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Abstract

System architecture is defined as the description of a complex system

in terms of its functional requirements, physical elements and their

interrelationships. Designing a complex system architecture can be a

difficult task involving multi-faceted trade-off decisions. The system

architecture designs often have many project-specific goals involving

mix of quantitative and qualitative criteria and a large design trade

space. Several tools and methods have been developed to support the

system architecture design process in the last few decades. However,

many conventional problem solving techniques face difficulties in deal-

ing with complex system design problems having many goals.

In this research work, an interactive multi-criteria design optimization

framework is proposed for solving many-objective system architecture

design problems and generating a well distributed set of Pareto opti-

mal solutions for these problems. The optimization framework sup-

ports the decision maker by providing a facility for progressive prefer-

ence articulation, empowering closely coupled user and optimization

process interaction. A novel Pareto estimation (PE) method is in-

troduced for increasing the density of the available Pareto optimal

solutions with reduced computational expense and further extended

to multi-objective multi-modal problems.

System architecture design using multi-criteria optimization is demon-

strated using a real-world application of an aero engine health man-

agement (EHM) system. A design process is presented for the optimal

deployment of the EHM system functional operations over physical ar-

chitecture subsystems. The EHM system architecture design problem



is formulated as a multi-criteria optimization problem. The proposed

methodology successfully generates a well distributed family of Pareto

optimal architecture solutions for the EHM system, which provides

valuable insights into the design trade-offs. Uncertainty analysis is

implemented using an efficient polynomial chaos approach and robust

architecture solutions are obtained for the EHM system architecture

design. Performance assessment through evaluation of benchmark

test metrics demonstrates the superior performance of the proposed

methodology.
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Chapter 1

Introduction

1.1 Introduction and Motivation

This chapter provides a brief introduction followed by motivation for the research

work presented in this thesis.

System architecture is defined as the description of a complex system in terms

of its functional requirements, physical elements, and their interrelationships.

System architecture design is concerned with exploring the trade space of early,

high-level, system design decisions. System architecture designs often have many

goals: performance, reliability, cost, flexibility, security. Design requirements

also include safety, functional and non-functional requirements, mix of qualita-

tive and quantitative objectives, project-specific goals and through-life costs. A

large number of stakeholders and design experts are involved in the design process.

Since the goal of a system engineer is to find the best possible system ar-

chitecture, the architecture design process can be formulated as an optimization

problem, where the variables are the alternative architectural options, and the

objective functions capture design requirements and project goals. Constraints

can also be added to capture the various resource limitations. In the last few

years, several tools and methods have been developed to support the system

architecture design process. Unfortunately many conventional problem solving

1
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techniques have difficulty when dealing with complex system design problems

having many goals. In particular, optimization problems that appear in system

architecture design are typically very hard to solve because:

(1) they are non-convex problems and they have multiple local and global opti-

mal solutions.

(2) they are integer, mixed-integer, or most often combinatorial problems.

(3) they are non-linear, both in the objective functions and in the constraints.

(4) they may be computationally expensive and large-scale high dimensional

problems.

Many real-world engineering problems often have multiple competing objec-

tives to be optimized within the constraints of their resource limitations (e.g.

Fleming et al., 2005). For these multi-objective optimization problems, there is

no one single optimal solution. Instead, there is a family of solutions, where each

solution represents a compromise, or trade-off, between the competing objectives,

and which cannot be improved upon with respect to all objectives. Historically,

multi-objective optimization problems were solved using classical optimization

methods, e.g. gradient based weighted sum approaches. In these methods the

multiple objectives were aggregated to form a single objective using weights.

However, these approaches have several weaknesses. They are very sensitive to

the choice of weights and starting point. They have tendency to get stuck in local

optima. They require multiple runs to generate a family of trade-off solutions as

required for a multi-objective optimization (Deb, 2001).

In recent times, Evolutionary Algorithms (EAs) have been developed to solve

multi-objective optimization problems. EAs work with a population of solutions

and mimic the principles of biological evolution, i.e., survival of the fittest. They

can search for global optima without getting stuck in local optima and find a

diverse set of optimal trade-off solutions called a Pareto optimal front in a single

run of the optimization algorithm. EAs have mainly been applied to optimization

problems having single, two or three objective functions. The Pareto optimal solu-

tions can be visualized using simple scatter plots to assist in selecting a preferred
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solution for these problems. However, many real-world engineering problems

can comprise significantly more than three objective functions to be optimized.

These are called many-objective optimization problems. EAs face several dif-

ficulties and challenges for solving many-objective optimization problems, most

importantly the inefficient search and convergence of solutions towards the Pareto

front. The optimal trade-off surface of a multi-objective optimization problem

can contain a potentially infinite number of Pareto-optimal solutions. For solving

many-objective optimization problems, EAs require large population sizes which

lead to increased computational expense. Visualization of the high dimensional

Pareto optimal solutions for many-objective functions becomes difficult (Fleming

et al., 2005). In the case of multi-modal multi-objective problems, there exist

multiple local and global optima. EAs have issues in finding multi-modal Pareto

sets and fail to maintain diversity in both objective and decision variable space.

Finding these multi-modal Pareto sets would give the decision maker a greater

choice when choosing between optimal solutions.

This thesis addresses this research gap in system architecture design by propos-

ing an interactive multi-criteria design optimization framework which can solve

many-objective optimization problems and find diversified multi-modal Pareto

optimal solutions. The optimization framework supports the decision maker by

providing a facility for progressive preference articulation, empowering closely

coupled user and optimization process interaction. The proposed methodology

is applied to several real-world system architecture design applications related to

aero gas turbine engines.

1.2 Research Objectives

The main goals of this research work are:

• To develop a methodology for system architecture design that addresses

multiple design criteria, and

• To demonstrate the application of the methodology on a real-world system

architecture design.
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In order to achieve the goals, this research work has accomplished the following

objectives:

• Development of a multi-criteria design optimization framework, which can

solve many-objective system architecture design problems and facilitate a

decision maker to interact with the optimization process and express design

preferences.

• Development of a methodology for increasing the density of optimal solu-

tions in a decision maker’s (DM’s) preferred region in the objective space

with reduced computational cost.

• Application of multi-criteria design optimization framework to many-objective

real-world system architecture design problem.

• Investigate different groups of solutions available in the obtained Pareto op-

timal solutions using clustering analysis revealing important design features

for the system architecture design.

• Perform uncertainty analysis for the real-world system architecture design

problem, considering the uncertainties involved in the architecture design

process in order to find less sensitive robust optimal system architecture

solutions.

1.3 Outline of the Thesis

The previous section outlined the overall objectives of the research. Next, the

structure of the thesis is presented.

Chapter 2 provides a critical review of the literature relevant to this research.

An introduction to the system architecture design process is presented. A brief

history of the development of the evolutionary computing and multi-objective

optimization techniques is given. Based on the review of the literature, weak-

nesses of existing approaches in solving many-objective optimization problems

are summarized and research opportunities are discussed.
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In Chapter 3, an interactive multi-criteria design optimization framework for

solving many-objective optimization problems is proposed. The framework uses

a multi-objective genetic algorithm with a unique progressive preference articu-

lation technique. The optimization algorithm is further enhanced with archiving

and crowding distance operators to maintain the diversity in both objective and

decision vector spaces in order to find multi-modal Pareto optimal solutions. A

novel Pareto estimation method for increasing the available Pareto solutions is

presented. The method uses an efficient clustering algorithm and neural networks

to estimate a large number of multi-modal global optimal solutions with reduced

computation cost. A rigorous performance evaluation of the proposed method-

ology is described by solving a variety of multi-objective test problems that are

commonly used in the literature.

In Chapter 4, the system architecture design process is illustrated with a case

study of an aero gas turbine engine health management (EHM) system. De-

composition of the EHM system functional operations and physical architecture

subsystems limitations is presented. The system architecture design problem

involving deployment of EHM system functional operations onto physical archi-

tecture components nodes is formulated as a multi-criteria optimization prob-

lem. Functional operations need to be deployed in order to satisfy operational

attribute requirements within the constraints of resource limitations. Excess re-

quirements, in terms of operational attributes, are considered as multiple objec-

tive functions/criteria to be minimized in the optimization process. Challenges in

solving the system architecture design optimization problem are discussed. The

proposed methodology is applied to the EHM system architecture design problem

and optimized with respect to many qualitative criteria in terms of operational

attributes within the constraints of resource limitations. The optimization algo-

rithm has produced a family of Pareto solutions which provide valuable insight

into design trade-offs. Using the progressive preference articulation technique,

the optimization search is focused for the industrial decision maker, onto a region

of interest in the objective space. Using this approach it was possible to identify

the most significant design constraints (“hot spots”) and the opportunities af-

forded by either the relaxation or the tightening of these constraints, along with
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their performance implications. Performance of the optimization framework is

assessed by evaluating test metrics and comparing with popular multi-objective

optimization algorithms using established statistical methods.

Chapter 5 presents an uncertainty analysis performed for the EHM system

architecture design using the polynomial chaos expansion method for estimating

the sensitivities of objectives. In the EHM architecture design study, in order

to integrate the EHM architecture models into the optimization platform and

to evaluate the various objective functions, the qualitative functional attribute

requirements are transformed to suitable numeric values. The obtained Pareto

optimal solutions are sensitive with respect to the chosen numerical parameter

values. An efficient uncertainty quantification technique using polynomial chaos

expansions is integrated within the optimization process. The approach generates

a design of experiments with respect to the parameter uncertainties. A robust-

ness metric is calculated using the variations of the criteria values with respect

to variations in the parameter values. A parallel processing facility available in

MATLAB is utilized for evaluating the robustness metric for each candidate ar-

chitecture solution over the number of samples from the design of experiments.

In the optimization framework using, progressive preference articulation, the de-

cision maker can specify the level of sensitivity that can be allowed in the design.

Finally, a set of robust non-dominated solutions are obtained using the proposed

approach for the EHM system architecture design. The EHM system architec-

ture design process using the proposed multi-criteria optimization methodology is

further validated by comparing with a baseline aero engine EHM system architec-

ture. This demonstrates that the proposed multi-criteria optimization approach

for system architecture design is successful in obtaining the best Pareto optimal

architecture solutions for the EHM system architecture.

Finally, Chapter 6 provides conclusions and summarizes the work presented

in the thesis and the results obtained. Some advantages and shortcomings of the

methods described in the thesis are discussed and opportunities for future work

are highlighted.
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1.4 Research Contributions

This thesis describes the following research contributions:

1. Development of a methodology for system architecture design

using a multi-criteria optimization formulation with many conflicting ob-

jective functions and constraints. Integration of system models into an

optimization framework and evaluation of architecture alternatives using

attributes information. Investigation of clusters of solutions resulted in

identifying the most significant design features and constraints and the

opportunities afforded by either the relaxation or the tightening of these

constraints along with their performance implications. This contribution

is demonstrated in Chapter 4 of the thesis by applying developed method-

ology on a real-world aero engine health management system architecture

design.

2. An interactive multi-criteria design optimization framework with a

progressive preference articulation technique and a crowding distance oper-

ator which can handle many-objective optimization problems and maintain

diversity in objective space and decision vectors space in order to find di-

verse sets of multi-modal Pareto optimal solutions. This contribution is

presented in Chapter 3 of the thesis and it is used for solving several test

problems and a real-world aero engine health management system architec-

ture design. Evaluation of the performance test metrics demonstrated the

superior performance of the proposed methodology with good convergence,

diversity and repeatability.

3. A novel methodology to find the mapping between Pareto-optimal

objective vectors and decision vectors using neural networks and an

efficient clustering algorithm, which has been proven useful in increasing

the density of multi-modal Pareto solutions in the preferred regions to the

decision maker with reduced computation effort. The contribution is pre-

sented in Chapter 3 of the thesis and it is used for estimating a large number

of multi-modal Pareto solutions for several test problems and a real-world

aero engine health management system architecture design.
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4. Sensitivity analysis approach to system architecture design which

takes into account the uncertainties involved in parameter assumptions and

expert judgements for criteria evaluations of the system architecture alter-

natives in the optimization process. An efficient uncertainty quantification

technique using polynomial chaos expansions is integrated into the opti-

mization process. The polynomial chaos expansions technique generates a

design of experiments with respect to parameter uncertainties and computes

the robustness metrics with lower computational cost compared to standard

approaches such as Monte Carlo sampling technique. This contribution is

presented in Chapter 5 of the thesis and it is applied finding robust solu-

tions for a real-world aero engine health management system architecture

design. A validation process using a baseline system demonstrates success

of the proposed methodology for the system architecture design.

1.5 Publications and Research Reports

Material from this thesis has formed the basis for the following Rolls-Royce Uni-

versity Technology Centre (UTC) research reports and international conference

publications:

1. Kudikala R., Mills A.R. and Fleming P.J. System Architecture Design of an

Aero Engine Health Management (EHM) System. Rolls-Royce University

Technology Centre (UTC) Research Report, Number: RRUTC/Shef/R/10602,

Issue 1, 2010.

2. Kudikala R., Mills A.R. and Fleming P.J. Multi-Criteria System Architec-

ture Design Optimization: an Engine Health Management (EHM) System

Case Study. Rolls-Royce University Technology Centre (UTC) Research

Report, Number: RRUTC/Shef/R/10902, Issue 1, 2010.

3. Kudikala R., Mills A.R. and Fleming P.J. A Proposed Interactive Multi-

Criteria Optimization Framework for Gas Turbine Engine System Archi-

tecture Design Optimization. Rolls-Royce University Technology Centre

(UTC) Research Report, Number: RRUTC/Shef/R/11601, Issue 1, 2011.
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4. Kudikala R., Mills A.R., Fleming P.J., Tanner G.F. and Holt J.E. An En-

gine Health Monitoring System Architecture Design using Multi-Criteria

Optimization Techniques. International Workshop on Health Monitoring

Systems and Multi-Criteria Optimization (sponsored by UK-India Educa-

tion and Research Initiative (UKIERI)), Indian Institute of Technology

Kanpur, India, 21-34, 2012.

5. Kudikala R., Giagkiozis I. and Fleming P.J. Increasing the Density of Multi-

Objective Multi-Modal Solutions using Clustering and Pareto Estimation

Techniques. In Proceedings of the 10th International Conference on Genetic

and Evolutionary Methods GEM 2013, Las Vegas, USA, 10-16, 2013.

6. Kudikala R., Giagkiozis I. and Fleming P.J. Estimation of Pareto Optimal

Solutions for Multi-Objective Multi-Modal Problems. In Proceedings of

19th International Conference on Soft Computing - MENDEL2013, Brno,

Czech Republic, 25-30, 2013.

7. Kudikala R., Mills A.R., Fleming P.J., Tanner G.F. and Holt J.E. An

Aero Engine Health Management System Architecture Design Using Multi-

Criteria Optimization. In Proceedings of the Genetic and Evolutionary

Computation Conference - GECCO 2013, ACM, Amsterdam, The Nether-

lands, 180-186, 2013.

8. Kudikala R., Mills A.R., Fleming P.J., Tanner G.F. and Holt J.E. Real

World System Architecture Design Using Multi-Criteria Optimization: A

Case Study. Advances in Intelligent Systems and Computing, EVOLVE

- A Bridge between Probability Set Oriented Numerics and Evolutionary

Computation IV, LEIDEN, The Netherlands, Springer, Vol. 227, pp 245-

260, 2013.

9



Chapter 2

Literature Review

2.1 Introduction

The purpose of this chapter is to review the relevant technical literature to estab-

lish the ‘state-of-the-art’ and in particular, to identify any existing weaknesses.

This will provide a reference framework against which the value of the research

can be assessed.

In this Chapter, initially a definition of system architecture is presented and

the process of system architecture design optimization is described. An introduc-

tion to multi-objective optimization and the goals of a multi-objective optimizer

are presented. In the following section a review of the literature relevant to the

architecture design optimization methods is presented. Then there is a discus-

sion of current issues in high dimensional or many-objective optimization. This

is followed by sections describing methods for addressing the many-objective op-

timization problems that arise in system architecture design.

2.2 System Architecture Design

System architecture is defined as “an abstract description of the entities of a

system and the relationships between those entities, where the entities could be

physical components or functions of the system” by Crawley et al. (2004). The
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architecture of a complex system can be described in terms of its functional re-

quirements, physical elements, and element interrelationships. The architecture

of a system represents a blueprint of the overall system or its highest level of

design. Designing a complex system architecture is a difficult task involving

multi-faceted trade-off decisions. The design process often needs to consider ex-

perience, models and data from many design disciplines.

System architecture design is generally described by large multidisciplinary

design phases. A typical architecture design process starts by identifying the

main functional requirements and follows a process of decomposition. The top

level system functional requirements (use cases) are divided into several sub-

functions. The physical form of the system is also divided into sub-systems and

components. Designers try to map the functionalities onto the physical hardware

components. Designers then iterate between the upper and lower levels of the

system decomposition to optimize the deployment of functional operations onto

physical systems. However, due to the large and discontinuous design search space

and the many qualitative and quantitative criteria or objectives, it is difficult for

the designer to obtain optimal architecture designs. Designers have considered

various optimization methods and tools for exploring the trade-offs in the system

architecture design space.

2.3 Introduction to Multi-Objective Optimiza-

tion (MOO)

Real-world engineering problems often involve several competing objectives and

constraints (e.g. Fleming et al., 2005). When there are conflicting objectives

improving one objective will lead to the worsening of one or more of remaining

objectives. Thus, for problems with multiple conflicting objectives, there is no

one single optimal solution. Instead, there is a family of solutions, where each

solution represents a compromise, or trade-off, between the competing objectives,

and which cannot be improved upon with respect to all objectives. To distinguish

these solutions from inferior ones, many multi-objective optimization algorithms
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make use of the principle of Pareto-dominance, which is initially introduced by

Edgeworth (1881) and further studied by Pareto (1896).

A general definition of a multi-objective optimization problem is defined as:

min
x

f(x) = (f1(x), f2(x), . . . , fk(x)) ,

subject to x ∈ S,
(2.1)

where k describes the number of objectives fi in an objective vector f(x) and x

is a decision vector with in a feasible region S in the decision space.

Definition 1. In a minimization problem, a decision vector x ∈ S feasible de-

cision space, is said to dominate a decision vector y if and only if fi(x) <

fi(y), ∀i ∈ {1, 2, . . . , k}.

Definition 2. In a minimization problem, a decision vector x ∈ S feasible deci-

sion space, is said to weakly dominate a decision vector y if and only if fi(x) ≤
fi(y), ∀i ∈ {1, 2, . . . , k} and fi(x) < fi(y), for at least onei ∈ {1, 2, . . . , k}.

Definition 3. In a minimization problem, a decision vector x ∈ S feasible de-

cision space is called a Pareto optimal solution if and only if, it satisfies

that fi(x) ≤ fi(y), ∀i ∈ {1, 2, . . . , k} and fi(x) < fi(y), for at least one i ∈
{1, 2, . . . , k} for all other decision vectors y and there exist no other decision

vector which dominates x in the feasible decision space S. The set of Pareto

optimal solutions is called a Pareto-optimal surface or Pareto Front

(PF).

A Pareto front for a two-objective minimization problem is shown in Fig-

ure 2.1. Two solutions x, y and their objective vectors f(x), f(y) are shown as

two examples of non-dominated solutions on the Pareto-optimal surface. Neither

solution is preferred to the other. Solution x has a smaller value of objective

function f1(x) than solution y, but a larger value of objective function f2(x).

Correspondingly, solution y has a smaller value of f2(y) than solution x, but a

larger value of objective function f1(y). Neither solution x nor solution y dom-

inate each other and there are no other solutions which dominate solutions x
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Figure 2.1: Pareto optimal solutions on a Pareto Front for a two objective mini-
mization problem.

and y on the Pareto-optimal front. These are Pareto-optimal (or non-dominant)

solutions, that is, solutions which dominate all other candidate solutions in the

decision space.

2.3.1 Goals of Multi-Objective Optimization

In solving the multi-objective optimization problems using an optimizer, three

main goals of optimization need to be achieved by the optimizer (Purshouse,

2003 and Fleming et al., 2005). The goals of multi-objective optimization are

shown in Figure 2.2 and described below:

• Convergence: The approximated non-dominated solutions set obtained

by the optimizer is required to be as close as possible to the true Pareto-

optimal front of the multi-objective optimization problem.

• Diversity: In a multi-objective optimization with many competing ob-

jectives there is no ideal single optimal solution for the problem, and the

global trade-off surface can potentially have an infinite number of solutions.
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Figure 2.2: Goals of a multi-objective optimization algorithm.

The obtained Pareto optimal solutions are required to be well spread and

uniformly covering wide areas of the Pareto front. Diversity is convention-

ally preferred in the objective space in order to present the DM with a

well-distributed set of solutions to choose from, based on certain prefer-

ences such as objective priorities or region of interest (ROI). Diversity of

solutions is however not restricted to the objective space; it is a desired

requirement in the decision space also.

• Pertinence (Purshouse, 2003): As the number of objectives in the multi-

objective problem increases, the visualization of the optimal solutions be-

comes difficult. In the decision-making process a decision-maker (DM) is

usually interested in sub-regions of the search space which makes the op-

timization process more practical and efficient. Therefore, the convergence

and the diversity of the solutions are particularly required in the pertinent

areas of the decision space, i.e., in the decision-makers’s region of interest.
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2.3.2 General Optimization Process

Optimization, by search, is an iterative process. Optimization of a system/model

design involves searching for optimum solutions which will maximize or mini-

mize certain objectives by varying system parameters iteratively. In general, to

formulate an optimization problem it is necessary to identify the following key

components: a model of the system to be optimized; its decision variables; the

objective functions to be optimized; and the system constraints.

Figure 2.3: Components of an optimization problem.

In the system architecture design process, formulation of an optimization

problem begins by identifying the decision variables which are key parameters

of the system or model available for variation. A search is conducted over the

decision variable space which, typically, have lower and upper bounds. In system

architecture design constraints associated with the optimization problem must be

identified. These constraints include the resource limitations of the system. The

goals of system design optimization are formulated as objective functions. The

components of an optimization problem: a model of the system, its decision vari-

ables, the objective functions and the system constraints are shown in Figure 2.3.

An optimization algorithm generates candidate solutions at each iteration by se-

lecting different values for the decision variables. The constraints and objective

functions are evaluated for the values of decision variables of the candidate solu-

tions chosen by the optimization algorithm. If a candidate solution satisfies the
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system constraints, then that solution is treated as a feasible solution. If it does

not satisfy the constraints, then the solution is treated as infeasible solution. At

each iteration a suitable approach is utilized in which the solutions are sorted

in terms of their objective function values and constraint violation values and

ranked accordingly. The information from the best solutions in each iteration

tend to be used to progress towards new solutions for the next iteration.

2.3.3 Classical Optimization Approaches

Classical optimization approaches have been used to solve multi-objective opti-

mization problems in the past (Deb, 2001). Usually in these approaches, the

multiple objective functions were aggregated using weights to form a single ob-

jective function. These weights are chosen according to the relative importance

of the objective functions. Examples include the weighted sum approach, as used

in linear quadratic regulator design (Athans & Falb, 1966; Rockafellar, 1987),

gradient based methods (Curry, 1944; Fletcher, 1980; Snyman, 2005) and the

goal attainment method (Gembicki, 1974). An extensive review of classical op-

timization methods is given in Rao (2009) and Ravindran et al. (2006). Integer

linear programming (Heady & Candler, 1963; Murty, 1983; Nemhauser & Wolsey,

1988) is another classical approach used for solving convex integer optimization

problems. These techniques require linearization of the objective functions and

constraints. Few examples for linear programming approaches are simplex-based

methods (Murty, 1983), cutting planes method (Kelley, 1960), and Lagrangian

relaxation method (Fisher, 2004).

However, classical optimization approaches have a number of weaknesses for

solving multi-objective optimization problems with conflicting objectives:

• These approaches work with a single solution, not multiple solutions, in

their iterations to find the optimal solutions.

• The choice of starting position may have a strong influence on convergence

to an optimal solution. A poor choice may result in the optimizer getting

stuck at local optima, which often exist in engineering problems.

16



2. Literature Review

• Aggregation methods can be very sensitive to the chosen weights and start-

ing point in the iterative search.

• These methods require multiple runs of the optimizer to generate sufficient

solutions to adequately represent the Pareto-optimal front.

• There is no guarantee with such approaches that multiple runs with various

aggregations of objectives will produce the desired diversity in the Pareto-

optimal front.

2.3.4 Evolutionary Computation Methods

An alternative approach to solve the multi-objective optimization problems is the

class of algorithms known as Evolutionary Algorithms (EAs). They are founded

on the principles of natural selection (Darwin, 1858), biological evolution (Hol-

land, 1975; Rechenberg, 1973) and population genetics (Fisher, 1930). EAs are

population-based meta-heuristic optimization algorithms. They comprise a pop-

ulation of solutions, which is evolved or improved over a number of generations to

search for the non-dominated trade-off solutions and generate the Pareto-optimal

front in a single run of the algorithm. Furthermore, the population-based ap-

proach can be used to emphasize all the solutions equally and thus produce a

diverse set of optimal solutions. Evolutionary algorithms (EAs) are very popular

in solving complex design problems. They are global, parallel, search and opti-

mization methods. In addition, various preference articulation methods have been

developed and applied to allow the decision-maker to focus the population on the

ROI. Multi-Objective Evolutionary Algorithms (MOEAs) are thus well suited to

meet the goals of a multi-objective optimization algorithm. There has been much

research in the field of evolutionary multi-objective optimization (Coello-Coello

et al., 2007; Deb, 2001).

One of the most popular evolutionary computation methods is Genetic al-

gorithms (GAs) popularized by Goldberg (1989). GAs have found applications

and very useful in solving problems which are non-convex, discontinuous, multi-

modal and difficult to formulate mathematically. These problems are difficult to
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solve using conventional numerical optimizers. GAs can handle problems with

non-numeric and mixed-type variables. GAs support parallel computing, objec-

tive functions can be evaluated on parallel connected processors, thus minimizing

the total elapsed computational time. These algorithms apply select, crossover

and mutation operator to create new solutions in the non-standard combinatorial

search spaces taking into account domain specific characteristics of the problem.

These features confer considerable flexibility for addressing the complex require-

ments of system architecture design.

There are other groups of meta heuristic methods based on biology available

in addition to GAs. They are ant colony optimization (Dorigo, 1992; Dorigo

et al., 1991) and particle swarm optimization (Kennedy & Eberhart, 1995) based

on swarm intelligence, developed for combinatorial optimization. These methods

model the behaviour of animals or insects for finding the optimal solutions. A

good survey of population based meta-heuristics for multi-objective optimization

can be found in (Bianchi et al., 2009; Giagkiozis et al., 2013).

2.4 Review of System Architecture Design

using Optimization Methods

Complex trade-offs between various conflicting design objectives exist in the sys-

tem architecture design. Designers have considered different optimization tech-

niques for exploring these trade-offs in the design space (Gries, 2004; Künzli,

2006; Thiele et al., 2002).

Over a decade earlier, Thompson et al. (1999) explored the architecture design

optimization of deployment of smart sensors and actuators in future distributed

control system (DCS) architectures for aero-engines. Fonseca & Fleming (1993)

had introduced the first multi-objective evolutionary algorithm in the early 1990s.

Their multi-objective genetic algorithm (MOGA) was used by Thompson et al.

(1999), to generate and assess candidate architectures. Competing designs were

evaluated with respect to a number of parameters, such as risk, weight, acqui-
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sition cost, complexity, diagnostic capability and availability. Baseline architec-

tures were defined so that changes made could be compared in a relative manner.

In particular, this approach enabled justification to be provided that an optimal

system architecture solution was found to be better than the previously existing

solution.

Blickle et al. (1998) explored an approach to system-level synthesis for opti-

mally mapping an algorithm-level specification onto a software architecture. In

the initial step, a hardware architecture is selected with a set of processors, mem-

ories and buses. In the second step, in order to map the algorithm onto the

selected architecture, the design space is explored with an MOEA with the goal

of finding architecture implementations that satisfy a number of constraints on

cost and performance. The key outcome of this paper is that it demonstrates

that evolutionary algorithms are well suited for system architecture design, in

particular, for the selection of architectures and binding the specification to the

hardware architecture.

Dick & Jha (1997) presented a multi-objective genetic algorithm for hardware-

software co-synthesis (MOGAC). The application of a multi-objective optimiza-

tion strategy allows a single co-synthesis run to produce multiple designs that

trade off different architectural features. Price and power consumption of the

hardware system are optimized while constraints are satisfied.

Armstrong et al. (2008) developed a tool-set for function-based architecture

design exploration. This included function decomposition, adaptive function

mapping and complex inter-relations between architecture elements. This in-

formation aids in architectural definition and trading of architecture alternatives

using an MOEA. They created an Architecture Design Environment (ADEN)

to manage the complex inter-relationships between architectural elements, which

guides the designer in evaluating the performance of candidate architectures.

Martens et al. (2010), developed an evolutionary multi-criteria optimization

approach to generate optimal software architectures with respect to goals of per-
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formance, reliability, and cost. They applied a multi-criteria optimization algo-

rithm based on genetic algorithms for the software architecture design. Here, the

software architecture is modelled with the Palladio Component Model (PCM)

(Reussner et al., 2007). Starting with a given initial architectural model, the

multi-criteria genetic algorithm iteratively modifies architectural models and eval-

uates them in pursuit of better performance measures. This approach proved to

be successful in systematically exploring the design space spanned by different

design options. The PCM approach could be useful in creating software architec-

tures and evaluation of various success criteria for real-world system architecture

design problems.

Osekita and Holt (2009) presented a system architecture trade study which

considered the integration of an engine health management system as part of a

gas turbine engine control system. Eleven candidate architectures were consid-

ered for the trade study. They considered four architecture metrics: recurring

cost; non-recurring cost; weight; and reliability as objective functions for the

trade study and estimated the values of objectives for a baseline architecture,

and converted these metrics into a single aggregated cost objective. The values

of the objective metrics for the candidate architectures are estimated in a rel-

ative manner comparing with the baseline architecture in terms of the changes

and complexity of development needed in the candidate architectures. They per-

formed a sensitivity analysis with respect to the weight exchange rate and fleet

size. However, the result of this trade study varies with respect to the changes

in the weight exchange rate value. A key limitation identified in this study is

its focus on a single criterion of aggregated cost objective; this runs the risk of

masking the effects of the different elements which contribute to that criterion.

In a multi-criteria optimization framework the multiple criteria can be considered

individually without aggregating them into a single criterion, and the trade-off

of the candidate architectures in terms of the different criteria can be explored.

Using the multi-criteria approach, for example, the sensitivity of the design with

respect to chosen aggregation factors can be eliminated.

Selva & Crawley (2010) studied the trade-offs between different satellite plat-
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forms carrying a single instrument versus those carrying multiple instruments.

They proposed a methodology for the analysis of design trade-offs in the satellite

system architecture problems. Their architecture design methodology involves a

historical study to identify specific requirements and learning points from previ-

ous architecture designs. The requirements of the stakeholders, expert systems

engineers, customers and program managers are captured through several inter-

views and qualitative studies. Using this information a quantitative system model

is created in order to perform architecture design optimization. They encoded

the architecture options and evaluated the candidate architecture alternatives in

terms of four objective functions: life-cycle cost, schedule, risk and performance.

They performed a multi-attribute trade space exploration (MATE) by using an

exhaustive search method and selecting a small number of well balanced architec-

ture alternatives. The key areas of interest in this paper are in the formulation

of the objective functions for a complex satellite platform system design and the

methodology is applicable to other complex system architecture design problems.

However, for a large design space exploration, an exhaustive search method is

time-consuming and may not be viable.

Value-Driven Design provides a framework to enhance the systems engineer-

ing processes for the design of large systems. By employing economics in decision

making, Value-Driven Design enables rational decision making in terms of the

optimum business and technical solution at every level of engineering design.

Cheung et al. (2012), applied Value-Driven Design to the aero-engine system

through two case studies, which were conducted through Workshops under the

Rolls-Royce plc Advanced Cost Modeling Methodologies project. In a value-

driven design approach (Collopy & Hollingsworth, 2011), the values of objective

functions are converted to a common score using a-priori chosen conversion fac-

tors and aggregated by assigning weights to a single score, called Net Present

Value (NPV) of the system. The solution arising from this approach, however, is

sensitive to the choice of conversion factors and weights.

Bourne et al. (2011) developed a framework for designing a distributed con-

trol system (DCS) architecture for gas turbine engines using genetic algorithms in

21



2. Literature Review

tandem with systems engineering processes. They developed a database contain-

ing information about engine dimensions, components and various sub-systems.

In the optimization process, genetic algorithm uses the information stored in the

decision variables to build the distributed architectures from the functional in-

formation, the properties of the engine and available components stored in the

database. They evaluated candidate architectures from three viewpoints which

are deemed to be most important to system designers and commercial managers:

• Architectural view

• Commercial view

• Life-cycle view

The architectural view considers the structural and technical form of the sys-

tem. Evaluation functions within this view will analyze the placement of nodes,

harness routing, hardware allocation and weight of the system. In the commer-

cial view, the acquisition cost and non-recurring cost of the system are evaluated.

The life-cycle view aims to capture and evaluate the costs and added value of the

control system throughout its life-cycle based on reliability data and the num-

ber of serviceable components. Thy proved that a substantial systems modelling

method with a Multi-Criteria Decision Making (MCDM) approach has the po-

tential to obtain trade-off solutions for the complex system architecture design

problems.

From the above review, most of the studies have mainly focused on system

architecture design optimization with two or three objectives or design criteria.

The optimization algorithms utilized in these studies are suitable for handling

multi-objective optimization problems consisting of two to three objectives. The

resulting Pareto solutions can be visualized using Cartesian plots or scatter plots

and a preferred solution for the optimization problem can be selected from these

plots. However, many real-world problems often have more than three objec-

tives. These optimization problems are termed as “many-objective optimization”

problems (Farina & Amato, 2002).
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Figure 2.4: Regions of non-domination in a two-objective minimization problem.

2.5 Many-Objective Optimization

2.5.1 Background

Optimization approaches face a number of difficulties in solving many-objective

optimization problems.

• In a many-objective optimization problem a large proportion of the popu-

lation becomes non-dominated in the objective space. Figure 2.4 shows the

regions of non-domination with respect to an objective vector z in a two-

objective minimization problem. The solutions in the green region have

lower objective values compared to z, hence they are superior solutions

to z. Whereas, the solutions in the magenta region have higher objective

values compared to z, hence they are inferior solutions to z. However, solu-

tions in the blue regions have at least one objective value lower than z. In a

two-objective optimization problem, there are 2 out of 4(= 22) regions that

contain non-dominated solutions. In case the of a three-objective optimiza-

tion problem, there are 6 out of 8(= 23) regions that contain non-dominated

solutions. In a k-objective optimization problem, there are (2k − 2) out of
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2k regions that contain non-dominated solutions. Due to this, there is in-

sufficient selection pressure to progress the search (Khare et al., 2003; Pur-

shouse & Fleming, 2003) and the ability of the optimizer to search towards

the Pareto-optimal front can be compromised.

• Large population sizes are required for approximating the Pareto front in

many-objective optimization.

• The computational expense of optimization also increases due to an expo-

nential increase in the number of objective function evaluations.

• Visualization of optimal solutions in many dimensions becomes difficult.

In the recent past, several approaches are proposed for improving the conver-

gence of the optimizers for many-objective optimization (Ishibuchi et al., 2008;

Zou et al., 2008). In the following sections, potential approaches suitable for

many-objective optimization problems are described.

2.5.2 Methods for Increasing Selective Pressure

In evolutionary multi-objective optimization (EMO) problems the lack of effective

search, and hence convergence to the Pareto-optimal front, has been attributed to

those algorithms based on Pareto-dominance selection (Kukkonen & Lampinen,

2007), e.g. NSGAII (Deb et al., 2002a) and SPEA2 (Zitzler et al., 2001).

2.5.2.1 Modification of Pareto-dominance

The purpose of this approach is to reduce the number of non-dominated solutions

in the population by modifying the dominance relation. In the approach of Sato

et al. (2007), the dominance relation was changed to allow the user to contract

or expand the dominance area. This was achieved with a user-specified scaling

of the fitness value for each objective to weaken or strengthen selection. Another

implementation was that of α-dominance (Ikeda et al., 2001) where a solution x

dominates another y such that x can be slightly inferior (by an amount controlled

by α) to y in one objective and superior to y in other objectives.
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Both approaches are examples of the application of weak dominance, which

may increase the selective pressure and hence progress of the search towards the

Pareto- optimal front. However, both researchers have observed that the diversity

of the resulting population is reduced. In addition, both methods require the

user to specify parameters to control the strictness of the dominance relation. In

Zou et al. (2004), L-dominance is defined. This is an extended form of Pareto-

dominance taking account of the number and value of improved objectives. For

most of the DTLZ problems (Deb, Thiele, Laumanns and Zitzler, 2002) tested

it outperforms the state-of-the-art algorithms, IBEA (Zitzler & Künzli, 2004)

and NSGAII (Deb et al., 2002a) in terms of convergence to and diversity in, the

Pareto-optimal front. However, it does rely on the additional task of normalizing

all objectives within the feasible set of solutions, i.e. the maximum and minimum

of each objective must be found.

2.5.2.2 Assignment of different ranks

In these approaches different ranking methods are employed to reduce the non-

dominated solutions in the population. In the approach proposed by Drechsler

et al. (2001), they use of a relation called as ‘favour’ to compare solutions. Here,

a solution x is favoured to another solution y if the number of objectives in which

x is better than y, is greater than the number of objectives for which y is better

than x. A more sophisticated version of the relation ‘favour’ called, ε-preferred

was developed by Sülflow et al. (2007) to incorporate a user-specified difference

in objective values, ε, between compared solutions and so address a variability

issue.

Corne & Knowles (2007) compared different ranking methods and conclude

that an average ranking method, such as Weighted Average Ranking (Bentley &

Wakefield, 1998), outperformed other algorithms, except for problems comprising

many objectives where significant objective conflict exists. Ranking solutions and

then aggregating them, described as ranking-dominance, is used to replace non-

dominated sorting based on Pareto-dominance in Kukkonen & Lampinen (2007).

Two aggregation functions are tested, the sum and the minimum of ranks, on

the DTLZ problems on up to fifty objectives. For four of the six problems,
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ranking-dominance showed much improved convergence to the Pareto-optimal

front. However, for the remaining two problems, ranking-dominance performed

worse than Pareto-dominance. This was due to the fact that ranking-dominance

generated solutions in which some objectives were deteriorated while others were

improved. Another observation was that in some cases, while convergence was

much improved, diversity was significantly compromised.

2.5.3 Indicator Based Methods

As an alternative to Pareto-dominance, various fitness evaluation functions have

been developed and applied. Indicator-based algorithms are one such approach,

in which a single-objective indicator of a desired property of the population is

optimized, e.g. the Indicator-Based Evolutionary Algorithm (IBEA) (Zitzler &

Künzli, 2004). A popular indicator is hypervolume, which measures the volume of

objective space dominated by a population (Zitzler & Thiele, 1999). On selected

many-objective DTLZ test problems, IBEA is shown to perform well (Wagner

et al., 2007). However, it has the drawback of being computationally expensive

to compute hypervolume values and there have been various efforts to address

this. Two examples are the iterative approach of Ishibuchi et al. (2007) and the

fast hypervolume algorithm (HypE) of Bader & Zitzler (2011). The former only

generates one solution per run and so multiple runs are required to generate a

Pareto-optimal set of solutions. The latter proposes a fast search algorithm using

Monte Carlo approximation of the hypervolume. When evaluated for a constant

period of time, HypE outperforms popular MOEAs such as NSGA-II in terms of

hypervolume, even though each generation takes longer and hence it processes

half the number of generations. The approximation of the Pareto-optimal front

depends on the sampling of the Monte Carlo approach. More samples results in

a more accurate approximation, but require a longer execution time.

Another fitness evaluation mechanism is that of scalarizing or aggregation

functions, which combine multiple objectives into a single objective, often with

some form of weighting function. One such approach is Multiple Single Objec-

tive Pareto Sampling (MSOPS) by Hughes (2003). It comprises multiple single
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objective searches run in parallel, each with a different aggregation of objectives

using weight vectors. While this algorithm does not rely on Pareto-dominance

to rank solutions and provide selective pressure, it does require specification of

weight vectors a-priori.

2.5.4 Decomposition Based Methods

Another promising alternative approach to the Pareto-dominance relation is the

weighted Tchebycheff scalarizing function based fitness evaluation approach, e.g.

MoEA/D (Zhang & Li, 2007). In this a scalarizing function projects the entire

objective space onto a line. Here the multi-objective problem is solved as a

collection of a number of single-objective problems with different weight vectors

defined by the scalarizing function. It has been demonstrated in the literature

(Li & Zhang, 2009; Zhang & Li, 2007; Zhang et al., 2009) that MOEA/D has a

high search capability for continuous optimization.

2.5.5 Preference Articulation Methods

In multi-objective optimization, preferences can be used to restrict the search

space of the optimizer to find the solutions in a certain region of interest on the

Pareto optimal front. In Multi-Criteria Decision Making (MCDM), various ap-

proaches have been used for this purpose such as specification of weights, goals

and aspirations for the criteria (objectives) and constraints for the decision vari-

ables ( Hwang & Masud, 1979; Fleming et al., 2005; Rachmawati & Srinivasan,

2006; Adra et al., 2007).

Different preference articulation techniques used in the multi-objective opti-

mization are described below:

2.5.5.1 A-priori Preference Articulation

In this approach, preferences are specified by the DM before starting the optimiza-

tion process. A common approach is to specify an aggregating function, which

converts individual objectives into a single utility function resulting in a single
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objective optimization problem. A few examples of the a-priori approaches are

the weighted-sum method (Hwang & Masud, 1979), Goal Programming method

(Ignizio, 1976), the utility function approach (Greenwood et al., 1996) and the

weighting function approaches (Bentley & Wakefield, 1998). These approaches

find only a single optimum solution in a single run of the optimizer. Thus, mul-

tiple runs are required for generating a well-distributed set of Pareto-optimal

solutions. Furthermore, these approaches have difficulties in finding optimum

solutions for non-convex problems.

2.5.5.2 A-posteriori Preference Articulation

In a-posteriori preference articulation approach, the DM specifies preferences

after the optimization to identify a preferred solution. Examples include the

Pareto optimization approaches NSGA (Srinivas & Deb, 1994), MOGA (Fonseca

& Fleming, 1993), and SPEA (Zitzler & Thiele, 1998), non- Pareto approaches

such as VEGA (Schaffer, 1985) and VOES (Kursawe, 1991).

When applied to EMO problems, common issues with a-posteriori methods

are:

• The algorithm may have some difficulty in generating an adequate Pareto

front in terms of its diversity of solutions and proximity to the true Pareto

front (Purshouse, 2003).

• It may be computationally infeasible for the algorithm to generate Pareto

optimal solutions for many objectives, particularly if, in the case of evolu-

tionary algorithms, large populations are used. As the DM is usually only

interested in a subset or region of interest (ROI) of the Pareto front, then

many of the Pareto optimal solutions may be redundant.

2.5.5.3 Progressive Preference Articulation

In progressive or interactive articulation of preferences approach, the DM can

interact with the optimization to provide revised preferences as more information

progressively becomes available, in order to resume the optimization to search
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for better solutions (Fonseca and Fleming, 1998a; Branke et al., 2001; Branke &

Deb, 2004; Cvetković & Coello-Coello, 2005).

Thus, the DM acquires knowledge of the problem as the optimization pro-

gresses and very little pre-requisite information such as, goal values, objective

ranges and individual objective optima is required. The DM can change the

goals and preferences over time, as trade-off solutions emerge in the optimiza-

tion process and experience of the problem is gained. Compared to a-posteriori

method, a progressive preference articulation process can be used to zoom in the

ROI on the Pareto front, provide more and better distributed Pareto-optimal

solutions and better proximity to the true Pareto front with the same computa-

tional cost.

Hence, progressive preference articulation (PPA) can be a promising technique

for solving the many-objective optimization problems in order to find Pareto-

optimal solution in the DMs region of interest.

2.5.6 A Co-Evolutionary Approach using Preferences

Co-evolving a family of preferences simultaneously with the population of can-

didate solutions has the potential to be another promising concept for solving

many-objective problems. Recently, preference-inspired co-evolutionary algo-

rithms (PICEAs) (Purshouse et al., 2011; Wang et al., 2012) have been shown

to be able to achieve better convergence towards true Pareto fronts on many-

objective problems and outperform other state-of-the-art algorithms. In these

algorithms, a family of preferences are co-evolved with candidate solutions; the

preferences gain higher fitness by being satisfied by fewer candidate solutions, and

the candidate solutions gain fitness by meeting as many preferences as possible.

2.5.7 Multi-Objective Multi-Modal Optimization

In the case of non-convex multi-objective multi-modal problems, there exist mul-

tiple decision vectors which map to identical objective vectors on Pareto front

Figure 2.5.
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Figure 2.5: Multi-modal Pareto optimal solutions in a multi-objective optimiza-
tion problem.

Definition 4. In a minimization optimization problem, two decision vectors

x,y ∈ S in the feasible decision space, are called multi-modal Pareto optimal

solutions, if they satisfy x 6= y, and fi(x) = fi(y), ∀i ∈ {1, 2, . . . , k} and there

exist no other decision vector q ∈ S, such that fi(q) < fi(x), ∀i ∈ {1, 2, . . . , k}.

Many multi-objective evolutionary algorithms fail to find and preserve all of

the multi-modal solutions in the non-dominated solutions set (Preuss et al., 2006;

Rudolph et al., 2007). Due to the incorporation of diversity operators in MOEA,

they will assign low fitness values to solutions that are densely clustered in ob-

jective space, which will eventually lead to their elimination from the population.

Hence they can converge to any one of the global optima out of multiple global

optima present in the multi-objective multi-modal problems.

Goldberg & Richardson (1987), introduced a niche preserving technique for

obtaining multi-modal solutions in a single-objective optimization, followed by

other niching techniques include crowding (Mahfoud, 1992), restricted tourna-

ment selection (Harik, 1995), and clustering (Yin & Germay, 1993) proposed for

evolutionary algorithms. A new diversity preserving mechanism is presented in

genetic diversity evolutionary algorithm (Toffolo & Benini, 2003) which considers

a distance based diversity measure as an additional objective to improve decision
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space diversity. Another MOEA approach by Chan & Ray (2005), uses hypervol-

ume and neighborhood counting measures for maintaining diversity in objective

and decision spaces, which is computationally expensive to implement on high di-

mensional problems. (Tarafder et al., 2007) highlighted the importance of finding

multi-modal Pareto solutions for a chemical process and proposed modifications

to selection operator for NSGAII (Deb et al., 2002a) algorithm for finding these

solutions. Deb & Tiwari (2008), developed a generic evolutionary algorithm:

Omni-optimizer for solving single and multi-objective multi-modal optimization

problems. This optimizer incorporates restricted selection and a crowding dis-

tance measure utilizing both objective and decision space information to maintain

diversity in both spaces and preserve a well distributed multi-modal solutions. A

niche based evolution strategy approach is proposed by (Shir et al., 2009) for en-

hancing the decision space diversity multi-objective optimization problems. They

demonstrated methodology on several two-objective multi-modal problems. How-

ever, for many-objective optimization problems these approaches have difficulties

in converging towards the true Pareto front. In system architecture design op-

timization, finding the multi-modal Pareto solutions would allow the decision

maker a greater choice when choosing between solutions.

2.5.8 Visualization Methods

Much research on evolutionary multi-objective optimization has concentrated on

two or three objective problems (Coello-Coello et al., 2007; Deb, 2001). When

there are two or three objective functions in the optimization, it is straightforward

to visualize the obtained Pareto-optimal solutions using a scatter plot or Cartesian

co-ordinates plot with two or three axes. A decision-maker can select a preferred

solution conveniently from the displayed Pareto-optimal front. However, when

the optimization problem has more than three objective functions, visualizing the

Pareto-optimal solutions is difficult. It is also more challenging for the decision-

maker to select a preferred solution for the optimal design. The commonly used

visualization approaches in multi-objective optimization are reviewed below; more

extensive surveys can be found in Miettinen (1999) and Deb (2001).
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2.5.8.1 The Cartesian Co-ordinates Plot and Scatter-Plot

In the multi-objective optimization Cartesian co-ordinates plots are used for vi-

sualizing non-dominated solutions having two or three objective functions on the

axes and solutions as points at respective objective values. In a Scatter-plot a

matrix of pairwise objective plots are used for visualizing the two objective func-

tions in each plot (Cleveland, 1993). The scatter plot is also very useful to show

how the objective functions agree with each other and the non-linear relationships

between them.

Although scatter-plots are widely used for visualizing the results of 2-objective

optimization problems, they can become increasingly difficult to interpret for op-

timization problems having higher number of objectives. Visually presenting

Pareto-optimal solutions for many-objective optimization problems using a ma-

trix of two dimensional diagrams is not very informative for the decision maker.

2.5.8.2 The Parallel Co-ordinates Plot

In the case of a multi-objective evolutionary optimization, the parallel coordinate

representation, as originated by Inselberg (1985), involves plotting the normal-

ized objective values of the resulting non-dominated alternative solutions onto a

number of parallel axes, one per normalized objective. The objective components

for each individual solution are joined by a line. Crossing lines indicate that the

objectives are in conflict and parallel lines indicate that the objectives are in har-

mony with each other. The degree to which the lines cross indicates how strong

the trade-off is between adjacent objectives. The ordering of the objective axes

is important to reveal the presence and degree of any conflict. The ability to

easily re-order or re-scale axes can substantially change the view of the resulting

objective space and offer new insights into the structure of the objective data.

The parallel coordinates plots allow a multi-dimensional objective space to be

represented in a two-dimensional diagram.

Example applications of the use of parallel coordinates are the interactive

multi-objective optimization shown in Fonseca & Fleming (1998b) and Fleming
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et al. (2005). Here, the decision maker visualize the progress of the optimization

on a parallel co-ordinates graph and express his preference in terms of goals on

the criteria scores displayed on the parallel co-ordinates trade-off graph in order

to steer the search towards his region of interest.

2.6 Uncertainty Analysis and Robust Design Op-

timization

Uncertainty analysis and robust design optimization has become an important

topic in real world design applications (Ben-Tal & Nemirovski, 2002; Beyer &

Sendhoff, 2007; Deb & Gupta, 2006). A comprehensive review of robust opti-

mization can be found in (Beyer & Sendhoff, 2007), where a classification of the

uncertainty factors involved into systems design optimization is presented. In

real-world design problems, several uncertainties related to different environmen-

tal conditions, experimental errors and evaluation errors may be introduced in

the optimization problem. A widely used sampling method for performing un-

certainty analysis is the Monte Carlo(MC) method (Kroese et al., 2011; Robert

& Casella, 1999). However, the MC method typically requires a large number of

simulation runs that would be computationally very expensive. The main goal of

the robust design optimization is to identify a solution, which may or may not be

a global optimum solution, that is stable over small changes in design parameters

due to uncertainties caused by underlying assumptions.

2.7 Research Gaps

Based on the review of the relevant literature in the previous sections several lim-

itations and research gaps of the currently available multi-objective optimization

tools are identified and enumerated below:

• In general, most real-world system design optimization problems will have

significantly many objective functions which are non-convex, discontinuous,

and multi-modal problems consisting of non-numeric and mixed-type deci-

sion variables. In these design problems, resource limitations of the system
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are incorporated as design constraints. These problems are difficult to for-

mulate mathematically and difficult to solve using conventional numerical

optimizers. The research gap identified here is the lack of a methodology for

formulating the system architectures design problems in terms of their qual-

itative and quantitative criteria, development of the models for evaluating

the performance of the candidate architecture alternatives. This research

gap is addressed in Chapter 4 of this thesis by developing a methodology

for system architecture design using a case study of a real-world aero engine

health management system.

• A multi-objective optimization problem having more than 3 objectives can

be called a many-objective optimization problem (Fleming et al., 2005).

Due to the exponential increase of the number of non-dominant solutions

and the consequent reduction in selection pressure, most optimization al-

gorithms fail to converge towards a true Pareto optimal surface (Ishibuchi

et al., 2008; Purshouse & Fleming, 2007). Visualization of the Pareto op-

timal surface also becomes difficult for many-objective problems. System

architecture design optimization problems often have multiple decision vec-

tors mapping to same objective vectors on the Pareto front; these are multi-

modal Pareto optimal solutions corresponding to different alternative solu-

tions having similar objective values. Finding multi-modal solutions can

increase the available choices to the decision maker for selecting a suitable

architecture solution. Most popular optimizers fail to find and preserve

all of the multi-modal solutions available in the decision search space of

the optimization problem. This research gap is addressed in Chapter 3 of

this thesis, by proposing an interactive multi-criteria design optimization

framework which can solve many-objective optimization problems and find

diversified multi-modal Pareto optimal solutions. The optimization frame-

work supports the decision maker by providing a facility for progressive

preference articulation, empowering closely coupled user and optimization

process interaction.

• Most optimization algorithms attempt to find an approximated set of non-

dominated solutions close to the true Pareto front. However, sometimes the

34



2. Literature Review

decision maker (DM) is not satisfied with the available set of non-dominated

solutions, and wants to have more solutions in a specific region of interest

(ROI) on the Pareto front. In such cases, the whole optimization process

has to be repeated with more population members in order to increase the

density of the approximated non-dominated solutions which leads to an in-

crease in the computational expense. However, an alternative model can

be developed using the information from the available Pareto optimal so-

lutions, which can be utilized for estimating new non-dominated solutions

in the DM’s preferred ROI on the Pareto front. This gap in the research

is addressed in the Chapter 3 of this thesis by introducing a Pareto esti-

mation method and an efficient clustering technique to identify one-to-one

mapping between the available Pareto optimal objective vectors and deci-

sion variables in order to generate a large number of multi-modal Pareto

solutions.

• The system architecture design process consists of different models, which

can be system modeling language (SysML) models, scoring tables, and

meta-models representing expert judgements. These models can involve

many assumptions and uncertain parameters, which need to be considered

in the optimization process to find robust solutions for the system archi-

tecture problem. There is a need for the development of approaches for

performing uncertainty analysis and estimating the sensitivities of the so-

lutions with respect to the variations in the uncertain design parameters

efficiently. This research gap is addressed in Chapter 5 of this thesis by

integrating an efficient uncertainty quantification technique using polyno-

mial chaos expansions within the optimization process. A robustness met-

ric is calculated using the variations of the criteria values with respect to

variations in the uncertain design parameter values. In the optimization

framework the progressive preference articulation technique facilitates the

decision maker to specify the level of sensitivity that can be allowed in the

design. The proposed methodology is applied to a real-world system archi-

tecture design application of an aero gas turbine engine and robust solutions

for an engine health management system architecture design are obtained.
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2.8 Summary

In this chapter a brief review of the system architecture design process and pre-

viously implemented methods are described.

A review of multi-objective optimization methods was introduced. The con-

cept of Pareto dominance and its utility for multi-objective optimization was

presented. The three essential requirements for multi-objective optimizers were

described. These are correspondingly the convergence of the approximation

set towards the trade-off surface (proximity), the diversity of the approxima-

tion set across the trade-off surface, and the pertinence of approximation set to

the decision maker. The classical approaches and evolutionary algorithms for

solving multi-objective problems were described alongside their limitations for

many-objective optimization. In the remainder of this thesis, potential counter-

measures and remedial approaches proposed in the literature for improving the

convergence of the optimizers are presented. Various preference articulation tech-

niques and visualization techniques are described. Research gaps and goals of

this thesis are highlighted. In the next chapter, a proposed interactive design

optimization framework for solving many-objective optimization problems with

diversified multi-modal Pareto optimal solutions is presented.
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Interactive Multi-Criteria Design

Optimization Framework

3.1 Introduction

In this chapter an interactive multi-criteria design optimization framework is pro-

posed for solving the many-objective system architecture design problems. The

interactive design optimization framework consists of a multi-objective evolution-

ary algorithm (MOEA): multi-objective genetic algorithm (MOGA) with a unique

progressive preference articulation (PPA) technique. The MOGA is updated with

a crowding distance operator in order to identify Pareto optimal solutions with

good solution diversity in both objective space and decision variable space.

Next, a novel Pareto estimation (PE) method is introduced for estimating the

mapping between the obtained Pareto objective vectors and decision vectors, in

order to increase the density of the available Pareto optimal solutions with re-

duced computational cost. Limitations of the PE method are discussed for multi-

objective problems having many-to-one mappings between the decision vectors

and Pareto objective vectors. An extension to the PE method is presented using

an efficient clustering algorithm to identify groups of decision vectors. The per-

formances of the proposed optimization framework and the extended PE method

are assessed by running tests on different benchmark problems.
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3.2 Interactive Multi-Criteria Design Optimiza-

tion Framework

System architecture design problems often involve many conflicting objectives to

be simultaneously optimized.

In this research work, an interactive multi-criteria design optimization frame-

work based on a multi-objective genetic algorithm (MOGA) (Fonseca & Flem-

ing, 1993) is proposed. The algorithm uses a non-dominated classification of

the population of solutions and rank-based fitness sharing techniques in evolving

multi-objective optimization solutions. Every individual in the population, after

evaluation of the objective function, is ranked using the following relation:

rki = 1 + dmi (3.1)

where dmi is the number of individuals dominating the decision vector xi. The

idea behind this method of ranking is that misrepresented sections of the Pareto

front (PF) will increase the selection pressure to that direction of the front. This

information is used to induce better spread in the objective vectors that are not

part of the current PF approximation so as to maintain a relatively even supply

of objective vectors in all regions of the PF.

MOGA is incorporated with an efficient progressive preference articulation

technique (Fonseca & Fleming, 1998a) (PPAFF) . This denotes the process of

introducing, incorporating and modifying designer preferences in an interactive

and progressive way at any time during the optimization search process; this

is a key feature for multi-criteria decision making (MCDM). This enables the

decision-maker (DM) to set goal values (design requirements or aspirations) for

the objectives being optimized and to introduce and change priorities for ob-

jectives in a progressive fashion at any time during the optimization process.

This enhanced version of MOGA also allows the designer to specify constraints

together with a set of priority levels for design objectives in a transparent and

consistent manner.

The PPAFF facility is implemented by incorporating a goal attainment method

in the ranking procedure. In the goal attainment method, let g = {g1, . . . , gk} be
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Figure 3.1: Ranking of solutions with (i)an unattainble goal and (ii)an attainble
goal, using the progressive preference articulation PPAFF (Fonseca & Fleming,
1998a) technique.

a goal vector and z1 = {z1, . . . , zk} and z2 be two objective vectors. A preference

relation can be expressed such that (as described in Giagkiozis et al. (2013)),

when k − s of the k objectives are met, then z1 is preferable to z2 if and only if.

z(1,1...k−s) ≤ z(2,1...k−s) or

{(z(1,1...k−s) = z(2,1...k−s)) ∧

((z(1,k−s+1...k) ≤ z(2,1...k−s+1...k)) ∨ (3.2)

(z(2,k−s+1...k) � g(k−s+1...k)))}

Figure 3.1, shows the ranking of solutions in MOGA with (i) an unattainable

goal and (ii) an attainable goal, using the PPAFF technique. When the goal is

unattainable all the solutions are ranked based on the number of solutions dom-

inating the solution being ranked (equation 3.1). When the goal is attained by

few solutions, these solutions are initially ranked as per equation (3.1) within the

goal region, then for the solutions outside the goal region their ranks are added

to the highest rank of the solutions within the goal region.
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In the multi-objective optimization, there exist multi-modal Pareto solutions

in decision space,i.e., multiple solutions with equivalent objective function values

for the solutions in the objective space. In order to find and preserve all the

sets of multi-modal Pareto solutions in the decision space, an MOEA should be

able to maintain diversity of solutions found in both objective space and decision

space. An MOEA also needs to incorporate elitism, by preserving the best solu-

tions found in initial generations and avoiding them being replaced with inferior

solutions in subsequent generations. In the proposed optimization framework,

the MOGA optimizer is further enhanced with an efficient crowding operator

(Deb et al., 2002a) for maintaining the diversity of the non-dominated solutions

both in objective space and decision space, along with an archiving technique

for incorporating elitism in the optimizer. A “parallel coordinates” graph in the

MOGA software suite facilitates visualization of the interplay between the differ-

ent objectives.

Number of steps involved in the MOGA with PPAFF and Crowding distance

operator, as shown in Figure 3.2, are listed below:

1 Create the initial random population for optimization.

2 Integrate the system models into the optimization framework and evaluate

the objective functions and constraints for design optimization problem.

3 Rank the population members using the PPAFF techniques considering the

preferred goal values set by the decision maker (DM). The PPAFF technique

gives DM feasibility to interact with the optimization process.

4 Compute the crowding distance metric values for the non-dominated solu-

tions in the objective space and decision space separately.

5 Combine the normalized crowding distance metrics of objective space and

decision space for each solution. Sort the solutions in the decreasing or-

der of the combined crowding distance value. The solutions having higher

crowding distance value are preferred to maintain diversity of the solutions

in both the objective and decision spaces.
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Figure 3.2: Flowchart of multi-objective genetic algorithm (MOGA) with PPAFF

and Crowding distance operator.
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Figure 3.3: Interactive optimization framework with progressive preference artic-
ulation technique.

6 Archive the non-dominated solutions to maintain elitism in the optimization

process.

7 Apply the genetic operators selection, crossover and mutation for the pop-

ulation.

8 Create new population and evaluate the objectives and constrains for the

new populations.

9 Repeat the iterations until the maximum generations are reached. However,

PPAFF technique enable the DM to stop and start the optimization process

in order to express his preferences and guide the optimization to DM’s

preferred region of interest.

The interactive optimization framework with progressive preference articula-

tion technique is shown in Figure 3.3.

• Initially, the design problem is formulated as a multi-criteria optimization

problem. The specification is passed to MOGA.

• MOGA generates initial candidate solutions and passes them to the model

for evaluation of the design objective functions.

• The candidate solutions are ranked and crowding distance metric values

are computed in both objective space and decision spaces for each solution.

The non-dominated solutions are sorted in the decreasing order of crowd-

ing distance values. Solutions having higher crowding distance value are
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preferred to maintain diversity of solutions in both objective and decision

spaces.

• MOGA iterates the optimization process and creates new solutions using

the genetic operators and displays the non-dominated trade-off solutions.

• While MOGA evolves new non-dominated solutions, the decision maker

(DM) can observe progress of the optimization process and analyze the

performance improvements.

• The decision maker can interact with MOGA using the progressive pref-

erence articulation approach. Using domain knowledge the decision maker

can express preferences and steer the optimization into the design region of

interest (ROI).

MOGA trade-off graph with non-dominated solutions for a multi-objective

design optimization problem is shown in Figure 3.4. In MOGA, the trade-off

values of all objective functions are shown in a “parallel coordinates” graph. In

the case of many-objective optimization, the parallel coordinates graph aids the

visualization of all constraints and objective functions values on a single plot.

This approach places all the axes parallel to each other thus allowing any num-

ber of axes to be shown in a 2-D representation. On the ‘x-axis’ objectives are

displayed and on the ‘y-axis’ corresponding criteria values are displayed. Each

connected line in the trade-off graph represents a Pareto optimal solution for the

multi-objective optimization problem.

The bottom window in Figure 3.4 shows the “preference articulation” facility.

In this window, all the objective functions of the multi-objective design problem

are listed. The decision maker can set goal values for each objective by moving

the sliders between maximum and minimum bounds at any time during the opti-

mization process. Goal points for each of the objectives are marked with an “x”

in the trade-off graph. As the decision maker exercises progressive articulation

of preferences, the optimization process will steer the search towards the pre-

ferred region of interest (ROI) in the feasible objective space and try to minimize
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Figure 3.4: MOGA trade-off graph with progressive preference articulation win-
dow.

the objective functions values within the specified goals to find Pareto optimal

solutions.

3.3 Pareto Estimation Method

Pareto estimation (PE) method was recently introduced by Giagkiozis & Fleming

(2012) for increasing the number of available Pareto optimal solutions in the

specific regions of the front that are of interest to the decision maker.

3.3.1 Motivation

At the end of an optimization run on a multi-objective optimization problem,

the optimizer finds a set of solutions that approximate the Pareto optimal front.

Subsequently, these solutions are presented to a decision maker (DM) who can

identify a few candidate solutions that are of interest. However, in some cases,
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the DM would prefer a solution in the vicinity of the aforementioned solutions

which is not present in the given set of solutions. In this case, the analyst does

not have many options and would either restart the optimization in the hope

that the preferred solution of the decision maker is obtained. This presents a

number of difficulties of which the most obvious one is that the computational

load is increasing disproportionately to the expected gain. This consideration

may lead the decision maker to abandon all the above scenarios and simply select

one solution from the already existing Pareto set approximation.

The Pareto estimation (PE) method (Giagkiozis & Fleming, 2012) resolves

this issue by allowing the decision maker to explore more solutions in the vicinity

of already obtained ones without resorting to further optimization. A major

motivation for the introduction of PE has been that Pareto optimal solutions can

be obtained in specific regions of the Pareto front without the need to resort to

additional optimization runs. Given a set of Pareto optimal solutions, obtained

by any optimization algorithm, specific solutions on the Pareto front can be be

obtained that are not part of the initially obtained Pareto set using the PE

method.

The PE method depends on the ability to identify a relationship (mapping)

from Pareto optimal solutions in objective space to decision space. In the PE

method (Giagkiozis & Fleming, 2012), this mapping is identified using a radial

basis function neural network (RBFNN)(Baxter, 1992; Bishop, 1995). This re-

lationship can then be manipulated to produce solutions in specific parts of the

Pareto front. We refer to this mapping as, FP, whose domain of definition is

the set of Pareto optimal objective vectors, P, and its range their corresponding

decision variable vectors D.

FP : P→ D. (3.3)

3.3.2 Radial Basis Function Neural Networks

In the PE method (Giagkiozis & Fleming, 2012), a specific type of neural network,

radial basis function neural networks(RBFNN) (Baxter, 1992; Bishop, 1995; Bors

& Pitas, 1996), are used to build the models to identify the mapping from Pareto
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optimal solutions in objective space to decision space and for predicting the deci-

sion variables of the new solutions in specific regions of the Pareto front. RBFNN

have a single hidden layer and an output layer. The output layer is often com-

prised of linear functions since this guarantees a unique solution to the weights

w (Bishop, 1995).

RBFNNs usually employ basis functions that are radially symmetric about

their centres µ, for the chosen norm, and decreasing as x drifts away from µ. A

commonly used basis function is the Gaussian (Bishop, 1995), which is given as,

φi(x) = exp

(
‖x− µi‖2

2σ2
i

)
. (3.4)

In RBFNN the output layer is comprised of linear functions and the hidden

layer is highly non-linear in the parameters µ and σ. Various techniques are

suggested in the literature (Bishop, 1995), for the selection of their optimal values.

In the PE method (Giagkiozis & Fleming, 2012), all the training data is used as

centres for the radial basis functions, φi. Therefore the number of basis functions

is equal to the number of training vectors used. Additionally, a uniform value for

the parameter, σ, is used for all basis functions, and it is set to 5.d̄h, where d̄h is

the mean distance of solutions in P̃ to their nearest neighbour.

Then equation (3.4) becomes,

φi(x) = exp


∥∥∥x− P̃i

∥∥∥2
2(5d̄h)2

 , (3.5)

The output of a RBFNN is a linear combination of the basis function φi(.),

ym(x) =

|P̃|∑
i=0

wm,iφi(x), (3.6)

where φ0(.) = 1 is the output layer bias term and m ∈ {1, . . . , n}, where n, is

the number of outputs which is equal to the number of decision variables.

To validate the created neural network, (n − 1)-cross validation was used as

suggested in Jones et al. (1998). For a Pareto set of size (Ps, Ps), RBFNN models
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Figure 3.5: The Pareto estimation method (Giagkiozis & Fleming, 2012).

are created using (Ps − 1) samples for the training set and the remaining sample

was used to estimate the generalization error. This procedure is repeated until

all the solutions in the Pareto set have been used as a test sample and then the

mean square error is calculated. The input data, i.e. Pareto objective vectors in

each cluster, is passed through the input layer then processed by the radial basis

functions of the hidden layer. The outputs of the hidden layer units are then

linearly combined and processed in the output layer to produce the output of

decision vectors. RBF neural networks do not suffer from the problem of getting

stuck at local minima in the parameter space because of their quadratic error

function, thus global minima can be easily found.

3.3.3 Pareto Estimation - General Procedure

The process of Pareto estimation method is visualized in Figure 3.5, and the main

steps involved in the Pareto estimation method can be summarized as follows:

• The Pareto optimal solutions in the objective space P are normalized and

transformed using the mapping, Π−1 : P → P̃, where P̃ is a transformed

Pareto objective vectors. In this step a projection of a normalized ver-

sion of the Pareto set approximation onto the (k − 1)-dimensional simplex

(CHI) is performed, as shown in Figure 3.6. This step simplifies the task of
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Figure 3.6: The normalization and projection of a two-objective Pareto front
(Giagkiozis & Fleming, 2012).

generating a set of uniformly distributed points E, as it is easy to produce

these points on the (k − 1)-simplex in contrast with generating points on

the Pareto front.

The Pareto optimal objective vectors P is normalized according to:

f̃i =
fi − z?i
zndi − z?i

. (3.7)

The vectors z? and znd, ideal and nadir objective vectors are estimated from

the Pareto optimal set P. This normalization restricts the Pareto optimal

objective vectors, P, in the range [0, 1].

The normalized objective vectors projected onto the CHI using:

P̃ = PP T
E +

1

k
J|P|,k. (3.8)

where P̃ is the transformed Pareto objective vectors, the matrix J|P|,k is a

unit matrix of size |P| × k and PE is a projection matrix obtained as:

PE = H(HTH)−1HT ,

H =

(
e1 −

1

k
1 · · · ek−1 −

1

k
1

)
,

(3.9)
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where ei is a vector of zeros with its ith element set to 1.

• Subsequently a radial basis function neural network (RBFNN) is trained to

identify the relationship, F̃P̃ : P̃ → D. D and P̃ represent Pareto optimal

decision vectors and projected objective vectors, respectively. Once the

RBFNN is trained, it is used for estimating a large number of decision

vectors whose objective vectors are very likely to be in the targeted regions

on the PF.

• The generation of a set, E ⊆ CHI , and its use with the FP̃ mapping to

generate a set of estimated decision vectors, DE.

The selection of a set, E, which controls the region on the Pareto optimal

front interested to the DM, is supplied as an input to the RBFNN model and the

corresponding objective vectors will be generated in the decision space. The set

E can be generated in one of two regions:

• In a specific region (to be selected by the decision maker).

• The entire CHI (where the entire Pareto front will be covered, given the

Pareto estimation method is successful).

3.3.4 Limitations of Pareto Estimation Method

One of the assumptions in the Pareto estimation method in Giagkiozis & Fleming

(2012), is that the objective function is one-to-one, or at least that this condition

obtains for the mapping between the Pareto set in decision and objective space.

If this condition does not hold, then the artificial neural network used will face

difficulties as for the same objective vector it would have to produce two or more

output vectors simultaneously.

System architecture design problems objective often result in the multi-modal

problems. In the case of multi-objective multi-modal problems, there exist mul-

tiple decision vectors which result in identical objective vectors on Pareto front

as shown in Figure 3.7 (Kudikala et al., 2013b). The two sets C1 and C2 map to

the same Pareto optimal solutions in the Pareto optimal set P. Z is the feasible
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Figure 3.7: A many to one mapping of decision vectors to Pareto front in multi-
objective multi-modal problems (Kudikala et al., 2013b).

set in objective space (right) and S is the feasible set in decision space (left).

This corresponds to the many-to-one mapping of the multiple decision vectors

in D to the objective vectors in P. The decision vectors corresponding to each

multi-modal optimal points originate from different clusters Cm in decision vari-

able space D. The RBFNN relationship will fail to produce the one-to-many

mapping of F̃P̃ : P̃→ D. It will generate any one, but not all, of the multi-modal

solutions.

3.4 Extended Pareto Estimation Method with

Clustering

In order to overcome the problem revealed in Section 3.3.4, the different clusters

Cm of multi-modal solutions present in the non-dominated set can be identified

and separated using a clustering algorithm. The obtained clusters of decision vec-

tors Cm and corresponding objective vectors in P will have a one-to-one mapping

between decision variable space and objective space for the Pareto front (Kudikala

et al., 2013a,b). Once the different clusters of decision vectors Cm are separated,

the RBFNN can be trained for the individual cluster of solutions Cm and P̃ as

shown in Figure 3.8 and identify number of one-to-one mappings F̃P̃Cm
: P̃→ Cm.
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Figure 3.8: The extended Pareto estimation method. Clusters the Pareto opti-
mal decision variable vectors and identifies a mapping for every cluster (Kudikala
et al., 2013b).

The steps involved in clustering and Pareto estimation are summarized as

follows:

Step 1 Extract, P, the non-dominated individuals obtained from an optimiza-

tion algorithm, and, D the associated decision vectors.

Step 2 Perform clustering analysis on the obtained decision variable vectors D

using a clustering algorithm.

Step 3 For each individual cluster normalize P using equation (3.7).

Step 4 Project the normalized P onto the k−1 dimensional hyperplane defined

by the set of vectors {e1, . . . , ek−1} using equation (3.9) and equation (3.8),

to produce P̃.

Step 5 Identify the mapping F̃P̃Cm
: P̃ → Cm using P̃ and Cm as inputs and

outputs, respectively, and use these to train a RBFNN.
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Step 6 Create a set E. In this work this is a set of evenly spaced convex vectors

on the k − 1 dimensional hyper plane.

Step 7 Use the set E as inputs to the RBFNN created in Step 5, to obtain

estimates of decision vectors CE.

Step 8 All the sets CE can be used with the objective function f(·) to verify

that the produced solutions are non-dominated and acceptable.

3.5 Visual Assessment of Cluster Tendency (VAT)

Algorithm

Most clustering algorithms (Jain et al., 1999; MacQueen et al., 1967) need the

number of output clusters to be pre-specified as an input to the algorithm. In

general we do not know a-priori the number of clusters available in the Pareto

optimal solutions obtained from the optimization algorithm.

Bezdek & Hathaway (2002) developed a visual assessment of cluster tendency

(VAT) method, to identify potential clusters in a data set. Here the pair-wise

dissimilarities between the n individuals of the data set are estimated and re-

ordered, so that all the neighbouring individuals are consecutively ordered. The

reordered n × n matrix of pair-wise dissimilarities is displayed as an intensity

image with n×n pixels. Clusters are indicated by dark blocks of pixels along the

diagonal of the image. However, the VAT method is too computationally costly

for larger data sets. Wang et al. (2010), proposed an improved VAT (iVAT) and

an automated VAT (aVAT) method to automatically determine the number of

clusters and cluster separation based on the difference between diagonal blocks

and off-diagonal blocks in the image of the reordered dissimilarity matrix.

In this research work, the iVAT method (Wang et al., 2010) is used for iden-

tifying different clusters of decision vectors Cm in D. The iVAT algorithm will

estimate and reorder the pairwise dissimilarities between the decision vectors and

extract different clusters available in the decision vectors D. If there are multi-

52



3. Interactive Multi-Criteria Design Optimization Framework

modal optimal solutions present in the non-dominated solutions found by the

optimizer, then the clustering will separate the decision variable vectors corre-

sponding to the multi-modal solutions into different clusters.

A flowchart of the proposed interactive multi-criteria design optimization

framework incorporating the MOGA optimizer, the clustering analysis and the

Pareto estimation method is illustrated in Figure 3.9. Pareto estimation method

and clustering analysis are described in the following sections. Number of steps

involved in the proposed optimization framework are listed below:

1 Create the initial random population for optimization.

2 Integrate the system models into the optimization framework and evaluate

the objective functions and constraints for design optimization problem.

3 Rank the population members using the PPAFF techniques considering the

preferred goal values set by the decision maker (DM). The PPAFF technique

gives the DM feasibility to interact with the optimization process.

4 Compute the crowding distance metric values for the non-dominated solu-

tions in the objective space and decision space separately.

5 Combine the normalized crowding distance metrics of objective space and

decision space for each solution. Sort the solutions in the decreasing or-

der of the combined crowding distance value. The solutions having higher

crowding distance value are preferred to maintain diversity of the solutions

in both the objective and decision spaces.

6 Archive the non-dominated solutions to maintain elitism in the optimization

process.

7 Apply the genetic operators selection, crossover and mutation for the pop-

ulation.

8 Create new population and evaluate the objectives and constrains for the

new populations.
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Figure 3.9: Flowchart of the proposed interactvie multi-criteria design optimiza-
tion framework incorporating the MOGA optimizer, the clustering analysis and
the Pareto estimation method.
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9 Repeat the iterations until the maximum generations are reached. However,

PPAFF technique enable the DM to stop and start the optimization process

in order to express his preferences and guide the optimization to DM’s

preferred region of interest.

10 Obtain the Pareto optimal objective vectors and decision vectors at the

end of optimization and investigate the presence of groups in the obtained

decision vectors using an efficient clustering technique.

11 After the clustering analysis, group the decision vectors and corresponding

objective vectors into clusters C1 to Cm.

12 Normalize and transform the objective vectors in individual clusters.

13 Train radial basis function neural networks using the objective vectors and

decision vectors for each cluster of solutions.

14 Estimate new solutions for each cluster using Pareto estimation (PE) method.

15 Present the obtained Pareto solutions from PE method to the decision

maker.

In the next section the performance of the proposed framework is evaluated

using the number test cases of multi-objective test functions.

3.6 Experimental Setup

In order to challenge the search capacities of MOEAs, a set of multi-objective

scalable test functions (Deb et al., 2002b) in terms of the number of objectives

and decision variables were introduced. These test functions have characteristics,

such as multi-modality and discontinuity, which are known to arise in system ar-

chitecture design problems and generally cause difficulties to most MOEAs. The

scalable test functions were intended for the evaluation of the performance of

MOEAs when dealing with an increased number of competing objectives. These

test functions are widely used as benchmark problems in the EMO community.
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In this research work, several test cases of the multi-objective optimization

problems with different numbers of variables and with different objective numbers

in the optimization are considered. These problems are solved using the proposed

MOGA with PPA and crowding distance operators, for 25 times using a different

seed for the random number generator in each run. For the purpose of comparison,

the test problems are also solved 25 times using NSGA-II (Deb et al., 2002a),

Omni-optimizer (Deb & Tiwari, 2008) and random search methods.

3.6.1 Test problem 1

The following multi-objective multi-modal problem is employed as test problem

1.

min
x

f(x) = (f1(x), f2(x))

=

(
n∑
i=1

sin(πxi),
n∑
i=1

cos(πxi)

)
xi ∈ [0, 6], i = 1, 2, ..., n.

(3.10)

The above objective functions, as seen in Deb & Tiwari (2008), are chosen

since both objectives are in conflict with each other and will have a trade-off in the

objective space. For the minimization case, the above 2-objective optimization

problem will have a known Pareto front which varies between [−
∑n

i=1 i, 0], where i

is the number of decision variables chosen. The above problem is a multi-objective

multi-modal problem. The two objective functions are periodic functions with a

period of 2. They will have efficient frontiers which correspond to the Pareto-

optimal solutions for all the decision variable values varying in the ranges xi ∈
[2r + 1, 2r + 3/2], where r is an integer.

3.6.1.1 CASE I

In Case I, two decision variables are chosen in the variable ranges of xi ∈ [0, 6], i =

1, 2, for the optimization test problem. Within the range of these two variables,

the test problem 1 (equation 3.10), will have nine multi-modal Pareto optimal

fronts with decision vectors in the ranges of xi ∈ [2r+ 1, 2r+ 3/2], where i = 1, 2
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Figure 3.10: Case I: Non-dominated solutions obtained for the test problem 1
(equation 3.10) with 2 variables using NSGA-II, Omni-Optimizer, MOGA and
RANDOM search methods.
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Figure 3.11: Case I: Non-dominated solutions obtained for the test problem 1
(equation 3.10) with 2 variables using the MOGA optimizer (top) and the Pareto
estimation method (bottom) in objective space, decision variable space and image
of clusters.

and r = 0, 1, 2. For an optimizer, finding the Pareto optimal is not so difficult

in this problem. However, finding all the multi-modal Pareto optimal solutions

with a good distribution in corresponding decision vector ranges is very difficult.

The following parameters are set for the optimizers, which are found to be

suitable for the test problem through multiple runs.

• Population size = 200

• Maximum number of generations = 500

• Probability of crossover = 0.8

• Probability of mutation = 0.2

Figure 3.10 shows the obtained Pareto optimal solutions for optimization test

problem 1 (equation 3.10) from NSGA-II, Omni-optimizer, MOGA and RAN-

DOM search methods. In this case, NSGA-II, Omni-optimizer and MOGA are

converged to the true Pareto front. They have found the Pareto solutions with a
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good solution distribution in the objective space. However, in the decision vari-

able space, NSGA-II is not able to find and preserve all the sets of multi-modal

Pareto optimal solutions. Where as the random search found solutions close to

Pareto front in the objective sapce and from all the nine groups of multi-modal

Pareto solutions in decision space. In the CASE I, it is evident that NSGA-II

performed poorer than the random search with regard to finding diversified multi-

modal Pareto solutions in the decision space. It can be seen from Figure 3.10,

that proposed MOGA optimization framework with crowding distance operator

is able to maintain a good diversity in objective space and decision space and

successfully found all the sets of multi-modal Pareto solutions.

In order to demonstrate the extended Pareto estimation (PE) method, the

Pareto solutions with a good diversity obtained from the MOGA optimizer are

selected. Cluster analysis is performed on the Pareto solutions in the decision

space, using the iVAT clustering method as described in Section 3.5. The iVAT

clustering method successfully segregated the clusters of all the nine groups of

multi-modal Pareto solutions. The reordered dissimilarity matrix of 200 decision

vectors is displayed as 200 x 200 image with gray scaling in top right hand side

sub-plot of Figure 3.11. The dark blocks appearing on the diagonal of the image

represent individual clusters; the size of each dark block, represent number of

individuals present in each cluster. It can be seen from this plot, that smallest

cluster has 10 optimal solutions and largest cluster has 46 optimal solutions.

Now in each cluster of solutions, the solutions have a one-to-one mapping from

decision space to objective space. Using the extended PE method an individual

RBFNN model is trained for each cluster of solutions and the mapping function

between objective space to decision space is estimated. Then these RBFNN mod-

els are used to estimate around 300 solutions from each model. After combining

all the solutions obtained from individual Pareto estimations from each RBFNN

model, non-dominated sorting is performed on the combined 2 700(= 300 × 9)

solutions to identify and remove any dominated solutions from the set. Around

600 solutions found to be dominated and around 2 100 non-dominated solutions

obtained for the optimization problem (equation 3.10). In Figure 3.11 the bottom
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sub-plots show plots for objective vectors, decision vectors and gray scale image of

the dissimilarity matrix of estimated Pareto solutions. It can be seen from these

sub-plots, that extended Pareto estimation along with clustering is successfully

able to find many solutions for the multi-objective multi-modal problem.

The benefit of using the Pareto estimation method is reduced computational

effort in order to find a greater number of Pareto optimal solutions. Here the

computation expense is computed as the total of function evaluations required

to generate the Pareto optimal solutions. Using the Pareto estimation method,

around 2 100 Pareto optimal solutions are generated with the total number of

function evaluations, including the initial optimization runs of 500 generations

with population of 200, (200pop × 500gen) + 2700 = 10.2 × 104. Whereas, in

the case of re-running the optimization process to obtain 2 100 Pareto optimal

solutions, we need to consider a population size of at least 2 100 or more, and run

the optimization for 500 generations, which leads to a total number of function

evaluations of 2100pop × 500gen = 10.5 × 105, which is an order of magnitude

greater.

3.6.1.2 CASE II

In Case II, the same objective functions with three decision variables are chosen

with variable bounds as xi ∈ [0, 6], i = 1, 2, 3.. Within the range of these three

variables, the optimization problem (equation 3.10), will have 27 sets of multi-

modal Pareto optimal solutions, each one corresponding to xi ∈ [2r+1, 2r+3/2],

where i = 1, 2, 3 and r = 0, 1, 2.

The following parameters are set for the optimizers, which are found to be

suitable for the test problem through multiple runs. Here the population size

is increased to 500 in order to improve the density of the solutions in all of the

multi-modal Pareto sets.

• Population size = 500

• Maximum number of generations = 500
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Figure 3.12: Case II: Non-dominated solutions obtained for the test problem
(equation 3.10) with 3 variables using NSGA-II, Omni-Optimizer, MOGA and
RANDOM search methods.
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Figure 3.13: Case II: Non-dominated solutions obtained for the test problem
(equation 3.10) with 3 variables using the MOGA optimizer (top) and the Pareto
estimation method (bottom) in objective space, decision variable space and image
of clusters.

• Probability of crossover = 0.8

• Probability of mutation = 0.4

The obtained non-dominated solutions from the four optimizers, are shown

in the Figure 3.12. In this case also, all the optimizers found Pareto solutions

with good convergence and good solution diversity in objective space. However,

maintaining diversity in decision space is a difficult task, since there are 27 groups

of multi-modal Pareto solutions available in the decision space. Here, NSGA-II

is converged to only one group of solutions in the decision space. Where as, the

Omni-optimizer and MOGA have found all 27 sets of multi-modal Pareto solu-

tions with a good distribution of solutions in the objective space and decision

space. In the random search only 218 non-dominated solutions are found. How-

ever, it is not able to obtain a good distribution of solutions in the decision space.

The extended Pareto estimation method is applied to each cluster of solutions

obtained from MOGA. Each cluster has around 16 to 24 solutions, which are
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used for the training the 27 RBFNN models. After the training 120 solutions

are estimated from each RBFNN model. Non-dominated sorting is performed on

the combined 3240 solutions estimated from the 27 RBFNN models and around

485 solutions found to be dominated. After removing the dominated solutions,

around 2755 non-dominated multi-modal Pareto solutions are obtained from the

Pareto estimation method. In Figure 3.13 the sub-plots show the Pareto solutions,

in objective space, decision variable space and image of clusters estimated from

the PE method. It can be seen that a very good distribution of non-dominated

solutions in both objective and decision spaces are obtained from the extended

Pareto estimation method.

3.6.2 Test problem 2

The DTLZ3 (Deb et al., 2002b) problem has been considered as another test

problem. The DTLZ3 test problem is scalable to any number of objectives with

known Pareto fronts and will have multi-modal Pareto optima for different ranges

of decision variables.

min
x

f(x) = (f1(x), f2(x), ..., fk(x))

where f1(x) = (1 + g(xk)) cos(x1π/2) · · · cos(xk−1π/2),

f2(x) = (1 + g(xk)) cos(x1π/2) · · · sin(xk−1π/2),
...

fk(x) = (1 + g(xk)) sin(x1π/2), (3.11)

g(xk) =

(
|xk|+

∑
xiεxk

(xi)
2 − cos(π(xi))

)
subject to 0 ≤ xi ≤ 4, for i = 1, 2 & 0 ≤ xi ≤ 1, for i = 3, 4, . . . , n.

In the current research, three cases of the DTLZ3 problem are considered

with three, four and six objectives, having twelve decision variables with bounds,

x1, x2 ∈ [0, 4], and remaining xi ∈ [0, 1], i = 3, 4, . . . , 12. Within the range of these

twelve decision variables, the DTLZ3 problem will have two sets of known multi-

modal Pareto optimal solutions. For solving the DTLZ3 optimization problem,
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we have set the following parameters for the optimizers, which are found to be

suitable for the DTLZ3 problem through multiple runs.

• Population size = 500

• Maximum number of generations = 500

• Probability of crossover = 0.9

• Probability of mutation = 0.1

For the current DTLZ3 problem test cases with 3, 4 and 6 objectives, challeng-

ing tasks for an optimizer are converging towards the Pareto front and finding

all the multi-modal Pareto optimal solutions with a good distribution in both

objective space and decision space.

Non-dominated solutions obtained from NSGA-II, Omni-optimizer, MOGA

and random search methods for the DTLZ3 problem test cases with 3, 4 and 6

objectives are shown in Figures 3.14, 3.15 and 3.16 respectively. Since, there are

12 decision variables and more than 3 objectives present in the DTLZ3 problem

test cases, here the decision variable plots and the objective plots are shown in

“parallel co-ordinates” plot, representing each vertical axis as a corresponding

decision variable and objective respectively.

In the test case with 3 objectives, the three optimizers NSGA-II, Omni-

optimizer, and MOGA converged to true Pareto front for the given problem as

shown in Figure 3.14. However, NSGA-II is able to find only one set of Pareto

optimal solutions in the decision space. Where as, the Omni-optimizer and the

MOGA found two groups of multi-modal Pareto optimal solutions. In the ran-

dom search the solutions obtained are sub-optimal in all the three test cases of

DTLZ3 problem, however they are diversified in the decision space.

It can be observed from Figures 3.15 and 3.16, as the number of objectives

increases to 4 and 6 respectively, the convergence of the NSGA-II and Omni-

optimizer is reduced significantly. This is due to the increased number of non-

dominated solutions in early generations and reduced selective pressure in the
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Figure 3.14: Non-dominated solutions obtained for the DTLZ3 test problem
with 3 objectives from NSGA-II, Omni-Optimizer, MOGA and RANDOM search
methods.
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Figure 3.15: Non-dominated solutions obtained for the DTLZ3 test problem
with 4 objectives from NSGA-II, Omni-Optimizer, MOGA and RANDOM search
methods.

66



3. Interactive Multi-Criteria Design Optimization Framework

Figure 3.16: Non-dominated solutions obtained for the DTLZ3 test problem
with 6 objectives from NSGA-II, Omni-Optimizer, MOGA and RANDOM search
methods.
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Figure 3.17: Non-dominated solutions obtained for DTLZ3 problem with 3 ob-
jectives using the MOGA optimizer (top) and the Pareto estimation methods
(bottom) in objective space, decision variable space and image of clusters.

Figure 3.18: Non-dominated solutions obtained for DTLZ3 problem with 4 ob-
jectives using the MOGA optimizer (top) and the Pareto estimation methods
(bottom) in objective space, decision variable space and image of clusters.

68



3. Interactive Multi-Criteria Design Optimization Framework

Figure 3.19: Non-dominated solutions obtained for DTLZ3 problem with 6 ob-
jectives using the MOGA optimizer (top) and the Pareto estimation methods
(bottom) in objective space, decision variable space and image of clusters.

optimization process in order to progress towards the true Pareto front. How-

ever, in MOGA using progressive preference articulation technique preferences

are expressed on the objectives during the optimization process in a progressive

manner interactively. This will enable the MOGA optimizer to steer the optimiza-

tion process towards the true Pareto front. Here, a well distributed multi-modal

Pareto optimal solutions are obtained using MOGA in both the test cases with

4 and 6 objectives. The obtained results demonstrate the capability of the pro-

posed methodology in finding multi-modal Pareto optimal solutions with a better

convergence and good diversity in both objective and decision spaces.

Cluster analysis using the iVAT method is performed for the obtained Pareto

optimal solutions from MOGA optimizer for the DTLZ3 problem test cases with

3, 4 and 6 objectives. The reordered dissimilarity matrix of 500 decision vectors

is displayed as a 500 × 500 image showing the two dark blocks in the respective

sub-plots of three test cases. Figures 3.17, 3.18 and 3.19, show the estimated

Pareto solutions and iVAT clusters images for the DTLZ3 problem test cases
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with 3, 4 and 6 objectives using the extended Pareto estimation method. It

can be seen from this plot that there are two clusters available in the decision

vectors corresponding to the two global optima. After separating these clusters

of decision vectors, for each cluster, the Pareto estimation method is applied to

find the one-to-one mapping between objective vectors and decision vectors for

the three test cases. Then this mapping is used to estimate 1000 solutions in

each cluster. After the estimation of new solutions, we combine all the solutions

obtained from Pareto estimations for each cluster, and perform non-dominated

sorting to remove any dominated solutions from the set for the individual test

case. In the end around 2 000 non-dominated solutions are estimated using the

extended Pareto estimation method for each of the DTLZ3 problem test cases

with 3, 4 and 6 objectives. The quality of mapping estimated by RBFNN is highly

dependent on the supplied training decision vectors. If the training data has a

sufficient number of vectors, well distributed, then the RBFNN will estimate a

better mapping, otherwise, the mapping estimated by RBFNN will be deceptive

and may not generate good solutions in the Pareto estimation process. Due to

this reason, there are less estimated solutions found to be non-dominant in the

test case with 6 objectives. In the lower sub-plots Figures 3.17, 3.18 and 3.19,

show the estimated non-dominated solutions, in objective space, decision variable

space and gray scale image of the dissimilarity matrix of decision vectors showing

clusters.

It can be seen that, using the Pareto estimation approach, a very good dis-

tribution of non-dominated solutions is obtained for all the benchmark multi-

objective multi-modal test problems with reduced computational expense. In the

design optimization process a decision maker can chose to estimate the Pareto

solutions in a preferred region of interest in objective space and decision space.

3.7 Summary

In this chapter, an interactive multi-criteria design optimization framework is

proposed for solving the many-objective system architecture design problems.

The interactive design optimization framework consists of an evolutionary multi-
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objective genetic algorithm (MOGA) with a unique progressive preference ar-

ticulation (PPA) technique. The MOGA is further enhanced with a crowding

distance operator in order to maintain a good diversity in both objective space

and decision space and find multi-modal Pareto solutions. A Pareto estimation

(PE) method is introduced and an extended version of Pareto estimation (PE)

method is proposed, to increase the density of the multi-objective multi-modal

Pareto solutions. The method uses an efficient clustering technique to identify

and separate different clusters in the decision variable space which correspond to

the multi-modal Pareto optimal solutions. Then PE method is employed to esti-

mate a large number of Pareto optimal solutions, thereby increasing the density

of available non-dominated solutions in the multi-objective problems. The pro-

posed method has been tested on several benchmark test problems, with different

case studies. In all cases, the proposed optimization methodology has success-

fully found multi-modal Pareto solutions with a good convergence and diversity

in objective space and decision space.

In the next Chapter, the proposed interactive multi-criteria design optimiza-

tion framework is applied to a real-world aero gas turbine engine health manage-

ment system architecture design problem. Formulation of the system architecture

design multi-criteria problem and integration of system architecture models to

optimization framework is presented.
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Chapter 4

System Architecture Design: An

Aero Engine Health Management

System Case Study

4.1 Introduction

In this Chapter, the process of system architecture design is demonstrated using

a case study of a real-world application of an engine health management (EHM)

system for an aero gas turbine engine (GTE). The EHM system functional re-

quirements are captured and decomposed into a number of functional operations.

In the EHM system architecture design problem the system functional operations

are to be optimally deployed on physical architecture subsystem locations in order

to satisfy operational attribute requirements within the constraints of the phys-

ical architecture limitations. A multi-criteria optimization problem formulation

for the EHM system architecture design is presented. Deployment locations of

the operations are considered as decision variables and requirement violations, in

terms of operational attributes, are considered as multiple objective functions to

be minimized in the optimization process. Integration of the system architecture

model into the optimization framework and evaluation of architecture criteria

values is described. The EHM system architecture design optimization problem

is solved using the proposed interactive multi-criteria optimization framework.
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Clustering analysis is performed to identify different groups of architecture solu-

tions highlighting useful design features. For each cluster of architecture solutions

the Pareto estimation method is applied and additional non-dominated solutions

are generated. Performance of the proposed optimization framework is assessed

by evaluating test metrics and comparing the results with different optimizers.

4.2 Aero Engine Health Management System

Architecture Design

An engine health management system has become an essential part of aero gas

turbine engines in recent times, in order to minimize the cost of operation of the

gas turbine engine and its associated equipment. The cost of operation includes

fuel, scheduled maintenance and unforeseen events that result in the engine not

being available for service to the customer. An EHM system can help to reduce

costs due to unanticipated disruptions to service. Health status reports from

the EHM system will improve the proper scheduling of the maintenance pro-

cess, resulting from the greater knowledge base of the engine component failures

detection, identification and prognosis of remaining life of the components.

Figure 4.1: Aero Engine Health Management System.
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The EHM system in an aero engine forms part of the engine electronic control

(EEC) system, with an engine monitoring unit (EMU) at its center. The EMU is

mounted along with the EEC on the fan case of the aero engine. Figure 4.1 shows

an EHM system for an aero engine. The main aim of an EHM system is to perform

real-time parameter analysis and anomaly detection of the aero engine. Output

from on-board analysis can be passed to an on-ground computer resource using an

aircraft communications addressing and reporting system (ACARS) over satellite

for further analysis to predict, classify and locate developing engine faults and

anomalies. The optimum combination of on-engine and on-ground computational

resources for the EHM system will deliver the benefits of reducing the engine life-

time operation and maintenance costs (Tanner & Crawford, 2003).

4.2.1 Stakeholder Identification and Requirement

Analysis

The system architecture design process starts with the identification of key cus-

tomers and stakeholders. It is an essential task for capturing all the stakeholder

requirements. Different techniques are used for capturing requirements, such

as stakeholder interviews, surveys, customer feedback forms, historical data and

maintenance reports from other engine fleet, project specific goals etc.

In the current research work, for designing the EHM system architecture for

Rolls-Royce aero gas turbine engine, all the stakeholders are identified and their

requirements are captured using requirements analysis and flow-down techniques,

for example, Quality Function Deployment (QFD) (Mizuno et al., 1994), and rep-

resented as EHM system use cases as shown in Figure 4.2. Some of the typical

EHM system functional requirements include: engine vibration monitoring and

reporting, oil debris monitoring, asset (engine) performance monitoring, engine

mechanical fault or novelty detection and engine/EEC abnormal incident report-

ing.
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Figure 4.3: EHM system functional decomposition and operational attributes.

4.2.2 EHM System Functional Decomposition

The EHM system primary use cases are decomposed into several EHM system

functions and these functions are further decomposed into a number of EHM

system functional operations (OPs). Figure 4.3 illustrates the functional decom-

position of the EHM system into functions and operations. After the functional

decomposition the total number of EHM system functional operations are found

to be 74 OPs. A systems modeling language (SysML) model (Friedenthal et al.,

2006; Hause, 2006; Weilkiens, 2011) for a baseline EHM system has been de-

veloped by system engineers using Enterprise Architect (EA) software (Sparx

Systems, 2007). Figure 4.4 shows a list of EHM system functions and 74 func-

tional operations. For each functional operation, several operational attributes

are defined, which indicate the specific requirements of that operation in terms

of its input data flowrate, processing power, immediacy and security etc., In

the SysML model, for all the EHM system functional operations, these attribute

requirements are expressed by system designers mainly in terms of different quali-

tative levels: ‘high’, ‘medium’ and ‘low’. The operational attributes are described

below:
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Figure 4.4: EHM system functions and functional operations.
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• Input data flow rate: an estimate of the input information / data flow

rate (in Kbits/sec) required for the operation.

• Processing power: a measure of the processing power (in MFLOPS: mega

floating-point operations per second) necessary to perform the operation.

• Criticality: a judgement of the level of safety criticality of the function

output, from Level A (most safety critical to the engine safety) to Level E

(non-critical function) (Blanquart et al., 2012).

• Immediacy: a measure of how quickly the operation output needs to be

acted upon by downstream OPs to fulfil the functional requirements.

• Coupling: a design judgement concerning whether there is a high sequence

dependency on a preceding functional operation or external system events.

• Security: a judgement on the data security level required for the output

of a functional operation.

• IP sensitivity: a judgement on the intellectual property sensitivity of a

functional operation.

• Flexibility: a judgement on the level of modifiability of a functional oper-

ation in the future upgrades.

In order to enable the full functionality of the EHM system the OPs attribute

requirements need to be satisfied. These operation attribute requirements are

treated as the main rationale for deployment of the OPs on different physical

architecture subsystem locations.

4.2.3 EHM System Physical Architecture Decomposition

The EHM system physical architecture for an aero engine is decomposed into a

number of subsystems, as shown in Figure 4.5. It is mainly divided into on-board

and off-platform systems. The on-board system is comprised of an on-engine sub-

system and an on-aircraft subsystem. Further, the on-engine subsystem consists

of an engine monitoring unit (EMU) and an engine electronic controller (EEC)
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Figure 4.5: EHM system physical architecture decomposition and subsystems.

both mounted on the engine fan case. The EMU collects data from a number

of sensors mounted on the various engine components and sub-systems of the

engine. The EEC, along with the EMU, uses data from the sensors on engines to

monitor numerous critical engine characteristics such as temperatures, pressures,

speeds and vibration levels to ensure they are within known tolerances and to

highlight when they are not. The EMU transmits applicable EHM system data to

an on-aircraft system for reporting and storage on the maintenance server. From

the aircraft system, potentially useful EHM system data can be compressed and

transmitted in real-time to an on-ground station using an aircraft communications

addressing and reporting system (ACARS) over satellite or radio.

Further detailed and complex data analysis necessary for monitoring the en-

gine health status can be performed at the on-ground station using a substantial

computational resource and a knowledge base accumulated from all the other

engines in the fleet. The EHM system data analysis will highlight any changes in

the engine component characteristics. Expert knowledge is used for diagnosis and

79



4. EHM System Architecture Design

Figure 4.6: EHM system physical architecture subsystem limitations elicited from
interviews with GTE System experts.

prognosis of the developing engine faults and to generate necessary maintenance

reports.

4.2.4 EHM System Physical Architecture

Subsystems Limitations

The EHM system physical architecture subsystems have certain limitations in

terms of EHM system operational attributes. The subsystem limitations are

elicited from interviews with gas turbine engine system experts. The limitations

are given in Figure 4.6. The EMU is mounted on the engine fan case along with

the EEC and acts as the centre of the EHM system. The close proximity of the

EMU to the engine sensors helps to capture and process high-bandwidth signals

without any degradation due to data transmission and reduces the significant

weight of long cabling. The EMU contains two processing modules:
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(i) A signal processing module which takes the analog signals from a number

of engine sensors and performs time to frequency domain transformation.

(ii) A main processing module which uses the frequency-domain data and per-

forms the various EHM system feature-detection (FD) algorithms for detection

of the engine component failures.

The combined processing capacity of the EMU is limited to 1600 MFLOPS.

The main functionality of the EEC is to control the fuel flow to generate the

required speed and thrust of the engine. A small portion of the EEC data flow

and processing capacity is utilized for the purpose of the EHM system. EEC is

a high ‘criticality’ (Level A) system, and for all the high ‘criticality’ functions

it has to undergo extensive testing for safety certification. Hence it is a low

‘flexibility’ system for frequent modifications and upgrades. On the other hand,

the EMU can accommodate medium and low ‘criticality’ functions and it is a

medium ‘flexibility’ system. Both EMU and EEC can quickly respond to opera-

tional outputs and provide operator alerts. Both can be secured from third party

visibility other than original equipment manufacturer (OEM) and hence they can

provide high ‘security’ and ‘IP protection’ for the functions deployed on these

subsystems. The limitation on the ‘coupling’ attribute is considered as ‘Low’ on

all the physical subsystems. To satisfy the ‘coupling’ attribute requirement, all

the operations having high coupling sequence dependency among them need to

be deployed on the same physical architecture location. If the operations are sep-

arated by deploying on different locations their ‘coupling’ requirement is treated

as not satisfied.

Data can be transmitted from on-engine to on-aircraft using a high bandwidth

data interface system for significant processing, report generation and storing on

the aircraft maintenance server. Since the on-aircraft system is also utilized for

other aircraft monitoring functions not limited to engine related functions, it

is considered as a medium ‘immediacy’, low ‘security’, low ‘IP-sensitivity’ and

medium ‘flexibility’ system for the EHM system functionality. From the aircraft
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system potentially important data is sent to the on-ground system with a very

limited data flow rate of 100 bits/sec through the ACARS wireless transmission

system. The ‘processing capacity’ of the on-ground system is considered as 4000

MFLOPS, although the OEM can provide limitless computing resources at the

ground centre. The on-ground system can accommodate operations with all levels

of ‘criticality’, and can also provide high ‘security’ and ‘IP protection’ for pro-

prietary algorithms and techniques. The on-ground system is a high ‘flexibility’

system, which can be easily modified and upgraded.

4.2.5 EHM System Functional Operations Deployment

The next step in the EHM system architecture design is the deployment of the

functional operations on to four physical architecture subsystems. For the current

aero engine EHM system, there are 74 functional OPs with different operational

attribute requirements in terms of their processing power, criticality, immediacy

and flexibility etc., The OPs have high coupling and input data flow dependency

on other functional operations. These operational attribute requirements for

each of the functional operation is specified by the system experts in terms of

‘High’, ‘Medium’, and ‘Low’ qualitative attribute levels. The deployment process

will need to account for a variety of factors to determine how best to allocate

functionality to the various physical architecture subsystem components with

in their resource limitations. Number of qualitative and quantitative criteria

need to be formulated and models need to be developed in order to evaluate the

performance of the deployment solutions. The functional operations deployment

activity is a highly iterative process. For each functional operation there are

4 possible deployment options and for all the OPs there are 474 = 3.6 × 1044

total possible deployment options. This is a very large search space for manual

exhaustive search for finding the best functional deployment solution for the EHM

system. The design problem is discontinuous, non-convex over a large discrete

variable space. There can be multiple local and global optimal solutions which can

contain multiple deployment solutions resulting in similar performance in terms

of design criteria. In such cases, optimization approaches have proven beneficial

for efficiently searching the solution space to find the best solutions within the
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feasible region.

In the next sections the EHM system architecture design problem is formu-

lated as a multi-criteria optimization problem to find the optimal deployment

solutions for EHM system functional operations within the constraints of physi-

cal subsystem resource limitations.

4.3 Multi-Criteria Optimization Formulation for

EHM System Architecture Design Problem

Figure 4.7: EHM system architecture multi-criteria optimization problem com-
ponents: Decision variables, OPs Deployment Model, Constraints and Objective
functions.

In the current EHM system architecture design, the EHM system functional

operations (OPs) need to be optimally deployed onto the EHM system physical

architecture components such that the OPs attribute requirements are satisfied

within the limitations of the physical components. In order to find the optimal

deployment of the EHM system functional operations, in this research study, the
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EHM system architecture design problem is formulated as a multi-criteria opti-

mization problem. Figure 4.7 shows the EHM system multi-criteria optimization

problem components: decision variables, constraints and objective functions along

with the model of the EHM system architecture which are further described in

the following subsections.

4.3.1 Decision Variables

The EHM system functional operations need to be deployed onto the four target

physical architecture component locations. Hence the locations of the deployment

for each of the functional operations are treated as the decision variables for

optimization. As there are 74 EHM system functional operations, 74 decision

variables are chosen to represent the deployed location number of each functional

operation. Each of these decision variables can have a value of 1, 2, 3 or 4,

representing a physical architecture location: ‘1: EMU’, ‘2: EEC’, ‘3: on-aircraft’,

and ‘4: on-ground’, respectively.

4.3.2 Constraints

The EHM system has certain resource limitations for the physical architecture

components in terms of their capability to handle the functional operations at-

tribute requirements. The EHM system functional deployment solutions should

both satisfy all the limitations of these physical resources and enable full func-

tionality of the EHM system. Hence, the hardware limitations of ‘data flow

rate’ and ‘processing capacity’ on each of the four physical architecture compo-

nent locations are imposed as eight constraints in the optimization process. In

the optimization process, the functional operations deployed at each location are

separated and grouped. For a subsystem, the total data flow requirement is com-

puted for those operations receiving data through interfaces from the operations

deployed on the other subsystems. The requirement of an operation receiving

data from a preceding operation deployed on the same subsystem is neglected in

the computation. The total data flow rate and processing power required for all

the operations deployed in each subsystem location are computed and compared

with the corresponding component limitations/ constraints. If these requirements
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are satisfied, then the solution is considered as a feasible solution, otherwise it is

treated as an infeasible solution.

4.3.3 Objective Functions

In the current design process, in order to facilitate the search for finding the best

deployment solutions that satisfy the EHM system functional OP attribute re-

quirements, violations are permitted in terms of the remaining six OP attributes

on physical architecture components. These attribute requirement violations are

treated as “excess requirements” in that OP attribute. The total excess require-

ments in terms of the six operational attributes: ‘Criticality’, ‘Immediacy’,

‘Coupling’, ‘Security’, ‘IP sensitivity’ and ‘Flexibility’, are considered as

six individual objective functions to be minimized in the optimization process.

Since the design problem has more than three objective functions, it is classified

as a many-objective optimization problem (Fleming et al., 2005).

4.3.4 Optimization Problem Formulation

The multi-criteria optimization problem for the EHM system architecture design

can be formulated as below:

min
x

f(x) = (f1(x), ..., f6(x)), (4.1)

where fk(x) =
74∑
i=1

E2
ik(x), for k = 1, ..., 6

subject to
74∑
i=1

dir ≤ Dr, r = {1, 2, 3, 4} (4.2)

74∑
i=1

pir ≤ Pr, r = {1, 2, 3, 4} (4.3)

x = [x1, ..., xi, ..., x74], xi ∈ {1, 2, 3, 4} (4.4)

where, f(x) is a vector of six objective functions, each representing the sum
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of squares of total excess requirements Eik =(OP requirement - resource limit)

of 74 EHM system functional OPs. Dr and Pr are the constraint limitations of

data flowrate and processing capacity on the four physical architecture locations,

and, dir and pir are individual attribute requirement measures of each operation

deployed at the corresponding location. The decision variables, xi , can have

values {1, 2, 3, 4} to represent the deployment locations of the corresponding

operation.

4.3.5 Integration of the Architecture Models into

the Optimization Framework

An EHM system architecture for the aero gas turbine engine was developed by

Rolls-Royce system engineer Tanner (2010), as a SysML model using Enterprise

Architect (EA) software (Sparx Systems, 2007). The SysML model has infor-

mation concerning all the EHM system functions and their operational attribute

requirements. The information available in the SysML model has to be trans-

ferred to the platform used by the optimization algorithm.

Figure 4.8: Integrating the system architecture SysML model to optimization
platform.

In order to integrate the SysML model into the optimization platform, the

SysML model is exported as an XML script file. From this XML script file all the

attributes information of the functional operations is decoded and converted into

a format suitable for use within the optimization platform using an XML toolbox
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for Matlab (Molinari, 2004). The process of integrating the SysML model and

importing data into the optimization platform in Matlab is depicted in Figure 4.8.

Data for all the functional operations and their attribute levels are exported from

the SysML model to the optimization platform in Matlab. Then, for ease of ma-

nipulation in the optimization, the qualitative attribute levels for the operations,

i.e. ‘High’, ‘Medium’, and ‘Low’, are transformed to numerical values 9, 4, and

1 (32, 22and 12), respectively. These values are selected from commonly used nu-

merical representations for attribute levels in engineering applications using qual-

itative and quantitative criteria (Andrews & Moss, 2002; Henley & Kumamoto,

1981). From the operations sequence diagrams in the SysML model, an input

data dependency matrix and a coupling dependency matrix for all operations

are created by identifying the preceding operations/sensor interfaces from which

the operations are receiving the input data and their corresponding coupling de-

pendency on the other functional operations. This data is further used for the

evaluation of objective functions values for the candidate architecture alternatives

and for finding the optimal architecture solutions for the EHM system.

4.3.6 Evaluation of Criteria Values for a Sample EHM

System Deployment Solution

The process for calculation of constraints and objective function values for a sam-

ple candidate solution is shown in Figure 4.9. For the EHM system multi-criteria

optimization problem, a sample solution consists of 74 decision variables having

the deployment locations of the EHM system functional operations. Initially the

OPs are grouped according to their deployment locations, then the constraint

values and objective function values are computed.

In the illustrated solution in Figure 4.9, 39 OPs are deployed on the EMU,

2 OPs are deployed on the EEC, 18 OPs are deployed on the on-aircraft system

and 15 OPs are deployed on the on-ground system. The two operations deployed

on the EEC: ‘OP34- Capture and transfer life cycle DACS (Data Accumulation

and Counting System) data’ and ‘OP59 - Perform feature detector analysis’, are

shown in Figure 4.9. For these OPs the total requirements for all attributes are

calculated. A table showing the OP attribute requirements and physical architec-
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ture limitations for each of the attributes is given. For the two OPs on the EEC,

the total interface data flow rate requirement is computed to be 5.5 Kbits/sec,

and the total processing resource requirement is 53 MFLOPS. It can be seen that,

the two constraints: (2) data flow requirement on the EEC and (6) processing re-

source requirement on the EEC are satisfied, as the total requirements are within

the constraint limitations on the EEC. For the criticality attribute, one low criti-

cality (Level D/E = 1) operation (OP59) is deployed on the EEC which is a high

criticality (Level A = 9) subsystem. All functions deployed on the EEC have to

undergo extensive testing for safety certification. For this reason, the deployment

of low criticality OPs on EEC is considered as an excess requirement objective

function. The square of the difference in requirement levels [(1 − 9)2 = 64] is

computed as the criticality excess requirement. For immediacy, security and IP

sensitivity attributes, all the OPs requirements are satisfied. For the coupling

attribute, OP34 has high coupling with the EEC for capturing DACS data so

its requirement is satisfied with this deployment. However the OP59 has high

coupling sequence dependency with another OP57 which is deployed on EMU.

Hence its coupling requirement is not satisfied. The square of the difference in

requirement levels [(9 − 1)2 = 64] is computed as the coupling excess require-

ment. For the flexibility attribute, one medium level (4) OP and one high level

(9) OP are deployed on the EEC which is a low flexibility(1) resource. The sum

of squares of differences in requirement levels [(4−1)2+(9−1)2 = 73] is computed

as the flexibility excess requirement. Similar calculations are carried out for the

other resources: EMU, on-aircraft and on-ground. Excess requirements on all of

these resources for the OP attributes are aggregated to form individual objective

functions.

For the current sample solution, the total values for the eight constraints

(shown in green) and six objective functions (shown in blue) are given in Fig-

ure 4.9. It can be observed that all the constraint values are within the physical

architecture limitations given in the Section 4.2.4. However, the remaining at-

tribute requirements of OPs in terms of ‘Criticality’, ‘Immediacy’, ‘Coupling’,

‘Security’, ‘IP sensitivity’ and ‘Flexibility’ are not completely satisfied. In the

optimization process, the optimizer tries to minimize the excess requirement ob-
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jective function values and find the optimal deployment solutions for the EHM

system.

4.4 Multi-Criteria Optimization of EHM

System Architecture Design Problem

It can be seen from the previous section that the EHM system architecture de-

sign optimization problem has 74 decision variables which can take any one value

from {1, 2, 3 and 4} representing the respective deployment location of the EHM

system functional operation. The total number of possible deployment solutions

are 474 = 3.6× 1044. This is a very large discontinuous search space and becomes

impractical for the exhaustive search to find the optimal solutions. In such cases,

iterative MOEAs are employed which can search through the large design search

space with a set of population and converge to optimal solutions space using the

information contained in best solutions found in previous iterations.

The EHM system many-objective optimization problem is solved using the

proposed multi-criteria optimization framework, in the MATLAB environment.

For solving the current EHM system architecture optimization problem, the fol-

lowing parameters are set in MOGA, which are found to be suitable for the

current problem:

• population size = 500,

• maximum number of generations = 500,

• probability of crossover = 0.7, and

• probability of mutation = 0.1

Stochastic universal sampling selection, single point binary crossover and muta-

tion genetic operators are used in the MOGA algorithm. In this study elitism

is incorporated in MOGA by maintaining an archive of non-dominated solutions

of fixed size, which will keep the best non-dominated solutions found so far in

90



4. EHM System Architecture Design

Figure 4.10: EHM system architecture solutions in MOGA parallel coordinates
trade-off graph with preference articulation.

all the generations. With a view to increasing the confidence in the Pareto solu-

tions, MOGA was run for 25 times using a different seed for the random number

generator in each run and various performance metrics were also evaluated.

In the optimization process, a candidate architecture solution has 74 decision

variables each representing the deployment resource location number for its cor-

responding operation. Then the operations are separated and grouped according

to their deployment location. The solution should satisfy all the constraints. The

total data flow rate and processing resource requirements on each location, i.e.,

values of eight constraints, are estimated and compared with the corresponding

constraint limitations. For the six qualitative criteria: criticality, immediacy,

coupling, security, IP sensitivity and flexibility, if the requirements of operations

are not satisfied, then the excess requirements are estimated for all OPs, using

the numerical transformation described in the Section 4.3.5. The total excess
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requirements in each criteria are considered as six individual objective functions

to be minimized in the optimization process.

Due to the many objective functions and constraints in the optimization prob-

lem, non-dominated solutions predominate in each generation. This decreases the

selection pressure towards the true Pareto optimal surface, thus reducing the per-

formance of the optimization algorithm. Using the PPA technique, the decision

maker’s preferences are expressed progressively to reduce the objective search

space, and steer the optimization into region of interest. The additional pref-

erence operator used by PPA helps restore selection pressure. Several Pareto

optimal solutions are obtained for the EHM system architecture design using

MOGA. The obtained Pareto optimal solutions for the EHM system architecture

design are shown in Figure 4.10. In MOGA, the trade-off values of all con-

straints and objective functions are shown in a “parallel coordinates” graph. In

the case of many-objective optimization, the parallel coordinates graph aids the

visualization of all constraints and objective functions values on a single plot. In

Figure 4.10, the top window shows the MOGA trade-off graph for the 14 cri-

teria of the current EHM system architecture design, where criteria 1 to 8 are

constraints on each physical architecture location in terms of data flow rate and

processing resource. Criteria 9 to 14 are the six objective functions: ‘criticality’,

‘immediacy’, ‘coupling’, ‘security’, ‘IP sensitivity’ and ‘flexibility’ excess require-

ments. In the Figure 4.10, for clarity, the constraints and objective functions are

separated using a dashed line and constraints are shown in shaded region and

objectives are shown in unshaded region. On the ‘y-axis’ corresponding crite-

ria values are displayed. Each connected line in the trade-off graph represents a

Pareto optimal solution for the EHM system architecture design. With a mouse

click on a solution, a pop-up notification window will display the corresponding

solution number and all the constraints and objective functions values for that

Pareto solution.

The bottom window shows the “preference articulation” facility for the EHM

system architecture design problem. In this window, all the constraints and objec-

tive functions of the EHM system multi-criteria optimization problem are listed.

92



4. EHM System Architecture Design

A decision maker can set goal values for each objective by moving the sliders

between maximum and minimum bounds at any time during the optimization

process. For the EHM system architecture design, the goal points representing

the decision maker’s preferences for each of the objectives are marked with an “x”

in the trade-off graph. As the decision maker exercises progressive articulation

of preferences, the proposed MOGA optimizer directed the search towards the

preferred region of interest in the feasible objective space and minimized the ob-

jective functions values within the specified goals and obtained the Pareto optimal

solutions shown in the trade-off graph. In the trade-off plot, it can be observed

that, crossing lines between criteria 9 and 10, criteria 10 and 11, and criteria 11

and 12, demonstrate that the objectives ‘criticality’, ‘immediacy’, ‘coupling’ and

‘security’ are in conflict with each other, while concurrent lines between criteria

12 and 13 demonstrate that the objectives ‘security’ and ‘IP sensitivity’ are in

relative harmony with each other. A limitation of the parallel coordinates repre-

sentation is that only adjacent objectives can be easily compared. However, in

MOGA, there is a facility to interactively switch the order of representation of

the objectives.

It can be seen from the trade-off graph, that the data flow requirements of

deployed OPs on EMU (1) and on-aircraft (3), the processing resource require-

ments on-aircraft (7) and off-board (8) are far below the goals/limitations. These

constraints are thus satisfied very easily. Whereas, the data flow requirements

on EEC (2) and on-ground (4), the processing resource requirements on EMU

(5) and EEC (6) are close to the goals/limitations. These constraints are tightly

satisfied. These constraints can be identified as the most significant design con-

straints (“hot spots”). There are several Pareto optimal architecture solutions

with zero values for one of the objective functions: criticality (9), immediacy (10)

and IP sensitivity (13). Hence, in these deployment solutions, the the operations

attribute requirements for any one of the attributes criticality, immediacy and

IP sensitivity can be completely satisfied. It is shown that other OP attributes,

coupling (11) and flexibility (14) requirements, are not satisfied completely in

any Pareto optimal architecture solution within the given constraints of resource

limitations.
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Figure 4.11: VAT clusters image with four clusters (dark blocks) in EHM system
non-dominated solutions.

4.5 Cluster Analysis and Pareto Estimation

Cluster analysis is performed using the VAT algorithm on the decision variable

space for the non-dominated solutions obtained from the MOGA optimizer for

the EHM system architecture design. The reordered image of dissimilarity ma-

trix of non-dominated decision vectors highlighting the clusters in the solutions

is shown in Figure 4.11. It can be observed that there are four clusters present

in the decision space of the non-dominated solutions for the EHM system archi-

tecture design. However, there are several gray shady regions on the image of

clusters. This represents that the clusters are not clearly separated in the high

dimensional decision space. After identifying the different cluster of solutions,

the Pareto estimation method is applied to each cluster of solutions. Here several

radial basis function neural network (RBFNN) models are trained with objective

vectors as inputs and decision vectors as outputs for each cluster of solutions and

in order to find the mapping between Pareto objective vectors and decision vec-

tors. Then, we tried to estimate 300 solutions in each cluster using the RBFNN

models and observed that several estimated solutions are becoming in-feasible

due to very low data flow rate constraint on the ground subsystem. The Pareto

estimation method is able to increase the density of the available Pareto solu-
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tions to a total number of 824 solutions for the EHM system architecture design.

Figure 4.12 shows the objective space trade-off graph with the four clusters of

non-dominated solution generated from the PE method. Here, the plot of the

decision variable space is not shown, as there are 74 decision variables in deci-

sion space and the plot is not clearly observable with 74 dimensions. Figure 4.13

shows the VAT image of dissimilarity matrix of non-dominated solutions after

the Pareto estimation, highlighting the four clusters of Pareto optimal solutions.

The cluster analysis revealed several important insights into the deployment

of the EHM system functional operations. In these clusters, most of the solu-

tions are mapped to the same objective vectors on the Pareto front indicating

multi-modal Pareto solutions. The following observations are made from the ar-

chitecture solutions for the EHM system OP deployment.

In cluster 1 architecture solutions (black), the EHM system functional op-

erations related to engine vibration monitoring, fan balance, ETRECS (Engine

Trending and Event Capture System) report generation and analysis and com-

pressor damage monitoring functions are deployed on the EMU, which has close

proximity to the numerous sensors mounted on the engine and has the sufficient

processing resource for the analysis. The high criticality operation for capturing

life cycle DAC (Direct Accumulation Counting) system data, Oil quantity and

quality monitoring operations are deployed on the EEC. The functional opera-

tions related to the output of the ETRECS event report, mode report, summary

report and performance reports and bulk data storage are deployed on the air-

craft system. Operations for EHM system management, engine performance and

health analysis, advanced vibration analysis, bulk data analysis and LRU (Line

Replaceable Units) data analysis are deployed on the ground subsystem, where

more processing resource is available for complex analysis required for these func-

tions.

In cluster 2 architecture solutions (yellow), EHM system functional operations

of capturing vibration, pressure and temperature sensors data and performance

measuring operations are deployed on the EMU. High criticality life cycle mon-
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Figure 4.12: Clusters of non-dominated solutions after the Pareto estimation for
EHM system architecture design.

Figure 4.13: VAT Image of clusters of non-dominated solutions after the Pareto
estimation for EHM system architecture design.
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itoring operations are deployed on the EEC. Operations for engine performance

report generation and bulk data storage are deployed on the aircraft system.

Operations for ETRECS report generation input ODMS (Oil Debris Monitor-

ing System) data operation and capture control system data for LRU anomaly

detection are deployed to the aircraft system. Here the deployment of these op-

erations changed from EMU to the aircraft subsystem. However, their attribute

requirements are satisfied both on EMU and aircraft system. Operations for

EHM system enabling and management, advanced vibration analysis, bulk data

analysis and LRU data analysis are deployed on the ground subsystem.

In cluster 3 architecture solutions (green), the EHM system functional opera-

tions related to engine vibration monitoring, fan balance and compressor damage

monitoring functions, advanced vibration analysis, are deployed on the EMU. The

high criticality operation for capturing life cycle DAC system data, Oil quantity

and quality monitoring operations deployed on the EEC. The functional opera-

tions related to the output of the ETRECS event report, mode report, summary

report and performance reports, through wireless transfer and bulk data storage

are deployed on the aircraft system. Operations for ETRECS report analysis and

life-cycle data analysis, are deployed from the EMU to the ground system. EHM

system enabling and management, bulk data analysis and LRU data analysis are

deployed on the ground subsystem.

In cluster 4 architecture solutions (red), the deployment of the EHM system

functional operations similar to the cluster 3 architecture solutions except few

operations. Here, operations for input ODMS data, capturing control system

performance and verifying basic EHM data and capture LRU control system

data are deployed on the EMU compared to the solutions in architecture 3 in

which these operations are deployed on the aircraft. These operations have low

level attribute requirements and they are satisfied in both the EMU and the

aircraft subsystems. They are resulting in equal objective values similar to the

solutions in cluster 3. They are representing the multi-modal Pareto solutions

mapping to the same objective vectors. However, the data flow rate requirement

and processing resource constraint values are not equal and they are changing

97



4. EHM System Architecture Design

according to the number of operations deployed on the four subsystems for these

solutions.

4.6 Statistical Performance Evaluation

To evaluate the performance of the proposed optimization framework, the EHM

system architecture design optimization problem is solved 25 times with different

random initial populations in each run and various test metrics are computed for

the results obtained. For the purpose of comparison, the EHM system architec-

ture design optimization problem is also solved using NSGA-II (Deb et al., 2002a)

and Omni-optimizer (Deb & Tiwari, 2008), 25 times, by setting the optimization

parameter values similar to the MOGA. Random search is also performed for the

EHM system architecture design problem by taking 500 x 500 random solution

vectors in the decision space and evaluating the constraints and objective func-

tions for these solutions. Out of these solutions, very few solutions are found to

be within the constraint limitations on data flow rate and processing capacities

of resources. Non-dominated solutions are then obtained from these solutions by

performing non-dominated sorting. The process is repeated for 25 times for the

Random search.

The non-dominated solutions obtained from one of the runs by NSGA-II,

Omni-optimizer, MOGA and random search are shown in Figure 4.14. Here

only the values of six objective functions are plotted on parallel co-ordinates

graphs showing the comparison of non-dominated solutions obtained from the

four optimizers. It can be observed that both the optimizers NSGA-II and Omni-

optimizer are not able to converge to the Pareto front compare to the solutions

obtained from the MOGA optimizer. Where as, the random search generated few

solutions in the feasible space satisfying the constraint limitations, out of them

very few solutions are found to be non-dominated. However, they are sub-optimal

solutions compared to the solutions obtained from the NSGA-II, Omni-optimizer

and MOGA.

Various test metrics employed to measure the performance of the optimizers

are described below:
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• Hypervolume(HV) is measured as the total volume of the k-objective

dimensional region enclosed by the obtained non-dominated solutions and

a dominated reference point. Among the solutions sets from different opti-

mizers the higher the hypervolume value, the better the performance of the

optimization algorithm. In this research work, the hypervolume metric is

computed using the method by Fonseca et al. (2006). For the current mini-

mization optimization problem of the EHM system architecture design, the

dominated reference point in terms of the six objective functions is con-

sidered as (1500, 1500, 1500, 1500, 1500, 1500) solution, which used for nor-

malizing the non-dominated objective vectors obtained from the optimizer.

The hypervolume (HV) metric is computed as the total volume enclosed by

a set of normalized non-dominated solutions A, obtained in each run of the

optimizer and a reference point z̄, which is a vector of (1, 1, 1, 1, 1, 1).

HV(A) = VOL{A, z̄}, (4.5)

• Inverted Generational Distance (IGD), introduced in Van Veldhuizen

(1999),

D(A,P?) =

∑
s∈P?

min{‖A1 − s‖2, . . . , ‖AN − s‖2}

|P?|
, (4.6)

where |P?| is the cardinality of the set P?, which is true Pareto front (PF)

and A is an approximated non-dominated set of the PF obtained from opti-

mization algorithm. The IGD metric measures the distance of the elements

in the set A from the nearest point of the true Pareto front P?.

In this case, since the true Pareto front (PF) for the EHM system ar-

chitecture design problem is unknown, we have considered the best non-

dominated solutions found so far out of all combined solutions from 25 runs

to be the Pareto front P? and the non-dominated set obtained in each run

of the optimizer as A.
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• Mean Nearest Neighbour Distance,

S(A) =

|A|∑
i=1

di

|A|
, (4.7)

where di is,

di = min
j
{‖F (xi)− F (xj)‖2}.

SR(A,P?) =
S(A)

S(P?)
. (4.8)

The ratio of the mean nearest neighbour distance metric SR(A,P?) is a measure

of the density of solutions compared to the true Pareto front of the problem. The

ratio of this metric compares a set of solutions obtained from one optimizer run

with the true Pareto front solution set.

• Coverage Metric (C-Metric)

C(A,B) =
|{u ∈ B|∃v ∈ A : v � u}|

|B|
, (4.9)

The coverage metric is introduced in the work done by Zitzler & Thiele

(1999). The C-metric compares two sets of solutions and gives an indication

of the ratio of the number of solutions in one set being dominated by the

other set of solutions. A C-metric value C(A,B) = 0 is interpreted as:

there is no solution in A that completely dominates any solution in B;

C(A,B) = 1 is interpreted as all the solutions in B are dominated by at

least one solution in A.

Table 4.1 and Table 4.2, show the minimum, mean and standard deviation in

the values of the hypervolume (HV) metric, IGD index D(A,P?), mean nearest

neighbour distance ratio SR(A,P?) and C-metric C(P?, A), estimated for the non-

dominated solutions obtained in 25 runs for the EHM system architecture design

problem using the optimizers: NSGA-II, Omni-optimizer, MOGA and Random

search method. The variation in the four performance metric values computed

for the non-dominated solutions obtained by the optimizers in 25 runs, is shown
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Table 4.1: Hypervolume (HV ) and D(A,P?) values of the obtained solutions by
the optimizers, where A is the obtained set in each run, P? is the considered PF.

Hypervolume (HV ) IGD D(A,P?)

Optimizer min mean std min mean std

NSGA-II 0.2666 0.4075 0.0754 0.1547 0.2649 0.0672
Omni-Optimizer 0.2586 0.4636 0.1078 0.0789 0.2066 0.0678
MOGA 0.7701 0.8142 0.0248 0.0043 0.0287 0.0120
Random 0.0216 0.1260 0.0676 0.8010 0.8451 0.0283

Table 4.2: SR(A,P?) and C−Metric values of the solutions obtained by the opti-
mizers, where A is the obtained set in each run, P? is the considered PF.

ESSm SR(A,P?) C(P?, A)

Optimizer min mean std min mean std

NSGA-II 1.4141 1.5937 0.0668 0.2937 0.4431 0.0879
Omni-Optimizer 1.1837 1.4368 0.0987 0.3762 0.4829 0.0377
MOGA 0.8918 0.9316 0.0246 0.0292 0.0971 0.0339
Random 0.2330 0.3499 0.0653 0.9431 0.9731 0.0164

in Figure 4.15 and Figure 4.16 using box plots representation. In these box plots,

the bottom and top lines of the box are represent first quartile (25th percentile)

and third quartile (75th percentile), and the line inside the box represents the

second quartile (the median) of the distribution. The whiskers extend to the

most extreme min and max data points representing the range of the distribution,

without considering the outlier data points. The outliers are plotted as individual

points outside the whiskers.

• The hypervolume metric scores for the optimizers indicate that MOGA is

able to enclose more hypervolume by converging towards the Pareto front

consistently in all the 25 runs with less variation. However, NSGA-II and

Omni-optimizer have moderate hypervolume scores implying that they are

converging to sub-optimal solutions and the variation is higher compare to

MOGA optimizer. Random search got a very low score for hypervolume,

due to very few solutions are found to be non-dominated in the feasible
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Figure 4.15: Box plots of the (i) HV and (ii) IGD metric values computed for the
solutions obtained in 25 runs by the optimizers.

Figure 4.16: Box plots of the (i) SR and (ii) C−metric values computed for the
solutions obtained in 25 runs by the optimizers.
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space which are not converged to the Pareto front.

• The IGD index scores indicate the relative distance of obtained non-dominated

solutions to the best Pareto front obtained overall. The IGD index scores

for the NSGA-II and Omni-optimizer imply that the solutions obtained are

not close the Pareto front, hence they are sub-optimal solutions. There are

several outliers in the IGD index scores for the Omni-optimizer, implying

that the optimizer is not consistent in converging to the Pareto front. The

low scores of IGD index D(A,P?) with less variation for the MOGA indicate

that the obtained non-dominated sets in each run are very close to the best

Pareto front obtained overall. Therefore, for this EHM system architecture

design problem, the proposed methodology is consistent in producing solu-

tions that are close to the PF in every run. Random search got high scores

for IGD index with less variation, due to very few solutions in the feasible

space.

• The SR(A,P?) ratio values indicate that the obtained solutions in each run

from MOGA optimizer have a good distribution and diversity compare to

solutions obtained from the NSGA-II and Omni-optimizer with respect to

the Pareto front. The low variation in metric values for the three optimizers

indicate that they are able to find solutions with good distribution and

diversity in all the runs.

• The C-metric values for NSGA-II and Omni-optimizer indicate that 25 −
50% solutions are being dominated by Pareto front solutions. Low values of

the C-metric for MOGA and their low variation imply that there are very

few solutions that are being dominated by solutions in the Pareto front in

all the 25 runs. The scores for the random search indicate that almost all

the solutions are being dominated by solutions in the Pareto front.

The scores of the performance metrics and the box plots indicate that the

proposed optimizer is able to find well distributed non-dominated solutions with

good repeatability in the decision maker’s preferred region close to the true Pareto

front.

104



4. EHM System Architecture Design

Figure 4.17: Trade-off solutions with increased dataflow rate to the on-ground
station.

Figure 4.18: Trade-off solutions with increased processor limit on the EMU.

Figure 4.19: Optimal deployment solution with four objectives satisfied.
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4.7 Exploring What-If Design Scenarios

There is additional value in the proposed approach. The Progressive preference

articulation (PPA) technique in the MOGA optimizer enables the decision maker

to explore different architecture design scenarios, such as improved processor

technology on the EMU and improved wireless transmission rate between on-

engine and on-ground systems. This is possible by interacting with constraints

and specifying different goal/limitation settings. It can be observed from Fig-

ure 4.10, that the constraints on: data flow rate to on-ground (4), processing

capacity on EMU (5) and processing capacity on EEC (6), are narrowly satisfied.

By increasing the goal values for these constraints, the decision maker can explore

future (“what-if”) architecture design scenarios and analyze prospective perfor-

mance improvements. Here, in the first attempt, the constraint goal value for the

ACARS (Aircraft Communications, Addressing and Reporting System) data flow

rate to the on-ground system is increased (50%). The trade-off solutions obtained

after running the MOGA for a further 50 generations are shown in Figure 4.17. It

is observed that solutions are obtained with zero values (completely satisfied) for

coupling objective (11) and with a slight improvement in flexibility objective (14).

In the second attempt, the constraint goal value for the processing capacity

on the EMU is increased (20%), and the data flowrate for the on-ground system

decreased to the actual constraint value. Figure 4.18 shows the trade-off solutions

obtained after running the MOGA for a further 50 generations. It can be seen

that solutions are obtained with a zero value for the security objective (12) and no

significant improvement in the coupling objective (14). Out of these solutions one

interesting solution is obtained with zero values for four objectives: criticality (9),

immediacy (10), security (12) and IP sensitivity (14), as shown in Figure 4.19.

This means that in this deployment solution all OP requirements in criticality,

immediacy, security and IP sensitivity attributes are completely satisfied, when

the EMU processing capacity is increased.
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4.8 Summary

In this chapter, system architecture design process using the proposed multi-

criteria optimization framework is described for an aero engine health manage-

ment (EHM) system. The system architecture design process involves various

steps, which include, stakeholder identification, requirement capture, functional

definition and decomposition, physical architecture decomposition into subsys-

tems, function deployment and optimization. The EHM system architecture

design problem is formulated as a multi-criteria optimization problem involv-

ing eight constraints in terms of resource limitations and six objectives in terms

of operational attribute excess requirements and 74 discrete decision variables

representing the operations deployment locations. The proposed multi-criteria

optimization framework is employed to solve the EHM system architecture de-

sign optimization problem. The optimizer generated a well distributed family

of Pareto optimal trade-off solutions for the EHM system architecture design.

Cluster analysis identified four groups of Pareto optimal solutions which provide

valuable insight into EHM system architecture design trade-offs. For each clus-

ter, several additional Pareto optimal solutions are estimated using the Pareto

estimation method with less computation expense. Through this design process,

it is revealed that it is not possible to fully satisfy all attributes for the EHM

system, while observing the given constraints, thereby highlighting the value of a

multi-criteria approach. Various architecture design scenarios, such as hardware

upgrades to data input rates and processor capacities, are explored by changing

the goal values of constraints. It is shown that improved system performance

achieved for the new specification. Performance of the proposed method is as-

sessed by evaluating test metrics and comparing the results with other popular

optimizers. The results of test metrics demonstrated the superior performance of

the proposed optimization framework.

The next chapter presents an uncertainty analysis performed for the EHM

system architecture design for estimating the sensitivities of objectives considering

variations in design parameters caused by underlying assumptions .
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Chapter 5

Uncertainty Analysis and Robust

Optimization of EHM System

Architecture Design

5.1 Introduction

The proposed multi-criteria optimization approach for system architecture design

does not consider the variations in the design parameters and uncertainties in the

design assumptions made by experts. The obtained Pareto optimal architecture

solutions are sensitive to these variations in the design parameters.

In this Chapter, an uncertainty analysis using an efficient polynomial chaos

expansions (PCE) based approach is presented for the system architecture de-

sign optimization. The PCE approach requires a smaller number of samples to

estimate the uncertainty metrics such as mean, variance and standard deviation

values for the objectives with more accuracy when compared with the standard

Monte Carlo sampling approach. This helps in speeding up the uncertainty anal-

ysis and results in a robust optimization process with reduced computational

expense. A robustness metric is introduced for representing the sensitivity of the

objectives in the optimization formulation. In the optimization process for each

candidate solution the criteria evaluations over the number of samples from the
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design of experiments, are executed using the parallel processing facility available

in the MATLAB software. Using the PPA technique in the MOGA optimizer,

preferences are expressed and robust Pareto optimal architecture solutions for the

EHM system architecture design are obtained. The system architecture design

process is validated using a baseline EHM system architecture implemented on a

working aero gas turbine engine.

5.2 Uncertainties in EHM System Architecture

Design

In the multi-objective optimization studies the main goal is to find the Pareto

optimal solutions. However, in real-world design optimization, a decision maker

may not be interested in the Pareto optimal solutions if these solutions are very

sensitive to the variations in the design parameters. In such cases, the decision

maker is interested in finding the solutions which are less sensitive to the varia-

tions in the design parameters and uncertainties in the design assumptions made

by experts. These solutions are called “robust solutions”.

In the current EHM system architecture design optimization, the operational

attribute requirements for the 74 EHM functional operations are specified by de-

sign experts in terms of qualitative levels of ‘low ’, ‘medium’ and ‘high’. In order to

integrate the EHM system architecture models into an optimization platform and

to evaluate the six objective functions, the functional OP attribute requirements

in terms of ‘low ’, ‘medium’ and ‘high’ qualitative levels need to be transformed

to suitable numeric values. In this work, we have selected numerical values of 1,

4, and 9 for transforming the qualitative requirement levels; ‘low ’, ‘medium’ and

‘high’ respectively.

The obtained Pareto optimal architecture solutions from the optimization

process in the Section 4.4, are specific to the given model specifications. They

are sensitive to the design assumptions made by experts and to the considered

numerical conversion values for the EHM operational attribute requirements in
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the design. In order to select an architecture solution for the EHM system, one can

perform uncertainty analysis on the solutions and find out solutions having least

sensitivity to the variations in the design parameters caused by the underlying

assumptions.

5.3 Robustness Metric

In this work, in order to find solutions with low sensitivity to the uncertainties, a

robustness metric RF (similar to Erfani & Utyuzhnikov, 2012) is introduced as an

additional objective function in the system architecture design. The robustness

metric is described as:

RF =
1

ku

k∑
i=1

u∑
j=1

σfi
σpj

(5.1)

Here, the robustness metric is computed as the sum of the ratios of the stan-

dard deviation in objectives, f , with respect to the standard deviation in uncer-

tain design parameters, p, normalized by total number of objectives, k and the

total number of uncertain parameters, u.

The robustness metric value for a candidate architecture solution gives an

indication of the level of sensitivity to variations in the uncertain parameters. A

high value for the robustness metric indicates that the solution is very sensitive

to the parameter variations and a low value indicates that the solution is less

sensitive to the parameter variations.

In the optimization process, finding the Pareto optimal solutions having low

values for the robustness metric objective function, leads to robust architecture

solutions which are less sensitive to the variations present in the model, arising

from the underlying assumptions.
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5.4 Polynomial Chaos Expansion Approach

In order to calculate the robustness metric, the uncertain quantities of the objec-

tive functions such as mean, variance and standard deviation are estimated. The

most widely used method for uncertainty analysis is Monte Carlo (MC) sampling

method. There are a number of Monte Carlo sampling methods described in the

literature (Helton & Davis, 2000; Kalos & Whitlock, 2008; Rubinstein & Kroese,

2011). The main advantage of the MC methods is that they are simple to imple-

ment and they treat the model as a black-box. In the MC sampling method, the

random samples of uncertain variables are taken from their probability distribu-

tion and used for computing the model outputs. Then the statistical parameters

for the output are estimated. The main drawback of Monte Carlo methods is

that they require a large number of samples in order to estimate accurate mean

and standard deviation values for the output.

Another sampling technique with faster convergence than the MC method

is Latin Hypercube Sampling (LHS) (McKay et al., 2000). In this method, the

samples of uncertain parameters are spread across the entire range of the param-

eter into intervals with equal probability, such that there is only one sample in

each interval. Since LHS covers the whole range of the uncertain parameters, the

accuracy of output statistics is better than that of the Monte Carlo method.

There exists another methodology called Polynomial Chaos Expansion (PCE)

(Wiener, 1938) which is more efficient than both the Monte Carlo and Latin

hypercube sampling methods, for estimating uncertain quantities of model out-

puts. In this methodology, the uncertain variables are expanded using a spe-

cific orthogonal polynomial series based on the probability distribution of the

uncertain variables, such as Hermite polynomials for a normal distribution and

Legendre polynomials for a uniform distribution. Then the uncertain quantities

are estimated using a truncated expansion of these polynomials. The method is

popularly used in computationally expensive aerospace engineering applications

(Najm, 2009; Perez, 2008; Poles & Lovison, 2009; Sudret, 2008).
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In the polynomial chaos expansion method, a function f(x) is expanded in

an infinite series using orthogonal polynomials pi(x). Then the coefficients of the

polynomial series αi are determined in order to estimate the means, variance and

standard deviations, thus:

f(x) =
∞∑
i=0

αipi(x), (5.2)

µ = α0, (5.3)

σ2 =
∞∑
i=1

α2
i ||pi(x)||2 . (5.4)

In the general case, the expansion is truncated at a certain order, h, and

coefficients, αi, are determined using either Galerkin projections (Fletcher, 1984)

or chaos collocation method (Villadsen & Michelsen, 1978) by exploiting the

orthogonality of the polynomials.

The equations associated with the truncated polynomial expansion are:

f(x) ∼=
h∑
i=0

αipi(x), (5.5)

µ ∼= α0, (5.6)

σ2 ∼=
h∑
i=1

α2
i ||pi(x)||2 . (5.7)

The chaos collocation method described in Perez (2008); Poles & Lovison

(2009), is employed in this work. The polynomial coefficients, αi, are estimated

from the evaluations of the function f(x) at selected orthogonal collocation points

(Villadsen & Michelsen, 1978) and minimizing the sum of the squares of the

differences between f(x) and polynomial chaos expansion of order h.
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αi : min
αi

N∑
s=1

[
f(x̄s)−

h∑
i=1

αipi(x̄s)

]2
, (5.8)

{x̄1, . . . , x̄N},

The number of samples N , considered for estimating the polynomial coeffi-

cients is

N = 2× (h+ u)!

h!u!
(5.9)

where h is order of the polynomials and u is number of uncertain variables.

5.5 Uncertainty Analysis and Robust Optimiza-

tion of EHM System Architecture Design

In order to perform uncertainty analysis for the EHM system architecture design,

the uncertain design parameters and their probability distributions need to be

identified. In the EHM system architecture design problem, the OP attribute re-

quirements for the 74 EHM functional operations are specified by the industrial

system design experts in terms of ‘low ’, ‘medium’ and ‘high’ qualitative levels.

These OP attribute requirements are transformed to suitable numerical values of

1, 4 and 9 respectively, for easy integration into the optimization process and for

evaluation of the objective functions.

The three levels of attribute requirements are considered as three uncertain

parameters in the current uncertainty analysis for the EHM system architecture

design. The variation in the choice of the values for the attribute requirement

levels by the design experts is considered to follow a Gaussian probability distri-

bution. For the three uncertain parameters, mean values are taken as assumed

numerical transformation values 1, 4 and 9 and variance is considered to be 10%

of the mean value, which is proportionate to the level of attribute requirement.

Here, the variation is greater for the high level of attribute requirement and the
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variation is lower for the low level attribute requirement.

In the polynomial chaos expansions approach the order of the polynomials is

selected to be 5 and the number of uncertain parameters is set equal to 3. From

these values the required number of samples for uncertainty analysis is computed

(equation 5.9) and found to be 112 samples. The number of samples needed in

the PCE method is much less when compared with the Monte Carlo sampling

methods.

In the EHM system architecture design optimization process, for each candi-

date architecture solution the six objective function values along with the addi-

tional robustness metric objective value need to be estimated. For this purpose,

the PCE method is integrated with the proposed optimization framework. Here,

the PCE method will generate a design of experiments by selecting 112 sample

values over the range of Gaussian distributions for the three uncertain param-

eters. For each candidate architecture solution, the criteria values are required

to be evaluated for the 112 samples with different parameter values. Here, we

have utilized the parallel processing facility available in MATLAB (MathWorks,

2010) for evaluating the criteria values for the 112 samples on 8 parallel process-

ing MATLAB pool sessions, in order to reduce the total elapsed computation

time. Then from the criteria values evaluated for the 112 samples using the PCE

approach, the uncertain quantities of EHM system objective functions, such as

mean, variance and standard deviation, are estimated. The robustness metric

objective for the candidate architecture solutions is then computed as the sum of

ratios of the standard deviations of six objective functions with respect to stan-

dard deviations of uncertain parameters (equation 5.1). The process is repeated

for all of the candidate architecture solutions in the robust optimization process

and the non-dominated Pareto optimal solutions are obtained.

For the EHM system architecture design optimization, the non-dominated

Pareto optimal solutions obtained after the uncertainty analysis are shown in

Figure 5.1. Here the trade-off of the Pareto optimal architecture solutions is

shown with respect to the six objectives of EHM system OP attributes and the
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Figure 5.1: EHM system architecture Pareto optimal solutions with robustness
metric values.

robustness metric values of the solutions. Here, the values of the robustness met-

ric objective indicate the level of sensitivity of the Pareto optimal architecture

solutions with respect to the variations in the uncertain parameters. The Pareto

optimal solutions having higher robustness metric values are more sensitive to the

variations, and the solutions having low robustness metric values are less sensitive

to the uncertain parameter variations.

In order to select a robust Pareto optimal architecture solution for the EHM

system architecture design, the decision maker can specify preferences for the ro-

bustness metric value using the PPA technique, indicating the level of sensitivity

acceptable for the architecture design. In Figure 5.2, initially a preference of zero

goal value for the ‘Criticality excess requirement’ objective is expressed using the

slider in the preference articulation window. Then a second preference on the

robustness metric objective is expressed until the lowest robustness metric value

of the remaining solutions is isolated. This process eliminates most of the Pareto
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Figure 5.2: Robust EHM system architecture Pareto optimal solutions obtained
by expressing preferences on criticality and robustness metric objectives.

optimal solutions and two robust Pareto optimal solutions remain that satisfy the

decision maker’s preferences. Criteria scores for the robust multi-modal Pareto

optimal architecture solutions 1 and 2 are given in Figure 5.3. The two robust

Pareto optimal solutions have equivalent objective function values (from objec-

tive 9 to 15), indicating that they are multi-modal Pareto optimal solutions. (c.f.

Section 3.6)

Deployment of the 74 EHM functional operations in the obtained robust

Pareto optimal EHM system architecture solution 1 is presented in Figure 5.4.

In this architecture solution, out of 74 functional operations, 38 operations are

deployed on the EMU, 1 operation is deployed on the EEC, 11 operations are

deployed on the aircraft subsystem and 24 operations are deployed on the ground

subsystem. The list of EHM system functions and associated 74 operations pre-

sented in Figure 4.4 illustrates the relationship of each OP to its corresponding

EHM system function. In this architecture solution, the functional operations
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Figure 5.3: Criteria scores for robust EHM system architecture Pareto optimal
solutions.

related to engine vibration monitoring, fan balance, ETRECS report generation

and compressor damage monitoring functions are deployed on the EMU, which

has close proximity to the numerous sensors mounted on the engine. The high

criticality operation for capturing life cycle DAC (Direct Accumulation Counting)

system data (OP34) is deployed on the EEC. The functional operations related to

the output of the ETRECS event report, mode report, summary report and per-

formance reports, through wireless transfer and bulk data storage are deployed on

the aircraft system. Operations for ETRECS report analysis, advanced vibration

analysis, life-cycle data analysis, bulk data analysis and LRU data analysis are

deployed on the ground subsystem.

Deployment of the 74 EHM functional operations in the robust architecture

solution 2, is presented in Figure 5.5. In this architecture solution, out of 74 func-

tional operations, 36 operations are deployed on the EMU, 1 operation is deployed

on the EEC, 13 operations are deployed on the aircraft subsystem and 24 oper-

ations are deployed on the ground subsystem. When compared with the robust

architecture solution 1, the operational deployment is the same except four op-

erations. In this architecture solution, three operations; OP9-Input ODMS data,
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OP45-Acquire oil quantity data and OP73-capture control system data for LRU

(Line Replaceable Units) anomaly analysis, are deployed on the Aircraft. The

operation OP42-Input compressor pressure P26 spectrum for bulk storage is de-

ployed on the EMU. Even though the deployment of these operations is different,

their attribute requirements are satisfied in both EMU and Aircraft subsystems.

Hence, the objective functions values of the two robust Pareto optimal solutions

are the same. The constraints of the data flow rate and processing resource re-

quirement, however, are different. These two solutions represent two multi-modal

Pareto solutions for the EHM system architecture design.

5.6 Validation of the EHM System Architecture

Design Optimization

In this section, the EHM system architecture design process using the proposed

multi-criteria optimization methodology is validated using a baseline aero engine

EHM system architecture provided by Rolls-Royce system engineers (Tanner,

2010), which is currently implemented on a working gas turbine engine. The val-

idation process consists of evaluating criteria scores for the baseline EHM system

architecture using the proposed multi-criteria formulation in Section 4.3. The

baseline EHM system architecture and deployment of the 74 EHM functional op-

erations, is shown in Figure 5.6. In the baseline architecture, out of 74 functional

operations, 36 operations are deployed on the EMU, 2 operations are deployed on

the EEC, 12 operations are deployed on the aircraft subsystem and 24 operations

are deployed on the ground subsystem.

In order to evaluate the multiple criteria scores for the baseline EHM sys-

tem architecture, the values of 74 decision variables representing the deployment

location of EHM functional operations, are captured from the Figure 5.6. The

criteria scores are computed, for the eight constraints representing the total data

flow rate requirements and processing resource requirements and six objectives of

excess requirements in terms of the six operational attributes: ‘Criticality’, ‘Im-

118



5. Uncertainty Analysis and Robust Optimization

F
ig

u
re

5.
4:

R
ob

u
st

so
lu

ti
on

1
E

H
M

sy
st

em
ar

ch
it

ec
tu

re
w

it
h

fu
n
ct

io
n
al

d
ep

lo
y
m

en
t.

119



5. Uncertainty Analysis and Robust Optimization

F
ig

u
re

5.
5:

R
ob

u
st

so
lu

ti
on

2
E

H
M

sy
st

em
ar

ch
it

ec
tu

re
w

it
h

fu
n
ct

io
n
al

d
ep

lo
y
m

en
t.

120



5. Uncertainty Analysis and Robust Optimization

F
ig

u
re

5.
6:

B
as

el
in

e
E

H
M

sy
st

em
ar

ch
it

ec
tu

re
w

it
h

fu
n
ct

io
n
al

d
ep

lo
y
m

en
t.

121



5. Uncertainty Analysis and Robust Optimization

Figure 5.7: Criteria scores for the baseline EHM system architecture.

Figure 5.8: Baseline EHM system architecture criteria scores on MOGA parallel
co-ordinates graph.

Figure 5.9: Comparison of Robust EHM system architecture solutions obtained
from the optimization process with the baseline EHM system architecture.
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mediacy’, ‘Coupling’, ‘Security’, ‘IP sensitivity’, ‘Flexibility’ and the additional

‘Robustness metric’ objective, as per the procedure described in the Section 4.3.5

and Section 5.5.

The baseline EHM system architecture criteria scores are given in Figure 5.7

and they are plotted on the MOGA parallel co-ordinates graph as shown in Fig-

ure 5.8. It can be observed that, for the baseline EHM system architecture data

flow and processing resource requirements are within the resource constraints lim-

itations of the physical architecture subsystems. The criteria scores for the six

objectives, from objective number 9 to 14 attribute excess requirement, indicate

that with this deployment in the baseline EHM system architecture the six opera-

tional attribute requirements are not completely satisfied. The robustness metric

(objective 15) value indicates that the baseline architecture is less sensitive to

uncertain variations in the design parameters.

The robust Pareto optimal architecture solutions obtained from the proposed

methodology are compared with the baseline EHM system architecture in Fig-

ure 5.9. The following observations are made from the comparison:

• The criteria scores for the baseline EHM system architecture are very close

to the robust architecture solutions obtained from the optimization pro-

cess. However, the Criticality operational attribute requirement (objective

9) is not completely satisfied in the baseline architecture, whereas, it is

completely satisfied (criticality excess requirement is zero) in both robust

Pareto optimal architecture solutions.

• The immediacy and security excess requirements (objectives 10 and 12)in

the robust Pareto optimal architectures are slightly lower than the baseline

architecture.

• The three remaining operational attributes, coupling, IP-sensitivity and

flexibility (objective 11, 13 and 14) are equally satisfied in baseline and

optimal EHM system architecture solutions.

• The robustness metric (objective 15) values for the Pareto optimal solutions
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obtained from the proposed methodology are better than the baseline EHM

system architecture.

From the comparison of the baseline and the robust Pareto optimal EHM

system architecture deployments shown in Figures 5.4, 5.5 and 5.6, it is observed

that the operation for capturing oil level data (OP29) is deployed on the EMU

in optimal solutions, where its criticality requirement is satisfied. Whereas, the

OP29 is deployed on the EEC in the Baseline architecture and this is responsible

for the criticality excess requirement value.

Compared with the baseline architecture, in robust solution 1, the operation

‘OP42-input compressor pressure P26 spectrum for bulk storage’ is deployed on

the aircraft subsystem and the operations ‘OP43-acquire performance and pres-

sure data’ and ’OP46 - verify basic EHM data’ are deployed on the EMU. Whereas

in robust solution 2, the operations ‘OP9-Input ODMS data’, ‘OP45-acquire oil

quantity data’ and ‘OP73-capture control system data for LRU anomaly analysis’

are deployed on the aircraft subsystem and operations OP43 and OP46 are de-

ployed on EMU. The resulting changes are a reduction in immediacy and security

excess requirements for the robust Pareto optimal solutions. Deployment of the

all the remaining EHM functional operations is identical for all three architec-

tures.

From the above observations, out of the two robust Pareto optimal EHM

system architecture solutions, the decision maker preferred to select the robust

solution 1. This solution has fewer changes in EHM functional operations deploy-

ment, better criteria scores and least sensitivity to variations, compared with the

current baseline EHM system architecture on the working gas turbine engine.

This demonstrates that the proposed multi-criteria optimization approach for

system architecture design is successful in obtaining the best Pareto optimal

architecture solutions for the EHM system architecture. In addition, the multi-

criteria optimization approach provides a systematic means of evaluating system

architecture alternatives, there by generating confidence that the entire search
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space has been covered, yielding the most suitable solution(s), and taking account

of uncertainties inherent in the evaluation process.

5.7 Summary

In this chapter, uncertainty analysis is presented for the EHM system architec-

ture design and the polynomial chaos expansion method is used for estimating the

sensitivities of the objectives. The obtained Pareto optimal solutions are sensitive

with respect to the under lying assumptions. A robustness metric is introduced

as an additional objective function for the EHM system architecture design. The

robustness metric is computed using the variations of the criteria values com-

puted using an efficient polynomial chaos expansion technique with the design of

experiments with respect to the parameter uncertainties. A parallel processing

facility, available in MATLAB, is utilized for evaluating the robustness metric for

each candidate architecture solution over number of samples from the design of

experiments. Preferences are expressed relating to the robustness metric objec-

tive and a set of robust non-dominated solutions are obtained using the proposed

approach for the EHM system architecture design. The EHM system architecture

design, using the proposed multi-criteria optimization methodology, is validated

by comparing obtained architecture solutions with a baseline aero engine EHM

system architecture. The validation process demonstrates the success of the pro-

posed system architecture design approach using multi-criteria optimization and

it’s great potential for application to other real world complex system design

problems.
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Chapter 6

Conclusions and Future Work

This concluding chapter summarizes the research work described in this thesis

and presents the research contributions together with possible extensions to the

work in future.

6.1 Research Objectives

The main objective of the current research work is to develop a methodology for

system architecture design optimization using multi-criteria optimization tech-

niques and to apply it to real world system architecture design applications.

System architecture is defined as the description of a complex system in terms

of its functional requirements, physical elements and their interrelationships. De-

signing a complex system architecture can be a difficult task involving multi-

faceted trade-off decisions. The system architecture design is generally described

by large multidisciplinary design phases. In order to find a best possible sys-

tem architecture, the architecture design process can be formulated as an op-

timization problem. However, system architecture design problems often have

many project-specific goals involving a mix of quantitative and qualitative crite-

ria, which need to be optimized over a large decision space. The design process

needs to consider data, models and experience from many design disciplines. For

these multi-objective optimization problems, there is no one single optimal so-

lution. Instead, there is a family of solutions called Pareto optimal solutions,
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where each solution represents a compromise, or trade-off, between the compet-

ing objectives. In the last few decades, several tools and methods have been

developed to support the system architecture design process. Prior work in this

field has mainly focused on two or three objectives, not taking “many-objective”

optimization issues into account. Many conventional techniques face difficulties

in solving complex system architecture design problems having many objectives

(i.e. in excess of 3). In the case of system architecture design problems, there may

exist multiple decision vectors which map to identical objective vectors on the

Pareto front; these are multi-modal Pareto optimal solutions. The main goal of

a multi-objective evolutionary algorithm (MOEA) is to find a representative set

of the Pareto-optimal solutions as close as possible to the true Pareto front (con-

vergence), which are well distributed (diversity) within a decision maker’s region

of interest (pertinency) on the Pareto front. However, with the increased number

of objectives, the number of non-dominant solutions increases exponentially, de-

creasing the selection pressure and convergence towards the true Pareto optimal

surface. Many multi-objective evolutionary algorithms fail to find and preserve

all of the multi-modal solutions available in the decision space. Visualization

of the Pareto optimal front also becomes difficult for many-objective optimiza-

tion problems. The research work presented in this thesis successfully overcomes

these difficulties by developing an interactive multi-criteria design optimization

framework.

6.2 Research Contributions

The main contributions from this research work are briefly summarized and cri-

tiqued:

• Development of an interactive multi-criteria design optimization

framework.

An interactive design optimization framework is proposed for solving many-

objective system architecture design optimization problems. The frame-

work uses an evolutionary multi-objective genetic algorithm (MOGA) with

a progressive preference articulation technique. Using this technique the op-
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timization search is focused onto a region of interest in the objective space,

thus increasing selective pressure and convergence towards the Pareto op-

timal front. In many-objective optimization it is not feasible to cover all

the regions of the objective space with a small size of population. The

optimization algorithm is further enhanced with a crowding distance oper-

ator in order to maintain the diversity of the solutions in both objective

and decision spaces. This will enable the optimization algorithm to find

and preserve multi-modal Pareto optimal solutions present in the decision

space for the given optimization problem. However, a large population size

is required in order to achieve a good distribution of solutions in all of

the multi-modal Pareto sets. A parallel coordinates graph in the MOGA

software suite facilitates visualization of the interplay between the different

objectives. A limitation of the parallel coordinates representation is that

only adjacent objectives can be easily compared. However, in MOGA, there

is a facility to interactively switch the order of representation of the objec-

tives. The optimization framework supports the decision maker to express

goals and preferences on the objectives in a progressive manner during the

optimization, empowering a closely coupled user and optimization process

interaction. The proposed method is tested on several benchmark test prob-

lems, with different case studies. In all test cases, the proposed optimization

algorithm has successfully found multi-modal Pareto solutions with a good

convergence towards the true Pareto front and well distributed in objec-

tive space and decision space. Finding more of the available multi-modal

solutions would give the decision maker a greater selection when choosing

between solutions. The proposed multi-criteria optimization framework is

a valuable tool for system architecture design optimization with many con-

flicting objective functions, due to its ability to converge to the true Pareto

front and find diversified Pareto optimal solutions in the decision maker’s

pertinent region of interest.

• Development of a novel methodology for increasing the density of

available Pareto solutions.

A novel Pareto estimation (PE) method is introduced and an extension is
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proposed for applying it to multi-objective multi-modal optimization prob-

lems. The main motivation for the Pareto estimation method is the ability

to estimate additional Pareto optimal solutions in the decision maker’s re-

gion of interest with reduced computational expense, without re-running of

entire optimization process with a larger population size. The proposed PE

method uses an efficient iVAT clustering technique, which does not require

an input of ‘number of clusters’ to be specified for the clustering process,

which is, in general, unknown for complex design data. In the iVAT cluster-

ing method, the pairwise dissimilarity data is re-ordered and displayed as a

gray-scale image, thus highlighting the clusters present in the data as dark

blocks along the diagonal of the image. The computational effort required

by the iVAT clustering algorithm increases exponentially with the size of the

data. In the proposed framework, the iVAT clustering method is utilized

to identify and partition the different clusters available in the decision vari-

able space which correspond to the multi-modal Pareto optimal solutions.

These individual clusters are then used to train the radial basis function

based neural network (RBFNN) models to find the relationship between

Pareto objective solutions and the decision space. These are then employed

to estimate additional Pareto solutions for the optimization problem. The

PE method has been employed on several benchmark test problems, with

different case studies in order to estimate a large number of Pareto optimal

solutions, thereby increasing the density of available non-dominated solu-

tions in the multi-objective problems. In all cases, the Pareto estimation

method has successfully found many non-dominated solutions correspond-

ing to different multi-modal solutions. The success of the proposed method

using RBFNN models is dependent on the number of solutions available

in an individual cluster for training and estimating the one-to-one map-

ping between objective space and decision vector space. For the test cases,

around 10 − 20% of the estimated solutions were found to be dominated,

due to the approximation errors in training and estimation of solution using

RBFNN models.
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• Application of multi-criteria design optimization approach to a

real-world system architecture design problem.

System architecture design using the proposed multi-criteria optimization

framework is demonstrated with a real-world application of an aero gas tur-

bine engine health management (EHM) system. An EHM system can help

to reduce costs due to unanticipated disruptions to service. All the func-

tional requirements of the EHM system are captured and they are further

decomposed into 74 EHM functional operations. The EHM system architec-

ture design problem is formulated as a multi-criteria optimization problem

having many objectives and constraints of resource limitations. EHM sys-

tem architecture models are developed in SysML and successfully integrated

into the optimization platform. Faithful capturing of expert elicitation while

developing the system architecture models can improve the accuracy of the

performance evaluations of alternatives. A strategy for optimal deployment

of the functional operations on physical architecture locations has been

successfully developed. The EHM system architecture design problem is

successfully optimized using the proposed optimization methodology. The

optimizer supports the decision maker by providing a facility for progressive

preference articulation. The optimization algorithm successfully generated

a well diversified family of Pareto optimal solutions through expression of

decision maker preferences progressively. Cluster analysis using the iVAT

clustering technique revealed four groups of Pareto optimal solutions; this

provides valuable insight into EHM system architecture design trade-offs.

Using the Pareto estimation method, several additional Pareto optimal solu-

tions are successfully generated with reduced computational expense. How-

ever, around 35% of the estimated solutions using PE method were found

to be dominated or infeasible, due to the very low data-flow rate constraint

on the ground system Through this design process, it is revealed that it

is not possible to fully satisfy all attributes for the EHM system, while

observing the given constraints, thereby highlighting the value of the multi-

criteria approach. Moreover, using this approach it was possible to identify

the most significant design constraints (“hot spots”) and the opportuni-

ties afforded by either the relaxation or the tightening of these constraints
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along with their performance implications. Performance of the optimiza-

tion framework is assessed by evaluating test metrics and comparing with

popular multi-objective optimization algorithms using established statisti-

cal methods. The obtained results demonstrated the superior performance

of the proposed methodology with better convergence and diversity of the

solutions with good repeatability.

• Uncertainty analysis for finding robust system architecture design

solutions.

Uncertainty analysis is presented for the EHM system architecture design

using the polynomial chaos expansion method for estimating the sensitivi-

ties of the objectives. In the EHM system architecture design optimization,

in order to integrate the EHM architecture models into the optimization

platform and to evaluate the various objective functions, the qualitative

functional attribute requirements are transformed to suitable numeric val-

ues. The obtained Pareto optimal solutions are sensitive with respect to the

chosen numerical parameter values. In order to find architecture solutions

with low sensitivity to the parameter uncertainties, a robustness metric is

introduced as an additional objective function for the EHM system archi-

tecture design. The robustness metric is computed using the variations of

the criteria values evaluated with respect to variations in the parameter

values. An efficient uncertainty quantification technique using polynomial

chaos expansion is integrated within the optimization process. The ap-

proach generates a design of experiments with respect to the parameter

uncertainties. In the PCE method, the number of samples required for es-

timating the polynomial coefficients increases proportional to the factorial

of the number of uncertain parameters, thereby increasing computational

effort. A parallel processing facility available in MATLAB is utilized for

evaluating the robustness metric for each candidate architecture solution

over the number of samples from the design of experiments with reduced

computational time. In the optimization framework, using progressive pref-

erence articulation, the decision maker can specify the level of sensitivity

that can be allowed in the design. Finally, a set of robust non-dominated
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solutions are obtained using the proposed approach for the EHM system ar-

chitecture design; these are further validated by comparing with a baseline

aero engine EHM system architecture.

The proposed methodology has great potential to be implemented on real-

world complex system architecture design applications. It has already been ap-

plied to a novel oil system architecture design and a novel cooled cooling air

system architecture design of aero gas turbine engine. The methodology is being

adopted by the co-funder of the research, Rolls-Royce plc, for general application

to their system architecture design process.

6.3 Future Work

Although, the system architecture design optimization process has been suc-

cessfully demonstrated with the proposed interactive multi-criteria optimization

framework, a number of extensions to the research work are possible as presented

below.

• During the research work presented in this thesis several tools, techniques

and approaches have been developed for multi-objective optimization, in-

tegration of architecture models, cluster analysis and Pareto estimation

methods for the system architecture design. In future these should be inte-

grated into a generic optimization framework for multi-disciplinary design

optimization, where different models created using different software and

different tools and techniques for simulation and analysis, can be easily in-

tegrated and information can be easily exchanged among all the techniques

and models. This will enable design practitioners to engage their complex

design problems effortlessly, without the need of code modifications, and

apply the required tool-set to achieve design goals.

• In the Pareto estimation method, the quality of the estimated Pareto solu-

tions highly depend on the radial basis function neural network models and

the solutions used for training. In future, the Pareto estimation method can
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be extended to use other popular meta-modeling approaches such as Krig-

ing and Bayesian networks in order to estimate a better mapping between

the Pareto objective vectors and decision vectors. This will improve the

efficiency and accuracy approach in generating additional Pareto optimal

solutions.

• For large data sets the VAT clustering algorithms becomes computation-

ally expensive. In future, different clustering techniques can be integrated

into the optimization framework and a suitable clustering method can be

selected for analysis depending on the nature of the data.

• In the optimization framework, several other visualization methods can be

incorporated such as hyper radial visualization for viewing the Pareto opti-

mal solutions in many-objective optimization, to facilitate cognitive under-

standing of the optimization results.
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