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Abstract 

Calcium sulfoaluminate cement (CSA) is a potential low-carbon binder that 

has a markedly less alkaline matrix environment compared to traditional 

Portland cement. Investigations on its long-term chemical compatibility with 

different reinforcements (i.e. glass fibre and steel rebar) are necessary 

before widespread adoption could occur. In this project, studies mainly focus 

on the microstructural evolution at interfacial zones over time, which has a 

significant impact on the durability properties of reinforced concretes. 

Glass fibre reinforced composites made with two matrix formulations (OPC, 

and OPC plus calcium sulfoaluminate based matrices) aged for 10 years at 

25℃ and steel reinforced CSA concretes aged for 28 days and 1.5 years are 

studied. Optical transmitted microscopy and SEM/EDX on the thin section 

petrographic specimens of composites are employed to give a 

straightforward interfacial zone characterization. Quantitative imaging 

analysis techniques are newly updated by using quantified elemental 

mappings for the first time.  

The results suggest that CSA cement is highly compatible with the 

embedded glass fibre and steel reinforcement in the long term. Aged GRC 

composite modified by CSA cement shows greatly retained toughness, 

accompanied by considerably flexible interfacial and interfilamentary areas 

around the glass fibres. This is in contrary to the aged OPC/GRC, which 

demonstrates significantly brittle behaviour with substantial densification of 

C-S-H/CH intermixture occurring around glass fibres. In the steel reinforced 

CSA concrete, elemental mappings clearly show that there is a non-
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continuous aluminium-rich layer at the steel/concrete interface; and the 

aluminium gel is slightly consumed over time by chemical reactions. Imaging 

analysis results indicate less active ion transport at the steel/concrete 

interface than that in the traditional OPC concrete system.  
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Chapter 1- Introduction  

1.1 General introduction 

In the global push for greener energy and less carbon emission, the cement 

industry is inevitably challenged because it contributes perhaps 6% to total 

global anthropogenic CO2 emission every year (Damtoft et al., 2008; 

Juenger et al., 2011). Production of 1t Portland cement clinker generates 

about 800Kg of CO2 emissions (Gartner, 2004; Damtoft et al., 2008; 

Winnefeld and Lothenbach, 2010); more than 60% of the generated CO2 

derives from the decarbonation of limestone (Popescu et al., 2003) and the 

remainder from energy consumptions (e.g. heating raw materials to a 

temperature of 1450℃ and grinding clinkers). Hence much more attention 

has been given by researchers to developing a new generation of 

environmentally friendly cement systems with the aim of achieving less 

direct CO2 emission and/or energy savings.  

Calcium sulfoaluminate cement (CSA) is one such cement having been 

described as a low-carbon binder, the production of which is expected to 

reduce CO2 emission by up to 35% relative to the traditional Portland 

cement production (Carmen Martin-Sedeno et al., 2010; Zhou et al., 2006). It 

was first produced in China in the 1970s by heating mixtures of limestone, 

bauxite and gypsum to about 1250℃, generating a clinker with the main 

compositions of calcium sulfoaluminate and belite. One of the prominent 

characteristics of hydrated CSA paste is that it is free of calcium hydroxide, 

which consequently leads to a less alkaline pore solution with a pH value 

between 10 and 11.5 (Zhou et al., 2006). Rapid formation of ettringite in 
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hydrated CSA cement system within the first few hours puts CSA cement 

well suited on the production of high-early strength concretes (Beretka et al., 

1997); the intrinsically expansive property of ettringite is beneficial in some 

special situations, e.g. shrinkage-compensation materials, self-levelling 

screed and self-levelling topping mortar (Pera and Ambroise, 2004). 

However, its carbonation rate has been suspected to be much more rapid 

than that in Portland cement concrete due to the dominant formation of 

ettringite (Quillin, 2001); this may cause a moderate concrete strength loss 

(Juenger et al., 2011). Moreover in steel reinforced CSA concrete system, 

reduced alkalinity in the pore solution caused by carbonation may also 

activate the reinforcement corrosion.     

Glass fibre reinforced concrete (GRC for short) is a versatile construction 

material of considerable potential, normally made in the form of thin sheets. 

Nevertheless its long-term durability has aroused some concerns, which has 

limited its wider application in engineering. GRC composites made with 

normal Portland cement may suffer significant reductions in tensile strength 

and ductility with ageing and it tends to deteriorate more rapidly under humid 

environment. The exact mechanisms underlying this degradation process 

are still debated but it is normally accepted that it involves a combination of 

glass fibre corrosion caused by the hydroxyl in the pore solution, and 

significant CH precipitation between and around fibres that causes loss of 

flexibility. Therefore efforts have been directed towards the study of modified 

matrix formulation with markedly reduced alkalinity and/or propensity to 

precipitate calcium hydroxide. CSA cement is one such solution that meets 

these two criteria, in which calcium hydroxide is absent during hydration and 
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a considerably less alkaline pore solution is developed. The addition of CSA 

cement in GRC has been studied and encouraging results of improved 

retention of tensile strength and toughness has been reported (Purnell et al., 

1999; Purnell and Beddows, 2005) by using hot water accelerated ageing 

tests. 

Due to a lack of long research periods available for the long-term curing of 

GRC at normal temperatures, hot water accelerated ageing has been 

developed to assess the likely behaviour of GRC durability within 

manageable time scales. However, the side effects by hot water accelerating 

ageing cannot be ignored. It may not simply accelerate the hydration as 

expected originally, but may also have an influence on the intrinsic nature of 

the hydrated matrix to some degree (e.g. totally different hydration products 

can be generated at elevated ageing temperature), which is a key factor 

controlling the degradation mechanism, thus limiting the usefulness of this 

testing procedure. This could lead to overestimations or underestimations of 

the durability of the tested GRC composites.  

In traditional OPC-based steel reinforced concrete systems, the 

steel/concrete interface tends to become more porous than the bulk matrix. 

Previous studies (Li and Hu, 2001; Horne et al., 2007) generally agree that 

there are considerable amounts of crystalline CH in a layer at the interface, 

which may or may not be continuous along the whole perimeter of steel, only 

adhering on the steel surface partially. This leads to the assumption that 

enhanced pH buffering capacity is maintained at the interface, which 

consequently helps protect the embedded steel from corrosion as a high pH 

is retained in the vicinity of steel under most conditions. However, when 
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embedded in a less alkaline solution developed by the CSA-based material, 

steel reinforcement is no longer protected by a solid lime-rich layer as no CH 

is formed during hydration; and the tendency of rapid carbonation of the 

abundant ettringite formed during hydration further reduces its buffering 

capacity against de-alkalization. Therefore concerns have been raised for 

the passivation of the steel bars that are embedded in CSA cement matrix in 

the long term.   

The interfacial zone is the weakest part in concrete and it is usually from this 

region that cracks initiate and propagate, followed by a destructive stress 

failure. To some extent, physical condition and composition of the hydrated 

phases in this region are among the deciding factors controlling the durability 

properties of reinforced concrete systems. Much research has studied steel 

reinforced CSA concrete (Kalogridis et al., 2000; Janotka et al., 2002; 

Glasser and Zhang, 2001), but most of the work has concentrated on the 

strength development and various macro-properties (e.g. carbonation, 

sulfate resistance, frost and corrosion resistant capacities). Little is known 

about how its microstructure evolves with ageing, in particular at the 

steel/concrete interfacial region, despite this being a fundamental factor 

which has an influential effect on the macro-properties development of 

reinforced CSA concretes.  

Image analysis techniques make it possible to achieve quantitative 

calculations of different phases (e.g. unhydrated cement, CH, porosity) at 

the interface in reinforced OPC concretes. This is based on phase 

segmentations according to their unique microstructural features as well as 

several computer-based arithmetic programs. Although elemental mappings 
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are able to provide straightforward and qualitative digital information on the 

spatial distributions of different elements in general, quantitative evolution of 

various atomic ratios (e.g. Ca/Si, Al/Ca, S/Ca) with curing at the interfacial 

region remains unclear. This suggests that careful examination in pursuit of 

a better understanding of the mobility of different ions during hydration in the 

vicinity of steel, and how it may be influenced by various factors, e.g. w/c 

ratios, curing conditions and the matrix type, is likely to be useful. Similar 

quantitative analysis on reinforced CSA concrete is also needed in order to 

clarify the intrinsic differences between OPC and CSA cement in how they 

distribute different ions in order to protect the embedded steel and give 

confidence in the long-term behaviour of CSA concrete. 

1.2 Aims and objectives 

In both composite systems, the interface is of paramount importance. Thus, 

studies in this project focus on the investigation of CSA-based concretes 

reinforced by different reinforcements, e.g. glass fibres and steel bar 

reinforcement, with particular focus on the interfacial region. Research will 

emphasize whether those embedded reinforcements are still physically and 

chemically compatible within the newly made CSA cement matrix, by means 

of microstructural observations at the interfacial zones. This information is of 

vital importance for assessment of the predicted durability properties of 

CSA-based materials, which is critical before the widespread application of 

CSA cement concrete can occur in the construction industry and the 

potential low-carbon benefits be realised.  
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This project provides the opportunity to study the ‘real aged’ GRC 

composites cured for 10 years at 25℃. Both durability and microstructure 

studies of these CSA modified GRC are investigated, with a reference from 

normal GRC composites under the same ageing condition. In addition, CSA 

concretes reinforced by steel bars (with a diameter of 10mm) are also made 

to study the microstructural evolution at the steel/cement interface at ages 

for up to 1.5 year, in both qualitative and quantitative ways.    

The primary objectives of this project are: 

• Study on the hydration process of CSA cement pastes hydrated at 

different curing regimes (7 days, 28 days, 90 days and 1.5 years).  

• Appraisal of the long-term compatibility between glass fibre and CSA-

modified cement matrix in GRC systems.  

Bending performances and microstructural evolution at the 

interfilamentary and fibre/cement interfacial zone of the GRC 

composites are examined; the latter is a critical aspect in describing 

the long-term durability properties of GRC. 

• Assessment of the time-dependent microstructure development at the 

steel/concrete interface in reinforced CSA concrete cured for up to 1.5 

year, in comparison to a corresponding OPC concrete system.  

• Image analysis to study the chemical composition at the 

steel/concrete interface in both steel reinforced CSA and OPC 

concrete systems.  

Quantitative distributions of atomic ratios (e.g. Ca/Si, Al/Ca, S/Ca) as 

a function of distance away from steel (within 30𝜇𝑚) are attempted, 

aiming at figuring out the intrinsic difference between these CSA and 
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OPC-based concrete systems and the preferable precipitation and 

transport of varying ions in the vicinity of the embedded steel with 

curing.   

1.3 Thesis structure  

The thesis is started with three chapters of literature review (chapter two on 

CSA cement, chapter three on GRC composites and chapter four on 

interfaces in steel reinforced concrete). Then it follows chapter five for the 

experimental work, mainly introducing the materials and technical 

methodologies used in this research. Chapter six presents the experimental 

results on GRC composites, by combining different analytical techniques. 

Chapter seven refers to the results on interfaces in steel reinforced concrete. 

Discussion is included in chapter eight, comparing the results obtained in 

this research with the previous research. A general conclusion can be found 

in chapter nine, focusing on the different features of interfacial zone in 

reinforced composites with modified matrix and varying reinforcements.   
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Chapter 2- Literature review on calcium 
sulfoaluminate cement 

This chapter summarises the history of CSA cement and the influences of 

different clinker compositions (e.g. contents of gypsum) on the macro-

properties of CSA-based materials. Hydration mechanism of CSA cement is 

also introduced in this text below. Durability properties of CSA-based 

materials (e.g. carbonation and corrosion resistance) are summarised in this 

chapter.  

2.1 Introduction  

CSA cement was first produced in China in the 1970s (Glasser and Zhang, 

2001; L.Zhang, 1999; Zhang and Glasser, 2005; Shi et al., 2011). Raw 

materials including limestone, bauxite together with gypsum or anhydrite are 

fired at 1250-1350℃; the firing temperature is therefore ~200℃ lower than 

that for Portland cement manufacture. Its main clinker composition is 

calcium sulfoaluminate C!A!S (or called Ye’elimite); other phases such as 

belite, aluminate or ferrite may also present depending on the raw mixes. 

Calcium sulfoaluminate is considerably lower in calcium content compared 

with other clinker phases in Portland cement; this leads to a favourable 

reduction in CO2 emission during the calcination of limestone in cement 

kilns. In detail, CaO content by weight of several cement phases are listed 

as follows: C3S 73.7%, C2S 65.1%, C3A 62.2%, C4AF 46.2%, C!A!S 36.7%. 

Among these clinker phases, calcium sulfoaluminate can be summarised to 
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be the most attractive option for developing low-energy cements (Arjunan et 

al., 1999).  

Varying contents of gypsum or anhydrite are added to the raw mix in order to 

control the dimensional stability properties of CSA cement (Winnefeld and 

Barlag, 2009; Glasser and Zhang, 2001; García-Maté et al., 2012; Telesca 

et al., 2014). This is tailored to different engineering applications, e.g. a 

CaSO4 content between 18-20% causes slight shrinkage during setting; a 

value between 22-24% provides a minimal dimensional change; and at value 

at or above 25%, CSA cement can be quite expansive due to the presence 

of large amounts of ettringite formation (Glasser and Zhang, 2001). 

Therefore one of the main applications of CSA cement is used as an 

expansive binder in shrinkage-compensated cement, e.g. leakage and 

seepage prevention projects (Juenger et al., 2011; Glasser and Zhang, 

2001; Janotka et al., 2003; Janotka and Krajci, 1999; Pera and Ambroise, 

2004; Georgin et al., 2008). CSA cement usually gives very high early 

strength because of the rapid formation of ettringite within the first few hours, 

bonding and interlocking between ettringite is assumed to contribute to the 

strength development (Arjunan et al., 1999; Glasser and Zhang, 2001; 

Hargis et al., 2013). Due to its low alkaline pore solution compared to OPC, 

addition of CSA cement has been used to produce high-performance glass 

fibre reinforced composites (Pera and Ambroise, 2004; Purnell et al., 1999). 

On the other hand, the formation of ettringite and AFm phases makes CSA 

cement paste able to bind heavy metals (as ettringite and AFm can 

accommodate substitutions in their SO4
2-, Ca2+ or Al3+ sites), therefore CSA 

cement is also considered as a potential material in the field of hazardous 
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waste encapsulation (Peysson et al., 2005; Zhou et al., 2006; Luz et al., 

2006; Juenger et al., 2011; Albino et al., 1996; Winnefeld and Lothenbach, 

2010; Berger et al., 2013).  

In summary, the advantages of CSA cement over Portland cement can be 

summarised as:  

1. Reduced energy consumption during manufacture. The clinker 

temperature for producing CSA cement is ~200℃ lower than those for 

Portland cement manufacture. On the other hand, the resultant clinker 

is very soft and has higher clinker porosity that requires lower grinding 

energy.  

2. Lower CO2 emission during manufacture due to reduced limestone 

utilization in raw materials.  

3. High early strength development. Rapid hydration of calcium 

sulfoaluminate within the first few hours produces large amounts of 

ettringite formation, which are conducive to a higher strength 

development at early age.   

2.2 Chemical compositions  

CSA cement presents a wide range of phase assemblages, but its main 

mineral (more than 50 wt.%) is calcium sulfoaluminate 𝐶!𝐴!𝑆 (also known as 

Ye’elimite). Depending on the raw materials, belite or aluminate or ferrite 

phases may also be present (Quillin, 2001; Chen and Juenger, 2011; 

García-Maté et al., 2014; Adolfsson et al., 2007; Li et al., 2014).   



Chapter 2- Literature review on calcium sulfoaluminate cement 

11	  
	  

2.2.1 Calcium sulfoaluminate 

In the pure CSA cement hydration system, calcium sulfoaluminate starts to 

hydrate rapidly within 15-20min after mixing (García-Maté et al., 2014). It 

exhibits the formation of ettringite crystals (present as prismatic or needle-

like shapes) together with amorphous alumina gels, providing enough 

gypsum is present (Eq. 2.1). Large amounts of ettringite formed are highly 

responsible for the quick setting of CSA cement and most of the strength 

development in the first few days (Glasser and Zhang, 2001; Liao et al., 

2011). Afterwards, formation of monosulfate initiates quickly with the 

depletion of gypsum (Winnefeld and Lothenbach, 2010) (Eq. 2.2).         

C!A!S+ 2CSH! + 34H → C!A ∙ 3CS ∙ 32H+ 4A𝐻!     (Ettringite formation)   (2.1)                                          

C!A!S+ 18H → C!A ∙ CS ∙ 12H+ 4AH!              (Monosulfate formation)   (2.2)                                                  

If CSA cement is used as an alternative addition to Portland cement, CH is 

then produced from the reactant hydration of C3S and C3A in Portland 

cement. However the resultant CH is soon involved in the hydration of 

calcium sulfoaluminate, leaving ettringite as the main hydration product (Eq. 

2.3). After the depletion of gypsum and CH, monosulfate starts to generate 

as shown in Eq. 2.2.  

C!A!S+ 8CSH! + 6CH+ 74H → 3C!A ∙ 3C𝑆 ∙ 32𝐻  (Ettringite formation)    (2.3)                            

2.2.2 Belite  

Hydration reaction of belite in CSA cement has been reported to be slightly 

different from that in the OPC cement (García-Maté et al., 2012; Scrivener et 
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al., 2004). Belite hydrates at a much slower rate in the ordinary OPC pastes 

(Eq. 2.4), usually consuming 30% in the first 28 days and 90% after one 

year. However it exerts an irreplaceable role in improving cement strength at 

later ages.  

𝐶!𝑆 + 4.3𝐻 → 𝐶!.!𝑆𝐻! + 0.3𝐶𝐻                                                                 (2.4)          

In the pure CSA cement systems, crystalline calcium hydroxide produced 

from the relatively slow hydration of belite (Eq. 2.4) is soon consumed by 

calcium sulfoaluminate, with continuous formation of ettringite (see Eq. 2.3). 

On the other hand, belite becomes reactive with the remnants of aluminium 

hydroxide gel hydrated from calcium sulfoaluminate, leaving the formation of 

stratlingite C2ASH8 (Telesca et al., 2014) (Eq. 2.5). 

C!S+ AH! + 5H → C!ASH!                      (Stratlingite formation)               (2.5) 

2.3 Durability 

2.3.1 Carbonation  

Concerns have been proposed for the poor carbonation resistant capacity of 

hydrated CSA-based materials due to the predominant presence of ettringite 

(Quillin, 2001). Mortars made by CSA cement with different w/c ratios and 

curing regimes have been studied (Mechling et al., 2013). The results 

showed that CSA mortars exhibited greater sensitivity to carbonation relative 

to the reference Portland cement mortar, particularly at high w/c ratios (i.e. 

w/c 0.78 and 0.58); but with lower w/c ratios (i.e. of 0.45), comparable 

carbonation resistant capacities can be observed.    
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In-service examples of CSA based concretes have also been examined by 

removing samples from service conditions after 10-15 years (Glasser and 

Zhang, 2001). The investigated samples demonstrated well-performing 

engineering properties, none of them showed serious signs of fatigue or 

demands for repair. Carbonation depth tested was almost similar to those 

OPC concretes, eliminating the concerns that prominent ettringite presence 

in the matrix may cause detrimental carbonation with ageing.  

2.3.2 Corrosion resistance 

In terms of the corrosion resistance in steel reinforced CSA-based concrete, 

controversial opinions still exist. Glasser (Glasser and Zhang, 2001) reported 

that the embedded steel reinforcement in CSA matrix stayed fresh and 

passivated after 14 years of service, attributed to its self-desiccation 

properties which therefore provides less bleeding water available in the 

vicinity of steel. However, Kalogridis (Kalogridis et al., 2000) reported that 

the less alkaline pore solution within the CSA concrete exposed the 

reinforcing steel to a higher corrosion risk, revealed by a more negative 

potential than those for the OPC samples in half-cell potential 

measurements. Half-cell potential value for OPC specimens varied between 

-100 to -300mV during 13 months in 3.5% NaCl solution, whereas it 

remained at about -500 to -600mV for CSA-based specimen under the same 

testing condition. The result suggests a higher risk of reinforcement 

corrosion in CSA-based matrix, particularly at the intermittent exposure to 

3.5% NaCl solution, oxygen is able to contact with the reinforcing bars 

besides a high concentration of Cl- in the vicinity of steel. The ingress of 



Chapter 2- Literature review on calcium sulfoaluminate cement 

14	  
	  

detrimental Cl- and oxygen, together with the low alkalinity in the pore 

solution, may consequently destroy the passivation of reinforcement and fail 

to protect steel from corrosion any more.  

Studies on the mortars made by pure CSA cement (Janotka et al., 2002; 

Janotka and Krajci, 1999; Janotka et al., 2003) showed that steel embedded 

in CSA matrix had lost their passivation after 90 days of wet curing, 

suggested by a potential dynamic curve. In contrary, blended CSA cement 

with an addition of 15 wt.% OPC provided a considerable desirable 

environment for the steel reinforcement to stay passive, comparable to the 

reference OPC concretes (Janotka et al., 2002; Janotka et al., 2003).  
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Chapter 3- Literature review on GRC 
composites 

Degradation mechanism of GRC composites made by OPC is discussed in 

this chapter; also the microstructural reasons at the interface and 

interfilamentary space are discovered. Accelerated ageing for the durability 

study of GRC is discussed. Improvement of GRC by modifying matrix (e.g. 

pozzolanas and CSA cement) is also summarised. At the end, evolution at 

the interface between glass fibre and cement on the durability (e.g. bonding 

strength and failure mode) is discussed.  

3.1 Introduction  

A prominent weakness of cement paste is its brittle behaviour with a low 

tensile strength and poor resistance to crack initiation and propagation 

(Brandt, 2008; Majumdar and Laws, 1991), as shown in Table 3.1.1. The 

concept of combining cementitious materials with dispersed reinforcing 

fibres dates back to about 1900, and at that time the development of 

asbestos cement obtained extensive success. It was originally expected to 

improve the brittle performance of cement pastes by providing post-peak 

toughness and bridging the crack opening and propagation. However, health 

concerns on the carcinogenic hazard of asbestos were reported soon and 

this terminated the engineering applications of asbestos cement in most 

developed countries (Hughes and Weill, 1991; Coutts, 2005; Pacheco-

Torgal and Jalali, 2011). Afterwards a level of interest was sustained to find 

out alternative fibres for cement reinforcement; different types of fibres have 
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been investigated, e.g. natural fibres, carbon fibres, glass fibres, steel fibres 

and synthetic fibres.  

Table 3.1.1 Properties of hardened cement paste, from reference (Majumdar and 

Laws, 1991) 

Elastic modulus (GPa) 7-28 

Compressive strength (MPa) 14-140 

Tensile strength (MPa) 1.4-7 

Modulus of rupture (MPa) 2.8-14 

Tensile failure strain (%) 0.02-0.06 

Poisson ratio 0.23-0.30 

Thermal expansion (per ℃ × 106) 12-20 

Volume shrinkage on drying (%) 0.2-0.3 

Density (mg/m3) 1.7-2.2 

Glass fibre reinforced composite (GRC) is a versatile construction material 

that has been widely used in engineering over the last four decades. It is 

normally made in the form of thin sheet and is particularly suited on many 

semi-structural applications e.g. architectural cladding panels, roofing, 

permanent formwork, floor surfaces and façade renovation (Majumdar and 

Laws, 1991; Pera and Ambroise, 2004; Enfedaque et al., 2011).  

To make the composite, small amounts of chopped glass fibres (usually Vf 

~5%) are incorporated as rovings of up to 64 strands and each strand is 

normally made up of ~200 filaments with a standard diameter of ~14𝜇𝑚. 

Different production methods have been developed for the manufacture of 

fibre reinforced concrete, i.e. pre-mix, spray-up, automated process or in the 

knitted fabric form. The addition of glass fibre strands is designed to imbue 
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the composite with toughness and enhance its brittle behaviour by post-peak 

toughness and enhanced failure strain. Typical mechanical performances of 

normal GRC composites is summarised in Table 3.1.2. It shows that the 

tensile strength of GRC has been improved to 8-18MPa, compared to an 

averaged value of 1.4-7MPa for cement pastes (Table 3.1.1). Considerably 

enhanced strain to failure value of 0.8-1.7% reflects a much more ductile 

and flexible behaviour of this cementitious material with the reinforcement of 

glass fibres. It is essential to understand the potential factors affecting the 

mechanical performances of GRC composites prior to any specific materials 

design. Cement matrix formulations, curing and service conditions, plus type 

and volume of glass fibre reinforcements (e.g. fibre content, fibre length and 

orientation) are all significantly relevant to the macro-performances of GRC 

to various degrees.  

Table 3.1.2 Typical properties of unaged GRC composites 

Property Range 

Tensile strength, MPa 8-18 

Flexural strength, MPa  12-50 

Initial modulus, GPa 8-25 

Post-cracking modulus, GPa 0.6-1.0 

Strain to failure, % 0.8-1.7 

3.2 Historical  

The first systematic research on GRC composites was launched by 

Biryukovich and his colleagues in former USSR in 1964, using low-alkali 

cements and the reinforcement of E-glass (Majumdar and Laws, 1991; 

Biryukovich and Yu, 1964). It was particularly designed for electrical 
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insulation. However, E-glass showed severe chemical corrosion in the highly 

alkaline Portland cement solution over time (Brandt, 2008) and thus special 

glass fibres with greater degree of alkaline resistance than that of  

borosilicate E-glass was required in order to apply GRC in engineering.  

Further project was undertaken by Majumdar and Ryder in 1966 at Building 

Research Establishment (BRE) and the preliminary results showed that 

several glass compositions, particularly those based on a Na2O-SiO2-ZrO2 

system exhibited sufficient potential capability of alkaline resistance for an 

advanced GRC system (Biryukovich and Yu, 1964). Based on this work, first 

commercial AR fibres containing about 16% zirconia were produced by 

Pilkington Brothers PLC in collaboration with the National Research 

Development Corporation and BRE in 1971, trademarked as Cem-FIL. This 

was a breakthrough, marking the beginning of the GRC industry. With the 

advent of AR glass fibres, interest in GRC as a new generation of 

construction material was immediate and it soon reached extensive 

applications in engineering. Chemical comparison of AR glass fibre and E-

glass was summarised by Majumdar (Majumdar and Laws, 1991) as shown 

in Table 3.2.1. Significant reduced amount of Al2O3 and CaO can be 

observed in commercial Cem-FIL, which is also renewed by the addition of 

16.7% ZrO2 and minor amounts of TiO2.  

Table 3.2.1 Chemical compositions of various glass fibres (wt.%) from reference 

(Majumdar and Laws, 1991) 

 SiO2 ZrO2 TiO2 Al2O3 B2O3 CaO MgO Na2O K2O F2 

E-glass 54.0 _ _ 15.0 7.0 22.0 0.5 0.3 0.8 0.3 

Cem-FIL 62.0 16.7 0.1 0.8 _ 5.6 _ 14.8 _ _ 
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However, detrimental degradation still occurs in aged GRC composites 

reinforced by AR glass fibre, without totally eliminating the tendency of 

considerable reduction in tensile strength and ductility as service time 

develops (Butler et al., 2010; Nourredine, 2011). Therefore attempts 

continued to produce much more alkali resistant glass fibres, which are 

expected to offer better chemical compatibility with alkaline cement matrix in 

the long term. Development of surface treatment of fibres by the 

incorporation of polyhydroxy-phenols consequently leads to the commercial 

production of second generation of AR glass fibre, e.g. Cem-FIL2 AR glass 

fibres. This coating is gradually released into the alkaline matrix around the 

glass fibres, not only reducing the possibility of glass/cement reaction to a 

significant degree, but may also modify the hydration products near fibre 

surfaces (Bentur et al., 1985; Majumdar and Laws, 1991). Majumdar 

(Majumdar and Laws, 1991) compared the mechanical performances of 

GRC made from Cem-FIL and Cem-FIL2 respectively. The results showed 

considerable improvements in GRC performance using Cem-FIL2 under 

natural weathering at BRE, and it still retained most of the initial strength and 

toughness after at least 9 years of natural weathering. Detailed information 

is shown in Table 3.2.2.  
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Table 3.2.2 Comparison of mechanical properties of GRC composites reinforced by 

both Cem-FIL and Cem-FIL 2 under natural weathering at BRS, from reference 

(Majumdar and Laws, 1991)  

 Cem-FIL 2/OPC GRC Cem-FIL/OPC GRC 

Age MOR1 

 

LOP2 IS3 

 

UTS4 

 

E5 

 

FS6 

 

MOR1 

 

LOP2 

 

IS3 

 

UTS4 

 

E5 

 

FS6 

 180d  - - - - - - 35 17 18 13 38 5500 

1y - - - - - - 31 16 12 10 38 - 

2y 36 11 20 13 39 8000 28 18 8 10 37 430 

4y 33 15 14 13 36 7310 22 15 5 8 41 240 

9y 30 14 13 11 44 4710 18 16 6 6 39 160 

Note: Matrix formulations are 70 wt.% OPC and 30 wt.% sand 

1 Modulus of rupture, unit in MPa; 2 Limit of proportionality, unit in MPa; 3 impact 

strength, unit in kJ/m2; 4 ultimate tensile strength, unit in MPa; 5 elastic modulus, unit 

in GPa; 6 failure strain, unit in microstrain.  

3.3 Theoretical mechanism of GRC composite 

Fig. 3.3.1 shows an idealized stress-strain curve for theoretical 2-D 

reinforced composite (with sufficient glass fibre reinforcement) and the curve 

is clearly divided into four regions: 

In the pre-cracking region (region I), tensile behaviour of young GRC 

composites demonstrates a linear elastic relationship in the stress-strain 

curve, where both cement matrix and fibres are performing together in a 

normal composite manner. The composite modulus Ec can be calculated 

based on the mixture rule:  
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Ec= EmVm + ηEfVf 

Em and Ef is the modulus of matrix and fibre respectively. Efficiency factor η 

(0<η<1) is generally applied in composites where fibres are short and not 

aligned with the direction of stress. The mostly widespread manufacture 

process (i.e. spray-up method) distributes short fibres in a random way. For 

composites with a 2-D random fibre layout, η is calculated to be 0.375; with 

a random 3-D fibre alignment, η is 0.2 (Purnell, 2007). 

Region II refers to the multiple cracking region. After reaching the limit of 

proportionality (LOP) point, stress increases at a decreased rate and 

composites behave as less stiff materials. This acts as a transitional process 

to transfer load from matrix to fibre progressively due to the development of 

series of multiple cracks within the matrix. A corresponding serrated curve is 

displayed in the stress strain curve because stress increases if one crack is 

arrested and strength decrease would occur if the crack propagates.  

In the following post-cracking region (region III), stress continues to increase 

linearly at an extremely slow rate with a growing elongation while the visible 

crack keeps opening. Glass fibre strands are carrying the load alone in this 

single process during the pull-out procedure, and thus the cracks are 

bridging by the fibres to some extent to prevent further propagation. 

Region IV – the post-peak region – is a process when the maximum stress 

capacity of the composite has been exceeded before subsequent 

catastrophic failure occurs.  
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Figure 3.3.1 Typical stress-strain curve for GRC composite reinforced by short 

fibres with high fibre content (Vf>Vfcrit, l≤lc), from reference (Purnell, 2007)  

3.4 Durability  

Long-term durability of GRC composites has been a major concern in 

limiting the widespread application of this versatile material. GRC made by 

normal Portland cement demonstrates significant reductions in both tensile 

strength and ductility as time develops, particularly under humid 

environments (Butler et al., 2009a; Orlowsky and Raupach, 2008; Peled et 

al., 2005; Enfedaque et al., 2012). The long-term properties of a typical 

spray-dewatered GRC composite reinforced by 5 wt.% Cem-FIL AR glass 

fibres are shown in Table 3.4.1, summarised from data in literature 

(Majumdar and Laws, 1991). Those investigated GRC composites have 

exhibited tensile strength reductions from 14-17MPa at 28 days to as little as 

4-7MPa gradually after 17 years UK weathering. The corresponding bending 
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strength at early age is within a range of 35-50MPa but a residual value of 

only 13-18MPa is observed after ageing for 17 years.  

Table 3.4.1 Examples of the measured strength properties of spray-dewatered 

OPC/GRC reinforced by 5 wt.% Cem-FIL AR glass fibre) with ageing, from 

reference (Majumdar and Laws, 1991) 

Age 28d 1y 5y 10y  17y 

Tensile strength (MPa)  14-17 11-14 7-8 7-8 4-7 

Bending strength (MPa) 35-50 30-36 21-23 15-19 13-18 

Failure strain (%) 1 0.5 0.05     -     - 

Young’s modulus (GPa) 20-25 20-25 25-32 27-30 25-36 

Impact strength (kJ/m2) 17-31 13-16 4-7 2-6 2-5 

3.4.1 Mechanisms  

Mechanisms underlying the degradation process of GRC composites are still 

under debate, but it is generally considered to associate with fibre corrosion 

by the alkalinity attack from the matrix (Orlowsky et al., 2005; Orlowsky and 

Raupach, 2006; Cuypers et al., 2006; Cohen and Peled, 2012) and/or loss of 

fibre flexibility by the CH precipitation within and around glass fibre strands 

(Bentur, 1985; Orlowsky et al., 2005; Cohen and Peled, 2012; Butler et al., 

2010).  

Besides this, static fatigue of the embedded glass fibres under sustained 

load in the highly alkaline environment is also reported to have an influence 

on the ageing of GRC composites (Michalske and Freiman, 1983; Purnell et 

al., 2001; Purnell and Beddows, 2005; Orlowsky et al., 2005; Orlowsky and 

Raupach, 2006; Orlowsky and Raupach, 2008).   
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3.4.1.1 Fibre corrosion  

Inorganic silicate glasses are not intrinsically immune to alkali attack in the 

alkaline pore solution of Portland cement matrix. Its main structure (silicon-

oxygen-silicon network) can be destroyed by the hydroxyl ions (see Eq. 3.1), 

leading to significant fibre structure breakdown.  

Si−O−Si−OH + OH- → Si−OH + -O−Si−OH                                                 (3.1) 

With the addition of 16-20 wt.% ZrO2 in AR glass fibres, this destructive 

reaction is supposed to be suppressed to some degree as Zr-O bonds are 

more alkaline resistant than the Si-O in alkaline solutions (Paul, 1977; Butler 

et al., 2010). Despite of this improvement, AR glass fibres embedded in the 

alkaline cementitious matrix are still reported to suffer from considerable 

chemical attack with ageing (Nourredine, 2011; Hempel and Butler, 2007; 

Butler et al., 2010; Enfedaque et al., 2012). Such corrosion can be delayed 

effectively by the application of organic polymer sizes on fibre surface. This 

leads to the advent of the second generation of AR glass fibres, which is a 

breakthrough in GRC industry (Gao et al., 2004; Liu et al., 2011; Gao et al., 

2007; Butler et al., 2010).  

3.4.1.2 Matrix densification and interfilamentary precipitation  

For the newly made GRC, the interface between fibre and cement tends to 

be much more porous than that in the surrounding matrix (Bentur and 

Mindess, 1990; Cohen and Peled, 2010). This is beneficial for the composite 

overall in subject of improved toughness properties, as cracks travelling 

through the brittle matrix are prone to be diverted along the porous interfacial 

zone rather than propagate further through the glass fibres (Barhum and 
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Mechtcherine, 2013). Besides this, spaces between fibres also remain 

almost empty at early age, as penetrated hydrated matrix and/or hydration 

products are absent at this stage (Bentur et al., 1985; Bentur, 2000). This 

guarantees a considerably flexible fibre behaviour, which helps to adjust or 

re-distribute their locations in a rope-like manner when forces apply, which 

favourably adds a magnitude of post-peak toughness to the composite 

material. 

With the progress of hydration process, solid hydration phases 

(predominantly crystalline CH) tend to densify the interfilamentary spaces 

(Majumdar and Laws, 1991; Proctor et al., 1982; Cohen and Peled, 2010). A 

consequence of this is the increase in bond strength between filaments, 

resulting in a rather rigid and integrated composite structure. It leads to 

catastrophic losses of flexibility and glass fibres fails to fulfil its original 

expectations to imbue toughness to the composite, changing failure mode 

gradually from fibre pull-out to fibre breakdown (Bartos and Zhu, 1996; 

Bentur, 1985; Yilmaz and Glasser, 1991; Glinicki and Brandt, 2007).  

Formation of hydration products (particularly CH) also directed towards the 

interfacial zone and fills most of the empty spaces in the region. This 

increases the bond strength between fibres and cement matrix and forms an 

intimate contact layer at the interface (Zhu and Bartos, 1997; Glinicki and 

Brandt, 2007; Cohen and Peled, 2010). Therefore propagation of cracks 

tends to be more likely to become sporadic as ageing continues and 

resultantly increases the possibility of crack growth through glass fibres, thus 

limiting the bridging capacities of fibres to a significant degree. 
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Incorporation of nano-particle fillers (i.e. silica fume particle or polystyrene-

based polymers) between fibre filament has been indicated as an efficient 

way to reduce the matrix penetrability problem (Cohen and Peled, 2010; 

Cohen and Peled, 2012). The magnitude of efficiency is highly dependent on 

the type, structure and properties of the filler.   

3.4.2 Accelerated ageing 

The introduction of any novel construction material in industry requires a pre-

investigated knowledge on its long-term durability performances before a 

widespread adoption could occur. However, it is time-consuming to expose 

the tested specimens under natural weathering for expected long time period 

before any statistical data can be achieved.  

Accelerated ageing mechanism is then introduced, by immersion of 

investigated GRC specimens in hot water at elevated temperatures (typically 

over 50℃ ) for different periods to induce ageing thermally. Hot water 

accelerated ageing technique exhibits full potential for the estimation of time-

dependent behaviour of GRC composites by a variety of accelerated ageing 

models proposed in literature (Purnell et al., 2001; Litherland, 1981; Van 

Itterbeeck et al., 2009; Purnell et al., 2008; Van Itterbeeck et al., 2012; 

Purnell et al., 1999). Accelerated ageing tests make it possible to correlate 

shorter periods of accelerated ageing (at specified accelerated temperature) 

with longer periods of in-service weathering in a quantitative relationship.  

Proctor and his colleagues (Proctor et al., 1982; Litherland, 1981) first 

developed an accelerated ageing model in the late 1970s, by using OPC 

matrices reinforced by the first generation AR glass fibres. In the study, a 
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small block of cement reinforced by a single glass fibre strand was cast (see 

Fig. 3.4.1 below) and specimen was cured at room temperature in the first 

24h prior to be immersed under elevated temperatures. After specified 

ageing periods, direct tensile strength of the embedded fibre strand was 

measured and the original results are shown in Fig. 3.4.2.   

	  

Figure 3.4.1 Illustration of strand-in-cement tensile specimen test 

Accelerated ageing model proposed by Litherland (Litherland, 1981) was 

based on the assumptions that (a) chemical reaction between glass and 

cement is directly relative to the rate of loss in the glass fibre strength, (b) 

time taken for the SIC strength to fall to any given value σsic can be regarded 

as an inverse measure of the rate of strength loss, and (c) GRC composite 

strength is dependent on fibre volume, σc=σf Vf. It was assumed that there 

was an Arrhenius relationship between strength reduction with ageing time 

and the ageing temperature, as shown in Fig. 3.4.3, which corresponded to 

activation energy of ~90kJ/mol. The temperature coefficient given in Fig. 

3.4.3 can be applied for making quantitative predictions using time 

transpositions. Therefore it can be suggested that under UK weathering:  

1 day at 50℃ in water = 101 days in natural weather 
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1 day at 60℃ in water = 272 days in natural weather 

1 day at 70℃ in water = 693 days in natural weather 

1 day at 80℃ in water = 1672 days in natural weather 

	  

Figure 3.4.2 SIC strength retention in water at various temperatures, from 

reference (Litherland, 1981)  
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Figure 3.4.3 Arrhenius graphs from SIC tests, from reference (Litherland, 

1981) 

However, with the introduction of second generation AR glass fibres as well 

as the development of various modified matrix formulations by non-Portland 

cement matrix (e.g. calcium sulfoaluminate cement) and/or Pozzolanic 

materials, long-term ageing characteristics of those modified composites 

may differ from the composites made by Cem-FIL used in the Litherland’s 

ageing model (Litherland, 1981). Therefore the accelerated ageing model 

suggested by Litherland may not be applicable to these new materials and 

further modification is necessary. It was found that Cem-FIL2 composites 

had the same acceleration factors as the original composite made by Cem-

FIL (Proctor et al., 1982).  

Purnell (Purnell et al., 2001; Purnell et al., 2008; Purnell and Beddows, 

2005) proposed a new static fatigue model to explain the losses in strength 
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of accelerated aged GRC composites; modified matrix with the addition of 

metakaolin and calcium sulfoaluminate-based materials were used 

respectively in the study. It concentrated on the static fatigue caused by the 

enlargement of fibre flaws on a surface under hydrothermal and mechanical 

loading, as a substantial degradation mechanism instead of fibre corrosion 

with ageing. Under this circumstance, strength failure could occur with subtle 

applied surface stress, which is likely to aggravate the flaw growth. Besides 

this, weathering temperature and the chemical environment within the matrix 

(e.g. pH and moisture) also has the potential to deteriorate flaw size, which 

could result in shrinkage or expansion thermally. GRC modified by 

Pozzolanic metakaolin and sulfoaluminate cement based materials both 

showed improved ageing-resistant ability, possessing similar activation 

energy of 57-59 kJ/mol, lower than that of 94-97 kJ/mol for the OPC matrix.  

3.5 Improvement of GRC from matrix modification   

Matrix formulations are primary factors controlling the durability properties in 

GRC systems. Modified matrix by different pozzolanas or non-Portland 

cement matrix is an advisable solution for producing more durable GRC 

composites. Pozzolanic additions of metakaolin, pulverised fuel ash (pfa), 

silica fume or micro silicon, with contents ranging from 10% to as high as 

70%, have been reviewed extensively (Sabir et al., 2001; Enfedaque et al., 

2010; Enfedaque Diaz et al., 2010; Purnell et al., 1999; Hayashi, 1985; 

Bartos and Zhu, 1996; Leonard and Bentur, 1984). Non-Portland cement 

such as calcium aluminate cement (Purnell et al., 2000; Purnell and 
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Beddows, 2005; Pera and Ambroise, 2004) is a popular subject in GRC 

studies and encouraging results have been obtained.    

3.5.1 GRC from Pozzolanas additives 

3.5.1.1 Metakaolin  

Potential attention has been drawn for the employment of metakaolin in 

GRC composites (Purnell et al., 1999; Enfedaque et al., 2010; Enfedaque 

Diaz et al., 2010; Peled et al., 2005). It is processed from calcination of 

kaolin clay at moderate temperatures (650-850℃). General agreement has 

been reached by researchers that 20-25% addition of metakaolin could 

confer remarkable composite properties improvement under both UK natural 

weathering and accelerated ageing (Zhu and Bartos, 1997; Enfedaque Diaz 

et al., 2010; Purnell et al., 1999). This advantageous effect can be attributed 

to the readily pozzolanic reaction, which helps reduce the CH amount 

considerably and consequently leads to reduced alkalinity within the pore 

solution. Regarding to the changes of microstructure at interfaces in the 

metakaolin-based GRC, Purnell (Purnell et al., 2000) reported the ingress of 

small amounts of matrix into the interfacial zone at early age. However for 

the unaged OPC composites, spaces between filaments remain almost 

vacant at this stage. After ageing for 56 days at normal temperature, a 

continuous CH layer, intermixed with small amount of carbonate, is formed 

at the interfacial zone. But the layer does not penetrate into fibre bundles 

with ageing. In this way fibres could remain flexible and this is beneficial for 

composite to retain most of the tensile strength and ductility with ageing.   
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3.5.1.2 GGBS 

Using Portland cement matrix with the addition of 20% ground granulated 

blast furnace slag and with the reinforcement of Cem-FIL AR glass fibres, 

the modified GRC composites exhibited similar strength retention and 

durability trends with ageing, as in the case of ordinary GRC composites 

(Majumdar and Laws, 1991; Purnell, 2007; MUTHUPRIYA, 2013; Butler et 

al., 2010). Cement matrix with 70% GGBS replacement is less vulnerable for 

the embedded glass fibres and a large proportion of tensile strength and 

toughness is retained with time under natural weathering, e.g. ultimate 

tensile strength is 14MPa after 1 year and a retain of 11MPa is reached after 

9 years ageing (Majumdar and Laws, 1991).  

3.5.1.3 Silica fume 

It has been reported that GRC with up to 20% silica fume addition has a 

similar initial strength to those without silica fume addition, but this 

advantage does not maintain with ageing and considerable durability 

improvement in GRC has not been achieved as expected (Hayashi, 1985; 

Yilmaz and Glasser, 1991; Marikunte et al., 1997). Similar study by 

Enfedaque (Enfedaque et al., 2010) revealed an insignificant effect of the 

10-20% silica fume addition on the improvement of durability of GRC 

composites, suggested by tensile test and failure mode from the 

microstructure of fractures surface; it exhibited gradual breakdown of fibre 

bundles in hot water accelerated ageing tests for 80 days.  

However, if silica fume fillers are incorporated to the glass fibre bundles 

directly, improved GRC performances can be obtained particularly with 

relatively larger 200 nm particle (Cohen and Peled, 2010). This improvement 
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can be attributed to the filling effect of particles in the empty space between 

filaments and thus contributes to more efficient stress transfer to inner fibre 

and also limits the available spaces for the penetration and growth of solid 

hydration products, therefore eliminating the potential fibre corrosion caused 

by notch effect.  

3.5.2 GRC from non-Portland cement  

High alumina cement (HAC) and super-sulfated cement (SSC) used to be 

popular matrix formulations for producing GRC composites with improved 

performances, which exhibited better retention of properties with ageing than 

that for those OPC/GRC composites at ambient temperatures (Majumdar 

and Laws, 1991; Purnell, 2007). However, a deleterious conversion reaction 

took place in HAC system at high temperatures and high carbonation rate of 

SSC lead to significant composite strength reductions.  

Over the past two decades, extensive investigations has been reached for 

the study of calcium sulfoaluminate cement as a new non-Portland cement 

binder, which is expected to produce more advanced GRC composites 

(Purnell et al., 1999; Purnell and Beddows, 2005; Pera and Ambroise, 2004). 

Degradation rate of the calcium sulfoaluminate cement-based composites 

was considerably reduced as suggested by hot water accelerated ageing 

tests (see Fig. 3.5.1); most of its pseudo-ductility and toughness were 

retained after 316 days at 50℃, and bridging effect carried out by the glass 

fibres could still be observed in the curve, although accompanied with a 

slight tensile strength reduction. For the ordinary GRC reference, the 

material became very brittle after 28 days.  
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                                  (a)                                                              (b) 

Figure 3.5.1 Stress-strain performance of (a) OPC/GRC and (b) CSA-based GRC 

composites aged at 50℃, from reference (Purnell and Beddows, 2005) 

The significantly improved durability benefits of GRC composites modified by 

calcium sulfoaluminate-based materials have been attributed to its low 

alkalinity in pore solution with a pH value lies between 10 and 11.5, which 

provides a less aggressive chemical environment for the embedded glass 

fibre bundles. And more importantly it is because of the absent of CH 

formation during hydration, thus reduces the possibility of severe bundle 

filling and notching effect on the filament surface (Purnell et al., 2000; 

Purnell and Beddows, 2005; Zhou et al., 2006).  

3.6 Role of interface 

The role of the glass/cement interface, particularly its microstructural 

evolution and chemical development as service life increases, has been 

considered to be of vital importance in controlling the mechanical behaviours 

of GRC composites (Hempel and Butler, 2007; Butler et al., 2010).  
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Severe densification at the fibre/cement interface with the infill of 

progressively formed hydration products, particularly under moist, can lead 

to enhanced bond strength (Katz and Bentur, 1996; Bentur, 2000; Hempel et 

al., 2007; Butler et al., 2010). As a result of this densification, filament 

becomes less flexible and increases the stress transfer from the bulk matrix 

to the fibre bundle (Cohen and Peled, 2010), thus limiting the favourable 

energy dissipation through the porous interfacial region when matrix cracks 

propagate.  

Moreover, precipitation and growth of massive hydration, particularly large 

crystalline CH plates, were reported to gradually penetrate into bundles as 

time develops (Cohen and Peled, 2010; Cohen and Peled, 2012; Butler et 

al., 2010). These penetrated phases significantly increase the bond between 

filaments and reduces the flexibility of fibre bundles accordingly. Thus sliding 

between filaments is restricted to great extent if stress is transferred from the 

matrix to the bundle (Butler et al., 2010), leading to detrimental fibre 

breakdown. On the other hand, adherence and growth of the solid hydration 

products on the filament surface, i.e. dominant crystalline CH, can lead to 

pronounced notching effect of the filaments (Butler et al., 2010; Cohen and 

Peled, 2010; Yilmaz and Glasser, 1991). Consequence of this local stress 

concentration is the reduction in fibre tensile strength and composite 

behaviour may change from ductile to brittle (Cohen and Peled, 2010).   

Therefore, evolution of the microstructure at the interface between fibre and 

cement with ageing is a very important aspect in deciding the bond strength 

between them and the failure mode of reinforcements; both of which are 

intrinsically responsible for the durability and mechanical performances of 
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GRC composites. As a consequence, it is necessary to investigate into the 

microstructural changes at this interfacial region in the long term, which can 

be correlated to the composite mechanical performances prior to a full 

knowledge on the degradation mechanisms of aged GRC composites can 

be achieved.  

3.7 Discussion  

Long-term performances of the composites can be predicted in 

consideration of a compromise between time factor and the side effect that 

higher curing temperature could bring for the intrinsic nature of the hydrated 

matrix. Accelerated ageing tests may not only simply accelerate the 

fibre/cement hydration as expected, but can also have a substantial 

influence on the intrinsic nature of hydrated matrix to some extent (e.g. 

different hydration products may form with elevated ageing temperature), 

which is a key factor deciding the degradation mechanism; different 

mechanisms may apply at high temperatures, limiting the usefulness of the 

procedure (Purnell and Beddows, 2005). This could lead to overestimations 

or underestimations on the durability properties of those investigated GRC 

composites (Purnell et al., 1999). Debate is still under discussion on whether 

hot water accelerated ageing test is valid for the durability studies of GRC 

composites, but it is generally accepted that this is useful in comparing the 

time-dependent behaviours of GRC made by different modified matrices. In 

addition, an alternative accelerated ageing method, i.e. combining freeze-

thaw cycles and wet-dry cycles, is also proposed for durability studies of 

GRC composites (Enfedaque et al., 2012).  
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Due to a lack of consensus on the validation of hot water accelerated ageing 

tests, long-term durability and mechanical performance data of aged GRC 

composites under normal weathering temperature is thus extremely valuable 

in the process of understanding the real degradation process of GRC 

composites.
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Chapter 4- Literature review on interfaces in 
steel reinforced concrete  

This chapter mainly concentrates on the nature of the interface between 

steel and concrete in steel reinforced OPC concrete, which is significantly 

relevant to corrosion resistance capacity. Major achievements for imaging 

analysis technique in literature is summarised for quantitative analysis at the 

interface. 

4.1 Introduction  

Reinforcement corrosion is one of the main causes of deterioration of 

reinforced concrete structures, arising as a worldwide concern in the 

construction industry. Among the parameters, the nature of the interface 

between steel and concrete has been considered to play an important role in 

governing the corrosion resistance of embedded reinforcements. It is 

particularly linked to the buffering action of solid hydration products 

precipitated in the vicinity of reinforcement and the formation of water-filled 

voids at the interface (Castel et al., 2003; Nasser et al., 2010; Zhang et al., 

2011).  

In general, steel reinforcement embedded in concrete is protected by a thin 

film of passivating iron oxide adhered on its surface, which can be attributed 

to the high alkalinity in Portland cement pore solution. However, progressive 

carbonation of hydration phases is likely to cause a localised pH reduction at 

the steel/concrete interface, increasing the possibility of passive layer 

breakdown. Chloride-induced attack is another mechanism associated with 
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reinforcement corrosion; chlorides act as a catalyst to corrosion once there 

is sufficient chloride concentration at the rebar surface to disrupt the passive 

layer (Medeiros and Helene, 2009). It has been pointed out that in order to 

maintain the passive state of embedded steel in concretes, a pore solution 

pH value above 8.5 is necessary (Glass et al., 2000).  

If corrosion initiates, the growth of corrosion products at the steel/concrete 

interface is prone to exert substantial internal stress on the surrounding 

concrete, therefore may lead to deleterious volume expansion and 

subsequent cracking, spalling as well as potential loss of structure integrity. 

This eventually facilitates the build-up of multiple connected channels for the 

further movement of detrimental 𝐶𝑙! , 𝑂!! and 𝐶𝑂!!!  ions in aqueous 

solutions (Cabrera, 1996; Koleva et al., 2006; Amleh and Ghosh, 2006), thus 

aggravating the reinforcement corrosion process. As well as causing internal 

stress, corrosion may disrupt the bond between steel and concrete. Effects 

of corrosion level on the bond strength have also been studied, with a 

general conclusion that rapid decrease of bond strength occurs with an 

increased level of corrosion (Fang et al., 2004; Cabrera, 1996; Vidal et al., 

2007). 

4.2 Reinforcement corrosion  

The main mechanisms underlying the breakdown of passivity on steel 

surface can be attributed to two aspects:  

• Introduction of chloride ions 

• Depletion of alkalinity in pore solution due to carbonation 
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4.2.1 Chloride-induced corrosion 

Introduction of chloride ions into concrete is either from mix contaminants or 

from external environments, such as seawater or de-icing salts. The 

minimum chloride concentration value (or called chloride threshold level) 

necessary to breakdown the local film is usually presented as a ratio of 

chloride to hydroxyl ions, free chloride content, or percentage of total 

chloride relative to weight of cement (Ann and Song, 2007).  

Assessment of chloride threshold value is an important step to predict the 

serviceability of reinforced concrete. However, previous studies indicated a 

significant discrepancy of chloride threshold level ranging from 0.2% to 

2.5%, expressed as free chloride content (Alonso et al., 2001; Alonso et al., 

2000; Mohammed and Hamada, 2001; Alonso and Sanchez, 2009; Zhang et 

al., 2011). This large variability of chloride threshold level from different 

authors (0.2-2.5%) can be attributed to the variances in parameters applied 

in different experimental work, e.g. type and content of cement, type of steel, 

experimental exposure conditions, corrosion initiation assessment methods, 

the form used to represent CTL and the condition of the steel/concrete 

interface etc. (Alonso and Sanchez, 2009).  

In the case of chloride ingress, a proportion of the chloride ions react with 

cement paste, generating the formation of chloro-aluminate complexes, e.g. 

3CaO ∙ Al!O! ∙ CaCl! ∙ 10H!O  (Friedel's salt). Accumulation of corrosion 

products in the vicinity of reinforcement can cause spalling or cracking in the 

concrete, which in turn facilitates the transportation and ingress of chloride, 

moisture and oxygen towards the rebar and therefore aggravates the 

reinforcement corrosion (Shi et al., 2012; Glasser et al., 2008). The 
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remaining chloride ions remain in the pore solution as free chloride, which 

may gradually permeate towards the reinforcement through porosity 

structure and initiate subsequent reinforcement corrosion.   

4.2.2 Corrosion by carbonation 

Carbonation of the alkaline constituents in cement owing to reaction with 

atmospheric carbon dioxide can lead to significant local pH reduction in the 

pore solution to a near-neutral level, which may result in insufficient alkalinity 

at the interface to maintain the passive film and then cause steel corrosion to 

initiate (Page, 2007; Anstice et al., 2005). Natural atmospheric carbonation 

is a very slow process but for aged structures, carbonation-induced 

reinforcement corrosion can become an important cause for serviceability 

failures.  

A secondary effect of carbonation on corrosion activation is that it can lead 

to the release of bound chloride ions progressively into the pore solution by 

dissolution of Friedel’s salt (Suryavanshi and Narayan Swamy, 1996; 

Csizmadia et al., 2001; Page, 2007; Saillio et al., 2014). This in turn 

aggravates the corrosion to some extent. When the amount of free chloride 

ions are at above the chloride threshold level, depassivation of 

reinforcement and severe pitting corrosion may occur even under the 

condition of high alkaline pore solution.  

4.3 The role of steel/concrete interface 

The nature of steel/concrete interface plays an important role in influencing 

the overall performance and durability of reinforced concretes, particularly 
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the resistance of embedded reinforcement to depassivation under chloride 

ingress (Castel et al., 2003; Soylev and Francois, 2003; Page, 2009; Neff et 

al., 2011; Zhang et al., 2011; Horne et al., 2007). For example, a high-quality 

steel/concrete interface reduces the risk of corrosion initiation and may 

restrict the corrosion rate after the onset of corrosion.  

A systematic correlation has been investigated between the quality of 

steel/concrete interface and the potential corrosion rate of the embedded 

reinforcements, on both macroscopic and microscopic levels (Yonezawa et 

al., 1988; Glass et al., 2000; Vidal et al., 2007; Angst et al., 2009; Soylev 

and Francois, 2003). It was found that the corrosion rate of reinforcement 

was prone to increase if, in the vicinity of the steel, there was considerable 

presence of air voids (Glass et al., 2001; Nasser et al., 2010; Horne et al., 

2007), by providing enhanced availability of oxygen to support the cathodic 

oxygen reduction reaction. On the other hand, the interfacial influence on 

corrosion is also linked to the formation of solid hydration phases on the 

steel surface, predominantly the crystalline CH, which can supply a buffering 

effect to help retain a high alkalinity in the pore solution, thus is useful to 

maintain the passive state of reinforcement (Pourbaix, 1974; Nasser et al., 

2010).  

Therefore, it is of vital importance to investigate both the microstructural and 

compositional nature of the steel/concrete interface, before better-performed 

and more durable steel reinforced concretes can be created.    
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4.4 Microstructure at steel/concrete interface 

Early research on steel/concrete interface was pioneered by Page (Page, 

1975). The study aimed to characterize the topographical morphology at the 

steel/concrete interface. Fractured surfaces of reinforced concrete were 

reviewed by SEM using secondary electron imaging mode. Results generally 

concluded that the metal was in contact with a CH rich layer, and much more 

CH was located at the interfacial zone than that in the bulk concrete. This 

insoluble CH layer has led to a general assumption of enhanced pH 

buffering capacity at the interface, which is able to protect the reinforcement 

from corrosion for longer periods.  A updated description of CH rich layer 

was soon proposed (Alkhalaf and Page, 1979), stating that SEM results 

showed a non-continuous CH layer with variable thickness on mild steel 

surfaces, also with inclusions of C-S-H gel that were finely intermixed with 

the crystalline CH deposits.  

Similar conclusions were reached by studying the fractured surfaces on 

ordinary Portland concrete reinforced by stainless steel wire (Pinchin and 

Tabor, 1978). The obtained results revealed CH-enriched interfacial zone 

after curing for 7 days, and microstructure at the steel/cement interface 

seemed to change very little afterwards. X-ray diffraction analysis was 

undertaken to quantify the concentrations of CH within a distance of 10µμm 

away from the wire surface. As expected, an increased amount of CH 

concentration was found in the vicinity of steel, 20-40% higher CH 

concentration than that in the bulk matrix.  

Efforts continued towards elucidating more profound knowledge on the 

microstructural characteristics at the steel/concrete interface as well as the 
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chemical compositions at the region. It was found that large amounts of CH 

and ettringite co-existed at the interface between steel and ordinary Portland 

cement paste at early age, according to X-ray diffraction analysis (Li and Hu, 

2001). This was explained by the water film formed on steel surface at early 

age, which was caused by the inner bleeding of cement pastes owing to the 

wall effect of reinforcement. And shrinkage of the hydrated cement paste 

away from the steel was able to provide much more space for the rapid 

diffusion of chemical ions, such as Ca2+, SO4
2- and Al3+, towards the 

interfacial zone. Once these ions reached the oversaturation conditions, they 

would crystalize and grow to form large crystals. Further EDX analysis 

presented a generalized local chemical composition at the interface (Table 

4.4.1); it demonstrated a dominance of Ca and Si to be as high as over 80 

wt.% and ~10 wt.% respectively for up to 28 days, only with minor 

precipitation of Al and S. 

Table 4.4.1 Chemical compositions at the interface between steel disc and 

ordinary cement paste (wt.%), from reference (Li and Hu, 2001) 

 Al Si S Ca 

3 days 3.62 13.74 2.23 80.41 

28 days 2.96 10.87 2.27 83.90 

While the examination of fractured surface on reinforced concrete can be 

successfully achieved by secondary electron imaging mode, it can only 

provide qualitative information on the characterization of the interfacial zone, 

but unable to obtain quantitative chemical analysis at the interface.  
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A detailed study on backscattered electron images of polished reinforced 

concretes was conducted by Glass for the first time under low-vacuum 

conditions (Glass et al., 2001). However, unlike the early lime layer 

hypothesis proposed, findings in this study showed that CH was often 

absent from the interfacial zones while unhydrated cement clinker and 

potential C-S-H gel had been recognised to co-exist with CH at part of the 

local interfacial region (Fig. 4.4.1). There was no general indication of 

preferential CH formation at the steel/concrete interface and interfacial 

zones were highly representative of the bulk matrix chemically. 
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Figure 4.4.1 Microstructure images shown that CH is often absent at the 

steel/concrete interface, from reference (Glass et al., 2001) 
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Later research was studied by Horne (Horne et al., 2007) to examine the 

microstructural features of polished reinforced concretes in respect of many 

aspects parameters, e.g. different w/c ratios (0.49 and 0.7), steel orientation 

(horizontal and vertical to the casting direction), state of the steel surfaces 

(with mill scale and wire-brush cleaned) as well as the hydration age (1 

days, 7 days, 28 days and 365 days). It indicated a non-continuous layer of 

CH build-up in contact with the steel surface (within 5um away from steel) 

and increased levels of CH and porosity were found to be presented in the 

vicinity of steel rebar, an order of magnitude higher than that in the matrix 

(detailed information in section 4.5.3).  

4.5 Quantification analysis  

4.5.1 Overview 

Investigation of the microstructure of concretes by backscattered electron 

microscopy has become a common technique nowadays; it is a powerful tool 

for the study of cementitious materials. This technique is able to provide 

useful information on the porosity (Wong et al., 2006), pore structures 

(Werner and Lange, 1999) and phase distribution within the cement system. 

These beneficial advantages lead to extensive studies on developing useful 

image analysis programs to add quantitative information to the analysis of 

the interface (Horne et al., 2007; Diamond, 2001; Diamond and Huang, 

2001; Glass et al., 2001; Yang and Buenfeld, 2001; Werner and Lange, 

1999; Deschner et al., 2013; Stutzman, 2004), which is expected to achieve 

the following two tasks.  
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• Phase segmentation by morphological features and/or arithmetic 

process  

• Quantitative measurements on the area fraction of each segmented 

phase  

4.5.2 Phase segmentation  

Automated image analysis of polished cement-based materials was first 

introduced in 1995 (Darwin and Abouzeid, 1995), with three matrix 

formulations prepared with different w/c ratios and admixtures of silica fume. 

In this study, phases were identified based on grey level segmentation and 

detailed information on specific grey scale range of each phase (unhydrated 

cement, CH, inner product of C-S-H, undesignated product and voids) was 

also presented. After curing for 28 days, CH area percentage was calculated 

as 24.6% for the w/c 0.5 cement pastes, 22.0% for the w/c 0.3 cement paste 

and 13.5% for the w/c 0.3 cement pastes with silica fume addition (based on 

the average data on up to 640 BSE images). These data was generally 

comparable with the results obtained from the corresponding thermo-

gravimetric analysis, accounting for 20.1%, 20.7% and 13.5% respectively.  

Detailed procedure for phase segmentation of hydrated phases was 

described by Wang and Diamond (Wang and Diamond, 1995). In the study, 

backscattered electron images of cement pastes (with w/c ratios of 0.45 and 

0.3, with or without super-plasticizer addition) cured for 100 days were 

obtained. It was found out that area fraction of CH, porosity and unhydrated 

cement could be easily achieved using grey scale threshold method. 

However for the segmentation of hydrated C-S-H gel, a series of computer-
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based programs (e.g. erosion, dilation and hole-filling) were necessary in 

order to create a binary image, eliminating the problems caused by the 

overlapped grey scales at the boundaries between two hydrated phases.  

Direct segmentation of aggregate in a concrete or mortar system from the 

complex bulk matrix was difficult because of its wide range of overlapped 

boundaries with C-S-H gel and CH phases. A macro program was then 

developed by Werner and Lange in 1999 (Werner and Lange, 1999), using a 

series of image filtering process e.g. smoothing, saturation and edge effect.  

X-ray elemental mappings were first applied in image analysis process by 

Stutzman (Stutzman, 2004) in combination with the corresponding BSE 

image, which successfully separated belite, tricalcium aluminate, ferrite, 

alkali sulfate and gypsum by arithmetic process (Fig. 4.5.1).  
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Figure 4.5.1 Phase segmentation in cement paste and a combined image used for 

area analysis, from reference (Stutzman, 2004) 

4.5.3 Quantification at the steel/concrete interface 

Quantitative analysis at the steel/concrete interfacial zone has been 

achieved (Horne et al., 2007) in order to have a further understanding on the 

chemical composition at this region. In the study, region growing was applied 
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as a method to produce a band of pixels, which are within equal distances 

from steel surface. Each strip has a width of 1.86  µμm, growing from the 

surface of steel and generating a region which is within ~120µμm away from 

the steel surface (Fig. 4.5.2).  

 

Figure 4.5.2 An example for regional growing at the interface from reference 

(Horne, 2004) 

The quantitative results of different phases at various ages are shown in Fig. 

4.5.3. Increased levels of CH precipitation as well as porosity and decreased 

levels of unhydrated cement were presented at this interfacial region in 

comparison to the bulk matrix. As curing age increased, the porosity 

percentage at interface decreased significantly from 35% at 1 day to 5% 

after curing for 365 days while CH concentration increased to as high as 

30% at 365 days.  
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Figure 4.5.3 Microstructural gradients in the interfacial region between 

cement paste and vertically cast steel in a concrete with a w/c ratio of 0.49; 

from reference (Horne et al., 2007) 
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4.6 Discussion  

Although the achieved quantification at the steel/concrete interface can 

provide useful information on the microstructural and compositional features 

of this region, there are no standard procedures established for the phase 

segmentation. Different methodologies applied in different studies can cause 

user-bias. Moreover, the existed image analysis techniques are not 

productive and they are unique for one specific cementitious material, e.g. 

the threshold values for phase segmentation need to be adjusted for 

different concrete mixing designs. Therefore an updated image analysis 

technique with a wider range of applications (i.e. varying mixing designs for 

both hydrated Portland cement and non-Portland cement systems) becomes 

very imperative to reflect increases in image processing power, 

consequently giving much more accurate results on quantitative analysis.  

Microstructure at the steel/concrete interface in Portland cement system has 

not been fully understood so far and debate still continues over the nature of 

the interfacial region. Whether or not preferential accumulation of different 

ions is occurring at the interface still remains unknown. And it is necessary 

to further investigate the distribution of different atomic ratios such as Ca/Si, 

Al/Ca, S/Ca as a function of certain distance away from steel; this useful 

information facilitates the straightforward interpretation of the chemicals 

present at the interface and can also reflect the ion transport properties at 

this region over curing, thus is eventually responsible for the corrosion 

resistance of reinforcement embedded in Portland cement systems.   

The popularity of CSA cement, used as a potential low-carbon binder, 

encourages the studies on steel reinforced CSA concrete systems, 



Chapter 4- Literature review on interfaces in steel reinforced concrete 

54	  
	  

particularly focusing on the corrosion resistant capability of the reinforcement 

embedded in this newly modified CSA-based material. Microstructure at the 

steel/CSA cement interface has not been studied in detail; this need to take 

place in order to provide confidence in the likely durability performances of 

the proposed steel reinforced CSA concrete.  
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Chapter 5- Experimental  

This chapter introduces the materials and methodology used in this 

research. Analytical techniques (e.g. thin section imaging, SEM/EDX, 

DTA/TG and XRD) are described with settings. Detailed procedures to 

produce thin section petrographic samples are also present.  

5.1 Materials and mix design 

5.1.1 GRC composites 

Two matrix formulations were used in this project, namely OPC (CEM II 

32.5R, ‘O’ for short) and a blend of OPC and calcium sulfoaluminate cement 

(commercially called Nashrin1, ‘N’ for short). Both of the matrices were 

reinforced by chopped and randomly orientated AR glass fibres, with a 

volume fraction of 4.5-5%. Incorporation of sand in those two GRC mixes 

(with a sand/cement ratio of 1:1) was designed to reduce composite 

shrinkage. Water to cement ratio for both types of GRC composites was 

~0.31. Specimens were cast in the form of thin sheet in a previous project, 

with a slab size of 225mm × 55mm × 10mm. After curing for 10 years at 

25℃ under water, the composites were removed from the tanks and dried in 

lab air for ~24h. In this way, hydration stop was expected to be finished and 

the composites were wrapped in plastic bags for storage prior to a series of 

laboratory tests.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Nashrin formulation: Blue circle Mastercrete 12 kgs, blast furnace slag 12 kg (w/w 
SiO2 32.4%, Al2O3 12.9%, CaO 42.3%, MgO 6.5%, SO3 2.0%), NSR sulfoaluminate 
additive 6 kg (w/w Al2O3 19.6%, CaO 39.0%, SO3 34.7%, R2O 0.15%), set 
controlling agent Sette D-400 0.6 kg. 
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Comparative specimens made by hot water accelerated ageing were also 

produced in order to compare accelerated ageing with low-temperature 

ageing. In this study, accelerated ageing at 50℃  for 140 days was 

undertaken, which is equivalent to 46 years ageing for OPC/GRC and ~7.7 

years for Nashrin/GRC under typical UK weathering conditions (Purnell and 

Beddows, 2005; Purnell et al., 2008). Chemical compositions of those two 

types of GRC composites are given in Table 5.1.1.  

Table 5.1.1 XRF results of OPC and Nashrin modified GRC aged for 10 years at 

25℃  

Compound Unit O N 

SiO2 % 51.03 51.91 
CaO % 25.08 19.35 
Na2O % 0.64 0.55 
MgO % 0.38 1.70 
Al2O3 % 2.82 5.05 
P2O5 % 0.04 0.02 
SO3 % 1.94 4.99 
K2O % 0.47 0.61 
TiO2 % 0.26 0.28 

Cr2O3 % 0.01 0.00 
Mn3O4 % 0.03 0.13 
Fe2O3 % 1.12 0.68 
ZnO % 0.01 0.01 
SrO % 0.05 0.03 
ZrO2 % 0.82 0.56 
BaO % 0.03 0.04 
LOI % 15.27 14.09 

5.1.2 Steel reinforced concrete  

The commercial CSA cement used in the study of steel reinforced concrete 

system was provided by Hanson Heidelberg Cement Group. The fine 
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aggregates used in this study were natural sand with a particle size 0–3mm 

and the coarse aggregates were siliceous crushed stone with a diameter up 

to 20mm. Detailed information on particle size distribution for the fine 

aggregate and coarse aggregate is presented in Fig. 5.1.1. Tap water was 

used in this experiment and the water to cement ratio was 0.69. A mixing 

design of cement: water: fine aggregate: coarse aggregate 1: 0.69: 2.4: 3.6 

was applied to produce both CSA concrete and corresponding OPC 

concrete as a reference. Details on mixing design are listed in Table 5.1.2.  

	  

Figure 5.1.1 Particle size distribution of aggregates used in the project 
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Table 5.1.2 Mix design of C35 CSA concrete 

Mixture   

CSA cement, kg/m3 309 

Water, kg/m3 213 

Fine aggregate, kg/m3 740 

Coarse aggregate, kg/m3 1100 

w/c, % 0.69  

 

Round bright steel bars with a diameter of 10mm were chosen as 

reinforcements, trying to simulate the real in-service engineering as much as 

possible while taking considerations into the potential difficulties involved in 

sample preparation (e.g. the extreme hardness of steel bar during precision 

cutting and grinding process). Embedded steel bars were cleaned by 

acetone first in order to remove any loose rust or grease on the surfaces. 

The freshly mixed concrete was firstly placed in 100mm ×100mm × 100mm 

cubic moulds and vibrated on a vibrating table. Four bars (each with a length 

of ~ 150mm) were then inserted vertically into each concrete cube along the 

casting direction (Fig. 5.1.2). Cast cubes were vibrated again for two minutes 

to make sure that appropriate compaction was applied, minimizing the 

possibility of air entrapment near the rebar surfaces. After setting for 24 

hours, cast reinforced concrete specimens were demoulded and exposed to 

a 100% relative humidity atmosphere at 20±2℃ until testing at given ages 

(28 days and 1.5 years). During curing, a small amount of Vaseline was 

applied on the exposed rebar surface to restrict superficial corrosion of the 

steel.   
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Figure 5.1.2 An example of the arrangement of four reinforced bars in CSA 

concrete 

Cement paste samples with the same w/c of 0.69 as the steel reinforced 

concrete were prepared for bulk chemical analysis, this aims to eliminate the 

interference of aggregates and thus avoid complicating chemical analysis of 

the hydrating cement matrix. Deionized water was used and small amounts 

of mixes were prepared by gentle stirring for at least two minutes. The mixed 

paste was then cast into small plastic cylindrical tubes with a diameter of 

10mm and height of 50mm. The moulds were rotated at 12 rpm for a period 

of 24 hours to prevent segregation. Afterwards the paste samples were then 

sealed in a plastic bag and water-cured at 22±1°C for 7 days, 28 days, 90 

days and 1.5 years respectively. At the end of each curing period, pastes 

were demoulded and the central portion was crushed into smaller fragments 

and then ground into fine powder for immediate bulk analysis.  

Chemical compositions of the CSA cement and Portland cement are listed in 

Table 5.1.3. According to Bogue calculation, OPC cement contains 70.1% 

C3S, 2.8% C2S, 9.5% C3A and 5.9% C4AF. Estimation of the clinker 
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compositions in CSA is based on stoichiometric calculations: Ye’elimite 

71.3%, belite 25.8% and very small amount of gypsum 2.9%.   

Table 5.1.3 Chemical composition of CSA cement and OPC cement by XRF 

analysis 

Compounds  Unit CSA OPC 
CaO % 42.33 62.14 
SiO2 % 9.00 19.42 
Al2O3 % 33.82 4.83 
SO3 % 8.83 4.81 
Fe2O3 % 1.35 1.95 
MgO % 2.29 2.13 
K2O % 0.22 0.75 
Na2O % 0.12 0.24 
P2O5 % 0.06 0.10 
TiO2 % 1.61 0.24 
V2O5 % 0.02 0.01 
Cr2O3 % 0.02 0.01 
Mn3O4 % 0.03 0.07 
ZnO % 0.01 0.04 
SrO % 0.07 0.07 
ZrO2 % 0.04 0.00 
BaO % 0.02 0.02 
LOI % 0.16 3.17 

5.2 Experimental design  

XRD and DTA/TG were used for the chemical study of the bulk matrix in 

both the GRC and steel reinforced concrete systems. Thin section 

petrography specimens of both composite systems were prepared for 

microstructural observations i.e. thin section images and SEM/EDX analysis. 

Bending tests were carried out for the aged GRC composites. Finally image 

analysis at the steel/concrete interface was performed in the steel reinforced 

concrete system. Detailed information on experimental design for GRC 
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composites and steel reinforced concretes are presented in Table 5.2.1 and 

Table 5.2.2 respectively.  

Table 5.2.1 Design of the experimental work on GRC part 

Tests used 
Nashrin/GRC OPC/GRC 

0d 10y 0d 10y 

XRD û ü û ü 

DTA/TG û ü û ü 

Bending test û ü û ü 

Thin section images ü ü ü ü 

Microstructure on fractured 

surfaces 
û ü û ü 

Microstructure on polished 

surfaces 
û ü û ü 

Microanalysis û ü û ü 

 

Table 5.2.2 Design of the experimental work on steel reinforced concrete part 

Tests used 
CSA concrete OPC concrete 

7d 28d 90d 1.5y 7d 28d 90d 1.5y 

Bulk analysis 
XRD ü ü ü ü ü ü ü ü 

DTA/TG ü ü ü ü ü ü ü ü 

Microstructure at 

the interface  

BSE images  

N/A 

 

ü  

N/A 

 

ü  

N/A 

 

ü 

N/A 

ü 

Mappings ü ü ü ü 

Microanalysis ü ü ü ü 

EDX analysis at 

the interface  

Ca/Si 

N/A 

ü 

N/A 

ü 

N/A 

ü 

N/A 

ü 

Al/Ca ü ü ü ü 

S/Ca ü ü ü ü 
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5.3 Thin section petrography (TSP) production  

5.3.1 Overview 

Thin section petrographic specimens of both GRC composites and steel 

reinforced concretes were produced for the microstructural analysis. Steel 

reinforced concrete cubes were first sectioned into four even parts along the 

casting direction, ending up with each part containing a vertical bar in the 

middle on a transverse section, surrounded by bulk concrete. After a series 

of cutting and grinding procedures (detailed description in section 5.3.2-

5.3.10), thin section petrographic specimen on a transverse section of 

reinforced concrete was finished with a longitudinally bar located in the 

middle of glass slide. 

Specimen thickness was about 30µm after several cutting and grinding 

procedures. Slides were covered by a cover slip immediately after finishing 

and were kept in a low-CO2 desiccator for later SEM analysis. There are 

several procedures involved to produce a thin section petrography specimen 

as presented in Fig. 5.3.1. This technique is highly dependent on user’s 

technical experience and each step should be taken with extreme care. 

Detailed information on the process of each procedure is listed in the 

following sub-sections.  
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Figure 5.3.1 Flowchart of the sequences to produce a thin section petrography 

specimen 

Cutting of specimen to 
suit on a glass slide  

Hydration stop 

Resin impregnation  

First face grinding  

Bonding  

Cutting of excessive 
material  

Is specimen thickness 
~30𝜇𝑚?  

Covered by cover slip 
and stored in a 

desiccator  

Yes	  

No	  

Final Grinding 

Initial grinding 
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5.3.2 Initial cutting  

Reinforced concrete cubes (100mm×100mm×100mm) and GRC slabs 

(225mm × 55mm ×10mm) need to be trimmed into proper sizes in order to 

be bonded with glass slide (48mm × 28mm) later. They were firstly cut into 

smaller concrete blocks (50mm × 50mm × 25mm) and GRC blocks (55mm 

× 20mm × 10mm) by a coarse cutting machine in casting shop. Precision 

cutting was followed then by using an automatic controlled cutting machine 

(Accuton-50 by Struers), trimming the excessive materials in order to fit on a 

glass slide (48mm × 28mm). Special cut-off wheel (E0D15 produced by 

Struers) with electroplated diamond was used to cut the steel reinforced 

concrete due to extreme hardness difference between steel (with a diameter 

of 10mm), cement paste and aggregate. At the end of this cutting process, a 

trimmed concrete block was supposed to be finished with an estimated size 

of 22mm × 16mm × 15mm and estimated GRC sample sizes were 25mm × 

30mm × 10mm. 

5.3.3 Initial grinding 

Initial grinding aims to create a flat surface that is prepared to bond with a 

glass slide. Manual grinding on a silicon carbide paper P500 was conducted, 

together with a visual check if the surface was flat enough. This procedure 

was an important prerequisite to ensure a satisfied complete finish of the 

TSP specimen with even thickness.  
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5.3.4 Hydration stop 

Hydration stop of specimens in a controlled manner is necessary to arrest 

the cement hydration before any microstructural and chemical studies 

commence after given curing periods. There are several methods to stop 

cement hydration in cementitious materials, e.g. oven heating, solvent 

exchange and freeze drying (Gallé, 2001; Collier et al., 2008; Zhang and 

Scherer, 2011; Snoeck et al., 2014). Oven heating is a fast drying technique 

but it damages cement microstructure significantly as excessive shrinkage is 

likely to be introduced; and decomposition of C-S-H, AFm and Aft phases 

may also happen with over-heating over 60℃. It has been reported that 

solvent exchange may possibly cause additional reaction with hydration 

products or through strong adsorption (Day, 1981; Snoeck et al., 2014). 

In this project, freeze drying was chosen to remove any moisture from the 

materials. Specimens were first immersed in liquid nitrogen (at a 

temperature of ~196°C) for few minutes, during which process moisture 

present in the specimen was frozen rapidly forming ice due to the 

temperature difference. Afterwards specimens were placed in a freeze drier 

immediately, ice formed within the porosity would then sublimate directly, 

and causing less capillary stress compared to other drying techniques e.g. 

oven heating and solvent exchange. The freeze dryer was set up at constant 

temperature of -40℃  with the vacuum maintained at ~1.5×10-1 mbar. 

Removal of the free water can thus be finished until a constant weight of 

sample was maintained. After finishing of hydration stop, the specimens 

were stored in a desiccator containing dried silica gel in order to avoid the 

take-up of atmospheric moisture before resin impregnation.  
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5.3.5 Resin impregnation  

Resin impregnation of specimens is a very important step to reinforce the 

brittle structure of cementitious materials prior to grinding and polishing 

processes. After resin hardening, penetrated resin within the pore structure 

strengthens the concrete microstructure and greatly improves its ability to 

withstand the stresses caused by grinding and polishing during the sample 

preparation (Kjellsen et al., 2003).  

A low-viscosity resin and hardener (EpoFix Kit) was mixed at a weight ratio 

of 25:3 by gentle stirring for at least two minutes. Each specimen was placed 

in one polyethylene holder, with the flat surface facing down to the bottom of 

holder. Mixed resin and hardener was de-gassed first in a vacuum chamber 

to remove air bubbles, and then the mixture flowed into the holder slowly 

until it could cover the entire specimens. When air bubbles stopped 

generating on the top, vacuum could be released then and it further 

facilitated longer penetration lengths of resin into the pore structure. Finally, 

specimens were left overnight for hardening and demoulded after this.    

5.3.6 First face grinding  

After de-moulding, excessive resin needs to be trimmed in order to ensure 

that the sample can sit squarely on a glass slide. Excessive resin was cut off 

using cutting machine Accurom-50, followed by a gentle manual grinding by 

hand on SiC500 paper to remove the excessive resin layer on bonded 

surface and expose the sample surface. Over-grinding should be avoided 

because it is likely to remove the impregnated resin that is supposed to 

reinforce the microstructure. For steel reinforced concrete, a very thin layer 
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of resin cover must be left on the bonded surface in order to help 

subsequent bonding with glass slide. Otherwise after bonding, there may be 

insufficient bond strength between the totally exposed steel surface and 

glass slide, causing the steel to possibly peel off from the glass slide during 

the cutting or final grinding process. A microscope observation was a 

supplementary way to check the flatness of surface after a quick visual 

check.  

5.3.7 Bonding  

Before bonding, glass slide was cleaned with acetone to remove any grease 

left on the surface. An araldite epoxy-based resin was used in the bonding 

process. To reduce the viscosity of resin and improve the depth of resin 

impregnation, glass slides and concrete specimens were warmed up on a 

hotplate (set up at 38℃) for about 10 minutes. At the same time, a very small 

amount of the Epothin epoxy resin and hardener (according to a weight ratio 

of 5:2) were mixed gently in a glass sample vial for two minutes. Then the 

mixture was vacuumed down in a vacuum chamber until bubble stops 

generating on the top. A small amount of the mixed resin was then applied 

on the bonded surface along one edge of the specimen. Finally, a warmed 

glass slide was placed onto the bonded surface in a rocking manner; 

gradually making resin flow over the first face and forces applied during the 

rocking manner could expel any air bubbles in the resin. Afterwards the 

reinforced concrete block bonded with a glass slide underneath was left on a 

flat table overnight for hardening, with heavy plate placed on the top, in order 
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to remove air bubbles from the bonding surface and thus ensures a rigid 

bonding strength.  

5.3.8 Removal of excess material 

Prior to final grinding process, the bonded specimens on glass slides need 

to be thinned in order to save the grinding work as much as possible. Cutting 

machine Accuton-50 was used to cut off the excessive materials, finishing 

with a specimen thickness of about 300µm.   

5.3.9 Final grinding  

Final grinding process was completed with a series of silicon carbide paper 

with different grit sizes, i.e. P200, P500, P1200 and P2400. When grinding 

on a grit paper, the fixed diamond grit knocks off tiny particles from the 

sample surface. The grit size can then be reduced progressively to remove 

smaller and smaller particles from the surface, ending up with a favourably 

smoother surface. A correlation of silicon carbide paper grade with its 

diamond size is shown in Table 5.3.1.  

Table 5.3.1 Illustration of grit sizes and their corresponding grade standard 

SiC grade 200 500 1200 2400 

Diamond (µμ𝑚) 60 30 14 10 

Force (N) 7.5 7.5 5.0 5.0 
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A grinding machine Rotopol 35 was used in this procedure (Fig. 5.3.2). 

Silicon carbide abrasives were bonded to self-adhesive disks on a lapping 

wheel, with a turntable speed at 60 rpm. There is always a compromise 

between time consumption used in the grinding process and the 

preservation of microstructure with less exposure time and less heat 

damage. Grinding force is one of the important factors controlling the total 

time used for grinding samples to a specific thickness; greater force leads to 

less grinding time but it will introduce more friction and heat thus may 

damage the microstructure. If a smaller grinding force is applied, it takes 

longer time to grind off the particles and more importantly, and ridges can be 

created. Therefore different grinding forces were chosen at different grinding 

stages, e.g. force of 7.5N applied in grinding with P200 and P500, 5N for 

grinding with P1200 and P2400 paper.  

	  

Figure 5.3.2 The grinding machine (Rotopol 35 by Struers) used in the final grinding 

process 
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During the grinding process, any debris entrapped under the grinding 

surface was likely to cause scratches on sample surfaces. So specimens 

were cleaned regularly during the grinding process with cotton wool. 

Lubricant was also applied on the grinding face to effectively cool down the 

sample surface, on top of which heat could be generated due to repeated 

friction with the coarse SiC paper. An outline of the whole grinding process is 

listed in Fig. 5.3.3 and detailed information is as below.  
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Figure 5.3.3 Sequence of the procedure of final grinding process 

	  

Thin section thinned to ~300µm 

200 grade SiC paper 
Grinding force=7.5N 
Dry grind for 2 min 

Is specimen thickness ~100µm? 

500 grade SiC paper 
Grinding force=7.5N 
Dry grind for 2 min 

Yes	  

No 

Is specimen thickness ~60µm? 

1200 grade SiC paper 
Grinding force=5N 
Dry grind for 2 min  

Yes	  

No	  

Is specimen thickness ~40µm? 

2400 grade SiC paper 
Grinding force=5N 
Dry grind for 2 min  

Is specimen thickness ~30µm? 

End process 

No	   Yes	  

No	   Yes	  
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5.3.10 Storage 

After the grinding process finishes, thin section petrographic specimens 

need to be covered with cover slips on top immediately, putting small 

amount of Vaseline on the four corners of the slides to help relatively firm 

covering. The specimens were then stored in a low-CO2 desiccator. Prior to 

microstructure study, cover slips were removed gently by sliding. Any 

remaining Vaseline on glass slide was wiped off gently with tissue to prevent 

contamination of the vacuum system in the SEM chamber.  

5.4 Bulk analysis 

5.4.1 DTA/TG 

Thermal analysis is widely used in research to analyse the presence and/or 

quantity of various compounds in hydrated cement paste by exploiting the 

fact that each compound will decompose (generally by dehydration or 

dehydroxylation) at a distinctive temperature.	  It includes techniques such as 

differential thermal analysis (DTA), thermogravimetry (TG) and differential 

scanning calorimetry (DSC).  

TG mainly determines the weight changes when the substance is heated 

over at known intervals of temperature normally up to 1000℃. DTA records 

the differences in temperature between the investigated sample and the 

reference sample under the same heating program; during changes of 

sample state or crystal form, the latent heat of phase transition will be 

absorbed (or released) and the temperature of the sample will lag behind 

that of the reference material. It consequently correlates to an exothermal or 
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endothermal reaction occurring in the sample, which is recognised by the 

individual endotherm or exothermal peak in the DTA curve within a 

characteristic range temperature. Therefore DTA/TG can be used for 

qualitative and quantitative analysis to determine the relative quantity of 

hydrated compounds present in cement paste after different ageing periods.  

Thermal analysis in this project was carried out using Stanton Redcroft 

Simultaneous Thermal Analysis STA-780. Different curing regimes of 

cement pastes were established in this project. A small amount of freshly 

ground powder (~18mg) of hydrated cement paste was packed into a 

platinum crucible with an inert reference sample alongside. They were 

heated in a furnace to 1000℃ at a rate of 20℃/min under constant flow of 

nitrogen.  

5.4.2 X-ray Diffraction (XRD) 

X-ray diffraction (XRD) is a powerful technique for the study of crystalline 

materials	   in hydrated cementitious materials. X-rays are highly energetic 

photons generated from electronic transitions in the atoms of a targeted 

metal by an incident of accelerated electron beam. An incident accelerated 

electron hits the metal atom and knocks out an electron from the inner K-

shell (n=1 shell), and a vacancy is therefore left in that shell. If an electron 

from another shell fills in the vacancy (electron transitions), X-rays are then 

emitted (Fig. 5.4.1).  
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Figure 5.4.1 Illustration of X-ray generation  

X-ray diffraction results from the diffraction of x-rays when interacting with a 

crystalline structure. Bragg’s law shows the intrinsic relationship between 

interatomic spacing (d-spacing), the angle of diffraction ( 𝜃 ) and the 

wavelength of the incident X-ray radiation (𝜆):  

2𝑑  𝑠𝑖𝑛𝜃 = 𝑛𝜆 

The d-spacing and λ are measured in angstroms, θ in degrees and n is an 

integer.  

Powder X-ray diffraction patterns in this project were carried out by Bruker 

D8 using CuKα1 radiation. The working condition was 40kV and 30mA. Data 

of powder samples was collected in a 2θ-range from 5° to 80° with a step 

size of 0.02° and count duration was set to be 0.5s per step. The samples 

were freshly crushed and ground into fine powders in an agate mortar. Front 

loading was used to apply the powder samples into the sample holder, 

finishing with a flat surface by gently pressing with a glass slide.    
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5.5 Bending test 

Mechanical performances of the aged GRC composites were assessed by 

four point bending testing. It was carried out on a Tinius Olsen bending 

machine according to BS-EN 1170-5:1997, with a span of 200mm and a 

loading rate at 1.8 mm/min. Detailed information on equipment setup is 

shown in Fig. 5.5.1. During the test, the load-deflection curve was displayed 

on the monitor and further stress-strain curve was calculated according to 

the acquired Microsoft Excel spread sheet.  

	  

Figure 5.5.1 Experimental setup of four-point bending test on GRC slabs 

5.6 Thin section (optical) microscope 

Optical microscopy of resin-impregnated thin section slides is a traditional 

technique for microstructural studies of minerals and rocks, providing 

straightforward and qualitative identification of different components 

contained in the materials.  
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In the petrographic microscope, two polarising filters i.e. polariser and 

analyser (set at 90° to the polariser filter), are placed below and above the 

specimen stage respectively in an optic axis of the objective lens. Light 

passes through the polariser first and then it is resolved in an east-west plain. 

The polarised light is very interactive with the crystalline phases and it is 

refracted and split into two individual wave components, both of which are 

polarized in mutually perpendicular planes. Difference between the two 

refractive wave components is known as the birefringence for a crystalline 

phase. When the two wave components enter the analyser, only the rays 

vibrating at 90° to each other can interact with its birefringent crystals. 

Detailed information can be found in the reference (John et al., 1998).  

Crystals (e.g. CH, ettringite and calcite) existed in the thin-sectioned 

cementitious sample will exhibit unique interference colour that is highly 

dependent on the sample thickness. For example, CH crystals appears a 

colour of yellow in the middle but dark grey or even blue at the edge (John et 

al., 1998). Silicon quartz is commonly very useful in indicating the estimated 

thickness of a thin section petrographic sample during sample preparation, 

by its interference colour according to the Michel-Lévi colour chart. For 

example, in a standard thin section petrographic concrete specimen (30𝜇𝑚 

specimen thickness), maximum birefringence for quartz gives an 

interference colour of yellowish orange. Consequently at a regularly 

thickness of 30𝜇𝑚, polarisation colours of each crystalline phase can be 

used to identify materials.  

In this project, microscope was equipped with a digital camera that allows 

rapid image processing and acquisition of the thin section images. As glass 
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fibres are non-crystalline materials, therefore they will appear very dark 

under crossed polarised light in theory. In order to provide sufficient contrast 

in a thin section image, partially crossed polar at 75-80° was used for 

microstructural study of the thin-sectioned GRC composites. It mainly 

focused on the examination at the inter-filamentary spaces between glass 

fibres and also at the fibre/cement interfacial zones.  

5.7 SEM/EDX 

5.7.1 General introduction to SEM 

SEM has been widely used to characterize the microstructure in hardened 

cementitious materials. A beam of high-energy electrons is scanned across 

the surface of a specimen and measures one of the signals resulting from 

the interaction between the beam and specimen. The main useful imaging 

methods are backscattered electron (BSE), secondary electron (SEI) and X-

ray imaging with different interaction volumes (as shown in Fig. 5.7.1). 

 

Figure 5.7.1 Overview of signal generation in SEM 
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Secondary electron is the most frequently used imaging mode in SEM due to 

its relatively high resolution. These electrons are less energetic (<50eV) than 

backscattered electrons and are originated within 10𝑛𝑚 from the sample 

surface. It is a powerful technique to study the topographic features on the 

fracture surfaces of cementitious materials. In this project, secondary 

electron imaging was particularly employed for the studies of glass fibre 

reinforced composites; in particular it was introduced to examine the fracture 

surfaces by observing the failure mode of glass fibres and its surface 

smoothness, plus the quality at the interfacial zone between glass fibre and 

cement matrix.  

Backscattered electrons are high-energy electrons (>50eV) that have 

undergone multiple elastic scattering events within the specimen. The 

greater energy results in a large interaction volume (1~2𝜇𝑚 depth) and lower 

spatial resolution. Backscattering coefficient of a phase is primarily 

dependent on its physical density and the mean atomic number; accurately 

the higher the atomic number the brighter that region will appear and 

porosities appear as black in grey scales. Polished thin section petrographic 

specimens of both GRC composites and steel reinforced concrete were 

examined under backscattered electron imaging mode. A combined imaging 

of BSE images with thin section images at the same area of the sample was 

thus attempted to provide profound microstructural knowledge of the 

investigated samples.  

Generated X-rays have a larger interaction volume (2~5𝜇𝑚) and can be 

used as an analytical signal for qualitative and quantitative chemical 

analysis. Elemental mappings were acquired in this project to give 



Chapter 5- Experimental 

79	  
	  

straightforward information on the distribution of elements within composites 

and spot analysis were also attempted to study the composition at the 

interfacial zone.  

5.7.2 Coating 

GRC specimens were fractured first with a sample height less than 15mm 

and were mounted on an aluminium stub with the fractured surface on the 

top. A layer of carbon paste was applied on the edges of the fractured 

surface in order to make it conductive through the stub. The same sample 

preparation method was applied for thin section petrographic samples, with 

a thin layer of carbon paste applied around the concrete sample in order to 

connect with the metal stub. Finally they were coated under vacuum, leaving 

a thin layer of carbon coating on the sample surface with a thickness of ~10 

nm.  

5.7.3 SEM set up   

SEM work in this project was carried out using JEOL JSM-5900 LV. General 

SEM settings are listed in Table 5.7.1 below and detailed information will be 

explained in the sub-sections 5.7.3.1- 5.7.3.4. 
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Table 5.7.1 General SEM setup 

Working distance (mm)  10 

Accelerated voltage (keV) 15 

Magnification  ×400,  ×1000 

Spot size  25 

Number of completed frames  5 

Resolution width (pixel) 2048 

Resolution height (pixel)  1536 

5.7.3.1 Working distance  

Working distance is one of the important parameters deciding the SEM 

image resolution. Smaller working distance leads to higher image resolution 

but a smaller depth of field may also be involved; increasing of the working 

distance is influential on obtaining a SEM image with lower resolutions. In 

this project, a working distance of 8-10mm was chosen to obtain good image 

quality regarding to a compromise between image resolution and depth of 

field.  

5.7.3.2 Accelerated voltage  

At higher accelerating voltages, SEM images with higher resolution can be 

obtained but the beam penetration and diffusion area can also become 

larger, resulting in unnecessary signals (e.g. backscattered electrons) being 

generated from within the specimen. These signals reduce the image 

contrast and veil fine surface structures. Besides this, higher accelerated 

voltage also leads to a higher possibility of charge-up and specimen 

damage.  
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In this project, a general accelerated voltage of 15kV was chosen to 

undertake the SEM work. 

5.7.3.3 Magnification  

Proper magnification is always a compromise between the field of areas 

studied and the SEM image resolution. A general magnification of ×400 was 

used through this project, which was able to recognise the general interfacial 

characterisation with relatively large sampling area of the investigated 

samples. For some particularly interesting areas, SEM images were 

enlarged over a magnification of ×1000 for both illustrative observations 

and/or EDX spot analysis.  

5.7.3.4 Image resolution  

SEM images in this part were collected using Aztec software package from 

Oxford Instruments. To give backscattered electron images or secondary 

electron images with high quality, resolutions of SEM images are set up at 

2048 pixel × 1536 pixel while collecting.  

5.7.4 EDX 

Energy-dispersive X-ray Spectroscopy (EDX) detector equipped with SEM 

allows the identification of the chemical composition at any region within the 

image. Only elemental mappings and spot analysis were performed in this 

project. 

5.7.4.1 Elemental mappings 

General settings of elemental mappings are shown in Table 5.7.2.  



Chapter 5- Experimental 

82	  
	  

Table 5.7.2 General Mapping setup 

Binning factor  1 

Smoothing level  3 

Number of completed frames 10 

Dwell time (ms)  1.5 

Energy range (keV)  10 

Maximum pixel value (counts) 8.0  

Total counts in element map (counts) ~37447 

 

The corresponding elemental mappings were collected with a smaller image 

size of 1024 pixel × 768 pixel compared to the corresponding BSE images, 

thus it took less acquisition time during mapping collecting. Different 

elements were selected for different cement systems. For the GRC 

composites, the following elemental mappings were collected:  

• Calcium – Basic element in almost all the hydration phases in 

cementitious materials.   

• Aluminium – Enriched in the aluminate phases, e.g. AFm, ettringite or 

alumina hydroxide gels in CSA-based materials. 

• Silicon – Main composition of glass fibres and fine aggregates. 

• Sulphur – present in ettringite and AFm phases.  

• Sodium – To recognize of AR glass fibres as it is rich in silicon, 

zirconia and sodium. 

• Zirconia – To recognize of AR glass fibres as it is rich in silicon, 

zirconia and sodium. 

For microstructural studies of steel reinforced concrete, five elemental 

mappings were chosen:  
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• Silicon – Abundant in the aggregates and amorphous C-S-H gels.  

• Calcium – The most common element in most hydrated cement 

phases. 

• Aluminium – Found in aluminate phases such as ettringite, AFm and 

some amorphous aluminate phases (C-A-S-H).  

• Sulphur – Existed in ettringite and AFm phases.  

• Iron – Main composition of steel reinforcement.  

• Oxygen – To reflect the rust layer in steel reinforcement. 

5.7.4.2 Spot analysis  

Spot analysis was performed on a flat thin section GRC slide, mainly 

focusing on the spaces between glass fibres. Owning to the relatively large 

interaction volume of X-ray signals, interference of glass fibre may possibly 

occur during the microanalysis. Therefore silicon signals originating from the 

glass fibre should be deducted from the total silicon content in microanalysis. 

Since ZrO2 is present in glass fibres but absent from the hydrated cement, it 

could be used as a marker to calculate the proportions of silicon content of 

the spot analysis attributable to the glass fibres, by considering the 

composition of glass fibres (10% Na2O- 22% ZrO2- 68% SiO2 by weight). 

For the thin-sectioned steel reinforced concrete specimen, spot analysis was 

carried out to study the chemical composition near steel surface. Atomic 

information of selected elements at each chosen spot were then collected 

and based on this, microanalysis plots of Si/Ca vs. Al/Ca and Si/Ca vs. S/Ca 

were calculated. They are found to be particularly helpful in determining 

compounds in cementitious materials, particularly at the interfacial region in 

this project.  
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5.8 Image analysis  

In this project, quantitative image analysis technique is updated based on a 

combination of different elemental mappings within the same BSE image, 

instead of a series of phase segmentation and arithmetic calculations in the 

BSE images. In this study, image analysis is expected to be able to present 

different atomic ratios at the interfacial zone between steel and concrete, 

distributed as a function of the distance away from steel surface.  

Different software package called Inca was used to collect SEM images and 

elemental mappings in the image analysis study, compared to the Aztec 

software in the qualitatively microstructural study. To obtain the most 

accurate quantification, elemental mappings used in the image analysis 

were obtained with much longer acquisition time (dwell time being 10 times 

longer than the qualitative elemental mappings). Preliminary experimental 

results conclude that aperture has a vital impact on the accuracy or density 

of the acquired mapping data, as shown in Fig. 5.8.1. Different settings on 

aperture (Aperture 2 and 3) and dwell time (1000𝜇s and 2000𝜇s) are 

compared to give the most accurate image analysis.  
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Figure 5.8.1 Different SEM settings for iron mappings in one of the examples of 

reinforced concrete sample 

(a) Backscattered electron image of 28 days-cured steel reinforced CSA concrete, 

at a magnification of x400; (b) Iron mapping acquired by dwell time 1000 𝜇s in 

Aperture 3, counts 28791769; (c) Iron mapping acquired by dwell time 2000 𝜇s in 

Aperture 2, counts 10199096; (d) Iron mapping acquired by dwell time 1000 𝜇s in 

Aperture 2, counts 5128775. 

SEM settings with a larger aperture and reasonable dwell time of 1000 𝜇s 

have been proved to create mappings with much more counts, thus 

providing much more precise data on the quantified elemental mapping. Ten 

frames were recorded for each mapping. BSE image and the corresponding 

elemental mappings were collected by Smartmap function in the Inca 

software (see Fig. 5.8.2) and backscattered electron images were collected 

at a smaller image size of 512 pixel × 384 pixel.  

(a) (b) 

(c) (d) 
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Figure 5.8.2 Smartmap in Inca used to collect elemental mappings for image 
analysis  

The atomic information contained in each mapping was then read pixel by 

pixel by the QuantMap function in Inca (see Fig. 5.8.3), ending up with an 

Microsoft Excel spread sheet containing 384 rows and 512 columns (Fig. 

5.8.4); each cell was representative of a specific atomic number of one pixel 

at exactly the same location in an element mapping. 
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Figure 5.8.3 An example of reading elemental information pixel by pixel using Inca 

software 

	  

Figure 5.8.4 An example of obtaining the quantitative Microsoft Excel data on 

atomic information for each pixel 
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The Microsoft Excel sheet for iron mapping was used to extract the atomic 

data presented at the interfacial zone first. A macro written in MATLAB 

R2013b was established to find the edges of reinforcement first, indicated by 

a huge difference of atomic number between two pixels at the steel edges. 

Followed by this, the edge layer was expanded by extracting another 25 

pixels data vertically, accumulating for about 30 microns in width which was 

supposed to be the interfacial information. If these cell locations were 

recorded in a MATLAB R2013b macro, the corresponding data for other 

elements i.e. Ca, Si, Al, S could be extracted in a new Microsoft Excel sheet. 

As a consequence, atomic ratios such as Ca/Si, Al/Ca and S/Ca can be 

calculated by average data with equal distance to steel. And relationship 

between the arrangement of atomic ratio and distance away from steel 

within 30 microns can be therefore built up.  

This quantitative analysis methodology is highly reproducible and reliable as 

no user-bias is induced, compared to the image analysis technique based on 

phase segmentation in literature.  
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Chapter 6- Results and discussion: GRC 

Aged GRC composites modified by CSA cement are compared with 

OPC/GRC in this chapter; the following results are presented: bulk analysis 

(DTA and XRD), thin section images, SEM on both polished and fractured 

surfaces, microanalysis at the space between fibres and microstructure 

observations on fibre surface. In the last part, bending performance of GRC 

are also compared with the corresponding unaged sample.  

6.1 DTA  

DTA curves of aged OPC/GRC and Nashrin/GRC are shown in Fig. 6.1.1. At 

lower-end temperature within the range of 100-180℃, DTA curves of both 

GRC materials appear to consist of three overlapping peaks, exhibited as a 

strong central endotherm at ~120℃ and two broad shoulders on each side. 

This prominent triple endotherm is generally associated with (in the order of 

dehydration temperatures) the evaporation of weakly bound pore water, 

dehydration of C-S-H gels and dehydration of ettringite phases respectively. 

The low-temperature peak for Nashrin/GRC is significantly larger than that 

for OPC/GRC and the most prominent sub-peak is shifted towards higher 

temperature, suggesting a relative preponderance of ettringite over C-S-H 

gels. This is in agreement with the intrinsic hydration of the CSA-based 

materials, for which one of its main hydration products is ettringite, 

generated from the hydration of calcium sulfoaluminate phases within the 

cement clinker. Decomposition of CH occurs at the steps of 450-500°C and 

absence of CH endotherm is clear in Nashrin/GRC in comparison to the 
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dominant CH step for OPC/GRC. The importance of the absence of CH is in 

regard to the potentially improved durability of Nashrin/GRC composites as 

matrix densification and CH bundle filling remain as one of the degradation 

mechanisms of GRC composites. Steps between 650-780℃ are indicative of 

the existence of calcium carbonate but very little seems to be apparent in 

either material. This curve includes another small endothermic peak at 

573℃, which corresponds to 𝛼 → 𝛽 transformation of the quartz crystals in 

the common fine aggregates. 

	  

Figure 6.1.1 DTA results of 10y-aged OPC/GRC and GRC modified by Nashrin  
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6.2 XRD  

XRD result for the OPC/GRC composite (Fig. 6.2.1) indicates that its main 

crystalline hydration product is CH, with minor amount of calcite and 

ettringite formation. This is generally consistent with the DTA data in section 

6.1, except that C-S-H gels are not traced in XRD due to its poor crystallinity. 

XRD result of Nashrin/GRC composite clearly shows that CH is absent in the 

matrix, which agrees with the above thermal analysis results. The relatively 

large amount of ettringite shows that the hydrated Nashrin matrix is totally 

different from the OPC matrices. Minor calcite traced in both materials 

agrees with the DTA data above and indicated that little carbonation occurs 

during sample storage. A broad band between 2θ= 32-33° in both samples is 

indicative of the presence of remaining unreacted belite clinker; although 

aged for 10 years at normal temperature, complete hydration has not been 

achieved. Much more unreacted belite clinker remains in the Nashrin matrix, 

this can be explained that calcium sulfoaluminate reacts with water at an 

extremely rapid speed within the first few days, leaving limited amount of 

water available for the hydration of belite clinker at later ages. Abundant 

SiO2 phases were traced in both samples due to the 50% sand addition to 

composites, which is added to counteract the drying shrinkage of cement 

matrix. 



Chapter 6- Results and discussion: GRC 

92	  
	  

	  

	  

	  

	  

	  

	  

Figure 6.2.1 XRD results of 10y-aged GRC modified by Nashrin and OPC 

(E: ettringite; P: Ca(OH)2; Q: quartz; C: calcite; B: belite) 
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6.3 Microstructural study of Nashrin/GRC 

6.3.1 Thin section image    

Newly prepared samples from aged material were compared with unaged 

TSP specimens retained from the original study (Purnell and Beddows, 

2005). They were observed under transmitted light microscopy to examine 

the general microstructure features in both glass/cement interface and 

interfilamentary spaces. Under crossed polarized light, glass fibres should 

appear black in colour theoretically as they are non-crystalline phases, 

making them rather difficult to be distinguished from the bulk cement matrix 

due to lack of contrast. It is found out that by slightly uncrossed polar at ~75-

80°, instead of crossing the polariser and analyser at 90°, a little light can 

transit through glass fibre bundles. Glass fibres then appear dark grey and 

can provide sufficient contrast to the hydrated cement matrix; this 

adjustment has insignificant influence on the diagnose of crystalline phases 

based on their interference colours.  

At early ages, hydrated cement matrix has started to penetrate into the 

interfilamentary spaces between glass fibres in Nashrin/GRC as suggested 

by the presence of cementitious materials between fibres under partial plain 

polarised light, which appeared as light orange colour as showed in Fig. 

6.3.1. This can be explained by the rapid hydration of calcium sulfoaluminate 

with water within the first few hours, generating large amounts of ettringite 

and aluminium hydroxide gels. The rapid formation of ettringite possibly 

results in significant internal tension, facilitating the matrix to penetrate 

further into the porous interfilamentary spaces (Chen et al., 2012; Kasselouri 
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et al., 1995). The internal tension caused by ettringite crystal growth also 

possibly squeezes glass fibre bundles to some extent (Min and Mingshu, 

1994; Valenti et al., 2012), leaving a rather compact structure between the 

glass fibre strands.  

For the aged Nashrin/GRC composite, two examples of thin section images 

chosen at different sites are illustrated in Fig. 6.3.2 and Fig. 6.3.3. The 

corresponding backscattered electron images are also studied with the same 

area as that in the thin section images, with common characteristic features 

(an aggregate particle in Fig. 6.3.2 and belite phase in Fig. 6.3.3) labelled in 

the images. Detailed qualitative and quantitative studies of these 

backscattered electron images are presented in section 6.4. Compared with 

the Nashrin/GRC at early age (Fig. 6.3.1), it was obvious that hydrated 

cement matrix penetration continues to occur into the spaces between fibres 

with ageing. Particularly in Fig. 6.3.3, a coincidence of vertical and horizontal 

fibres helps to examine the extent of bundle filling in the aged Nashrin/GRC 

composite. It was indicated that occasionally significant precipitation of 

crystal phases were observed at the interfilamentary spaces in a horizontal 

fibre bundle (in Fig. 6.3.3). Detailed chemical composition of these 

precipitated phases is investigated by microanalysis in section 6.3.2.  

According to the thin section images of unaged and aged Nashrin/GRC 

composite, it can be concluded that there is almost no discernible 

microstructural changes during ageing process. This reveals a relatively 

stable microstructure evolution of GRC composites modified by Nashrin in 

the long term, which may be associated with significantly retained 



Chapter 6- Results and discussion: GRC 

95	  
	  

composites mechanical performances with ageing (further discussed in 

section 6.5).   

	  	  	  	  

	  

Figure 6.3.1 Observation of unaged Nashrin/GRC composite under plain polarised 

and uncrossed polarised light (polar at 80 degree), based on a thin section 

petrography sample made in a previous project; width of field 0.32mm 
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Figure 6.3.2 Observation of 10y-aged Nashrin/GRC composite under (a) plain 

polarised (b) uncrossed polarised light, polar at 78 degree and (c) backscattered 

image at the same location, width of field 0.32mm 
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Figure 6.3.3 Observation of 10y-aged Nashrin/GRC composite under (a) plain 

polarised (b) uncrossed polarised light, polar at 75 degree and (c) backscattered 

image at the same location, width of field 0.32mm 
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6.3.2 SEM on polished sample 

Ten sites were investigated for each sample with random selection and two 

representative examples were present in Fig. 6.3.4 and Fig. 6.3.5. 

SEM observations on a transverse section of aged petrographic 

Nashrin/GRC are presented in Fig. 6.3.4. It provides further microstructural 

studies at the spaces between glass fibre bundle and at the fibre/cement 

interfacial zone.  

A substantially dense microstructure around the glass fibre bundles was 

observed. It can be seen that matrix has not fully penetrated into the 

interfilamentary spaces yet after ten years ageing. Lots of those spaces still 

remained vacant and porous as suggested by the phases with very dark 

grey scales. At some regions a mixture of hydration products was adhering 

on the fibre surface intimately or fill the large air voids between fibres.  

Chemical analysis from Point 1 (representative of the space between glass 

fibres) demonstrated a clustering of CaO and SiO2 at the interfilamentary 

zone, accounting for 46.0 wt.% and 28.4 wt.% respectively, with small 

amounts of 13.7 wt.% Al2O3 and 7.5 wt.% SO3 included as well. The Ca/Si 

ratio of Point 1 is 1.74 and the Al/Ca ratio was 0.33. Unhydrated cement 

clinker displayed as the lightest grey scale in the BSE image and further 

EDX analysis on Point 2 do confirm this.  

Mapping of S showed that there was a sulphur layer along the fibre/matrix 

interface, also with the inclusions of Ca, Al and small proportions of Si. This 

proves the chemical composition of the matrix at the interface is different 

from the bulk. Accumulation of S, Ca, Al and minor Si can be observed in the 
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spaces between glass fibres. Detailed chemical information is presented in 

section 6.3.3. Mappings of Si, Na and Zr indicate their abundance on fibre 

surface and confirm that the glass fibres used in this project are in SiO2-

Na2O-ZrO2 system.  

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6- Results and discussion: GRC 

100	  
	  

 

(a) BSE image (the same image as in Fig 6.3.2.c) at a magnification of x400; 

width of field 326𝜇𝑚 

 

 

(b) EDX spot analysis of Point 1 and 2  

1 

2 
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(c)   Elemental mappings of Ca, Al, Si, S, Na, Zr  

Figure 6.3.4 First example of microstructure of Nashrin/GRC aged for 10 years 

	  

	  

	  



Chapter 6- Results and discussion: GRC 

102	  
	  

A BSE image containing both horizontal and vertical glass fibres were 

demonstrated in Fig. 6.3.5. Between the horizontal fibres, most of the 

spaces remained vacant but there were continuous or clustered hydration 

products precipitated occasionally, particularly within a limited inter-

filamentary space. Elemental mappings showed that there were significant 

amount of CaO, SiO2 and SO3 present in the interfilamentary space.  

Spot analysis of two representative points was chosen to study the chemical 

composition of the precipitated hydration products between fibres in 

Nashrin/GRC. The Ca/Si ratio for Point 1 was calculated to be 1.5 and the 

Al/Ca was 0.3. For Point 2, a lower Ca/Si ratio of 1.0 and Al/Ca of 0.2 can be 

identified. Discussion on the spot analysis results is presented in section 

6.3.3.  
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(a) BSE image (the same image as in Fig 6.3.3.c) at a magnification of x400; 

width of field 326𝜇𝑚 

 

 

(b) EDX spot analysis on Point 1 and 2 

1 
2 
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(c) Elemental mappings of Ca, Al, Si, S, Na and Zr 

Figure 6.3.5 Second example of microstructure of Nashrin/GRC aged for 10 years 
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6.3.3 Microanalysis 

The interpretation of interfilamentary phases is not straightforward because 

most microanalyses are of mixtures of up to four or even more phases 

admixed on a sub-micrometre scale. Plots of Al/Ca vs. Si/Ca and S/Ca vs. 

Al/Ca are chosen to investigate the chemical composition of these 

intermixtures. Owning to the relatively large interaction volume of X-ray 

signals compared to the narrow space between glass fibres, interference 

from the glass fibres may occur during microanalysis. This may result in 

unrealistically high proportions of silicon being recorded and therefore a 

similarly high Si/Ca ratio. Therefore during the microanalysis, SiO2 signals 

originating from the glass fibre should be deducted from the total SiO2 

content. Detailed procedure is illustrated in the previous section 5.7.4.2. 

Microanalysis of the interfilamentary space in 10y-aged Nashrin/GRC is 

shown in Fig. 6.3.6. In the Al/Ca ratio towards Si/Ca ratio plot, a trend line 

joining bulk C-S-H gel towards the AFt-type phases (Si/Ca=0, Al/Ca=0.33) 

can be clearly identified, along with some scattered data with slightly higher 

Al/Ca ratio. The plot of S/Ca towards Al/Ca ratio further indicates that there 

is a general trend line between the clusters of C-S-H gels towards AFt 

phases (Al/Ca=0.33, S/Ca=0.5), with a slight deficiency in sulfate. Therefore 

it can be concluded that the composition of the precipitated interfilamentary 

hydrated phases in aged Nashrin/GRC composites are mainly C-A-S-H gels 

finely intermixed with AFt phases at varying levels. The mean Ca/Si ratio of 

C-S-H gel is 1.1 (n=15, s=0.019), which is slightly lower than the normal 

range of the previously reported mean Ca to Si ratio 1.2-2.3 of outer C-S-H 

gel in neat Portland cement paste by Richardson (Richardson, 1999; 
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Richardson, 2008). The mean Al/Si ratio of the C-S-H data is 0.16 (n=15, 

s=0.013). This deficiency in calcium and higher Al/Ca ratio property in the C-

S-H/AFt intermixture can be attributed to the intrinsic nature of the Nashrin-

based materials, which is low in CaO and contains higher amount of Al2O3 in 

comparison to the traditional Portland cement.   

 

	  

Figure 6.3.6 Scatter graphs of Nashrin-based GRC composites aged for 10 years at 

25℃ 
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6.3.4 SEM on fractured surface 

Microstructural studies on the fractured surfaces of aged Nashrin/GRC are 

presented in Fig. 6.3.7. SEM images at different magnifications within the 

same site are illustrated to characterize the physical conditions at the 

fibre/cement interfacial zone. Fractured surfaces in Nashrin/GRC 

demonstrated well-preserved bundled feature of glass fibres after ten years 

ageing at 25℃. Most of the glass fibres were pulled out rather than fractured, 

piercing through the bonded bulk cement matrix. This indicates good 

mechanical properties of GRC composite modified by Nashrin are retained 

after 10 years. Furthermore, spaces between filaments remained almost 

vacant, only with small proportions of hydration products partly adhering on 

the fibre surfaces. The flexibility possessed by individual glass fibre within a 

bundle confers the ability of flexible movement after cracking of the 

composite has occurred, which would significantly increase the post-peak 

toughness of GRC composites. Interfacial zone between matrix and fibres 

also remains highly flexible, suggested by a porous layer near the surfaces 

of the outer fibres.  
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(a)	  ×200, width of field 652 𝜇𝑚	  

	  

(b) ×500, width of field 261𝜇𝑚 

Figure 6.3.7 SEM images of fractured 10y-aged Nashrin/GRC at various 

magnifications 

6.3.5 SEM on fibre surface 

After ageing for ten years, fibre surfaces were still very smooth only with 

some layered or clogged hydration products adhering occasionally on the 

fibre (Fig. 6.3.8). Hardly any fibre weight loss or gross loss could be located 

on the fibre surface. Severe fibre corrosion cannot be observed on the fibre 

surfaces.  
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Figure 6.3.8 Microstructure of fibre surfaces in aged Nashrin/GRC composite 

6.4 Microstructural study of OPC/GRC 

6.4.1 Thin section image 

Thin section petrographic specimen of the unaged OPC/GRC was produced 

in a previous project (Purnell and Beddows, 2005). Compared with the newly 

produced thin section slides of aged OPC/GRC, they were examined under 

the petrographic microscope to investigate the general microstructure 

changes at the interface and spaces between glass fibres. 
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At early ages the interfilamentary space of OPC/GRC samples (Fig. 6.4.1) 

was mainly filled with resin, suggesting that the spaces between glass fibres 

were quite empty at the beginning. When analysed under polarised light, 

OPC matrix shows crystal precipitation in a small scale near the interfacial 

zone. This means that matrix is beginning to penetrate into interfacial space 

partially along the perimeter of glass fibres. 

After ageing for 10 years at 25℃, OPC matrix has significantly occupied the 

interfilamentary space (Fig. 6.4.2). And crystalline CH deposits, identified by 

its unique birefringence colour as yellowish orange, were accumulating at 

part of the interfacial zone. The microstructural changes with ageing are 

indicative of progressive hydration phase densification within the glass fibres 

and its impact on mechanical performances is further discussed in section 

6.5.  
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Figure 6.4.1 Thin section images of OPC-based GRC aged for 28 days at 25℃, 

under partial plain polarised and crossed polarised light, based on a thin section 

petrography sample made in a previous project; width of field 0.32mm 
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Figure 6.4.2 Thin section images of OPC-based GRC aged for 10 years at 25℃, 

under partial plain polarised and crossed polarised light, width of field 0.32mm 

 6.4.2 SEM on polished sample 

SEM observations were applied to study the microstructure in aged 

OPC/GRC; ten images were taken randomly and one representative 

example (in Fig. 6.4.3) was included below. 

Microstructure of aged OPC/GRC composite (in Fig. 6.4.3) indicated that 

spaces between glass fibres were significantly densified with penetrated 

hydration products, with almost no porosity, significantly limiting the flexibility 
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of the glass fibre bundles. It was mainly filled with massive hydration 

products of CH according to its light greyscale and it is mainly dominated by 

the elements of CaO, as suggested by the calcium elemental mapping. 

Large amounts of isolated unhydrated clinker was observed within the matrix 

(represented by Point 1), surrounded by inner products with various 

thickness ranging within few micrometres. EDX analysis of the inner product 

was studied by Point 2; its chemical compositions were dominated by CaO 

and SiO2 with a Ca/Si ratio of 1.1. For these interfilamentary hydration 

products, the Ca/Si ratio was calculated to be 0.9 by EDX analysis 

(represented by Point 3). This is slightly lower than the Ca/Si ratio for inner 

product. 

Traces of sulphur and aluminium were absent from the interfilamentary 

space according to elemental mappings; this eliminates the possibility of Aft 

and/or AFm phase formations at this interfacial zone. The calcium mapping 

reveals that calcium has penetrated far further into the interfilamentary 

spaces during ageing compared to Nashrin composites (see 6.3.4.c above), 

forming calcium-concentrated products, which could possibly be CH or 

CaCO3 structures, and/or with the intermixture of C-S-H gels at various 

levels (further discussed in section 6.4.3). It leaves a considerably intimate 

contact between the embedded glass fibres. Abundance of sodium and 

zirconia observed on the fibre surface proves that these glass fibres involved 

in this project belong to AR glass fibres, which are based on the Na2O-SiO2-

ZrO2 systems.  
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(a) BSE image at a magnification of x400; width of field 326𝜇𝑚 
 

 

 

 

(b) EDX spot analysis on Point 1, 2 and 3 

3 

1 
2 
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(c) Elemental mappings of Ca, Al, Si, S, Na and Zr  

Figure 6.4.3 Microstructure of OPC/GRC aged for 10 years at 25℃ 

 



Chapter 6- Results and discussion: GRC 

116	  
	  

6.4.3 Microanalysis 

As illustrated in section 5.7.4.2, SiO2 content examined in EDX spot analysis 

has been corrected in order to remove the interference of SiO2 that is 

originating from the glass fibres. Plots of Al/Ca vs. Si/Ca and S/Ca vs. Al/Ca 

are shown in Fig. 6.4.4. 

The Al/Ca against Si/Ca plot indicated the existence of C-S-H gels at the 

spaces between glass fibres, and the data exhibited a tendency towards the 

origin of the plot, which represents the CH. The S/Ca against Al/Ca plot 

further confirmed the intermixture of CH and C-S-H, in which a cluster of 

data can be seen in the vicinity of the origin point with deficiency of sulphur 

and aluminium. Therefore a conclusion can be drawn that an intermixture of 

C-S-H gels and CH is precipitated at the spaces between glass fibre 

filaments. The mean Ca/Si ratio is 1.5 (n=8, s=0.017) and the Al/Si ratio is 

0.03 (n=8, s=0.005). The mean Ca/Si ratio is in agreement with the reported 

value in literature in the range of 1.2-2.3 for neat Portland cement 

(Richardson, 2008; Richardson, 1999; Diamond and Bonen, 1995; Lecomte 

et al., 2006; Famy et al., 2002). 
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Figure 6.4.4 Scatter graphs of OPC/GRC composites aged for 10 years at 25℃ 
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6.4.4 SEM on fractured surface 

For the 10y-aged OPC/GRC composites, observation of the fractured 

surfaces (Fig. 6.4.5) showed significant fracturing of glass fibres, presenting 

in a quasi-conical array of glass fibres. Spaces between filaments were 

significantly densified by infilling with precipitated intermixtures of C-S-H gels 

and CH (see Fig. 6.4.4), making it an extremely rigid structure. Bundle filling 

may also lead to detrimental reinforcement embrittlement and fibre 

reinforcement would consequently lose its ability to provide toughness in 

GRC to some extent. There was an intimate contact between matrix and 

fibre bundle with almost no gap observed even at a higher magnification of 

×500. This dense interface would be less able to arrest cracks upon 

reaching the interfacial zone and cracks therefore would propagate quickly 

afterwards. Different magnifications at the same site are used to have a 

closer investigation of the interface morphology in the 10y-aged GRC non-

modified composites.  
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(a) X200, width of field 652𝜇𝑚                           

 

(b) X500, width of field 261𝜇𝑚 

Figure 6.4.5 SEM images of fractured 10y-aged OPC/GRC at various 

magnifications  

6.4.5 SEM on fibre surface 

Significant fibre corrosion can be observed in aged OPC/GRC composites 

(Fig. 6.4.6). Severe loss in smoothness happened at some regions along the 

fibre. In particular, considerable fibre volume loss can be observed and also 

portion of the coatings were peeling off from the fibre. This entire 



Chapter 6- Results and discussion: GRC 

120	  
	  

phenomenon indicated that severe fibre corrosion happened in OPC/GRC 

composites after 10 years ageing. 

     

     

Figure 6.4.6 Microstructure of fibre surface in aged OPC/GRC composite  

6.5 Bending tests    

Two thin slabs of both aged OPC/GRC and Nashrin/GRC (225mm × 55mm 

× 10mm) were used for bending tests. Bending data for the unaged 

composites were extracted from a previous study (Purnell and Beddows, 

2005). 

Smoothness loss 
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Stress-strain properties of unaged GRC composites made by two 

formulations (i.e. OPC, Nashrin) are shown in Fig. 6.5.1. Comparable 

bending performances can be found in those two types of GRC composites, 

with MOR of 27MPa for OPC/GRC and 30MPa for Nashrin/GRC 

respectively. Both materials are significantly ductile, having an ultimate strain 

value of ~0.8%.   

Fig. 6.5.2 shows the effects of long-term natural ageing (i.e. 10 years 

immersion at 25℃) on the flexural stress-strain relationship of the OPC and 

Nashrin-based composites. With ageing, the stress property of OPC/GRC 

remains almost unchanged only with a slight decrease in MOR from 27MPa 

to 26MPa. However, the composites have become extremely brittle, with an 

ultimate strain of only ~0.09%. Glass fibres therefore have lost their function 

to compensate the low toughness of cement mortar. Such stress variation 

with strain could be explained by the observation that a visible crack 

occurred immediately once the load was applied. But the fibres were 

weakened chemically and/or affected by interfacial deposition of CH 

physically, such that they cannot arrest the crack growth or bridge the 

growing crack. Consequently it led to the catastrophic loss of toughness in 

OPC composite. The microstructure observed on the fractured surfaces (Fig. 

6.4.5) also confirms such mechanism causing the strength degradation of 

the OPC composite. 

In contrast, Nashrin/GRC exhibited significantly less reduction in toughness 

after 10 years normal ageing. The ultimate strain value reduced to 0.55% 

after 10 years, an order of magnitude larger than that of 0.09% for the aged 

OPC/GRC. The fibres still showed considerable ability to carry load alone by 
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bridging cracks development. However, composite strength of the normal 

aged composite maintained almost the same as that in the unaged sample; 

MOR changed from 30MPa in the unaged to 32MPa after ageing for 10 

years. This is inconsistent with the previous accelerated ageing testing, in 

which medium composite strength reduction was observed (further 

discussed in section 8.3). These results improved confidence in the 

widespread application of CSA cement modified matrix in GRC industry.  
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Figure 6.5.1 Stress-strain curves for unaged GRC composites, data from reference 

(Purnell and Beddows, 2005) 

	  

Figure 6.5.2 Stress-strain curves of GRC composites aged for 10 years 
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6.6 Summary of main findings  

After ageing for 10 years at 25℃, significant difference has been observed 

between OPC/GRC and Nashrin/GRC in terms of microstructural evolution, 

failure mode and mechanical performances.  

In the aged Nashrin/GRC composites, intermixture of C-S-H gel and 

ettringite are penetrating into the interfilamentary spaces but the overall 

spaces between glass fibres remain quite porous. It exhibit desirable 

composites mechanical properties after 10 years ageing; most of the 

toughness are still retained, making the material possess high proportion of 

ductility as well as composite strength. Microstructural study on a fractured 

surface further helps to explain its desirable mechanical performance. Most 

of the glass fibres are pulled out rather than fractured, spaces between 

fibres are quite vacant and interfacial zone between fibre and cement are 

significantly empty; all these beneficial microstructural features offer fibre the 

flexibility when forces are applied.  

The aged OPC composites indicate considerably more brittle behaviour and 

both interfilamentary and interfacial zone showed severe densification with 

the ingress of intermixed CH and C-S-H at a fine scale. Severe fibre 

fracturing can be observed on the fractured surface, losing the bundled 

feature of glass fibres. However, there are insignificant changes in 

composite strength in with ageing in OPC/GRC.    
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Chapter 7- Results and discussion: Steel 
reinforced concrete 

Hydration of CSA cement pastes at different ages (i.e. 7d, 28d, 90d and 

1.5y) is studied in this chapter. In both 28d and 1.5y-aged steel reinforced 

CSA concrete, microstructural features at the interface are compared to the 

corresponding OPC concrete. Quantitative image analysis results at the 

interface are present in this chapter, by calculating different atomic ratios 

(Ca/Si, Al/Ca and S/Ca) as a function of distance away from steel.  

7.1 DTA  

7.1.1 CSA paste 

DTA curves of hydrated CSA cement pastes with different curing regimes 

are presented in Fig. 7.1.1. In the sample cured for 7 days at 21℃, a 

prominent endotherm at 125℃ is indicative of the generation of ettringite, 

although there may be interference from dehydration of CAH10 at similar 

temperatures (Scrivener and Campas, 2003; Berger et al., 2011). Ettringite 

starts to form at the beginning of hydration (e.g. after 1 hour) until 2 days 

when gypsum is still available. Formation of CAH10 in hydrated CSA cement 

is rarely discussed in literature, probably from the hydration of Ye’elimite and 

belite in CSA cement. The subsequent broad endotherm at about 160℃ has 

been assigned to the dehydration of stratlingite (C2ASH8) (Almusallam, 

2001), produced from the reaction between remaining belite phases and 

aluminium hydroxide gels. The obvious step at 180-200℃  is normally 
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associated with the presence of monosulfate. Monosulfate is produced from 

the hydration of calcium sulfoaluminate providing gypsum is consumed.  

It is found out that with the progress of hydration for up to 90 days, 

endotherm within 125-180℃ has become considerably broader and larger; 

there are no clear boundaries between those designated peaks for ettringite, 

CAH10 and stratlingite. The prominent peak is slightly shifting towards higher 

temperature, revealing a relative predominance of stratlingite over ettringite 

over curing for up to 90 days.  

After curing for 1.5 years, significant changes have occurred regarding the 

hydration products in hydrated CSA cement. Small and broad peaks at 

~120℃ and 160℃ still exist, correlating to the presence of ettringite, CAH10 

and stratlingite respectively. But the most prominent peak is shifted to 

temperatures at ~200℃, which indicates the abundance of monosulfate in 

hydrated CSA paste, instead of ettringite, CAH10 and/or stratlingite for those 

early age samples. There is an additional small peak at ~300℃ in the 1.5y-

aged sample; this can be related to the formation of C3AH6, which is 

supposed to derive from the conversion reaction of CAH10 with increasing 

curing periods (further discussed in section 7.2.1). Water loss of crystalline 

aluminium hydroxide is traceable in all the hydrated CSA cements with 

different curing ages, corresponding to a small blip at the steps between 280 

and 300℃ in DTA curves. 
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Figure 7.1.1 DTA results of CSA paste cured at 21℃ for 7, 28, 90 days and 1.5 

years 

28d 
7d 
90d  

1.5y	  
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7.1.2 OPC paste  

DTA curves of hydrated OPC paste cured at four different ages (i.e. 7 days, 

28 days, 90 days and 1.5 years) are presented in Fig. 7.1.2. The curves 

within range of 100-130℃ consist of three overlapping peaks, with a strong 

central endotherm at ~120℃. They can be corresponded to the evaporation 

of weakly bound pore water, dehydration of C-S-H gel and ettringite 

respectively, in the order of increasing dehydration temperatures. With 

curing age for up to 90 days, the strongest peak in the DTA curve becomes 

broader and larger, interfered by the increased formation of C-S-H gel. 

Subsequent considerably broad peak at ~170℃ suggests the generation of 

AFm during hydration.  

However in the 1.5 years-aged samples, these three broad endotherms at 

100-170℃  exhibit relatively comparable sizes, instead of a very strong 

central peak contained in samples at earlier ages. This indicates the 

decreased content of weakly bound pore water and massive formation of 

AFm phases in hydrated OPC pastes with the on-going curing.  

The subsequent step at about 420℃ is always associated with CH formation, 

which remains as one of the main hydration products in hydrated OPC 

pastes at all investigated ages. Relatively weak endotherm at 700℃ in the 

DTA curves relates to the presence of calcite, which mainly results from the 

carbonation of CH.  
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Figure 7.1.2 DTA results of OPC paste cured at 21℃ for 7, 28, 90 days and 1.5 

years
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7.2 XRD  

7.2.1 CSA paste 

XRD pattern of the CSA cement powder (Fig. 7.2.1) shows that its major 

compounds are Ye’elimite and belite, with very small amount of gypsum 

present.  

XRD results of the hydrated CSA cement suggest a progressive depletion of 

Ye’elimite with curing. Remnants of belite confirm that much more water is 

required to achieve a fully completed hydration of CSA cement compared to 

traditional Portland cement system, despite of a high w/c of 0.69 is used in 

this project. Significant remnants of belite demonstrate its comparatively 

slow hydration process. At all of the investigated ages, CH is always absent 

which agrees with the intrinsic hydration of CSA-based materials and the 

DTA data in section 7.1.1. Hydration products are initially ettringite and 

CAH10, with increasing quantities of monosulfate and stratlingite at later 

ages. Increased formation of stratlingite is due to continuous consumption of 

belite and Al(OH)3 gel. Ettringite is generated rapidly during the hydration of 

calcium sulfoaluminate and gypsum; after the depletion of gypsum, 

monosulfate starts to form. At later ages of 1.5 years, formation of C3AH6 is 

detected due to the conversion process of CAH10 (Eq. 7.1); stratlingite and 

monosulfate have become the main hydration products in aged hydrated 

CSA cement system.  

3𝐶𝐴𝐻!" → 𝐶!𝐴𝐻! + 𝐴𝐻! + 18𝐻	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (7.1)
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Figure 7.2.1 XRD analysis of CSA cements powder and hydrated CSA paste 

	  

(B: belite; C: CAH10; E: ettringite; H: C3AH6; M: monosulfate; S: stratlingite; Y: 

Ye’elimite) 
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7.2.2 OPC paste 

Hydrated OPC paste with the same w/c as the CSA cement paste 

demonstrates large amounts of CH accumulation with increased curing time, 

which results from the hydration of C3S at early age (Eq. 7.2) and C2S at 

later age (Eq. 7.3). C3A is quite reactive with water, producing ettringite as 

one of the hydration products that is also detected by XRD. Calcite is 

normally associated with the carbonation of CH, C-S-H gel and/or ettringite 

(Bertos et al., 2004). Generation of ettringite in hydrated OPC paste at 

various ages in XRD is consistent with the above DTA curve in Fig. 7.1.2. 

Due to the amorphous nature of AFm phases, it is difficult to investigate by 

XRD but very small amount of AFm is still traceable in the XRD analysis.   

C!S+ y+ z H → C!SH! + zH                                                                      (7.2)                                                                             

2𝐶!𝑆 + 5𝐻 → 𝐶!𝑆!𝐻! + 𝐶𝐻                                                                          (7.3)                                                                                  
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Figure 7.2.2 XRD analysis of hydrated OPC paste at w/c 0.69 

 

(C: CaCO3E: ettringite; P: Ca(OH)2; M: monosulfate;)
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7.3 Microstructure in steel reinforced CSA concrete  

7.3.1 Early-age microstructure 

7.3.1.1 SEM 

Ten BSE images and their corresponding elemental mappings were 

obtained in this research for qualitative analysis at the interface, which were 

randomly selected around the steel. One of the representative BSE image is 

present in Fig. 7.3.1. 

Phases of interests such as unhydrated cement, C-S-H and pores can be 

differentiated according to grey scale in Fig. 7.3.1.a, which depends greatly 

on the electron density of materials. Steel bar displays as the lightest and 

are surrounded by a continuous rust layer with a thickness of about 22𝜇𝑚. 

Within the concrete matrix, unhydrated cement clinker is easily identified due 

to its lightest grey scale, followed by C-S-H as light grey; AFt and AFm 

appear as dark grey. An enlarged BSE image in Fig. 7.3.1.b shows the 

existence of masses of prismatic-shaped ettringite crystals forming 

interlocking network with lengths of about 10µm in the matrix. It tends to 

locate in large voids.  

At the interfacial zone, cement has a very intimate contact with the 

reinforcement and less air voids are observed in the vicinity of the steel 

reinforcement than that in the bulk matrix. Current flow between the anode 

and cathode should be relatively restricted near the interfacial zone to some 

extent, reducing the possibility of electrochemical reaction.  
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Based on the elemental mapping results (Fig. 7.3.1.d), there is clear 

chemical difference between the interface and bulk matrix, which confirms 

the bridge effect of reinforcement. In the mapping of Al, an aluminium-rich 

layer with various widths is precipitated at the interfacial zone. At the same 

time, a very thin layer of sulfate is accumulated along part of rebar, which 

may probably refer to AFt or AFm if associated with the Al and Ca mappings. 

Further EDX analysis for point 1 at the interface shows an extremely high 

Al/Ca ratio of 2.7, for which CaO and Al2O3 together occupy 90.6 wt.%. This 

indicates that an extremely high amount of aluminium is accumulated at the 

interface.  

The current SEM results appear to confirm the ‘wall effect’ of the steel 

reinforcement, which separates the microstructure of interface from the bulk 

matrix. However no continuous crystal layer is observed along the interface 

in CSA concretes. This is morphologically similar to OPC concrete system, 

which has a non-contiguous CH precipitation layer at the interface according 

to literature (Head, 2001; Diamond and Huang, 2001; Scrivener, 2004).  
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(a) BSE image of steel reinforced CSA concrete cured for 28 days, at a 

magnification of ×400 (width of field 332𝜇𝑚) 

	  

(b) Enlarged BSE image of a selected area in Fig.a (within square frames), at a 

magnification of x1000 (width of field 133𝜇𝑚). Some needle-like ettringite 

crystals forming interlocking network can be observed within large air voids, 

which is the main hydration product of CSA cement 

 

(c) Spot analysis on Point 1 
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(d) Element mapping of Si, Ca, Al, S, Fe and O in Fig a, at a magnification of 

  ×400.  

Figure 7.3.1 Backscattered electron image of steel reinforced CSA concrete aged 

for 28 days 
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7.3.1.2 Microanalysis 

Microanalysis within 5 𝜇𝑚  away from the steel surface on 28d-cured 

reinforced CSA concrete demonstrates widely scattered data (Fig. 7.3.2). In 

the Al/Ca vs. Si/Ca plot, Al/Ca from 0.75 to as high as 3.75 can be observed, 

indicating extremely high quantity of Al2O3 at the interface. The S/Ca against 

Al/Ca plot shows very scattered data; this can be attributed to the complex 

chemical nature of the phases near the reinforcement. Intermixtures of 

various hydration products are located in the vicinity of reinforcement, and it 

is difficult to be distinguished by SEM due to technical limitations. Therefore 

transmission electron microscope is necessary in future study in order to 

have a more profound investigation on the chemical of the hydration 

products near steel. 
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Figure 7.3.2 Microanalysis at the steel/concrete interface in CSA concrete aged for 

28 days 

7.3.2 Long-term microstructure  

7.3.2.1 SEM 

In order to give a general microstructural feature at the interface, ten sites 

were randomly chosen around the steel and sites with significant defects 

(e.g. large air voids) were avoided. One of the examples was present below. 



Chapter 7- Results and discussion: Steel reinforced concrete 

140	  
	  

SEM image of the reinforced CSA concrete aged for 1.5 years (Fig. 7.3.3) 

indicates significantly dense microstructure both in the bulk matrix and at the 

steel/concrete interface. Hardly any unhydrated cement clinker can be found 

in the matrix, which suggests a nearly completed hydration. Spot analysis on 

Point 1 at the interface demonstrates that it contains 49.0 wt.% CaO and 

33.3 wt.% Al2O3, with great quantities of CaO included.   

In the mapping of aluminium, significant contrast can still be observed at the 

interfacial and in the bulk matrix; much more aluminium oxide is located at 

the interface than that in the matrix. However, compared to the 28 day-aged 

sample, reduced amount of aluminium precipitation at the interface is clear 

in the aged sample. This can be explained by continuous consumption of 

aluminium hydroxide and belite, forming stratlingite. According to the Ca and 

S mappings, increased quantities of calcium and sulfate are precipitated at 

the steel/concrete interface, compared to that in the 28 days aged sample 

(see Fig. 7.3.1.d). Transport properties of different ions in the vicinity of the 

steel regarding to early stage and long-term ageing are further discussed in 

section 7.5.2.  
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(a) BSE image of steel reinforced OPC concrete cured for 1.5 years, at a 

magnification of ×400 (width of field 332𝜇𝑚) 

 

(b) Spot analysis on Point 1 at the steel/concrete interface 

1 
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(c) Elemental mappings of Si, Ca, Al, S, Fe, O 

Figure 7.3.3 Microstructure study of steel reinforced CSA concrete aged for 1.5 

years 
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7.3.2.2 Microanalysis 

Microanalysis result for CSA concrete aged for 1.5 years in Fig. 7.3.4 shows 

significantly decreased Al/Ca atomic number ranging from 0.75 to up to 2.75, 

compared to that of 0.75-3.75 for the same material cured for 28 days (Fig. 

7.3.2). This is consistent with the mapping results in the above section 

7.3.2.1. Significant reduction of Al/Ca with the on-going curing can be related 

to the consumption of aluminium gel with belite, leaving the formation of 

stratlingite. In the microanalysis, data representative of stratlingite can be 

found, although interfered by lower Si/Ca and higher S/Ca ratio. Average 

Si/Ca atomic number in the 1.5y-aged sample is generally shifting towards 

higher value compared to that in the 28d-cured sample, suggesting the 

gradual inclusion of SiO2 at the interface during hydration. In the S/Ca 

against Al/Ca plot, scattered data points suggest the complexity of the 

hydrated phases near steel, similarly to that in the 28d-aged sample (Fig. 

7.3.2); therefore further investigation on the chemical composition of 

precipitated interfacial phases by transmission electron microscope is 

necessary. 
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Figure 7.3.4 Scatter graphs of atomic ratios at the steel/concrete interface of 

reinforced CSA concrete, aged for 1.5 years 

Stratlingite C2ASH8 

C2ASH8 
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7.4 Microstructure in steel reinforced OPC concrete  

7.4.1 Early-age microstructure  

7.4.1.1 SEM 

Ten sites were randomly chosen around the steel for microstructure studies 

at the interface in steel reinforced OPC concrete aged for 28 days and only 

one of the representative examples are illustrated in the thesis (Fig. 7.4.1).  

Even though it is aged for 28 days at 20℃, OPC concrete system with a 

relatively high w/c ratio of 0.69 has achieved most of its hydration degree; 

with almost none unhydrated cement clinker remaining in the bulk matrix 

(Fig. 7.4.1.a). Cement matrix has an overall intimate contact with the 

embedded steel reinforcement, despite some occasional interfacial defects 

such as air voids located in the vicinity of reinforcement. EDX spot analysis 

on Point 1 shows the extreme abundance of calcium near the reinforcement 

surface, accounting for as high as 93.2 wt.% (Fig. 7.4.1.b).  

Elemental mapping of calcium (Fig. 7.4.1.c) indicates that there is a calcium-

rich layer presented at the interfacial area with various lengths. Local 

inclusion of significant proportion of aluminium oxide can also be found 

partially near the steel surface, revealing the existence of AFt or AFm 

phases at the interface. There is not much silicon exists at this interfacial 

area according to the silicon mapping, revealing that C-S-H is at least not 

dominant at the interfacial zone at early curing stage. 

These results prove the inclusions of major CH and minor undesignated 

sulfoaluminate phase (e.g. AFt or AFm) are intermixed to some extent at the 

steel/concrete interface, rather than a continuous CH layer surrounded by 
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the reinforcement surface proposed in the earlier research (Page, 1975). 

Detailed chemical composition of the hydration products at interface is 

further discussed in next section 7.4.1.2.  

 

 

	  

	  

(a) BSE image of steel reinforced OPC concrete cured for 28 days, at a 

magnification of x400 (width of field 332µm)	  

	  

(b) Spot analysis on Point 1 

1 
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(c) Elemental mappings of Si, Ca, Al, S, Fe and O 

Figure 7.4.1 Microstructural study of steel reinforced OPC concrete cured for 28 

days 
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7.4.1.2 Microanalysis 

In the Al/Ca vs. Si/Ca plot (Fig. 7.4.2), cluster of data points are located near 

the origin, which represents the inclusion of crystalline CH precipitation at 

the steel/concrete interface. There are two obvious trend lines that data of C-

S-H gel are growing towards, i.e. CH at the origin point and AFm (at 

Al/Ca=0.5, Si/Ca=0). The mean Ca/Si of the C-S-H gel is ~1.7. The main 

chemical compositions precipitated at the interfacial zone are mainly 

crystalline CH, intermixed with minor C-S-H gel and AFm. In the S/Ca 

towards Al/Ca plot, cluster of data can be found at the origin, which again 

proves the significant precipitation of CH at the interface. Growing trend line 

from C-S-H directing towards AFm (Al/Ca 0.5, S/Ca 0.25) is not clearly 

demonstrated in this plot owning to deficiency of sulfate.  

Microanalysis at the steel/concrete interface of early-aged steel reinforced 

OPC concrete proves that CH is the major hydration product in this region, 

with slight inclusion of C-S-H and AFm as well.  
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Figure 7.4.2 Scatter graphs of atomic ratios at the steel/concrete interface of 

reinforced OPC concrete, aged for 28 days  

7.4.2 Long-term microstructure  

7.4.2.1 SEM 

In order to have a general microstructure observation on the interface in 

1.5y-aged steel reinforced OPC concrete, ten sites were randomly chosen 

around the steel. Within them, one representative example is present below.  
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Microstructure of 1.5 years-aged reinforced OPC concrete in Fig. 7.4.3.a 

shows that there is almost no unhydrated cement within the matrix, which 

suggests a completed hydration process. With the on-going hydration 

process, contact between cement and steel reinforcement becomes more 

intimate, only with a small amount of porosity displayed along the steel 

surface. Large amount of CaO and SiO2 are accumulating at the interface 

according to elemental mappings (Fig. 7.4.3.c); moreover there is almost 

insignificant difference on the CaO content presence between interfacial 

zone and the bulk matrix. Limited amount of SO3 and Al2O3 exist at the 

interfacial zone, suggesting the inclusion of calcium sulfoaluminate-based 

hydration products in this area. Further chemical study on the hydrated 

phases at interface is demonstrated in next section 7.4.2.2. 
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(a) BSE image of steel reinforced OPC concrete cured for 1.5 year, at a 

magnification of x400 (width of field 332µm)	  

	  

(b) Spot analysis on Point 1 at the steel/concrete interface 

1 
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(c) Elemental mappings of Si, Ca, Al, S, Fe, O 

Figure 7.4.3 Microstructure study of steel reinforced OPC concrete aged for 1.5 

years 
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7.4.2.2 Microanalysis 

In the Al/Ca towards Si/Ca plot, it suggests that main hydration product at 

the interface is C-S-H gel, as indicated by a series of clustered data near 

Si/Ca=0.55. Two growing trend lines from C-S-H gel in the direction towards 

both CH and AFm can be observed respectively, despite of some scattered 

data included. The mean Ca/Si ratio of the C-S-H gel is ~1.8. The S/Ca vs. 

Al/Ca plot further confirms the presence of C-S-H gel finely intermixed with 

CH at the interface between steel and concrete. However, pure crystalline 

CH phase is hardly detected at the origin after curing for 1.5 years, 

compared with the steel reinforced OPC concrete at early age, in which 

pronounced CH existence can be detected at the interface in microanalysis 

(Fig. 7.4.2). This denotes the gradual dissolution of CH over ageing at the 

steel/concrete interface, which consequently may increase the possibility of 

reinforcement corrosion due to the reduced buffering effect provided by CH 

layer at the interface to perform corrosion resistance of embedded 

reinforcement.  Further information on the various ion movements at the 

interfacial zone is discussed in section 7.5.1.  
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Figure 7.4.4 Scatter graph of atomic ratios at the steel/concrete interface of 

reinforced OPC concrete, aged for 1.5 years 

7.5 Image analysis 

7.5.1 Steel reinforced CSA concrete 

Image analysis results of steel reinforced CSA concrete aged for both 28 

days and 1.5 years are present in Fig. 7.5.1, focusing on the distribution of 

atomic ratios at the interfacial zone as a function of distance away from steel 
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surface. Steel/concrete interface with a width of 30𝜇𝑚 is applied in this 

research, which was proved to be sufficient depth to monitor interfacial 

transition zone in previous research (Yang and Buenfeld, 2001; Scrivener et 

al., 2004). Fifteen BSE images were randomly selected for each sample with 

a specific curing age, together with their corresponding elemental mappings. 

Elemental mappings were then read by Inca software pixel by pixel, finishing 

with a Microsoft Excel spread sheet containing the atomic information on 

each pixel; afterwards arithmetic calculations were necessary to achieve 

various atomic ratios, i.e. Ca/Si, Al/Ca and S/Ca (detailed information on the 

settings on acquiring quantified mappings are in section 5.8). At the end, 

average atomic ratios at the steel/concrete interface were calculated based 

on the fifteen sets of data. Error bars of standard deviations are added in 

each set of data to demonstrate statistical significance. 

The results indicate that evolution of atomic ratio at the steel/concrete 

interface with increasing curing periods is less pronounced in the CSA 

sample compared to that in the traditional OPC concrete (in the following 

section 7.5.2). This may suggest less active and frequent transport and/or 

exchange of ions at the interfacial region. Ca to Si (Fig. 7.5.1.a) ratio stays at 

~2.5 along interface in the 1.5 years-aged sample; it reduces slightly to 

~2.25 in the 28 days-aged sample, despite of the initial increasing trend 

within the first 5 𝜇𝑚  away from steel surface. Error bars of standard 

deviations are added in Appendix A, which is less than 0.3.  

Extremely higher Al/Ca ratio of over 1.0 (in Fig. 7.5.1.b) can be observed 

generally at the interface in the CSA sample compared to that in the OPC 

sample (less than 0.3 in Fig. 7.5.2.b). This agrees with the high proportion of 
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Al accumulation near the steel surface suggested by Al elemental mapping 

(see section 7.3.1.1 and 7.3.2.1). In the Al/Ca plot for steel reinforced CSA 

concretes, it shows decreasing Al to Ca ratio along the interfacial area with 

the progress of hydration at both curing ages. For example, the Al/Ca ratio 

reduces from 2.5 to 1.5 in the 28 days sample and a lower range from 1.5 to 

1.0 is clear in the 1.5 years sample. The overall reduction in sample cured 

for 1.5 years can be explained by the continuous consumption of AH3 with 

belite, leaving the generation of stratlingite as traced in the DTA curves (Fig. 

7.1.1) and XRD results (Fig. 7.2.1) in hydrated CSA pastes. The 

corresponding error bars are within an acceptable range of 0.4. 

Almost no obvious changes in S/Ca ratio with increasing curing age (in Fig. 

7.5.1.c) can be observed. And the overall S to Ca ratio at the interface is 

slightly higher than that in the OPC concrete system (Fig. 7.5.2.c). Error bars 

of standard deviations are added separately in Appendix A, which is less 

than 0.05.  
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Figure 7.5.1 Image analysis on atomic ratios at the steel/concrete interface in 

reinforced CSA concrete 

7.5.2 Steel reinforced OPC concrete 

Image analysis results of steel reinforced OPC concretes aged for both 28 

days and 1.5 years are presented in Fig. 7.5.2, illustrating the distribution of 

atomic ratios at the interfacial zone as a function of distance away from steel 

surface. Error bars of standard deviation are shown in the Ca/Si plot of 28 

days-aged OPC sample (as in Fig. 7.5.2.a). The standard deviation at each 

data point is less than 0.4; this is within an acceptable range in consideration 

of the heterogeneous characteristics of cementitious materials. 

In the Ca/Si plot, it shows significantly decreased Ca/Si value during curing 

for up to 1.5 years and there are insignificant changes on the Ca/Si ratio 

along the interfacial zone in both samples. For example in the 28 days-aged 

sample, Ca to Si ratio reaches as high as ~3.5 near the steel surface and 
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afterwards it stabilizes at ~3.25 along the interface, although with slight 

fluctuations at some data points. However, it is still far higher than the 

reported Ca to Si value of 1.2-2.3 in literature (Richardson, 1999; 

Richardson, 2008) for the outer C-S-H product in hardened cement paste. 

This is because chemical composition at the interface is mainly mixtures of 

crystalline CH and C-S-H gel, with a large proportion of CH precipitation 

included in this area (as indicated by the microanalysis in section 7.4.2.2), 

which results in a significantly higher Ca to Si ratio than normal C-S-H gel. 

After curing for 1.5 years in a foggy room, significant reduction of Ca to Si 

ratio to ~1.75 can be found along the interfacial zone. The decrease of Ca to 

Si ratio compared to that in the short-term cured sample can be interpreted 

by the gradual decrease of CH in the vicinity of steel, as stated in section 

7.4.2.2.  

In the Al/Ca plot, it is found that Al to Ca ratio increases to a great extent 

with the on-going curing. Al to Ca ratio is initially high near the steel surface, 

then falls gradually within the first 6𝜇𝑚  at interface and maintains at a 

constant value afterwards. For example in the 28 days-aged sample, Al to 

Ca ratio starts from 0.125 near the steel surface and then keeps steadily at 

~0.10 along the interface. In contrary, Al to Ca ratio in the 1.5 years-aged 

sample reaches as high as 0.275 on the steel surface and then reduces to 

~0.2 afterwards. The higher Al/Ca ratio near steel surface is consistent with 

the decalcification of the matrix due to migration of CH. Error bars are within 

an acceptable range of 0.05. 

Similar to the distribution of Al/Ca along the interface, overall S/Ca ratio 

increases considerably with progressive curing and there is initially higher S 
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to Ca ratio within the first 6𝜇𝑚 away from steel. The corresponding error 

bars stays in a reasonable range of 0.04. 
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Figure 7.5.2 Image analysis on atomic ratios at the steel/concrete interface in 

reinforced OPC concrete 

7.6 Summary of main findings  

Complex hydration process occurs during the curing of CSA pastes. 

Hydration products are initially ettringite and CAH10, with increasing 

generation of stratlingite and monosulfate afterwards. In the sample cured 

for 1.5 years, CAH10 is not traceable any more due to its conversion reaction 

to C3AH6.  

The microstructural studies of steel reinforced CSA concrete show the 

abundance of Al precipitation at steel/concrete interface, most of it being 

hydrated phases. With the on-going curing, this un-continuous Al layer is 

consumed to some extent due to the chemical reaction between AH3 and 

belite, resulting in the formation of large amounts of stratlingite.  
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Image analysis of steel reinforced CSA concrete indicates that there are 

insignificant changes on the Ca/Si and S/Ca along the interface in the 28 

days and 1.5 years aged samples. Significant reduction of Al/Ca in the long-

term aged sample is clear at the interfacial zone due to the chemical 

reaction between alumina gel and belite. However in the 1.5y-aged CSA 

sample, clear contrast still exists on the Al precipitation between the 

interface and bulk matrix, based on the Al elemental mapping.  

In the reinforced OPC sample, the initial chemical layer rich in CH near the 

steel surface is suspected to be dissolved gradually to some extent with 

curing; and it is then mainly enriched with fine intermixtures of C-S-H gel and 

CH. This chemical change at the interface not only have vital importance on 

the pH value in this region but also destroys the CH layer which is supposed 

to act as buffering effect; both of which may lower the reinforcement 

corrosion resistant capacities in steel reinforced concrete systems.  
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Chapter 8- General discussion  

General discussion on the nature of interface is present in this chapter; 

different microstructure features at interface can be observed in different 

types of reinforcements.  

8.1 Chemical composition at the interface  

8.1.1 Glass fibre/cement interface 

Thin section images of unaged OPC/GRC demonstrated that spaces 

between fibres remained almost empty at early ages, and were then 

gradually filled with the penetrated hydrated phases with ageing (see Fig. 

6.4.1 and Fig. 6.4.2). Microanalysis at the interfilamentary spaces in aged 

OPC/GRC suggested the presence of finely intermixed CH and C-S-H gel 

(Fig. 6.4.4). This is different to the previously reported studies on OPC/GRC 

(Devekey and Majumdar, 1970; Katz and Bentur, 1996; Butler et al., 2009b); 

most of which stated that the ingressed hydration phase was predominantly 

crystalline CH. Inclusion of the amorphous C-S-H gel at the interfilamentary 

spaces may act as adhesive binder to help bond with the large CH crystals 

firmly, forming a rather rigid bonding composite structure as is shown on 

fractured surfaces (Fig. 6.4.5). The likely influence of the penetrated C-S-

H/CH intermixtures on the composites’ mechanical performances is further 

discussed in section 8.3. 

Evolution of both the interfilamentary and interfacial microstructure in aged 

Nashrin/GRC is almost insignificant and the interfilamentary spaces have 
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been filled with ingressed hydration phases at the early age (Fig. 6.3.1-

6.3.3). It was found that the penetrated interfilamentary products are mainly 

C-A-S-H gel intermixed with ettringite according to the microanalysis (Fig. 

6.3.6); this is in agreement with the corresponding XRD results, which 

indicated that the main crystalline hydration product was ettringite in the 

Nashrin-based matrix.  

8.1.2 Steel/concrete interface 

Microanalysis on reinforced OPC concrete indicated that chemical phases 

located at the interface were mainly mixtures of CH and C-S-H gel at both 

investigated ages (28 days and 1.5 years), with minor calcium 

sulfoaluminate phases (such as AFm) included as well. This agrees with the 

previous work (Horne et al., 2007; Li and Hu, 2001), in which it was stated 

that calcium sulfoaluminate hydrate phases might also be present at the 

steel/concrete interfacial area, finely intermixed with C-S-H gel on a scale 

too fine to be resolved in BSE images.  

There was a lack of chemical investigation at the steel/concrete interface in 

reinforced CSA concrete in literature. In the present work, it was found out 

that chemical compounds located at the steel/CSA cement interface were 

mainly hydrated alumina gel at early ages (Fig. 7.3.1.d). With the progress of 

curing, decreased amount of alumina gel was observed near steel due to its 

chemical reaction with the remaining belite phases (Fig. 7.3.3.c), causing the 

formation of stratlingite (as is indicated by microanalysis in Fig. 7.3.4). This 

is confirmed by the substantially decreased Al/Ca ratio along the interfacial 

region with prolonged curing periods from image analysis (Fig. 7.5.2).  
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8.2 Ion transport at steel/concrete interface  

Microanalysis at the interface between steel bar and OPC concrete 

suggested slight reduction of CH at ages of 1.5 years compared to that at 28 

days (Fig. 7.4.2 and Fig. 7.4.4); this was also confirmed by the quantitative 

image analysis, in which a general reduction of ~16% in Ca/Si ratio can be 

observed over the interface at 1.5 years relative to that at 28 days (see Fig. 

7.5.1).  

Similar quantitative image analysis by Horne (Horne et al., 2007) revealed 

substantially preferential CH precipitation near the steel bar (as presented 

below in Fig. 8.2.1), occupying ~16-20 wt.% of the total interfacial 

compounds compared to a CH concentration of 10-12 wt.% at rest of the 

interface and the bulk cement. In his work, it also suggested slightly 

increased CH near the steel surface with increasing curing ages; for 

example, the highest CH concentration reaches ~16 wt.% at ~5𝜇𝑚 away 

from steel surface at 3 days, then increases to ~18 wt.% at 28 days and 

approximately 20 wt.% CH can be observed near steel at 365 days.  
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Figure 8.2.1 Calcium hydroxide phase gradient in the interfacial region between 

cement paste and vertically cast steel at four ages in a concrete with a w/c ratio of 

0.70, from reference (Horne et al., 2007)  

Combined the image analysis results in the present study with the work done 

by Horne (Horne, 2004; Horne et al., 2007), it can therefore be postulated 

that there might be a saturation period of curing, during which progressive 

CH formation happens at the steel/concrete interface. This is due to the 

bleeding occurred near steel surface, resulting in a layer of water film around 

the steel surface, which facilitates the Ca2+ ions to transport from the bulk 

matrix to the spaces near steel; and Ca2+ will crystalize to form CH crystals 

once its concentration has reached the oversaturation state. The duration of 

the saturation period could be potentially controlled by varying factors e.g. 

environmental exposure condition, changes of alkalinity in the pore solution 

(i.e. owing to carbonation) and density of the hydration phases; all of them 

can significantly affect the ion permeability rate towards interfacial zone. At 

longer curing ages after the potential saturation period, CH concentrated 

near the steel surface begins to decrease gradually, presumably due to pH 

drop in the bulk matrix (e.g. owing to carbonation). The decreased quantity 
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of CH at interfacial region is undesirable for the corrosion resistance 

behaviour as the CH around steel is initially expected to act as a buffering 

effect to protect steel from corrosion, or at least at longer ages.  

In steel reinforced CSA concrete system, accumulation of alumina gel can 

be observed near steel surface from elemental mappings at both ages of 28 

days and 1.5 years (Fig. 7.3.1 and Fig. 7.3.3). Quantitative image analysis in 

Fig. 7.5.2 suggests that ion transportation at interfacial region in CSA 

concrete is less active than that in the OPC concrete, only with limited 

proportion of alumina gel consumed by reactions with belite; changes of 

Ca/Si and S/Ca ratios along the whole interfacial zone is insignificant at ages 

for up to 1.5 years. This relatively stable chemical environment within the 

interface is favourably beneficial for maintaining alkalinity around the steel to 

some extent, at least for longer periods during ageing. Therefore corrosion 

resistance of the steel reinforcement can be enhanced, as there is less 

change of pH near the embedded steel surface relative to that in steel 

reinforced OPC concrete. 

8.3 Accuracy of hot water accelerated ageing tests 

In the unaged samples investigated in a previous project (Purnell and 

Beddows, 2005), OPC and Nashrin composites exhibit comparable bending 

performances (see Fig. 6.5.1); both of them are favourably ductile with a 

similar ultimate strain of ~0.8%. After ageing for 10 years at 25℃ , 

remarkable changes have occurred regarding to their bending 

performances.  
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Bending performance of the aged OPC/GRC indicates extreme brittleness, 

with a low ultimate strain value of 0.09% (Fig. 6.5.2). Nevertheless, 

composite strength reduction was not found. This is inconsistent with the 

previous hot water accelerated ageing results (Purnell and Beddows, 2005; 

Butler et al., 2010; Butler et al., 2009b; Orlowsky and Raupach, 2008); most 

of the results demonstrated substantially decreased bending strength 

besides extreme brittleness. For example, previous research by Purnell 

(Purnell and Beddows, 2005) stated that OPC/GRC composites were badly 

degraded with regard to strength after hot water accelerated ageing for 140 

days at 50℃ (as shown in Fig. 8.3.1), which is equivalent to about 8 years 

ageing at 25℃ (Purnell and Beddows, 2005); and the bending strength were 

significantly reduced from 27MPa at 0 day to ~11MPa after 140 days. 

Mechanical performance of GRC composites made by Portland cement was 

also investigated by Butler (Butler et al., 2010) using hot water accelerated 

tests, as presented in Fig. 8.3.2. The results showed that bending resistance 

decreased dramatically after 360 days at an elevated temperature of 40℃, 

compared with reference samples cured at 20℃ at the age of 28 days. The 

bending strength reduced approximately 50% after accelerated ageing for 

360 days at 40℃, i.e. from 10MPa at 20℃ for 28 days to ~5MPa after 360 

days at 40℃.  
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Figure 8.3.1 Evolution of bending performance of OPC/GRC by hot water 

accelerated ageing at 50℃; from reference (Purnell and Beddows, 2005) 

	  

Figure 8.3.2 Stress-strain curves for the GRC specimens made of CEMI 32.5R, 

accelerated at 40℃/99% RH with reference sample cured at 20℃/66% RH for 28 

days, from reference (Butler et al., 2010) 
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Based on the durability results obtained from hot water accelerated ageing in 

literature and ‘real ageing’ tests in this study, consensus can be reached on 

the severe loss of brittleness in aged GRC composites (due to extreme 

matrix densification). Nevertheless different opinions exist on their bending 

strengths after ageing; as discussed above, hot water accelerated aged 

samples from literature showed severe reduction in composites strength but 

OPC samples cured at 10 years under normal temperature in this study 

suggest almost no strength loss during ageing. This would suggest that 

densification mechanisms are more important than fibre weakening 

mechanism with regard to long-term performance of GRC composites.  

Microstructural reasons for the retained composites strength under normal 

temperature in the long term can be explained as follows. During ageing 

over 10 years at 25℃, bonding between glass fibres are gradually enhanced 

by the infilling of finely intermixed CH and C-S-H gel adhering on fibre 

surface. The ingressed C-S-H gel helps to produce firmer connection 

between the relatively large CH crystals, leading to enhanced bond and 

anchorage to the cement matrix eventually. As a consequence, it turns the 

GRC composites into rather rigid integrities as a whole; fibres and cement 

matrix are carrying the load together to give very high composite strength, 

but the embedded glass fibres under this circumstance have lost most of 

their flexibilities to add post-peak ductility to the composites. On the other 

hand, changes at the interface between glass fibre and cement are also 

highly related to the brittle mechanical performances of aged OPC/GRC 

composites. Lack of flexibility at this region is the main reason to the 

extreme composite brittleness due to severe filling of hydration products at 
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the interfacial zone. As a consequence, during cracking process it fails to 

absorb the cracking energy through flexible movement and thus losses the 

ability to supress the propagation of cracks.                                        

It can be concluded that under normal curing temperatures, even though 

severe brittleness occurs, glass fibres are still able to add strength to the 

composites, maintaining the bending strength of aged composites similar, or 

at least not markedly reduced, to the newly produced un-degraded GRC 

composites. This may raise concerns on previously established fibre 

weakening mechanism in GRC composites, which is already widely used in 

the durability studies on GRC composites; fibre densification mechanism 

Like other durability models, hot water accelerated ageing technique might 

not be perfectly accurate in predicting the real degradation process of GRC 

composites as a intrinsically different hydration and/or degradation process 

may be developed at higher curing temperatures. As a consequence it is 

thus unable to provide exactly the true information on real ageing 

performances of normal aged GRC composites. However, it might still be 

very useful in developing new types of GRC materials, by comparing 

composites made with different matrix formulations and/or varying glass fibre 

types in a reasonable timescale, prior to a further thorough investigation of 

the newly modified composites with potentially enhanced performances. 

The concept of the accuracy of hot water accelerated ageing also applies to 

the Nashrin/GRC. In the present study, GRC composites modified by 

Nashrin retain most of its toughness after 10 years ageing at 25℃ (Fig. 

6.5.2). The material exhibits great ductility with ultimate strain of 0.55%, 

compared to the original 0.8% strain for the unaged sample (Fig. 6.5.1). 
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More importantly, reduction of bending strength was not found in the present 

study (from 30MPa for the unaged sample to ~32MPa after 10 years). This is 

slightly different from the previous studies obtained from hot water 

accelerated ageing tests (Purnell and Beddows, 2005); it revealed that after 

curing at 50℃ for 316 days (this is equivalent to about 6 years ageing at 

25℃) (Purnell and Beddows, 2005), GRC modified by Nashrin still exhibited 

greater toughness compared to the corresponding OPC composites, but 

tensile strength reduction from ~30MPa in the unaged sample to ~20MPa 

after 316 days at 50℃ was also observed compared to the unaged samples 

(Fig. 8.3.3).   

	  

Figure 8.3.3 Evolution of bending performance of Nashrin/GRC by hot water 

accelerated ageing at 50℃; from reference (Purnell and Beddows, 2005) 

According to the mechanical performance of Nashrin/GRC cured at 25℃ for 

10 years (Fig. 6.5.2), it can be better concluded that addition of calcium 

sulfoaluminate cement-based materials in GRC composites can provide 



Chapter 8- General discussion 

173	  
	  

beneficial advantages over traditional GRC composites, both in terms of 

microstructure development and mechanical performances in the long term.  

By comparing accelerated ageing and normal ageing for both GRC 

materials, it can be summarised that accelerated ageing testing cannot 

completely fulfil its potential to provide true information on the degradation 

process of GRC composites. Severe composite strength reduction has not 

been found in both Nashrin/GRC and OPC/GRC under normal ageing; this is 

different to most of the previous research, which proposed that degradation 

of GRC composites is a combination of significant reductions in both 

strength and ductility as time develops (whereas only brittleness is confirmed 

in the present study). It would appear that at ageing temperatures closer to 

those encountered in-service, mechanisms that lead to enhanced fibre-

matrix bond (densification, precipitation of both CH and C-S-H at the 

interface and between the fibres, etc.) might have a greater role to play in 

degradation than mechanisms associated with fibre weakening.  

8.4 General discussion on the importance of interface 

Durability of reinforced cement composites is highly dependent on the 

corrosion resistance of embedded reinforcement, which is significantly 

dependent on the nature of the interface. Interface with low porosity can act 

as an isolation zone physically between embedded reinforcement and 

surrounding cementitious materials, by preventing the deleterious ions 

transporting towards the reinforcement. Regarding to the aspects affecting 

the interface quality, factors such as matrix formulations, reinforcement 

types, curing conditions and the ambient environment are all considered. 
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Glass fibres used in this study are bundled features so not all of the fibres 

are in direct contact with the bulk cement matrix. Hydrated phases have the 

preference to ingress into the limited interfilamentary spaces as well as the 

interface between fibre and cement; but this extent of ingression is highly 

dependent on types of cement matrix. For example in the traditional OPC 

matrix, ingression of generated CH/C-S-H mixture (into spaces between 

glass fibres and the interface) is not prominent at the early age, but the 

penetration continues to occur with curing, causing severe bundle filling at 

longer age. In the Nashrin matrix, hydration products of ettringite and C-A-S-

H gel are occupying the interfilamentary and interfacial zone at the early age 

and there are insignificant microstructure changes at the interface as curing 

develops. This is due to the extremely rapid hydration of calcium 

sulfoaluminate phase contained in the Nashrin materials, generating 

ettringite within the first 1-2 days. 

Steel bar/concrete interface presents totally different topographic and 

chemical features in comparison to that in the GRC composites. Preferential 

ion accumulation can be observed around the steel bar during curing owing 

to the bleeding on steel bar surface. For example in the OPC concrete 

system, permeation rate of Ca2+ are pronounced near steel surface, 

generating a non-continuous CH layer in the vicinity of steel bar. Dominant 

Al3+ tends to transport near the steel surface during curing in the reinforced 

CSA concrete. This hydrated alumina gel layer around steel surface can 

reduce the contact area of embedded steel reinforcement and cement matrix 

physically; on the other hand, this layer contains mixtures of hydrated 

alumina phases (e.g. stratlingite and/or highly alkaline AH3). Thus it can 
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maintain a medium pH value near steel (the minimum reported pore solution 

pH value is 8.5 (Glass et al., 2000)), which is of significant importance to 

sustain the passive state of reinforcement for longer periods. Even after 

curing for 1.5 years, thick layer of hydrated alumina gel with varying 

thickness can be found near the rebar surface in CSA concrete. 

Therefore it can be concluded that microstructure evolution at the interface is 

intrinsically related to the durability properties of the reinforced composites in 

the long term. Degradation of reinforced composites is mainly due to the 

chemical changes at the interfacial area, causing reinforcement corrosion 

(e.g. for steel reinforced concrete) and/or lack of reinforcement flexibility 

(e.g. for GRC composite) to some extent by the hydrated phases at the 

interface.  

8.5 Application of CSA cement  

Based on this study, confidence on the application of CSA cement in GRC 

and steel reinforced concrete systems are reinforced to greater extent. 

Addition of CSA cement in GRC composites demonstrates favourable 

mechanical properties in the long term compared to the OPC formulation; no 

strength reduction is observed after aged for 10 years and the material 

retains most of its ductility at the same time. This can be attributed to the 

hydration nature of CSA cement, which produces no CH and a beneficial 

pore solution with low alkalinity. 

Application of CSA cement in steel bar reinforced concrete is also proved to 

be acceptable. After curing for 1.5 years in a standard fog room, the 

steel/concrete interface are still in good quality with a thick layer of hydrated 
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alumina gel surrounding the rebar, protecting the embedded reinforcement 

from corrosion by maintaining a relatively high pH near steel.  



Chapter 9- Conclusions and future work 

177	  
	  

Chapter 9- Conclusions and future work 

9.1 General conclusions 

• CSA cement is beneficial to produce GRC composites with improved 

durability, attributed to the relatively porous interfacial and 

interfilamentary space in the long term compared to aged OPC/GRC. 

• Application of CSA cement in steel reinforced concrete system is 

proved to be practical, at least during standard curing in foggy room 

for up to 1.5 years; steel/concrete interface is still in good quality. 

Large amount of hydrated alumina gel is precipitating at the 

steel/concrete interface at both shorter and longer ages, and less 

active ion transport can be observed near steel surface.  

• Chemical and microstructural evolution at the interface is highly 

related to the corrosion resistance of embedded reinforcements.  

In aged steel reinforced OPC concrete, decreased amount of CH at 

the interface may cause pH drop around steel, which consequently 

accelerates the reinforcement corrosion process.  

In aged GRC composites, lack of flexibility at the interface results 

from the severe filling of CH/C-S-H intermixture at this region, which 

consequently lead to extreme brittleness of the composites. 

• In the degradation mechanisms of GRC composites, it is suggested in 

this research that densification mechanisms are more important than 

fibre weakening mechanism with regard to long-term performance of 

GRC composites.  
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• Updated imaging analysis technique can be successfully obtained by 

applying quantified elemental mappings, with a wider range of 

applications compared to the traditional imaging analysis technique.   

9.2 Future work  

• Future work is to investigate the electrochemical behaviour of steel 

embedded in CSA concrete. It can provide indirect information on the 

corrosion process of reinforcement, which may further assess the 

application of CSA cement in reinforced structures. Associated with 

the microstructural and chemical changes at the interface during 

ageing, it is expected that the influence of interface quality on the 

corrosion process can be further established.  

• Continue to compare the phase changes and ion transportation at the 

interfacial zone in steel reinforced OPC and CSA concretes in longer 

periods, by quantitative image analysis of the atomic ratios and 

microanalysis near the steel surfaces.  

• Study the calorimetry of hydrated CSA cement during the first 28 days 

to have a more comprehensive understanding of the hydration 

process, particularly within the first 24h. 

• TEM investigation on the interfacial phases at steel/CSA concrete 

interface is necessary in order to have a better understanding on the 

chemicals at interface.   
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Appendix A 

	  

Ca/Si	  ratio	  for	  CSA	  concretes	  

 



References 

194	  
	  

 

Figure 10.1 Image analysis on S/Ca at the interface between CSA cement and steel 
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