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Summary

This thesis describes the development of modelling techniques to understand the effects
of an Improvised Explosive Device on the passengers and structure of a rail vehicle. The
work aims to establish if rail vehicle design could influence the distribution of passenger
injuries within a rail vehicle. Finite element models were used to predict the detonation
and propagation of the blast pressures, and the structural response of a rail vehicle.

Models were developed to allow the prediction of human injury, using validated work
from the open literature and from basic principles. After a detailed review of existing
work on injury, chest injury from blast pressures and penetrating injuries from high
speed projectiles were chosen as the injury modes to be included in the model.

To provide data to validate numerical models, experimental blast testing in confined
geometry was undertaken. Four configurations of a test cell were used to gain an under-
standing of the effect of vertical baffles on pressures and cumulative impulse. Excellent
correlation was seen between test shots in each arrangement. Baffles were seen to in-
crease the cumulative impulse seen at the wall opposite where they were fixed, although
the number and spacing of them was seen to have no significant effect.

Numerical modelling of the experimental test arrangements showed good correlation
between the experimental pressure time history data and the numerical predictions.
Secondary combustion was considered using an energy release function, after which cu-
mulative impulse calculated from experimental data were was predicted by the numerical
models.

Risk prediction and finite element models were combined to model the effects of an
IED blast in a representative rail vehicle. A number of key variables were studied, and it
was identified that although rail vehicle design can affect the injury severity, passenger
spatial density was the driver for determining the distribution of injuries.
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Nomenclature1

Symbol Description Units

αi Angle of incidence radians

αr Angle of reflection radians

γ ratio of specific heats –

δ displacement m

θx, θy angle from x or y axis degrees

ν Specific volume m3/kg

ρ Density kg/m3

σ Stress Pa

σ2 Variance –

A Area m2

C Damping Ns/m

c Speed of sound m/s

E Elastic modulus Pa

E, e Internal energy J

F Force N

iso Side on / incident impulse kPa-ms

ir Reflected impulse kPa-ms

K Stiffness N/m

L Length m

M,m Mass kg

pa Atmospheric pressure kPa

pr Peak reflected overpressure kPa

pso Peak side on / incident overpressure kPa

P (t), p(t) Time dependent pressure kPa

R, r Distance from detonation centre m

ta shock wave arrival time ms

td Positive overpressure phase duration ms

U, u Velocity m/s

V, v m/s

Vd Detonation velocity m/s

1Some symbols are used for multiple definitions in this work. The most commonly referred to
meanings are included in this nomenclature.
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W Mass of explosive charge kilogram (kg)

Zij Acoustic impedance Pa/m/s

Z Scaled distance m/kg
1
3

Abbreviations

Symbol Description

AA Aluminium Alloy

AIS Abbreviated Injury Score

ALE Arbitrary Lagrangian Eulerian

AMMG ALE Multi Material Group

ASII Adjusted Severity of Injury Index

BREL British Rail Engineering Limited

C4 a common plastic explosive containing 91% RDX

CCTV Closed Circuit Television

CPU Central Processing Unit

CT Counter Terrorism

DIC Digital Image Correlation

DMU Diesel Multiple Unit

DOP Depth Of Penetration

DVM Digital Volt Meter

EMU Electric Multiple Unit

EOS Equation Of State

FSI Fluid-Structure Interaction

FSP Fragment Simulating Projectile

GNU a free and open source software project

HIC Head Injury Criterion

IED Improvised Explosive Device

IRA Irish Republican Army

JWL Jones-Wilkins-Lee

LDG Laser Distance Guage

M10, M12, M20 Metric thread designations

MMG Multi-Material Group
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MPP Massively Parallel Processing

(N)ISS (New) Injury Severity Score

PBIED Person Borne IED

PE4 Plastic Explosive, UK designation for explosive sim-

ilar to C4

PVB Polyvinyl Butyral

QSP Quasi Static Overpressure

RDX Research Department Explosive

SDOF Single Degree Of Freedom

SMP Shared Memory Parallel

TBI Traumatic Brain Injury

TNT Trinitrotoluene, a high explosive used as a reference

UNF Unified thread standard, fine pitch

VBIED Vehicle Borne IED

VF Velocity Factor
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Introduction

1.1 A threat to infrastructure and passengers

In recent years the perceived threat of terrorist attacks across the world has increased

following several deadly mass casualty attacks throughout the world, including the UK

and Europe. Terrorism is not a new threat in the UK, but increased public awareness

in recent years is due to a handful of high profile attacks which caused many deaths and

injuries, and a resulting international military response.

The UK was the target of an IRA terrorist campaign between 1969 and 1997, which

caused widespread disruption but led to relatively few fatalities, as well the Lockerbie

bombing in 1988 and London nail bombings in 1999. Attacks on the world trade centres

in New York in September 2001 though, brought the threat of global terrorism and mass

casualties into the public eye. The response to this, the global war on terror, has been

played out extensively in the media and continues to provide a reminder of these attacks.

The threat posed to the UK and Europe was confirmed in 2004 and 2005, with mass

casualty attacks in both London and Madrid. Since 2001, there have been a number

of terrorist attacks around the world, many of which have received considerable media

attention.

Transport has historically been a target for terrorists, including aircraft hijackings

(particularly between Cuba and the USA in the late 1960’s and 1970’s) and later bomb-

ings, demonstrated by the downing of Pan AM flight 103 in December 1988 (the Locker-

bie bombing). Aircraft were still hijacked in the September 2001 attacks in the USA,

after which physical security on aircraft was improved further [1]. In the wake of a plot

to detonate liquid explosive on aircraft in 2006 [2], restrictions were placed on liquids,

prompting a further change in tactics, evidenced by a plot to detonate printer bombs [3],

which were intercepted in the UK. It can be seen that bombing has become the major

threat, with aircraft security constantly adapting to the threat.

For aircraft, the tactics of the terrorists have changed as security procedures have

altered in reaction to previous attacks, but aircraft style security is not easily applicable

to the rail system, especially in the UK. The perimeter security used at airports is not

feasible on the rail system, which is much more open, and for each train there is a much

higher turnaround of passengers, much shorter journeys, and the system as a whole,

and each journey, has many more entry and exit points. There have been a number of

attacks on the rail system in recent years, most of which follow the same bombing tactic,
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facilitated by the open nature of the rail system. The most notable, from a European

perspective, occurring in Madrid in 2004 and London in 2005, were responsible for the

deaths of 191 and 52 members of the public, respectively. Since then, other deadly

attacks have occurred on the rail system in Mumbai (July 2006), the Moscow Metro

(March 2010), Minsk Metro (April 2011) and Volgograd railway station (Dec 2013). If

potential attackers are not identified during the planning stage of an attack, it is difficult

to prevent a potential attacker entering the system and carrying out an attack. If they

do enter the system, the only way to reduce the overall impact of an attack may be to

limit physical effects and improve resilience of the system itself by ensuring stations and

rail vehicles have been designed with these risks in mind.

When a terrorist attack occurs, its effects are not limited to human injury and material

damage. The ability of a system to recover quickly and return to the state it was in prior

to an attack is also vital in determining the overall impact of an attack. The ability of

a system, such as a rail network or metro system, to resist physical effects and return to

normal operation in the wake of a terrorist attack can be termed its resilience. Improving

the resilience in the wake of an attack requires knowledge, or an accurate prediction,

of the effects that terrorist device is likely to have. In most historical cases of attacks

on the UK’s rail system, this is an explosive device of a size that a person can carry in

luggage such as a rucksack, or attached to the body. Knowing this, the physical effect

of an explosive device on the structures and people in the area surrounding the point

of detonation can be predicted, and this information can then be used to help improve

resilience and reduce harm to people. To investigate this, the following hypothesis is

posed, with the description of the process by which it is tested shown in Section 1.2.

“Rail vehicle design can influence the pattern of injury seen in passengers

when an improvised explosive device is detonated within a rail vehicle.”

1.2 Structure of this work

A test of the hypothesis above is undertaken in this thesis by breaking the problem

down into 6 stages, described over Chapters 2 to 7 along with concluding remarks and

recommendations of further work in Chapter 8, each building upon the last to develop

techniques to investigate blast loading in rail vehicles.

Chapter 2 reviews existing work on terrorism and terrorist attacks worldwide, as well

as covering pertinent theory on high explosives and shock waves, the finite element

method and the design and construction of rail vehicles.

The risk to humans from blast and projectile loading has been widely studied, which is

described in greater detail in Chapter 3. Risk models exist for injuries due to blast and

high speed fragments and projectiles, which range from simple pressure thresholds or

projectile velocities, to more complex models that use pressures and impulse to predict

the velocity of the chest wall, or those that predict the depth of penetration of projectile

into the body. A comparison of these risk models using experimental or numerical

data has not been previously undertaken and is important to identify which models

are most appropriate to be used to identify the risk that explosions, fragments, debris

and projectiles pose to passengers of a rail vehicle. Chapter 3 covers specific literature

on the prediction of injury patterns from IEDs. Existing techniques are reviewed and

their appropriateness to the current work is discussed, as well as the applicability and
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maturity of the techniques. A strategy for predicting injuries from IEDs in rail vehicles

is developed using a combination of GNU Octave and LS-Dyna.

Chapter 4 introduces the finite element modelling techniques to be applied using LS-

Dyna, and undertakes verification of the modelling method using empirical data from

ConWep [4], and identifies the important parameters that guide the future modelling

activities.

Chapter 5 presents experimental methods and findings of high explosive detonations

in a confined test cell using quarter symmetry. Tests were conducted in a rigid test cell

using baffles inside to alter the reflections of pressures within the cell, and these pressures

were recorded for use in model validation. Tests were also conducted using a flexible

structure in the centre of the test cell, where displacement data was gathered from a

central point on the panel. A total of 4 different test arrangements were investigated

as part of this work, with sensors moved in each test to build up a clear picture of the

propagation of shock waves within the structure. The experimental technique was on

the whole successful, and suggestions are given for improvements to the experimental

technique for future researchers.

A fundamental test of the accuracy of any numerical model is comparison with data

gathered from experiments or from first principles. Previous work has either not provided

any model validation at all, or the validation of numerical models has been limited.

Validation does not need to be done with full scale models or a physical version of

the structure to be modelled but should seek to test the fundamental principles of the

numerical modelling methods. This can be done with simple experimental tests that use

scaling and symmetry to reduce the size and cost of the experiment and importantly, are

easier to control and produce repeatable data from than complex full scale experiments.

Chapter 6 presents numerical models using LS-Dyna of 4 different experimental test

arrangements. The effect of afterburn was considered during the modelling using a

simplified method.

Chapter 7 uses the techniques from Chapters 3 and 6 to investigate the effect of

structure, confinement, design, internal features, and passenger density using 9 cases of

a rail vehicle subjected to an IED attack. Existing finite element models based on the

geometry and construction of representative vehicles which are currently in service on

the network have been produced by the vehicle manufacturer and were adapted for use

in modelling the effects of blast loading from explosive devices. An in depth analysis

on the critical variables is produced, discussing both the effects on individuals within a

vehicle and to the whole population of passengers within a rail vehicle.

Finally, Chapter 8 presents the findings of this work, together with potential areas of

improvement to experimental testing methods, numerical modelling and risk prediction

tools. Areas of interest for future research are also suggested, along with the implications

of this research.
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2

Literature Review and Theory

2.1 Terrorism and the rail system

The term ‘terrorism’ has very much become part of everyday vocabulary, particularly

since the world trade centre attacks in 2001, but terrorism has existed for hundreds of

years and has been used as a political tool throughout the last century. The recent

awareness of terrorism has come about in part due to the US led global “war on terror”,

as well as several high profile attacks around the world that have enabled people to pic-

ture a stereotypical terrorist. Importantly for those researching terrorism and measures

to counter it, they must have a clear idea about what it is, what it is trying to achieve

and by what methods. Terrorism can be difficult to define, and Record [5] explains how

terrorism is often defined by states as non-state violence and threats of violence towards

states and society, and how this can potentially legitimise state terrorism against it’s

members if they are referred to as terrorists. It is outside the scope of this work to

embark upon a thorough definition of terrorism, but some key features of a definition

are required. The Oxford English Dictionary defines terrorism [6] as:

“The unofficial or unauthorized use of violence and intimidation in the pur-

suit of political aims; (originally) such practices used by a government or

ruling group (freq. through paramilitary or informal armed groups) in or-

der to maintain its control over a population; (now usually) such practices

used by a clandestine or expatriate organization as a means of furthering its

aims.”

For a terrorist or terrorist attack to achieve maximum effect, violence or threats of

violence need to create maximum disruption or casualties, which often means public

areas with a high density of people and important pieces of national infrastructure.

This means that hotels (Mumbai, 2008 [7]), bars and tourist locations (Bali, 2002 [8]),

restaurants, transportation systems (London 2005 [9], Moscow 2010 [10]) and areas of

economic importance (World Trade Centre, 2001 [11]) are potential targets, as described

in reports detailing trends in terrorism [12, 13]. Rail vehicles and rail infrastructure have

been targets in the past, as they are often of vital economic and social importance to

the cities which they serve.

Terrorist attacks have historically occurred infrequently in the UK (although histor-

ically, up the year 2000, the UK was frequently targeted by the IRA and allies), but
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despite their low frequency, the level of disruption, climate of fear [14] they create in

society and the economic harm they cause can be very high. The biggest threat to the

rail system, both to infrastructure and passengers comes from targeted bombing of the

vehicles themselves, as identified by Powell and Fletcher [14] based on data from terrorist

attacks between 1998 and 2004. Notable examples of terrorist attacks on rail networks

that have been widely reported in the news, in Moscow [10], Mumbai [15], Madrid [16]

and London [9], have all been caused by bombs on vehicles.

Rail systems have unique features which often make application of security systems

and methods developed for use in other types of transit and public spaces unsuitable.

The perimeter security model of airports involves a large number of checks and requires

scanning of all luggage and presentation of photo identification before an individual can

access an aircraft, but this would be impractical on the rail network (described by TfL

officials in [17]). The rail network has a very high number of entry and exit points

(particularly metro systems such as the London Underground), and such a variable flow

of passengers over short periods of time that airport style perimeter security would

severely impair the smooth running of the system. It would be unlikely to be viable in

terms of both installing and operating the system, and the delays it would cause given

the limited frequency of such attacks.

Rail systems are very interconnected, so termini are often used for intercity, suburban

and metro systems and as a result the number of passengers that use such stations is

very great. In busy cities, where urban light rail such as the London Underground are

the backbone of public transport, passenger numbers are similarly high. By their nature,

termini are crowded places where there are predictable peaks in density of the crowds,

which can potentially aid somebody who looks to create a large amount of disruption.

As such rail systems can present an attractive target and pose unique problems for those

who look to prevent attacks from happening, or how to best recover from one.

2.1.1 Combating terrorism

Terrorism by its nature is unconventional and unpredictable, which means that com-

bating it requires unique and wide ranging measures. In the UK, the Home Office has

developed the CONTEST [18] strategy for countering terrorism, which comprises 4 key

objectives; to pursue, prevent, protect and prepare. The pursue and prevent objectives

deal with identifying, investigating, disrupting and prosecuting those who may look to

carry out a terrorist attack and preventing individuals being drawn into terrorism. The

protect and prepare objectives involve reducing the vulnerability, strengthening protec-

tion, reducing risk, mitigating the effects of a terrorist attack that has been carried out

as well as improving resilience.

Much research has been done to improve the design and technology of buildings and

public spaces to reduce the likelihood of a terrorist attack. Initial attempts at designing

against terrorism in the UK, such as the ‘ring of steel’ in the City of London, had a

fortress like approach involving extensive use of concrete barriers, CCTV and significant

access restrictions, that were not the most elegant or holistic solutions; in the wake

of the September 11th terrorist attacks in the USA, this fortressing of London, with

hardened areas and visible security was markedly increased [19]. Recently, there has

been efforts to improve urban design by incorporating counter terrorism (CT) features

into the initial design, which can both reduce the cost of implementing CT features
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and improve the aesthetics, compared to retrofitted CT measures [20] such as concrete

fortifications. Systems for designing against crime and terrorism have been championed

by the government and police, such as the Home Office Crowded Places documents [21]

and the Secured by Design [22] initiative.

Much of the recent work described above is designed with attacks from vehicle borne

improvised explosive devices (VBIEDs) in mind, which are a threat where vehicles can

gain access or get close to a building or space; by preventing vehicles getting close to

a potential target site the threat can be reduced. Countering the terrorist threat from

person borne IEDs (PBIEDs) is inherently more difficult, as humans are not restricted

by roads, are more mobile and can access open public spaces freely. The focus to date

has been on reducing locations to hide devices (such as removing bins from stations),

improving lighting and sight lines for CCTV and intelligent CCTV technology, as well

as using strengthened and improved materials [17, 14]. Importantly, these developments

and any proposed future developments should be cost effective, or provide improved

performance in various circumstances such as crime or passenger congestion, as the

financial and risk reduction case for exclusively designing for a low frequency terrorist

event are difficult to make.

The prepare objective of CONTEST concerns mitigation of the effects of terrorist

attacks, as well as planning the response to terrorist attacks. It is economically vital

to get any systems subject to a terrorist attack up and running under a normal service

as soon as possible [23], which can be achieved through thorough planning. Perry [24]

suggests one of the first guiding principles of emergency planning is accurate knowledge of

the threat and likely predictions of human response [24], which can be achieved through

studies of the interaction of certain threats with persons and their surroundings. Designs

to mitigate the effect of explosions should be proportionate to the threat, as well as not

adversely affecting the usability of a service or space, whether it be a public building or a

moving vehicle. In the context of a rail vehicle, this prevents bomb proofing that would

add unnecessary weight and features that would reduce passenger comfort or safety.

Combating terrorism on the rail network and in rail vehicles is by no means simple,

and there are many challenges to be overcome if features are to be added to rail vehicles

in the name of security and counter terrorism. One part of this can be predicting the

likely effects of a blast, both to aid future design and assist planning and readiness in

case terrorists strike. In the current project, the focus is on rail vehicles.

2.2 Explosions, explosives and shock waves

2.2.1 Shock waves

Shock waves are propagating disturbances in a medium that travel at supersonic speeds.

They are typically characterised by very sharp rises in pressure and density between

the unshocked regions and the region immediately behind the shock wave. The rises

are so sharp they are often considered as discontinuities and across a very small region

either side of the shock wave, the thermodynamic parameters are seen to jump [25].

Equations describing these jump conditions in 1D are based on conservation laws of

mass, momentum and energy and derivations are found widely in the literature [26, 25].

The jump conditions describing the relationship between properties on either side of a

shock wave (Figure 2.1) are shown in equations (2.1) (2.2) [26]. The property vi is the
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relative velocity, where vi = (ui − U), the internal energy per unit mass is ei and νi is

the specific volume.

shock

U

ρ0, p0

u0, ν0

ρ1, p1

u1, ν1

unshocked
region

shocked
region

Figure 2.1: One dimensional shock in a tube

Shocks can be termed as weak or strong depending on the size of ratio’s such as

the shock strength p1/p0 and the excess pressure ratio (p1 − p0)/p0. The lower limit of

a weak shock can be seen to be a sound wave, which travels at sonic velocities [26],

but weak shocks are generally considered to have a shock strength slightly over 1 and

excess pressure ratio that is small, although a precise definition of the level at which

shock waves are no longer ‘weak’ is generally not specified. Strong and weak shocks also

behave radically differently when reflected, which is discussed in more detail in Section

2.2.1.1.

A combination of equations (2.1), (2.2) and (2.3) (derivations can be found widely

in the literature in the same form [26, 27]) leads to the Hugoniot relation (2.5). The

Hugoniot equation describes all the points p, ν that satisfy the conservation equations

shown above, that is, when values of p1, ν1 for a given p0, ν0. The Hugoniot relation

can be used to determine the conditions for detonations, and also to determine possible

thermodynamic states a material can exist in behind a shock.

ρ0v0 = ρ1v1 (2.1)

p0 − p1 = ρ1u1v1 − ρ0u0v0 (2.2)

1
2v

2
0 + e0 + p0ν0 = 1

2v
2
1 + e1 + p1ν1 (2.3)

For the case that u0 = 0 (shock moving into stationary medium) and using

Equation (2.1), (2.2) becomes:

p1 − p0 = ρ0u1U (2.4)

e1 − e0 = 1
2 (p1 + p0) (ν0 − ν1) (2.5)

2.2.1.1 Reflection

Shock waves, as with other waves, can be reflected (as well as refracted and diffracted)

when they meet discontinuities and changes in the medium they travel through. This

could be a solid object, or changes in mediums properties such as density, which may

be due to a boundary between two materials (such as a liquid and a gas) or meeting a

shock wave travelling towards it.

Normal reflection is the simplest type of reflection and occurs when a shock wave,

moving perpendicular to a flat and rigid surface, is reflected and changes direction by
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180◦. At their lower limit, when weak shock waves are reflected, the ratio of excess

pressures (2.7) between atmospheric (p0), incident (p1) and reflected pressures (p2, cov-

ered in more detail in section 2.2.1.1) is roughly equal to 2 (i.e. the shock strength is

doubled), in agreement with sonic reflection [26]. Strong shock waves, which have a

very large shock strength, see significant increases in the strength of the shock when it

is reflected, with excess pressure ratios of 8 for gases where γ = 1.4 (such as air [28]).

From Equations (2.6) and (2.7) it is clear that for normal reflection, the value of the

reflected pressure p2 is a factor of incident and atmospheric pressure, and the ratio of

specific heats, γ .

p2

p1
=

(
2µ2 + 1

)
p1
p0
− µ2

µ2 p1
p0

+ 1
(2.6)

p2 − p0

p1 − p0
= 1 +

1 + µ2

p0
p1

+ µ2
≈ 2 +

1

µ2
(2.7)

where µ2 =
γ − 1

γ + 1

Regular reflection is reflection of a shockwave at an oblique angle, which results in

separate incident and reflected waves propagating from the surface. Consider an incident

oblique wave, as shown in 2.2, moving at angle αi impinges on a solid surface. A reflected

shock wave is set up at an angle αr and moves independently of the incident shock, and

the two waves only meet at a point on the reflecting surface. For weak shocks at their

lower limit, the angle of reflection αr is equal to the angle of incidence αi, but as the

strength of the shock increases, the relationship between αi and αr changes, as shown in

2.3 and deviates increasingly from the linear relation seen for weak shocks. Combinations

of angles where regular reflection occurs for a given shock strength are shown as solid

lines; it is clear that as shock strength increases, the range of incident angles that result

in regular reflection decreases. Regular reflection happens readily for weak shocks, but

for strong shocks, regular reflection can only occur when angles are small and approach

normal reflection. When angles are higher and tending towards movement parallel with

the reflecting surface, a phenomenon known as mach reflection occurs.

reflected wave
incident wave

αiαr

Ur

Ui

Figure 2.2: Incident and reflected plane shock wave

For each value of incident pressure, there is an angle αext which determines the limit

for regular reflection. When the angle is greater than αext, i.e. the shock travelling

more parallel to the wall, mach reflection occurs. Mach reflection occurs when reflected

wave skims off reflecting surface and immediately begins to merge with incident wave.

The reflected wave can have a higher speed and different angle of travel, so begins to

catch up with incident wave; the meeting begins at wall but moves away into space as

more of the reflected wave catches up with incident wave, known as the triple point.

Between the triple point (Figure 2.4) and the reflecting surface, a mach stem occurs
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αi

αr

90◦60◦30◦

30◦

60◦

90◦

p1
p0

= 1

p1
p0

= 1.02

p1
p0

= 1.25

p1
p0

= 2.5

p1
p0

= ∞

Figure 2.3: Relationship between angle of incidence, αi, and angle of reflection, αr for
regular reflection of shocks at γ = 1.4 [29]. Combinations of angles with dashed lines
not achieved in reality

and on the other side of the triple point, regular and incident waves exist separately.

A contact discontinuity, shown by the dashed line labelled CD in Figure 2.4, separates

the air undergoing shock from the mach stem from that shocked by the incident and

reflected wave. Mach reflection is an example of interaction between shock waves, a

process that has important consequences for confined environments, where there can be

a number of shock reflections from various surfaces that interact with each other, as well

as interaction between shock waves and discontinuities in the medium through which

they travel.

IR
IR

M

T

I

R

T

CD

M

Figure 2.4: Development of a Mach stem

For shock waves meeting boundaries between media, two waves are set up when the

shock meets the interface, a transmitted and reflected wave, shown schematically in

Figure 2.5. A shock wave is transmitted, but the reflected wave can be either a shock

wave or a rarefaction (expansion) wave, depending on the ratio of shock impedances

(2.8) [30, 31]. If the ratio of shock impedances of the transmitted and incident shocks
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(Z01/Z45, see Figure 2.5) is greater than 1 a shock is reflected, but if this ratio is less

than 1 a rarefaction wave is transmitted. For the simplest case of interaction between

two shocks, when two symmetrical waves meet moving towards each other normally, two

shock waves result moving away from the contact point as if they were normally reflected

by a rigid surface at this point, and the relations (2.1) – (2.3) stand. For analysis of

interactions between shocks and interfaces, problems are typically solved numerically

[32].

Zij = ρjcj

√
1 +

γ − 1

2γ

(
pj
pi
− 1

)
(2.8)

01

2 3
45

interface

transmitted wave
reflected wave

incident wave

symmetry plane

Figure 2.5: Transmission and reflection at interfaces

2.2.1.2 Spherical waves

Many relationships above make assumptions about processes, such as being 1D, isen-

tropic and the fluid in question being an ideal gas etc, to simplify the problem and

arrive at analytical solutions. In the reality, processes do not always adhere to these

mathematical assumptions; blast waves are three dimensional, and assumptions of ideal

gas and constant entropy not always correct. Despite this, the relationships above are

useful to get an appreciation of the complexities of dealing with shock waves.

In 1D, a shock wave maintains a finite size and energy is dissipated through frictional

and viscous means. In 3D, the size of the shock wave is ever increasing with distance

from the point of detonation, r, and would require a constant and increasing input of

energy to maintain the same strength. In reality a finite amount of energy is produced

during the detonation, so as the size of shock increases the energy available in the shock

to do work and compress the fluid decreases, and the peak pressure in the shock wave

decreases rapidly with increasing r. This rapid decay decrease in shock strength leads

to a corresponding decrease in change of entropy, such that flow behind the shock is no

longer isentropic [26]. General analytical solutions for spherical waves do not exist and

therefore problems are typically solved numerically, such as by Brode [33].

Explosions are rapid releases of energy, and in most cases on earth are caused by

rapid and extreme heating, vapourisation or production of gas from a chemical reaction.

Explosive materials cause explosions by the latter, releasing energy by a rapid chemical

reaction that produces large volumes of high temperature gas. Explosives can be further

categorised as high or low explosives; low explosives release their energy by deflagration,
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where the chemical energy is released by a flame front that propagates through the

explosives at subsonic speeds. Energy is released from high explosives by a shock wave

that propagates through the material at supersonic speeds (referred to as the detonation

velocity Vd, 6-8.5 km/s for high explosives), releasing the stored energy much more

quickly than low explosives.

To get useful energy from low explosives they need to be confined throughout the

whole chemical reaction, but they burn for long times in comparison to high explosives

so are useful as propellants, in artillery shells for example. High explosives develop

much higher pressures and lead to strong shock waves propagating though air, or when

in contact with solid materials set up intense stress waves that can lead to rapid failure

of even very thick and strong materials. The pressures generated at the surface of the

explosive, which are typically in the region of several GPa, are usually far in excess of

the pressure required to cause failure; when materials are subject to such loads, where

the forces on them far exceed their strength, material density becomes the dominant

material parameter and its behaviour is referred to as hydrodynamic.

P (t) = Po

(
1− t

td

)
exp

(−bt
td

)
(2.9)

Second shocks are a feature of spherical and cylindrical shocks, their approximate

form shown in Fig 2.6, with S1 showing the main shock front and S2 showing the second

shock. Their existence has been known since the first theoretical and experimental

studies, but either for simplicity of lack of awareness are not commonly included when

the Friedlander curve (from Equation (2.9)) is plotted. They are of small magnitude

compared to the initial shock wave, and consequently are more commonly found at small

scaled distances (see Section 2.2.2 for a description of scaled distance). They are formed

by interactions between the negative pressure gradient rarefaction waves following the

main shock and the positive gradient of the gases closer to the centre of detonation. The

formation of second shocks is described in detail by Brode [33], experimental work Boyer

[34] and theoretical work Friedman [35] and is a necessary feature of the 3D expansion

waves. The second shock begin initially as a weak outwards travelling discontinuity that

increases in magnitude, before collapsing back towards the centre of detonation and

reflecting as an outwards travelling shockwave.

2.2.2 Explosions and explosive materials

If the pressure at a single point in a free field is measured when a high explosive is

detonated, a characteristic curve is produced, shown in Figure 2.7. There is a sharp,

almost instantaneous rise to peak overpressure, ps, which is caused by the arrival of the

front of the shock wave. A rarefaction wave follows the shock wave and leads to an

exponentially decaying pressure, and this rarefaction wave typically over expands the

gases, which causes the pressure to fall below atmospheric pressure before it returns to

its pre shocked value.

The parameters that define each shock, such as peak overpressure ps, cumulative

impulse ipos, arrival time ta, and positive phase duration td, can be related for charges

of different masses and stand off by a value known as the scaled distance, Z, defined in

equation (2.10). The quantity R is the distance from the point of detonation, and W

12
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Figure 2.7: Typical pressure profile for a blast in free air

is the explosive mass. Values for shock wave parameters for a given scaled distance are

given in Figure 2.8 for a free air blast using TNT, which shows that all charges of the

same scaled distance have the same absolute peak pressures, and the same scaled impulse

and time quantities. It is also possible to see from the scaled distance chart in Figure

2.8, that arrival time and positive phase duration are only functions of scaled distance

and do not change between free field and reflected pressures at infinite rigid surface.

Scaled distance charts such as Figure 2.8 are useful as they can provide a huge amount

of data on a single chart, which can describe most charge and standoff combinations that

are likely in reality. Scaled distance curves are based on data from a large number of

experiments carried out with TNT charges, and along with the widespread use of TNT

in research into explosive effects in the mid to late 20th Century which forms much of
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the body of knowledge still referred to today, TNT is the reference explosive to which

others are often compared. This is most commonly done by the use of mass equivalence;

that is, the multiplication factor required for a given mass of non TNT explosive that

gives a mass of TNT which produces identical blast wave parameters. For most plastic

explosives such as PE4 and C4, a TNT equivalence of 1.2 has been found to be correct

[36].

Z =
R

W 1/3
(2.10)
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Figure 2.8: Shock wave parameters versus scaled distance for a free air blast of TNT

For the simple case of free air and surface bursts, the side on and reflected pressures

on large rigid targets, as well as impulses and time have been well documented and

parameters for most conceivable situations exist, in curves such as Figure 2.8 [37] and

programs like ConWep [4]. When targets are finite in size, it is possible that edge effects

can alter the pressure experienced over the structure and cause the pressure history to

deviate significantly from that seen for simple or ideal circumstances. The interaction

between pressures experienced on the face of a target and the edges is known as clearing

and leads to an early and sharp drop away from the Friedlander curve during the positive

phase, as shown in Figure 2.9. When a shock wave is incident on a finite target, it is

reflected from the face of the target, but at the edges of the target, the shock continues

undisturbed past the target. The interaction between these different movements of shock

waves leads to a rarefaction wave that travels from the edges towards the centre of the

target and relieves the pressure, leading to a sudden drop.

Although methods have been produced to determine clearing effects analytically, they

are often only applicable under certain criteria. Tyas et al. [36] have applied a method

developed by Hudson [38] that assumes that shocks are plane and weak (which limits

the method to larger scaled distances), as well as long targets where effects from the

back face can be ignored. Rigby et al. [39] used SDOF models to investigate the effects

of clearing, and found that when the period of loading is significantly different to the

natural period of the target, much lower values of peak displacement are seen compared

14



Modelling Blast Loads in Rail Vehicles T.Anthistle

p
re

ss
u

re

time

no clearing

clearing

Figure 2.9: Influence of clearing on pressure history

with not considering clearing. For the situation where natural period and loading period

are comparable, greater peak displacements were observed. Smith et al. [40] conducted

experimental tests to determine the effects of clearing. They found clearing effects

more noticeable at the edges of targets, and also that at large scaled distances the

effects of clearing are smaller than at small scaled distances. It is important to note the

authors struggled to achieve good repeatability, and that their conclusion that ConWep

produces conservative estimates and is therefore satisfactory for design purposes, is in

contradiction to the findings of Rigby et al. [39].

2.2.2.1 Secondary combustion: Afterburn

Common high explosives such as TNT and RDX contain large amount of nitrogen,

which is liberated on decomposition when much of the solid explosive is turned almost

instantly to high temperature gas, and examples of typical decompositions are given in

(2.11), (2.12) [27] and (2.13). When the gas is produced during the detonation, it is

under extreme pressure and expands very rapidly, compressing the surrounding air and

producing a shock wave in the air, which propagates away from the point of detonation.

Nitroglycerine: C3H5N3O9 −−→ 3 CO2 + 2 ·5 H2O + 1 ·5 N2 + 0 ·25 O2 (2.11)

TNT: C7H5N3O6 −−→ 3 ·5 CO + 3 ·5 C + 2 ·5 H2O + 1 ·5 N2 (2.12)

RDX: C3H6N6O6 −−→ 3 CO + 3 H2O + 3 N2 (2.13)

Many explosives have an oxygen deficiency, the common high explosives RDX and TNT

are examples, and the decomposition equation for RDX (2.13) shows CO is produced

due to this incomplete reaction. This oxygen deficit indicates that additional energy

is available to the reaction if there is sufficient available oxygen from other sources,

such as surrounding air. The afterburn reaction happens once the decomposition of the

explosive is complete and the shock wave has begun to propagate away, and relies on

oxygen being drawn in and mixing with the hot products of detonation in the resulting

fireball behind the shockwave. As a result, the extra energy that can be liberated does
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not contribute to the magnitude of the air shock, but can increase the total impulse

compared with an equivalent mass of explosive with a positive oxygen balance such

as nitroglycerine (2.11) [41, 42]. Edri et al. [43, 44] found that there was significant

under prediction of long term cumulative impulse when afterburn was not considered,

compared to numerical predictions which included afterburn and experimental results,

but quantitative discussion on the effects of afterburn are not given.

When a chemical reaction happens, such as combustion of a hydrocarbon, there is

a difference between the enthalpy of formation for the reacted and unreacted products

known as the heat of reaction, which determines the energy released or consumed during

the reaction. For a reactant subject to a complete combustion, where all products are

completely combined with oxygen until they reach their most oxidised state, the energy

released is a special case of the heat of reaction, known as the heat of combustion. When

an explosive detonates, the energy released during the decomposition (such as that shown

in 2.13), not including any secondary reactions of the explosive or its products, is known

as the heat of detonation. When explosives do not contain sufficient molecular oxygen

to oxidise all products completely, they are known as underoxidised, and they can have a

heat of detonation that is significantly lower than the heat of combustion. The difference

between the energy released during detonation, the heat of detonation, and the heat of

combustion of an explosive is known as the heat of afterburn [45]. This can be calculated

from the differences in the heat of formation of the reactants (the underoxidised products

of detonation) and their products once oxidation has taken place. The relations in

Equations (2.14) and (2.15) are the afterburn reactions for TNT and RDX which show

how the products of detonation are oxidised. The heat of afterburn can be calculated

from these equations using Equation 2.16. Using equations (2.15) and (2.16), the heat

of afterburn can be calculated using heats of formation from [28] as shown in (2.17) for

a molar mass of 222.117 for RDX.

TNT: 3 ·5 CO + 3 ·5 C + 5 ·25 O2 −−→ 7 CO2 (2.14)

RDX: 3 CO + 1 ·5 O2 −−→ 3 CO2 (2.15)

∆H0
r = Σ∆H0

f (products)− Σ∆H0
f (reactants) (2.16)

∆H0
AB = Σ∆H0

f (CO2)− Σ∆H0
f (CO)

= 3(−393.520)− 3(−110.530)

= −848.97 kJ/mol of RDX

= −3.82203× 103 kJ/kg (2.17)

for TNT with M = 222.1169 g/mol = 4.502 mol/kg

Daily [46], Togashi et al. [47], Alves et al. [48] and Pope [49] have all described nu-

merical models which include the effects of afterburn, all using a standard equation of

state, the Jones-Wilkins-Lee or JWL (described later), to describe the pressure of the

detonated products, with a time dependent energy addition term used to account for

the afterburn. This time dependant energy addition is calculated for each explosive
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case, with highly oxygen deficient explosives such as TNT (see Equations (2.12) and

(2.14)) providing more afterburn energy than less oxygen deficient explosives such as

RDX (Equations (2.13) and (2.15)).

Alves et al. [48] describe a new Jones-Wilkins-Lee (JWL) equation of state (EOS)

incorporating afterburn using the form shown in Equation (2.18). The JWL equation

in its normal form (see Equation (2.36) in Section 2.3.4) will give the pressure purely

as a result of the energy release from detonation, but the modified form in Equation

(2.18) gives the pressures from both detonation and afterburn, Pd+ab. This is done by

simply adding an additional energy term, Eab, divided by the relative volume, v, and

incorporating a time dependency function, Yp(t) to give a time dependent pressure term

due to afterburn. This can be implemented in software codes by either adding this extra

energy to the afterburning material as a separate function to the detonation process,

or modifying the numerical routine for the JWL EOS to include this extra term, and

including it as a subroutine within the code.

PJWLa = PJWL +
Eab
v
Yp(t) (2.18)

2.2.2.2 Gas pressures and venting

When explosions occur within confined structures, the confinement of the products of

the explosion and any subsequent combustion can lead to the development of significant

quasi static gas pressures (known as QSPs), which can in some circumstances be the

dominant loads on these structures [50]. Pressure profiles in confined spaces are more

complex than simple free air overpressure curve in Figure 2.7, as demonstrated in Figure

2.10. Two separate phenomena are seen on a pressure time history when explosions occur

in confined environments; there are a number of reflections of the shock, characterised

by a number of sharp pressures rises followed by a decay, and a QSP, where the rate of

decay is slow compared to the positive phase duration of the reflected shock waves. This

maintained pressure, shown in Figure 2.10, occurs when the products of the explosions

can’t escape quickly from the structure, and a higher volume of gases exist and create

a high pressure. The magnitude and rate of decay of the QSP can be affected by

the volume of the confining geometry and the presence and size of any orifices which

can ‘vent’ the pressures to atmosphere. The behaviour of QSPs can also be affected

by afterburn, which can continue to release heat energy slowly and increase the QSP

compared to an equivalent charge with no afterburn [51].

It is common in process industries and in offshore installations to use blast relief panels

to mitigate the effect of explosions [52], by failing rapidly and preventing significant

build up of QSPs, which could lead to structural damage. In gas explosions, venting

with blast relief panels can significantly reduce the peak gas pressure [50, 53, 54], but

when high explosives detonate, the peak QSP is seen to be a function of the charge

mass and enclosure volume, and is independent of vent area [4, 55]. Explosions in

process industries and offshore applications are often caused by the deflagration of gas,

vapour and dust, which have significantly lower flame speeds than high explosives. The

flame in gas and dust explosions also has to propagate through the fuel mixture [56]

domain for all the energy to be released, whereas with a high explosive the initial energy

release is almost concentrated at a point. With high explosives there is a need for the
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explosive products to expand into the confining volume, and with the effects of afterburn

considered, high explosives can produce gas pressures with similar pressure time features

to slower burning deflagration explosions.

2.3 Finite element method

The numerical models described throughout this work rely upon one of the most com-

monly used and widely applied analysis tools in engineering, the finite element method.

The finite element method can be applied to a huge variety of problems, such as mag-

netic and electric field problems and heat transfer, but the focus in this work will be

on determining structural response and the use of the Arbitrary Lagrangian Eulerian

(ALE) method for treating materials that undergo significant deformation.

2.3.1 Elementary theory

One of the features of the finite element method that have led to such widespread use

is the generality of the method, which means there are many ways in which the finite

element method can be formulated and subsequently solved. There are though, a number

of steps in development and solution of a finite element problem, which are completed

in a specific sequence that is common across finite element procedures [57, 58]:

1. Discretise the structure into a number of connected elements and nodes

2. Choose functions to determine field variables in each element

3. Generate matrices to express the properties of the elements

4. Assemble matrices to generate system equations and apply boundary conditions

5. Solve the system equations for the required field variables

A simple example of these steps can be demonstrated using the direct stiffness method

to develop the system equations. Figure 2.11 shows a systems of bars in 1D, with 3 ele-
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Figure 2.11: A system of bars in tension

ments (in brackets) and 3 nodes, at which interactions can take place between elements,

and forces can be applied - this is step 1 in the above approach. Secondly, a function

is chosen to define how a field variable (in this case, displacement) is altered by the

application of a force, F , which for simplicity can take the form shown in Equation 2.19,

where F,E,A,L and δ assume their usual meaning from basic solid mechanics. Con-

sidering each bar separately allows step 3 to be completed, with equilibrium equations

written for each in matrix notation, shown in Equations (2.20), (2.21) and (2.22).

F =
EA

L
δ (2.19)

Element (1), cross sectional area A, elastic modulus E and length L/2:

{
F1

F2

}
= 2

AE

L

[
1 −1

−1 1

]{
δ1

δ2

}
(2.20)

Element (2), cross sectional area A, elastic modulus E and length L:

{
F2

F3

}
=
AE

L

[
1 −1

−1 1

]{
δ2

δ3

}
(2.21)

Element (3), cross sectional area 2A, elastic modulus E and length L:

{
F2

F3

}
= 2

AE

L

[
1 −1

−1 1

]{
δ2

δ3

}
(2.22)

The fourth step is to construct the global structural matrix by summing the forces at

each node, known as assembly. At node 1, two forces exist, which can be found from

equations (2.20) and (2.21):

ΣF1 = 2
AE

L
· δ1 − 2

AE

L
· δ2 + (0) · δ3 (2.23)
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ΣF2 =

(
−2

AE

L
· δ1 + 2

AE

L
· δ2 + (0) · δ3

)
+

(
AE

L
· δ2 −

AE

L
· δ3
)

+

(
2
AE

L
· δ2 − 2

AE

L
· δ3
) (2.24)

Repeating for F3 and summing allows the global stiffness matrix [K] to be constructed

for Equation (2.25):

{Fi} = [K]{δi} (2.25)

[K] =
AE

L




2 −2 0

−2 2 + 1 + 2 −1− 2

0 −1− 2 1 + 2


 =

AE

L




2 −2 0

−2 5 −3

0 −3 3


 (2.26)

The final assembled matrix is shown in Equation (2.27).





F1

F2

F3





=
AE

L




2 −2 0

−2 5 −3

0 −3 3








δ1

δ2

δ3





(2.27)

In this form, the system of equations is not solvable as there are currently 3 equations

and 6 unknowns. Adding the boundary conditions δ3 = 0, F1 = −F and F2 = 0 reduces

the number of unknowns and yields a solvable system of equations, shown in Equation

(2.28).

For the rail vehicle that will be modelled in later Chapters, shell elements will be used

to discretise the rail vehicle structure, and using the appropriate material parameters,

appropriate stiffness matrices can be generated. The forces applied to the nodes of the

structure will be calculated from the prediction of the blast pressures, and appropriate

boundary conditions for any known fixed positions on the rail vehicle will also be applied.





−F
0

F3





=
AE

L




2 −2 0

−2 5 −3

0 −3 3








δ1

δ2

0





(2.28)

The assembled system matrix typically has several important features, which have

important implications for storing and processing them. The size of the system matrix

is governed by the number of degrees of freedom of the system under investigation. For

the 3 degree of freedom system shown in Figure 2.11, the stiffness matrix is 3×3, and

adding a extra spatial dimension to the same analysis would add an extra 3 degrees

of freedom, leading to 6×6 matrix. The system matrices (the stiffness matrix in static

analyses) are n × n in size, where n is the number of degrees of freedom, equal to the

number of nodes multiplied by the number of spatial dimensions used in the analysis.

From this, it is clear that 3 dimensional analyses using large numbers of nodes can
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lead to very large system matrices. System matrices often have 3 important properties

that can be advantageous; they can be banded, sparse and symmetric. Banding refers

to the non-zero terms of the matrix being clustered around the main diagonal, and

the size of the band is directly related to the maximum difference between two global

node numbers within an element definition [57]. An efficient node numbering procedure

will lead to a small band, but poorly numbered nodes will lead to non-zero terms a

large distance from the main diagonal. The fact that non-zero terms are clustered in a

band around the main diagonal, with a large number of zero terms, makes the matrix

sparse. Matrices are sparse, because each element has only a small number of nodes

compared to the global total, and only a limited number of elements share each node.

If matrices are also symmetric, the storage space required can be almost halved, but

stiffness matrices are only guaranteed to be symmetric when the structures are linear,

and referred to in orthogonal coordinates [57] (which is the norm in most codes). Sparse

and banded matrices are useful because they reduce the amount of memory required and

improve the speed at which matrices can be processed. It is important to understand

this relationship between the mesh and formation of the fundamental equations, as user

generated meshes that are poorly numbered can lead to poor performance and errors.

2.3.2 Time domain dynamics

In many real engineering problems, it is not satisfactory to assume that the problem

under investigation is independent of time. It may be important to identify the velocities

and accelerations of certain areas of a structure, or predict how the stress field develops

with a time varying load. As a result, it is important to include an inertial force term

into the general form for the finite element equation from Equation (2.25), as well as a

velocity dependent damping force to give the general equation of motion for the dynamic

response (2.29).

{F (t)} = [M ]{ü}+ [C]{u̇}+ [K]{u} (2.29)

The finite element method requires that mass of the studied system be discretised into

a mass matrix, [M ]. The discrete representation of continuous mass of the real structure

can be achieved in two ways, using either a consistent mass matrix, or by a lumped mass

matrix. Consistent mass matrices are generated by using the same functions to represent

the distribution of mass as used to generate stiffness matrices. Lumped mass matrices

are formulated by putting a particle mass, mi, at each nodal point of the mesh, such

that the sum of nodal masses is equal to the mass of the system. Lumped mass matrices

are typically used in older numerical codes (such as LS-Dyna), and those where fast

transient phenomena are to be studied, as it results in a diagonal mass matrix. This is

advantageous, as it is easier to form, requires less storage space, and also allows more

efficient element by element processing [57, 59].

2.3.2.1 Explicit time integration

There are two methods that can be used to progress the time of a numerical solution; im-

plicit and explicit time integration. Schemes are referred to implicit when they consider

dynamic equilibrium (2.29) at t + ∆t, whereas explicit integration considers dynamic
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equilibrium at time t. The fact that implicit schemes require a prediction of some pa-

rameters at some point at the future time step in order to calculate all parameters at

the next time step from the current time, makes them more complex than explicit inte-

gration, where all calculations are made using information from the current time step.

Explicit integration uses much shorter time steps than implicit integration, with explicit

solvers typically requiring 100 to 10000 extra time steps to solve a problem of the same

duration. One of the disadvantages of implicit solutions though, is that calculations at

each time step are significantly more complex and the computational cost at each step

is unknown and variable due to the requirement for equilibrium convergence [60]. When

considering highly dynamic phenomena, it is important that time steps for each calcula-

tion are short enough to capture all the required behaviour such as strain rate behaviour,

wave propagation and very high accelerations, thus it is much more appropriate to use

explicit schemes to model these kind of problems than using implicit schemes as full

advantage cannot be taken of the significantly longer time steps. Conversely, implicit

schemes are much more appropriate for studying behaviour of systems over hundreds of

milliseconds or seconds, where the number of time steps required by an explicit scheme

may prove unnecessarily expensive if information is not required at very short time

intervals. Explicit time integration is conditionally stable and requires that the time

interval between calculations be equal to or less than a critical timestep, which is equal

to the time taken for a wave to cross an element. For beam, truss and shell elements,

the critical timestep, ∆tc is given by (2.30), where L is the shortest distance between

two nodes in any element, and c is the wave speed in the given material. A stability

fraction or scale factor in the region of 0.6-0.9 is usually used to multiply critical time

step computed internally within the code, to ensure that the solution is stable. As the

elements deform or are removed, the internally computed time step is updated to ensure

that stability remains when nodes become closer together and shorter time steps are

required.

∆tc =
L

c
(2.30)

Time integration in explicit numerical codes is most commonly achieved using the

central difference method, where known quantities from the current timestep are used

to calculate nodal accelerations, velocities and displacements at the next time step, which

can then be used to update element properties such as strains, stresses and pressures

as well as nodal forces. An overview of the principal workings of the central difference

method from Bathe [59] is given below. Implementation of the central difference method

for each code is often given [60] to ensure the user is aware of exact steps.

Nodal accelerations and velocities at t can be written in terms of displacement at

t+ ∆t and t−∆t, where ∆t is the time step.

{ü}t =
1

t2
({u}t−∆t − 2{u}t + {u}t+∆t) (2.31)

{u̇}t =
1

2∆t
(−{u}t−∆t + {u}t+∆t) (2.32)
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Substituting these relations into the dynamic equilibrium equation (2.29), and collect-

ing terms for displacement at t+ ∆t on the left side gives:

(
1

∆t2
[M ] +

1

2∆t
[C]

)
{u}t+∆t = {F (t)}t −

(
[K]− 2

∆t2
[M ]

)
{u}t

−
(

1

∆t2
[M ] +

1

2∆t
[C]

)
{u}t−∆t (2.33)

For all cycles other than the first, the entity {u}t−∆t can be read from the previous

cycle, but in order to calculate this value for the first cycle, a combination of the initial

conditions for acceleration and velocity and relations (2.31) and (2.32) is used. For the

first cycle, {u}t−∆t is given by:

{u}t−∆t = {u}t=0 −∆t{u̇}t=0 +
∆t2

2
{ü}t=0 (2.34)

2.3.3 Arbitrary Lagrangian Eulerian method

Most finite element problems use a Lagrangian formulation (as discussed so far), where

the elements and nodes represent the physical structure and change shape and position

as the structure deforms. This is beneficial, as there is no mass flow (or material trans-

port) between elements, which means terms for such can be ignored and the fact the

mesh distorts with the material means that although volume and density can change,

the mass of an element stays the same so mass conservation is always satisfied. This

means that material and structural boundaries are automatically represented, meaning

that boundary conditions and contact between parts of the mesh can be handled in a

straightforward manner. In contrast, Eulerian codes utilise a fixed mesh, through which

material is transported at each step. This can be advantageous in some situations,

where material undergoes large and complicated patterns of distortion, such as in fluid

flow, where elements in a Lagrangian mesh would become highly distorted, leading to

very short time steps and possibly solution instability. An illustration of the differences

between Eulerian and Lagrangian solutions is shown in 2.12

It is clear that both Lagrangian and Eulerian methods have advantages over each other

in given circumstances, which means that choosing one or the other could mean making

a sacrifice in computational cost or accuracy, if the features of both are required in

calculation (e.g. contact between highly deforming bodies). The Arbitrary Lagrangian

Eulerian (ALE) method seeks to take advantage of features of both for use when neither

Lagrangian or Eulerian methods are satisfactory. The ALE method for each time step

is given by Zukas [58] and the LS-Dyna theory manual [60]:

1. Perform Lagrangian step (mesh and material moves together)

2. Perform an ‘advection’ step:

(a) Identify nodes to move

(b) Move nodes on boundary

(c) Move interior nodes

(d) Calculate transport of element variables
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Lagrangian

Eulerian

undeformed deformed

Figure 2.12: Deformed and undeformed structures using Lagrangian and Eulerian meth-
ods

(e) Calculate momentum transport and update velocities

The ‘advection’ step involves two distinct phases, one where changes to the mesh are

made and one where transport of material is performed by calculating new values for

element properties such as stress, strain and pressure and the new nodal velocities. As

well as the whole process from (a) to (e) being referred to as advection, the material

transport calculations methods performed at (d) and (e) are also referred to as advection

algorithms. When the steps taken at a) b) and c) are required the nodes are moved

according to features of the material behaviour and smoothing algorithms are required

to calculate the new positions of nodes. Under some conditions, such as when explosions

in air are modelled with ALE methods, it is appropriate to set the mesh velocity to zero

and ignore any smoothing and nodal points are reset to their original position at every

advection step.

The mesh rezoning and transport calculations are typically significantly more time

consuming (2-5 times, [60]) than a Lagrangian step, but the computational cost of ALE

methods can be reduced by only performing advection steps after a certain number of

Lagrangian cycles.

2.3.3.1 Advection methods in LS-Dyna

The advection process in LS-Dyna consists of two separate steps, one which calculates the

transport of element centred variables (ALE elements have a single central integration

point) such as density and internal energy, and one which updates nodal velocities and

element velocities, or the momentum transport.

Transport of element variables is done using either a first order or second order ac-

curate algorithm. The first order donor cell algorithm assumes constant interpolation

function, Φ, over the element, whereas the second order van Leer algorithm uses a higher

order piecewise linear interpolation function to improve accuracy. The value of the in-

terpolation function at the centre of the element (required to compute element centred

variables) is considered as an average of Φ over the whole element, not specifically the
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value of the function at the spatial point in the centre of the element. Both the first

order and second order algorithms are one dimensional, so their use in 3D is achieved by

simultaneous calculations of fluxes from element faces in each direction. This is known

as isotropic advection [60], and because transport is calculated at element faces, there

is no transport between elements that do not share faces. It is important to remember

this when constructing meshes, as isotropic advection introduces a second order error

which can be significant when the majority of transport occurs across mesh diagonals

[60].

Momentum transport in LS-Dyna is calculated by the half index shift algorithm. It

is an element centred momentum transport algorithm, which has advantages over other

schemes by reducing dispersion and smearing of shocks.

2.3.4 Equations of state

In highly dynamic problems where wave propagation is important, it is often important

to determine the pressure within solid or fluid elements. Equations of state are used to

provide a relationship between the volume V , and / or density, ρ. Many equations of

state (EOS) that are implemented in numerical codes are phenomenological and have

their origins in empirical data, with the form taken to best describe the observed ex-

perimental behaviour, and input parameters determined experimentally. The empirical

approach to deriving these equations of state means that most are limited to treating

specific materials, specific materials phases or specific stages in a materials dynamic

response. The Mie-Gruneisen EOS, for example, is one of the most commonly used

equations of state used in hydrocodes to represent solids, but cannot be used for liquids

or gases and cannot be used when any transitions occur between states [58].

Two important equations of state for modelling the behaviour of gases are shown

below, the simple linear polynomial equation (2.35) which can be used to represent ideal

gases with C4 and C5 set to γ − 1, and the Jones Wilkins Lee equation of state for high

explosives (2.36), which is used to describe the pressure of the detonation products of

high explosives. Numerical calculation of equations of state within codes also requires

the calculation of the bulk modulus to identify any changes to the speed of sound caused

by volumetric changes of elements, which is calculated by (2.37).

p = C0 + C1µ+ C2µ
2 + C3µ

3 + (C4 + C5µ+ C6µ
2)E0 (2.35)

where µ =
1

V
− 1

p = A

(
1− ω

R1V

)
e−R1V +B

(
1− ω

R2V

)
e−R2V +

ωE0

V
(2.36)

K = −V dP

dV

= ρ
dP

dρ
(2.37)
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2.4 Structures under extreme loading

2.4.1 Impulsive loads on simple structures

A large body of theoretical and experimental work has been carried out on simple struc-

tures subject to impulsive loads, particularly clamped circular and square plates. Early

theoretical studies of plastic deformation in uniformly impulsively loaded plates were un-

dertaken by Wang and Hopkins [61], to begin to understand the effects of shock waves

with structures. Simplifications were made by assuming the plate is sufficiently thick

that bending and not membrane action dominates and that the structure is under suf-

ficient load that it behaves plastically, as the solution assumes no elastic deformation.

The plate is loaded by assuming a uniform velocity across the areas within the clamped

region at t = 0, and use of rotational symmetry around a circular plate, allowing depen-

dence of the problem on the radius, r, also helps to simplify the problem. Hopkins [62]

presented a generalized theory on the deformation of thin plates, which is used by Cox

and Morland [63] to investigate the dynamic deformation of simply supported square

plates, but with simplifications to the yield criteria. Wierzbicki [64] added increased lev-

els of complexity and realism to theoretical models by including the effect of strain rate,

which was shown to bring theoretical results much closer to experimental observations.

At this point, Wierzbicki notes that there are two major sources of discrepancy caused

by effects that are currently not included in current theoretical results; the effect of

membrane forces and the assumption of ideal impulse, where the structure under inves-

tigation is assumed to take up velocity immediately. Jones [65] undertook one of the first

analyses of the combined effect of membrane action and bending for a simply supported

dynamically loaded plate, and identified that membrane action is important to consider

once the distance of plastic hinges from the centre of the plate has reduced to zero. Li

and Jones [66] have also provided an analysis to predict the final deformation of short

cylindrical shells under blast loading. Batra and Dubney [67] looked to extend the work

of Jones by identifying not just the final central deformation of a panel, but also the

deformed shape. The loading is applied as an instantaneous velocity to the whole panel,

and strain rates and rotary inertia are ignored, as with many previous solutions. Still,

the derived equations for the plate are solved numerically for incremental deformations.

To prove the validity of theoretical and numerical results, a large number of exper-

imental tests have been undertaken and reported in the literature. Jones et al. [68]

investigated the plastic deformation of square plates loaded by high explosive detona-

tion, finding that strain rate effects in steel and geometry changes in the plate played an

important role, and that theory at the time predicted results well for small deflections

and strain rate insensitive materials. Nurick [69] investigated failure modes, and identi-

fied that failure mode was strongly dependant on the impulse delivered to the plate and

the boundary conditions. Recently, Spranghers et al. [70] and Tiwari et al. [71] have both

used high speed 3D DIC to improve the data yielded from experimental tests, allowing

full field measurement of deformations, strains and stresses in a flat plate exposed to a

blast load, making comparison with numerical results easier, as well as providing sig-

nificantly more information on the behaviour of a structure that can be achieved solely

with more traditional means.

Much of the above work considers shock or impulsive loading of structures, where

the pressure rise time or the load application can be considered instantaneous. Highly
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dynamic loading can also occur from loads where the load is not applied instantly,

such as those that occur from deflagrations of hydrocarbons and dust, as described in

Section 2.2.2.2. Extensive work has been undertaken at the University of Liverpool to

understand the effects of structures under pulse pressure loading, where the relative rise

and decay time of the pressure load can be controlled. Schleyer [72] conducted studies

on clamped stiffened and unstiffened mild steel plates with a loading area of 1m × 1m

with different boundary conditions. The effect of boundary conditions were seen to be

important in line with prior work by Jones [73]. Where specimens were subject to in

plane restraint as well as rotational restraints, peak and permanent deformation was seen

to be lower, and the effect of stiffening ribs was also significant. When only rotational

restraint was applied (in plane restraint purely frictional), the effect of stiffening ribs was

negligible, and both peak dynamic and permanent plastic deformation were significantly

higher. Investigations of aluminium panel failure using similar loading methods were

conducted by Langdon and Schleyer [74]. Where failure occurred, it was seen that

tensile tearing around the clamped boundaries was primarily responsible for failure, and

considerable deformation and necking around the boundaries was seen when failure did

not occur. It was concluded that deformation and failure modes in pulse loaded panels

were in line with existing theory on impulsively loaded structures. These failure modes

were defined by Menkes and Opat [75] as:

• Mode I – large ductile deformations;

• Mode II – tensile tearing at or over the supports

• Mode III – transverse shear failure at the support

Investigation of these failures has been conducted both experimentally and theoreti-

cally. Teeling-Smith and Nurick [76] conducted testing on fully clamped circular plates

subject to increasing impulses, and found limiting values for each of the failure modes.

Highest central deformations occurred at the limit of mode I, and subsequently central

deformation decreased as applied impulse increased, with plates failing rapidly in tension

or shear at the points of clamping before significant plastic deformation of the remainder

of the panel was possible. Similar results for square plates were reported by Nurick and

Shave [69].

As well as failure in one of the three modes described above, it is also possible for

structures such as plates to fail by petalling. This can occur when a plate is struck by

a projectile, but can also occur when the impulsive load provided by an explosion is

applied centrally over only a portion of the plate [77].

As well as theoretical and experimental work investigating plates under blast loading,

there has been much work undertaken using numerical methods, particularly the explicit

finite element method. Rudrapatna et al. [78] investigated blast loaded square plates us-

ing a bespoke finite element code, applying a short duration rectangular pressure pulse

to all elements on the plate surface. Balden and Nurick [79] combined a hydrocode

(AUTODYN) and explicit dynamics code (ABAQUS) to investigate the deformation,

failure and post motion failure of a panel subjected to uniform and concentrated impul-

sive loads. The finite element lends itself particularly well to the parametric study of

complex structures, such as sandwich panels [80], which cannot be investigated analyti-

cally and are expensive to test experimentally. Although an individual modelling run is

quicker than an equivalent testing program, they often take a number of hours to run,
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so work continues to derive fast running models and analytical results that can be used

for engineering analysis, such as work by Micallef [81] and Jones [82].

2.4.2 Complex structures under blast loading

When structures become more complex, it is significantly more difficult to provide ana-

lytical solutions for dynamic response as the structural behaviour is governed not only

by material response, but geometric effects as well. As a result, numerical and experi-

mental means are often the only way to thoroughly investigate structures beyond simple

shells, such as plates, cylinders and spheres. A variety of experimental and numeri-

cal techniques have been applied to understand complex structures, whose response is

difficult to compute analytically.

Security concerns in civil aviation mean that various pieces of research have been

done to identify how explosions interact with aircraft structures. Simmons and Schleyer

[83] investigated the performance of aircraft structural panels constructed using rivets

and laser welding techniques using a pressure pulse loading rig, finding that welded

panels failed more readily than traditional riveted panels. Numerical models applied

pressures measured from experimental tests, as the measured pressures in the test rig did

not always display the anticipated ideal triangular shape. Numerical results predicted

behaviour well until failure began to occur, at which point experimental results and

numerical predictions began to agree less well.

Kotzakolios [84] investigated composite aircraft fuselage sections using numerical means,

using a coupled ALE and Lagrangian method in LS-Dyna, with a structural mesh com-

posed of fibre metal laminates. The authors concede that the method is limited, in that

the model is not sufficiently refined to identify important features such as crack propaga-

tion, which poses problems for coupled models where ALE and structural meshes should

have similar elements sizes. Where knowledge of such phenomena is required, a decou-

pled approach is likely to more appropriate, where a model is run to identify the likely

loads experienced, and these loads are then applied to a sufficiently refined model, where

small scale effects such as crack propagation can be predicted with a greater degree of

confidence.

As well as aircraft structural panels, work has been done to understand how luggage

containers behave when subject to explosions. Fleisher [85, 86] and Weinstein [87] inves-

tigated the design of blast resistant luggage containers by experimental and numerical

means in response by the United Stated Federal Aviation Authority’s desire to reduce

the vulnerability of commercial aircraft. Fleisher [86] conducted prototype testing and

numerical models of luggage containers using the GLARE composite. Further work and

model development was undertaken [85], identifying the effect of luggage present in the

container and implementing it in models. Experiments identified that the presence of

increasing volumes of luggage increased both the QSP developed and the strength of a

number of shocks in the container. Work is ongoing as part of the FLY-BAG2 project,

to develop a lightweight blast resistant textile luggage container. Initial testing [88] and

numerical modelling identified a need to withstand both the initial propagation of the

shock and the subsequent QSP that develops.

Børvik et al. investigated protection systems for ISO containers using experimental

[89] and numerical [90, 91] means. Experimental tests were carried out on a novel

protective system, to withstand the effects of explosive devices being detonated outside
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of a container, which was found to effectively reduce the damage caused by the blast load

and flying projectiles. Numerical models were developed, and both coupled Lagrangian-

ALE and purely Lagrangian simulations were used. Comparison between experiments

and models proved that no modelling method alone provided predictions that fully

captured the behaviour of the container and pressures measured, and concluded that the

ConWep package was not sufficient for design of flexible structures, and that experiments

are always required to validate finite element based blast models. Corrugated steel

structures were also investigated by Langdon and Schleyer [92] and Schleyer [93]. It

was shown that consideration of supports was very important for prediction of the final

deformation and that membrane action also needs to be considered to fully capture

deformation behaviour, and both of these had contributed to previously conservative

predictions. It was also shown that such corrugated panels are able to support large

plastic deformations.

Pope [49] has described the design of an experimental test facility representing tunnels,

in which various numerical models were generated to inform the design of a test facility

to investigate the effects of explosions in tunnel systems, modelling both the pressure

propagation and the material response of the test facility structures under blast loading.

The Autodyn hydrocode was used to compute blast pressures within the tunnel using

successive remapping procedures between increasingly large but coarse meshes. A 2D

method was applied to model some aspects of explosive afterburning, which allowed an

additional pressure time history due to secondary combustion to be calculated, which was

later applied to structural models. The same 2D method was used to make a comparison

with 3D models, and it was found that 3D models tended to under predict pressures

and impulses by up to 25%, compared with high resolution 2D models. Computed

loads were applied to structural models in LS-Dyna to identify the required properties

of the structures in the test facility, such as the wall strength and supporting structures

required.

2.4.3 Structural methods of blast mitigation

Smith et al. [94] investigated wall ‘roughness elements’ and their effect on blast trans-

mission along tunnels, by means of scaled experiments. Roughness elements, in the form

symmetric and asymmetric vertical plates placed along the edges of a square test section,

were altered in terms of spacing and size. This could be considered analogous to a blast

in a rail vehicle, with wall roughness elements in the tunnels comparable to draught

screens in a rail vehicle, but in this case the blast wave was effectively planar, with the

normal to the plane along the axis of the test ‘tunnel’ under investigation, whereas in

a rail vehicle the blast wave is more likely to be spherical, and rarely plane to the axis

of a carriage. It was identified that blast wave attenuation along a tunnel increased

as the height of the roughness elements (protrusion into the tunnel cross section) was

increased, and that best attenuation was found when spacing between these roughness

elements was approximately equal to twice the height.

Berger et al. [95] used a number of experimental tests to identify how different orien-

tations and geometry of wall elements alter shock propagation and mitigation in a shock

tube. A combination of pressure transducers and Schlieren photography was used to

understand the interaction of plane shock waves with the attenuating elements, as well

as the end wall of the shock tube. No definite conclusions were made as to the best
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solution for mitigating shock waves, as it was found that different sizes and angles of

incidence could either attenuate or increase the strength of the shock, depending on the

specific combination of size of obstacle in the tube and the angle that the shock wave

makes with it.

Langdon et al. [96] performed an experimental and numerical investigation of the use

of perforated steel plates to mitigate blast waves. A perforated plate with a number of

holes in it was placed in front of a target plate within a cylindrical section, and high

explosive charges of C4 were detonated to identify the effect of the different blockage

ratios, which is the ratio of the total area of the plate to the area through which the blast

wave cannot pass. Only with very high blockage ratios of 96%, where there is only 4%

of the area of the mitigation device available for the blast wave to pass through, showed

significant blast attenuation effects. Numerical models showed difficulty in picking up

the behaviour of blast wave interaction with very small holes, with numerical prediction

diverging from experimental results as the blocking ratio increased and the size of holes

decreased.

Numerical simulations were carried out by Chaudhuri et al. [97] using a computational

fluid dynamics code on the effect of rigid obstacles of different shapes placed within a

channel subject to the flow of a shockwave, but not considering any effects of interaction

of the shock wave with end boundaries of the section. Triangular (both tip and base

facing the incoming shock), rectangular and semi circular objects are investigated, with

transmitted shocks downstream of a matrix of these objects computed. It was found that

staggered arrays of obstacles produced better pressure attenuation than non staggered

arrays, and that triangular prisms with the base facing towards the incoming shock was

the most effective shape for reducing the magnitude and speed of the transmitted shock.

2.5 Rail vehicle design and construction

The passenger vehicles currently in operation across the UK railway network are very

diverse, comprising a variety of sizes, construction and traction methods. The rolling

stock, which carries passengers and does not include power cars1 is made up of passenger

hauled locomotives, diesel multiple units (DMUs) and electric multiple units (EMUs)

and is comprised of approximately 80 different classes of vehicles [98], not including those

on the London Underground, which has 10 different types of rolling stock [99], including

trains first built in 1972 (1972 Stock on the Bakerloo line) and the state of the art 2009

and S Stock. The large variety and age of vehicles means a number of construction

techniques exist on the UK rail network, but this number is ever decreasing as older

vehicles are retired.

Most modern rail vehicles are constructed using extruded aluminium sections2, which

are held together by a combination of welds and mechanical fasteners. Previous methods

of construction, which are still in use across the UK network include welded monocoque

steel constructions (Mark 3 and Mark 4 coaches, Sprinter Diesel Multiple Units (DMUs))

and body on frame constructions, such as the Class 14X Pacer units, which used a bus

body onto a rail vehicle frame (See Figure 2.13, chassis frame clearly visible directly

underneath passenger compartment shell). A thin skin is attached to the welded frame,

1Power cars exist to haul passengers vehicles that have no traction themselves, an examples include
the Class 43 Intercity 125, and the Class 91 Intercity 225.

2This method of construction was developed in the UK in the 1980’s, with BREL class 165 being
early examples of this construction method.
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with heat and sound insulation inserted in the cavity between the outer shell and the

inner walls, as shown in Figure 2.14.

frame

Figure 2.13: Class 144 ‘Pacer’ using body on frame design, currently in service on rural
and suburban routes in the UK

Figure 2.14: Exposed internal wall of a Class 14X vehicle, showing the welded construc-
tion

Aluminium extruded designs, the process for manufacturing which was developed in

the late 1970’s [100], have found favour as they save a significant amount construction

time as they can largely be automatically welded together, as well as saving weight.

One of the downsides of this construction method is that welding 5000 and 6000 series

leads to heat treatment of the area surrounding the weld, leading to reduced mechanical

properties at the interface between the weld metal and the heat affected zone [101]. This

was a point raised after investigation of the Ladbroke Grove rail accident [102], where

‘weld unzipping’ was seen in an aluminium Class 165 rail vehicle, but not in the rail

vehicle constructed using a full steel monocoque design. A similar failure mode was
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seen in the Eschede rail disaster in June 1998. It is conceivable that under the transient

loading caused by an explosion, this could also be a mode of failure that a rail vehicle

could undergo following a blast load.

Figure 2.15: Rail vehicle undergoing maintenance work, with opened ‘hopper’ windows

Figure 2.16: Toughened glass is often used in the windows of trains

Windows on rail vehicles are often made from toughened glass, as shown in Figure

2.16, but the performance limitations of toughened glass mean that new vehicles are

generally fitted with laminated glass, and recent research indicates there is a justification

for replacing existing toughened glass with laminated glass [103]. Older style vehicles

without air conditioning, including the Class 144 shown in Figure 2.13 and the BREL

MkIII, often have windows which can be opened, such as the ‘hopper’ windows shown

open in Figure 2.15. Modern or refurbished vehicles often have dispensed with this

design, with fully sealed designs used in conjunction with air conditioning for improved

passenger comfort.

Through carriage designs are increasingly popular in urban vehicles, such as the Lon-

don Underground and Madrid Metro (pictured in Figure 2.17). Traditional designs
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Figure 2.17: Through carriages

for such urban transport systems do not allow passenger movement between individual

carriages of a train, or the gangway that connects individual carriages is very narrow,

limiting any passenger flow between each carriage. Open carriage or gangway designs,

such as that shown in Figure 2.17, increase the available space and allow passengers to

move easily between carriage, ensuring a more even passenger density.

2.5.1 Rail vehicle structural loads

Railway Group Standard GM/RT2100 [104] sets out the requirements for design and in-

tegrity for rail vehicle structures, and as such prescribes design loads that vehicle struc-

tures should withstand. Of particular interest are the internal loading requirements for

‘secondary’ vehicle structures such as doors and windows, and vehicle elements inter-

facing with passengers such as seats, tables, draught screens and other internal glazing,

which are reproduced from [104] in Table 2.1.

2.6 Fragments and ballistic loads

The study of ballistics is a very large field and a large body of work exists throughout

the literature on the behaviour of materials undergoing impacts at very high speeds.

Fragment impacts are not the focus of the current study, but a brief review of relevant

literature is included here.
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Table 2.1: Structural requirements for secondary and internal structures when subject
to internal loads [104]

structure requirements
windows fully serviceable over the entire area

after application of a sustained pres-
sure of 6 kPa

withstand an impact of a 50 kg pen-
dulum from a height of 1200 mm,
followed by a concentrated load of
0.8 kN over an area of 100 mm ×
100 mm

doors,
draught
screens and
internal
glazing

resist a pressure load of 2.5 kPa over
the surface of the door, plus a con-
centrated load of 0.8 kN over an area
of 100 mm × 100 mm applied at any
position on the surface, without sig-
nificant deformation or loss of func-
tion

A perpendicular load of 2.5 kN ap-
plied over an area of 100 mm × 100
mm at any position on the surface,
without significant deformation or
loss of function

seats resist significant permanent defor-
mation when subject to a vertical
load of 2 kN applied downwards over
an area 380mm wide × 200mm deep

resist significant permanent defor-
mation when subject to longitudinal
loads of ± 1.5 kN applied over an
area of 250 mm wide × 50 mm deep
located in the centre of the upper-
most part of the rear of the seat

tables withstand without significant per-
manent deformation a vertical load
of 1 kN in either direction

withstand without significant per-
manent deformation a load of 1.5 kN
applied horizontally to the table in
any direction and at any position

Børvik [105] used experimental and numerical means to investigate the perforation

of 6005-T6 extruded aluminium panels by projectiles. Although different in scale, alu-

minium panels of similar extruded shape with several triangular cells are used in the

construction modern railway vehicles, some of which are constructed using 6006-T6 series

aluminium [101]. Johnson-Cook material parameters were determined experimentally

for 6005-T6 and validated with numerical models. This data provides useful input into

rail vehicle models developed in this work, which use a very similar material construction

and aluminium alloy. Ogival nose projectiles with a mass of 196g were fired at extruded

aluminium panels at velocities of between 300 and 170 m/s, and good correlation was

found between experimental results for both 2D and 3D simulations, although it was

noted that 3D simulations were very computationally intensive.

Wen et al. [106] have studied the impact of steel spheres on ballistic gelatin, using both

a numerical and experimental approach. Good agreement was seen between experimen-

tal results and experimental studies of steel spheres incident on ballistic gelatin3 (10%

gelatin by weight, at 4 ◦C) at velocities of 947 and 728 m/s, both in terms of penetra-

tion data and the size of the cavity formed. Numerical models used a rigid material to

model the steel spheres and an elastic plastic material with an equation of state for the

gelatin, with the two interacting by a contact algorithm. As with other such problems

where highly transient behaviour occurs, the difference between numerical predictions

and experimental results become increasingly small as the mesh is refined.

Nyström and Gylltoft [107] have investigated reinforced concrete subject to combined

fragment and blast loading. Validation and calibration tests were undertaken by con-

ducting stand alone fragment and blast tests on concrete beams, which were used to

calibrate each individual method of loading and confirm the accuracy of the prediction

of separate responses due to fragments and blasts. Single degree of freedom (SDOF)

3Ballistic Gelatin (BG) is a tissue simulant made from powdered gelatin and water and is primarily
used to replicate the response of muscle tissue to ballistic impacts.
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models were used to determine how the relative arrival of blast and fragment loads af-

fected the global response. A synergy between the loading mechanisms was identified,

with the combined fragment and blast loading giving a greater mid point deflection

than the sum of mid point deflection from separate blast and fragment loads. It was

also identified from the SDOF models that simultaneous loading from fragments and

blast loading causes the highest deflection, compared with other sequences of loading.

2.7 Conclusions

This Chapter has presented appropriate theory on the techniques to be applied through-

out the course of this work, as well as findings from the open literature, which can inform

the process of developing models to predict the effect of IEDs in rail vehicles. For com-

pleteness, a brief review of whist terrorism is, and the current strategies for countering

were discussed, and it was seen that this can often be difficult.

There is one aspect that has not been covered in this Chapter, which is necessary to

build a complete model of the effects of IEDs, is an understanding of the mechanisms

by which people are injured following explosions, and the methods that can be used to

predict them. A comprehensive survey of literature relating to many aspects of human

injury resulting from the functioning of explosive devices can be found in the following

Chapter.
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Predicting injury and risk to

passengers

When a high explosive detonates it releases large amounts of energy which is transferred

to the surroundings by a shock wave and a following mass of air. This can cause severe

injury to air containing organs such as the lungs and ears, brain injuries due to high

accelerations of the head, as well as injuries due to high velocity projectiles accelerated

by the detonation and impact injuries caused by the body being thrown against hard

surfaces.

Significant efforts have been made to develop injury criteria for humans who are sub-

jected to the effects of detonation of weapons and high explosives, some of which are

detailed in this chapter. Much of the work in this field was driven by the military who

have a need to understand the effect of explosions and reduce the risk of injury to their

own personnel, but in recent times criteria have also been adopted for use in the civilian

world due to increased risk of terrorist attacks involving explosives.

To allow an accurate risk to be calculated it is important to select or devise appropriate

injury criteria which are specific to the likely modes of injury that are expected. This

has been the subject of much previous work, but no definitive set of criteria for such

injuries currently exist in the public domain. This chapter reviews the major works

in this area and sets out criteria that will be used as a basis for prediction of likely

injuries resulting from blast events in a rail vehicle. Section 3.7 brings the important

criteria together with the development of numerical occupant injury predictors, including

a multi-projectile risk tool.

3.1 Injuries due to explosions

Injuries resulting from the detonation of explosive devices fall into four categories; pri-

mary, secondary, tertiary and quaternary blast injuries. These classifications are almost

universally agreed, and are described widely in the literature [108, 109, 110, 111, 112,

113].

Primary blast injuries are caused entirely by changes in air pressure surrounding the

body, which means that primary blast injuries affect air filled or containing organs such

as the lungs and ears. When the human body is subject to the significant pressure

differentials caused by a blast wave, injury can be caused by both the passage of a
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shock wave through biological tissue [108] and by physical compression of the body,

specifically the chest wall [113, 112]. The passage of the shock wave through low density,

air containing organs leads to a rapid compression of the tissue followed by a rapid

expansion of the tissue, leading to the destruction of small structures such as alveoli in

the lungs.

Secondary blast injuries are those caused by the effect of projectiles interacting with

the human body. These are mostly fragments or projectiles specifically contained within

a device to cause penetrating injuries; in the case of improvised explosive devices used in

the civil and urban environment, these are often nails, ball bearings and other metallic

debris. When these projectiles enter the body, they dissipate large amounts of energy

through physical deceleration of the projectile and via stress waves through the tissue.

This causes major disruption and can lead to severe bleeding, fractures and disruption

of organ function.

Tertiary blast injuries are concerned with injuries sustained as a result of body dy-

namics due to the blast wind that follows the shock wave. The number and type of

injury that can occur by tertiary means is almost limitless, as it depends entirely on

the surroundings of the individual concerned, but typical injuries can be caused by the

body being thrown against blunt or sharp objects, and also as a result of flying objects

and collapsing structures caused by the blast wind.

Quaternary injuries encompass most of the rest of the potential injury types from

blast events, such as flash burning and radiation effects. These are not typically a

major cause of severe injury from conventional explosions; those close enough to receive

significant flash burns from an explosive event are likely to be significantly more injured

by primary or secondary mechanisms. Nuclear or incendiary bombs are the most likely

to cause death or severe injury by quaternary means.

3.1.1 Injury Modes

Terrorist attacks often yield unique patterns of injury, with many modes of injury seen.

To provide a simple but thorough risk analysis, the modes of injury that are most

frequent should be included, without including unnecessary detail about injury modes

that are rarely seen or difficult to predict. Terrorist attacks have been subject to much

post event analysis, and extensive data exists on casualties and injury modes from the

medical establishments responsible for treatment.

Waterworth [114] presents post mortem findings from an attack on 2 pubs in Birm-

ingham in 1974. Data shows that most casualties suffered from multiple injuries, with

injuries from blast alone (85% blast lung, 53% of abdominal injuries) and foreign body

penetration of chest and abdomen primarily responsible for death. A review of British

Army casualties in Northern Ireland between 1970-84 that were caused by explosions

is presented by Mellor [115]. Their findings are consistent with Waterworth [114], with

chest injuries being the most widely seen in fatal casualties (75%), with head injuries

being the next most common cause of death. Ng [116] and Hart [117] present data from

the London nail bombings in April 1999, from two separate hospitals that treated vic-

tims. Anecdotal evidence suggests a small charge enclosed within glass and surrounded

with nails, which would explain a high prevalence of open fractures and penetrating

injuries reported in both accounts.

Israel has been subject to numerous terrorist attacks, and these have been well doc-
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umented. Kluger et al. [118], Kosashvili et al. [119] and Aharonson-Daniel et al. [120]

present retrospective studies of terrorist attacks in Israel in the early 2000’s. Multiple

site injuries are seen to be more prevalent (44%) in the victims of terrorism compared

to other trauma casualties (18%), with penetrating injuries of head and chest very com-

mon. Kosashvili et al. have compared patterns of injuries depending on where they

happen, and identify a higher incidence of mortality in bus explosions when compared

with either closed environment (bars, nightclubs etc.) or open environments, but show

a lower incidence of chest and abdominal injuries in bus explosions than in other closed

environment explosions. This is thought to be due to the shielding effect of seats in

buses, although this is cannot be proved without further investigation.

De Ceballos et al. [121] describes the injuries seen in one hospital from the Madrid

train bombings in 2004. Findings are in general agreement with other casualty reports

above with chest injuries being seen in a large number of critically ill patients (89%),

as well as a high proportion (85%) of critically ill patients with shrapnel injuries. Head

injuries (52%) and fractures (55%) were also common amongst the most critically ill.

The paper notes that patients admitted with critical injuries to the chest and abdomen,

as well as traumatic amputations, occur very infrequently as these injuries are often the

sign of the most severe injury and often lead to immediate death. This is consistent with

casualty data (hospital admissions, which does not include post mortem information or

deaths, as in [114] and [115]) and findings from the terrorist attacks in Northern Ireland

[122]. Bellamy [123] noted that injuries to the extremities were rarely fatal, and injuries

to the trunk, neck and head were the most likely to cause death.

Turégano-Fuentes [124] also review injuries for the Madrid bombings, with one im-

portant point of note; the highest levels of mortality were seen in the vehicles where

doors were closed at the time of device detonation. This suggests that primary blast

injuries and the effect of pressure build up within a vehicle could be very important

when predicting the likelihood of fatalities in such events.

Ultimately, each event has slightly different patterns of injury, depending on the loca-

tion, make up of the device and the way it is delivered. The most serious injuries - head

injuries, chest and abdominal injuries and severe fractures are rarely seen exclusively

and one or more is most often responsible for deaths. The number of reviews and case

studies of this type is extensive (London case study, [125], review and Bali case study

[126]) and each presents data slightly differently, making direct comparison between

scenarios difficult.

3.2 Primary blast injury prediction

Many experiments have been undertaken on animals to improve understanding of the

risk that blast waves pose to humans and develop injury criteria. As a result of the

differences in methods and aims, several different models exist which vary in complexity

and applicability to this work.

Primary blast injuries are caused by energy transfer to the body from pressure and

shock waves in air and risks are commonly specified by the predicting the percentage

of a population likely to experience a certain injury when exposed to a given pressure,

impulse, positive phase duration, or a combination thereof. The peak pressure experi-

enced (which will strongly influence the impulse experienced, but is not connected to the

positive phase duration) will change depending on where and how it is measured and
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different models will use a different measure of pressure depending on the experimental

set up and mathematical model developed. Some models use a pressure measured near

the test subject, others use idealised side on or reflected overpressures and models exist

that require multiple pressure inputs from the surface of a test device. All three of these

measurements will differ slightly from the pressure experienced at the surface of either

a surrogate or live animal and this must be taken into account when applying these

models to data from experiments or modelling.

Primary blast injuries can affect many areas of the body, including the brain, eyes, ears,

gastrointestinal tract, heart and lungs [112]. The ear is extremely susceptible to primary

blast injury, with thresholds for damage low and widely variable; P50, the pressure level

at which 50% of tympanic membranes will perforate is given as 57 – 345 kPa by Mayorga

[112], and Aylwin [125] reports that 100% of seriously injured patients admitted to the

Royal London Hospital after the 7/7 London bombings suffered tympanic perforations.

Data from the Madrid bombings from de Ceballos et al. [121] showed a lower incidence,

but still showed 41% of all patients, and 67% of critically ill patients suffered tympanic

perforations. The ease with which damage can be caused to the ears means mechanisms

and risk reduction has been well studied, particularly by the armed forces, looking to

reduce hearing loss in soldiers exposed to blast. The lung is also of very high risk of

injury from primary blast injury, and injuries to the lungs can potentially lead to air

emboli that can damage other areas of the body [112]. Data from the Madrid bombings

[121] showed blast lung injuries were found in 63% of critically ill patients. Cooper et

al. [127] found high frequency mechanisms (wave propagation as opposed to physical

deformation) as the likely cause of lung injury, with propagation of stress waves and

impedance mismatches at various contacting surfaces within the thorax the cause of

much of the damage.

Although ear injury is extremely prevalent in blast events, and hearing loss can be life

changing for those that suffer from it, it is unlikely to be the cause of fatalities and the

ease by which it is caused makes it difficult to propose ways to limit it. Ear protection

is a viable and common solution on the battlefield, but this is not viable in civilian mass

transit systems. Blast injuries to the lungs are more serious and realistic threat to life,

so only these will be considered when identifying primary injury risks within this work.

3.2.1 Injury curves from experimental data

One of the most widely used current criteria for primary blast injury assessment in hu-

mans is presented in work by Bowen et al. [128], which is based on experiments conducted

on a variety of animals in the 1950’s and 60’s, using shock tubes and high explosives,

with peak pressures and positive phase durations scaled to allow data from animals of

a variety of sizes to be compared. This in turn allows estimations to be made about the

tolerance of human beings to blasts. Peak pressures were measured close to the animal

and positive phase durations for high explosive tests were calculated from published

data.

The work provides survival data for 3 scenarios; long axis (axis from head to feet)

parallel and perpendicular to the direction of travel of the blast wave, and thorax next

to a reflecting surface. The figures provided in Bowen et al. , (an example of which is

shown in Figure 3.1) show peak overpressure against positive phase duration.

In the original paper, Bowen et al. point to a possible source of error caused by diffi-
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culty in measuring the positive phase duration from experiments. Figure 3.2 shows how

inaccuracies in this can lead to large differences in the calculated risk for a given peak

overpressure. Bowen states that for technical reasons, the positive phase durations from

high explosive tests were taken from published curves for Pentolite, and an assumption

was made that this explosive ‘releases 10% more energy than TNT, Comp. B or RDX,’

and thus a calculation was made to get the positive phase durations for the tests where

high explosives were used. It should be noted at this point that a reference is made in

the work to the expected errors in the results - up to 30% for positive phase duration

less than 2.8ms, and up to 15% percent for positive phase durations between 2.8 and

100ms.

The measurement of pressures during the experiments is also a possible source of error.

The work states that pressures were measured as close to the target subject as possible.

The location of the measuring device relative to the target can make a large difference

to the measured values, and pressures measured away from the target, even by a small

amount could be very different to the pressure experienced at the target.

Gruss [129] has provided corrections to the curves of Bowen by recalculating the pos-

itive phase duration using more accurate data on high explosive blasts. The corrected

curves show a more complicated relationship between the peak overpressure and positive

phase duration, that was not known when the original work was undertaken by Bowen.

No new tests were undertaken by Gruss, the curves were simply redrawn to make the

data that was originally plotted closer to what was actually experienced by the ani-

mals during testing, rather than what they were calculated to have experienced. This

work shows that by correcting the data using modern (and widely cited) data, that the

corrected 1% lethality curve crosses the original 99% lethality curve, shown in Figure

3.2.

Figure 3.1: An example of the injury curves from Bowen et al. [128]

Despite their widespread use, there are some features of both of the above models

which do not lend themselves to use in the current research. The models do not provide

a generic method of calculating risk as they are limited to the 3 body positions included
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Figure 3.2: Corrected injury curves, shown in Gruss [129]

in the original work. As they use only peak pressure and time duration as the inputs

and assume a smooth decay of the pressure towards atmospheric pressure, they cannot

account for pressure histories where the pressure time history is complex as the result

of many reflections. In some cases, especially when explosions happen inside structures

without many openings for pressure to escape, the pressure may decay towards but not

reach atmospheric pressure, making the measurement of positive phase duration difficult.

The simplified input also makes the models difficult to apply to numerical models, as

although peak pressures can be read from data series, positive phase durations are more

difficult to identify from complex pressure histories and a number of data processing

steps would be required to automate the use of curves within an injury prediction tool.

3.2.2 Logit models

Panzer et al. [130] have reviewed the experimental work in this field and devised improved

blast survival and injury curves based on a much larger data set than [128], much of

which is more recent, with positive phase durations taken from measurements where

possible. An analysis provided in previous works by Bass [131] and Rafaels [132] (of

which the work presented in [130] is a review / unification) has also suggested that the

orientation of the subjects, as mentioned in Bowen, did not have a statically significant

effect on risk. As a result, the survivability curves seen in this work should be considered

the most up to date as they supersede the work of Bowen.

As well as providing a model for risk due to exposure to single blast waves, Panzer

et al. also provide a model for risk due to repeated exposures to blast waves. Many

experimental studies have been conducted involving exposing animals to multiple blast

waves. The research has found that this exposure to repeated blasts can lead to increased

injury severity compared with exposure to a single blast wave of similar magnitude

[133], and also reduced overpressure threshold for injury [134]. Complex blast waves,

seen when blasts occur in confined spaces, have multiple peaks. It is hypothesised by

Panzer et al. that the risk of injury and fatality due to explosions within structures could

be calculated using the developed model, by selecting a suitable number of repeated

exposures in the model to artificially mimic the several peaks that would be seen in a

complex blast wave. While no model currently exists for the risk of injury when the
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body is exposed to these complex waves, it likely that this method should provide an

improved risk analysis compared to models for exposure to more simple blast waves that

do not show multiple peaks.

The model for single exposures is presented in (3.1), with the repeated exposure risk

calculated by the use of an additional term to (3.1) which is a function of the number

of repeated blasts which is adjusted with the use of empirically derived coefficients.

The model initially defines a piecewise linear relationship (3.1) to establish a correlation

between the risk of fatality, and the peak overpressure and positive phase duration. In

reality, this linear model cannot properly represent this data, as in reality the outcomes

can only be survival or fatality. To fit a model to the data, a transformation was applied

to the linear model to ensure that probable outcomes range between 0 and 1, i.e. survival

and fatality. The Panzer model uses a logistic regression to transform the probabilities,

and the logistic distribution function can be seen in (3.2).

f(P ∗i , T
∗
i ) = β0 + β1P

∗
i + β2T

∗
i +

∑

j=1

θj(T
∗
i −Kj)H(T ∗i −Kj) (3.1)

where βi,Kj and θj are model coefficients, P ∗i = log10(P ) and T ∗i = log10(T )

and H(x) is the Heaviside step function.

The logistic distribution function, Λ(z), is applied to linear model, for which (α+βXi)

is used for clarity. Substituting (3.2) into (3.3) gives (3.4):

Λ(z) =
1

1 + e−z
(3.2)

πi = Λ(α+ βXi) (3.3)

=
1

1 + e−(α+βXi)
(3.4)

Rearranging (3.4) generates an equation for the log odds:

πi
1− πi

= e(α+βXi) (3.5)

Taking natural logarithms of both sides gives:

ln
πi

1− πi
= α+ βXi (3.6)

Replacing the simplified linear model, (α + βXi), with the linear model developed

by Panzer, (3.1), an equation (3.7) is arrived at which can be used to plot risk curves

and predict risks. The relation between the logit or log odds and the percentage of

population affected can be seen in Figure 3.3.
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Figure 3.3: Plot of logit function

ln
πi

1− πi
= β0 + β1P

∗
i + β2T

∗
i +

k∑

j=1

θj(T
∗
i −Kj)H(T ∗i −Kj) (3.7)

This model now allows a survival probability to be calculated based on the passing

of one blast wave, with a single known peak and positive phase duration. In order to

scale the risk value for multiple exposures, Panzer et al. propose a repeated exposure

risk function, which is included as an extra term not shown in equation (3.7).

3.2.3 Probit models

Larcher et al. [135, 136, 137] have used a risk analysis method from Ferradas et al. [138].

The work by Larcher is of particular interest as it is currently the only significant recent

piece of literature published regarding blast loads in rail vehicles. Larcher et al. also give

risk analysis formulations for tertiary injuries, which are looked at in more detail later.

A probit model is a regression method similar to the logit model used by Panzer,

but uses a different function to transform the probability. The probit model uses the

cumulative distribution function (3.8) of the normal distribution to give the linear probit

model (3.10), which gives a range of probabilities from 0 to 1, representing survival /

fatality or injury / no injury. Instead of leading to log odds of an event happening, as

occurs with the logit model, the probit model yields a probit value, which can then be

translated into the likelihood of an event happening by the use equations or tables such

as 3.1.

The cumulative distribution function (CDF) of the unit normal distribution is shown

in (3.8).

Φ(z) =
1√
2π

∫ z

−∞
e−

1
2u

2

du (3.8)
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As with the logit model, substituting a linear model into the distribution functions

gives the probability, πi:

πi = Φ(α+ βXi) (3.9)

=
1√
2π

∫ (α+βXi)

−∞
e−

1
2u

2

du (3.10)

Typically, most of these equations are unnecessary for analysis purposes, as equations

for the probit value, typically in the form Yi = α + βXi, are given which yield the

probit value, which can be used to calculate the probability from pre calculated tables

or equations. An example of the probit – percentage table can be seen in Table 3.1, and

when probit values are plotted against probability (or percentage of a population who

will not survive), a curve is formed as shown in Figure 3.4.
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Figure 3.4: The probit function, showing probit against percentage of the population at
risk

The probit equations used by Larcher et al. for survival due to lung haemorrhage (3.11)

and risk of eardrum rupture (3.12), which return a probit value, Yi, are shown below,

where Pmax is the maximum pressure at point within the volume under investigation.

These equations are taken from [138], which in turn are taken from reference works by

Lees [54] and TNO [139].

Y1 = −77.1 + 6.91 lnPmax (3.11)

Y2 = −12.6 + 1.524 lnPmax (3.12)
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Table 3.1: Percentage – probit transformation

% 0 1 2 3 4 5 6 7 8 9
0 0 2.67 2.95 3.12 3.25 3.36 3.45 3.52 3.59 3.66
20 4.16 4.19 4.23 4.26 4.29 4.33 4.36 4.39 4.42 4.45
50 5.00 5.03 5.05 5.08 5.10 5.13 5.15 5.18 5.20 5.23
90 6.28 6.34 6.41 6.48 6.55 6.64 6.75 6.88 7.05 7.33

It is important to note the differences between the work presented in Bowen and Panzer

[128, 130] and the models utilised above which do not show injuries as a function of both

pressure and impulse or positive phase duration. Equations (3.11) and (3.12) give probit

values purely as a function of peak overpressure. This is potentially an assumption that

is incorrect, and is explained in more detail in section 3.2.5

The probit method is a popular method for survivability analysis, as it is very simple

to apply to experimental data. Lees’ [54] quotes a more comprehensive probit equation

from TNO [139] for the risk of death from lung haemorrhage, which is given in terms

of both pressure and impulse. These are given in a scaled form [140], depending on

atmospheric pressure and the mass of the body that is subject to a blast load. These

scaling laws, and the probit equation that uses them (3.13), were used by Baker [140]

to create alternative pressure impulse diagrams based on the work of Bowen et al. , so

the Baker model should yield risk scores that are broadly similar to those of Bowen.

Y = 5− 5.74 ln

(
4.2

p̄oa
+

1.3

ī

)
(3.13)

where p̄oa =
pr
pa

and ī =
i

p
1
2
am

1
3

, where pr and pa are reflected and atmospheric pressure

and m and i are mass and impulse.

This can be simplified to (3.14) by substituting a mass of 70kg and atmospheric pres-

sure of 100kPa into scaling equations in [54]:

Y = 5− 5.74 ln

(
4.2× 105

pr
+

1694

i

)
(3.14)

3.2.4 Chest compression models

The models described above make a direct relation between pressure and impulse levels

from simple waveforms, and various risks of injury in humans. These do not make a

relation between the pressure, impulse and physical response of the body which causes

an injury, so cannot be used when complex pressure time histories resulting from shock

wave reflections are seen.

Models by Axelsson [141] and Stuhmiller [142] use mass spring damper models of the

chest, where a pressure time history at the chest wall surface is an input. Axelsson et

al. calculated the chest wall velocity of animals that were subjected to physical blast

testing, allowing them to plot the risk of injury against chest wall velocity. Importantly,

they provide an equation to allow the chest wall velocity to be calculated from a mea-

sured or simulated pressure time history. The mathematical model for the thorax from

Axelsson is shown in equation (3.15). In the method, 4 pressure histories are taken from
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Table 3.2: Injury levels and corresponding ASII and chest wall velocities

Injury Level ASII vmax
No injury 0.0 – 0.2 0.0 – 3.6

Trace to slight 0.0 – 1.0 3.6 – 7.5
Slight to moderate 0.3 – 1.9 4.3 - 9.8

Moderate to extensive 1.0 – 7.1 7.5 – 19.9
> 50 % lethality >3.6 >12.8

sensors spaced at 90o intervals around a cylinder in a numerical model or physical test.

Velocities are calculated at each pressure sensor location from Equation (3.15) and then

a mean is taken to give the chest wall velocity.

The experimental method used by Axelsson to achieve the four necessary pressure

requires a cylindrical Blast Test Device, with a diameter of 305mm and a height of

762mm, which is designed to be representative of the subject under investigation. The

sensor data is taken from the half height of the cylinder at 90o intervals around the

circumference.

M
d2x

dt2
+ J

dx

dt
+Kx = A

[
p(t) + P0 − P0

(
V

V −Ax

)g]
(3.15)

A mass spring damper model of the chest is used to generate a differential equation

linking the pressure history on the surface of the chest with the displacement of the

chest wall. Solving the differential equation gives the chest wall velocity which can then

be used to calculate the Adjusted Severity of Injury Index (ASII) using equation (3.16).

One of the major aspects of Axelsson’s work was to correlate the chest velocity with

injury scores that were found from autopsies on animals used in the testing. Injury

levels, ASII values peak inward chest velocities, vmax from Axelsson [141] can be found

in table 3.2.

ASII = (0.124 + 0.117V )2.63 (3.16)

The Axelsson method is designed to provide an effective method to predict injuries

in complex blast wave environments from pressure time histories, and as such is partic-

ularly suited to closed environments, such as rail vehicles. Data can be taken directly

from models and input into numerical methods to solve Equation (3.15) for the chest

velocity v. This does not suggest by any means that this method provides a definitive

and absolutely correct method of predicting injury - the method averages 4 calculated

velocities to give an overall chest wall velocity, which could certainly be regarded as a

simplification of the real world scenario. Work is ongoing in various research groups

throughout the world to identify methods of predicting injury with debate still active as

to what the most crucial factors are in determining primary blast injury.

3.2.5 Pressure threshold criteria

The models and curves in sections 3.2.1, 3.2.2, and to some extent 3.2.3, are alike in

that the risk is considered to be both a function of peak overpressure and positive phase
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Table 3.3: Injury Groups from [110]

Group pso (kPa) Injury
1 <150 Minor – Maximum overpressure sustained sufficient to cause rup-

tured tympanic membrane
2 150 – 350 Moderate – Higher overpressure than Group 1, but probably in-

sufficient to cause primary lung damage in a significant number
of casualties

3 350 – 550 Severe – Sufficient overpressure to cause primary lung damage in
a significant proportion of casualties

4 >550 Very severe – Sufficient overpressure to cause severe primary lung
damage with a significant incidence of death

duration. This is important, as a given peak overpressure can be produced by a range

of different charges, depending on distance. Mellor [110] has conducted a study of blast

related deaths and injuries in Northern Ireland between 1970 and 1984, and groups

the severity of injuries according to peak overpressure alone. Casualties are divided

into 4 groups, each with increasing levels of injury, with 1 being the least severe, and

4 relating to a ‘significant incidence of death’, shown in Table 3.3. It is shown that

50% of personnel exposed to blasts with a peak overpressure of greater than 550kPa

(80 psi) were killed. According to curves and models described above [128, 129, 130],

this peak overpressure could be responsible for greater than 99% chance of survival, or

approximately 10% chance of survival (seen in Figure 3.1), depending on the duration

of the positive phase, which is a function of charge size and distance.

3.2.6 Single point models

Single point methods, such as the logit, probit and Bowen models take a single value

of either incident or reflected pressure and use them to calculate the risk of primary

blast injury. They have the advantage of being very simple and quick to implement in

numerical environment, and although Bowen methods require digitisation and interpo-

lation of curves to be implemented within a piece of software, they can be very quickly

implemented by hand, if only a few risks need to be calculated. One of their major

disadvantages though, which can have large implication for accuracies, is the neglect of

shock wave interaction with both surrounding objects and the body for which injury

risk is being calculated.

It is only possible to predict the actual pressure (and pressure history) at a point in a

very limited range of scenarios:

• in a free field, with no surfaces or interacting objects close enough to alter the

pressure over the time duration of interest1

• at a point on the surface of a rigid reflecting body normal to the direction of shock

propagation which is large enough that no edge effects are experienced

• at a point on rigid finite surface where the size of the finite surface and the scaled

distance (Z, see Chapter 2) is known, and the surface is normal to the direction of

propagation of the shock

1limited exceptions to this exist - a thin wall perpendicular to direction of shock propagation will
not cause significant changes in the shock wave behaviour
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The Bowen method used animals in similar positions to those above, so predictions could

be made when a person was in a similar scenario. When other structures, of arbitrary

shape or number are within an influential distance of the body, the pressure history that

would be recorded at their surface will not be the same as in these idealised situations.

It will be different for every combination of number, shape and position of interacting

structure, which in the case of a rail vehicle will include the number and distribution

of passengers, the proximity of the explosive device and persons under investigation to

structures such as the vehicle boundary, seat and draught screens.

Teland [143] suggests single point approximations to the Axelsson method, by assum-

ing the pressures likely to exist at the 4 sensors required in the Axelsson method from

the pressure at a single point. These methods were developed so that if an estimate of

injury was required at a new location, not originally included in a model, an estimate

can be provided from a pressure history without having to add a blast test device to the

model. It makes sense to implement such a method to avoid unnecessary computational

expense, but the resulting calculation does not include the contribution of the extra

body to the pressures experienced at other sensor locations. Thus, these single point

methods are appropriate only in certain situations, where the body under investigation

does not contribute significantly to the propagation and interaction of the shock, with

either itself or other bodies and structures.

3.3 Secondary injuries

Secondary injuries result from the impact of fragments and bomb debris with the body

(which will be referred to as ‘projectiles’ from here), causing injury by penetrating

trauma which can cause fatalities depending on severity. Devices designed to inflict

damage either contain ready made projectiles such as nails or ball bearings, or the

charge material is surrounded with a material designed to break up and be ejected at

high speed. Predicting the injury from these projectiles requires knowledge of their

number, direction and velocity, as well as their subsequent trajectory and contact with

any structures that will alter their flight. The likelihood and location of impact with

the body can then be predicted, injury criteria applied and a risk of injury calculated.

For an individual projectile item this is relatively straightforward, but when hundreds

and potentially thousands of projectiles are involved this becomes a much larger task.

Additionally, there are many unknown factors that must be assumed, including the

shape of the charge, size, configuration, shape and packing of projectiles in the device,

as well as the location of the device and passengers within the at risk area.

The prediction of secondary injuries is made very difficult by a large number of un-

knowns and a number of variables that are difficult to quantify. This section presents

methods from the literature that can be utilised to predict the risk of secondary injuries,

which can be utilised in a holistic method of predicting injuries from explosive devices.

3.3.1 Analytical models

Several models have been proposed to describe the ejection, flight and injury potential

of projectiles. Much research exists [144, 145, 146, 147] about the separate stages of

a projectile’s movement from rest to target impact and penetration, but fewer articles

can be found describing a complete method for predicting injury. Those which could be
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found are described below and show significant variation between methods, indicating

that care must be taken where potentially outdated, inapplicable and unvalidated criteria

and models are used.

Gilbert and Lees [148, 54] provide a method for predicting injury based on historical

data and a collection of equations from a variety of sources, specifying mass distribution,

initial velocity and angle, retardation and flight through air and finally the probability of

a hit and criteria for injury. They state that data is taken partly from experimental work

and partly from data from World Wars 1 and 2, and importantly is designed to model

injury from projectiles produced by fragmenting munitions. Munitions are constructed

differently to improvised explosive devices, and are directed against different targets, so

care should be taken when applying models such as these. The model is included for

completeness and as a comparison with other methods.

Radtke et al. [149] and Chrostowski and Gan [150] have developed similar programs

for simulation of explosive hazards. Both models use a 79 Joule kinetic energy lethality

criteria that have not been validated and are generally considered too simplistic [151]

with Henderson [152] suggesting that the 79 Joule energy criteria corresponds to a

conditional lethality probability (the probability of death given that an individual is

hit) of 1%. The HAZX code developed by Chrostowski and Gan [150] is designed to

be used for large explosions and the risk to both buildings and humans and as such

is generally not appropriate for modelling the effects of IEDs. Radtke et al. provide

methods for predicting the hazard from both conventional munitions and IEDs, based

on experimental testing with pipe bombs. Their experimental method prevented full

capture of projectile velocity and angle, so angles are assumed to follow a normal (also

referred to as Gaussian) distribution across angle intervals, with velocity determined

from experimental measurements, as a function of launch angle or average velocity. The

use of validated models to describe initial conditions is promising, but insufficient detail

is given for this model to be implemented here.

Pope [153] has incorporated projectile prediction into a fast running tool called the

Human Injury Predictor (HIP) code by specifying the initial conditions (velocity, angles

and mass distributions) and subsequently the trajectory, velocity history and the depth

of penetration into a surrogate human made from ballistic gelatin. The models are

designed to predict the effects from PBIEDS and have been validated by controlled

tests, which is a key feature of the work, but not all parameters to calibrate equations

are given, so not all features can be implemented.

3.3.1.1 Initial conditions

The accuracy of an overall prediction is dependant on the prediction at each stage.

Arguably, this makes the initial conditions the most critical to predict properly, as the

effect of altering them makes and impact at all stages of the calculation. For IEDs the

initial conditions of primary concern are the angle and velocity at which projectiles are

ejected, as well as the total mass of projectiles. The mass distribution of projectiles is

stated by some models as an important initial condition, but is not of concern where

devices contain predetermined projectiles of almost equal mass.

Radtke et al. [149] and Pope [153] suggest a probability density function for the angle

of throwout in two dimensions with a multivariate normal distribution (3.17). The

parameters σx and σy are not given, but it is stated that in line with numerical and
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Figure 3.5: Effects of altering σx,y on multivariate normal distribution for probability
density

experimental finding they are strongly biased to give low values for the angles θx and θy,

while maintaining an element of randomness in line with a realistic IED. As the value of

the standard deviation, σ, increases in a given axis, the range of the likely distribution

of angles increases, as shown in Figure 3.5. Pope assumes projectiles are ejected from

a flat surface and as such the majority of projectiles make small angles with the axis

normal to this surface, but for spherical or cylindrical devices, a more even distribution

of across a full angular range would be expected.
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(3.17)

Velocity is predicted in the HIP code [153] in two ways, both as a function of the

trajectory angle as predicted in (3.17) and pre selected minimum and maximum velocities

vmax and vmin, shown in Equation (3.18), and by use of the Gurney equations (3.19),

eq:gurney-cylinder and eq:gurney-sphere [154, 155]. One of the main problems with the

use of Equation (3.18), is that it is only applicable to a limited number of configurations

and cannot easily be applied to a wide variety of devices with different combination of
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projectiles and charge masses. As a result, the Gurney equations are also implemented

in line with many other models and theories for predicting projectile effects. The Gurney

equations were originally developed for predicting the initial velocities for fragmenting

munitions and were validated by experimental data. There are several forms of the

Gurney equations, depending on the shape and configuration of the device, shown in

Equations (3.19) – (3.22). Pope makes the assumption of an asymmetric 3 layer device

using Equation (3.19), consisting of a backing material with mass N , explosive charge

of mass C and a total projectiles mass of M . The quantity
√

2E 2 is termed the Gurney

characteristic velocity for a given explosive, and vM the velocity at which the projectiles

are ejected. The Gurney velocity, which has units of speed, is determined for a variety

of explosive materials and values for it can be found throughout the literature [154, 155].

Gilbert [148] makes the assumption that the device is a cylinder, Equation (3.21), with

an explosive mass M and charge mass C. Similar equations for spherical devices also

exist (3.22).

v(θx, θy) = vmax − (vmax − vmin)

√
(θx/θxmax)

2
+ (θy/θymax)

2

2
(3.18)

vM√
2E

=

(
1 +A3

3(1 +A)
+A2N

C
+
M

C

)−1/2

(3.19)

where

A =
1 + 2M/C

1 + 2N/C
(3.20)

vM√
2E

=

(
M

C
+

1

2

)−1/2

(3.21)

vM√
2E

=

(
M

C
+

3

5

)−1/2

(3.22)

For the 3 available shapes of charge described above, the variation of velocity and angle

will de different due the different way in which explosives of certain shapes expand, which

is also affected by the position of detonation (which for the purposes of simplicity will

be assumed to be central).

For a sphere, there will not be any particular bias for projectiles moving in a particular

direction to have particularly high or low velocities, as the explosive will be expanding

as a sphere and pushing all projectiles normally to their position on the surface of the

sphere at that time. The initial arrangement of projectiles will determine the dominant

direction, and how spread velocities will be, but for evenly distributed projectiles, an

even spread of velocities and directions for all projectiles would be anticipated.

2Instead of using the quantity E, which is in terms of energy per unit mass, the term
√

2E is normally
stated, for simplicity of statement and calculation.

52



Modelling Blast Loads in Rail Vehicles T.Anthistle

For a vertical cylinder, the angular spread in the radial direction should, as with a

sphere, be consistent over the range of angles over which projectiles are placed, assuming

no concentrations over a particular range of angles. Variation in vertical spread angle

will be different, and the expansion of a cylinder would mean there will be smaller

spread, with angles close to the horizontal dominating, with projectiles travelling on

a vector close to the axis of cylinder less likely, and with a lower velocity. For evenly

distributed projectiles, an even spread of velocities and angle would be expected in the

radial direction, with vertical angular spread being limited and highest number and

velocity being clustered around horizontal direction.

For projectiles placed on a flat charge, directions close to the face normal will dominate,

with highest velocities for a projectile when they are ejected at low angles from the

normal, and lower velocities when they make larger angles with the normal.

3.3.1.2 Trajectory and velocity change

Projectiles and debris from explosions will begin with very high velocities, many of which

will initially be supersonic, that decay very rapidly due to high drag forces. As the pro-

jectiles slow down from supersonic, they will enter transonic and subsonic regimes, which

will alter the retarding drag on a flying projectile. It is outside of the scope of this work

to develop equations for, or model with numerical methods, the velocity characteristics

of arbitrary shaped projectiles flying through air, but a number of equations exist that

seek to approximate this behaviour.

In the HIP code [153], a differential equation is used for velocity calculation, Equation

(3.23). Modifications of the A, B and C (coefficients for projectile drag, friction and

material strength respectively) allows the equation to deal with both the flight of the

projectiles through air, and the velocity behaviour of projectiles moving through solid

media, which in the HIP code was crowd members formed of ballistic gelatin.

−mdv

dt
= A(v2) +B(v) + C (3.23)

The United Facilities Criteria document, UFC 3-340-02 [37] gives equations for the

velocity of primary projectiles (Equation (3.24)). It is stated in [37] that retardation

can often be neglected, in cases where the source and target are less than 20 ft (≈ 6m).

Units for (3.24) and (3.25) are not given in [37], but examples given indicate they are

imperial units, and comparative calculations of velocities in metric and imperial do not

agree.

v(x) = v0e−12kvx (3.24)

where

kv =
AρaCD
Wp

(3.25)

Equations of a similar form are found in Gilbert [148] and Lees [54] with equations

from Christopherson [156] and Zuckerman [157], (3.26), (3.27) and (3.28) used to treat

the retardation of projectiles, depending on whether they are flying at super or subsonic
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velocities (M ≥ 1,M < 1). Both equations (3.26) and (3.27) are used to treat supersonic

projectiles; both are similar, but (3.27) includes the additional term a.

Where M ≥ 1, v(x) = v0e−x/284m1/3

(3.26)

Where M ≥ 1, v(x) = v0e−0.00204xa/m1/3

(3.27)

Where M < 1, v(x) = v0e−0.00137xa/m1/3

(3.28)

a =
Am
Q2/3

(3.29)

Where v0 is the initial velocity (ft/s), x the distance travelled (ft), m the mass of the

projectile (oz), Am the mean presented area of the projectile in ft2 and Q the projectile

volume in ft3. In order to utilise these equations, input data in SI units will need to be

converted to the correct units.

3.3.1.3 Probability of hit and injury

The path of a projectile through air is described adequately by many existing relation-

ships, but correlation between conditions at the point of impact with tissue and the

likelihood of an injury is more difficult. There is much interest in developing appropri-

ate criteria and much work has been done with firearm projectiles to understand their

behaviour under controlled conditions to assist with the design of protective armour and

improve medical treatment.

Depth of penetration (DOP) is a widely used criteria for predicting the injury level

from penetrating projectiles. Pope [153] has conducted experiments with 20% Ballistic

Gelatin (BG) using representative projectiles, and developed criteria for depth of pene-

tration as shown in Equation (3.30). Breeze et al. [146] propose DOP equations derived

from tests with Fragment Simulating Projectile’s (FSPs) on porcine tissue depending

on weight of FSP and the body part the projectile penetrates. BG tests correlate well

with penetration into muscle, but penetration into abdomen and chest cavities were not

predicted well by BG tests.

Gilbert [148] uses a probability based method - probability of being hit, P (H), is

given as a function of the number of incapacitating projectiles at a given distance,

N(x), and the number of projectiles that hit a body, r, shown in Equation 3.32. Probit

equations are then given for likelihood of penetration of certain areas of the body based

on projectile mass, velocity and area, and further probability relations used to predict

the likelihood of injury. TNO Greenbook [139] uses probit equations for projectiles up

to 0.1kg (An example of which is given in equation (3.31)) depending on projectile mass

and initial velocity, as does [27]. Smith [27] provides a curve from Ahlers [158] that

correlates projectile mass and velocity to injury for head and body, also presented in
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[159].

d = C1

(
(v − C2)

C3

)C4

=
0.011× 2×m0.95

ρACd

(
V − ((80× A)/m1.3)

400

)0.55

(3.30)

Y = −29.15 + 2.10lnS (3.31)

S = mv5.115
0

P (H) =
N(x)

r!
e−N(x) (3.32)

3.4 Other Injury risks

Much research has been done which aims to identify threshold pressure and impulse

levels to determine the risk particular blast events pose to human beings. Criteria have

been in place for some years and, in the absence of significant data on human response,

they have been refined and revised based on the response of animals. So far, the models

described can provide risk functions for survival, pulmonary and non-auditory injuries

and injury risk due to impacts, but none of the models described so far take into account

the risk of brain injuries due to pressure waves, or the risk posed to humans by flying

debris, such as shattered glass or materials specifically used to create a projectile hazard.

Clearly, if an effective threshold injury risk is to be identified, it should account for as

many injury mechanisms as possible.

In Sections 3.2 and 3.3 models are presented for predicting injury from blast waves

and flying projectiles and debris which are responsible for the majority of injuries when

bombs or improvised explosive devices are detonated. Here, further models and risk

analysis methods are presented for other injury modes not covered in Sections 3.2 and

3.3.

3.4.1 Tertiary injuries

Tertiary injuries are those which occur due to body dynamics, primarily by impact of

various parts of the body with hard surfaces. Much work has been done in automotive in-

dustry to define impact injury risks for various parts of the body for both pedestrians hit

by moving vehicles and occupants who make impacts with the inside of vehicle. Criteria

for each injury is commonly defined by the acceleration experienced by certain body ar-

eas; crash impact dummies, both physical and numerical are fitted with accelerometers,

and data from these can be input into models, such as the Head Injury Criterion (HIC)

(3.33). The need to know the acceleration value (3.33) means that an understanding

is needed of the interaction between a body part and the surface it impacts. There is

some debate [160] as to how accurately injuries are predicted by HIC, but it remains

in widespread use as one of the most dominant criteria, being used in assessment pro-

tocols by major car safety programmes [161]. Many of the widely used impact injury
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criteria, such as HIC are easily implemented by using finite element models of crash

tests dummies, and numerical codes such as LS-Dyna produce crash test dummy models

with correctly positioned accelerometers and post processing tools to calculate injury

criteria for the head, thorax and extremities. Implementation of these models would be

the most accurate way to identify tertiary injuries, as minimal assumptions are required

about impact conditions or loading, as the blast load and impact mechanisms could be

coupled in a single solution, or the solution broken down into steps.

HIC = (t2 − t1)

[
1

t2 − t1

∫ t2

t1

a(t) dt

]2.5

max

(3.33)

A number of probit equations for the risk of fatal or substantial injury on hard surfaces

are also in existence. Equations (3.34) and (3.35) in terms of pressure and impulse are

used by Giannopoulos [135] to assess the risk of lethal injury from head and body

impact due to explosions in rail vehicles. The equations are originally found in the

TNO Greenbook [139], and are quoted by Lees [54] in the section for outdoor explosion

injuries.

Y3 = 5− 8.49 ln

(
2430

Pmax
+

4× 108

PmaxI

)
(3.34)

Y4 = 5− 2.44 ln

(
7380

Pmax
+

1.3× 109

PmaxI

)
(3.35)

Lees [54] also provides probits for the probability of lethal skull impact (3.36) and

lethal injury due to body translation (3.37) in terms of the impact velocity, V .

Y5 = −6.04 + 7.11 lnV (3.36)

Y6 = −2.14 + 2.54 lnV (3.37)

The dynamics of an impact scenario within a complex environment such as rail vehicle

mean it is very difficult to gain a realistic insight into injury with simple probit equations.

Each different surface within a rail vehicle (floor, walls seat, tables, draught screens an

so on) has different force deformation characteristics, altering the acceleration. For just

the head, the strength of the skull is widely variable in different orientations, and impact

and different locations will lead to different injuries, depending on which direction the

brain is accelerated, and how much rotation is experienced. The probit equations above

are also for lethality, so provide a risk of lethality, which is difficult to translate into the

severity of injury. Data from real attacks (section 3.1.1) indicates lethality is rarely from

one injury alone, normally a compound of several severe injuries, so a more appropriate

method would provide a scale that could rank the injury severity. Equations (3.34) and

(3.35) have inputs that are relatively straightforward to generate from models, but the
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velocity used as an input in (3.36) and (3.37) is much more difficult to obtain from

models.

Ultimately, the dynamics of the body are generally too complex to simplify to the

point where a simple pressure history at a point in space can predict the likelihood of

tertiary injury; a good prediction is required for how the body accelerates from stationary

(a function of body position, orientation, mass, shape and applied load), as well as

what part of the body hits what kind of structure, and in what orientation. Without

taking account for any of this, and without the known assumptions used in making the

models described it is very difficult to understand if the equations above are in any way

applicable to a rail vehicle, so their application is difficult to justify.

Injury criteria (such HIC etc.) require real accelerometer data, either from exper-

imental data or from numerical models, and these criteria are generally accepted and

widely used for use in impact trauma injuries. Unfortunately, trial models implementing

numerical crash test dummies for blast events have proven unsuccessful at the current

time, with poor coupling between the ALE fluid domain and the dummy shell. The

numerical dummy models have a wide variety of element sizes, which will prevent good

coupling between the elements of the numerical dummy that are most different in size

from the ALE mesh.

Tertiary injuries are very rarely the sole cause of injuries, with accumulations of severe

injuries often being responsible for mortality. Without an accurate and computationally

efficient model available, it is possible that injury estimates from tertiary means from

the models discussed could be largely inaccurate. In light of this, it was decided that it

is better to make no prediction of this, than make an incorrect prediction for the sake of

completeness. Along with development of improved criteria for primary and secondary

injuries, further investigation of tertiary injuries from blasts is required.

3.4.1.1 Traumatic amputation

Traumatic amputations occur when limbs or parts of limbs are removed as a result of

an accident or injury. Hull’s article from 1992 [162] reports the prevalence of traumatic

amputations in service personnel over an 11 year period between 1979 and 1990. It

was shown that traumatic amputations were not commonly seen in survivors, with most

persons close enough to suffer a traumatic amputation being killed by the associated

injury. Projectile wounds and fractures were the most common associated injury. Levels

of traumatic amputation in those hospitalised as a result of the Madrid and London

bombings are reported by de Ceballos et al. [121] and Aylwin et al. [125], and show trau-

matic amputations (as with other most injuries) are higher in the critically ill patients,

but are not a highly prevalent injury in survivors. This could indicate, as suggested by

Hull, that those who suffer traumatic injuries often are the most seriously injured and

are killed before they can receive treatment.

The method of traumatic amputation is not well understood, and no models exist

in the open literature to provide validated predictions of the likelihood of traumatic

amputations. As a result, the effect of traumatic amputations is not considered here

when assessing risk.
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3.4.2 Traumatic Brain Injury

A large body of work exists on Traumatic Brain Injury (TBI), with much of it looking to

identify, how TBI can be identified and the mechanisms within that cause injury. Almost

no work exists to suggest thresholds of pressure, impulse or acceleration at which TBI

occurs.

Courtney [163] has provided a review of current work in the field of blast induced TBI,

and a similar review of primary blast induced TBI mechanisms has been provided by

Nakagawa et al. [164]. Although mechanisms by which TBI occurs are not exactly clear,

suggested mechanisms are from [163, 164] are as follows:

• Direct transmission of blast waves through the skull to brain. This mechanism is

generally not well understood despite being considered one of the most common.

• Head acceleration mechanism - where the head is accelerated purely due to the

primary effects of the blast wave.

• Penetrating injuries - projectiles penetrate the skull and enter the brain tissue.

• Thoracic mechanism - pressure waves enter the thorax, in the form of a blunt

trauma or penetrating injury from a projectile, and leads to a brain injury.

Elsayed [165] and Nakagawa [164] both suggest that the direct transmission of blast

waves through the skull are the most common, but that the most severe injuries are

caused by a combination of mechanisms, such as acceleration/deceleration and pene-

trating injuries. This interaction between these 3 mechanisms makes a generalised risk

analysis for TBI difficult at this point in time, but threshold levels for brain injury for

each mechanism are slightly easier to develop. Courtney [163] has produced threshold

levels for injury via the thoracic mechanism and due to head accelerations, based on work

from various experiments in the form of curve fits to limited experimental data, and as

yet have not produced a mathematical model for these methods of injury. Although ap-

plication of criteria for TBI would add to the completeness of any injury model, the fact

that most models are only in the early stages of development and significant bodies of

data on the subject do not exist, models for traumatic brain injury will not be included

in the prediction of human risk considered here.

3.5 IED makeup and configuration

Many of the features described above are heavily dependent of the design of the device

used. Improvised explosive devices or IEDs, particularly person borne IEDs (PBIEDs)

for the case of rail vehicles, by definition have no standard construction. The important

variables in device design will vary considerably across designs from different groups,

which makes characterising many of the important initial parameters described above

(velocity and trajectory of projectiles, blast overpressures) difficult, with a high level

of variation expected between real parameters in different devices. For the purpose of

analysis and prediction, it is important to define a representative device that isn’t too

complex to implement in models, parameters for which can then be estimated.

• main charge

– mass
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– shape

– type

• primary fragmentation

– total mass

– number

– shape

– positioning within device

3.6 Developing a comprehensive risk analysis formulation

3.6.1 Multiple injury accumulation

When a number of injuries occur, it is necessary to combine those injuries and identify a

compound measure of how severely a person has been harmed. The Injury Severity Score

(ISS) is the most commonly used anatomical trauma scoring system and is computed by

taking the Abbreviated Injury Scale (AIS) values for the 3 most injured different areas

of the body, squaring them and adding them together.

Table 3.4: AIS scores for injury categories

Injury AIS
Minor 1
Moderate 2
Serious 3
Severe 4
Critical 5
Unsurvivable 6

The abbreviated injury scale (AIS) is an anatomical system used to classify injury

by body region by severity on a scale of 1–6 [166]. The AIS itself includes a coding

system to classify different individual injuries in each area of the body, each of which

is assigned an injury score. It was originally conceived in the United States to grade

injuries from automotive collisions, and it’s development is led by the Association for

the Advancement of Automotive Medicine, with revisions made to update the scale with

advancements in medicine. It is widely used in trauma research, and forms the basis for

the Injury Severity Score.

The ISS can range from 0 to 75. The New Injury Severity Score (NISS) follows the ISS,

but takes the AIS for the 3 most severe injuries, regardless of which body part they occur

in [167]. For comparison between the two if 3 severe injuries to the abdomen occurred,

and two trivial injuries to other areas, only the most severe abdominal injury would

count towards the score, plus those for the two other trivial injuries with ISS. With

NISS, all three severe abdominal injuries would be counted, and the NISS score would

be higher than the ISS score, which does not take account of multiple severe injuries

in the same body region. NISS is more accurate and provides a better indication of

mortality in the short term [168] and overall [169], and should be seen to supersede the
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ISS [167]. Scope et al. [170] showed that ISS scored in the low 40’s were associated with

a high risk of death within 30 minutes of wounding.

3.6.2 Chosen methods and models

The following methods and models are identified as being the most appropriate, offering

a balance of accuracy and simplicity of implementation. By no means have all possible

injury models been reviewed, and it is a subject of ongoing research, particularly within

civil service and defence organisations across the world, but an attempt has been made

to include the most pertinent features. Additions to the AIS scale could help to address

shortcomings in the work, with injuries added to the scale that are commonly seen in

blast injuries, as well as further research into the mechanisms of injuries seen as a result

of IED attacks.

• Primary injuries using Axelsson method

• Secondary injuries using:

– Gurney velocity prediction with distributions

– multivariate normal distributions for directions

– exponential equations

– depth of penetration for injury

In order to implement a scoring system to the injuries predicted in sections 3.2, 3.3

and 3.4, it will be necessary to assign an AIS score to the outcomes of each stage of the

model. The outcomes of the models described in Sections 3.2 and 3.3 are translated into

AIS scores, as shown in Tables 3.5 and 3.6, which will be used to develop a NISS score

and assess the level of injury of an occupant. Data in Tables 3.5 and 3.6 is based on

assumed levels of injury, as existing data could not be found in the literature.

Table 3.5: Translation of ASII to AIS

ASII AIS
0.0 – 0.2 N/A
0.2 – 1.0 1 – 2
1.0 – 1.9 2 – 3
1.9 – 3.6 3 – 4
>3.6 5

Table 3.6: AIS values for penetration injuries

DOP chest head extremities
full 5 5 4
half 4 4 3
quarter 3 3 2
< 10mm 2 2 1
none 1 1 1
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3.7 Implementing risk models

3.7.1 Axelsson model

The Axelsson model can be implemented in a straightforward manner, but requires a

numerical model to predict the pressure at 4 points. Model data is written out in a text

file and can be read into GNU Octave (see Appendix B.2 for full code) and a numerical

4th order Runge-Kutta scheme used to solve the differential equation for the velocity.

d2x

dt2
+

dx

dt
+ x = f(t) (3.38)

To solve a second order differential equation of the form seen in (3.38), it is necessary

to transform the second order problem into a pair of coupled first order equations, by

introducing a variable for the first derivative, demonstrated in (3.39).

y =
dx

dt
dy

dt
=

d2x

dt2

dy

dt
+ y + x = f(t)

dx

dt
= y

dy

dt
= f(t)− y − x (3.39)

The 4th order Runge-Kutta method for a first order differential equation is expressed

by (3.40) [171], where X is the numerical approximation of x, and h is the size of the

step in the t direction.

c1 = hf(tn, Xn)

c2 = hf

(
tn +

h

2
, Xn +

c1
2

)

c3 = hf

(
tn +

h

2
, Xn +

c2
2

)

c4 = hf(tn + h,Xn + c3)

Xn+1 = Xn +
1

6
(c1 + 2c2 + 2c3 + c4) (3.40)

For a second order differential equation (or higher), these coefficients are solved simul-

taneously for each of the coupled first order equations (c1 solved for all functions first,

followed by c2 etc.,) which gives approximations for the variables (X and Y in the case

of (3.39)) at each step. In the case of the Axelsson differential equation (3.15), the step

will be largely determined by the time interval from numerical data, which is input via

p(t).
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3.7.2 Projectiles

Most of the calculations required to model the risk of injury due to projectiles are

straightforward, but the large number of projectiles and persons involved, and the three

dimensional nature of the problem dictate that numerical procedures are the most ap-

propriate method. Unlike the method used in Section 3.7.1, where 4 pressures histories

are known and are applied to a calculation, the initial behaviour of multi projectile

devices such as IEDs is more random, and requires a different approach. This section

discusses a statistical approach to identifying the initial conditions, and the subsequent

methods of determining injury, as well as a description of the numerical procedure used.

3.7.2.1 Initial behaviour

The number of projectiles involved, and their inherent randomness means that statistical

methods are best suited for describing their initial conditions. In line with other work

described above, normal distributions are assumed for angular spreads in two dimen-

sions, and the velocities of the projectiles. A number assumptions are made about the

behaviour of the projectiles, which makes it possible to define the statistical parameters

for a trivariate normal distribution, from which a random sample can be taken using

the mvnrnd function in Matlab or GNU Octave for a given number of projectiles. For

the purposes of this work, it is assumed that:

• all parameters will be normally distributed

• the mean angular projection for both direction will be 0o

• 99.7% of all projectiles will fall within the following angular spreads from 0o:

– θ3σ = 70o

– φ3σ = 45o

• the mean velocity will be the Gurney velocity

• fragments travelling at a zero velocity are very unlikely, so v6σ = µv

• there is no correlation between the two angles of projection, so (σθ,φ) = (σφ,θ) = 0

• the correlation between angle and velocity is the same for both the θ and φ direc-

tions, so σv,θ = σv,φ (see Appendix B for a definition of θ and φ)

• angle and velocity are negatively correlated and will have negative covariances,

calculated using (B.3) with a correlation value of −0.5

A more detailed description of this statistical model can be found in Appendix B.2.

Once the initial conditions of the projectiles are specified, it is then possible to define

their movement and any subsequent interaction.

3.7.2.2 Propagation and hit

A numerical process can take care of the subsequent positions of each projectile, and

logical statements used to identify if and when a projectile comes into contact with an

occupant, which involves checking positions of projectiles against positions of occupants.

This is accomplished by defining the angular range taken up by various parts of an
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occupants body, which means interactions can be checked for by checking the projectile

angles against the body part angles. The ‘angles’ occupied by each body part of a person

are computed using a function person.m (see Appendix B.3.3), which for a given x and y

position, defines a range of angles θr and φr for each body part of a person3. With both

the angles for the projectiles defined in the θ and φ direction, and a range of angles θr

and φr, it is simply a case of searching for projectiles whose angles lie within both ranges

for each limb, which defines a projectile hit, and is accomplished with iswithin.m (see

Appendix B.3.3).

It is only necessary to calculate the velocity of a projectile if it will interact with an

occupant, so velocities are calculated for a given projectile using Equations (3.27) and

(3.28) after the hit or no hit statement has been identified. Once the velocity has been

calculated it is then possible to determine the DOP and the AIS, given that the body

part is already known.

3.7.2.3 Numerical implementation

Combining the initial conditions, propagation and hit stages results in a multi projectile

injury risk tool, the code for which can be found in Appendix sections B.3.2 and B.3.3.

The code can be visualised by the flow diagram in Figure 3.6. Data on the occupants of

a vehicle and the device are input into the model at the start, with the occupants input

as a series of x, y points in the vector D. The angles of the person are defined for each

body part, and then it is possible to loop over occupants, projectiles and body parts

to determine hits. If hits are identified, injury calculations can be made, and once all

occupants have been checked for interactions and data compiled in the hit matrix HM, it

is possible to compile hit statistics for each person, in terms of the total number of hits,

hits on each limb and the New Injury Severity Score purely for projectiles, which can

be written out to file.

The modular nature of the code means that it is simple to extend and improve the

code, particularly for projectile velocity, depth of penetration and AIS, by editing the

functions that calculate these values.

3.7.3 Calculating the risk for occupants

Methods for determining two types of injury are presented, which can be solved to give

an Abbreviated Injury Scale (AIS) value. They do not lend themselves to being solved

within the same code (one is in steps of distance, and one in steps of time), so separate

solutions can be computed. The individual AIS values calculated for each injury for a

defined occupant are output from each model, ranked and combined to give an Injury

Severity Score (ISS or NISS). Full details of the code used can be found in Appendix

B.2 and application for a rail vehicle found in Chapter 7.

3.8 The next steps

A summary of the open literature on mechanisms and prediction methods for injuries as

a result of detonations of explosives and explosives devices is presented here, with a focus

on the types of injuries expected from the detonation of an improvised explosive device.

3Currently, this function only considers standing persons, with shoulders aligned with the axis of the
vehicle.
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Figure 3.6: Visual description of multi projectile injury model

The literature shows that there are a large number of injury mechanisms at work, but

that predicting them can often by difficult and that existing techniques are immature,

particularly in the case of impact injuries to the head and traumatic amputation of

limbs. As a result it was decided that the focus of the injury predictions in this work

would be those caused by blast pressures and flying projectiles.

A projectile injury prediction method has been fully described, as has a method for

predicting the injuries to the chest using a complex blast pressure time history, such

as that generated by an explosion in a confined space like a rail vehicle. The following

chapters present a method for predicting this blast pressure history using explicit finite
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element analysis, as well as providing verification and validation that the results are

accurate and comparable with empirical predictions and experimental measurements of

blast parameters.
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4

Modelling Methods and

Verification

4.1 Blast Characterisation in LS-Dyna

LS-Dyna is a general purpose explicit finite element code which is widely used for sim-

ulations of highly transient and non linear behaviour, such as ballistics, impact and

crashworthiness. LS-Dyna is also used widely to model the effects of shock loads on

structures and components and loading can be applied to a structural (typically La-

grangian) finite element model in a variety of ways. This chapter presents an overview

of the methods available within LS-Dyna, and provides a verification of the coupled ALE

method which will be applied in later work.

4.1.1 Empirical methods for applying blast loads

For many engineering applications, blast loads can be applied to the structural model

using idealised pressure time histories that are taken from data on explosions under

controlled situations. Pressure time histories from real explosions in free air (no reflecting

surfaces) take the form of the Friedlander curve (see Section 2.2.1.2 and Equation (2.9))

during the positive phase, with negative phase parameters calculated separately where

deemed necessary (see Section 2.4 for more details).

In LS-Dyna, empirical methods can be implemented using one of two built in functions,

LOAD BLAST and LOAD BLAST ENHANCED, which are implementations of a pro-

gram called ConWep [172]. ConWep uses equations derived from an experimental testing

(the same experimental testing used to produce the curves in [37]) to calculate the peak

pressure, positive phase duration and impulse experienced at a particular distance from

a charge of TNT. This allows the pressure time history at the surface of a structure to be

calculated very quickly when the user specifies the distance from the point of detonation

and the size of the charge. The method is very accurate when used appropriately, but

cannot take account of some important real world effects that can make large differences

to the pressure experienced on a structure, which can lead to inaccuracies if the method

is applied without consideration to the assumptions and limitations. Empirical methods

such as these do not take account of the effects of clearing around small finite structures,

confinement and reflection, negative phase effects (although these are treated to some
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Table 4.1: Equation of state parameters for high explosives

Explosive A (GPa) B (GPa) R1 R2 ω E0 (GPa)
TNT [173] 371.20 3.23 4.15 0.95 0.30 7.00
C4 [173] 598.20 13.75 4.50 1.50 0.32 8.70

Table 4.2: Material model parameters for high explosives

Explosive ρ (kg/mm3) Vdet m/s PCJ (GPa)
TNT 1.59E-06 6930.00 23.70
C4 1.61E-06 8040.00 28.10

extent by LOAD BLAST ENHANCED) and the effects of curved blast fronts that exist

at small scaled distances, when the shock wave cannot be considered plane.

4.1.2 Arbitrary Lagrangian Eulerian methods

The Arbitrary Lagrangian Eulerian (ALE) method with Fluid Structure Interaction

(FSI) models the detonation of a high explosive, the subsequent propagation of the

shock and pressures waves through the air and couples this to a structural finite element

problem. The solution combines both a Lagrangian mesh for the structure and an ALE

mesh through which the fluids move.

It is possible to use the ALE method with both 2D shell elements and 3D solid el-

ements, both of which are used here. The 2D method has the advantage of being

significantly faster and requiring fewer elements to model a given problem, but is lim-

ited to axisymmetric problems, and 3D ALE domains are required for FSI calculations

under most circumstances.

4.1.2.1 ALE Material Model parameters

For air and high explosives that are characterised with the ALE method, a material

model and an equation of state are required. A high explosive is modelled with a com-

bination of MAT 008 (HIGH EXPLOSIVE BURN) and the Jones–Wilkins–Lee equa-

tion of state (EOS JWL) (Equation (2.36)), and the air is modelled using MAT 009

(MAT NULL) and a simple linear polynomial equation of state (EOS LINEAR POLY-

NOMIAL) (Equation (2.35). Equation of state parameters for 3 high explosives can be

seen in table 4.1 and parameters for high explosive material models and air in tables 4.2

and 4.3.

Table 4.3: Material model and EOS parameters for air

ρ (kg/mm3) γ E0 (GPa)
1.01E-09 1.4 2.6E-04
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4.1.2.2 Use of 2D and 3D models

The 2D ALE method uses axisymmetric multi material 4 node shell elements. The

detonation and initial propagation of blast waves from spherical charges is particularly

suitable for application of symmetry, but all charge shapes with axisymmetrical prop-

erties can be effectively simulated using this 2D method. The 2D method is used for

modelling the high explosive charge and the air that is close to it and it is possible to

save the data from either the whole simulation or the last cycle and map this on to

either a different 2D or a full 3D model. The advantage of this method over a single

modelling stage with a full 3D model are 2 fold; the detonation process can be modelled

with shell elements with a much smaller element size to give high resolution data at

much better computational efficiency than using solid elements of the same size. Sec-

ondly, the detonation process typically requires finer mesh elements than subsequent

propagation and interaction, this use of mapping means that subsequent meshes onto

which the initial 2D data is mapped can avoid transitions between small elements in the

charge and larger elements elsewhere, which reduces the time taken to generate meshes

and prevents unnecessarily small time steps involved with small elements. The 2D sim-

ulation of detonation and initial propagation can also make use of a radial type mesh

when spherical charges are being modelled, which avoids problems with transport across

element diagonals, as mentioned in Chapter 2.

The mapping process is accomplished by using the command ‘map=map filename’

on the command line when running the model, and the use of the keywords INI-

TIAL ALE MAPPING or BOUNDARY ALE MAPPING in the input files of the models

that will receive mapping data, to map either the last cycle or the solution history on to

the new solution. Mapping the last data from the first 2D model onto the second model

means that the second model effectively ‘begins’ at the time the first model ends which

has both advantages and disadvantages. The primary disadvantage is that no data can

be recorded from the second model before the termination time of the first model, so

the initial behaviour is effectively missing. This can be an advantage if this data is not

required though, less computation time is required if the second simulation can skip a

large number of cycles at the start.

The 2D ALE method can be used to model blast wave interaction with rigid objects

due to the significant reduction in computational cost involved. Structures are modelled

by fully constraining the nodes that form the boundary of a structure at that point.

This can be very useful if a structure is very big and too expensive to model in 3D,

assuming the structure is rigid, but can only be used when there are no anticipated out

of plane effects, or out of plane effects can be shown to be insignificant.

It is not always possible to simplify models to an extent that allows a 2D method to be

used. The full 3D method applied here uses 8 node solid multi material ALE elements

with a single integration point. Where possible, symmetry is used and a regular hexa-

hedral mesh1 for air can be initialised with explosion data from 2D runs. If symmetry

cannot be used, the charge must be meshed into the air domain, which brings with it

problems of severe element size transition within the mesh, as well as longer problem set

up time and increased computational effort associated with a higher number of elements

used in models that cannot utilise symmetry.

1The mesh is made up of identical size cuboidal elements.
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Table 4.4: Constraints for symmetry boundary

Plane TCx TCy TCz RCx RCy RCz
y-z 1 0 0 0 1 1
x-z 0 1 0 1 0 1
x-y 0 0 1 1 1 0

4.1.2.3 ALE Boundary Conditions

There are 3 boundaries to consider when modelling the fluids in the ALE domain: the

boundary to infinity / free space, symmetry boundaries and rigid boundaries. Rigid

boundaries are enforced by applying single point constraints to boundary nodes on one

or several faces of the ALE domain in all degrees of freedom, which simulates the presence

of a rigid and perfectly reflecting surface. Symmetry boundaries are also specified by

applying translational and rotational single point constraints to the faces of the ALE

domain in the symmetry plane, as shown in Table 4.4.

At the edge of an ALE domain where there is neither symmetry nor a rigid boundary,

the ideal boundary conditions would allow pressures to dissipate and prevent any reflec-

tions. This boundary does not physically exist in the real world as the air surrounding

a structure (above and to the sides) is effectively infinite. In a model, free boundaries

will cause reflections to some degree which leads to contamination of results with unre-

alistic phenomena. Current boundary treatment options for ALE elements in LS-Dyna

are limited - the BOUNDARY NON REFLECTING keyword works by computing an

impedance function based on the assumption of linear material behaviour [174] which is

not appropriate for highly non linear air shock waves. Perfectly matched layers are ex-

tra layers of a material that mathematically simulates an unbounded medium, absorbing

and attenuating waves, and are currently implemented in LS-Dyna for the boundaries

of some Lagrangian materials, but as yet are not implemented for ALE elements. In the

absence of appropriate boundary conditions or implementations of effective absorption

and attenuation materials, the best practice is to use an ALE mesh that is large enough

that no boundary phenomena will reach the area of the model under study during the

time period that is of interest.

4.2 Verification study

4.2.1 2D simulation of blast in free air

Two dimensional quarter symmetry ALE models were conducted to ensure the method

accurately simulated the detonation and initial propagation of the blast wave as well

as identifying appropriate element size and density to achieve mesh independence. An

example of the input files for these models can be found in Appendix A.1.1.

Models of a 320 gram equivalent explosive charge are used in this verification study

as it accurately represents the charge configuration used in the experimental tests. The

experimental study utilises quarter symmetry and an 80 gram charge moulded into a

quarter sphere of radius 36mm, which is equivalent to a 320 gram charge (radius 36mm)

when the symmetry planes are removed. The charge mass of 80 grams is the maximum

that can be used in the experimental test cell.
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(a) Charge mesh (b) Charge and air mesh

Figure 4.1: Mesh configurations for 2D ALE model

4.2.1.1 Mesh effects

A explosive charge is modelled in 2D using symmetry as a quarter of a circle with a

36mm radius using a butterfly type mesh, and air is modelled to a distance of 500mm

from the point of detonation with a radial type mesh. The configuration and shape of

the mesh is shown in Figure 4.1. Four different mesh densities are chosen as shown in

Table 4.5 that are dictated by the number of elements around the circumference of the

charge with the smallest element at the centre of the charge, which are referred to in

figures as 20, 40, 80 and 160.

The resolution of the mesh has 2 main effects on the accuracy of the predictions that

2D models produce; peak values in the time history are lower, and the time taken to

reach this peak is longer in models with coarse meshes compared to more refined meshes.

Figures 4.2 and 4.4 show that coarse meshes tend to produce a similar shape and the

key features are similar, but as the mesh is refined the changes experienced within the

fluid occur more rapidly. The cumulative impulse (Figure 4.3) shows that slower rise

time and lower peak pressure seen in Figure 4.2 lead to a corresponding slower rise

in the cumulative impulse, but also shows that the impulse continues to rise after the

impulse has become constant in other models. This leads to a peak impulse cumulative

for a coarse mesh which is closer to that of finer meshes when compared with plots for

pressure or shock wave velocity.

The finest mesh produces only small changes in the prediction of pressure, impulse and

shock wave velocity compared with one that has half the number of elements around the

circumference, but Figure 4.5 shows that there a significant increase in computational

effort required for this. The trend shows an exponential increase in the computational

time as the mesh is refined that lead to increasingly small changes in the predictions

from the model, so for this particular problem a mesh with 160 elements around the

circumference is suitably accurate.
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Table 4.5: 2D mesh details

Elements around charge Smallest element (µm) Total number
20 1230 2980
40 603 12200
80 290 35680
160 150 87360
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Figure 4.2: Pressure history 300mm from charge centre

0.05 0.075 0.1 0.125

Time (ms)

0

50

100

Im
p
lu
ls
e
(k
P
a-
m
s)

20
40
80
160

Figure 4.3: Cumulative impulse 300mm from charge centre
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Figure 4.4: Sock wave velocity 180mm from charge centre
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Figure 4.5: Effect of mesh density on model run time

4.2.1.2 Comparison of Models with ConWep

Blast parameters from a model can be verified by comparing them with data from the

ConWep program [175]. The numerical model utilises the same 320g charge with quarter

symmetry that is used in Section 4.2.1.1, and an equivalence value of 1.2 [36] is used to

calculate an equivalent TNT charge mass of 384g for use in ConWep.

Data from numerical models used for the mesh study in Section 4.2.1.1 is mapped onto

a new, larger 2D domain of square shell elements with overall mesh dimensions of 2500

× 2500 mm in the x-y plane.

As the ConWep program utilises empirically derived equations, the output data is only

valid within the range of scaled distances at which measurements were taken during the

original experiments. The ConWep program should therefore be used to calculate blast
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Table 4.6: Numerical and empirical impulses

Positive phase incident
impulse (kPa-ms)

R (m) Z (kg/m
1
3 ) ConWep LS-Dyna % difference

0.852 1.17 110.8 111.1 0.3
1.100 1.50 86.8 88.7 2.2
1.274 1.75 75.5 80.3 6.4

parameters at scaled distances of greater than Z = 1, which for a charge of 384g gives

a minimum distance of 727mm from the point detonation, shown in Equation (4.1).

ConWep is an empirical tool, and gives parameters to allow the Friedlander curve to

be plotted for the positive phase of a blast. ConWep does not consider the negative

or underpressure phase of a blast, which cannot be plotted by assuming the extension

Friedlander curve into the negative phase.

Z =
R

W
1
3

W = 0.384 kg

for Z > 1 kg/m
1
3

R > 1× 0.384
1
3

R > 0.727m (4.1)
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Figure 4.6: Numerical and empirical results at Z=1.2

Predictions of free air blast parameters from numerical models generally show excellent
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Figure 4.7: Numerical and empirical results at Z=1.5

agreement with curves generated from empirical data provided by ConWep and confirm

the assumption of a TNT equivalence of 1.2 is valid. Figures 4.6 and 4.7 show good

agreement between the peak pressure, arrival time and decay history at two different

scaled distances, with pressures decays in both figures shown to be slightly more pro-

nounced in numerical models than in Friedlander curves fitted via the decay parameter,

b, according to impulses given by ConWep.

It should be noted that numerical and empirical results do not match perfectly, which

is in large part due to the limitations of numerical methods caused by finite mesh sizes.

The numerical method is not capable of modelling a discontinuity such as a shock, so

the discontinuity, which is an almost infinite gradient in real life, is modelled as a sharp

gradient across a number of elements. If elements are large, the shock is smeared2

across a large physical space and there is a corresponding large time between arrival of

the shock front and the peak overpressure. As the elements get smaller the number of

elements the shock is smeared across remains constant, but the physical space across

which the shock is smeared is reduced and the time taken for the pressure to rise to

the peak value is reduced, leading to sharper pressure rises as the elements reduce in

size. This means that the almost infinite gradient seen in reality would require almost

infinitely small elements, which is not feasible. As a result, numerical models with coarse

meshes will ‘miss’ the peak overpressure due to shock smearing, which is seen in both

Figures 4.6 and 4.7. Instead of continuing to rise to the peak pressure, the pressure

in the numerical model decays in line empirical data. Effectively the sharp changes in

pressure experienced at a point, are smoothed out by the numerical model, and the

extent of this smoothing and resolution of sharp changes is a function of element size.

2Shock smearing [174] is introduced by bulk viscosity, which adds a viscosity term to pressures to
turn shocks into rapid but continuous transitions, which is necessary for solution stability.
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4.2.2 Boundary effects in ALE domains

Understanding the effect of mesh area and proximity of measurement to free boundaries

is important to ensure that boundary effects are not misinterpreted as real physical

phenomena. Figure 4.9 shows pressure histories taken at 3 different locations in a mesh

with a small area, with and without a non-reflection (NR) boundary conditions applied,

and at the same spatial points within an enlarged mesh. The location of the pressure

measurements with the mesh and the relative mesh area is shown in Figure 4.8.

1200mm

2500mm

•1

•2

•3

Figure 4.8: Locations of measurements in relation to boundary of two different meshes.
The enlarged mesh free boundaries are shown with a dashed blue line and the smaller
mesh with a solid red line.

The pressure at location 1 is shown in Figure 4.9(a) which shows very similar pressure

histories for both models with a small mesh and the enlarged mesh, including the small

second shock at 2.9ms. This point is sufficiently far from the free boundary to avoid

any noticeable edge effects in this particular model, but if the solution was run over a

longer time expansions waves from the boundary are likely to have been visible. Figures

4.9(b) and (c) show pressure histories closer to the boundary which both show deviations

from the expected pressure history due expansion waves from the boundary. At point

2, Figure 4.9(b), pressures in the small mesh follow the pressure in the enlarged mesh

up until 2.1 ms, when expansion causes a pressure drop away from the pressure seen

at the same point in the enlarged mesh. Boundary effects also lead to the rise back to

atmospheric pressure, and the pressure jump at 3.5ms is a result of interaction between

the second shock (also seen in the enlarged mesh) and boundary effects. At position 3,

shown in Figure 4.9(c), the boundary effect is not immediately obvious unless compared

with the result from a larger mesh. At the point the shock wave reaches position 3, an

expansion wave is immediately emitted from the boundary. The expansion wave does

not effect the peak pressure experienced, but leads to a more rapid decay in the pressure

predicted at this location than for an enlarged mesh in which no boundary effects are
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observed. The smaller mesh also does not pick up the second shock seen at 3.75ms in

the enlarged mesh.

Positive phase impulses before the second shock is observed are compared in Table

4.7 and show large differences between models where boundary effects are observed. At

position one, the cumulative impulse before the second shock for both the small mesh

and enlarged mesh is similar, with the smaller mesh predicting a 2% lower impulse than

the enlarged mesh. At both positions 2 and 3, the cumulative impulse difference between

the 2 models is much larger. At position 2 the cumulative impulse is identical for the

two models until the expansion waves cause a dip below atmospheric pressure at 2.1ms,

at which point the cumulative impulse begins to decrease. This dip below atmospheric

leads to a difference in cumulative impulse of 26% at 3.7ms. At point 3 the small mesh

predicts an impulse 48% lower than that predicted with an enlarged mesh at 3.7ms

due to expansion waves from the boundary. It should be noted that for impulse, as

well as pressure histories, no measurable difference between unconstrained nodes and a

non-reflecting boundary condition (NR BC) is observed.

Table 4.7: Boundary effects on positive phase impulse

Positive phase impulse (kPa-ms)
Point Small mesh Enlarged mesh % difference

1 186 190 2
2 116 156 26
3 79 153 48

4.2.3 3D simulation of blast wave pressure and fluid structure interaction

As well as testing if a model can predict free field pressures, it is important to ensure

that they can predict pressures when blast waves interact with structures in 3D, as this

will be important for future work in this thesis. The nature of the 3D effects seen in

blast waves mean that empirical or analytical solutions only exist for the simplest cases,

such as normally or obliquely reflected pressures, but if models are to make predictions

in complex environments they should be proven to work for these simple cases.

4.2.3.1 Model description

The 3D model of an air domain measuring 1000 × 1000 × 1000mm was constructed using

a regular cuboidal hexahedral mesh and 8 node solid elements in LS-PrePost. The model

was run with several mesh densities to identify how the resolution of the mesh alters

the results, which can be seen in table 4.8. To improve computational efficiency, the

mesh was built utilising quarter symmetry, so three faces of the model have appropriate

symmetry boundary conditions applied and the remaining three faces are left without

boundary conditions (boundary conditions for each plane can be found in Table 4.4).

Symmetry boundaries are found on the innermost faces of the domain as shown in Figure

4.10, with the 3 symmetry planes meeting at the point O.

Solid elements are specified as 1 point ALE multi-material elements, which allows

between 1 and 3 different ALE Multi-Material Groups (AMMG) to exist within an ALE

element at any time. Each AMMG represents an individual material, either in physical
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Figure 4.9: Effect of measurement location proximity to free boundary on pressure time
history. In b) and c), pressure histories with and without boundary conditions are
identical and overlapping.

78



Modelling Blast Loads in Rail Vehicles T.Anthistle

x y

z

O

800

300

1000

Figure 4.10: Setup of 3D model

space or its properties, which can interact with other AMMG and Lagrangian structures.

The multi-material groups are specified with the ALE MULTI-MATERIAL GROUP

keyword and the physical properties of the materials are specified on the PART card,

which is as an input for AMMG. Data on AMMGs is mapped between 2D and 3D

models, so it is important that there is consistency in part numbering between models

to ensure the correct initialisation of the 3D models. Although no physical explosive is

present in the 3D model (the mesh is constructed for the air domain), products of the

explosion will exist, so both physical data for explosive and air (Tables 4.2 and 4.3) are

included in the 3D model.

As with 2D models above, initial conditions are provided by mapping data from a 2D

model onto the 3D domain, utilising symmetry conditions. The 2D model uses a charge

with a radius of 36.4mm, which for a full sphere of PE4 would have a mass of 320g,

equivalent to 384g of TNT, which is run until 0.15ms, at which point it is terminated

and final cycle data written to a mapping file which becomes the initial data for the first

cycle of the 3D run.

A reflecting structure at 800mm from the point of detonation measuring 300 × 300mm

(See Figure 4.10) was modelled using both single point nodal constraints, and using a

Lagrangian structure coupled to the ALE domain. The Lagrangian structure was con-

structed of shell elements of equal size (between nodes on an edge) to the ALE elements

and is positioned within the ALE, but offset by a small amount so nodes of the ALE and

Lagrangian mesh are not exactly coincident. The coupling between the ALE fluid and

the Lagrangian structure is achieved by the CONSTRAINED LAGRANGE IN SOLID

keyword, which allows specification of the Lagrangian structure and distinct AMMG

that will interact with it, as well as the method used to couple the two and many other

control parameters. For this model, penalty coupling was chosen between the Lagrangian

structure and all AMMGs in the model - full details of the parameters for this keyword

can be found in Appendix A.1.2. Global parameters to govern ALE behaviour are set

using the *CONTROL ALE, with only two parameters changed from their defaults. The

DCT parameter was set to -1, which is specifically recommended in the users manual

[174] for use with high explosives, and METH, which controls the advection method,
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Table 4.8: Mesh sizes for 3D models

ALE element size number of elements
20 125,225
10 1,000,900
6 4,574,296

was set to -2 as recommended for simulation of high explosives.

4.2.3.2 Results - free air

A comparison between the 3D ALE models at different mesh resolutions and a curve

plotted from ConWep data is shown in Figure 4.11. Pressure history data (4.11(a))

shows a shock arrival time for the models between 0.16ms and 0.18ms (the coarser

model arrives slightly earlier than the other models), but a later arrival time of 0.195ms

from the ConWep prediction. After the shock arrival, the gradient of the slope similar

is for all models, but the time to reach the peak pressure value decreases with mesh

refinement, at 0.18 for the fine model and 0.195 for the coarse model. The values of

the peak pressure show that this is particularly sensitive to the resolution of the mesh,

with the pressure in the fine model more than 500 kPa higher than that seen in the

coarse model. The peak pressure in the coarse model is 270 kPa below that predicted

by both ConWep and the mesh with medium resolution (10mm), which in both show

lower peak pressures than those predicted by the model with a fine mesh, which shows

a peak pressure of 2300 kPa. Once the peak pressures are reached, the pressure in

the three models begins to decay, and very similar rates of decay are seen between

0.195 and 0.25ms, over which period the decay rate is also similar to that seen in the

ConWep curve. At 0.26ms, the decay rate in the medium and fine models begins to

reduce compared with both the coarse model and ConWep, which subsequently lead

to a longer positive phase in the medium and fine models. The effect of this can be

seen in the cumulative impulse curve (Figure 4.11(b)), where the impulse continues to

rise for both these models, while the coarse model and the ConWep prediction show

plateaus. The similarity in decay rates up until 0.26ms means that impulse histories

are very similar for all models and the ConWep prediction until 0.3ms, at which point

some divergence occurs. As a result, the peak cumulative impulse in the coarse mesh is

lower than the peak predicted by ConWep, which is again lower than that predicted by

the fine and medium mesh models. The fine mesh, although it over predicts the peak

pressure relative to ConWep, shows the closest peak cumulative impulse, whereas the

coarse model underpredicts both the peak cumulative impulse and peak pressure, and

the medium model predicts the peak pressure, but over predicts the cumulative impulse.

4.2.3.3 Results - normal reflection

Pressure and impulse history at a reflecting surface was modelled using two different

methods, a nodal constraint (NC) approach, and with a Lagrangian surface and the

CONSTRAINED LAGRANGE IN SOLID (CL) coupling algorithm, shown in Figures

4.12 and 4.13 respectively.

The pressure histories for both models show similar trends to those seen in the free
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Figure 4.11: Effect of mesh refinement on free air pressure and impulse in 3D ALE
models

air models above, but with the issues seen in Section 4.2.3.2 more pronounced in the

models here for reflected pressure, with big variations in peak pressure, gradient and

rise time. For the NC model, there is a 1250 kPa difference between the peak pressure

in the coarse and fine models and for both the NC and CL models. Whereas there was a

less than 0.01ms difference in the times of the peak pressures in the free air model, there

is a difference of 0.05ms between peaks of the coarse and fine models in the NC and CL

models. The arrival time for reflected models is slightly altered compared with the free

air models, with the coarse model arriving 0.05ms before the ConWep predicted arrival

time, but the medium and fine mesh arriving 0.15ms before, compared with 0.3ms and

0.25ms for the free air model. In contrast to the free air models, the models for reflected

pressure show that the peak pressure is under predicted by all models, and by more

in the CL models than the models using the NC method. The peak numerical model
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pressure in Figure 4.12 is 3250 kPa, compared with 3050 kPa in the fine model in Figure

4.13. The peak pressure values on these curves tend to fall on the decay line of the

ConWep and the subsequent decay is typically consistent with that seen in ConWep.

The decay is slightly masked by oscillations in the finest two meshes in both models,

but the decay seen in the NC models is closer to that seen in ConWep than that from

the CL models, which decays more strongly.

Across all mesh resolutions for both methods, the cumulative impulse is under pre-

dicted relative to ConWep. For the NC method, the peak cumulative impulse is the

same for all mesh resolutions at 330 kPa-ms, and despite the clear change in behaviour

made by mesh resolution changes such as peak pressure and rise time, the impulse stays

the same and is unlikely to change at further mesh refinement. For CL method, less

consistency in the under prediction is found, with the medium mesh being further away

from the ConWep prediction than the coarse mesh, and the fine mesh closer than both

with a peak cumulative impulse of 300kPa-ms, compared to the ConWep prediction of

360kPa-ms. The fine mesh in the CL method is the closest to the prediction given by

ConWep, but it is not possible to identify a trend, or if a finer mesh resolution would lead

to a different impulse. Comparison with the behaviour of the NC model would suggest

that this model will always under predict compared to ConWep, and the combination of

a sharper decay and lower peak pressure would indicate the CL model will under predict

by more than the NC model.

In both Figure 4.12(a) and 4.13(a), a number of oscillations are seen in the decay

phase that are not seen in the decay phase in Figure 4.11(a). It is difficult to identify a

real physical phenomena that could cause this oscillation in the pressure, which would

indicate it is caused by some features specific to the numerical model, and is especially

prominent in Figure 4.13(a). The way the ALE mesh, Lagrangian mesh and tracer parti-

cle (for pressure history) are positioned using the CL method means that the Lagrangian

mesh is half way across an ALE element, but the pressure history must be taken from

an adjacent ALE element, due to the thickness offset of the Lagrangian structure. Fig-

ure 4.14 shows that changing the relative positions of these can yield a pressure history

that is much smoother and shows no oscillations in either the rise or the decay of the

pressure. Despite this though, as it is necessary to move the Lagrangian structure to

make it close to the boundary of an ALE element, a corresponding peak pressure drop

will be seen if the structure is moved further from the centre of the detonation, as is seen

in 4.14(a). Although the peak pressure drop is quite noticeable, the improved rise and

decay behaviour leads to a small increase in impulse (towards the ConWep prediction),

shown in Figure 4.14(b).

4.2.3.4 Discussion

Data has shown it is possible to achieve reasonable predictions of the ConWep values

from numerical models, but also that these solutions are strongly dependent on how the

problem is specified. The most critical parameter is the mesh resolution, which strongly

affects the peak pressure and rise time. This is caused by shock smearing, necessary in

numerical codes to prevent instability, and means that if the shock is smeared over a

number of elements, as the size of those elements decreases, the closer the model can

come to simulating a true discontinuity. Larger elements mean the shock is smeared

over a larger physical space, and consequently the gradient of the pressure-time slope
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Figure 4.12: Effect of mesh refinement on the reflected pressure and cumulative impulse
in 3D ALE models using nodal constraints to model a reflecting surface

is reduced and the full peak pressure cannot be reached before the shock wave has

passed and pressure begins to decay. Clearly, infinitely small elements are not possible,

and the mesh resolutions must be chosen to satisfy both the need for accuracy, and

the computational resources available, considering that under some circumstances (see

Figure 4.12) mesh refinement does not lead to more accurate solutions.

There is also a mesh effect caused by relative positioning of Lagrangian and ALE

elements, and relative pressure sensor positions. The pressure is typically constant

throughout an ALE element, except in cases where a coupled structure is present, and

under certain combinations of positions of these elements and sensors it is possible to get

some oscillation about the true pressure history, as shown in Figure 4.14. Better results

were found when Lagrangian structures were positioned such that when the coupling

thickness is considered, the edge of the Lagrangian element lies close to the boundary
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Figure 4.13: Effect of mesh refinement on the reflected pressure and cumulative impulse
in 3D ALE models using a physical structure to model a reflecting surface

of an ALE element, with the sensor positioned within the adjacent ALE element on the

‘shocked’ side of the Lagrangian structure. This does not require any prior knowledge of

the solution, but indicates that it is important that the thickness of the shell, the size of

the ALE element and the position of the sensor need to be considered together at each

mesh density.

Other model features also alter the solution, one being the choice of method for mod-

elling a perfectly reflecting surface. It is clear from Figures 4.12(a) and 4.13(a) that

the peak pressure in models using the nodal constraint method was higher than when

the coupling method is used. The reflection at nodal constraints if effectively perfect,

as nodal constraints ensure the velocities at the nodes is zero, whereas the coupling

method must apply a force to the ALE material to prevent it passing the Lagrangian

surface, which is inherently more complex and does not yield the same perfect reflection.
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Figure 4.14: Effect of changing the relative positions of Lagrangian surface, ALE element
and tracer particle history

Although this coupling stiffness can be artificially modified, the available contribution

to the pressure increase is negligible.

The predictions made here using ConWep have assumed a TNT mass equivalence of

1.2, and the data presented shows that this is appropriate. Arrival times, positive phase

duration and decay all match well, but this case is only for simple reflections, and in

real testing there will be no need for equivalence as the model and tests use the same

explosive.

4.2.4 Conclusions and implications for further work

Across both 2D and 3D ALE methods, the resolution of the mesh is very important and

is the primary variable responsible for accurate peak pressure prediction from models.

Coarse meshes were seen to cause slower rises to the peak pressure, resulting in under
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prediction of the value of the peak pressure and the peak cumulative impulse. It is plau-

sible that this could cause many issues with further models, and if an excessively coarse

mesh is used when short duration shocks are expected, it is possible these shocks will

be missed, or their contribution greatly underestimated. It is clear that the positioning

of a Lagrangian structure within an ALE mesh is also important, and relative position

between the two meshes and pressure sensors can cause some non physical effects to be

seen in models. It was also obvious from 2D ALE models that boundary effects can

adversely influence models, and care should be taken to plan the size of the ALE mesh

to ensure that boundary effects will be minimized within the area of interest.

Although peak pressures and peak cumulative impulses were under predicted for a

fully reflected shock in 3D, the ALE method was shown to be capable of predicting

the dominant behaviour in the circumstances investigated. Experimental investigation

of blast pressures in a more confined environment will allow further validation of the

ability of numerical model to predict the pressure history. Given the results presented

here, it is likely that some compromise between model accuracy and available numerical

resources will need to be made.

Chapter 5 presents experimental data on pressures in confined environments, which

can be used to further validate numerical modelling techniques presented in this chapter.
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5

Experimental measurement of

pressures and structural

deformation in confined

environments

5.1 Introduction

Numerical models can be used to predict blast parameters and structural deformation,

but the accuracy of these predictions can only be confirmed by validating models with

reliable experimental data. This chapter describes a series of bespoke experimental tests

designed to identify blast parameters and structural deformation in confined environ-

ments, which can be used to validate numerical models. The tests were originally planned

primarily with validation in mind, and less with comparison between arrangements, but

despite this an effort has been made to make comparisons between arrangements and

make deductions from this.

The test program aimed to:

• provide pressure, cumulative impulse and displacement data to validate numerical

models

• generate standalone data to confirm similarity between repeated tests of identical

arrangements

• identify what effect rigid and deformable structures have on the pressures in a

confined environment

5.2 Test design

The tests described here are experimental and the method, including design, fabrication,

instrumentation, preparation and running of each test cycle were all generated within

and specifically for this work. As a result much was learned along the way and provides

useful guidance for future similar tests which is covered by the discussion of the method
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Figure 5.1: Reflection coefficient versus angle of incidence, reproduced from UFC 3-340-
02, Fig 2-193 [37]

and results presented here. By their nature, new and experimental test set ups will have

some features that did not work out as expected, and this work is no exception.

5.2.1 Test Design Criteria

Efforts to validate models and confirm modelling techniques that will be used when

modelling different or more complex situation would be wasted if no similarities existed

between these new models and the experimental tests and the models they validate.

The primary reason for undertaking these experimental tests is to provide validation

data for numerical models. These modelling techniques will then be applied in more

complex and realistic models, with the assumption of validity based on the idea that

similarities exist between the underlying physical phenomena that dictate the behaviour

in the experimental test, the validation models and numerical models of rail vehicles. It

is therefore important that the experimental tests are designed to replicate some of the

features and behaviour that would be expected in a rail vehicle under blast loading.

The test design is limited by the space, materials and construction effort required. The

University of Sheffield Blast and Impact Laboratory at Harpur Hill provides facilities

and space for testing, and discussion with the staff identified an existing test cell which

could be modified to satisfy the desired criteria. The test cell was a steel box with 19mm

thick walls that was known to be quasi rigid for charges up 100 grams and had been

used previously to investigate the behaviour of blasts in confined environments [153].

The box has internal dimensions of 1456 × 1456 × 2980 mm and is constructed of 19mm

mild steel plate, giving an approximate mass of 2.9 tonnes. The mass and size made

moving the box difficult and few workshops can accommodate a workpiece of such a

size, so any modifications or additions had to be made with the box in situ. The test

programme should be designed to fulfil the following criteria:

• simulate features particularly applicable to blast loads in rail vehicles
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• be designed with subsequent modelling effort in mind

• avoid unnecessary complexities that would:

– lead to a large spread in experimental data

– prove excessively time consuming or complex to model with the required level

of accuracy

• provide reliable, repeatable experimental data

• modifications to box feasibly completed with portable or hand held tools

• be cost effective

5.2.2 Fulfilling test criteria

There are many features of a rail vehicle which were thought might alter the behaviour

of shock waves, some of which are listed below. They could protect some passengers by

shielding them from blast waves and flying fragments, but may also confine and reflect

the shock waves and lead to a higher chance of injury. Deformation and failure of the

vehicle structure is also possible, and how this affects passengers, infrastructure and

passengers surrounding the vehicle has not been thoroughly investigated and quantified.

Not all features can be studied or easily simulated in experimental tests, so the most

dominant, common or least understood features should be investigated. Notable features

of a rail vehicle that could be investigated experimentally are:

• seats

– size and shape

– materials and construction

– positioning

• draught screens and partitions

– material

– density / spacing

– size

• through train design versus closed carriage design

• structural deformation / vehicle body construction

• effect of passenger presence

There are a number of scenarios that could also be investigated by experimental means

that were not considered as they were deemed to be difficult to achieve or outside of the

scope of the current project.

• complete destruction of vehicles due to very high charge masses (PBIED)

• effects on a moving train (derailment etc.)

• damage to infrastructure (tunnel, railhead, platform damage)

89



Modelling Blast Loads in Rail Vehicles T.Anthistle

• weapon / IED characterisation and performance

• effect of combined fragment and blast loading1

• characterisation and performance of materials and structure common to rail vehi-

cles under blast loading

– extruded wall panels1

– glass (laminated and toughened)

– wood

– polymers

– composites

5.2.2.1 Applicability and feasibility

Seats are common to every passenger rail vehicle but their size, shape, construction and

positioning varies hugely depending on the application the vehicle is used for. Intercity

commuter trains typically have larger, heavier and more cushioned seats with more

space between them than suburban or local services, as passengers typically sit for

much longer periods of time on these services. Urban trains and light rail, such as the

Underground and trams have unique seating patterns, often with bench seats mounted

along the walls of the carriage, or large spaces between seating areas to accommodate

the maximum number of standing passengers. A parametric study of how construction,

size and positioning alter the behaviour of blast loads in rail vehicles could provide

interesting information that could inform future design and validation data would be

vital to ensure the complex models that would be required are reliable. In reality, seats

prove difficult to implement in experimental tests due to time, size and cost limitations.

The existing test cell was too small to accept full size rail vehicle seats, and only a

limited number of old and obsolete designs were available. Fabrication of accurate and

representative scaled models is prohibited by limited budget and project time scales.

Draught screens and partitions are a feature common to many rail vehicles and have the

potential to dissipate the energy from a shock wave and mitigate its effect on passengers.

These structures are typically made from toughened glass and are designed to be tough

to deal with being held and leant on by passengers, as well as impacted by luggage and

other items that may be moved through a carriage. These could be simulated within the

given test cell with either toughened glass similar to that used in a rail vehicle, or with

a rigid structure such as a steel plate which would provide a similar effect to the glass

partitions by disrupting the shock wave. As these structures typically run from floor to

ceiling in a rail vehicle, they can be recreated inside the existing test cell with minimal

cost and fabrication time.

Through train designs (see Chapter 2) with gangways between vehicles are becoming

more common in urban rail vehicles in the UK, to help ease overcrowding and make the

most efficient use of floorspace. Their effect on the propagation of blast waves and on

1Earlier in the course of this work, experimental testing was planned using some material salvaged
from a rail vehicle to undertake combined blast and impact assessment. A high explosive charge was
to be surrounded with a specified number of ball bearings and detonated a short distance from a series
of sections cut from the wall of a rail vehicle. Unfortunately, the sections of rail vehicle were not
forthcoming so alternative plans were made for experimental testing. This initial testing plan would
have likely yielded interesting data, but could have proved difficult to validate and of limited applicability
to the research aims and objectives as a whole.
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passenger injury has been investigated in part using numerical models as part of the

RAILPROTECT project [176], where work concluded that open carriage designs could

increase the risk to passengers. Experimental testing or validated modelling is required

to determine the accuracy of this claim - open carriages could either expose a larger

number of people to dangerous overpressures and flying projectiles, or could reduce the

build up of pressures that would be seen in traditional closed carriage designs, resulting in

a lower risk to passengers in the carriage where a device is detonated. To investigate this

experimentally, structures would be required within the test cell that give a good spatial

representation of the cross sectional and inter-carriage separation differences between

the two different designs. Spatial limitations, particularly the relatively short length of

the box, prevent entirely representative experiments from being designed. Experimental

investigation of through train designs would be best studied in a test cell that has a

length much longer than was available for this work.

The role of structural deformation in the build up of pressures and reflection of shock

waves from explosions inside a complex and confined environment has not been exten-

sively studied, and the lack of data means studies in this area are of much interest and

good quality data could provide important work in its own right. Furthermore, a key

feature of rail vehicle numerical models and a measure of their accuracy is how well they

can predict vehicle wall deformations under highly transient loading. Experimentally,

structural components can be mounted in many orientations in the given test cell, but

the closest similarity to a rail vehicle would be achieved by mounting a wall structure

of interest vertically along the long axis of the box to simulate the side wall of a rail

vehicle.

Some previous work on the effect of blast loads in rail vehicles has ignored the pres-

ence of passengers when undertaking modelling, which could have a noticeable effect on

both structural deformation and the risk to passengers themselves. Although precise

representations of the human body are not possible, surrogates will be used that can

mimic the passage of shock waves over the body and allow pressures to be measured

at the surface of a surrogate, which could give interesting stand alone data, as well as

validating the use of any surrogates in further numerical models. The presence of surro-

gates (or any significant structure) within the experimental test cell will alter pressures

experienced by sensors at the wall, and it will be important to ensure that numerical

models can take account of this. Two surrogates were placed within the test cell, one

with instrumentation for measuring pressure and one without.

5.2.2.2 Reliability

Test repeatability and reliability depends greatly on preparing each test in an identical

manner to the previous one, but some features of the test design can affect the reliability

of the results. Sensor positioning and behaviour of proposed structures of test arrange-

ments should be chosen to reduce any possible variation between tests, so the following

guidelines will be adhered to where possible:

• sensor positioning

– avoid possible fragment or fireball damage

– away from features such as holes and bolt heads, which cannot easily be

accounted for in models
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• structures should

– avoid any deformation if being retained between repeat tests

– be replaced between repeat tests if deformation is expected

5.3 Test layouts

With the above criteria in mind, four test arrangements were designed. The test ar-

rangements looked to identify the effect of passenger surrogates, draught screens and

baffles and structural deformation on pressures and cumulative impulses within a con-

fined environment.

All experimental test arrangements made use an existing test cell structure, a steel

box with internal dimensions of 1456mm square in cross section and 2980mm in length,

with a wall thickness of 19mm, effectively making these walls rigid for a charge size

of 80 grams. One end of the test cell is completely open. The existing test cell was

configured to have a quarter spherical charge placed at half height in the test cell in the

corner between long and short walls of the test cell, and as such the two walls which

the charge lies on the corner of, can be seen as symmetry planes, and the whole test

cell is representative of a charge of 320 grams, in a structure measuring 5690mm long,

2915mm wide and 1456mm high

Rigid, fixed steel cylinders were used as passenger surrogates, as they allow pressure

sensors to be mounted within them more easily than with a surrogate made from a

deformable tissue simulant material such as ballistic gelatine.

5.3.1 Arrangement 1

Arrangement 1 (A1), which is shown approximately to scale in Figure 5.2 (dimensions

are given in Appendix D), had only rigid cylinders (surrogates) in place. The cylinders

are 814mm high and 114mm in diameter with a wall thickness of 8mm and are attached

to the box with an M20 threaded bar, which was fastened to the base of the box and

was in the same location for each subsequent test in each arrangement. Scaling these

dimensions is possible to make these surrogates ‘representative’ of the human form, but

in this work no such scaling was undertaken, and the cylinders are present purely to

identify the effect they have on the pressures at this particular scale, and to provide test

data for validation. The test allowed pressures in an empty box to be compared with

those when increased complexity and confinement are present, as two pressure sensors

are kept in a constant location for all 4 tests. The tests also confirm repeatability

between tests in a relatively simple environment, and have minimal set up time so focus

can be directed towards instrumentation and data acquisition reliability.

Pressure sensors were mounted at five locations, four within the walls of the box and

one inside cylinder 1, all being flush to the inside surface of the test cell or the outer

radius of the cylinder. Other than the pressure sensor mounted inside the cylinder,

the sensors were mounted on the same plane at half height in the box. The pressure

sensor in the cylinder is mounted lower than half height for two reasons; firstly because

clearing effects2 are likely from the circumference of the cylinder, as well as to a lesser

2Clearing is discussed in detail in Chapter 2. Clearing is an effect caused by shock wave interaction
at the edges of finite targets, where rarefaction waves travel inwards from the edges of a target and
reduce the pressure on it.

92



Modelling Blast Loads in Rail Vehicles T.Anthistle

12

2980mm

14
5
6
m

m

pressure sensor

rigid cylinder

charge

Figure 5.2: Plan view of test A1

extent from the top of the cylinder. By distancing the sensor away from the top of the

cylinder, it was thought it would be easier to differentiate these effects in the results.

Secondly, the half height on the box is very near the top of the cylinder, so mounting a

pressure sensor at half height would be mounting at ‘head height’ in the surrogate (by

proportion of the total height of the cylinder, not by any scaling). Instead, the pressure

sensor is mounted at a height (600mm) that is proportional to the chest height of human

standing in the box, which has the potential to provide more useful data to input into

other models. The sensor was mounted pointing towards the long wall furthest from

the cylinder as opposed to pointing towards the charge, firstly to make repeatability

of sensor position easier, but importantly for later experiments, to reduce the risk of

damaging the sensor, which would be exposed to more shock and heat if directed at the

point of detonation. As the sensor was mounted on a cylinder, consistent results were

considered likely to be more difficult to achieve than with sensors mounted on a flat

wall, as only small changes in angle and pressure of the incident wave can lead to large

differences in pressure (see UFC 3-340-2, Fig 2.193 [37]), and with the sensor mounted

almost side on to the incident wave (as opposed to normally to it), clearing effects are

also likely to be present.

5.3.2 Arrangement 2

The second test arrangement (A2, shown in Fig 5.3) was designed to identify the effect

of structures like draught screens on measured pressures. Two 10mm thick steel plates

were mounted, equally spaced on the long side of the box, opposite to where the charge

was be mounted and detonated, which will be referred to as ‘baffles’ from herein. These

were be mounted on sections of angle iron and fixed in the box with threaded fasteners.

The sensors in the cylinder and on the long side nearest the rigid cylinders were kept

in the same position as A1, with other sensors moved to measure how the baffles alter
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the pressure reflections around the box. One sensor was mounted inside the baffle, with

the sensor facing towards the end wall on which the charge is located. The other sensors

are mounted halfway between the corner of the box and the first baffle, and at the point

the second baffle meets the wall of the box.

12
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14
56

m
m

pressure sensor

rigid cylinder

charge

rigid baffle

Figure 5.3: Plan view of test A2

5.3.3 Arrangement 3

Arrangement 3 (A3) was used to compare how altering the spacing of baffles alters the

pressure experienced within the box. Three baffles will be equally spaced along one

wall, as shown in Figure 5.4 and fixed in place in the same way as baffles in the previous

arrangement.

Pressure sensors were mounted at broadly similar areas to A2, at the central face of

the baffle, at the point where the baffle meets the wall halfway between the first baffle

and the end wall.

5.3.4 Arrangement 4

For the fourth test arrangement (A4), a flexible aluminium panel was mounted vertically

along the centre of the box to identify the effect of deformation and fluid structure

interaction on pressures in the box. The aluminium sheets were 3.2 mm thick and were

clamped in place between two pieces of right angle steel section on the roof, floor and

end wall of the box. Sections of right angle steel were fixed with bolts to the floor,

ceiling and end wall of the box. Further sections of angle were then used to sandwich

the aluminium sheet and threaded fasteners used to provide a clamping force between

the two sections of angle iron. Clearance holes of 20mm were drilled in the aluminium

sheet to ensure that the clamping force between the angle holds the sheet in place,
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Figure 5.4: Plan view of test A3

and that bolt shanks (M12) do not make contact with aluminium sheet to ensure that

experimental boundary conditions can easily be replicated in numerical models.

A laser distance gauge was used for this test, which was mounted so that the defor-

mation of the centre of the aluminium panel is measured. The laser displacement gauge

is mounted on a rigid bracket behind (the charge was in front) the aluminium panel on

the long wall, as shown in Figure 5.5.

5.4 Test method

5.4.1 Pre test work

Before any test cycles could take place, structures to be placed inside required fabrica-

tion, and the existing test cell required disassembly and modification.

5.4.1.1 Fabrication

A list of the fabricated structures is below, full dimensions can be found in drawings in

Appendix E.

• steel baffles

• aluminium panels

• angle sections to mount baffles and panels

• laser gauge bracket
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Figure 5.5: Plan view of test A4

5.4.1.2 Modifications to existing test cell

Tests on the existing test cell had used a hinged door (can be seen in Figure 5.6(b))

in one corner so the firing officer could prepare, secure and place the charge with two

hands before closing and securing the door. A hole in the door had previously been used

to run the detonator cable out to the firing officer, but the hole previously used was not

at half height, as required by the current tests. The door hinge was removed and a hole

drilled at half height, i.e. 728 mm, from the inside floor of the box.

Previous test cell users had mounted structures using several large holes around the

box, some of which were very close to locations in which sensors were to be positioned.

To minimise any effect that the holes had on the results, those near sensors or sitting

on the same plane as sensors (the half height plane in the box) were plugged with an

adhesive filler and backed with short sections of wood to reduce the possibility of the

plug being blown out by the blast, shown in Figure 5.6.

5.4.1.3 Mounting of structures

All structures within the test cell were mounted with mild steel angle sections of 80 ×
80 × 8mm which were fixed to the walls with M12×50 bolts. The baffles were fixed

to the angle sections using M10 bolts, and the aluminium panel was fixed by clamping

between pairs of angle section with M12 bolts.

5.4.2 Data acquisition

A schematic of the data acquisition system used throughout the testing is shown in

Figure 5.8, with the laser displacement gauge used only for test A4.

Kulite HEM and HKM piezoresistive pressure sensors were mounted into position in

the test cell with screw threads (3/8 UNF or M10x1), and were powered by and returned

96



Modelling Blast Loads in Rail Vehicles T.Anthistle

(a) Long wall opposite charge (b) Long wall adjacent to charge

Figure 5.6: Filled and backed holes on the line of pressure sensors

(a) Panel in position along centre of box (b) Laser distance gauge aiming at rear of panel

Figure 5.7: Laser gauge and panel in place
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Figure 5.8: Data acquisition schematic

voltages to an amplifier box via 5 pin DIN connectors (see Figure 5.9). Extension cables

between pressure sensors and the amplifier were used which were tested for continuity,

and an effort was made to ensure that extension cables were of a similar length. Ulti-

mately cables were chosen based on those with the best performance that were available.

To demonstrate the significance of cable length at this scale, Equation (5.1) shows the

time taken for a signal in coaxial cable with a velocity factor (speed of transmission

relative to the speed of light, c), VF, of 0.66 (lowest velocity factor in common coaxial

cables, from [177]), to travel 1 metre. For two cables, one of 5m and one of 50m (actual

difference between cable lengths was smaller than this), the difference in travel time in

the cable will be 202 ns. The anticipated timescale of interest was between 10 and 100

µs, so the difference in cable length makes negligible difference. The performance of

the cables was of primary importance, and several cables showed considerable voltage

oscillation on the laptop display when there was no load on the pressure sensors, so

these cables were removed and replaced with cables that didn’t display such oscillations

under zero load.

t =
1

0.66c
=

1

0.66× 299792458

= 5.05ns (5.1)

An MEL M7L400 laser distance gauge (LDG) was used to capture the displacement

time history of the aluminium panel at its centre. The LDG was mounted behind the

aluminium panel and attached to the wall of the box with a rigid bracket, which can

be seen in Figure 5.7(b), with a 5mm layer of PVC between the sensor head and the

mounting bracket to isolate it from shock transmitted through the box wall. The LDG

performs best when the laser is reflected from a matt white surface, so the aluminium

panel was roughened with sand paper and coating with a matt white spray paint over
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Figure 5.9: 5 Pin DIN connector

the area of interest on the surface facing the LDG. The LDG was powered by a bench

supply at 20V and connected directly to a USB oscilloscope (see Figure 5.8).

For the pressure sensors, an amplifier box was connected to a power supply at 10V

DC, which was measured with a digital voltmeter (DVM) and recorded each time the

power supply was switched on, as the input voltage supplied to the sensors is directly

proportional to the output voltage readings. The amplifier has the option of amplifying

signals at 1× or 100× gain, but to avoid clipped or topped out signals caused by the

amplifier trying to deliver voltage outputs beyond its operating range, the gain was set

to 1×. Similarly, the scope has a range over which it can record, Fa, and clearly it is best

to try and get this ratio as close to unity as possible, to make the most of the resolution

of the oscilloscope. With only a limited gain range in the amplifier, it was therefore not

possible to adjust this (it is a multiplier for the signal voltage, Fs) to achieve a perfect

match. If the signal is amplified by 100×, two undesirable situations can occur; the

amplifier can ‘top out’, where any signal causes the amplifier to try and deliver a signal

above it’s output voltage is simply limited to the maximum output of the amplifier,

or the oscilloscope will not have sufficient range (or counts, C) and some data will be

missed, and a higher bit (n) resolution will be required. If a higher bit resolution is

chosen, the total time over which data can be recorded and the frequency of recording

is reduced. The count number, C, oscilloscope and signal voltage range, Fa and Fs and

oscilloscope resolution in bits, n, are related by equation (5.2).

The amplifier box was in turn connected to two, 4 channel TiePie Handyscope HS4

USB oscilloscopes with coaxial cables 1-2m in length. A break wire around the detonator

was used to trigger the recording, which consists of a powered length of coaxial cable,

plugged into the oscilloscope, where the outer shield and inner cables are connected by a

loop of thin wire which is wrapped around the detonator. The voltage in the break wire

drops when the break wire cable is cut by the expansion of the detonator, and a voltage

window is specified in the data acquisition software, which begins recording when the

voltage recorded is no longer within this range.

The oscilloscope was connected to a laptop computer with a single USB lead, and data

recorded for 100,000 samples at a sampling rate of 1.562MHz with 14 bit resolution using

the TiePie Multi Channel software provided with the oscilloscopes. The data capture

software continually records and overwrites data until the data recording is ‘triggered’ by

the break wire (this is the zero time), and a certain value of pre trigger can be specified,

which determines the amount of data that is saved before the zero time. A pre trigger of

6.4ms was specified, so with a total recording time of 64 ms, data is recorded for the first
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57.6 ms of the event with maximum of a 16384 counts in the voltage (y axis) direction.

Data from each test cycle was recorded in a single semicolon delimited file with a single

column of time data in (s) and subsequent columns of raw sensor output voltage (V).

C =
Fs
Fa
× 2(n−1) (5.2)

5.4.3 Shot preparation

Each test cycle involves one ‘shot’ of an 80g charge of PE4, moulded into a quarter

sphere as shown in Figure 5.10 using a bespoke laser sintered nylon mould.

Figure 5.10: 80 gram PE4 charge inside hemispherical mould with central hole prepared
for detonator

The charge was mounted on a hinge at one corner of the box with the centre of the

charge and point of detonation 728mm above the floor of the box. To protect the hinge

material and ensure the flat faces of the charge are level with the inside faces of the test

cell, the charge was mounted on 18mm standoff packing, as shown in Figure 5.11(b). The

standoff packing from shot 3 in A1 and all subsequent shots was fabricated from layers

of corrugated cardboard bonded together with PVA adhesive to the correct thickness

(18mm) and cut with a bevelled edge to fit tightly in the recess between the hinge and

inside faces of the test cell and was held in place with adhesive fabric tape. Packing for

shots 1 and 2 in A1 was broadly the same, but cardboard was not bonded together and

edges were not bevelled, leaving a slight air gap between the vertex of the charge and

the wall of the hinge behind it.

Prior to the detonator and charge being attached in place, the break wire was threaded

through a hole in the hinge below the charge and away from the hole through which the

detonator is mounted (Figure 5.11(a)). The charge was then mounted in place (Figure

5.11(b)) and a non-electric shock tube detonator pushed firmly into the back of the

charge through a hole in the hinge, using the charge mould to maintain the shape. The

charge was then secured in place with adhesive fabric tape (Figure 5.11(c)) and the

hinge closed and secured with a tapered bar, shown in Figure 5.11(d), and the shock
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(a) Detonator with breakwire wrapped around
and secured with tape

(b) Charge positioned over detonator, directly
onto standoff packing

(c) Charge secured in position with tape (d) Hinge secured, detonator shock tube (top) and
breakwire seen protruding from hinge vertex

Figure 5.11: Procedure for preparing each shot

tube run back to the firing location. The shock tube, which consists of a flexible plastic

tube whose inner surface is coated with RDX and Aluminium powder, was manually

triggered by an electric initiator once it was determined the test area was clear and it

was safe to make the shot.
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Table 5.1: Pressure sensor details

Sensor S312 S402 S358 S311 S101
Model HEM375 HEM375 HKM375M HKM375 HKM375
Rating 500PSI 250PSI 7BAR 500 PSI 100 PSI

Rating (kPa) 3447 1724 700 3447 689
S (mV/PSI) 0.201 0.382 – 0.200 0.903

S (mV/BAR) – – 14.396 – –
CF (kPa/V) 34302.2 18049.07 6946.37 34473.73 7635.38

5.5 Results

5.5.1 Data processing

Data from sensors, referred to by their serial number (details in Table 5.1) was read into

GNU Octave for processing (scripts can be found in Appendix C.1). Several operations

are performed on the data to get legible pressure, cumulative impulse and displacement

histories:

• remove zero shift

• convert raw voltage data to appropriate units

• calculate impulse from pressure history

• filter data to remove noise

5.5.1.1 Pressure histories

When zero (atmospheric) pressure is applied to sensors, the sensors give a non-zero

voltage reading due to the electrical resistance in the circuit and is not representative

on any physical effects. This zero shift is removed first to ensure that on average,

voltage readings are zero when sensors are exposed only to atmospheric pressure. This

is achieved by averaging the 2000 data points immediately preceding the arrival of the

shock wave and subtracting this value from all voltage data. This prevents any drift in

the zeroing, which could occur if values at the start of the data series are used. Although

the effect of small drift is unlikely to be noticeable on pressure curves, cumulative impulse

curves are very sensitive to such drifts as they are the integral of pressure over time,

which can lead to spurious cumulative increases or decreases in the calculated values.

Voltage values are then converted to pressure values using calibration factors (CF)

derived from the sensitivity (S) (Table 5.1) which is given by the manufacturer in cali-

bration certificates for each sensor. An example of how the calibration factor is calculated

for S312 is shown in Equation (5.3). In (5.3), the sensitivity, S is inverted and multiplied

by 1000 to give PSI/V as the oscilloscope output is in V, then multiplied by a conversion

factor from PSI to kPa, F , to give a calibration factor in kPa/V.
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CF =
1000

S
× F (5.3)

=
1000

0.201
× 6.894745

= 34302.2

Data from sensors is noisy; the noise can be introduced from sources such as cables,

connectors and amplifiers. Noise reduction is typically implemented using a low pass

filter, but can also be achieved using wavelet transform de-noising. Full details of fil-

tering methods applied, including comparisons between parameters and methods can

be found in Appendix F. The wavelet method with hard thresholding was found to be

the most effective at removing noise and retaining experimental features, but introduces

additional features to the data which could be misinterpreted. Data from pressure sen-

sors is therefore filtered using a Butterworth filter and a normalised cut off frequency of

ωn = 0.02, where ωn (in π radians per sample) is the cutoff ωc frequency normalised by

half the sampling frequency ωs.

ωn =
2ωc
ωs

(5.4)

5.5.1.2 Displacement histories

The LDG provides voltage outputs between -10 and +10 V D.C and these output volt-

ages are proportional (by the laser doppler factor, LDF, provided by manufacturer) to

the distance reading in mm between the sensor head and the structure under investi-

gation. Voltages 0 -10V correspond to a distance of 480mm from the gauge head, and

voltages of +10V are produced for the maximum measurable displacement of 880mm.

The raw voltages were divided by LDF for this gauge, -0.05, to give absolute distance

from the gauge head and a displacement time history of the panel relative to it’s original

position was computed by subtracting the displacement at t = 0 from all displacement

values. A Butterworth filter was applied to reduce the noise on the data, but the noise

from the gauge on raw experimental data was significantly less noticeable that on the

pressure gauges.

5.5.2 Arrangement 1

Pressure history data and the calculated cumulative impulse from sensor 312 are shown

in Figure 5.13, which is located as shown in Figure 5.12. The pressure history is plotted

over the first 20ms, which represents the most interesting and dynamic region recorded

by this sensor, and also allows a clearer view of the transient data making comparison

between the traces easier. Cumulative impulse data is calculated and plotted over the

entire measured time as it gives a very sensitive comparison of similarity between the

shots.

Over the pressure history shown in Figure 5.13(a), shots 1, 2 and 3 show very good

consistency between shots in terms of number, time of arrival and decay of primary and

reflected shocks. The only discrepancy in the data is between peak pressure values for

the first two shocks experienced by the sensor. The first shock, at 1.7ms, shows peak
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Figure 5.12: Sensors and positions for test A1, shots 1 – 3

values of 550kPa and 520kPa for shots 2 and 3 respectively, but only 420kPa for shot

1. Shock 2, at 2.85ms, shows a peak pressure of 600kPa for shock 1, but only 380kPa

for shot 2 and 775kPa for shot 3. This could be caused by sensor overshoot and ringing

at peaks [36], leading to overly high readings, where the arrival of the shock front can

cause an over read on the sensor, and can be seen more clearly on comparisons between

analytical and experimental data presented by Tyas et al. [36]. Although the peaks are

very sharp, there are a number of data points either side of each peak, so the peaks

are not caused by single erroneous data values. Sampling at 1.562MHz means there are

1562 data points per ms.

Cumulative impulse curves for the three shots (Figure 5.13(b)) over the full recorded

duration show that the high pressure experienced for shot 3 does not lead to a visible

deviation from the general trend shown by other shots until after 15ms. Data is shown

over the entire period of measurement to identify and explain features that are not

apparent on the pressure data curve where differences between shots after 20ms are

difficult to distinguish. The low pressure experienced at the second peak for shot 2 does

slightly reduce the impulse seen at 3.7ms, shifting the whole cumulative impulse curve

down. The differences in the peak pressure in the first shock between shots makes no

noticeable difference to the cumulative impulse, as they are visibly identical until the

arrival of the second shock at 2.8ms.

In general, the cumulative impulse curves shown in 5.13(b) show very good similarity

between shots 1 and 2 given that integrals lead to additive errors over the time history.

All three shots show the same features and follow each other closely (with a slight shift

in the case of shot 2, as mentioned above) to 15ms, where shot 3 begins to deviate from

shots 1 and 2. Figure 5.13(a) shows that at this point the pressure has returned to and is

oscillating around zero, so small average shifts above or below zero can lead to dramatic

differences in impulse. Between 15ms and 60ms, the impulse seen in shot 3 increases

to 1150kPa-ms, as opposed to 100 – 200 kPa-ms seen in shots 1 and 2, approximately

1000kPa-ms, which over 45ms equates to an average difference of only 22kPa between 15

and 60ms. The difference is made more striking as the pressures oscillate around zero, as

a shift below zero cause a decrease in cumulative impulse and vice versa. Importantly,
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Figure 5.13: Sensor 312, pressure history and calculated cumulative impulse

despite the deviation from shots 1 and 2, the cumulative impulse for shot 3 shows a

similar shape to the other shots, being distinctly bi-linear after 15ms. For shots 1 and 2

the pressure dips below atmospheric until approximately 30ms, during which a gradual

decay in impulse is seen, followed by a return to atmospheric pressure leading to a

constant non increasing impulse for the remainder. For shot 3, instead of becoming

negative, the pressure remains around atmospheric until 30ms, so when a positive shift

is experienced at this time, cumulative impulse increases instead of becoming constant

as seen in shots 1 and 2.

Sensor 358 shows good consistency in pressure time history (Figure 5.14(a)) over the

recorded range, with only small differences between the two highest peak pressures at

5.5 and 10ms. For both of these, shot 1 shows a slightly higher pressure than both shot

and shot 3 respectively. At this location, more significant and longer periods of negative
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Figure 5.14: Sensor 358, comparison between shots

pressure are seen, compared with the sensors 402 (see Appendix G) and 312 (5.13).

All three shots show similarity in both magnitude and duration of these negative phase

areas, particularly between 12 and 14ms and 20 to 30ms.

Cumulative impulse plots (Figure 5.14(b)) for all 3 shots at sensor 358 show similar

behaviour, but as with other cumulative impulse curves show a small shift, although by a

smaller amount than seen at other locations. Cumulative impulse for shot 1 rises higher

at 7ms, but from the pressure curve in (a) it is difficult to see a significant difference in

the pressure curves. A higher peak at 8ms on (a) again causes a small positive shift for

shot 1 in the impulse curves. Shot 2 and 3 show almost identical impulse until 15ms,

when shot 3 rises away from shot 2. From the pressure curve in (a) it can be seen

that between 15 and 17.5 ms the peaks are of a smaller magnitude, leading to a lower

cumulative impulse.
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5.5.3 Arrangement 2

For A2, sensors 312, 402 and 358 are moved to different location and sensors 311 and

101 remain in the same location as before as shown in Figure 5.15.

A

B

C

D

12

S312

S402

S358

S101

S311

Figure 5.15: Sensor locations for test arrangement 2

Sensor 402 is mounted at half height and half width in the first baffle, as shown in

Figure 5.15. Pressure history data in Figure 5.16(a) shows 4 individual shocks and

reflected shocks in first 4 ms, which are effectively invisible on the cumulative impulse

plot. The positioning of the sensor perpendicular to wall C leads to this concentration

of reflections which are not seen in sensor 312 despite their relative proximity. The

incident shock is reflected obliquely on the baffle, which itself is reflected from wall

C and returns shortly after, followed by reflection of shock wave that was normally

incident on wall C. By considering the major reflecting surfaces and the time taken for

wave propagation, it is possible to identify there is also a reflection from the ceiling,

although it is more difficult to identify at exactly what time this arrives without further

data. Good similarity for arrival time, magnitude and decay rate is seen between all 3

shots across the 4 shocks between 1.9 and 3.5ms, although there was a big spread seen for

the shock at 3ms (350kPa to 500kPa). A strong negative phase begins at 4.2ms, similar

to that seen at a similar time at sensor 312, which then a series of small reflections,

followed by a strong negative phase and return to atmospheric pressure which can be

seen in Figure 5.16(b).

Data from sensor 101 again shows excellent agreement between all 3 shots. Cumula-

tive impulses histories are very close over most of the range of recorded data, but are

particularly close up to 13ms. Pressure history data over the dynamic region is also very

consistent, with good agreement between peak pressures at 1.8ms and 5.3ms and to a

slightly lesser extent at 2.8ms and 7.4ms. The two initial shocks up at 1.7 and 2.8ms

(Figure 5.17(a)) add a small amount to the cumulative impulse (Figure 5.17(b)) rela-

tive to other curves with shocks at similar time at other locations in this arrangement,

and as a proportion of the peak delivered impulse at 15ms, as seen in 5.17(b). The

peak in cumulative impulse occurs at approximately 15ms as with other sensors, and a

similar increase in impulse is recorded over the interval 5-15ms (≈300kPa-ms), but only

100kPa-ms of impulse is added in the period to 4ms, whereas at other location, increases

of roughly 300kPa-ms are seen over a similar interval. The arrival time, positive phase
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Figure 5.16: Pressure and cumulative impulse data for sensor 402, A2

duration and decay rate of the shocks at 1.7ms and 2.8ms are comparable with sensor

312 for this arrangement, but the peaks are significantly lower at sensor 101, as this

sensor is mounted with the measuring surface perpendicular to the direction of travel

of the shock wave. As a result sensor 101 measured the side on overpressure, whereas

312 was mounted facing the direction of the incoming shock so measured the reflected

overpressure and the corresponding higher reflected impulse. The pressure measured at

sensor 101 will not be the ideal side on overpressure as a real structure cannot act as a

perfect plane of symmetry - there will be some element of interaction between the shock

wave travelling perpendicular to wall A, and wall A.
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Figure 5.17: Pressure and cumulative impulse data for sensor 101, A2

5.5.4 Arrangement 3

The sensor and baffle locations are changed for A3, details for which are shown in Figure

5.18.

Sensor 402 is mounted on wall C at the intersection between baffle and wall C, as shown

in Figures 5.18 and 5.19. Pressure traces in 5.19(a) show similar double peak behaviour

seen in other arrangements (Figures 5.13(a) and 5.17(a)), apart from on baffles or located

at the box end. This location shows the highest measured pressures in any arrangement,

as well as highest total and peak cumulative impulse. Peak reflected overpressures at 2ms

and 3ms are higher at sensor 402 than seen at similar positions in other arrangements,

which occurs because the corner sees a meeting of reflected shocks from waves incident

on both baffle and wall C, as opposed to the reflection of a single incident shock as
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Figure 5.18: Sensor locations for A3

seen in other locations. The peak values are higher for both first and second shock as

reflected shocks from the floor and ceiling are focussed towards the corner, but it should

be noted that shock arrival times are consistent with an incident wave from the charge

then a reflected wave from the floor and ceiling.

Cumulative impulse data (Fig 5.19(b)) shows good agreement for shots 1 and 3, but

peak and final cumulative impulse data for shot 2 is lower. If data from shot 2 is assumed

to have a slight negative shift3 (features and timings across all 3 shots still show excellent

agreement), peak and final cumulative impulses at this location are higher than other

locations, even those that are closer to the detonation such as sensor 312 in A1. The

higher peak overpressures seen at 2ms and 3ms, compared to A1 S312, Fig. 5.13(a)

(which are consistent for shots 1 and 3, but reduced for shot 2) lead to a proportionately

larger cumulative impulse up to 4ms, and a higher number of reflected shocks between

4 and 17ms contribute to the high peak cumulative impulse. Behaviour between 17ms

and 60ms is largely the same as most other locations, with a negative phase between

17ms and 30ms leading to a impulse drop of approximately 300kPa-ms, followed by an

increase to 650 kPa-ms until 50ms and then a plateau. As a result, the final cumulative

impulse at this location is a greater proportion of the peak impulse than seen at other

similar locations.

Pressure data from sensor 358 (Figure 5.20(a)) shows 4 reflections over first 4ms, and

shows close qualitative agreement with similarly positioned sensor (402) in A2 (Figure

5.16). Agreement between all 3 shots for sensor 358 in A3 is excellent, which can be

seen in both Figures 5.20(a) and (b). At both sensor 402 in A2 and 358 here, the 3rd

peak is the highest, but despite the baffle and sensor being further away in A3, the

3rd peak at 3.5ms in Figure 5.20(a) is higher than that shown in Figure 5.16) at 3ms.

Sensor 402 in A2 shows peak values at shock 3 of 350, 420 and 500kPa, whereas sensor

358 and A3 shows peak values of 470, 560 and 590kPa at shock 3 for shots 1, 2 and 3

respectively. More in line with anticipated behaviour (peak pressures reduced at further

distances from charge, see Chapter 2), peaks 1, 2 and 4 are lower at the sensor 358 in

3All data is has the zero shift removed in the same way and is not artificially corrected on a sensor
by sensor basis. Because the method used is not perfect, and the data from some sensors can be noisy
immediately before a shock arrives (see Fig 5.17), it is perfectly plausible that zero shift removal could
lead to a slight positive or negative bias
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Figure 5.19: Pressure and cumulative impulse data for sensor 402, A3

A3 compared with sensor 402 in A2. Cumulative impulse in Figure 5.20(b)) shows a

slightly higher peak and final cumulative impulse for sensor 358 in A3 than for sensor

402 in arrangement 2 (Figure 5.16(b)). Despite the higher peak seen in A3, the impulse

delivered over the first 4ms is 50kPa-ms lower for A3 than A2, which would be expected

due to the difference in distance from the charge.

Comparisons between sensor 101 across different arrangements is useful because it is

in an identical position for each test, and is away from direct influence of the baffles and

so gives a clearer idea of how the baffles (or lack of) alter the pressures in the box as a

whole, not just along the walls in which the baffles are mounted. Impulse histories for

sensor 101 in A3, Figure 5.21(b), show peak and final across all 3 shots are very similar

to those seen for A2 at the same sensor in Figure 5.17(b). Peak impulse across all 3
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Figure 5.20: Pressure and cumulative impulse data for sensor 358, A3

shots in both arrangements vary between 360 and 400kPa-ms, and if the impulses of

the most similar shots are considered both arrangements, cumulative impulses at 55ms

are approximately 260kPa-ms for both arrangements. As anticipated, pressure histories

over the initial 4ms are very similar (reflected waves from wall C have not arrived),

with similar peak pressures for shocks at 1.7 and 2.8ms (Figures 5.21(a) and 5.21(a)),

and initial positive phase duration of 4ms and almost identical cumulative impulse of

100kPa-ms at this time (Figures 5.21(b) and 5.21(b)). Although the impulse history is

very similar for both, there are some differences in pressure histories at this location for

arrangements 2 and 3. Figures 5.21(a) and 5.17(a) shows 3 clear peaks between 5 and

12ms, but the magnitude and timing of them are different between the two arrangements.

Between 5 and 10ms, peaks occur at different times and have different magnitudes and
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Figure 5.21: Pressure and cumulative impulse data for sensor 101, A3

decay rates, which suggests that this behaviour is a result of the different configuration

of baffles on wall C between the two arrangements.

5.5.5 Arrangement 4

The positioning of sensors for A4 is shown in Figure 5.22 and is similar to other arrange-

ments, with the exception of a centre panel and sensor 312 which is located in the roof

and the addition of a laser distance gauge. Sensor 402 was located behind the panel to

identify any pressures transmitted through or causes by the central aluminium panel.

After a visual inspection of the first test in this arrangement it was found that the

fixations holding the angle to the box had failed and that the panel had not remained

fixed at the boundary for the duration of the test. The mechanical fastenings display
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a wide variety of failure mechanisms, detailed in Figure 5.23(a), with some showing

ductile failure characteristics (see 1 ), others a more brittle fracture (see 2 ) and some

through shearing of threads (see 3 ). From some of the post failure shapes of the bolts,

it was clear that they had failed through combined bending and tension loads, such

as the bolt shown by 1 . Despite the failure on the bolts, the post failure position

visible in Figure 5.23(b) shows the panel has remained in an upright vertical position

and is similar to the central pre shot position shown in Figure 5.7. The aluminium

panel remained fixed within the angle sections at all points, but there are indications

that the experimental boundary conditions experienced were not perfect. There was

only small amounts of failure observed in the aluminium panel near to the corner where

vertical and horizontal angle section are closest, caused by relative movement between

the angles which compressed and bent aluminium and led to crack formation. The out

of plane deformation of the panel was enough to overcome the clamp friction and pull

the panel through the clamping between angle sections, which caused contact between

the bolt shank and the clearance hole, leading to elongation and stretching of the hole

(see Figure 5.23(c)). This also generated a bulge on the lower edge of the panel, which

is clearly visible against the angle section in Figure 5.23(c). From the position of this

bulge and shape of the marks above the bolt holes it can be deduced that the panel has

moved horizontally as well as vertically in the clamp, as the marks curve and the bulge

is not directly in line with the bolt.

12

A

B

C

D

312 (on roof)

402

358 101

311

LDG

Figure 5.22: Plan view of test A4

Cumulative impulse and pressure history data for sensor 312 is shown in Figure 5.24.

Pressure history data in (a) shows only one distinct large and two smaller shocks, which

is overlaid on a quasi static pressure (QSP) of small magnitude that begins at 5ms

continues until 11ms before becoming negative. Other than the shocks at 2, 3.1 and

4ms, no other clear shock peaks exist, although some behaviour may be obscured by

the high amount of noise seen on the trace. The cumulative impulse increases to 12ms,

peaking at 420 kPa-ms before continually decreasing for the remainder of the recorded

data. Unlike cumulative impulse histories seen in previous arrangements, and data from

sensor 101 in this arrangement (Fig. 5.26(b)), the cumulative impulse continues to

decrease continuously over the measurement period without a sustained second rise.

Sensor 402 is located behind the panel in the corner between walls B and C at half
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Figure 5.23: Failure of structural components

height in the box. This sensor was located here to confirm that pressures behind the

panel were minimal and insignificant, but Figure 5.25 shows clearly that pressures not

to dissimilar to those on the charge side of the panel were developed, and the cumulative

impulse developed is considerable. It is worth noting at this point that 2 of the 3 baffles

present in A3 were retained for this test, with the central one being removed to allow

the LDG to be fixed to wall C. Figure 5.25(a) shows the arrival of a shock at 2.3ms with

a peak reflected (the shock wave will have been travelling normal wall C before it is

incident, thus is reflected at the point of measurement) pressure of 50kPa which begins

to decay immediately as expected, but the decay is interrupted the arrival of a small

shock. High speed video data at this point, shown in Figures 5.28(d) and (e) indicates

that although there is an intense fireball and indications of lens flare, no flash appears

on the opposite side of the panel to the detonation, suggesting that at this point (≈3ms)

no failure of the panel at wall B has occurred. There are 3 further distinct shocks at

5.7, 6.7 and 10ms, and a steadily increasing QSP exists between approximately 7 and

14ms. This is followed by an expansion to an underpressure of a similar magnitude to

peak overpressure with a slightly shorter duration, which leads the cumulative impulse

at 30ms to decrease to 60 kPa-ms from a peak of over 600 kPa-ms at 18ms, as shown
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Figure 5.24: Pressure and cumulative impulse data for sensor 312, A4

in Figure 5.25(b). Pressure and cumulative impulse both show slow increases, with the

cumulative impulse rising again to 260 kPa-ms at 50ms. Although there are noticeable

shocks present in 5.25(a), the overriding and defining process that characterises the

behaviour at this point is the slower almost sinusoidal rise and fall of the pressure and

impulse, as individual shocks have neither the magnitude nor the duration to contribute

significantly to the impulse.

The pressure history from sensor 101 is shown in Figure 5.26(a) and displays more

significant distinct shocks than sensor 312 (Fig 5.24(a)). Between 1.8 and 8.2ms there

5 distinct shocks incident on wall A at sensor 101, with the shocks at 2.7 and 4.9ms
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Figure 5.25: Pressure and cumulative impulse data for sensor 402, A4

being significantly stronger than the others, almost twice the strength of the first one

that arrives at 1.9ms. As with a sensor 312 for the same arrangement, a QSP develops

at approximately 7ms and lasts until 12ms, but is more clearly visible for sensor 101

in Figure 5.26(a) than in sensor 312 5.24(a). The cumulative impulse (Figure 5.26(b))

rises steadily to a peak value of 475 kPa-ms at 12ms, which then drops to 275 kPa-ms

at 34ms before rising to 325 kPa-ms at 46ms, which is maintained until the end of the

recorded data.

Displacement data for the central point of the aluminium panel is shown in Figure

5.27. It should be noted immediately that displacement data from this gauge has several

issues, which limit the extent to which this data can be used. Many portions of the data

show very steep gradients and suggest velocities which do not correspond with data from
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Figure 5.26: Pressure and cumulative impulse data for sensor 101, A4

pressure sensors, high speed photography and the final condition of the panel and test

cell. The zoomed region shows that the panel begins to move in the positive direction

(towards wall C), but at 2.9ms the panel appears to become negatively displaced, going

through 4 rapid changes of direction before continuing with positive displacement at

a more realistic4 gradient from 3ms. The graph also suggests that between 8.6 and

8.8ms the panel moves 240mm, which would indicate a velocity of 1200 m/s in the

negative direction (towards wall A). Pressure curves for sensors 312 and 101 do not

show behaviour at this time that could generate such a high velocity. The portion of

displacement data that appears to be most reliable is between 2.4 and 6.5ms, if the area

4It is difficult to specify a precisely why something is ‘realistic’, but a judgement is made based on
the loading and the anticipated behaviour
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between 2.9 and 3.8ms is ignored (it is unlikely that real behaviour has been measured)

and the area before and after the sudden apparent change in direction are assumed to

be connected. The deformation begins slowly at 2.3ms and accelerates over the next

1.5ms to reach a velocity of approximately 50 m/s, which is maintained between 4

and 6.4ms. From 6.6ms, the data appears to become increasingly unstable, with many

rapid jumps between recorded position that would imply very high velocities, with little

physical evidence of pressures that may cause this. If these sharp changes in velocity and

direction are ignored, the trend appears to show a quasi-sinusoidal motion of roughly

50Hz.
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Figure 5.27: Displacement history from laser distance gauge

To compliment pressure and LDG data, high speed video was captured from a position

looking directly into the end of the box, stills from which are shown in Figure 5.28. The

images were taken using a Vision Research Phantom camera at a rate of 6400 frames

per second with an exposure time of 90µs, at a resolution of 480 × 480. Selected still

images were chosen to confirm previous findings or identify features that are not visible

in other data.

Image (a) shows the setup 156 µs before detonation; the central vertical line is the

end of the aluminium panel, and the processing box for the laser distance gauge and

vertical steel baffles can be seen on the left hand side of the image. The detonation

of the charge can be seen in (b), which has at this point in time not undergone any

significant volume expansion. There is then a 1ms time gap before frame (c), as the

intense flash from detonation and subsequent expansion between images (b) and (c),

which shows the generation and growth of a fireball which is beginning to envelop the

first cylinder. At this point the attaching angle sections on the floor and roof of the box

are visible due to the flash, which at this point are still in the same position and failure

has not occurred, and no deformation is noticeable at the end of the panel. In image

(d), at 1.87ms a shock wave is visible on the floor of the box over halfway between the

two cylinders, caused by the disturbance of debris on the floor of the box. The position

of the shock wave at this point can be confirmed by data from sensor 101 (Fig. 5.26(a))
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(a) −156.3µs (b) 0µs (c) 1003.7µs

(d) 1875µs (e) 2968.7µs (f) 5000µs

(g) 5781.2µs (h) 8750µs (i) 9218.7µs

(j) 12187.4µs (k) 40000µs (l) 58906.2µs

Figure 5.28: Stills from high speed video

which indicates the arrival of the first shock at 1.8ms. At 2.97ms, shown in (e), the shock

wave can be seen to be in line with cylinder 2, with the panel and attaching angle section

appearing unchanged in position from (c) and (d). The fireball is still very obvious, but

at this point is clearly still confined to one half the box by the aluminium panel and

angle sections and no flash can be seen on the opposite side, suggesting no failure has
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taken place at this point. The flash begins to obscure the frame again at 5ms (f) and

the end of the aluminium panel is beginning to show deformation, although the visible

angle section on the roof of the box does not appear to have moved. From 5.78ms the

position of the angle sections becomes increasingly difficult to identify in the images due

to the flash, so diamond shapes are added to the images from (g) onwards to show the

original location of the angle section to determine whether or not the angle sections have

become detached. The deformation in (g) appears asymmetrical, with points of highest

deformation above and below the centre line. This behaviour is much more pronounced

in (h), where a clear shape is obvious with a much higher deformation on the top half

of the panel. The position of the top of the panel relative to the diamond also suggests

the panel is no longer attached to the top of the box. Images (h) and (i) also show the

diffraction of the shock wave on the left hand side of the panel, with a strong reflection

of the flash from the top of the diffracted shockwave. At 12.2ms (j), the deformation

begins to become more uniform and the points of high deformation become less distinct,

and the panel seems to have moved significantly from its attachment point with the

ceiling. Between 13 and 40ms, bright flash once again obscures the frame. In image

(k) at 40ms, the top angle section has completely detached and the deformed shape has

become much more symmetrical with the highest point of deformation in the centre of

the panel. The flash is beginning to reduce by 59ms (l), but the shock wave has begun

to disturb the ground in front of the camera, leading to more obstruction of the frame.

Flying debris is visible and the deformation mode has begun to change as the weight of

the angle section bends the aluminium panel, and reflection in the panel at this point

show that the panel is most highly deformed and displaced at the open end of the box.

5.6 Discussion

5.6.1 Experimental issues

The aims of the series of experimental tests were to generate data to validate numerical

models and standalone data to confirm similarity between shots in identical confined and

complex geometries. The experiments also looked to identify if an effect on pressures

was caused by the presence of deforming structures.

The data from tests in A1, A2 and A3 was generally very good, showing excellent

similarity in pressures and cumulative impulses between each shot in each configuration.

Not only does this mean that validation can be done with confidence, but it also provides

good standalone data that shows the inherent variability between tests is low. A spread

was seen in cumulative impulses across shots in each arrangement, and in some cases

there was a single shot of the three that clearly differed from the 2 other curves. The

cumulative impulse is very sensitive to shifts in the values of the data, as illustrated in

Figure 5.29, which shows the effect of adding an arbitrary but small positive and negative

shift to the data. The impulses quickly begin to diverge and the error accumulates, with

final impulses significantly spread from one another. Given this sensitivity, experimental

measurement and processing error combined with the small inherent variability in the

charge can explain why there are few cases of large differences between final impulses

(A1 s312 for example, Figure 5.13). However, in the majority of cases where impulses

are very close, it can be concluded that the data is of high quality and very reliable. The

small spread between results means that models that can replicate this data, as opposed
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to lying within a large spread of experimental data, can be shown to be valid.
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Figure 5.29: Effect of a small positive or negative shift on impulse

Although good data was generated from the tests, there are some components of the

data produced and physical test setup that it is important to be aware of to avoid

drawing false conclusions. Peak side-on and reflected overpressures are often cited as

key parameters, but in practice it is not always easy to identify these from experimental

results. Voltages from the pressure sensor can ‘overshoot’ at the arrival of the shock

wave, an effect known as sensor ringing [36], before settling and giving more accurate

reading once the shock front has begun to pass. This isn’t clearly visible on the curves

presented in Section 5.5, but plotted over a shorter period of time (Figure 5.30) the

initial overshoot is more clear, as is the normal decay that follows. If the shape of the

normal decay was tracked backwards it will intersect with the rising pressure at the

arrival of shock wave, which would give the side on or reflected pressure that is reported

by ConWep or UFC 3-340-02. Experimental results therefore should be compared to

each other and numerical results by looking at how the peak pressure and decay relate to

one another, as clearly the ringing phenomenon seen experimentally will not be present

in numerical results.
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Figure 5.30: Ringing and overshoot for peak pressure values
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Figure 5.31 shows how the sensitivity of the gauges affected background noise, as

well as the presence of shock though walls and how it affects sensors. The raw voltage

recorded at each channel shows similar levels of noise, introduced not only by the sensor,

but by the cables and amplifier unit. The difference in noise level between the gauges is

introduced when the raw voltages are converted to pressures as the less sensitive, higher

capacity gauges require multiplication by a larger number for conversion, which in effect

amplifies the noise. For sensor 312 (Figures 5.31(a) – (d)), it’s high capacity leads to

much higher levels of noise than in sensor 101 (Figures 5.31(m) – (p)), which can lead to

greater uncertainty in the measured values. Although it is important to make sure the

gauges selected will cope with the pressures experienced, it is of greater importance to

match them closely with the expected pressures to avoid unnecessary background noise.

Figure 5.31 also shows the presence of shocks travelling through the walls of the test

cell, which is shown in (i) – (l) and (p) as an increase in signal towards the end of the

displayed time. This occurs only when sensors are located in wall A, and wall shock is

not seen when sensors are located on wall C, the baffles, or the roof. The charge itself is

not in contact with the walls on which sensors are located, but mounted on a hinge that

is attached to walls A and B, but the shock can be transferred to these walls through

the hinge. The box is constructed of several plates held together with angle sections

with a weld joining the two touching surfaces, meaning that shock waves cannot pass

easily between walls of the box, limiting the wall shock experienced to walls A and B. In

the current tests no sensors were mounted on wall B, but it is likely a wall shock would

have been experienced with a magnitude proportional to the distance of the sensor from

the hinge.

Data from the cylinders was not presented in Section 5.5 as it did not provide useful

information and was difficult to interpret and compare with other data. The data,

which can be found in Appendix G, is much noisier than other data and does not

show the expected clear shocks and reflections over the expected time durations as

shown by images in Figure 5.28. To attempt to identify if any expected phenomenon

were recorded, pressures were plotted over just a few milliseconds though (see Figure

5.32), results are easier to interpret, with some shocks visible. A shock wave arrives at

1ms in (a), (b) and (c) but decays rapidly, becoming negative within 0.2ms (ConWep

predicts a positive phase duration of 1.2ms) across arrangements, seen in Figure 5.32,

with some other shocks seen in various arrangements. The very short initial positive

phase durations of 0.2ms could be caused by clearing effects (see Chapter 2 Section

2.2.2) around the cylinder, but the typical wave form caused by relief waves is not seen

in any of the pressure curves. The shocks are difficult to identify precisely as there

is a continuous high amplitude noise signal running through all traces which obscures

features, but it is possible to identify at least 2 further shock arrivals in the first 4 ms

on many traces. Figures G.3 G.8 G.11 show that impulses generally were not consistent

among shots, limiting the confidence of accuracy in the results.

With hindsight, there were several issues with the setup of the sensor and conditions

that it experiences that make reliable data more difficult to achieve. The sensor was

difficult to fully tighten within the cylinder, which could have led to movement and

vibration of the sensor and increased the noise in the signal. It is also possible to see

from HSV data in Figure 5.28 that the cylinder was within the fireball, which would

have caused heating and could have taken the sensor outside of it’s calibrated range.
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Figure 5.31: background noise and wall shock with all curves on the same scale to allow
visual comparison

Only some of the available sensors were high temperature gauges, but the sensors chosen

for use within the cylinders were chosen for pressure capacity and not heat resistance.

Along with issues with noise as explained above, it is clearly important to select sensors

with care based on good assumptions of behaviour, although for these tests limitations

were imposed by the lack of availability of a wide variety of sensors.

There were several issues with the test conducted using arrangement 4 which affected

the usefulness of the data, some of which with hindsight could have been planned for

and prevented. The primary problem was the failure of the supports for the central alu-

minium panel, shown in Figure 5.23. This creates problems for validation of the data,

as the boundary conditions for the panel become unknowns, as well as causing displace-

ment outside the expected range of the LDG which could not be recorded. Preliminary

calculations identified that the aluminium panel itself would not fail, but loads expected

on individual bolts were not calculated. As a result the load the bolts experienced in

various modes was too high for the size chosen and widespread failure occurred; had

the expected load on the bolts been considered more substantial bolts with a higher

failure load would have been used, reducing the likelihood of failure. A major learning

point here is that is can be all to easy to overlook the strength of supporting structures

when designing experiments. Had this been undertaken with some conservative hand

calculations, it is likely that such a failure could have been prevented. One potential

issue that could have exacerbated the failure that occurred was an unzipping mode; if

some bolts fail prematurely, their load is transferred to the next bolt, which then sees
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Figure 5.32: Pressure sensor data from cylinders plotted over short duration where very
short duration shocks can be seen
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a sudden jump in the applied load that could lead to failure. This could have been a

particular issue for some bolts which were left in place for a number of weeks prior to the

test, which were subsequently exposed to the elements and developed surface corrosion.

As mentioned in Sections 2.4.1 and 2.4.2, the effect of boundary conditions can have a

strong influence on the predicted deformation, and the uncertainty in the experimental

boundary condition could lead to issue in predicting the deformation using numerical

methods.

The data from the LDG data was largely unusable, due to instabilities. These are

likely to have been caused by the bright flash of detonation and fireball interfering with

the optical sensor used to receive the laser, and changes in angle of the plate. According

to the user manual for the sensor [178], angular changes and direct radiation such as

sunlight can considerably reduce the accuracy. Although it is difficult from the results

to determine the conditions such as the angle and amount of stray light received by the

sensor, these are thought to be the most likely causes of error given the very bright flash

seen on the high speed video data and high deformation of the panel. The failure of

the bolts along the top section of angle not only caused the panel to exceed the range

of the gauge, but opened a gap allowing strong light from the fireball to interfere with

the LDG. High speed image data shown in Figure 5.28 shows that at 8.7ms, although

the top section of angle has not moved significantly, the bright light is reflected from

the diffraction wave, which will also cause interference with the optical sensor on the

LDG. Data from the LDG shows that interference and instability occurs from 6.7ms. It

is recommended that in similar testing in the future efforts be made to limit the light

corruption by shielding the LDG, which will help to prevent stray light being incident

on the optical sensor.

5.6.2 Pressures and impulses on wall A - a comparison between arrange-

ments

Only 1 sensor remained in the same place throughout tests, which was sensor 101 on wall

A. Figure 5.33 compares data from a single shot for each arrangement, which were chosen

from the repeated shots conducted for each arrangement. A comparison of individual

shots was chosen for visual clarity and they were not selected to illustrate any specific

similarities or dissimilarities between arrangements. Comparisons between data sets

from sensor 101 shows that despite significant physical differences between the set up

each arrangement, many features of the data are consistent throughout all tests. Both

the arrival time and magnitude of the first shock at 1.8ms is the same for each of the

four arrangements, with impulses matching at 2.8ms. At this point, behaviour in A4

begins to deviate from that in A1, A2 and A3 as the aluminium panel is much closer to

wall A than wall C is, leading to earlier reflections, which interact differently with each

other. Differences in A1 - A3 do not appear until after the reflected wave from wall C

reaches sensor 101 at 5ms, at which point the impulse in A2 and A3 increase compared

to A1. Although A2 and A3 offer some small but noticeable differences between 6 and

12ms, the similarity of the impulse in Figure 5.33(b) between the different arrangements

is very good and much closer agreement is found between these two shots, even in

different arrangements, than is seen between impulse data from different shots in the

same arrangement.

The number of baffles has limited effect on peak cumulative impulse, with almost no
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Figure 5.33: Comparison between pressures and impulses on wall C for all arrangements,
with circled numbers used to identify 3 peaks to aid comparison between arrangements

difference between A2 and A3 in Figure 5.33(b) - the main differences in A2 and A3

occur between 5 and 11ms, after the arrival of the most significant shocks, but during a

period where there are many reflections and the behaviour is very transient. The shock

that arrives at 5ms is less strong in A3 compared to A2, but a shock is present in A3 at

6.9ms that is not seen A2. Unique shocks in A2 and A3 are then seen at 7 and 8.2ms

respectively, but the similarity in magnitude cancels out any differences by 11ms.

Although the impulse is almost identical between A2 and A3, it is clear the impulse

is higher in both of these arrangements than seen in A1. The divergence between the

impulse curves for A1 and A2/3 in Figure 5.33(b) occurs between 6 and 14ms, after which

the impulse curves between the three arrangements show close similarity (ignoring the
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y axis shift) with the same duration plateau between and same gradient between 18 and

34ms. The reflections described above that occur between 5 and 10ms are not seen in

A1, and between 11 and 12ms, pressures in A1 return to atmospheric before those in

A2 and A3, which leads to a slightly prolonged rise in impulse in A2 and A3. As the

major differences occur between 5 and 10ms, it is plausible that pressure and impulse

behaviour over this time period is dominated by effects of shock reflection from wall C.

Although the baffles make a distinct difference to both pressure and impulse history at

sensor 101, their effect is only noticeable over a short period of the measured data. The

likely effect of this on passengers in a rail vehicle is difficult to quantify from a single

measurement, but this shows there is a noticeable difference and that is worth further

investigation.

It is clear that the increased confinement created by the addition of the aluminium

panel in arrangement 4 leads to higher reflected pressures and cumulative impulse, as

well as altering the time at which particular features are seen. Shock 1 (shown by 1 in

Figure 5.33) arrives at the same time and of the same magnitude across arrangements.

As with A1, A2 and A3, this is effectively the side-on overpressure of the initial spherical

expanding shock front that is created by the detonation. At this time, reflection will be

occurring from the floor and ceiling, as well as the aluminium panel in the centre of the

box. The shallow angle that the incident waves make with reflecting surfaces, as well

as the strength of the shocks mean that Mach reflection at the walls is likely to occur

at this point (see Figure 5.34), but the similarity between all arrangements suggests the

triple point has not moved far enough from the reflecting surface to reach wall A and

influence the pressure. If this was not the case, the presence of some extra feature such

as an increase in pressure or difference in time would be visible in A4, where an extra

mach stem would be present from the aluminium panel, which would yield the same

reflection as the floor or ceiling, as it the same distance from the point of detonation,

merely in a different plane.

Shock 2 arrives 0.2ms earlier in A4 than in other arrangements, due to the simultaneous

meeting of reflected shock waves from the floor, ceiling and the aluminium panel at a

point before sensor 101 on wall A, as they all share the same distance and angle between

point of detonation, first reflecting surface and sensor 101. This increases the strength

of the shock compared to that seen in other arrangements, which results in a faster

propagation of the shock wave and reduces the time taken to arrive. According to

Figure 5.34, Mach reflection becomes possible at the panel in A4 (or the floor or ceiling,

recall they are the same point from the detonating charge) when the incident wave makes

an angle of 33◦, which is approximately 500mm along the reflecting surface, and should

be the only reflection possible for angles above 40◦, 645mm along the reflecting surface.

Although it is clear that directly above, below and normal to sensor 101 that Mach

reflection will be occurring, outside the Mach stem and above the triple point, there will

still be two clear distinct incident and reflected shocks, although the following reflected

shock will be rapidly approaching the incident front. It is these reflected waves from

floor, ceiling and panel, as well as secondary reflections from floor and ceiling (which

rapidly catch up with the first reflection travelling through shocked air) which lead to

the behaviour seen at point 2 . The interaction between several waves and interaction

with wall A around sensor 101 also leads to a maintained higher pressure and delayed

decay at 2 .
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Shock 3, (shown by 3 ) arrives in other arrangements as a reflection from wall C,

which is twice the distance from wall A as the aluminium panel that runs along the

centre of the box in A4. A description of the mechanism for shock 2 in Figure 5.33(a)

indicates that the initial reflection from the panel that is incident on wall A arrives there

at 2.4ms. For the shock wave to arrive at the same time at sensor 101, it would suggest

that it would need to travel a similar distance, indicating that the wave seen at 3 in A4

is likely to be the second reflected from the central aluminium panel, having previously

been initially reflected from the panel and wall A. The shock strength gained during

these reflections causes an increase in shock wave velocity, leading the shock to arrive

more quickly in A4 than in other arrangements. It should be noted that the change

of angle with each reflection due to the strength of the shock amongst other factors

such as interaction with other shock waves, means that it is not possible for shocks to

keep reflecting between walls and increasing strength indefinitely, as ultimately energy

is dissipated and moved away from the source of detonation as smaller and smaller

components of the shock reflect normally to the reflecting surface. For arrangement 4,

it is the specific combination on angles of reflection in A4 which leads the strong peak

at sensor 101 at this time.

The cumulative impulse is higher in A4 compared with other arrangements; an identi-

cal first shock at 1.8ms means impulses are the same at this point, but the early arrival

of shock at 2 , the maintained pressure between 2.9 and 3.7 and the earlier arrival of

shock 3 (which itself prevents a negative phase seen between 4 and 5.1ms in A1, A2

and A3) leads to difference of 150kPa-ms between A4 and other arrangements (which

are the same as one another) at 5.1ms. The difference between the peak impulses in A4

and other arrangements is 190kPa-ms for A1 and 110kPa-ms for A2/A3. This shows

that less impulse is added from 5-12ms in A4 compared to A3/A4, but slightly more is

added over the same period compared to A1. Clearly it is the magnitude and duration

of the shocks over the first 5.1ms that differentiates the peak impulse in A4 from the

other arrangements.

00.20.40.60.81
0

10

20

30

40

50

60

70

80

90

p0/p1

α
i,

d
eg

re
es

mach reflection

regular reflection

both possible

A4 at panel

A1 at wall C
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5.6.3 Pressures and impulses at baffles on wall C

At the point where baffles and walls meet, much higher pressures and impulses are expe-

rienced than on perfectly reflecting surfaces or between baffles. Away from the baffles,

their effect on pressures and impulses in the arrangements tested is small. Comparisons

from data from 3 locations, one in A1 and 2 in A3 illustrate this point; A1-312 (Figure

5.13), is the sensor at half height, at the junction between walls B and C in arrangement

1, A3-312 (Figure G.10) is on wall C, halfway between wall B and the first baffle and

A3-402 (Figure 5.19) is on wall C at the junction between the wall and the baffle. It

is difficult to distinguish between A1-S312 and A3-S312 over the first 5 shocks, as pres-

sure and impulse curves, arrival times and magnitudes are all very similar. Once this

initial phase is over, where the strongest shocks are present, the reflected shocks seen in

A3-S312 between 5 and 15ms are less strong, because waves are not reflecting normally

from surfaces as they are in A1-S312. Arrival times, magnitudes and decay rates for the

first 5 shocks in these two are similar, which indicates that reflections of shock waves

around the box over the first 15ms are very similar for both arrangements.

There are some visible differences in peak pressure between data in for A1-312 and

A3-312 (Figures 5.13 and G.10), but comparison of impulse data between 0-4ms and

5-15ms shows little major differences and no extra shocks are seen in A3-312 as a result

of reflections from the baffle. For A3-312, the peak impulse over 0-4ms ranges between

420 and 620kPa-ms, and between 450 and 550kPa-ms for A1-312. There is considerable

similarity between the data, suggesting the influence of the baffle is limited - impulses

over 60ms do not suggest a trend of higher impulses when the baffle is present. Although

the shock wave meets the baffle at an oblique angle, the angle is not high enough to

cause reflection parallel to wall C, so pressures and impulses are not very distinguishable

between A1 and A3 when the sensor is placed on a wall away from the baffle. For cases

with different width baffles, or differently placed charges, which result in waves being

more normally incident on the baffle, waves are more likely to reflect parallel to wall C

and lead to a greater number of reflections at a higher amplitude and a consequently

higher impulse.

At the point where the baffle and the wall meet in A3, the recorded pressures are

much higher (A3-402 Figure 5.19) than seen at A1-S312 and A3-S312, and there are

an increased number of stronger reflections, which leads to both a higher impulse over

the first 4 ms and a higher peak impulse at 16ms. The spherically expanding shock in

incident on the baffle at approximately 60◦, which even at low shock strengths will lead

to Mach reflection according to theory, shown in Figure 5.34. The wave incident on

wall C will have an angle of incidence of approximately 30◦, which is unlikely to display

Mach reflection unless the incident pressure is greater than 1200MPa, which it is not

at this point. The presence of only two shocks over the first 4ms in A3-402, in line

with behaviour at A1-S312 and A3-S312 where there is no visible effect from the baffle,

indicates that the regular reflection from wall C and Mach reflection from the baffle are

incident on A3-S402 at identical times.

Comparison of data from A2 and A3 shows that distance from detonation and position

of sensor in relation to reflecting surfaces not always determining factor for peak pressure

and impulse. Impulses for sensor A3-358 (central baffle in A3 Figure 5.20) are higher by

50kPa-ms across all shots than sensor A2-402 (first baffle in A2, shown in Figure 5.16.

The impulse in A3 is slightly lower than in A2 at 5ms (260 kPa-ms vs 300 kPa-ms),
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but the negative phase seen in both arrangements between 4 and 6.3ms is of greater

magnitude and duration in A2. The primary difference between 6.3 and 15ms, where

there are a number of weaker reflected shocks (all less than 250kPa for both sensors)

and a period of maintained pressure above atmospheric. The complex nature of shock

reflections mean that it is difficult to state exactly where they are from without a full

field visualisation of the propagation and reflection of all shocks. The separation between

reflecting surfaces (wall B for A2, and the baffle ahead for A3) is the most likely cause

of differences in reflected shock pattern, and secondary combustion effects could lead to

a maintained high pressure over several milliseconds.
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Figure 5.35: Comparison of displacement with pressure and impulse data for sensors
312 in A4

5.6.4 Deflection, pressure impulse and experimental issues in A4

One of the main aims of A4 was to determine if there was any relationship between

pressures within the box and the deformation of a flexible structure. Although only
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Figure 5.36: Comparison of displacement with pressure and impulse data for sensors
101 in A4

one test cycle was performed for arrangement 4, it is possible to identify from the data

that for this arrangement that the displacement of the aluminium panel has limited

effect on the pressures within the test cell over the most transient period of data, but

the unreliability of the displacement data after 6.5ms prevents analysis of longer term

effects, such as cumulative impulse. Figure 5.35 shows the impulse and pressure data

from sensor 312 on the roof of box and the displacement data from the LDG for the

centre of the aluminium panel. It should be noted that Sensor 312 is not measuring

pressure at surface of panel, and is much closer to the edge of panel than the centre.

In the absence of sensors on the panel surface (thickness and flexibility prevent this)

data from sensors close to the panel were used. The panel begins to deform at 2.3ms,

by which point the first shock has arrived and is decaying. The three most prominent

shocks have arrived and decayed by 6ms, by which point the panel has only deformed by

approximately 50mm. This is not sufficient deformation to make a noticeable difference
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to reflections, and also most reflections have already occurred by this point. For pressure

reflections at this point of measurement, the positive phase durations are a maximum of

1ms, during which the panel moves by 50mm at its maximum velocity between 2.3 and

6.5ms. Given that the time taken to rise from pre shocked to shocked pressure is only a

fraction of a millisecond, the panel is essentially almost stationary while the reflection is

taking place. In a rail vehicle, it would therefore suggest that by the time any window

begins to deform, or is pushed clear enough of the rail vehicle to provide a noticeable

venting area, the most transient behaviour will be complete.

Figure 5.36 shows pressure and cumulative impulse sensor 101 at the centre of wall A

and deflection time history for the centre of the panel. The second shock, which reflects

from both the panel, the floor and ceiling, is incident on wall A before any significant

deflection has occurred in the panel, although it should be noted that the deflection

does begin before the shock is incident on wall A. There is some correlation in time

between the appearance of a discontinuity in the deflection at 2.8ms and a jump in the

pressure at 3.1ms, suggesting that the two could be linked, but the magnitude of the

pressure feature at this point and the apparent effect on the panel (displacement will

not create spurious behaviour, but a bending or bulging effect at this point could yield

odd LDG data) do not correlate. The third shock, at 4.8ms (a second reflection from

the panel) arrives at wall A at a time when the panel has undergone 75mm of deflection

at its centre. The panel begins to develop a visible curved shape at the open end at

5ms, but is still quite flat at 5.7ms and is not obviously very distorted at the open end

until 8.7ms (shown in Figure 5.28(a – h), edges still in position at 5.8ms). It is possible

to speculate that if some failure of the panel begins to occur between 5.8 and 8.7ms

(over which time the LDG data becomes unreliable and inconclusive) that the shape

may change significantly and alter the way any subsequent reflections happen after this

time. Although the lack of fixation would not prevent the panel from reflecting a shock

(Figures 5.35 and 5.36 show that this happens over a very short period of time and

it would not be possible for the panel to ‘move out the way’), the shape could either

disperse or focus any shock fronts that interact with it’ leading to a stronger or weaker

shock meeting wall A than would occur with a flat, rigid wall in place of the panel.

Figures 5.35(b) and 5.36(b) show peak impulses of 420 kPa-ms and 480kPa-ms. This

can be used to make a rough estimate of the magnitude of velocity this impulse would

generate in the panel. Impulse, J , is change in momentum (∆p) from Newtons second

law (5.5). Dividing through by area (5.6) gives the specific impulse (termed impulse

throughout this work, in Pa-s) as a function of the change in velocity ∆v and the areal

density ρA. Rearranging gives the velocity of a body as a function of the applied impulse

and areal density (5.7).

J(N · s) = ∆p (5.5)

= m(v − u)

J

A
= I((N/m2) · s) =

m

A
∆v (5.6)

I(Pa · s) = ρA∆v

or ∆v =
I

ρA
(5.7)
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∆v =
I

ρA
=

420

8.8
= 47.7 m/s (5.8)

∆v =
I

ρA
=

480

8.8
= 54.5 m/s (5.9)

The aluminium panel used had a thickness 3.2mm and a volumetric density of 2750

kg/m3, which gives an areal density, ρa, of 8.8 kg/m2. If peak impulses seen at sen-

sors 101 and 312 were experienced over the whole panel, velocities similar to the peak

recorded by the LDG are predicted (equations (5.8) and 5.9). This analysis is highly

simplified, and assumes no action from the supports and the application of a uniform

impulse over the whole panel and does not consider that the peak impulse at the panel

could be higher than that seen at sensor 101 or 312. Even though this analysis is highly

simplified, and would not be a suitable method for fully characterising the behaviour of

the panel, it provides rough figure that can guide further investigations.

The pressures and cumulative impulse behind the aluminium panel was measured at

mid height in the corner between walls B and C (see Figure 5.22) and are shown alongside

deflection data in Figure 5.37. The baffles from A3 were retained in place for this test,

with only the central baffle removed to allow the mounting of the laser distance gauge.

A shock can be seen arriving at sensor 402 at 2.6ms followed by a maintained pressure

at a similar magnitude for 1ms, as opposed to the rapid decay seen in other locations

across arrangements. Stronger and more typical, rapidly decaying shocks are seen at

5.7, 6.5 and 10.1ms, but the cumulative impulse seen in Figure 5.37(b) are primarily

driven by a rising quasi-static positive pressure between the arrival of the first shock at

2.6ms and the beginning of a negative phase at 18.2ms. It is interesting that a point not

directly exposed to the blast shows a cumulative impulse that is a similar magnitude to

some of the highest peak cumulative impulses at 600kPa-ms. The mechanism for the

arrival of the shock at 2.6ms is not immediately clear from visual information from high

speed video, post inspection of structures or pressure time history, but it is possible to

eliminate several potential causes and arrive a suitable explanation. The shock is too

strong and arrives too late to be caused by transmission of shock waves in the wall of

the test cell, as shown in Figure 5.31. Post test visual inspection of the panel shows

no bursting, and high speed video shows no visible movement of the unsupported panel

edge until 5ms and no flash on the other side of the panel, which prevents an air shock

directly passing between sides of the panel at this time. The relative impedances of air

and aluminium prevent a shock being passed between air on either side of the panel as

ratio of acoustic impedances between air and aluminium mean most pressure is reflected

at the boundary between the two, not transmitted (see Chapter 2 Section 2.2.1.1).

In the absence of other explanations, a process of elimination suggests that physical

movement of the panel is responsible for developing the shock, in a similar way to a

piston creating a shock in a cylinder (see Chapter 2). The relation between the strength

of the developed shock and velocity of the piston is given in Liepman and Roshko [25]

and shown in Equation (5.10), where up is the velocity of the cylinder and a1 the speed

of sound in the transport medium. If it is assumed that the shock incident on wall C at

this point is weak, the coefficient of reflection will be 2 and therefore the magnitude of

the incident shock (it is the reflected shock that is measured) will have an overpressure

of approximately 20kPa. For a speed of sound of 340 m/s, this would require a piston
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(a) Pressure measurements between walls B and C behind aluminium panel and deflection
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(b) Cumulative impulse from sensor 402 and deflection data for aluminium panel

Figure 5.37: Comparison of displacement with pressure and impulse data for sensors
402 in A4

speed of approximately 45 m/s (Equation (5.11)). In reality, the panel does not move

like a piston in a cylinder as the air behind it is not completely enclosed, and will have a

velocity profile across it with the edges on the panel having a reduced velocity compared

to the less restrained central areas where the influence of the supports is witnessed by

the panel more quickly. The data from LDG shows that the central portion of the panel

is not moving at 50m/s until 1.5ms after the shock arrives at sensor 402, but the end of

the panel opposite sensor is much closer to the charge and the angle of loading is closer

to normal at the surface of the panel, so it could be assumed that the panel would begin

moving earlier here. However, the increase in strength of the shock at this point may be

offset by the proximity to the fixed supports. Further analysis of the panel behaviour is

required to confirm the likely distribution of velocity across the panel to confirm this as

the mechanism for development of this shock.
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up =
a1

γ

(
p1

p0
− 1

)



2γ

γ + 1
p1

p0
+
γ − 1

γ + 1




1/2

(5.10)

up =
340

1.4
×
(

120

100
− 1

)
×




2× 1.4

1.4 + 1
120

100
+

1.4− 1

1.4 + 1




1/2

= 44.9 m/s (5.11)

The area directly behind the panel in A4 sees a much longer delay between arrival of

shocks and peak impulse, compared with other arrangements. Although a number of

shocks are seen, most of the impulse is added due to a quasi static increasing pressure

between 8 and 18ms. The exact cause of this is not straightforward to pinpoint, due to

uncertainties in the behaviour of the panel and effects such as after burn that are not

trivial to quantify. Vertical and longitudinal waves of motion and reflections of shocks

between the walls could cause some of the behaviour seen, as could the failure of the

panel, although it should be noted that the panel was still in contact with wall B post

testing, with a single bolt holding the angle sections in place, which would limit the

passage of shock waves between the two halves of the box. Failure of the panel along the

top angle section could cause some passage of shock between the roof and wall C, as well

as causing some hot gases to spill over onto the other side of the panel, and these may

well still be undergoing a burning process as atmospheric oxygen is drawn in to complete

combustion of the detonation products. The presence of the baffle on wall C will serve

to increase the confinement around sensor 402, potentially leading to a greater number

of reflections and limiting the ability of pressures to ‘escape’, which would provide and

explanation of the longer term build up of pressures, especially if secondary combustion

was present. Ultimately the mechanisms are difficult to determine from the limited data,

but clearly significant pressures and impulses are generated on the non-load side of the

panel. In the context of a rail vehicle this could be a mechanism by which passengers

outside of a rail vehicle (e.g. on the platform) are injured, which is worthy of further

investigation.

5.7 Conclusions

The experiments reported here were designed to produce data to validate numerical

models. This requires that the data itself be a good representation of the physical pro-

cess, with good agreement between measurements. With the exception of arrangement

4, where only a single test cycle was completed, each arrangement showed excellent

agreement between individual shots, especially during the most transient phase where a

number of shock reflections were present. Although pressure histories are very consistent

across arrangements, cumulative impulses show deviation towards the end of the mea-

sured time. This difference is caused by cumulative errors in recording and processing

data and the minor differences in output of an explosive that are compounded when

pressure data is integrated over time. The secondary combustion process (see Section
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2.2.2) that occurs may contribute to this error too and although no data on this was

gathered from this series of tests, it should be considered a potential contributing factor

and certainly worthy of further investigation.

The experimental method generated good quality data, but several additions would

be made to any subsequent similar test series. Although useful comparisons and anal-

ysis can be made with the data acquired here, altered sensor positioning would make

comparisons more straightforward. By positioning sensors in consistent locations in the

3 similar arrangements, and as similar as possible in the fourth arrangement, it would

have been possible to better compare the effects of baffles and spacing. The tests were

not planned specifically with this comparison in mind initially, but with hindsight this

would have been a valuable addition to the experimental tests. Optical displacement

measuring, such as the laser distance gauge employed in arrangement 4, have many ad-

vantages over mechanical displacement measuring methods; the lack of moving electrical

connections avoids problems with skipping connections and the non-contact nature pre-

vents physical resistance in the measuring device which would influence the behaviour of

the structure under investigation. For high explosive testing and very flexible structures

the optical method employed proved that it can be unstable, yielding poor results. It

is recommended that in future work, the deformation of the structure is restricted to

ensure that measurement of the deflection of the panel was more reliable, as well as

providing some form of shielding to reduce the influence of stray light on the optical

sensor.

The presence of baffles in A2 and A3 did not lead to reduced impulse or reduced

pressures within the box, with impulses on wall A, opposite wall C on which baffles were

placed, higher than those seen without baffles. The angles that the incident shock waves

make with the baffle means that reflection towards wall A is greater when baffles are in

place, but interestingly this does not necessarily correspond to significant differences in

impulses on wall C itself, other than at points where baffles and the wall meet, where

coincident shock waves lead to very high pressures and impulses. Data also shows the

number of baffles itself made almost no difference to the impulse at wall A in the box,

with differences in the pattern and timing of reflections effectively cancelling out any

differences between the two arrangements with different baffles. Only a small amount of

data gathered for arrangement 4 is useful, but appears to show that over short durations

the deflection of the panel makes little difference to the experienced pressures and build

up of impulse. This period of time may be the most important when considering how

passengers are injured, so this is a potentially important conclusion. Although the

displacement data showed several issues, the measured velocity over the most stable

period agrees with a simplified analysis for an impulsively loaded plate.

The deformation of the panel also led to shock waves on the side that was not directly

exposed to the blast energy. A simplified analysis can explain the presence and magni-

tude of a single shock, but not a number of other shocks and a long term pressure build

up between the aluminium panel and wall C. Although the overpressures are generally

low (not more than 150 kPa) they are still significant as the impulses developed over

18ms are of a similar magnitude to the highest seen at locations directly exposed to

the blast. The confinement caused by wall C and baffles in part leads to maintaining a

higher pressure, and this could have important implications for explosions in other con-

fined spaces such as tunnels, where passengers, or structures outside of a targeted rail
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vehicle may be at greater risk than previously thought. It will therefore be important to

investigate how this longer duration build up of pressure compares with shorter duration

build ups when considering both the risk to passengers and surrounding structures.

The testing has identified various physical phenomena that must be modelled correctly,

or require further investigation and may adversely affect the results from numerical mod-

els. Although it is not present in all models, any negative phase can make reductions

to the impulse, so failing to capture it fully is likely to lead to inaccuracies in the peak

cumulative impulse. The high number of reflections and short duration of positive and

negative phases mean that a fine mesh will be required to resolve such pressure gradi-

ents. Although currently not implemented in LS-Dyna, equations of state to consider

the effects of secondary combustion phenomena in high explosive detonations may be

important for predicting the build up of pressures over durations longer than those of

individual shock waves. This should be considered as a likely source of error in numerical

models, especially over longer duration models, which without taking into account sec-

ondary combustion will under predict the cumulative impulse. The test cell was always

open at one end, which prevents significant build up of quasi static pressures (QSPs) due

to the large area to vent pressures, but for structures that are completely enclosed with

no large vent at one end, QSPs may have a more significant effect on long term impulse,

which should be subject to further investigation to identify important parameters.

The mechanism that develops pressures behind the aluminium panel and leads to the

long term build up of pressures and a number of shock waves is not fully understood, and

could have important implications when considering a rail vehicle under blast loading,

as well and people and structures close by. Although further experimental testing to

investigate this is not within the scope of this work, suitable numerical models may be

able to shed light on the cause and identify any implications for passengers, rail vehicles

or surrounding infrastructure.

The presence of baffles in the experimental tests reduced the impulse experienced at

some locations within test cell, but also significantly increased the peak pressures in

other area. Generally, baffles appear to slightly reduce the impulse experienced in the

test cell (and it follows, a rail vehicle carriage), but the number and spacing along the

wall was not found to play a significant role.
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Numerical modelling of

experimental test

arrangements

6.1 Introduction

The numerical method used for modelling blasts loads in rail vehicles has been verified

with the use of analytical and empirical solutions for blast pressure and structural de-

formation, but to ensure that the models make accurate predictions in more complex

scenarios it is necessary to validate their output with experimental data. A series of

bespoke experiments were described in Chapter 5 and building on numerical modelling

work from Chapter 4, this Chapter describes the development and results of numerical

models of those experimental tests using LS-Dyna.

6.2 Model development

In Chapter 4 a method and series of verification models was presented, which identified

the important parameters which can affect solution accuracy. Chapter 5 presented ex-

perimental data for high explosive detonations in confined spaces, and this Chapter aims

to use that experimental data, along with techniques from Chapter 4 to produce accu-

rate and valid numerical models, that can be used to model the effect of high explosive

detonations in rail vehicles.

This section presents the process of model refinement, achieved by adjusting parame-

ters within models and comparing them with each other and data from a single experi-

ment. The experimental test A1 is used to guide the mesh refinement and specification

of boundary conditions. The steps taken are as follows:

1. identify appropriate boundary conditions

(a) ensure free edges of mesh are an appropriate distance from points of mea-

surement

(b) select boundary techniques for modelling structural boundaries

2. refine mesh appropriately using experimental data
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3. check and ensure no non-physical behaviour is happening

(a) ALE material leakage

(b) pressure oscillation, such as those described in Section 4.2.3.4

6.2.1 Accounting for secondary combustion

As discussed in Section 2.2.2.1, when some high explosives detonate the products can be

further oxidised to release energy as heat. The experimental tests reported in Chapter

5 used the RDX based explosive PE41, which can release an additional 3.8 ×103 kJ/kg

of energy on top of the 6.3 ×103 kJ/kg of energy released at detonation (see Section

2.2.2.1). The combustion of binding agents and plasticisers, as well as any other com-

bustible material within the fireball of detonation can also add to energy released during

combustion, although the difficulty in identifying the exact composition of the explosive

makes quantifying this more difficult. The secondary combustion of detonation products

and other materials makes a significant contribution to the energy of the gas within the

enclosure of the test cell, therefore it is necessary to account for this additional energy

in the solution.

The LS-Dyna code is not designed to cope with simulation of the complex thermo-

chemistry involved in either the detonation or the secondary combustion of explosives,

and as a result relationships between the reaction chemistry and variables computed

within LS-Dyna are defined using empirical relationships. For the detonation process,

the combination of a high explosive material model and an equation of state for the det-

onation products (see Chapter 2, Section 2.3.4) is widely used, but the solver does not

account for how the detonation products subsequently flow and mix with other materi-

als. The secondary combustion process requires a knowledge of the chemical formulation

of the explosive charge, and the reactions which take place, which are governed by the

products made during detonation (which become the reactants for the secondary com-

bustion process, along with any other combustible materials), the temperature and the

flow of gases. These things are not possible within LS-Dyna, so it is necessary to use a

significantly simplified method to account for additional energy.

6.2.1.1 Internal energy deposition

LS-Dyna and other hydrocodes are capable of solving, to some extent, the basic flow

behaviour of materials based on their momentum, but they are not designed to solve

gas flow problems and do not account for significant effects such as turbulence and

mixing, which would be better modelled with one of a vast of number of Computational

Fluid Dynamics packages. Video footage from experimental testing shows flame front

propagation and turbulence over almost the whole test cell enclosure (the brightness of

the flame obscures some of the later behaviour), which hydrocodes are not designed to

simulate. To account for the secondary combustion it is necessary to account for the

contribution of combustion energy over the whole volume of test cell.

The secondary combustion energy is assumed to do negligible work [47, 179], so all

the heat energy from combustion will manifest itself as an increase in internal energy,

in accordance with the first law of thermodynamics. For explosives where the chemical

1PE4 formulations vary slightly between manufacturers, and the exact composition rarely available.
Typically, PE4 is about 91% RDX, with plasticisers and binding agents added, such as oils and synthetic
rubbers.
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reactions occurring during this secondary combustion are known (or can be a assumed

with a good level of confidence), the energy released can be calculated (see Equation

(2.16) in Chapter 2).

A simple and robust method of achieving this increase in internal energy is by adding

it directly into the energy term in the equation of state, which can be achieved in

LS-Dyna with the *EOS LINEAR POLYNOMIAL WITH ENERGY LEAK keyword,

which is identical to Equation (2.35) (on page 25), but the internal energy is increased

according to an energy deposition (power) versus time curve. The integral of power

over time is the total energy, so the integral of the defined power time curve should be

equal to the total amount of energy available for secondary combustion. It is necessary

to make some assumptions about the energy release, and it seems sensible to assume

a reaction that begins slowly, increasing to a maximum then slowing as the mass of

reactants reduces. The total energy released in such a system is assumed by the author

to take the form of a sigmoid curve, although in reality the reaction rate is governed

by the mixing, relative volumes of reactants, and temperature thus is typically solved

numerically [51]. If the total energy is to take a sigmoid form, the secondary combustion

power curve will take the form shown in Equation (6.1), and the energy added takes the

form shown in Equation (6.2), both of which are shown graphically in Figure 6.1.

Psc(t) =
e−t

(1 + e−t)2
(6.1)

∫ t

0

Psc(t) dt =
1

1 + e−t
= Esc (6.2)
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Figure 6.1: Plot of energy time curve and differential

With a function form defined it is necessary to define parameters to modify the curve

to give it the correct magnitude and shape, giving a curve with the form shown in

Equation (6.3). The equation of state uses energy per initial volume, so the total energy

available for secondary combustion calculated in Section 6.2 is divided by the volume of

the test cell. The energy release rate can be modified through the parameter b and the

time of peak energy release altered via c. These parameters will need to be modified

using data from experiments.

Psc(t) =
Esc
V0
· be−b(t−c)

(1 + e−b(t−c))2
(6.3)
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This approach offers a simple way of accounting for secondary combustion energy,

but there are a number of drawbacks to this method of modelling the additional energy

release. Firstly, it requires a knowledge of the timing of peak energy and the time of peak

energy release, which to a large extent can only be identified from experimental data,

although many parameters for phenomenological equations of state (such as the JWL)

are also derived experimentally. Secondly, to ensure that secondary combustion energy

is only added inside the test cell (and not to air on the other side of the test cell wall)

it is necessary to define material outside of test cell as a separate ALE multi-material

group, and ensure additional energy is added only to the material that initially fills the

test cell, although ideally, this extra energy would be added only behind the flame front.

Finally, this method assumes a spatially uniform deposition of energy. In reality the

spatial distribution of energy deposition is based on the flow of the products and the

propagation of flames, which cannot be predicted by LS-Dyna.

6.2.2 Investigating variables

Numerical models were constructed of test arrangement 1 (A1), with physical geometry

of the test cell as shown in Figure 6.2. The planes xz and yz that pass through the point

O represent two walls of the physical test cell, and are modelled using nodal constraints.

The outer boundaries of the test cell were modelled in two different ways, firstly using

nodal constraints and specifying an air domain only as large as the physical test cell,

and secondly by using the fluid structure interaction method, where a physical model of

the test cell geometry is constructed using shell elements placed within an appropriate

sized mesh for the air domain.

charge

x z

y
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1456

2980

1
4
5
6

1

2

3

4

5

Figure 6.2: Setup of 3D model

The DATABASER TRACER keyword is used to specify the output from numerical

models, and mimics the physical data gathering system used in physical tests as closely as

possible. Five measurement locations are specified, corresponding as closely as possible
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Table 6.1: Physical test and numerical model measurement locations

all in mm
test sensor model measurement location x y z

S312 1 10 728 1450
S402 2 1490 728 1450
S358 3 2930 728 1450
S311 4 990 615 422
S101 5 1490 728 10

to the physical locations of the sensors, described in Chapter 5, Figure 5.12. Data is

sampled from numerical models every 1.53µs, which is approximately the same sampling

frequency used during experimental testing. In the physical tests, sensors are located

at the surface, but in numerical models data base tracer points are positioned slightly

away from the surface to ensure that pressure measurements are taken in the air, and

not in line with nodal constraints or Lagrangian surfaces, which could lead to incorrect

predictions.

An advantage of the numerical modelling methods such as finite element analysis, is

the ability to get a full field visualisation of physical variables occurring in the model,

such as pressure and density. This is particularly useful for identifying the propagation

and reflection of shock waves which would otherwise simply just be seen as a peak in

a pressure time graph, or how particular shocks interact. This is achieved in LS-Dyna

using the DATABASE BINARY D3PLOT keyword, which produces a data file with

information on every element at a chosen time interval, which can be visualised with

LS-PrePost. Their usefulness for comparison with experimental data is limited as similar

data cannot be replicated using the available experimental techniques, so were not used

extensively for validation.

As with previous 2D and 3D models reported in Chapter 4, extensive use was made

of the ‘mapping’ feature available in LS-Dyna. A quarter symmetry 80g charge of PE4

was modelled in 2D, using ALE shell elements, which generated a single mapping file

that served as the initial conditions for all 3D models. The positioning of the initial

charge and the vectors around which the 2D data is revolved to achieve a 3D map is

controlled by the *INITIAL ALE MAPPING keyword card. The centre point of the

charge is positioned as shown in Figure 6.2, at x = 0, y = 728, z = 0, and revolved

around unit vectors from this point in the x, y and z directions to give the desired full

3D initialisation of the blast wave with symmetry in xy and yz plane. The 3D models

use 1 point hexahedral ALE multi-material elements, and are run to 15ms.

A number of variables were studied to arrive at a satisfactory modelling method.

The effect of structural boundary conditions, ALE domain sizes and mesh refinement

were all seen to influence the results, and a description of these models, along with the

results of the study of these variables can be found in Appendix H. A study of the

effect of secondary combustion is shown here, which was seen to play a significant role

in predicting the correct behaviour of shocks and values of cumulative impulse.
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6.2.2.1 Secondary combustion

Secondary combustion is accounted for in a number of models, as discussed in Section

6.2.1.1. Table 6.2 shows the parameters used to study the effects to altering the energy

release on the pressures experienced within the test cell, with a range of different peak

energy release times and energy release coefficients, to identify those which best match

the real scenario.

Table 6.2: Parameters used for secondary combustion study

identifier energy release coefficient, b time offset, o
E1 0.5 10
E2 0.5 15
E3 1 5
E4 1 10
E5 1.5 5
E6 1.5 10

6.2.2.2 A note on LS-Dyna versions

There are essentially 4 versions of LS-Dyna, which can be split into 2 groups; Shared

Memory Parallel (SMP) and Massively Parallel Processing (MPP). Both of these versions

have single (32 bit) and double (64 bit) precision versions, which affects the size of

floating point values that can be stored in arrays and the amount of memory required

to store these arrays. Single precision floating point numbers are generally limited 7

decimal points of accuracy, whereas double precision floating point numbers generally

are accurate to 16 decimal places. As a result, single precision versions of LS-Dyna are

more liable to roundoff errors, which can lead to a loss of accuracy when small values

(such as for small deflection) are subject to mathematical operations or models which

are run over a long period of time, where the roundoff error accumulates as the solution

progresses. Single precision is also limited to approx 2000m words of memory [180],

which corresponds to about 8GB for 32bit architecture. Double precision versions of

LS-Dyna do not have this limit, but use about double the amount of memory - for

a problem that requires 2000m words of memory, the double precision version would

require 16GB, as opposed to 8GB for the single precision version [181].

The memory limit with single precision versions of LS-Dyna can be somewhat cir-

cumvented by using the single precision MPP version of LS-Dyna. The MPP code

works by decomposing the solution so it can be solved in parallel on n processors, and

then passing information about boundary data between each decomposed section of the

model. The memory required is specified per processor, which means that if 2000E06

are specified, it is possible to solve models that require greater total memory than can be

solved using the single precision SMP code. In terms of performance, the SMP version

outperforms the MPP version when small number of processing cores are used, due to

the extra computational effort required to decompose the solution and pass information

between memory of each processor. The performance disadvantage of using the MPP

code decreases as the number of processing cores over which the solution is decomposed

increases, and the gains begin to outweigh the losses when more than 8 processors are
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used.

6.2.3 Results

6.2.3.1 Secondary combustion

The effect of secondary combustion was considered by adding additional internal energy

to the solution using a sigmoidal function to define the total additional energy added.

To investigate the effect of changes to this function, the models were run using a coarse

(20mm) mesh, to reduce the computational effort but still identify the effect of changing

parameters. Each of the six models is prefixed with an ‘E’ to differentiate them from

other parameter studies in Section H, and the differences between each are shown in

Table 6.2.
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Figure 6.3: measurement location 1, showing the effect of changing secondary combus-
tion energy release parameters

Figure 6.3 shows pressures and cumulative impulse histories for experimental and 6

numerical cases from measurement location 1, as shown in Table 6.2 in Section 6.2.2.1.
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The initial two shocks in Figure 6.3(a) show no difference between the models as ex-

pected, as the additional energy from secondary combustion at this point is negligible.

The third shock at 5.5ms shows a very marginally earlier arrival in models E3 and

E5, with identical behaviour from the other four models. The later time behaviour is

marginally more different between cases, and is shown in more detail in the close up

region in Figure 6.3(a). Models E5 and E3 show a higher pressure and earlier arrival of

pressures than the other models, and at later times E2 begins to show a slightly later

arrival than E1, E4 and E6. As the simulation progresses, it become more obvious there

is grouping of the curves, which is shown clearly in the cumulative impulse curve in Fig-

ure 6.3(b). Models E3 and E5 and models E1, E4 and E6 appear grouped together, and

reference to Table 6.2 shows that these groups refer to the time offset applied to each

load curve. The largest increase in the cumulative impulse occurs in models E3 and E5,

where the lowest offset, representing the earliest onset of secondary combustion, of 5ms

is used and the cumulative impulse at 15ms is 350kPa-ms, compared with 200kPa-ms

in the same model without secondary combustion. The smallest increase is shown in

model E2, where the offset is at the largest studied value of 15ms and the cumulative

impulse at 15ms is only 50kPa-ms greater than without considering secondary combus-

tion. This follows the expected behaviour, as the time shift can reduce the total value of

the power integral over the simulated time, reducing the total additional energy added

to the solution.

Although accounting for secondary combustion has reduced the difference between the

model and experimental results, the presence of two shocks at 7.8ms and 13ms are not

accounted for, which are primarily responsible for the difference between experimental

and numerical results.

The effect the additional secondary combustion energy is more clear in Figure 6.4,

which shows experimental and numerical data from location 3. The pressure and impulse

curves display the same grouping as seen before, with the lowest time offsets yielding

the largest increase in pressure, but one of the drawbacks of the method mentioned in

Section 6.2.1.1 is clearly visible in the results from models E3 and E5 in Figure 6.4,

where pressure begins to rise before the arrival of the first shock. Clearly this is not

physically realistic and is responsible for these models over predicting the impulse by

around 20kPa-ms as shown in Figure 6.4(b). Aside from this, both the models with a

10ms (E1, E4 and E6) and 5ms (E3 and E5) offset predict the shock features in Figure

6.4(a) well, although each of these groups of models has areas where it predicts less

accurately. E3 and E5 predict arrival time of shock at 8 and 14.5ms and the magnitude

of negative pressure between 8 and 10ms, but do not predict the arrival times or decay

of significant shocks at 10.3ms and 11.3ms as accurately as E1, E4 and E6. Figure

6.4(a) also shows that none of the groups predict the magnitude of the shock at 10.3ms,

although all models predict the magnitude of the shock at 11.3ms

The same groupings and behaviour are seen at measurement location 5, shown in

Figure 6.5. The shock arrival at 5.2ms in Figure 6.5(a) is well predicted by all models,

but the peak in pressure at 5.5ms is over predicted in all models, with E3 and E5 being

the highest at 155kPa, compared to 115kPa in experimental data. From 6.5ms, the

decay shape and magnitude of the pressure is predicted better by E3 and E5 than in

other models, where there is a consistent under prediction. All models fail to predict

the correct time for the shock 10ms, with models predicting a much stronger shock than
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Figure 6.4: measurement location 3, showing the effect of changing secondary combus-
tion energy release parameters

seen in experiments, but all at a later time. The models with a 5ms offset, E3 and E5

predict an earlier arrival and a lower magnitude as shown in experiments, but the arrival

at 11.1ms is still 1.1ms behind that seen in the experiment. From 13ms the pressure

begins to decay in 5ms model, which is not quite in line with experimental data, which

between 13ms and 15ms shows a constant pressure around atmospheric, but performance

of models using the 10ms offset do not show this issue to the same extent.

The higher peak and longer duration pressures in the models at 5.5ms in Figure 6.5(a)

lead to a steeper rise in impulse compared with experimental data, as seen in Figure

6.5(b). At 6.5 ms the 10ms offset group, E1, E4 and E5 impulse plateaus, whereas the

rise continues in the 5ms offset group, with a gradient similar to the experimental data.

The impulse calculated from experimental data shows an increased gradient from 10ms,

but begins to drop in the numerical data. When the shock arrives in the models at

around 11ms, the rise in impulse is much stronger than seen in the experimental data,
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Figure 6.5: measurement location 5, showing the effect of changing secondary combus-
tion energy release parameters

but although the rise is sharper, the amount of impulse added from this point is 50kPa-

ms lower in the models than in experimental data, due to the shorter positive pressure

duration in the models. The shape of all the model impulse curves are very similar,

but the 5ms offset models show a final impulse that is closer to experimental results,

compared to the other models.

Accounting for secondary combustion by addition of internal energy to the solution is

shown here to produce models where the results provide a much closer representation

of the physical behaviour than achieved when secondary combustion is not considered.

The shape of the energy release function makes little difference to the behaviour of the

models, but the time offset clearly makes a significant difference to model results, with

earlier accounting for additional energy proving to be a more accurate depiction of reality

than when energy is accounted for later in the solution. The method should be used

with caution though, as adding additional energy into the solution too early can lead
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to unrealistic pre shock arrival pressure rises. An offset of 7.5ms and an energy release

coefficient of 1.5 were decided as the most appropriate parameters for the secondary

combustion model.

6.2.3.2 Conclusions

Section 6.2.3 presents the results of the study of boundary conditions, mesh refinement

and secondary combustion on the results from numerical models, and compared these

with experimental results.

Correct definition of boundary constraints was identified, and symmetry boundary

conditions were found to give a good representation of the experimental results. The

size of the ALE air domain was also investigated, and an optimal size was determined

for use when running models to 15ms. For models run for longer than 15ms, an enlarged

mesh is necessary.

Mesh refinement was identified as an important parameter, but models run with a

medium and fine mesh showed only limited difference, with an increase in peak pressure

for some shocks, but no noticeable difference across many of the shocks and the cumu-

lative impulse history. A refinement level of 15mm for the ALE elements within the test

cell walls was shown to offer a good level of accuracy.

Secondary combustion was investigated by running a number of models with different

energy release parameters, which showed that earlier addition of secondary combustion

energy produced noticeably more realistic results, but the assumption of additional

energy added at the same time in all locations necessitated by the method can yield

some unrealistic results, with energy at the correct time for some locations, but too

early for others, particularly those at the end of the test cell.

The results from Section 6.2.3 have contributed to the modelling methods described

and developed in Chapter 4, and a satisfactory method has now been identified by

considering the effects of secondary combustion, which can be used for modelling the

experimental test arrangements.

6.3 Comparison of numerical models and experimental data

Three sets of experimental data were recorded for arrangements A1, A2 and A3, with

only 1 for A4, and comparison of model data with all available experimental data is im-

portant to identify how the trends in experimental data match with numerical models.

With a modelling method defined, it is necessary to compare models for each arrange-

ment against all the sets of experimental data. The modelling methods to be applied

have been discussed extensively in this Chapter and Chapter 4, so only a brief explana-

tion of the methods applied is provided below.

6.3.1 Method

The method for modelling A1, A2, A3 and to a large extent A4 follows the modelling

method described at the end of Section 6.2.3. The ALE mesh is the same for all models

and uses the 15mm mesh described in Section H.1.3 with appropriate symmetry bound-

ary conditions applied to nodes, as described in Section H.1.1. Data was mapped on

to the 3D ALE domain from 2D models to initialise the blast load and an ALE Multi-

Material Group was defined within the walls of the test cell using an initial volume
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fraction, as required by the model for secondary combustion.

To match experiments, only the test cell structure is changed between each model

(with the exception of A4, which has some further modification made as described in

6.3.1.1) which means modifying the Lagrangian structure which lies within the ALE

mesh. The baffles in A2 and A3 are modelled with a single layer of shell elements at

the appropriate location, with nodes merged with the mesh of the test cell geometry.

The baffles were designed to remain rigid and experimental tests showed no evidence of

deformation, so as with the walls of the test cell itself the baffles are modelled using a

rigid material. The geometry of the Lagrangian model for A1 is shown in Figure 6.2,

and plan views of the Lagrangian geometry and measurement locations for A2 and A3

are shown in Figure 6.6.
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Figure 6.6: Measurement locations for A2 and A3

6.3.1.1 Additional model features for A4

The primary difference between A4 and other experimental tests was the presence of

a large deformable aluminium panel, fixed vertically along the axis of the test cell. In

the experiments, the panel was held in place between right angle steel sections which

were held in place with bolts. Detailed modelling of the response of these bolts within

the whole model for the test arrangement is unnecessary and counter productive, as

the extremely small element size required for accurate modelling of the bolts would

significantly reduce the critical time step for the solution, thus increasing the run time

for the model significantly. The panel used was made from grade 1050 aluminium alloy,

which has mechanical properties as shown in Table 6.3. Data from Higashi et al. [182]

gives stress strain data for 1050 aluminium at 3 strain rates, and shows similar stress

strain curves for 10−3s−1 and 1s−1, with an increase in the yield stress and ultimate

tensile stress at strains of 2× 103s−1, with a failure strain of around 0.45 common over

strain rates.

Bolted connections are considered using beam elements, which has proven effective

[183] for modelling dynamic loading of bolts under a variety of loading modes. Type 9

beam elements in LS-Dyna are specifically designed for use with *MAT SPOTWELD

and were used in conjunction with a contact definition to tie the shell elements of the

panel to the wall of the test cell. The angle sections increase the stiffness around the

edge of the aluminium panel, which is accounted for with a layer of shell elements with
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Table 6.3: Mechanical properties for 1050 Al

ρ (kg/m3) E (GPa) ν σy (MPa) εf
2710 71 0.33 100 0.45

Table 6.4: Mechanical properties for bolts using *MAT SPOTWELD

ρ (kg/m3) E (GPa) ν σy (MPa) Etan (GPa) εf
7500 210 0.30 800 0.20 0.35

the same thickness as the angle sections. The bolts used in the test were grade 8.8 with

material data in Table 6.4 supplied by the manufacturer.

Secondary combustion is accounted for based on the volume of the enclosing geometry

(see Section 6.2.1.1), which with the presence of the panel A4 reduces the volume by

a factor of 2. This means it was necessary to define a different initial volume fraction

containing only the air on the side of the panel exposed to the blast, and generate a new

energy deposition curve for the altered volume.

1 (roof) 2

3

45

Figure 6.7: Plan view of measurement locations for A4, with small dots showing the
positions of sensors and the dotted line showing the position of the aluminium panel

Sensors in the experimental testing were moved for A4 and the presence of the panel

meant that sensors positions were changed to ensure their rated pressure levels matched

the expected levels, and for ease of post processing this was matched in the positioning

of tracer points in the ALE domain for A4. Figure 6.7 shows the positions of pressure

sensors in A4 in plan view. Sensors 3, 4 and 5 lie at half height, sensor 1 is in the roof

and sensor 4 is the sensor on the cylinder and is the same as previous arrangements.

6.3.2 Arrangement 1

A comparison between data from measurement location 1 in the model and three shots

recorded experimentally by sensor 312 is shown in Figure 6.8. The pressure time history

in Figure 6.8(a) shows that the model captures the features of the experimental results

well, with some minor discrepancies in time and magnitude. Experimental data shows

peak pressures for the first shock at 1.7ms of between 400 and 550 kPa, and model data

shows a peak of 450kPa at 1.4ms. The rate of decay between the peak of shock 1 and the

arrival of the second shock is well replicated by the model, and the arrival time of the
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second shock in the experimental data between 2.6ms and 2.8ms is better predicted by

the model where the shock arrives at 2.5ms. The experimentally measured peak pressure

at shock 2 ranges between 390 and 760kPa for the three shots, but the model value of

410kPa is likely to be an under prediction of the true value, given that experimental

pressures of 600kPa and 760kPa were measured at this location. The following decay

and shock arrival at 5.5ms match well, and although the magnitude is under predicted,

the arrival of the shock at 7ms is predicted by the model. Between 8ms and 10ms there

is a period of sustained positive pressure in experimental data which is predicted by

the models. The model does not accurately predict the arrival of the shock seen in

experimental data between 12.3 and 12.8ms, but the model does show a pressure rise at

13.2ms which indicates that some aspect of this shock is present in the numerical model.

Impulse data in Figure 6.8(b) shows a close match between experimental and numerical

data, with all the major changes in gradient of the impulse curve in experimental data

mirrored in the curve produced from the model. The primary differences between model

and experimental data occur after 7ms and the under prediction of shocks at 7ms and

12ms ultimately lead to a cumulative impulse at 15ms which is lower than that measured

by experiments.

Figure 6.9 again shows good correlation between all 3 experimental data series and

data from the numerical model at measurement location 5. As with data in Figure

6.8(a), the shock arrives earlier in the model than in experimental data in Figure 6.9(a),

but with a much closer prediction of the value of peak pressure. The magnitude and

arrival time of the second shock is also well predicted, with the model under estimating

the value of the peak pressure by around 50kPa. The arrival time, magnitude and decay

of the shock at 5ms is predicted very well by the model up to 10ms, and this similarity

between model and experimental pressure data is confirmed by the cumulative impulse

curve in Figure 6.9(b), which is almost identical for the 3 experimental data sets and

the model data up to 10ms. The shock that arrives at 10ms in experimental data is

predicted by the model, but is predicted later at 11.4ms, and the drop in impulse leads

to a model under prediction of the experimental cumulative impulse by approximately

75kPa-ms at 15ms.

6.3.3 Arrangement 2

Pressure data from measurement location 2 in A2 presented a slightly more challenging

situation for the model to capture, with a larger number of shocks seen over short space

of time compared to many other models. Pressure data in Figure 6.10(a) shows that 4

shocks present between 1.8ms and 4.5ms are predicted by the model at the correct time

and with the correct magnitude, with only the magnitude of the lowest pressure between

shock 2 and 3 and shock 3 and 4 showing any noticeable difference. Experimental data

between 6.5 and 15ms shows a very transient pressure history, with a high number of

peaks over this time. This is also reproduced by the model data, with the only significant

feature that is not replicated by the models being a shock that arrives at 7ms in the

experimental data. The similarity over 15ms is shown by the cumulative impulse curve

in Figure 6.10(b), where model data and experimental data are closely matched.

Figure 6.11 shows data from measurement location 3 and sensor 358 in A3, which is

positioned at the junction of wall C and the third baffle. Figure 6.11(a) shows that it

proved challenging to capture some of the features in the model, but cumulative impulse
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Figure 6.8: Comparison of model and experimental data from measurement location 1
in A1

data shown in Figure 6.11(b) indicates a good degree of similarity between the models.

The first shock in Figure 6.11(a) is well predicted by the model in terms of arrival time

and peak pressure, but the arrival of the second shock is slightly earlier in the model than

seen in the experimental data. The arrival of a significant shock at 8ms is not entirely

missed by the model, but only a small pressure rise to a maximum of 50kPa is seen in

the model, compared to a peak shock magnitude of 250kPa seen in experimental data.

Similarly, between 10ms and 15ms there is a significant pressure rise in the experimental

data, and the time and magnitude of this is not captured by the model, which leads to

a noticeable deviation in the cumulative impulse data in Figure 6.11(b) after 13ms.

In Section 5.6.1 issues with the experimental test data from sensors within the cylinders
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Figure 6.9: Comparison of model and experimental data from measurement location 5
in A1

was discussed, and it was mentioned that data from the cylinders was not presented

due to difficulties in examining the data and lack of confidence in the results. Figure

6.12 shows model data and experimental data from the cylinder in A2, and excellent

similarity is seen between the 4 data sets. The primary difference between experimental

and numerical data occurs between 0.8ms and 1ms, where the model predicts a higher

peak shock pressure and positive phase duration, which leads to a corresponding over

prediction of the cumulative impulse at this time, which is shown in Figure 6.12(b).

Over the remaining time, the model predicts both the arrival time and magnitude of

shocks very well, and also predicts the value of quasi-static pressures between shocks

well. This leads to a good prediction of the cumulative impulse history, with the major
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Figure 6.10: Comparison of model and experimental data from measurement location 2
in A2

difference between the final cumulative impulse between the model and experimental

shots 1 and 3 being caused by the over prediction of the first shock parameters.

6.3.4 Arrangement 3

Figure 6.13(a) shows some of the closest similarity between experimental data and model,

with the time, magnitude and duration all the major features of all 3 experimental test

shots replicated well by the numerical model. As with other arrangements, the arrival

first shock in the model is slightly early, and the peak pressure in the first 2 shocks is

under predicted, and it can be seen that the shock at 13ms arrives later in models than

in experiments. The effect of this can be seen in the cumulative impulse plot in Figure

155



Modelling Blast Loads in Rail Vehicles T.Anthistle

0 5 10 15

Time (ms)

0

200

400
P
re
ss
u
re

(k
P
a)

Model
Exp S1

Exp S2

Exp S3

(a) Pressure history

0 5 10 15

Time (ms)

0

200

400

600

Im
p
u
ls
e
(k
P
a
-m

s)

Model
Exp S1

Exp S2

Exp S3

(b) Cumulative impulse

Figure 6.11: Comparison of model and experimental data from measurement location 3
in A2

6.13(b), where the magnitude of the cumulative impulse at 4ms is marginally higher for

the numerical model, and the sharp rise seen in the experimental data at 13ms is later

and less significant in the models.

Measurement location 3 in A3, shown in Figure 6.14, offers similar challenge for mod-

elling to capture as seen at measurement location 2 in A2, with a number of reflected

shocks over a short space of time between 2.5ms and 4ms, caused simultaneous reflec-

tions from a number of surrounding surfaces. The first two shocks seen in Figure 6.14(a)

are predicted well by the model, but the third shock arrives earlier in the model and un-

der predicts the peak pressure by around 250 kPa. It should be noted at this point that

the experimental peak at 3.6ms is exceptionally sharp, with an almost indistinguishable
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Figure 6.12: Comparison of model and experimental data from measurement location 4
in A2

width between the ascending and descending lines, which given the mesh required to

resolve this is unlikely to be well revealed other than by exceptionally finely meshed

models. Between 7ms and 12ms the model shows all the same features as the experi-

mental data, but can be seen to have a positive and negative shift which prevents the

data lying on top of each other. Over the period between 7ms and 9ms, the model

data shows much the same shape, but is 50kPa lower than experimental data, whereas

between 10.5ms and 12ms the model data is 50kPa higher. The effect of this can be seen

on the cumulative impulse in Figure 6.14(b), where the model impulse deviates away

at 7ms, but catches up with the experimental curve at 12.5ms. This indicates, as with

other models, that over the initial time where no secondary combustion is considered,

the model is very capable of predicting the impulse behaviour, although peak pressures
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Figure 6.13: Comparison of model and experimental data from measurement location 1
in A3

are under predicted, especially where the peaks are sharp as shown in Figure 6.14(a)

3.6ms. Later time pressures between 7ms and 15ms where afterburn energy is considered

by the model, a good general trend is seen between the models, but this would indicate

that the simplified afterburn model performs less well in this location than in others,

such as shown in Figure 6.13(a).

Figure 6.15 shows pressure and impulse at measurement location 5, and follows Figure

6.8 by showing good similarity between numerical and experimental data between 0ms

and 15ms, but fails to predict the time of the shock at 10ms, which consequently results

in the model failing to capture the value of the cumulative impulse at 15ms, despite the

excellent prediction up to 10ms. Importantly, the model captures the stand out feature

that differentiates the pressure history at location 5 in A3 compared with A1, with the
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Figure 6.14: Comparison of model and experimental data from measurement location 3
in A3

magnitude, duration and timing of the shock at 8.3ms matching very closely with the

experimental data.

6.3.5 Arrangement 4

This arrangement made use of a central aluminium panel to investigate deformation

and it’s result on pressures. The displacement of a central point on the panel begins for

both the model and experimental data is shown in Figure 6.16. Displacement starts at

a similar time for both the model and experiment, but correlation is difficult to identify

between 3ms and 4ms as some instabilities were identified in the experimental data,

as discussed in Section 5.5.5. If experimental displacement history assumed positive
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Figure 6.15: Comparison of model and experimental data from measurement location 5
in A3

through this phase (to 4ms) and a smooth curve drawn through experimental data

between 2.8ms and 5ms, good agreement would be found with modelling between 0 and

4.5ms for displacement, as similar gradients are seen between the two data sets either

side of the area of instability. At 5.2ms, the rate of displacement begins to decrease in the

numerical model, reaching a peak displacement of 100mm at 6ms, while the experimental

measurement of displacement continues at the same rate until 6.3ms, at which point a

peak displacement of 150mm is reached and a much more rapid deceleration of the

panel follow, compared to the model. Experimental data past this time is difficult to

interpret, although instabilities suggest some failure at or around the fixings adjacent

to the measurement point around this time, whereas a maintained displacement slightly
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below the peak value shows the panel has remained fixed in position in the model.

A more full field visualisation of the displacement history can be seen in Figure 6.17,

which shows a comparison between stills from high speed video (HSV) data and snap-

shots from animation of numerical models. It is difficult to make a quantitative compar-

ison between the data, as no scale was used in the experimental testing, but it provides

a graphical comparison of the deformation modes seen in the models and experimental

data, and rough quantitative data can be gathered knowing the dimensions of the test

cell. At 3ms, displacement at the end of the panel is negligible in both the experimental

and the model data, as shown in Figure 6.17(a) and (b), and fringes of z displacement in

(c) confirm deformation is confined to the half of the panel closest to the charge. High

speed video data at 8.75ms in Figure 6.17(d) shows high deformation at the end of the

panel, with a deformation mode such that a central portion of the panel is displaced

less than areas above and below it. This deformation is seen, although to a lesser ex-

tent, in the numerical model in (e) at this time, but the level of displacement is much

lower. By measuring the point between the left hand test cell wall in the panel in both

Figure 6.17(a) and (d) it is possible to identify a displacement of the lower region of

the panel in (d) of approximately 85mm compared to 55mm in the model, which can

be seen in Figure 6.17(f). There is also deformation mode similarity at 12ms, but the

deformation mode shown experimentally in (g) is less pronounced than in (d) as the cen-

tre point of the panel continues to displace outwards, whereas model data shows more

displacement mode similarity between (e) and (h). Figure 6.17(i) shows that the point

of peak deformation remains in largely the same place over the course of the simulation,

whereas data in Section 5.5.5 shows that the most significant permanent deformation in

the experiment was seen at free end of the panel.
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Figure 6.16: Displacement history for central point on panel for both model and exper-
imental test A4

Pressure and cumulative impulse data from the model and experimental data at lo-

cation 1 are shown in Figure 6.18. Experimental and model pressure history data in

Figure 6.18(a) show the arrival of two shocks in quick succession over a period of 0.3ms,

followed by a decay to reach atmospheric at 3ms. The model predicts slightly early ar-
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(a) HSV data at 2.97ms (b) end view of panel at 3ms (c) fringes of displacement at
3ms

(d) HSV data at 8.75ms (e) end view of panel at 8.5ms (f) fringes of displacement at
8.5ms

(g) HSV data at 12.19ms (h) end view of panel at 12ms (i) fringes of displacement at
12ms

Figure 6.17: Stills from high speed video alongside panel displacement data from LS-
Dyna

rival of the first shock, but the timing of the second at 2.2ms is well predicted, although

the peak pressure of both shocks is over predicted by the model by between 25kPa and

50kPa. The next two shocks between 3ms and 4.5ms show in reasonable agreement be-

tween experimental and model data, with the arrival of the model data lagging behind

experimental data, and an under prediction of the peak pressure by 20kPa for the third

shock and 70kPa for the fourth. A period of maintained high pressure follows between

5ms and 7ms which is not well predicted by the model, although a shock that exists in

the experimental pressure trace at 5.7ms is present, albeit at a much lower magnitude, in

the model data. It is at this point that cumulative impulse data in Figure 6.18(b) shows

a significant deviation between the model data and experimental data, with impulse

continuing to rise in the experimental data but plateauing in model data, leading to

a cumulative impulse difference of 100kPa-ms at 6.5ms. Experimental data and model
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data for pressure show similarity again after this time, meaning that this difference in

cumulative impulse is maintained over the remaining duration, shown by the similarity

in shape between model and experimental data between 7ms and 15ms.
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Figure 6.18: Comparison of pressure history data from location 1 on the roof of the test
cell in A4

Data from pressure sensor location 4 are shown in Figure 6.19(a). Similarity is seen

between the first 2 shocks, with the model predicting slightly earlier arrival of the first

shock, and over prediction of both by approximately 30kPa. The experimental pressure

between 4.8 and 8ms is less well predicted by the model, with the experimental data

showing a strong shock at 4.8ms, but only 2 much weaker shocks are seen in the model

at a similar time. There is also a decay to below atmospheric pressure seen in the model

between 6ms and 7.5ms, whereas the experimental data is shows a maintained pressure
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25kPa above atmospheric. The contrast between model and experimental data over this

period leads a noticeable divergence in numerical and experimental impulse, shown in

Figure 6.19(b). Pressure data similarity improves between 8 and 15ms, with both model

and experimental data showing a almost linear decay of pressure from 25kPa to -25kPa

over the period of 9ms to 15ms, leading to a close match in the shape of the impulse

curve between 9ms and 15ms, with difference in impulse of 150kPa-ms maintained.
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Figure 6.19: Comparison of pressure history data from location 4 in A4

Data from pressure sensor location 5 are shown in Figure 6.20(a). As with other

locations, the arrival time and magnitude of the first shock is well predicted by the

model, but differences between the model and experimental data begin as the pressure

decays, with a slower decay predicted by the model, reaching atmospheric pressure 1.3ms

after the pressure in the experimental test. Both experimental and model data show a
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shock arrival around 7ms, but it is predicted later in the model, with a peak pressure

value 100kPa lower than the peak of 225kPa seen in the experiment. Both sets of data

then show a decay to below atmospheric, but it is occurs earlier and reaches a larger

peak underpressure of -60kPa at 8.9ms in the experiment, compared to 30kPa at 9.9ms

in the model. The cumulative impulse is shown in Figure 6.20(b), and shows similarity

in the impulse shape until 10ms, after which there is very little agreement between either

the magnitude or shape of the impulse curves.
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Figure 6.20: Comparison of pressure history data from location 5 in A4
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6.4 Discussion

6.4.1 A1, A2 and A3

The quality of the data produced by numerical models has been shown to reproduce the

data from experiments well, but there are still a number of occasions in which model

data and experimental results do not exactly match.

Of the presented results, A2 location 3 (Figure 6.11 and A3 at location 3 (Figure

6.14) show most difference between models and experimental data, and of the data sets

shown here these locations were the furthest from the point of detonation. As seen in

Section 6.2.3.1, the presence of additional secondary combustion energy can modify not

only the magnitude of shocks, but the time of their arrival too, thus the requirement

in this modelling of adding all the secondary combustion energy at the same time is

a likely source of error. As discussed in Section 6.2.3.2 the energy from secondary

combustion does not manifest itself at all points of the air within the enclosure at the

same time as assumed by the model, but follows behind the initial shockwave and occurs

as the detonation products behind the shock mix with atmospheric air. The data shown

in pressure plots for A2 location 3 and A3 location 3 does not entirely miss features,

rather predicts them at the wrong time or magnitude, which is thought to be caused

by the effects of secondary combustion. Accounting for the different arrival times of

secondary combustion throughout the air domain has the potential to correct these

errors. Despite this, the simplified account of secondary combustion presented here is

generally effective, and ensures that results are significantly closer to the experimental

results than they would be without it. Further understanding of secondary combustion is

needed to accurately predicts it’s effect, which would require some bespoke experiments,

and could involve taking measurements not often taken as part of blast tests, such as

temperature.

In most cases the experimental impulse were predicted well by the models, but where

impulses are not well predicted, the differences between models and experimental data

typically occur after 10ms. In many models, shocks that occurred between 10ms and

15ms had a smaller magnitude and later time of arrival than in experiments, which

leads to a corresponding drop in impulse in the models compared to experimental data

over this time period. This reduction and delay in the shocks in models is due to a

combination of shock smearing and secondary combustion effects, both of which can

alter the time and peak pressure of shocks.

Shock smearing occurs as result of the necessity to represent shock discontinuities in

a rapidly changing but continuous manner, and the effects are particularly noticeable at

locations where fluid structure interaction takes place. This leads to an under prediction

of peak pressures which subsequently leads to a slower wave compared to a correct peak

pressure prediction, and this effect compounds with each reflection. In some locations

there is indication that shock smearing is not the primary cause of discrepancy between

models and experimental data, particularly at sensor location 5 shown in Figures 6.9(a)

and 6.15(a), where the value of the peak pressure in the shock at 10ms is higher in the

models than experiments, but the shock arrives 1.5ms later.

Comparison between experimental and model data shows that the modelling method

can pick up key features and is suitable for the purposes required for further modelling.

Data from sensor location 5 shown in Figures 6.9 and 6.15 on pages 154 and 160 shows
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that the effect of the baffles on pressure history is captured accurately by the models. The

extra shock caused by the presence of the baffle occurs at 8ms in Figure 6.15(a), and the

magnitude and time of this is very well reproduced well by the numerical model. Model

data also confirms that pressure histories from sensors on cylinders can be predicted

well. Together the experimental and numerical data give a good deal of confidence in

both the validity of the experimental and numerical data. The angle of the tangent to

the cylinder at the sensor location is the crucial feature determining the pressure, and

the location of the sensor in both the experiment and models means that the pressure

measured is neither the fully reflected nor the side on overpressure. This is complex

from a modelling perspective and the angular dependence means only small differences

in the position of the sensor can lead to dissimilarity between experimental and model

data. Minor differences between the position of the sensor in the experimental test

and the models is likely, given the difficulty in precisely positioning the cylinder in the

experiments. Importantly, good predictions of the pressure time history are made, which

forms the input for injury models described in Chapter 3 and used in Chapter 7.

6.4.2 A4

6.4.2.1 Boundary conditions

With hindsight the restraint of the plate used in the experimental testing was insufficient,

leading to difficulties in replicating the experimental data with numerical models, and

this is a learning point for future work.

Model data for arrangement 4 followed previous arrangements in showing generally

good agreement with experimental data, but the single test conducted with arrangement

4 behaved in a way which caused a number of uncertainties that have proved difficult to

model accurately.

The restraint of the clamped plate in the experimental testing was difficult to de-

termine exactly, which causes a number of problems for the modelling effort. The de-

scription of the failure in Section 5.5.5 indicates a number of ways in which restraint

differed from the fully clamped condition the bolted joint were supposed to achieve. In

the experiment, bolts were used to hold the supporting angle section to the test cell,

and were also used to provide clamping force to hold the aluminium panel in position on

the support, and prevent any relative slip between the panel and support. Had both of

these connections behaved as designed, this would have provided a good representation

of a perfectly clamped boundary condition, and could have been implemented in a nu-

merical model very simply, purely with nodal constraints. In reality, the experimental

restraint failed in 2 ways; failure of the bolts connecting the support to the test cell, and

insufficient restraint of the panel within the support causing significant slippage. This

added complexity into the numerical model by attempting to account for this behaviour,

by physically modelling the supporting structure and the bolted connection, although

no attempt was made to account for slippage between the panel and support.

The boundary conditions in the model did not behave in the same way as the restraint

in the experimental test, which can account for a significant amount of the discrepancy

seen between model and experimental data for A4. The bolts were modelled in a simpli-

fied manner, and this connection method proved much more resilient than the physical

bolted connections used in the test. The modelling method for these bolts would have

been greatly improved by undertaking validation testing on bolted connections, but
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limited time and experimental facilities prevented this.

The modelling method applied allows some unrealistic structural behaviour of the

connection to occur, which is partly responsible for the lack of failure in the numerical

model. A certain amount of relative motion was possible between the ends of the beam

elements used to model bolts, as the element is 10mm long, and is constrained at one

node (closest to the test cell structure) and fixed to the support at the other node. This

is as if there is a 10mm between the surfaces being bolted, as no shear force can be

generated against the sides of the hole using the current model, as this interaction is

not considered. In reality, relative motion between the support and the test cell creates

a shear force on the bolt at the point where a wall of the test cell meets the supporting

angle section, which is not accounted for in the bolt model used. In addition to this, a

certain amount of preload2 was placed on the bolts under test, which was not accounted

for in the model. A greater appreciation of the combined effects of preload and relative

node motion could have improved the accuracy of the model. The modelling method

also used a tied nodes to surface contact, which for most connections was appropriate,

but a few of the bolted connection in the experimental test showed the bolt being pulled

through the angle section. The contact method used would not allow such failure, and

even a dedicated model of that joint using a full solid element 3D model would struggle

to fully capture this behaviour.

As noted earlier the panel in the model was assumed to have no motion relative to

the support, which was not what happened in reality. Although this was known when

the model was generated, it proved difficult to find a way of modelling this connection.

Failure to model this behaviour no doubt led to a reduced peak deflection, which in turn

would have generated different forces on the support and subsequently the bolts.

With hindsight, the experimental restraint, or failure of, hindered the validation pro-

cess and made it difficult to produce models which were an entirely accurate depiction of

the physical problem. As well as improving the restraint, improvements could be made

to the overall test and modelling programme to improve the validation effort. Dynamic

mechanical testing of the bolted connections under the loading modes expected would

have produced better models of this connection, and identified how well the applied

method could represent the physical bolted connections. A wealth of data is available

from numerical models, and with further measurements taken from experimental data

it may have been possible to provide a more complete comparison of the mechanical

behaviour of the panel, not merely deflection, which proved difficult to measure. Data

from strain gauges, or providing a simple way of timing any failure, seem in retrospect

simple and effective ways to expand the amount of data collected and thus improve the

validation study.

6.4.2.2 Displacement and deformation

The displacement of the panel occurs by a travelling hinge, a commonly seen deformation

mode when structures are subject to an impulsive load. As well as this deformation hinge

travelling from the top and bottom of the panel, there is also a hinge travelling from

the end of the panel end opposite the charge towards the free end, and after this elastic

response leads to oscillations at the centre of the plate, as seen in Figure 6.16. This

process continues for longer and reaches a higher value in the experiments, which can

2The torque applied to a bolt is directly related to the tension, and it is this tension, used to provide
the clamping force, which is not accounted for.
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in part be explained by vertical translation of the panel within the support, allowing a

certain amount of movement before the force of the support led to the formation of the

hinge. As this is not represented in the model, the hinge forms and begins to propagate

inwards earlier, and therefore peak displacement occurs earlier, and the lack of initial

slip at the boundaries leads to a lower peak deformation.

The movement of these hinges is responsible for the deformation mode seen at the

free end of the model. The hinges propagated from the top and bottom supports along

the length of the panel, and as they reached the free end of the panel they caused the

deformation mode seen in both the experimental test images and the model in Figure

6.17. The level of deformation is clearly higher in the experimental test data, but similar

behaviour shown in Figure 6.21 is seen in Figure 6.17(d) and (g), with hinges moving

towards the centre of the free end of the panel. Stiffer response of the fully clamped

model compared to much more free experimental test means it takes longer for hinges

to reach the centre of the panel, and this increased stiffness in the model compared to

the experiment also contributes to the lower deformation at the free end.

Figure 6.21: Progression of hinge travelling inwards on a strip of the panel

As well as boundary conditions, the loading applied to panel could contribute to

the inconsistencies seen between the deformation of the model and that seen in the

experiment. The loading is applied using a penalty method as described in Chapter 4,

where a force is applied to the ALE fluid to prevent penetration though a Lagrangian

surface, and it is this force which is used to provide loading for the structure. If this

coupling force is not sufficient it can lead to lower predicted overpressures, and a lower

force being applied to the structure, subsequently leading to a lower displacement. The

mesh density can play a significant role in the determination of this coupling force, and

the control card allows the user to modify a number of very specific parameters which

control the way coupling is handled by the code. Rather than be able to achieve anything

the user desires within this control card, it is designed to overcome instabilities and poor

coupling under complex scenarios, where the defaults are insufficient. Without better

controlled experimental data, it could prove a significant challenge to identify which of
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the many issues discussed here was responsible for differences between experimental and

numerical data.

It was evident from the model that strain rates remained of the order of magnitude

10−2s−1 or below in the aluminium panel throughout, and lower still in the supporting

steel angle section, which justifies the use of the simple plasticity models, where strain

rate was not considered. Use of complex models such as the Johnson-Cook model would

have only added significantly to the computation time, and would be expected to give

little improvement in results.

6.4.2.3 Pressure histories

Figures 6.18, 6.19 and 6.20 all show periods where the reflection of shocks within the

test cell in the models was not consistent with that observed in experiments. At location

1 (Figure 6.18), the period of inconsistency is very small, but it is more considerable at

location 4 (Figure 6.19) and further still at location 5 (Figure 6.20). At location 1, the

sensor is positioned perpendicular to the wall, and as a result sees very few reflection that

have originated from a normal reflection on the aluminium panel. Both locations 4 and 5

on the other hand, are located opposite the panel, so any reflections that arrive normally

at these sensors will have originated from the panel. Between 5ms and 6ms, shocks in the

experiments are missed by the models at locations 1 and 4 (although there are features

displayed in the experimental data that are captured well by the model at this location,

which is covered later in this section). In the experiment, it has been inferred that the

panel has deformed more than in the model, which should mean that the model would

predict an earlier and stronger reflection, but this is not the case. Although a full field

visualisation of data is available from the numerical models, identifying what leads to

these differences is difficult without also knowing the particular shock reflections that

occur in the experiment. It is likely though, that what is missed at both location 1 and

4 between 5ms and 7ms originates at the panel, through 2 shocks combining, or due to

differences in the deformation and the subsequent shock reflection.

Pressure data at location 5 shows the highest deviation between model and exper-

imental data of the three pressure sensor locations. This is caused primarily by the

significant difference in the deformation of the panel end directly opposite this sensor

location, and extension of the symmetry boundary condition along the entire face of

the model, compared to the experiment in which shocks can diffract around the edge of

the test cell. From Figures 5.28 and 6.17 it can be seen that the shape the reflecting

surface is very different in the experiment and the model, which will make a significant

difference to the shocks experienced on the wall directly opposite. The high curvature

of the experimental panel may have served to slightly confine the shocks at this point,

which would explain the higher number of reflections seen, especially between 10ms and

12ms. The strength of the reflected shocks is higher at this location in the model, which

can be seen clearly in the cumulative impulse curve in Figure 6.20(b). The fact that

shocks are reflected more normally in the model, due to the lower deformation in the

model compared to the experiment, is the likely cause of this. The symmetry boundary

condition is also not the same in the model and the experiment; the symmetry bound-

ary condition is applied to the whole xy face of the ALE model, but the experimental

symmetry boundary breaks down at the end of the test cell, where shocks are free to

diffract into free space, which cannot be considered with the current model.

170



Modelling Blast Loads in Rail Vehicles T.Anthistle

There are a number of features of the pressure curves that show good agreement

between experimental data and models. Good agreement between arrival time and peak

pressure of both incident and reflected shocks is seen over the first 5ms is seen in all

models, before significant deformation of the panel has taken place. Importantly, at both

locations 1 and 4 there are non shock quasi static pressures between 9ms and 15ms which

are predicted well by the model, which validates the use of functions to add additional

energy to the simulation to account for secondary combustions. This contribution leads

to very good agreement between the shape of the experimental and numerical impulse

curves at these location, and without this additional energy the cumulative impulse

curve at both of these locations would not show a continued rise at 12ms, which is seen

in both experiment and model at locations 1 and 4. Although the agreement between

experimental and numerical pressure traces is not as good as seen in arrangements

without a flexible wall, model data at locations 1 and 4 in A4 give a good level in the

prediction capabilities of the developed modelling method.

6.5 Conclusions and implications

Numerical models of the experimental test arrangements presented in Chapter 5 have

been presented, and on the whole show the modelling methods developed in both this

Chapter and Chapter 4 are capable of predicting the behaviour measured in experimental

tests. There are cases where there is excellent agreement, and where agreement is less

good the causes can be understood.

It was seen that prediction of the arrival time for shock waves was very good early on in

numerical predictions, but as the solutions progressed shock smearing caused increasingly

later predictions of the arrival time. Over the times modelled here though, this was not

seen to make significant impact on the ability of models to predict cumulative impulse

histories. Over the relatively short durations where the pressure affects the chest wall

velocity prediction, as shown in Chapter 7, the impact of reduced accuracy of pressure

predictions at later times is not significant.

Large differences between the boundary conditions in the experiment and model meant

that pressure and deformation histories for arrangement 4 were not entirely in agreement.

Failure of the supporting structures in the experiment led to a significantly different

deformation of the aluminium panel, which in turn altered the pattern of reflection

within the test cell, compared to the model. Time and finance restrictions, unfortunately

prevented this section of testing work being repeated. Despite this, pressure history data

from at least some of the measured locations agreed well, with good prediction of shock

pressures and quasi static pressures.

A simplified method was applied in numerical model to account for additional energy

released as a result of secondary combustion or afterburn. The method was shown to

improve the prediction of the timing of shocks, quasi static pressures and cumulative

impulse histories over the modelled time, but the method used does have some disadvan-

tages that limits its applicability to a wide range of problems. In its current form, addi-

tional energy is added to all elements of the fluid within an ALE multi-material group

at the same time, which is not appropriate for all problems. Improving the method to

allow energy addition to be considered as a function of both time and distance from

charge, instead of purely as a function of time would allow significant improvements

to the method, as would experimental studies of the effect of secondary combustion on
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pressures at different distances from the point of detonation.

The capture of pressure differences due to the effect of baffles, as well as good agree-

ment between model and experimental data for pressures measured at the cylinders are

important results for modelling in the following Chapter. This gives confidence in the

ability of the modelling method to capture the effect of features such as draught screens,

partitions and seats on the dynamic pressure history, as well as predicting the pressures

experienced around a cylinder representing a person, which forms a crucial part of the

input into the injury model tool developed in Chapter 3.

The following Chapter uses the modelling methods developed and described here to

predict the effect of blast loads on rail vehicles and the passengers they carry.
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7

Vehicle models

7.1 Parametric study of rail vehicle design and operational vari-

ables

In Chapter 1, the hypothesis below was posed. Previous chapters have described the

development of techniques for predicting injury and structural deformation that can feed

into a engineering model to answer this hypothesis.

“Rail vehicle design can influence the pattern of injury seen in passengers

when an improvised explosive device is detonated within a rail vehicle.”

To answer this hypothesis, this chapter describes the use of ALE models of rail vehicles

in conjunction with injury models to investigate a number of different cases (referred to

using the prefix C throughout this chapter) of both design and operational variables.

The effect of the structural modelling technique (full or rigid), windows, doors, tunnels

open carriages, presence of seats and draught screens and passenger density are all

investigated, and a summary of the features investigated in each case can be found in

Table 7.9.

The parametric investigation found that although some design features can alter the

risk of injury, the passenger density was a greater driver of differences in injury predic-

tion. Chest wall velocities were seen to be lower when passengers were shielded from

high pressures by either structures, other passengers, or when reflecting surfaces are

removed such as in the case of open doors or through carriage designs, and higher when

the presence of either a passenger or structure served to reflect pressures toward one of

the numerical sensor locations (prefixed with S throughout this chapter) placed on the

surface of the surrogate passenger.

Computational limitations meant that mesh refinement to the levels described in Chap-

ter 6 could not be used, and as a result the prediction of peak pressures experienced

by passengers will be lower than that seen in reality. The secondary combustion model

described in Chapter 5 could also not be used due to geometrical limitations of the

model, which were discussed in Chapter 5 and described in relation to rail vehicles here

in Section 7.3. The failure to include the secondary combustion model is unlikely to

significantly alter the predicted levels of injury, but the level of mesh refinement is likely

to lead to underpredictions of the peak chest wall velocity, and the effect of this on

overall injury levels is discussed in Section 7.6.
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7.1.1 Structure of this chapter

This chapter first looks at the development of an appropriate and representative rail

vehicle finite element model, which is based on an existing model of a Class 165 rail

vehicle. A verification of the performance of these features such as doors, windows

and draught screens against railway group standard GM/RT2100 has been undertaken

and shows that these features perform as well in the model as they would be expected

to perform in a rail vehicle in service. A mesh refinement study on the rail vehicle is

undertaken, which also identifies the finest mesh that could be utilised within reasonable

limitations of time and computational resources.

Following this, 9 cases, C1 to C9 are defined to investigate the effect of design parame-

ters on injury to passengers. A number of passenger positions (prefixed by P throughout

this chapter) are defined, and these are used to compare different cases. A prediction

of fragment injuries and chest wall at different passenger locations is made, using the

techniques developed in Chapter 3.

Finally, an analysis of the results is undertaken to answer the hypothesis, draw out

some of the limitation of the applied techniques and discuss where future efforts may be

best directed.

7.2 Development of a rail vehicle FE model

A model for predicting the pressures resulting from an explosion has been described in

Chapter 6, therefore it is now necessary to develop an accurate model of a rail vehicle

to investigate the effects of blast loads in rail vehicles. Chapter 2 describes the current

state of rolling stock on the UK railway network, with around 90 different classes of

vehicles operating across the London underground and mainline network. To develop

an appropriate finite element model, it is necessary identify a representative vehicle and

it’s geometry, materials and construction.

7.2.1 Class 165 rail vehicle

The Class 165 rail vehicle is part of the ‘Networker’ family of vehicles that was pro-

duced by British Rail Engineering Limited (BREL), which includes the Class 166 DMU,

and Classes 365, 465 and 466 EMUs1. These vehicles were subsequently the basis for

Electrostar (EMU) and Turbostar (DMU) families of vehicles currently manufactured

by Bombardier, and as such is representative of a reasonable proportion of vehicles in

service in the UK, as shown in Table 7.1.

An existing finite element model of the Class 165 was provided by Bombardier, where

it had previously been used as part of work investigating weld unzipping in Aluminium

rail vehicles [101] during railway collisions. The model provided (see Figure 7.1) consists

of a whole single vehicle, but without the presence of glazing and seating. It includes

the front cab of the vehicle which is necessary for correct prediction of the collision

investigations for which the model was developed, as well as the bogie centre pivots

(or pin) at each end2 and distributed mass elements, which represent equipment and

1Although built in the early 1990’s, these vehicles are expected to have a life in excess of 30 years,
and thus are still relevant.

2The bogie of a rail vehicle hold the axles and wheels, provides primary and secondary suspension
and is connected to the rail vehicle by a central pin or pivot on the rail vehicle, which locates in a
vertical hole in the bogie frame [184].
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Table 7.1: Volume of networker and derivative vehicles on the UK rail network, from
data in Network Rail’s Route Utilisation Strategy [98]

Family Class Number

Networker

165 48
166 21
365 40
465 147
466 43

Electrostar

357 74
375 102
376 36
377 205
379 36

Turbostar

168 19
170 132
171 16
172 39

total 958
proportion of total rolling stock 21.7%

features in the vehicle where consideration of their mass was necessary but modelling of

the structure itself was not required.

Figure 7.1: Finite element model of Class 165, as provided by Bombardier, reflected in
the XZ plane to show the shape of the whole vehicle, as the model uses half symmetry
along it length

The structure of the Class 165 consists of double skinned extruded aluminium panels

which are bolted or welded together, with the extrusions having different wall thickness

over the cross section depending on service loads expected. A view of the cross section

geometry and a selection of the thickness of the various parts of the extruded shape

are shown in Figure 7.2. The cross section varies along the vehicle to some extent, and

the section in Figure 7.2 is taken away from the doors and between windows. Where

windows exist, the section which is filled with solid colour on the right hand side of

Figure 7.2 would be a window, and where doors exist much of the side wall, up to about
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2000mm above the height of the floor is replaced by a moveable door. The door makes

a minimal contribution to the vehicle stiffness, so the floor panel at its outer edge is

strengthened with an additional structure.

The model provided by Bombardier was built for modelling vehicle crashworthiness

and whole vehicle behaviour under those circumstances. For the current project, the La-

grangian rail vehicle model was rebuilt and modified to make it suitable for investigation

of blast loading using ALE methods.

10mm

6mm

2.5mm

3mm

3.4mm
6.8mm
(rib)

3.5mm

8mm

3.5mm

2.5mm

6mm

3mm

4mm
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2.8mm

2716mm
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Figure 7.2: Cross section of Class 165 model

7.2.2 Reconstruction of Class 165 model shell

The existing Lagrangian rail vehicle model could have been coupled to the ALE blast

model with no modification, but the wide variation in element size and the complexity

of the model demanded that it be rebuilt using the geometry from the original Class 165

model, but with a more consistent element size throughout. The following steps were

taken to reconstruct the model for use in this work:

• removal of front half of vehicle to utilise quarter symmetry of the internal passenger

compartment

• removal of central pivot

• tracing and minor simplification of the existing geometry using LS-PrePost

• export geometry as CAD file
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Table 7.2: Part numbers and wall thickness for the main vehicle model

part 18 19 20 21 22 24 26
thickness (mm) 16 3 12 15 3.4 5 8

part 27 28 29 30 31 32 33
thickness (mm) 10 4.5 7 6 4 6.5 2.5

• edit and clean up geometry, define parts, using FreeCAD

• import the geometry from FreeCAD to Hypermesh

• surface mesh the geometry with appropriate element size

Figure 7.3 shows the original and new meshes for the 165 rail vehicle. The central pivot

(not visible in Figure 7.3(a)) was removed as its presence was not deemed necessary for

blast modelling. Some extra stiffening elements seen at the end of the original model

were also removed, as they were at the furthest point in the rail vehicle from the centre of

detonation. Simplifications took place around the roof and door edges, where openings

(for air conditioning, exhausts, cabling etc.) were removed from the original model

and door edges were considered as homogeneous with the rest of the wall structure. It

was important to remove the openings from the roof of the original model, as although

there may be a reduced structural strength in the areas in the real vehicle, an opening

allows pressure to escape from the vehicle with no impedance, which is not an accurate

depiction of reality. The reconstructed model in Figure 7.3(b) shows consistent element

sizing across the model, which results in a purely Lagrangian mesh with 63,593 40mm

shell elements, as opposed to 30,724 for the original model when quarter symmetry is

applied.

7.2.2.1 Description of reconstructed Class 165 model (R165)

The final reconstructed model labelled R165 was created in the CAD package FreeCAD

and consists of 16 parts. As the model was to be meshed using shell elements, no

thickness was included in the CAD geometry and parts were defined by grouping the

areas of the model which shared the same thickness. Each part of the main vehicle

model shown in Figure 7.3(b) has a different thickness, which is shown in Table 7.2.

The R165 model is 9500mm long with vertical and horizontal dimensions as shown in

Figure 7.2 and only encompasses the vehicle body shell, not including doors, windows,

seats, draught screens or other internal or movable features, which are discussed in

Section 7.2.3, but does include holes into which windows and doors can be positioned.

The end of the vehicle, shown on the extreme left in Figure 7.3, was modelled at this stage

using single layer of elements and no opening, as the effect of different end arrangements

is discussed in Section 7.4.4.

7.2.3 Doors, windows, seats, draught screens and occupants

The original Class 165 model included a single pair of draught screens either side of

the main doorway, but doors, windows and seat structures were not included, as they

were unnecessary for the crash investigation that the original model was designed for.
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(a) Original Class 165 model

(b) Reconstructed Class 165 model

Figure 7.3: Meshes of both the original and reconstructed Class 165 models, showing
the differences in element sizes
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When investigating the effects of blast loads though, these features are important as they

will affect the propagation of the blast wave and the subsequent pressures experienced

throughout the vehicle. The exact response of doors, windows, seats and occupants is

not the primary focus of this work, and as such highly geometrically accurate and finely

resolved finite element models are not appropriate, but simplified representations are

necessary, unlike the global vehicle structure described in Section 7.2.2.1, where fewer

simplifications have taken place.

As well as the features mentioned above playing a significant role in altering the

pressures experienced in a rail vehicle, occupants themselves will have a similar effect,

but in a much more variable way. The positions of seats and draught screens are known

and constant, but the number, size and positioning of passengers varies significantly

across each rail vehicle and time of day. As with features described above, a precise

finite element model to identify the physical response of occupants is outside the scope

of this work, and the response in terms of injury is discussed in Chapter 3, so a simplified

approach was required.

7.2.3.1 Simplified modelling of doors, windows, seats and draught screens

The design and structural requirements of these features are discussed in more detail in

Section 2.5.1, so this section focuses on the modelling techniques used.

In the absence of specific data, and due to the amount of variation over rolling stock in

the UK, some assumptions are made about the size and construction of vehicle features

to allow the finite element model to be constructed. The draught screen geometry was

extracted from the original Class 165 model to be used as the basis for draught screens in

the R165 model. Doors on rail vehicles have the same shape as the body shell walls, but

are typically thinner, often with windows. A single layer of shell elements was chosen

to represent the door structure. Rail vehicle windows are typically rounded squares or

rectangles, but for simplicity windows and the location in which they sit are considered

to have right angled corners. The seats of rail vehicles come in a variety of shapes and

configurations as shown in Figure 7.4, which depend strongly on the kind of service the

vehicle will be used for. Metro services tend to have basic seating, where passengers are

only likely to be sat for limited periods of times, whereas intercity services have more

substantial seating to offer improved passenger comfort over longer journeys. A simple

seat, such as shown in Figure 7.4(a) offers an adequate compromise between longitudinal

bench seats in metro trains shown in Figure 7.4(c) and more complex and heavy duty

intercity seats as shown in Figure 7.4(b). Seats arranged in a transverse formation, such

as those in Figure 7.4(a) are more representative of the type of seating throughout rail

vehicles in the UK, where longitudinal seating in (c) is typically restricted to metro

services such as the Glasgow Subway and London Underground, although Class 378

Capitalstar3 of the London Overground uses longitudinal seating throughout.

Laminated glass is used extensively throughout rail vehicles and is now mandatory

for bodyside windows that form part of the interior4 and when used in the construction

of glazed partitions, doors, draught screens and luggage storage [104]. In some older

rolling stock, toughened glass is still common, although it is gradually being replaced.

3The Capitalstar vehicle is based on the Bombardier Electrostar, which is in turn based on the Class
165.

4If single glazing is used, it must be made of laminated glass, and if double glazing is used the inner
pane must be laminated, and the outer pane may be toughened.
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(a) Train seats in outer suburban vehicle (b) 1st class seat from a Mk3 carriage, re-
moved from vehicle

(c) 1967 stock London Underground longitudinal bench seats

Figure 7.4: Examples of train seats in different UK rolling stock

Laminated glass can be modelled in a simplified and straightforward manner in LS-Dyna

using the inbuilt laminated glass material model, *MAT 32. Through this model it is

possible to define the material parameters for both the polymer and the glass, and up

to 32 layers of glass and polymer. The thickness and position of each layer is defined by

a user defined through thickness integration rules using the *INTEGRATION SHELL

keyword. Laminated glass in rail vehicles consists of 2 layers of glass and a layer poly

vinyl butyral (PVB) of either 0.76 or 1.52 mm [103] between them. Data on the prop-

erties of laminated glass is reported widely in the literature [185, 186, 187, 188], and for

this work a laminated glass panel with glass layers of 3mm and an interlayer of 1.52mm

was used.

As well as laminated glass, there are a number of other materials used in the manufac-

ture of internal features of rail vehicles, such as woven fabrics and polyurethane foams

for seats, a variety of polymers used extensively for structural and aesthetic purposes,

such as ABS, and wood used in flooring and as part of features such as tables. Modelling

of these materials is not considered here as it was deemed to be unimportant, and in

some cases are a considerable challenge to model in their own right. The unknowns and

uncertainty in modelling these materials would add an extra level of uncertainty to the

model, which if anything is detrimental to accuracy of the outcomes of the modelling
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effort.

Rail vehicles contain a number of ways of joining parts and components, including

welding, mechanical fastening and bonding. Continuous welds and mechanical fasten-

ings are present in the body shell of the vehicle where they are used to hold the extruded

panel sections together, but these are not considered in the R165 model as there is no

separation between each extruded panel. Connections of interest are those that connect

windows to the vehicle body and bolted connection that attach draught screens and

seats. Simplified bolted connections can be considered in a number of ways, including

tiebreak contacts and constraint options, but a successful simplified modelling of dy-

namic bolted joint behaviour has been reported [183] using a combination of beams,

*MAT SPOTWELD and a contact definition to tie the beam ends to the surfaces to

be bolted. This method, explained in more detail in Chapter 6, was utilised to model

bolted connections. Modelling of window fixation was handled simply using the surface

to surface tiebreak contact definition in LS-Dyna, which allows a simple definition of

failure stress to model the behaviour of the window bonding.

7.2.3.2 Occupants

The shape of the human body is extremely complex, but the primary effects of the pres-

ence of occupants were considered using a simplified method. As discussed in Chapter

3, the chest wall injury model relies on pressure histories taken at 90◦intervals around a

cylinder of a specified diameter, and this cylinder and sensor configuration must be used

if pressures histories are to be applied to the chest wall injury model with confidence.

As the physical deformation of the occupants is not of interest, but the effect of the

body presence on pressure is, rigid but movable cylinders of appropriate diameter and

mass will be used to model occupants.

7.2.4 Description of the modelling methods applied

7.2.4.1 Aluminium

In the UK, 6005 T6 aluminium alloy (AA) is typically used for rail vehicle extrusions

[101]. The main alloying elements of 6000 series aluminium are magnesium and silicon,

with iron, copper, manganese with other elements also present in smaller quantities [189].

The T6 temper indicates that the alloy is solution heat treated (heating to a point where

constituents can enter solid solution) and artificially aged at elevated temperature [190].

Investigations of extruded 6000 series T6 aluminium panels have been conducted us-

ing experimental and numerical means under a variety of loading mechanisms. Zheng et

al. investigated a 6000 T6 series AA5 extrusion to identify bending strength and fracture

properties and validate numerical modelling work, where the material model was input

in the form of a stress strain curve from experimental tests. Tensile test specimens cut

orthogonally from the extrusions indicated that this particular alloy did not demonstrate

significant anisotropic behaviour. Borvik et al. [105] studied perforation of 6005 T6 AA

panels when impacted by ogival (pointed) nose projectiles using numerical and experi-

mental means. Testing at a variety of strain rates was carried out using servohydraulic

testing machines for low strain rate testing and split Hopkinson tensions bars for testing

5This is referred to in the article as 6600 AA, but this specification does not exist according to the
relevant international standards. No response from the author was available, so it is assumed this is
6060 AA

181



Modelling Blast Loads in Rail Vehicles T.Anthistle

Table 7.3: General and Johnson Cook parameters for 6005 T6 Aluminium [105]

E (GPa) ν ρ (kg/mm3) σy (GPa) A (GPa) B (GPa)
70 0.3 2700×10−6 0.275 0.270 0.134
n ε̇0 (1/ms) C m α –

0.514 0.1 0.0082 0.703 0.9 –
D1 D2 D3 D4 D5 –
0.06 0.497 -1.551 0.0286 6.80 –

up to strain rates of 1000s−1. Moderate anisotropy was found, with the best performing

specimens being cut at 45◦to the extrusion direction, and worst performance perpen-

dicular to the extrusion direction. The moderate effect of anisotropy meant that it was

not considered in the numerical model and material parameters were taken parallel to

the direction of extrusion. Strain rate dependency was exhibited by 6005 T6 AA, with

increasing strength with increasing strain rates, but nominal stress strain behaviour be-

tween 0.87−1 and 270−1 was very similar, indicating that strain rate dependence over

a range of moderate strain rates is not high. At extremely high or low strain rates,

the effect of strain rate was noticeable but not considered particularly significant. Chen

[191] et al. investigated the stress-strain behaviour of 6000 and 7000 aluminium alloys

at T6 temper and confirmed that anisotropy in 6000 series T6 AA extrusions was not

significant, and that there was not significant strain rate dependence in 6060 and 6082

AA.

Previous users of the Class 165 model used the Gurson model for AA [101], specifically

to model fracture in welds. Borvik et al. [105] have validated a numerical model in LS-

Dyna for 6005 T6 with penetration tests after characterising the material experimentally,

producing coefficients for the modified Johnson-Cook material, implemented in LS-Dyna

as *MAT 107. Coefficients for the model can be found in Table 7.3. The material model

includes a function to calculate the Von Mises stress as a function of the strain rate, and

a plastic strain at failure, as a function of the plastic strain, Von Mises stress, hydrostatic

stress and temperature.

The models used were run using the plastic kinematic model (*MAT 003) with no rate

dependency, and with the Johnson-Cook model using the strain hardening parameters

A,B and n and the strain rate parameter C as shown in Table 7.3.

7.2.4.2 Laminated glass

The mechanical properties for glass and PVB are included in the *MAT 32 input, along

with which properties to assign to each integration point defined in a user integration

scheme, *INTEGRATION SHELL. The input for the user defined integration specifies

the normalised position of each layer and it’s weight factor (the thickness related to the

integration point divided by the thickness of the whole shell), and the material input

defines the mechanical properties of each of these layers. A total of 6 integration points

are used through the thickness, 4 for the glass (2 bottom, 2 top) and 2 for the interlayer.

Input data for the material model and user defined integration rule are shown in Tables

7.4 and 7.5.
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Table 7.4: Material properties for use with laminated glass model

ρ (kg/m3) E (GPa) ν σy (GPa) Etan (GPa) εf
glass 2500 74 0.20 0.070 70.00 1.2 ×10−3

PVB 1100 0.95 0.49 0.011 8.54×10−3 2.0

Table 7.5: User defined integration rule

integration point normalised position weight factor (∆tip/t)
1 0.800 0.199
2 0.402 0.199
3 0.101 0.101
4 -0.101 0.101
5 -0.402 0.199
6 -0.800 0.199

7.2.4.3 Connections

All of the additional features added to the vehicle body shell require a connection to

‘secure’ them in place, just as occurs in a physical rail vehicle. This can be achieved in

a simplistic and slightly unrealistic way by merging the nodes of the added structures

with the body shell itself, which can prove to be an efficient strategy if the strength

of the connection is significantly higher than the strength of body shell or connected

structure. This not always the case, and the method of connection can often play an

important role in the response of the structure. Connections between structures were

modelled by using methods that are significantly simpler than precisely modelling the

real connection, but maintain the expected modes of failure.

The connection of windows to the vehicle shell was modelled using the automatic

surface to surface tiebreak contact definition. The automatic surface to surface contact

definition reduces the orientation dependence of the contact, and the surface to surface

approach allows sets of segments or shells to be used to define the contact. The surfaces

in a tiebreak contact are initially tied together, but failure can be specified between

the two contact surfaces based on the normal or shear contact stress, computed from

the contact force (the force required to keep the contact surfaces tied together) and

the projected area of the surface contacts. The window and body shell connection was

modelled by defining a contact surface between the segments along the edge of the

window and corresponding segments on the vehicle body shell, and failure stress was

determined from the failure stress of rubber, which is typically used to mount windows

[103].

Doors on modern rail vehicles often have a complex sliding mechanism, as do all

vehicles on tube and metro systems. A detailed design of rail vehicle door opening

mechanisms was not available, and the modelling effort required to generate a realistic

functioning door for use in this model was not deemed appropriate. The effect of the

presence of doors, door failure and deformation can be considered with simplified ap-

proaches, which do not add significant computational cost. Doors were modelled using

a combination of beam elements and a tied node to surface contact definition. Beam
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elements use the default Hughes-Liu formulation and are placed at the corners of each

door, with nodes on the body shell side fixed in all degrees of freedom and nodes at

the other end ‘connected’ with a nodes to surface contact. This allows each door to be

constrained at each corner until a failure criteria is satisfied in the beam elements or

corresponding elements on the door itself, at which point element deletion means the

door is no longer fixed.

Draught screens are typically constructed from a section of laminated glass attached

to a frame (which often doubles up as a handrail) by a clamped connector. This was

recreated in the numerical model, and the laminated glass is held in place by contact

with several lug on the surrounding metal frame. The frame is constrained at the top

and bottom and along the bodyside edge, as it would be when in position in a rail

vehicle.

7.2.5 Verification of features

A number of secondary features have been described above, and the requirements from

the Railway Group Standard GM/RT2100 [104] provide a standard against which the

modelling method can be verified. The relevant structural requirements for this work

are shown in Table 2.1 and involve point loads and pressure loads. Loading the modelled

structures allows confirmation that they are representative of real vehicles, by conforming

to the same standards.

The standards dictate that for almost all the proof loads described in Table 2.1 on

page 34 that the structure resist significant deformation and remain functional, with the

exception of the window impact load, with the standards simply stating that this impact

should be withstood. An explicit finite element model was generated to investigate

window impact loading, and implicit finite element models were used to investigate

static loading requirements.

Data on real door and window performance under the GM/RT2100 could not be found

in the open literature, so this section served to ensure that the model features give a

level of performance in line with the required standards, in the absence of validation

data from real railway vehicle features.

7.2.5.1 Windows

The response of the window to an impact load is shown in Figure 7.5. Figure 7.5(a)

shows the result deformation of a node on the window which is located at the point at

which the sphere impacts the window. Peak deformation of 94mm occurs at 37.5ms, but

this peak is not an entirely plastic response and includes the effects of some material

elasticity which leads to some oscillation of the window about its final peak deformation.

The model was not run to a time where the final deformed shape is attained, but

inspection of the deformation history between 50ms and 75ms indicates final peak central

window deformation of 75mm. Importantly, the window has been held in position; had

the connection failed, the resultant deformation would continue to rise over the whole

solution time. Although the high peak deformation suggests that failure of the glass

layers would be expected, as long as the whole window is retained the test is passed, as

specified in the Railway Group Standard [104], and shown in Table 2.1 in Section 2.5.1.

The plastic strain history for an element at the centre of the window is shown in

Figure 7.5(b), and shows that plastic strain peaks at the point of maximum deflection,
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(a) Resultant deformation history from the central node in the window
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(b) Plastic strain history from an element at the centre of the window

Figure 7.5: Data from the point of highest deformation under a 50kg spherical impact
load

as expected. The model cannot distinguish between the plastic strain for each material,

and as a result it is necessary to assume that in any areas in which there is some plastic

strain, the glass layer has failed and the plastic strain value is that of the PVB interlayer,

since glass can typically sustain negligible plastic strain. The peak plastic strain value

indicates that failure in the PVB interlayer will not occur, with a peak plastic strain

of 18.7% or 0.187, compared to literature reported failure strains above 0.5 [192]. It

should be noted here that strain rate dependency is identified as an important feature

of laminated glass response, with high strain rates leading to more glassy behaviour of

the PVB layer [185, 193] compared to lower strain rates, which is not considered by this

model.

The deformation of the window under a sustained pressure of 6kPa is shown in Figure

7.6, which shows a peak deformation at the centre of the window of 4.95mm. Plastic

strain contours are not shown, as no plastic strain was recorded at any point in the

model. Conditions state that after loading the window should be ‘fully serviceable’,

and the low deformation and lack of any material plasticity indicates that the modelled

window would continue to function after this load and remain fully serviceable.

185



Modelling Blast Loads in Rail Vehicles T.Anthistle

Figure 7.6: Resultant displacement for window under sustained 6kPa pressure load

7.2.5.2 Doors

The resultant deformation of two doors under different loads is shown in Figure 7.7,

with the left hand door being subject to a combined pressure of 2.5kPa and distributed

load of 0.8kN over 100 mm by 100mm, and the right hand door subject to a distributed

load of 2.5kN over 100mm by 100mm. The highest deformation is seen with the 2.5kN

distributed load with a deformation at the point of loading of 24mm. The highest

deformation in the left hand door is also at the point where the distributed load is

applied, but is lower at 16.8mm. Neither door experienced any plastic strain, and static

equilibrium reached as part of the implicit solution indicated that the door connections

did not fail. The requirements for the doors are as with the window above, and state

the door must remain serviceable after application of these loads, which would appear

to be fulfilled by the results presented.

7.2.5.3 Draught screens

The draught screen model is shown in Figure 7.8, under 2 different loading conditions,

each of which have 2 different positions for the loading. Under both combined loading

from a pressure and a distributed load (Figure 7.8a and b), and purely a distributed

load (Figure 7.8c and d) the distributed load was applied at both the edge and centre of

the draught screen. Peak final deformation under any loading case was found with the

higher distributed load only applied to the edge of the draught screen, which caused a

deformation at the point of load application of 18mm. Plastic deformation was not seen

at any point, and deformation is low throughout all models, which again indicated that

the numerical models satisfy the required criteria.
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Figure 7.7: Resultant displacement for door under combined and distributed loading

7.3 Application of blast load to rail vehicle

Applying a blast load to a rail vehicle structural model and predicting not only the

structural deformation but the pressures throughout the vehicle form the core interest of

this work. A rail vehicle body shell and various features have been verified by comparison

with the appropriate railway group standards where possible, and a method of predicting

the blast load pressures and the influence of shock wave interaction with the structure

itself have been described and validated in Chapter 6. As discussed in 6.4, the secondary

combustion model used works well on the model tested, but difference in aspect ratio

between the test cell and a rail vehicle means secondary combustion cannot be considered

to take place at similar time scales over the entire length of the vehicle.

Currently, no work in the open literature is known of that addresses the secondary

combustion effects from high explosives as a function of the distance along a tubular

structure, such as a tunnel or rail vehicle. As discussed previously, the secondary com-

bustion effects are dependent on the temperature of the reactants and the availability

and mixing of reactants and atmospheric oxygen. It is possible to model this with a

combined CFD and chemical equilibrium model, similar to the approach used by Togashi

[47] et al. to model a similar phenomenon in a series of connected rooms, but this is be-

yond the scope of this research. In LS-Dyna, it is theoretically possible to use a similar

method to that described in Chapter 6 to consider the effects of secondary combustion,

and introduce a number of time dependent energy release functions for different spatial

positions along the rail vehicle. A lack of data to ensure that such a model accurately

simulates the real world problem prevents this from being applied here. To apply such

a model, or develop a more elegant approach, further experimental work or CFD and

thermo-chemical equilibrium calculations will be required to allow a simplified imple-
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(a) Combined loading, distributed load applied
at edge

(b) Combined loading, distributed load applied
in centre

(c) Distributed load applied at edge (d) Distributed load applied at centre

Figure 7.8: Resultant displacement fringe plots for different loading scenarios on a
draught screen
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mentation of spatially dependent secondary combustion effects. As a result, the effect

of secondary combustion is not considered in the rail vehicle models, which will result in

under prediction of cumulative impulses. Quantitative comparison between models can

still be undertaken, due to the consistency of modelling technique between them.

There is a need to determine both the most critical technical model parameters to

investigate, as well as a number of global solution parameters to ensure that the most

effective modelling solution is identified. These are:

• technical parameters

– mesh size

– influence of material model on deformation

– influence of deformation on pressures

• global solutions parameters

– charge size, shape and material

– termination time

– influence of technical parameters on run times

– confirmation of model stability

There is always a compromise to be reached between the level of complexity of a model,

the accuracy it provides and the accuracy required, and the amount of real time that a

model takes to run to the desired completion time, typically in ms. Of the parameters

above, only the charge itself has no direct influence on the run time.

7.3.1 Modelling method and parameter study

This section discusses a number of parameters of interest, and describes modelling runs

used to undertake a preliminary investigation of blast loading of rail vehicles using the

developed ALE method. Some parameters are of interest in both this section and in

terms of occupant injury, so are discussed here, with results presented later.

Although not strictly a parameter study, it is necessary to predict or calculate an

appropriate amount of time to run the solution for, also known as the problem time,

which is the amount of time dependent information required from the model and is

specified by the user. In the context of this section it is important to differentiate this

time from the clock time or computation time, which is the amount of time taken to

physically process and compute the solution, which is a function of many parameters,

such as the problem time, the mesh size, material model and element types, contact

definitions and CPU speed.

The time at which a shock arrives at a point can be accurately estimated using Con-

Wep, assuming it has not been reflected from other surfaces, or been influenced by other

reflecting waves. This time is a function of the charge size, material, and distance be-

tween the charge and the point of interest. In a confined geometry, such as a rail vehicle,

there will be a period of time after the arrival of this first shock where the pressure his-

tory is highly transient and there are a number of reflections, as shown in Chapter 5. It

is this time that needs to be estimated, so all necessary data can be gathered.

In experimental tests shown in Chapter 5, highly transient effects happened over a

period of 15-20ms, with distance from the point of detonation not necessarily determining
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how long the most interesting transient effects occurred for, with level of confinement

and complexity more responsible for prolonged transient behaviour. As a best case

scenario, experimental results indicate that 3 times more data is required than the time

taken to capture the first shock where the test cell was open to atmosphere, but under

the more intense confinement, transient behaviour continued for 7.5 times longer than

taken to record the arrival of the first shock. The peak cumulative impulse is normally

reached at a similar time to the end of the most transient phase, which can be used in

combination with the estimation of extra time required to identify the most appropriate

problem time.

7.3.1.1 Charge details

In this work the effect of a terrorist detonating an improvised explosive device is to

be studied, and accordingly such a device could be constructed from any explosive an

attacker chooses. In recent attacks a variety of explosives have been used, including

military grade plastic explosives and home made peroxide based explosives. On the

29th October 2010 IEDs were found within printer cartridges in aircraft cargo holds at

East Midlands airport in the UK, constructed from PETN a common secondary high

explosive with a similar structure to nitroglycerine, but with a similar power to RDX.

Ammonium nitrate, when mixed with a suitable fuel source such as sugar or diesel fuel,

is also a powerful explosive and was used in the Oklahoma bombing.

It is possible to find the equation of state coefficients for many of these explosive

materials, such as peroxides, ANFO, and PETN [173, 194]. Although this presents a

method for modelling realistic devices that could be used in an attack, the improvised

nature of explosive devices used by terrorists means that a model using one of these

explosives is unlikely to be any more representative than using another of them. Deciding

on a particular material implies that it is deemed a more likely threat than an other

material, but current evidence does not point towards a trend for using any particular

explosive compound. Furthermore, a validated model for a known explosive has been

presented in Chapter 6 and although it is not highly likely that PE4 will be used in

an improvised explosive device, it represents a worst case scenario in terms of explosive

output, and the use of a well defined and consistent explosive material is important.

The size of the charge is clearly an important parameter, but as with the explosive

material itself, the improvised nature of terrorist explosive devices means there is sig-

nificant variation in the size of charges used in attacks. Previous work in this area has

used a variety of charge sizes, from 0.5kg [137] to 16.3kg [135]. Larcher et al. [136] state

that charges of between 8 and 12kg were used in the Madrid attacks in 2004. There can

be an added difficulty in estimating the size of device, given that the device is destroyed

during it’s function, and possibly the attacker themselves; even if an unexploded device

is subsequently found and linked to an attacker, it is only speculation that they are the

same size as the device used. Estimating the size can be based on forensic evidence

and description of the device from attackers if it exists, as well as the physical damage

caused.

It is easy to focus on the most memorable attacks of this kind as a basis for scenario

development, namely the London and Madrid bombs, which have been intensely and

visibly scrutinised and investigated in the media and in academic work. It is important

to be aware of other similar attacks elsewhere (such as Moscow and Minsk) and avoid
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suggestion that the isolated attacks in Madrid and London form a template for future

attacks. A charge mass of 5kg was used in this work, and although the effects of different

charge masses can be discussed qualitatively, modelling of a variety of charge masses was

not considered for investigation.

The charge was modelled in the same way as described in Section 4.1.2.2 using the

2D ALE method with quarter symmetry, with material parameters as shown in Tables

4.1 and 4.2 on page 68. The 5kg charge has a radius of 91mm and was meshed with

112200 shell elements. The radius of the ALE domain including the charge and air was

chosen as 1400mm using a total of 269100 shell elements, which allows the blast wave to

propagate up to a point where the shock is just about to make contact with the vehicle,

when mapped onto a 3D domain. The charge was mapped onto the 3D ALE domain at

half height in the rail vehicle, at 1358mm.

7.3.1.2 Mesh refinement

As discussed in Chapters 4 and 6 the mesh resolution of the ALE domain can have a

significant effect on the pressures predicted. No significant effect on cumulative impulses

was seen when the ALE was refined below 15mm in Chapters 4 and 6, but peak pressures

continue to rise as the mesh is refined, as the effect of shock smearing is reduced. Ideally,

all meshes would be refined to a point when both the peak pressure and impulse values

predicted by the model are totally mesh independent, but this is very much limited

by the computational resources available. The ALE method requires a large number of

elements, and as the elements are refined, the effect on various computational parameters

is large. Halving the size of the solid hexahedral elements used for the ALE domain

creates a mesh with 8 times as many elements. The solution must then be carried out

with a time step half the size and process 8 times as many elements.

The rail vehicle model has a very different aspect ratio to models used previously

in this work, as its length is significantly larger than the height of the vehicle. This

naturally means that there is an increase in the number of elements required in the

ALE domain to account for this extra size, as similar resolution is still required along

the height and width of the vehicle. These extra elements do mean that within the

bounds of the computational resources available, a coarser mesh than used in other

models is necessary. The complexity of the vehicle structural model also means that

Lagrangian elements contribute more significantly to the computational cost than with

models described previously. A mesh refinement study was carried out in a similar way

to seen in Chapters 4 and 6, with three mesh densities chosen. The details of the three

meshes are chosen are shown in Table 7.6, showing the total number of elements in

the ALE and structural meshes. The maximum and minimum dimensions of the ALE

meshes used vary slightly for each model, and are shown in Table 7.7, where x is the

dimension in the direction of travel of the vehicle, y the width and z the height. The ALE

dimensions are varied based on the appropriateness for each model, and were typically

constructed based on the minimum mesh dimensions to allow a stable solution in which

the structural model and the passengers were not affected by boundary effects.

7.3.1.3 Material model and structural simplification

Chapter 6 showed that rigid materials can be used effectively when there is minimal

plastic deformation, with considerable computational saving. In the models presented
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Table 7.6: Mesh resolutions and number of elements for model C1

ALE element size (mm) n
40 1,111,273
30 2,464,911
20 6,992,360

Table 7.7: ALE air domain dimensions in mm for C1-C9

min max
model x y z x y z

C1 0 0 -1150 10,000 2600 3400
C2 0 0 -350 10,000 2000 3000
C3 0 0 -1150 10,000 2600 3400
C4 0 0 -2180 10,500 3600 4400
C5 0 0 -1150 14,000 1800 3290
C6 0 0 -1150 15,000 2600 3400
C7 0 0 -1150 10,000 2600 3400
C8 0 0 -1150 10,000 3100 3400
C9 0 0 -1150 10,000 2600 3400

here, significantly higher charge masses are applied and consequently the levels of de-

formation are such that a rigid material model is no longer a good representation of

the structural behaviour. The material model chosen can play a significant part in the

computational cost of a finite element model, with rigid material models being very

quick and complex material models such as the Johnson-Cook strain rate dependent

plasticity and damage model incurring a significant time penalty compared to simple

models. It is often possible to use much simpler models for failure and plasticity such as

*MAT 003 or *MAT 024 in LS-Dyna, where plasticity and strain rate dependence can

be modelled less accurately, but at a significant cost saving compared to models such as

the Johnson-Cook model.

In Chapter 6, numerical models of the experimental tests found relatively low strain

rates, which demonstrated it was not necessary to use strain rate dependent models for

the aluminium panels. Strain rate sensitive models are typically used in conjunction

with finely resolved meshes, where local strain rate can have a significant effect on the

prediction of the mechanical behaviour. It is possible that when using the higher charge

masses described above, that local regions of high strain rate would be experienced

within a rail vehicle, where shear or tensile forces are very high, leading to material

failure, but the mesh resolution which can be used in these models (in the region of tens

of millimetres) is not sufficient to capture this behaviour. For this reason, the Johnson-

Cook model described above is not applied, as the increased computational expense

cannot be justified, as it is difficult to be confident that it will result in any improved

accuracy in the current model.

Explosive venting is used in industry to reduce the build up of pressure in critical

areas, due to explosions from gas and dust. Blast walls on oil rigs and blast relief panels

are often used to reduce the effects of extensive pressure build ups, and it could be
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considered that windows and doors in rail vehicles can achieve a reduction in passenger

injury. Work by Larcher et al. [195] investigated the effect of vent area and window

material on the risk to passengers inside a vehicle, and concluded that windows do not

offer a an opportunity to significantly reduce risk to passengers, although a quantitative

comparison between the pressure in models with and without windows is not provided.

There is anecdotal evidence (See Section 3.1.1 on page 38) that open doors can reduce

the risk of injury, but qualitative work to identify how failure and material models for

doors and windows alter the pressure history in their immediate vicinity and in the

vehicle as a whole has not been investigated.

7.3.2 Effect of mesh refinement

ConWep predicts an arrival time for the first shock at 9500mm (the end of the vehicle,

assuming and explosion in the centre of the vehicle) of 17.5ms, which serves as a starting

point for making estimates about the most appropriate termination time to select. The

actual arrival time may be smaller, due to the reflections of the shock waves along the

vehicle. A termination time of 30ms was chosen for the models, which is sufficient

time to identify the differences in models with different mesh resolution. Computational

limitations on both desktop Linux machines and the University of Sheffield HPC ‘iceberg’

meant that the model meshed with 20mm elements could not be run, but the model

meshed with 30mm elements ran to completion at 30ms in 45 hours and 2 minutes,

compared to 17 hours and 14 minutes for the model using 40mm elements.

Contours of resultant displacement are shown for both the 30mm and 40mm models in

Figures 7.9 and fig:meshref-resdisp40 respectively, and a similar pattern of displacement

is seen for both, with both levels of mesh refinement predicting points of high and

low deformation in the same area at 10ms, 20ms and 30ms. At 6ms (top right image in

both a and b), both levels of mesh refinement predict only deformation in one half of the

vehicle structure, with floor and ceiling panels showing the only significant displacements

of around 250mm. The floor and ceiling panels continue to show the peak displacement

in both models at 20ms with the floor panel reaching a peak displacement of 380mm

directly below the charge (lower left hand image), but the end wall begins to a show high

displacement of 370mm at 30ms (lower right hand image) in both models. Displacement

alone suggests the effect of mesh refinement is small.

Differences in the stress distribution over the structure of the models is shown for

different mesh resolutions in Figures 7.11 and 7.12. Stresses at a peak of 350MPa occur

at many locations in the vehicle, which shows that plastic deformation is widespread

throughout the vehicle, given the specified yield stress of 275MPa. At 10ms, the 30mm

model shows the highest stress at the floor panel in location of door, which is also shown

by the 40mm model, but this model shows a stress concentration at the meeting of floor

and sidewall near the symmetry plane. Both models show similar stress distributions

at 20ms, with points of highest stresses in the bogie mounting frame and where the

end wall meets the roof section. Deformation is low at this time, so it is clear the

stress peaks before deformation reaches its maximum at 30ms. By this time, there

are again differences in the stress distributions between the models, with higher stress

concentrations seen around the window supports in the 30mm model, whereas the 40mm

model shows areas of high stress in the structure above the central door frame. Finer

meshes typically result in more accurate solutions, and there is no reason to doubt this
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Figure 7.9: Resultant displacement fringe plot with 30mm mesh

is the case here.

Pressure histories and cumulative impulses at 2 locations are shown in Figures 7.13

and 7.14. Location 1, shown in Figure 7.13 lies 2000mm along the axis of the vehicle

at 1330mm above floor level. Figure 7.13 shows minimal difference between both the

pressure and cumulative impulse histories, with the arrival and magnitude of each shock

predicted similarly at both mesh resolutions, and only relatively small difference of

25kPa-ms is seen between the final cumulative impulses at 30ms.

Location 2, shown in Figure 7.14, is located the same distance along the vehicle as

location 1, but close to the window, as opposed to within the centre of the vehicle. Both

pressure and cumulative impulse here show a larger difference between the models, with

difference in final cumulative impulse of over 100kPa, giving a percentage difference of
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Figure 7.10: Resultant displacement fringe plot with 40mm mesh

18%, compared to only 3% difference between the final cumulative impulses at location

1.

7.3.3 Discussion of vehicle structural model

The effect of mesh resolution was discussed in Chapters 4 and 6, and is included here as

the modelling effort has a focus on the analysis of both the structure and the propagation

of the blast pressures. It was seen in Chapters 4 and 6 that the mesh resolution could lead

to significant differences in the predicted reflected overpressure and impulse, which was

also shown in the models here. Ideally, the validated results of the mesh refinement study

from Chapter 6 could be applied and an element size of 15mm used, which was shown
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Figure 7.11: Von Mises stress fringe plot with 30mm mesh

to predict similar pressures as those measured in experiments, could be used universally

over all the models, but this was not possible when applying a blast load to the rail

vehicle models due to computational limitations. The number of shock reflections seen

in both Figures 7.13(a) and 7.14(a) are limited, but in models from Section 7.4 onwards,

the cylinders placed within the rail vehicle to simulate blast interaction with passengers

will lead to many more reflections, and it is therefore necessary to reduce the element

size as much as possible.

The use of coarse elements also affects how the structure performs. Failure of the

vehicle body shell was not seen on either the 30mm or 40mm models, and the mesh res-

olution limits the ability of the model to fully examine the effects of stress concentrations

that can lead to crack propagation and subsequent widespread structural failure. Stress
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Figure 7.12: Von Mises stress fringe plot with 40mm mesh

concentrations on a macro scale (over tens of millimetres) can be seen in Figures 7.11,

but there is limited scope for reducing the resolution of the structural mesh to investigate

these further, as there is a requirement to maintain similar mesh resolutions between

the ALE and structural mesh, thus the limit of the ALE element size is effectively the

limit for the structural mesh. LS-Dyna implements ways of improving coupling to ensure

each Lagrangian element contains 2 to 4 coupling points for each ALE element when

the Lagrangian elements are coarser than ALE elements, but it is fundamentally not

possible to achieve such coupling if Lagrangian elements are considerably smaller than

ALE elements, without refining the ALE mesh.

Based on the modelling undertaken in Chapter 6, a simple strain rate independent

plasticity model was implemented based on the assumption that strain rates were not
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Figure 7.13: Pressure and impulse at a point on the symmetry plane
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Figure 7.14: Pressure and impulse at a point near a bodyside window
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high enough to justify the extra computational effort to utilise the Johnson-Cook model

was not justified. Strain rates remained low in the rail vehicle structural model, and

were not above 101/s over the whole solution. This again justifies the use of strain rate

independent models, but does not necessarily imply that strain rate effects do not occur

and may not be important in some failure modes that may be seen experimentally, such

as weld or bolted connection failure, or crack propagation in the structure.

An investigation of some important model parameters has been undertaken here, and

some results of these presented. It is now necessary to introduce the methods used to

model injury within a rail vehicle, and the variables that will be studied, before full

models are presented and discussed in Section 7.5.

7.4 Modelling injury and scenario variables in rail vehicles

To answer the hypothesis posed in Chapter 1, a modelling method for predicting injury

in rail vehicles, and understanding what could affect the likelihood and level of injury

experienced is required. This Section describes the implementation of the risk models

described in Chapter 3 using the methods described earlier in this Chapter. A number

of generic ‘scenario variables’ of interest were chosen, to identify how certain common

variables seen by vehicles across the network can affect structural deformation and / or

human injury.

The effect of the windows, doors and the rigidity of the vehicle structure is of interest,

to identify if any of these can make a change to the pattern of injury experienced

by occupants. An investigation of the injury patterns in a full rail vehicle model can

be compared with investigations of injury using models that represent the lower or

upper limit, such as a fully rigid rail vehicle, or windows and doors with negligible

resistance to blowout. Such investigations allow these effects to be discounted from

future investigation outside of this work if they prove to yield no benefit, or to be

investigated further if they show significant deviation from the injury predicted using

the full model of a current vehicle.

Tunnels are a common feature across the rail network, and depending on the clearance

around the train itself have the potential to confine the blast and increase the magnitude

and number of reflections. Tunnels can also limit the amount of structural deformation

a rail vehicle can undergo in certain dimensions, which could in turn alter the way

reflection occur, as identified in Chapter 5. Likewise, the internal design of rail vehicle,

including draught screens and seats has the potential to change the reflection of pressures

around a vehicle, which could either increase or reduce the risk to people from pressure

type injuries.

Open carriages or wide gangway vehicles have a negligible change in cross section

between adjacent vehicles of each train, and are increasingly used to increase standing

capacity and allow easier redistribution of passenger loads throughout the whole train.

Unlike closed gangway vehicles, there is no physical barrier at the end of each vehicle,

which means pressure reflections at the end of each carriage are reduced, but passengers

in a connected carriage adjacent to an explosion are likely to be exposed to pressures

and flying projectiles.

Passengers themselves can significantly alter the progress of flying projectiles, as well

as the reflection and propagation of shocks, which means passenger density is one of

the most significant variables to be studied here. A reduced passenger density means
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fewer are present to be injured, but also the reduced density means shocks and flying

projectiles can propagate further without being disturbed, which may increase the radius

at which deadly effects are experienced.

7.4.1 Implementing risk models

In Chapter 3 injury models were developed to report the risk of chest and penetrating

high velocity projectile injuries, using pressure history data from finite element models

and statistical techniques. Pressure history data can be taken from the full scale rail

vehicle model described in Section 7.3.3, to make predictions and estimations about the

scale and distribution of injuries throughout a rail vehicle.

Pressure history data was taken from the finite element models by defining a rigid cylin-

der with a diameter of 305mm and a height of 1700mm at the positions at which chest

injury risk is to be calculated, and pressure sensor locations are defined at 90◦intervals

around the circumference. The fragment injury model takes no data from the finite

element model, and the input data is purely based on the position of the device and pas-

sengers, the mass of the charge, the mass and number of projectiles included within the

device, and an assumed directional spread of projectiles in the vertical and horizontal

directions.

7.4.1.1 Description of implementation for a rail vehicle

The implementation of these models starts by generating position data for the ‘passen-

gers’ that will be studied, using a Matlab script generate.m, which can be found in

Section B.1, which provides the position input for both the chest injury and projectile

injury models. The reason for automating this is twofold; firstly to ensure that identical

position data is used in both pressure and projectile injury models, and secondly to en-

sure that the positions are defined such that each subsequent location in the passenger

matrix is further away from the device than all previous locations as shown in Figure

7.15, which is necessary for correct functioning of the projectile injury model. The input

to this script is simply the x and y positions of any number of passengers. From this,

the array D is written to file to be used in the fragment injury model, and 4 pressure

sensor locations are defined and written to file in a form that can be directly interpreted

by LS-Dyna using the *DATABASE TRACER keyword. With the positions known, a

finite element model can be generated, using the rail vehicle model described above and

rigid cylinders to represent persons, using xy position data from generate.m to define

the axial position of each cylinder.

Fragment injury data is generated for each position, which is output to a text file for

standalone inspection and a detailed breakdown of the ’hits’ generated by each fragment,

and in formatted matrix data form for use in visualisation (see Sections B.3.2 and B.3.3

for code). Once the solution to the finite element model is complete, it is post processed

to generate a matrix of pressure history data for all points, and peak chest wall velocity

for each sensor location and subsequently each ‘passenger’ is generated and is output

again in formatted matrix form and as a text file, as shown in Appendix B.2.

Once fragment and chest injury has been generated, it can be visualized in 2D using

the new injury severity score (NISS, defined in Section 3.6) to give a prediction of

those passengers who are most and least likely to be killed. A plan view of the quarter

symmetry section modelled is shown, with coloured circles representing the position and
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Figure 7.15: Ordering of passengers in the array D must be correct, otherwise physically
unrealistic behaviour may occur. The location of the device is shown with a filled orange
circle in the bottom left hand corner.

injury risk for each ‘passenger’. An example of this visualisation is shown in Figure 7.16,

where each passenger is plotted as circle which is filled with a colour that corresponds

to the NISS score, with a unique colour for each NISS value. It is possible to provide

a scale of NISS values instead of simply providing a qualitative assessment of risk, but

this arguably detracts from the simplicity and usability of the figure in its current form.
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Figure 7.16: 2D visualisation of probability of serious injury or death

7.4.1.2 Defining the passenger density

The passenger positions are required as an input to the models, so it is important to

have an idea of the typical number and distribution of passengers.

The number of passengers on a rail vehicle varies widely, depending on the time of

day and the route of a particular service. Passenger loads are highest at rush hour

periods on suburban and intercity routes, and can be particularly high around major

populations centres and economic hubs. Studies on wheelset design and maintenance

[196] have provided data on the percentage of unladen (tare) load at each axle, which

can be used to define the high, low and medium densities of passengers. Based on an

average person mass of 76kg and passenger loads at 10%, 1% and 0.01% of running

time, the percentage of tare load and subsequent number of passengers was predicted,

as shown in Table 7.8. The numbers shown in Table 7.8 for cases D1 to D3 represent
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Table 7.8: Passenger density cases

case % of running passenger load (kg) number density (p/m2)
D1 10 2100 28 0.61
D2 1 5400 71 1.5
D3 0.001 9000 118 2.6
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Figure 7.17: Three different passenger densities, D1 (a), D2 (b) and D3, including
positions for reference passenger locations A, B and C and location of doors or opening
(grey box). Reference locations A, B and C have been specified to allow comparison of
3 fixed positions across all three passenger densities. Some passengers are also referred
to by numbers throughout the discussion, and these are also included here.

30%, 76% and 127% of the seated capacity of a Class 165 vehicle, as shown in [98]. The

location of passengers shown for D1, D2 and D3 are shown in Figure 7.17. All variables

were studied using the D2 passenger density, other than the study of passenger density

itself, where comparisons are made between all 3 densities.

For each density, passenger positions are defined as if the rail vehicle is configured

with transverse seating, with passengers typically seated in pairs of seats situated either

side of a central aisle. Facing seats, where tables exist, or changes in the seat direction

are not considered.

7.4.2 Vehicle structure

The relationship between the vehicle structure and features with the risk of human

injury was studied with 4 models. A base case, case 1, is defined using the full rail

vehicle model as described in Section 7.2.2.1, where the deformation of the vehicle occurs

over the whole model as loads are applied, with windows and doors fixed in place until
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 7.18: Structural models used for cases 1 to 4

failure criteria is reached. A further 3 models were constructed, using a rigid rail vehicle

structure (the internal surface of the full rail vehicle model) each with a variation on

the modelling of the doors and windows. Case 2 is simply the whole rail vehicle shell

modelled with no openings for doors or windows, so no pressure can escape the vehicle.

Case 3 models windows and doors using rigid but unattached shell elements of the correct

mass, to identify the best possible reduction in injury that can occur purely as a result of

venting. Finally, case 4 examines the effect of open doors by eliminating their presence,

with windows modelled in the same way as case 3. This is an attempt to support of

anecdotal evidence of reduced injury when train doors are open (see Section 3.1.1). The

passenger density D2 is used for cases 1, 2, 3 and 4. An overview of the structure for

each case is shown in Figure 7.18.

7.4.3 Tunnels

Tunnels on the UK rail network do not have a standard size and differ between individual

routes, due in part to the historically separate nature of the rail infrastructure, as well

as the typical requirements and vehicles used on different parts of the network. As such

it is difficult to identify a ‘standard’ tunnel, but using clearance guidelines from Railway

Group standards, it is possible to determine a minimum size for a tunnel, which can

act as the lower limit for the effects to injury and structural deformation of confinement

within tunnels. With the exception of some tunnels that are constructed with tunnel

boring machines, and are thus necessarily circular in cross section, most tunnels have

an elliptical cross section, or with vertical walls and an arch. For simplicity, a tunnel is

defined as shown in Figure 7.19, with vertical walls and a circular arc for the roof, which
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Figure 7.19: Tunnel and rail vehicle drawn to scale, all in mm

maintains a clearance of 100mm between the vehicle and the tunnel structure at the

closest points, as defined in GC/RT5212 [197]. This represents the most extreme case

with the smallest possible dimensions, but in most cases a rail vehicle’s will be much

larger than that shown in Figure 7.19.

For case 5, a tunnel is modelled and is assumed to be fully rigid, using shell elements

and a rigid material model. In keeping with the symmetry applied throughout the

modelling work, only 1 side of the tunnel is modelled. The vertical tunnel wall is assumed

to begin at rail level and rises to 2800mm, and the roof of the tunnel is assumed to follow

a arc with a radius 1500mm from the vertical section to the highest point of the tunnel

at 4300mm ARL, as shown in Figure 7.19. The vehicle is modelled using the full vehicle

model as used for case 1, and passenger density D2. The vertical side walls are modelled

with rigid nodal constraints and using the *RIGIDWALL keyword, and the roof of the

tunnel is modelled using a single layer of shell elements, as shown in Figure 7.20.

Figure 7.20: Roof and wall of tunnel shown for case 5
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7.4.4 Open carriages

In case 6, Open carriages are modelled by removing a large part of the end of the

carriage as a reflecting surface, and increasing the size of the ALE domain in the x

direction to allow pressures to escape from the end of the vehicle with significantly

reduced reflections, as shown in Figure 7.21. The risk of injury in other neighbouring

carriages is not considered.

Figure 7.21: Structure of vehicle for case 6

7.4.5 Draught screens and seats

For case 7, the effect of draught screens and seats are implemented in the model by

using the draught screen models described in Section 7.2.3.1, and seats are modelled

using rigid shell elements for both the seat base and seat back, as shown in Figure 7.22.

Seats are modelled regardless of whether a ‘passenger’ is located in that position, and

seats are modelled facing in both directions.

Figure 7.22: Position of seats and draught screens in C7
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Table 7.9: Summary of cases C1 to C9. In the case of 3a, openings exist instead of
doors within the doorway

case structure windows doors tunnel open seats
draught
screen density

C1 F 3 3 7 7 7 7 D2
C2 R 7 7 7 7 7 7 D2
C3 R 3 3 7 7 7 7 D2
C4 R 3 3a 7 7 7 7 D2
C5 F 3 3 3 7 7 7 D2
C6 F 3 3 7 3 7 7 D2
C7 F 3 3 7 7 3 3 D2
C8 F 3 3 7 7 7 7 D1
C9 F 3 3 7 7 7 7 D3

7.4.6 Passenger density

The full vehicle was modelled with a medium passenger density for case 1, and cases 8

and 9 use the same model vehicle structural model, but with a varied passenger density

as shown in Figure 7.17. Case 8 uses the low passenger density D1, and case 9 uses the

high passenger density D3, which are compared to the results of case 1. The models

here do not consider the effect of seats, draught screens or tunnels, and studied purely

the effects of passenger density.

7.5 Results and discussion

The results and discussion of cases C1 to C9 are presented here, and Table 7.9 should

be used as a quick reference to identify the differences between each case. This includes

the use of full (F) or rigid approximation (R), as well as passenger density, internal and

external features. A copy of the input file for model C1, of which much is common across

all models, is shown in Appendix A.3.

7.5.1 Global structural behaviour and injury

A comparison of adjusted severity of injury index (ASII, see Section 3.2.4) scores for C1

to C4 is shown in Figure 7.23, with the first passenger removed from the figure to aid

visualisation, due to the significantly higher ASII scores found at this location, compared

to over the rest of the vehicle. Chest wall and ASII values for person 1 for C1 to C4 can

be found in Table 7.11.

Table 7.11 and Figure 7.23 show that passenger 1 (see Figure 7.17) has the highest risk

of injury across all models and has a high likelihood of being fatally injured, according to

correlated injury levels from Axelsson [141], seen in Table 7.10. Figure 7.23 shows that

passenger 2 in all models is likely to suffer moderate to extensive chest injury according

to Table 7.10, but models where a rigid vehicle shell is used, C2 to C4, have much higher

ASII scores (3.5 to 5.1) than seen in C1 (2.5), where the vehicle shell was modelled with

deformable elements.

Figure 7.23(a) shows that ASII scores for the first passenger shown in C1 are lower

than for the same position in C2. As the passengers are modelled in the same way, and

the same mesh resolutions and pressure mapping file are used, it is not surprising that
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Table 7.10: Injury levels corresponding to ASII scores and chest wall velocity from
Axelsson [141]

injury level ASII CWV (m/s)
no injury 0 – 0.2 0 – 3.6

trace to slight 0.2 – 1.0 3.6 – 7.5
slight to moderate 0.3 – 1.9 4.3 – 9.8

moderate to extensive 1.0 – 7.1 7.5 – 16.9
>50% lethality >3.6 >12.8

Table 7.11: ASII and chest wall velocity for the first passenger in C1 to C4

model ASII CWV (m/s)
C1 6.6 16.5
C2 10.5 19.8
C3 8.8 18.5
C4 9.9 19.4

pressures from sensors facing the two symmetry planes (S1 facing towards the x axis, and

S2 towards the y, see Figure 7.31 for diagram of S1 to S4) are very similar in both C1 and

C2, but despite this the ASII scores are quite different. Examining the pressure times

histories shows that peak pressures at S3, which faces the vehicle bodyside wall, are

much lower in C1 than C2, which leads to the lower ASII scores. Comparing pressures

for passenger 2 on C2 and C4 shows that as expected, peak pressures for S1 and S2

are very similar for C2 compared to C4, but at S3 in C4 there is a stronger secondary

pressure reflection in passenger 2 at 1.1ms compared to the same point in C2, which

lead to a slightly later higher peak in the chest wall velocity at this location in C4. The

magnitude of the reflected pressures at a point closer to the detonation mean the effect

of pressure reflections has a stronger influence on the chest wall velocity and thus the

ASII scores here, compared with further along the vehicle, but the effect of differences

in the reflection of shocks is seen along much of the vehicle.

In all models, no injury (ASII <0.2) is seen past 5500mm along the vehicle in Figure

7.23, but in C4, where no doors were present and pressures were not reflected, no injury

was seen past 3000mm, which is lower than all the other models. Passengers at 3500mm

and 4500mm along the vehicle in C4, in line with the positions of opening (see Figure

7.17) showed lower ASII values than C3, where doors, even though unattached, were

present. Interestingly, the risk of injury of these persons at 3500mm and 4500mm is

similar in both C2, where no doors or windows were present, and C3, where doors and

windows with no physical restraint were placed, indicating that any ‘venting’ offered by

these has no effect, but the lack of pressure reflecting surface in C4 due to the removal

of the doors has a much more noticeable effect.

Plotting the chest wall velocity history for C1 to C4 for reference points B (near

the door) in Figure 7.24 and C (near the vehicle end) in Figure 7.25 shows how more

significant chest wall velocity reductions are made near to the door than at the end of

the vehicle, which is also shown by the ASII scores shown in Table 7.12, where only

moderate differences are seen at reference location C for all models, but differences of

over 50% are seen at reference location B. At B, velocity in C2 peaks at 7.8ms at 7.5
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Figure 7.23: Comparison of ASII scores for chest wall injury for C1, C2, C3 and C4

Table 7.12: ASII values for reference locations in models C1 to C4. See Figure 7.17 for
locations of A, B and C

ASII
Reference location C1 C2 C3 C4

A 1.28 2.34 1.98 2.54
B 0.41 1.00 0.65 0.38
C 0.09 0.16 0.13 0.11
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m/s, with the C3 peak at 6.2m/s at the same time, and the peak in C4 at 4.95 m/s at

8.1ms, which represents a difference of 45% between the peak chest wall velocity in C2

and C4 at point B. At C, shown in Figure 7.25, a smaller difference is seen between peak

values for different models with a difference of 28% between maximum and minimum

values in C1 and C2. In model C2, where the structure is rigid and there are a greater

number and strength of reflections and the pressure is maintained above atmospheric

for a much greater period of time, the chest wall velocity history is much more transient

than that seen in C1, C3 or C4, with several periods of acceleration of equal magnitude

to that caused by the arrival of the initial shock. Although purely speculation, it would

be reasonable to think this was much damaging to the body than the chest wall velocity

history seen at other locations, although in the criteria used in this work, these effects,

due to later time reflections and increased quasi-static pressures are not considered, as

only the peak velocity, not the acceleration or any cumulative metric, is used. Figure

7.26 shows that for a typical example, the peak chest wall velocity occurs shortly after

the peak pressure, and thus the total cumulative impulse is not a driver for determining

the peak velocity.
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Figure 7.24: Chest velocity history for C1 to C4 at reference point B

Projectile injury predictions for passenger density D2 (used for cases C1 to C7) for

3 different draws from the normal distribution are shown in Figure 7.27. Each draw is

taken using the same statistical parameters as described in Section 3.7, and the inherent

variability caused by taking random draws from a multivariate normal distribution can

be clearly seen. For many of the passenger positions, the predicted likelihood of a

life threatening or fatal injury is the same, but in some positions there are a range of

predictions. Between 3500mm and 4500mm along the vehicle, the two passengers in

both cases are subject to similar risks for each random draw, but in (a) and (c) are

subject to medium risk of lethal injury, whereas in (b) a high to very high risk is seen at

the same location. At the passenger location at 9100mm along the vehicle, close to the

centreline, the risks of lethal of life threatening injury for these three particular draws

vary from very low to very high.

When injury prediction scores for both projectile and chest wall injury are combined,

as shown in Figure 7.28 where the fragment output from the 3rd draw in Figure 7.27(c)
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Figure 7.25: Chest velocity history for C1 to C4 at reference point C
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Figure 7.26: Values at location C in case 1, normalised by the peak value in each data
series

is used, it is clear that the effects of projectile injury dominate in this case. In (a), (b),

(c) and (d) the injury prediction is almost identical, and only the closest passenger in

(a), who has a lower chest wall velocity as discussed above, is different. It is only at

this first passenger location across all cases that the pressure injury dominates over the

projectile injury, and under a different draw from the normal distribution this may not

be the case.

It has been identified here that structural deformation itself plays an insignificant role

in determining the shock wave injuries experienced by passengers as shown in Figure

7.23, and that with the device specified (5kg of explosive with 1kg of projectiles), the risk

from flying projectiles is much higher than the risk posed by the shock waves themselves.

It was noted that removing the doors reduced the chest wall velocity of passengers posi-

tioned near these doors due to the significant reduction in the pressure experienced on

one side of the chest, but for the given charge size the pressures experienced were not

high enough to cause significant injury in any case. For a higher charge with a lower
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Figure 7.27: Results from three runs (01, 02 and 03) of projectile injury model for a
passenger density of D2, showing the likelihood of a fatal or life threatening injury

volume of injury causing projectiles, injury patterns would be expected to be different

where doors were not present, compared to scenarios where either rigid reflecting sur-

faces, or doors and windows. It is therefore pertinent to look at the effect that addition

or removal of reflecting surfaces which can confine the blast wave can have on chest wall

injury.

7.5.2 Confinement

Figures 7.29 shows the distribution of ASII scores and peak chest wall velocity values for

rail vehicles within a tunnel (C5) and with an open carriage end (C6). Comparison of

chest wall velocity in (a) and (b), and ASII distribution in (c) and (d) is largely the same

throughout both vehicles, indicating that the confinement offered by tunnels does not

yield a higher number or likelihood of passengers experiencing chest wall injuries, even

when compared to C6, where fewer reflections from the vehicle end may be expected to

reduce the expected injuries.

The effect of removing the reflecting end of the vehicle in C6 can be seen in Figure

7.30, where the chest wall velocity for passenger position 18 (see inset) is shown for

cases C1 as a reference case, C5 and C6. A very similar peak chest wall velocity is

seen for C1 and C5, but a much reduced chest wall of 2.5m/s was seen in C6 compared
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Figure 7.28: Comparison of total injury scores for C1, C2, C3 and C4
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Figure 7.29: Effect of confinement on pressure injury
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to 5.1m/s seen in C5. The reasons for the reduction in the chest wall velocity at the

end of the vehicle are shown in Figures 7.31 and 7.32, which show normalised values of

the pressure time histories for each of the four sensors around the cylinder at passenger

position 18, along with the velocity time history. Pressures in both Figures 7.31 and

7.32 are normalised by the peak value of the all four sensors for that particular case,

which in the case of C5 is S4, and for C6 is S2. These sensor positions are shown in both

Figures 7.31 and 7.32, and are a plan view of the passenger position shown in Figure

7.30, with S4 facing towards the end of the vehicle (or in the case of C6, an open end),

with S3 facing towards the vehicle outer wall. The value of the peak pressure at S2 is

the same in both C5 and C6, as would be expected, but the higher chest wall velocity

in C5 is due to a much higher value of the reflected pressure at S4 which is 34% higher

than the peak in S2. For C6 the peak pressure at S4 is 53% less than S2. In the velocity

history of P18 in C5 shown in Figure 7.31, there is a noticeable change in the chest wall

velocity at 17.3ms caused by the strength of the pressure at S4, as well as reflections

that are visible in P2 and P3, which have a similar magnitude to the peak pressure seen

in S1. Figure 7.30 shows that it is at 17.5ms where the velocity time histories diverge,

with the chest wall velocity continuing to increase in C5, but shortly after this it reaches

the peak value in C6. The reduction in the peak velocity in C6 is due to the reduction

in reflected pressure at S4, and the absence of the extra reflections seen in Figure 7.31

at 17.1ms, which are not seen in Figure 7.32.
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Figure 7.30: Effect of confinement on chest wall velocity of passenger 18, with position
shown filled in black

Figure 7.31 also shows a period of sustained pressure above atmospheric after 20ms,

which is not visible in Figure 7.32. The sustained pressure here would appear to affect the

chest wall velocity after 20ms in C5, where the relative peak negative velocity (relative to

the maximum positive velocity) is lower in C5 than in C6, as shown in Figures 7.31 and

7.32. In C6, there is also a slower response from the chest wall between 20ms and 30ms,

with the velocity returning to zero at 30ms, whereas in C5 the velocity has returned to

a positive value by 25ms. As was discussed in Section 7.5.1, this shows that although

quasi static and later time pressures after the initial few reflections are unlikely to affect

the value of the peak chest wall velocity, they can have a noticeable effect on the later

time chest wall response.
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Figure 7.31: C5 passenger 18, comparison of 4 pressure histories and cwv
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Figure 7.32: C6 passenger 18, comparison of 4 pressure histories and chest wall velocity

For the charge used in the modelling here, chest wall injury predictions indicate that

the pressures experienced are not significantly magnified or reduced by changes in the

levels of the vehicle confinement (higher in C5, lower in C6, compared to C1, for example)

to increase or reduce the likelihood of a serious chest injury. In most cases, only persons

very close to the charge are subject to chest wall velocities high enough to cause injury,

and it is the incident pressures on the passengers and the immediate reflections from

the walls of the rail vehicles that are the drivers of the peak chest wall velocity. Given

sufficiently high pressures from a much larger explosive device, the data from C6 indicate

that passengers positions very close to the end of a vehicle may be exposed to a lower

risk compared to those in a normal vehicle. The data however does not support the

hypothesis of increased injury risk to passengers with a vehicle located in a tunnel,

although transient chest wall velocity response, which is not used as a measure of injury

in the current criteria, is altered by later time pressures, seen when explosions occur in

more confined spaces such as tunnels.
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Table 7.13: ASII and peak chest wall velocity for P1 in C1 and C7

model ASII CWV (m/s)
C1 6.6 16.46
C7 18.9 25.08

7.5.3 Internal features and injury

Case 7 was used to investigate the effect of internal features such as draught screens

and seats on the distributions of injuries within a rail vehicle. Figure 7.33 shows the

distribution of ASII scores and peak chest wall velocity in C1 and C7, with data from

passenger position 1 removed to allow improved visualisation, and shown in Table 7.13

instead. The ASII scores and chest wall velocity seen for passenger location 1 in both

C1 and C7 are significantly higher than those seen at other locations throughout the rail

vehicle, and removal of data from this position allows a better graphical comparison of

scores between cases and over the whole rail vehicle. Projectile injury predictions are not

included here, as they are identical between both cases C1 and C7 as the projectile injury

model does not include the interaction of projectiles with draught screens, although in

reality there will be some form of screening. Fragment injury also dominates in this

scenario, but a closer investigation of pure blast injury is shown as the results are

certainly relevant to situations where fragment injury risk is lower.

Data from Table 7.13 shows that the predicted level of chest wall injury for P1 (the

closest passenger to the charge, shown inset in Figure 7.34(b)) is significantly higher in

C7 than C1. Pressure reflection from the rigid seat is responsible for the increase in

injury criteria here, with the sensor facing the seat back significantly showing a much

higher peak overpressure in C7 at 3.5MPa compared to 1.16MPa at the same position

without the seat present in C1.

Figure 7.33 shows peak ASII and chest wall velocity values over excluding passenger 1

over the whole quarter of the modelled rail vehicle. It is clear that the presence of seats

and draught screens leads to significant changes in the predicted chest wall velocity,

which in turns leads to differences in the prediction of ASII scores for many passenger

locations between C1 and C7. Figure 7.33(a) and (b) show that for passenger positions

up to 3000mm along the carriage, seats and draught screens can simultaneously increase

the risk of a severe chest injury in some locations and reduce it in other. In C7, reductions

in ASII are seen in P2 and P4 (shown in (a)), but increases are seen at P3 and P5, due

to increase in reflection from the seat. Even at P3, significant reduction in peak pressure

on the sensor facing the seat in front are seen in C7 compared to C1 with peak pressures

down from 1.5MPa to 0.95MPa, but higher reflected pressures from the sensors facing

towards the seat back are seen, leading to an increase in the predicted chest wall velocity

and therefore the ASII score. A similar effect can be seen due to the draught screens,

where a similar chest wall velocity is seen at locations P6 and P7 in C1, but in C7 a

reduced chest wall velocity is seen at P6, with a slight increase in the chest wall velocity

at P7. C1 and C7 also show differences at P8 and P9, and P11 and P12, where chest

wall velocities shown in Figure 7.33(d) are higher than for the same positions in Figure

7.33(c). In these cases the blocking effect of the draught screens and the seats, and the

peak pressure experienced by all sensors other than that facing the aisle see significant
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reduction in peak pressure compared to the same location C1. Interestingly, in the case

of P10 the chest wall velocity is similar in C1 and C7, and although the peak pressures

for all 4 sensor locations at P10 are lower in C7 compared to C1, extra reflections are

seen in C7, which bring peak chest wall velocities into line.
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Figure 7.33: Case 1 and 7 chest injury predictions, with person 1 removed to aid visu-
alisation

Chest wall velocities at the end positions of the vehicle, furthest from the point of

detonation are similar for both C1 and C7. This indicates that any disruptive effect that

draught screens and seats may have on the progression of the shock wave and subsequent

reflections along the vehicle are not sufficient to reduce the chest wall velocity and thus

the likelihood of severity of the injury at the end of the vehicle, if the pressure was
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sufficiently high to cause a chest injury. Despite being shielded from the blast by seats

in front, passenger reference location C, shown in Figure 7.34(b) shows a higher peak

chest wall velocity in C7 compared to C1, due to the orientation the seat, which in this

case does not shield the passenger from the blast, but reflects the blast back towards the

passenger. Contrasted with location B, shown in Figure 7.34(a), where both the seat

and the draught screen provide a shielding effect in C7, the peak chest wall velocity of

C1 is 2m/s higher than the peak value of C7.

Draught screens and seats were seen to offer protection in positions throughout the

rail vehicle, and in others increase the risk of injuries. As with other cases mentioned in

previous sections, in many cases the pressures experienced were not sufficient to cause

lethal injuries, but patterns in increase and decrease in injury were seen, particularly in

terms of the position of the passenger relative to draught screens, and the orientation of

the seat relative to the passenger. Where passengers were positioned such that a seat

or draught screen shielded them from exposure to incident shocks the risk of injury was

reduced, but in the case were the seat orientation or passenger position relative to the

draught screen was such that significant shock reflections back towards the sensor closest

to the reflecting surface was seen, increases in injury risk were predicted. Clearly the

effect of objects such as seats and draught screens within a rail can play a noticeable role

in altering the reflection of pressure and subsequently the pattern of injuries. The seats

here were modelled by using a rigid material and a single layer of shell elements. Given

that seats can have a role in increasing the value of pressure experienced by passengers,

a more thorough investigation of pressure reflections from such structures should take

place, but the assumption of a rigid reflecting surface here serves to give a worst case

scenario.

7.5.4 Passenger density and injury

Chest wall velocities for 3 passenger reference locations are shown in Figure 7.35. At

reference position A (Figure 7.35(a)) chest wall velocity history is very similar for den-

sities D1 and D2, with both reaching a peak of 8.6 m/s at 3.7 ms, and returning to

a velocity of 0m/s at a similar time. The peak chest wall velocity in D3, which has

the highest density of passengers, is lower than both D1 and D2, showing a maximum

value of 7.1m/s at 4.3ms. The primary difference in D3 compared to other models, is

that the peak pressure measured on S2 (facing the point of detonation, shown in (c)) is

almost twice as high in D1 and D2 compared to D3. Past 8ms, the oscillatory response

of the chest wall at position A for all three densities is seen to be similar indicating the

pressures experienced after this time are not significantly different between the models,

and any differences are not a significant driver in determining the chest wall velocity.

In Figure 7.35(b), which shows chest wall velocity histories from reference point B, a

more noticeable difference is seen between D1, D2 and D3, although a difference of 0.5

m/s is seen between peak velocity in D1 and D2, D3 shows a more significant differ-

ence in peak velocity of 1.7m/s and 1.2m/s compared to D1 and D2 respectively. The

least difference in pressure is seen facing the window at S3, and once again the value of

the pressure at S2 is the driver, and is twice the value in D1 compared to at the same

measurement point in D3, but all peak pressures are lower and arrive 0.5ms later in

D3. Figure 7.35(c) shows the velocity time history at reference location C, and shows a

significant difference between the predicted chest wall velocity at this point for all three
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Figure 7.34: Chest wall velocity histories for C1 and C7 at reference locations B and C
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passenger densities. Once again, the highest velocity is predicted for D1, but unlike with

at other locations, where D2 and D1 were similar, D2 at location C shows a noticeably

lower peak chest wall velocity. The peak velocity in D3 is again lower than both, but

also has a much lower acceleration than both D2 and D1; D3 takes 3.6ms to reach peak

velocity, whereas both D2 and D1 take less than 2ms. The initial acceleration is slightly

lower, due to the lower pressures experienced at this position in D3 compared to D1,

but reflections in pressure in D3 at 16.5 to 17ms cause an extra jump in velocity, leading

the velocity to continue to increase albeit quite slowly. Without these reflections, peak

velocity would have occurred around 16ms, with a value of approximately 1.4m/s, based

on the assumption of similar behaviour to D1 and D2.

Where differences exist between peak chest wall velocity for different passenger den-

sities, it is largely the pressure at S2, and to a lesser extent the pressure at S1, that is

responsible for difference. This indicates that surrounding passengers have the impact

of reducing the value of the shocks incident or the areas of the passengers that face the

direction detonation. This effect can be seen more clearly in Figure 7.36, which shows

ASII scores for chest injury on the whole vehicle with different passenger densities, again

with the first passenger position omitted to aid visualisation. Figure 7.36 shows how the

risk of chest wall injury drops off with distance from the point of detonation, and as the

passenger density increases, the radius over which there is a risk of injury reduces. This

is less noticeable between D1 and D2 as there are fewer points for which comparisons can

be made (although the ASII score for the person at 5000x1100mm in D2 shows a lower

ASII score than the same position in D1) but is more noticeable when D3 is compared

to both D2 and D1. In D3 in Figure 7.36(c), ASII values above 0.2 are not seen past

4500mm along the vehicle, but this is seen to occur in both D1 and D2. The effect of

passengers shielding each other from harmful pressures is also seen closer to the point

of detonation, with ASII values of less than 1 seen from all points past 1500mm in D3,

whereas values above 1.5 are seen up to almost 3000mm along the vehicle in D1 and D2.

Similar patterns are seen when total injury is considered.

The total injury risk prediction (which combines the pressure and pressure and pro-

jectile injury) for 3 passenger densities is shown in Figure 7.37. It is clear that the as

density increases, the extent of the lethality of the device reduces due to the shielding

effect of passengers. In (a), a very high risk of life threatening injury is seen all the way

too almost 7000mm along the vehicle, with all persons within that part of the vehicle

potentially exposed to a similar level of risk. For density D2, shown in (b), very high

risks of life threatening injury are seen all the way to almost 6000mm along the vehicle,

but there are also cases nearer where only medium risks of injury are seen; these people

are likely to still be ‘hit’ but are not in line of sight with the charge, and as a result

the fragment velocity is reduced due to passing through another passenger and thus the

likelihood of injury. Passenger density D3 in Figure 7.37(c) shows the region of very high

risk only extends less than 4000mm along the vehicle, with those further than 4000mm

along the vehicle largely spared to exposure to significant risks.

This projectile injury risk is quantified for reference positions A, B and C in Table

7.14, which shows new injury severity score (NISS) values for 3 different draws, F1,

F2 and F3, from a multivariate normal distribution, as described in Chapter 3. NISS

values for each draw were averaged at each position to provide an overall NISS score

for the reference locations at each density. This shows how both the injury level drops
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Figure 7.35: Chest wall velocity history for 3 reference locations at 3 different passenger
densities
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Figure 7.36: Effect of passenger density on ASII

off at further locations from the point of detonation, but also how increasing passenger

density influences the likely radius of severe injury. The case of location C in density

D2, shown in Table 7.14, does indicate a shortcoming of the current method, with an

anomalous high value that is significantly higher than that seen at D1 caused by the

inherent variability of taking random draws from a normal distribution. Taking a single

value from the random draw from a normal distribution gives 1 possible outcome from

an infinite number of possible cases, and averaging the results a few of these, as shown

in Table 7.14 goes some way getting a more realistic idea of the ‘probable’ outcome

for a generic device with the statistical parameters that are defined. Taking hundreds

or thousands of repeated random draws from a distribution, commonly referred to as

Monte Carlo methods, would likely see this value for C at D2 fall into line with the

pattern of the other results. Further discussion of this is given in Section 8.2.

7.6 Discussion

A combination of numerical, and statistical methods for predicting injuries in rail vehicles

in a number of cases has been presented, to gain an increased knowledge of the factors

that drive injury when IEDs are detonated in rail vehicles. The LS-Dyna finite element

code was combined with a chest wall model (described in Section 3.2.4) to predict the

223



Modelling Blast Loads in Rail Vehicles T.Anthistle

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

500

1000

 

 

very lowlowmediumhighvery high

(a) D1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

500

1000

 

 

very lowlowmediumhighvery high

(b) D2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

500

1000

 

 

very lowlowmediumhighvery high

(c) D3

Figure 7.37: Effect of passenger density on combined pressure and projectile injury

Table 7.14: NISS scores for projectile injury for reference

projectile NISS score
location density F1 F2 F3 Av

A
D1 75 75 48 66
D2 75 48 75 66
D3 48 48 57 51

B
D1 75 32 66 58
D2 41 48 41 43
D3 8 11 12 10

C
D1 16 41 0 19
D2 43 21 20 28
D3 9 11 0 7

224



Modelling Blast Loads in Rail Vehicles T.Anthistle

injuries due to shock waves and blast pressures within the confined space of a rail vehicle,

and a statistical model was used to predict the injuries due to multiple flying projectiles.

The model for flying projectiles extended existing work undertaken in the field, where

no consideration had been made for penetrating injuries.

In Chapter 6, it was identified that a sufficiently fine mesh was required to predict

the peak pressures at reflecting surfaces, and that inclusion of secondary combustion

energy was required to predict the longer term pressures. In the model applied in this

Chapter, it was not possible to refine the mesh to the levels used in the experimentally

validated models in 6 due to computational limitations, and it was also not possible to

implement secondary combustion energy due to limitations of the developed model to

account for it. Failure to include secondary combustion means that later time pressures,

including QSPs, are less accurately predicted in rail vehicle models than would be the

case were computing resources and the maturity of the model sufficient for its inclusion.

The effect of this on the injury predictions is limited, as the chest wall velocity was

seen to be driven by the pressures seen within the first few reflections, and pressures

happening later on were seen to have little effect on the peak chest wall velocity. The

fact that the chest wall velocity is driven by the magnitude of the first few pressure

reflections though, does mean that failure to predict the peak pressures early will mean

an underprediction of the chest wall velocity across the cases studied. Chest injury

was only seen to be a cause of severe injury in a few locations in the results shown in

this Chapter, but to some extent this could be caused by insufficient mesh resolution

and failure to capture the true pressures, which in turn could lead to false conclusions

about the importance, or lack of importance, of chest injury in prediction of the overall

injury state of a passenger. Despite this, in almost all passenger positions where the is a

prediction of low levels of injury, even very significant jumps in pressure are unlikely to

push the chest wall velocity from a level of minor injury to a very high level of injury. In

areas where moderate risks of pressure injury are seen though, underprediction of peak

pressures and thus chest wall velocity could push the risk in some passenger locations

to higher levels. Although these limitations appear significant, comparisons between

design features and operational parameters are still valid as the method used across all

is consistent, and as such the conclusions drawn in relation to the hypothesis remain

valid. Moreover, the methods developed here can be applied to new blast data in the

future as this become available.

Where full field data of all the passengers is presented, the injury is visualised at each

discrete passenger position, and not as a contour map. The issue with contour maps

for predicted risks is that injury can only happen at the discrete passenger locations,

and is not a continuously varying parameter, which is what is shown by a contour map.

For a given passenger position, a contour map requires interpolation between the injury

values in the surrounding locations. In reality, the presence of this extra passenger would

change the risk to the surrounding passengers, which shows that plotting a contour map

is often misleading. Injury happens at discrete locations, and the passengers themselves

alter both the pressure and projectile behaviour, therefore plotting contour maps will

most likely be largely incorrect and should not be constructed for this type of problem.

The work presented here shows that projectiles contained within an IED are the driver

of injuries, and that injuries due to the shock wave alone were confined to passenger po-

sitions very close to the point of detonation. When surfaces around the passenger served
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to increase the strength of the shocks reflected towards the passenger, the prediction of

the peak chest wall velocity was higher, but in many cases the increase in chest wall

velocity was not sufficient to significantly alter the expected level of injury. It was also

seen that when surfaces were positioned such that passengers were shielded from the

blast so shocks directly from the device were not incident on passengers, chest wall ve-

locities and thus the prediction of injuries was reduced. In most cases the pressures

experienced at these locations dictated that low chest wall velocities were experienced,

and increase or decreases in the value were not sufficient to yield ASII scores that led to

injury. However for a higher charge mass, where higher pressures are experienced, it is

likely that these shielding and reflecting effects may be more of a driver of injury. The

value of the peak shock pressure is much more quickly reduced in air than the value of

the fragment velocity though, and it is for this reason pressure injuries were seen to be

of lesser importance than projectile injuries.

Where passengers were exposed in line of sight to flying projectiles, most were seen

to be at moderate to very high risk of lethal or severe injury. These projectiles retain

their velocity and in many cases fully penetrate the body, yielding very high levels of

injury, and also exposing those behind to injury, albeit at a lower level. In the model

presented here, the velocity of fragments can only be modified by the penetration of the

passengers, and there is a need to add to the model to consider fragment interaction

with physical structures within a rail vehicle, which is discussed further in Section 8.2.

Importantly though, the inclusion of projectile injury was seen to be vital, as without it

the predicted injury pattern would have been significantly different, with only a small

number of people predicted to be injured by the shock pressure alone.

For modelling the injury due to pressures, a number of factors were investigated, in-

cluding the effect of the vehicle structure and how important structures such as windows

and doors are to predicting injury. Where a fully rigid rail vehicle structure was used

with no windows or doors present, a moderate increase in chest wall velocity was seen,

but no significant change in the ASII scores (and therefore the likelihood of injury) was

seen compared to models in which effect of windows, doors and structural deformation

were considered. When doors were removed, as if the doors were open at the time the

device detonated, reduction in the chest wall velocity of those passengers close to the

opening was seen, and for a case where higher charge mass was used and subsequently

the blast overpressures were higher, this could be a driver for injury. Higher charge

masses may also lead to different patterns of injury with internal structures such as

seats and draught screen, and this can act as a guide for those taking on similar mod-

elling tasks in the future. As the deformation of the structure was seen to have little

impact on the injury, it is reasonable to suggest that modelling it with a rigid material is

a suitable simplification, as for the charge mass considered here the effects deformation

of the structure are not significant enough to alter the value of the pressure experienced

over the few milliseconds where it is important. The effect of doors and windows in this

circumstance was not seen to make significant changes to the injury pattern seen, but

changes in the value of the chest wall velocity history were seen when doors and windows

were not included. In any further investigation, where a different charge type or size is

used for the improvised explosive device, it would be recommended that the effects of

windows and doors be included. Passengers themselves, and structures within the cross

section were seen to make by far the largest difference to chest injury patterns, and for
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that reason it is these which are the most pertinent to include in future models. The

complex nature of shock reflection means that without including these, over or under

prediction, often within the same modelling run, are highly likely.

This chapter has presented modelling methods for investigating the effects of im-

provised explosive devices on rail vehicle structures and the passengers within them,

investigating parameters that have been investigated previously by other researchers, or

deemed important or interesting by the author of this work. The methods used have

not been used by previous researchers in the area of rail vehicles, and although such

may have been undertaken by researchers within governments, their agencies or private

companies, no comparable work in the open literature exists. As a result, many of the

techniques have scope for further development. This, along with conclusions to the body

of work presented here as a whole, are the subject of Chapter 8.

7.7 Conclusions

The use of numerical injury models for pressure and projectiles, as well as finite element

models has identified a number of parameters involved in the injury of passengers from

IED attacks in rail vehicles.

The vehicle design itself can alter the pressures within the vehicle, and it was seen that

seats, draught screens and open carriages can alter the chest wall velocity of passengers

throughout the vehicle. At the studied charge size this did not lead to large changes in

the predicted injury levels, but for higher charges this will not necessarily be the case.

It was seen that modelling the internal features of the rail vehicles was more important

than modelling the vehicle body shell structure, which made no significant difference to

the pattern of pressure injury experienced throughout a rail vehicle.

The key driving parameter for passenger injury was seen to be the spatial density of

these occupants, which has a much larger effect on the distribution and pattern of injury

than any of the other variables studied with the current model.
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8

Conclusions and further work

This chapter concludes the findings of this work, and discusses some points raised in

this research that could not be fully investigated in the scope of the project, but which

could be the subject of further research projects at a variety of levels.

8.1 Conclusions

In Chapter 1, the following hypothesis was presented, along with a proposed method for

testing it.

“Rail vehicle design can influence the pattern of injury seen in passengers

when an improvised explosive device is detonated within a rail vehicle.”

In Chapter 7 it was found that rail vehicle design can influence the pattern of injury

seen in the passengers, but that the spatial density of the passengers had a greater effect

on passenger injury distribution.

8.1.1 Vehicle design and passenger injury

Full rail vehicle models, along with injury models for passengers within them were shown

in Chapter 7. A finite element model of a rail vehicle was combined with statistical and

numerical models to predict injuries in a number of cases, that were used to identify

which of the investigated parameters was the most important.

The flexibility and construction of the vehicle structure was tested in cases C1 to C4,

and was seen to make little difference to the overall pattern of injury. The highest chest

wall velocity at any passenger location (19.8 m/s) was seen when using the rigid rail

vehicle shell model, compared to the lowest value of 16.5 m/s seen with the flexible shell

in C1. For passengers in the highest risk locations (closest to the point of detonation),

up to a 45 % difference in the ASII scores were seen (6.6 to 10.5), but this made no

difference to the category of injury of the passenger, and all passengers at this location

in all models were expected to suffer lethal injuries. At some of the furthest locations

from the point of detonation, peak variation in injury score was seen to be 56%, but

as with other locations, despite a high variation in injury score, all passengers in the

locations furthest away from the blast fell into the ‘no injury’ category, regardless of

structural model, with injury scores from 0.09 to 0.16. Similar patterns were seen when

opening were included in the rigid vehicle model, and despite clear reductions in chest
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wall velocity across passenger locations, and a peak variation in ASII score of almost

90% at one location between C2 and C4, the passenger at the location still remained

within the trace to slight injury category.

The effect of a device detonation when the vehicle was stationed in a tunnel was

investigated, and found to have negligible influence on the pressure injuries experienced.

Only the initial few shock reflection influenced the peak chest wall velocity, and the QSP

increase within the tunnel was seen to have no effect on the chest wall velocity.

Open carriage designs were investigated, and in almost all cases passengers were seen

to have similar patterns of chest injury to those seen in non open carriage designs.

Noticeable differences were seen at the point where carriages joined (and thus reflecting

surfaces were removed in open carriage designs) and in one location a 50% reduction

in chest wall velocity is seen from 5 m/s to 2.5 m/s, which is sufficient to move the

passenger in the open carriage into the ‘no injury’ category at this location.

Seats and draught screens were investigated, and seen to simultaneously reduce risk

in some areas and increase it in others. In the most extreme circumstances, seats in-

creased the reflected pressure at one passenger location from 1.16MPa to 3.5MPa, which

increased the ASII score from 6.6 to 18.9, compared to the case where seats were not

modelled. Conversely, peak reflected pressures in some locations are reduced by 45%

when seats and draught screens are included in the model. No definite conclusion can

be drawn from this work with regards the effect of seats and draught screens, other than

their presence will make significant differences to the pressures experienced by passen-

gers, and in some cases can protect passenger, and in other increase the likelihood of

being injured.

The projectile injury model could not be applied in the cases above, as interaction with

the rail vehicle or surrounding structures is not included. Despite this, the projectile

injury predictions showed that in all cases the number and level of injury was much

higher for projectile injury than chest injury. In the most severe cases of lethal chest

injury were never seen further than 3m from the point of detonation, but the projectile

injury model showed that most people within 6m of the device would be at a high risk

of a life threatening injury.

Both the projectile and pressure injury models were used to investigate the effect of

passenger density on the distribution of injuries. Increasing passenger density was seen to

reduce both the predicted chest wall velocity, and the predicted level of projectile injury.

Chest wall velocities were reduced by up to 20% with the highest density of passengers

at a close proximity to the charge compared to lower densities of passengers, and by

50% at much larger distances from the charge. The total predicted injury score, which

is dominated by the projectile injury mechanism, is 25% lower for the highest density of

passengers compared to lower densities of passengers when those passengers are close to

the point of detonation. Further away from the point of detonation, reductions in total

injury levels were up to much greater in the highest passenger density case, compared

to the lowest passenger density. Distance from the point of detonation wasn’t seen to be

the driver in the reduction of risk with increasing passenger density, and local density

of passengers (the number immediately surrounding the passenger in question) was seen

to be more important.
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8.1.2 Risk and injury analysis models

The injury models described were developed in Chapter 3, where existing models were

surveyed and their suitability to the current project identified, and where necessary

models were developed from basic principles. From a number of possible injury modes

seen to occur in IED attacks, the injury to the chest from the shock pressures, and to the

whole body by penetrating projectiles were chosen to be included in the injury model.

A method developed by Axelsson was chosen to predict chest injury, which was vali-

dated against animal models [141]. The model was implemented using GNU Octave to

solve the model’s second order differential equations using a fourth order Runge-Kutta

scheme, using a pressure time history from a finite element model as an input.

A multi projectile model was developed from scratch, using established relationships

and principles to predict the initial behaviour of the projectiles. The Gurney method

was used to predict the initial velocity, which was considered as the mean velocity, and

the angular spread was assumed based on the likely spread of projectiles from a flat faced

IED. Velocity and angular deviation from a mean of 0◦were considered to be moderately

correlated, and specific values for angle and velocity of each projectile were generated

using a random draw from a multivariate normal distribution. Interaction, depth of

penetration and perforation of the target were subsequently identified in the code, from

which an injury score was generated based on the depth of penetration and number of

hits.

Both the pressure injury model and multi projectile injury model output a score known

as the Abbreviated Injury Scale (AIS), which can be combined to give an overall injury

score known as the NISS. The calculation of this was handled automatically within the

developed code.

8.1.3 Experimental investigation of confined explosions

In Chapter 5, experimental testing was undertaken to measure pressure in confined and

complex environments, using a quarter symmetry experimental method. The results

showed excellent consistency between experimental test shots, both in terms of the

pressure history and the calculated cumulative impulse. The experimental results showed

cumulative impulse increases when baffles were used along one wall of the test cell,

although the number and spacing of these was not shown to have an effect on the

impulse.

One test cycle was undertaken using a centrally mounted aluminium panel, with an

optical displacement gauge placed behind to measure the central deflection history, but

failures of the panel restraint and the bright flash from the explosive caused a number

of issues, from which valuable lessons were learned. High speed video data proved

useful both for understanding the progression of the shock, and for visualising the panel

behaviour, both of which could be used as part of the numerical validation below.

8.1.4 Numerical validation using experimental data

Chapter 6 presents numerical models of the experimental test arrangements in LS-Dyna

using the multi-material ALE method with fluid structure interaction. On the whole,

numerical models captured the shock reflection behaviour within the test cell, and once

the effects of secondary combustion was considered cumulative impulse predicted numer-
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ically were also in line with those calculated from experimental pressure time histories.

Secondary combustion was considered in a simplified way, by adding a calculated amount

of extra energy to the ALE domain within the enclosure in the model according to a

energy release function. Numerical modelling of the fourth test arrangement showed

the importance of having well controlled experimental boundary conditions, as they

were difficult to recreate in the numerical models. At the point where experimental and

numerical displacements of the aluminium panel were at their greatest, the highest differ-

ence was seen between the pressure time history in the experimental and numerical data,

indicating the importance of deformation when reflections in a confined environment are

seen.

Although in many cases experimental and numerical peak pressures were the same,

there was a tendency for numerical methods to under predict peak overpressures, pri-

marily down to the effects of shock smearing with a coarse mesh. As always there are

computational and code limitations, and this work was no exception.

8.2 Further work and improvements to the current methods

8.2.1 Secondary combustion

Consideration of secondary combustion, or afterburn, was an important aspect of achiev-

ing results from numerical models that accurately matched the physical conditions mea-

sured in experiments. The developed model is suitable for scenarios where the effect of

afterburn is experienced over much of an environment simultaneously, where the time

taken for the propagation of the flame front to reach all extremities is similar to or shorter

than the timescales at which the secondary combustion reactions occur. Problems occur

with the current model when the secondary combustion occurs in different areas of the

model at different times, where the assumption of the same energy deposition rate at

all points within a structure is no longer valid. This is particularly likely in very large

enclosures, or when one length scale of a structure is vastly different to the other, such

as with a long cylinder, where the time taken for shocks to reach the extremity of the

geometry is much shorter than the time taken for the flames to propagate all the way

to the extremities. As a result, further investigation of this phenomenon is required.

A thorough investigation of secondary combustion is required to fully quantify it’s

effects, particularly in large or long structures. It is possible that this could be done via

numerical means with a combination of CFD codes and thermochemical codes, using a

similar method to that employed by Donahue [51], but an experimental investigation

would still be required to validate the models. An experimental investigation should

look to identify the following:

• total energy released during secondary combustion of a common explosive

• time distribution of secondary combustion energy

• spatial distribution of secondary combustion energy

• difference in pressure time history when a detonation occurs in an inert atmosphere

• how fully enclosed and vented structures alter secondary combustion effects

232



Modelling Blast Loads in Rail Vehicles T.Anthistle

This work can subsequently feed in to empirical models, allowing prediction of the

effects of secondary combustion in enclosed environments. As well as providing param-

eters such as the total energy output and time taken for energy release based on the

volume of enclosure and charge size and type, such a model could also predict the likely

QSP occurring from secondary combustion.

There is also a need to use such a model to provide input into numerical codes such

as LS-Dyna, so that secondary combustion effects can be accurately considered in sit-

uations where a simple time dependent energy release function such as that described

in Chapter 6 is not appropriate. Such a model could be in the form of the one used

in this work, but the author has identified there is a difficulty getting such a model to

be anything other than time dependent over the entire domain, and as discussed the

process of secondary combustion is unlikely to be so simplistic. Therefore, a new model

is required to describe the spatial behaviour of the flame front, and the energy release

of the secondary combustion.

The spatial behaviour is required so the appropriate volume over which the secondary

combustion is happening can be specified, and additional energy added only to these

volumes. Once this is defined, an equation of state can be defined, based on empir-

ical relationships, which can be applied within this volume to account for secondary

combustion energy. The definition of this volume, and thus the switch from a normal

equation of state to one considering secondary combustion, could possible be achieved

by changing part definitions throughout the simulation based on a particular growing

volume or shape, but in trying to implement a similar scheme for this work, the author

was unsuccessful. Another option would be to define an equation of space based on some

spatial parameter, or the arrival of a shock and a parameter which defines how closely

the flame front follows the shock.

From a purely scientific point of view, not related to rail vehicles, it would be in-

teresting to identify how secondary combustion can affect structural deformation, the

experimental investigation of which could be used to validate any numerical implementa-

tion of afterburn effects in Finite Element codes. Ultimately these codes are designed for

predicting material and structural response, and as such validation should also include

structural response.

8.2.2 Injury modelling

8.2.2.1 Multi-projectile injury model

Although closed source, proprietary and confidential multi projectile and weapon frag-

ment injury models exist across the world, the projectile injury model in this project,

despite not being unique in the techniques applied, is unique in the sense that it is

open, and has allowed work that is not protected by security or commercial concerns.

As many of the techniques have been taken from existing validated work in the open

literature such as the HIP code [153] and Gurney Equations [154], or are based on

engineering judgement by the author, further validation against existing codes or val-

idation against experimental testing is required. Of particular need to investigate by

experimental means are:

• mean and variance of velocities for a number of projectiles ejected from a device

• mean and variance of angular spreads for projectiles from a simulated IED
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• relationship between angle of a projectile and its velocity

• statistical relationship between velocity, projectile form and the depth of penetra-

tion or severity of wound

On top of developing these relationships, there is also a need to develop an improved

relationship between the velocity of the projectile and the likely level of wounding or

injury. A very simple relationship between depth of penetration (DOP) and injury

level is used in this work, following Pope [153], and as discussed in that article, more

sophisticated methods exist and could be applied. The design of the code means that

implementing improvements such as the relationship between DOP and injury, or the

DOP itself, is very straightforward as each of these is designated as a separate function

which can easily be changed as long as the same input and output stream is maintained.

From a statistical point of view, there is a need to improve the multi-projectile model.

At the moment, the predictions of injury are based on a single, or small number of

random draws from a normal distribution. Repeating the draw many times will gen-

erate a range of possible injuries for each passenger, and it is then possible to define a

range of likely injuries, or more importantly a most likely injury for a specified location.

Such repeated sampling of random numbers is known as a Monte Carlo simulation, and

applying such techniques would add a much more rigorous mathematical element to the

model.

The final feature which is a necessary addition to the model is the interaction of pro-

jectiles with structures within the rail vehicle. Impact of projectiles with the structures

in the vehicle is likely to slow them down, or potentially stop them, but this is highly de-

pendent on the structure itself. If the behaviour of the projectiles is significantly altered

by the structures within a rail vehicle, a significant difference would be expected in the

pattern of injury. Including this injury prediction within the model will require a knowl-

edge of the penetration characteristics of the chosen projectiles into the structures, and

the retardation of the projectiles through these structures. This can be done by either

an experimental or numerical means. Inclusion of this information in the model can then

be achieved by the same logical means as the current hit and retardation prediction.

8.2.2.2 Chest wall injury model

Fundamentally, there is a lack of understanding in the open literature about how shock

waves cause injury, particularly to vulnerable and vital organs such as the heart, lungs

and brain. A number of methods exist, as described in Chapter 3, and the chest wall

injury model was chosen because of it’s ability to deal with complex pressure time histo-

ries which made it particularly appropriate for the current work, it’s already conducted

experimental validation, and it’s ease of implementation numerically. Until a new or

improved model is created, or significant new research points to a particular mechanism

of injury or a better validated and more appropriate criteria, this model remains very

good, but improvements can be made to the implemented method. The model from

Axelsson [141] generates an Adjusted Severity of Injury Index (ASII) score, and there

are very broad bands of these scores that define each level of injury. The relationship

between ASII and Abbreviated Injury Scale (AIS) is assumed to be linear throughout,

but a more scientific rigorous derivation of the relationship is required, so the ASII score

can be used with more confidence to feed into the New Injury Severity Score (NISS).
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As described above for projectile injury, an improved relationship can again be easily

implemented in the code by simply modifying the function that translates ASII to AIS.

8.2.2.3 Distribution and usability of injury model

As mentioned in Section 8.2.2.1, closed source or proprietary injury model codes exist,

which in some ways may hinder their development, and certainly prevents research

groups without the means to develop their own from conducting research where injury

prediction, particularly from multiple flying projectiles, is necessary. Development of

this model, by opening the existing code up to any user who could make beneficial use

of it, both within the University and at others within the UK and overseas, it is possible

the validation and improvement of this can happen more rapidly.

The injury model developed in the current work was written in a very functional

manner. In it’s current form, it could be rewritten to improve readability, as well as

portability between GNU Octave (for which it is written), and Matlab. Currently, it

is necessary to run 4 separate scripts to get injury data; one to generate the input to

further models, next to get projectile injury predictions, next for chest wall injury and

a final one visualise the data if required. Combining the final three, or possibly all of

them, and automating processing such as input and output stream naming, as well as

removing the need to transfer variables between each codes via files, could reduce the

risk of user error.

A further and more detailed rewrite could involve providing a graphical front end

for the code, so visualisation could occur on screen and significantly more user friendly

interface could allow more widespread use. Some difficulties with this could be posed by

the need to take some output from a finite element model as an input, but it is possible

such a process could be automated in some way. Reliance on the proprietary Matlab

code, or on having a reliable Octave build which is not always straightforward on all

systems could be reduced by writing in a compiled language such as Java or C, which

would facilitate the development of a graphical user interface.
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Appendix A

LS-Dyna input files

The models here are shown with reduced input, not including *NODE, *ELEMENT,
*SET NODE or any other highly repetitive input.

A.1 Method and Verification models

A.1.1 2D Models

$# LS-DYNA Keyword file created by LS -PrePost 3.2 (Beta) - 10 Jun2011 (03:22)
$# Created on Jun -22 -2011 (12:05:41)
*KEYWORD
*CONTROL_ALE
$# dct nadv meth afac bfac cfac dfac efac

-1 0 -2 0.000 0.000 0.000 0.000 0.000
$# start end aafac vfact prit ebc pref nsidebc

0.0001.0000E+20 1.000000 1.0000E-6 0 0 1.04E-04 0
$# ncpl nbkt imascl checkr

1 50 0 0.000
*CONTROL_TERMINATION
$# endtim endcyc dtmin endeng endmas

5.00 0 0.000 0.000 0.000
*CONTROL_BULK_VISCOSITY
1.5,0.06,-1,0
*INITIAL_ALE_MAPPING
$# pid typ ammsid

2 1 50
$# x0 y0 z0 vid

0.000 0.000 0.000 1
*DEFINE_VECTOR

1 0.000 0.000 0.000 1.000 1.000 0.000 0
*DATABASE_BINARY_D3PLOT
$# dt lcdt beam npltc psetid

1.0 0 0 0 0
$# ioopt

0
*DATABASE_TRHIST
$# dt binary lcur ioopt

1.500E-4 1 0 1
*DATABASE_TRACER
$# time track x y z ammg nid
$# first two Z < 1

0.000 1 420.000 350.000 0.000 0 0
0.000 1 560.000 270.000 0.000 0 0
0.000 1 840.000 160.000 0.000 0 0
0.000 1 1000.000 340.000 0.000 0 0
0.000 1 650.000 550.000 0.000 0 0 $#R=852
0.000 1 730.000 800.500 0.000 0 0
0.000 1 750.000 805.500 0.000 0 0 $#R=1100
0.000 1 850.000 950.000 0.000 0 0 $#R=1274

*CONTROL_TIMESTEP
$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st

0.000 0.600000 0 0.000 0.000 0 0 0
$# dt2msf dt2mslc imscl

0.000 0 0
*MAT_HIGH_EXPLOSIVE_BURN_TITLE
ChargeC4
$# mid ro d pcj beta k g sigy

21 1.6050E-6 8040.0000 28.000001 0.000 0.000 0.000 0.000
*EOS_JWL_TITLE
ChargeC4
$# eosid a b r1 r2 omeg e0 vo

2 598.20001 13.75000 4.500000 1.5000000 0.320000 8.700000 1.000000
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*PART
$# title
Charge
$# pid secid mid eosid hgid grav adpopt tmid

1 1 21 2 0 0 0 0
*SECTION_ALE2D
$# secid aleform aet elform

1 11 14
*MAT_HIGH_EXPLOSIVE_BURN_TITLE
Charge
$# mid ro d pcj beta k g sigy

20 1.5900E-6 6930.0000 23.700001 0.000 0.000 0.000 0.000
*EOS_JWL_TITLE
Charge
$# eosid a b r1 r2 omeg e0 vo

1 372.20001 3.23100 4.150000 0.9500000 0.300000 7.000000 1.000000
*PART
$# title
Air
$# pid secid mid eosid hgid grav adpopt tmid

2 1 22 3 0 0 0 0
*MAT_NULL_TITLE
Air
$# mid ro pc mu terod cerod ym pr

22 1.3000E-9 -1.000E-6 0.000 0.000 0.000 0.000 0.000
*EOS_LINEAR_POLYNOMIAL_TITLE
Air
$# eosid c0 c1 c2 c3 c4 c5 c6

3 0.000 0.000 0.000 0.000 0.400000 0.400000 0.000
$# e0 v0
2.6000E-4 1.000000

*SET_PART_LIST_TITLE
ALE
$# sid da1 da2 da3 da4 solver

1 0.000 0.000 0.000 0.000 MECH
$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

1 0 0 0 0 0 0 0
*SET_PART_LIST_TITLE
ALE
$# sid da1 da2 da3 da4 solver

2 0.000 0.000 0.000 0.000 MECH
$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

2 0 0 0 0 0 0 0
*ALE_MULTI -MATERIAL_GROUP
$# sid idtype gpname

1 1
2 1

*SET_MULTI_MATERIAL_GROUP_LIST
$ This is used in the mapping

50
1 2 0 0 0 0 0 0

*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

1 0 0 1 0 1 0 1
*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

2 0 1 0 0 0 1 1
*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

3 0 1 1 1 1 1 1
*INCLUDE
mesh2.k
$*INCLUDE
$dbt.k
*END

A.1.2 3D Models

$*******************************************************************************
$ Tom Anthistle , UoS MERail Rail Research Group
$*******************************************************************************
$*******************************************************************************
$ Initial and Boundary Conditions
$*******************************************************************************
*KEYWORD
*INCLUDE
mesh6.k
*CONTROL_TERMINATION
$# endtim endcyc dtmin endeng endmas

2.000 0 0.000 0.000 0.000
*CONTROL_TIMESTEP
$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st

0.000 0.600000 0 0.000 0.000 0 0 0
$# dt2msf dt2mslc imscl

0.000 0 0
*INITIAL_ALE_MAPPING
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$# pid typ ammsid
2 1 50

$# x0 y0 z0 vid
0.000 0.000 0.000 1

*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

1 0 1 0 0 0 1 1
*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

2 0 0 1 0 1 0 1
*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

3 0 0 0 1 1 1 0
*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

7 0 1 1 1 1 1 1
$*******************************************************************************
$ Output / database details
$*******************************************************************************
*DATABASE_BINARY_D3PLOT
$# dt lcdt beam npltc psetid

1 0 0 0 0
$# ioopt

0
*DATABASE_TRHIST
$# dt binary lcur ioopt
1.5300E-3 1 0 1

*DATABASE_TRACER
$# time track x y z ammg nid

0.000 1 500.000 0.000 0.000 0 0
0.000 1 500.000 200.000 200.000 0 0
0.000 1 500.000 400.000 400.000 0 0
0.000 1 500.000 600.000 600.000 0 0
0.000 1 803.000 5.000 5.000 0 0
0.000 1 802.000 5.000 5.000 0 0
0.000 1 801.000 5.000 5.000 0 0
0.000 1 800.000 5.000 5.000 0 0
0.000 1 799.000 5.000 5.000 0 0
0.000 1 798.000 5.000 5.000 0 0
0.000 1 797.000 5.000 5.000 0 0
0.000 1 796.000 5.000 5.000 0 0
0.000 1 795.000 300.000 5.000 0 0

$*******************************************************************************
$ Material Cards
$*******************************************************************************
*MAT_HIGH_EXPLOSIVE_BURN_TITLE
$# becomes mat null on 3d card
ChargeC4
$# mid ro d pcj beta k g sigy

1 1.6050E-6 8040.0000 28.000001 0.000 0.000 0.000 0.000
*MAT_NULL_TITLE
Air
$# mid ro pc mu terod cerod ym pr

2 1.3000E-9 -1.000E-6 0.000 0.000 0.000 0.000 0.000
*MAT_PLASTIC_KINEMATIC_TITLE
Steel
$0.2/FS = 0.66. where 0.2 = UTS (500 MPa) - SIGY (300 MPa)
$# mid ro e pr sigy etan beta

11 7.5000E-6 207.00000 0.300000 0.300000 0.660000 0.000
$# src srp fs vp
0.0000000 0.000000 0.300000 0.000

*MAT_JOHNSON_COOK
$# mid ro g e pr dtf vp rateop

12 2.684E-06 26.000 69.000 0.300 0.000 0.000 0.000
$# a b n c m tm tr epso

0.27 0.134 0.514 0.008 0.703 893.000 293.000 1E-06
$# cp pc spall it d1 d2 d3 d4

910.000 0 2.000000 0.000 0.060 0.497 -1.551 0.0286
$# d5 c2/p erod efmin

6.800 0.000 0 1.0000E-6
$ This model is for 6005-T6 \cite{borvik2005experimental}
*MAT_LAMINATED_GLASS_TITLE
Pane
$# mid ro eg prg syg etg efg ep

13 2.5000E-6 70.000000 0.230000 0.030000 0.060000 0.001500 0.950000
$# prp syp etp

0.490000 0.015000 0.010000
$# f1 f2 f3 f4 f5 f6 f7 f8

0.000 0.000 1.000000 1.000000 0.000 0.000 0.000 0.000
$*******************************************************************************
$ Equations of State
$*******************************************************************************
*EOS_JWL_TITLE
Charge
$# eosid a b r1 r2 omeg e0 vo

1 598.20001 13.75000 4.500000 1.5000000 0.320000 8.700000 1.000000
*EOS_LINEAR_POLYNOMIAL_TITLE
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Air
$# eosid c0 c1 c2 c3 c4 c5 c6

2 0.000 0.000 0.000 0.000 0.400000 0.400000 0.000
$# e0 v0
2.6000E-4 1.000000

*EOS_LINEAR_POLYNOMIAL_TITLE
6005- T6Al
$# eosid c0 c1 c2 c3 c4 c5 c6

12 0.000 76.000 0.000 0.000 0.000000 0.000000 0.000
$# e0 v0

0.710 1.000000
$*******************************************************************************
$ ALE Specific Cards
$*******************************************************************************
*ALE_MULTI -MATERIAL_GROUP
$# sid idtype gpname

1 1
2 1

*SET_MULTI_MATERIAL_GROUP_LIST
$ This is used in the mapping

50
1 2 0 0 0 0 0 0

*CONSTRAINED_LAGRANGE_IN_SOLID
$ Need one for each set
$# slave master sstyp mstyp nquad ctype direc mcoup

3 1 0 0 0 4 1 0
$# start end pfac fric frcmin norm normtyp damp

0.0001.0000E+10 0.990000 0.000 0.500000 0 1 0.000
$# cq hmin hmax ileak pleak lcidpor nvent blockage

0.000 0.000 0.000 0 0.10000 0 0 0
$# iboxid ipenchk intforc ialesof lagmul pfacmm thkf
$ 0 0 0 0 0.000 0 0.000
$*******************************************************************************
$ initial volume fraction / alemmg setup
$*******************************************************************************
$*******************************************************************************
$ Control Cards
$*******************************************************************************
*CONTROL_ALE
$# dct nadv meth afac bfac cfac dfac efac

-1 0 -2 0.000 0.000 0.000 0.000 0.000
$# start end aafac vfact prit ebc pref nsidebc

0.0001.0000E+20 1.000000 1.0000E-6 0 0 1.04E-04 0
$# ncpl nbkt imascl checkr

1 50 0 0.000
*CONTROL_ENERGY
2,2,1,1
$*******************************************************************************
$ Contact
$*******************************************************************************
$*******************************************************************************
$ MISC (vectors , integration definitions , etc ...)
$*******************************************************************************
*DEFORMABLE_TO_RIGID
10
*DEFINE_VECTOR

1 0.000 0.000 0.000 1.000 1.000 1.000 0
*HOURGLASS_TITLE
ALE
$# hgid ihq qm ibq q1 q2 qb/vdc qw

1 1 1.0000E-6 0 1.500000 0.060000 0.100000 0.100000
*HOURGLASS_TITLE
LAG
$# hgid ihq qm ibq q1 q2 qb/vdc qw

10 1 0.100000 0 1.500000 0.060000 0.100000 0.100000
$*******************************************************************************
$ Part sets
$*******************************************************************************
*SET_PART_LIST_TITLE
ALE
$# sid da1 da2 da3 da4 solver

1 0.000 0.000 0.000 0.000 MECH
$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

1 2 0 0 0 0 0 0
*SET_PART_LIST_TITLE
Lagrangian
$# sid da1 da2 da3 da4 solver

3 0.000 0.000 0.000 0.000 MECH
$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

10 0 0 0 0 0 0 0
$*******************************************************************************
$ Parts
$*******************************************************************************
*PART
Charge
$# pid secid mid eosid hgid grav adpopt tmid

1 1 1 1 1 0 0 0
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*PART
Air
$# pid secid mid eosid hgid grav adpopt tmid

2 1 2 2 1 0 0 0
*PART
Air
$# pid secid mid eosid hgid grav adpopt tmid

10 9 11 0 10 0 0 0
$*******************************************************************************
$ Sections
$*******************************************************************************
*SECTION_SOLID_TITLE
ALE
$# secid elform aet

1 11 0
*SECTION_SHELL_TITLE
Shell2mm
$# secid elform shrf nip propt qr/irid icomp setyp

9 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset

1.000000 1.000000 1.000000 1.000000 0.000 0.000 0.000 0
*SECTION_SHELL_TITLE
Shell19mm
$# secid elform shrf nip propt qr/irid icomp setyp

10 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset
19.000000 19.000000 19.000000 19.000000 0.000 0.000 0.000 0

*SECTION_SHELL_TITLE
Shell8mm
$# secid elform shrf nip propt qr/irid icomp setyp

11 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset

8.000000 8.000000 8.000000 8.000000 0.000 0.000 0.000 0
*END

A.2 Experimental validation model

A.2.1 LS-Dyna A4 keyword file input

$*******************************************************************************
$ Tom Anthistle , UoS MERail Rail Research Group
$*******************************************************************************
$*******************************************************************************
$ Initial and Boundary Conditions
$*******************************************************************************
*KEYWORD
*INCLUDE
mesh2.k
*INCLUDE
lcidA4.k
*CONTROL_TERMINATION
$# endtim endcyc dtmin endeng endmas

15.000 0 0.000 0.000 0.000
*CONTROL_TIMESTEP
$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st

0.000 0.600000 0 0.000 0.000 0 0 0
$# dt2msf dt2mslc imscl

0.000 0 0
*CONTROL_OUTPUT
$# npopt neecho nrefup iaccop opifs ipnint ikedit iflush

0 0 0 0 0.000 0 100 1000
$# iprtf ierode tet10 msgmax ipcurv

0 0 2 50 0
*INITIAL_ALE_MAPPING
$# pid typ ammsid

2 1 50
$# x0 y0 z0 vid

0.000 728.000 0.000 1
*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

1 0 1 0 0 0 1 1
*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

2 0 0 1 0 1 0 1
*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

3 0 0 0 1 1 1 0
*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

8 0 1 1 1 1 1 1
*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

18 0 1 1 1 1 1 1
$*******************************************************************************
$ Output / database details
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$*******************************************************************************
*DATABASE_BINARY_D3PLOT
$# dt lcdt beam npltc psetid

7.5 0 0 0 0
$# ioopt

0
*DATABASE_BINARY_D3PART
$# dt lcdt beam npltc psetid

0.500000 0 0 0 11
*DATABASE_GLSTAT
$# dt binary lcur ioopt
1.5300E-3 1 0 1

*DATABASE_MATSUM
$# dt binary lcur ioopt
1.5300E-3 1 0 1

*DATABASE_TRHIST
$# dt binary lcur ioopt
1.5300E-3 1 0 1

*DATABASE_TRACER
$# time track x y z ammg nid
0,1,1490,1450,364 ,0 ,0
0,1,990,600,425,0,0
0,1,5,728,1452,0,0
0,1,1490,728,3,0,0
0,1,2930,728,3,0,0
*DATABASE_NODOUT
$# dt binary lcur ioopt dthf binhf
1.5000E-3 1 0 1 0.000 0

*DATABASE_HISTORY_NODE
$# id1 id2 id3 id4 id5 id6 id7 id8
12837531 ,12837530
*DATABASE_ELOUT
$# dt binary lcur ioopt
1.5000E-3 1 0 1

*DATABASE_RCFORC
$# dt binary lcur ioopt

1.500E-2 1 0 1
*DATABASE_HISTORY_BEAM_SET
$# id1 id2 id3 id4 id5 id6 id7 id8
1
$*******************************************************************************
$ Material Cards
$*******************************************************************************
*MAT_HIGH_EXPLOSIVE_BURN_TITLE
$# becomes mat null on 3d card
ChargeC4
$# mid ro d pcj beta k g sigy

1 1.6050E-6 8040.0000 28.000001 0.000 0.000 0.000 0.000
*MAT_NULL_TITLE
Air
$# mid ro pc mu terod cerod ym pr

2 1.3000E-9 -1.000E-6 0.000 0.000 0.000 0.000 0.000
*MAT_PLASTIC_KINEMATIC_TITLE
Steel
$0.2/FS = 0.66. where 0.2 = UTS (500 MPa) - SIGY (300 MPa)
$# mid ro e pr sigy etan beta

11 7.5000E-6 207.00000 0.300000 0.300000 0.660000 0.000
$# src srp fs vp
0.0000000 0.000000 0.300000 0.000

*MAT_PLASTIC_KINEMATIC_TITLE
1050 Aluminium
$0.2/FS = 0.66. where 0.2 = UTS (500 MPa) - SIGY (300 MPa)
$# mid ro e pr sigy etan beta

14 2.7100E-6 71.00000 0.330000 0.100000 0.500000 0.000
$# src srp fs vp
0.0000000 0.000000 0.450000 0.000

*MAT_JOHNSON_COOK
$# mid ro g e pr dtf vp rateop

12 2.684E-06 26.000 69.000 0.300 0.000 0.000 0.000
$# a b n c m tm tr epso

0.27 0.134 0.514 0.008 0.703 893.000 293.000 1E-06
$# cp pc spall it d1 d2 d3 d4

910.000 0 2.000000 0.000 0.060 0.497 -1.551 0.0286
$# d5 c2/p erod efmin

6.800 0.000 0 1.0000E-6
$ This model is for 6005-T6 \cite{borvik2005experimental}
*MAT_LAMINATED_GLASS_TITLE
Pane
$# mid ro eg prg syg etg efg ep

13 2.5000E-6 70.000000 0.230000 0.030000 0.060000 0.001500 0.950000
$# prp syp etp

0.490000 0.015000 0.010000
$# f1 f2 f3 f4 f5 f6 f7 f8

0.000 0.000 1.000000 1.000000 0.000 0.000 0.000 0.000
*MAT_RIGID
$# mid ro e pr n couple m alias

20 7.5000E-6 207.000 0.300 0.000 0.000 0.000
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$# cmo con1 con2
0.000 0 0

$# lco or a1 a2 a3 v1 v2 v3
0.000 0.000 0.000 0.000 0.000 0.000

*MAT_SPOTWELD
$# mid ro e pr sigy et dt tfail

100 7.5000E-6 210.000 0.300 0.800 0.200 0.000 0.000
$# efail nrr nrs nrt mrr mss mtt nf

0.350 0.000 0.000 0.000 0.000 0.000 0.000 0.000
$*******************************************************************************
$ Equations of State
$*******************************************************************************
*EOS_JWL_TITLE
Charge
$# eosid a b r1 r2 omeg e0 vo

1 598.20001 13.75000 4.500000 1.5000000 0.320000 8.700000 1.000000
*EOS_LINEAR_POLYNOMIAL_TITLE
Air
$# eosid c0 c1 c2 c3 c4 c5 c6

2 0.000 0.000 0.000 0.000 0.400000 0.400000 0.000
$# e0 v0
2.6000E-4 1.000000

*EOS_LINEAR_POLYNOMIAL_WITH_ENERGY_LEAK
$# eosid c0 c1 c2 c3 c4 c5 c6

18 0.000 0.000 0.000 0.000 0.400000 0.400000 0.000
$# e0 v0 lcid
2.6000E-4 1.000000 10

*EOS_LINEAR_POLYNOMIAL_TITLE
6005- T6Al
$# eosid c0 c1 c2 c3 c4 c5 c6

20 0.000 76.000 0.000 0.000 0.000000 0.000000 0.000
$# e0 v0

0.710 1.000000
$*******************************************************************************
$ ALE Specific Cards
$*******************************************************************************
*ALE_MULTI -MATERIAL_GROUP
$# sid idtype gpname

1 1
2 1
3 1
4 1
5 1

*SET_MULTI_MATERIAL_GROUP_LIST
$ This is used in the mapping

50
1 2 0 0 0 0 0 0

*CONSTRAINED_LAGRANGE_IN_SOLID
$ Need one for each set
$# slave master sstyp mstyp nquad ctype direc mcoup

3 1 0 0 0 4 1 0
$# start end pfac fric frcmin norm normtyp damp

0.0001.0000E+10 0.100000 0.000 0.300000 0 1 0.000
$# cq hmin hmax ileak pleak lcidpor nvent blockage

0.000 0.000 0.000 0 0.110000 0 0 0
$# iboxid ipenchk intforc ialesof lagmul pfacmm thkf
$ 0 0 0 0 0.000 0 0.000
$*******************************************************************************
$ initial volume fraction / alemmg setup
$*******************************************************************************
$*INITIAL_VOLUME_FRACTION_GEOMETRY
$ FMSID ,FMIDTYP ,BAMMG ,NTRACE
$2 ,1,2,5
$ conttyp ,fillopt (0=head , 1=tail),fammg
$1 ,1,3
$ sid ,stype ,normdir ,xoffset
$9 ,0,,
$*******************************************************************************
$ Control Cards
$*******************************************************************************
*CONTROL_ALE
$# dct nadv meth afac bfac cfac dfac efac

-1 0 -2 0.000 0.000 0.000 0.000 0.000
$# start end aafac vfact prit ebc pref nsidebc

0.0001.0000E+20 1.000000 1.0000E-6 0 0 1.04E-04 0
$# ncpl nbkt imascl checkr

1 50 0 0.000
*CONTROL_ENERGY
2,2,1,1
$*******************************************************************************
$ Contact
$*******************************************************************************
*CONTACT_TIED_NODES_TO_SURFACE_ID
$# cid title

11
$# ssid msid sstyp mstyp sboxid mboxid spr mpr

17 10 4 0 0 0 0 1
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$# fs fd dc vc vdc penchk bt dt
0.000 0.000 0.000 0.000 0.000 0 0.0001.0000E+20

$# sfs sfm sst mst sfst sfmt fsf vsf
1.000000 1.000000 0.000 0.000 1.000000 1.000000 1.000000 1.000000

*CONTROL_CONTACT
$# slsfac rwpnal islchk shlthk penopt thkchg orien enmass

0.100000 0.000 2 0 0 0 1 0
$# usrstr usrfrc nsbcs interm xpene ssthk ecdt tiedprj

0 0 0 0 4.000000 0 0 0
$# sfric dfric edc vfc th th_sf pen_sf

0.000 0.000 0.000 0.000 0.000 0.000 0.000
$# ignore frceng skiprwg outseg spotstp spotdel spothin

0 0 0 0 0 0 0.000
$# isym nserod rwgaps rwgdth rwksf icov swradf ithoff

0 0 0 0.000 1.000000 0 0.000 0
$# shledg pstiff ithcnt tdcnof ftall unused shltrw

0 0 0 0 0 0 0.000
*RIGIDWALL_PLANAR_ID
1
$# NSID NSIDEX BOXID OFFSET BIRTH DEATH RWKSF
20,0,0
$# XT YT ZT XH YH ZH FRIC WVEL
1490 ,1456 ,730 ,1490 ,1800 ,730
*RIGIDWALL_PLANAR_ID
2
$# NSID NSIDEX BOXID OFFSET BIRTH DEATH RWKSF
20,0,0
$# XT YT ZT XH YH ZH FRIC WVEL
1490 ,0 ,730 ,1490 , -1800 ,730
*RIGIDWALL_PLANAR_ID
3
$# NSID NSIDEX BOXID OFFSET BIRTH DEATH RWKSF
20,0,0
$# XT YT ZT XH YH ZH FRIC WVEL
0 ,730 ,730 , -1000 ,730 ,730
*CONSTRAINED_EXTRA_NODES_SET
$# pid , nid
10,18
$*******************************************************************************
$ MISC (vectors , integration definitions , etc ...)
$*******************************************************************************
*DEFINE_VECTOR

1 0.000 0.000 0.000 1.000 0.000 1.000 0
*HOURGLASS_TITLE
ALE
$# hgid ihq qm ibq q1 q2 qb/vdc qw

1 1 1.0000E-6 0 1.500000 0.060000 0.100000 0.100000
*HOURGLASS_TITLE
LAG
$# hgid ihq qm ibq q1 q2 qb/vdc qw

10 1 0.100000 0 1.500000 0.060000 0.100000 0.100000
$*******************************************************************************
$ Part sets
$*******************************************************************************
*SET_PART_LIST_TITLE
ALE
$# sid da1 da2 da3 da4 solver

1 0.000 0.000 0.000 0.000 MECH
$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

1 2 5 0 0 0 0 0
*SET_PART_LIST_TITLE
Lagrangian
$# sid da1 da2 da3 da4 solver

3 0.000 0.000 0.000 0.000 MECH
$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

10 11 12 20 30 0 0 0
*SET_PART_LIST_TITLE
cylinders
$# sid da1 da2 da3 da4 solver

9 0.000 0.000 0.000 0.000 MECH
$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

11 12 0 0 0 0 0 0
*SET_PART_LIST_TITLE
interest
$# sid da1 da2 da3 da4 solver

11 0.000 0.000 0.000 0.000 MECH
$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

20 30 120 0 0 0 0 0
$*******************************************************************************
$ Parts
$*******************************************************************************
*PART
Charge
$# pid secid mid eosid hgid grav adpopt tmid

1 1 1 1 1 0 0 0
*PART
Air
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$# pid secid mid eosid hgid grav adpopt tmid
2 1 2 18 1 0 0 0

*PART
Air
$# pid secid mid eosid hgid grav adpopt tmid

3 1 2 2 1 0 0 0
*PART
Air
$# pid secid mid eosid hgid grav adpopt tmid

4 1 2 2 1 0 0 0
*PART
Air
$# pid secid mid eosid hgid grav adpopt tmid

5 1 2 2 1 0 0 0
*PART
$# title
Box
$# pid secid mid eosid hgid grav adpopt tmid

10 8 20 0 10 0 0 0
*PART
$# title
Cyl1
$# pid secid mid eosid hgid grav adpopt tmid

11 8 20 0 10 0 0 0
*PART
$# title
Cyl2
$# pid secid mid eosid hgid grav adpopt tmid

12 8 20 0 10 0 0 0
*PART
$# title
NS-end
$# pid secid mid eosid hgid grav adpopt tmid

13 9 11 0 10 0 0 0
*PART
$# title
panel
$# pid secid mid eosid hgid grav adpopt tmid

20 9 14 0 10 0 0 0
*PART
$# title
support
$# pid secid mid eosid hgid grav adpopt tmid

30 11 11 0 10 0 0 0
*PART
$# title
spotweld
$# pid secid mid eosid hgid grav adpopt tmid

120 100 100 0 0 0 0 0
$*******************************************************************************
$ Sections
$*******************************************************************************
*SECTION_SOLID_TITLE
ALE
$# secid elform aet

1 11 0
*SECTION_SHELL_TITLE
Shell3 -2mm
$# secid elform shrf nip propt qr/irid icomp setyp

8 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset

2.000000 2.000000 2.000000 2.000000 0.000 0.000 0.000 0
*SECTION_SHELL_TITLE
Shell3 -2mm
$# secid elform shrf nip propt qr/irid icomp setyp

9 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset

3.200000 3.200000 3.200000 3.200000 0.000 0.000 0.000 0
*SECTION_SHELL_TITLE
Shell19mm
$# secid elform shrf nip propt qr/irid icomp setyp

10 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset
19.000000 19.000000 19.000000 19.000000 0.000 0.000 0.000 0

*SECTION_SHELL_TITLE
Shell8mm
$# secid elform shrf nip propt qr/irid icomp setyp

11 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset

8.000000 8.000000 8.000000 8.000000 0.000 0.000 0.000 0
*SECTION_SHELL_TITLE
Shell8mm
$# secid elform shrf nip propt qr/irid icomp setyp

12 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset
14.000000 14.00000 14.000000 14.00000 0.000 0.000 0.000 0

*SECTION_BEAM
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$# secid elform shrf qr/irid cst scoor nsm
100 9 1.000000 2 1 0.000 0.000

$# ts1 ts2 tt1 tt2 print
10.000000 10.000000 0.000 0.000 0.000

*END

A.2.2 Matlab function to generate secondary combustion load curve

filename = ’/home/tom/Work/validation/A4/lcidA4.k’;
lcid =10;
runtime =100;
endtime = 15;
timestep= 0.1;
b = 1.5; %energy release coefficient
o = 7.5; % energy release offset
t = [0: timestep:endtime ];
ekg = 4E6; % afterburn energy per kg
mass= 0.08;% of charge
te = ekg*mass;
volume = 728*1456*2980;
specen = te/volume;
int = 1./(1+ exp(-b*(t))); % find where this = 0, then shift assign that t (s)
%s = t(max(find(int <=1E -03)));
dy = (specen*b.*exp(-b.*(t-o)))./(1+ exp(-b.*(t-o))).**2;
plot(t,dy)
curve = [t’ dy ’];
fout = fopen(filename ,’wt’);
fprintf(fout ,’$#b = %0.2f, o = %0.2f\n’,b,o)
fprintf(fout ,’*DEFINE_CURVE\n’)
fprintf(fout ,’$#lcid ,sidr ,sfa ,sfo ,offa ,offo ,dattyp\n’)
fprintf(fout ,’%i,0 ,1.00 ,1.00 ,0.000 ,0.000 ,0\n’,lcid)
fprintf(fout ,’$#x axis , y axis\n’)
fprintf(fout ,’%0.2f ,%0.5E\n’,curve ’)
fprintf(fout ,’*END’)
fclose(fout)

A.3 Rail vehicle models

C1 model input

$*******************************************************************************
$ Tom Anthistle , UoS MERail Rail Research Group
$*******************************************************************************
$*******************************************************************************
$ Initial and Boundary Conditions
$*******************************************************************************
*KEYWORD
*INCLUDE
mesh_30.k
*INCLUDE
tracerD2.k
*CONTROL_TERMINATION
$# endtim endcyc dtmin endeng endmas

1.000 0 0.000 0.000 0.000
*CONTROL_OUTPUT
$# npopt neecho nrefup iaccop opifs ipnint ikedit iflush

0 0 0 0 0.000 0 100 1000
$# iprtf ierode tet10 msgmax ipcurv

0 0 2 50 0
*CONTROL_TIMESTEP
$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st

0.000 0.600000 0 0.000 0.000 0 0 0
$# dt2msf dt2mslc imscl

0.000 0 0
*INITIAL_ALE_MAPPING
$# pid typ ammsid

2 1 50
$# x0 y0 z0 vid

0.000 0.000 1329.000 1
*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

1 0 1 0 0 0 1 1
*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

11 0 1 0 0 0 1 1
*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

2 0 0 1 0 1 0 1
*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

12 0 0 1 0 1 0 1
*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

3 0 0 0 1 1 1 0
*BOUNDARY_SPC_SET
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$# nsid cid dofx dofy dofz dofrx dofry dofrz
8 0 1 1 1 1 1 1

*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

9 0 1 1 1 1 1 1
*BOUNDARY_SPC_SET
$# nsid cid dofx dofy dofz dofrx dofry dofrz

20 0 0 0 1 0 0 0
$*******************************************************************************
$ Output / database details
$*******************************************************************************
*DATABASE_BINARY_D3PLOT
$# dt lcdt beam npltc psetid

20.00 0 0 0 0
$# ioopt

0
*DATABASE_BINARY_D3PART
$# dt lcdt beam npltc psetid

2.000000 0 0 0 3
*DATABASE_GLSTAT
$# dt binary lcur ioopt
1.5300E-3 1 0 1

*DATABASE_MATSUM
$# dt binary lcur ioopt
1.5300E-3 1 0 1

*DATABASE_TRHIST
$# dt binary lcur ioopt
1.5300E-2 1 0 1

$*******************************************************************************
$ Material Cards
$*******************************************************************************
*MAT_HIGH_EXPLOSIVE_BURN_TITLE
$# becomes mat null on 3d card
ChargeC4
$# mid ro d pcj beta k g sigy

1 1.6050E-6 8040.0000 28.000001 0.000 0.000 0.000 0.000
*MAT_NULL_TITLE
Air
$# mid ro pc mu terod cerod ym pr

2 1.3000E-9 -1.000E-6 0.000 0.000 0.000 0.000 0.000
*MAT_PLASTIC_KINEMATIC_TITLE
6005-T6 plastic kinematic
$# mid ro e pr sigy etan beta

10 2.684E-06 69.00000 0.300000 0.275000 0.660000 0.000
$# src srp fs vp

0 0.000000 0.300000 0.000
*MAT_JOHNSON_COOK
$# mid ro g e pr dtf vp rateop

11 2.684E-06 26.000 69.000 0.300 0.000 0.000 0.000
$# a b n c m tm tr epso

0.27 0.134 0.514 0.008 0.703 893.000 293.000 1E-06
$# cp pc spall it d1 d2 d3 d4

910.000 0 2.000000 0.000 0.060 0.497 -1.551 0.0286
$# d5 c2/p erod efmin

6.800 0.000 0 1.0000E-6
$ This model is for 6005-T6 \cite{borvik2005experimental}
*MAT_LAMINATED_GLASS_TITLE
Pane
$# mid ro eg prg syg etg efg ep

13 2.5000E-6 70.000000 0.230000 0.030000 0.060000 0.001500 0.950000
$# prp syp etp

0.490000 0.015000 0.010000
$# f1 f2 f3 f4 f5 f6 f7 f8

0.000 0.000 1.000000 1.000000 0.000 0.000 0.000 0.000
*MAT_SPOTWELD
$# mid ro e pr sigy et dt tfail

100 7.5000E-6 210.000 0.300 0.800 0.200 0.000 0.000
$# efail nrr nrs nrt mrr mss mtt nf

0.400 0.000 0.000 0.000 0.000 0.000 0.000 0.000
*MAT_RIGID
$# mid ro e pr n couple m alias

200 7.5000E-6 207.000 0.300 0.000 0.000 0.000
$# cmo con1 con2

0.000 0 0
$# lco or a1 a2 a3 v1 v2 v3

0.000 0.000 0.000 0.000 0.000 0.000
$*******************************************************************************
$ Equations of State
$*******************************************************************************
*EOS_JWL_TITLE
Charge
$# eosid a b r1 r2 omeg e0 vo

1 598.20001 13.75000 4.500000 1.5000000 0.320000 8.700000 1.000000
*EOS_LINEAR_POLYNOMIAL_TITLE
Air
$# eosid c0 c1 c2 c3 c4 c5 c6

2 0.000 0.000 0.000 0.000 0.400000 0.400000 0.000
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$# e0 v0
2.6000E-4 1.000000

*EOS_LINEAR_POLYNOMIAL_TITLE
6005- T6Al
$# eosid c0 c1 c2 c3 c4 c5 c6

20 0.000 76.000 0.000 0.000 0.000000 0.000000 0.000
$# e0 v0

0.710 1.000000
$*******************************************************************************
$ ALE Specific Cards
$*******************************************************************************
*ALE_MULTI -MATERIAL_GROUP
$# sid idtype gpname

1 1
2 1
5 1

*SET_MULTI_MATERIAL_GROUP_LIST
$ This is used in the mapping

50
1 2 0 0 0 0 0 0

*CONSTRAINED_LAGRANGE_IN_SOLID
$ Need one for each set
$# slave master sstyp mstyp nquad ctype direc mcoup

3 1 0 0 0 4 1 0
$# start end pfac fric frcmin norm normtyp damp

0.0001.0000E+10 0.100000 0.000 0.300000 0 1 0.000
$# cq hmin hmax ileak pleak lcidpor nvent blockage

0.000 0.000 0.000 0 0.110000 0 0 0
$# iboxid ipenchk intforc ialesof lagmul pfacmm thkf
$ 0 0 0 0 0.000 0 0.000
$*******************************************************************************
$ initial volume fraction / alemmg setup
$*******************************************************************************
*INITIAL_VOLUME_FRACTION_GEOMETRY
$# fmsid fmidtyp bammg ntrace

2 1 2 3
$# conttyp fillopt fammg vx xy xz radvel unused

2 1 3 0.000 0.000 0.000 0 0
$# sgsid normdir xoffset unused unused unused unused unused

100 0 0.000 0 0 0 0 0
$*******************************************************************************
$ Control Cards
$*******************************************************************************
*CONTROL_ALE
$# dct nadv meth afac bfac cfac dfac efac

-1 0 -2 0.000 0.000 0.000 0.000 0.000
$# start end aafac vfact prit ebc pref nsidebc

0.0001.0000E+20 1.000000 1.0000E-6 0 0 1.04E-04 0
$# ncpl nbkt imascl checkr

1 50 0 0.000
*CONTROL_ENERGY
2,2,1,1
$*******************************************************************************
$ Contact
$*******************************************************************************
*CONTACT_TIED_NODES_TO_SURFACE
$ slave = nodes , master = segments
$ 4 = node set , 0 = segment set
$# cid title
$# ssid msid sstyp mstyp sboxid mboxid spr mpr

60 60 4 0 0 0 0 0
$# fs fd dc vc vdc penchk bt dt

0.000 0.000 0.000 0.000 0.000 0 0.0001.0000E+20
$# sfs sfm sst mst sfst sfmt fsf vsf

1.000000 1.000000 0.000 0.000 1.000000 1.000000 1.000000 1.000000
*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK
$ sstyp & mstyp 0 = segment set
$# cid title
$# ssid msid sstyp mstyp sboxid mboxid spr mpr

21 20 0 0 0 0 0 0
$# fs fd dc vc vdc penchk bt dt

0.000 0.000 0.000 0.000 0.000 0 0.0001.0000E+20
$# sfs sfm sst mst sfst sfmt fsf vsf

1.000000 1.000000 0.000 0.000 1.000000 1.000000 1.000000 1.000000
$# option nfls sfls param eraten erates ct2cn cn

2 0.016 0.100 0.000 0.000 0.000 0.000 0.000
*CONTACT_TIED_SURFACE_TO_SURFACE
$# cid typ 0 = seg set title
$# ssid msid sstyp mstyp sboxid mboxid spr mpr

201 202 0 0 0 0 0 0
$# fs fd dc vc vdc penchk bt dt

0.000 0.000 0.000 0.000 0.000 0 0.0001.0000E+20
$# sfs sfm sst mst sfst sfmt fsf vsf

1.000000 1.000000 0.000 0.000 1.000000 1.000000 1.000000 1.000000
*CONTROL_CONTACT
$# slsfac rwpnal islchk shlthk penopt thkchg orien enmass

0.100000 0.000 2 0 0 0 1 0
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$# usrstr usrfrc nsbcs interm xpene ssthk ecdt tiedprj
0 0 0 0 4.000000 0 0 0

$# sfric dfric edc vfc th th_sf pen_sf
0.000 0.000 0.000 0.000 0.000 0.000 0.000

$# ignore frceng skiprwg outseg spotstp spotdel spothin
0 0 0 0 0 0 0.000

$# isym nserod rwgaps rwgdth rwksf icov swradf ithoff
0 0 0 0.000 1.000000 0 0.000 0

$# shledg pstiff ithcnt tdcnof ftall unused shltrw
0 0 0 0 0 0 0.000

$*******************************************************************************
$ MISC (vectors , integration definitions , etc ...)
$*******************************************************************************
*DEFINE_VECTOR

1 0.000 0.000 0.000 1.000 1.000 0.000 0
*HOURGLASS_TITLE
ALE
$# hgid ihq qm ibq q1 q2 qb/vdc qw

1 1 1.0000E-6 0 1.500000 0.060000 0.100000 0.100000
*HOURGLASS_TITLE
LAG
$# hgid ihq qm ibq q1 q2 qb/vdc qw

10 1 0.100000 0 1.500000 0.060000 0.100000 0.100000
*INTEGRATION_SHELL
$# irid nip esop failopt

1 6 0 0
$# s wf pid

0.670800 0.240000 35
0.350800 0.240000 35
0.015400 0.020000 35

-0.015400 0.020000 35
-0.350800 0.240000 35
-0.670800 0.240000 35

$*******************************************************************************
$ Part sets
$*******************************************************************************
*SET_PART_LIST_TITLE
ALE
$# sid da1 da2 da3 da4 solver

1 0.000 0.000 0.000 0.000 MECH
$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

1 2 0 0 0 0 0 0
*SET_PART_LIST_TITLE
Lagrangian
$# sid da1 da2 da3 da4 solver

3 0.000 0.000 0.000 0.000 MECH
$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

18 19 20 21 22 24 26 27
28 29 30 31 32 33 34 35
36 40 100

$*******************************************************************************
$ Parts
$*******************************************************************************
*PART
Charge
$# pid secid mid eosid hgid grav adpopt tmid

1 1 1 1 1 0 0 0
*PART
Air
$# pid secid mid eosid hgid grav adpopt tmid

2 1 2 2 1 0 0 0
*PART
Air
$# pid secid mid eosid hgid grav adpopt tmid

5 1 2 2 1 0 0 0
*PART
P18
$# pid secid mid eosid hgid grav adpopt tmid

18 23 10 0 10 0 0 0
*PART
P19
$# pid secid mid eosid hgid grav adpopt tmid

19 11 10 0 10 0 0 0
*PART
P20
$# pid secid mid eosid hgid grav adpopt tmid

20 21 10 0 10 0 0 0
*PART
P21
$# pid secid mid eosid hgid grav adpopt tmid

21 22 10 0 10 0 0 0
*PART
P22
$# pid secid mid eosid hgid grav adpopt tmid

22 12 10 0 10 0 0 0
*PART
P24
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$# pid secid mid eosid hgid grav adpopt tmid
24 19 10 0 10 0 0 0

*PART
P26
$# pid secid mid eosid hgid grav adpopt tmid

26 19 10 0 10 0 0 0
*PART
P27
$# pid secid mid eosid hgid grav adpopt tmid

27 20 10 0 10 0 0 0
*PART
P28
$# pid secid mid eosid hgid grav adpopt tmid

28 14 10 0 10 0 0 0
*PART
P29
$# pid secid mid eosid hgid grav adpopt tmid

29 18 10 0 10 0 0 0
*PART
P30
$# pid secid mid eosid hgid grav adpopt tmid

30 16 10 0 10 0 0 0
*PART
P31
$# pid secid mid eosid hgid grav adpopt tmid

31 13 10 0 10 0 0 0
*PART
P32
$# pid secid mid eosid hgid grav adpopt tmid

32 17 10 0 10 0 0 0
*PART
P33
$# pid secid mid eosid hgid grav adpopt tmid

33 10 10 0 10 0 0 0
*PART
doors
$# pid secid mid eosid hgid grav adpopt tmid

34 14 10 0 10 0 0 0
*PART
windows
$# pid secid mid eosid hgid grav adpopt tmid

35 3 13 0 10 0 0 0
*PART
doorrib
$# pid secid mid eosid hgid grav adpopt tmid

36 15 10 0 10 0 0 0
*PART
pass
$# pid secid mid eosid hgid grav adpopt tmid

40 9 200 0 10 0 0 0
*PART
spotweld
$# pid secid mid eosid hgid grav adpopt tmid

100 100 100 0 0 0 0 0
*PART
rigidshell
$# pid secid mid eosid hgid grav adpopt tmid

200 10 200 0 0 0 0 0
$*******************************************************************************
$ Sections
$*******************************************************************************
*SECTION_SOLID_TITLE
ALE
$# secid elform aet

1 11 0
*SECTION_SHELL_TITLE
Shell -Window
$# secid elform shrf nip propt qr/irid icomp setyp

3 2 1.000000 6 1 -1 0 1
$# t1 t2 t3 t4 nloc marea idof edgset
10.000000 10.000000 10.000000 10.000000 0.000 0.000 0.000 0

$*SECTION_SHELL_TITLE
$Shell -Window
$# secid elform shrf nip propt qr/irid icomp setyp
$ 3 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset
$ 10.000000 10.000000 10.000000 10.000000 0.000 0.000 0.000 0
*SECTION_SHELL_TITLE
pass
$# secid elform shrf nip propt qr/irid icomp setyp

9 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset

2.000000 2.000000 2.000000 2.000000 0.000 0.000 0.000 0
*SECTION_SHELL_TITLE
Shell2 .5mm
$# secid elform shrf nip propt qr/irid icomp setyp

10 2 1.000000 2 1 0 0 1
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$# t1 t2 t3 t4 nloc marea idof edgset
2.500000 2.500000 2.500000 2.500000 0.000 0.000 0.000 0

*SECTION_SHELL_TITLE
Shell3mm
$# secid elform shrf nip propt qr/irid icomp setyp

11 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset

3.000000 3.000000 3.000000 3.000000 0.000 0.000 0.000 0
*SECTION_SHELL_TITLE
Shell3 .4mm
$# secid elform shrf nip propt qr/irid icomp setyp

12 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset

3.400000 3.400000 3.400000 3.400000 0.000 0.000 0.000 0
*SECTION_SHELL_TITLE
Shell4mm
$# secid elform shrf nip propt qr/irid icomp setyp

13 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset

4.000000 4.000000 4.000000 4.000000 0.000 0.000 0.000 0
*SECTION_SHELL_TITLE
Shell4 .5mm
$# secid elform shrf nip propt qr/irid icomp setyp

14 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset

4.500000 4.500000 4.500000 4.500000 0.000 0.000 0.000 0
*SECTION_SHELL_TITLE
Shell5mm
$# secid elform shrf nip propt qr/irid icomp setyp

15 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset

5.000000 5.000000 5.000000 5.000000 0.000 0.000 0.000 0
*SECTION_SHELL_TITLE
Shell6mm
$# secid elform shrf nip propt qr/irid icomp setyp

16 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset

6.000000 6.000000 6.000000 6.000000 0.000 0.000 0.000 0
*SECTION_SHELL_TITLE
Shell6 .4mm
$# secid elform shrf nip propt qr/irid icomp setyp

17 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset

6.500000 6.500000 6.500000 6.500000 0.000 0.000 0.000 0
*SECTION_SHELL_TITLE
Shell6 .8mm
$# secid elform shrf nip propt qr/irid icomp setyp

18 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset

7.000000 7.000000 7.000000 7.000000 0.000 0.000 0.000 0
*SECTION_SHELL_TITLE
Shell8mm
$# secid elform shrf nip propt qr/irid icomp setyp

19 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset

8.000000 8.000000 8.000000 8.000000 0.000 0.000 0.000 0
*SECTION_SHELL_TITLE
Shell10mm
$# secid elform shrf nip propt qr/irid icomp setyp

20 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset
10.000000 10.000000 10.000000 10.000000 0.000 0.000 0.000 0

*SECTION_SHELL_TITLE
Shell12mm
$# secid elform shrf nip propt qr/irid icomp setyp

21 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset
12.000000 12.000000 12.000000 12.000000 0.000 0.000 0.000 0

*SECTION_SHELL_TITLE
Shell15mm
$# secid elform shrf nip propt qr/irid icomp setyp

22 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset
15.000000 15.000000 15.000000 15.000000 0.000 0.000 0.000 0

*SECTION_SHELL_TITLE
Shell16mm
$# secid elform shrf nip propt qr/irid icomp setyp

23 2 1.000000 2 1 0 0 1
$# t1 t2 t3 t4 nloc marea idof edgset
16.000000 16.000000 16.000000 16.000000 0.000 0.000 0.000 0

*SECTION_BEAM
$# secid elform shrf qr/irid cst scoor nsm

100 9 1.000000 2 1 0.000 0.000
$# ts1 ts2 tt1 tt2 print

7.000000 7.000000 0.000 0.000 0.000
*END
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Appendix B

GNU Octave scripts to
calculate injury

B.1 Initial conditions and visualising data

generate.m
% need to generate input data for risk models
% database_tracer file
% ’D’ matrix for frag1.m (as a mat file ?)
file_D = ’/home/tom/Work/vehicles/C8passD1/D.mat’;
file_T = ’/home/tom/Work/vehicles/C8passD1/tracer.k’;

if exist(file_D) == 2
error ’file(s) to generate already exist!’

elseif exist(file_T) == 2
error ’file(s) to generate already exist!’

else
continue

end
mesh_d = 30;
rad = 152 ; % radius of BTD
r = mesh_d /2 +rad;
h = 1300 ; % z position of BTD sensors
A = [ 1250 1100 ; ...

2050 650 ; ...
2850 1100 ; ...
5150 1100 ; ...
5950 1100 ; ...
6750 650 ; ...
8350 1100 ];% define positions of person centers -

% rearrange D so that is ordered by position from device , closest to furthest.
B = [ A hypot(A(:,1),A(:,2)) ] ;
D = sortrows(B,3);
D(:,3) = [];
save(file_D ,’D’);
l = length(D);
pos = [];

for i = 1:l
p1 = [D(i,1) D(i,2)-r];
p2 = [D(i,1)-r D(i,2)];
p3 = [D(i,1) D(i,2)+r];
p4 = [D(i,1)+r D(i,2)];
pos = [pos ; p1 ; p2 ; p3 ; p4] ;

end
lpos = length(pos);
u = ones(lpos ,1);
time = 0*u;
dbt = [time u pos u*h] ; % generates 0 1 x y z matrix
fout = fopen(file_T ,’wt’);
fprintf(fout ,’$ x and y positions from generate.m \n’)% write corresponsing x y

positions out as a comment above? to aid preprocessing
fprintf(fout ,’$ %-0.3f,%-0.3f\n’,D’)
fprintf(fout ,’*DATABASE_TRACER\n’)
fprintf(fout ,’$#,time ,track ,x,y,z,,\n’)
fprintf(fout ,’%i,%i,%-0.3f,%-0.3f,%-0.3f,,\n’,dbt ’)
fprintf(fout ,’*END’)
fclose(fout)

riskviz.m
% Produce visualisation of risks , using data from risk functions
% Tom Anthistle , MERail Research Group , University of Sheffield
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clear
fileout = ’C1/C1_nisst1_2.eps’;
fileout2 = ’C1/C1_nissf1_2.eps’;
fileout3 = ’C1/C1_asii_2.eps’;
fileout4 = ’C1/C1_cwv_2.eps’;
file_chestvel = ’C1/C1D2.mat’;
file_frag = ’C1/D2fragout_01.mat’;
r = 305/2 ;
% ==============================================================
% read frag data INJ_F = [ INJ_F ; i D(i ,1) D(i ,2) F(1) F(2) F(3) ]
load(file_frag);
% INJ_F = [ person_id x y AIS (1) AIS (2) AIS (3) ]
% ==============================================================
% read chest wall data
load(file_chestvel); % this is a 2-by -p matrix , called INJ_C
% INJ_C = [ person_id AIS ASII CWV ]
% ==============================================================
% combine chest wall + frag injuries , delete lowest , create ’inj ’
AIS = [ INJ_F (: ,4:6) INJ_C (:,2) ];
AIS_s = sort(AIS ,2); % sort horizontally , put smallest in col 1
AIS_s (:,1) = []; % remove smallest values
nissf = sum(INJ_F (: ,4:6) .^2 ,2);
nisst = sum(AIS_s (: ,1:3) .^2 ,2);
nisst(nisst >75) = 75; % ensure any nisst values greater than 75 are reset - see

AIScw
inj = [ INJ_F (: ,1:3) nisst nisst ]; % person id , positions , niss
% injury = id x y nisst nissf asii cwv
injury = [ inj(:,1) inj(:,2)-r inj(:,3)-r inj(:,4) inj(:,5) INJ_C (:,3) INJ_C (:,4) ]

;
%
c_iss = flipud(hot (76)) ;
g_iss = flipud(gray (76)) ;
c_asii = flipud(hot (21)) ; % sometimes this will need to be 24, sometimes 36 (

dependes on out of range)
g_asii = flipud(gray (21)) ;
c_cwv = flipud(hot (33)) ;
g_cwv = flipud(gray (33)) ;
% ======== NISSt (0 -75) ==========
clf
axes(’Box’,’on’)
axis equal
axis ([0 9500 0 1300])
hold on

for i = 1: length(injury)
rectangle(’position ’,[injury(i,2),injury(i,3),r,r],’curvature ’ ,[1,1],’FaceColor ’,

c_iss(round(injury(i,4))+1,:))
end

caxis ([0 ,75])
pos=get(gca ,’pos’);
set(gca ,’pos’,[pos(1) pos (2) pos (3) pos(4)]);
colormap(c_iss);
hc = colorbar(’location ’,’southoutside ’,’Position ’,[pos(1) pos(2)*3 pos (3) pos(4)

*0.05 ],...
’XTick’ ,0:18.75:75 ,’XDir’,’reverse ’,’XTickLabel ’,{’very low’, ’low’, ’medium ’,

’high’,’very high’});
hold off
print(’-depsc’,fileout)
% ======== NISSf (0 -75) ==========
clf
axes(’Box’,’on’)
axis equal
axis ([0 9500 0 1300])
hold on

for i = 1: length(injury)
rectangle(’position ’,[injury(i,2),injury(i,3),r,r],’curvature ’ ,[1,1],’FaceColor ’,

c_iss(round(injury(i,5))+1,:))
end

caxis ([0 ,75])
pos=get(gca ,’pos’);
set(gca ,’pos’,[pos(1) pos (2) pos (3) pos(4)]);
colormap(c_iss);
hc = colorbar(’location ’,’southoutside ’,’Position ’,[pos(1) pos(2)*3 pos (3) pos(4)

*0.05 ],...
’XTick’ ,0:18.75:75 ,’XDir’,’reverse ’,’XTickLabel ’,{’very low’, ’low’, ’medium ’,

’high’,’very high’});
hold off
print(’-depsc’,fileout2)
% ========= ASII (1 -8) =========
clf
axes(’Box’,’on’)
axis equal
axis ([0 9500 0 1300])
hold on

for i = 2: length(injury)
rectangle(’position ’,[injury(i,2),injury(i,3),r,r],’curvature ’ ,[1,1],’FaceColor ’,

c_asii(ceil(injury(i,6) *4) ,:))
end
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caxis ([0 ,5]) % sometimes 0,12, when top line is 36
pos=get(gca ,’pos’);
set(gca ,’pos’,[pos(1) pos (2) pos (3) pos (4)]);
colormap(c_asii);
hc = colorbar(’location ’,’southoutside ’,’Position ’,[pos(1) pos(2)*3 pos (3) pos(4)

*0.05 ],...
’XTick’ ,0:1.25:5 ,’XDir’,’reverse ’,’XTickLabel ’,{’0’, ’1.25’, ’2.5’, ’3.75’,’5’

});
hold off
print(’-depsc’,fileout3)
% ========= CWV (1 -20) =========
clf
axes(’Box’,’on’)
axis equal
axis ([0 9500 0 1300])
hold on

for i = 2: length(injury)
rectangle(’position ’,[injury(i,2),injury(i,3),r,r],’curvature ’ ,[1,1],’FaceColor ’,

c_cwv(ceil(injury(i,7)*3) ,:))
end

caxis ([0 ,11])
pos=get(gca ,’pos’);
set(gca ,’pos’,[pos(1) pos (2) pos (3) pos (4)]);
colormap(c_cwv);
hc = colorbar(’location ’,’southoutside ’,’Position ’,[pos(1) pos(2)*3 pos (3) pos(4)

*0.05 ],...
’XTick’ ,0:2.5:10 ,’XDir’,’reverse ’,’XTickLabel ’,{’0’, ’2.5’, ’5’, ’7.5’,’10’});

hold off
print(’-depsc’,fileout4)

B.2 Chest Velocity

CV3.m
% Calculate chest wall velocties from a 4 pressure histories
% Tom Anthistle , MERail Research Group , University of Sheffield
% Variables and functions
% get pressure history files
rawPdata = dlmread ("/ home/tom/Work/vehicles/C9passD3/C9D3.csv",",");
% rawPdata = dlmread (’~/ Work/vehicles/case1/out.csv ’,’,’);
rawPdata (1,:) =[]; % make the first row empty
rawPdata(:,end)=[]; % make the last column empty because of extra comma
% ---------------------------------------
l = rows(rawPdata); % find number of entries for each pressure sensor
nc = columns(rawPdata); % number of columns in the data file
t=rawPdata (:,1);
P=rawPdata (:,2:nc);
ncp = columns(P); % number of columns in pressure data
num_persons = ncp /4;
%if mod(ncp ,4) ~= 0 % number of BTD if this number is not an integer , there is a

problem!
% error "Ensure 4 pressure histories are defined for each BTD location"
%end
% --------- Boundary / initial coniditons
x = zeros(l,ncp); % initialise matrices for displacement and velocity
y = zeros(l,ncp); % x, y and P all same dimensions
% x(1) =
x(1,:) = 0;% displacement
y(1,:) = 0;% dx/dt (velocity)
% --------------------------------------
% Use Runge -Kutta method to solve diff. eq.
for i = 1:ncp % columns

for j = 1:l-1 % rows (l-1 because of j+1 at l44)
h = t(j+1) - t(j); % time step. t only has 1 dimension.
c11=h*y(j,i); %dx/dt
c21=h*f2(P(j,i),x(j,i),y(j,i)); %dy/dt
c12=h*(y(j,i)+0.5* c21);
c22=h*f2(P(j,i)+(P(j+1,i)-P(j,i))/2,x(j,i)+0.5*c11 ,y(j,i)+0.5* c21);
c13=h*(y(j,i)+0.5* c22);
c23=h*f2(P(j,i)+(P(j+1,i)-P(j,i))/2,x(j,i)+0.5*c12 ,y(j,i)+0.5* c22);
c14=h*(y(j,i)+c23);
c24=h*f2(P(j+1,i),x(j,i)+c13 ,y(j,i)+c23);
x(j+1,i)=x(j,i)+(1/6) *(c11+2*c12 +2*c13+c14);
y(j+1,i)=y(j,i)+(1/6) *(c21+2*c22 +2*c23+c24);

end
end

fBTD = [];
for k = 1:4: ncp

fBTD = [fBTD 0.25* sum(y(:,k:k+3) ,2)] ;% sum 4 columns across , for each sensor in
an individual BTD , generating a single column of average velocity for each
BTD

end
% get the max value for each BTD (each col in BTD)
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[CWVp] = max(fBTD); % Chest Wall Velocity peak
ASII = (0.124+0.117.* CWVp).**2.63;
inj = arrayfun(@AIScw ,ASII);
file = "~/ Work/vehicles/C9passD3/C9D3.mat";
persons = 1: num_persons ;
INJ_C = [persons ; inj ; ASII ; CWVp]’ ; % put ASII and CWVp in here too
save(file ,’INJ_C’,’-V7’)
velhist = [t fBTD] ;
dlmwrite ("~/ Work/vehicles/C9passD3/vth.csv",velhist ,’,’)

B.2.1 Functions used in CV2.m

f2.m
% differential equation function for chest velocity
% Tom Anthistle , MERail Research Group , University of Sheffield
function b = f2(p,x,y) % returns value of 2nd derivative for 3 inputs
M = 2.03; %kg
J = 0.696; % Ns/m (once converted into model units , as with all below)
K = 989E-06; % N/m
A = 82000; % m^2
P0 = 0.000104; % Pa
V0 = 1820000; % m^3
g = 1.2;
pn = sign(V0/(V0-A*x));
sub = sqrt((V0/(V0-A*x))**2)**g;
b = 1/M*(A*(p + P0 - P0*pn*sub) - J*y - K*x);
end

AIScw.m
% differential equation function for chest velocity
% get out AIS result
% Tom Anthistle , MERail Research Group , University of Sheffield
function [val] = AIScw(asii) % returns value of 2nd derivative for 3 inputs
if nargin ~= 1

error(’Please provide an input argument ’);
end

if (asii) <= 0.2
val = 0 ;

elseif (asii) <= 0.7
val = 1 ;

elseif (asii) <= 1.6
val = 2 ;

elseif (asii) <= 2.5
val = 3 ;

elseif (asii) <= 3.6
val = 4 ;

elseif (asii) <= 7.1
val = 5 ;

else
val = 8.66 ; % cheaty way of ensuring AIS values of 6 give a NISS of 75

end
end % end function

B.3 Projectiles

Assuming a normal distribution for angular spread in 2 directions from a flat surface, and
normally distributed velocities with the highest velocities at the lowest angular spreads,
it is necessary to randomly sample from a trivariate normal distribution to generate the
initial conditions for a sample of n projectiles. It is possible to use the mvnrnd function
in Matlab or GNU Octave to generate an n × d matrix, where d is the number of
dimensions in which random variables are required, which is 3 in this case. Statistically,
the mean, µ of the variable in each direction is required, as well as a covariance matrix Σ
which defines the relationship between the variables in all dimensions. The form of the
covariance matrix for the 3 variables required, projection angles θ and φ, and velocity v
(see Figure B.1) is shown in (B.1).

Statistically, the variance σ2 is a measure of the spread in a set of data, and is always
positive or zero, with a variance of zero corresponding to a set of identical numbers,
and high variance indicating a large spread in the numbers within a set. The standard
deviation is the more commonly referred to statistical measure, and shows the average
variation of each variable in a population from the mean of the entire population. For
a normal distribution, 99.7% of all values will lie within 3 standard deviations (±3σ) of
the mean.
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Figure B.1: Definition of angles θ and φ

The covariance is the spread of two related variables, and is a measure of how well
one variable can be predicted with a linear function of the other [198]. The covariance
is defined for two random variables x and y by Equation (B.2) [199]. As the covariance
is a function of two variables that can either be negatively or positively correlated, the
value can either be positive or negative, and the square root has neither a mathematical
or physical meaning. The standard deviation σx, σy, covariance σx,y, and correlation
ρx,y are connected by Equation (B.3)[200, 171].

Σθ,φ,v =



σθ,θ σθ,φ σθ,v
σφ,θ σφ,φ σφ,v
σv,θ σv,φ σv,v


 (B.1)

σx,y =
1

n− 1

n∑

i=1

(xi − µx)(yi − µy) (B.2)

ρx,y =
σx,y
σxσy

(B.3)

where − 1 ≤ ρx,y ≤ 1

The structure of the covariance matrix is such that the diagonal is simply the variance
of an individual variable, and non-diagonal elements are the covariances. A diagonal
matrix indicated no correlation between variables, and the distribution of each variable
is purely a function of it’s own mean and variance. The covariance is defined such that
(σx,y) = (σy,x), so it follows that the covariance matrix must always be symmetric.

It is outside the scope of this test to undertake tests to identify the statistical pa-
rameters µ and σ2, so the following assumptions are made about the projectile ejection
pattern:

• all parameters will be normally distributed

• the mean angular projection for both direction will be 0o

• 99.7% of all projectiles will fall within the following angular spreads from 0o

– θ3σ = 70o

– φ3σ = 45o
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• the mean velocity will be the Gurney velocity

• fragments travelling at a zero velocity are very unlikely, so v6σ = µv

• there is no correlation between the two angles of projection, so (σθ,φ) = (σφ,θ) = 0

• the correlation between angle and velocity is the same for both the θ and φ direc-
tions, so σv,θ = σv,φ

• angle and velocity are negatively correlated and will have negative covariances,
calculated using (B.3) with a correlation value of −0.5

The projectile impact can be calculated with a vehicle occupant can be calculated, by
assuming the occupant can be simplified as a collection of cylinders, with dimensions for
the human body taken from BS EN ISO 7250 [201]. With this assumption, a range of
angles each cylinder (body part) occupies in both the θ and φ directions can be calculated
using simple relations. For simplicity, two orientations are chosen for the cylinders, as
this can represent the positions of most limbs within a rail vehicle that are subject to a
high risk of injury. Cylinders are assumed to be aligned with their axis in either the z
or x direction, but if so desired this model could easily be extended to cylinders aligned
with the y axis. The range of angles is defined, with reference to Figure B.1, as follows.
The angles are calculated by assuming a rectangular area in space, defined by the outer
edge of a cylinder, is the area exposed to a projectile.

For a cylinder with an axis aligned with the z axis, the angular ranges θr and φr are
given by (B.4) and (B.5), where x, y and z are the positions of the centre of the cylinder,
and r and h are the radius and height of the cylinder respectively.

θr = tan−1 y

x
± sin−1

(
r√

x2 + y2

)
(B.4)

For the cylinder side

α = tan−1

√
x2 + y2

z

φr =
(π

2
− α

)
± sin−1

(
(h/2) sinα√

x2 + y2 + (z − h/2)2

)
(B.5)

For the cylinder end

β = tan−1

(
z − h/2√
x2 + y2

)

φr2 = β ± sin−1

(
r sinβ√

x2 + y2 + (z − h/2)2

)
(B.6)

For a cylinder aligned with the x axis...

B.3.1 Example text output from multi-projectile model

number of passengers: 7
mass of charge: 5.00 kg
number of projectiles: 250
mass of projectiles: 1.03 kg
------------------ Occupant injury data -----------------
Person 1
Hit 12 times
legL legR torso neck head armL armR
1 0 5 0 3 0 3
NISS score for person 1 is: 75
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
Person 2
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Hit 24 times
legL legR torso neck head armL armR
8 3 9 0 0 3 1
NISS score for person 2 is: 75
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
Person 3
Hit 17 times
legL legR torso neck head armL armR
3 2 7 1 4 0 0
NISS score for person 3 is: 75
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
Person 4
Hit 2 times
legL legR torso neck head armL armR
0 1 0 0 0 0 1
NISS score for person 4 is: 32
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
Person 5
Hit 3 times
legL legR torso neck head armL armR
1 1 1 0 0 0 0
NISS score for person 5 is: 57
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
Person 6
Hit 3 times
legL legR torso neck head armL armR
1 2 0 0 0 0 0
NISS score for person 6 is: 48
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
Person 7
Hit 2 times
legL legR torso neck head armL armR
0 1 0 0 1 0 0
NISS score for person 7 is: 41
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
*********************************************************
** end of output data **
*********************************************************

B.3.2 Top level code - frag1.m

% Projectile throwout and position calculations
% Tom Anthistle , MERail Rail Research Group , University of Sheffield
% --------------------- user inputs ------------------------------
clear -all
GE = 2.35 E03; %gurney energy sqrt (2E) \cite{ dobratz1985llnl } p8 -28
C = 5;% total mass of explosive
Mp = 0.0041;% mass of an individual projectile (10 mm radius ball bearing , 4.15 gr)
n = 250; %number of projectiles , based on 1kg from D200 .2
Mt = Mp*n;% total mass of projectiles
N = 10; %mass of backing material
corr = -0.5; % covariance correlation
%D = [150 300 ; 300 450 ]; % position of people centres in mm [x1 y1 ; x2 y2 etc]
load(’/home/tom/Work/fragtest/D2.mat’,’D’)
lD = length(D);
hc = 1330; % height of charge in mm
% --------------------------------------------------
% ----- Calculate variances ---------------
At = (1+2**( Mt/C))/(1+2**(N/C));
muve = GE*(( (1+At**3) /(3*(1+ At)) + At**2*(N/C) + Mt/C)** -0.5); % calculate the

gurney velocity for a flat plate
sdevth = 70/3; % standard deviation in the theta direction
sdevph = 45/3;
sdevve = muve /6;
varang_v = corr*sdevph*sdevth; % variance for angle and velocity
% --------- Assemble covariance matrix and mu array -------
COV = [ sdevth **2 0 varang_v ; 0 sdevph **2 varang_v ; varang_v varang_v sdevve **2];
mu = [0 0 muve];
% ------------------ Take draws from normal distibution -------
IC = mvnrnd(mu,COV ,n);
% ------------------ visualise the generated projectile matrix --
%P = zeros(n ,1);
%quiver3(P(: ,1),P(: ,1),P(: ,1),IC(: ,1),IC(: ,2),IC(: ,3))
% --------------------- generate a hit matrix -------------------
A = person(D(:,1),D(:,2),lD ,hc); %angles of the ’people ’ person(x,y,% first item is

...
bphm = [490-hc 490-hc 1217-hc 1485-hc 1633-hc 1132-hc 1132-hc ; 75 75 155 30.5 90.7

43 43]; % body position height matrix for z
HM = []; % hit matrix
for j=1:lD % person
for i=1:n % frag
for k=0:6 % body part
h = iswithin2(IC(i,1),IC(i,2),A(j,1+4*k),A(j ,2+4*k),A(j,3+4*k),A(j,4+4*k));
if h == 1
d = hypot(D(j,1),D(j,2),bphm(1,k+1)); % this is d in mm
v = velocity(IC(i,3),d/1000); % input in m, output in m/s
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pend = (dop(v))*1000; % input in m/s gives depth of penetration in mm
HM = [HM; j k i v pend AIS(k,pend ,bphm(2,k+1))] ;% velocity = IC(i ,3)
IC(i,3) = vupdate(pend/bphm(2,k+1),v); % update the velocity
continue
elseif h == 0
continue
end

endfor
endfor

endfor
mr1 = sortrows(HM ,1); % sort rows so all hits to a person are grouped together by

person

file_frag = ’/home/tom/Work/fragtest/fragtest2_03.mat’;
file = ’/home/tom/Work/fragtest/fragtest2_03.txt’;
fout = fopen(file ,’wt’);
INJ_F = [];
%fprintf(fout ,’-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-\n’);
fprintf(fout ,’number of passengers: %i \n’,lD);
%%fprintf(f,’%i’,lD);
fprintf(fout ,’mass of charge: %0.2f kg \n’,C);
fprintf(fout ,’number of projectiles: %i \n’,n);
fprintf(fout ,’mass of projectiles: %0.2f kg \n’,Mt);
fprintf(fout ,’------------------ Occupant injury data -----------------\n’);
for i=1:lD

fprintf(fout ,’Person %i \n’,i);
start = find(mr1(:,1)== i,1) ; % find the point at which this ’person ’ starts

in mr1
hits = sum(mr1(:,1) == i); % find the number of hits , from the of times they

occur in the hit matrix
fprintf(fout ,’Hit %i times \n’,hits);
fprintf(fout ,’legL \t legR \t torso \t neck \t head \t armL \t armR \n’)
legL = sum(mr1(start:start+hits -1,2) == 0);
legR = sum(mr1(start:start+hits -1,2) == 1);
torso = sum(mr1(start:start+hits -1,2) == 2);
neck = sum(mr1(start:start+hits -1,2) == 3);
head = sum(mr1(start:start+hits -1,2) == 4);
armL = sum(mr1(start:start+hits -1,2) == 5);
armR = sum(mr1(start:start+hits -1,2) == 6);
fprintf(fout ,’%i \t %i \t %i \t %i \t %i \t %i \t %i \t \n’,legL ,legR ,torso ,

neck ,head ,armL ,armR)
F = sort(mr1(start:start+hits -1,6),’descend ’); % sort column by AIS
Q = 3-length(F);
Q(Q<0) =0;
B = zeros(Q,1);
C = [F ; B];
F2 = C(1:3); % top 3 AIS values - what if there isn ’t 3 values !?
INJ_F = [ INJ_F ; i D(i,1) D(i,2) F2(1) F2(2) F2(3) ];
niss = sum(F2.**2); % 3 highest AIS values for AIS column with person i
fprintf(fout ,’NISS score for person %i is: %i \n’,i,niss);
fprintf(fout ,’ -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-\n’);

end
fprintf(fout ,’*********************************************************\n’);
fprintf(fout ,’**                  end of output data                 **\n’);
fprintf(fout ,’*********************************************************\n’);
fclose(fout);
save(file_frag ,’INJ_F’,’-V7’)

B.3.3 Functions developed for use in frag1.m

person.m
% Define representative cylinder for a 50th percentile human
% Tom Anthistle , MERail Rail Research Group , University of Sheffield
% Data taken from statistical samples for a 50th percentile male human
% Data taken for head , chest arm and leg
% From an (x,y) position of a person (assumed standing), define values required by

other functions for each cylinder
function A = person(l,w,n,hc) % \cite{ISO7250 -2}

if nargin ~=4
error(’wrong number of input arguments ’)

end
x = l; % might not always want random people !!
y = w;
W = ones(n,1);

%height = 1750
% ================= leg =========================
rl = 75*W; % ((570/(2* pi)) + (375/(2* pi)))/2 ; % average of calf and thigh
xl = x;
yl1 = y.+187.5 -rl; % plus and minuses the other way round for other leg
yl2 = y. -187.5+rl;
hl = 980*W; % 830; % maybe add thigh clearance
zlt = (980).*W -hc ;% zl = (hl /2)*ones(n ,1);
zlb = (0).*W -hc;
[thminl1 ,themaxl1] = thetar(xl,yl1 ,rl);
[pminl1 ,pmaxl1] = phi(xl,yl1 ,zlt ,zlb);
[thminl2 ,themaxl2] = thetar(xl,yl2 ,rl);
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[pminl2 ,pmaxl2] = phi(xl,yl2 ,zlt ,zlb);
%[phminl ,phmaxl] = phir(xl ,yl ,zl ,hl)
%[ph2minl ,ph2maxl] = phir2(xl ,yl ,zl ,hl ,rl)
% ================ torso =========================
rt = 155.1*W; % 975/(2* pi) ; % from chest circumference
ht = 475*W; % 625 -150; % shoulder height minus thigh clerance
xt = x;
yt = y;
ztt = hl+ht-hc;
ztb = hl -hc;
[thmint ,themaxt] = thetar(xt ,yt,rt);
[pmint ,pmaxt] = phi(xt,yt,ztt ,ztb);
% ================ neck ==========================
rn = 60.5*W; %380/( pi *2) from neck circumfrence
hn = 60*W; % makes up the total height from all the others (not including arms

obviously )
xn = x;
yn = y;
znt = hl+ht+hn-hc;
znb = hl+ht-hc;
[thminn ,themaxn] = thetar(xn ,yn,rn);
[pminn ,pmaxn] = phi(xn,yn,znt ,znb);
% ================ head ==========================
rh = 90.7*W; % 570/(2* pi); % from head circumfrence
hh = 235*W; % 115 + (1750 - 1630); % face length plus (height - eye height)
xh = x;
yh = y;
zht = hl+ht+hn+hh -hc;
zhb = hl+ht+hn-hc;
[thminh ,themaxh] = thetar(xh ,yh,rh);
[pminh ,pmaxh] = phi(xh,yh,zht ,zhb);
% ================= arm ===========================
ra = 43*W; % 270/(2* pi); % from circumference of forearm on TJA
ha = 685*W; % 1450 -765; % shoulder height - fist height
xa = x;
ya1 = y+rt+ra; % minus the numbers for the other arm
ya2 = y-rt-ra;
zat = 1450-hc; % top of cylinder at shoulder height
zab = 1450-ha-hc; % Shoulder height - half cylinder height
[thmina1 ,themaxa1] = thetar(xa,ya1 ,ra);
[pmina1 ,pmaxa1] = phi(xa,ya1 ,zat ,zab);
[thmina2 ,themaxa2] = thetar(xa,ya2 ,ra);
[pmina2 ,pmaxa2] = phi(xa,ya1 ,zat ,zab);
A = [thminl1 themaxl1 pminl1 pmaxl1 thminl2 themaxl2 pminl2 pmaxl2 thmint themaxt

pmint pmaxt thminn themaxn pminn pmaxn thminh themaxh pminh pmaxh thmina1
themaxa1 pmina1 pmaxa1 thmina2 themaxa2 pmina2 pmaxa2 ];

%A = [thminl1 themaxl1 pminl1 pmaxl1 ];
end

thetar.m
function [trmin ,trmax] = thetar(x,y,r)
if nargin ~= 3
error "3 variables must be defined !"
print_usage;

end
a = atand(y./x);
b = asind(r./( sqrt(x.**2 + y.**2)));
tr1 = a - b;
tr2 = a + b;
trmin = min(tr1 ,tr2);
trmax = max(tr1 ,tr2);
end

phi.m
function [phimin ,phimax] = phi(x,y,ht ,hb)
if nargin ~= 4
error "4 variables must be defined !"

end
ph1 = phical(x,y,ht);
ph2 = phical(x,y,hb);
phimin = min(ph1 ,ph2);
phimax = max(ph1 ,ph2);

function angle = phical(ax,by,cz)
angle = asind(cz./sqrt(ax.**2+by .**2+cz.**2));
end
end

iswithin.m
function y = iswithin(a,b,x1 ,x2,y1,y2)
if nargin ~= 6
error "Please supply 6 input arguments ";

end
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xmin = min(x1 ,x2) ;
xmax = max(x1 ,x2);
ymin = min(y1 ,y2);
ymax = max(y1 ,y2);
y = (a > xmin) && (a < xmax) && (b > ymin) && (b < ymax);
end

velocity.m
function v = velocity(vm,x) % inputs and outputs in metric units
if nargin ~=2
error "Please supply 2 input arguments"
end

vi = vm *3.2808; % convert from m/s to ft/s
xi = x* 3.2808; % convert from m to ft
ri = 5e -3*3.2808; % frag radius in ft
am = pi*ri**2; % mean projected area in ft2
qm = 1.333333* pi*ri**3;
a = am/qm **0.6666;
m = 0.146387; % fragment mass in oz (4.25g ball bearing)
ss = 1126;
if vi >= ss
vi2 = vi*exp (( -0.00204* xi*a)/m**0.333333) ;
else
vi2 = vi*exp (( -0.00137* xi*a)/m**0.333333) ;
end

v = vi2 *0.3048006 ;
end

dop.m
function d = dop(v) % intial velocity in m/s
if nargin ~= 1
error "Please provide 1 input argument"
end

v1 = v*3.2808; % convert from m/s to ft/s
m = 4.15; % mass
mc = m*0.03527; % grams to ounces
den = 1060;% target density
denc = den *0.062427; % convert from kg/m3 to lb/ft3
A = 7.854e-5; % presented frag area
Ac = A*10.7639; % convert m2 to ft2
cd = 0.47; % drag coeff for sphere (1.05 for cube)
% ========
t2 = v1 - ((80*Ac)/mc **1.3) ;
t1 = 0.022* mc **0.95;
d1 = (t1/(denc*Ac*cd)) .* ((t2 ./400) **0.55); % this output in whatver converted

units are
d = d1 *0.3048;

AIS.m
function IN = AIS(bp,dp ,th) % dp in mm , th in mm
if nargin ~=3
error(’Please supply 3 input arguments ’)
end
if bp < 0 || bp > 6
error(’%i is not a known body part’,bp)
end

perf = dp/th;

if (bp == 2) || (bp == 4)
if perf > 0.75
IN = 5 ;
elseif perf > 0.4
IN = 4 ;
elseif dp > 10
IN = 3 ;
elseif dp < 10 && dp > 0
IN = 2;
else
IN = 1;
end

else
if perf > 0.75
IN = 4 ;
elseif perf > 0.4
IN = 3 ;
elseif dp > 10
IN = 2 ;
elseif dp < 10 && dp > 0
IN = 1;
else
IN = 1;
end
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end

end % end function

vupdate.m
function newv = vupdate(perf ,v)
if perf > 1
newv = (1-1/ perf)*v;
elseif perf <= 1
newv = 0;
end

end
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Appendix C

GNU Octave scripts used to
process data

C.1 Read, process and butterworth filter data from all sensors

% process data from experimental data
% read in data files from experiments
% apply supply voltage correction
% filter data to remove noise
% multiply by calibration factors
% user supplied info ========================
% addpath (’/ home/tom/ Downloads /signal/inst ’)
raw = dlmread(’/home/tom/Work/experimental/raw/TBB001_1806.csv’,’;’ ,3,0);
fout1 = fopen(’/home/tom/Work/experimental/processed/A1S3_processed_P.csv’,’wt’);
fout2 = fopen(’/home/tom/Work/experimental/processed/A1S3_processed_I.csv’,’wt’);
drive_voltage = 10.02 ;
voltage_offset = drive_voltage /10; %supplied voltage
PT = 8439;
sh=500;
time = raw(:,1);
timeMS = time *1000; % get time in ms
s312r = raw(:,2)./ voltage_offset; % raw voltage from oscilloscope
s402r = raw(:,3)./ voltage_offset;
s358r = raw(:,4)./ voltage_offset;
s311r = raw(:,5)./ voltage_offset;
s101r = raw(:,6)./ voltage_offset;
ta312 = 1.4;
ta402 = 2.6;
ta358 = 5.3;
ta311 = 0.83;
ta101 = 1.6;
C = 6.894745; % conversion from psi to kPa
B = 100;% convert from bar to kPa
% ===========================================
% Calibration factors ---convert to bar -------
cf312 = ( -1000/0.201)*C; % convert to mV , divide by CF and convert to bar.
cf402 = ( -1000/0.383)*C;
cf358 = ( -1000/14.396)*B;
cf311 = ( -1000/0.200)*C;
cf101 = ( -1000/0.903)*C; % =6.225959 mv / kPa
%=622 mv / bar
% --------------------------------------------
% ---------------- Filter ---------------------
fsam = 1.562 e06; % sampling frequency
fnyq = fsam /2;
fc=1/4;
fco = (fc/fnyq);
[b,a] = butter (9 ,0.02);
% -------------------------------------------
% \ all pressures by this value

%raw = dlmread (’/ home/tom/Work/ experimental /raw/TBB_RD_TP16 -17 _001_18062013_temp .
csv ’,’,’,3,0);

% -------------------------------------------
% - offset , filter , calibrate ---------------
% ta = 1.4 ms
on312 = floor ((ta312 /1000)*fsam + (6.4/1000)*fsam); % calculate number of samples

used to calculate zero shift
s312o = s312r.-sum(s312r((on312 -sh):on312))/sh; % calculate zero shift and subtract

from raw volatages
%s312o = s312r.-sum(s312r (1: on312)/on312); % calculate zero shift and subtract from

raw volatages
s312_pressure=s312o.*cf312; % convert to pressure
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s312fp = filter(b,a,s312_pressure); % filter
%s312fp = movavg(s312_pressure ,5 ,5);
s312_i = cumtrapz(timeMS(on312:end),s312fp(on312:end)); % integrate from shock wave

arrival time
s312_impulse = padarray(s312_i ,(size(timeMS) - size(s312_i)),0,’pre’); % pad before

shock wave arrival with 0’s
% ---------------------------------
% ta = 2.6
on402 = floor ((ta402 /1000)*fsam + (6.4/1000)*fsam);
s402o = s402r.-sum(s402r((on402 -sh):on402))/sh;
% s402o = s402r.-sum(s402r (1: on402)/on402);
s402_pressure=s402o.*cf402;
s402fp = filter(b,a,s402_pressure);
%s402fp = movavg(s402_pressure ,5 ,5);
s402_i = cumtrapz(timeMS(on402:end),s402fp(on402:end));
s402_impulse = padarray(s402_i ,(size(timeMS) - size(s402_i)),0,’pre’);
% ----------------------------------
on358 = floor ((ta358 /1000)*fsam + (6.4/1000)*fsam);
s358o = s358r.-sum(s358r((on358 -sh):on358))/sh;
% s358o = s358r.-sum(s358r (1: on358)/on358);
s358_pressure=s358o.*cf358;
s358fp = filter(b,a,s358_pressure);
%s358fp = movavg(s358_pressure ,5 ,5);
s358_i = cumtrapz(timeMS(on358:end),s358fp(on358:end));
s358_impulse = padarray(s358_i ,(size(timeMS) - size(s358_i)),0,’pre’);
% ----------------------------------
%ta = 0.83
on311 = floor ((ta311 /1000)*fsam + (6.4/1000)*fsam);
s311o = s311r.-sum(s311r((on311 -sh):on311))/sh;
% s311o = s311r.-sum(s311r (1: on311)/on311);
s311_pressure=s311o.*cf311;
s311fp = filter(b,a,s311_pressure);
%s311fp = movavg(s311_pressure ,5 ,5);
s311_i = cumtrapz(timeMS(on311:end),s311fp(on311:end));
s311_impulse = padarray(s311_i ,(size(timeMS) - size(s311_i)),0,’pre’);
% ---------------------------------
% ta - 1.6
on101 = floor ((ta101 /1000)*fsam + (6.4/1000)*fsam);
s101o = s101r.-sum(s101r((on101 -sh):on101))/sh;
% s101o = s101r.-sum(s101r (1: on101)/on101);;
s101_pressure=s101o.*cf101;
s101fp = filter(b,a,s101_pressure);
%s101fp = movavg(s101_pressure ,5 ,5);
s101_i = cumtrapz(timeMS(on101:end),s101fp(on101:end));
s101_impulse = padarray(s101_i ,(size(timeMS) - size(s101_i)),0,’pre’);
% ---------------------------------------------
% ----------- get cumulative impulse ---------
p_data = [timeMS(PT:end) s312fp(PT:end) s402fp(PT:end) s358fp(PT:end) s311fp(PT:end

) s101fp(PT:end)]; % remove 5.4s of pretrigger
i_data = [timeMS(PT:end) s312_impulse(PT:end) s402_impulse(PT:end) s358_impulse(PT:

end) s311_impulse(PT:end) s101_impulse(PT:end)];
fprintf(fout1 ,’time ,S312 ,S402 ,S358 ,S311 ,S101\n’);
fprintf(fout1 ,’%E,%E,%E,%E,%E,%E\n’,p_data ’);
fprintf(fout2 ,’time ,S312 ,S402 ,S358 ,S311 ,S101\n’);
fprintf(fout2 ,’%E,%E,%E,%E,%E,%E\n’,i_data ’);
fclose(fout1);
fclose(fout2);
% axis ([ -0.001 ,0.02 , -0.2 ,0.6])
% print (’/ home/tom/Work/ experimental /raw/figs/ A001_Shot1_S312 .pdf ’,’-dpdf ’,’-F

:5’,’-landscape ’,’-S640 ,400 ’)

C.2 Read, process and apply different filtering methods to data
from one sensor

% import data for sensors and filter data from one for comparison
% write filteterd pressure and impulse data out to separate files
raw = dlmread(’/home/tom/Work/experimental/raw/TBB001_1806.csv’,’;’ ,3,0);
fout1 = fopen(’/home/tom/Work/experimental/processed/Filt -params/MA_P.csv’,’wt’);
fout2 = fopen(’/home/tom/Work/experimental/processed/Filt -params/MA_I.csv’,’wt’);
fout3 = fopen(’/home/tom/Work/experimental/processed/Filt -params/BUT_P.csv’,’wt’);
fout4 = fopen(’/home/tom/Work/experimental/processed/Filt -params/BUT_I.csv’,’wt’);
fout5 = fopen(’/home/tom/Work/experimental/processed/Filt -params/WAV_P.csv’,’wt’);
fout6 = fopen(’/home/tom/Work/experimental/processed/Filt -params/WAV_I.csv’,’wt’);
fout7 = fopen(’/home/tom/Work/experimental/processed/Filt -params/RAW_P.csv’,’wt’);
fout8 = fopen(’/home/tom/Work/experimental/processed/Filt -params/RAW_I.csv’,’wt’);
drive_voltage = 10.02 ;
voltage_offset = drive_voltage /10; %supplied voltage
PT = 8439;
sh=500;
time = raw(:,1);
timeMS = time *1000; % get time in ms
s312r = raw(:,2)./ voltage_offset; % raw voltage from oscilloscope
ta312 = 1.4;
C = 6.894745; % conversion from psi to kPa
B = 100;% convert from bar to kPa
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cf312 = ( -1000/0.201)*C; % convert to mV , divide by CF and convert to bar.
fsam = 1.562 e06; % sampling frequency
fnyq = fsam /2;
fc=1/4;
fco = (fc/fnyq);
[b1 ,a1] = butter (9 ,0.05);
[b2 ,a2] = butter (9 ,0.02);
[b3 ,a3] = butter (9 ,0.011);
[b4 ,a4] = butter (9 ,0.01);
% let ’s measure how long things take!
%t = cputime; surf(peaks (40)); e = cputime -t
%tic ();
% # many computations later ...
% elapsed_time = toc ();

% ============ moving average
=========================================================

% movavg (asset , lead , lag , alpha) alpha is a weighting , 0,5 is square root moving
average blah

% =========== normal filtering and processing of data
================================

on312 = floor ((ta312 /1000)*fsam + (6.4/1000)*fsam); % number of samples to foot of
shock

s312_p = s312r.* cf312; % convert to pressure =====================
s312_pressure = s312_p.-sum(s312_p ((on312 -sh):on312))/(sh+1); % / voltage offset

gauges driven at 10.02 will read highe
s312BUT1P = filter(b1 ,a1,s312_pressure); % filter
s312BUT1Itemp = cumtrapz(timeMS(on312:end),s312BUT1P(on312:end)); % integrate from

shock wave arrival time
s312BUT1I = padarray(s312BUT1Itemp ,( length(timeMS) - length(s312BUT1Itemp)),0,’pre’

);
s312BUT2P = filter(b2 ,a2,s312_pressure); % filter
s312BUT2Itemp = cumtrapz(timeMS(on312:end),s312BUT2P(on312:end)); % integrate from

shock wave arrival time
s312BUT2I = padarray(s312BUT1Itemp ,( length(timeMS) - length(s312BUT2Itemp)),0,’pre’

);
s312BUT3P = filter(b3 ,a3,s312_pressure); % filter
s312BUT3Itemp = cumtrapz(timeMS(on312:end),s312BUT3P(on312:end)); % integrate from

shock wave arrival time
s312BUT3I = padarray(s312BUT3Itemp ,( length(timeMS) - length(s312BUT3Itemp)),0,’pre’

);
s312BUT4P = filter(b4 ,a4,s312_pressure); % filter
s312BUT4Itemp = cumtrapz(timeMS(on312:end),s312BUT4P(on312:end)); % integrate from

shock wave arrival time
s312BUT4I = padarray(s312BUT4Itemp ,( length(timeMS) - length(s312BUT4Itemp)),0,’pre’

);
% ============ moving average

=========================================================
% movavg (asset , lead , lag , alpha) alpha is a weighting , 0,5 is square root moving

average blah
s312MA10_P = movavg(s312_pressure ,5,5);
s312MA10_I_temp = cumtrapz(timeMS(on312:end),s312MA10_P(on312:end));
s312MA10_I = padarray(s312MA10_I_temp ,( length(timeMS) - length(s312MA10_I_temp)),0,

’pre’);
s312MA50_P = movavg(s312_pressure ,25 ,25);
s312MA50_I_temp = cumtrapz(timeMS(on312:end),s312MA50_P(on312:end));
s312MA50_I = padarray(s312MA50_I_temp ,( length(timeMS) - length(s312MA50_I_temp)),0,

’pre’);
s312MA100_P = movavg(s312_pressure ,50 ,50);
s312MA100_I_temp = cumtrapz(timeMS(on312:end),s312MA100_P(on312:end));
s312MA100_I = padarray(s312MA100_I_temp ,( length(timeMS) - length(s312MA100_I_temp))

,0,’pre’);
% ============== wavelet processing

===================================================
s312_pressureR=resample2(s312_pressure ,300 ,228 ,0); %131072
GRR = length(s312_pressureR) -131072;
s312_pressureW = s312_pressureR(GRR +1:end);
% ============= make some different QMF ’s

=============================================
QMFS8 = MakeONFilter(’Symmlet ’ ,8);
QMFH8 = MakeONFilter(’Haar’ ,8);
QMFC3 = MakeONFilter(’Coiflet ’ ,3);
QMFD12 = MakeONFilter(’Daubechies ’ ,12);
% =====================================
[yS ,coefS] = NormNoise(s312_pressureW ’,QMFS8); % normalise signal to noise level 1
[yH ,coefH] = NormNoise(s312_pressureW ’,QMFH8); % normalise signal to noise level 1
[yC ,coefC] = NormNoise(s312_pressureW ’,QMFC3); % normalise signal to noise level 1
[yD ,coefD] = NormNoise(s312_pressureW ’,QMFD12); % normalise signal to noise level 1
% ++++++++++++++++++++++++++ Different shrinkage types

++++++++++++++++++++++++++++++++
[s312WP_VISU_long ,s312WP1] = WaveShrink(yS ,’Visu’);
s312WP_VISU_short = resample2(s312WP_VISU_long ,228 ,300 ,0); % resample array to

change length but preserve time over which data recorded
s312WP_VISU = (padarray(s312WP_VISU_short ’ ,(100000 - length(s312WP_VISU_short)),0,’

pre’))./ coefS; % pad pre shock arrival with zeros to get precise length for use
with WaveShrink

s312WP_VISU_I_temp = cumtrapz(timeMS(on312:end),s312WP_VISU(on312:end));
s312WP_VISU_I = padarray(s312WP_VISU_I_temp ,( length(timeMS) - length(
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s312WP_VISU_I_temp)),0,’pre’); % pad preshock arrival with zeros to ensure all
impulse arrays are same length

% ----------------------
[s312WP_SURE_long ,s312WP2] = WaveShrink(yS ,’SURE’);
s312WP_SURE_short = resample2(s312WP_SURE_long ,228 ,300 ,0); %100000
s312WP_SURE = (padarray(s312WP_SURE_short ’ ,(100000 - length(s312WP_SURE_short)),0,’

pre’))./ coefS;
s312WP_SURE_I_temp = cumtrapz(timeMS(on312:end),s312WP_SURE(on312:end));
s312WP_SURE_I = padarray(s312WP_SURE_I_temp ,( length(timeMS) - length(

s312WP_SURE_I_temp)),0,’pre’);
% -------
[s312WP_MinMax_long ,s312WP3] = WaveShrink(yS,’Hybrid ’);
s312WP_MinMax_short = resample2(s312WP_MinMax_long ,228 ,300 ,0); %100000
s312WP_MinMax = (padarray(s312WP_MinMax_short ’ ,(100000 - length(s312WP_MinMax_short

)) ,0,’pre’))./ coefS;
s312WP_MinMax_I_temp = cumtrapz(timeMS(on312:end),s312WP_MinMax(on312:end));
s312WP_MinMax_I = padarray(s312WP_MinMax_I_temp ,( length(timeMS) - length(

s312WP_MinMax_I_temp)) ,0,’pre’);
% +++++++++++++++++++++++++++++++++++ soft and hard thresholding

+++++++++++++++++++++++
s312WP_ST = ThreshWave(yS ,’S’,1,std(yS (1:8500)));
s312WP_ST_short = resample2(s312WP_ST ,228 ,300 ,0); %100000
s312WP_soft = (padarray(s312WP_ST_short ’ ,(100000 - length(s312WP_ST_short)),0,’pre’

))./coefS;
s312WP_soft_I_temp = cumtrapz(timeMS(on312:end),s312WP_soft(on312:end));
s312WP_soft_I = padarray(s312WP_soft_I_temp ,( length(timeMS) - length(

s312WP_soft_I_temp)),0,’pre’);
% ----------
s312WP_HT = ThreshWave(yS ,’H’,1,std(yS (1:8500)));
s312WP_HT_short = resample2(s312WP_HT ,228 ,300 ,0); %100000
s312WP_hard = (padarray(s312WP_HT_short ’ ,(100000 - length(s312WP_HT_short)),0,’pre’

))./coefS;
s312WP_hard_I_temp = cumtrapz(timeMS(on312:end),s312WP_hard(on312:end));
s312WP_hard_I = padarray(s312WP_hard_I_temp ,( length(timeMS) - length(

s312WP_hard_I_temp)),0,’pre’);
% ###################################
[s312WP_haar_long ,s312WP2] = WaveShrink(yH ,’Hybrid ’);
s312WP_haar_short = resample2(s312WP_haar_long ,228 ,300 ,0); %100000
s312WP_haar = (padarray(s312WP_haar_short ’ ,(100000 - length(s312WP_haar_short)),0,’

pre’))./ coefH;
s312WP_haar_I_temp = cumtrapz(timeMS(on312:end),s312WP_haar(on312:end));
s312WP_haar_I = padarray(s312WP_haar_I_temp ,( length(timeMS) - length(

s312WP_haar_I_temp)),0,’pre’);

[s312WP_coif_long ,s312WP2] = WaveShrink(yC ,’Hybrid ’);
s312WP_coif_short = resample2(s312WP_coif_long ,228 ,300 ,0); %100000
s312WP_coif = (padarray(s312WP_coif_short ’ ,(100000 - length(s312WP_coif_short)),0,’

pre’))./ coefC;
s312WP_coif_I_temp = cumtrapz(timeMS(on312:end),s312WP_coif(on312:end));
s312WP_coif_I = padarray(s312WP_coif_I_temp ,( length(timeMS) - length(

s312WP_coif_I_temp)),0,’pre’);

[s312WP_daub_long ,s312WP2] = WaveShrink(yD ,’Hybrid ’);
s312WP_daub_short = resample2(s312WP_daub_long ,228 ,300 ,0); %100000
s312WP_daub = (padarray(s312WP_daub_short ’ ,(100000 - length(s312WP_daub_short)),0,’

pre’))./ coefD;
s312WP_daub_I_temp = cumtrapz(timeMS(on312:end),s312WP_daub(on312:end));
s312WP_daub_I = padarray(s312WP_daub_I_temp ,( length(timeMS) - length(

s312WP_daub_I_temp)),0,’pre’);
% =====================================

MA_P = [timeMS(PT:end) s312MA10_P(PT:end) s312MA50_P(PT:end) s312MA100_P(PT:end)];
% remove 5.4s of pretrigger

MA_I = [timeMS(PT:end) s312MA10_I(PT:end) s312MA50_I(PT:end) s312MA100_I(PT:end)];
BUT_P = [timeMS(PT:end) s312BUT1P(PT:end) s312BUT2P(PT:end) s312BUT3P(PT:end)

s312BUT4P(PT:end)];
BUT_I = [timeMS(PT:end) s312BUT1I(PT:end) s312BUT2I(PT:end) s312BUT3I(PT:end)

s312BUT4I(PT:end)];
WAV_P = [timeMS(PT:end) s312WP_VISU(PT:end) s312WP_SURE(PT:end) s312WP_MinMax(PT:

end) s312WP_soft(PT:end) s312WP_hard(PT:end) s312WP_haar(PT:end) s312WP_coif(PT
:end) s312WP_daub(PT:end)];

WAV_I = [timeMS(PT:end) s312WP_VISU_I(PT:end) s312WP_SURE_I(PT:end) s312WP_MinMax_I
(PT:end) s312WP_soft_I(PT:end) s312WP_hard_I(PT:end) s312WP_haar_I(PT:end)
s312WP_coif_I(PT:end) s312WP_daub_I(PT:end)];

RAW_P = [timeMS(PT:end) s312_pressure(PT:end)];
RAW_imp = cumtrapz(timeMS(on312:end),s312_pressure(on312:end));
RAW_imp2 = padarray(RAW_imp ,( length(timeMS) - length(RAW_imp)) ,0,’pre’);
RAW_I = [timeMS(PT:end) RAW_imp2(PT:end)];

fprintf(fout1 ,’time ,MA10 ,MA50 ,MA100\n’);
fprintf(fout1 ,’%E,%E,%E,%E\n’,MA_P ’);
fclose(fout1);
fprintf(fout2 ,’time ,MA10 ,MA50 ,MA100\n’);
fprintf(fout2 ,’%E,%E,%E,%E\n’,MA_I ’);
fclose(fout2);
fprintf(fout3 ,’time ,BUT_0.05,BUT_0.02,BUT_0 .011, BUT_0 .01\n’);
fprintf(fout3 ,’%E,%E,%E,%E,%E\n’,BUT_P ’);
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fclose(fout3);
fprintf(fout4 ,’time ,BUT_0.05,BUT_0.02,BUT_0 .011, BUT_0 .01\n’);
fprintf(fout4 ,’%E,%E,%E,%E,%E\n’,BUT_I ’);
fclose(fout4);
fprintf(fout5 ,’time ,VISU ,SURE ,MinMax ,soft ,hard ,haar ,coif ,daub\n’);
fprintf(fout5 ,’%E,%E,%E,%E,%E,%E,%E,%E,%E\n’,WAV_P ’);
fclose(fout5);
fprintf(fout6 ,’time ,VISU ,SURE ,MinMax ,soft ,hard ,haar ,coif ,daub\n’);
fprintf(fout6 ,’%E,%E,%E,%E,%E,%E,%E,%E,%E\n’,WAV_I ’);
fclose(fout6);
fprintf(fout7 ,’time ,RAW_P\n’);
fprintf(fout7 ,’%E,%E\n’,RAW_P ’);
fclose(fout7);
fprintf(fout8 ,’time ,RAW_I\n’);
fprintf(fout8 ,’%E,%E\n’,RAW_I ’);
fclose(fout8);

C.3 Plot data using pyxplot

clear
set terminal pdf
set nokey
set grid
set output "~/ Work/experimental/figs/filtering/WAV_I_QMFcomp.pdf"
set multiplot
width=8
set yrange [0:550]
set xrange [0:10.999]
set origin 0*width , 0* width/goldenRatio
set texthalign left
set textvalign center
#####
unset xtics
unset xformat
unset yformat
set xlabel "Time (ms)"
set ylabel "Impulse (kPa)"
set label 1 "(b) Haar" at graph width *0.73 , graph width/goldenRatio *0.9
plot ’/home/tom/Work/experimental/processed/Filt -params/WAV_I.csv’ every ::2 using

1:7 title ’10 point’ with lines lt 2 linewidth 0.8
set axis x linked item 1 x
set axis y linked item 1 y
#####
set origin 0*width , 1* width/goldenRatio
set label 1 "(a) Raw data" at graph width *0.73 , graph width/goldenRatio *0.9
set xformat "" ; set xlabel ""
plot ’/home/tom/Work/experimental/processed/Filt -params/RAW_I.csv’ every ::2 using

1:2 title ’RAW’ with lines lt 3 linewidth 0.8
#####
unset xformat
set xlabel "Time (ms)"
set origin 1*width , 0* width/goldenRatio
set label 1 "(d) Daubechies" at graph width *0.65 , graph width/goldenRatio *0.9
set yformat "" ; set ylabel ""
plot ’/home/tom/Work/experimental/processed/Filt -params/WAV_I.csv’ every ::2 using

1:9 title ’100 point’ with lines lt 3 linewidth 0.8
#####
set origin 1*width , 1* width/goldenRatio
set label 1 "(c) Coiflet" at graph width *0.73 , graph width/goldenRatio *0.9
set xformat "" ; set xlabel ""
plot ’/home/tom/Work/experimental/processed/Filt -params/WAV_I.csv’ every ::2 using

1:8 title ’50 point’ with lines lt 4 linewidth 0.8 ;
#---------------------------- ($3 *1000000) every ::2 using 1:($9 *1000000) using ($1

-0.02) :($2+104)
#[ -5:20][ -100:250]
# ===================== IMPULSE

=======================================================
# set xformat "" ; set xlabel ""
# set yformat "" ; set ylabel ""
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Appendix D

Test arrangment drawings
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Appendix E

Fabricated parts
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Appendix F

Filtering Data

Three methods were considered for filtering data:

• moving average

• butterworth filter

• wavelet transform

To identify how effective these methods are at removing noise and preserving under-
lying physical data, pressure and cumulative impulse curves from a pressure sensor are
plotted for different methods and different parameters. Cumulative impulse is a partic-
ularly useful measure, as it is very sensitive to changes in the underlying data. It is also
important to compare the time taken to filter or denoise data due to the size of the data
sets. Comparison of the following methods and parameters is presented:

• number of moving average points

– 10 point

– 50 point

– 100 point

• butterworth filter normalised cutoff frequency (ωc, see Eq. (F.1))

– ωc = 0.050

– ωc = 0.020

– ωc = 0.011

– ωc = 0.010

• wavelet transform (WaveShrink and ThreshWave functions from WaveLab [202])

– shrinkage type (WaveShrink)

– soft and hard thresholding (ThreshWave)

ω =
2πf

fs
(F.1)

Filtered data is produced from raw experimental data using GNU Octave. The full
script can be found in Appendix C.2. Data from sensor 312, (shot 1 arrangement 1) is
plotted using PYXPLOT up to 10ms for clarity.

Figure F.1 shows pressure time histories from raw data as well as 10, 50 and 100 point
moving averages. For a 10 point moving average (F.1(b)), peak values are well resolved,
but significant noise still exists. As would be expected, 50 and 100 point averages
(F.1(c) and F.1(d)) offer better reduction in noise but tend to cut off peaks. Despite

293



Modelling Blast Loads in Rail Vehicles T.Anthistle

this, Figures F.2(a–d), show that all 3 methods, as well as raw data have, identical
cumulative impulses.

Butterworth filters are commonly used in signal processing, and are ideal for processing
this kind of data. The effect of changing the normalised cut off frequency, ωc can be
seen in Figures F.3(a–d). All plots show that pressure peaks are cut off to a level similar
to a 100 point moving average, but lower values of ωc (0.01 and 0.011) show a better
level of noise reduction. The amount that peaks are cut off by appears arbitrary, with
ωc = 0.02 showing the least reduction in the highest peak at 2.75ms. Figure F.4 shows
how the cumulative impulse is affected by changing ωc, and Figures F.4(c) and (d) show
significant deviation from the impulses shown in F.4(a) and (b), which are identical to
Figures F.2(a–d). The altered impulse in F.4(c) and (d) also doesn’t show a trend; (c)
shows a lower impulse and (d) a much larger impulse. From this it is easy to conclude
that ωc values < 0.02 should be avoided to maintain the correct cumulative impulse.

Wavelet denoising is slightly more involved, as signals need to be transformed into the
wavelet domain (similar in principle to a fourier transform), normalised, denoised and
then transformed back into the time domain, all of which adds computational effort.
The ThreshWave and WaveShrink denoising tools in WaveLab are used here to remove
noise. WaveShrink offers soft thresholding shrinkage using various options. Hybrid offers
similar performance to 10PMA, whereas SURE provides almost no noise removal. Visu
offers very good denoising but cuts off peaks more than when a 100 point moving average
is used, shown in Figure F.5. None of the WaveShrink methods offer advantages over
moving averages or Butterworth filters in terms of noise reduction in pressure signals,
but all methods maintain impulse, unlike Butterworth filter with low cutoff frequencies,
as shown in Figure F.6.

The effect of soft and hard thresholding is compared using the ThreshWave tool, shown
in Figure F.7. The soft threshold option, F.7(b) shows very good noise reduction, but
has also lowered peak recorded values, as seen with other methods. Hard thresholding,
F.7(c), shows equally good noise reduction but maintain peak values better than all
other methods except the 10 point moving average. The hard threshold also preserves
the impulses better than the soft threshold method, as shown in Figure F.8. The hard
threshold method does introduce some spiky wavelet features to the data, which are in
places almost discontinuities. As the technique is so efficient at removing noise, if these
disconuities occur in the wrong place they could be misinterpreted as physical features
of the data.

Results presented about show that although wavelet techniques offer the best removal
of data, features introduced by wavelet transforms, or resolution of peaks or both mean
that without further research, which is outside of the scope of this work, they do not
offer as reliable results as Butterworth filtering. Butterworth filtering with ωc = 0.02
will be used to denoise data from pressure sensors, and similar investigation undertaken
to determine parameters to be used for other sensors.
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Appendix G

Additional experimental data
sets

This Appendix contains the experimental data sets which were included in the analysis
and discussion of results in Chapter 5.

G.1 Arrangement 1

A

B

C

D

S312S402S358

S101

S311

Figure G.1: Sensors and positions for test arrangement 1, shots 1 – 3
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Figure G.2: Sensor 402, comparison between shots
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Figure G.3: Sensor 311, comparison between shots
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Figure G.4: Sensor 101, comparison between shots
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G.2 Arrangement 2
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Figure G.5: Sensor locations for test arrangment 2
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Figure G.6: Sensor 312, arrangement 2, comparison between shots
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Figure G.7: Pressure and cumulative impulse data for sensor 358, arrangement 2
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Figure G.8: Pressure and cumulative impulse data for sensor 311, arrangement 2
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G.3 Arrangement 3
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Figure G.9: Sensor locations for arrangement 3
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Figure G.10: Pressure and cumulative impulse data for sensor 312, arrangement 3
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Figure G.11: Pressure and cumulative impulse data for sensor 311, arrangement 3
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G.4 Arrangement 4

12

A

B

C

D

312

402

358 101

311

LDG

Figure G.12: Plan view of test A4
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Figure G.13: Pressure and cumulative impulse data for sensor 311, arrangement 4
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Figure G.14: Pressure and cumulative impulse data for sensor 358, arrangement 4
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Appendix H

Modelling parameter study

This work was initially included within Chapter 6, but was considered an aside to the
main story of this work, and has thus been moved here.

H.1 Variable study description

H.1.1 Structural boundary condition

The effects of different descriptions for the structural boundary are investigated by mod-
ifying the nodal constraints on the central boundary, and by altering the description for
the outer walls of the test cell. Four separate models were generated, with different com-
binations of definition for the test cell walls (cell geometry) and boundaries in xy and yz
planes (inner boundary). The identifier for each model and a comparison between them
is shown in Table H.1. Where the CONSTRAINED LAGRANGE IN SOLID (CLIS)
is used and the geometry of the test cell is represented with shells elements, the air
domain that surrounding the structure was chosen to be 5000 × 2500 × 2000mm, shown
in Figure H.1. This size is chosen because it is larger than any of the ALE domains
chosen as part of the ALE domain size study, which are shown in Table H.2.

H.1.2 ALE domain size

As seen in Chapter 4, the size of the ALE domain can cause errors in pressure measure-
ments if it is not chosen correctly. Extending the mesh boundaries in the x, y and z
direction increases the number of elements present within the solution, which increases
the time taken to run the model to completion time. Although it is clear an appropriate
size boundary is required to ensure accuracy, it is also important to avoid unnecessary
extra elements that will extend the run time without bringing significant improvements
in accuracy. To achieve this, a series of models with different sizes of ALE domain
were constructed, where all other parameters are kept the same as described in Section
6.2.2. The sizes of the ALE domain in x, y and z direction are shown in Table H.2, and
directions are consistent with those shown in Figure 6.2.

Table H.1: Boundary condition summary

inner boundary cell geometry
identifier Fixed Sym NC CLIS

A1a 0 1 1 0
A1b 1 0 1 0
A1c 0 1 0 1
A1d 1 0 0 1
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air domain

test cell

Figure H.1: Air domain and test cell configuration for A1c and A1d

Table H.2: Air domain sizes

air domain size (mm) ALE
identifier x y z elements

M1 3250 1700 1620 1,115,370
M2 3500 1860 1800 1,464,750
M3 4000 2200 1800 1,998,000
M4 4500 2200 1800 2,197,800
M5 5000 2500 1960 3,125,000

H.1.3 Mesh refinement

The size of the mesh elements was discussed in Chapter 4, and a similar mesh refinement
study was conducted here. Three levels of refinement were chosen, as shown in Table
H.3. The meshes were generated so that all elements that are enclosed by the test cell
geometry are of the refined size, but outside of the test cell, where elements are included
simply to extend the mesh boundaries, the value of the pressure is not so critical so
larger elements can be used, helping to reduce the total number of elements. Section
H.2.3 gives the results of the mesh refinement study

Table H.3: Mesh refinement levels and number of elements

identifier primary element size number of elements
R1 20mm 2,037,428
R2 15mm 3,482,434
R3 11mm 6,749,600
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H.2 Results

H.2.1 Symmetry boundary

Figure H.2 shows a comparison between pressure histories from the 4 specified model
configurations and experimental data from sensor 358 located at the end of the test
cell. Comparisons are made between the model data and experimental data to con-
firm the most accurate of the boundary conditions. All models were run on a desktop
Linux workstation using LS-Dyna R6, single precision shared memory parallel, and took
approximately 14 hours using 3 CPU’s.

It is obvious that there are qualitative and quantitative similarities between the re-
sults, but they also shows where specific model configurations do not provide accurate
data. Both models A1a and A1b, where the geometry of the test cell is modelled by
constraining nodal points on the edge of air domain, show a late and over predicted
value for the first peak overpressure in Fig H.2(a) when compared to experimental data,
but a very steep decay from the peak pressure which does not correspond with the de-
cay shown in the experimental data. This is clearly seen between 6.2 and 7ms, where
numerical model data from A1a and A1b show negative pressure occurring much earlier
and a much higher underpressure at 7ms, compared to experimental data. Between 9ms
and 10ms, and 13ms and 14ms, numerical data from A1a and A1b predicts a pressure
approximately equal to atmospheric, whereas experimental data and results from A1c
and A1d show pressures approximately 50kPa below atmospheric.

Impulse data in Fig H.2(b) gives a more clear idea of which models behave in the
most physically realistic way. It is clear that although the peak pressure is higher for
A1a and A1b, the rapid decay and early fall below zero lead to a significantly reduced
impulse at 6.5ms, and a cumulative impulse that is much lower than the other models
and experimental data between 6.5 and 10ms. Experimental data shows a sharp increase
in impulse when a shock arrives at 10ms, but this is not shown by any numerical data at
this time. Both A1c and A1d do show a rise in impulse, but delayed by 0.7ms compared
to experimental data. As the pressure is negative during this time in the models, a pro-
longed drop in cumulative impulse occurs, which leads as well to a significant difference
in the peaks seen in experimental and numerical impulse history at 11.7 and 12.4ms,
but nevertheless shows good similarity between the general behaviour of the models at
this point. Model data from A1a and A1b does not show this similarity in behaviour,
and the shape of the curve does not show much qualitative or quantitative agreement
with the experimental data.

Data from experimental sensor 101 and point 5 in numerical models is shown Figure
H.3, which is located on the plane which is specified in the various models as either a
fixed nodal or a symmetry boundary. A different pattern is noticed in the data at this
location, with the type of boundary specified being of greater importance than the size
of the air domain and definition of the test cell walls.

Pressure histories in Figure H.3(a) show models A1b and A1d over predict the peak
value of the first three shock waves at 1.8, 3 and 5.5ms, as well as having a much
shaper decay than the experimental results and A1a and A1c. Both models A1a and
A1c predict the decay seen in the experimental results between 3 and 5ms, whereas a
number of oscillations are seen in the data from A1b and A1d, which do not occur in
the experimental data. All numerical models predict late arrival of the 3rd shock, and a
quicker decay than that seen in the experimental data. Between 7 and 13ms, there is no
significant difference between the different modelling methods, with all predicting later
arrival of shocks at 7.5 and 10.2ms than is seen in the experimental results. The effect
of this late arrival can be clearly seen in Figure H.3(a), and as negative phases continue
for longer than happens in reality there is a significant drop in the cumulative impulse.

The results above point to a clear single method that is the most appropriate, A1c,
which performs in the most realistic manner at both point 3 and point 5. Although
the data after 10ms doesn’t match the experimental data quantitatively, it shows the
same trend in the cumulative impulse that is seen in the experimental data, which is not
shown in any way in the other models. In the current model, A1c under predicts peak
pressures and predicts later arrival than occurs in reality, both of which are expected
given the coarseness of the mesh, demonstrated in Chapter 4. This combination of model
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Figure H.2: Data for the 4 model configurations at sensor 3, compared with a single
series of experimental data from sensor 358

parameters for the test cell geometry and inner boundaries provides a base from which
further improvements can be made to the model.

H.2.2 Free air boundary and air domain size

Effects of ALE domain size were considered using a series of 5 models with different
ALE domain sizes. As above, runs were completed on a Linux desktop using LS-Dyna
R6, and took between 5 and 15 hours to run to completion at 15ms. The sizes of the
model air domain and identifiers for each model are shown in Table H.2.

The effects of changing the size of the ALE boundary on pressure and impulse histories
can be seen in Figures H.4, H.5 and H.6. It is clear from Figure H.4 that the size of the
boundary makes negligible differences to either the pressure or cumulative impulse at
sensor point 1, which was anticipated. The magnitude of the boundary effect is small
compared to the pressure of the shocks created by the detonation, and any boundary
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Figure H.3: Data for the 4 model configurations at sensor 5, compared with a single
series of experimental data from sensor 101

effects have a larger distance travel to alter the pressure near the detonation end of
the test compared with open end of the test cell, both of these effects ensuring that no
boundary effects are seen at point 1.

Data at sensor point 2, shown in Figure H.5 shows generally the same behaviour from
all ALE domain sizes, but towards the end of the solution boundary effects are visible
in the pressure history in M1. At 13.6ms in Figure H.5(a), a pressure jump is visible in
the data from M1, where other models do not display this jump. Figure H.5(b) shows
that the impulse in M1 begins to deviate from other models at 12.6ms, and crosses the
decreasing cumulative impulse curve for other meshes at 14ms.

As expected from previous models, boundary effects are much stronger when data is
taken close to the boundary in question. Figure H.6(a) shows that pressures in M1 and
M2 for location 3 begin to deviate from others significantly beginning at around 9ms.
Between 9ms and 11ms and the pressure at point 3 in M1 rises while for others it falls,
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Figure H.4: Pressure and cumulative impulse history for five different ALE domain sizes
at model measurement location 1

leading to a 50kPa difference in pressure between M1 and the model with the largest
domain, M5. Beyond 12.5ms, significant rises and oscillations are seen in both M1 and
M2, and corresponding impulses in Figure H.6(b) begin to deviate significantly from
those seen in M3, M4 and M5.

It is clear from Figure H.6 that the ALE domains M1 and M2 are unsuitable, as both
lead to boundary effects that add non-physical pressures to the results. It appears that
the distance from the open end of the test cell is critical, and that the solution is more
sensitive to the size of the ALE domain in the x direction than z direction. Although
not identical, mesh extensions in M3, M4 and M5 make little significant difference to
the pressures and impulses at sensor location 3 up to 15ms. It is therefore necessary
that ALE domain dimensions are at least as large those for M3, as shown in Table H.2.
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Figure H.5: Pressure and cumulative impulse history for five different ALE domain sizes
at model measurement location 2

H.2.3 Mesh refinement

It was seen in Chapter 4 that the size of the ALE domain could make significant differ-
ences to the peak pressure and impulse predicted by numerical models. Figures H.7, H.8
and H.10 show the pressure history and cumulative impulse for three numerical models
of the experimental arrangement A1 each with different levels of mesh refinement.

Pressure histories in Figure H.7(a) show only a limited difference between the results
for the three different meshes. The first shock arrives at 1.4ms across all levels of
mesh refinements, and the gradient of the rise to the first peak pressure is also very
similar between all 3 meshes, shown more clearly in Figure H.9(a). The peak pressure
at this first shock is similar between the 10mm and 15mm mesh at 390kPa, but the
20mm mesh predicts a peak value of 340kPa. All of these values are lower than the
measured experimental value of 510kPa, and the peak pressure 0.2ms earlier in the
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Figure H.6: Pressure and cumulative impulse history for five different ALE domain sizes
at model measurement location 3

models compared with experiments. The arrival time of the second shock is predicted
similarly by all three models, and compares well with the experimental time of 2.8ms.
The peak pressure of the second shock is noticeably underpredicted by all the models
compared to experimental results, but with each level of mesh refinement delivering
a 40kPa increase in the predicted peak pressure, with the 20mm model predicting a
peak of 270kPa, and the 10mm model predicting 350kPa, compared to the experimental
value of 760kPa. The decay is predictions from all 3 models match well with each other
and experimental results, and the arrival time of the third shock at 5.7ms is also well
predicted. At this point the shape of the numerical and experimental data curves begin
to diverge, with the rise much slower in numerical models than seen in experimental
data, although the subsequent decay is somewhat predicted by numerical models, again
with little noticeable difference between them. Numerical models miss the shocks 7.5ms
and 12.8ms, but all three models predict reasonably the pressure behaviour seen in
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Figure H.7: measurement location 1 in 3 separate numerical models, showing the effect
of increasing mesh refinement

experimental data between 8 and 12.5ms.

Differences between levels of refinement are clearer in the impulse curve shown in Fig-
ure H.7(b). The model with the coarsest mesh shows a consistently lower impulse than
seen in other models, primarily due to differences in the pressure over the first 2 shocks,
as the difference remains constant over the remaining time between 4ms and 15ms, in-
dicating the pressures are very similar between all models. Although the magnitude of
the impulse is under predicted by the models compared to experiments, the features and
shape of the impulse curves up to 12ms compare reasonably, with a sharp divergence in
shape only seen once the shock arrives in the experiment at 12.7ms, where a negative
pressure is predicted by the models.

Data from Figure H.8 shows similar behaviour of the models at measurement location
2, compared to sensor location 1 discussed above, but showing better similarity between
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Figure H.8: measurement location 2 in 3 separate numerical models, showing the effect
of increasing mesh refinement

model data and experimental data. The arrival time of the first shock is the same for
all 3 models and the experimental data, and the peak experimental pressure for this
first shock of 180kPa is predicted well by both the models with 10mm and 15mm mesh,
but less well by the 20mm model, as shown in more detail by Figure H.9(b). The
arrival time of the second shock is also predicted well between different models and
experimental data, and as with previous models the second shock is under predicted by
models compared to experimental data, with subsequent refinement showing increases in
peak pressure. The third shock in Figure H.8(a) is well predicted in shape and magnitude
by all models, but the arrival time is later by 0.8ms, with the peak values 0.7ms apart.
The subsequent decay, negative phase and fourth shock seen in experimental data is
predicted in magnitude by all models, but there is time difference of 2.4ms between
peaks as opposed to 1.7ms in experimental data.

Impulses at sensor location 2 from Figure H.8(b) show a closer agreement between
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Figure H.9: Pressure histories plotted over 5ms for two different measurement locations
with three levels of refinement, showing how refinement alters the peak pressure

the 15mm and 10mm mesh than seen at location 1, but similarly shows a greater under
prediction by the coarser 20mm mesh. Impulses up to 5ms are well predicted by the
finer 2 models, but the extended negative phase before the arrival of the of the third
shock leads to a larger drop in the impulse in the models compared to the experimental
data. The longer gap between peaks of third and fourth shocks in the model compared
to experiment also reduces the impulse compared with experimental data. The pressure
in the model becomes negative at 12ms, whereas there is a rising positive pressure in
the experimental, so cumulative impulses between all three models and the experiment
begin to diverge at this point.

Figure H.10 shows pressure and cumulative impulse histories for data sensor location
5, again showing good agreement between the three models and experimental data, but
with a smaller difference between experimental data and the predicted pressures from
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Figure H.10: measurement location 5 in 3 separate numerical models, showing the effect
of increasing mesh refinement

the three different models. The first shock arrives slightly earlier in the three numerical
models than seen in the experiment, shown in Figure H.10(a), but all three models
predict the peak pressure of 140kPa. The arrival and decay of the second shock is also
predicted well by all three models, although the peak pressure here is under predicted
by 50kPa. The third shock in the numerical model over predicts that seen experimental
value and decays slightly faster, with an extra shock in the numerical result at 8.5ms that
is not seen in the experimental data, although some real features of the experimental
data are obscured by some signal noise. A shock wave arrives at 10ms in experimental
data, but the pressure remains negative until 12ms in the model data, leading to the
increase in rate of deviation between model and experimental data at 12ms, shown in
Figure H.10(b), and the discrepancy between the model and the experimental data is
maintained over the measured time.
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The models presented here show that the mesh size can affect the overall accuracy of
the predictions made by the numerical models. In all three models, the second shock
was significantly under predicted and subsequent mesh refinement operations show that
the peak pressure increases as the element size decreases, but the level of refinement that
would be required to accurately predict this second peak pressure would lead to a an
exceptionally large model, most likely with elements as small as 1 or 2 millimeters. For
elements of 1mm, to model the inside of the test cell alone (not including the required
extension of the air domain to limit boundary effects) would require 6.35×109 elements.
This would likely require thousands of gigabytes of RAM and hard disk storage space,
which is not currently available. Other features of the model show little change with
mesh refinement, and for the three model measurement locations shown here, little if
any difference is seen between the cumulative impulse histories for the 10mm and 15mm
meshed models. This indicates that the mesh resolution is unlikely to be responsible for
differences between experimental data and model data.
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Appendix I

Vehicle pressure time histories

Pressure time histories from passenger positions in rail vehicle models are presented here,
which accompany the discussions presented in Chapter 7. Sensor naming convention of
S1 to S4 for each passenger is the same as used in Chapter 7, with S1 facing towards
the vehicle aisle, S2 towards the point of detonation, S3 towards the vehicle bodyside
and S4 towards the vehicle end.
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Figure I.1: Comparison of pressure time history data for passenger location 1, sensor 3,
for cases C1 and C2
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Figure I.2: Comparison of pressure time history data from the sensor facing the door
(S3), for a passenger location by the door in C1 to C4
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Figure I.3: Pressure history for S3 at location C in C1 to C4

I.2 C5 and C6
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Figure I.4: Pressure history for S4 (facing vehicle end) at passenger 18 in C5 and C6

I.3 C1 and C7
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Figure I.5: Pressure history for passenger location 1 in C1 and C7, showing much higher
pressures at S4 (facing seat) for C7 compared to C1
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Figure I.6: Pressure history for passenger location 3 in C1 and C7, showing much higher
pressures at S4 (facing seat) for C7 compared to C1
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Figure I.7: Pressure history for S2 (facing draught screen) at passenger position 6,
showing a significantly lower pressure in C7 compared to C1
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Figure I.8: Pressure history for S3 (facing vehicle bodyside) at passenger position 7,
showing a significantly high reflected pressure in C7 compared to C1
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I.4 Passenger density
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Figure I.9: Pressure time history for sensor location 2 (S2) at reference position A for 3
different passenger densities

0 10 20

Time (ms)

0

200

400

P
re
ss
u
re

(k
P
a
)

D1
D2
D3

Figure I.10: Pressure time history for sensor location 2 (S2) at reference position B for
3 different passenger densities
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Figure I.11: Pressure time history for sensor location 2 (S2) at reference position C for
3 different passenger densities
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