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Abstract
This thesis deals with discrete Lax systems and integrable lattice equations (i.e., partial

difference equations (PΔEs) ) associated with elliptic curves. We will be concerned

with their derivation and integrability properties, as well as with certain reductions. In

particular the construction of a new class of higher-rank elliptic type integrable system

forms one of the core results, opening new avenues of investigation.

The primary integrable system of interest is Adler’s equation (nowadays often referred

to as Q4), which is a lattice version of the Krichever-Novikov (KN) equation. For this

equation we exhibit a new Lax pair, the compatibility of which yields the equation in its

so-called 3-leg form and which forms a starting point for the investigation in this thesis. It

is this particular Lax pair that is most readily generalized to higher-rank cases, in contrast

to other known Lax pairs for Q4. In fact, the most general class of higher-rank Lax pairs

contains not only higher-rank versions of Q4 but also equations which are conjectured to

be related to discrete versions of the Landau-Lifschitz (LL) equations. We will briefly

treat the latter, but our main focus will be on the class of higher-rank systems related to

Adler’s lattice equation.

Furthermore, by considering limits on the solutions, whereby the curve degenerates, we

will propose higher-rank analogues of various equations in the well-known ABS list.

Finally, we will set up a general scheme that corresponds to isomonodromic deformations

on the torus, from which non-autonomous elliptic type difference equations can be

derived.
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Chapter 1

Introduction

This thesis is concerned with integrable partial difference equations (lattice equations)

associated with elliptic curves. The prime example of such a system is the lattice

Krichever-Novikov (KN) equation (or Adler’s lattice), which will be studied in detail

in chapter 2, and which has a close connection, through the Lagrangian aspects, to the

modern theory of elliptic hypergeometric functions.

A general elliptic N × N matrix Lax scheme is presented, leading to two classes

of elliptic lattice systems, one which we interpret as the higher-rank analogue of the

Landau-Lifschitz (LL) equations, while the other class we characterize as the higher-

rank analogue of Adler’s lattice equation. We present the general scheme, but focus

mainly on the latter type of models. In the case N = 2 a novel Lax representation of

Adler’s elliptic lattice equation in its so-called 3-leg form is obtained. This Lax pair was

presented in [26]. The case of rank N = 3 is analyzed using Cayley’s hyperdeterminant

of format 2× 2× 2, yielding a multi-component system of coupled 3-leg quad-equations.

Moreover, the elliptic discrete isomonodromic deformation problem, which leads to non-

autonomous elliptic lattice equations, has been considered.

In this introductory chapter we collect a number of aspects of the theory that come
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together in this subject: the elliptic Gamma function and elliptic Beta integral and

its relation to the lattice equations under consideration, the general theory of lattice

equations integrable in the sense of multidimensional consistency, similarity reductions

and isomonodromic deformation problems and the technique of de-autonomization. The

results in this chapter are not new but present some of the state-of-the-art ingredients

needed for the main topic of the thesis.

The first section of this introduction gives some idea of the theory of elliptic functions and

presents some useful formulae which are needed to prove of some relations in this thesis.

The next section covered here is an overview of different types of Gamma functions

(classic, basic and elliptic) related to three classes of the hypergeometric functions

theory and the aspect of elliptic Beta integral interpreted as a star-triangle relation in

statistical mechanics. This section of the introduction concentrates on the results given

by Spiridonov and Bazhanov et al. [19, 97]. This is followed by a short overview of the

integrability of discrete systems, in particular their multi-dimensional consistency. The

final topic of this chapter is the theory of isomonodromic deformation problem followed

by an outline of the thesis.

1.1 Elliptic functions and their functional relations

An elliptic function is a meromorphic function in the complex plane with two periods

ω1 and ω2 (ω1 and ω2 are only half-periods) such that ω2

ω1
is not real. The theory of

elliptic functions has been studied by Abel, Euler, Jacobi, Legendre [1, 49, 61] and

others. An important contribution in the subject of elliptic functions has been provided

by Weierstrass who introduced what is now called the Weierstrass ℘ function [106]. A

comprehensive treatise of the theory is given in many textbooks [11, 18, 24, 107] as well

as [74]. Many lattice systems covered in the thesis rely on addition formulae for the

Weierstrass functions σ, ζ and ℘ which will play a central role throughout the thesis. We
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will first focus on the sigma-function of Weierstrass, σ(z), defined by

σ(z) = z

∞∏
(m,n)�=(0,0)

(1− z

Ωmn
) exp

[ z

Ωmn
+

1

2

z2

Ω2
mn

]
, (1.1)

with Ωmn = 2mω1 + 2nω2 and 2ω1,2 being a fixed pair of the primitive periods.

Alternatively σ(z) can be represented in terms of the theta function θ11

σ(z) = 2ω1 exp
(η1z2
2ω1

)2 θ11(x|τ)
θ′11(0|τ)

, τ =
ω2

ω1
, z = 2ω1x , (1.2)

where η1 = ζ(ω1). We refer to the Appendix A for properties of the theta-functions,

from which corresponding properties of the sigma function are inherited. Furthermore,

the connections between the standard Weierstrass functions are given

ζ(z) =
d

dz
(log σ(z)) =

σ′(z)
σ(z)

, ℘(z) = −dζ(z)
dz

,

where σ(z), ζ(z) are odd functions of z and ℘(z) is an even function. By differentiation

(1.1), we have the following expressions:

ζ(z) =
1

z
+

∞∑
(m,n)�=(0,0)

( 1

z − Ωmn

+
1

Ωmn

+
z

Ω2
mn

)
, (1.3a)

℘(z) =
1

z2
+

∞∑
(m,n)�=(0,0)

( 1

(z − Ωmn)2
− 1

Ω2
mn

)
. (1.3b)

We note that σ(z) is an entire function with its simple zeros at Ωmn. The Weierstrass

functions satisfy a number of addition formulas that are functional relations and valid for

arbitrary values of their arguments. These functional relations are interconnected. The

most fundamental one in the theory is the three-term identity:

σ(x+ a)σ(x− a)σ(y + b)σ(y − b)− σ(x+ b)σ(x− b)σ(y + a)σ(y − a)

= σ(x+ y)σ(x− y)σ(a+ b)σ(a− b) . (1.4)

This addition formula, which is a direct consequence of the parallel formula for the θ-

functions (A.7), can be rewritten as

Φκ(x)Φλ(y) = Φκ(x− y) Φκ+λ(y) + Φκ+λ(x) Φλ(y − x) , (1.5)
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where the (truncated) Lamé function Φκ is given by

Φκ(x) ≡ σ(x+ κ)

σ(x)σ(κ)
, (1.6)

with some complex numbers κ. A particular limit of (1.5) as λ→ κ yields the following

Φκ(x)Φκ(y) = Φκ(x+ y) [ζ(κ) + ζ(x) + ζ(y)− ζ(κ+ x+ y)] , (1.7)

which is equivalent to the well-known identity for ζ-function

ζ(x) + ζ(y) + ζ(z)− ζ(x+ y + z) =
σ(x+ y) σ(y + z) σ(x+ z)

σ(x) σ(y) σ(z) σ(x+ y + z)
. (1.8)

Furthermore, we have the addition formulae for the Weierstrass ℘-function

℘(x)− ℘(y) =
σ(x+ y) σ(y − x)

σ2(x) σ2(y)
, ℘′(x) = −σ(2x)

σ4(x)
, (1.9)

or:

Φκ(x)Φ−κ(x) = ℘(x)− ℘(κ) . (1.10)

The generalization of the basic identity (3-term relation for the σ-function (1.4) or the

elliptic partial fraction expansion formula (1.5) for the Φ) is:

n∏
i=1

Φκi
(xi) =

n∑
i=1

Φκ1+...+κn(xi)
n∏

j=1
j �=i

Φκj
(xj − xi) , (1.11)

where xi, κi are any non-singular fixed values. This identity has a key role in this thesis.

Extending the identity (1.11) (or (1.7)) to n + 1 variables, including κ0 and x0, and

subsequently taking the limit x0 = x1 + ε, with ε → 0, we obtain the following identity

(after some obvious relabeling of parameters and changes of variables):

(−1)n−1Φκ0+κ1+···+κn(x1 + · · · + xn)
σ(x1 + · · ·+ xn)∏n

j=1 σ(xj)

×
⎡⎣ζ(κ0) + n∑

j=1

(ζ(κj) + ζ(xj))− ζ(κ0 + κ1 + · · ·+ κn + x1 + · · ·+ xn)

⎤⎦ =

n∑
i=1

Φκ0+κ1+···+κn(x1 + · · ·+ /xi + · · · + xn)
σ(x1 + · · ·+ /xi + · · · + xn)σ

n−1(xi)∏n
j=1
j �=i

σ(xi − xj)

n∏
j=0

Φκj(xi) .

(1.12)
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Equation (1.12) can be derived from (1.11) by systematic limits, but we omit details of

the proof.

1.2 Gamma functions

The history of the classical and basic hypergeometric functions associated with the

different types of Gamma functions spans over several centuries. Some introductory

overviews on this aspect, and the main results derived in the past by protagonists in the

field, are given in [12, 13, 35], which are the standard reference books for the theory of

special functions of hypergeometric type. In this section, we shall follow the treatment

given in [101].

The initial important instance of the hypergeometric theory is the Gauss hypergeometric

function 2F1 related to Euler’s classical Gamma function. This function, Γe(ξ), is defined

as an infinite integral representation for �(ξ) > 0 of the form

Γe(ξ) =

∫ ∞

0

tξ−1e−tdt. (1.13)

It can be shown from the definition that the Euler Gamma function is analytic for �(ξ) >
0, has simple poles at ξ ∈ Z≤0 and no zeros. Let us consider the following proposition

resulting from the definition of Γe.

Proposition 1.2.1 1. The Euler Gamma funcion Γe(ξ) satisfies the first order

difference equation for ξ ∈ Z>0

Γe(ξ + 1) = ξΓe(ξ), (1.14)

2. It satisfies the Euler’s reflection formulas

Γe(ξ)Γe(1− ξ) =
π

sin πξ
. (1.15)
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Proof

A proof of the first functional equation and the reflection equation for the Gamma function

can be found in [107]. �

The trigonometric analogue of the Euler Gamma function is defined as an infinite product

form (or q-Gamma function Γq)

Γq(ξ) =
(q; q)∞

(qξ; q)∞(1− q)ξ−1
, (ξ; q)∞ =

∞∏
k=0

(1− ξqk). (1.16)

In the basic hypergeometric theory we have an extra parameter q with |q| < 1 which is

fixed. The following relation is satisfied by the q-Gamma function.

Proposition 1.2.2 Observe that the q-Gamma function satisfies the q-difference equation

Γq(ξ + 1) =
1− qξ

1− q
Γq(ξ), (1.17)

as an analogue of (1.14).

Proof

A proof of the functional equation for Γq follows from its definition [35]. �

The q-analogue of the Gauss hypergeometric function, the so-called basic hypergeometric

function (where the parameter q is referred to as the base), is denoted by 2φ1(a, b; c, ξ) and

was introduced by Heine [13].

The elliptic analogue of the other Gamma functions (1.13) and (1.16) is defined by the

infinite product [87]

Γ(ξ; p, q) =
(pqξ−1; p, q)∞
(ξ; p, q)∞

where (ξ; p, q)∞ =
∞∏

i,j=0

(1− ξpiqj), (1.18)

for ξ ∈ C \ {0}. On the elliptic level there exists two extra parameters p, q ∈ C satisfying

|q|, |p| < 1. Furthermore, observe that the product representation of the elliptic Gamma

function shows explicitly the poles, zeros and singularity, namely Γ(ξ) has simple poles at
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ξ equals to p−iq−j for non-negative integers i, j, zeros at ξ = pi+1qj+1 for i, j ∈ Z≥0 and

essential singularity at ξ equals to zero. The other Gamma functions can be obtained by

taking the limit of elliptic parameters and ξ. We shall continue the discussion by giving a

following proposition for elliptic Gamma function included.

Proposition 1.2.3 1. The elliptic Gamma function possesses the reflection property

Γ(ξ; p, q)Γ(pqξ−1; p, q) = 1. (1.19)

2. It satisfies the following difference equation

Γ(qξ; p, q) =
1

(p; p)∞
ϑ(ξ; p)Γ(ξ; p, q), (1.20)

(a similar relation with q ↔ p) where ϑ(ξ; p) = (p; p)∞(ξ; p)∞(ξ−1p; p)∞ is a

multiplicative theta function in the normalization corresponding to the Jacobi’s

triple product identity.

3. It satisfies

Γ(ξ; p, 0) =
1

(ξ, p)∞
, (1.21)

and similar equations obtained by interchanging p and q due to its symmetry;

Γ(ξ; p, q) = Γ(ξ; q, p).

Proof

The proof of the reflection property of the elliptic Gamma function is trivial as it can

be obtained from its definition. The difference equation for the elliptic Gamma function

follows directly from its product representation and the q-difference equations for the

infinite product

(qξ; p, q)∞ =
(ξ; p, q)∞
(ξ; p)∞

, (pξ; p, q)∞ =
(ξ; p, q)∞
(ξ; q)∞

. (1.22)
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It can be easily shown that the relation between p-shifted factorials and the function (1.18)

is composed of setting q = 0 in the definition of the elliptic Gamma function. �

The elliptic Gamma function forms a basic ingredient in the theory of elliptic

hypergeometric functions. This theory known as the top level of the classical

hypergeometric functions was introduced in the work of Frenkel and Turaev [30] in which

a connection is established between the elliptic Boltzmann weights, or elliptic 6j-symbols

and values of terminating 12V11 elliptic hypergeometric series. Many formulas found in

the classic and basic level have been generalized to the elliptic case [95]. For further

consideration on the subject we indicatively refer to Spiridonov’s overviews [96, 97].

Let τ and σ be complex numbers lying in the right half of the complex plane, although the

product formula (1.18) for the elliptic Gamma function is taken as a definition of Γ(ξ), it

can be interpreted as an infinite series representation

Γ(e−2i(ξ−iη); p, q) = exp

{ ∞∑
k �=0

e−2iξk

k(p−k/2 − pk/2)(q−k/2 − qk/2)

}
, (1.23)

where the parameter η connected to the nomes p and q as

e−2η = pq, with p = e2πiτ , q = e2πiσ.

This representation can be obtained easily from the following formula

∞∏
j,k=0

(1− ξpjqk) = exp

{
−

∞∑
k=1

ξk

k(1− pk)(1− qk)

}
, |q|, |p| < 1. (1.24)

Relevant to this thesis is the elliptic Beta integral introduced by Spiridonov [94]. The first

integral identity involving the elliptic Gamma function in the elliptic level is known as

the elliptic analogue of the Euler’s Beta integral in the theory of classical hypergeometric

functions. Next, we shall focus on the proof given by Spiridonov of this integral identity

from the different perspective by applying a new relation (1.11).
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Theorem 1.2.1 (Elliptic Beta Integral [94]) Let the six complex parameters, t =

(t1, t2, ..., t6) satisfy | tk| < 1 and the balancing condition Y =
∏5

k=1 tk = p q/t6. Then

1

4πi

∫
T

Δe(ξ; t1, t2, ..., t5)
dξ

ξ
=

1

(p; p)∞(q; q)∞
, (1.25)

where T is the positively oriented unit circle and Δe(ξ; t1, t2, ..., t5) is defined as

Δe(ξ; t1, t2, ..., t5) =

∏5
i=1 Γ(tiξ, tiξ

−1, Y t−1
i ; p, q)

Γ(ξ2, ξ−2, Y ξ, Y ξ−1; p, q)
∏

1≤i<j≤5 Γ(titj; p, q)
, (1.26)

where the following convention is used

Γ(x, y, z; p, q) := Γ(x; p, q)Γ(y; p, q)Γ(z; p, q). (1.27)

Proof

The proof follows the one given in [97], but we add a new element to the proof by using

the higher degree identity (1.11) for N=3 case

Φκ1(x1)Φκ2(x2)Φκ3(x3) = Φκ1+κ2+κ3(x1)Φκ2(x2 − x1)Φκ3(x3 − x1)

+Φκ1(x1 − x2)Φκ1+κ2+κ3(x2)Φκ3(x3 − x2) + Φκ1(x1 − x3)Φκ2(x2 − x3)Φκ1+κ2+κ3(x3).

(1.28)

This is the trilinear relation involving six free parameters, each term contains a product of

three Φ functions in (1.6). If we use the following relation between Weierstrass σ-function

and the Jacobi type theta function, ϑ,

ϑ(e2πiz ; e2πiτ ) = − i

2ω1
eπi(z−τ/4)−2ω1ζ(ω1)z2σ(2ω1z)θ

′
11(0), (τ =

w1

w2
), (1.29)

where ω1, ω2 complex variable acts linearly independent in the right half-line and θ11 is

the Jacobi theta function (see Appendix A), then the relation (1.28) can be rewritten as

ϑ(αy; p)ϑ(wβ; p)ϑ(xγ; p)ϑ(αβγ; p)ϑ(wy−1; p)ϑ(yx−1; p)ϑ(wx−1; p)

−ϑ(yx−1α; p)ϑ(wx−1β; p)ϑ(αβγx; p)ϑ(y; p)ϑ(w; p)ϑ(γ; p)ϑ(wy−1; p)

=
w2

yx
ϑ(yw−1α; p)ϑ(αβγw; p)ϑ(xw−1γ; p)ϑ(β; p)ϑ(y; p)ϑ(x; p)ϑ(yx−1; p)

−y
x
ϑ(αβγy; p)ϑ(xy−1γ; p)ϑ(wy−1β; p)ϑ(α; p)ϑ(w; p)ϑ(x; p)ϑ(wx−1; p) ,

(1.30)
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where α, y, w, β, x, γ are arbitrary complex variables. We observe that (1.30) is

a four-term identity containing ”six” free parameters, each term including a product of

seven theta functions. We now substitute

y → Y ξ−1 , α → ξt−1
2 ,

w → Y ξ , β → ξ−1t−1
3 ,

x → Y t1 , γ → t−1
1 t−1

4 ,

into the theta function identity (1.30) to derive the following form

ϑ(t1ξ; p)ϑ(t1ξ
−1; p)ϑ(ξ2; p)

5∏
k=2

ϑ(Y t−1
k ; p)− ϑ(Y ξ; p)ϑ(Y ξ−1; p)ϑ(ξ2; p)

5∏
k=2

ϑ(t1tk; p)

= ξ3t1ϑ(t1Y ; p)ϑ(Y ξ; p)
5∏

k=1

ϑ(tkξ
−1; p)− t1ξ

−1ϑ(Y t1; p)ϑ(Y ξ
−1; p)

5∏
k=1

ϑ(tkξ; p).

(1.31)

Multiplying both sides of this equality by Δe(ξ, t1, ..., t5) in order to obtain the q-

difference equation

Δe(ξ, qt1, t2, ..., t5)−Δe(ξ, t1, ..., t5) = f(q−1ξ, t1, ..., t5)− f(ξ, t1, ..., t5) , (1.32)

where

f(ξ, t1, ..., t5) = Δe(ξ, t1, ..., t5)

∏5
k=1 ϑ(tkξ; p)ϑ(t1Y ; p)∏5

k=2 ϑ(t1tk; p)ϑ(ξ
2; p)ϑ(Y ξ; p)

t1
ξ
. (1.33)

Thus, (1.32) is integrated over the variable ξ to obtain zero on the right hand side and by

applying the residue theorem to the resulting integrals (as described in [102]), we are led

to the equality (1.25). �

The trigonometric limit of the elliptic Beta integral (1.25) where an elliptic nome p → 0

(or q → 0) constructs the Nasrallah-Rahman q-Beta integral [86] which is one parameter

generalization of the Askey-Wilson integral [13]. Recently an important connection

between the theory of elliptic hypergeometric functions and solvable models of statistical

mechanics has been discovered by Bazhanov and Sergeev, [19] demonstrating that the
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elliptic Beta integral (1.25) provides a new solution of the star-triangle relation with the

Boltzmann weight given by the elliptic Gamma function. The equivalence between the

elliptic Beta integral and the star-triangle relation given in [19, 96] will be reviewed in the

next section by following treatment in [56, 96].

1.2.1 The elliptic Beta integral solution of star-triangle relation

The elliptic Beta integral appears in statistical mechanics as a star-triangle relation∫ 2π

0

S(u; p, q)W (η − α; ũ, u)W (η − γ; û, u)W (α+ γ; ̂̃u, u)du
= C(α, γ; p, q)W (η − α− γ; û, ũ)W (γ; ũ, ̂̃u)W (α; û, ̂̃u), (1.34)

where the Boltzmann weights W (α) and S(u) are given in terms of the elliptic Gamma

function (1.23) as

W (α; u, ω) =
Γ(e−i(u−ω+i(α−η)); p, q)Γ(e−i(u+ω+i(α−η)); p, q)

Γ(e−i(u−ω−i(α+η)); p, q)Γ(e−i(u+ω−i(α+η)); p, q)
, (1.35)

and

S(u; p, q) =
(p; p)∞(q; q)∞

4πΓ(e2iu; p, q)Γ(e−2iu; p, q)
. (1.36)

Here C depends explicitly on the spectral parameters α and γ as C(α, γ; p, q) =

Γ(e−2α, e2(α+γ−η), e−2γ ; p, q) [19]. Figure 1.1 given below is the star-triangle relation in

its graphical form1. The integral relation depends on three spectral parameters α, γ, η and

three spins variables ũ, û, ̂̃u sitting at the white vertices. The integration over the spin

variable u is located at the black vertex of the star-shaped on the left-hand side appearing

in the Boltzmann weights S(u) and W (α).

1The star-triangle relation as depicted in Figure 1.1 has its origin in statistical mechanics, namely as a

special relation for Boltzmann weights associated with exactly solved models, see e.g. [17]. Actually, the

simplest example of a star-triangle relation can be found in the Kirchhoff laws of electric network theory

[57].
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̂̃u

ũ

û̂̃u û

ũ

u = C

Figure 1.1: The star-triangle relation.

The equivalence between (1.25) and (1.34) can be seen by using the reflection property

(1.19) and choosing the following variables for tk in the theorem 1.2.1

t1 = e−α+iũ, t2 = e−α−iũ, t3 = e−γ+iû,

t4 = e−γ−iû, t5 = eα+γ−η+î̃u, t6 = eα+γ−η−î̃u,

as well as ξ = eiu. One can show that the form of star-triangle relation (1.34) does not

change when we replace W and C by

W (α; u, ω) = K−1(α)W (α; u, ω), (1.37a)

C(α, γ; p, q) =
K(α)K(γ)K(η − α− γ)

K(η − α)K(η − γ)K(α + γ)
C(α, γ; p, q), (1.37b)

for an arbitrary normalization function K(α). To get the expression for C which is equal

to unity, C = 1, one can introduce the function

K(α) = exp

⎛⎝ ∑
n∈Z/{0}

pnqne2nα

n(1− pn)(1− qn)(1 + pnqn)

⎞⎠ , (1.38)

satisfies
K(α)

K(η − α)
Γ(e−2α; p, q) = 1 , K(α)K(−α) = 1. (1.39)

The new solution of the star-triangle relation has a bearing on the work in the thesis.

Because the Lagrangian form of the discrete integrable equation Q4 of the ABS

classification comes up as a quasi-classical limit of the Boltzmann weights satisfying the

star-triangle relation [19]. As a consequence, all the other equations in the ABS list arise
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as limiting cases [8]. The appearance of the “top” equation Q4 in the ABS list of affine-

linear quadrilateral equations, which was introduced by V. Adler [5] as the permutability

condition of the Bäcklund transformations of the KN equation, is remarkable observation.

1.3 Discrete integrable systems

Discrete integrable systems have received a lot of attentions in recent years and contribute

to the development of a variety of different fields in mathematics and physics, such as

special function theory, numerical analysis, difference geometry and quantum field theory.

In particular, they appear in the field of statistical mechanics, for example as a quasi-

classical limit of the new solution of the star-triangle relation [19]. Besides the important

application to mathematics and physics, discrete systems are also a fast growing field

of computer science. Some existing reviews on this subject involve the book [38, 42],

and introductory overviews by Nijhoff, [74] and introductory lecture notes taught at the

University of Leeds.

The discrete equations appear in the form of difference equations, which are the analogues

of differential equations in the continuous theory of integrable systems. Although the

theory of difference equations, in its current state, is not as advanced as the theory of

differential equations, at the same time in general the former theory is richer as well

as more generic. In developing the theory of integrable difference equations, part of

the research is focused on the question of what is the proper definition of integrability,

and several properties of those difference equations have been proposed as integrability

detectors. Many integrable difference systems have been given by discretizing known

(integrable) ordinary differential equations (ODEs) and partial differential equations

(PDEs). Early examples of discrete integrable equations involving the korteweg-de Vries

(KdV) equation, modified KdV (mKdV) and sine-Gordon (sG) equation for instance,

were derived by Hirota in [43, 44, 45, 46]. The discretisations appear by taking the
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exponentiation of a differential operator in Hirota’s approach. The “Dutch” school (Capel,

Nijhoff, Quispel et al.) derived integrable PΔEs via a Direct Linearization (DL) method,

[64, 85], first proposed by Fokas and Ablowitz in 1981, [29] for the specific continuous

case of the KdV and the Painlevé II equation.

Another powerful test for integrability in the discrete case is the technique of singularity

confinement, which was proposed by Grammaticos, Papageorgiou and Ramani in [37] as

a proper candidate for a discrete analogue of the Painlevé property. This technique, used

to find discrete version of the Painlevé equations, analyzes the initial value problem of a

given equation when a singularity of it appears. However, in 1999, Hietarinta and Viallet

[40] showed that singularity confinement is a necessary but not sufficient condition for

predicting integrability.

Another important integrability test for the discrete system is 3-dimensional consistency

or Consistency-around-the-cube (C.A.C) proposed as a feature of integrable PΔEs by

Nijhoff et al. in [70]. C.A.C has been used as a tool to investigate and classify lattice

equations in [7]. As a consequence of this property one may immediately construct the

Lax pairs of the discrete system. We shall focus more closely on the 3D-consistency

condition in the next section.

1.3.1 Quadrilateral lattice equations: Multi-dimensional consistency

Two-dimensional lattice equations within the class of quadrilateral PΔEs have the

following form:

Q(u, ũ, û, ̂̃u;α, β) = 0, (1.40)

where the fields u = u(n,m) is the dependent variable, with the shifted variables ũ =

u(n + 1, m), û = u(n,m + 1) and ̂̃u = u(n + 1, m + 1) defining the different values

of u at the vertices around an elementary plaquette on a rectangular lattice, see Figure

1.2-(a). The spectral parameters α and β are lattice parameters corresponding to lattice
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direction n, m and attached to the edges of quadrilateral. The fields u = u(n,m) and its

shifts are assigned to the vertices of the square lattice. In [7], the lattice equation (1.40)

was considered in the classification study of quadrilateral lattices, where has the property

of “3D-consistency” or C.A.C. This property was first put forward by Nijhoff and Walker

[71] in the study of higher order similarity reductions of integrable PΔEs of KdV type,

as a key integrability feature. The CAC property is nowadays regarded as a definition

of integrability of 2D lattice equations of the form Q = 0, allowing the equations to be

consistently embedded in a higher-dimensional lattice. More specifically, applying the

equation Q = 0 on three elementary plaquette of the cube in Figure 1.2-(b) yields

Q(u, ũ, û, ̂̃u;α, β) = 0, → ̂̃u = F (u, ũ, û;α, β), (1.41a)

Q(u, ũ, u, ũ;α, κ) = 0, → ũ = F (u, ũ, u; β, κ), (1.41b)

Q(u, û, u, û; β, κ) = 0, → û = F (u, û, u; β, κ), (1.41c)

where the given third direction indicated by the shift denotes a shift in the third

independent variable h which is associated with the lattice parameter κ. Substituting

the solutions F of (1.41) into the equation Q = 0 on the remaining faces of the cube we

obtain three separate relations for ̂̃u = u(n+ 1, m+ 1, h+ 1), namely:

Q(u, ũ, û, ̂̃u;α, β) = 0, and (1.42a)

Q(û, ̂̃u, û, ̂̃u;α, κ) = 0, and (1.42b)

Q(ũ, û, ũ, ̂̃u; β, κ) = 0. (1.42c)

Then the property the C.A.C indicates that these expressions (1.42) produce the same

value of ̂̃u, even though there are three separate way to evaluate it. In other words, the

final point is independent of the way in which it is calculated.

We shall take the discrete modified KdV equation as an example to illustrate the recipe

given in [71]. The lattice mKdV equation can be written:

Q(u, ũ, û, ̂̃u;α, β) = α(̂̃uũ− ûu)− β(̂̃uû− ũu) = 0. (1.43)
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u ũ

û ̂̃u

α

α

β β

u ũ

̂̃uû

u ũ

̂̃uû

α

α

α

κ

β β

κ

(b) Elementary cube(a) Face of the square lattice

Figure 1.2: Consistency around the cube.

Solving the equation for ̂̃u, we have

̂̃u = u
αû− βũ

αũ− βû
, (1.44)

and get a similar relation for ũ, û in the other pairs of the lattice directions

ũ = u
αu− κũ

αũ− κu
, û = u

βu− κû

βû− κu
. (1.45)

Now, if we shift (1.44) in the h-direction, and place the values of ũ, û respectively, we

obtain ̂̃u =
β(α2 − κ2)uũ+ κ(β2 − α2)ũû+ α(κ2 − β2)ûu

β(α2 − κ2)û+ κ(β2 − α2)u+ α(κ2 − β2)ũ
. (1.46)

The later expression is invariant under permutations of lattice shifts “ ˜ ” , “ ̂ ” and “ ¯ ”

together with corresponding lattice parameters. It is obvious that we can obtain the same

result for ̂̃u if we start with the other pairs (1.45) on the cube in Figure 1.2 (b). Hence the

mKdV equation (1.43) obeys the C.A.C property.

In 2003 Adler, Bobenko and Suris (ABS) classified all discrete integrable systems, which

have the consistency around a cube property, on quad-graphs [7]. All equations of the

form Q (1.40), that have the following properties:

1. Q is a first order expression in each of the fields u, ũ, û, ̂̃u.
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2. Q satisfy the D4 symmetry group of the square.

3. The tetrahedron condition, the value ̂̄̃u is independent of the value u.

With these conditions the different types of equations of the form (1.40) can be reduced

to nine models, they are split into three categories, (A1 −A2), (H1−H3) and (Q1−Q4).

These discrete equations are not independent. In particular, all equation in the Q− list

can be obtained as degenerations or limits from Adler’s lattice equation [5], Q4, which

is the top level equation in the ABS list of affine-linear quadrilateral equations. For the

purpose of this thesis, we will focus on the lattice equation Q4 in chapter 2, where we

shall explore the equation in detail.

Importantly, the equations in the ABS classification can be made manifest through a so-

called 3-leg form [22] given by

Q(u, ũ, û, ̂̃u;α, β) = ϕ(u, ũ;α)/ϕ(u, û; β)− ψ(u, ̂̃u;α, β) = 0, (1.47)

where the functionϕ indicates the short leg and ψ indicates the long leg. This is illustrated

by Figure 1.3.

ϕ

ϕ
ψ

ũ

û

u

̂̃u
Figure 1.3: 3-leg form of the equation (1.47)

The 3-leg functions ϕ and ψ in (1.47) give rise to a Lagrange structure for the 3-leg

equation via the relations

ϕ(u, ũ;α) =
∂

∂u
L (u, ũ;α), ψ(u, ̂̃u;α, β) = ∂

∂u
Λ(u, ̂̃u;α, β) , (1.48)

which are the defining relations for L and Λ, defining the relevant action functional [7].
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1.4 Similarity reduction and isomonodromic

deformation problems

Monodromy is the change of the fundamental solution of a linear differential equation

when the argument moves around one of the regular singularities. That change is

measured by multiplication of the fundamental solution matrix by a factor from the

right given by the monodromy matrix. Furthermore, if the differential equation carries

parameters one can deform the differential equation by changing those parameters.

Isomonodromy means then that the monodromy matrix is effectively invariant under those

deformations, hence invariant under such changes of variables.

1.4.1 Derivation of isomonodromic deformation problems from

similarity reduction

The first example of an isomonodromic deformation system was first worked out by R.

Fuchs [33, 34] who discovered the Painlevé VI equation in 1905 as arising from the

deformation of a second order linear ODE. The generalization to matrix differential

systems were studied subsequently by Schlesinger [90]. In [2] Ablowitz and Segur

showed that Painlevé equations arise from similarity reductions. Let us illustrate the idea

by means of the continuous modified KdV (mKdV) equation

vt − 6v2vx + vxxx = 0,

where the similarity variable turns out to be of the form

ξ = x(3t)−1/3 ,

with the ansatz v = u(ξ)(3t)−1/3. One reads, after one integration, the equation

uξξ = 2u3 + ξu+ c,
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which is PII. Moreover, in [28] Flaschka and Newell did the full isomonodomy theory on

the Lax pair arising from those reductions. At the same time Jimbo et al. [51, 52, 53]

developed the isomonodromy from a τ -function approach, and they gave the Lax pairs

for all (continuous) Painlevé equations. For detailed information on the approach and the

historical review, we refer to [3, 25].

The discovery in the 1990s of discrete analogues of the Painlevé equations has been one

of the most prominent developments in the field of discrete integrable systems. One

of the decisive sources of such non-autonomous nonlinear ordinary difference equations

(OΔEs) has been the method of similarity reduction on the lattice, first proposed by

Nijhoff and Papageorgiou in 1991 [67]. It lifts to the lattice the above-mentioned approach

of obtaining the PII equation from similarity reduction of the mKdV equation, noting that

the transition to the lattice is highly nontrivial given that it is not really possible to find

a similarity variable in the lattice case. The reduction performed in [70] instead of using

a similarity variable employs compatible non-autonomous (and nonlinear) constraints,

which allows one to avoid the introduction of a similarity variable. For the quad-equations

of the form (1.40), the suitable similarity constraints are given in terms of a configuration

forming a cross

F (u, ũ, u˜, û, ̂u) = 0 . (1.49)

Therefore, we have that the system comprising both the lattice equation as well as the

constraint can be symbolically represented by the diagram in Figure 1.4. By posing the

equation and its similarity constraint on the variable u, we effectively reduce the lattice

equation to a nonautonomous OΔE in one independent variable. This can be seen by the

fact that all points of the discrete equation can be calculated from a finite set of discrete

points (a local initial value problem).

The diagram in Figure 1.5 demonstrates how the similarity constraint and the lattice

equation are compatible. Starting from the initial points (indicated at the diagram by

•) we calculated the other points using (1.40) (values displayed by ◦) and (1.49) (values
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û ̂̃u

u ũ

with

̂u
ũ

û

u˜ u

Figure 1.4: The diagram of lattice equation and its similarity constraint

initiated by +). At the eighth step we reach a point at which the evaluation can be multi-

valued (symbolized by ⊕) which is not acceptable since we are looking for single valued

solutions of the discrete equation. The value calculated by means of the lattice equation

must coincide with the value computed using the similarity constraint. i.e., both ways

of calculating the value at this point must show the same result. This can be verified by

direct calculation.
+ ◦

• • ◦ +

◦ • ⊕•

+ ◦

Figure 1.5: Compatibility diagram

If, as a result, for a well-chosen function F of the constraint (1.49), the system of

constraint and the equation Q = 0 (1.40) are found to be compatible in the sense of

the diagram in Figure 1.5, then the configuration of local initial value problem defined on

the black points can be iterated throughout the lattice to yield a single-valued solution u
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of the system at each point of the lattice. Subsequently, as was shown in [70] for examples

in the KdV class of lattice equations, the system can be reduced to an OΔE in any one of

the independent variables. As a simple example of this procedure we will give the case of

the reduction of a linear PΔE, following the treatment in [42].

Next, we will first investigate the similarity reduction procedure on the linear level where

the constraint is compatible with the quad equation.

The linear case

Let us concentrate on the linear quadrilateral equation of the form

(α+ β)(û− ũ) = (α− β)(̂̃u− u), (1.50)

for a dependent variable u and lattice parameters α and β This equation is

multidimensionally consistent according to the conventions of the previous section 1.3.1.

The similarity constraint for this equation was given first in [70] and reads:

1

2
n(ũ− u˜) + 1

2
m(û− ̂u) + μ+ λ(−1)n+m = 0, (1.51)

where μ, λ are constant in the lattice variables n, m and in the lattice parameters α, β.

It can be verified by explicit computation that the constraint (1.51) is compatible with

(1.50) in the sense of Figure 1.5, but even in this case the computation is quite tedious so

we omit the details. The linear lattice equation (1.50), which is the linearized version of

the lattice equation H1 in the ABS list [7], has a general solution given by the discrete

Fourier type integral representation:

u(n,m) =

∫
Γ

(α + κ

α− κ

)n(β + κ

β − κ

)m dκ

κ
, (1.52)

where the contour (or curve) Γ is chosen in an appropriate manner. From the

integral representation (1.52) the following differential-difference equations in the lattice



Chapter 1. Introduction 22

parameters can be constructed

α
∂u

∂α
= −n

2

(
ũ− u˜), β

∂u

∂β
= −m

2

(
û− ̂u) (1.53)

by considering the integral solution (1.52). In addition, these equations are compatible

with the lattice equation (1.50), which can be easily verified by direct calculation.

Taking the form of the differential operator (vector field) X = α∂α + β∂β into account

we will now impose the scaling invariance XQ = 0 on the solution of the equationQ = 0

where Q := (α + β)(û− ũ)− (α− β)(̂̃u− u) is the lattice equation (1.50). This yields

XQ = Q + (α + β)X(û− ũ)− (α− β)X(̂̃u− u)

= Q + (α + β)(η̂ − η̃)− (α− β)(̂̃η − η), (1.54)

where η := (α∂α + β∂β)u. For XQ to vanish on all solutions of Q = 0 we must have

η = ̂̃η and η̂ = η̃ with the solution

η = μ+ λ(−1)n+m. (1.55)

Therefore, we have established that

Xu = (α∂α + β∂β)u = μ+ λ(−1)n+m, (1.56)

can be written as the similarity constraint (1.51). It can be seen immediately by using the

relation (1.53). We will now proceed with the reduction of deriving an OΔE from the

system given above. The idea to get the explicit reduction is to eliminate the tilde-shift

(alternatively the hat-shift may be eliminated) by combining primarily on the similarity

constraint and the corresponding lattice equation. Writing the constraint as

1

2
n a+

1

2
m b+η = 0, η = μ+λ(−1)n+m with: a ≡ (ũ−u˜) , b ≡ (û−̂u), (1.57)

for convenience, we have from the backward shift of the lattice equation in n direction:

(û− u˜) = t−1(û˜− u), where t := (α− β)/(α+ β). (1.58)
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By combining (1.50) and (1.58) we obtain

(ũ− u˜) = (t−1 − t)(̂̃u− u)− t−1(̂̃u− û˜) , (1.59)

or in terms of a = ũ− u˜ this gives the relation:

a + t−1â = (t−1 − t)x, (1.60)

in terms of reduced variable x := ̂̃u − u . Furthermore, from equation (1.50) we have

b = û − ̂u = tx + ̂x. Using now this relation and (1.57) we obtain from (1.60) the

following closed-form difference equation in terms of x and its hat-shift only:

λ(−1)n+m(t−1−1)−μ(t−1+1)−m

2
(tx+̂x)−m+ 1

2
(x̂+t−1x) =

n

2
(t−1−t)x, (1.61)

in which t, μ, λ, n are parameters of the equation, derived as a reduction of PΔE

for u (1.50). This is a second order linear nonautonomous OΔE equation in the

independent variable m. The similar relation for n can be obtained equally, where the

other discrete variable m becomes just a parameter. Here, we gave a summary of how the

similarity reduction procedure on the linear level works in practice. Obviously, pursuing a

reduction of the nonlinear systems of PΔE to OΔE on the two-dimensional lattice or the

higher-order case is more elaborate [70]. Another advantage of the similarity approach,

relevant to later parts of this thesis, is that it also provides a systematic derivation of

Lax pairs (monodromy problems) for the lattice equations. This leads to the discrete

isomonodromic deformation problem which is derived by implementing the similarity

constraint to the Lax pair of the system. Let us show the idea for the linear case.

As already mentioned before, the linear discrete equation (1.50) obeys C.A.C. property

of subsection 1.3.1. Therefore this equation can be consistently embedded in a higher

dimensional lattice by considering compatible system

(α + β)(û− ũ) = (α− β)(̂̃u− u) , (1.62a)

(α+ κ)(u− ũ) = (α− κ)(ũ− u) , (1.62b)

(β + κ)(u− û) = (β − κ)(û− u) , (1.62c)
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where u defines the shift in the additional direction in the lattice related with a lattice

parameter κ as before and by considering the shifted variable u = ϕ, we obtained an

inhomogeneous Lax pair of the form:

ϕ̃ =
(α + κ

α− κ

)
ϕ−

(α+ κ

α− κ

)
ũ+ u , ϕ̂ =

(β + κ

β − κ

)
ϕ−

(β + κ

β − κ

)
û+ u , (1.63)

whose compatibility condition ̂̃ϕ = ˜̂ϕ arising from shift on the two equations (1.63), leads

to the linear equation (1.50).

We will next derive a Lax pair for the system of differential-difference equation (DΔE)

(1.53). This can be achieved in a similar way by using 3D-consistency. Thus, performing

the same idea on DΔE, we get from applying the shift in the additional direction:

α
∂u

∂α
= −n

2

(
ũ− u˜) ⇒ α

∂u

∂α
= −n

2

(
ũ− u˜) . (1.64)

Inserting as before u = ϕ and using the equation (1.63) shifted in the first direction, we

obtain:

α
∂ϕ

∂α
= −n

2

(
ϕ̃− ϕ˜) = −n

2

(
ϕ̃−

(α− κ

α + κ

)
(ϕ− u˜)− u

)
, (1.65)

a similar equation with n replaced by m, α replaced by β and tilde-shifts with hat shifts.

We will consider the derivation of the Lax pair for the similarity reduction. The similarity

constraint for the variable u, since it supposes now the existence of a third direction, will

adopt the extended form from (1.56)

(α∂α + β∂β + κ∂κ)u = μ+ λ(−1)n+m+h, (1.66)

where h related to the additional direction is the independent lattice variable. Applying a

bar-shift along this additional direction and inserting u = ϕ we get:

(α∂α + β∂β + κ∂κ)ϕ = μ− λ(−1)n+m+h . (1.67)

The differential equation in the spectral parameter κ can be obtained immediately

inserting the expression acquired for ∂αϕ from (1.65) and its β-counterpart, this yields
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a monodromy problem in terms of the spectral parameter κ

κ
d

dκ
ϕ = μ− λ(−1)n+m+h − u

2
(n+m) +

n

2

(α− κ

α+ κ

)
u˜+ m

2

(β − κ

β + κ

)
̂u

−1

2

(α− κ

α+ κ
n +

β − κ

β + κ
m
)
ϕ+

n

2
ϕ̃+

m

2
ϕ̂ . (1.68)

It appears to have regular singularities at κ = 0, ∞ and κ = −α, −β. The analogy with

isomonodromy in this case is that this linear differential equation is compatible with the

differential equations in terms of both the lattice parameters (1.65) as well as with the

linear difference equations (1.63) for the discrete shifts in the variables n and m. In the

following we will derive the relevant monodromy problem for the similarity reductions

on the nonlinear level [42]. We will pursue this by analogy with the linear case.

The nonlinear case

We will consider the lattice mKdV equation (1.43). In analogy to (1.53) we introduce

differential-difference equation in the lattice parameters:

∂

∂α
log u = −n

α

ũ− u˜
ũ+ u˜ , (1.69)

and similar equation with n replaced by m, α replaced by β and tilde-shift with hat shift.

The remarkable fact is that these equations are compatible with the integrable mKdV

equation. In analogy to (1.56), we have

Xu = (α∂α + β∂β)u = (μ+ λ(−1)n+m)u, (1.70)

which can be obtained by imposing the scaling invariance XQ = 0 on the solutionsQ = 0

where Q(u, ũ, û, ̂̃u;α, β) := α(̂̃uũ− ûu)− β(̂̃uû− ũu) is the lattice mKdV quadrilinear

function. The discrete version of the above constraint can be obtained straightforwardly

using (1.69) and its β-counterpart. This leads to

n
ũ− u˜
ũ+ u˜ +m

û−̂u
û+̂u = −μ− λ(−1)n+m . (1.71)
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It can be shown that the equation (1.71) is compatible with the lattice mKdV according

to the diagram in Figure 1.5. With the constraints thus obtained, one can use them in

conjunction with the original equations, to derive a reduction of the original equation.

We next address the problem of deriving a monodromy problem for the reduction of

the lattice mKdV equation, which requires a similar calculation as the one performed in

the case of the linear system. In fact, the similarity constraint for the variable u, since

it assumes the existence of an additional direction, will adopt the extended form from

(1.70).

(α∂α + β∂β + κ∂κ)u = (μ+ λ(−1)n+m+h)u , (1.72)

where the lattice parameter κ associated with the additional direction in the lattice is

interpreted as a spectral parameter and where h is the independent discrete variable. Next,

performing a bar-shift along this direction and inserting u = f/g we obtain:

1

f
(α∂α + β∂β + κ∂κ)f − 1

g
(α∂α + β∂β + κ∂κ)g = (μ− λ(−1)n+m+h) , (1.73)

which can be split into two linear equations, leading to the vector similarity constraint:

(α ∂α + β∂β + κ∂κ)χ =

⎛⎝ μ− λ(−1)n+m+h + ν 0

0 ν

⎞⎠χ , (1.74)

where χ = (f, g)T and ν is arbitrary. Applying the same idea to the differential-difference

equation (1.69) we obtain the expressions for ∂αχ as

α
∂

∂α

⎛⎝ f

g

⎞⎠ =
n

(α2 − κ2)(ũ+ u˜)
⎛⎝ (α2 + κ2)ũ+ (α2 − κ2)u˜ , 2ακũu˜

2ακ , 2α2u˜
⎞⎠⎛⎝ f

g

⎞⎠ .

(1.75)

Similarly we have a linear equation for ∂β χ after the replacements α → β and ˜→̂.

Inserting these linear equations into (1.74) a differential equation in terms of the spectral
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parameter κ can be obtained of the form:

κ
d

dκ
χ =

⎛⎝ n+m+ γ 0

0 n+m+ γ − μ− λ(−1)n+m

⎞⎠χ

− n

(α2 − κ2)(ũ+ u˜)
⎛⎝ (α2 + κ2)ũ+ (α2 − κ2)u˜ , 2ακũu˜

2ακ , 2α2u˜
⎞⎠χ

− m

(β2 − κ2)(û+ ̂u)
⎛⎝ (β2 + κ2)û+ (β2 − κ2)̂u , 2βκû̂u

2βκ , 2β2̂u
⎞⎠χ ,

(1.76)

where γ is a constant. The equation (1.76) has regular singularities at κ = 0, α2, β2,∞.

Monodromy measures the change in the solution χ as a function of κ2, when the value of

κ2 moves around one of the regular singularities of the equation in the complex plane.

The isomonodromic deformation problem posed by (1.76) in conjunction with (1.75)

provides a Lax pair for the Painlevé VI equation, as was shown in [70]2. At the same time

(1.76) in conjunction with the Lax pair for the lattice KdV equation, which is of the form

(2.10) with an appropriate choice of matrices, provides an isomonodromic deformation

problem for the discrete counterpart of PVI [70]. (We omit the details, as the corresponding

computations are quite laborious.)

The similarity reduction technique is not the only way to achieve the monodromy problem

for the discrete systems. We will next, relevant to chapter 5 of the thesis, review an

alternative method for the derivation of the isomonodromic deformation problem.

1.4.2 Deautonomization of maps

In the previous section we have seen the procedure for the construction of isomonodromic

problem from similarity reduction. In this section we shall encounter another approach,

2The original Lax pair for PVI was given by R Fuchs in [33, 34], while the first 2×2 matrix Lax pair for

that equation was given in [52].
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by starting from Lax pairs for a known autonomous integrable map coming from the

lattice Gel’fand-Dikii (GD) hierarchy. The GD hierarchy first introduced in [68], where

the discrete analogue of the continuous GD hierarchy was derived by using the direct

linearization method. For full details of derivation of the integrable mappings the reader

is referred to the literature [68].

The approach, which is based on the use of a deautonomizing procedure, has been

first introduced by Papageorgiou et al. in [84] in order to construct isomonodromic

deformation problems for the lattice Painlevé I-III equations. Here we follow the

treatment given in [25, 84]. As noted in [84] the mappings related to the lattice analogue

of GD hierarchy are given by a spectral problem of the following form

A (κ)ϕ(κ) = τϕ(κ), ϕ̂(κ) = B(κ)ϕ(κ), (1.77)

in which κ is interpreted as the Floquet parameter coming through the periodicity

condition of the solution and the spectral parameter τ denotes an eigenvalue of A the

Lax matrices A , B are given in the form for the mappings of GD type (cf. [25]):

A (κ) =

N∑
i=1

Σi
κX

(i) +X(0) ,

B(κ) = ΣκY
(1) + Y (0), N = 2, 3, ... (1.78)

where the shift matrix Σκ takes of the form

Σκ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
... 0 1
...

. . . . . .
... 0 1

κ · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

in which all coefficients X (i), Y (1) and Y (0) are diagonal 2M × 2M (even periods) or

(2M − 1)× (2M − 1) (odd periods) matrices. The mappings (1.78) are reduction of the
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discrete KdV equation forN = 2 and Boussinesq equation forN = 3 in the GD hierarchy.

Next, in order to obtain an the isomonodromic deformation system we deautonomize the

equation (1.77) by replacing τ with κd/dκ. This leads

κ
d

dκ
ϕ(n; κ) = A (n; κ)ϕ(n; κ), ϕ̂(n; κ) = B(n; κ)ϕ(n; κ), (1.79)

the following relation can be obtained by the compatibility of (1.79)

d

dκ
B(n; κ) = Â (n; κ)B(n; κ)− B(n; κ)A (n; κ). (1.80)

On the other hand, the monodromy problems are not always of differential type. In

another case, the corresponding non-autonomous equations may depend on the lattice

variable n exponentially. This led us to reconsider the choice of the deautonomization

procedure given above. As shown in the paper [84] the spectral problem (1.77) can be

replaced by the q-difference system

ϕ(n; q κ) = A (n; κ)ϕ(n; κ), ϕ̂(n; κ) = B(n; κ)ϕ(n; κ), (1.81)

rather than to the differential system. Equation (1.81) leads to the compatibility condition

B(n; q κ) A (n; κ) = Â (n; κ) B(n; κ) . (1.82)

In the following, let us finish this section by working out an explicit examples of above

derivations leading monodromy problems for the discrete Painlevé equations.

dPI

In this case, for mappings coming from the lattice KdV equation the Lax matrices A and

B for M = 2, and N = 2 are given by

A (n; κ) =

⎛⎜⎜⎜⎝
f1 u2 1

κ f2 u3

κu1 κ f3

⎞⎟⎟⎟⎠ , B(n; κ) =

⎛⎜⎜⎜⎝
k1 1 0

0 k2 1

κ 0 k3

⎞⎟⎟⎟⎠ ,
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where f depends on the discrete variable n. From (1.79) we obtain the set of relations

k3u1 − k1û1 + f1 − f̂3 + 1 = 0,

k1u2 − k2û2 + f2 − f̂1 = 0,

k2u3 − k3û3 + f3 − f̂2 = 0,

,

u1 − û3 − k1 + k2 = 0,

u2 − û1 − k2 + k3 = 0,

u3 − û2 − k3 + k1 = 0,

(1.83a)

in addition to

(f̂i − fi)ki = 0, i = 1, 2, 3. (1.83b)

In order to have some fi are not constant, we arrange the diagonal entries ki appropriately,

namely by taking k2 = k3 = 0, k1 �= 0 it yields f̂1 = f1 and f̂3 = f2 + 1 having taken

into account û1 = u2. Furthermore, considering Casimir constant C = u1 + u2 + u3 we

obtain from the relation (1.83a) for yn = u2 = u2(n)

yn+1 + yn + yn−1 +
f2 − f1
yn

= C,

f2 =
1

2
n+ (−1)nf0, f0, f1 = constant, (1.84)

which is precisely the dPI equation. Another choice of the diagonal entries, namely

by choosing k3 = 0, k1, k2 �= 0, does produce an alternative form of dPI. Next, the

construction of a discrete monodromy problem for dPIII arising from the modified GD

class [84] will be considered.

dPIII

It was noted in [84] to obtain a Lax pair for dPIII we can consider the case of even

dimension M = 2 and rank 3, meaning that we have 4× 4 matrices in the form

A (n; κ) =

⎛⎜⎜⎜⎜⎜⎜⎝
f1 u2 v3 0

0 f2 u3 v4

κv1 0 f3 u4

κu1 κv2 0 f4

⎞⎟⎟⎟⎟⎟⎟⎠ , B(n; κ) =

⎛⎜⎜⎜⎜⎜⎜⎝
k1 w1 0 0

0 k2 1 0

0 0 k3 w2

κ 0 0 k4

⎞⎟⎟⎟⎟⎟⎟⎠ . (1.85)
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The set of relations below reveals from the compatibility condition (1.82)

k1v̂1 + û4 − w2u1 − k3v1 = 0,

k2v̂2 + û1w1 − qu2 + k4v2 = 0,

k3v̂3 + û2 − w1u3 − k1v3 = 0,

k4v̂4 + û3w2 − u4 − k2v4 = 0,

,

f̂1w1 + k2û2 − k1u2 − f2w1 = 0,

f̂3w2 + k4û4 − k3u4 − f4w2 = 0,

f̂4 + k1û1 − k4u1 − qf1 = 0,

f̂2 + k3û3 − k2u3 − f3 = 0,

(1.86)

with

v̂1 =
w2

w1

v2 , v̂2 = qu3 , v̂3 =
w1

w2

v4 , v̂4 = v1 . (1.87)

Again, we need to tune the diagonal entries ki similar to the dPI case in order to get a

nontrivial dependence of the fi on the discrete variable n. Thus choosing

k2 = k4 = 0, k1, k3 �= 0 ⇒ f̂1 = f1, f̂3 = f3, (1.88)

we can derive

k1 = w1
f1 − f2
u2

, k3 = w2
f3 − f4
u4

, (1.89)

using also û1 = qu2/w1, û3 = u4/w2 obtained from the first set in (1.86). These two

expressions for k1 and k3 lead to f̂4 = qf2 , f̂2 = f4. Furthermore, from the last relation

(1.87) we have

v1v3 = θn = Cλn , v2v4 = θn+1 = Cλn+1 , (1.90)

where C is constant. Some variables, which are not being specified by the compatibility

relations (1.86), are specified by imposing the following constraint

u1 = v2 + f4, u2 = v3 + f1, u3 = v4 + f2, u4 = v1 + f3 , (1.91)

in addition to w1 = k1+1, w2 = k3+1.Next, let us introduce the new variable xn = v1

which implies

v2 = θn+1/xn−1 , v3 = θn/xn , v4 = xn−1,

and use the constraints for the remaining two equations in the first set of (1.86) to derive

xn+1xn−1 = θn+1
(xn + f3)(θn + f2xn)

(xn + f4)(θn + f1xn)
, (1.92)
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which is the dPIII. The main observation is that the de-autonomization procedure (going

from a pure spectral problem to a differential equation in the spectral parameter and

thereby making the resulting system of equations non-autonomous) yields appropriate

Lax pairs for several of the discrete Painlevé equations. Furthermore, we point out the

transition from the differential case to the q-difference case is significant if we want to

make the transition to the next (i.e., elliptic) case. In fact, whereas the q-difference case is

related to a trigonometric grid, at the elliptic level we will consider difference equations

on the torus (namely on the elliptic curve of the parameter κ). It is exactly the later stage,

namely the consideration of elliptic isomonodromic deformation problems on the torus

that will be the subject of chapter 5.

1.5 Outline

In this section we will give a short overview of the different chapters of this thesis.

Chapter 2 is concerned with Adler’s lattice equation which plays an important role in this

thesis. We give a review of its main properties. In particular, starting with alternative

forms for Adler’s discrete equation based on different choices of the elliptic curve, the

connections almost them are presented. The first Lax representation for the Adler’s

equation is derived by Nijhoff in [72]. The method presented in the article is used to

construct Lax pair for the other discrete integrable systems. We introduce a novel Lax

representation of Adler’s lattice equation obtained from the three-leg form of the discrete

KN equation. In addition to chapter the quasi-classical expansion of the star-triangle

relation is related to the three-leg form of the Q4 ABS equation, that was introduced in

[19]. we give a short overview of the details of the relation.

Chapter 3 deals with a general elliptic Lax scheme of the higher rank case, which is the

generalization of the new Lax pair of Adler’s lattice equation introduced in chapter 2. In
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the case of rank N=3 we show an interesting connection with Caley’s hyperdeterminant of

format 2× 2× 2, and use this connection to construct in explicit form the generalizations

of the 3-leg formulae in this case. In fact, along the way we present and use a novel

compound theorem for hyperdeterminants, which to our knowledge is a new result in the

theory of hyperdeterminants. This chapter has already appeared as part of a joint work of

the author with Nijhoff and Yoo-Kong in [26].

Chapter 4 is considered with the rational and hyperbolic (trigonometric) limits of the

systems that are given in terms of elliptic functions thereby the connection between Q list

in ABS equations is presented. Two continuum limits of the Adler’s lattice equation are

constructed. We review the derivation of the discrete Ruijsenaars model which is one-step

periodic reduction of LL class.

Chapter 5 focuses on elliptic discrete isomonodromic deformation problems (i.e. on Lax

pairs on the elliptic curve of the spectral parameter), obtained by de-autonomization of

related isospectral problems on the torus. We set up the general scheme and derive the

system of compatibility conditions emerging from this novel type of elliptic monodromy

problems, and give an initial analysis of the resulting rather complex system of conditions.

Finally in chapter 6 we discuss the current study and open problems for the future.
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Chapter 2

Adler’s equation Q4 in its various

manifestations

There are, to date, several types of integrable discrete systems that are associated

with elliptic curves. Such systems include the lattice Landau-Lifschitz (LL) equations

constructed in [66] from the lattice version of Sklyanin Lax pair [92], alternatively a

projective discretization of the LL [4], resulting from a Darboux transformation of a

dressing chain, another lattice version of LL, arising in [6] as a permutability condition of

Shabat-Yamilov chain, the elliptic lattice KdV obtained in [73] from the consideration

of an infinite matrix scheme with an elliptic Cauchy kernel and an elliptic extension

of the lattice Kadomtsev-Petviashvili equation [65], resulting from a direct linearisation

method associated with an elliptic Cauchy kernel [50]. Apart from these, there also exists

Adler’s lattice Krichever-Novikov system (KN) [5], which has various forms, derived

from the permutability condition of the Bäcklund transformations of the KN equation

[58]. The various manifestations of Adler’s equation are connected and highlighted in

this chapter. In the context of what follows later, Adler’s equation plays a prominent role

so the majority of this chapter is dedicated to a review of its main features.
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2.1 Weierstrass form of the Adler system

Adler’s discrete equation is an integrable lattice version of the KN equation i.e. of the

nonlinear evolution equation

ut =
1

4
uxxx +

3(r(u)− u2xx)

8ux
, (2.1)

in which r(u) is a polynomial associated with a Weierstrass elliptic curve

ΓW : U2 = r(u) = 4u3 − g2u− g3 = 4(u− e1)(u− e2)(u+ e1 + e2). (2.2)

Different realizations of the elliptic curve U 2 = r(u) can be taken, but in principle r(u)

can be a quartic polynomial in general position. To bring then the curve in standard form,

e.g. the Weierstrass form, a Möbius transform of the type

u→ au+ b

cu+ d
,

can be applied yielding the Weierstrass form (2.2). Adler’s discrete equation, which

was obtained from the permutability condition of the Bäcklund transformations of KN

equation (2.1), can be written in the form1:

A [(u− b)(û− b)− (a− b)(c− b)]
[
(ũ− b)(̂̃u− b)− (a− b)(c− b)

]
+B [(u− a)(ũ− a)− (b− a)(c− a)]

[
(û− a)(̂̃u− a)− (b− a)(c− a)

]
=

= ABC(a− b) , (2.3)

cf. [72], where u = u(n,m) is the dependent variable, with the shifted variables ũ =

u(n + 1, m), û = u(n,m + 1) and ̂̃u = u(n + 1, m + 1) defining the different values

of u at the vertices around an elementary plaquette, see Figure 1.2-(a). Here a, b are

1Note that in the original paper [5] the equation was written in a slightly different form with rather

complicated expressions for the coefficients given in terms of the moduli g 2 and g3 of the Weierstrass

curve.
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parameters of the lattice equation (2.3) associated with the grid size, and are points, that

are, given by a = (a, A), b = (b, B) together with c = (c, C) on a Weierstrass elliptic

curve, ΓW , i.e.

A2 = r(a) ≡ 4a3 − g2a− g3 , B2 = r(b) , C2 = r(c) , (2.4)

which can be parametrized in terms of Weierstrass ℘−function as follows:

(a, A) = (℘(α), ℘′(α)),

(b, B) = (℘(β), ℘′(β)),

(c, C) = (℘(γ), ℘′(γ)), (2.5)

where α and β are the corresponding uniformising parameters and γ = β − α. The

parameters a, b and c are related through the addition formulae on the elliptic curve:

A(c− b) = C(a− b)− B(c− a),

a+ b+ c =
1

4

(
A+ B

a− b

)2

. (2.6)

The collection of the corresponding elliptic functions appeared in chapter 1. We note the

following fact about what is possibly the most simple solution of equation (2.3):

Proposition 2.1.1 A “trivial” solution of the lattice equation (2.3) is given by

u = ℘(ξ0 + nα +mβ) , with ξ0 constant . (2.7)

We call this a trivial solution because it is the counterpart of the zero solution for the lattice

potential KdV equation, and as such qualifies as the simplest solution ofQ4. However, the

proof that (2.7) is a solution of (2.3) by direct computation is in itself highly nontrivial,

and requires the use of several elliptic identities. In particular, it uses expressions of the

form

(u− b)(û− b) = B[ζ(ξ)− ζ(ξ + β) + ζ(2β)− ζ(β)] ,
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which itself relies on the identities (1.8) and (1.9) for particular choices of the arguments.

Alternatively the proposition is a direct corollary of the 3-leg form of Q4 which we will

present in section 2.1.2.

Remark 2.1.1 One would naively expect that the solution (2.7) can be used as a seed

solution for the Bäcklund transform to generate an analogue of soliton solutions for Q4,

where the Bäcklund transform (due to multidimensional consistency) is identical to the

equation itself, albeit with a lattice direction associated with the Bäcklund parameter.

However, unlike the case of the KdV lattice equation, where the zero solution can be used

as a seed solution to generate soliton solutions in this way, in the case of Q4 the trivial

solution does not generate new solutions by Bäcklund transforms (in other word the seed

is “non-germinating”). The issue of finding germinating seed solutions was addressed

in [14] where the first non trivial solutions of both Q4 as well as of the continuous

counterpart, the KN equation, were constructed for the Jacobi form. General formulae

for the analogue of N-soliton solutions were constructed in [15].

2.1.1 C.A.C. Lax pair

The multidimensional consistency property given in section 1.3.1, which means that such

equation can be consistently embedded in a multidimensional lattice, and which has been

interpreted as a definition of integrability for the discrete system provides also a method

to derive Lax pairs for the lattice equations [22, 105]. The method is provided in [72]

where the derivation of first Lax pair for the Adler system was presented. The idea is to

consider the third direction as auxiliary associated with the spectral parameter κ, replace

β by κ and linearise the lattice system in the new variable u and its shifts, we have from
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(2.3)

A [(u− k)(u− k)− (a− k)(k′ − k)]
[
(ũ− k)(ũ− k)− (a− k)(k′ − k)

]
+K [(u− a)(ũ− a)− (k − a)(k′ − a)]

[
(u− a)(ũ− a)− (k − a)(k′ − a)

]
=

= AKK ′(a− k) , (2.8)

where2

k = ℘(κ) , K = ℘′(κ) ,

k′ = ℘(κ− α) , K ′ = ℘′(κ− α) .

Solving for ũ and using the addition formula (2.6) leads

ũ =
k3uũ+ k4uu+ k1uũu− k2ũu− k5(u+ ũ+ u)− k6
k2u+ k5 − k1uũ− k4ũ− k1uu− k3u+ k0uũu− k1ũu

, (2.9)

where the coefficients ki = ki(a, κ) in (2.9) are

k0 = A+K , k1 = aK + kA , k2 = a2K + k2A ,

k3 = −Ak2 −K(a (k + k′)− k k′) , k4 = A(a− k)k′ − a(A k + aK) ,

as well as

k5 = a(k2 + k3) + k(k2 + k4)− Ak3 −Ka3 ,

k6 = A
[
k2 − (a− k)(k′ − k)

]2
+K

[
a2 − (k − a)(k′ − a)

]2
+AK

[
A(k − k′) +K(a− k′)

]
.

This Riccati equation can be linearized using the transformation u = f
g
, resulting the

following set of equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
f̃ = γ−1

[
(k5 − k4u− k1uũ+ k2ũ)f + (k5(u+ ũ) + k6 − k3uũ)g

]
,

g̃ = γ−1
[
(k1(u+ ũ)− k0uũ+ k3)f + (k1uũ− k2u+ k4ũ− k5)g

]
,

2The spectral variables (k, K) and (k ′, K ′) on the elliptic curve should obviously not be confused with

the standard notation for the moduli and half periods of the Jacobi elliptic functions. The latter will not use

in the thesis.
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with γ being an arbitrary prefactor. Taking the other set of equation in the same form

apart from the obvious replacements: ˜→̂ and α → β , we have the following linear

system

ϕ̃ = Lκ(ũ, u;α)ϕ , (2.10a)

ϕ̂ = Mκ(û, u; β)ϕ . (2.10b)

The prefactor must be chosen so that the relation for determinants of this equation

det(L̂) det(M) = det(M̃) det(L) , (2.11)

is satisfied, which in this case provides

γ = (a− k)
(
KK ′[(uũ+ ua+ ũa+

g2
4
)2 − (u+ ũ+ a)(4uũa− g3)

])1/2
,

where K ′ = ℘(κ− α). In the form (2.3) of the equation the Lax matrix reads as follows:

Lκ =
1

γ

⎛⎝ k5 − k4u− k1uũ+ k2ũ k5(u+ ũ) + k6 − k3uũ

k1(u+ ũ)− k0uũ+ k3 k1uũ− k2u+ k4ũ− k5

⎞⎠ . (2.12)

Taking the other part of the Lax matrix M in the same form apart from the following

replacements: ˜→̂ and α → β. The compatibility relation of the Lax pair (2.10) gives

the lattice KN system (2.3).

2.1.2 3-leg form

After its discovery in [5], Adler’s lattice equation (2.3) reemerged in [7] as the top

equation in the ABS list of affine-linear quadrilateral equations, where it was renamed

Q4. The key integrability characteristic of Adler’s equation is its multidimensional

consistency, [22, 71], which in the case of Adler’s system can be made manifest through

its so-called 3-leg form, see [7]:

σ(ξ̃ − ξ + α) σ(ξ̃ + ξ − α)

σ(ξ̃ − ξ − α) σ(ξ̃ + ξ + α)

σ(ξ̂ − ξ − β) σ(ξ̂ + ξ + β)

σ(ξ̂ − ξ + β) σ(ξ̂ + ξ − β)
=
σ(
̂̃
ξ − ξ − γ) σ(

̂̃
ξ + ξ + γ)

σ(
̂̃
ξ − ξ + γ) σ(

̂̃
ξ + ξ − γ)

.

(2.13)
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The uniformising variable, ξ = ξ(n,m) in (2.13), is now the dependent variable of the

equation, related to the original variable u of the rational form (2.3) of the equation

through the identification u = ℘(ξ) and γ = β − α as before. The equivalence between

these two forms can be seen to be a consequence of an interesting identity given in the

following elliptic identity:

Proposition 2.1.2 For arbitrary (complex) variables X, Y, and Z, we have the following

identity

(X − ℘(ξ + α))(Y − ℘(ξ − β))(Z − ℘(ξ − α + β))

−t2(X − ℘(ξ − α))(Y − ℘(ξ + β))(Z − ℘(ξ + α− β))

= s
{
A [(℘(ξ)− b)(Y − b)− (a− b)(c− b)] [(X − b)(Z − b)− (a− b)(c− b)]

+B [(℘(ξ)− a)(X − a)− (b− a)(c− a)] [(Y − a)(Z − a)− (b− a)(c− a)]

−ABC(a− b)
}
, (2.14)

in which

t =
σ(ξ − α)σ(ξ + β)σ(ξ + α− β)

σ(ξ + α)σ(ξ − β)σ(ξ − α+ β)
, s =

1− t2

(A +B)℘(ξ)− Ab− aB
. (2.15)

and where (a, A), (b, B) and (c, C) are given as before.

Proof

This can be established directly by showing that the coefficients of each monomial

1, X, Y, Z,XY,XZ, Y Z and XY Z of the identity are equivalent. Expanding the left-

hand side of the identity as

LHS := (1− t2)XY Z + (t2℘(ξ − α)− ℘(ξ + α))Y Z + (t2℘(ξ + β)− ℘(ξ − β))XZ

+(t2℘(ξ + α− β)− ℘(ξ − α+ β))XY + (℘(ξ − β)℘(ξ − α+ β)

−t2℘(ξ + β)℘(ξ + α− β))X + (℘(ξ + α)℘(ξ − α+ β)− t2℘(ξ − α)℘(ξ + α− β))Y

+(℘(ξ + α)℘(ξ − β)− t2℘(ξ − α)℘(ξ + β))Z + t2℘(ξ − α)℘(ξ + α− β)℘(ξ + β)

−℘(ξ + α)℘(ξ − β)℘(ξ − α+ β) , (2.16)
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it is obvious that the first term of the first line, (1−t2)XY Z, is equal to the corresponding

term on the right hand-side of (2.14) using the definition of s. The rest of the equalities

of the corresponding coefficients follow by the same method as explained below. The

computations are relatively straightforward, relying on (2.4), elliptic addition formulaes

and the Frobenius-Stickelberger formula [31], see Appendix B for more details. First, we

make use of this formula in terms of the variables (ξ, α,−β)∣∣∣∣∣∣∣∣∣
1 ℘(ξ) ℘′(ξ)

1 ℘(α) ℘′(α)

1 ℘(−β) ℘′(−β)

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
1 ℘(ξ) ℘′(ξ)

1 a A

1 b −B

∣∣∣∣∣∣∣∣∣ = 2
σ(ξ + α− β) σ(ξ − α) σ(α+ β) σ(ξ + β)

σ3(ξ) σ3(α) σ3(β)
,

where the Weierstrass ℘ is an even function of its argument and consider a similar relation

with (ξ,−α, β). If we divide the former determinant by the latter one, we obtained the

following expression for t and s in (2.15)

t =
℘′(ξ)(b− a)−Ab− aB + ℘(ξ)(A+B)

℘′(ξ)(b− a) +Ab+ aB − ℘(ξ)(A+B)
, s =

4(a− b)℘′(ξ)
(℘′(ξ)(b− a) +Ab+ aB − ℘(ξ)(A +B))2

.

Applying the elliptic addition formulae of the form, namely:

℘(ξ) + ℘(η) + ℘(ξ ± η) =
1

4

(
℘′(ξ)∓ ℘′(η)
℘(ξ)− ℘(η)

)2

, (2.17)

on (2.16), we get on the one hand

LHS = (1− t2)XY Z + (a+ ℘(ξ)− (℘′(ξ)−A)2

4(℘(ξ)− a)2
+ t2(−a− ℘(ξ) +

(℘′(ξ) +A)2

4(℘(ξ) − a)2
))Y Z

+(b+ ℘(ξ)− (℘′(ξ) +B)2

4(℘(ξ) − b)2
+ t2(−b− ℘(ξ) +

(℘′(ξ)−B)2

4(℘(ξ)− b)2
))XZ

+(c+ ℘(ξ)− (℘′(ξ)− C)2

4(℘(ξ) − c)2
+ t2(−c− ℘(ξ) +

(℘′(ξ) + C)2

4(℘(ξ) − c)2
))XY

+((−a− ℘(ξ) +
(℘′(ξ)−A)2

4(℘(ξ) − a)2
)(−b− ℘(ξ) +

(℘′(ξ) +B)2

4(℘(ξ)− b)2
)

−t2(−a− ℘(ξ) +
(℘′(ξ) +A)2

4(℘(ξ) − a)2
)(−b− ℘(ξ) +

(℘′(ξ)−B)2

4(℘(ξ) − b)2
))Z

+((−a− ℘(ξ) +
(℘′(ξ)−A)2

4(℘(ξ) − a)2
)(−c− ℘(ξ) +

(℘′(ξ)− C)2

4(℘(ξ)− c)2
)−

(2.18)
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−t2(−a− ℘(ξ) +
(℘′(ξ) +A)2

4(℘(ξ) − a)2
)(−c− ℘(ξ) +

(℘′(ξ) + C)2

4(℘(ξ)− c)2
))Y

+((−b− ℘(ξ) +
(℘′(ξ) +B)2

4(℘(ξ) − b)2
)(−c− ℘(ξ) +

(℘′(ξ)−C)2

4(℘(ξ) − c)2
)

−t2(−b− ℘(ξ) +
(℘′(ξ)−B)2

4(℘(ξ) − b)2
)(−c− ℘(ξ) +

(℘′(ξ) + C)2

4(℘(ξ) − c)2
))X

+((a+ ℘(ξ)− (℘′(ξ)−A)2

4(℘(ξ) − a)2
)(−b− ℘(ξ) +

(℘′(ξ) +B)2

4(℘(ξ) − b)2
)(−c− ℘(ξ)

+
(℘′(ξ)− C)2

4(℘(ξ)− c)2
) + t2(−a− ℘(ξ) +

(℘′(ξ) +A)2

4(℘(ξ) − a)2
)(−b− ℘(ξ)

+
(℘′(ξ)−B)2

4(℘(ξ) − b)2
)(−c− ℘(ξ) +

(℘′(ξ) + C)2

4(℘(ξ)− c)2
)). (2.19)

The proof is completed by using the relations (2.6) and subsequently (2.4), (2.5) on the

coefficients of (2.19) and as well as on the right hand-side of (2.14) repeatedly. �

Identifying u = ℘(ξ), X = ũ = ℘(ξ̃), Y = û = ℘(ξ̂) and Z = ̂̃u = ℘(
̂̃
ξ), and using

℘(ξ)− ℘(η) =
σ(η + ξ) σ(η − ξ)

σ2(η)σ2(ξ)
, (2.20)

it can be readily seen that the elliptic identity (2.14) relates the rational form of Adler’s

equation in the Weierstrass case (2.3) with the 3-leg (2.13).

The connection between the rational and the elliptic form of the Adler system parallels

that of the continuous KN equation, which in its (original) elliptic form reads:

ξt =
1

4

(
ξxxx +

3

2

(1− ξ2xx)

ξx
− 6℘(2ξ) ξ3x

)
. (2.21)

Equation (2.21) arose in [58, 59, 77] from the study of the finite-gap solutions of the

Kadomtsev–Petviashvili equation associated with elliptic curve. In 1984 [93, 98] Sokolov

found the Hamiltonian structure and infinite hierarchies of the KN equation. Later work

on this equation has been established by Novikov [76] which is bilinear form and algebro-

geometric solution scheme but the solution was not explicitly given. The first elliptic

solutions were derived together with the discrete analogue in [14].

It is readily seen that we can turn the original equation (rational form) (2.1) into the elliptic

form (2.21) of the KN equation by using the identifications u = ℘(ξ), U = ℘′(ξ) for the
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dependent variables and employing the elliptic identities:

℘(2ξ) =
1

4

(℘′′(ξ)
℘′(ξ)

)2
− 2℘(ξ) , ℘′′(ξ) = 6℘2(ξ)− g2

2
, (2.22)

in order to express higher derivatives of the ℘ in terms of lower derivatives.

2.1.3 Elliptic Lax pair

Lax pairs for the discrete equations are not unique and can be obtained directly from the

lattice equations by doing a similar derivation as explained before. We will show that

the three-leg form of the Adler system (2.13) allows us to obtain a new Lax pair for Q4.

Applying a gauge transformation, we derive an alternative Lax pair for Adler’s equation

to the one given in (2.12). Again, we consider an auxiliary direction related with the

spectral parameter κ on the 3D lattice. Starting from (2.13) by replacing β by κ and using

the additional formula (2.20) leads to a fractional linear form in terms of ũ = ℘( ξ̃ ),

ũ = ℘(ξ̃ ) and u = ℘(ξ):

F (ξ, ξ, ξ̃, ξ̃;α, κ) :=
σ2(ξ − α)(ũ− ℘(ξ − α))

σ2(ξ + α)(ũ− ℘(ξ + α))

σ2(ξ + κ)(u− ℘(ξ + κ))

σ2(ξ − κ)(u− ℘(ξ − κ))

−σ
2(ξ + κ− α)(ũ− ℘(ξ + κ− α))

σ2(ξ − κ+ α)(ũ− ℘(ξ − κ+ α))
,

where the overline ¯ denotes the shift associated with the parameter κ. Going through

the same moves as explained in [72], the next step is to solve ũ from the expression

F (ξ, ξ, ξ̃, ξ̃;α, κ) = 0, yielding

ũ =
R2(u− ℘(ξ + κ))℘(ξ − κ + α)− ℘(ξ + κ− α)(u− ℘(ξ − κ))

R2(u− ℘(ξ + κ))− (u− ℘(ξ − κ))
,

where

R = R(ξ, ξ̃; κ, α) =
σ(ξ − α)σ(ξ + κ)σ(ξ − κ+ α)

σ(ξ + α)σ(ξ − κ)σ(ξ + κ− α)

(
ũ− ℘(ξ − α)

ũ− ℘(ξ + α)

)1/2

. (2.23)
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This relation can be linearized in terms of ũ and u. Substituting u = f/g, ũ = f̃ /g̃

and splitting into two linear equations for f and g leads to:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f̃ = γ−1
[(
R2℘(ξ − κ+ α)− ℘(ξ + κ− α)

)
f +

(
℘(ξ + κ− α)℘(ξ − κ)

−R2℘(ξ − κ + α)℘(ξ + κ)
)
g
]
,

g̃ = γ−1
[
(R2 − 1) f + (℘(ξ − κ)−R2℘(ξ + κ)) g

]
.

These can be given as a matrix system acting on ψ ≡ (f, g)T , where the Lax pair is

written as:

ψ̃ = L(Q4)(ξ̃, ξ;α) ψ, (2.24)

together with a similar formula for ψ̂ = M(Q4)ψ obtained from F (ξ, ξ̂, ξ, ξ̂; κ, β) = 0.

From the condition (2.11) for L(Q4) and M(Q4), we are led to the choice

γ2 =
(
℘(ξ − κ)− ℘(ξ + κ)

)(
℘(ξ − κ+ α)− ℘(ξ + κ− α)

)
R2 . (2.25)

The Lax matrix L(Q4) is then

L(Q4) := γ′ V(ξ; κ− α)−1

⎛⎝R 0

0 R−1

⎞⎠V(ξ; κ), (2.26a)

where

V(ξ; κ) ≡ (u− k)

⎛⎝1 −℘(ξ + κ)

1 −℘(ξ − κ)

⎞⎠ , (2.26b)

with u = ℘(ξ) as always, k = ℘(κ) and where γ ′ is a yet to be specified quantity (it is

related to the γ in (2.25)). Next we can apply a gauge transformation of the form:

σ1/2(2ξ)σn/2(2α)σm/2(2β)χ ≡
⎛⎝σ2(ξ + κ) 0

0 σ2(ξ − κ)

⎞⎠V(ξ; κ)ψ, (2.27)

to derive the following alternative Lax pair for the Adler system:

χ̃ = Lκχ = λ

⎛⎝ Φ2κ(ξ̃ − ξ − α) −Φ2κ(ξ̃ + ξ − α)

Φ2κ(−ξ̃ − ξ − α) −Φ2κ(−ξ̃ + ξ − α)

⎞⎠χ , (2.28a)
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χ̂ =Mκχ = μ

⎛⎝ Φ2κ(ξ̂ − ξ − β) −Φ2κ(ξ̂ + ξ − β)

Φ2κ(−ξ̂ − ξ − β) −Φ2κ(−ξ̂ + ξ − β)

⎞⎠χ, (2.28b)

in which Φκ denotes the (truncated) Lamé function given in (1.6) and where the explicit

form for the coefficients λ = λ(ξ, ξ̃;α) and μ = μ(ξ, ξ̂; β) follows from the consistency

relation ̂̃ψ =
˜̂
ψ as:

λ(ξ, ξ̃;α) =

(
σ(ξ̃ + ξ + α)σ(ξ̃ + ξ − α)σ(ξ̃ − ξ − α)σ(ξ̃ − ξ + α)

σ(2α)σ(2ξ)σ(2ξ̃)

)1/2

,

μ(ξ, ξ̂; β) =

(
σ(ξ̂ + ξ + β)σ(ξ̂ + ξ − β)σ(ξ̂ − ξ − β)σ(ξ̂ − ξ + β)

σ(2β)σ(2ξ)σ(2ξ̂)

)1/2

.

Note that we did not need to specify γ ′ after all, since we have absorbed it into the function

λ. Each member of the elliptic Lax pair (2.28) is reminiscent of the time-dependent part

of the Lax pair related with the time-discretisation of the 2-particle Ruijsenaars system

that was constructed in [69]. The Lax pair (2.28) has already been presented in [104], but

not its derivation from a gauge transformation.

2.2 Jacobi form of the Adler system

As we have seen, there are various alternative forms for Adler’s discrete equation based

on different choices of the underlying elliptic curve. Thus, if one considers (2.3) to be the

Weierstrass form of the equation (with parameters on a Weierstrass elliptic curve (2.4)),

the equation in Jacobi form (due to Hietarinta, [41]) reads:

Q(v, ṽ, v̂, ̂̃v) = p(vṽ + v̂̂̃v)− q(vv̂ + ṽ̂̃v)− r(ṽv̂ + v̂̃v) + pqr(1 + vṽv̂̂̃v) = 0. (2.30)

Here the dependent variable v is related to u of (2.3) through a fractional linear

transformation [41], where (p, P ), (q, Q) and (r, R) are now points on a Jacobi type

elliptic curve:

ΓJ : X2 ≡ x4 − γx2 + 1, γ2 = k+ 1/k, (2.31)
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with modulus k of this curve. They can be parametrized in terms of Jacobi elliptic function

as follows:

p = (p, P ) = (
√
k sn(α; k), sn′(α; k)), q = (q,Q) = (

√
k sn(β; k), sn′(β; k)),

r = (r, R) = (
√
k sn(α− β; k), sn′(α− β; k)) . (2.32)

In [9] Adler and Suris pointed out that the Weierstrass form (2.3) and the Jacobi form

(2.32) of the Adler equation are equivalent in the sense of Möbius transformation between

points on the curves of ΓW and ΓJ . We will state this link explicitly in the following

identity.

Proposition 2.2.1 For arbitrary variables X, Y, and Z, the following identity holds

A
[
(b− a)(c− b)(u− k)(Y − k) + (d(u + s)− b(u− k))(d(Y + s)− b(Y − k))

]
[
(b− a)(c− b)(X − k)(Z − k) + (d(X + s)− b(X − k))(d(Z + s)− b(Z − k))

]
+B
[
(a− b)(c− a)(u− k)(X − k) + (d(u + s)− a(u− k))(d(x + s)− a(X − k))

]
[
(a− b)(c− a)(Y − k)(Z − k) + (d(Y + s)− a(Y − k))(d(Z + s)− a(Z − k))

]
−ABC(a− b)(u− k)(X − k)(Y − k)(Z − k) = t

{
(u− k)(X − k)(Y − k)(Z − k)

(1− p2 q2)(p(uX + Y Z)− q(uY +XZ))− (pQ− qP )((XY + uZ)− pq (uXY Z + 1))
}
,

(2.33)

in which

t =
81k3(−1 + k4)5(p + q)e41

(1 + k4)4(p2 + k4p2 − 2k2(1 + P ))(pQ− qP )(q2 + k4q2 − 2k2(1 +Q))
,

d =
e1(5k

4 − 1)

2(k4 + 1)
, s =

k5 − 5k

5k4 − 1
, (2.34)

if one has the following relation between the parameters

a =
(5(k2p2 − 1)− k6 p2 + k4(1− 5P ) + P )e1

2(k4 + 1)(−1 + k2p2 − P )
, (2.35)

A =
(1− k4)(k2p2 − 1)p

k3(1− k2p2 + P )2
, (2.36)
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and a similar equation with (a, A) replaced by (b, B) and (p, P ) replaced by (q, Q).

Moreover, the roots ei (i = 1, 2) in (2.2) and the modulus k given in (2.31) are related to

each other with bi-rational transformation [9]

1

k2
+ k2 = − 6e1

2e2 + e1
, (2.37)

where the points (a, A), (b, B), (c, C) and (p, P ), (q, Q) are introduced as before.

Proof

The relation (2.33) can be easily seen by direct computation through identities. �

As a direct corollary of Proposition 2.2.1, identifying

X = ũ , Y = û , Z = ̂̃u,
we see that the expression in the curly brackets on the right hand side of (2.33) can be

written in terms of the following expression

Q(u, ũ, û, ̂̃u) := p(uX+Y Z)−q(uY+XZ)+(pQ− qP )

(p2 q2 − 1)
((XY+uZ)−pq (uXY Z+1)) ,

(2.38)

it is not hard to see that the equationQ(u, ũ, û, ̂̃u) = 0 is, up to some simple computations,

equivalent to the Q4 equation in the form (2.30). It is also straightforward to verify that

the relation on the left hand side of (2.33) is equivalent to Adler’s equation (2.3) in the

sense that the dependent variables are related by a rational transformation, u→ ku+ds
u−d

.

Furthermore, Adler’s discrete integrable equation is recovered in the quasi-classical

limit of star-triangle relation corresponding to the elliptic Beta solution. The model is

discovered in [19]. The Lagrangian form of the discrete system (2.3) appears in the quasi-

classical expansion of the Boltzmann weights (1.37a) parametrized through the elliptic

Gamma function. The latter function contains two elliptic nomes labeled p, q and the

Lagrangian of (2.3) is obtained when one of the nomes is real and fixed, while the other

one approaches unity

p = e2iπτ , q = e−2� → 1 as � = −iπσ → 0 (2.39)
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where � plays the role of the Planck constant. Introduce a new function λ(z|τ) as

λ(z|τ) =
∫ z

0

log
iθ11(x+

τ
2
)

G
dx+

iπz2

2
+
πiτz

4
, (2.40)

where θ11 stands for the theta function given in [74] and G(τ) = G( ω2

ω1
) =
∏∞

n=1(1− pn).

In the limit (2.39) the elliptic Gamma function (1.23) becomes

log Γ(z) =
1

2�

∞∑
n=0

∞∑
k=1

(e2izk − e−2izk)p−k/2pkn

k2
+O(�) , (2.41)

and may be written in terms of the dilogarithm function defined by the power series

log Γ(z) =
1

2�

∞∑
n=0

Li2(e
2izkp

2n+1
2 )− Li2(e

−2izkp
2n+1

2 ) +O(�) . (2.42)

In the following, using integral representation of the dilogarithm function and making a

change of variables yields

log Γ(z) =
i

2�

∫ z

0
log

∞∏
n=0

(e2ivkp
2n+1

2 )(e−2ivkp
2n+1

2 )dv +O(�) =
i

2�
λ(z|τ) +O(�) . (2.43)

Therefore, the Boltzmann weight (1.37a) becomes

W (α; u, v) = exp{ 1

2�
L (α; u, v) +O(�)} (2.44)

where the two point Lagrangian L

L (α; u, v) = λ(u−v+ iα)−λ(u−v+ iα)+λ(u+v+ iα)−λ(u+v− iα)−λ(2iα|2τ) ,
(2.45)

states a Lagrangian forQ4 equation [19]. As a consequence the quasi-classical limit of the

Boltzmann weight (1.37a) gives the (2.3) equation of the ABS list. In [56] this connection

is extended to the rest of the ABS list.

Many interesting results were established for the latter form of the lattice KN equation,

notably explicit expressions for the (doubly elliptic) N-soliton solutions, [15] and

singular-boundary solutions [16]. It would be interesting to investigate that the Adler’s

system (2.3) in the Weierstrass form admits some special solutions in terms of elliptic

functions. The construction of seed and soliton solutions for the novel system in the

Weierstrass form is undertaken at the moment.
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2.3 Spin representation

There is another way to represent Adler’s equation, which we refer to as “spin

representation” and which is connected to the Jacobi form of Adler’s equation (2.30).

Such a spin representation has been used in connection with the Landau-Lifschitz (LL)

equations, cf. e.g.[6]. In continuous level, the original KN equation arises from a spin

zero limit of LL equation, [27] although this connection is not pointed out explicitly.

A spin representation of Adler’s lattice system is based on the following observation.

Introducing (for general N) spin matrices of the form

S · I = GΩG−1 (2.46)

where Ω is a fixed matrix obeying tr(Ωj) = 0, j = 1, . . . , N − 1, and ΩN = 1, the latter

being the N ×N unit matrix, and where the matrices I represent an appropriate basis in

the space of such matrices. The vector S in (2.46), which is the main quantity of interest,

can be expressed in terms of the matrix G containing the dynamical variables ui,j in the

form:

G = (u1,u2, · · · ,uN ) , ui = (u1,i, u2,i, · · · , uN,i)
T , (2.47)

where we can think of the vectors ui in some projective space like CP
N , implying that

we can set (without loss of generality) all first components u1,i = 1. In order to expand

the obtained matrix, we need a basis in GLN , which, following [21], we can obtain from

the following elementary matrices

Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

ω

ω2

. . .

ωN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

0 1
. . . . . .

0 1

1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.48)
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and where ω is the Nth root of unity, ω = exp(2πi/N). These matrices obey the following

relations

In1,n2 := Σn1Ωn2 = ωn1n2Ωn2Σn1 , I�
n1,n2

= I−n1,−n2 , (2.49)

where the � means Hermitian conjugation. We can take as a basis of GLN the set of

matrices {In1,n2 |n1, n1 ∈ ZN}. The aim of this section is to realize the Adler lattice

system in terms of appropriately chosen spin vectors that are defined in terms of the above

ingredients. The main observation here is that Adler’s lattice equation in its Jacobi form

(2.30) can be written conveniently in terms of spin vectors.

We have

G =

⎛⎝ 1 1

u v

⎞⎠ , Ω = σ3 , Gσ3G
−1 = S · σ (2.50)

in the basis of the standard Pauli matrices σ = (σ1, σ2, σ3). This leads to the following

identification of a spin matrix and (normalised) spin vector

S(u, v) =
1

v − u
(uv − 1,−i(uv + 1), u+ v) , |S|2 = S · S = 1 , (2.51)

which in the case of a real spin vector (when v = u∗ the complex conjugate of each other),

is the realization of stereographic projection of the complex plane to unit sphere. We have

now the following remarkable observation:

Proposition 2.3.1 Adler’s lattice equation in Jacobi form, i.e. (2.30), can be represented

in the following spin form:

J0 + S(v, ṽ) · JS(v̂, ̂̃v) = 0 , (2.52)

in which the coefficient (anisotropy parameters) comprising J0 and the 3 × 3 diagonal

matrix J = diag(J1, J2, J3) are given by

J0 =
q − r

2
, J1 = p

1− qr

2
, J2 = p

1 + qr

2
, J3 =

q + r

2
, (2.53)

with r = (pQ− qP )/(1− p2q2).
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The proof is by direct computation, writing out the components and identifying the

various combinations of terms with the ones occurring in (2.30). Obviously, the particular

way (2.52) of writing the equation is not unique: it is subject to the D4 symmetries of the

quadrilateral both in how the spin variables depend on the variables v on the vertices and

in how the anisotropy parameters depend on the lattice parameters.

This observation suggests that the search for a rational form of higher-rank Adler lattice

systems may involve higher spin variables. At this stage it is not yet clear how to construct

these variables but it will be subject of future work.
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Chapter 3

Elliptic Lax systems on the lattice

3.1 Introduction

In this chapter, we propose a general elliptic Lax scheme of rank N , which is inspired

by the novel Lax representation (2.28) for Adler’s equation in 3-leg form, derived in the

previous chapter 2. This general Lax scheme leads to two distinct classes of systems

which we coin as being “of Landau-Lifschitz (LL) type” (or spin-nonzero case) and as

“of KN type” (or spin-zero case). We present general results for both classes in section

3.2, some initial results of this section were already presented in [104], but then focus in

the remainder of this chapter on the KN class of Lax systems. The latter case requires

a separate treatment. In fact, we first study in detail the compatibility conditions for the

case N = 2, showing by means of this example how Adler’s equation emerges, yielding

the 3-leg form directly, in contrast to what Lax pair of [72] obtained from consistency-

around-the-cube. We next turn to the more typical case N = 3, in which case the

analysis is markedly more involved. Notably in the rank N = 3 case the analysis of

the compatibility condition exploits a (to our knowledge novel) compound theorem for

Cayley’s hyperdeterminants of format 2× 2× 2, see [23], a result which may have some
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significance in its own right. We conjecture that the resulting rank 3 lattice system may be

regarded as a discrete analogue of a rank 3 Krichever-Novikov type of differential system

that was constructed by Mokhov in [63]. Results in this chapter have appeared in the joint

paper [26] by the candidate in collaboration with Nijhoff and Yoo-Kong. The general set-

up of the elliptic Lax scheme was given in [104], but there the focus was on the LL class

of models and the analysis of the KN class was not followed through. Here, in contrast,

we will develop the latter aspect more in detail, which requires a totally separate analysis,

but for the sake of self-containedness we reiterate the general scheme first.

3.2 General elliptic Lax scheme

Consider the Lax pair of the form:

χ̃κ = Lκ χκ , (3.1a)

χ̂κ = Mκ χκ , (3.1b)

defining horizontal and vertical shifts of the vector function χκ, according to the diagram

in Figure 3.1:

χ̂ ̂̃χ

χ χ̃L

M M̃

L̂

Figure 3.1: Lax compatibility condition (3.4).

where the vectors χ are located at the vertices of the quadrilateral and in which the

matrices L and M are attached to the edges linking the vertices. The matrices Lκ and
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Mκ can be taken of the form:

(Lκ)i,j = ΦNκ(ξ̃i − ξj − α)hj , (3.2a)

(Mκ)i,j = ΦNκ(ξ̂i − ξj − β)kj , (3.2b)

(i, j = 1, . . . , N)

where as mentioned earlier, Φκ denotes the (truncated) Lamé function

Φκ(ξ) ≡ σ(ξ + κ)

σ(ξ)σ(κ)
, (3.3)

with σ denoting the Weierstrass σ-function. The variables ξi = ξi(n,m), (i = 1, . . . , N),

are the main dependent variables. As before α and β denote the uniformized lattice

parameters (as in (2.5)), while κ is the (uniformized) spectral parameter. In (3.2), the

coefficients hj and kj are functions of the variables ξl and their shifts that remain to be

determined. The compatibility condition between (3.1a) and (3.1b) is given by the lattice

zero-curvature condition:

L̂κMκ = M̃κLκ . (3.4)

Using the addition formula

Φκ(x)Φκ(y) = Φκ(x+ y) [ζ(κ) + ζ(x) + ζ(y)− ζ(κ+ x+ y)] , (3.5)

where ζ(x) = d
dx

ln σ(x) is the Weierstrass zeta function, the consistency relation (3.4)

gives rise to

N∑
l=1

ĥlkj

[
ζ(
̂̃
ξi − ξ̂l − α) + ζ(ξ̂l − ξj − β) + ζ(Nκ)− ζ(Nκ+

̂̃
ξi − ξj − α− β)

]
=

=

N∑
l=1

k̃lhj

[
ζ(
̂̃
ξi − ξ̃l − β) + ζ(ξ̃l − ξj − α) + ζ(Nκ)− ζ(Nκ+

̂̃
ξi − ξj − α− β)

]
(i, j = 1, . . . , N) . (3.6)

Due to the arbitrariness of the spectral parameter κ the equations (3.6) separate into two
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parts, namely(
N∑
l=1

ĥl

)
kj =

(
N∑
l=1

k̃l

)
hj , (j = 1, . . . , N) , (3.7a){

N∑
l=1

ĥl

[
ζ(
̂̃
ξi − ξ̂l − α) + ζ(ξ̂l − ξj − β)

]}
kj

=

{
N∑
l=1

k̃l

[
ζ(
̂̃
ξi − ξ̃l − β) + ζ(ξ̃l − ξj − α)

]}
hj

(i, j = 1, . . . , N) . (3.7b)

Now there are two scenarios which we refer to as the “LL type” (or physically, the spin

non-zero) case and the “KN type” (spin zero) cases respectively:

1. Discrete LL type case:
∑

l hl =
∑

l kl �= 0, in which case we have that the variables

hj , kj are proportional to each other, kj = ρhj , and after summing up (3.7a), we

obtain the following conservation law:∑N
l=1 ĥl∑N
l=1 hl

=

∑N
l=1 k̃l∑N
l=1 kl

, (3.8)

and in which case eqs. (3.7b) reduce to:

N∑
l=1

[
ζ(
̂̃
ξi − ξ̂l − α)ρĥl − ζ(

̂̃
ξi − ξ̃l − β)k̃l

]

=
N∑
l=1

[
ζ(ξj − ξ̂l + β)ρĥl − ζ(ξj − ξ̃l + α)k̃l

]
, (i, j = 1, . . . , N) .(3.9)

The above system of equations can be reduced under the condition:

Ξ̃ + Ξ̂ =
̂̃
Ξ + Ξ , Ξ ≡

N∑
l=1

ξl , (3.10)

which is a conservation law for the centre of mass motion. In fact, (3.10) follows

from the determinant of the relation (3.4) and using the Frobenius-Stickelberger

determinantal formula (B.4).
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2. KN type case:
∑

l hl =
∑

l kl = 0, in which case (3.7a) becomes vacuous. In

this case we seek further reductions by the additional constraint Ξ =
∑

l ξl = 0

(modulo the period lattice of the elliptic functions).

In this section we shall focus primarily on the class of models in # 2, but we shall conclude

this section by presenting the general structure of the systems that emerge from the Lax

system in both cases, and then in the ensuing sections present an alternative analysis for

the Lax system of class # 2 for the cases N = 2 and N = 3. We proceed with the general

analysis of (3.9) by using a trick which was employed in [69], based on an elliptic version

of the Lagrange interpolation formula (see Appendix B) in order to identify the variables

hl, kl. Particularly, consider the following elliptic function, where as a consequence of the

conservation law (3.10) for the variables ξl the Lagrange interpolation (B.6) of Appendix

B is applicable, leading to the following identity:

F (ξ) =
N∏
l=1

σ(ξ − ̂̃ξl)σ(ξ − ξl − α− β)

σ(ξ − ξ̂l − α)σ(ξ − ξ̃l − β)

=

N∑
l=1

[
ζ(ξ − ξ̂l − α)− ζ(η − ξ̂l − α)

]
Hl

+

N∑
l=1

[
ζ(ξ − ξ̃l − β)− ζ(η − ξ̃l − β)

]
Kl, (3.11)

which holds for any four sets of variables ξl, ξ̂l, ξ̃l,
̂̃
ξl such that (3.10) holds. In (3.11) η

can be anyone of the zeroes of F (ξ), i.e. ̂̃ξi or ξi + α + β, and the coefficients Hl, Kl are

given by:

Hl =

∏N
k=1 σ(ξ̂l − ̂̃ξk + α)σ(ξ̂l − ξk − β)[∏N
k=1 σ(ξ̂l − ξ̃k − γ)

]∏
k �=l σ(ξ̂l − ξ̂k)

, (3.12a)

Kl =

∏N
k=1 σ(ξ̃l − ̂̃ξk + β)σ(ξ̃l − ξk − α)[∏N
k=1 σ(ξ̃l − ξ̂k + γ)

]∏
k �=l σ(ξ̃l − ξ̃k)

. (3.12b)
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Furthermore, the coefficients obey the identity:

N∑
l=1

(Hl +Kl) = 0 . (3.13)

Taking ξ =
̂̃
ξi, η = ξj + α + β in (3.11) and comparing with (3.7b), we can deduce the

following identifications:

tHl = ρĥl , tKl = −ρ̃h̃l , l = 1, . . . , N , (3.14)

with a function t being an arbitrary proportionality factor. Thus in this case # 1 by

eliminating hl from (3.14) we obtain the set of equations

t̃

ρ̃
H̃l +

t̂̂̃ρK̂l = 0 , l = 1, . . . , N (3.15)

which, by inserting the expressions (3.12) for Hl and Kl, constitute a system of N

equations for N + 2 unknowns ξl, (l = 1, . . . , N), and ρ and t. Rewriting this system

(3.15) in explicit form, we obtain the system of N 7-point equations shown in Figure 3.2:

N∏
k=1

σ(ξl − ξ̃k + α) σ(ξl −̂ξk − β) σ(ξl − ξ̂˜k + β − α)

σ(ξl − ξ̂k + β) σ(ξl − ξ˜k − α) σ(ξl − ˜̂ξk − β + α)
= p, (3.16)

forN+1 variables ξi (i = 1, . . . , N) and p = −t˜̂ρ/(̂t ρ), supplemented with (3.10) which

fixes the discrete dynamics of the centre of mass Ξ . In (3.16) the under-accents ·̃ and ·̂
denote reverse lattice shifts, i.e., ξ˜i(n,m) = ξi(n − 1, m) and ̂ξi(n,m) = ξi(n,m − 1)

respectively.

The implicit system of PΔEs arises as Euler-Lagrange equation from the following

Lagrangian:

L =
N∑

i,j=1

[
f(ξi − ξ̃j + α)− f(ξi − ξ̂j + β)− f(ξ̂i − ξ̃j + α− β)

]
− ln |p|Ξ , (3.17)

in which the function f is the elliptic dilogarithm f(x) =
∫ x

ln σ(ξ) dξ , with respect to

variations of the dependent variables ξi (i = 1, 2, ..., N). The one-step periodic reduction,
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ξ̂iξ̃i

ξ̃̂i ξi

ξ˜iξ̂i

ξ̂˜i

Figure 3.2: The hexagon relation

χ̃κ = λχκ , leads to an implicit system of OΔEs which amounts to the time-discretization

of the Ruijsenaars (relativistic Calogero-Moser) model, given in [69]. We consider the

system (3.16) to be “of LL class” although a precise connection with the LL equation

remains still to be established. Lattice versions of the LL equation were given in the

papers [4, 6, 66]. However, not only the connection of (3.16) with these earlier models

remains unclear at this stage, but also the relation between these various discretizations of

the LL equation have remained obscure to this date. In the remainder of the thesis we shall

concentrate on the case # 2 which, as we show forN = 2, leads to Adler’s lattice equation

in 3-leg form, and for higher rank ofN (N ≥ 3) is expected to lead to higher rank version

of Adler’s equation. For this case, we shall perform a different kind of analysis.

3.3 Elliptic Lax pairs for 3-leg lattice systems

In this section we shall focus on case # 2 of general elliptic Lax systems introduced in the

previous section, corresponding to the “spin-zero” case (where
∑N

l=1 hl =
∑N

l=1 kl = 0).

We shall first demonstrate, in the case N = 2 of this system, how the 3-leg form of

Adler’s equation arises in a natural way from this Lax pair. In fact, it turns out that

the elaboration of the compatibility conditions for this Lax pair immediately produces
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the required equations, and is far less laborious than of the consistency-around-the-cube

Lax pair of [72] yielding the corresponding rational form of Q4. Next we shall analyze

the much more generic case of N = 3, and produce a novel system of elliptic lattice

equations, which constitutes the main result of this chapter. We also present the structure

of the lattice system arising form the scheme for general N , based on similar ingredients

as the ones used in the case # 1 elaborated in the previous section, but subject to slightly

different conditions.

3.3.1 Case N=2: Elliptic Lax pair for the Adler 3-leg lattice equation

Let ξ = ξn,m be a function of the discrete independent variables n, m for which we want

to derive a lattice equation from the following Lax pair:

χ̃ = Lκχ = λ

⎛⎝ Φ2κ(ξ̃ − ξ − α) −Φ2κ(ξ̃ + ξ − α)

Φ2κ(−ξ̃ − ξ − α) −Φ2κ(−ξ̃ + ξ − α)

⎞⎠χ (3.18a)

χ̂ =Mκχ = μ

⎛⎝ Φ2κ(ξ̂ − ξ − β) −Φ2κ(ξ̂ + ξ − β)

Φ2κ(−ξ̂ − ξ − β) −Φ2κ(−ξ̂ + ξ − β)

⎞⎠χ , (3.18b)

in which the coefficients λ are functions λ = λ(ξ, ξ̃;α) and μ = μ(ξ, ξ̂; β), respectively.

Their explicit form and the derivation of the Lax pair (3.18) were already presented in

chapter 2, but λ and μ will actually not be relevant for the determination of the resulting

lattice equation, which is Adler’s system in 3-leg form. The discrete zero-curvature

condition (3.4) can, once again, be analyzed using the addition formula (3.5) for the Lamé

function Φκ and analyzed entry-by-entry. Applying this to each entry of both the left-

hand side and right-hand side of (3.4) we observe that in all four entries a common factor

containing the spectral parameter κ will drop out and that we are left with the following
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four relations:

λ̂μ

[
ζ(
̂̃
ξ − ξ̂ − α) + ζ(ξ̂ − ξ − β)− ζ(

̂̃
ξ + ξ̂ − α) + ζ(ξ̂ + ξ + β)

]
= μ̃λ

[
ζ(
̂̃
ξ − ξ̃ − β) + ζ(ξ̃ − ξ − α)− ζ(

̂̃
ξ + ξ̃ − β) + ζ(ξ̃ + ξ + α)

]
, (3.19a)

λ̂μ

[
ζ(
̂̃
ξ − ξ̂ − α) + ζ(ξ̂ + ξ − β)− ζ(

̂̃
ξ + ξ̂ − α) + ζ(ξ̂ − ξ + β)

]
= μ̃λ

[
ζ(
̂̃
ξ − ξ̃ − β) + ζ(ξ̃ + ξ − α)− ζ(

̂̃
ξ + ξ̃ − β) + ζ(ξ̃ + ξ − α)

]
, (3.19b)

λ̂μ

[
ζ(−̂̃ξ − ξ̂ − α) + ζ(ξ̂ − ξ − β)− ζ(−̂̃ξ + ξ̂ − α) + ζ(ξ̂ + ξ + β)

]
= μ̃λ

[
ζ(
̂̃
ξ − ξ̃ − β) + ζ(ξ̃ − ξ − α)− ζ(

̂̃
ξ + ξ̃ − β) + ζ(ξ̃ + ξ + α)

]
, (3.19c)

λ̂μ

[
ζ(−̂̃ξ − ξ̂ − α) + ζ(ξ̂ + ξ − β)− ζ(−̂̃ξ + ξ̂ − α) + ζ(ξ̂ − ξ + β)

]
= μ̃λ

[
ζ(−̂̃ξ − ξ̃ − β) + ζ(ξ̃ + ξ − α)− ζ(−̂̃ξ + ξ̃ − β) + ζ(ξ̃ − ξ + α)

]
, (3.19d)

These four relations can be rewritten as:

λ̂μ
σ(2ξ̂ ) σ(

̂̃
ξ + ξ + β − α)

σ(
̂̃
ξ − ξ̂ − α) σ(

̂̃
ξ + ξ̂ − α) σ(ξ̂ − ξ − β) σ(ξ̂ + ξ + β)

= μ̃λ
σ(2ξ̃ ) σ(

̂̃
ξ + ξ + α− β)

σ(
̂̃
ξ − ξ̃ − β) σ(

̂̃
ξ + ξ̃ − β) σ(ξ̃ − ξ − α) σ(ξ̃ + ξ + α)

, (3.20a)

λ̂μ
σ(2ξ̂ ) σ(

̂̃
ξ − ξ + β − α)

σ(
̂̃
ξ − ξ̂ − α) σ(

̂̃
ξ + ξ̂ − α) σ(ξ̂ − ξ + β) σ(ξ̂ + ξ − β)

= μ̃λ
σ(2ξ̃ ) σ(

̂̃
ξ − ξ + α− β)

σ(
̂̃
ξ − ξ̃ − β) σ(

̂̃
ξ + ξ̃ − β) σ(ξ̃ − ξ + α) σ(ξ̃ + ξ − α)

, (3.20b)

λ̂μ
σ(2ξ̂ ) σ(

̂̃
ξ − ξ − β + α)

σ(
̂̃
ξ − ξ̂ + α) σ(

̂̃
ξ + ξ̂ + α) σ(ξ̂ − ξ − β) σ(ξ̂ + ξ + β)

= μ̃λ
σ(2ξ̃ ) σ(

̂̃
ξ − ξ − α + β)

σ(
̂̃
ξ − ξ̃ + β) σ(

̂̃
ξ + ξ̃ + β) σ(ξ̃ − ξ − α) σ(ξ̃ + ξ + α)

, (3.20c)
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λ̂μ
σ(2ξ̂ ) σ(

̂̃
ξ + ξ − β + α)

σ(
̂̃
ξ − ξ̂ + α) σ(

̂̃
ξ + ξ̂ + α) σ(ξ̂ − ξ + β) σ(ξ̂ + ξ − β)

= μ̃λ
σ(2ξ̃ ) σ(

̂̃
ξ + ξ − α+ β)

σ(
̂̃
ξ − ξ̃ + β) σ(

̂̃
ξ + ξ̃ + β) σ(ξ̃ − ξ + α) σ(ξ̃ + ξ − α)

, (3.20d)

using the identity

ζ(x) + ζ(y) + ζ(z)− ζ(x+ y + z) =
σ(x+ y)σ(x+ z)σ(y + z)

σ(x)σ(y)σ(z)σ(x+ y + z)
. (3.21)

Eliminating λ and μ, simply by dividing pairwise the relations over each other, we obtain

directly the 3-leg formulae. In fact, we obtain two seemingly different-looking equations

for ξ, namely:

σ(ξ̃ − ξ + α) σ(ξ̃ + ξ − α)

σ(ξ̃ − ξ − α) σ(ξ̃ + ξ + α)

σ(ξ̂ − ξ − β) σ(ξ̂ + ξ + β)

σ(ξ̂ − ξ + β) σ(ξ̂ + ξ − β)
=
σ(
̂̃
ξ − ξ − γ) σ(

̂̃
ξ + ξ + γ)

σ(
̂̃
ξ − ξ + γ) σ(

̂̃
ξ + ξ − γ)

,

(3.22a)

in which as before γ = β − α and

σ(
̂̃
ξ − ξ̂ + α) σ(

̂̃
ξ + ξ̂ + α)

σ(
̂̃
ξ − ξ̂ − α) σ(

̂̃
ξ + ξ̂ − α)

σ(
̂̃
ξ − ξ̃ − β) σ(

̂̃
ξ + ξ̃ − β)

σ(
̂̃
ξ − ξ̃ + β) σ(

̂̃
ξ + ξ̃ + β)

=
σ(
̂̃
ξ − ξ − γ) σ(

̂̃
ξ + ξ − γ)

σ(
̂̃
ξ − ξ + γ) σ(

̂̃
ξ + ξ + γ)

,

(3.22b)

but actually these two equations are equivalent. The first equation (3.22a) is identical

to (2.13), namely the 3-leg form of the Adler lattice equation given in [7]. The second

equation (3.22b) is obtained from the first by interchanging ξ ↔ ̂̃
ξ, α ↔ β, which is a

symmetry of the equation. The equivalence between these two forms is made manifest

by passing to the rational form (2.3) of the equation, and the latter connection is already

given in Proposition 2.1.2. Since the Adler system (2.3) is manifestly invariant under the

replacements u ↔ ̂̃u, α ↔ β – whilst not interchanging ũ and û – (this being a particular

aspect of the D4-symmetry of the equation), the 3-leg form (3.22a) is also invariant under

the parallel exchange on the level of the uniformising variables: ξ ↔ ̂̃
ξ, α ↔ β. This is the

symmetry that connects the two forms (3.22a) and (3.22b), which are hence equivalent.
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Remark 3.3.1 The coefficients λ and μ are determined by the condition for which the

dynamical equation for the determinants of the Lax matrices Lκ, Mκ needs to be trivially

satisfied. Thus, a possible choice for λ and μ is to determine these factors such that

det(Lκ) and det(Mκ) are proportional to constants (i.e. independent of ξ), which leads

to the following expressions

λ =

(
H(u, ũ, a)

AUŨ

)1/2

, μ =

(
H(u, û, b)

BUÛ

)1/2

, (3.23)

where u = ℘(ξ) , U = r(u) = ℘′(ξ), and similary ũ = ℘(ξ̃ ) , Ũ = r(ũ) = ℘′(ξ̃ ), and

û = ℘(ξ̂ ) , Û = r(û) = ℘′(ξ̂ ). The symmetric triquadratic function H is given by

H(u, v, a) ≡
(
uv + au+ av +

g2
4

)2
− (4auv − g3)(u+ v + a) , (3.24)

and which can be obtained in the following form in terms of σ-function

H(u, v, a) = (u− v)2

[
1

4

(
U − V

u− v

)2

− (u+ v + a)

][
1

4

(
U + V

u− v

)2

− (u+ v + a)

]

=
σ(ξ + η + α) σ(ξ + η − α) σ(ξ − η + α) σ(ξ − η − α)

σ4(ξ) σ4(η) σ4(α)
, (3.25)

in which U 2 ≡ r(u), V 2 ≡ r(v). Additionally, we have the expression in terms of the

polynomial of the curve:

[
r(u) + r(a)− 4(u− a)2(u+ v + a)

]2 − 4r(u) r(a) = 16(u− a)2H(u, v, a) . (3.26)

We further note at this point that the discriminant of the triquadratic in each argument

factorizes:

H2
v − 2HHvv = r(a)r(u) . (3.27)

In [10] the discriminant properties of affine-linear quadrilaterals and their relation with

the corresponding biquadratics and their discriminants, were exploited to tighten the

classification result of [7].



Chapter 3. Elliptic Lax systems on the lattice 63

Remark 3.3.2 An alternative derivation of theN = 2 case can be given using the system

of equations (3.12). In this case the variables Hl and Kl admit the following forms

H1 =
σ(ξ̂ − ̂̃ξ + α) σ(ξ̂ +

̂̃
ξ + α) σ(ξ̂ − ξ − β) σ(ξ̂ + ξ − β)

σ(ξ̂ − ξ̃ − γ) σ(ξ̂ + ξ̃ − γ) σ(2ξ̂)
, (3.28a)

H2 =
σ(−ξ̂ − ̂̃ξ + α) σ(−ξ̂ + ̂̃ξ + α) σ(−ξ̂ − ξ − β) σ(−ξ̂ + ξ − β)

σ(−ξ̂ − ξ̃ − γ) σ(−ξ̂ + ξ̃ − γ) σ(−2ξ̂)
, (3.28b)

K1 =
σ(ξ̃ − ̂̃ξ + β) σ(ξ̃ +

̂̃
ξ + β) σ(ξ̃ − ξ − α) σ(ξ̃ + ξ − α)

σ(ξ̃ − ξ̂ + γ) σ(ξ̃ + ξ̂ + γ) σ(2ξ̃)
, (3.28c)

K2 =
σ(−ξ̃ − ̂̃ξ + β) σ(−ξ̃ + ̂̃ξ + β) σ(−ξ̃ − ξ − α) σ(−ξ̃ + ξ − α)

σ(−ξ̃ − ξ̂ + γ) σ(−ξ̃ + ξ̂ + γ) σ(−2ξ̃)
, (3.28d)

if one sets ξ1 = −ξ2 = ξ. The identityH1+H2 = 0 upon inserting the above expressions

yields the equation:[
σ(ξ̃ + ξ + α) σ(ξ̃ − ξ − α)

σ(ξ̃ + ξ − α) σ(ξ̃ − ξ + α)

]̂
σ(ξ̂ + ξ − β) σ(ξ̂ − ξ − β)

σ(ξ̂ + ξ + β) σ(ξ̂ − ξ + β)
=
σ(ξ̃ + ξ̂ − γ) σ(ξ̃ − ξ̂ + γ)

σ(ξ̃ − ξ̂ − γ) σ(ξ̃ + ξ̂ + γ)
,

(3.29)

which is equivalent to the elliptic lattice system (2.3) under the same changes of variables

as discussed before. In fact, (3.29) can be obtained from (2.13) by interchanging: ξ ↔
ξ̂ and ̂̃ξ ↔ ξ̃ . Similarly, the identityK1+K2 = 0 upon inserting the expressions (3.28c)

and (3.28d) for K1 and K2 yields a similar equation to (3.29) which can be obtained from

(2.13) by interchanging: ξ ↔ ξ̃ and ̂̃
ξ ↔ ξ̂ . Thus, we recover from the scheme

proposed in the previous section the Adler system in the various 3-leg forms based on

different vertices of the elementary quadrilateral.
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3.3.2 Case N=3:

To generalize the results of the previous subsection to the rank 3 case, we consider the

following form of a Lax representation on the lattice:

χ̃ =

⎛⎜⎜⎜⎝
h1Φ3κ(ξ̃1 − ξ1 − α) h2Φ3κ(ξ̃1 − ξ2 − α) h3Φ3κ(ξ̃1 − ξ3 − α)

h1Φ3κ(ξ̃2 − ξ1 − α) h2Φ3κ(ξ̃2 − ξ2 − α) h3Φ3κ(ξ̃2 − ξ3 − α)

h1Φ3κ(ξ̃3 − ξ1 − α) h2Φ3κ(ξ̃3 − ξ2 − α) h3Φ3κ(ξ̃3 − ξ3 − α)

⎞⎟⎟⎟⎠χ ,

(3.30a)

χ̂ =

⎛⎜⎜⎜⎝
k1Φ3κ(ξ̂1 − ξ1 − β) k2Φ3κ(ξ̂1 − ξ2 − β) k3Φ3κ(ξ̂1 − ξ3 − β)

k1Φ3κ(ξ̂2 − ξ1 − β) k2Φ3κ(ξ̂2 − ξ2 − β) k3Φ3κ(ξ̂2 − ξ3 − β)

k1Φ3κ(ξ̂3 − ξ1 − β) k2Φ3κ(ξ̂3 − ξ2 − β) k3Φ3κ(ξ̂3 − ξ3 − β)

⎞⎟⎟⎟⎠χ ,

(3.30b)

subject to
∑3

i=1 hi =
∑3

i=1 ki = 0 , and where the coefficients hj , kj are some functions

of the variables ξj and their shifts. The compatibility conditions (3.4) of this Lax pair

results in a coupled set of Lax equations in terms of the three variables ξj as we shall

demonstrate by performing a similar type of analysis as in the case N = 2, where is

understandably more involved.

Eliminating1 h3 = −h1 − h2 and k3 = −k1 − k2 we obtain from (3.7b) the following

system of equations:

2∑
l=1

ĥlkj

[
ζ(
̂̃
ξi − ξ̂l − α) + ζ(ξ̂l − ξj − β)− ζ(

̂̃
ξi − ξ̂3 − α)− ζ(ξ̂3 − ξj − β)

]

=
2∑

l=1

k̃lhj

[
ζ(
̂̃
ξi − ξ̃l − β) + ζ(ξ̃l − ξj − α)− ζ(

̂̃
ξi − ξ̃3 − β)− ζ(ξ̃3 − ξj − α)

]
∀ i, j = 1, 2, 3. (3.31)

1Instead of h3 and k3 we could have eliminated h1 or h2 and k1 or k2 yielding equivalent results.
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and using the addition formula (3.21) we next deduce:

2∑
l=1

ĥlkj
σ(
̂̃
ξi − ξ̂l − ξ̂3 + ξj − α + β)σ(ξ̂l − ξ̂3)

σ(
̂̃
ξi − ξ̂l − α)σ(ξ̂l − ξj − β)σ(

̂̃
ξi − ξ̂3 − α)σ(ξ̂3 − ξj − β)

=

=

2∑
l=1

k̃lhj
σ(
̂̃
ξi − ξ̃l − ξ̃3 + ξj + α− β)σ(ξ̃l − ξ̃3)

σ(
̂̃
ξi − ξ̃l − β)σ(ξ̃l − ξj − α)σ(

̂̃
ξi − ξ̃3 − β)σ(ξ̃3 − ξj − α)

∀ i, j = 1, 2, 3. (3.32)

in order to write (3.32) in a more concise way, we denote the coefficients on the left-

hand side and right-hand side of the equation as Ailj ≡ Ailj(
̂̃
ξ, ξ̂, ξ;α, β) and Bilj ≡

Bilj(
̂̃
ξ, ξ̃, ξ;α, β) respectively. Noting the common factors hj/kj (j = 1, 2, 3) in these

equations, we next derive the system of six equations

hj
kj

=
A11j ĥ1 + A12j ĥ2

B11j k̃1 +B12j k̃2
=
A21j ĥ1 + A22j ĥ2

B21j k̃1 +B22j k̃2
=
A31j ĥ1 + A32j ĥ2

B31j k̃1 +B32j k̃2
(j = 1, 2, 3) . (3.33)

We can rewrite the resulting set of relations (3.33) as

(A11jB21j − A21jB11j)ĥ1k̃1 + (A11jB22j −A21jB12j)ĥ1k̃2

+(A12jB21j − A22jB11j)ĥ2k̃1 + (A12jB22j −A22jB12j)ĥ2k̃2 = 0,

(A11jB31j − A31jB11j)ĥ1k̃1 + (A11jB32j −A31jB12j)ĥ1k̃2

+(A12jB31j − A32jB11j)ĥ2k̃1 + (A12jB32j −A32jB12j)ĥ2k̃2 = 0,

(A21jB31j − A31jB21j)ĥ1k̃1 + (A21jB32j −A31jB22j)ĥ1k̃2

+(A22jB31j − A32jB21j)ĥ2k̃1 + (A22jB32j −A32jB22j)ĥ2k̃2 = 0,

(j = 1, 2, 3) , (3.34)

where

Ailj =
σ(
̂̃
ξi − ξ̂l − ξ̂3 + ξj − α + β) σ(ξ̂l − ξ̂3)

σ(
̂̃
ξi − ξ̂l − α) σ(ξ̂l − ξj − β) σ(

̂̃
ξi − ξ̂3 − α) σ(ξ̂3 − ξj − β)

, (3.35a)

Bilj =
σ(
̂̃
ξi − ξ̃l − ξ̃3 + ξj + α− β) σ(ξ̃l − ξ̃3)

σ(
̂̃
ξi − ξ̃l − β) σ(ξ̃l − ξj − α) σ(

̂̃
ξi − ξ̃3 − β) σ(ξ̃3 − ξj − α)

. (3.35b)
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We observe that these homogeneous bilinear systems for the variables ĥ1, k̃1, ĥ2 and k̃2

can be resolved by using Cayley’s three-dimensional 2 × 2 × 2-hyperdeterminant [23].

Let us recall the general statement (see also [36]):

Definition 3.3.3 The hyperdeterminant of the 2×2×2 hyper-matrixA = (aijk) (i, j, k =

0, 1) is given by:

Det(A) =
[
det

⎛⎝a000 a001

a110 a111

⎞⎠+ det

⎛⎝a100 a010

a101 a011

⎞⎠]2

− 4 det

⎛⎝a000 a001

a010 a011

⎞⎠ det

⎛⎝a100 a101

a110 a111

⎞⎠ . (3.36)

Its main property is the following:

Proposition 3.3.1 The hyperdeterminant (3.36) vanishes identically iff the following set

of bilinear equations with six unknowns

a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1 = 0,

a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1 = 0,

a010x0z0 + a011x0z1 + a110x1z0 + a111x1z1 = 0,

a000x0z0 + a001x0z1 + a100x1z0 + a101x1z1 = 0,

a100y0z0 + a101y0z1 + a110y1z0 + a111y1z1 = 0,

a000y0z0 + a001y0z1 + a010y1z0 + a011y1z1 = 0, (3.37)

has a non-trivial solution (i.e., none of the vectors x = (x0, x1), y = (y0, y1), z = (z0, z1)

are equal to the zero vector).

A proof of this statement can be found in [91]. The cubic hyper-matrixA can be illustrated

by the diagram of entries as given in Figure 3.3
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a110

a000

a011

a010

a101a001

a100

a111

Figure 3.3: Cayley cube

In the case at hand, the components aijk can be readily identified by comparing (3.34)

with the system (3.37) and the variables xi, yj with the ĥi and k̃j , respectively. Noting

that these particular coefficients are all 2× 2 determinants, it turns out that the following

compound theorem for hyperdeterminants is directly applicable.

Lemma 3.3.4 (Compound theorem for 2× 2× 2 hyper-determinants) The following

identity holds for the compound hyper-determinants of format 2× 2× 2:

(
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣ a a′′

b b′′

∣∣∣∣∣∣
∣∣∣∣∣∣ a

′ a′′

d′ d′′

∣∣∣∣∣∣∣∣∣∣∣∣ c c′′

b b′′

∣∣∣∣∣∣
∣∣∣∣∣∣ c

′ c′′

d′ d′′

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣ a
′ a′′

b′ b′′

∣∣∣∣∣∣
∣∣∣∣∣∣ a a′′

d d′′

∣∣∣∣∣∣∣∣∣∣∣∣ c
′ c′′

b′ b′′

∣∣∣∣∣∣
∣∣∣∣∣∣ c c′′

d d′′

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

)2

−4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣ a a′′

b b′′

∣∣∣∣∣∣
∣∣∣∣∣∣ a a′′

d d′′

∣∣∣∣∣∣∣∣∣∣∣∣ c c′′

b b′′

∣∣∣∣∣∣
∣∣∣∣∣∣ c c′′

d d′′

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣ a
′ a′′

b′ b′′

∣∣∣∣∣∣
∣∣∣∣∣∣ a

′ a′′

d′ d′′

∣∣∣∣∣∣∣∣∣∣∣∣ c
′ c′′

b′ b′′

∣∣∣∣∣∣
∣∣∣∣∣∣ c

′ c′′

d′ d′′

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣ a a′′

c c′′

∣∣∣∣∣∣
∣∣∣∣∣∣ b b′′

d d′′

∣∣∣∣∣∣∣∣∣∣∣∣ a
′ a′′

c′ c′′

∣∣∣∣∣∣
∣∣∣∣∣∣ b

′ b′′

d′ d′′

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

.

(3.38)
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Proof

This can be established by direct computation. Assuming without loss of generality that

the entries a′′, b′′, c′′, d′′ are all nonzero, we can take out the common product (a′′b′′c′′d′′)2

from all terms on the left-hand side. Denoting all the ratios a/a′′, a′/a′′ by capitals A, A′

etc, and noting that the 2 × 2 determinant

∣∣∣∣∣∣ a/a
′′ 1

b/b′′ 1

∣∣∣∣∣∣ is simply given by A− B (and in

a similar way the other determinants occurring in the expression on the left-hand side),

then the left-hand side of (3.38) is representable by

a′′2 b′′2 c′′2 d′′2
[( ∣∣∣∣∣∣ A−B A′ −D′

C −B C ′ −D′

∣∣∣∣∣∣+
∣∣∣∣∣∣ A

′ −B′ A−D

C ′ −B′ C −D

∣∣∣∣∣∣
)2

−4

∣∣∣∣∣∣ A−B A−D

C −B C −D

∣∣∣∣∣∣ .
∣∣∣∣∣∣ A

′ −B′ A′ −D′

C ′ −B′ C ′ −D′

∣∣∣∣∣∣
]
.

Computing the expression between brackets, we observe that it can be simplified to:

((A− C)(B′ −D′) + (D − B)(C ′ − A′))2 − 4(A− C)(B −D)(A′ − C ′)(B′ −D′) =

=

∣∣∣∣∣∣ A− C B −D

A′ − C ′ B′ −D′

∣∣∣∣∣∣
2

,

which leads to the desired result. �

To the best of our knowledge this compound theorem is a new result in the theory of

hyper-determinants. It seems intimately linked to the structure of the linear equations

(the Lax relations) from which it originate in the present context, and there may

be analogues for the case of higher rank hyper-determinants (this is currently under

investigation). A connection between hyper-determinants and minors of symmetric

matrices was established in [47], but it is not clear whether (and if so how) those results

are related to the above proposition. Hyperdeterminants have also appeared in the context

of integrable systems as reviewed in [100], where it was pointed out that the vanishing of

a 2 × 2 × 2 Cayley hyperdeterminant can be interpreted as the lattice CKP equation of

[55, 89]. However the appearance of the hyperdeterminant in the thesis is of a different

nature.
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Identifying the coefficients of the system of homogeneous equations (3.34) as entries of a

2 × 2 × 2 hyper-determinant, we observe that the structure of this hyper-determinant

is exactly of the form as given in Lemma (3.3.4), and hence we have the following

immediate corollary.

Proposition 3.3.2 Identifying the eight entries (aijk)i,j,k=0,1 by comparing the first two

equations of (3.37) with the system of equations (3.34), the hyper-determinant takes the

form as given by the compound theorem Lemma (3.3.4), and hence reduces to a perfect

square of the form: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣Ailj Ail′j

Ai′′lj Ai′′l′j

∣∣∣∣∣∣
∣∣∣∣∣∣Ai′lj Ai′l′j

Ai′′lj Ai′′l′j

∣∣∣∣∣∣
∣∣∣∣∣∣Bilj Bil′j

Bi′′lj Bi′′l′j

∣∣∣∣∣∣
∣∣∣∣∣∣Bi′lj Bi′l′j

Bi′′lj Bi′′l′j

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(j = 1, 2, 3), (3.39)

where∣∣∣∣∣∣Ailj Ail′j

Ai′′lj Ai′′l′j

∣∣∣∣∣∣ = σ(ξ̂l − ξ̂3) σ(ξ̂l′ − ξ̂3) σ(ξ̂l − ξ̂l′)

σ(
̂̃
ξi − ξ̂l − α) σ(

̂̃
ξi − ξ̂l′ − α) σ(

̂̃
ξi′′ − ξ̂l − α)σ(

̂̃
ξi′′ − ξ̂l′ − α)

× σ(
̂̃
ξi − ̂̃ξi′′) σ(̂̃ξi + ̂̃ξi′′ − ξ̂l − ξ̂l′ − ξ̂3 + ξj − 2α+ β)

σ(
̂̃
ξi − ξ̂3 − α) σ(

̂̃
ξi′′ − ξ̂3 − α) σ(ξ̂l − ξj − β) σ(ξ̂l′ − ξj − β) σ(ξ̂3 − ξj − β)

,

(3.40)

in which we can set i, i′ = 1, 2, l, l′ = 1, 2 �= 3, and where we naturally should take

i′′ = 3.

Remark 3.3.5 A similar expression for the corresponding determinant in terms of theBilj

as given (3.40) interchanging α and β and the shifts ˜ and ̂ .

Proof

The form (3.40) of the relevant 2 × 2 determinants, using the expressions for the entries
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(3.35), is computed as follows. By definition of Ailj given in (3.35) we have∣∣∣∣∣∣ Ailj Ail′j

Ai′lj Ai′l′j

∣∣∣∣∣∣ = σ(ξ̂l − ξ̂3)σ(ξ̂l′ − ξ̂3)

S(
̂̃
ξi) S(

̂̃
ξi′)σ(ξ̂l − ξj − β)σ(ξ̂l′ − ξj − β)σ2(ξ̂3 − ξj − β)[

σ(
̂̃
ξi − ξ̂3 − ξ̂l + ξj − α+ β)σ(

̂̃
ξi′ − ξ̂3 − ξ̂l′ + ξj − α+ β)σ(

̂̃
ξi − ξ̂l′ − α)σ(

̂̃
ξi′ − ξ̂l − α)

−σ(
̂̃
ξi′ − ξ̂3 − ξ̂l + ξj − α+ β)σ(

̂̃
ξi − ξ̂3 − ξ̂l′ + ξj − α+ β)σ(

̂̃
ξi − ξ̂l − α)σ(

̂̃
ξi′ − ξ̂l′ − α)

]
,

(3.41)

where

S(ξ) = σ(ξ − ξ̂l − α)σ(ξ − ξ̂l′ − α)σ(ξ − ξ̂3 − α).

Noting that the difference in the bracket can be simplified by applying the three-term

relation for the σ-function in the following form:

σ(x− a)σ(y − b)σ(z − b)σ(w − a)− σ(y − a)σ(x− b)σ(z − a)σ(w − b)

= σ(z + y − a− b)σ(x− y)σ(x− z)σ(b − a), (3.42)

in which x − y = z − w. Making now the following choice for x, y, z, w, a and b in

the identity (3.42):

x =
̂̃
ξi − ξ̂3 + ξj − α + β y =

̂̃
ξi′ − ξ̂3 + ξj − α + β

z =
̂̃
ξi − α w =

̂̃
ξi′ − α

a = ξ̂l b = ξ̂l′

the expression between brackets on the right-hand side of (3.41) simplifies to

[· · · ] = σ(−ξ̂3 + ξj + β) σ(
̂̃
ξi +

̂̃
ξi′ − ξ̂l − ξ̂l′ − ξ̂3 + ξj − 2α+ β) σ(

̂̃
ξi − ̂̃ξi′) σ(ξ̂l′ − ξ̂l) .

We substitute the right-hand side of this equation into (3.41) and cancel the first factor

against the corresponding one in the prefactor of (3.41). Then using the fact that σ is an

odd function, we obtain the desired result given by the determinant in (3.40). In a similar
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way (or by making the obvious replacements α ↔ β and ˜↔ ̂ ) the computation of the

2× 2 determinant Bilj can be verified. �

We apply now the compound theorem Lemma (3.3.4) to the system of homogeneous

equations (3.34). In fact, from that system of equations follows that the ratios ĥi/ĥj and

k̃i/k̃j obey quadratic equations whose discriminant, by virtue of the compound theorem, is

a perfect square. Thus, these ratios can be obtained in a rather simple form. We distinguish

the two cases: i) the hyper-determinant in question, i.e. the determinant (3.39), vanishes,

and ii) the hyper-determinant is non-zero.

i) Case (3.39)= 0

In this case the resulting set of equations is given by the vanishing of the hyper-

determinant, i.e. the set of equations:∣∣∣∣∣∣Ailj Ail′j

Ai′′lj Ai′′l′j

∣∣∣∣∣∣
∣∣∣∣∣∣Bi′lj Bi′l′j

Bi′′lj Bi′′l′j

∣∣∣∣∣∣ =
∣∣∣∣∣∣Ai′lj Ai′l′j

Ai′′lj Ai′′l′j

∣∣∣∣∣∣
∣∣∣∣∣∣ Bilj Bil′j

Bi′′lj Bi′′l′j

∣∣∣∣∣∣ . (3.43)

Inserting the explicit expression (3.40), and its counterpart in terms of the quantitiesB ilj ,

into (3.43) we obtain the relations

σ(
̂̃
ξi +

̂̃
ξi′′ − ξ̂l − ξ̂l′ − ξ̂3 + ξj + β − 2α)

σ(
̂̃
ξi′ +

̂̃
ξi′′ − ξ̂l − ξ̂l′ − ξ̂3 + ξj + β − 2α)

σ(
̂̃
ξi′ − ξ̂l − α)σ(

̂̃
ξi′ − ξ̂l′ − α)σ(

̂̃
ξi′ − ξ̂3 − α)

σ(
̂̃
ξi − ξ̂l − α)σ(

̂̃
ξi − ξ̂l′ − α)σ(

̂̃
ξi − ξ̂3 − α)

=
σ(
̂̃
ξi +

̂̃
ξi′′ − ξ̃l − ξ̃l′ − ξ̃3 + ξj + α− 2β)

σ(
̂̃
ξi′ +

̂̃
ξi′′ − ξ̃l − ξ̃l′ − ξ̃3 + ξj + α− 2β)

σ(
̂̃
ξi′ − ξ̃l − β)σ(

̂̃
ξi′ − ξ̃l′ − β)σ(

̂̃
ξi′ − ξ̃3 − β)

σ(
̂̃
ξi − ξ̃l − β)σ(

̂̃
ξi − ξ̃l′ − β)σ(

̂̃
ξi − ξ̃3 − β)

,

(j = 1, 2, 3) (3.44)

where again we can set i, i′ = 1, 2, l, l′ = 1, 2 �= 3, and where we naturally should take

i′′ = 3. The set of relations (3.44) is a coupled system of three quadrilateral equations

(for j = 1, 2, 3) of 3-leg type, i.e. in terms of three independent variables which reside

in the arguments of the Weierstrass σ-functions2. We note that all three equations (for

2The same system of equations would have been obtained if, rather than eliminating h 3 and k3 in its

derivation, we would have eliminated one of the other variables among the coefficients h l and kl.
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j = 1, 2, 3) have a common factor, which in the case of a further reduction ξ1 + ξ2 + ξ3 =

0(mod period lattice) involves only the “long legs” (i.e. the differences over the diagonal).

Thus, this system of equations may be too simple to figure as a proper candidate for a

higher-rank analogue of the Adler lattice equation.

ii) Case (3.39)�= 0

As a consequence of the compound theorem, Lemma (3.3.4), the hyper-determinant in the

case at hand is a perfect square. Thus, going back to the system (3.34), by first eliminating

the ratio ĥi/ĥj , we obtain a quadratic for the ratio k̃i/k̃j , (i, j = 1, 2) from which the latter

can be solved using the fact that the discriminant of the quadratic (which coincides with

the hyper-determinant) is a perfect square. Thus, we obtain rather manageable expressions

for the solutions of the mentioned ratios in terms of the 2 × 2 determinants involving the

expressions Ailj and Bilj . The result of this computation is the following:

Proposition 3.3.3 If the expression (3.39) is non-vanishing, we have the following

solutions of the system (3.34) given in terms of the ratios (i.e., up to a common

multiplicative factor)

either
ĥ1

ĥ2
= −A32j

A31j
together with

k̃1

k̃2
= −B32j

B31j
,

(3.45a)

or
ĥ1

ĥ2
= −

∣∣∣∣∣∣∣∣∣
B11j A12j B12j

B21j A22j B22j

B31j A32j B32j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
B11j A11j B12j

B21j A21j B22j

B31j A31j B32j

∣∣∣∣∣∣∣∣∣

together with
k̃1

k̃2
= −

∣∣∣∣∣∣∣∣∣
A11j A12j B12j

A21j A22j B22j

A31j A32j B32j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A11j A12j B11j

A21j A22j B21j

A31j A32j B31j

∣∣∣∣∣∣∣∣∣

.

(j = 1, 2, 3) (3.45b)
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The proof, once again, is by direct computation and involves some determinantal

manipulations.

The system of equations resulting from (3.45a), inserting the explicit expressions for the

quantities Ailj and Bilj from (3.35) reads as follows

ĥ1

ĥ2
= −σ(

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξj − α+ β) σ(

̂̃
ξ3 − ξ̂1 − α) σ(ξ̂1 − ξj − β) σ(ξ̂2 − ξ̂3)

σ(
̂̃
ξ3 − ξ̂1 − ξ̂3 + ξj − α+ β) σ(

̂̃
ξ3 − ξ̂2 − α) σ(ξ̂2 − ξj − β) σ(ξ̂1 − ξ̂3)

,

(3.46a)

k̃1

k̃2
= −σ(

̂̃
ξ3 − ξ̃2 − ξ̃3 + ξj + α− β) σ(

̂̃
ξ3 − ξ̃1 − β) σ(ξ̃1 − ξj − α) σ(ξ̃2 − ξ̃3)

σ(
̂̃
ξ3 − ξ̃1 − ξ̃3 + ξj + α− β) σ(

̂̃
ξ3 − ξ̃2 − β) σ(ξ̃2 − ξj − α) σ(ξ̃1 − ξ̃3)

.

(j = 1, 2, 3) (3.46b)

Inserting the expressions of (3.35) into the system of equations (comprising the equations

for different values of j = 1, 2, 3). The system of equations (3.46) for j = 1, 2, 3, we

do not consider to be viable because it seems to be overdetermined taking into account

the common factors in (3.46a) and (3.46b). Furthermore, neither does it admit the natural

solution ξi(n, m) = ξi(0, 0) + nα + mβ (i = 1, 2, 3) nor does it admit the reduction

ξ1 + ξ2 + ξ3 = 0 (mod period lattice). Thus, we reject this system of equations.

Turning now to the system given by (3.45b) for j = 1, 2, 3, this constitutes a more

complicated system of quadrilateral elliptic 3-leg type of equations, which can be written

as a set of equalities:∣∣∣∣∣∣∣∣∣
B111 A121 B121

B211 A221 B221

B311 A321 B321

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
B111 A111 B121

B211 A211 B221

B311 A311 B321

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
B112 A122 B122

B212 A222 B222

B312 A322 B322

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
B112 A112 B122

B212 A212 B222

B312 A312 B322

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
B113 A123 B123

B213 A223 B223

B313 A323 B323

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
B113 A113 B123

B213 A213 B223

B313 A313 B323

∣∣∣∣∣∣∣∣∣

, (3.47a)
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∣∣∣∣∣∣∣∣∣
A111 A121 B121

A211 A221 B221

A311 A321 B321

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A111 A121 B111

A211 A221 B211

A311 A321 B311

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
A112 A122 B122

A212 A222 B222

A312 A322 B322

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A112 A122 B112

A212 A222 B212

A312 A322 B312

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
A113 A123 B123

A213 A223 B223

A313 A323 B323

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A113 A123 B113

A213 A223 B213

A313 A323 B313

∣∣∣∣∣∣∣∣∣

, (3.47b)

with the determinants expanded by means of the formulae:

Ailj =
σ(
̂̃
ξi − ξ̂l − ξ̂3 + ξj − α+ β)σ(ξ̂l − ξ̂3)

σ(
̂̃
ξi − ξ̂l − α)σ(ξ̂l − ξj − β)σ(

̂̃
ξi − ξ̂3 − α)σ(ξ̂3 − ξj − β)

, (3.48)

and ∣∣∣∣∣∣Ailj Ail′j

Aklj Akl′j

∣∣∣∣∣∣ = σ(ξ̂l − ξ̂3)σ(ξ̂l′ − ξ̂3)σ(ξ̂l − ξ̂l′)

σ(
̂̃
ξi − ξ̂l − α)σ(

̂̃
ξi − ξ̂l′ − α)σ(

̂̃
ξk − ξ̂l − α)σ(

̂̃
ξk − ξ̂l′ − α)

× σ(
̂̃
ξi − ̂̃ξk)σ(̂̃ξi + ̂̃ξk − ξ̂l − ξ̂l′ − ξ̂3 + ξj − 2α+ β)

σ(
̂̃
ξi − ξ̂3 − α)σ(

̂̃
ξk − ξ̂3 − α)σ(ξ̂l − ξj − β)σ(ξ̂l′ − ξj − β)σ(ξ̂3 − ξj − β)

,

(3.49)

with the B-determinants obtained from these by interchanging ˜and ̂ and α and β.

Explicit forms of the equations (3.47a) and (3.47b) can be obtained by expanding the 3×3

determinants along the A- and B-columns respectively using the expression (3.48) and

(3.49) and their B-counterparts. We will next give the explicit form of those equations.

3.3.3 Higher-rank N=3 elliptic lattice systems (3.47) in explicit form

To obtain the resulting system for N = 3 in explicit form we expand the determinants in

(3.47) using the expressions (3.48) and (3.49), namely by expanding the 3×3 determinants

along the single column with A-entries (in (3.47a)) and along the column with B-entries

(in (3.47b)). Thus everything can be expressed in terms of products of σ-functions. Note,
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however, that these determinants are not quite of Frobenius (i.e. elliptic Cauchy) type for

which we would have pure products. The resulting equations comprise:

[
σ(
̂̃
ξ1 − ̂̃

ξ2)σ(
̂̃
ξ1 +

̂̃
ξ2 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) σ(

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ2) σ(

̂̃
ξ3 − ξ̂2 − α) σ(

̂̃
ξ3 − ξ̂3 − α)

−σ(
̂̃
ξ1 − ̂̃

ξ3)σ(
̂̃
ξ1 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) σ(

̂̃
ξ2 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ3) σ(

̂̃
ξ2 − ξ̂2 − α) σ(

̂̃
ξ2 − ξ̂3 − α)

+
σ(
̂̃
ξ2 − ̂̃

ξ3)σ(
̂̃
ξ2 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) σ(

̂̃
ξ1 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ2)S(

̂̃
ξ3) σ(

̂̃
ξ1 − ξ̂2 − α) σ(

̂̃
ξ1 − ξ̂3 − α)

]
[
σ(
̂̃
ξ1 − ̂̃

ξ2)σ(
̂̃
ξ1 +

̂̃
ξ2 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) σ(

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ2)σ(

̂̃
ξ3 − ξ̂1 − α) σ(

̂̃
ξ3 − ξ̂3 − α)

−σ(
̂̃
ξ1 − ̂̃

ξ3)σ(
̂̃
ξ1 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) σ(

̂̃
ξ2 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ3) σ(

̂̃
ξ2 − ξ̂1 − α) σ(

̂̃
ξ2 − ξ̂3 − α)

+
σ(
̂̃
ξ2 − ̂̃

ξ3)σ(
̂̃
ξ2 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) σ(

̂̃
ξ1 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ2)S(

̂̃
ξ3) σ(

̂̃
ξ1 − ξ̂1 − α) σ(

̂̃
ξ1 − ξ̂3 − α)

]

=
σ(ξ̂1 − ξ2 − β)

σ(ξ̂1 − ξ1 − β)

σ(ξ̂2 − ξ1 − β)

σ(ξ̂2 − ξ2 − β)

×
[
σ(
̂̃
ξ1 − ̂̃

ξ2)σ(
̂̃
ξ1 +

̂̃
ξ2 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) σ(

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ2) σ(

̂̃
ξ3 − ξ̂1 − α) σ(

̂̃
ξ3 − ξ̂3 − α)

−σ(
̂̃
ξ1 − ̂̃

ξ3)σ(
̂̃
ξ1 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) σ(

̂̃
ξ2 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ3) σ(

̂̃
ξ2 − ξ̂1 − α) σ(

̂̃
ξ2 − ξ̂3 − α)

+
σ(
̂̃
ξ2 − ̂̃

ξ3)σ(
̂̃
ξ2 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) σ(

̂̃
ξ1 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ2)S(

̂̃
ξ3) σ(

̂̃
ξ1 − ξ̂1 − α) σ(

̂̃
ξ1 − ξ̂3 − α)

]

×
[
σ(
̂̃
ξ1 − ̂̃

ξ2)σ(
̂̃
ξ1 +

̂̃
ξ2 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) σ(

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ2) σ(

̂̃
ξ3 − ξ̂2 − α) σ(

̂̃
ξ3 − ξ̂3 − α)

−σ(
̂̃
ξ1 − ̂̃

ξ3)σ(
̂̃
ξ1 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) σ(

̂̃
ξ2 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ3) σ(

̂̃
ξ2 − ξ̂2 − α) σ(

̂̃
ξ2 − ξ̂3 − α)

+
σ(
̂̃
ξ2 − ̂̃

ξ3)σ(
̂̃
ξ2 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) σ(

̂̃
ξ1 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ2)S(

̂̃
ξ3) σ(

̂̃
ξ1 − ξ̂2 − α) σ(

̂̃
ξ1 − ξ̂3 − α)

]
, (3.50a)

where

S(ξ) = σ(ξ − ξ̃1 − β) σ(ξ − ξ̃2 − β) σ(ξ − ξ̃3 − β).

The second one can be obtained from the first equation (3.50a) by interchanging ξ2 and

ξ3. Namely,
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[
σ(
̂̃
ξ1 − ̂̃

ξ2)σ(
̂̃
ξ1 +

̂̃
ξ2 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) σ(

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ2) σ(

̂̃
ξ3 − ξ̂2 − α) σ(

̂̃
ξ3 − ξ̂3 − α)

−σ(
̂̃
ξ1 − ̂̃

ξ3)σ(
̂̃
ξ1 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) σ(

̂̃
ξ2 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ3) σ(

̂̃
ξ2 − ξ̂2 − α) σ(

̂̃
ξ2 − ξ̂3 − α)

+
σ(
̂̃
ξ2 − ̂̃

ξ3)σ(
̂̃
ξ2 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) σ(

̂̃
ξ1 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ2)S(

̂̃
ξ3) σ(

̂̃
ξ1 − ξ̂2 − α) σ(

̂̃
ξ1 − ξ̂3 − α)

]
[
σ(
̂̃
ξ1 − ̂̃

ξ2)σ(
̂̃
ξ1 +

̂̃
ξ2 − ξ̃1 − ξ̃2 − ξ̃3 + ξ3 + α− 2β) σ(

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξ3 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ2)σ(

̂̃
ξ3 − ξ̂1 − α) σ(

̂̃
ξ3 − ξ̂3 − α)

−σ(
̂̃
ξ1 − ̂̃

ξ3)σ(
̂̃
ξ1 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ3 + α− 2β) σ(

̂̃
ξ2 − ξ̂2 − ξ̂3 + ξ3 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ3) σ(

̂̃
ξ2 − ξ̂1 − α) σ(

̂̃
ξ2 − ξ̂3 − α)

+
σ(
̂̃
ξ2 − ̂̃

ξ3)σ(
̂̃
ξ2 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ3 + α− 2β) σ(

̂̃
ξ1 − ξ̂2 − ξ̂3 + ξ3 + β − α)

S(
̂̃
ξ2)S(

̂̃
ξ3) σ(

̂̃
ξ1 − ξ̂1 − α) σ(

̂̃
ξ1 − ξ̂3 − α)

]

=
σ(ξ̂1 − ξ3 − β)

σ(ξ̂1 − ξ1 − β)

σ(ξ̂2 − ξ1 − β)

σ(ξ̂2 − ξ3 − β)

×
[
σ(
̂̃
ξ1 − ̂̃

ξ2)σ(
̂̃
ξ1 +

̂̃
ξ2 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) σ(

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ2) σ(

̂̃
ξ3 − ξ̂1 − α) σ(

̂̃
ξ3 − ξ̂3 − α)

−σ(
̂̃
ξ1 − ̂̃

ξ3)σ(
̂̃
ξ1 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) σ(

̂̃
ξ2 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ3) σ(

̂̃
ξ2 − ξ̂1 − α) σ(

̂̃
ξ2 − ξ̂3 − α)

+
σ(
̂̃
ξ2 − ̂̃

ξ3)σ(
̂̃
ξ2 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) σ(

̂̃
ξ1 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ2)S(

̂̃
ξ3) σ(

̂̃
ξ1 − ξ̂1 − α) σ(

̂̃
ξ1 − ξ̂3 − α)

]

×
[
σ(
̂̃
ξ1 − ̂̃

ξ2)σ(
̂̃
ξ1 +

̂̃
ξ2 − ξ̃1 − ξ̃2 − ξ̃3 + ξ3 + α− 2β) σ(

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξ3 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ2) σ(

̂̃
ξ3 − ξ̂2 − α) σ(

̂̃
ξ3 − ξ̂3 − α)

−σ(
̂̃
ξ1 − ̂̃

ξ3)σ(
̂̃
ξ1 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ3 + α− 2β) σ(

̂̃
ξ2 − ξ̂2 − ξ̂3 + ξ3 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ3) σ(

̂̃
ξ2 − ξ̂2 − α) σ(

̂̃
ξ2 − ξ̂3 − α)

+
σ(
̂̃
ξ2 − ̂̃

ξ3)σ(
̂̃
ξ2 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ3 + α− 2β) σ(

̂̃
ξ1 − ξ̂2 − ξ̂3 + ξ3 + β − α)

S(
̂̃
ξ2)S(

̂̃
ξ3) σ(

̂̃
ξ1 − ξ̂2 − α) σ(

̂̃
ξ1 − ξ̂3 − α)

]
, (3.50b)

where

S(ξ) = σ(ξ − ξ̃1 − β) σ(ξ − ξ̃2 − β) σ(ξ − ξ̃3 − β).

Explicit form of the third one arising from (3.47b) can be acquired from the first equality

(3.50a) by interchanging ˜and ̂ and α and β. The first one is given as follows:
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[
σ(
̂̃
ξ1 − ̂̃

ξ2)σ(
̂̃
ξ1 +

̂̃
ξ2 − ξ̂1 − ξ̂2 − ξ̂3 + ξ1 − 2α+ β) σ(

̂̃
ξ3 − ξ̃2 − ξ̃3 + ξ1 − β + α)

K(
̂̃
ξ1)K(

̂̃
ξ2) σ(

̂̃
ξ3 − ξ̃2 − β) σ(

̂̃
ξ3 − ξ̃3 − β)

−σ(
̂̃
ξ1 − ̂̃

ξ3)σ(
̂̃
ξ1 +

̂̃
ξ3 − ξ̂1 − ξ̂2 − ξ̂3 + ξ1 − 2α+ β) σ(

̂̃
ξ2 − ξ̃2 − ξ̃3 + ξ1 − β + α)

K(
̂̃
ξ1)K(

̂̃
ξ3) σ(

̂̃
ξ2 − ξ̃2 − β) σ(

̂̃
ξ2 − ξ̃3 − β)

+
σ(
̂̃
ξ2 − ̂̃

ξ3)σ(
̂̃
ξ2 +

̂̃
ξ3 − ξ̂1 − ξ̂2 − ξ̂3 + ξ1 − 2α+ β) σ(

̂̃
ξ1 − ξ̃2 − ξ̃3 + ξ1 − β + α)

K(
̂̃
ξ2)K(

̂̃
ξ3) σ(

̂̃
ξ1 − ξ̃2 − β) σ(

̂̃
ξ1 − ξ̃3 − β)

]
[
σ(
̂̃
ξ1 − ̂̃

ξ2)σ(
̂̃
ξ1 +

̂̃
ξ2 − ξ̂1 − ξ̂2 − ξ̂3 + ξ2 − 2α+ β)σ(

̂̃
ξ3 − ξ̃2 − ξ̃3 + ξ2 − β + α)

K(
̂̃
ξ1)K(

̂̃
ξ2)σ(

̂̃
ξ3 − ξ̃1 − β) σ(

̂̃
ξ3 − ξ̃3 − β)

−σ(
̂̃
ξ1 − ̂̃

ξ3)σ(
̂̃
ξ1 +

̂̃
ξ3 − ξ̂1 − ξ̂2 − ξ̂3 + ξ2 − 2α+ β) σ(

̂̃
ξ2 − ξ̃2 − ξ̃3 + ξ2 − β + α)

K(
̂̃
ξ1)K(

̂̃
ξ3) σ(

̂̃
ξ2 − ξ̃1 − β) σ(

̂̃
ξ2 − ξ̃3 − β)

+
σ(
̂̃
ξ2 − ̂̃

ξ3)σ(
̂̃
ξ2 +

̂̃
ξ3 − ξ̂1 − ξ̂2 − ξ̂3 + ξ2 − 2α+ β) σ(

̂̃
ξ1 − ξ̃2 − ξ̃3 + ξ2 − β + α)

K(
̂̃
ξ2)K(

̂̃
ξ3) σ(

̂̃
ξ1 − ξ̃1 − β) σ(

̂̃
ξ1 − ξ̃3 − β)

]

=
σ(ξ̃1 − ξ2 − α)

σ(ξ̃1 − ξ1 − α)

σ(ξ̃2 − ξ1 − α)

σ(ξ̃2 − ξ2 − α)

×
[
σ(
̂̃
ξ1 − ̂̃

ξ2)σ(
̂̃
ξ1 +

̂̃
ξ2 − ξ̂1 − ξ̂2 − ξ̂3 + ξ1 − 2α+ β) σ(

̂̃
ξ3 − ξ̃2 − ξ̃3 + ξ1 − β + α)

K(
̂̃
ξ1)K(

̂̃
ξ2) σ(

̂̃
ξ3 − ξ̃1 − β) σ(

̂̃
ξ3 − ξ̃3 − β)

−σ(
̂̃
ξ1 − ̂̃

ξ3)σ(
̂̃
ξ1 +

̂̃
ξ3 − ξ̂1 − ξ̂2 − ξ̂3 + ξ1 − 2α+ β) σ(

̂̃
ξ2 − ξ̃2 − ξ̃3 + ξ1 − β + α)

K(
̂̃
ξ1)K(

̂̃
ξ3) σ(

̂̃
ξ2 − ξ̃1 − β) σ(

̂̃
ξ2 − ξ̃3 − β)

+
σ(
̂̃
ξ2 − ̂̃

ξ3)σ(
̂̃
ξ2 +

̂̃
ξ3 − ξ̂1 − ξ̂2 − ξ̂3 + ξ1 − 2α+ β) σ(

̂̃
ξ1 − ξ̃2 − ξ̃3 + ξ1 − β + α)

K(
̂̃
ξ2)K(

̂̃
ξ3) σ(

̂̃
ξ1 − ξ̃1 − β) σ(

̂̃
ξ1 − ξ̃3 − β)

]

×
[
σ(
̂̃
ξ1 − ̂̃

ξ2)σ(
̂̃
ξ1 +

̂̃
ξ2 − ξ̂1 − ξ̂2 − ξ̂3 + ξ2 − 2α+ β) σ(

̂̃
ξ3 − ξ̃2 − ξ̃3 + ξ2 − β + α)

K(
̂̃
ξ1)K(

̂̃
ξ2) σ(

̂̃
ξ3 − ξ̃2 − β) σ(

̂̃
ξ3 − ξ̃3 − β)

−σ(
̂̃
ξ1 − ̂̃

ξ3)σ(
̂̃
ξ1 +

̂̃
ξ3 − ξ̂1 − ξ̂2 − ξ̂3 + ξ2 − 2α+ β) σ(

̂̃
ξ2 − ξ̃2 − ξ̃3 + ξ2 − β + α)

K(
̂̃
ξ1)K(

̂̃
ξ3) σ(

̂̃
ξ2 − ξ̃2 − β) σ(

̂̃
ξ2 − ξ̃3 − β)

+
σ(
̂̃
ξ2 − ̂̃

ξ3)σ(
̂̃
ξ2 +

̂̃
ξ3 − ξ̂1 − ξ̂2 − ξ̂3 + ξ2 − 2α+ β) σ(

̂̃
ξ1 − ξ̃2 − ξ̃3 + ξ2 − β + α)

K(
̂̃
ξ2)K(

̂̃
ξ3) σ(

̂̃
ξ1 − ξ̃2 − β) σ(

̂̃
ξ1 − ξ̃3 − β)

]
,

(3.50c)

where

K(ξ) = σ(ξ − ξ̂1 − α) σ(ξ − ξ̂2 − α) σ(ξ − ξ̂3 − α).

We omit the fourth equation arising from (3.47b), which can be obtained from (3.50b)

by interchanging ˜and ̂ and α and β, as we expect that it is implied by the other three

equations. So (3.50a)-(3.50c) constitute a coupled system of quadrilateral equations for
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the three dependent variables ξ1(n,m), ξ2(n,m), ξ3(n,m). For the moment, we do not

have a direct proof of that the fourth equation is implied from the equations (3.50a)-

(3.50c). The equations are very complicated, not only because of the complexity of

each of these equations themselves, but also the fact that they are implicit with the

dependent variables sitting in the argument of the elliptic functions. However, we expect

the consistency of the system to be valid on the basis of applying random numerical

substitutions for initial values in the case of the rational limit. We have done a number of

such experiments that give very accurate verifications but we do not know how reliable

these numerical results are, as we do not know how robust the numerical algorithms are

under the choice of initial conditions.

We further remark that this system as expected allows for a trivial solution of type

ξi(n, m) = ξi(0, 0) + nα +mβ (i = 1, 2, 3). An important problem remains the finding

of a rational form for the system of equations. This, as well as verifying their reducibility

under the additional constraint ξ1 + ξ2 + ξ3 = 0(mod period lattice), is currently under

investigation. If so, the latter system of equations can be duly regarded as a higher-rank

version of Adler’s lattice equation in 3-leg form (2.13).

In order to address the problem of finding rational forms we intend to look into the gauge

transformation of the 3 × 3 Lax pair similar to those used in section 2.1.3. This would

require discrete extensions of Frobenius-Stickelberger formulae of Appendix B. Thus, we

present here a (as far as we are aware) new 3×3 determinantal formula which is expected

to play a role in constructing the rational form of the rank 3 generalization of Adler’s

system from their analogue of the 3-leg forms:
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Proposition 3.3.4 The following identity holds for arbitrary ξ1,2,3 and κ1,2∣∣∣∣∣∣∣∣∣
1 ℘(ξ1 + κ1) ℘(ξ1 + κ2)

1 ℘(ξ2 + κ1) ℘(ξ2 + κ2)

1 ℘(ξ3 + κ1) ℘(ξ3 + κ2)

∣∣∣∣∣∣∣∣∣ =
=

σ2(κ2 − κ1)σ(ξ1 + ξ2 + ξ3 + κ1 + 2κ2)σ(ξ3 − ξ2)σ(ξ3 − ξ1)σ(ξ2 − ξ1)

σ(ξ1 + κ1)σ(ξ2 + κ1)σ(ξ3 + κ1)σ2(ξ1 + κ2)σ2(ξ2 + κ2)σ2(ξ3 + κ2)
×

× [ζ(ξ1 + κ1) + ζ(ξ2 + κ1) + ζ(ξ3 + κ1) + 2ζ(κ2 − κ1)− ζ(ξ1 + ξ2 + ξ3 + κ1 + 2κ2)] ,

(3.51)

where ℘ is the Weierstrass elliptic function (1.3b).

Proof

A proof of the identity (3.51) is based on the two steps. Firstly, the 3× 3 determinant can

be rewritten∣∣∣∣∣∣ ℘(ξ1 + κ1)− ℘(ξ3 + κ1) , ℘(ξ1 + κ2)− ℘(ξ3 + κ2)

℘(ξ2 + κ1)− ℘(ξ3 + κ1) , ℘(ξ2 + κ2)− ℘(ξ3 + κ2)

∣∣∣∣∣∣ = σ(ξ3 − ξ1)σ(ξ3 − ξ2)

σ2(ξ3 + κ1)σ2(ξ3 + κ2)
×

×
[
σ(ξ1 + ξ3 + 2κ1)σ(ξ2 + ξ3 + 2κ2)

σ2(ξ1 + κ1)σ2(ξ2 + κ2)
− σ(ξ2 + ξ3 + 2κ1)σ(ξ1 + ξ3 + 2κ2)

σ2(ξ1 + κ2)σ2(ξ2 + κ1)

]
,

(3.52)

using the addition formula (1.9). Next applying the following higher addition rule:

σ(κ+ x)σ(λ + x)σ(μ + x)σ(κ + λ+ μ+ y)σ2(y)

−σ(κ+ y)σ(λ+ y)σ(μ + y)σ(κ+ λ+ μ+ x)σ2(x)

= σ(κ)σ(λ)σ(μ)σ(x)σ(y)σ(κ + λ+ μ+ x+ y)σ(y − x)

× [ζ(κ) + ζ(λ) + ζ(μ) + ζ(x) + ζ(y)− ζ(κ+ λ+ μ+ x+ y)] , (3.53)

and setting

κ = λ = κ2 − κ1 , μ = ξ3 + κ1 ,

x = ξ1 + κ1 , y = ξ2 + κ1 ,
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we obtain the right hand side of (3.51). �

One can consider the above proposition to be discrete versions of the corresponding

Frobenius-Stickelberger determinantal identity, namely involving determinants in which

the columns are not made out of successive higher derivatives of the ℘-function, but are

made of shifts in their arguments. Since the right-hand side of (3.51) is not manifestly

anti-symmetric with respect to the interchange of κ1 and κ2, but the left-hand side is, there

must be an additional identity expressing this invariance.

Furthermore, the identity (3.53) is equation (1.12) for n = 2 and derives from:

ζ(κ) + ζ(λ) + ζ(μ) + ζ(x) + ζ(y)− ζ(κ+ λ+ μ+ x+ y) =

=
Φκ(x)Φλ(x)Φμ(x)Φκ+λ+μ(y)− Φκ(y)Φλ(y)Φμ(y)Φκ+λ+μ(x)

Φκ+λ+μ(x+ y) (℘(x) − ℘(y))
. (3.54)

A further generalization of the latter identity (3.54), which plays a key role in the

derivation of (3.51), is given by:

Φκ+λ+μ+ν(x+ y + z)
σ(x+ y + z)σ(x − y)σ(x− z)σ(y − z)

σ2(x)σ2(y)σ2(z)

× [ζ(κ) + ζ(λ) + ζ(μ) + ζ(ν) + ζ(x) + ζ(y) + ζ(z)− ζ(κ+ λ+ μ+ ν + x+ y + z)] =

= Φκ(x)Φλ(x)Φμ(x)Φν(x) (℘(z)− ℘(y)) Φκ+λ+μ+ν(y + z)

+Φκ(y)Φλ(y)Φμ(y)Φν(y) (℘(x)− ℘(z)) Φκ+λ+μ+ν(x+ z)

+Φκ(z)Φλ(z)Φμ(z)Φν(z) (℘(y)− ℘(x)) Φκ+λ+μ+ν(x+ y) . (3.55)

which is also obtained from (1.12) for n = 3. We will seek in ongoing research to

explore novel identities like (3.51) in the search for gauge transformations on the elliptic

Lax pairs.
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Chapter 4

Degenerations, continuum limits and

reductions

In this chapter, we study the rational and hyperbolic limits of Adler’s elliptic lattice

equation in 3-leg form and the multi-component system of coupled 3-leg quad-equations

presented in the previous chapter. These results can be duly regarded as the higher-rank

versions of the list ofQ equations within the ABS list. Furthermore, we consider the semi-

continuum limit, or skew limit, and straight limit of Adler’s system in the Weierstrass

form. This limit leads to a differential-difference equation which is defined in terms of one

continuous and one discrete independent variable. The skew limit of the three-leg form

of the Adler system is also investigated. Finally, we will pay attention to the reductions

to the elliptic Ruijsenaars-Schneider (RS) system.

4.1 Rational and hyperbolic subcases

In this section we consider the degenerate subcases of the systems derived in the previous

chapter 3 obtained by reducing the elliptic curve to the hyperbolic (trigonometric) and
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rational cases. We consider the cases N = 2 and N = 3 separately. In the former case

we will recover some well-known equations from the ABS list, whilst in the latter case

we obtain lattice system which we consider to be of Boussinesq type. The results for the

case N = 2 have already been presented in [104] where the connection between the ABS

discrete equations and the discrete-time elliptic Ruijsenaars-Schneider model has been

introduced.

N=2:

In the previous chapter, a general elliptic Lax pair was introduced, leading to the higher-

rank analogue of the lattice KN equation. We now consider the equation with 2-particle

situation.

4.1.1 Rational case

In the rational limit both periods go to infinity, i.e. 2ω1 → ∞ , 2ω2 → i∞, in which case

we have the displacement σ(ξ) → ξ, yielding to Φκ(ξ) → ξ+κ
κ ξ

. The Lax matrices Lκ and

Mκ in (3.2) in this case take of the form:

Lκ =
1

2κ
eh+ L0, Mκ =

1

2κ
ek +M0 , (4.1)

where e denotes the (column) vector with 1 in each coordinates e = (1, 1)T , h and k are

the (row)-vectors with the entries hj, kj respectively. In (4.1) L0 and M0 are given by

L0 =

2∑
i,j=1

hj

ξ̃i − ξj − α
Ei,j , M0 =

2∑
i,j=1

kj

ξ̂i − ξj − β
Ei,j , (4.2)

in which the Eij denote the standard elementary matrices, i.e. (Eij)mn = δi,mδj,n . From

the form of the Lax matrices (4.2), we can then obtain the following relations

αL0 − P̃L0 + L0P = −e h ,
βM0 − P̂M0 +M0P = −e k , (4.3)
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where we have set

P =
2∑

k=1

ξkEkk. (4.4)

Working on the Lax equation (3.4) and inserting (4.1), we derive

L̂0M0 = M̃0L0 , (4.5)

together with the relation ĥekj = k̃ehj for j = 1, 2. In order to proceed with the general

analysis of (4.5) we consider reductions by additional constraints he = ke = 0 and

ξ1 = −ξ2 = ξ. Consequently, dividing each entry in the first row of the relation over each

other, we find the equation, i.e.

(ξ̃ − ξ + α) (ξ̃ + ξ − α)

(ξ̃ − ξ − α) (ξ̃ + ξ + α)

(ξ̂ − ξ − β) (ξ̂ + ξ + β)

(ξ̂ − ξ + β) (ξ̂ + ξ − β)
=

(
̂̃
ξ − ξ − γ) (

̂̃
ξ + ξ + γ)

(
̂̃
ξ − ξ + γ) (

̂̃
ξ + ξ − γ)

. (4.6)

Introducing a new variable u ≡ ξ2 and inserting this to (4.6) we can derive the following

relations

α(ũ− ̂̃u)(u− û)− β(û− ̂̃u)(u− ũ) + βα(α− β)(u+ û+ ũ+ ̂̃u)
= βα(α− β)(β2 − αβ + α2), (4.7)

where we find in particular case for u the Q2 equation of [7].

4.1.2 Hyperbolic (Trigonometric) case

Let us perform the hyperbolic limit 2ω1 → ∞ , 2ω2 =
1
2
πi, in which case we can make

the substitution σ(ξ) → sinh(ξ), yielding

Φκ(ξ) → coth(ξ) + coth(κ).

In the case Lax matrices (3.2) can be taken the form:

Lκ = eh cotκ + L0, Mκ = ek coth κ+M0, (4.8)
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where the Lax matrices L0 and M0 are given by

L0 =

2∑
i,j=1

hj coth(ξ̃i − ξj − α)Ei,j , M0 =

2∑
i,j=1

kj coth(ξ̂i − ξj − β)Ei,j . (4.9)

From the form of the Lax matrices (4.2), as a result of the dropping down of the terms

with the spectral parameter coth κ, we can obtain the following relations

exp(2α) exp(2P̃ )L0 − L0 exp(2P ) = exp(2α) exp(2P̃ )e h+ e h exp(2P ) ,

exp(2β) exp(2P̂ )M0 −M0 exp(2P ) = exp(2β) exp(2P̂ )e k + e k exp(2P ) , (4.10)

where P , h, k and e are given as before. We again make the specification (4.5) and

assuming the following constraint he = ke = 0 again, we subsequently derive the

relations

sinh(ξ̃ − ξ + α) sinh(ξ̃ + ξ − α) sinh(ξ̂ − ξ − β) sinh(ξ̂ + ξ + β)

sinh(ξ̃ − ξ − α) sinh(ξ̃ + ξ + α) sinh(ξ̂ − ξ + β) sinh(ξ̂ + ξ − β)

=
sinh(

̂̃
ξ − ξ + α− β) sinh(

̂̃
ξ + ξ − α + β)

sinh(
̂̃
ξ − ξ − α + β) sinh(

̂̃
ξ + ξ + α− β)

, (4.11)

where ξ = ξ(n,m) is the dependent variable of the equation, related the value u of the

rational form of (Q3)δ=1 equation of [7] through the identification u = cosh(2ξ). The

equivalence between two forms can be seen as a consequence of an identity given in the

next statement.

Proposition 4.1.1 The following identity holds for arbitrary variables X, Y, and Z,(
X − cosh(2ξ − 2α)

)(
Y − cosh(2ξ + 2β)

)(
Z − cosh(2ξ − 2(β − α))

)
−(X − cosh(2ξ + 2α)

)(
Y − cosh(2ξ − 2β)

)(
Z − cosh(2ξ + 2(β − α))

)
= t−1

[
α(1− β2)

(
cosh(2ξ)Y +XZ

)− β(1− α2)
(
cosh(2ξ)X + Y Z

)
−(α2 − β2)

(
(Y X + cosh(2ξ)Z) +

(1− α2)(1− β2)

4αβ

)]
, (4.12)

where

t =
2αβe2ξ

e4ξ − 1
. (4.13)
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Proof

It is straightforward calculation; one need to show that the coefficient of each monomial

1, X, Y, Z,XY,XZ, Y Z and XY Z of the identity are equivalent. It can be readily seen

by using the definition of hyperbolic cosine function and the identification α → e2α,

β → e2β on the right-hand side which completes the proof. �

Identifying u = cosh(2ξ), X = ũ = cosh(2ξ̃ ), Y = û = cosh(2ξ̂ ) and Z = ̂̃u =

cosh(2
̂̃
ξ ), we see that the expression in brackets on the right-hand side of (4.12) can be

written in terms of the following quadrilateral expression

Q(u, ũ, û, ̂̃u;α, β) := α(1− β2)(uû+ ũ̂̃u)− β(1− α2)(uũ+ û̂̃u)
−(α2 − β2)

(
(ûũ+ û̃u) + (1− α2)(1− β2)

4αβ

)
, (4.14)

which the equation Q(u, ũ, û, ̂̃u;α, β) = 0 is equivalent to the (Q3)δ=1 equation in the

ABS list. Using the identity

sinh(ξ) sinh(η) =
cosh(ξ + η)− cosh(ξ − η)

2
,

it is not hard to see that the expression on the left-hand side of (4.12) and the relation

(4.11) are equal. We remark that the statement 4.1.1, which is a new identity, can be

derived by degeneration (in the hyperbolic limit σ(ξ) → sinh(ξ)) of Proposition 2.1.2.

Finally, the hyperbolic limit 2ω1 =
1
2
π , 2ω2 → i∞ of the elliptic functions is performed

along the similar way after making the substitution

σ(ξ) → sin(ξ) .

The details will be omitted. Next, let us consider the rational as well as the hyperbolic

(trigonometric) limits of the equation (3.50a) with three variables.

N=3:

In chapter 3, we derived from the general elliptic Lax system of rank 3 a coupled system

of quadrilateral elliptic 3-leg equations. We now consider the equations in the 3-particle
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situation and conditions
3∑

j=1

hj =
3∑

j=1

kj = 0 . Let us first focus on the rational limit of

eqs. (3.50a).

4.1.3 A higher rank analogue of Q2

By taking the rational limit σ(ξ) → ξ in (3.50a) we obtain

[
(
̂̃
ξ1 − ̂̃

ξ2)(
̂̃
ξ1 +

̂̃
ξ2 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) (

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ2) (

̂̃
ξ3 − ξ̂2 − α) (

̂̃
ξ3 − ξ̂3 − α)

− (
̂̃
ξ1 − ̂̃

ξ3)(
̂̃
ξ1 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) (

̂̃
ξ2 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ3) (

̂̃
ξ2 − ξ̂2 − α) (

̂̃
ξ2 − ξ̂3 − α)

+
(
̂̃
ξ2 − ̂̃

ξ3)(
̂̃
ξ2 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) (

̂̃
ξ1 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ2)S(

̂̃
ξ3) (

̂̃
ξ1 − ξ̂2 − α) (

̂̃
ξ1 − ξ̂3 − α)

]
[
(
̂̃
ξ1 − ̂̃

ξ2)(
̂̃
ξ1 +

̂̃
ξ2 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) (

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ2) (

̂̃
ξ3 − ξ̂1 − α) (

̂̃
ξ3 − ξ̂3 − α)

− (
̂̃
ξ1 − ̂̃

ξ3)(
̂̃
ξ1 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) (

̂̃
ξ2 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ3) (

̂̃
ξ2 − ξ̂1 − α) (

̂̃
ξ2 − ξ̂3 − α)

+
(
̂̃
ξ2 − ̂̃

ξ3)(
̂̃
ξ2 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) (

̂̃
ξ1 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ2)S(

̂̃
ξ3) (

̂̃
ξ1 − ξ̂1 − α) (

̂̃
ξ1 − ξ̂3 − α)

]

=
(ξ̂1 − ξ2 − β)

(ξ̂1 − ξ1 − β)

(ξ̂2 − ξ1 − β)

(ξ̂2 − ξ2 − β)

×
[
(
̂̃
ξ1 − ̂̃

ξ2)(
̂̃
ξ1 +

̂̃
ξ2 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) (

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ2) (

̂̃
ξ3 − ξ̂1 − α) (

̂̃
ξ3 − ξ̂3 − α)

− (
̂̃
ξ1 − ̂̃

ξ3)(
̂̃
ξ1 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) (

̂̃
ξ2 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ3) (

̂̃
ξ2 − ξ̂1 − α) (

̂̃
ξ2 − ξ̂3 − α)

+
(
̂̃
ξ2 − ̂̃

ξ3)(
̂̃
ξ2 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) (

̂̃
ξ1 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ2)S(

̂̃
ξ3) (

̂̃
ξ1 − ξ̂1 − α) (

̂̃
ξ1 − ξ̂3 − α)

]
[
(
̂̃
ξ1 − ̂̃

ξ2)(
̂̃
ξ1 +

̂̃
ξ2 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) (

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ2) (

̂̃
ξ3 − ξ̂2 − α) (

̂̃
ξ3 − ξ̂3 − α)

− (
̂̃
ξ1 − ̂̃

ξ3)(
̂̃
ξ1 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) (

̂̃
ξ2 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ3) (

̂̃
ξ2 − ξ̂2 − α) (

̂̃
ξ2 − ξ̂3 − α)

+
(
̂̃
ξ2 − ̂̃

ξ3)(
̂̃
ξ2 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) (

̂̃
ξ1 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ2)S(

̂̃
ξ3) (

̂̃
ξ1 − ξ̂2 − α) (

̂̃
ξ1 − ξ̂3 − α)

]
, (4.15)
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where

S(ξ) = (ξ − ξ̃1 − β) (ξ − ξ̃2 − β) (ξ − ξ̃3 − β),

and coupled to this equation we have two more similar rational equations obtained in the

same way from (3.50b) and (3.50c). By analogy with the N = 2 case, where the rational

limit of Adler’s equation was shown to yield the Q2 equation (after a substitution), we

can justifiably consider the above coupled system as constituting a higher-rank version of

Q2. However, in this case the analogue of the substitution used before seems no longer

applicable.

4.1.4 A higher rank analogue of (Q3)δ=1

We can consider the trigonometric limit σ(ξ) → sinh(ξ) in (3.50a) that becomes

[
sinh(

̂̃
ξ1 − ̂̃

ξ2) sinh(
̂̃
ξ1 +

̂̃
ξ2 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) sinh(

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ2) (

̂̃
ξ3 − ξ̂2 − α) sinh(

̂̃
ξ3 − ξ̂3 − α)

− sinh(
̂̃
ξ1 − ̂̃

ξ3) sinh(
̂̃
ξ1 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) sinh(

̂̃
ξ2 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ3) sinh(

̂̃
ξ2 − ξ̂2 − α) sinh(

̂̃
ξ2 − ξ̂3 − α)

+
sinh(

̂̃
ξ2 − ̂̃

ξ3) sinh(
̂̃
ξ2 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) sinh(

̂̃
ξ1 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ2)S(

̂̃
ξ3) sinh(

̂̃
ξ1 − ξ̂2 − α) sinh(

̂̃
ξ1 − ξ̂3 − α)

]
[
sinh(

̂̃
ξ1 − ̂̃

ξ2) sinh(
̂̃
ξ1 +

̂̃
ξ2 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) sinh(

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ2) sinh(

̂̃
ξ3 − ξ̂1 − α) sinh(

̂̃
ξ3 − ξ̂3 − α)

− sinh(
̂̃
ξ1 − ̂̃

ξ3) sinh(
̂̃
ξ1 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) sinh(

̂̃
ξ2 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ3) sinh(

̂̃
ξ2 − ξ̂1 − α) sinh(

̂̃
ξ2 − ξ̂3 − α)

+
sinh(

̂̃
ξ2 − ̂̃

ξ3) sinh(
̂̃
ξ2 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) sinh(

̂̃
ξ1 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ2)S(

̂̃
ξ3) sinh(

̂̃
ξ1 − ξ̂1 − α) sinh(

̂̃
ξ1 − ξ̂3 − α)

]

=
sinh(ξ̂1 − ξ2 − β)

sinh(ξ̂1 − ξ1 − β)

sinh(ξ̂2 − ξ1 − β)

sinh(ξ̂2 − ξ2 − β)

×
[
sinh(

̂̃
ξ1 − ̂̃

ξ2) sinh(
̂̃
ξ1 +

̂̃
ξ2 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) sinh(

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ2) sinh(

̂̃
ξ3 − ξ̂1 − α) sinh(

̂̃
ξ3 − ξ̂3 − α)

−
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− sinh(
̂̃
ξ1 − ̂̃

ξ3) sinh(
̂̃
ξ1 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) sinh(

̂̃
ξ2 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ3) sinh(

̂̃
ξ2 − ξ̂1 − α) sinh(

̂̃
ξ2 − ξ̂3 − α)

+
sinh(

̂̃
ξ2 − ̂̃

ξ3) sinh(
̂̃
ξ2 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ1 + α− 2β) sinh(

̂̃
ξ1 − ξ̂2 − ξ̂3 + ξ1 + β − α)

S(
̂̃
ξ2)S(

̂̃
ξ3) sinh(

̂̃
ξ1 − ξ̂1 − α) sinh(

̂̃
ξ1 − ξ̂3 − α)

]
[
sinh(

̂̃
ξ1 − ̂̃

ξ2) sinh(
̂̃
ξ1 +

̂̃
ξ2 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) sinh(

̂̃
ξ3 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ2) sinh(

̂̃
ξ3 − ξ̂2 − α) sinh(

̂̃
ξ3 − ξ̂3 − α)

− sinh(
̂̃
ξ1 − ̂̃

ξ3) sinh(
̂̃
ξ1 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) sinh(

̂̃
ξ2 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ1)S(

̂̃
ξ3) (

̂̃
ξ2 − ξ̂2 − α) (

̂̃
ξ2 − ξ̂3 − α)

+
sinh(

̂̃
ξ2 − ̂̃

ξ3) sinh(
̂̃
ξ2 +

̂̃
ξ3 − ξ̃1 − ξ̃2 − ξ̃3 + ξ2 + α− 2β) sinh(

̂̃
ξ1 − ξ̂2 − ξ̂3 + ξ2 + β − α)

S(
̂̃
ξ2)S(

̂̃
ξ3) sinh(

̂̃
ξ1 − ξ̂2 − α) sinh(

̂̃
ξ1 − ξ̂3 − α)

]
, (4.16)

where

S(ξ) = sinh(ξ − ξ̃1 − β) sinh(ξ − ξ̃2 − β) sinh(ξ − ξ̃3 − β).

The other trigonometric relations coupled to this equation (4.16) are achieved from

(3.50b) and (3.50c). By analogy with the N = 2 case, where the trigonometric limit

of Adler’s equation revealed the (Q3)δ=1 equation (after a substitution), we consider

the above coupled system as a higher-rank version of (Q3)δ=1 in 3-leg form. However,

the analogue of the substitution used in the previous case is not convenient. Next we

will investigate the continuum limit of Adler’s lattice equation, leading to associated

differential-difference equations.

4.2 Continuum limits

Let us investigate what happens under a continuum limit for Adler’s elliptic lattice

equation in the Weierstrass form (2.3), bringing us eventually back to the original KN

equation. Since the lattice equation includes two discrete variables, n and m, we have

to consider the continuum limit in two steps. In the first step, the limit is conducted

on only one of the lattice variables (and associated lattice parameter) while keeping the
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other lattice direction intact. This reduces our equation to drastically different type of

intermediate (differential-difference) equation, i.e., an equation with one discrete and one

continuous independent variable. In the second step the remaining lattice variable will

be continuous. Both cases are obtained by reducing the lattice step associated with the

parameters α and β to zero. There are two key continuum limits that are of interest: i) the

straight limit obtained by taking a limit in one of the discrete directions, ii) the skew limit

obtained after performing a change of variables on the lattice and involving a combination

of two lattice parameters.

The continuum limit for the integrable system of quadrilateral elliptic 3-leg type (3.47),

which may be regarded as a higher-rank version of Adler’s lattice equation, still remain

to be investigated. Each part of the system of equations (3.50a)-(3.50c) is already

very complicated and would require computer-aided computations, let alone taking

into account that the limit has to be considered for the entire system of equations

simultaneously. Thus, doing the systematic continuum limits for those multi-component

systems is going to be extremely challenging, and we will not attempt to do those limits

here. Instead we will present here the continuum limits of the much simpler case of

Adler’s lattice equation (both in the rational as well as in the 3-leg form), which will give

a good indication of the procedure and of the subtleties involved.

4.2.1 Straight continuum limit

We will consider a particular continuum limit for Adler’s elliptic lattice equation by

expanding around the branch point of the curve. Let the half-periods of the elliptic

functions be given by ω1 and ω2, i.e. we have the periodicity condition:

℘(ξ + 2ω1,2) = ℘(ξ).

Introducing a third half period by ω3 = −ω1 − ω2, the branch points of the elliptic curve

are given by (e1, 0), (e2, 0) and (e3, 0) with e1 = ℘(ω1), e2 = ℘(ω2), e3 = ℘(ω3), leading
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to the representation for the curve:

A2 = 4(a− e1)(a− e2)(a− e3).

Clearly, ℘′(ω1) = ℘′(ω2) = ℘′(ω3) = 0 and the moduli of the curve g1, , g2 can be given

in terms of the ei as:

g2 = −4(e1e2 + e1e3 + e2e3) = −4(g − 3e21) , g3 = 4e1e2e3 = 4e1(g − 2e21) ,

where we have introduced the quantity g = (e1 − e2)(e1 − e3) =
1
2
℘′′(ω1). Note that if

one of the lattice parameters α or β is taken to be a half-period, say β = ω1, implying

(b, B) = (e1, 0) and c− e1 = g/(a− e1), then the lattice equation (2.3) leads to:

u− e1 =
g

u− e1
, (4.1)

where we have used the notation for the shift u → u to define the lattice translation

associated with the lattice parameter ω1.

The limit we would like to consider is the one when one of the parameters of the equation,

say β, approaches the half-period ω1, i.e. to consider β = ω1 + δ in the limit δ → 0. The

way to do this is to consider the combined shift u→ û, we take

û→ u+
√
δ ux +

1

2
δuxx + . . . ,̂̃u→ ũ+

√
δ ũx +

1

2
δũxx + . . . .

In this expansion we have:

b = ℘(ω1 + δ) = e1 + δ2g + . . . ,

B = ℘′(ω1 + δ) = 2δg + 4δ3e1g + . . . ,

c = ℘(α + ω1 − δ) = ℘(α + ω1)− δ℘′(α + ω1) + . . . ,

C = −℘′(α+ ω1 − δ) = −℘′(α + ω1) + δ℘′′(α + ω1) + . . .
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where we can use

℘(α + ω1) =
g

a− e1
+ e1 , ℘′(α + ω1) = − gA

(a− e1)2
,

and

℘′′(α + ω1) =
2g

(a− e1)3
(
A2 − (3a2 + g − 3e21)(a− e1)

)
.

Expanding to first order in δ we obtain the differential-difference equation:

1

2
Auxũx = −H(a, u, ũ) , (4.2)

with

H(a, u, v) = (uv + au+ av + 3e21 − g)2 − 4(a+ u+ v)(auv − e1g + 2e31) . (4.3)

We note that the equation (4.2) is the formula for the Bäcklund transformation (BT) of the

Krichever-Novikov equation (2.1), which formed the starting point for the construction in

[5].

Applying this continuum limit to the Lax pair (2.10) we obtain the following semi-

continuous Lax relation

ϕx = Uκϕ , (4.4a)

with

Uκ =
1

Kux

⎛⎝ 1
2
g3 − (u+ k)(uk − 1

4
g2) g3(u+ k) + (uk + 1

4
g2)

2

−(u− k)2 −1
2
g3 + (u+ k)(uk − 1

4
g2)

⎞⎠ .(4.4b)

which supplements the lattice Lax pair (2.12). The linear equation (4.4) is the spatial part

of the Lax pair to the continuous KN equation (2.1), which can be recovered from the

original Lax pair given in the paper [58].
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4.2.2 Skew continuum limit

The straight limit is not the only way to obtain a semi-discrete lattice equation. Here we

consider a particular continuum limit which involves a change of variables on the lattice,

namely, un,m =: un+m,m, and then the shifted variables becomes:

un+1,m → un+m+1,m =: ũ ,

un,m+1 → un+m+1,m+1 =: ̂̃u ,
un+1,m+1 → un+m+2,m+1 =:

̂̃̃
u . (4.5)

Rearranging the discrete variables in (2.3), we have

A
[
(u− b)(̂̃u− b)− (a− b)(c− b)

] [
(ũ− b)(

̂̃̃
u− b)− (a− b)(c− b)

]
+B

[
(u− a)(ũ− a)− (b− a)(c− a)

] [
(̂̃u− a)(

̂̃̃
u− a)− (b− a)(c− a)

]
=

= ABC(a− b) , (4.6)

and taking the limit by transformation

δ = β − α→ 0, n→ −∞, m→ ∞ , (4.7)

such that mδ → t finite whilst n +m is to remain fixed. Thus, using the expansions

b = ℘(α + δ) = a + δA+
1

2
δ2A1 + 2δ3aA+ . . . ,

B = ℘′(α+ δ) = A + δA1 + 6δ2aA+ . . . ,

c = ℘(δ) =
1

δ2
+O(δ2) ,

C = ℘′(δ) = − 2

δ3
+O(δ) ,

where A1 = ℘′′(α) = 6a2 − g2/2, we have for the variable u the Taylor expansion:

û→ ũ+ δũt +
1

2
δ2ũtt + . . . , (4.8)
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and inserting these into the equation (4.6) we obtain the following differential-difference

equation:

A(v˜− ṽ)vt = A2(ṽ + 2v + v˜+ 6a)− 2(vṽ − 1

2
A1)(vv˜− 1

2
A1) , (4.9)

for the variable v = u−a. Equation (4.9), which contains one continuous and one discrete

variable, is called the mixed lattice KN equation. The Lax pair for the equation (4.9) can

be obtained from the Lax pair (2.12) by applying the skew continuum limit.

Continuum limits of 3-leg equations of Adler’s equation

We will now consider the same (skew) continuum limits directly on the 3-leg form (2.13)

of Adler’s equation by performing on a combination of the two lattice directions. Again

we will make a change of independent discrete variables as in (4.5). Thus, making the

replacements for the dependent variable ξ(n,m) as follows

ξ(n+ 1, m) → ξ(n′ + 1, m) := ξ̃ , ξ(n,m+ 1) → ξ(n′ + 1, m+ 1) :=
̂̃
ξ ,

ξ(n+ 1, m+ 1) → ξ(n′ + 2, m+ 1) :=
̂̃̃
ξ. (4.10)

This can be visualized in the diagram:

ξ(n′ + 1, m)

ξ(n′, m+ 1)

ξ(n′, m)

ξ(n′ + 2, m+ 1)ξ(n′ + 1, m+ 1)

Focusing on the limit (4.7) as in the previous case wherem δ → t is finite and n′ = n+m

is fixed. By this limit and the transformations as given in (4.10), the Adler’s equation in
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3-leg form (2.13) goes over into the following form

σ(ξ̃ − ξ + α) σ(ξ̃ + ξ − α)

σ(ξ̃ − ξ − α) σ(ξ̃ + ξ + α)

σ(
̂̃
ξ − ξ − δ − α) σ(

̂̃
ξ + ξ + δ + α)

σ(
̂̃
ξ − ξ + δ + α) σ(

̂̃
ξ + ξ − δ − α)

=
σ(
̂̃̃
ξ − ξ − δ) σ(

̂̃̃
ξ + ξ + δ)

σ(
̂̃̃
ξ − ξ + δ) σ(

̂̃̃
ξ + ξ − δ)

. (4.11)

The next thing is for a small δ, to apply the Taylor series expansions for a arbitrary

quantity y in (4.11):

σ(
̂̃
ξ ± δ + y) = σ(ξ̃ + y)

(
1± δ(

˙̃
ξ − 1)ζ(ξ̃ + y)

)
+ ... , (4.12a)

and

σ(
̂̃̃
ξ ± δ + y) = σ(

˜̃
ξ + y)

(
1± δ(

˙̃
ξ̃ − 1)ζ(

˜̃
ξ + y)

)
+ ... , (4.12b)

where ζ(t) = d
dt
ln σ(t) is the Weierstrass zeta function and the dot “ . ” stands for ξ-

derivative with respect to a continuous variable t ( ξ̇ = ∂ξ
∂t

). Inserting (4.12) into the

equation (4.11), sigma functions σ drop out and then we obtain semi-continuous equation:(
1 + δ(

˙̃
ξ − 1)ζ(ξ̃ − ξ − α) + ...

)(
1 + δ(

˙̃
ξ + 1)ζ(ξ̃ + ξ + α) + ...

)(
1 + δ(

˙̃
ξ + 1)ζ(ξ̃ − ξ + α) + ...

)(
1 + δ(

˙̃
ξ − 1)ζ(ξ̃ + ξ − α) + ...

)
=

(
1 + δ(

˙̃
ξ̃ − 1)ζ(

˜̃
ξ − ξ) + ...

) (
1 + δ(

˙̃
ξ̃ + 1)ζ(

˜̃
ξ + ξ) + ...

)
(
1 + δ(

˙̃
ξ̃ + 1)ζ(

˜̃
ξ − ξ) + ...

)(
1 + δ(

˙̃
ξ̃ − 1)ζ(

˜̃
ξ + ξ) + ...

) ,
in which one retains the dominant term in the small parameter δ to yield the expression

˙̃
ξ
[
ζ(ξ̃ − ξ − α) + ζ(ξ̃ + ξ + α)− ζ(ξ̃ − ξ + α)− ζ(ξ̃ + ξ − α)

]
= 2ζ(

˜̃
ξ + ξ)− 2ζ(

˜̃
ξ − ξ) + ζ(ξ̃ − ξ + α)− ζ(ξ̃ + ξ − α)

+ζ(ξ̃ − ξ − α)− ζ(ξ̃ + ξ + α) . (4.13)

Applying the following identity to the left-hand side

ζ(x) + ζ(y) + ζ(z)− ζ(x+ y + z) =
σ(x+ y)σ(x+ z)σ(y + z)

σ(x)σ(y)σ(z)σ(x+ y + z)
, (4.14)
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gives an intermediate equation, with one discrete and one continuous variable as follows:

ξ̇ =
σ(ξ + ξ˜+ α)σ(ξ + ξ˜− α)σ(ξ − ξ˜+ α)σ(ξ − ξ˜− α)

σ(2α)σ(2ξ)σ(2ξ˜) ×

×
[
2ζ(ξ̃ + ξ˜)− 2ζ(ξ̃ − ξ˜) + ζ(ξ − ξ˜+ α)− ζ(ξ + ξ˜− α)

+ζ(ξ − ξ˜− α)− ζ(ξ + ξ˜+ α)
]
, (4.15)

which can be cast into the form:

Au̇ = 2
H(u, u˜, a)
ũ− u˜ + 2(u− a)2(u+ u˜+ a)− 1

2
(U2 + A2) . (4.16)

However, the alternative 3-leg form (3.22b) gives the continuum limit

ξ̇ =
σ(ξ + ξ̃ + α)σ(ξ + ξ̃ − α)σ(ξ − ξ̃ + α)σ(ξ − ξ̃ − α)

σ(2α)σ(2ξ)σ(2ξ̃)

× [
2ζ(ξ˜− ξ̃)− 2ζ(ξ˜+ ξ̃) + ζ(ξ + ξ̃ − α)− ζ(ξ − ξ̃ + α)

+ζ(ξ + ξ̃ + α)− ζ(ξ − ξ̃ − α)
]
, (4.17)

which can be cast into the form:

Au̇ = 2
H(u, ũ, a)

ũ− u˜ − 2(u− a)2(u+ ũ+ a) +
1

2
(U2 + A2) . (4.18)

Both eqs. (4.16) and (4.18) are compatible in view of the identity:

H(u, ũ, a)−H(u, u˜, a)
ũ− u˜ = (u− a)2(ũ+ u˜+ 2u+ 2a)− 1

2
(U2 + A2) .

Thus, we can rewrite (4.16), (4.18) as:

Au̇ =
H(u, ũ, a) +H(u, u˜, a)

ũ− u˜ − (u− a)2(ũ− u˜) , (4.19)

and this is equivalent to equation (4.9).

Remark 4.2.1 In section 4.2.1, the differential-difference equation has been obtained by

taking the parameter β → ω1. To proceed next to the full continuum limit, performed
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on the remaining parameter α, one can apply on the result (4.9) of the skew limit of

Adler system the procedure to obtain the straight limit, i.e. one can take α = ω1 + δ and

expand around the half-period ω1 taking into account the relation (4.1). Hovewer, it is

quite cumbersome and requires higher-order expansions and subtle changes of variables.

The end result will necessarily be the fully continuous KN equation (2.1).

4.3 Reductions

The integrable lattice PΔEs have several types of special solutions. In most cases the

process of obtaining these solutions requires the study of reduction of the corresponding

PΔEs. We mean that the periodic reduction yields a system of OΔEs. Lattice systems

typically admit several types of reductions, e.g.:

1. Periodic reductions (stationary solutions);

2. Non-autonomous scaling-type reductions (often yielding discrete Painlevé

equations).

So far little work exists on reductions of either type for elliptic lattice equations. In [76]

finite-gap solutions of the continuous KN equation (2.1) was obtained. Another work is

that the 2-step periodic reductions of the ABS equations have been studied in [54]. The

simplest periodic reduction is the 1-step period one obtained by imposing

χ̃κ = λχκ , (4.20)

for which we get an isospectral problem of the form

Nκ χκ = λχκ , χ̂κ =Mκχκ , (4.21)

and this is precisely the Lax pair for the discrete-time elliptic Ruijsenaars (RS) model,

which is the relativistic variant of the discrete-time elliptic Calogero-Moser (CM) system.



Chapter 4. Degenerations, continuum limits and reductions 97

The time-discrete version of the RS system was discovered by Nijhoff, Ragnisco and

Kuznetsov in [69] from a reduction of fully discrete Kadomtsev-Petviashvili (KP)

equation with three lattice variables. Next, we shall give a brief review of how the discrete

system is obtained in [69]. The elliptic Lax matrices have been introduced in the form

(Nκ)i,j = kikj Φκ(ξi − ξj + β) , (Mκ)i,j = k̂ikj Φκ(ξ̂i − ξj + β)

(i, j = 1, . . . , N) (4.22)

where ξi are the position of the particles and β is a parameter of the system associated

with the non-relativistic limit. The auxiliary variables ki do not depend on κ and remain

to be determined. As in chapter 1, the hat shift in the dependent variable ξi = ξi(n,m)

will be defined as ξi(n,m + 1) = ξ̂i, and ξi(n,m − 1) = ̂ξi. Let us consider first the

compatibility N̂κMκ =MκNκ, we get from the addition formula (3.5) that

N∑
l=1

k̂2l
[
ζ(κ) + ζ(ξ̂i − ξ̂l + β) + ζ(ξ̂l − ξj + β)− ζ(κ+ 2β + ξ̂i − ξj)

]
=

N∑
l=1

k2l
[
ζ(κ) + ζ(ξ̂i − ξl + β) + ζ(ξl − ξj + β)− ζ(κ+ 2β + ξ̂i − ξj)

]
.

Thus by setting
∑N

l=1 k̂
2
l =
∑N

l=1 k
2
l , the equations can be separated into a part depending

on the spectral parameter κ, and the remainder independent of κ. This leads to the identity

N∑
l=1

[
k̂2l ζ(ξ̂i − ξ̂l + β)− k2l ζ(ξ̂i − ξl + β)

]
= −

N∑
l=1

[
k̂2l ζ(ξ̂l − ξj + β)− k2l ζ(ξl − ξj + β)

]
,

(4.23)

for all i, j = 1, . . . , N . The relation (4.23) can be end up with the form

N∑
l=1

[
k̂2l ζ(ξ̂i − ξ̂l + β)− k2l ζ(ξ̂i − ξl + β)

]
= q , (4.24a)

N∑
l=1

[
k2l ζ(ξl − ξj + β)− k̂2l ζ(ξ̂l − ξj + β)

]
= q , (4.24b)
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where q does not depend on a particle label. We will assume it to be constant. The

equations of motion in terms of the ξi can be derived by eliminating the variables ki from

(4.23). In order to do this we will apply the Lagrange interpolation formula (see Appendix

B) leading

k2l = −q
∏N

j=1 σ(ξl − ξj + β)σ(ξl − ξ̂j − β)∏N
j �=l σ(ξl − ξj)

∏N
j=1 σ(ξl − ξ̂j)

, (4.25a)

k̂2l = q

∏N
j=1 σ(ξ̂l − ξj + β)σ(ξ̂l − ξ̂j − β)∏N
j �=l σ(ξ̂l − ξ̂j)

∏N
j=1 σ(ξ̂l − ξj)

, (4.25b)

for l = 1, 2, . . . , N . Shifting (4.25b) in the backward direction we get an implicit system

of OΔEs

q

̂q
N∏

l=1:j �=l

σ(ξl − ξj + β)

σ(ξl − ξj − β)
=

N∏
l=1

σ(ξl − ξ̂j)σ(ξl −̂ξj + β)

σ(ξl −̂ξj)σ(ξl − ξ̂j − β)
, j ∈ N . (4.26)

Thus, taking q/̂q to be unity leads to the time-discretization of the Ruijsenaars (relativistic

Calogero-Moser) model. The discrete-time RS system in the “˜ ′′ direction can be

obtained by making the replacement ̂↔˜ .

The connection between ABS equations and RS system has already presented in [104]

where it has been shown that one-step periodic reduction of the system (3.16) to be “of

Landau-Lifschitz (LL) class” (or spin-nonzero case) given in chapter 3, χ̃κ = λχκ, leads

to the discrete-time elliptic RS model (4.26).

The corresponding non-autonomous analogue is obtained by de-autonomization, i.e. the

replacement

λχκ � χκ+τ ,

i.e. by going over to a non-isospectral problem which in the elliptic case corresponds to

a linear difference equation on the torus and the corresponding discrete isomonodromic

deformations. First examples of such de-autonomizations were considered in [42, 84] and

also reviewed in chapter 1.
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Chapter 5

Discrete elliptic isomonodromic

deformation problems

In this chapter we present a new class of isomonodromic deformation problems which

form (in some sense) the nonautonomous counterparts of the Lax pairs studied in chapter

3. Those monodromy problems are obtained by applying the elliptic analogue of the

deautonomization procedure, outlined in chapter 1 for the difference and q-difference

Lax pair associated with discrete Painlevé equations. In the continuous case, there are

various elliptic isomonodromic deformation problems known in the literature [60, 99],

going back to the work of Okamoto [78, 79, 80, 81, 82, 83], who derived in particular

an isomonodromic system for a coupled system of second order ODEs with two free

parameters (apart from the moduli of the elliptic curve), which can be thought of as an

elliptic generalization of the Painlevé VI equation. Okamoto’s work was generalized to

an arbitrary order ODE in the paper of Iwasaki [48]. In the discrete case there has been

recent work by Yamada and Noumi et al. [75, 103] on Lax pairs for the elliptic discrete

Painlevé equation of Sakai [88]. Our approach is different from the latter and we present

this new general elliptic isomonodromic Lax scheme in what follows. We show how the
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compatibility conditions lead to a constitutive set of relations and we perform an initial

analysis to derive nonlinear nonautonomous difference equations from the scheme in the

simplest nontrivial case.

5.1 General elliptic isomonodromic deformation scheme

In this section, we will show how to set up a novel class of isomonodromic deformation

problems on the torus, from the point of view of lattice equations. This follows the

structure of the zero-curvature Lax systems treated in chapter 3.

5.1.1 First order scheme

The new system appears as the discrete compatibility condition of a pair of the associated

linear problems (Lax pair) defining the shift (translation) of an eigenfunction χκ in the n

with together the linear difference equation in terms of the spectral parameter,

χκ+τ = Tκ χκ , (5.1a)

χ̃κ = Lκ χκ , (5.1b)

where Lax matrices

(Lκ)i,j = Hi,j σ(κ)Φκ(ξ̃i − ξj − α) , (5.2a)

(Tκ)i,j = Si,j σ(κ)Φκ(ξi − ξj − γ) , (5.2b)

(i, j = 1, . . . , N)

in whichHi,j , Si,j do not depend on κ and remain to be determined. As it turns out γ, and

perhaps α and β, will depend explicitly on the discrete variables n,m, while ξi = ξi(n,m)

are the main independent variables. The Ansatz for the Lax pair (5.1) is natural, in view

of the fact that the matrices Lκ and Tκ are a natural choice by comparison with the results
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obtained in [26]. We mention that the extra factor σ(κ) (in comparison with the Lax

matrices in (3.2)) is crucial for the scheme to work, as we shall see.

The compatibility of the system (5.1) gives us

χ̃κ+τ = T̃κ Lκχκ, (5.3a)

χ̃κ+τ = Lκ+τ Tκ χκ . (5.3b)

Equating (5.3a) and (5.3b), we derive the Lax equation

Lκ+τTκ = T̃κ Lκ . (5.4)

Working out the matrix Lax equation (5.4) we obtain

σ(τ)Φκ(τ)
N∑
l=1

Hil Slj Φκ+τ (ξ̃i − ξl − α) Φκ(ξl − ξj − γ)

=

N∑
l=1

S̃ilHlj Φκ(ξ̃i − ξ̃l − γ̃)Φκ(ξ̃l − ξj − α) ,

(∀i, j = 1, . . . , N)

which can be rewritten in the form

σ(τ)Φκ(τ)

N∑
l=1

Hil Slj

[
Φκ+τ (ξ̃i − ξj − α− γ)Φ−τ (ξl − ξj − γ)

+Φτ (ξ̃i − ξl − α)Φκ(ξ̃i − ξj − α− γ)
]

=
N∑
l=1

S̃ilHlj Φκ(ξ̃i − ξ̃l − γ̃)Φκ(ξ̃l − ξj − α) ,

using the addition formulas

Φκ(x)Φλ(y) = Φκ(x− y) Φκ+λ(y) + Φκ+λ(x) Φλ(y − x) . (5.5)

From the fundamental identity

Φκ(x)Φκ(y) = Φκ(x+ y) [ζ(κ) + ζ(x) + ζ(y)− ζ(κ+ x+ y)] , (5.6)
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one can basically derive the following relation

σ(τ)

N∑
l=1

Hil Slj

[
Φκ(τ)Φκ+τ (ξ̃i − ξj − α− γ)Φ−τ (ξl − ξj − γ) +

+Φτ (ξ̃i − ξl − α)Φκ(ξ̃i − ξj − α− γ + τ)
(
ζ(κ)− ζ(κ+ ξ̃i − ξj − α− γ + τ) +

+ζ(τ) + ζ(ξ̃i − ξj − α− γ)
)]

=

=
N∑
l=1

S̃ilHlj Φκ(ξ̃i − ξj − α− γ̃)
[
ζ(κ)− ζ(κ+ ξ̃i − ξj − α− γ̃) +

+ζ(ξ̃i − ξ̃l − γ̃) + ζ(ξ̃l − ξj − α)
]
.

(∀i, j = 1, . . . , N) (5.7)

Using the relation Φκ(τ)Φκ+τ (x) = Φκ(τ + x)Φτ (x) on the first terms of the first line

leaves the term which can go with the third term of line 1 of (5.7) by applying the identity

(5.6) once more. Thus, we end up with the form:

σ(τ)
N∑
l=1

Hil Slj Φκ(ξ̃i − ξj − α− γ + τ)Φτ (ξ̃i − ξl − α)

×
[
ζ(κ)− ζ(κ+ ξ̃i − ξj − α− γ + τ) + ζ(ξ̃i − ξl + τ − α)− ζ(ξj − ξl + γ)

]
=

N∑
l=1

S̃ilHlj Φκ(ξ̃i − ξj − α− γ̃)
[
ζ(κ)− ζ(κ+ ξ̃i − ξj − α− γ̃) +

+ζ(ξ̃i − ξ̃l − γ̃) + ζ(ξ̃l − ξj − α)
]

(∀i, j = 1, . . . , N). (5.8)

Note that there exists an overall factor Φκ(ξ̃i − ξj − α− γ + τ) on the left-hand side and

Φκ(ξ̃i − ξj − α− γ̃) on the right-hand side which can be dropped out by setting

γ̃ = γ − τ.

Then the remaining terms can be separated into a part depending on the spectral parameter

κ, and the remainder independent of κ. This leads to the relations in terms of the variables
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Hij, Sij and ξi of the form:

•
N∑
l=1

S̃ilHlj =
N∑
l=1

HilSljΦτ (ξ̃i − ξl − α) σ(τ) , (5.9a)

•
N∑
l=1

S̃ilHlj σ(−τ) Φ−τ (ξ̃l − ξj − α)Φ−τ (ξ̃i − ξ̃l − γ̃) =

N∑
l=1

HilSlj Φ−τ (ξl − ξj − γ),

(5.9b)

for all i, j = 1, . . . , N . This forms the set of constitutive relations from the Lax equations

which no longer depend on the spectral parameter κ. Next we will explicitly disentangle

this coupled system that arise from the Lax system in the casesN = 1 andN = 2. Higher

rank for N (N ≥ 3) is expected to lead to higher rank version of the discrete equation.

i) Case: N = 1

This is the simplest case which can be explicitly solved. Let us now analyze the basic

relations of the general scheme in the case N = 1 only in order to arrive more explicit

equations, showing that the elaboration of the compatibility conditions for the Lax pair

immediately produces the ordinary discrete equation. In this case all quantities Hi,j , Si,j

in (5.9) are scalars, leading to the system of equations:

S̃11H11 = H11S11Φτ (ξ̃ − ξ − α) σ(τ) ,

S̃11H11 σ(−τ) Φ−τ (ξ̃ − ξ − α)Φ−τ (ξ̃ − ξ̃ − γ̃) = H11S11Φ−τ (ξ − ξ − γ).

Eliminating S̃11, S11 and H11, simply by dividing pairwise the relations over each other

and using the definition of the Lamé function Φ±τ (ξ) in (1.6), as well as γ̃ = γ − τ , we

obtain:
σ(γ + τ)σ(γ − τ)

σ2(γ)
=
σ(ξ̃ − ξ − α + τ)σ(ξ̃ − ξ − α− τ)

σ2(ξ̃ − ξ − α)
.

Rearranging by using the addition formula (2.20)

σ(x+ y) σ(x− y)

σ2(x) σ2(y)
= ℘(y)− ℘(x) ,
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we find that

℘(ξ̃ − ξ − α) = ℘(γ) ,

which gives a first order difference equation for ξ1 =: ξ(n), namely

ξ̃ − ξ − α = ±γ(mod period lattice) .

Integrating the latter, using γ = γ0 − nτ we get

ξ(n) = ξ(0) + (α± γ0)n± 1
2
n(n− 1)τ . (5.11)

This indicates that in the simplest case the scheme gives rise to functions obeying the

rational version of the equations that are elliptic functions with arguments depending

quadratically on the discrete independent variable n. The dependence on the square of

the discrete variable n seems typical, for Painlevé types equations, and in particular such

dependence appears in the parameters of the Painlevé VI [70, 81].

ii) Higher N values

As in the autonomous case we want to eliminate the variables Hij, Sij from the general

system given in (5.9) and obtain a closed form system of equations for the dependent

variables ξi =: ξi(n). To write the system (5.9) more concisely we introduce matrices

A±
ij = σ(±τ)Φ±τ (ξ̃i − ξj − α),

Γ±
ij = σ(±τ)Φ±τ (ξi − ξj − γ), (5.12)

and the operation of ”glueing” matrices: for any two matrices A = (Ai,j), B = (Bi,j)

we introduce the glued matrix [AB], given by:

([AB])i,j := Ai,jBi,j ,

In terms of this notation the above system takes the simple matrix form:

• S̃ ·H = [A+H ] · S,
• [Γ̃

−
S̃] · [A−H ] = H · [Γ−S] .
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As in the autonomous case we want the matrix H to be of rank 1. There are in fact two

possibilities that either S is of rank 1 then det(A−) = 0 or [A+H] must be of rank 1.

Since these cases give rise to a kind of equivalent result, we shall choose one of them,

which is the latter, in order to present the analysis here. It follows then from the first

equation that [A+H] is of rank 1, since [A−H] is generically not of rank 1, and the

second equation then implies that [Γ−S] is of rank 1 (and not S itself!), implying:

det(A+) = det(Φτ (ξ̃i − ξj − α)i,j=1,...,N = 0 ⇒ τ + Ξ̃− Ξ−Nα = 0 .

for Ξ :=
∑N

j=1 ξj . (This follows from Frobenius’ elliptic Cauchy determinant).

We come to the conclusion from this formula that it make sense to revise the original Lax

scheme in order to redefine the coefficient Sij such that [Γ S]ij ∼ s+i s
−
j is manifestly of

rank 1. Thus we need to bring the matrix Γij = σ(−τ)Φ−τ (ξi − ξj − γ) into the original

Lax pair (5.2b) by incorporation in the coefficient matrix Φ−τ (ξi − ξj − γ). A simple

computations and some appropriate scaling yields the revised Lax scheme that will be the

starting point in the next section.

5.1.2 Revised scheme

From the implied condition that the matrix [ΓS] must be of rank 1, it is convenient

to revise the scheme and absorb the matrix Γ = (Γi,j) in the coefficient, leading to an

alternative Lax pair of the form:

χ̃κ = Lκ χκ , χκ+τ = Tκ+τ χκ . (5.13)

In (5.13) the revised Lax matrices contain now both rank 1 matrix coefficients, namely

they are of the form: Hi,j = h+i h
−
j , Si,j = s+i s

−
j

(Lκ)i,j = h+i σ(κ)Φκ(ξ̃i − ξj − α) h−j , (5.14a)

(Tκ)i,j = s+i σ(κ)Φκ(ξi − ξj − γ) s−j . (i, j = 1, . . . , N) (5.14b)
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For this system the calculation proceeds in a similar way as before, and using the addition

formulae (5.5) and (5.6) the compatibility yields the following system of equations:

• h+i
( N∑

l=1

h−l s
+
l

)
s−j = σ(−τ) s̃+i

N∑
l=1

s̃−l h
+
l Φ−τ (ξ̃l − ξj − α) h−j , (5.15a)

• h+i
N∑
l=1

h−l s
+
l σ(τ)Φτ (ξ̃i − ξl − α) Φτ (ξl − ξj − γ)s−j = s̃+i

N∑
l=1

s̃−l h
+
l Φτ (ξ̃i − ξ̃l − γ̃)h−j ,

(5.15b)

(for all i, j = 1, . . . , N), which as before can be cast in the matrix form:

• S̃ · [A−H ] = H · S , (5.16a)

• [A+H ] · [Γ+S] = [Γ̃+S̃] ·H , (5.16b)

with now the rank 1 matrices H = h+(h−)T , S = s+(s−)T and the matrix Γ+ (instead of

Γ−)

A±
ij = σ(±τ)Φ±τ (ξ̃i − ξj − α),

Γ+
ij = σ(τ)Φτ (ξi − ξj − γ). (5.17)

Moreover, it can be seen easily from the second relation above that since [Γ S] is generally

not of rank 1 but H is rank 1 matrix then [A+ H ]must be rank 1. Again, we need to impose

that the determinant of the matrix A+ must equal to zero, i.e. det(A+) = 0, implying:

Ξ̃− Ξ = Nα− τ ⇒ Ξ(n) = Ξ(0) + (Nα− τ)n . (5.18)

Next we will consider the lower order values of N , say at N = 1 of the revised scheme

(5.15).

i) Case N = 1

In this case, the compatibility conditions for the revised Lax pair (5.13) gives the first

order relation which is almost similar to equation (5.11) obtained in the previous section.
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Let us first consider the quantities (5.15) or (5.16), then we are left with the following two

relations:

h+h−s+s− = s̃+s̃−h+h−Φ−τ (ξ̃ − ξ − α) σ(−τ) , (5.19a)

h+h−s+s− σ(−τ) Φ−τ (ξ̃ − ξ − α)Φ−τ (ξ̃ − ξ̃ − γ̃) = s̃+s̃−h+h− Φ−τ (ξ − ξ − γ).

(5.19b)

Eliminating h± and s±, simply by dividing pairwise the relations over each other and

using the definition of the function (1.6), as before, this constitutes

σ(γ̃ + τ)σ(τ − γ̃)

σ2(γ)
− σ(ξ̃ − ξ − α + τ)σ(ξ̃ − ξ − α− τ)

σ2(ξ̃ − ξ − α)
= 0,

which can be rearranged by using the addition formulae (2.20), so we have

℘(ξ̃ − ξ − α) = ℘(γ̃).

This gives directly the first order difference equation for ξ = ξn,m up to modulo the period

lattice, that is

ξ̃ − ξ − α± γ̃ = 0 =⇒ ξ = ξ0 + n α± n γ0 ∓ 1

2
n(n + 1)τ , (5.20)

where ξ0 and γ0 are the integration constants.

ii) Case N = 2

To resolve this case, the first identity (5.15a) allows us to identify h+ = ρs̃+ (for some

scalar function ρ), and consequently:

s−j =
−σ(τ)

(h− · s+)
2∑

l=1

s̃+l s̃
−
l Φ−τ (ξ̃l − ξj − α) h−j .

Expressing all the entries of the first and second relation in terms of s+l s
−
l =: Sl, s

+
l h

−
l =:

Hl we get: (
1 +

H2

H1

)
S1 = A−

11S̃1 + A−
21S̃2 , (5.21a)(H1

H2
+ 1
)
S2 = A−

12S̃1 + A−
22S̃2 , (5.21b)
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Using these new variables the entries of the other matrix relation (5.15b) yields the

system:(
A+

11Γ
+
11 + A+

12Γ
+
21

H2

H1

)
S1 =

(
A+

11Γ
+
12

H1

H2
+ A+

12Γ
+
22

)
S2 = Γ̃+

11S̃1 + Γ̃+
12S̃2 ,(

A+
21Γ

+
11 + A+

22Γ
+
21

H2

H1

)
S1 =

(
A+

21Γ
+
12

H1

H2
+ A+

22Γ
+
22

)
S2 = Γ̃+

21S̃1 + Γ̃+
22S̃2 .

(5.22)

To analyse these further, taking into account that det(A+) = 0 , we rewrite the relations

in terms of the ratios X = H2/H1, Y = S2/S1 and Z = S̃1/S1, leading to:

Y

X
=
A−

12 + A−
22Ỹ

A−
11 + A−

21Ỹ
,

Z =
1 +X

A−
11 + A−

21Ỹ
,

A+
11Γ

+
11 + A+

12Γ
+
21X = (A+

11Γ
+
12 + A+

12Γ
+
22X)Y/X = (Γ̃+

11 + Γ̃+
12Ỹ )Z ,

A+
11/A

+
21 = A+

12/A
+
22 = (Γ+

11 + Γ+
12Ỹ )/(Γ

+
21 + Γ+

22Ỹ ) . (5.23)

These are in fact four relations for X , Y and Ỹ with coefficients in terms of ξ. This

manageable system (5.23) can be solved by direct computation. EliminatingX , Y and Ỹ

we derive the first order difference equation for ξj(n) (j = 1, 2) given by[
σ(α+ ξ1 − ξ̃1) σ(α − γ + τ + ξ1 − ξ̃1) σ(α + ξ2 − ξ̃1) σ(−γ + τ + ξ̃1 − ξ̃2)

σ(2τ − α− γ − ξ1 − ξ̃2)

(
σ(−γ + ξ1 − ξ2)σ(α − γ + ξ2 − ξ̃1)

σ(−α− γ + τ − ξ1 + ξ̃1) σ(α + τ + ξ1 − ξ̃2) σ(α+ ξ2 − ξ̃2)− σ(−γ − ξ1 + ξ2)

σ(α − γ + ξ1 − ξ̃1) σ(−α− γ + τ − ξ2 + ξ̃1) σ(α + ξ1 − ξ̃2) σ(α+ τ + ξ2 − ξ̃2)

)
+

+

(
σ(−γ + ξ1 − ξ2) σ(α+ τ + ξ1 − ξ̃1) σ(α+ ξ2 − ξ̃1) σ(α− γ + ξ2 − ξ̃1)

σ(−α− γ + τ − ξ1 + ξ̃1) + σ(−γ − ξ1 + ξ2) σ(α+ ξ1 − ξ̃1) σ(α− γ + ξ1 − ξ̃1)

σ(α + τ + ξ2 − ξ̃1) σ(−α− γ + τ − ξ2 + ξ̃1)

)
σ(−α− γ + 2τ − ξ1 + ξ̃1)

σ(α + ξ1 − ξ̃2) σ(α− γ + τ + ξ1 − ξ̃2) σ(α + ξ2 − ξ̃2) σ(−γ + τ − ξ̃1 + ξ̃2)

]
+
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+
σ(−2γ + τ) σ(−γ + τ) σ(ξ1 − ξ2) σ(ξ̃1 − ξ2 − α+ τ)

σ(γ) σ(3τ − 2γ) σ(ξ̃1 − ξ̃2) σ(ξ̃2 − ξ1 − α)

[
σ(α + ξ1 − ξ̃1)

σ(α− γ + τ + ξ1 − ξ̃1) σ(α+ τ + ξ1 − ξ̃2) σ(τ − γ + ξ̃1 − ξ̃2)

σ(ξ̃2 − ξ1 + 2τ − α− γ)− σ(α+ τ + ξ1 − ξ̃1) σ(ξ̃1 − ξ1 + 2τ − γ − α)

σ(α+ ξ1 − ξ̃2) σ(α − γ + τ + ξ1 − ξ̃2) σ(τ − γ − ξ̃1 + ξ̃2)

]
×

×
[
σ(α − γ + τ + ξ1 − ξ̃1) σ(α+ ξ2 − ξ̃1) σ(α + τ + ξ2 − ξ̃2) σ(τ − γ + ξ̃1 − ξ̃2)

σ(ξ̃2 − ξ1 + 2τ − α− γ)− σ(α+ τ + ξ2 − ξ̃1) σ(ξ̃1 − ξ1 + 2τ − γ − α)

σ(α+ ξ2 − ξ̃2) σ(α − γ + τ + ξ1 − ξ̃2) σ(τ − γ − ξ̃1 + ξ̃2)

]
= 0 , (5.24)

which is subject to the condition ξ1+ξ2 = (2α−τ)n+Ξ(0). This is a first order nonlinear

nonautonomous elliptic ordinary difference equation containing three parameters Ξ(0), τ

and γ0. Although (5.24) may be interesting in its own right, we are really seeking a

scheme that provides a second order OΔE. In a sense, the scheme of this section forms a

parallel to the one for the monodromy problem for PVI, (1.76), albeit with the last term on

the right-hand side absent. The compatibility with (1.75) in that case would also produce

a first order equation, at most, which is linearisable. Since the scheme (5.1) involves

only one lattice direction it constitutes really an analogue to the case of the truncated

monodromy problem (1.76) involving only a single lattice shift. Thus, by this analogy, in

order to arrive at a higher-order system we expect that we need to involve more than one

lattice shift in the elliptic monodromy problem. The alternative choice would be either

to consider the full rank matrix case for H or to consider higher rank cases (N > 2).

These alternatives turn out to be very complicated and we will not consider them here but

instead in the next section propose a higher-order scheme involving multiple lattice shifts.
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5.2 Higher order scheme

In order to derive higher-order OΔEs we extend the isomonodromic problem to a higher

order one as follows:

χκ+τ = T′
κ χκ , (5.25)

(T′
κ)i,j : = σ2(κ)

N∑
l′=1

S
(l′)
i,j Φκ(ξi − ηl′)Φκ(ηl′ − ξj − γ) , (i, j = 1, . . . , N) ,

where the ηl variables as well as the extended coefficients S(l′)
i,j remain to be determined.

We consider this difference equation on the torus in conjunction with the lattice Lax

system

χ̃κ = Lκχκ , (Lκ)i,j = Hi,j σ(κ) Φκ(ξ̃i − ξj − α) , (5.26a)

χ̂κ = Mκχκ , (Mκ)i,j = Ki,j σ(κ) Φκ(ξ̂i − ξj − β) , (5.26b)

where as before we like to take the coefficient matrices H and K of rank 1 and

independent of the spectral variable κ.

We can think of the scheme above as an elliptic de-autonomization of a higher-order

periodic reduction on the lattice. 2-step periodic reduction: χ → χ → ̂̃χ = λχ

followed by de-autonomization: λχ � χκ+τ However, now we want to keep the

midpoint unspecified associated with some value η for ξ.

� �

�

χ, ξ χ,η

λχ, ξ

Figure 5.1: 2-step periodic reduction.
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This system leads to the system of compatibility conditions:

Lκ+τ T
′
κ = T̃′

κ Lκ , (5.27a)

Mκ+τ T
′
κ = T̂′

κMκ , (5.27b)

L̂κ Mκ = M̃κ Lκ . (5.27c)

To do this most effectively we need a new elliptic identity, generalizing (1.7),

Φκ(x) Φκ(y) Φκ(z)

Φκ(x+ y + z)
= 1

2

[(
ζ(κ) + ζ(x) + ζ(y) + ζ(z)− ζ(κ+ x+ y + z)

)2
+℘(κ)− (℘(x) + ℘(y) + ℘(z) + ℘(κ+ x+ y + z)

)]
,

(5.28)

∀κ, x, y, z. The consistency condition Lκ+τ T
′
κ = T̃′

κ Lκ leads

σ(τ)Φκ(τ)
N∑

l,l′=1

Hil S
(l′)
lj Φκ+τ (ξ̃i − ξl − α) Φκ(ξl − ηl′) Φκ(ηl′ − ξj − γ)

=
N∑

l,l′=1

S̃
(l′)
il HljΦκ(ξ̃i − η̃l′) Φκ(η̃l′ − ξ̃l − γ̃) Φκ(ξ̃l − ξj − α) , (5.29)

or equivalently

σ(τ)
N∑

l,l′=1

Hil S
(l′)
lj Φτ (ξ̃i − ξl − α) Φκ(τ + ξ̃i − ξl − α) Φκ(ξl − ηl′) Φκ(ηl′ − ξj − γ)

=
N∑

l,l′=1

S̃
(l′)
il HljΦκ(ξ̃i − η̃l′) Φκ(η̃l′ − ξ̃l − γ̃) Φκ(ξ̃l − ξj − α) . (5.30)

The latter was derived by using the expression Φκ(τ)Φκ+τ (x) = Φτ (x) Φκ(τ + x) on the

first two Φ terms of (5.29). Furthermore, applying the above identity (5.28) we end up
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with the form

N∑
l,l′=1

σ(τ)Φτ (ξ̃i − ξl − α)Φκ(ξ̃i − ξj − α− γ + τ)Hil S
(l′)
lj

×
[(

ζ(κ)− ζ(κ+ ξ̃i − ξj − α− γ + τ) + ζ(τ + ξ̃i − ξl − α) + ζ(ξl − ηl′) + ζ(ηl′ − ξj − γ)
)2

+℘(κ)−
(
℘(κ+ ξ̃i − ξj − α− γ + τ) + ℘(τ + ξ̃i − ξl − α) + ℘(ξl − ηl′) + ℘(ηl′ − ξj − γ)

)]
=

N∑
l,l′=1

Φκ(ξ̃i − ξj − α− γ̃) S̃
(l′)
il Hlj

×
[(

ζ(κ)− ζ(κ+ ξ̃i − ξj − α− γ̃) + ζ(ξ̃i − η̃l′) + ζ(η̃l′ − ξ̃l − γ̃) + ζ(ξ̃l − ξj − α)
)2

+℘(κ)−
(
℘(κ+ ξ̃i − ξj − α− γ̃) + ℘(ξ̃i − η̃l′) + ℘(η̃l′ − ξ̃l − γ̃) + ℘(ξ̃l − ξj − α)

)]
.

There is a common factor Φκ(ξ̃i − ξj − α− γ + τ) on the left-hand side, and a common

factor Φκ(ξ̃i − ξj − α − γ̃) on the right-hand side, which can once again be identified if

we set γ̃ = γ − τ , so that they cancel. The remaining terms separate in accordance with

their different dependence on κ. Thus, we have terms containing only the external indices

i and j, which yield

N∑
l,l′=1

σ(τ)Φτ (ξ̃i − ξl − α)Hil S
(l′)
lj =

N∑
l,l′=1

S̃
(l′)
il Hlj . (5.31)

The linear terms in ζ(κ)− ζ(κ+ ξ̃i − ξi − α− γ + τ) lead to

N∑
l,l′=1

σ(τ)Φτ (ξ̃i − ξl − α)Hil S
(l′)
lj

(
ζ(τ + ξ̃i − ξl − α) + ζ(ξl − ηl′) + ζ(ηl′ − ξj − γ)

)
=

N∑
l,l′=1

S̃
(l′)
il Hlj

(
ζ(ξ̃i − η̃l′) + ζ(η̃l′ − ξ̃l − γ + τ) + ζ(ξ̃l − ξj − α)

)
. (5.32)
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Finally, the terms, which do not depend on κ, give rise to

N∑
l,l′=1

Hil S
(l′)
lj Φτ (ξ̃i − ξl − α) σ(τ)

[(
ζ(τ + ξ̃i − ξl − α) + ζ(ξl − ηl′) + ζ(ηl′ − ξj − γ)

)2
−℘(τ + ξ̃i − ξl − α)− ℘(ξl − ηl′)− ℘(ηl′ − ξj − γ)

]
=

N∑
l,l′=1

S̃
(l′)
il Hlj

[(
ζ(ξ̃i − η̃l′) + ζ(η̃l′ − ξ̃l − γ + τ) + ζ(ξ̃l − ξj − α)

)2
−℘(ξ̃i − η̃l′)− ℘(η̃l′ − ξ̃l − γ + τ)− ℘(ξ̃l − ξj − α)

]
. (5.33)

Therefore, we have obtained the following constitutive relations:

•
N∑

l,l′=1

σ(τ)Φτ (ξ̃i − ξl − α)Hil S
(l′)
lj =

N∑
l,l′=1

S̃
(l′)
il Hlj , (5.34a)

•
N∑

l,l′=1

Hil S
(l′)
lj

σ(ξ̃i − ηl′ + τ − α)σ(ξl − ξj − γ)σ(ξ̃i − ξl − ξj + ηl′ − α− γ̃)

σ(ξ̃i − ξl − α + τ)σ(ξl − ηl′)σ(ηl′ − ξj − γ)

=

N∑
l,l′=1

S̃
(l′)
il Hlj

σ(ξ̃i − ξ̃l − γ̃)σ(η̃l′ − ξj − γ̃ − α)σ(ξ̃i + ξ̃l − ξj − η̃l′ − α)

σ(ξ̃i − η̃l′)σ(η̃l′ − ξ̃l − γ̃)σ(ξ̃l − ξj − α)
,

(5.34b)

•
N∑

l,l′=1

Hil S
(l′)
lj Φ−τ (ξl − ηl′) Φ−τ (ηl′ − ξj − γ)

= σ(−τ)
N∑

l,l′=1

S̃
(l′)
il Hlj Φ−τ (ξ̃i − η̃l′) Φ−τ (η̃l′ − ξ̃l − γ̃) Φ−τ (ξ̃l − ξj − α) .

(5.34c)

where γ̃ = γ − τ . The second relation is obviously derived by using (1.8) on both side

of (5.32), whereas (5.34c) can be obtained by applying the identity (5.28) on (5.33). The

general scheme is of relations derived is rather complicated. The first and last relation can

be written in the form:

• S̃ ·H = [A+H] · S , (5.35a)

• [Δ̃
−
S̃ Γ̃

−
] · [A−H] = H · [Δ−S Γ−] , (5.35b)
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where we have used the same notation as before, with the matrix S as the matrix with

entries (S)i,j =
∑

l′ S
(l′)
ij , and where the “doubly glued” matrix [Δ−S Γ−] is the matrix

with entries: ∑
l′
S
(l′)
ij Φ−τ (ξi − ηl′) Φ−τ (ηl′ − ξj − γ) =: [Δ−S Γ−]ij .

The equation (5.34b) is the most complicated to write in a matrix form. In order to

achieve this we actually first go back to (5.32) and using also (5.31) add extra terms in the

summand to obtain the equality
N∑

l,l′=1

Hil S
(l′)
lj σ(τ)Φτ (ξ̃i − ξl − α)

(
ζ(τ + ξ̃i − ξl − α) + ζ(ξl − ξj − γ̃) + ζ(−τ)

−ζ(ξ̃i − ξj − α− γ̃) + ζ(ξl − ηl′) + ζ(ηl′ − ξj − γ) + ζ(τ)− ζ(ξl − ξj − γ̃)
)

=

N∑
l,l′=1

S̃
(l′)
il Hlj

(
ζ(ξ̃i − η̃l′) + ζ(η̃l′ − ξ̃l − γ + τ) + ζ(−τ)− ζ(ξ̃i − ξ̃l − γ)

+ζ(ξ̃i − ξ̃l − γ) + ζ(τ) + ζ(ξ̃l − ξj − α)− ζ(ξ̃i − ξj − α− γ̃)
)
. (5.36)

Applying the identity (1.7) on each quadruple of ζ terms in the summands, we obtain
N∑

l,l′=1

Hil S
(l′)
lj

[
− σ2(τ)Φτ (ξ̃i − ξl − α)

Φτ (ξl − ηl′)Φτ (ηl′ − ξj − γ)

Φτ (ξl − ξj − γ)

+
Φτ (ξ̃i − ξj − α− γ̃)

Φτ (ξl − ξj − γ)

]
=

N∑
l,l′=1

S̃
(l′)
il Hlj

[σ(−τ)Φ−τ (ξ̃i − η̃l′)Φ−τ (η̃l′ − ξ̃l − γ̃)

Φ−τ (ξ̃i − ξ̃l − γ̃)

−σ(−τ)Φ−τ (ξ̃i − ξj − α− γ̃)σ(τ)Φτ (ξ̃l − ξj − α)

Φ−τ (ξ̃i − ξ̃l − γ̃)σ(−τ)
]
. (5.37)

Thus, “the middle relation” (5.34b) can be written more concisely as follows[
[Δ̃

−
S̃ Γ̃

−
]/Γ̃

−] ·H− [C−([S̃/Γ̃−
] · [A+H]

)]
=
[
C+
(
H · [S/Γ+]

)]− [A+H] · [[Δ+S Γ+]/Γ+
]
, (5.38)

where

C±
ij = σ(±τ)Φ±τ (ξ̃i − ξj − α− γ̃), (5.39)
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and where we have introduced the operation

[X/Γ±] =
Xij

Φ±τ (ξi − ξj − γ)σ(±τ) .

Although the notation is somewhat ad-hoc, it may prove useful in determining the ranks

of the matrices.

We will discuss the strategy to analyze the case that N = 2. As before, we want to

take H of rank 1, in which case it follows from (5.35a) that either S is of rank 1, or

det(A+) vanishes. Focusing on the latter option, then from the third relation, (5.35b), we

conclude that the matrix [Δ̃
−
S̃ Γ̃

−
] must be of rank 1. Next these rank conditions can

be implemented on the matrix form (5.38) with the aim to eliminate H, S. Furthermore,

we have to solve for the yet undetermined quantities ηl′ , where from the diagram 5.1 it is

suggestive to expect a solution for ηl′ of the form either ηl′ = ξ̃l′ +β or ηl′ = ξ̂l′ +α (both

choices being compatible because of (5.27c)). At the same time we must set γ = α + β,

and to account for the nonautonomicity we need to assume that β = β(m) = β(0)−mτ ,

α = α(n) = α(0) − nτ . These are the natural assumptions, under which we expect the

scheme given by the three matrix relations, (5.35a), (5.35b) and (5.38), to be resolvable

and to lead to a second order nonautonomous OΔE for ξ1 subject to the condition (5.18).

Remark 5.2.1 As a byproduct, the autonomous limit of the higher-order reduced Lax

system of this section, we can consider the 2-step higher-time flow of the RS model of

[69]. This would have a Lax pair of the form which is obtained by setting instead of (5.25)

the spectral problem:

λχκ = T′
κχκ , (5.40)

supplemented by (5.26a) and where τ = 0 and γ is constant. In that stationary case,

(5.27a) becomes

Lκ T
′
κ = T̃′

κ Lκ . (5.41)
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The compatibility of (5.41) follows similar analysis as the one for nonautonomous case,

making use of (5.28) and the result is the following set of constitutive relations:

•
N∑

l,l′=1

Hil S
(l′)
lj =

N∑
l,l′=1

S̃
(l′)
il Hlj , (5.42a)

•
N∑

l,l′=1

Hil S
(l′)
lj

σ(ξ̃i − ηl′ − α)σ(ξl − ξj − γ)σ(ξ̃i − ξl − ξj + ηl′ − α− γ)

σ(ξ̃i − ξl − α)σ(ξl − ηl′)σ(ηl′ − ξj − γ)

=
N∑

l,l′=1

S̃
(l′)
il Hlj

σ(ξ̃i − ξ̃l − γ)σ(η̃l′ − ξj − γ − α)σ(ξ̃i + ξ̃l − ξj − η̃l′ − α)

σ(ξ̃i − η̃l′)σ(η̃l′ − ξ̃l − γ)σ(ξ̃l − ξj − α)
,

(5.42b)

•
N∑

l,l′=1

Hil S
(l′)
lj Φκ0(ξ̃i − ξl − α) Φκ0(ξl − ηl′) Φκ0(ηl′ − ξj − γ)

=
N∑

l,l′=1

S̃
(l′)
il Hlj Φκ0(ξ̃i − η̃l′) Φκ0(η̃l′ − ξ̃l − γ) Φκ0(ξ̃l − ξj − α) ,

(5.42c)

where in the latter we can fix κ0 to be any non-singular fixed value. We can also obtain the

first two (5.42a), (5.42b) from the limit τ → 0 of (5.34), while (5.42c) needs a separate

analysis. Equations (5.42) represent a system of constitutive relations for a higher-rank RS

flows and in what we consider the higher order to be a hierarchy of RS flows. This system

should be made explicit by solving for the coefficients H, S as well as the intermediate

variable ηl′ .

5.3 Discussion

In this chapter we have proposed the general structure of an elliptic isomonodromic

system and obtained a constitutive set of relations from the compatibility conditions. In

contrast to existing elliptic isomonodromy deformation systems on the torus for discrete

Painlevé type equations, the one proposed here can be readily extended to any rank, and
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as such we would expect it to contain higher order discrete Painlevé equations of the type

of the Garnier systems. We naturally expect that there are elliptic Painlevé type equations

coming out of the scheme given by the matrix relations (5.35a), (5.35b) and (5.38) for

N = 2. The full analysis of these equations still needs to be performed and this is left as

the subject of future study.
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Chapter 6

Conclusions

6.1 Summary of results

This thesis deals with a novel class of elliptic Lax systems on the lattice and corresponding

nonlinear lattice systems. In particular, we are concerned with a lattice version of the

famous Krichever-Novikov equation and its higher-rank case.

Chapter 1 was mainly a review, but contains also a few novel elements, such as the use of

the identity (1.28) in the proof of the elliptic Beta integral, as well as the new identities

(1.11) and (1.12) which we have not encountered in the vast literature on elliptic functions.

In chapter 2 we pull together some mostly known facts about Adler’s lattice equation, but

there are also some new insights, such as the compound identity (2.14) connecting the

3-leg and rational form of Adler’s lattice equation, as well as the spin representation of

the Jacobi form. However, the main results in the thesis are found in chapters 3-5 which

deal with the novel Lax systems.

In chapter 3 a general class of higher-rank elliptic Lax representations for systems of

PΔEs on the 2D lattice has been proposed and investigated. Distinguishing between
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what we called spin-zero (generalizations of Adler’s lattice equation) and spin-nonzero

(generalized Landau-Lifschitz (LL) type) models, we gave the general structure of the

resulting equations (from the compatibility conditions) for the latter, but concentrated

mainly on the former case for N = 2 and N = 3. For N = 2 it has shown in [104]

that the Lax systems leads indeed to Adler’s lattice equation in its 3-leg form (for the

Weierstrass class) and we have analyzed how these results generalize to the case N = 3

(as a representative example for the higher-rank case). The case of rankN = 3 is analyzed

using Cayley’s hyperdeterminant of format 2×2×2, yielding a multi-component system

of coupled 3-leg quad-equations. This chapter also contains a new result which we refer

to as Compound theorem for 2 × 2 × 2 hyper-determinants given in Lemma (3.3.4). In

our view, the significance of the results of this chapter is not only to add a new class of

elliptic type of integrable systems to our already substantial zoo of such systems, but to

depart from the rather restrictive confinement of 2 × 2 systems to which all ABS type

systems, [7], belong. To obtain good insights in the essential structures behind (discrete

and continuous) integrable systems, such departures into the multi-component cases are

necessary.

In chapter 5, the reductions to iso-spectral or isomonodromic problems were discussed.

The latter reductions, achieved by means of deautonomization of isospectral problems

on the torus, lead to systems of nonautonomous elliptic OΔEs, which are expected to

yield elliptic discrete Painlevé equations and possibly higher-order analogues. We set

up the general scheme and made some initial analysis, but there is more to be done to

obtain a closed form of the equations. Our approach, of systematically deriving Lax

pairs (or monodromy problems) from a general perspective allows for a natural extension

to higher rank and higher order forms and as such is in contrast to existing elliptic

monodromy problems [75, 103], proposed as Lax pairs for the famous elliptic Painlevé

equation of Sakai [88]. It remains an open question whether or not the elliptic discrete

Painlevé equation can be detected in our scheme. Nevertheless, our approach provides
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an alternative scheme for obtaining in principle such nonautonomous OΔEs. It would

be interesting to compare our Lax systems to the existing ones in the literature, which is

not quite trivial because the latter ones tend to employ multiplicative forms of the elliptic

functions, such as the ones discussed in section 1.1.

6.2 Future work

The higher-rank lattice system, which we have proposed in chapter 3, as far as we are

aware, forms the first integrable lattice system generalizing the famous Q4 equation. As

it stands the rank 3 system is the analogue of 3-leg form of Adler’s equation with the

dependent variable appearing in the argument of elliptic functions. It is highly desirable

to find its rational form analogous to the rational form of the Adler equation. In that form

further properties, such as multidimensional consistency, symmetries and the construction

of solutions (such a solution solutions) can be studied. For the moment these goals are

hampered by the sheer complexity of the system, and would require various machineries,

such as use of generalized Frobenius-Stickelberger formulae. A possible outcome would

be to establish a connection with a differential system obtained by O. Mokhov in the

1980s, [63], arising from third order commuting differential operators defining rank 3

vector bundles over an elliptic curve, cf. [62]. This is the only system that is comparable

with our system at the continuous level.

Another direction is to consider the Landau-Lifshitz class of models, whose (higher-

order) periodic reductions are expected to yield higher-order time discretizations of the

Ruijsenaars-Schneider model of [69]. In the thesis we concentrated mostly on what

we called the spin-zero case, whereas some results concerning periodic reductions of

the spin non-zero case was already obtained in [104]. As a direction for the future,

establishing connections with the recently found master-solution of the quantum Yang-

Baxter equations, [19] and its multi-spin generalization [20], may be of interest.
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Recently, isomonodromic deformation problems for Sakai’s elliptic discrete Painlevé

equation [88] have been considered by several authors [75, 103]. The completion of

the scheme proposed in chapter 5 would provide an alternative approach to such elliptic

monodromy problems, with a potential to find natural extensions to higher rank and

higher order of the 2 × 2 × 2. It would also be interesting to further explore elliptic

discrete integrable systems in higher dimensions, such as the elliptic lattice KP equation

constructed recently in [50], which is essentially a system in 3+1 dimensions.
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Appendix A

Jacobi theta functions and proof of the

higher degree identity (1.11)

Here we give a brief summary of some relevant formulae for the theory of theta functions

and a proof of the new elliptic identity in (1.11). Many textbooks on this material exist,

but we prefer the ones by Akhiezer, [11], Whittaker and Watson [107] and the relevant

chapter in [18], whilst Hancock [39] is a good general reference. This Appendix follows

closely the Notes [74] which provide a more constructive, rather than algebra-geometric

approach to the functions.

A.1 Formulae for Jacobi theta functions

The Jacobi theta functions constitutes a fundamental part of the theory of elliptic

functions. The definitions are given with modulus τ as infinite series

θab(x|τ) =
∑
n∈Z

exp
[
πiτ(n +

a

2
)2 + 2πi(n+

a

2
)(x+

b

2
)
]
, (A.1)
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where the parameters a, b are sometimes referred to as the caracteristics of the theta

functions, and we can have them take the values in Z2. The series for θa,b converges

uniformly for all discs |x| ≤ R in the complex plane, for arbitrary real R > 0, whenever

the (fixed modulus) τ has a strictly positive imaginary part. The following quasi-

periodicity conditions, satisfied by the Jacobi theta functions, follow from the definitions:

θab(x+ 1|τ) = eπiaθab(x|τ) , θab(x+ τ |τ) = e−πi(τ+2x+b)θab(x|τ). (A.2)

The θ11(x) function is odd, θ11(−x|τ) = −θ11(x|τ), and θ00(x), θ01(x), θ10(x) are all

even functions:

θ00(−x|τ) = θ00(x|τ) , θ01(−x|τ) = θ01(x|τ) , θ10(−x|τ) = θ10(x|τ). (A.3)

The θ11(x) function is related to theta function of rational characteristic: ϑ(z; q) =

(q; q)∞(z; q)∞(z−1q; q)∞ by the triple product relation

θ11(x|τ) = −ie−πi(x− τ
4
)ϑ(e2πix; e2πiτ ) , (A.4)

where we take z = e2πix and p = e2πiτ . Furthermore, the multiplication of two theta

functions can be given in the general formula:

θab(x|τ) θa′b′(y|τ) = θAB(x+y|2τ)θA′B′(x−y|2τ)+θA+1,B(x+y|2τ)θA′+1,B′(x−y|2τ)
(A.5)

where we have the characteristics:

A =
a + a′

2
, B = b+ b′, A′ =

a− a′

2
, B′ = b− b′ (A.6)

for a, b, a′, b′ ∈ Z2. From these bilinear relations between theta functions of modulus

τ and of modulus 2τ we can, by elimination, obtain many quartic relations between the

θ-functions of different characteristic (but of the same modulus), see e.g. [107], but most

of these quartic relations are not very insightful. In contrast for θ11, which is the only odd

theta function, we have closed-form relation:

θ11(x+ a)θ11(x− a)θ11(y + b)θ11(y − b) + θ11(x+ b)θ11(x− b)θ11(a+ y)θ11(a− y)

+θ11(x+ y)θ11(x− y)θ11(b+ a)θ11(b− a) = 0 . (A.7)
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It is easily seen that the theta function relation (A.7), which plays a key role in the theory

of elliptic functions, is identical to the sigma equation (1.4).

A.2 Proof of the higher degree identity (1.11)

The proof of the higher order elliptic identity given in (1.11) can be achieved directly

by simple iteration. The generalization of the basic identity (3-term relation for the σ-

function (1.7) or the elliptic partial fraction expansion formula) is:
n∏

i=1

Φκi
(xi) =

n∑
i=1

Φκ1+···+κn(xi)
n∏

j=1
j �=i

Φκj
(xj − xi) , (A.8)

which can be easily proven by induction as follows:

Case I: The statement holds when n is equal to 2. It is a simple matter to prove using the

three-term relation (1.4). Firstly we make a change of variables. Let

x = x1 +
κ1 − x2

2
,

y = κ2 +
x2 + κ1

2
,

a =
κ1 + x2

2
,

b =
x2 − κ1

2
.

Then the three-term relation becomes

σ(x1 + κ1)σ(x1 − x2)σ(κ2 + x2)σ(κ2 + κ1) = σ(x1)σ(x1 + κ1 − x2)σ(κ2 + κ1 + x2)σ(κ2)

+σ(x1 + κ2 + κ1)σ(x1 − κ2 − x2)σ(x2)σ(κ1) .

If we divide the above relation by:

σ(x1)σ(x2)σ(x1 − x2)σ(κ2 + κ1)σ(κ2)σ(κ1) ,

we obtain the following identity

Φκ1(x1)Φκ2(x2) = Φκ1(x1 − x2)Φκ1+κ2(x2) + Φκ1+κ2(x1)Φκ2(x2 − x1) . (A.9)
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Therefore, the first case can be verified.

Case II: Assume the statement holds for some n (some unspecified value of n ). It must

be shown that also holds for n+ 1:

n+1∏
i=1

Φκi
(xi) =

n+1∑
i=1

Φ∑n+1
i=1 κi

(xi)

n+1∏
j=1
j �=i

Φκj
(xj − xi) . (A.10)

It is a simple matter to prove this relation using the identities for Φκ function. Firstly,

applying the induction hypothesis on the left-hand side of (A.10)

n+1∏
i=1

Φκi
(xi) =

n∑
i=1

ΦΛ(xi)
n∏

j=1
j �=i

Φκj
(xj − xi)Φκn+1(xn+1) , Λ =

n∑
i=1

κi , (A.11)

and using (A.9) from the case I between the first and last term, we have

n+1∏
i=1

Φκi
(xi) =

n∑
i=1

{
ΦΛ+κn+1(xi)Φκn+1(xn+1 − xi)

+ΦΛ(xi − xn+1)ΦΛ+κn+1(xn+1)
} n∏

j=1
j �=i

Φκj
(xj − xi)

=

n∑
i=1

ΦΛ+κn+1(xi)

n+1∏
j=1
j �=i

Φκj
(xj − xi)

+ΦΛ+κn+1(xn+1)
n∑

i=1

ΦΛ(xi − xn+1)
n∏

j=1
j �=i

Φκj
(xj − xi) , (A.12)

where Λ =
∑n

i=1 κi. Clearly, arranging the terms by using the induction hypothesis, we

get the right hand side of (A.10). It has been verified that indeed it holds when n+ 1.
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Appendix B

The Frobenius-Stickelberger type

identities

Here we collect some results related to the elliptic determinantal formulae of Frobenius

and Frobenius-Stickelberger type (i.e. elliptic Cauchy and Vandermonde determinants).

The Frobenius-Stickelberger formula, [31] is given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ℘(x1) ℘′(x1) · · · ℘(n−2)(x1)

1 ℘(x2) ℘′(x2) · · · ℘(n−2)(x2)

1 ℘(x3) ℘′(x3) · · · ℘(n−2)(x3)
...

...
...

. . .
...

1 ℘(xn) ℘′(xn) · · · ℘(n−2)(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)(n−1)(n−2)/2 1!2!3!...(n− 1)!

σ(x1 + x2 + ...+ xn)
∏n

i<j=1 σ(xi − xj)∏n
i=1 σ

n(xi)

(B.1)
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Denoting the Frobenius-Stickelberger matrix P(x1, . . . , xn) = P(x) by:

P(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ℘(x1) ℘′(x1) · · · ℘(n−2)(x1)

1 ℘(x2) ℘′(x2) · · · ℘(n−2)(x2)

1 ℘(x3) ℘′(x3) · · · ℘(n−2)(x3)
...

...
...

. . .
...

1 ℘(xn) ℘′(xn) · · · ℘(n−2)(xn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B.2)

we have from Cramer’s rule the following factorization formula:

[
P(x) · P(y)−1

]
i,j

=
1

σn(xi)
ΦΣ(xi − yj)σ

n(yj)

∏n
l=1 σ(xi − yl)∏
l �=j σ(yj − yl)

, (B.3)

in which Σ ≡ Σn
l=1 yl . As a consequence we obtain from this the Frobenius-Stickelberger

determinantal formula, [32]

det (Φκ(xi − yj))i,j=1,...,N =
σ(κ+ Σ)

σ(κ)

∏
i<j σ(xi − xj) σ(yj − yi)∏

i,j σ(xi − yj)
, Σ :=

N∑
i=1

(xi−yi) .
(B.4)

Conversely, the Frobenius-Stickelberger formula (B.1) can be obtained from the

Frobenius formula by a set of degenerate limits. The elliptic Lagrange interpolation

formulae
N∏
i=1

σ(ξ − xi)

σ(ξ − yi)
=

N∑
i=1

Φ−Σ(ξ − yi)

∏N
j=1 σ(yi − xj)∏N
j=1
j �=i

σ(yi − yj)
, (B.5)

which holds if Σ �= 0, and if Σ = 0:

N∏
i=1

σ(ξ − xi)

σ(ξ − yi)
=

N∑
i=1

[ζ(ξ − yi)− ζ(x− yi)]

∏N
j=1 σ(yi − xj)∏N
j=1
j �=i

σ(yi − yj)
, (B.6)

where x denotes any of the zeroes xi, (i = 1, . . . , N) on the left-hand side. Both (B.5)

and (B.6) can be obtained from the Frobenius formula [32] by row-or column expansions

(adding an extra row and column to the Frobenius matrix, say with x0 = ξ and y0 = η,

and then expanding along that row or column) and (B.6) can subsequently be obtained

from a limiting case of the latter.
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