3. 

The table above shows results obtained using glial cultures of 

different ages. Most show a slight Increase in counts incorporated Into 

type IIAS histone on addition of Ca2+ and PS. However, the poor - 
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reproducibility within replicate samples was a major cause for concern 

and the large standard deviations meant that there was no significant 

PKC activity detectable. 

3.1. b. Redefining Some Experimental Parameters 

The substrate employed to measure PKC activity, type HAS histone, 

was not very pure and it was replaced by the purer lysine-rich type INS 

histone in the hope that this might give some improvement in replicate 

reproducibility. Type INS histone is not a PKC-specific substrate, 

since It will also act as a substrate for cAMP-dependent protein kinase 

for example, so It was still necessary to demonstrate PKC activity by an 

increase in levels of phosphorylated histone on addition of Ca2+ and PS. 

However, PKM Is less active in the presence of type INS histone than 

type IIAS, so background (basal) activity ought to be reduced 

accordingly. A further modification to the assay was to add the 

unlabelled and labelled ATP to the assay mixture together in order that 

the very small levels of labelled ATP would not undergo hydrolysis. The 

third modification was to add the PS/diolein mixture and then prepare 

the lipid micelles fresh daily, so overcoming any potential problems of 

micellar aggregation or oxidation of unsaturated fatty acids in the 

diolein. The assay was terminated by streaking aliquots of the assay 

medium onto phosphocellulose paper. The paper was rinsed in water and 

then Cherenkov counted or dried in acetone and liquid scintillation 

counted as normal. The results are shown in table 3.1.4. 

The disappointing results, coupled with practical difficulties in 

handling a large number of samples given the radioisotope employed, 

meant that the phosphocellulose paper method of assay termination was 

considered to be inferior to the TCA-precipitable protein filtration 

method using glass fibre filters. The latter method was hence resumed. 

It was believed that one of the reasons for the poor replicate 
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reproducibility and the difficulty in detecting significant PKC activity 

might be due to a number of 'contaminants' in the 15,000g cytosolic 

extract, such as gangliosides in plasma membrane fragments. These will 

inhibit PKC activity (Vaccarino et al., 1987). Hence, in an attempt to 

improve upon this, an adaptation of the method of Kikkawa et al. (1983) 

was employed with the main change in technique being the use of a 

100,000g supernatant as the enzyme source. This-should further 

eliminate the possibilities of plasma membrane contamination, and led to 

an improvement in replicate sample reproducibility as shown In table 

3.1.5. Of greater importance, however, was the fact that the results 

showed a significant increase in phosphorylation of type INS histone 

upon addition of Ca2+ and PS in a number of different aged mixed glial 

cell culture extracts. This indicated the presence of PKC in extracts 

of glial cell cultures. 

3.2. INCREASING THE SENSITIVITY OF THE ASSAY 

INTRODUCTION 

The next step in developing the PKC assay for a mixed glial cell 

system was to increase the assay sensitivity. The enzyme source 

employed was a crude one containing contaminating factors which made the 

task of accurate quantitation of a Ca2+- and phospholipid-dependent 

enzyme very difficult. Kikkawa et al. (1983) cited the problems of the 

presence of numerous other kinases which may react with some undefined 

endogenous substrates, and also of small quantities of calcium and 

phospholipid which may present difficulties when attempting to 

demonstrate the absolute requirement of PKC for Ca2+ and 

phosphollpid. These authors suggested that the problem of contaminants 

may be ameliorated by use of DEAE-cellulose (DE-52) column 

chromatography to purify the 100,000g extract prior to enzyme assay. 
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TABLE 3.1.4. KINASE ACTIVITY IN 23,0009 SUPERNATANT OF RAT CEREBRUM 

USING HISTONE TYPE HIS AS SUBSTRATE AND PHOSPHOCELLULOSE PAPER FOR 

ASSAY TERMINATION 

EGTA 
cpm 

Ca2+ Ca2+/pS 

Cherenkov 245.6±69.8 263.3±280.6 268.7±56.3 
counting 

Acetone & 
liquid 16471.7±5526.5 21027.7±2190.3 22707.5±4237.5 
scintillation 
counting 

Results are expressed as mean ± S. D. from three separate sets of 

determinations using the same enzyme source. 

TABLE 3.1.5. KINASE ACTIVITY IN 100,000g SUPERNATANT OF RAT BRAIN AND 

MIXED GLIAL CELL CULTURES USING HISTONE TYPE HIS AS SUBSTRATE 

ENZYME SOURCE cpm/pg protein 

EGTA Ca Ca2+/p. S 

Rat cerebrum 111.7t17.5 

14 day primaries 70.6t8.0 

28 day primaries 139.6t3.7 

28 day subcultures 130.2tI4.4 

116.4±9.3 

106.4±10.7 

270.6±11.9 

520.0±6.8 

154.7±6.6 

192.5±8.3 

361.6±12.6 

622.4±12.9 

Results are expressed as mean ± S. D. from at least three separate 

experiments for the glial cells and from three separate sets of 

determinations using the same enzyme source for the rat brain. 
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RESULTS AND DISCUSSION 

The method of Kikkawa at al. (1983) was followed essentially as 

detailed in section 2.6 but using a 0-0.3M NaCl gradient with collection 

of 0.5ml fractions. This technique yielded a broad peak of activity 

between about 80 and 180mM NaCl (see figure 3.2.1). As this peak was so 

broad, and this was the final stage of purification prior to assay, it 

was decided to follow the method of Anderson at al. (1985) which does 

not involve fractionation of the crude extract, but simply elutes the 

activity from the DE-52 column in one aliquot (see section 2.6). 

Results obtained using this method showed a dramatic increase in 

activity when compared to the crude 100,000g extract but also showed a 

considerable purification of PKC activity of over 20-fold in some cases 

(see table 3.2.1). It was now apparent that the assay could be used as 

a routine method for estimating levels of PKC in mixed glial call 

cultures. 

Further modifications made to the assay at a later stage were as 

follows: 

M cultures were rinsed in homogenisation buffer instead of PBS prior 

to scraping into and homogenising in the same buffer, as even low salt 

concentrations in the prepared subcellular fractions may interfere with 

binding of PKC to DEAE-cellulose (Thomas et al., 1987); 

(ii) leupeptin and PMSF were added to the homogenisation buffer at 

concentrations of 100pg/ml and 2mM respectively. Both compounds inhibit 

protease action and will minimise the proteolytic degradation of PKC; 

(iii) experiments undertaken to assess the optimal NaCl concentration 

for elution of the DEAE-cellulose-bound enzyme established that a 3ml 

aliquot of 0.12M NaCl in DE-52 column buffer was adequate. This 

modified protocol is fully listed in sections 2.5. and 2.6. 
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Method was as detailed in sections 2.4 - 2.6. Each point 
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Ca/PS - dependent phosphorylation of type III-S histone 
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TABLE 3.2.1. EFFECT OF DE-52 COLUMN PURIFICATION ON KINASE ACTIVITY IN 

MIXED GLIAL CELL CULTURE 100,000g EXTRACTS USING TYPE HIS HISTONE AS 

SUBSTRATE 

DAYS IN 
PRIMARY ENZYME 
CULTURE SOURCE 

cpm/lig protein 
EGTA Ca2+ Ca2+/pS 

17 100, oog 
SUPERNATANT 

DE-52-PURIFIED 
FRACTION 

21 100,00og 
SUPERNATANT 

DE-52-PURIFIED 
FRACTION 

129.8t23.6 170.9t7.4 199.3t12.2 

155.4±28.4 223.9±56.9 6928.3±161.9 

94.2t2.1 174.4t7.4 244.3tT. 9 

337.9t4O. 9 498.9t5l. 9 5456.5t6l. 6 

28 100,00og 
SUPERNATANT 149.8±6.8 257.2±4.5 323.2±9.4 

DE-52-PURIFIED 
FRACTION 232.1±36.4 233.9±60.2 1980.6±42.8 

Results are expressed as mean t S. D. from at least three separate 

experiments. 
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3.3. WHAT IS THE NATURE OF THE INHIBITORY SUBSTANCE REMOVED BY THE DE- 

52 COLUMN CHROMATOGRAPHY STEP? 

INTRODUCTION 

Purification of glial cell supernatants on a DE-52 anion exchange 

resin resulted in a large Increase in measurable PKC activity (see 

section 3.2). Following this observation, the question to be asked 

concerned the exact nature of the inhibitory substance removed by the 

DE-52 column procedure. One possibility was that this substance may be 

a physiological inhibitor of PKC or that it was possibly related to a 

17kDa inhibitor of the enzyme that has been characterised by McDonald et 

al. (1987). 

RESULTS AND DISCUSSION 

3.3. a. Crude 100.000g supernatant-dephosphorylates Phowhorylated 

histone 

Crude 100,0009 glial cell supernatant was added to a glial 

supernatant purified by passage through a DE-52 column. The mixture was 

then assayed for PKC activity. As shown in table 3.3.1 the crude 

extract caused a decrease in measurable PKC levels as detected by 

histone phosphorylation. Although the results are given for levels 

assayed In 16 day old primary cultures, the same pattern was seen in 

every age of glial cell culture tested. The crude extract reduced the 

PKC activity but the mechanism by which this inhibition was achieved was 

not apparent from these results. Inhibition increased with the amount 

of crude extract added, beginning to plateau at about 26pl enzyme added. 

This corresponded to 19pg protein added as shown in figure 3.3.1. Total 

DE-52 column-purified enzyme present in this assay amounted to 13pg 

protein. 

In an attempt to determine how the crude supernatant produced its 
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inhibitory action, a column-purified supernatant sample was assayed in 

the usual manner for 10 min. but, instead of terminating the reaction at 

this point by addition of 25% (w/v) TCA as described in the Methods 

section, an aliquot of the crude 100,000g supernatant was added and the 

reaction continued for a further 10 min. As the data in table 3.3.2. 

shows, this caused a large reduction In counts appearing as 

phosphorylated histone on addition of the crude sample. Thus the crude 

supernatant appears to be exerting its inhibitory action by 

dephosphorylating the histone phosphorylated by PKC, and therefore does 

not affect the enzyme itself but inhibits the assay for quantitating PKC 

activity. Dephosphorylation of PKC-phosphorylated histone by crude 

supernatant is very rapid, and is all but complete by 3 min. as shown in 

figure 3.3.2. In this experiment using 26-day old primary glial cells, 

a 50pl (=62pg protein) aliquot of crude supernatant was added to a 50PI 

(=21pg protein) aliquot of column-purified supernatant. Again, however, 

this phenemenon was detected in all cell fractions tested irrespective 

of culture age, and using protein ratios of crude : column-purified of 

between 0.25 and 4. Gradient SDS-PAGE of the samples was carried out, 

and a typical autoradiograph is shown in figure 3.3.3. This clearly 

shows a decrease in phosphorylation (arrowed) on addition of the 

100,000g supernatant of a component which co-migrates with type-IIIS 

histone. 

In an attempt to remove this phosphatase-like activity from the 

DE-52 column, various concentrations of sodium chloride from 0.15M-3. OM 

were used and aliquots of eluent added to phosphorylated histone to 

determine their dephosphorylation ability. However, although the 

various sodium chloride elutions were clearly bringing different 

'impurities' off the column as judged by protein measurements, none of 

the fractions collected had any significant effect on the 
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TABLE 3.3.1. EFFECT OF ADDITION OF CRUDE 100,0009 SUPERNATANT TO 

DE-52 COLUMN-PURIFIED EXTRACT ON PKC ACTIVITY IN 16-DAY OLD 

PRIMARY GLIAL CULTURES 

ENZYME SOURCE PKC ACTIVITY (cpm/pg protein) 

100,000g supernatant 111.6± 10.4 

DE-52 column-purified 
supernatant 2627.8±187.0 

100,000g supernatant + 
DE-52 column-purified supernatant 183.8t 20.8 

Results are expressed as mean t S. D. from four separate experiments 

using the same batch of cells. 

TABLE 3.3.2. EFFECT OF ADDITION OF CRUDE 100,0009 SUPERNATANT 

ON HISTONE PHOSPHORYLATED BY GLIAL PKCa 

SAMPLE ASSAYED INCUBATION TIME PKC ACTIVITY 

min (cpm/pg protein) 

100,0009 supernatant 10 123.6±19.1 

DE-52-purified 10 1735.4±38.9 
100,000g supernatant 

DE-52-purified 20 1518.2±63.7 
100 1 OOgg supernatant 
+ Tris 

DE-52-purified 20 261.4tll. 8 
100,000g supernatant b + 100,000g supernatant 

a= 13-day old primary cultures 

b= addition of second-named solution at 10min. 

Results are expressed as mean ± S. D. from four separate experiments 

using the same batch of cells. 
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phosphorylation state of type-IIIS histone phosphorylation. Neither did 

any 'inhibitory' activity elute from the column in the wash-through 

fractions. This contrasts with the recently published work of Bhat 

(1989), where, using glial subcultures derived from rat brain, a 0.3M 

NaCl eluate from a DE-52 column previously used to purify a 100,000g 

supernatant led to a decrease in PKC activity, as judged by type-IIIS 

histone phosphorylation. Bhat (1989) made no attempt to characterise 

this 'inhibitor' further however. 

3.3. b. Effect of 'inhibitor ' on other substrates 

Crude 100,0009 supernatant was tested for the ability to 

dephosphorylate two other substrates of PKC, protamine and myelin basic 

protein. Assays were conducted with a DE-52 column-purified sample 

using either histone, MBP (Sigma) or protamine as substrate, with a 

crude 100,000g supernatant aliquot added at 10min. and the assay 

continued for a further 10min. at 30'C. The results obtained are 

presented in figure 3.3.4. The data shows that Ca2+/PS-dependent kinase 

activity using histone as substrate dramatically increased when the 

crude 100,0009 supernatant was purified by DE-52 column chromatography, 

and that addition of the crude fractions to histone phophorylated by the 

DE-52 column purified extract after 10min. of assay caused a large 

reduction in kinase activity. This has been discussed in the previous 

section. The data also shows that a similar situation exists for MBP, 

where Ca2+/PS-dependent kinase activity increased on purification of the 

100,0009 extract by DE-52 column chromatography. Addition of non- 

purified 100,000g supernatant to the MBP caused a reduction in kinase 

activity of approximately 60%. No such relationships were found for 

protamine. Of interest here also is that MBP appears to be an excellent 

substrate for Ca2+/pS_independent kinases that are present only in the 

98 



*42 

"0 
9 
er 

70 

60 

50 

40 

30 

20 

10 L 

0 10 20 

time after addition of crude enzyme (min) 

Figure 3.3.2. Time course of dephosphorylation of histone 

phosphorylated by glial protein kinase C. 

Assay uas cadr-ted as nomal fcr 10 rrdn. usirg M-52 cohrm - jxirified 
100,000 g 94xxmtant. At 10 ndn. 100,000 g sLVermtmt w3s affled erd d-r- 

assay contim3d for the tkms irdicated. Each point slvn rqxesents fi-r- 

marm + S. D. of triplicate detemýraticns in a sirgle experkmt. A simUar 
reladord# w3s seEn in dree otImr sepamte eqxxinmts. 

99 



p. 

t4 
123 

Figure 3.3.3. Autoradiozracýh of DE-52 coli-nn - purified 100,000ý 

glial cell extracts in the presence (2 and 4-) and absence (i and 3) 
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PKC was assayed as descrihed in section 2.4. using DE-52 column- 
purified glial cell extrac-- as the PKC source. At 10 min. an aliquot 
of 0.5M Tris (pH 7.5) (col, 

-. -ns 2 and 4) or 100,000g supernatant 
(columns 1 and 3) were adýzec and the reactions continued for a further 
10 min. Reactions were te--. inated by making the assay mixture 1% 
(w/v) with respect to SDS. --olubilising buffer was added (1',. ' w/v) 
and the mixtures boiled at 1000C for 3 min. Protein were resolved 
by SDS-PAGE. 
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crude non-purified glial supernatant. Protamine has similar properties 

which have been previously described (Turner and Kuo, 1986). The use of 

MBP and protamine as alternative substrates for assay of glial PKC is 

discussed in more detail in section 3.6. a. 

Although the DE-52 column appears to remove a substance that will 

dephosphorylate histone phosphorylated by glial PKC, the fact that 

histone has yet to be identified as a physiological substrate for the 

kinase obviously limits any suggestion of a possible regulatory role for 

this phosphatase. However, the possibilty that this phosphatase may 

also be active upon phosphorylated MBP is fascinating since this basic 

protein is an excellent physiological substrate for PKC (Turner et al., 

1984). Further investigations are required to determine whether 

phosphorylated MBP is indeed such a substrate. Any substantiations of 

the findings above could have major implications for the process of 

myelination, the first step of which is believed to be-phosphorylation 

of MBP by PKC (Vartanian et al., 1986). 
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3.3. c. Re-qulation of activity of Inhibitory substance 

A number of tests were carried out in an attempt to characterise 

the phosphatase which was removed by DE-52 column chromatography. 

Compounds Investigated for their ability to regulate the phosphatase 

action were magnesium chloride, manganese chloride, and sodium fluoride. 

Each of these compounds have been used previously by other workers 

attempting to identify phosphatases (Ingebritsen and Cohen, 1983; 

Ingebritsen et al., 1983; Sahyoun et al., 1983; Levine et al., 1984). 

The results are presented in table 3.3.3. 

The data shows that, as previously discussed, addition of crude 

100,000g supernatant to phosphorylated histone leads to a large decrease 

in phosphorylation (66.1t4.4% in table 3.3.3). The addition of 1OmM 

MgC12 and 2mM MnC12 was without effect on phosphatase activity. Sodium 

fluoride (40mM) prevented the dephosphorylation of phosphorylated 

histone presumably by inhibiting the action of the phosphatase. In 

conjunction with EGTA, however, no effect on phosphatase activity was 

seen on six separate occasions. 

3.3. d. What is the Identity of the ohosphatase? 

The data in figure 3.3.4 compares the effect of addition of 

phosphatase-containing sample to three phosphorylated substrates, type- 

HIS histone, MBP and protamine. Two important points can be deduced 

from the results; the phosphatase is active on both phosphorylated 

histone and phosphorylated MBP, and its action is specific to substrates 

phosphorylated in the presence of in Ca2++pS. In addition, as the data 

in table 3.3.3 show, the phosphatase is inhibited by 40mM NaF, but 1OmM 

MgCl2,2mM MnCl2 and 5OmM NaF/1OmM EGTA have no effect on its activity. 

The exact localisation of the phosphatase'is not certain although two 
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TABLE 3.3.3. REGULATION OF PHOSPHATASE ACTIVITY 

ADDITION % DECREASE IN Ca2+/PS-DEPENDENT 
HISTONE PHOSPHORYLATION 

Nonea 

Crude b 

0 

66.1±4.4 

Crude + lomM MgC12 b 64.7±6.0 

Crude + 2mM MnC12 b 68.3±5.3 

Crude + 40mM NaFb 4.2±2.8 

Crude + 5OmM NaF/lOmM EGTAb, c 63. T±7.2 

a DE-52-purified sample only 
b Addition of crude 100,0009 supernatant (± test compound) 

to phosphorylated histone at 10min. 

C Crude 100,000g supernatant pretreated 
with 5OmM NaF/lOmM EGTA for 30min. at 30*C prior to addition 

The assay was conducted for 10min. with DE-52-purified 100,000g glial 

supernatant. Additions were then made as above and the assay continued 

for a further 10min. Figures given represent the percentage decrease 

in Ca2+/PS-dependent phosphorylation due to addition to phosphorylated 

histone at 10min. and are the mean ± S. D. from at least three separate 

experiments. 
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separate experiments in which crude 100,0009 glial particulate PKC was 

added to DE-52 column-purified 100,000g glial supernatant showed a 

decrease in phosphorylated histone comparable to that achieved using 

crude 100,000g glial supernatant. Such results must be interpreted with 

care however due to the presence of a known inhibitor of PKC activity, 

Triton-X-100, in the particulate fraction. 

One of the first papers describing a phosphatase specific for 

phosphorylated histone was that of Meisler and Langan (1969). However, 

the phosphatase described was also active with respect to protamine 

dephosphorylation. Clearly this is not the case in the present study 

(see figure 3.3.4). Sahyoun et al. (1983) have described a specific 

phosphoprotein phosphatase that acts on histone HI phosphorylated by 

protein kinase C. Such characteristics fit the phosphatase under 

investigation in the present study. This phosphatase did not require 

manganese or magnesium for its activity, and it was inhibited by 40mM 

NaF (Levine et al., 1984). However, the phosphatase described was 

prepared from rat liver (rat brain was not investigated) and only 

different types of histone were investigated as potential substrates. 

But the phosphatase was specific for PKC-phosphorylated histone and so 

may be (similar to) the phosphatase under investigation in the present 

study. 

Four protein phosphatases have been shown to account for virtually 

all the protein phosphatase activity towards a number of proteins 

involved In the regulation of glycogen metabolism, 

glycolysis/gluconeogenesis, fatty acid synthesis, cholesterol synthesis 

and protein synthesis (Ingebritsen et al., 1983). These are termed 

protein phosphatases 1,2A, 2B and 2C. Each has specific properties 

which may aid In the classification of the phosphatase in this study. 

Type 2B phosphatase is a Ca2+/calmodulin dependent enzyme (Ingebritsen 
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et al., 1983) so this can be dismissed in the present case as the 

phosphatase is clearly specific for PKC-phosphorylated substrates (see 

figure 3.3.4). Protein phosphatases 1,2A and 2C have broad and 

overlapping substrate specificities. Although never previously assessed 

in glia, over 60% of total brain phosphatase activity is type-2A with 

types 1 and 2C contributing approximately 18% and 3% of total activity 

respectively. However, type-2A phosphatase is inhibited by a 30min. 

pretreatment with NaF and EGTA as is type 1 phosphatase, albeit to a 

lesser extent (Ingebritsen et al., 1983). The final deduction would 

thus be that the phosphatase under Investigation in the present study is 

a type 2C phosphatase. Protein phosphatase 2C has a wide substrate 

specificity and substrates upon which it is highly active ought first to 

be investigated using the phosphatase In this study. Examples of such 

substrates are HMB-CoA reductase and HMG-CoA reductase kinase 

(Ingebritsen and Cohen, 1983) involved in cholesterol synthesis. It is 

possible however that the phosphatase removed by DE-52 column 

purification of 100,0009 glial cell supernatant is either a mixture of 

two or more of the phosphatases mentioned or it may be an as yet 

undefined phosphatase phosphoprotein. Whatever phosphatase it may be, 

it would clearly have major implications if shown to dephosphorylate 

phosphorylated MBP and if histone H1 is Important In regulation of 

dephosphorylation of nuclear proteins. 
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3.4. DOES PKC ACTIVITY IN GLIA FOLLOW A PATTERN THAT IS AGE-RELATED? 

INTRODUCTION 

The PKC assay finally described in sections 2.4. -2.6 was now used 

to determine how levels of the enzyme changed over time during glial 

cell development in culture and whether or not any pattern existed that 

might mirror the development of function of the cell types involved. 

RESULTS AND DISCUSSION 

Crude 100,000g cytosolic extracts and DE-52 column-purified 

cytosolic and particulate extracts were assayed. The results are 

presented in figures 3.4.1 and 3.4.2. In all cases activity in the 

column-purified particulate fraction was much lower than that In the 

column-purified cytosolic extract, implying that glial PKC is 

predominantly localised in the cytoplasm. In some cases the cytoplasmic 

localisation approached 90%, a figure similar to that found by Neary At 

al. (1988) in astrocytes using a different method. Kikkawa at al. 

(1982) investigating PKC distribution in adult rat brain estimated that 

approximately 45% of PKC activity was particulate but found that 

platelet and lymphocyte PKC was approximately 99% particulate. Cardiac 

tissue which tends to have a much lower PKC activity than any of the 

enzyme sources mentioned above (Katoh and Kuo, 1982) has approximately 

T3% of its PKC located In the cytosol. Thus it can be seen that not 

only do tissues and calls vary with respect to levels of PKC activity, 

but each has a specific ratio of distribution between the membrane and 

the cytosol, presumably reflecting the role of the enzyme in the tissue 

or cell type in question. 

Figure 3.4.1. shows no single peak activity but a number of peaks 

of enzyme activity appear at 9,11,19 and 27 days in culture. This 

pattern is emphasised in DE-52 column-purified cytosolic fractions (see 

fig. 3.4.2. ) which show peaks of activity at 11,19,21 and 27 days. 
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Such peaks do not appear to correspond to any morphological change in 

culture. Mixed glial cell cultures at 9 days have formed a confluent 

layer of type-1 astrocytes upon which grow small, rounded, phase-bright 

cells, predominantly of the 0-2A cell type. This covering layer reaches 

confluence by 18-21 days, after which time the cultures alter very 

little in appearance. Thus the precise reason for such a pattern in PKC 

levels is not apparent although clearly a significant level of enzyme is 

required at these times during the development of the cells. It is 

unlikely that this increased level of PKC is required to instigate or 

take part in myelinogenesis as the oligodendrocyte-enriched subcultures 

which begin to elaborate a myelin-like membrane by about 21 days In 

subculture show only low levels of the enzyme (figures 3.4.1. and 

3.4.2. ). One possiblity for such a pattern would be the induction of 

various genes necessary for the normal development of glia, but equally 

many other hypotheses may be advanced all of which might merit further 

investigation. 

In a single experiment undertaken to compare levels of PKC In glia 

immediately after isolation from neonatal rat brain with levels present 

in neonatal rat cerebrum, a surprising enzyme distribution was seen (see 

table 3.4.1). Although cerebral levels of PKC were higher than those 

found in the isolated glial cells, approximately 80% of total cerebral 

PKC activity was detected in the cytosolic fraction, clearly at odds 

with the findings of Kikkawa (1982). However, Kikkawa (1982) employed 

whole adult rat brain as enzyme source whilst neonatal rat cerebrum was 

employed in this study. Whole adult rat brain will not only be a more 
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fully developed, and hence a more intricate system, but will also 

contain a large neuronal population. This ought not to be the case in 

neonatal cerebrum and so lower levels of PKC activity are to be 

expected. Huang et al. (1987b) have recently shown the large 

contribution made by the cerebellum to total PKC activity in rat and 

monkey brain. In addition, Yoshida et al. (1988) have described the 

developmental expression of PKC in rat brain. Very low levels of PKC 

were apparent at three days old, with barely detectable levels of a 

predominantly particulate subspecies of PKC (X). These observations 

support the findings of a reduced level of PKC in the neonatal cerebrum 

in comparison to adult brain and, to an extent, the distribution of the 

enzyme. Since levels of particulate PKC in the glial cells isolated and 

in the cerebra are similar, presumably the differences In levels of 

cytosolic PKC can be attributed to the cell population that is removed 

during the glial cell preparation. 

Distribution levels within cells or tissues may vary according to 

the method used for preparation of the cell extracts. Thus methods 

exist in which 23,0009,50,000g or 100,0009 cellular extracts are used 

as the cytosolic source of PKC, usually with a DE-52 column purification 

step (Donnelly et al., 1985; Neary et al. 1986a; Kikkawa et al., 1986). 

Some authors then attempt to further separate the remaining fractions 

Into microsomal, nuclear and plasma membrane fractions (e. g. Hasmoudi et 

al., 1989), whereas most workers simply treat the fraction remaining 

following the preparation of crude cytosolic extract as the source of 

membrane-bound PKC (e. g. Neary et al., 1986b). Methods also vary 

considerably as to how the membrane-based PKC is extracted and measured. 

The majority of authors use an extraction step to solubillse the PKC 

from the membrane. Triton-X-100 at concentrations of up to 1% (v/v) 
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TABLE 3.4.1. COMPARISON OF PROTEIN KINASE C ACTIVITY IN NEONATAL RAT 

CEREBRUM WITH ISOLATED GLIAL CELLS 

ENZYME SOURCE 

(cpm/pg protein) 

Neonatal rat cerebrum 

Isolated glia 

PKC ACTIVITY 

cytosolic 615.4±14.6 

particulate 124.9± 4.9 

cytosolic 191.1±15.9 

particulate 125.0± 6.2 

Glial cells were Isolated as described In the Methods section from 

neonatal rat brain, and DE-52 column-purified cytosolic and particulate 

fractions compared to these of neonatal rat cerebrum. Figures given 

represent mean ± S. D. from triplicate samples. 

is most common but in some cases millimolar concentrations of EGTA are 

used, sometimes in conjunction with Triton-X-100. Following an 

extraction step, usually of approximately 30 min. on ice, the extract is 

either assayed immediately, or centrifuged and the supernatant employed 

as the particulate source of PKC. DE-52 column purification may then 

take place prior to assay. Thus because of the wide variation In 

methods when estimating cellular PKC levels it is important to note 

which method is being employed when making comparisons between tissues 

or cell types. In comparing techniques for measurement of membrane- 

bound PKC activity In glia, a solution of 1% (v/v) Triton-X-100 in 

homogenisation buffer was found to be most effective. Although this 

prevented measurement of PKC levels in the crude extract, as Triton-X- 
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100 in the presence of PS will inhibit the assay if present in a 

concentration greater than 0.0075% (v/v) (Katoh and Kuo, 1982), this 

detergent was removed by DE-52 column chromatography so allowing the 

assay to proceed unhindered (Thomas et al., 1987). 

The system used in the present work is a mixed glial cell 

system derived from 1-2 day old neonatal rat cerebra. Cells that were 

present in a complex microenvironment with numerous potential regulating 

factors have been transferred Into a system in which the potential for 

regulation has been hugely decreased, as only type-1 and type-2 

astrocytes, oligodendrocytes and 0-2A progenitor cells persist in any 

significant number (Walker et al.., 1985). Although clearly the glia 

themselves have a complex interrelationship which involves intercellular 

communication and feedback control (see section 1.1) and cells are 

involved in contact signalling, the majority of the regulatory factors 

present in this in vitro system are likely to be derived from the 

culture medium. This in itself presents a problem. Variability In 

batches of foetal calf serum means that whilst the cultures can be 

maintained, undefined factors may exist when different batches are used 

for cell culture and when these cultures are tested for, and compared 

for, PKC activities. A completely defined medium may alleviate such a 

problem. There is the added problem that a primary cell system may vary 

slightly from time to time which an established line would not do. 

Working with tissue taken from the original system however, by, for 

example, extraction of whole rat brain at various ages and assaying for 

PKC, might be argued to be a simpler and more reliable way of 

investigating age-related changes in PKC activity. Such a tissue will 

have been continually regulated by the relevant controlling factors 

during its 'lifetime', with the cells in question carrying out their in 

vivo role in response to this regulation. However, as the brain is a 

more complex system, any activity levels quoted here will include the 
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highly active neuronal population. Using this approach, and examining 

brain slices from 6-, 12- and 24-month old rats, Friedman and Wang 

(1989) have shown a 45% decrease in levels of total cellular PKC 

activity in the oldest animal group, together with a loss of ability to 

translocate PKC from cytosol to membrane In response to K+ 

depolarisation or phorbol ester stimulation. However, in such 

experiments where tissues are taken from animals at advanced stages of 

development, only long-term changes in PKC activity are detected and 

short-term developmental changes have not been measured. Again the in 

vitro system differs from fully developed rat brain as the latter, by 

definition, will have matured fully whereas neonatal brain will be in a 

critical period where huge levels of cell growth and division are taking 

place, processes in which PKC has been implicated (Nishizuka, 1986). 

Glial cells are cultured over a short time period only, and during this 

time cellular development is still taking place, so perhaps this will 

mask any slight changes in PKC levels which may occur. 

A further problem with the process of extraction of cellular PKC 

for biochemical assay is the need to perform such an extraction in the 

presence of a calcium chelator such as EGTA to prevent proteolysis of 

the enzyme by the Ca2+-dependent protease, calpain. This means that the 

precise intercellular topography of the enzyme cannot be determined. 

Indeed Phillips et al. (1989) suggested that the distribution of the 

enzyme between the cytosol and the plasma membrane is a dynamic 

equilibrium controlled by levels of free Ca2+. If this is the case, 

then the use of a calcium chelator in the extraction buffer will 

radically alter the equilibrium and so lead to results that may not 

accurately reflect the situation that exists within the living call. 

Hence determinations of precise intracellular topography now adopt 

immunocytochemical approaches to overcome such a problem. 
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3.5. LOCALISATION OF PROTEIN KINASE C ACTIVITY IN GLIA 

INTRODUCTION 

Sections 3.1 and 3.2 established the presence of PKC in mixed 

glial cell cultures. However, these were mixed cultures and in the 

following section an attempt is made to look at PKC activity In the 

different glial cell types present. A number of methods were 

investigated for their ability to separate out the astrocytes, 

oligodendrocytes and 0-2A progenitor cells in sufficient quantity and 

purity to allow a PKC assay to be performed on a relatively homogeneous 

cell population. 

RESULTS AND DISCUSSION 

3.5. a. Unsuccessful techniques 

A number of techniques were investigated with unsuccessful 

results. 

(i) Magnetic beads coated with anti-IgG-fluorescein conjugate were 

employed in an attempt to select out a desired subpopulation. Cells 

were treated as for normal immunocytochemical staining (see Methods 

section) except that labelling took place in solution with cells that 

had been trypsinised and cells were not fixed. Instead of incubation 

with the usual secondary antibody, the magnetic beads were added and the 

incubation carried out for the required length of time. Calls were then 

washed and those coated with magnetic beads (i. e. the required 

subpopulation) 'collected' by placing a high-power magnet underneath the 

tube or flask. Unbound cells could then be pipetted off. This method 

was unsatisfactory however due to poor recovery of required cells and 

lack of required purity in the population. In addition, the need to 

trypsinise the cells off the flask may have caused problems with the 

method. 
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lack of required purity in the population. In addition, the need to 

trypsinise the cells off the flask may have caused problems with the 

method. 

(Ii) The use of poly-L-lysine-coated flasks was Investigated to see if 

this had any influence on the percentage constituency of the glial cell 

cultures. Although cells plated onto poly-L-lysine coated flasks 

usually settled down more quickly, no change In any of the 

subpopulations was evident as judged by Immunocytochemical staining. 

(Iii) Density gradient centrifugation using Percoll and sucrose was 

attempted with cells isolated directly from rat brain or taken from 

culture flasks. Although a number of methods exist for Percoll density 

gradient isolation, (for example, Hirayama et al., 1983; Koper et al., 

1984) it was found to be unsuccessful for separation of glial cells. 

However the sucrose gradients were more promising. Two separate methods 

were investigated, the Chao and Rumsby (1977) adaptation of Norton and 

Poduslo's (1970) method for preparation of oligodendrocytes from rat 

brain, and the method of Snyder et al. (1980) for preparation of 

oligodendrocytes from rat brain (see Appendix for methods). Both 

methods allowed for a relatively pure population of cells (?: 75%) but not 

in sufficient number to allow PKC assays to be conducted. For such 

assays to proceed a large volume of starting material would have been 

required. Attempts to get around this problem by growing up the 

isolated cells and then performing PKC assays were unsuccessful. 

3.5. b. Use of subculturinq techniques to separate sub-populations 

Cultures of 9-day old primary glial cells were treated as detailed 

in the Methods section (2.1. b) for subculturing. This technique removes 

the majority of small, rounded, predominantly phase-bright cells from 
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TABLE 3.5.1. PROTEIN KINASE C ACTIVITY IN GLIA BEFORE AND AFTER 

SUBCULTURING 

ENZYME SOURCE PKC ACTIVITY 
(cpm/pg protein) 

9-day old mixed glial cells 1329.0±145.2 
(i. e. before subculturing) 

Type-1 astrocytes 703.4± 50.6 
(i. e. layer left after subculturing) 

Progenitor cell population 580.5± 86.8 
(i. e. cells removed by subculturing) 

Cells were treated as detailed in the Methods section for assay of 

PKC. All fractions were DE-52 column-purified prior to assay. Results 

are expressed as mean ± S. D. from five separate experiments. 

the monolayer of type-1 astrocytes beneath. Thus the mixed glial system 

is separated into two sub-populations, one of type- I astrocytes and the 

other of predominantly 0-2A progenitor cells. Small, rounded cells not 

lifted off by shaking were removed by striking the flask against a solid 

surface three times and washing with DMEM. By taking a batch of glial 

cells at nine days in culture, keeping some for PKC assay and 

subculturing the rest, the PKC activity of the mixed glial culture prior 

to subculturing, of the cells shaken off, and that in the type-1 

astrocyte layer left behind could be estimated. The results of such 

work are shown table 3.5.1. As described previously (Murphy et al., 

1988) the type-I astrocyte layer remaining after subculturing contains 

significant levels of PKC activity as does the predominantly 0-2A 

progenitor cell population shaken off. The data thus implies the 

presence of PKC in all cell types present in the culture system. 

Immunocytochemical investigations by Walker et al. (1985) in this lab 

have shown that at nine days in culture 61tll% of cells exhibit GFAP 
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immunoreactivity and 31±5% exhibit immunoreactivity to anti-A2B5 

antibody, with GC-positive and NF-positive cells accounting for only 

6±3% and 2±1% of total cells respectively. Bearing in mind a small 

proportion of the cells shaken off during subculturing are GFAP+ A2B5+ 

(i. e. type-2 astrocytes), the data shows that GFAP+ cells contain 

appreciable levels of PKC activity .A number of workers (for example, 

Burgess et al., 1986; Girard et al., 1985) have identified PKC activity 

in neuronal cultures and neglected to examine glial cells, despite the 

often inferred presence of PKC in glia. Burgess et al. (1986) allowed 

glia to proliferate in primary neuronal cultures and noted a large 

increase in PKC levels. It is highly unlikely that the PKC activity 

measured here was significantly affected by the presence of NF+ cells 

(i. e. neurones). Not only do they contribute a very small percentage of 

the total cell population, but, as they appear to have very high levels 

of PKC activity (Burgess et al., 1986; Miller, 1986) a decrease in 

their numbers, as occurs as the glial cultures age, ought to show a 

large decrease in PKC activity. This is not the case as has been seen 

previously (section 3.4). The data shown in table 3.5.1 giving activity 

in type-1 astrocytes at nine days in culture of 703.4±50.6 cpm/pg 

protein (specific activity of approximately 4,000 Pico moles 32p 

transferred/lOmins/mg protein) is only in the region of 25% of the 

activity reported by Neary et al. (1986b). However the culture 

conditions and assay system employed differ considerably. Treatment of 

the astrocyte monolayer with cytosine arabinoside followed by one or 

more passages did not lead to any increase in PKC levels in cells 

cultured for up to three week. In agreement with Neary et al. (1988) 

however was the finding that over 90% of PKC activity in astrocytes was 

contained in the cytosolic fraction (data not presented). 
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3.5. c. Use of a Defined Medium 

A number of defined media have been described for the culture of 

glial cells (Bottenstein and Sato, 1979; Eccleston and Silberberg, 

1984; Saneto and de Vellis, 1985; Sykes and Lopes-Cardozo, 1988). 

Defined media have been developed to replace serum-containing media 

since the addition of serum to culture medium may affect experimental 

reproducibility due to variation between batches of sera. Perhaps more 

important are the unknown effects that the undefined serum is having and 

the possibility that the serum is either masking experimentally-induced 

effects or preventing such effects from occurring. Therefore the use of 

defined media has become very popular recently and is commonly used in 

investigations involving glial cells and other cell types. It is also a 

method which can be employed for influencing the percentage cell 

constituency of a given cell type in a mixed cell system. 

An attempt was made to use a defined medium to increase the 

percentage of oligodendrocytes in the mixed glial cell cultures. The 

idea was based on the findings of Raff et al. (1983) that glial 

progenitor cells in vitro will develop into type-2 astrocytes in the 

presence of foetal calf serum and into oligodendrocytes in a defined 

medium. Initial experiments which compared a number of serum-free or 

serum-substitute media for their ability to encourage the growth of 

glial cells in primary culture and subculture led to the selection of 

the medium of Espinosa de los Monteros et al. (1988). This is a 

chemically defined medium for the culture of mature oligodendrocytes. 

When mixed glial cell primary cultures were grown under normal 

conditions (in 10% FCS in DMEM) for six days and then switched either 

into the oligodendrocyte defined medium (OLDEM) (Espinosa de los 

Monteros et al. 1988) or into a reduced level of FCS in DMEM for a 

further four days, a change in PKC levels was apparent. See table 
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3.5.2. The data shows that a four-day incubation with OLDEM lead to an 

increase in PKC levels of approximately twofold. Reduction in levels of 

FCS when compared to the 10% level regularly employed led to a small 

decrease in PKC activity, possibly due to a reduction in the level of 

available nutrients. Murphy et al. (198T) have previously described an 

arrest in cell growth upon reduction of FCS levels In astrocytes, and 

this, together with an observation by Adamo et al. (1986) that 

proliferating cells display higher PKC activity than quiesient cells, 

may offer suitable explanation for the data seen in table 3.5.2. 

Confirming the results of Espinosa de los Monteros et al. (1988) cells 

treated with OLDEM contained floating debris not seen in cells treated 

with FCS; this presumably reflected the death of cells which did not 

survive OLDEM treatment (primarily astrocytes). Curiously 

immunocytochemical analysis did not observe significantly Increased 

numbers of GC-positive cells although in some cases a decrease in GFAP- 

positive cells in the order of 10% was seen. 

A second study, similar to that above, switched calls to OLDEM or 

maintained them in 10% FCS In DMEM at day six in primary culture. PKC 

assays and immunocytochemical analyses were carried out at 3 and 6 days 

following the medium change. Results are presented in tables 3.5.3 and 

3.5.4. The data in table 3.5.3 again shows that a switch to OLDEM led 

to an increase In PKC activity In DE-52 column-purified fractions of 

10OA009 cytosolic fractions. In both cases the OLDEM-treated cultures 

appeared to have PKC activity levels approximately 60% greater than 

cultures grown in 10% FCS In DMEM. Analysis of particulate levels of 

both culture types showed no difference in PKC activity, with PKC 

associated with the membrane accounting for less than 10% of total 

cellular activity. Results in table 3.5.4 show that after 3 days 
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TABLE 3.5.2: PROTEIN KINASE C ACTIVITY IN GLIAL CELLS GROWN IN 

CULTURE IN VARIOUS CONCENTRATIONS OF FOETAL CALF SERUM OR IN AN 

OLIGODENDROCYTE DEFINED MEDIUM 

CULTURE CONDITIONS PKC ACTIVITY 
cpm/pg protein 

0.5% FCS in DMEMa 1797.3 ± 23.6 

2% FCS in DMEM 1834.8 ± 52.5 

10% FCS in DMEM 2373.1 ± 84.2 

OLDEMb 5065.8 ± 95.8 

aDMEM Dulbecco's modified Eagle's Medium 

bOLDEM Oligodendrocyte defined medium (Espinosa de los 

Monteros et al., 1988) 

Cells were grown for six days in primary culture in 10% FCS in 

DMEM before medium change and then grown for a further four days 

in the mediaýlisted. Figures given are mean (± S. D. ) from three 

separate experiments using the same batch of cells. 
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treatment, the Immunocytochemistry of both culture types was very 

similar. There may perhaps be increased A2B5 staining in the 10% FCS in 

DMEM-treated cultures but this may also be due to cross reactivity (as 

type-2 astrocytes will exhibit immunoreactivity towards A2B5 and GFAP). 

Following 6 days treatment however, there was increased A2B5 staining 

and decreased GFAP staining in OLDEM-treated cells with a slight 

increase in calls staining for GC. This finding fits in with 

observations of Raff et al. (1983) and Espinosa de los Monteros et al. 

(1988). The presence of the defined medium would, according to these 

two studies, push 0-2A progenitor cells (i. e. A2B5+) along the 

oligodendrocyte (i. e. GC+) differentiation pathway with the astrocytes 

dying off. However, Espinosa de los Monteros et al. (1988) described a 

huge cell proliferation that was not seen in the present study. In fact 

protein analysis on the treated cultures showed a nearly 4-fold increase 

in protein levels over the 3-day period in cells treated with 10% FCS in 

DMEM compared with a mere 2-fold increase in OLDEM-treated cells. 

Espinosa de los Monteros et al. (1988) described a system using 

glial cells isolated at 20 days and grown for a further 30 days in 

OLDEM, thus selecting for oligodendrocytes. In the present study 

however, cells were treated with OLDEM at an earlier stage not to select 

mature oligodendrocytes but to try to push 0-2A progenitor cells along 

the oligodendrocyte differentiation pathway. Also, calls were Isolated 

for analysis after only 6 days treatment with OLDEM. Cells that were 

treated over longer periods (up to 14 days) had a poor viability rate; 

the medium appeared not to be able to support growth of a monolayer of 

cells beyond about 10 days following OLDEM treatment. Viewed under 

phase contrast, large patches in the monolayer appeared followed by the 

cells lifting off from the substratum. 
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TABLE 3.5.3. EFFECT OF OLDEM ON LEVELS OF PKC ACTIVITY IN PRIMARY 
GLIAL CELL CULTURES. 

CULTURE NO. OF DAYS AFTER PKC ACTIVITY 
MEDIUM ADDITION OF MEDIUM (cpm/pg protein) 

10% FCS in DMEM 3 2446.5±133.2 

10% FCS in DMEM 6 3247.5± 68.5 

OLDEM 3 4089.5±450.8 

OLDEM 6 5341.9±183.9 

Cells were grown for 6 days in primary culture in 10% FCS in DMEM 

prior to medium change. Cytosolic levels of PKC were estimated at 3 and 6 days 

after medium change as detailed in the Methods section. Figures given are 

mean t S. D. from three separate experiments using the same batch of cells. 

TABLE 3.5.4. IMMUNOCYTOCHEMICAL ANALYSIS OF OLDEM-TREATED PRIMARY GLIAL 
CELL CULTURES 

CULTURE NO. OF DAYS % TOTAL CELLS LABELLED 
MEDIUM AFTER ADDITION 

OF MEDIUM A2B5 GFAP GC 

10% FCS in DMEM 3 37 ±9 66 ±14±2 

10% FCS in DMEM 6 31 ± 12 70 853 

OLDEM 3 30 ± 11 64 952 

OLDEM 6 47 ±6 54 ±88±1 

Cells were grown for 6 days in primary culture In 10% FCS in DMEM prior 

to medium change. At 3 and 6 days after medium change flasks were 

stained for A2B5, GFAP and GC immunoreactivity as detailed in the 

Methods section. Figures given are mean ± S. D. of percentage of cells 

stained with the requisite antibody from five different fields of view with at 

least 200 cells counted per field. Results are not significantly different, 

as determined by analysis of variance tests. 
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Attempts were made to use OLDEM at the subculture stage; cells that 

had been shaken off the primary astrocyte layer were replated directly 

into OLDEM and their development followed. However these cells did not 

attach to the substratum, send out processes, nor undergo any 

proliferative response. It is possible that the OLDEM requires an 

additional factor in order to stimulate the process of substratum 

adherence. 

Why an Increase in PKC activity occurred on treating cells with 

OLDEM is not clear. If it was due to an Increase in A2B5+ cells 

maturing into oligodendrocytes then this was not readily detectable 

after 6 days treatment. However, this does appear to be the most likely 

explanation. It is possible that A2B5+ cells were indeed 

differentiating into oligodendrocytes, and hence the large increase in 

PKC activity, but that this was not detected using anti-GC antibody. If 

the cells were differentiating into oligodendrocytes, but had not 

reached sufficient maturity to express GC, then they would not be 

detected as oligodendrocytes. This could be tested using the 04 

antibody (Sommer and Schachner, 1984), for example, which will detect 

oligodendrocytes at an earlier stage of development. Another 

possibility would be that the OLDEM somehow unmasks a level of PKC 

activity that is not seen when using 10% FCS In DMEM; perhaps the FCS 

contains a factor which is somehow preventing the 'true' levels of PKC 

from being accurately estimated. The FCS contains many growth factors 

which may be causing a downregulation of PKC while the OLDEM, containing 

few PKC activators, would cause no such effect. In fact, Sykes and 

Lopes-Cardozo (1988) have recently shown that serum leads to an 

impairment of oligodendroglial differentiation by the reduction of a 

number of essential processes, whereas Bhat (1989), for example, has 

implicated PKC in process formation in glia, an observation confirmed in 

the present study (see section 3.8). More in-depth studies are required 
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to elucidate the true explanation. 

The use of a defined medium, though a popular choice in many 

studies, has many difficulties. Characterisation of a defined medium Is 

extremely time-consuming by implication and ought to be examined over a 

wide age-range in culture. In addition, much discussion is currently 

taking place in the literature as to which factors are necessary 

requirements for defined media. Warringa et al. (1987) suggested that 

hydrocortisone is a necessary requirement for an oligodendrocyte-defined 

medium in order to drive the conversion of 0-2A progentior cells to 

oligodendrocytes. Insulin appears to be a necessary requirement for the 

majority of defined media although opinions differ as to how it acts in 

cultures of 0-2A progenitor cells (see section 1.1. b). Most recently 

Espinosa de los Monteros (1989) and Dubois-Dalcq (1989) have argued for 

the importance of transferrin and fibroblast growth factor respectively 

in oligodendrocyte development, while Honegger (1989) has implicated 

triiodothyronine in oligodendrocyte maturation. The differences in 

constitution of the various defined media combined with the various uses 

to which the media Is put and the cell types treated, makes this a very 

complex and unresolved subject at present which will become clearer as 

more data are obtained. 

3.5. d. Use of complement-mediated cytoxicity 

In a mixed cell system one of the subpopulations may be removed by 

labelling of the cells with an external marker specific to that cell 

type, followed by complement-mediated lysis of cells labelled with the 

antibody. What concentrations of antibody and complement are to be 

used, incubation times selected etc., must be determined in an initial 

set of experiments. In an attempt to determine levels of PKC in the 

progenitor cell population (and in type-2 astrocytes) the antibody 

against A2B5 was employed. By examining a 7-day primary glial cell 
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culture, all but a few cells ought to be either A2B5+ or GFAP+ 

representing either 0-2A progenitor cells and type-1 and type-2 

astrocytes. One problem with this approach was the need for large 

amounts of antibody because upwards of six 25CM2 tissue culture flasks 

of cells were required; this was overcome by increasing the time of 

incubation with anti-A2B5 antibody, with a proportional increase in 

dilution of antibody. 

Results shown in table 3.5.5 indicate that the cells remaining 

following treatment with complement had appreciable levels of PKC 

activity. However, this activity was only in the region of 55% of that 

seen in the untreated mixed glial cell culture. 

3.5. e. Localisation of PKC in mixed glial cell cultures 

In table 3.5.6. some of the data obtained in sections 3.5. b. to 

3.5. d. is summarised. The activities of PKC in the various populations 

investigations are compared. Specific activities are expressed as 

picomoles of 32p transferred per 10 minute reaction per milligramme of 

protein. The main conclusion is that all the major cell subpopulations 

forming the glial cell population appear to contribute to the overall 

PKC activity. A further study is required that can separate out all the 

constituent cells of culture into discrete sub-populations, perhaps by 

the use of flow cytometry for example, such that measurements can be 

made of PKC levels in such bulk-Fsolated cells to examine what 

percentage each cell type contribues to overall levels of PKC activity. 

Such a study might also investigate PKC subspecies (discussed further in 

section 3. T) within these constituent cell types using ONA probes. 
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TABLE 3.5.5. COMPLEMENT-MEDIATED CYTOLYSIS OF A2B5-POSITIVE GLIAL 

CELLS AT 7 DAYS IN CULTURE: EFFECT ON PROTEIN KINASE C ACTIVITY 

ENZYME SOURCE 

Untreated cellsa 

Complement-treated cellsb 

PKC ACTIVITY 
(cpm/pg protein 

1651.4- ± 95.1 

914.2 ± 37.3 

7-day old glial cells were treated with (b) or without (a) anti- 

A2B5 antibody for 3h. followed by assay for PKC levels, using a DE-52 

column-purified 100,0009 supernatant as the enzyme source, as detailed 

in the Methods section. Figures given are mean ± S. D. from three 

separate determinations. Non-specific complement-mediated cytolysis was 

55% as determined by nigrosin dye exclusion. 
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3.6. CHARACTERISTICS OF GLIAL PROTEIN KINASE C 

3.6. a. Alternative in vitro substrates for glial PKC 

INTRODUCTION 

Whilst type HIS lysine-rich histone is undoubtedly an excellent 

assay substrate for measurement of PKC levels, there is no evidence to 

suggest it is a physiological substrate for PKC, so other potential 

substrates were investigated. To this end, protamine and myelin basic 

protein (MBP) were used as substitutes for histone In the PKC assay at 

concentrations comparable to the level of histone used (i. e. 50pg per 

assay). 

Protamine and MBP were both obtained commercially (Sigma), but MBP was 

also prepared from bovine white matter by Kim Anderson in this 

laboratory. 

RESULTS AND DISCUSSION 

Results showed that both protamine and MBP could substitute for 

histone in the assay to detect PKC activity but had markedly different 

properties as phosphoryl acceptor proteins. The different levels of 

kinase activities obtained using the four substrates are shown in figure 

3.6.1. Levels of phosphorylation obtained in the presence of Ca2+/PS 

are presented as the maximal attainable level (100%). This allowed an 

interesting comparison of Ca2+_Independent and Ca2+-dependent kinase 

levels to be made. Commercially-obtained MBP and histone appeared to be 

almost identical when analysing their basal and Ca2+-dependent kinase 

levels as a percentage of maximal phosphorylation. Ca2+-dependent 

kinase levels were only slightly higher than basal kinase levels, with a 

large increase in substrate phosphorylation seen on addition of PS to 

the assay mixture. Despite these similarities when the results were 
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Figure 3.6.1. A comparison of substrate phosphorylation by Ca - 

independent, Ca - dependent, and Ca/PS - dependent kinases. 

Substrates mployed wre type III-S histone (1), pirified nyelin basic protein 
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(10CY1. ) and are the mean + S. D. frcrn at least d-wee separate e)perirrmts. 
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expressed on the basis of percentage phosphorylation of substrate, 

however, levels of MBP phosphorylation were in the region of 2.4 times 

greater in all three kinase categories than the levels of 

phosphorylation attained with histone, as table 3.6.1. shows. Purified 

MBP, on the other hand, whilst clearly showing the huge Increase in 

phosphorylation on addition of PS, and indeed having lower basal and 

Ca2+-dependent activities than the other substrates, had a Ca2+/pS_ 

dependent kinase level of less than one-third of that obtained using 

histone as substrate. Surprisingly, purified MBP was only approximately 

12% as successful as its commercially available counterpart at 

incorporation of the y-32P of radiolabelled ATP in the presence of 

Ca2+/PS, and also appeared to be an 'inferior' substrate for calcium- 

independent and calcium-dependent kinases when compared on a percentage 

basis. The latter observation would be something of a positive 

advantage to an assay system such as that employed for PKC, where the 

substrate is non-specific and where the lower the levels of kinase 

activity due to enzymes other than that being assayed the better. 

TABLE 3.6.1. EFFECT OF SUBSTRATE VARIATION ON KINASE ACTIVITIES IN 

MIXED GLIAL CELL CULTURES 

cpm/pg protein 

SUBSTRATE EGTA Ca2+ Ca2+/PS 

TYPE III HISTONE 127.0±11.2 164.1±5.3 524.0±21.0 

PURIFIED MBP 28.8±9.1 17.9±1.2 152.1±7.6 

COMMERCIAL MBP 328.0±37.8 376.7±12.5 1254.0±87.8 

PROTAMINE 518.1±51.4 643.9±21.6 863.0±77.6 

Results are expressed as mean ± S. D. from at least three separate 

experiments using 7-day old primary glial cell cultures. 
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The protamine differs completely from the other three 

substrates. Phosphorylation of protamine in the presence of EGTA and 

Ca2+ is considerable (60% plus) although addition of PS again increased 

phosphorylation significantly. Although in terms of actual counts 

incorporated into protamine the substrate does not compare to the high 

levels of activity incorporated into commercially available MBP, 

protamine is a 'better' phosphoryl acceptor than either purified MBP or 

histone. The very high levels of protamine phosphorylation in the 

absence of Ca2+ and PS when using a DE-52 column-purified enzyme 

fraction may be due to the detection of PKM activity, the 

proteolytically-activated form of PKC. This proenzyme is Ca2+- and 

phospholipid-independent and will exhibit activity in the presence of 

PS. Hence although Ca2+ appears not to be required for phosphorylation 

of protamine by the glial PKC extract (calcium addition has no 

significant effect), maximal phosphorylation of protamine is only 

obtained in the presence of PS. Kimura et al. (1987) have obtained 

similar results showing that although PKC is dependent upon both Ca2+ 

and PS when using histone as a substrate, protamine is significantly 

phosphorylated even in the absence of both Ca2+ and PS. The same 

authors have shown that addition of DNA to the assay renders PKC 

phosphorylation of protamine Ca2+-dependent, probably due to 

neutralisation of positively charged arginine groups in the protamine 

molecule by the DNA, so preventing Ca2+_independent phosphorylation. 

The suggestion has been made that charged nitrogen atoms in arginine 

residues in protamine partially substitute for Ca2+ in the 

phosphorylation of PKC, and these charged groups are neutralised by the 

negatively charged phosphate of DNA. Protamine appears to be a unique 

substrate for PKC since It can be activated in the presence or absence 

of Ca2+ (Turner and Kuo, 1986). 

Figure 3.6.2 presents data on how the substrates compare when 
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activity in the presence of EGTA is subtracted from that obtained in the 

presence of Ca2+/pS. The results give a level of kinase activity due to 

PKC. Using histone as the 100(±8)% value, purified MBP exhibited only 

31±4% of the activity obtained with histone, while protamine exhibited 

87±9% and commercially available MBP a massive 234±9% of the histone 

phosphorylation. Thus it would appear that for the four substrates 

tested, commercially available MBP is the best substrate for PKC derived 

from glia. Whilst this may appear to be so some important factors have 

to be considered. 

The assay to measure PKC activity requires that a significant 

Increase in substrate phosphorylation is seen on addition of Ca2+/ps. 

Using histone as a substrate, such an increase can easily be 

demonstrated. Commercial MBP certainly acts as a better phosphoryl 

acceptor than histone in the presence of Ca2+ and PS (with a 2.4-fold 

increased level of phosphorylation) but it shows a similar increase in 

levels for the other two kinase classes measured, i. e. Ca2+-independent 

and Ca2+-dependent kinases. This is not sufficient reason for 

substituting MBP for histone in the assay system regularly employed. In 

addition, the type HIS histone is cheaper than the commercially 

available MBP. The best reason for substituting another substrate for 

the histone in the assay system employed here would be If the 'new' 

substrate were shown to be a PKC-specific substrate. No such substrate 

of PKC appears to exist, although some workers are now replacing histone 

with synthetic peptides which contain phosphorylation sites for PKC in 

an attempt to partially circumvent some of the difficulties inherent in 

the PKC assay. Such peptides can also remove the need for DE-52 column 

chromatography. 

One reason for the use of synthetic peptides is highlighted by 

the results In figures 3.6.1 and 3.6.2. Whilst commercially available 
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MBP is most active with respect to both Ca2+/PS-dependent kinase 

levels (fig. 3.6.1) and PKC levels (fig. 3.6.2. ), protamine has a 

huge Ca2+/PS-dependent kinase activity but appears In the fig. 

3.6.2. with a PKC activity lower than that of histone. Such 

results are arrived at by subtracting the basal activities from 

the Ca2+/PS-dependent activities. But if some cellular PKC has 

been modified proteolytically either in vivo (although it is not 

clear where such regulation occurs in cells [Woodgett et al., 

1987]) or in vitro it will appear in the Ca2+-independent 

substrate phosphorylation figures. This will be subtracted from 

the Ca2+/PS kinase activity to give an estimate of PKC levels 

which may be a distortion of the true situation. Use of a 

specific synthetic substrate ought to overcome such problems. 

Attempts to manufacture such a substrate have met with varied 

success. The reagents are expensive to prepare and often have 

relatively poor affinities for the kinase. One apparently 

successful substrate is based on the observation by Iwasa et al. 

(1980) that PKC appears to selectively phosphorylate the C- 

terminus of histone H1 whereas PKA has an affinity for the N- 

terminus. Thus Glynn et al. (1985) prepared a cleavage fragment 

of the C-terminal domain of histone H1 by use of N- 

bromosuccinimide. However, the peptide is inhibitory to kinase 

activity in concentrations greater than 1mg/ml (Witters and 

Blackshear, 1987) and optimal conditions with respect to tissue 

extract concentrations, time and substrate concentration need to 

be elucidated for each system studied. 

Despite the existence of synthetic substrates and others which 

clearly are in vivo and in vitro PKC substrates, the large majority of 

workers continue to employ the PKC assay using type INS histone as 

substrate. 
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What further complicates the issue of PKC substrate suitability 

is the apparent contradictions that appear to exist within the 

literature on this problem. Turner and Kuo (1986) have collated much of 

the existing data and have compared Km and Vmax values for various 

substrate proteins for PKC isolated from brain, heart and spleen. These 

authors maintain that MBP is the most effective substrate as determined 

by Vmax: Km ratio. The same group reported that purified MBP 

incorporates up to five moles of phosphate per mole of MBP in comparison 

to only two for histone. However, reported Km and Vmax values for MBP 

and histone vary greatly according to the enzyme source, making such an 

Interpretation very complicated. 

In an attempt to determine the reason for the differences 

in levels of phosphorylation exhibited by the two sources of MBP 

employed, the proteins were separated using SDA-PAGE. See figure 

3.6.2. A. The figure shows the expected protein band distribution 

for protamine and histone. The MBP samples differed greatly 

however. Both purified bovine and rabbit MBP (the latter was 

purified in our laboratory by Sally Jenner) exhibited the expected 

staining pattern; commercial MBP, however, had a single major 

protein band of much lower molecular weight. The fact that it was 

a single band implied it to be a preparation of high purity. The 

likely explanation for such an appearance is therefore that the 

commercial sample has undergone hydrolysis to produce this lower 

molecular weight protein. This may then offer some explanation 

for the differences in levels of phosphorylation seen between the 

two MBP's. Further investigations are necessary to make a 

positive identification of this single lower molecular weight 

protein band, and a comparison of MBP's isolated from 
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various sources as substrates for PKC might prove to be of 

interest. 

3.6. b. Alternative lipid activators for glial PKQ 

INTRODUCTION 

Despite the fact that PKC activity appears to be regulated by 

phosphatidylserine in conjunction with Ca2+, there have been reports 

that other phospholipids may substitute for PS, albeit less 

successfully (for example, Ku et al., 1981). The possibility of 

regulation of the enzyme by other phospholipids would have major 

implications with regard to site of activation of PKC within the 

cell and could reflect an alteration in the state of the cell such 

as a change in cellular metabolism. A number of phospholipids 

were therefore investigated for their ability to substitute for PS 

both in the presence and absence of diolein for glial cell PKC 

activation. 

RESULTS AND DISCUSSION 

When the specificity of fatty acid for activation of glial PKC 

was investigated both in the presence or absence of unsaturated 

DAG (diolein), a wide variety of responses was obtained (see table 

3.6.2. ). In each case listed, the phospholipid added was in place 

of PS and was at the same concentration as for PS in the routine 

assay. The results in table 3.6.2. show that PS was the most 

effective phospholipid for activation of PKC. Other phospholipids 

also supported enzyme activation but at a greatly reduced rate. 

Most successful at substituting for PS were phosphatidylinositol, 

phosphatidylethanolamine and phosphatidic acid, all, like PS, 

acidic phospholipids. These findings are supported by results 
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Figure 3.6.2. A. Histone, myelin basic protein and protamine, as 

resolved on a 6-30% gradient SDS-polyacrylamide gel. 

Lanes 1 and 15 - molecular weight marker; lanes 2-4 - protamine; 
lanes 5-7 -te HIS histone; lanes 8-10 - bovine mvelin basic 
protein (Sigma; lanes 11-13 - purified rabbit myelin basic 
protein; lane 14 - purified bovine myelin basic protein. 
Each sample was run in triplicate, using protein levels of 2.5, 
5.0 and 7.5 )lg of protein (from left to right); lane 14 contained 
5.0)-ig of protein. 
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from other workers (e. g. Ku et al., 1981; Sekiguchi et al., 1988) 

although comparisons with published material are difficult as each 

separate investigation uses a different concentration of 

phospholipid and calcium. Using calcium concentrations identical 

to those in this investigation, Ku et al. (1981) employing PKC 

derived from human peripheral lymphocytes obtained activation 

levels of 78%, 43% and 18% for phosphatidylethanolamine, 

phosphatidylinositol and phosphatidy1choline respectively, 

relative to the PS value in the presence of diolein. However, 

these workers used phospholipid concentrations of only 8pg/ml, one 

fifth of that employed in the present study. In the absence of 

diolein Ku et al. (1981) found reduced PKC activation by PS (56%), 

phosphatidylethanolamine (23%), phosphatidylinositol (22%) and 

phosphatidy1choline (18%). Thus, many of these figures are 

similar to those obtained in the present investigation. Ku et al. 

(1981) concluded that whilst PS is most active in supporting PKC 

activity, both phosphatidylinositol and phosphatidylethanolamine 

will do so also, but less effectively, and that 

photphatidylcholine, phosphatidic acid, sphingomyelin and 

lysophosphatidy1choline are inert. However, the data in table 

3.6.2. shows that this appears not to be the case in glia, where 

phosphatidic acid is a useful activator of PKC. This view is 

supported in later work by the same workers when investigating 

phospholipid activation of PKC subspecies derived from rat brain 

(Sekiguchi et al., 1988). Using a phosphatidic acid concentration 

of 8pg/ml and calcium at 3pM (100pM was employed in this study) in 

the presence of diolein (0.8pg/ml), these workers found activity 

of 44%, 36% and 52% for subspecies a, 0 and X respectively using 

PS as the 100% marker. of interest here is the fact that 

conversion of DAG to phosphatidic acid by DAG kinase is believed 
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TABLE 3.6.2. SPECIFICITY OF PHOSPHOLIPIDS AND ARACHIDONATE FOR 

ACTIVATION OF GLIAL PROTEIN KINASE C 

PHOSPHOLIPID ADDED 

PROTEIN KINASE ACTIVITY M 

+DIOLEIN -DIOLEIN 

PHOSPHATIDYLSERINE 100 72 

PHOSPHATIDYLINOSITOL 46 36 

PHOSPHATIDYLETHANOLAMINE 35 25 

PHOSPHATIDIC ACID 33 31 

PHOSPHATIDYLCHOLINE 16 17 

LYSOPHOSPHATIDYLCHOLINE 11 10 

SPHINGOMYELIN 19 18 

ARACHIDONIC ACID 11 17 

Lipids were added at 40pg/ml in the presence/absence of 

diolein (0.8pg/ml). Results were expressed against PS (+diolein) 

as 100% in the presence of 100pM calcium and are the mean of at 

least three separate experiments. Assays were carried out as 

detailed in the Methods section. 
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to be a method for switching off PKC activation. If indeed this 

merely serves to prolong PKC activation then this will completely 

alter our view of how PKC is regulated. Phosphatidylinositol gave 

respective activities of 60%, 32% and 65% whilst 

phosphatidylethanolamine had significantly lower activation 

potential with only 9%, 15% and 16% for the a, 0 and X subtypes. 

All these figures highlight the necessity for great care to be 

taken when comparing lipid activation studies as each employs 

different concentrations of activators, often using PKC derived 

from different sources. Only recently, with the discovery and 

characterisation of some of the isoforms of PKC has it become 

clearer as to why so many studies conflict in their assessments of 

lipid activation of PKC. The existence of the well characterised 

a, 0 and X subtypes, the less well characterised 6, e and z 

subtypes, plus the likelihood of the existence of others, one or 

more of which may exist in a specific tissue or cell type, and all 

with subtly different activation characteristics, could give a 

plausible explanation for such observations. 

The data in table 3.6.2 shows, for activation of glial PKC 

under the conditions described, the presence of diolein is 

important for supporting PKC activation when using PS, but that it 

appears to have somewhat less of a potentiating effect when using 

phosphatidylinositol or phosphatidylethanolamine, and little or no 

effect in the presence of the other phospholipids listed. It Is 

also of interest that arachidonic acid appears to preferably 

activate PKC in the absence of diolein, albeit at a very low 

level. Recent work by Nishizuka's group involving 

characterisation of the PKC subspecies has centred on the 

potential activation properties of arachidonic acid. In the 
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presence of 300VM calcium and the absence of diolein, y-PKC was 

activated to about 50% of maximal activity (that obtained In the 

presence of 8pg/ml PS and 0.8pg/ml diolein) at lower 

concentrations of arachidonic acid (approx. 50pm) but was inactive 

at concentrations above 200pM (Sekiguchi et al, 1988). a-PKC, 

however, exhibited nearly 100% activity under such conditions up 

to 400VM arachidonic acid, with O-PKC having similar activation 

properties though at a lower level. These and other observations 

have led Nishizuka (1988) to propose that different PKC subspecies 

may be activated by the series of phospholipid metabolites such as 

DAG and arachidonic acid that are produced in successive phases of 

the response of the cell to stimulation of a cell-surface 

receptor. 

Adopting an approach which assayed for PKC activity over varying 

concentrations of arachidonic acid both in the presence and absence of 

calcium, with no diolein added in either case, led to two very different 

results (see figure 3.6.3). In the presence of 1OOVM Ca2+, kinase 

activity increased quickly up to 27% of maximal using 50-100pM 

arachidonic acid and reduced gradually thereafter. In the absence of 

Ca2+ however, (when 100pM EGTA was added) no increase in kinase activity 

was seen until 5OpM arachidonic acid was used. Levels of activity using 

1OOVM arachidonic acid plus EGTA approached those seen when Ca2+ was 

present, although increasing arachidonic acid to 200VM led to an 

activity of 48% of maximal. Thereafter any further increase in 

arachidonic acid concentration led to a sharp drop in kinase activity. 

Comparing both curves obtained with those of Sekiguchi et al (1988), who 

demonstrated the differing affinities for arachidonic acid of the PKC 

subspecies, the curve representing X-PKC appears to correlate most 

closely with those seen in this study. Again, however, comparisons are 

difficult as the two studies were conducted under different 
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experimental conditions. These results indicate that arachidonic 

acid may have a role in glial PKC activation, as may some of the 

other phospholipids listed in table 3.6.2, but any postulations to 

this effect will require further investigation. Possibilities 

also exist that although the phospholipids may not substitute for 

PS and support PKC activation, they may have a considerable 

influence on modulating activation of the enzyme by PS. Thus 

different membrane phospholipids play a role by enhancing or 

inhibiting enzyme activation. Exactly which phospholipids exert a 

positive cooperativity and which a negative one may reflect the 

lipid distribution within the cell membrane. Hence, in 

erythrocytes and platelets, phospholipids stimulatory to PKC 

activity are localised predominantly to the cytoplasmic face of 

the lipid bilayer where they may interact with the enzyme, with 

'inhibitory' phospholipids located in the outer leaflet of the 

cell membrane (Jacobsen and Saier, 1984). As individual cell 

membrane phospholipid composition varies from cell to cell, this 

could explain differences in PKC activation effects of different 

phospholipids often reported in the literature. Given these many 

possibilities, the scope for further work in this area is 

tremendous. 
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3.6. c. Use of H-7 as an inhibitor of glial Drotein kinase C 

The ability of H-T, one of the isoquinolinesulphonamide compounds 

described by Hidaka et al. (1984), to inhibit glial PKC was 

investigated. This compound is commercially available (Sigma) as a PKC 

inhibitor and is the most selective of the isoquinolinesulphonamide 

group of compounds described by Hidaka et al (1984) for inhibition of 

PKC. The effectiveness of H-7 in inhibiting PKC activity, expressed as 

percentage inhibition of activity over a range of concentrations of H-7, 

is shown in figure 3.6.4. The results show that H-7 does not completely 

inhibit PKC; a maximum of 70% inhibition is observed. H-7 would not 

therefore be the compound of choice to demonstrate a specific PKC- 

mediated process, but could be used in conjunction with data obtained by 

other means. H-7 was found to inhibit Ca2+-dependent kinase activity in 

glia by approximately 50% at a 50pM concentration (data not shown). 

Thus, as previously detailed by Hidaka et al. (1984) H-7 is not a 

specific inhibitor of PKC but will inhibit all ATP-dependent enzymes 

such as PKA. 

3.6. d. Activation of glial protein kinase C in vitro using 

phorbol ester 

Mixed glial cultures were incubated with TPA (a DAG substitute; 

see section 1.3. d) for various time points to examine the effect of 

phorbol esters upon the subcellular distribution of PKC. The results in 

figure 3.6.5 show that as the length of incubation with TPA is increased 

so the PKC distribution between the cytoplasm and the membrane changes 

in favour of the latter i. e. cytosolic levels decrease with a 

proportional increase in particulate PKC levels. This movement of PKC 

to the membrane is termed translocation and was first reported by Kraft 

and Anderson (1983). 4-a-phorbol, a non-tumour-promoting phorbol ester, 

had no effect on PKC distribution (data not presented). Thus activation 
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of PKC by phorbol ester causes translocation of PKC to the membrane 

where the enzyme can interact with the lipid bilayer to form the active 

quaternary complex consisting of enzyme, DAG (or TPA), PS and Ca 2+ 

(Hannun et al., 1985). 

This pattern of redistribution of PKC to the membrane has since 

been shown by a number of workers in various cell types (for example, 

Rodri§uez-Pena and Rozengurt, 1984; Thomas et al., 1987; Neary et al., 

1988). Bhat (1989) has recently shown a similar phenomenon in glial 

subcultures derived from neonatal rat brain. Neary et al. (1988) 

investigated TPA-mediated PKC redistribution in primary astrocyte 

cultures derived from neonatal rat brain and found an increased 

membrane-association of PKC up to 30 min. of treatment with 1OOnM TPA, 

after which time levels of particulate PKC declined. Level of cytoslic 

PKC decreased sharply up to 30 min. but remained fairly constant 

thereafter up to 17h. treatment. This observation differs from the data 

presented in figure 3.6.5 using 25nM TPA, data which is supported by the 

work of Bhat (1989) using 10ng/ml. (approximately 16.3nM) TPA. The 

level of particulate PKC follows a similar relationship. An increase 

over the first 15 min. treatment is followed by a gradual decrease in 

measurable particulate PKC activity. This decreased activity seen on 

prolonged incubation with phorbol esters has been shown in a variety of 

cell types (see Rodriguez-Pena and Rozengurt, 1984; Chida et al., 1986, 

for example) and is termed 'downregulation'. The process may be 

mediated by proteolytic degradation of PKC (Chida et al., 1986), 

although an attractive alternative proposed by Bazzi and Nelsestuen 

(1988) is that the PKC inserts into the membrane in an irreversible step 

and produces a Ca2+_independent kinase (see Bazzi and Nelsestuen, 1988, 

for a discussion on membrane PKC characteristics) hence the proposal of 

a proteolysis. The different patterns of PKC redistribution seen 

between studies may represent an inherent difference in the role of PKC 
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in a given cell type, and hence the level of enzyme that is available 

for translocation to the cell membrane. 

The cytosolic levels of PKC in this study decreased in similar 

proportion to the increase in levels found to be associated with the 

membrane (see figure 3.6.5) up to a time of 30 min. TPA treatment. 

Thereafter, an increase in cytosolic PKC is apparent, albeit only up to 

a level that is approximately 30% of that seen prior to TPA treatment. 

Bhat (1989) found that a similar relationship existed, although this 

increase was not apparent until after 60 min. TPA treatment. However, 

in that study a lower TPA concentration was used to elicit these effects 

and so perhaps the time lag seen here is not surprising. Having shown 

such an increase in cytosolic PKC levels following treatment of glial 

subcultures for upwards of 60 min. Bhat (1989) made no attempt to 

explain this phenemenon. It may be that this simply represents a pool 

of newly- synthesised PKC becoming available for use. Alternatively, 

some of the membrane-bound PKC may somehow be redistributing to the 

cytosol. 

A paper recently published by Huang et al. (1989) shows that three 

of the PKC subspecies, a, 0 and y, exhibit differential susceptibility 

to tryptic proteolysis and that the a and 0 subspecies exhibit 

differential rates of downregulation in response to phorbol ester. Thus 

the kinetics of receptor downregulation will vary according to the PKC 

subspecies present in a specific tissue or cell type. 

3.6. e. Effects of heavy metals on glial protein kinase-C-activity 

Heavy metal toxicity is a phenomenon which can result from 

interaction of heavy metals with a number of cell constituents. 

Proteins such as PKC may be unusually sensitive however by virtue of the 

presence of sulphydryl groups that react with heavy metals (Speizer et 

al., 1989). Also of special interest here are reports by Windebank 
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(1986) showing that lead inhibits in vitro myelination, and arsenic, 

mercury and thallium inhibit neurite outgrowth in dorsal root ganglion 

neurones, and by Cookman et al. (1988) showing that lead will induce 

precocious glial differentiation both in vivo and in vitro leading to 

potential misrouting of neuronal pathways. 

The effects of a number of heavy metals on glial PKC in vitro was 

thus examined in this study. The concentrations of the metals employed 

was lOpM, chosen with reference to previously published work (Windebank, 

1986; Cookman et al., 1988; Speizer et al., 1989). Those metals under 

investigation were the divalent cations of arsenic (As), barium (Ba), 

cadmium (Cd), copper (Cu), lead (Pb), manganese (Mn), mercury (Hg), 

nickel (Ni) and zinc (Zn). The results are presented in table 3.6.3. 

The data shows that As2+ alone appeared to cause a substantial 

activation of PKC activity at lOpM, with a reduced activation seen with 

Pb2+. An inhibition of PKC activity in the region of 30% was seen on 

addition of Ba2+ and Ni2+ to the assay mixture. Neither Cd2+, Cu2+, 

Mn2+, Hg2+, nor Zn2+ appeared to have any obvious effect on glial PKC 

activity however, when added to the assay mixture and the assay 

conducted as normal. Thus it could be concluded that As2+ and Pb2+ 

stimulate the PKC-catalysed phosphorylation of type HIS histone whilst 

Ba2+ and N12+ inhibit it. According to Speizer et al. (1989), however, 

this would be a false conclusion. They argue that any stimulation of 

PKC activity seen in the presence of heavy metals is due to the fact 

that the metals liberate Ca2+ from the Ca2+-EGTA buffer system, and that 

Speizer et al. (1989) believe that the biphasic effect of stimulation of 

PKC at low heavy metal concentrations and inhibition at high 

concentrations seen by others (e. g. Murakami et al., 1987) is due to 

Ca2+ liberation at low concentrations of heavy metal and direct 

inhibition at higher concentrations. Therefore they suggest that any 

such investigations ought to be carried out in a buffer system free of 
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TABLE 3.6.3. EFFECT OF HEAVY METALS ON GLIAL PROTEIN KINASE C ACTIVITY 

METAL ADDED PKC ACTIVITya S. D. 

None 100 

Arsenic 123 10 

Barium 66 4 

Cadmium 100 10 

Copper 98 3 

Lead 110 8 

Manganese 103 6 

Mercury 103 5 

Nickel 73 3 

Zinc 98 4 

a percentage PKC activity was calculated using the activity obtained in the 

absence of any heavy metal as the 100% value, when DE-52-purified 

cytosolic extract was used as PKC source. 

Divalent metals were added to the assay mixture to make it 1OVM with 

respect to the metal, and the assay conducted as detailed in the Methods 

section. Figures quoted represent the mean % activity (± S. D. ) from 

three experiments to the nearest whole number. 
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chelators. Results obtained following this suggestion are presented in 

table 3.6.4. 

Results indicate an inhibition of glial PKC activity in the 

presence of all of the heavy metals listed, in agreement with the 

findings of Speizer et al. (1989). The greatest degree of inhibition was 

seen in the presence of 1OpM Ba2+ (>50%), while both Cd2+ and Cu2+ at 

1OpM concentration had a 45% inhibitory effect on glial PKC activity. 

This figure for cadmium is lower than that found by Speizer et al (1989) 

who obtained a 50% inhibition of PKC activity with Cd2+ at a 

concentration of 3PM. Figures obtained for Cu2+ and Zn2+ were similar 

in both studies. 

Replacement of a Ca2+-EGTA buffering system with a chelator-free 

system had some direct effects on measurable PKC activity. 

Homogenisation of glial cells in low concentrations of calcium (i. e. in 

the absence of EGTA) led to an increase in membrane-associated PKC. In 

one experiment, cytosolic PKC levels of 1694±136.5 pmol 32p 

transferred/lOmin. /mg protein obtained in the presence of chelator 

contrasted with the figure of 231.8±21.7 pmol 32p transferred/10 min. /mg 

protein obtained In the absence of chelator. This reduction may be 

overcome to some extent by addition of high levels of Mg2+ to the 

homogenisation buffer (3omM) so counteracting the Ca2+-mediated 

association of PKC with the membrane (Speizer et al., 1989). The use of 

M92+ was not investigated in the present study in an attempt to keep all 

experimental conditions as constant as possible. 

The fact that all the heavy metals tested appeared to have an 

inhibitory effect on glial PKC supports the theory of Speizer et al. 

(1989) that any stimulation of activity seen in the presence of chelator 

merely reflects a change in the Ca2+-EGTA buffering system. It also 
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TABLE 3.6.4. EFFECT OF HEAVY METALS ON GLIAL PROTEIN KINASE C 

ACTIVITY IN A CHELATOR-FREE ASSAY SYSTEM 

METAL ADDED PKC ACTIVITya S. D. 

None 100 

Arsenic 70 6 

Barium 47 9 

Cadmium 55 10 

Copper 57 9 

Lead 78 7 

Manganese 80 4 

Mercury 63 7 

Nickel 66 8 

Zinc 66 9 

a percentage PKC activity was calculated using the activity obtained in 

the absence of any heavy metal as the 100% value when DE-52-purified 

cytosolic extract prepared in the absence of chelators was used as PKC 

source. 

Divalent metals were added to the assay mixture to make it 1OpM with 

respect to the metal, and the assay conducted as detailed in the Methods 

section. Figures quoted represent the mean % activity (t S. D. ) from 

three experiments to the nearest whole number. 
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explains the biphasic effect of stimulation and inhibition of PKC 

activity at low and higher levels of heavy metal respectively. It is 

interesting that all the heavy metals inhibit PKC. The site of action 

of the heavy metals appears not to be on ATP or histone or to be a non- 

specific denaturation effect since PKA and PKC exhibit differential 

sensitivity to heavy metal inhibition. Rather the site of action is 

probably at a sulphydryl moiety on the PKC molecule (Speizer et al., 

1989), such as one of the number of cysteine-rich residues present (see 

fig. 1.3.5). Consistent with this is the finding that 0-mercaptoethanol 

and penicillamine which protect S-S bonds also protect against heavy 

metal inhibition of PKC activity (Speizer et al., 1989). 

Given that PKC has been widely implicated in growth and 

differentiation processes (Nishizuka, 1986), the results presented here 

showing an inhibition of PKC acivity in the presence of heavy metals may 

possibly account for observations of Windebank (1986) that heavy metals 

inhibit neurite outgrowth . However, such an hypothesis would require 

investigations of the effects of heavy metals on PKA as well as PKC. 

This may then lead to a greater understanding as to how certain heavy 

metals exert their toxic effects, and how these may be counteracted, 

something which could prove to be of enormous benefit to the large 

number of persons daily exposed to such elements. 

3.7 HYDROXYLAPATITE COLUMN CHROMATOGRAPHY OF GLIAL CELL EXTRACTS 

INTRODUCTION 

Although once considered as a single entity (see Nishizuka, 1984, 

for example) gene cloning techniques and enzymological and immunocyto- 

chemical analyses have since revealed the existence of multiple subspe- 

cies of PKC distributed throughout a number of mammalian tissues (for 
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example, Ono et al., 1986,1987; Huang et al., 1987b). Hydroxylapatite 

(HA) column chromatography was introduced to resolve an apparently 

homogenous tissue or cell preparation into three PKC subspecies, the a, 

0 and X isotypes. 

Hydroxylapatite is produced by the reaction of Ca 2+ and phosphoric 

acid to yield a compound with the chemical formula of Ca, O(PO4)6OH2' 

Elution of sample from the column is always by means of a sodium or 

potassium phosphate gradient. The separation mechanism underlying 

resolution of solutes on HA remains to be clarified although promotional 

literature attributes it to a combination of ion-exchange, molecular 

sieving and recognition of structural difference (the extent to which 

molecular sieving is important increases with column size). 

Conventional HA appears flake-like when analysed by X-ray diffraction, 

but companies marketing the HA chromatographic columns have modified 

this structure somewhat. The exact shape of the HA crystals gives each 

specific type of HA column its characteristics with respect to pressure 

and pH limits and elution profile. Thus given compounds behave 

differently on different types of HA column. 

The earliest methods published for separating PKC into three sub- 

species were those of Huang et al. (1986) and Kikkawa et al. (1987). 

Using a Biorad HA column, Huang et al. (1986) separated an extract of 

monkey brain Into three subspecies in a 16h. elution programme. The 

extent of separation was not as well defined as that achieved by Kikkawa 

et al. (1987), using a Koken HA column with spherical crystals. These 

workers obtained three clear well-separated peaks using rat brain 

extract as a source of PKC, in a programmed elution step of only 4.5h. 

Hence it is important to be aware of the variability between types of HA 

column when attempting comparisons. This point is illustrated In figure 

3.7.1 where data from a number of published investigations have been 

collated. Another example of the variability in technique is 
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illustrated by the fact that the workers indicated in figure 3.7.1, 

using different HA columns, reported peaks of PKC activity eluted at 

different concentrations of potassium phosphate. Thus Kikkawa et al. 

(1987), using a Koken HA column and rat brain PKC as enzyme source, 

recorded peak activities at 70mM, 90mM and 140mM potassium phosphate; 

Pelosin et al. (1987) employed a Mitsui Toatso column, and identified 

PKC peaks at 30mM, 45mM, 6OmM and 90mM potassium phosphate; Wooten and 

Wrenn (1988) used a Biorad column and reported elution of PKC peaks at at 

40-6OmM, 70-90mM and 100-150mM potassium phosphate, whilst the Mitsui 

Toatsu column employed by Dianoux et al. (1989) gave peak enzyme 

activities at 55mM, 65mM and 110mM potassium phosphate. 

Initial investigations concentrated on developing a method to 

resolve PKC isoforms in glia using HA column chromatography. Prior to 

assay of glial PKC, however, it was necessary to standardise the column 

for the a, 0 and X subspecies using rat brain PKC as enzyme source. 

Only when three well-defined peaks could be achieved could the glial- 

derived PKC be investigated to determine which subspecies were present. 

Unfortunately spherical HA was not available in Britain so initial 

attempts to resolve the subspecies were made using a Biorad HA column. 

Later on a Tonen spherical HA column was used. 

3.7. a. Results obtained using the Biorad hydroxylapatite column 

Initial attempts to resolve PKC subspecies followed the method 

advised by M. Shearman (personal communication) from Nishizukals group, 

as detailed in the Methods section (see section 2.10). The Biorad HA 

column was borrowed from Dr. A. Freeman (Charing Cross and Westminster 

Medical School) and was used with a guard column. 

Initial problems concerned column pressure levels. As HA columns 

are very sensitive to pressure it was important to ensure a constant 
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(non-fluctuating) low pressure (approx 3 megapascals); anything greater 

than this may irreversibly damage the column packing. When the method 

detailed by M. Shearman was followed, where a filtered DE-52 column 

eluate was applied to the HA column, the pressure limits were always 

exceeded. Despite numerous washings of both the guard column and the HA 

column, each application of the PKC sample had the same effect; an HA 

column and guard column exhibiting low pressure readings during 

equilibration with column buffer always showed pressure readings 

exceeding the permitted level on application of enzyme sample. Hence the 

column separation could not proceed. 

A change in the methodology was introduced as a result of 

discussions with Dr. A. Freeman. The DE-52 eluate was dialysed 

overnight against HA column buffer (2OmM potassium phosphate) in order 

to remove the Tris contained in the enzyme sample. In addition, the 

guard column was removed. Since this was present primarily to ensure 

that nothing blocked the column, but the DE-52 column eluate was always 

filtered through a 0.2pm membrane prior to application to the HA column, 

its presence was felt to be unnecessary. In this revised procedure there 

was a reduction in pressure on application of the enzyme sample, and a 

chromatographic separation was possible. However, PKC activity was 

resolved into only two peaks of activity with perhaps a shoulder on the 

first peak, indicating the presence of a third subspecies (see figure 

3.7.2A). Constructing different phosphate buffer gradients in an 

attempt to further separate this activity did not improve matters (see 

figures 3.7.2B-D). Peak activities varied somewhat due to protein 

concentration of the sample. The two peaks characteristic of liver PKC 

could be detected (i. e. subtypes 0 and a respectively) as shown in 

figure 3.7.2B. Thus it was not certain whether the first peak obtained 
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using rat brain PKC represented a fairly equal mixture of subtypes y and 

0 or whether it merely represented one of the subtypes masking a second 

with a much lower activity. Lipid activation experiments were 

undertaken to attempt to characterise these peaks, but comparing them 

with those obtained using rat liver, shed no further light on the 

matter. Application of whole glial cells PKC extract or cytosolic 

extract resulted in no peak activity being detected (see figure 3.7.3), 

despite the sample being highly active prior to application to the HA 

column. Neither was the activity run straight off the column nor eluted 

with 800mM potassium phosphate. There appeared to be a broad spreading 

out of activity, with all samples exhibiting levels of activity above 

basal levels seen when using rat brain, and no obvious peak activity was 

present. Regular analyses of the HA column elution characteristics were 

carried out using appropriate test samples to ensure that no problems 

existed. 

3.7. b. Results obtained usinq a Tonen spherical-hydroxylapatite column 

The Tonen HA column was similar to the Koken column employed by 

Nishizuka and colleagues (Ono et al., 1987); the packing was a 

spherical HA of uniform size. A linear gradient elution advised by M. 

Shearman was used initially. The results obtained for resolution of 

whole rat brain PKC subspecies are shown in figure 3.7.4 Three clear 

peaks were obtained corresponding to subspecies X, 0 and a respectively 

at potassium phosphate concentrations of 120-125mM, 160-180mM and 260- 

270mM. Such molarities differ from previously published studies, but 

this is perhaps not surprising since peak enzyme activities appear at 

various concentrations of potassium phosphate according to the type of 

HA column used. In addition, no previous investigations have employed a 
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Tonen HA column, which is new on the market. To date, according to the 

literature, the best column available in terms of resolving a, 0 and 

subspecies into three well-defined peaks in a relatively short time 

period is the Koken HA column, but the resolution obtained in the 

present study shows the Tonen column to be every bit as good. Both 

columns have spherical HA packing but the Koken packing is of variable 

particle size (1-6pm), whereas the Tonen packing is of a regular size of 

51im (not less than 80%) perhaps giving a more uniform separation. For 

this reason the Tonen column ought to be far superior to those HA 

columns with irregular particles of HA such as conventional HA or the 

Icoral-shaped' HA described by Mitsui Toatsu. 

The repeated appearance of three peaks of PKC activity when using 

rat brain as the enzyme source Indicated that the Tonen column was 

resolving well. However, when DE-52-purified supernatants from a mixed 

glial cell primary culture were resolved, no peaks of activity were 

obtained (see figure 3.7.5A). Similar results were achieved when using 

older primary cultures, oligodendrocyte-enriched subcultures and type-i 

astrocyte cultures (see figures 3.7.5B-D). Levels of PKC activity 

obtained were above basal levels as measured by Ca2+_independent kinase 

activity. In all cases the DE-52-purified supernatant samples contained 

appreciable PKC activity after overnight dialysis and prior to 

separation on the HA column, as measured by the standard PKC assay (see 

sections 2.4-2.6). In addition, regular analyses of the HA column 

elution characteristics were carried out using appropriate test samples, 

and rat brain extracts were chromatographed at various times to ensure 

that the column was resolving the a, 0 and X subspecies accurately. It 

is of course possible that some of the enzyme activity is lost during 

the column purification because although the level of enzyme 

purification is high, the actual recovery of protein loaded onto the 

column is low. 
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These results are, by essence, preliminary investigations but the 

absence of peaks corresponding to a, 0 and 4 subspecies are very 

exciting since no cells to date have been identified which do not 

contain either of these three PKC subspecies (P. Parker, personal 

communication). The results require verification with the use'of 

monoclonal antibodies for example, but, though requests have been made, 

no specific antibodies have been made available for use. Another line 

of investigation would be to use cDNA probes to search for the presence 

of not only a, 0 and X-PKC but also the other subspecies which have been 

sequenced. Such a study would be very informative and would provide 

more information on the role of PKC in glia. 

3.8. PROTEIN KINASE C AND GLIAL CELL DIFFERENTIATION 

INTRODUCTION 

Having firmly established the presence of PKC in glia and 

investigated its characteristics, the question of the precise role of 

the enzyme within glia arises. PKC has been implicated in a wide 

variety of processes in various cell types ranging from muscle 

contraction (Rasmussen et al., 1984) to glucose transport (Kirsch et 

al., 1985) and synaptic transmission (Nishizuka, 1986). A series of 

reports have recently appeared in the literature implicating PKC in 

glial cell differentiation. Honegger (1986) has reported that phorbol 

esters enhanced the differentiation of astrocytes in serum-free 

aggregating foetal rat brain cell cultures. Murphy et al. (1987) have 

shown a similar proliferation of astrocytes In primary culture in 

response to phorbol esters. Fawthrop and Evans (1987 a, b), however, 

have induced morphological changes In astrocytes with a calcium 

ionophore and shown that the changes were independent of PKC activation. 

Schroter and Althaus (1987) have shown an accelerated regeneration of 

processes in cultured porcine oligodendrocytes exposed to phorbol ester, 
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an observation also made by Yong et al. (1988) in bovine 

oligodendrocytes. More recently Bhat (1989) has shown that TPA 

increased process formation in one-day old glial subcultures derived 

from rat brain. In addition, PKC has been implicated in 

neurotransmitter release in astrocytes (Hansson and Ronnback, 1989) and 

neurones (Zurgil and Zisapel, 1985). 

The effect of in vitro PKC activation on cell morphology was 

investigated in this study. Cultures were examined for PKC-dependent 

changes using phorbol ester, calcium-dependent changes using Ca2+ 

ionophore A23187, and a combination of the two compounds to investigate 

whether any synergistic relationship existed. Cell populations employed 

were 7-day old primary mixed glial cultures. Cell growth was monitored 

over a period of 72h. in culture; cell proliferation and morphological 

changes were recorded. 

As a comparison, the effect of PDGF on 7-day old primary mixed 

glial cultures was investigated. PDGF is secreted by type-1 astrocytes 

and stimulates 0-2A progenitor cells to divide, preventing their 

premature differentiation into oligodendrocytes (Noble et al., 1988; 

Richardson et al., 1988). At seven days in culture a large percentage 

of the glial cells are 0-2A progenitor cells (i. e. A2B5+) which should 

thus be susceptible to the influence of PDGF. 

RESULTS AND DISCUSSION 

Seven-day old mixed glial cell cultures were given fresh medium 

containing either 25nM 4-a-phorbol, 25nM TPA, 1OpM A23187, or 25nM 

TPA+IOpM A23187. Cultures to be treated with PDGF had been switched to 

a serum-free defined medium 24h. earlier as described by Richardson et 

al. (1988). Astrocyte-conditioned medium was used as the source of PDGF 

(Richardson et al., 1988). 

The effects of the various additions to the cultures on cell 
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proliferation were assessed using 3H-thymidine incorporation studies at 

various time points throughout the 72h. period of treatment. Results 

are presented in figure 3.8.1. 

A huge increase in DNA synthesis was seen in PDGF-treated cultures 

with an approximate four-fold Increase over control (4-a-phorbol- 

treated) cultures. A marked stimulation of 3H-thymidine incorporation 

was also apparent in TPA-treated cultures although levels were clearly 

below those seen with PDGF. A23187 caused a reduced level of glial DNA 

synthesis. This effect was counteracted to some extent by the addition 

of TPA, but even together levels of incorporation did not reach those 

found with TPA alone. Thus according to the data in figure 3.8.1., 

although PKC is clearly implicated in DNA synthesis (as TPA leads to an 

increased level of 3H-thymidine incorporation over control values) some 

additional factor(s) is required to account for the greater (and perhaps 

maximal) response observed. This extra factor(s) apparently present In 

PDGF-stimulated cultures, is unlikely to be Ca2+-mediated as A23187 

has an inhibitory and not a stimulatory effect on 3H-thymidine 

uptake. It is possible that a tyrosine-specific protein kinase may be 

involved as the PDGF receptor itself contains an Intracellular 

tyrosine kinase domain (Yarden et al., 1986). Future work 

investigating such an hypothesis, however, would require a control 

test sample treated with serum-free medium alone (i. e. without the 

addition of PDGF) in order that any contribution made by the medium 

may be examined. This medium contains insulin, a prominent activator 

of DNA synthesis in astrocytes (Murphy et al., 1985) so it may be 

contributing to the "PDGF-effect" seen in the present investigation. 

Also of interest would be to compare the effect of setum-free medium 

with the usual medium of choice, 10% FCS in DHEM, so that the cells 

"basal" level of DNA synthesis might be determined. As activation of 

cell receptors by growth factors stimulates a whole host of cellular 
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changes (see Williams et al., 1988, for example) investigations into 

how such growth factors affect DNA synthesis may be rather complex. 

Many growth factors regularly used in work of this type still await 

fuller characterisation. 

These observations must be considered in light of the 

morphological changes seen during the treatment regime (see figure 

3.8.2. ). Figure 3.8.2A is representative of all treatments after Ih. in 

culture, with cells either clumped or singular, some with processes and 

some floating cells. By 8h. in culture, cells treated with TPA and PDGF 

have a similar appearance (figure 3.8.2, C) with a more elaborate cell 

network apparent than with 4-a-phorbol (figure 3.8.2, B). Cells treated 

with A23187 (± TPA) are little changed (see figure 3.8.2D) with a large 

number of cells floating in the medium. 

By 32h. in culture cells treated with TPA had undergone a huge 

increase in number with many phase-bright cells apparent, and a dense 

network of cells had been established (figure 3.8.2F). This was In 

marked contrast to the 4-a-phorbol-treated cells which were little 

different from the 8h. treabý point. Cells treated with A23187 

TPA) appeared, at 32h. in culture, to have a number of phase-bright 

cells, a number of which were clumped (see figure 3.8.2G). Few floating 

cells were apparent. The attached cells had begun to elaborate 

processes which in many cases were connected to other cells. At 32h. 

PDGF-treated cultures, though apparently not present in the same numbers 

as cells treated with TPA (see figure 3.8.2H), had formed a distinct 

network of cells across the substratum, with a similar morphology to the 

TPA-treated cultures. 

At the 72h. timepoint, cells treated with 4-a-phorbol (figure 

3.8.21) had formed a network, but they appeared to be a population of 

astrocytes predominantly with some small phase-bright cells growing on 

top. This contrasted with the TPA-treated cultures (figure 3.8.2J) in 
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Figure 3.8.2. Morphological effects of various mitogens over 

a 72h. treatment period on seven day mixed glial cultures. 

Magnification x 200. 

A: lh. in culture; representative of all treatments 

B: 8h. of 25nM 4-K-phorbol treatment 

C: 8h. of 25nM TPA (or PDGF) treatment 

D: 8h. of 1OTM A23187 (or 10)iM A23187 + 25nM TPA) treatment 
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Figure 3.8.2. (Cont. ý) 

E: 32h. of 25nM 4-c(-phorbol treatment 

F: 32h. of 25nM TPA treatment 

G: 32h. of lOpM A23187 (or lOyM A23187 + 25nM TPA) treatment 

H; 32h. of PDGF treatment 

(Magnification x 200) 
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Figure 3.8.2 (Cont. ) 

I: 72h. of 25nM 4-A-phorbol treatment 

J: 72h. of 25nM TPA treatment 

K: 72h. of PDGF treatment 

L: 72h. of lorm A23187 + 25nM TPA treatment 

(Magnification x 200) 
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which a large number of phase-bright cells could be seen growing over a 

dense cellular network of cells. There appeared to be no gaps in the 

cell network and a number of large clumps of phase-bright cells, seen in 

figure 3.8.2J as dark patches, were visible. By 72h. in culture cells 

treated with A23187 + TPA had a number of phase-bright cells apparent 

(figure 3.8.2L). However, in common with those cells treated with 

A23187 alone, there were many floating cells, indicative of massive cell 

death. This was substantiated by protein assay and nigrosin dye 

exclusion. The cells that remained were very elongated in appearance 

with a different morphology to that seen earlier (figure 3.8.2G). 

PDGF-treated cells at 72h. in culture (figure 3.8.2K), rather than 

having an appearance similar to TPA-treated cells (figure 3.8.2J), were 

more like those treated with 4-a-phorbol (figure 3.8.21). PDGF-treated 

glial cultures lacked the same number of gaps in the cell sheets as 

observed with 4-a-phorbol, but cell morphology was very similar. These 

cultures did not have the same dense cell growth that was apparent with 

TPA. 

Overall, the following pattern appears to have been established by 

morphological observations: 

(i) TPA-treated cells showed a huge increase in cell number by 32h. 

treatment and had formed an extremely dense network of process- 

bearing cells with clumps of phase-bright cells by 72h. in 

culture; 
(ii) PDGF treatment caused cells to increase hugely in call number by 

32h. treatment to form an elaborate network of process-bearing 

cells by this time, similar to TPA-treated cultures; by 72h. 

treatment with PDGF, the cells resembled those cultures treated 

with 4-a-phorbol more closely than those treated with TPA; 

(iii)Cultures treated with A23187 (± TPA) showed a massive cell loss, 

175 



although some processes were elaborated by the remaining cells. 

Taking points (i) and (ii) together, it almost seems as if TPA 

stimulation leads to a phase of cell proliferation in which cells grow 

across all the available substratum. The initial large growth phase 

seen with PDGF, as reflected in the 3H-thymidine incorporation studies, 

falls off into an apparently more 'ordered' growth pattern. This 

suggests that TPA-stimulated cultures were perhaps missing a 

'controlling' factor which was present in PDGF-treated cultures. Of 

possible relevance here is a recent observation by Housey et al. (1988) 

that overproduction of 01 subspecies of PKC caused a disordered growth 

control in rat fibroblasts, an interesting phenomenon given that PKC is 

the intracellular receptor for tumour-promoting phorbol esters 

(Ashendel, 1985). 

Although PDGF (in the form of astrocyte-conditioned medium) 

elicited a morphological response similar to TPA up to 32h. treatment 

and showed an increased level of 3H-thymidine incorporation, it is not 

certain through which mechanisms the growth factor may be acting. PDGF 

may act via both PKC and IP3 following PI turnover (Kaplan et al., 1987) 

and by activation of a tyrosine kinase (Ek et al., 1982). Results 

obtained here suggest the likelihood that both systems may be operating. 

However, it was not known whether PDGF activated PKC in glia. The 

growth factor has been shown to enhance the phosphorylation of an 80kDa 

band, a marker of PKC activation in intact cells, in fibroblasts and 31`3 

cells (Blackshear et al., 1986; Rozengurt et al., 1983). The ability 

of PDGF to activate glial PKC, as judged by enzyme translocation (Kraft 

and Anderson, 1983), was investigated. Results presented in table 3.8.1 

show that indeed PDGF does bring about PKC translocation; following a 

30 min. treatment with astrocyte-conditoned medium, particulate levels 

of PKC increased by 56%. Therefore it may be supposed that any effects 
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of PDGF on cell morphology and proliferation could indeed be PKC- 

mediated, with any differences in response between TPA- and PDGF-treated 

cultures likely to be due to one of the whole host of cellular processes 

activated by the binding of PDGF to its receptor (see Williams et al., 

1988) e. g. activation of tyrosine kinase or IP3, 

One important distinction to be made concerning TPA- and PDGF- 

induced PKC activation however relates to the contrast between a non- 

physiological and a physiological activation of the enzyme. TPA 

activates PKC directly and is not degraded following enzyme activation, 

but persists in the membrane as no physiological method exists to 

terminate its action (Kikkawa and Nishizuka, 1986). The PDGF, however, 

activates PKC via the PI pathway, the DAG produced, leading to 

activation of PKC. This DAG will remain only transiently in the 

membrane prior to its degradation by DAG kinase or lipase (Kaplan et 

al., 198T; Berridge, 198T). Hence the hypothesis of uncontrolled cell 

growth may reflect this non-physiological activation of PKC by TPA. 

In order to determine the precise relationships between the 

various kinases in glial cell proliferation and differentiation 

investigations ought to be carried out using cultures of different ages. 

This may then give some idea of exactly what stage of growth in culture 

Is critical for processes such as cell adhesion, cell process formation 

and cell proliferation and which kinases are responsible for, or 

essential to, those stages. Such investigations ought perhaps to employ 

a critical physiological activator of PKC (e. g. synthetic DAG) as well 

as, or instead of, phorbol ester in order that only the effects of a 

physiological activation of PKC are examined. 

An experiment carried out to see if phorbol ester and calcium 

ionophore had similar effects in older primary glial cell cultures (19 

days) found that A23187 (± TPA) led to cells lifting off the substratum 

after 1h. of treatment and massive cell death following 24h. treatment. 
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TABLE 3.8.1. EFFECT OF ASTROCYTE-CONDITIONED MEDIUM ON SUBCELLULAR 

DISTRIBUTION OF PROTEIN KINASE C. 

TREATMENT PKC ACTIVITY 
(cpm/pg protein) 

Controla Cytosolic 4134.4±367.7 (83%) 

Particulate 848.3± 65.1 (17%) 

PDGFb Cytosolic 1311.5±154.3 (27%) 

Particulate 3563.8±278.6 (73%) 

Six-day old primary glial cultures were switched to a modified 

Bottenstein and Sato serum-free medium as described by Richardson et al. 

(1988). 24h. later cells were incubated with (b) and without (a) 

astrocyte-conditioned medium (1: 10 dilution) for 30min. Cells were then 

washed in ice-cold homogenisation buffer and cytosolic and particulate 

PKC levels were determined as detailed in the Methods section. Figures 

given represent the mean t S. D. of triplicate determinations from one 

experiment. Figures given in brackets represent the percentage of total 

cellular PKC, and were similar in two other experiments. 
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TPA appeared to have no effects different from those seen with 

4-a-phorbol. Such results with regard to TPA are hardly surprising 

given that older cells are highly differentiated; once again calcium 

ionophore appeared to have a destructive role, causing cell detachment 

from the substratum. Fawthrop and Evans (1987a) have reported that 

A23187 and ionomycin (also a calcium ionophore) cause cell death in 

cultured astrocytes following a 3h. exposure, with a reversible change 

in cell morphology apparent In the remaining cell population. In 

contrast to the effects of phorbol ester apparent in the present 

investigation using a mixed glial cell population, Fawthrop and Evans 

(1987b) found no alteration in astrocyte morphology when treated with 

TPA or synthetic diacylglycerol. Perhaps the difference in response to 

activation of PKC in these two different culture systems reflects a 

difference in PKC subspecies. Results obtained using calcium ionophore 

require careful interpretation as the ionophore is a fairly crude 

mechanism for increasing internal Ca2+ concentrations. Thus this huge 

non-specific influx of Ca2+ ions would not reflect the in vivo situation 

where IP3 is an important regulator of intracellular calcium 

concentration. So it is perhaps not surprising that such an increase in 

intracellular calcium led to glial cell death similar to that observed 

by Fawthrop and Evans (1987a). 

It would be interesting to compare the effects of PKA on glial 

cell growth and differentiation with those of PKC. The use of forskolin 

or dibutyryl cAMP would also allow investigation of any synergy that 

might exist between these kinases. Richardson (1989) recently reported 

that 0-2A progenitor cells isolated in bulk from rat optic nerve are 

not affected by activation of either PKC or PKA alone; in conjunction, 

however, the two kinases have a proliferative effect similar to that 

seen with PDGF. Which subspecies of PKC may be involved here, however, 

and which subspecies of PKA it synergises with has recently become more 
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complicated as Walter (1989) has described the possibility of the 

existence of eight subspecies of PKA. Despite the fact that PKC or PKA 

may be implicated in many cellular processes in glia in the absence of 
the other, it is more likely that the two act together, each having a 

specific role to play. Pearce 
get al. (1988) have recently described an 

interaction between PKA and PKC in the regulation of astrocyte glycogen 

metabolism and Shafit-Zagardo et al. (1988) have implicated both kinases 

in regulation of GFAP mRNA levels in astrocytes. In addition, Althaus 

(1989) has reported that PKC and PKA act together to produce myelin in 

isolated porcine oligodendrocytes, while Raible and McMorris (1989) 

reported that though PKC may increase proliferation of 0-2A progenitor 

cells, PKA accelerates their differentiation into oligodendrocytes. 

To date, PDGF has not been shown to activate PKA directly. 

Thus any observations made in this work must be explained by activation 

of PKC and tyrosine kinase by the growth factor. PDGF activates PKC via 

the PI pathway to increase cell proliferation In a manner analagous to 

TPA, but does not cause the massive cell growth seen later in culture. 

Instead the PDGF-treated cells appeared more like ke the control (4-a- 

phorbol) cultures after 72h. treatment. This apparent regulation in 

growth seen with PDGF-treated cultures is somewhat surprising given that 

PDGF mRNA is present in human tumour cell lines and was detected In all 

human gliomas tested (Nister et al., 1988a, b). Thus, PKC may be 

important for the initial cell growth, after which time a slowing down 

or role of cell maintenance occurs. Althaus (1989) has ascribed a role 

of cell maintenance to PKA In oligodendroglia. Whether tyrosine kinase 

may have a similar effect is not yet known as the events following 

tyrosine-kinase activation remain poorly documented. Weinberg (1989) 

has suggested that a small number of genes exist on a chromosome to 

regulate cell growth. PDGF may perhaps induce activation of such an 

oncogene resulting In a depression of growth functions. Alternatively, 
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PDGF may cause growth inhibitor signals to be transduced to the nucleus 

which would cause oncogene activation and downregulation of essential 

cellular functions, such as transcription of genes required for 

continued growth. Clearly, much work remains to be done before the 

molecular mechanisms underlying the process of cell growth can be 

elucidated. 
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4. CONCLUDING DISCUSSION 

The starting point for this study was the observations of a number 

of workers a few years ago that the calcium - and phospholipid-dependent 

protein kinase, protein kinase C (PKC), may be localised in the glial 

compartment of the CNS. Immunocytochemical studies by Girard and co- 

workers (1985) suggested the presence of PKC in cells resembling 

oligodendrocytes. Burgess et al. (1986) showed a significant increase 

in PKC activity (measured by phorbol ester receptor binding) when glial 

cells were allowed to proliferate in neuronal cell cultures. Receptor- 

linked phosphoinositide turnover was demonstrated in astrocytes in 

culture (Pearce et al., 1986) and levels of PKC in primary astrocytes 

measured (Neary et al., 1986). Although much interest had been 

generated concerning the role of PKC in signal transduction, relatively 

little was known about how the enzyme functioned and in which processes 

it was involved. The last three years has seen a wealth of literature 

emerge on this subject, but despite the great advancement in 

our knowledge concerning PKC and its actions, the picture appears to 

become more complex rather than simpler. 

This study was concerned with the investigation of PKC levels in 

neuroglia. Problems of neuronal contamination and with obtaining cells 

in sufficient number for PKC assay meant that CNS tissue was not the 

system of choice for obtaining the glia. Instead, primary glial cell 

cultures of dissociated neonatal rat brain were employed, as described 

by Walker et al., (1985). Such a system contains astrocytes (types-1 

and 2), oligodendrocytes and oligodendrocyte -type-2 astrocyte (0-2A) 

progenitor cells. Neuronal contamination is minimal (Walker et al., 

1985). 

An assay was developed to measure levels of PKC in these cultures 

using 100,000g cell extracts as the enzyme source. PKC was detected in 
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all cultures investigated; use of a DEAE-cellulose (DE-52) anion 

exchange column led to a dramatic purification of measurable enzyme 

activity, with PKC values increasing approximately 20-fold (Murphy et 

al., 1988). Addition of a non-purified extract to a column-purified one 

caused a huge decrease in enzyme activity as measured by type III-S 

histone phosphorylation. A similar decrease in levels of phosphorylated 

histone was observed on addition of the non-purified extract to 

phosphorylated histone. Thus the crude extract was not acting as an 

inhibitor of PKC per se, but merely interfered with the assay for 

measuring levels of the enzyme. This phosphatase, apparently cytosolic 

in nature, was not regulated by either magnesium or manganese, but was 

inhibited by 40mM sodium fluoride. An in vivo role for the phosphatase 

would depend upon the demonstration of PKC-catalysed histone 

phosphorylation in vivo. 

The cell cultures were manipulated using subculturing techniques, 

complement-mediated cytotoxicity and defined media. Such methods showed 

PKC to be present in all the constituent cell types of the culture 

system. A significant increase in PKC levels was apparent when foetal 

calf serum was replaced with a defined medium, possibly due to the 

presence of an Inhibitor of PKC in the serum. 

Much work recently has focussed on the presence of multiple PKC 

subspecies. At least seven subspecies have been identified to date, 

three of which (a, 0,1) can be isolated using hydroxylapatite (HA) 

column chromatography (Ono et al., 1987,1988). CNS tissue contains all 

three of these subspecies although the different regions of the brain 

vary in the ratio of subspecies present, presumably reflecting the 

function of the given region (Nishizuka, 1988). Although this study 

separated whole rat brain homogenate into the three subspecies listed 

above, none of the three were found to be present in various glial 

cultures using two different HA columns. Various immunocytochemical 
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studies by other workers are in general agreement with this observation. 

Huang et al. (1988) found no immunoreactivity to anti-a, 0 or Is PKC in 

cerebellar astrocyte cultures, Hosada et al. (1989) found that neurones 

but not glia stained for 01-PKC in rat brain, and Saito 
-etal. 

(1989) 

found no obvious immunoreactivity to anti-Oll-PKC in glia of rat brain. 

Hidaka et al. (1988), however, found that cerebellar oligodendrocytes in 

rabbit brain stained for a-PKC. This apparent contradiction of the 

results of this study may be explained by the species difference, but 

more likely by the difference in cell source, i. e. cerebellum versus 

cerebrum. The use of cDNA clones to further investigate these 

observations is currently underway. 

An interesting phenomenon was observed in 6-day primary glial 

culb=s treated with TPA. The cells appeared to undergo a huge 

proliferation, growing over all available substratum. PDGF-treated 

cultures underwent a similar proliferative burst initially, but then 

slowed down and appeared similar to control (4-a-phorbol-treated) 

cultures after 72h. of treatment. Morphological analysis suggested that 

some type of growth 'control' had been exerted over PDGF-treated cells 

which was not present in the TPA-treated cultures. A likely candidate for 

such control is tyrosine kinase although the effects of its activation remain 

to be elucidated, Calcium ionophore-treated cells died, probably due to the 

huge non-specific influx of Ca2+ ions. Any future studies ought to 

include an activator of PKA to determine how it might function alone, 

and in conjunction with PKC, in the regulation of glial cell growth and 

differentiation. 

In a comparison of in vitro substrates for the PKC assay, type 

HIS histone appeared to be a 'better' substrate than either protamine 

or myelin basic protein (MBP) in terms of levels of PKC-dependent 

phosphorylation and background (basal) phosphorylation. The two sources 

of MBP used, however, were found to be very different. Turner and Kuo 
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(1986) have argued that MBP is the best substrate for PKC, and MBP 

phosphorylation by PKC has been suggested to be the primary event in 

myelination (Vartanian et al., 1986). At a recent NATO meeting in 

Osnabruck (September 1989) it was proposed that a second myelin protein, 

myelin associated glycoprotein (MAG), may be an in vivo substrate for 

PKC. Thus PKC may play an important role in myelination. De Rosbo and 

Bernard (1989) have recently put forward a multistage hypothesis for 

myelin degradation that involves the activation of PKC, although its 

role here remains far more tentative than that in myelination. 

A whole host of molecules have been cited as substrates for PKC. 

In few cases however have these proteins been shown to have an in vivo 

role. Many studies have used cell homogenates, and incubated these with 

PKC activators to investigate increased levels of phosphorylation in 

proteins and lipids. Such an approach invariably leads to one or more 

proposals for PKC substrates. Use of a whole cell system gives a more 

accurate picture of which proteins act as substrates for the enzyme. 

Some of the earliest work employing such a technique was 

undertaken by Rozengurt et al. (1983) in fibroblasts. These workers 

showed that activation of PKC led to a rapid increase in phosphorylation 

of an 8OkDa cellular protein, and that downregulation of the enzyme by 

prolonged phorbol ester treatment prevented such an occurrence. We have 

shown the presence of a similar cytosolic 8OkDa substrate in mixed glial 

cell cultures and primary astrocyte cultures (Rumsby et al., 1988). 

Thus this protein appears to be a good marker of PKC activation, 

although its identity and function remain a mystery. A number of 

proteins have a molecular weight in the region of 8OkDa; one Intriguing 

possibility is that the protein may be diacylglycerol kinase, an -in 

vitro substrate of PKC (Kanoh et al., 1989). DAG kinase degrades DAG, 

the activator of PKC. Phosphorylation of DAG kinase by PKC would thus 

represent a form of self-regulation by PKC. Morris and Rozengurt (1988) have 
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purified an 8OkDa substrate of PKC from rat brain and shown it to be highly 

acidic in nature. Investigations concerning its role are continuing. 

Phosphorylation of the 80kDa protein has been shown using 

neuropeptides such as bombesin and growth factors such as platelet- 

derived growth factor (PDGF) in fibroblasts (Wolfman et al., 1987). We 

have observed a similar increase in 80kDa protein phosphorylation in 

glial cells treated with PDGF (Rumsby et al., unpublished observations), 

an interesting observation given the importance of the growth factor in 

gl1al cell differentiation; could the 8OkDa protein be an important 

determinant here? In addition, preliminary investigations in glia have 

shown an increase in phosphatidy1choline (PC) metabolites following 

treatment with PDGF (McNulty et al., unpublished observations) so signal 

transduction via PC (Pelech and Vance, 1989) may occur in glia. 

Figures 4.1 - 4.3 are an attempt to give some indication as to the 

extent of the knowledge that now exists concerning glial call 

regulation. These figures are intended as a simple guide and therefore 

are not as detailed as they might otherwise be. One problem is the 

heterogeneity in response to a given mitogen exhibited between cultures 

of astrocytes according to their source (Cholewinski and Wilkin, 1988); 

figure 4.1 does not allow for this but simply groups the astrocyte 

response together as that elicited by a single cell type. 

Figure 4.1 details a number of responses that have been described 

in cultured astrocytes; type-1 astrocytes are not distinguished from 

type-2 as so little evidence is available on the latter cell type. 

Cholewinski and Wilkin (1988) have examined the response of cultured rat 

astrocytes to various peptides and shown that cortical and cerebellar 

astrocytes exhibited similar responses which differed from those of 

spinal cord astrocytes. A phosphoinositide-linked response was 

demonstrated using substance P, neurokinin a and 0, eledoisin, 

bradykinin, ocytocin and vasopressin. Of these, only bradykinin has 
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Fi-qure 4.1. Responses of astrocvtes to various mitogens 

a= a-adrenoreceptor agonist; 0= O-adrenoreceptor agonist; 

Ang = angiotensin; Benz = benzodiazepine; Dop = dopamine; 

Ele = eledoisin; FGF = fibroblast growth factor; Glu = glucagon; 

GMF = glial maturation factor; Hist histamine; 

mACH = muscarinic acetylcholine; Neu neurokinin a, 0; 

P2 purinergic; Som = somatostatin; SubP = substance P; 

TK tyrosine kinase; TXA2 = thromboxane A2; 

VIP vasoactive intestinal peptide. 
1- induces glycogenolysis 
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been reported to have a stimulatory effect in oligodendrocytes (Ritchie 

et al., 1987). Compounds which have been reported to exert their 

effects on astrocytes via an increase in cAMP include prostaglandin E 

(PGE), glucagon, dopamine, vasoactive intestinal peptide (VIP), 

histamine and 0-adrenergic receptor agonists (Hansson, 1988). The 

latter class of compounds also lead to active take-up of free X- 

aminobutyric acid (GABA) (Hansson and Ronnback, 1989). Compounds with 

an opposite effect to the above list (i. e. causing an inhibition of cAMP 

increase) include somatostatin and a-adrenergic receptor agonists 

(Hansson, 1988). Free glutamate is actively taken up following a- 

adrenergic receptor activation (Hansson and Ronnback, 1989). 

In addition, astrocytes have been shown to have receptors for 5- 

hydroxytryptamine (5-HT), acetylcholine (muscarinic) (mACh), 

benzodiazepine and secretin, and to be involved in aspartate and taurine 

uptake (Hansson, 1988). A recent development is the observation that P2 

purinergic receptors, activated by ATP and ADP (possibly from neurones), 

are present on the cell surface of cortical astrocytes (Pearce et al., 

1989). Other interesting observations are the presence of receptors for 

PGE, given that astrocytes may also produce this molecule, and for 

interleukin-10 (IL-ID) and angiotensin which lead to PGE production in 

astrocytes (Hansson, 1988). Activation of receptors for glial 

maturation factor (GMF) promotes the proliferation and phenotypic 

expression of cultured astrocytes (Lim, 1985) and stimulates IL-1 and 

prostaglandin production (Fontana et al., 1983; Lim, 1985), and various 

neurotransmitters induce glycogenolysis in astrocytes (Cambray-Deakin et 

al., 1988) as indicated in figure 4.1. 

Oligodendrocytes appear not to have the same diverse range of 

receptors on their cell surface (see figure 4.3). Like astrocytes they 

have receptors for mACh, BK, PGE and 0-adrenergic agonists (Ritchie et 
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al., 1987; Vartanian et al., 1988). Vartanian et al. (1988) have 

investigated events immediately following the attachment of isolated 

oligodendrocytes to substratum. Attachment led to PKC-catalysed 

phosphorylation of MBP, followed by MBP synthesis. PKC levels then 

began to decline as PKA levels rose. A 0-adrenergic responsiveness was 

seen together with an increased responsiveness to PGE. The response to 

VIP was lost, CNPase phosphorylated and an Increase in plasmalogen 

synthesis was apparent. This presumably represents (some of) the 

initial stages of myelinogenesis. Triidothyronine (T13) may have a role 

here; treatment of oligodendrocytes with T13 led to a huge increase in 

MBP levels (Honegger, 1989). 

Astrocytes secrete both CNTF and PDGF, both of which are important 

in glial cell differentiation, but quite what the stimulus for their 

production is uncertain. It is also unknown whether astrocytes have 

receptors for PDGF on their surface; such receptors certainly exist both 

on 0-2A progenitor cells and oligodendrocytes (Hart et al., 1989). PDGF 

causes progenitor cells to proliferate, preventing their premature 

differentiation into oligodendrocytes. At a given time the cells lose 

their responsiveness to PDGF due to activation of a proposed biological 

clock. 0-2A cells treated simultaneously with both FGF and PDGF will 

not differentiate however; they will continue to proliferate as long as 

the co-administration continues. Thus the FGF appears to override the 

biological clock. In addition, FGF induces GFAP synthesis in astrocytes 

(Pruss, 1981), and bovine recombinant FGF induces expression of the 

PDGF-A receptor in 0-2A progenitor cells and the MBP gene in 

oligodendrocytes (Dubois-Dalcq, 1989). Another growth factor implicated 

in myelin production is insulin-like growth factor (IGF). This is 

mitogenic for 0-2A progenitor cells and increases the conversion of the 

0-2A cell line into oligodendrocytes (Raible and McMorris, 1989). In 

addition, McMorris (1989) has reported that a mutant rat overproducing 

191 



ICrF-i not only had a greater percentage of the 0-2A line as 

oligodendrocytes, but these oligodendrocytes had a far greater capacity 

for myelin production as seen by a vastly increased brain size. The 

epidermal growth factor (EGF) receptor is regulated by PKC. The enzyme 

phosphorylates the EGF receptor changing it to a low affinity form and 

hence regulates its. activity (Cochet et al., 1984). 

Activation of PKC leads to phosphorylation of an 8OkDa cytosolic 

protein in primary astrocyte and mixed glial cell cultures (Rumsby Pt 

al,., 1988). In addition, Babcock-Atkinson et al. (1989) have reported 

increased phosphorylation of a 59kDa protein in primary astrocytes 

treated with dibutyryl cAMP as a resLLIt of activation of 

calcium/calmodulin-dependent protein kinase. 

The numerous responses listed above following receptor activation 

merely detail the beginning and, in some cases, the end point of a given 

process. Unfortunately, the steps occurring following receptor 

activation are less well documented. Messages are transferred to the 

nucleus where (proto)oncogenes are involved as 'third' messengers. Some 

of the most commonly mentioned oncogenes when discussing signal 

transduction at the nuclear level are c-fos, c-myc and c-jun. At a 

recent meeting (Glial Cell Club Inaugural Meeting, London, November 

1989) Raff suggested that c-fos and c-jun act cooperatively to transduce 

message, whilst Schontal et al. (1988) have concluded that fos (and 

probably jun) serve as primary targets of signal transduction. Further 

studies involving theseoncogenes may give us a clearer understanding of 

the process of signal transduction. 
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5. APPENDIX 

5.1. PREPARATION OF OLIGODENDROCYTES FROM RAT BRIAN 

5.1. a. Chao and Rumsby (19T7) method 

MATERIALS 

M Hexose albumin phosphate (HAP), pH 7.4. 

5% (w/v) D-glucose, 5% (w/v) D-fructose, 1% (w/v) bovine serum 

albumin fraction V (BSA), 1OmM potassium dihydrogen phosphate. 

(ii) Trypsinisation solution 

0.1% (w/v) trypsin, lOpg/ml deoxyribonuclease (DNAse) in HAP, but 

omitting BSA. 

(iii) Sucrose solutions 
0.9M, 1.2M, 1.55M and 1.75M sucrose in HAP. 

(iv) 10pg/ml DNAse in HAP. 

METHOD 

The brains from Wistar rats aged 10 days or less were dissected 

into ice-cold HAP, weighed, rolled on filter paper to remove any major 

blood vessels, and minced finely with a blade on a metal plate on ice. 

Some HAP was added to facilitate mincing. Tissue was then transferred 

to a conical flask containing 10ml trypsinisation solution per gram wet 

weight of tissue. A 1h. incubation at 37* in a shaking water bath was 

followed by chilling on ice for 5min. and addition of ice-cold FCS at 

3ml/g wet weight of tissue. Cells were collected in a Sorvall RC5B 

ultracentrifuge using an HS4 rotor; the centrifuge was turned on and 

when the revolution counter indicated 900rpm (150g) the machine was 

switched off and allowed to retard freely. 
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Pellets were then suspended in 5ml 0.9M sucrose and filtered 

through 90pm nylon mesh, followed by three filtrations through 74Pm 

steel mesh. 10ml 1.55M sucrose was pipetted into a Beckman SW27 

centrifuge tube and 10ml. OAM sucrose carefully layered over it. 10ml 

of cell suspension was then layered over the top and the tubes spun at 

49009 for 10min. in a Beckman L2-65B ultracentrifuge. The band at the 

interface of the 0.9/1.55M sucrose layers was collected and diluted to 

50ml 1.75M sucrose in an SW27 centrifuge tube, and 25ml cell suspension 

was layered on top. The gradient was then spun at 10,0009 for 20 min. 

The band at the interface of the 1.2/1.75M sucrose layers was 

collected and 10pg/ml DNAse in HAP was added dropwise (to prevent cell 

lysis) to five times the cell volume, with stirring of the suspension 

during addition and use of a Pasteur pipette to aspirate and mix the 

cells. Cells were then respun in an HS4 rotor for 2min. at 1000g. 

Supernatants were removed and cells resuspended in a known volume of HAP 

and cell viability determined using nigrosin dye exclusion. 

5.1. b. Snyder et al. (1980) METHOD 

MATERIALS 

(i) Isolation medium, pH7.2 

Hank's balanced salt solution, 25mM Hepes, 1% (w/v) BSA fraction 

V. 

(ii) Trypsinisation medium 

0.1% (w/v) trypsin, lOpg/ml DNAse in (i) but omitting BSA. 

(iii) Sucrose solutions 
45% (w/v), 53% (w/v) and 70% (w/v) sucrose in isolation medium. 

Ov) 10pg/ml DNAse in isolation medium. 
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METHOD 

The brains from Wistar rats were dissected into ice-cold isolation 

medium, weighed, and minced finely with a blade in a glass dish on ice. 

The tissue was then transferred to a conical flask containing 2ml 

trypsinisation solution per gram wet weight of tissue, and incubated for 

30min. at 37*C in a shaking water bath. After chilling on ice for 

5min., ice-cold FCS at 1ml/g wet weight of tissue was added. 

Cells were then collected In isolation medium with a i0min. spin 

at 1909 in a Sorvall RT6000 bench centrifuge. Supernatant was removed 

and the step repeated twice more. The pellet was then filtered through 

a 132pm nylon mesh adding isolation medium to a maximum of 10ml/g 

original tissue to facilitate filtration. The resulting cell suspension 

was then filtered three times through 75pm steel mesh, and readjusted to 

i0ml/g original tissue in isolation medium. An equal volume of 70% 

(w/v) sucrose solution was added and 15ml layered over 4ml 45% (w/v) 

sucrose which lay over 12ml 53% (w/v) sucrose in a Beckman SW27 

centrifuge tube. When brains of animals over 30 days old were used, the 

45/53% sucrose interface was blurred using a Pasteur pipette. 

The gradient was spun using a Beckman SW27 rotor in a Beckman L2- 

65B ultracentrifuge for 15min. at 4900g. A red cell layer collects just 

below the 45/53% interface; everything below this layer, plus the 

pellet, is retained and diluted five times with isolation medium 

containing 10pg/ml DNAse. The suspension is then filtered through a 

25pm steel mesh to trap capillaries, and adjusted to a known volume with 

isolation medium prior to determination of cell viability using nigrosin 

dye exclusion. 
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5.2 HYDROXYLAPATITE COLUMN CHROMATOGRAPHY - POINTS TO NOTE 

All HA columns are supplied with recommendations for use. The 

following points are either additional to these or a reiteration of them 

because of their importance. 

1. Upon receipt flush the column through with at least ten column 

volumes of starting buffer followed by a blank gradient prior to first 

sample load. 

2. If possible always operate between pH 6.5-8.0; strong acids and 

alkalis will Irreversibly damage the column. 

3. Pay particular attention to solubility of buffers. Some are not 

very soluble at the flow temperatures often required and particulates or 

precipitates In samples may damage the column irreversibly or will 

certainly cause a huge increase in backpressure. 

4. For the reasons listed in 3, all samples and buffers must be 

filtered through 0.2pm membrane filters prior to use. 

5. - Pressure limits on the operating apparatus (FLPC or HPLC) ought to 

be carefully set such that the pressure limit on the column is never 

exceeded, and any large increase in pressure halts the separation so 

preventing irreversible column damage. 

6. If the column is to be washed with a solution or buffer chemically 

different to the gradient buffer, the two ought to be tested together 

for production of precipitates to prevent such an occurrence inside the 

column. 

7. It is very important to wash the HA completely free of EGTA/EDTA 

between runs if the latter are spaced over a few days, as EGTA and EDTA 

will chelate the Ca2+ from the column resulting in a drastic leftward 

shift of the enzyme peaks (M. Sheaarman, personal communication). Wash 

the column with pure water containing O. 1mM CaCl2 and store in phosphate 

buffer containing O. 1mM CaC12 and 0.02% sodium o-zJde. 
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INTRODUCTION 

Signal transduction events linked through the 
phosphoinositide (PI) pathway (Berridge, 1984) induce the' 
activation of protein kinase C MC). This kinase requires 
calcium ions and phos phat idyl s erine for activity -(Takai: et 
al. . 1979) and is associated with the control'of key cell-'.. 
events , such as growth, differentiation and secretion 
(Nishizuka, 1986). Diacylglycerol formed during stimulation 
of the'PI pathway increases the al*Vinity of FkC for calcium 
ions resulting in the activation of Ahe kinase at physiolog- 
ical calcium concentrations (Takai. et al., 1979). A number 
of PkC subspecies having different -characteristics havý', noW 
been identified (Nishizuka, 1988). PkC can be activitea 
independently of the PI pathway by the tumour-promoting 
phorbol esters such as 12-0-tetradecanoylphorbol-13-acetate 
(TPA) which act as structural analogues of diacylglycerol 
(Castagna et al., 1982). In certain cell lines activation Of 
PkC stimulates the phosphorylation of an 80kDa acidic poly- 
peptide of unknown function (Blackshear et al., 1986; Rozen-*- 
gurt et al. 1983) which, in fibroblasts at least, is dif fet-1 
ent from autophosphorylated PkC (Blackshear et al., 1986). PkC 
is most active in the CNS where its role in neurones has been 
widely examined (Kikkawa et al., 1986; Miller, 1986). Less 
information is available on the activity and role of PkC in 
glia though the PI pathway is active in such cells (e. g. 
Pearce et al. 1986; Ritchie et al. 1987) and the kinase has 
been localised in cells resembling oligodendrocytes by 
immunocytochemical methods (Girard et al., 1985). 
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Certain mitogens such as platelet -ýderived growth factor 
(PDGF) which stimulate the PI pathway (Blackshear et al., 
1985) will enhance PkC activity. PDGF from Type 1 astrocytes 
is now known to play a major role in glial cell development 
(Raff, -1989); some of the effects of this growth factor on 
glia may therefore be mediated by activation of PkC. PkC may 
also be involved in the control of lipid turnover in glia 
since phorbol esters such as TPA, which activate the kinase, 
stimulate fatty acid synthesis in hepatocytes (Vaartjes and 
de Haas, 1985) and phospholipid turnover in a range of cultured 
cells (Pelech et al. 1984). Here we summarise our data on PkC 
in primary glial cell cultures and subcultures derived from 
rat brain cerebral tissue. 

ACTIVITY OF PkC IN GLIAL CELLS 

To establish the presence of PkC in the glial compart- 
ment of the CNS we have taken the direct approach of measuring 
the activity of the enzyme in 100,000g cytosolic and particu- 
late fractions prepared f-, om primary glial cultures and sub- 
cultures at different stages of development. Methods for the 
preparation, of our glial cultures derived from cerebra of 1- 
2 day rat pups are based on the original work of McCarthy and 

'de Vellis (1980) and have, been described elsewhere (Walker et 
al., 19851,198511). For assay of - PkC, 

-cell cultures were rinsed 
well and then cells scraped out and homogenised in 50mM Tris- 
_HCl, pH 7.5 containing 5mM dithiothreitol and 2mM EGTA. 
Centrifugation at 100,000g for 60 minutes at VC gave cytosolic 
and particulate fractions for assay. PkC activity was measured 
by following the transfer of the *6 - group of (32P]ATP to Type 
IIIS histone(Sigma) for 10 minutes at 30*C with Ihaking, using 
the method described by Kikkawa et al. (1983). Ca +-independent 
kinase activity was measured in the presence of 100juM EGI"A 
omitting calcium chloride and lipid from the system, Ca2+ - 
dependent kinase activity measured with calcium chloride pres- 
ent omitting EGTA and lipid and PkC activity measured with 
calcium chloride and lipid present but omitting ECTA. All 
assays were in quadruplicate and reactions were stopped by the 
addition of ice-cold 25%, TCA. After. standing on ice TCA- 
precipitable material was recovered on glass-fibre filters 
which 

' 
were dried prior, to scintillation counting. We have 

expressed kinase activities (mean +/- S. D. ) as pmol 32P 
incorporated/10 min/mg protein at 30*C. 

As we have reported (Murphy et al., 1988) and show in Fig. 
1, basal calcium-independent kinase activity and also calcium- 
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II 

dependent and calcium + pho s pho 1 ipid-de pendent kinase 
activities are all detected in cytosolic fractions prepared 
from the same batch of primary glial cultures at two stages of 
growth after preparation. Primary cultures at 7 days of gro, ýith 
consist of a layer of Type 1 astrocytes on which are growing 
progenitor glial cells and a smaller number of Type 2 astro- 
cytes and oligodendrocytes. By 12 days after preparation the 
proportion of these smaller process-bearing cells has increased 
and clumps of these cells are beginning to form on the Type 1 
astrocyte layer. As the data show the specific activities of 
PkC corrected for basal c alc ium- independent kinase activity 
are 100 and 243 Pmols 32P incorporated/10 min/mg protein 
respectively. Though the data suggest that PkC activity incre- 
ases with development of the cultures confirmation of this 
relationship is difficult because of variation between diffe- 
rent culture preparations. PkC activity can also be measured 
in 100,000g cytosolic fractions from subcultures of glial 
cells lacking Type 1 astrocytes (Murphy et al., 1988). 
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Fig. 1. Protein kinase C activity in primary glial cells at 
two ages in culture. Kinase activity is expressed as counts/mg 
protein on the vertical axis. Numbers inside bars are specific 
activity; calcium-dependent and calcium + phospholipid- 
dependent activities are corrected for basal calcium-indepen- 
dent kinase activity. Bar lines are means +/- S. D. (n=4). 

. 1, Direct measurement of PkC activity in crude 100,000g 
cytosolic fractions from cell homogenates is complicated by the 
presence of certain endogenous inhibitors such as phosphatases 
(Sahyoun et al., 1983) and contaminating phospholipid (Kikkawa' 
et al., 1983). It is better to assay cytosolic fractions 



purified by DE-52 anion exchange column chromatography accord- 
ing to the method of Kikkawa et al. (1983) to remove inhibitors. 
Glial cytosolic fractions purified by this method show much 
higher specific activities compared with unfractionated 
cytosolic preparations. For example, PkC specific activities 
in DE-52 purified. 100,000g glial cytosolic fractions are 
between 5-20 times higher than the level measured in non- 
purified samples. The role played by the various endogenous 
inhibitors of PkC in the control of PkC-Iinked pathways has 
not been defined. 

As shown in table 1 PkC in cytosolic fractions from glia 
is activated most effectively by phosphatidylserine in the 
presence of calcium ions and diacylglycerol in keeping with 
earlier observations (Takai et al., 1979). Other phospholipids 
we have tested are less effective at activating glial PkC. 
The 'd subspecies of PkC can be activated by arachidonic acid 
in the absence of phosphatidylserine and diacylglycerol (Naor 
et al., 1988) while oC and P subspecies require higher 
arachidonate concentrations with calcium. As shown in Table 1 
the PkC activity associated 

' 
with glia is only slightly 

activated by arachidonate at a concentration of 40pg/ml 
(130, UM)- We are presently defining the arachidonate specificity 
of glial PkC to gain some indication of which subspecies are 
present in glial cells. Hydroxyapatite column chromatography 
has also been used to resolve PkC subspecies (Huang et al., 
19306). Saito et al, (1989) have reported recently using immuno- 
cytochemical methods that the P-II subspecies is not present 
in glia. 

Table 1. 
, 
In vitro effects of different lipids on the activa- 

tion of PkC in DE-52 purified glial cell cytosolic fractions. 
Lipids were all at 40)ig/ml. Results are expressed against 
phosphatidylserine* as 100% in the presence of sn-4,2 diolein 
(0.8ýig/ml) and calcium (100: ýIm) 

phosphatidylserine 100 
phosphatidy1choline 16 
phosphatidylinositol 46 
phosphatidylethanolamine 35 
sphingomyelin 19 
arachidonic acid 11 

* specific activity: 1580pmoles 32P incorp/10 min/mg prot. 
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Primary glial cultures grown in de'fined medium lacking 
foetal calf serum in place of the usual DMEM + 10% FCS give 
markedly higher PkC specific activities in 100,0009 cytosolic 
fractions (Murphy, J. A. & Rumsby, M. G., unpublished). Such 

culture methods should increase the numbers of galacto- 
cerebroside-positIve cells present (Espinosa de los Monteros 

et al., 1988) and the result suggests that PkC is active in 

oligodendrocytes. When primary glial cultures are shaken 
(McCarthy and de Vellis, 1980) to remove top layer cells 
for subcultures we can measure PkC activity in both the 
residual Type 1 astrocytes and in the shaken-off cells which 
are largely O-2A progenitor cells, Type 2 astrocytes and 
oligodendrocytes. Our data indicates that PkC is active in all 
classes of glial cells. This activity is not confined to 
the cytosol since Triton X-100 extracts of membrane pellets 
from glial cultures show a higher PkC specific activity than 
that in the cytosol (Murphy et al., 1988). This is in keeping 

with other observations that in the CNS active PkC is detected 
in two localisations in cells - cytosolic and membrane- 
associated (Kikkawa et al., 1982). PkC may also have a nuclear 
localisation (Masmoudi et al. 1989) but we have not examined 
this possibility in glia yet. 

80kDa POLYPEPTIDE PHOSPHORYLATION 

'ors through the PI path- PkC activation by growth fact 
way, or directly by phorbol esters, in a variety of cell lines 

results in enhanced protein phosphorylation, especially of an 
8OkDa component (Witters and Blackshear, 1987). We have found 
the same effect in glial cell cultures and subcultures. When 

glial cells, preincubated with 32P-orthophosphate to label ATP 
pools, are treated with 25nM TPA for 15 minutes and poly- 
peptides then recovered and separated by gradient SDS-PAGE a 
clear stimulation of phosphorylation associated with an 8OkDa 

component is observed (Rumsby et al., 1988). The effect is 
concentration dependent from lnM to 100nM TPA, O. lnM TPA 
being without effect. TPA concentrations above 100nM decrease 
the phosphorylation effect perhaps because of some distortion 
-of membrane structure by the phorbol ester. Controls with 
a non-active phorbol ester, such as 4cKphorbol, do not show the 
phosphorylation effect. There is a 2-3 fold stimulation of 
80kDa polypeptide phosphorylation by. TPA activation of PkC. 
Maximum phosphorylation of the 8OkDa component in primary 

, glial cultures was after 15 minutes treatment with TPA; sub- 
cultures showed faster phosphorylation of the same 80kDa band 
the effect being detected after even 1 minute and maximal after 
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5 minutes. Blackshear et al. (1986) have -shown in fibroblasts 
that the phosphorylated 80kDa polypeptide is distinct from 
autophosphorylated PkC. This is being examined in our glial 
system where we have found that the 80kDa component is in the 
cytosol. In platelets a 40kDa-polypeptide is phosphorylated 
by TPA stimulation of PkC (Witters and Blackshear, 1987); no 
such polypeptide is detected in the glial system. In fibro- 
blasts PDGF stimulates phosphorylation of an 80kDa polypep- 
tide (Blackshear et al., 1985). Since PDCF has a role in glial 
differentiation we might therefore expect this growth factor 
to act on glial cell primary cultures and subcultures to 
enhance 80kDa polypeptide phosphorylation. Preliminary results 
with recombinant PDGF-BB suggest that some stimulation of 
8OkDa phosphorylation occurs. However, the effect is not as 
marked as is seen with TPA. PDGF receptors on glia are mainly 
specific for PDGF-AA (Heldin and Westermark, 1989) and thus 
the weak phosphorylation response we observe with PDGF-BB 
may be because the less specific growth factor is being used. 
This line of in-estigation is being studied further to define 
the biochemical pathways involved in PDCF effects on glia. 
The role of the cytoplasmic 80kDa polypeptide which is phos- 
phorylated in response to PkC-activation is being characterised 
at present. 

PROTEIN. KINASE C ENHANCEMENT OF PHOSPHATIDYLCHOLINE TURNOVER 

We have noted that when PkC in glial cells is activated 
with TPA there is a marked stimulation of phospholipid 
turnover (Rumsby et al., 1988), especially in relation to 
pho s phat idylcho line (PC). The effect of TPA on PC turnover 
in a variety of cell lines has been widely studied (reviewed 
by Pelech and Vance, 1984) while the possible involvement of 
PC cycles in signal transduction processes has been slimmarised 
(Pelech and Vance, 1989). It is not surprising, therefore, 
that PC turnover in primary glial cell cultures is increased 
when PkC is activated with TPA. Enhanced PC turnover due to 
PkC activation by TPA or growth factors is accompanied by a 
release to the extracellular medium of choline and phosphoryl- 
choline (e. g. Besterman et al., 1986; Kolesnick and Paley, 
1987; Mufson et al., 1981; Muir and Murray, 1987). We have now 
made similar observations with BHX cells, C6 glioma cells and 
with our primary glial cell cultures and subcultures. Glial 
'cells grown in six-well multiplates are rinsed and, then 
incubated with fresh medium (DMEM + 0.1% FCS) with 5yCi 3H 
choline for 24 hours to label choline -containing lipids. 
Culture medium is then removed and the cells rinsed three 



0 
7 

II 

times with fresh medium to remove extracellular labelled 
choline. Fresh medium is added together with agonist or TPA. 
Aliquots of the medium are then removed at various times, 
centrifuged to sediment any membrane contamination and 
radioactivity released to the medium monitored. Release of 
labelled choline metabolites to the extracellular medium is 
expressed as % above control with no additions. The effect of 
an inactive phorbol ester such as 4co- phorbol is always 
studied. 

TA 

5 
0 

5 

3 

5 

Fig. 2. Effect of TPA on the release of choline metabolites 
from C6 cells to the extracellular medium. Error bars show 
S. D. where data are in triplicate from three separate 
cultures of cells. 

The data in Fig. 2 indicate that when TPA at different 
concentrations is added to the C6 glioma cell line there is 
a hydrolysis of labelled phosphatidy1choline and a release to 
the extracellular medium of choline metabolites above control 
levels. The effect. is not detected with O. lnM TPA and is 
maximal at about 125nM; concentrations of TPA above this 
figure are slightly inhibitory. For all TPA concentrations 
the maximal effect is seen at 120 minutes after stimulation. 
Besterman, et al. (1986) noted that both choline and phosphoryl- 
choline appear in the extracellular medium. We have not yet 
made these measurements with glial cells. As shown in Fig. 3 
TPA elicits the same release of choline metabolites to the 
extracellular medium from primary glial cells and from sub- 
cultures lacking Type 1 astrocytes. The TPA effect seen in 
Fig. 3 is not as marked as that observed with C6 cells (Fig. 

0 
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inhibited by staurosporine suggesting thAt PkC controls the 
turnover process. It has to be noted, however, that stauro- 
sporine is not a specific inhibitor of PkC; it inhibits the 
activity of PkA as well (Woodgett et al., 1987). 

SUMMARY 

Our results of direct measurement of protein kinase C 
activity reveal that this key enzyme is present in glial 
cells In primary culture and in subculture. It is not yet 
clear which subspecies of PkC is/are present in different 
glial cell classes. PkC activity is both cytosolic and 
membrane -associated; an inhibitor present in normal cytosol 
can be removed by purification of crude cytosolic fractions 
by DE-52 anion exchange chromatography to achieve maximal 
PkC activity. Astrocytes and oligodendrocytes both have PkC 
activity. PkC stimulation results in the phosphorylation of 
an 80kDa polypeptide in the cytosol of glial cells. The 
identity of this polypeptide is not yet known. Platelet- 
derived growth factor, through its stimulation of PkC, may 
also enhance the phosphorylation of the same 80kDa poly- 
peptide. Activation of PkC in glia enhances phosphatidyl- 
choline turnover leading to a release into the medium of 
choline metabolites. A phospholipase D activated by PkC may 
be responsible for -the observed phosphatidylcholine turnover. 
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the membrane are insensitive to such changes (Stoltz & 
Donner, 1985). The change in filterability could reflect small 
changes in the mean corpuscular volume resulting from 
damage to the membrane lipids via membrane-bound iron. 
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Purification, characterization and cDNA cloning of bovine brain diacylglycerol lipase 
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Diacylglycerol lipase (EC 3.1.1.34), the enzyme catalysing 
the hydrolysis of 1,2-diacyl-sn-glycerol into free fatty acids 
and 2-acyl-sn-glycerol, is found in the plasma membrane and 
microsomal fraction from adult bovine brain. The enzyme 
was assayed using a thioester substrate analogue of 
1,2-diacylglycerol, rac-l-S, 2-0-didecanoyl-l-mercapto-2,3- 
propanediol (Farooqui et aL, 1984, Farooqui & Horrocks, 
1987). Diacylglycerol lipase activity of bovine brain micro- 
somes and plasma membranes was solubilized with 0.25% 
Triton X-100 and purified 433- and 476-fold, respectively, 
using multiple-column chromatographic procedures. The 
final enzyme preparations were homogeneous as judged by 
polyacrylamide-gel electrophoresis. Pblyclonal antibodies 
were raised against microsomal diacylglycerol lipasc in 
rabbits. The antiscrum strongly inhibited both diacylglycerol 
lipases in a concentration-dependent manner and showed a 
strong cross-reaction with plasma membrane diacylglycerol 
lipase. 

Both diacylglycerol lipases were strongly inhibited by 
heparin and could be completely separated from monoacyl- 
glycerol lipase and lysophospholipase activities by 
heparin-Sepharose chromatography. The retention of 
microsomal and plasma membrane diacylglycerol lipases on 
a concanavalin-A-Sepharose column and their elution with 
methyl a-D-mannoside indicated the glycoprotein nature of 
these enzymes. The molecular masses of the diacylglycerol 
lipases were 27 000 and 52 000 daltons, respectively. With 
rac-l-S, 2-0-didecanoyl-l-mercapto-2,3-propanediol, the 
K. and V,... values of microsomal and plasma membrane 
diacylglyccrol lipases were 30 and 12 pm and 180 and 
200 nmol/min per mg of protein, respectively. 

These enzymes were markedly inhibited by free fatty 
acids. Palmitate was the strongest inhibitor, followed by 
arachidonate and linoleate. Addition of fatty acid free bovine 
serum albumin resulted in a reversal of the fatty acid inhibi- 
tion. C-MT peptide, a chemically synthesized peptide known 
to inhibit phospholipases A2, C and D, strongly inhibited 
both diacylglycerol lipases in a concentration-dependent 

acids 2-26,28 and 30 of the microsomal diacylglycerol 
lipase have been determined. The N-terminal portion of this 
enzyme contained a large proportion of hydrophobic amino 
acids. The amino acid in position 1 was not identified, prob- 
ably because it is attached to a sugar residue. Based on the 
amino acid sequence an oligonucleotide probe (20-mer) was 
synthesized and used for screening a Agt 11 bovine brain 
cDNA library (Clone Tech, Palo Alto, CA, U. S. A. ). This 
screening has resulted in isolation of four cDNA clones. Further studies on cDNA cloning of diacylglycerol lipases 
are in progress in this laboratory. 

Diacylglycerol lipases are very active in brain. They can 
control the transient levels of diacylglycerol. The latter acts 
as a second messenger and stimulates the activities of protein 
kinase C, phospholipase AD tyrosine aminotransferase and 
ornithine decarboxylase (Nishizuka, 1984; Dawson et al., 
1984; Kido et al., 1986), and inhibits the activities of 
NaI, KI-ATPase and glycogen synthetase (Goldberg et al., 
1985; Bouscarel & Exton, 1986). Under normal conditions 
the action of diacylglycerol lipases on diacylglycerols 
provides free fatty acids that may be used for the synthesis of 
prostaglandins in vivo, but in pathological situations 
(ischaemia, spinal cord trauma, cancer and viral infections) 
these enzymes may be involved in the massive release of free 
fatty acids and prostaglandins (Abe et al., 1987; Farooqui et 
al., 1987) which may cause serious tissue damage. 
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Protein kinase C in astrocyte- and oligodendrocyte-enriched brain cell primary cultures: their' 
phorbol ester response 

J. A. MURPHY, J. A. CHAPMAN and M. G. RUMSBY 
Department of Biology, University of York, York YOl 5DD, 
U. K. 

Since its discovery in 1977 (Inoue et al., 1977), protein 
kinase C (PKC), a calcium- and phospholipid-dependent 
protein kinase, has attracted much interest. The enzyme is 
activated during agonist binding and the receptor-mediated 
hydrolysis of phosphatidylinositol 4,5-bisphosphate (Ber- 
ridge, 1984; Sekar & Hokin, 1986), since the diacylglycerol 
so produced increases the affinity of PKC for Cal', allowing 
for activation at physiological Ca2+ levels (Kishimoto et al., 
1980). PKC is very active in neurones of the central nervous 
system (CNS) (Burgess et al., 1986). It has also been mea- 
sured in primary astrocyte cultures (Neary et al., 1986) and 
identified in cells resembling oligodendrocytes (Girard et al., 
1985). Murphy, J. et al. (1987) have reported on the activity 
of PKC present in primary glial cell cultures and subcultures 
derived from rat brain cerebra (Walker et al., 1985a, b). 

For PKC assay, cultures were treated as before (Murphy, J. 
et al., 1987). Cells were rinsed, scraped out and homo- 
genized, and centrifuged at 100 000 g for 60 min at 4'C to 
give soluble and particulate fractions. The particulate pellet 
was treated according to Parker et al. (1987) to determine 
membrane-bound PKC activity. Kinase activity in both frac- 
tions was measured by following the transfer of the y-phos- 
phate group of 32P-ATP to type IIIS histone for 10 min at 
30*C with shaking in a complete reaction mixture described 
by Kikkawa et al. (1983). The specific activity of PKC 
(mean ± S. D. ) was expressed aspMO132p incorporated/10 min 
per-mg-of -protein at. -30*C, and - calculated- by-subtracting 
basal (caIcium-independent) kinase values from the results 
obtained. 

The specific activity of PKC in supernatants from glial 
cells in 12-day culture was 184 ± 10 pinol 32p incorporated/ 
10 min per mg of protein. This was considerably greater than 
the PKC values measured in supernatants of glial cells cul- 
tured for 18 and 28 days, i. e. 51 ± 20 and 53 ±8 pinol 32p 
incorporated/10 min per ing of protein, respectively. Super- 
natants from 28-day glial cell subcultures had a PKC activity 
of 75 ± 15 pniol 32p incorporated/ 10 min per mg of protein. 

Accurate measurement of PKC activity in crude superna- 
tant extracts may be complicated by the presence of factors 
such as endogenous inhibitors, and an initial purification step 
using DE-52 anion-exchange chromatography has been 
advised (Kikkawa et al., 1983). Using the protocol described 
by Anderson et al. (1985), we have verified that glial cell 
supernatants contain considerable PKC activity. After DE- 
52 column purification there was a 20-fold increase in the 
specific activity of PKC in supernatants of 18-day primary 
glial cell cultures and an approximately 6-fold increase in 
supernatants of 28-day glial cell cultures. 

In 12-day primary cultures, membrane-bound PKC was 
found to have a specific activity of 485 ± 120 pinol 32p incor- 
porated/10 min per mg of protein, approximately 2.5 times 
the level found in the cytosolic fraction. In 28-day primary 
cultures, the specific activities of PKC were about the same 
in both membrane-bound and soluble fractions. As mem- 
brane-bound PKC is believed to be the active form of the 
enzyme, the higher ratio of membrane-bound PKC to cyto- 
solic PKC activity in 12-day glial cells compared to 28-day 

Abbreviations used: PKC, protein kinase C; TPA, 12-0-tetra- 
decanoyl phorbol- I 3-acetate; DMEM, Dulbecco's modified Eagle's 
medium; FCS, fetal calf serum; DMSO, dimethylsulphoxide. 

glial cells may indicate a role for the enzyme in cellular signal 
transduction at this earlier stage of development. We have 
examined the effect of 12-0-tetradecanoyl phorbol-13- 
acetate (TPA) on PKC activity in glial cell cultures and have 
shown translocation of PKC activity from cytosol to mem- 
brane, confirming observations in other cell types (for 
example, Kraft & Anderson, 1983). 

We have obtained direct evidence that PKC is active in rat 
glial cells. It is unlikely that the activity we have detected in 
the cultures is due solely to the presence of contaminating 
neurones (see Murphy, J. et al., 1987). Although we have not 
directly revealed which individual glial cell classes contain 
PKC, previous evidence suggests it to be present in both 
oligodendrocytes and astrocytes (Girard et al., 1985; Neary 
el al., 1986; Murphy S. et al., 1987). Recently, we have found 
PKC activity in protoplasmic astrocytes to be approximately 
50% that of whole glial cultures. A monoclonal antibody 
against PKC (Amersham International p1c) is now being used 
to investigate the localization of PKC in the different cell 
classes in our glial cell cultures. 

Tumour-promoting phorbol esters such as TPA produce 
some of their actions on cells by activating PKC which acts as 
a receptor for these agents (Ashendel, 1985). When cells are 
treated with TPA, PKC is activated stimulating the phos- 
phorylation of a protein of approximately 80 000 Da mole- 
cular mass (Blackshear et al., 1985,1986). These authors 
have also shown that TPA stimulates phosphorylation of an 
80 000 Da protein in three types of neuronal cells in culture. 
We have examined the effect in vivo of TPA on our mixed 
glial cells. Growth medium [Dulbecco's modified Eagle's 
medium ýDMEM_ý± 10% (vjv)jetaI 

-calf serum (FCS)l was 
removed from 14-day cultures growing in 6 cm Petri dishes 
and was replaced for 24 h with DMEM + 0.5% (v/v) FCS. 
Cells were then transferred to phosphate-free medium and 
100 ýUCi of [32P]orthophosphate added for 90 min at 3 7*C to 
allow the phosphate pools to equilibrate. TPA, 4-a-phorbol 
(both at 25 nm concentration) or dimethylsulphoxide 
(DMSO) was then added to cultures which were further incu- 
bated for 15,30 or 60 min. Dishes of cells were rinsed well 
and cells were solubilized directly into SDS/polyacrylamide- 
gel electrophoresis sample buffer. Equal volumes of sample 
were applied to 6-30% (w/v) gradient gels which were run 
overnight. Protein bands on gels were stained with Coomas- 
sie Blue R and were destained, dried and exposed to Hyper- 
film-p-max (Amersham International p1c) overnighi. It was 
observed that TPA stimulated the incorporation of 32p- 
phosphate into only one main band which had an approxi- 
mate molecular mass of 80 000 Da in agreement with the 
findings of Blackshear et al. (1985,1986) and others with a 
variety of mammalian and avian cells; 4-a-phorbol and 
DMSO did not stimulate phosphorylation of this band. It has 
been shown in vitro that an 80 000 Da molecular mass 
protein is a substrate for PKC (Blackshear et al., 1986), but 
that this component is distinct from PKC. TPA is known to 
activate phospholipid synthesis in cultured myoblasts (Grove 
& Schimmel, 1982) and in Swiss 3T3 cells (Muir & Murray, 
1987) for example; the phorbol ester may stimulate phos- 
phatidylcholine biosynthesis by activating CTP: phospho- 
choline cytidylyltransferase stimulating the translocation of 
the enzyme from cytosol to endoplasmic reticulum (Pelech et 
al., 1984). We have noted that phospholipid biosynthesis, in 
particular that of phosphatidylcholine, is stimulated when 
our cultured glial cells are exposed to TPA, 
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Influence of nerve cells on the development of astrocytes 

ANTHONY HUNT, MASAO HAYASHI, 
PATRICIA SEATON and AMBRISH J. PATEL* 
M. R. C Developmental Neurobiology Unit, Institute of 
Neurology, I Wakefield Street, London WCIN IM, U. K. 

The central nervous system consists of a complex array of 
many different ncuronal and neuroglial cell types whose 
precise interrelationships during development are vital for 
its functioning. Recently we have reported that during devel- 
opment the major increase in astrocyte-enriched proteins, 
glutamine synthetase (GS) and glial fibrillary acidic protein 

----(GFAP), is associated with differentiation rather- than -pro- liferation of astroglial cells (Patel et aL, 1983a; Weir et aL, 
1984). Further, marked differences have been observed in 
the regional distribution of these proteins, the GS to GFAP 
ratio varying about fivefold (Patel et al., 1985). The observa- 
tions provided direct evidence for the presence of more than 
one type of astroglial cell, in terms of their biochemical com- 
position in the brain. It is now possible to obtain cultures 
greatly enriched in metabolically competent astrocytes in 
relatively large quantities (see Patel & Hunt, 1985). The bio- 
chemical properties and differentiation of the cells, derived 
from either neonatal forebrain or cerebellum, are very simi- 
lar to those of astroglial cells in situ (Patel & Hunt, 1985; 
Patel, 1986). These include a greater amount and an earlier 
development of GS in forebrain than in cerebellar astrocytes. 
Also, in astrocytes cultured from fetal brain, no appreciable 
increase is observed in GS activity (Hansson, 1986), indicat- 
ing that the differentiation of these cells is severely limited. 
Here, we show that one of the factors contributing to the dif- 
fercnces in the properties of astrocytes may relate to a 
requirement of astroglial cells, during differentiation, for 
trophic substances produced by nerve cells. 

Primary cultures, enriched in astroglial cells, were derived 
from either newborn forebrain or 8-day-old cerebellum of 
rats as described by Patel & Hunt (1985). At 7 days in vitro 
the culture medium was changed to chemically defined 
medium (Hayashi & Patel, 1987). Three days later some of 
the culture dishes were co-cultured with dissociated cells 
derived from the 17-day-old embryonic forebrain. In 
another experiment, some of these astrocyte culture dishes 
were grown in a conditioned medium derived from 7-day- 

Abbreviations used: GS, glutamine synthetase; GFAP, glial fibril- 
lary acidic protein. 

* To whom correspondence should be addressed. 

old primary cultures enriched in nerve cells (Hayashi & 
Patel, 1987). One week later the cells were washed and 
homogenized in 10 mm-imidazole buffer, pH 7.2. Whole 
homogenate was used for the estimation of GS using a sensi- 
tive radioisotopic assay (Patel et aL, 1983a). Enzyme activity 
was expressed as runol. of glutamine formed/h per 35 mm 
culture dish. Astrocytes were stained immunocytochemically 
using a rabbit antiserum. to GFAP and were classified as 
polygonal or stellate (Patel & Hunt, 1985). 

The primary astroglial, cell cultures exhibited mainly a 
polygonal epitheloid cell morphology (see Patel & Hunt, 

-1985). In contrast, on co-culturing with nerve cells, a marked increase was observed in the proportion of stellate-shaped 
astroglial cells (Thangnipon et aL, 1983; Nagata et aL, 1986). 
The co-culturing of astrocytes with nerve cells also increased 
the GS activity, much more than the sum of the values for 
both astrocyte and neuron cultures (Table 1). The observed 

Table 1. influence of nerve cells on the development of astroglial 
cell marker enzyme GS activity in vitro 

Fnmary cuitures or astrocytes were uerivcu irom cmin wzw- 
born forebrain or 8-day-old cerebellum (Patel & Hunt, 1985), 

while those of nerve cells were derived from the 17-day-old 

embryonic forebrain of rats (Hayashi & Patel, 1987). The whole 
homogenate of the cells was used for the estimation of GS 

activity (Patel et aL, 1983a). The values are means ±S. E. M. for 
three experiments. 

GS activity 
(nmollh per dish) 

Effect of co-culture with neurons 
Forebrain astrocytes 215 ± 18 
Forebrain neurons 16 ±4 
Forebrain astrocytes co-cultured, with 616 ± 48 

forebrain neurons 
Effect of neuronal conditioned medium 

Forebrain astrocytes grown in control 201 ± 12 
medium 

Forebrain astrocytes grown in 412 ± 16 
neuronal conditioned medium 

Cerebellar astrocytes grown in 72 ±6 
control medium 

Cerebellar astrocytes grown in 223 ± 15 
neuronal conditioned medium 
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augmentation of GS activity may be due to an increase per 
astroglial cell, since it has been reported that the presence of 
nerve cells inhibits proliferation of astrocytes (Hatten, 1985; 
Nagata et al., 1986). Furthermore, the activity of GS in fore- 
brain astrocytes was about 2.5-fold greater than in the cere- 
bellar astrocytes (Table 1). This is consistent with our 
previous findings that the biological properties of forebrain 
astrocytes differ markedly from those of cerebellar astro- 
cytes (Patel & Hunt, 1985; Patel, 1986). When the astroglial 
cells were grown in the conditioned medium obtained from 
forebrain nerve cell cultures, the activity of GS was markedly 
increased in both forebrain and cerebellar astrocytes (Table 
1). However, the magnitude of the effect was lower in the 
former than in the latter, indicating marked differences in the 
quantitative responses to the trophic factor of astrocytes 
derived from either the forebrain or the cerebellum. Similar 
regional differences were also observed in the induction of 
GS by glucocorticoids, both in vivo and in vitro (Patel et al., 
1983b; Patel & Hunt, 1985). 

Our findings that neuronal cells induce astrocytes to 
become stellate-shaped and to enhance GS activity in vitro 
may suggest that during brain development neurons play a 
role in the differentiation of astrocytes. The results would 
also indicate that the marked regional variations in the 
properties of astrocytes may relate to the differences in the 

BIOCHEMICAL SOCIETY TRANSACTIONS 

quantitative responses to the trophic substance of astroglial 
cells during maturation in different areas of the brain. How- 
ever, this does not exclude the possibility that varying 
amounts of trophic factor may be produced by different 
types of nerve cell. 
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Production by astrocytes of a trophic factor for cholinergic neurons 

PATRICIA SEATON, ANTHONY HUNT and 
AMBRISH J. PATEV 
M. R. C Developmental Neurobiology Unit, Institute of 
Neurology, I Wakefield Street, London WCIN IPJ, U. K. 

In the central nervous system, astrocytes have been impli- 
cated in the control of migration and elongation of neurons 
during development in vivo, and in the survival and emission 
of neuritic outgrowths of nerve cells in vitro (Rakic, 1972; 
Lindsay, 1979; Rudge et aL, 1985; Hatten & Mason, 1986; 
Lindner et al., 1986). However, rather little is known about 
the influence of astrocytes on the development of a defined 
population of nerve cells. Recently, we have reported 
(Hayashi & Patel, 1987) the procedures for obtaining, from 
the septal-diagonal band region of embryonic rat brain, 
neuronal cultures relatively enriched in cholinergic cells (see 
also, Hefti et al., 1985). In initial experiments during the 
development of this culture system, when the dissociated 
cells were plated at low density in a medium containing I 00/(L 
(v/v) fetal calf serum (Patel et A, 1982), a close association 
was detected between astrocytes and nerve cells, including 
cholinergic neurons (Sensenbrenner & Mandel, 1974; Denis- 
Donini et aL, 1984). Furthermore, we attempted to remove 
contaminating non-neuronal cells from these cultures grown 
in serum-containing medium, by treatment with different 
doses of cytosine arabinoside for various lengths of time. In 
some of these experiments, the metabolic status of astrocytes 
and cholinergic neurons were monitored in terms of the 
activity of glutamine synthetase and of choline acetyltrans- 
ferase (ChAT), respectively. In our hands, the concentration 
of 10 um-cytosine arabinoside normally used (Hefti et aL, 
1985) killed both glial and neuronal cells. However, under 
the conditions which removed astroglial cells partially but in 
varying proportions, a significant correlation was observed 

Abbreviations used: ChAT, choline acetyltransferase; NGF, nerve 
growth factor. 

*To whom correspondence should be addressed. 

between ChAT and glutamine synthetase activities. Here, we 
extend these observations and show that a trophic factor 
important for the development of cholinergic cells is pro- 
duced by astrocytes. 

Primary cultures, relatively enriched in cholinergic cells, 
were derived from the septal-diagonal band region of 17- 
day-old embryonic rat brain, as described by 'Hayashi & 
Patel (1987). Other primary cultures, enriched in astrocytes, 
were derived from newborn forebrain (Patel & Hunt, 1985) 
and enriched in granule cells, were derived from 8-day-old 
rat cerebellum (Patel et al., 1982; Kingsbury et al., 1985). 
The two last-mentioned cultures were maintained in a 
chemically defined medium (Hayashi & Patel, 1987) for at 
least a few days, before they were used to obtain conditioned 
medium specific to the cell type. In co-culture experiments, 
the medium of 7-day-old astrocyte cultures was changed to a 
chemically defined medium, and three days later the disso- 
ciated subcortical cells, derived from the 17 day-old-rat 
embryos, were plated on top of this sheet of astroglial cells. 
The cholinergic cells, cultured for ten days in vitro under dif- 
ferent experimental conditions, were washed and homoge- 
nized in 50 mm-sodium phosphate buffer, pH 7.4. Whole 
homogenate was used for the estimation of ChAT activity 
and protein (Patel et al., 1987). Enzyme activity was 
expressed as amount of product formed/h per 60 mm dish or 
per mg of protein. The characterization of various cell types 
present in the culture was made by immunocytochemistry or 
by histochernistry (see Hayashi & Patel, 1987). 

The co-culturing of subcortical cholinergic neurons with 
astrocytes enhanced the expression of ChAT activity, and in 
comparison with the cells cultured in the absence of astro- 
cytes the increase was about threefold (Table 1). As the 
astroglial cells were devoid of ChAT activity and neurons do 
not divide in vitro, the observed augmentation of ChAT 
activity would represent the increase per cholinergic cell. 
Furthermore, in the cultures of dissociated cells derived from 
the cholinergic regions of embryonic brain and grown in the 
astrocyte-conditioned medium, the activity of ChAT was 
100% greater than in the cell cultures grown in the control 
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Stimulation of protein phosphorylation in mixed 
glial cell primary cultures and subcultures by the 

phorbol ester 12-o-tetradecanoylphorbol- I 3-acetate 
(TPA) 

Martin G. Rumsby, Jill A. Chapman, John A. Murphy and 
Anthony J. Suckling 

Department of Biology, University of York, York (U. K. ) 
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Glial cell primary cultures consisting of protoplasmic and fibrous astrocytes, oligodendrocytes and pro- 
genitor glial cells incubated in medium containing 0.5% foctal calf serum and treated with 25 nM 12-o- 
tetradecanoylphorbol- I 3-acetate (TPA) for periods between 15 and 60 min showed a stimulation of pro- 
tein phosphorylation which was most prominent in a polypeptide with a molecular weight of about 80,000 
Da. Glial subcultures consisting mainly orType 2 astrocytes, oligodendrocytes and progenitor glia showed 
a similar TPA stimulation of 80,000 Da protein phosphorylation detectable within I min of phorbol ester 
addition. TPA treatment of primary glial cultures led to an enhancement of phospholipid turnover but 
exposure of primary glial cultures to concentrations of TPA up to 250 nM caused no morphological 
change in protoplasmic astrocytes. 4-Phorbol (4-PH) or dimethylsulfoxide (DMSO) was without effect 
on protein phosphorylation or lipid turnover in glial cultures. 

Protein kinase C (PKC), an enzyme requiring calcium and phospholipid for activi- 
ty and implicated in secretion, proliferation and differentiation [19], is activated dur- 
ing agonist binding and the receptor-mediated hydrolysis of phosphatidylinositol 4,5- 
biphosphate (PtdIns4,5P2). The diacylglycerol produced during this signal transduc- 
tion pathway increases the affinity of PkC for Ca'+ [14] and may also activate PkC 
in the absence of elevated Ca2+ levels [9,10]. While PkC has been well characterised 
in neurones in the central nervous system [15] less attention has been paid to the 
enzyme in the glial compartment. However, recent evidence suggests that PkC is im- 
portant in astrocyte biochemistry [13,17], and is perhaps also active in oligodendro- 
cytes. For example, certain agonists including noradrenaline have been found to sti- 
mulate the receptor-linked Ptdlns4,5P2 pathway in astrocytes in culture [21,25] while 
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carbachol was effective with cultured oligodendrocytes [25]. PkC has been localised 
immunocytochernically in cells resembling oligodendrocytes [12]. Additionally, PkC 
activity has been measured directly in astrocyte cultures [18] and in mixed astrocyte 
and oligodendrocyte primary cultures and subcultures [16]. 

The tumour-promoting phorbol esters such as 12-o-tetradecanoylphorbol-13-ace- 
tate (TPA) initially act on cells by activating PkC, their main cellular receptor [3, 
8]. Phorbol esters mimic diacylglycerols in structure and activate PkC without 
increasing the turnover of inositol lipids. Phorbol esters stimulate many biochemical 
pathways and induce morphological changes in different cells [2], but, though activa- 
tion of PkC is the initial event, subsequent biochemical mechanisms are not clear. 
As with some growth factors phorbol esters have been found to stimulate phosphory- 
lation of certain polypeptides [27] though the function of this increased phosphoryla- 
tion is not yet known. Among other effects phorbol esters increase phospholipid syn- 
thesis [2]. We have previously measured PkC activity in our mixed glial primary cul- 
tures [16] and are now using phorbol esters to study the biochemistry of PkC activa- 
tion in astrocytes and oligodendrocytes. We report here that phorbol ester treatment 
of glial primary cultures and subcultures stimulates protein phosphorylation and 
phospholipid turnover. 

Rat glial primary cultures were set up as we have described elsewhere [28] and were 
used after 14 days in culture. At this stage protoplasmic astrocytes form a confluent 
monolayer on which grow smaller multiprocessed phase-bright c Ils, chiefly fibrous 
astrocytes, oligodendrocytes and progenitor glia [28]. We have found that phosphor- 
ylation effects are enhanced if cells are cultured in Dulbecco's modified Eagle's 
medium (DMEM) containing 0.5% foetal calf serum (FCS) for 24 h prior to stimula- 
tion. This change is without obvious cffect on the morphology of cells in the cultures 
but would clearly reduce the rate of proliferation of growing cells as noted by Mur- 
phy et al. [17]. However, at the 14 day stage, protoplasmic astrocytes in our cultures 
are fully confluent. Accordingly at 14 days culture fluid was replaced with fresh 
DMEM containing 0.5% FCS. Twenty-four h later this medium was replaced with 
phosphate-free DMEM+0.5% FCS and then 10O. UCi [32P]orthophosphate (PBS 13, 
Amersham) was added: flasks were incubated at 37'C for 120 min to equilibrate 
phosphate pools. TPA and 4-phorbol (4-PH), in dimethylsulfoxide (DMSO), were 
diluted in sterile distilled water and were added to glial cultures to give a final conccn- 
tration of 25 nM, with controls of DMSO. After 15,30 and 60 min further incubation 
at 37'C cells were rinsed and then solubilised directly in sodium dodecyl sulphate- 
polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer. Resolution of glial 
polypeptides by sodium dodecyl sulphate-polyacrylamide gel SDS-PAGE (applying 
equal sample volumes) to 6-30% gels followed by autoradiography (-max film, Amer- 
sham) revealed (Fig. 1) that TPA caused a marked stimulation of phosphorylation 
in one polypeptide (Fig. 1, arrow) over the time period studied and less significantly 
in several minor polypeptides. This stimulation effect was not observed in DMSO 
and 4-PH controls but was observed with cultures grown in the normal growth 
medium (DMEM/10% FCS). By reference to standards run simultaneously, on the 
gradient gel and running samples on 12.5% homogeneous gels it was found that the 
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polypeptide showing marked phosphorylation was of' approximately 80,000 Da 
molecular Aeight. Minor polypeptides, in the 18,000 28,000 range, showed slight 
enhancement of' phosphorylation over the time period studied. We confirmed tile 
Stilul-11,1tion ol'phosphoryla t ion in the 80,000 hand by Cutting Out the appropriate rc- 
gion of'the dry gel, rehydrating it in water, extracting protein 1rom the slice in central 
rierýOLIS systern (C'NS) tissue solubiliser (Amersharn) l'ollowed by scintillation Count- 
ing. In 3 separate Cultures treated with TPA Ior 15 inin counts of 32p Incorporated 
in the excised 80,000 polypeptide region were 904,861 and 723 compared vvith 581 
and 490 in DMSO controls and 521 and 545 in 4-PH controls. This 1.64old stillIL1111- 
tion I'actor at 15 min had decreased to 1.34old in Cultures stimulated with TPA f'or 
60 min. Ro/engUrt et al. [26] noted that 200 riM phorbol 12,13-dibutyrate (PBt2) very 
rapidly stimulated phosphorylation of an 80 kDa polypeptidc in Swiss 3T3 cells. a 
3.9-l'old maximal StiIIII-IlatiOll Occurring 12 min after phorbol ester addition. Our 
finding of a 1-64old Still"11.1lation of' protein phosphorylation by TPA Lit 15 min in 
the primary glial Cultures is lower. This is perhaps because: (1) we used a 104old 



254 

lower TPA concentration to be just at the top of the range at which phorbol esters 
stimulate PkC [8]. (2) even our 15 min incubation point was past the peak of maximal 
stimulation and (3) the cell system is different. This would account for why the stimu- 
lation factor drops t6 1.3 after TPA addition for 60 min. Phorbol ester-stimulated 
phosphorylation of an 80,000 Da polypeptide has been reported in a variety of cell 
types in culture [1,6,27], is prominent in brain tissue [6] and is particularly notice- 
able in synaptosomes [30]. Blackshear and colleagues have determined that the 80 
kDa polypeptide which shows enhanced phosphorylation is distinguishable from 
PkC [6]. In reviewing PkC-mediated phosphorylation in intact cells Witters and 
Blackshear [27] have suggested that phosphorylation of the 80 kDa polypeptide is 
a useful marker of PkC activation. Our results show &rcfore that in primary glial 
cells, as in several other cell types, TPA stimulates protein phosphorylation through 
PkC activation. This further confirms the activity of PkC in glia as we have pre- 
viously measured [16] again accounting for the prominence of this protein in the CNS 
[6]. The biochemical significance of the stimulated phosphorylation of the 80 kDa 
protein is not yet known [5,27]; preliminary experiments suggest that in our glial 
cells this polypeptide is a cytosolic component (Rumsby, M. G. and Chapman, J. A., 
unpublished observations) in agreement with findings in fibroblasts [5]. Since protein 
substrates for PkC phosphorylation may change during the cell cycle we are repeat- 
ing this study with 7 day cultures when astrocytes are rapidly dividing. Neary et al. 
[18] using 23,000 g or 100,000 g cytosolic preparations from astrocyte cultures found 
the in vitro phosphorylation by PkC for several endogenous cytoplasmic polypep- 
tides but not an 80 kDa component. No comparison can be drawn between PkC- 
stimulated phosphorylation in their cytosolic preparations which involve the disrup- 
tion of cell compartments and the present work with growing cells in which all com- 
partments are intact. Further, we stimulated PkC with TPA. During the present work 
we noted that exposure of our 14 day primary glial cultures to TPA concentrations 
as high as 250 nM for up to 48 h caused no morphological change in the protoplasmic 
astrocyte layer confirming observations of others [11]. However, TPA has been found 
to increase certain biochemical reactions in astrocytes including thymidine incorpo- 
ration [171 and glutamine synthetase activity [ 13]. Further we found in this study that 
25 nM TPA stimulated phospholipid turnover in the primary cultures as judged by 
increased incorporation of 32p into total phospholipid extracts which at 15,30 and 
60 min exposure to TPA were increased 1.5-2.0 fold over DMSO and 4-PH controls 
(results not shown). When phospholipids were resolved in thin-layer chromato- 
graphy this increase was largely associated with phosphatidy1choline. TPA is known 
to increase phospholipid turnover in cells [221 and has been shown to stimulate the 
activity of the key regulatory enzyme of de novo phospholipid synthesis, cytidine tri- 
phosphate, phosphocholine cytidylyltransferase [23]. These preliminary lipid obser- 
vations are being examined more closely in view of the recent observations of 
Besterman et al. [4] that phorbol esters and growth factors rapidly stimulate diacyl- 
glycerol formation from phosphatidy1choline in a variety of cell types. 

In platelets TPA stimulates phosphorylation of a 40,000 Da polypeptide, thought 
to be a Y-monophosphoesterase [27]; with glial cultures (Fig. 1) we did not notice 
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significant stimulation of polypeptide phosphorylation in this region of SDS gels. It 
is reported [51 that platelet-derivcd growth factor (PDGF) stimulates phosphoryla- 
tion of polypeptides in fibroblasts, acting through two mechanisms, a PkC-dependent 

pathway phosphorylating an 80 kDa component and through a PkC-indepelident 

route to phosphorylate 22 kDa and 31 kDa polypeptides. This finding is important 
in view of the fact that PDGF, secreted by Type I astrocytes, illay control progenitor 
glial cell differentiation [20,241. Further, PD( jF is an active cherno-attractant for rat 
brain astrocytes [7]. Since it is known that in fibroblasts phorbol esters and PDGF 
both stimulate 80 kDa protein phosphorylation through PkC activation [51 our pre- 
sent observations with TPA suggest that an initial effect ofPD(; F on glial cells rnay 
be to stimulate phosphorylation of the 80 kDa protein through PkC activation. This 
is presently being tested and it will be relevant to discover whether different classes 
ofglial cells, especially progenitor glia, respond to PDGF in the same wily. It is not 
yet clear whether all glial cell classes in our primary cultures give the protein phos- 
phorylation effect seen above. When glial subcultures [291 containing Type 2 astro- 
cytcs, oligodendrocytes and progenitor glia but virtually devoid of Type I astrocytes 

i. Av- 164, `; - idký "t. 
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were treated with 25 nM TPA using the above experimental conditions a marked 
stimulation in phosphorylation of the 80,000 Da polypcptide (Fig. 2) was noted 
within I min of TPA application. Phosphorylation of the 80,000 Da polypeptide was 
not maximal at this point unlike the situation with Swiss 3T3 cells [26]. This work 
with subcultures reveals that the, stimulation of protein phosphorylation induced by 
TPA is certainly associated with Type 2 astrocytes, oligodendrocytes and progenitor 
glia. It is now necessary to separate these glial classes, and to examine protoplasmic 
(Type 1) astrocytes, to assess the PkC-induced protein phosphorylation response of 
individual glial cell types. We are also comparing these TPA effects on PkC activation 
with those produced by diacylglycerol, the natural second messenger initiating PkC 
activation. 

This work is supported by grants from The Multiple Sclerosis Society of Great 
Britain and Northern Ireland and The Wellcome Trust. We thank The Multiple 
Sclerosis Research Trust for tissue culture facilities. 
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Protein kinase C (calcium + phospholipid-dependent kinase) activity has been measured in soluble 
100,000 g fractions from mixed glial cells in primary culture; in 12 day cultures the specific activity (mean 
± S. D. ) was 184 ± 10 pMol 32p incorporated/10 min/mg protein. In glial cell subcultures lacking protoplas- 
mic astrocytes protein kinase C specific activity was lower. An inhibitor of protein kinase C in 100,000 

g supernatants was removed by chromatography through DE-52 anion exchange resin increasing the spe- 
cific activity of the calcium + phospholipid-dependent kinase about 20 times. Protein kinase C was also 
associated with membrane fractions from glial cells; the membrane-associated enzyme had a higher spe- 
cific activity than in the cytoplasm. 

Protein kinase C (PkC), an enzyme associated with a variety of cell responses 
including secretion, proliferation and differentiation [20], is very active in central 
nerve tissue (CNS) [7] where its role in neurones has been extensively examined (sum- 
marized in refs. 9,15). PkC is characterized by its requirement for calcium + phos- 
pholipid for activation [19]. This enzyme is activated during agonist binding and the 
receptor-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate [3,27] since 
the diacylglycerol produced in this signal transduction pathway increases the affinity 
of PkC for Ca 2+, allowing for PkC activation at physiological Ca2+ levels [10]. PkC 
is a major receptor for the turnour-promoting phorbol esters [2]. 

Little attention has been paid to the localization and role of PkC in gliat cells even 
though the receptor-linked phosphoinositol pathway can be activated in both astro- 
cytes and oligodendrocytes by certain agonists [22,23,25] and myelin basic protein 
synthesized by oligodendrocytes is a good substrate for PkC [28]. Immunocytocherni- 

cat approaches suggest that PkC is localized in cells resembling oligodendrocytes in 
rat brain white matter [5]. Astrocyte primary cultures show measurable PkC activity 
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[ 18] while the differentiation and proliferation of this glial cell class are enhanced by 
phorbol estcrs [6,161, all indicating a role for PkC in astrocyte biochemistry. Our 
interest is in the biochemistry of myclination by oligodendrocytes and here we report 
the direct measurement of PkC activity in our primary glial cell cultures and subcul- 
tures derived from rat brain [29,301. 

We have previously described the preparation and characterization of our glial cell 
primary cultures which are prepared using cerebra from 12 day rat pups [29]. These 
primary cultures develop a confluent layer of protoplasmic astrocytes on which grow 
smaller multiprocessed phase bright cells which are largely fibrous astrocytes, oligo- 
dendrocytcs and progenitor glial cells [24] with a small number of neurones. Subcul- 
turcs prepared from 9-day-old primary cultures [301 using a modification of the shak- 
ing technique of McCarthy and de Vellis [121 lack protoplasmic astrocytes and by 
21 28 days contain interlinked clumps ofphase bright cells, chiefly fibrous astrocytes, 
oligodendrocytes, glial progenitor cells and a few ncurones [301. 

For PkC assay cultures were rinsed and cells then scraped out and homogenized 
in 50 mM Tris-FICI pH 7.7,5 niM dithiothreltol and 2 niM EGTA. Homogenates 
were centrifuged at 100,000 g for 60 min at 4'C to give soluble and particulate frac- 
tions. Kinase activity in samples wits measured by following the transfer of the y- 
phosphate group of [32 P]ATII to type HIS calf thyrnus historic (Signia) for 10 min 
at 30 C with shaking. The complete reaction mixture (0.25 nil) for PkC measurement 
was as described by Kikkawa et al. [81 and contained 50 niM Tris-HCI 7.7,50 jig 
histone, 100 IN calcium chloride, 10 mM magnesium acetate, 50 /iM ATP, 2 PCi 
[-, -32PJATP(3000 Ci, 'mmol, Amersham), 10 jig phosphatidylserine (P. S., Lipid Pro- 
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Fig. 1. Incoiporation of' , -phosphate group of' j; --'_'PjATP into histone bý calciurn-independent (basal), 

calcium-dcpendent. and calcium- ý phospholipid-dependent WW) kinases in 100,000 g supernatants of' 
glial cells in 12 (jaýr priniarý cultures. and in subcultures. Results are means + S. D. (bar lines) from several 
separate culture series each assayed in quadruplicate. Specific activities (pmol '2P incorporated 10 min mg 
protein) related to these results are 59.5,120 and 243 for 12 day primary cultures and 53,107 and 128 
for subcultures respectively. Absolute specific activities for calcium-depcndent kinases and caicium + 
phosphol i pid -dependent kinase are the relevant result less the calciurn-independent figure. 

12 day primary cultures 4 week subcultures 
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ducts) + 0.2 pg diolein (Sigma) and the enzyme sample. PS + diolein were freshly 

prepared for each assay [8]. Basal kinase activity (Ca 2+-independent) was measured 
in the presence of I 00, uM EGTA omitting calcium chloride and lipid from the assay. 
Ca 2 +-dependent kinase activity was measured with calcium chloride present omitting 
EGTA and lipid. PkC activity was assayed with the full system above omitting 
EGTA. All assays were in quadruplicate and reactions were stopped by the addition 
of ice-cold 25 % trichloroacetic acid (TCA). TCA-precipitable material was recovered 
on glass-fibre filters (Whatman GF/F, pore size 0.7, um) which were dried prior to 
scintillation counting. Kinase specific activities (means ± S. D. ) are expressed as 
pMol 32p incorporated/10 min/mg protein at 30'C; protein was determined using the 
method of Lowry et al. [11] with bovine serum albumin as standard. 

Basal kinase activity in 100,000 g supernatants from 12 day glial cells in primary 
culture (Fig. 1) more than doubled on addition of calcium due to the variety of cal- 
cium-dependent kinases, including calcium/calmodulin kinase, which have now been 
identified in CNS tissue [17]. Addition of PS in the presence of calcium resulted in 
a further doubling of phosphorylation per mg protein (Fig. 1) indicating the presence 
of significant PkC activity in the glial cell supernatant. The specific activity of PkC 
in supernatants from 12 day glial cells was 184 ± 10 pMol 32p incorporated/10 min/mg 
protein compared with 60 for calcium-dependent kinases. Calcium + phospholipid- 
dependent kinase activity was also detected in glial cell supernatants from 18 and 28 
day primary cultures but at the much lower specific activities of 51 + 20 and 53 ±8 
for day 18 and 28 respectively; corresponding calcium-dependent kinase activity was 
33 ± 10 and 44 +6 pMol 32p incorporated/10 min/mg protein. In supernatants from 
28 day glial cell subcultures (Fig. 1) there was a small increase in phosphorylation 
when PS was included in assays in the presence of calcium indicating a low PkC activ- 

TABLE I 

EFFECT OF DE-52 COLUMN PURIFICATION OF Ca2+-INDEPENDENT, Ca2+-DEPENDENT 

AND Ca2++PHOSPHOLIPID-DEPENDENT KINASE ACTIVITY IN GLIAL CELL 100,000 g 
SUPERNATANTS 

Glial cell fraction Culture ref. Specific activity (pMol 32P incorp. /10 min/mg protein) 

Ca2+-ind. Ca2+-dep. Ca2++PS-dep. 

Primary culture 
100,000 g supernatant 30/6 1b 47.1. ± 1.0 87.2± 3.7 112.1± 4.0 

Column-purifieda 

100,000 g supernatant 168.9±20.5 249.5±25.9 2728.2±30.8 

Primary culture 
100,000 g supernatant 10/71c 92.9± 4.2 159.5 ± 9.4 200.4± 5.8 

Column-purified, 

100,000 g supernatant 122.4±19.2 127.4±32.8 1151.7±24.9 

aI OO, 000g Supernatant taken and purified on a DE-52 column as detailed in the Methods section. 
bI 8-Day primary culture. 
14-Week primary culture. 
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ity: the specific activity of PkC was 75 ± 15 pMol 32p incorporated/ 10 min/mg protein 
compared with the figure of 54 ±I for calcium-dependent kinases. 

It is known that the detection of PkC activity in crude 100,000 g cell soluble frac- 
tions is made complicated [8,26] by the presence of various endogenous inhibitors 
and a 17 kDa protein inhibitor of PkC has been clearly indentified in central nerve 
tissue [ 13,14]. To confirm the presence of PkC activity in the glial cells therefore we 
followed the suggestion of Kikkawa et al. [8] and submitted 100,000 g crude superna- 
tants from 18 and 28 day glial cell primary cultures to initial purification by DE-52 
anion exchange chromatography. Crude supernatants were divided into two por- 
tions; one part was held on ice at 4'C while the other was rapidly fractionated on 
a small DE-52 column as described by Anderson et al. [1]. The unfractionated and 
fractionated supernatants were then assayed for kinase activities simultaneously (Ta- 
ble 1). This simple purification made it very clear that glial supernatants do indeed 
contain significant calcium + phospholipid-depcndent kinasc (PkC) activity. Com- 
pared with the unfractionated 100,000 g supernatant the specific activity of PkC after 
DE-52 purification is increased by over 20-fold in 18 day cultures and almost 6-fold 
in 28 day cultures (Table 1). We presume that PkC activity is not so readily measured 
in the crude glial cell supernatants, especially at older culture ages, due to the pres- 
cnce of inhibitory factors. It will be of interest to see if these glial cell supernatants 
contain the same calcium-independent 17 kDa protein inhibitor of PkC noted 
already in nerve tissue [13,14] and what role such an inhibitor plays in PkC regula- 
tion in glial cells. 

In most tissues PkC is detected largely in the soluble fraction of cells [20]. However, 
in the CNS, PkC has two localizations, associated with membranes as the active 
enzyme, and in the inactive form in the cytoplasm [7]. We have confirmed this dual 
localization for PkC in glial cells. Total membrane pellets from 12 day primary glial 
cells were treated with Triton X-100 to release the enzyme as described by Parker 
et al. [21] and the kinase activities assayed. Calcium + phospholipid-dependent 
kinase activity was released from membranes, the specific activity of this membrane- 
associated PkC being 485 ±120 pMol 32p incorporated/10 min/mg protein compared 
with 180 ± 10 for the enzyme in the cytoplasmic (soluble) fraction. With older pri- 
mary cultures (28 days) the specific activity of PkC associated with membranes was 
similar to that in the soluble fraction. Preliminary experiments have also shown that 
pretreatment of glial cultures with 100 nM 12-0-tetradecanoyl phorbol-13-acctate 
(TPA) for 30 min causes translocation of PkC from the soluble fraction to mem- 
branes. This is in keeping with the known role of PkC as a receptor for phorbol esters 
such as TPA [2] and the fact that phorbol esters mimic the activating role of diacyl- 

glycerol. The distribution of PkC between cytoplasm and membranes is probably a 
reflection of the state of activation of the enzyme in cells. As PkC is closely linked 

with receptor-mediated inositol phospholipid turnover membrane-associated PkC 

activity is an indication that agonist-stimulated pathways may be functional in the 
cells at that stage of growth and development. Our observation that glial cells at 12 
days in culture have a higher specific activity ratio of membrane-bound/cytosolic 
PkC than at 28 days is perhaps an indication that agonist-stimulated events involving 
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PkC are more active in early stages of glial cell growth. 
In this study we have obtained direct evidence that cultured glial cells derived from 

neonatal rat brain tissue contain a calcium- and PS-activated protein kinase which 
transfers the y-phosphate of ATP to a histone acceptor. These are the characteristics 
of PkC [17,19,20]. Thus the findings described above show directly that mixed popu- 
lations of CNS glia composed of protoplasmic and fibrous astrocytes together with 
oligodendrocytes contain PkC activity. These findings directly support previous indi- 

cations suggesting a presence of PkC in cells other than neurones; in the CNS [5,16, 
18,22,25]. Neurofilament protein-positive cells account for less than 6% of the total 
cell population in our early cultures [29] and this percentage decreases with culture 
age. It is therefore unlikely that the PkC activity that we have detected comes exclu- 
sively from the small number of neurones present. Further the specific activity of PkC 
in neuronal cultures is higher [4] than we have detected here. The present study does 

not yet reveal which individual glial cell classes contain PkC but from the previous 
evidence [5,16,18,22,25] it is likely that PkC is active in both astrocytes and oligo- 
dendrocytes. Certainly we have noted that calcium + phospholipid-dependent 
kinase (PkC) activity can be measured in the protoplasmic astrocytes which remain 
in primary culture after the release by shaking of the smaller glial cells for our subcul- 
tures: the specific activity of the protoplasmic astrocytes is about half that of the 
whole glial cultures before shaking. This value is considerably lower than the figure 

reported by Neary et al. [18] for PkC activity in 23,000 g cytosol fractions from 95 %- 

pure primary astrocyte cultures. However, our culture system and methodology are 
substantially different. We are now involved in studies to define the role of PkC and 
its inhibitor in different glial cell classes, especially oligodendrocytes. 
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