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ABSTRACT 

 

Statistical Process Control (SPC) has been a very important discipline in quality control study 

since pioneered by Walter A. Shewhart in 1920s. Control charting is one of the important 

tools in SPC and has received wide attention from researchers as well as practitioners. The 

complexity and the impracticality in monitoring several univariate control charts for a 

multivariate process has made many practitioners use a multivariate control chart instead. Its 

usage gives a better control of the overall Type I error and the interdependency among 

variables is retained. Unfortunately, a multivariate control chart is not able to pinpoint the 

responsible variable(s) once an out-of-control (OOC) signal is triggered. Many diagnostic 

methods have been proposed to overcome this problem but all of them have their own 

limitations and drawbacks. The applicability of a diagnostic method for a limited number of 

variables, lack of physical interpretation, the complexity of the computation procedure and 

lack of location invariance are among the factors that have inhibited the implementation of 

multivariate charts. Lack of comparative studies for various diagnostic methods also makes it 

difficult for practitioners to choose an appropriate diagnostic method. 

This study highlights some problems that might arise in a comparison of diagnostic methods 

and makes suggestions to overcome them, hence, making the results of a comparative study 

more relevant and reliable. The effects of several factors such as the size of the deviation in a 

mean vector, the combination of various sizes of shifts in a mean vector and the inter-

correlation among the variables on the performance of diagnostic methods are studied and a 

summary of the suitability of certain diagnostic methods for certain situations is given. This 

study presents a new comparison involving two diagnostic methods adapted from the 

methods proposed by Doganaksoy, Faltin and Tucker (1991) and Maravelakis et al. (2000). A 

problem related to the usage of eigenvectors with similar eigenvalues is revealed in this study 

and suggestions from previous studies regarding this matter are presented.  

Due to lack of multivariate approaches in dealing with the interpretation of a multivariate 

control chart signal, this study proposes a new method which embraces the principles of 

Union Intersection Test (UIT) in diagnosing an OOC signal. A thorough discussion of the 

UIT principle, the hypotheses, the test statistic and the application of the union intersection 

technique in the diagnosis problem is presented. An extension of the first comparison study is 

which includes the proposed method is carried out. The performance of the new diagnostic 

method is studied and its strengths and weaknesses are discussed. A simplified version for the 

new method, involving application of spectral decomposition, is also proposed. By using this 

simplified approach, the common practice of considering multiple types of covariance 

matrices in a comparison study of diagnostic methods can be avoided to some extent. This 

study is concluded with a few suggestions of potential further work. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

1.1 Introduction 

 

Statistical Process Control (SPC) is very important in Quality Control studies. Even though it 

has been developed for almost 100 years, some issues are yet not fully resolved. One of the 

most important issues is handling multivariate data and diagnosis causes of any problems to 

aid in suitable control strategies. The diagnosis of causes of faults is the subject of this thesis. 

This chapter’s structure begins with the historical development of Quality Control and the 

people who contributed to its development. Mass production and its consequences is 

discussed which led to the awareness and further knowledge on another topic on variation 

and its causes. Variation and its causes is the important and significant reason of the 

introduction of the first univariate control chart, one of the most important tools in SPC. 

Control charting also developed and led to the introduction of multivariate control charts and 

the diagnosis problem in the later sub section. Several review studies on SPC are presented 

next to highlight the importance of SPC in variability studies and several future research 

suggestion were given. This chapter concluded with reviews for the rest of the chapters in this 

thesis. 

 

1.2 Development of Statistical Process Control 

 

Statistical Process Control (SPC) is defined by Montgomery (1997) as “... a powerful 

collection of problem-solving tools useful in achieving process stability and improving 

capability through the reduction of variability...”. Statistical Process Control (SPC) has been a 

very important discipline since pioneered by Walter A. Shewhart of Bell Telephone 

Laboratories in the 1920’s. The industrial revolution has played a very important role in the 

expanding of the knowledge on Statistical Process Control (SPC) and the implementation of 
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statistical techniques in productions. It began in the United Kingdom during the 18
th

 century 

and later on extended to United States and other countries such as Europe and Japan. Bell 

Labs has been responsible in setting an international standard quality through the U.S. 

telecommunications industry in 1930s and Shewhart’s contributions played a large part of it 

through his statistical techniques (Richard, 1992).  

 
  Pre-Industrial Revolution 

  Quality  "controlled" by the individual craftsman/artisan who was 

  involved in all aspects of the product life cycle. 

  
        1875 Birth of "Taylorism" 

  The concepts and methods of mass production and the notion of the  

  division of labour begin to appear in the American industrial sectors. 

  F.W. Taylor develops the principles of scientific management. 

  
          
        1925 Shewhart Introduces Statistical Process Control 

  Walter Shewhart of Bell Labs develops a statistical approach to the study of  

  manufacturing process variation for the purpose of improving the economic  

  viability of the process. The methods are based on the continual on-line  

  monitoring of process variation. 

  
        1930 Dodge and Romig Introduce Accceptance Sampling Methods 

  Dodge and Romig at Bell Labs develop a system of lot-by-lot sampling inspection 

  of manufactured product for the purpose of determining its suitability for shipment 

  to the customers. The methods are based on a probabilistic approach to the  

  prediction of the lot character based on sampling results. 

  
        1950 Deming Approach to Quality/Productivity Improvement 

  W. Edwards Deming develops a statistically based approach to quality/productivity 

  improvement patterned scientifically after the work of Shewhart and projected 

  on an institutional basis. Central to this approach is emphasis on the  

  responsibilities and obligations of top management. 

  
 1980 United States Recognizes the Deming Approach and Taguchi Methods 

  U.S industrial leaders begin to embrace the Deming philosophy of quality  

  improvement and America begins to transform its industrial sector. The United 

  States is introduced to the methods of Taguchi and the techniques of statistical  

  design of experiments become well known. Emphasis begins to be placed on 

  pushing the quality issue upstream into engineering design. 

  
        Figure 1.1   Historical Evolution of Quality Control  (adapted from Richard, 1992) 
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The Second World War triggered an extensive use of statistical quality methods 

especially in America. Statistical quality methods were used to improve America’s war time 

production. On the other hand, Japan implemented SPC successfully during post war years. 

The individuals who were responsible for the Japan’s success were Joseph M. Juran who 

worked with Walter A. Shewhart at Bell Labs and W. Edwards Deming who was greatly 

influenced by Shewhart. In 1940s, they were already recognized as the world’s foremost 

experts on quality (Leavengood and Reeb, 1999).  Unlike the companies in the United State, 

the Japanese welcomed both of them and embraced their quality-management philosophies 

heartily. Juran was responsible for teaching the Japanese about quality management and 

Deming for their census. Later on, Deming became more interested and heavily involved in 

helping the Japanese rebuild their industry and by extension boosting up their economy 

(Lewis, 1994). The implementation of quality methods grew rapidly in Japan during the 

1960s and 1970s and by the 1980s, Japan companies became strong competitors in America 

and in the world.  In 1980’s, United States begins to accept and embrace Deming’s 

philosophy widely. A new approach introduced by Taguchi also accepted by the United 

States in which later on known as an engineering quality approach (Alwan, 2000). Taguchi 

also put his interest on variation as Shewhart. In fact, Taguchi gave a new terminology for 

variation which is known as “noise” and he has categorized noise factor into three which are 

external, deterioration and manufacturing noise (Alwan, 2000).  Taguchi has actually 

developed the concept of robustness by taking the noise factor into account (Besterfield, 

2004).  A timeline of important events is shown in Figure 1.1 and these concepts are 

discussed in the following subsections.  

 

1.2.1 Mass Production and its Consequences 

 

Due to high demand in products during the industrial revolution, the industrial sectors began 

to transform from the individual craftsmen to a big group of workers involved in a mass 

production of products. It was during this time the principles of scientific management been 

introduced and F.W. Taylor pioneered the field of industrial management (Richard, 1992). 

Mass production became a common practice. In mass production, machinery has replaced 

humans in many production tasks and the labour has been split into divisions. Even though 

repetitive tasks by workers and the use of machinery accelerate the production time and result 

in other productivity gains, unfortunately it brings in other problems. It took away the pride 
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of workmanship from workers as well as the pride of ownership of the production process 

since the process is shared by many people from various divisions as well as machinery 

involved in the production line.  

 

Since there are many people and machines involved in a mass production line then it 

results in many factors and variables affecting the quality of a product and making product 

quality become harder to manage. The production supervisors or production engineers are 

forced to move from the old practice of searching for problems or a “product oriented” 

quality control system to a new practice of preventing the problems or a “process oriented” 

quality control system.  In an attempt to prevent problems, production engineers were forced 

to look beyond the old practices in monitoring and controlling quality of products. They need 

to monitor and control the process of the production instead and to do so they need to use 

appropriate statistical methods and techniques. The statistical methods which are very 

popular among the production or quality engineers nowadays are known as Statistical Process 

Control (SPC) tools. 

 

1.2.2 Variation and the Causes 

 

Shewhart was the first person to introduce the use of statistical techniques for monitoring and 

controlling quality (Wadsworth, Stephens and Godfrey, 2002). During the industrial 

revolution, Bell Telephone Laboratories was trying to monitor and control the variation of the 

quality of their components and their finished products economically. Shewhart realized that 

the best way to achieve it is by monitoring and controlling variation throughout production. 

This monitoring and controlling is very useful in ensuring a process behaves in a predictable 

way. A process that behaves in a predictable way will result in a consistent product quality. 

 

 Attaining consistent product quality requires a good understanding of process 

variation and a good understanding of how to monitor and to control the variation. Shewhart 

himself laid the foundations for SPC and the most important one is by recognizing and 

emphasizing the two causes of variation in a process which are called chance causes and 

assignable causes. Chance causes are also known as common or random causes, whereas 

assignable causes are also known as special causes. Even though both of them create 

variation, the chance causes are considered as contributing to ‘controlled’ variation whereas 
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assignable causes contribute to ‘uncontrolled’ variation. Shewhart (1931) gives a further 

explanation of the term of ‘controlled’ variation as follows 

 

“A phenomenon will be said to controlled when, through the use of past experience, 

we can predict, at least within limits, how the phenomenon may be expected to vary in the 

future. Here it is understood that prediction within limit means that we can state, at least 

approximately, the probability that the observed phenomenon will fall within given limits.” 

 

Shewhart (1931) also proposed the following three postulates: 

1. “All chance systems of cause are not alike in the sense that they enable us to 

predict the future in terms of the past”. 

2. “Systems of chance causes do exist in nature such that we can predict the future in 

terms of the past even though the causes be unknown. Such a system of chance is 

termed constant.” 

3. “It is physically possible to find and eliminate chance causes of variation not 

belonging to a constant system.” 

 

By relating to the concept of variation too, Deming (1982) defines control in SPC as 

“A stable process, one with no indication of a special cause of variation”. A process is said to 

be in statistical control if only chance causes of variation are present in the process (Deming, 

1993; Montgomery, 2005). In order to monitor any special cause of variation in a process, 

Shewhart has invented a visual tool which came to be known as the control chart or famously 

known as Shewhart control chart in honour of him as its inventor. Shewhart introduced the 

sketch of a control chart the first time in an unpublished memorandum dated May 16, 1924 

(Alwan, 2000). Shewhart continually refined the concept and the technique of the control 

chart which led to the publication of his book titled Economic Control of Quality of 

Manufactured Product in 1931 (Alwan, 2000).  

 

1.2.3 Control Charts 

 

The first control chart introduced by Shewhart was a univariate control chart. A univariate 

chart is used to monitor one process variable or quality characteristic. Normally, one or more 

variables in a process are continuously measured and plotted along with a specific range 
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known as control limits, determined probabilistically. Measurements or observations are 

obtained in sequence and in the graphical presentation plotted against sequence number. If an 

observation falls outside the specified limits, this is regarded as an out-of-control (OOC) 

signal and the process is said to be statistically instable or statistically out-of-control. As long 

as all the observations remain within the specified limits, the process is regarded as 

statistically in-control or stable. 

 

1.2.4 SPC Research 

 

Woodhall (2000) emphasized the importance of SPC in any research on variability. SPC is 

important in any attempt to understand variability, model it and reduce it. There are many 

useful research areas waiting to be explored by SPC researchers and practitioners as 

discussed by Woodhall and Montgomery (1999) and one of them is multivariate methods. 

Woodhall (2000) stated that research activities on multivariate methods specifically on 

multivariate SPC has been “at its highest level” now.  This happened due to the increased in 

measurement and the advancement in computing capability.  

 

 Another active research area in SPC nowadays is research on the effect of estimation 

errors (Woodhall and Montgomery, 1999). Woodhall and Montgomery (1999) pointed out 

that more research is needed on the evaluation of control charts, comparison studies on the 

performance of control chart especially in Phase II control charting, estimation effects on the 

performance of control chart and studies on control charts’ control limits. Kourti and 

MacGregor (1996) also emphasize on the importance of control chart assessment specifically 

in its ability to detect an event as well as “its robustness to false signals when any of the other 

event occurs”.  SPC has become more important now and continues to be so with adaptation 

to the changes in manufacturing environments. The pressure for higher quality requirements, 

shorter production runs, and massive data available and an advancement and greater 

computing capability will require changes in SPC approach. 
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1.2.5 Multivariate Control Charts and the Diagnosis Problem 

  

It is very easy to monitor one or two variables in a process since one shall know straight away 

which variable caused instability in a process. But a problem arises when practitioners are 

dealing with a multivariate process, a process which involves several variables. It is not easy 

to monitor several control charts at a time and in a real situation it is obviously impractical.  

Furthermore, the variables related to the process might have correlation between them and 

that in some ways might affect the process. By using multiple separate univariate control 

charts to monitor a process does not take into account any possible correlation between the 

process variables. Hotelling in 1947 was the first to introduce a multivariate statistic, named 

Hotelling’s T
2
, which can be plotted as multivariate control chart and soon after, the chart has 

been applied by Hotelling (1947, 1951) in bombsights study.  This statistic combined the 

information on means and dispersions of multivariate observations. 

  

In recent years, multivariate control charts have received wide attention among the 

researchers and practitioners in SPC. Being one of the most important tools in SPC and 

supported by the advances in computer programming, multivariate control charts have been 

used by many in monitoring multivariate processes. Unlike univariate control charts, 

multivariate control charts are capable in dealing with the issues on inter-correlation among 

process variables and controlling the overall type I error.  Unfortunately, multivariate control 

charts have one major problem. Once the out-of-control (OOC) signals have appeared in a 

multivariate control chart, it is not easy to tell which process variables caused the signals.  

 

Therefore, since 1985, a number of interpretation methods, which shall be referred to 

as diagnostic methods in later discussions, have been proposed to assist practitioners in 

finding the aberrant variables which are responsible for the OOC signals in multivariate 

control charts.  However, performance of these methods has not been rigorously scrutinized 

and some have obvious deficiencies. In this thesis, we examine several prior proposals.  
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1.3 Thesis Overview 

 

The role of the control chart as one of the basic tools in SPC will be discussed briefly in 

Chapter 2 to give some basic understanding of its importance in process monitoring. The 

discussion covers the phases in control charting, and the utilization of control charts in both 

univariate and multivariate process monitoring. Univariate control charts are discussed first 

and a few drawbacks in monitoring several univariate processes using a few univariate 

control charts are highlighted, which later brings multivariate process monitoring into the 

picture. The multivariate Hotelling’s T
2
 control chart will be presented as the most popular 

multivariate control chart. The application of the multivariate control chart will be discussed 

and another two popular multivariate control charts are introduced. It will become apparent 

on the following discussion that a multivariate control chart is not always easy to interpret.  

The interpretation problem will lead to another discussion on the methods available to assist 

in the interpretation of out-of-control signals. Several interpretation methods applicable to 

multivariate process control monitoring, hereafter called diagnostic methods, are also 

presented in this second chapter. One of the most recent studies in comparing several 

diagnostic methods is discussed at the end of the chapter. 

 

Chapter 3 discusses in detail the result of a comparison study done by Das & Prakash 

(2008). The studied diagnostic methods are compared based on their power as defined by Das 

and Prakash (2008). The discussion is assisted by new tables and figures presenting Das and 

Prakash’s results. It will become apparent later that several remarks and conclusions given by 

Das and Prakash are contradicted and this study offers additional new observations. The 

results are studied thoroughly and the effect of the size of shifts in mean vector, the 

combination of the shifts in mean and the correlation structure is observed. Finally, this 

chapter is concluded with suggestions for a new comparison study. 

 

Chapter 4 presented a new comparison between one of the diagnostic methods in Das 

and Prakash (2008), proposed by Doganaksoy, Faltin and Tucker (1996) and a new method, 

called the Ratio method, which is adapted from the method proposed by Maravelakis et al. 

(2002). The simulation study presented in this chapter utilise the correlation matrices 

proposed by Doganaksoy, Faltin and Tucker (1996) and the performance of the methods is 

tested against different shifts in mean vector. The simulation results are presented in three 
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different subsections, separating the findings for the cases of one aberrant variable, two 

aberrant variables in the same directions and two aberrant variables in opposite directions. 

Throughout the discussion, this study will highlight a peculiar result produced by the Ratio 

method and further study is carried out to investigate the cause of the peculiar result. Since 

the diagnostic method proposed by Maravelakis et al. (2002) utilizes eigenvectors from a 

principal component analysis, some research studies with regards to that matter are presented 

and discussed.  

 

 The Union Intersection test is introduced in Chapter 5. A new approach which adapts 

Union Intersection principles for interpreting the out-of-control signal triggered by a 

multivariate control chart is proposed. The underlying hypothesis testing and the theoretical 

background of the new approach are also given. A simulation study on the application of the 

new approach, called the Largest Deviation (LD) method, is carried out together with the two 

diagnostic methods in Chapter 4. The simulation study presented in this chapter again utilizes 

the correlation matrices proposed by Doganaksoy, Faltin and Tucker (1996) and by Das and 

Prakash (2008). The simulation results are presented in two parts with respect to the type of 

correlation matrices used in the simulation, non equi correlation matrices (Doganaksoy, 

Faltin and Tucker, 1996) and equi correlation matrices (Das and Prakash, 2008). For each 

part, the simulation results are presented in four different cases which separate the findings 

for the cases of one aberrant variable, two aberrant variables in the same positive directions, 

two aberrant variables in the same negative directions and two aberrant variables in opposite 

directions. The performance of the proposed method also tested under several randomly 

selected correlation matrices. Chapter 5 concludes with some discussion of the strengths and 

the weaknesses of the new approach. 

 

 Chapter 6 proposes a way to improve the efficiency of the new approach by 

transforming data with known covariance matrix or very well estimated into a standard data 

space. The square root of the covariance matrix is needed for the data transformation and 

spectral decomposition procedure is shown to be able to provide it. A few examples are given 

to show that no generality is lost if we consider the identity covariance matrix in dealing with 

data in standard data space. Chapter 7 will presents the proposed procedures in applying 

threshold values for the LD method. The threshold values are introduced in a standard as well 

as in the original data space.  An estimated power assessment is shown for selected 

combinations of shifts in mean vector. A few examples are also given at the end of this 
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chapter to illustrate the application of the extended method and the identification of the 

aberrant variable for the dimensions, p = 2 and p = 4. Chapter 8 presents the overall 

conclusions and discussions of this study where the summary of chapters 3, 4, 5, 6 and 7 is 

also given.  Some suggestions on the future work are given in the final section of this chapter. 
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CHAPTER 2   

LITERATURE REVIEW 

 

 

 

2.1 Introduction 

 

Industrial statistics consists of the areas of acceptance sampling, statistical process control 

(SPC), design of experiments and capability analysis. There are seven basic tools in SPC and 

control charts are the most important (Montgomery,1995). The univariate control chart was 

introduced by Walter Shewhart in the 1920s and it is basically a graphical presentation of a 

process measurement which depicts the behaviour of a process. The trend of the points in a 

control chart might tell one whether the process is stable statistically or in other words in an 

‘in-control’ state. A stable process only exhibits variation from chance causes which is 

inherent in the process and always regarded as a part of the process. Normally, all the points 

in the control charts will be within the specified control limits. With some fluctuations, a not 

‘in-control’ process  has at least one out-of-control (OOC) signal, where at least one of the 

measurement points is located beyond the control limits or maybe a systematic pattern of 

points or trend exists which depicts a shift in the mean of the process variable. The unstable 

process consists of variation from assignable causes which need to be removed in order to 

bring the process back to the “in-control” state.   Since the subject of this thesis is how to 

identify or diagnose causes of OOCs in multivariate control charts, we begin our study by 

discussing the underlying elements. That is, we firstly introduce univariate control charts then 

multivariate forms together with the conditions for triggering an OOC. Existing diagnostic 

method are then considered and their limitations outlined. Studies which have compared 

diagnostic performance are introduced at the end of the chapter before a more detailed 

examination of a particular study is given in Chapter 3.  
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2.2 Univariate Control Chart 

 

There is quite a number of univariate control charts which depend on the level of 

measurement of the data and the feature of interest.  Among the most popular ones for 

quantitative data are a Range control chart, X  or Average control chart, Exponentially 

Moving Average (EWMA) control chart and Cumulative Sum (CUSUM) control chart.  

 

2.2.1 Shewhart Control Chart 

 

When a process has only one process variable, X, or only one to be assessed, where 

X          
   and the parameters are known, then a Shewhart control chart for the mean has 

   as the centre line on the control chart and the following upper control limit (UCL) and 

lower control limit (LCL) (Lowry and Montgomery, 1995) as given below 

         
 
 
  

  
  

         
 
 
  

  
  

 

where    

 
  is the critical value of a standard normal distribution (Alt, 1985) for a specified 

level of significance, α, whereas    and    is a known mean and standard deviation of 

variable X with n individual observations, respectively. The upper and the lower limits of the 

control can also be written (Alt, 1985) as         where A is depending on n and the 

tabulated values of A are given in Duncan (1974). The values given in Duncan (1974) is 

specifically for n = 2, 3, ... , 25.  The     and     are assumed known in this case. 

 

However, the ‘parameters’ are most of the time unknown. A good estimation is 

required for the parameters. Suppose that a process variable from a sample sized n, is 

normally distributed with mean, µ and standard deviation, σ, then the average of variable X is 

given by 
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and    is normally distributed with mean µ and standard deviation      
 

  
 . Suppose that m 

samples of size n are drawn from a process and let                be the average of each 

sample. The best estimator of the process average, µ is  

 

     
   

 

 

   

 

 

The statistic    is called the ‘grand average’ and is used as the centre line on the    control 

chart (Montgomery, 2005). Control limits for the control chart are needed to assess the in-

control statistical state of a process. A process is said to be no longer in-control state when 

any points of     falls above UCL or below LCL. In practice,    control chart is always used 

together with Range control chart. 

 

 

Figure 2.1:  Univariate control chart 

 

 

2.2.2 CUSUM Control Chart 

 

The Cumulative Sum (CUSUM) control chart was first introduced by Page (1954) and it has 

been studied ever since.  There are many authors who have contributed to the application 

development of CUSUM control charts (Ewan, 1963; Bissel, 1969; Lucas, 1973, 1976; 

Hawkins, 1981; Woodhall, 1985; Montgomery, 1996).  The CUSUM chart is more capable in 

monitoring deviations in a process (Lucas, 1976; Lucas and Crosier, 1982; Woodall and 

Sequence 

Mean 
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Ncube, 1985; Healy, 1987; Crosier, 1988).  This chart makes use all the historical data by 

accumulating the difference of the successive observation and the target value. The condition 

of a process is monitored by analysing the slope of the chart. 

 

 Suppose a few samples of size n are collected,     is the average of the jth sample and 

   is the target value of a process. The CUSUM control chart statistic is given by 

            

 

   

 

 

where    is the sum of cumulative discrepancy including the ith sample. The state of a 

process is assessed and monitored by the changes in   . If the process average changes to any 

value           has an ascendant tendency, while any changes to some value below 

      indicates a negative direction of   . If one of these two tendencies appears, it is 

considered as a sufficient evidence that the process has changed due to an assignable cause 

(Vargas et al., 2004). The V-mask procedure on CUSUM chart became popular after being 

suggested by Barnard (1959) due to its usefulness in the interpretation of the CUSUM control 

chart.  

 

2.2.3 EWMA Control Chart 

 

The Exponentially Weighted Moving Average (EWMA) control chart was initially proposed 

by Roberts (1959). Subsequently many authors have given significant contributions to this 

chart (Vargas et al., 2004). Montgomery (1996) is one of the contributors and he has defined 

the EWMA as  

 

                 

 

where        is a smoothing constant, i is the number of period  and the starting value, 

  =   . This starting value is required for the first sample at i = 1. In many cases, the starting 

value assumed the value of the average of preliminary data, i.e.    =   . The centre line is set 

at    and the control limits for the EWMA control chart are,  
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           . 

and 

           
 

     
           . 

 

The L is representing the width of the control limits or in other words, the number of standard 

deviations to the control limits and          is approximately 0 as i gets larger. 

Montgomery (1996) has proposed a different control limits after the control chart has been 

used for several time. It is said that the control limits approaching steady state values after 

running for several time periods where the smoothed average stabilizes and the proposed 

control limits are 

 

           
 

     
 ;              

 

     
. 

 

It was also suggested by Montgomery (1996) that the steady state values control limits be 

used for small values of i.  

 

These control charts represent behaviour of a process of one quality measurement or 

process variable. Monitoring multiple individual variables with separate univariate control 

charts is very common in industry. It provides simple, clear and direct identification on the 

responsible variables when out of control signals occur in the control charts. But the 

practicability of this method is questionable, especially when the process involves a greater 

number of process variables, which is undeniably quite common nowadays. Furthermore, the 

usage of more than two univariate control charts at a time ignores the possibility of 

interdependency between variables, if it exists, and so might lead to unreliable conclusions in 

the end. These reasons make practitioners turn to multivariate techniques as a solution. The 

first publication on the application of the multivariate process control technique was by 

Harold Hotelling in 1947.  
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2.3 Multivariate Control Charts 

 

A traditional univariate Shewhart control chart has an extended procedure which is applicable 

for the multivariate situation. The control chart is called Hotelling’s multivariate control chart 

and it is among the most popular multivariate control charts (Alt, 1985). EWMA and 

CUSUM also have their own extension for multivariate problems which are known as 

Multivariate Exponentially Weighted Moving Average (MEWMA) and Multivariate 

Cumulative Sum (MCUSUM) control charts respectively.  All of these extension versions of 

the univariate control charts are based on Hotelling T
2
 statistic (MacGregor and Kourti, 

1995). These multivariate charts have a number of advantages, such as being able to take into 

account the relationship between process variables, better control of Type I error, unlike the 

univariate control charts which suffer from multiple hypothesis testing problems, and being 

able to ease the process monitoring.  

 

Hotelling’s T
2 multivariate control charts have always been the most popular in 

multivariate quality control mainly for their simplicity (Das, 2006). This chart is good at 

detecting OOC signal when the mean shifts are big, however, it has little power when 

detecting small or moderate process shifts (Lowry and Montgomery, 1995). Unlike 

Hotelling’s multivariate control chart, MEWMA and MCUSUM charts are more sensitive to 

small shifts in process mean (Lowry and Montgomery, 1995). In this thesis, we only consider 

the interpretation of OOC signals obtained from the signals triggered by Hotelling’s T
2 

multivariate control chart. 

 

2.3.1 Multivariate Hotelling’s T
2
 Control Chart 

 

Many studies in diagnostic methods (Maravelakis et. al,1992; Murphy, 1987; Jackson, 1980 

& 1985; Tracy et.al,1995) are based heavily on a Hotelling’s T
2
 multivariate control chart. 

Originally, this chart was introduced by Hotelling (1947) but it has been discussed in more 

detail by many researchers since, such as Alt (1977, 1985), Alt and Smith (1988), Ryan 

(1989, 2000) and Jackson (1991). The multivariate Hotelling’s T
2
 control chart is sometimes 

called the multivariate Shewhart control chart (Crosier, 1988) and is stated by Lowry and 

Montgomery (1995) as “a natural multivariate extension to the univariate Shewhart chart”. 



17 

 

 

            Normally, it is assumed that p quality characteristics are jointly distributed as a         

p-variate normal distribution and that random samples of size n (individual observations) or 

m groups of size n (groups of observations) are collected sequentially along the process. In 

many applications, the data collected is not in the form subgroups but in individual 

observations instead. We concentrate firstly on this simpler case, the more general form is 

considered in Section 2.4.  

 

            Given that    , i = 1,2,…, m are  p x 1 vectors of m multivariate individual 

observations, normally distributed p-variables with known in-control mean vector    and 

known variance covariance matrix   . To test whether the vectors are at the desired target 

then a statistic 

                                  
             

                                          [2.1] 

 

is computed and compared with the 100 (1-α) percentile of a central Chi-squared distribution 

with p degrees of freedom, where α is the specified level of significance for performing the 

test.  

 

A multivariate Chi-squared control chart is constructed by plotting the    obtained 

from [2.1] versus time with     
  as its upper control limit (UCL).  This chart will detect an 

assignable cause of variation in a process whenever a point falls beyond the UCL. No LCL is 

appropriate, since any deviation from    will result in an increases   .  If the in-control mean 

vector and the corresponding variance covariance matrix are unknown, then they must be 

estimated from a sample of size n drawn from the past multivariate observations. A more 

detailed explanation on this is explained in section 2.3. 

 

Lowry and Montgomery (1995) stated that since Hotelling (1947) multivariate control 

chart procedure is based on only the most recent observation, it is insensitive to small and 

moderate shifts in the mean vector. So, other multivariate control charts are proposed which 

do use additional information from the recent history of the process. 
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2.4 Control Charting 

 

The usage of control chart involves two distinct phases and each phase has different 

objectives. Each phase has a different control limit specification (Ryan, 1989, Lowry and 

Montgomery, 1995). The control limits are also different between a univariate and a 

multivariate control chart (Alt, 1984, Lowry and Montgomery, 1995). Alt (1984), Jackson 

(1985) and Nedumaran and Pignatiello (1998) discuss the computation of the control limits 

for subgroup and individual data. Some important issues in the choice of control limits for 

multivariate control chart are also discussed by Lowry and Montgomery (1995).  The 

calculation of the control limits is presented for individual and subgroup data and the 

discussion of both phases in the following section is based on their discussions. Control 

charts can be used to monitor a process for any shift of mean or process dispersion, but, since 

this study is focusing on the problem of a shift in mean in multivariate observations, the 

following presentation will concentrate on the cases relevant to that matter. 

 

2.4.1 Phase I 

 

In this phase, a set of data from a process is gathered and analyzed retrospectively (Alt, 1984, 

Lowry and Montgomery, 1995). Woodhall (2000) describes control chart usage in Phase I as 

iterative. The focus is more on process understanding and process improvement. This phase 

is important and necessary in order to assist the operating personnel in bringing an out-of-

control process into an in-control state (Montgomery, 2005). Trial control limits are 

constructed to determine whether the process has been statistically in-control over the period 

of time where the set of data was collected. The objective of this phase is to see whether 

reliable control limits can be established and hence can be used for future production 

monitoring (Lowry and Montgomery, 1995). 
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Subgroup data 

The first step in establishing the initial control limits for subgroup data is by selecting m 

rational subgroups each with n observations. Let p be the number of process variables and  

                       
 
 denote a  p x 1 vector with i =1,2,…,m and  j =1,2,…,n.  It is 

usually assumed that Xij’s are independent and identically distributed and Xij follows Np(µ,Σ) 

when the process is in-control. Also let     and Si denote the unbiased estimate of the mean 

vector and the covariance matrix for the ith subgroup, respectively; that is,  

 

     
 

 
    
 
     and     

 

   
          
 
              

 

Then the procedure can be divided into 4 steps: 

Step 1 Calculate unbiased estimates of the mean vector and the covariance matrix by 

pooling data from the m subgroups. The estimates are given by, 

    
 

 
    
 
     and    

 

 
   
 
         

 

Step 2 Plot the statistic   
   for the ith subgroup on a    control chart. The   

  is given 

as follows 

     
                                                                      [2.2] 

 

Step 3 Set the control limit for the     control chart given by 

 

                              and   LCL = 0 

  where 

          
           

        
  

 

and                is the (1- α)th percentile of the F-distribution with p and 

(mn-m-p+1) degrees of freedom with α the specified probability for each 

subgroup producing a false alarm on the chart. Since the µ and Σ are unknown 
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and are estimated by    and   , respectively, then the UCL is taken from F-

distribution instead of    distribution. 

 

Step 4 Any point at which   
  falls outside the UCL is investigated for any assignable 

causes. The control limit is revised once another   
  falls outside the UCL and 

the new one is calculated once the assignable causes are removed. This step 

sometimes repeated several times until no more points falls outside the UCL. 

This process as stated by Montgomery (2005) “… will require several 

cycles…assignable causes are detected and corrected, revised control limits 

are calculated, and the out-of-control action plan is up-dated and 

expanded…”. 

 

Individual data 

The first step in establishing the initial control limits for individual data is by selecting m 

subgroups with n = 1 observations. Let                    
 
 denote the ith of m 

multivariate observations. This time the mean and sample covariance matrix are given by 

 

    
 

 
    
 
     and    

 

   
         
           . 

 

All the 4 steps explained in the subgroup data procedure are repeated with the obvious 

amendments on the calculation of the   
  statistic and upper control limit. In Step 2, the 

statistic   
  plotted is  

 

    
                    ,   i=1,2,…,m                                        [2.3] 

 

and in Step 3, the control limits are different from the subgroup data. Tracy, Young and 

Mason (1992) have shown the statistic follows a Beta distribution with degrees of freedom 

p/2 and (m-p-1)/2. Thus, the control limits are given by   

 

      
      

 
   

 

 
 
 

 
 
     

 
   and        

      

 
     

 

 
 
 

 
 
     

 
 . 

The next step is similar to Step 4 for subgroup data. 
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2.4.2 Phase II 

 

Phase II in control charting received a lot of attention by many practitioners and authors. It is 

always assumed that the control limits have been established in the previous phase and all the 

retained observations are ready to be used in this phase. The retained observations from 

Phase I used to calculate the control limits in Phase II control charting (Mitra, 2012, p.348). 

The new control limits based on the retained observations at the end of Phase I is used to test 

whether the process is still in-control state whenever any future subgroups or individual data 

are drawn (Lowry and Montgomery, 1995). The objective of this stage is to monitor the 

process and assess it for any departure from the standard or in-control mean vector. Different 

control limits are proposed for this phase with respect to the data. In fact, many practitioners 

prefer to use a    approximation for the upper control limit in both phases especially when 

the number of samples or subgroups is greater than 25 (Lowry and Montgomery, 1995).  

 

Subgroup data 

The same statistic as in [2.2] is used in this phase. Ryan (1989) proposed an upper control 

limit  

           

        
              

 

 

where  

           =   the F-percentile with p and (mn-m-p+1) degrees of freedom. 

        m    =   the number of subgroups 

                  n      =   the subgroup size 

        p     =   the number of process variables 

 

 

Individual data 

There are a couple of options in determining the control limit for individual observations 

dataset in Phase II statistical process control monitoring. The first control limit proposed by 

Jackson (1985) and the second one, known as the exact control limit, proposed by Ryan 
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(1989). The same statistic [2.2] is used in Step 2. Jackson (1985) suggested a fair 

approximate control limit for a large m or to be precise m > 100 and given by  

 

 
      

     
          

 

and the control limit suggested by Ryan (1989) is   

 

           

     
         

where,  

            =  the F-percentile with p and (m-p) degrees of freedom. 

         m    =  the number of subgroups taken in Phase I 

         p     =  the number of process variables 

 

Lowry and Montgomery (1995) discussed the effect of the subgroup size and p upon the 

proposed control limits on both subgroup and individual data. The    approximation is found 

to be more accurate as n increases in subgroup data. Whereas for individual data, the    

approximation produces inaccurate control limits with respect to the exact control limit with 

the same p when the p increases (Lowry and Montgomery, 1995). 

 

 

2.5 Interpretation of a Signal for a Multivariate Control Chart 

 

The interpretation of an OOC signal from a multivariate quality control chart has always been 

a major problem. Once a multivariate control chart produces an OOC signal, it is difficult to 

tell which process variable or variables might have triggered the signal. In univariate control 

charts, it is very easy to identify, as each process variable has its own control chart, but this is 

not the case for multivariate charts where all process variables are solely represented by a 

single statistic. In order to take the best corrective action, practitioners need to know the root 

cause of the OOC signal by interpreting or diagnosing the signal. In other words, one needs to 

identify the aberrant variable, or the combination of variables, which triggered the OOC 
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signal.  Practitioners and quality control researchers have came out with quite a number of 

approaches as to how to overcome the problem of interpretation in multivariate control 

charts. 

 

Most of the approaches are based on the OOC signals produced by Hotelling’s control 

chart. The most popular approach is by using principal component analysis (PCA) proposed 

by Jackson (1980, 1981 & 1985). Maravelakis et al. (2002) also used PCA in their ratio 

method. Other approaches are by decomposing the Hotelling’s T
2
 statistics (Mason, Tracy 

and Young, 1995; MacGregor and Kourti, 1995; Timm, 1996), based on discriminant 

analysis (Murphy, 1985) and regression methods (Hawkins, 1991 & 1993).  Doganaksoy, 

Faltin and Tucker (1991) proposed a method which ranked process variables using univariate 

t statistics.  

 

 

Figure 2.2:  Process monitoring for univariate and multivariate processes. 
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In later chapters, we will show that each method mentioned above has its own flaws. 

Practitioners in multivariate process quality control are still struggling to find the most 

appropriate method to deal with the problem of mean (and scale) shifts as well as the effect of 

correlations among process variables in identifying the correct aberrant variables from OOC 

signals. An efficient method which is simple, easy to implement, practical, and reliable in 

identifying aberrant variables in multivariate processes is greatly needed in statistical process 

monitoring and improvement. 

 

 

2.6 Graphical Diagnostic Methods 

 

Several procedures have been developed for interpreting the OOC signals. Some of the 

popular approaches are by performing principal component analysis (Jackson, 1959, 1980, 

1981 & 1985; Kourti and MacGregor, 1995; Maravelakis et al., 2002), decomposing the T
2
 

statistic (Kourti and MacGregor, 1995; Kourti and MacGregor, 1996; Mason, Tracy and 

Young, 1995 & 1997), discriminant analysis (Murphy, 1987), calculation of univariate t-

statistics (Doganaksoy, Faltin and Tucker, 1991), and regression methods (Hawkins, 1991 & 

1993). Among the most popular approaches is to decompose the T
2
 statistic from the original 

X-space to principal component space in the shape of orthogonal components and interpret it. 

It is believed that the orthogonal decompositions of the T
2
 statistics are easier to utilize 

because they enable direct interpretation. Furthermore, it allows practitioners to assess which 

of the components are important or warrant detailed investigation.  

 

2.6.1 Elliptical Region 

 

An elliptical region can be used when there are two variables involved in a process control 

monitoring.  It can replace the role of a univariate control chart described in section 2.2.1. 

Unlike univariate control chart, an elliptical region is able to pinpoint the responsible variable 

that led a process to an out-of-control condition.   



25 

 

 

Figure 2.3: Elliptical region 

 

Alt (1985) was among the earliest researchers to propose a graphical method to solve 

the interpretation problem of multivariate control chart signals. Elliptical control region was 

proposed by Alt (1985) and also discussed by Jackson (1991). Chua and Montgomery (1992) 

have extended the original elliptical control region proposed by Alt (1985). 

 

 

2.6.2 MP Chart 

 

Fuchs and Benjamini (1994) proposed a new type of control chart called the MP chart or 

multivariate profile chart. This chart uses symbols to represent the summaries of data and 

regarded as a “symbolic scatterplot” by Chambers et al. (1983). The univariate and 

multivariate statistics are displayed at the same time on this chart. Fuchs and Benjamini 

(1994) provide a guideline in detecting an out-of-control condition from the MP chart. A 

process is deemed to be out-of-control when the symbol is darker and the size of the symbols 

increases with the deviations. Fuchs and Kenett (1998) extended the development of this 

method by developing a programming in Minitab to create the MP chart. 
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2.6.3 MiniMax Control Chart 

 

Sepulveda and Nachlas (1997) proposed a MiniMax control chart which can monitor a 

multivariate process and at the same time provide the information as to the aberrant variables 

whenever the multivariate process in a state of out-of-control. This chart monitors the 

maximum and the minimum standardized samples means as described in Sepulveda (1996). 

A process which is under in-control condition has its standardized samples means within the 

upper and lower control limits which are determined by simulation. This chart is different 

than the one proposed by Timm (1996) where the process monitoring is only on the 

maximum value. 

 

2.6.4 Andrews Curves 

 

Andrews (1972) proposed the curves as a multivariate data analysis tool. Andrews mapped  

               
 
 into a form of a function given by,  

 

       
  

  
                                  .           

 

  Maravelakis and Bersimis (2009) proposed the use of Andrews curves as a diagnostic 

method for the out-of-control signals produced by multivariate control chart. They used the 

same function as Andrews (1972) and stated that the method will produce an abnormal 

Andrews curve for the observation that responsible for the OOC signal on multivariate 

control chart. The main properties of Andrew curves are given by Andrews (1972) and are 

hold in a 5 step procedure of the method proposed by Maravelakis and Bersimis (2009). This 

5 step procedure is briefly explained here. 

 

Step 1: Look for the OOC signal by comparing the statistic of a multivariate control 

chart for the mean to the 100(1-α) percentage point of the χ
2
 distribution.   
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Step 2:  Set the control limits and plot them for every          
  

   
 ,  

r = 0,1,…,360.  The control limits are given as follows, 

 

            
 

 
          and              

 

 
       

 

For all values of t, where 

  = the in-control mean 

  = the subgroup size 

  = the variance covariance matrix (assumed known) 

  = the 1- a percentage point of the p – variate χ
2
 distribution 

      =                        

 =  
 

  
                                 

 

 

 

Step 3: Calculate the value of         for each of the    points that lie outside the 

control limits. Maravelakis and Bersimis (2009) defined that “From all those 

      , i=1,2,…,p with the same sign as       , the one with the largest 

contribution in        pinpoints the out-of-control variable.” 

 

Step 4: The OOC variables identified with the highest frequency in Step 3 is identified 

as the out-of-control variable. 

 

Step 5: Repeat Step 1 after the OOC variable identified in Step 4 has been removed 

until there is no further OOC signal. 

 

 

2.7 Analytical Diagnostic Methods 

 

There are several analytical approaches proposed for interpreting signals in multivariate 

control charts. Alt (1985) was among the earliest researchers, proposing a solution by 

introducing the implementation of Bonferroni intervals for each process variable. Ten years 
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later, Hayter and Tsui (1994) tried to extend the method by providing a procedure for exact 

simultaneous control intervals for every process variables’ mean. 

 

 In the meantime, Murphy (1987) proposed discriminant analysis to distinguish the 

variables which caused the OOC signals and which did not. Later on, Doganaksoy et al. 

(1991) proposed the ranking of the univariate-t statistics in order to do so. In the same year, 

Jackson (1991) proposed the application of principal component analysis in interpreting 

signals from multivariate control charts. This approach has been the most popular one among 

and there has been much discussion regarding the implementation and the practicability of 

this method. Tracy et al. (1992) has provided a bivariate setting for the approach and it helps 

in giving a meaningful interpretation for the principal components since the principal 

components do not always have a physical interpretation. Kourti and MacGregor (1996) tried 

to improve the approach by proposing the implementation of normalized principal 

components.  

 

The most recent diagnostic method using principal component analysis has been 

proposed by Maravelakis et al. (2002). They have tried another approach by introducing two 

methods of ratio calculation based on different type of covariance matrix. The ratio 

calculation uses the information from the loadings of selected principal components. They 

claim the ratio represents the contribution of each variable in the OOC signal in the 

multivariate control chart.  

 

 Mason et al. (1995, 1997) proposed a different approach to measure the contribution 

of an individual variable which is by decomposing the T
2
 statistics into independent parts.  

Mason et al. (1996) again proposed a double T
2
 decomposition but this time to reflect the 

contribution of individual process variables from a step processes.  Timm (1996) used the 

same idea of interpreting OOC signals and a procedure known as a step down procedure has 

been proposed in which finite intersection tests were performed. All these methods are 

discussed further below. 
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Diagnostic Method with Principal Component Analysis 

There are two procedures involved in monitoring multivariate processes using PCA. The first 

procedure introduced by Jackson (1980,1985) obtains the z-score of the principal components 

(PCs) for each observation vector and then computes the T
2
 statistics. Jackson (1980, 1991) 

also discusses the identification of the out of control variable by decomposing T
2
 statistic into 

a sum of p principal components and Jackson (1985) used both the individual variables and 

the principal components with the univariate charts to aid in the interpretation of an out of 

control signal without losing information about the correlation effect of the variables.  

 

The second procedure introduced by Kourti and MacGregor (1996) is where T
2
 

statistics are expressed in terms of normalized principal components scores of multinormal 

variables and a contribution plot is used to identify the variable which caused the signal.  

Maravelakis et al. (2002) identifies the out of control variable by computing a ratio using the 

principal components for each variable from the signal. 

 

 One of the drawbacks of these approaches is that identifying a change in one or more 

of the constructs does not result in identification of which of the original variables or quality 

characteristics have changed. Sometimes, it is difficult to interpret the principal components   

and often no conclusion can be obtained from it (Doganaksoy, Tucker and Faltin ,1991; 

Mason, Tracy and Young, 1997). The attempt to reduce a p-dimensional data vector into a 

uni-dimensional statistics (in this case the Hotelling’s T
2
 statistic) often masks the primary 

causes of the signals (Mason, Tracy & Young, 1997). As a result, in many cases it is difficult 

and sometimes impossible to attach meaning to the principal components and to determine 

the characteristics which associated with the out of control signals (Mason, Tracy & Young, 

1995). 

 

2.7.1 Principal Components 

 

Jackson (1985, 1991) stated that there are four conditions should be fulfilled by any 

multivariate quality control procedure, and they are 

i. The procedure should be able to answer the question “Is the process in control?” 

ii. The type I error should be specified. 
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iii. The relationships among the variables should be put into account. 

iv. The procedure should be able to answer the question, “If the process is out of control, 

what is the problem?”  

 

The first condition is quite easy to determine. The generalized t-test statistic is used to 

indicate the overall conformance of an individual observation vector to its mean or an 

established standard (Jackson, 1985). Jackson (1991) also stated that in multivariate quality 

control, the use of T
2
 and PCA together adds some power to the control procedure and 

Jackson (1991) also provided a guideline for multivariate quality control using PCA. The 

guideline consists of two steps. 

 

Step 1: For each observation vector, obtain the y-scores of the principal components 

to compute T
2
.  

 

Step 2: If T
2
 is out of control, examine the y-scores. The y-scores are obtained from 

the transformation of principal components to another form of uncorrelated 

principal components but with variances equal to unity as defined in Jackson 

(1980, 1981) and given below 

 

                                                                                     

                                 

 It can be done by rescaling the characteristic vectors, U vectors, which are orthonormal and 

the scaled vector is given in Jackson (1980, 1981) as   

                       

i

i

i
l

u
w            

                                                  

The quantities are called y-scores and due to its unit variances, it has been employed a great 

deal by Jackson (1991) in quality control.  The y-scores are plotted together with the original 

variables and T
2
 statistic to get the insight of the problem, if there is an out of control signal 

and likely may lead to the identification of the cause of the problem or the identification of 

the aberrant variable. 
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The principal component data may still be useful in detecting trends that will lead to 

an out of control condition even though T
2
 remains in control. Practitioners are urged to 

diagnose T
2 

if and only if T
2
 is out of control. And this practice will help to fulfill the first 

three of the previous stated conditions required for the multivariate quality control procedure 

and whereas the second step of the multivariate quality control guideline will help to fulfill 

the fourth condition. 

 

2.7.2 Normalized Principal Components 

 

MacGregor and Kourti (1995) also refers to [2.3] in monitoring multivariate processes. The 

traditional Hotelling’s T
2
 in equation [2.3] is stated as equivalent (Kourti and MacGregor, 

1996, MacGregor and Kourti, 1995) to: 
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with d as the number of chosen principal components and ti a chosen principal component 

with λi the corresponding eigenvalue. By scaling each ti
2
 by the reciprocal of its variance, 

each PC term plays an equal role in the computation of T
2
 irrespective  

 

 

of the amount of variance it explains in the Y matrix where Y is the n   q matrix of mean 

centered and scaled measurements (MacGregor and Kourti, 1995). 

 

 Also this approach, in order to detect an occurrence of special events which were not 

present in the reference data, a squared prediction error (SPEy) of the residuals of new 

observations (Kresta et al., 1991) has been introduced.  
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Jackson (1991) referred to this statistic as the Q-statistic or distance of the model. When the 

process is in control, SPEy or Q should be small and the upper control limits for this statistic 

can be computed from historical data using approximate results for the distribution of 

quadratic forms (Jackson, 1991).  

 

MacGregor and Kourti (1995) proposed the use of both the T
2
 chart on the d dominant 

orthogonal PC’s (t1,…,td) and SPEy chart which may assist on the identification of the 

aberrant variables in multivariate processes. 

 

2.7.3 Ratio Method 

 

Maravelakis et al. (2002) proposed two new methods differently to identify the  variable 

responsible for the out-of-control signal. Ratios are computed under two conditions, 

covariance matrix with positive correlation values and covariance matrix with positive and 

negative correlations. Say, Xnp is a dataset with p variables following a multivariate normal 

distribution with mean equal to 0 and variance,   . The first condition has ratio as follows 

      
                  

             
                                               [2.4] 

where,  

                   = the i-th value of variable    

 

                        
 
 = the corresponding k-eigen vector 

                     = the score for vector    in PC-k 

=                        

         d    = the number of selected PC 

                 j    = 1,2,…,d. 

 

The numerator represents the sum of the contributions of variable    in the first d PCs 

in observation (vector)-i whereas the denominator counts the sum of scores of observation 

(vector)-i in the first d PCs. The rationale of the methods is to compute the impact of each of 

the p variables on the out of control signal by using its contribution to the total score. The 
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ratio for the second condition is also computed using the same formula as the first with a 

slight modification in the denominator utilizing a specified in-control value of means.  

 

 The responsible variable(s) are identified by comparing the value of the ratio with the 

control limits. For the first condition, as the numerator and denominator both follow a 

standard normal distribution so the control limits are the a and 1 - a percentage points of the 

following distribution with suitable parameters (Hinkley,1969).  

 

       
      

        
   

  
  

  
       
        

    
      

        
   

  
  

  
       
        

  

where 

           
 

       
                                  

 

 

 

 

 

 

Meanwhile, for the second condition, since the denominator is only a constant, 

therefore the control limits for the ratio are taken from the standard normal distribution. 

Whenever the ratio of a certain variable(s) is not within the lower and upper control limits 

then it is identified as a responsible variable(s).  

 

2.8 Other Diagnostic Methods 

 

The other diagnostic methods discussed in this section do not involve principal component 

analysis. The approaches used for these methods are by decomposing the Hotelling’s T 
2
 

statistic, using the Bonferroni inequality, discriminant analysis, regression analysis and by 

ranking the t-statistic of the process variables. 

 

2.8.1 Decomposition Method 

 

Mason, Tracy and Young (1995, 1997) proposed and discussed a procedure for decomposing 

the T
2
 statistic into orthogonal components to aid the interpretation effort.  Mason, Tracy and 

Young (1995) have stated that the primary reason for partitioning the statistic is to obtain 
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information on which variables significantly contribute to an out of control signal.  The 

general decomposition of Hotelling’s T
2
 for p variables is as follows: 

 

     
      

        
                

  

or  

      
               

 

   

   

 

The statistic              is the pth component of vector Xi adjusted by the estimates of the 

mean and standard deviation of the conditional distribution of Xp given             . It is 

given by  

              
                 

            
 

 

where 

                     
    

     
          

 

    is the sample mean of the n observations on the pth variable and    is a (p-1)-dimensional 

vector estimating the regression coefficients of the pth variable regressed on the first p-1 

variables and is given by 

 

                                                                  
                                                      

where     

              
      
   

   
   

and 

                                                     
  =    

     
    

       

 

 Each of the terms is distributed as a constant times an F distribution having 1 and n-1 

degrees of freedom. Tracy, Young and Mason (1992) give the value of the constant         
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. Each of the terms then can be compared to the F distribution given below to 

determine if it is significant.  

 

            
    

   

 
         

                           

Mason, Tracy and Young (1995) highlighted two important points, which are the 

complete decomposition of the T
2
 statistic into p independent T

2
 components is not unique as 

p! distinct non-independent partitions are possible but that the p terms within a particular 

decomposition are independent of one another although the terms across the p!  

decompositions are not all independent.  

 

Mason, Tracy and Young (1995) also devised a scheme to output only the significant 

values which gives solution to the problem of multiplicity of significance tests. So, each 

component in the decomposition can be compared to a critical value as a measure of the 

strength of the contribution to the signal rather than for statistical significance (Mason, Tracy 

& Young, 1995). 

 

2.8.2 Bonferroni  Inequality Approach 

 

This method has been introduced by Alt (1985) and commonly referred to as “a Bonferroni 

type” method. The general idea of this approach is to construct p intervals (one for each 

quality characteristic) for each subgroup that produces an out of control signal in the 

multivariate control chart. Ryan (2000) has shown that for the jth subgroup, the interval for 

the ith characteristics,    
   

, would be 
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where  ips  denotes the square root of the pooled variance for the ith characteristic and k is the 

number of subgroups. If the previous equation is not satisfied for the ith characteristic, the 

values of that characteristic would then be investigated for the jth subgroup. The entire 

subgroup would be deleted for all p characteristics once the assignable cause is detected and 

removed and the upper control limit recomputed. 

 

 Although the Bonferroni approach is frequently used, it is very difficult to determine 

the level of significance to be used (Hayter and Tsui, 1994).  Doganaksoy, Faltin and Tucker 

(1991) felt that the Bonferroni intervals are much too wide when the T
2
 statistics is significant 

so are seldom able to identify the responsible variables unless the properties show a 

sufficiently drastic change. Furthermore, this approach does not provide an alternative form 

of guidance to direct the search for which attribute has caused the change if it does not 

identify the variables when T
2
 charts signal the process is out of control. This is a general 

feature of the Bonferroni     

 

correction for multiplicity, they are excessively conservative for even moderate numbers of 

variables, for example more than three or four. 

 

 

2.8.3 Discriminant Analysis 

 

Murphy (1987) provides a simple test for selecting out of control variables and interpretation 

of T
2
 values based on the concept of discriminant analysis. The quality control procedure is 

treated as an attempt to discriminate between the processes being in control Π0 and out of 

control, Π. The true odds, Ω, Moran & Murphy (1979) in favor of an observed    being in Π 

to Π0 been are defined as 

Ω =      
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The value of µ may be estimated by    and Ω become 

     Ω    =                         

    =     
 

 
        

 Given that K is the cut-off point on the T
2
 chart then, exp 








K

2

1
 is the quantity that 

must be exceeded by exp 






 2

2

1
T  before an ‘out-of-control’ signal is given. Given that a 

particular     signals ‘out-of-control’ on the T
2
 control chart (i.e.          > K), the question of 

immediate interest is which of the p variables or subset p1 of them where p = p1+ p2, caused 

the signal. An effective approach to answer the question is by partitioning the variables,     

*x  = (
*x (1)

, 
*x (2) 

) 

where  
*x (1) 

 = p1 subset of the p variables which we suspect caused the signal 

  
*x (2)

 = remaining p2 variables. 

 

With µ0 and Σ partitioned as is    ,   
  denoting the full squared distance  

  
                     Σ           

 

2

1pT   denoting the reduced distance corresponding to the p1 subset, 

   
                  

       
    

 
Σ     

       
     

                                         

In discriminant   analysis, the true squared distance between populations Π to Π0 is 

defined as  

  
         

           

and the reduced distance is,  

   
           

    
 
   
          

    . 

 

The difference between the full squared and the reduced distances is used to reach the 

conclusion whether the p1 subset discriminates just as well as the full set of p variables.                                                                         
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 In other words, we have our hypothesis null as,       
     

                                  

(or       
     

     in discriminant analysis).  When D is large enough, we shall reject the 

hypothesis that the p1 subset caused the signal, and we accept if otherwise. It is shown by 

Murphy (1987) that D ~
2

2p .  The appropriate F test is given in Seber (1984) for the case 

with estimated    and Σ. 

 

The drawback of this method is the applicability of the approach. It is severely limited 

when the number of the quality variables involved is moderately large (about 20). The more 

variables there are in the process, the more ambiguity is introduced in the identification 

process and sometimes leading to erroneous conclusion (Lowry and Montgomery, 1995).  

 

2.8.4 Regression Adjustment Techniques 

 

Hawkins (1991, 1993) has suggested another approach which requires regression adjustment 

of variables in cascade processes which are commonly encountered in chemical plants and 

semiconductor manufacturing. In such processes, a shift in some quality characteristics in 

earlier step or stage may potentially affect the following step or process. The proposed 

method is an extension of the regression control chart proposed by Mandel (1969), who 

showed that by regressing a quality characteristic and control charting the regression was 

more effective than control charting the quality characteristic directly (Lowry and 

Montgomery, 1995). 

 

 A similar concept to the regression adjustments proposed by Hawkins (1991,1993) 

has been adopted by Zhang (1985) via his cause-selecting chart which has been thoroughly 

discussed by Wade and Woodall (1993). Wade and Woodall (1993) have proposed the use of 

prediction limits with cause-selecting charts to improve their statistical performance. The 

methods proposed by Zhang (1985) and Wade and Woodhall (1993) are not discussed here 

since there are not among the popular diagnostic methods used in comparison study.  
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2.8.5 Ranking Method 

 

Doganaksoy, Faltin and Tucker (1991) proposed a combination approach of univariate 

ranking procedures and Bonferroni type simultaneous intervals (Alt, 1985). They claim the 

proposed approach is largely robust with respect to correlation structure and the nature of the 

shift in the mean vector. It is generically applicable and provides a priority ranking of 

attributes to be investigated even in instances where no unambiguous source identification is 

feasible. The t-statistic is calculated as; 

 

     
                 

     
 

    
 

 

    
  

                                          [2.5] 

 

where, 

 newix ,  = mean of new sample of variable-i 

 refix ,   = mean of reference samples of variable-i 

 iis       = variance of variable-i  

 newn    = new sample size  

 refn    = reference sample size 

 

 For each variable, Kind and KBonf will be computed and Kind will be plotted first on a 

(0-1) scale. Variables with larger Kind values are the ones with relatively larger univariate       

t-statistics values which possibly being among those components changed. Given the 

cumulative distribution function of the t distribution with (nref -1) degree of freedoms is         

T (t; nref -1) and Ksim is a specified nominal confidence level, then  

 

                                  Kind =                                                                 [2.6]      

         

                                 KBonf = 
          

 
                                                                            [2.7] 
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Components having Kind > KBonf are classified as being those which are most likely to have 

changed. 

 

2.8.6 Stepdown Finite Intersection Test 

 

Timm (1996) proposed a Finite Intersection Test (FIT) called the stepdown FIT procedure for 

a given order of p variables. This method was originated by Krisnaiah (1965, 1979) and 

discussed in detail by Timm (1996). Timm (1996) also show that the method proposed by 

Hayter and Tsui (1994) is a single step FIT where the variance covariance matrix is known.  

 

Under this method, the variables in the dataset are presumed to have some sort of 

order, either known or unknown. Each stepdown FIT procedure is applied on each of the p-

orderings of the variables where the approach is quite similar to the approach proposed by 

Hawkins (1991, 1993) in which a regression of each variable is performed on the other p-1 

variables. A stepdown FIT procedure could be performed at α
* 

in such a way that the family 

wise error rate is maintained at the nominal level α (Timm, 1996). The α
*
 level is given as 

   
 

 
  or               

 

For a given order of process variables, a stepdown FIT can be constructed by first defining 

the conditional distribution of     . Given that                           and the 

conditional distribution of      given            is also distributed normally with 

conditional variance      and conditional mean with i = 1,2,…, p-1 as follows 

                                         

where, 

            
      

                     

 

and 

    
                         

     

        
      

    
   

where, 
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        and        

 

With the conditional model given previously, the problem of testing             versus 

            is now equivalent to testing 

        
           

         
 
    

and  

            
           

        
 
    

  

The test statistic for testing    
  is given by Timm (1996) as 

   
         

      

    
  

where 

            = the least square estimate of     

        
  = the variance of    . 

 

Timm (1996) pointed out, the statistic can alternatively be written in another expression that 

was developed by Mudholkar and Sabbaiah (1980a, 1980b)  

 

   
         

      

      
          

  
 

   
      

 
 

 

for i = 1,2,…,p  where   
  

    

      
  and S is the unbiased estimate of   . The process is out-

of-control if at the ith step, the    is larger than the critical value of the multivariate F 

distribution at the     level as defined earlier. 

 

2.9 Limitation and Drawback 

 

Although quite a number of diagnostic methods are proposed with various approaches all of 

them have their own limitations and sometime drawbacks. One is the complexity of the 

procedures such as in the methods proposed by Murphy (1987) and Mason et al.              



42 

 

(1995, 1997). The discriminant analysis approach proposed by Murphy (1987) still needs an 

individual control chart to tell the direction of the aberrant variables identified and the 

computation for the procedure is quite considerable. Whereas, the method by Mason et al. 

(1995, 1997) does not have a unique independent T
2
 components to identify any variables 

responsible for the OOC signal.  

 

 Secondly, some of the methods lack physical interpretation. This particular drawback 

is quite obvious in any diagnostic methods which involve principal component analysis. If the 

selected principal components do not provide a meaningful result then it is quite hopeless to 

proceed with the diagnostic step. Thirdly, some of the graphical methods are only applicable 

for a process with only two process variables for example an elliptical control region. Hence, 

the application of this method is very limited and there are, in fact, very few options available 

for multivariate processes with the number of process variables greater than two. 

 

The method proposed by Maravelakis et al. (2002) appears not to be location invariant 

and shows limitations. This limitation at some points might prevent practitioners to adopt it 

since it is not freely applicable to datasets with mixed sign correlations in which quite 

common in multivariate processes. This renders the method of little practical use. These 

authors have also ignored the very real possibility that sample eigenvalues may be in a 

different order from population eigenvalues, especially when two consecutives population 

eigenvalues are close together. The result is that the corresponding eigenvector is orthogonal 

to the one which is really required.  

 

Murphy (1987) proposed a method based on a discriminant analysis but unfortunately 

does not provide clear criteria that make up the condition for an out-of-control signal. The 

ability of the proposed method to identify the out of control variables is very poor when the 

shifts in a mean vector are not in accordance with the correlation structure between the 

variables and impractical for a moderate number of variables i.e. 20 (Doganaksoy, Faltin and 

Tucker, 1991). 
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2.10 Performance of a Diagnostic Method 

 

One of the most recent studies in the performance of a method in identifying the out-of-

control variable(s) is done by Das and Prakash (2008) and it is the extension of a comparison 

study done by Das (2006). The study tried to compare the performance of four methods by 

Mason, Tracy and Young (1995), B.J Murphy (1987), Douglass Hawkins (1991), and 

Doganaksoy, Faltin and Tucker (1991). The scope of their study is restricted to the shifts in 

the mean vector under three assumptions which are; 

 

   i.             ; Y is a p-dimensional vector 

   ii.  Σ remains undisturbed, and 

   iii. Variables are equi-correlated 

 

The estimated power of the diagnostic methods is then compared based on the formula 

below: 

       =  
             

      
                                                         [2.8] 

where   

n(OOC)    =  the number of times T
2
 detects the shift or out-of-control 

n(successful)  = the number of times the particular method is ‘successful’ when the 

T
2
 control chart gives alarm. 

 

There are many features which contribute to a useful diagnosis method such as 

simplicity, speed of computation, interpretability etc., but at the core must be an assessment 

of the power in correctly diagnosing OOCs. As we will see in Chapter 4, even this power can 

be difficult to define when the shifts in the process mean are complex and multiple variables 

are involved, since then the concept of ‘partially correct diagnosis’ becomes relevant. 

However, at its simplest (following Das and Prakash, 2008), the power of the test actually 

measures the percentage of correct classification made by the diagnostic method concerned in 

detecting a particular shift. The higher the percentage value, the better diagnostic method 

would be. 
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2.11 Comparative Studies 

  

Das and Prakash (2008) carry out a similar comparative study on the performance of four 

different methods by Mason, Tracy and Young (1995), Murphy (1987), Hawkins (1991) and 

Doganaksoy, Faltin and Tucker (1991).  The performances of these techniques were 

compared for different correlation structures, strictly to the shifts in the mean vector with the 

assumptions the variance-covariance matrix remain undisturbed and the variables are 

equicorrelated.  The assumptions and the correlation structures chosen are quite similar to 

those in Doganaksoy, Faltin and Tucker (1991). Das and Prakash (2008) showed that all the 

studied diagnostic methods lose their power to detect the shift as the magnitude of the shift 

decreases.  Among their findings are that the methods by Hawkins (1991) and Murphy (1987) 

become effective when shifts are in a counter-correlation direction especially at low negative 

and all positive correlation whereas for small shifts, Murphy’s method performs better than 

the others. 

 

Maravelakis et al. (2002) performed a simulation study to compare their method with 

the method by Kourti and MacGregor (1996). They used Bonferroni limits on the normalized 

scores and calculated the contributions of the variables. They found that the method of Kourti 

and MacGregor (1996) has lower success in identifying the out of control variables compared 

to their method. They used the same covariance matrices and mean vectors proposed in 

Maravelakis et al. (2002). 

 

Both of the comparative studies mentioned above generally calculate the number of 

times each method detects the aberrant variable for a given shift to estimate the power of a 

diagnostic test. It is necessary to explore further the power of the methods available, not only 

on the basis of the number of times each method detects the aberrant variable but in terms of 

partially correct (not all aberrant variables detected) performance for more complex 

observations.  
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 The correlations among the variables are very important and this has been shown to 

have an impact on the out-of-control signal (Doganaksoy et al., 1991;                        

Maravelakis, et al., 2002) as well as on the effort in identifying the cause of the signal.  A 

thorough study of these correlational effects on the diagnostic methods is also very important 

in assessing the power of the diagnostic method itself.  One of the values of a multivariate 

approach is that the combined power of all p-dimensions should permit more sensitive 

detection (i.e. detection of smaller shifts) than examination of p separate charts. The 

intervariable correlations are clearly the key here. The main obstacles would be in 

determining the lowest value of the correlation among variables that would spark a signal in 

multivariate control chart and whether it can be diagnosed by the methods discussed 

previously. 

 

It would be very interesting to carry out an extended study on the comparative study 

by Das and Prakash (2008) with the additional method by Maravelakis et al. (2002), using the 

mean vectors and variance covariance matrices proposed by Maravelakis et al. (2002). An 

extended study on the method by Doganaksoy, Faltin and Tucker (1991) is also possible by 

adding more mean vectors to test the counter correlational effects as discussed previously. 

That is we might try to compare the performance of all the available and appropriate methods 

for the selected mean vectors and covariance matrices suggested in previous studies.  An 

appropriate guideline in selecting the best diagnostic method for different kind of conditions 

such as different variables’ mean shifts, shift magnitudes, and correlations is also needed to 

allow practitioners to choose the right one for the monitoring and process improvement 

purposes. We provide such a study in Chapter 3. 
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CHAPTER 3 

COMPARATIVE STUDY 

 

 

 

 

3.1 Introduction 

 
This chapter will discuss a comparative study done by Das & Prakash (2008). A 

summary of the final results from Das & Prakash (2008) was given in the preceding 

chapter, but we review it in more detail here because it will be the basis of the new 

comparison study presented in Chapter 4. A new method named a Ratio method, 

adapted and based on the method proposed by Maravelakis et al. (2002), will be 

included in the comparison study. It is important to note that no new simulations are 

performed in this chapter. We simply review and discuss the findings of                  

Das & Prakash (2008).  

 

Section 3.2 will gives an overall review of the study performed by Das & 

Prakash (2008). The background of their simulation studies will be explained 

thoroughly to ensure a good understanding of its purpose. Section 3.3 will observe 

and summarize the findings of a special case when the mean of just one process 

variable deviated from the in-control mean vector. Section 3.4 will look at the cases 

with two aberrant variables.  The discussion will focus on two situations, when shifts 

are in accordance to correlation structure and vice versa. The effect of correlation 

structure in which includes the sign and the strength of the correlation between 

variables are also discussed. Section 3.5 presents some conclusions of the discussions. 

It will also highlight a few important points that need to be taken into account in any 

future comparative study.  
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3.2 Das & Prakash Study 

 
Not many studies have been carried out in comparing the performance of diagnostic 

methods. One of the most recent was carried out by Das & Prakash (2008).  There are 

four diagnostic methods, proposed by Mason, Tracy & Young (1995), Murphy 

(1987), Hawkins (1991) and Doganaksoy, Faltin & Tucker (1991), included in this 

study.  The methods are reviewed and their performance compared. A brief discussion 

of all the methods is given in previous chapter.  

 

Assumptions 

In Das and Prakash (2008), it is assumed that the process variables follow the 

multivariate normal probability distribution. This specific case considered three 

process variables whose mean, µ, and variance covariance matrix, Σ, are assumed 

known. The in–control mean vector is assumed to be a zero vector and all variables 

are equi-correlated. So, the variance covariance matrix is assumed to be scaled, such 

that it has unit variance for all the process variables. 

 

Performance Measure  

All the studied diagnostic methods are compared based on their power. The estimated 

‘Power (P)’ of a diagnostic method is initially defined in [2.8] by Das and Prakash 

(2008). The estimated power is in percentage for the number of times a multivariate 

control chart detects the shift for the number of times it successful in identifying 

correctly the aberrant variable which triggered the signal.  

 

 It is relatively easy to understand what “successful” means when the shift in 

mean happens in only one variable, but it is quite tricky to define it when we have, 

say, two shifted variables with different sized shifts. The questions one might need to 

ask themselves are 

(i) How are we going to count m? 

(ii) Does the size of the shifts matter? 

(iii) Does the combination of shifts matters? 

(iv) Does the shift or the combination of two or more shifts give the same 

power measure with respect to the structure of the variance covariance 

matrix? 
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(v) Are false identifications penalized? 

 

       Das and Prakash (2008) gave the interpretation of P as “an estimate of the 

percentage of correct classification made by the concerned diagnostic method to 

detect a particular shift”.  Unfortunately, Das and Prakash didn’t elaborate further 

especially for the cases with two shifted means in the mean vector. It is quite unclear 

when it comes to the particular case mentioned in (i) earlier. We could presume m to 

be the number of correct identifications of both shifted variables as the aberrant 

variables or it could be defined as the number of correct classifications of at least one 

of them. The second question above now comes into play. For the first presumption 

diagnostic method must detect both variables as aberrant, regardless of the amount of 

the shift in mean from each of them even though the shifts may be very small. On the 

other hand, the second presumption only concerns the ability of a diagnostic method 

to detect at least one deviated variable as the aberrant one. We presume that the more 

contaminated a process variable will be detected more frequently than the lesser 

shifted process variable. We also presume that when two variables are contaminated 

equally, both of them will be detected approximately equally.  

  

 Combinations of the shifts in mean are considered by Das and Prakash (2008). 

Data was generated through simulation under different shift patterns in the mean 

structure in order to determine the sensitivity of a diagnostic method. By studying the 

patterns closely, one can tell whether there is a difference in performance in terms of 

the size of the contamination of a different variable or whether the direction of the 

shift in mean plays an important role in the performance of a diagnostic method.    

 

Simulation 

One thousand observations of 3-dimensional vectors representing out-of-control 

observations were generated by Das and Prakash for each shift in mean as listed in 

Table 3.1, or combination of shifts in mean. In other words, for each pattern of mean 

structures which representing out of control mean vector and correlation matrix, there 

are 1000 random observations generated for three process variables respectively, 

simulated from a multivariate normal distribution with specified mean (shifted) vector 

and variance covariance structure. Das and Prakash (2008) used Hotelling T
2
 control 
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chart in monitoring the multivariate process but no further explanation is given about 

the phase of the process monitoring. So here in this discussion we assumed that it was 

done in Phase II process control monitoring. Any disruption in the process is 

presumed to have been encountered and solved beforehand since this is normally done 

in the first phase of process control monitoring. By referring to the definition of the 

power in [2.8], we may expect that the denominator in [2.8] is not necessarily equal to 

1000. Even though Das and Praksah (2008) stated that 1000 multivariate observations 

were generated for the comparison study but they didn’t put it plainly that the value is 

not necessarily 1000. So here we explain that, 1000 observation of 3-dimensional 

vectors are generated for each pattern of mean structures which represent the out of 

control mean vector and correlation matrix, but only those which triggered the 

Hotelling T
2
 control chart are counted in and diagnosed by a diagnostic method. As a 

result, we have different number of out-of-control observations for different mean 

structures. This feature affects the reliability of our power assessments, with different 

cases being based on different numbers of diagnoses. However, we do not make 

reference to this in detail while reporting the Das and Prakash results, but consider it 

further in our own study in Chapter 4. 

 

 Das and Prakash (2008) considered five different correlations between 

variables which are -0.45, -0.2, 0.2, 0.5 and 0.8. For each of the equi-correlation 

structures, a performance is calculated for every shift in mean shown in the table, 

where the descriptive categories given by Das and Prakash (2008) is tabulated here 

for easy understanding, 

 

Table 3.1: The shift in mean from the in-control mean vector. 

Shift Shift’s magnitude  

Small -1, 0.5 

Intermediate -2, 1.5 

Large -3, 2.5 

 

The specified shift in mean is introduced to the mean of the first process variable of 

the in-control mean vector in order to simulate a dataset which contains one aberrant 

variable. The contaminants are the values of the shift in mean given in Table 3.1. If 

the shift in mean is small then it means the mean for variable 1 in the mean vector is 

either -0.5 or -1 or in other words, the shifted mean vector would be (-0. ,  ,  ,     or 



50 

 

(- ,  ,  ,    . For cases with two aberrant variables in a dataset, the mean of the first 

and the second process variables were contaminated by introducing one of the 

contaminants into each of their means. Various contaminants and combination of 

contaminants provide different patterns of contaminated or shifted mean vectors. For 

a case of one aberrant variable, there are six patterns of (shifted) mean structure for 

each equi-correlated variance covariance matrix, whereas for a case with two aberrant 

variables, there will be 20 combinations of shifts in mean.  n e ample of a shifted 

mean  ector with small contaminant for  ariable   and large contaminant for  ariable 

  is ( ,  ,  ,    . 

 

Results Presentation 

The findings from the comparison study of Das and Prakash (2008) are quite detailed 

and extensive and can be divided into two sections. Section 3.3 will present the result 

of the performance of the diagnostic methods when a single process variable is shifted 

from the in-control mean. Section 3.4 will look at the performance when the mean of 

two process variables shifted in the same and opposite directions. These two sections 

produce a summary of the 15 tabulated results from the original paper. Since Das & 

Prakash (2008) did not give any specific guidelines in describing the performance of 

the tested diagnostic methods, a suggestion is given below.  

 

Table 3.2: Performance based on the percentage of correct identification, Power (P) 

P = 100








n

m
 Performance 

           P < 10% Very poor 

1 % ≤  P  < 40% Poor 

4 %  ≤ P  < 60% Fair 

6 %  ≤ P  < 80% Good 

P ≥ 80% Very good 

 

 

The discussions of the results are focusing on the type of the shift in mean, the 

strength of the shift in mean and the inter-correlation among variables.  In order to 

simplify the discussion, the method proposed by Mason, Tracy & Young (1995) will 

be referred to as method MTY. Method DFT refers to the method proposed by 

Doganaksoy, Faltin & Tucker (1991) while HAW and MUR refer to the methods of 

Hawkins (1991) and Murphy (1987) respectively. 
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3.3 One Aberrant Variable 

 

This study would like to add some more findings based on our close observation of 

their results which are shown in Table 1-5 in Das and Prakash (2008). It was stated in 

general that MTY and DFT performed equally well for large shifts across different 

correlation structures. Unfortunately, Das and Prakash (2008) failed to mention that 

for large shifts, both methods have also shown a better and more consistent 

performance than MUR and HAW in most correlation structures. MTY and DFT are 

found to be superior in their estimated Power than MUR and HAW except for the 

case with ρ =  .  where HAW is quite close after DFT.  

 

For low correlation, MTY and DFT still showed a good performance as well 

as MUR and HAW except in case ρ =  .  where HAW has the highest Power. On the 

other hand, MUR’s power dropped to a fair performance.  In most cases, MTY 

showed slightly higher performance than DFT except when the correlation between 

the process variables is positively strong.  

 

Das and Prakash (2008) also stated that MUR and HAW performed far below 

average for high positive correlation. By studying the distribution of the estimated 

power in Table 5 in Das and Prakash (2008), MUR did show a very poor performance 

but this study would like to add that the poor performance is not actually for high 

positive correlation alone. The same poor performance can be seen for negative 

moderate correlation and in all the negative shifts for moderate positive correlation. 

Several cases have a power less than 10%. This indicates that MUR was often unable 

to pinpoint the correct aberrant variable when there is one mean value shifted from the 

in-control mean vector.  
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Das and Prakash (2008) summarized that both MUR and HAW follows the 

same pattern of performance with MUR showing less efficiency. HAW is said to have 

shown a satisfactory performance for large shifts at low and positive moderate 

correlation. This study is partially agrees with their conclusion. MUR did show 

generally less efficiency compared to HAW but not for all the correlations. Table 2 in 

Das and Prakash (2008) showed that MUR has slightly better efficiency than HAW 

for ρ = -0.2. MUR seems to perform differently for weak correlation of different 

signs, being particularly poor in low positive case.  There are appreciable drops for 

both MUR and HAW when the correlation is moderate and strong. Whereas, when the 

correlation between the process variables is low negative, all the studied diagnostic 

methods tend to have a similar power. 

 

 It is important for this study to add, even though it is not surprising, the 

general pattern that can be seen is that the power of all methods increases when the 

shift in mean is bigger regardless of the direction of the shift. However, for larger 

correlations, it is true for methods MTY and DFT only and for HAW when ρ = 0.5, 

MUR (and HAW for other ρ) behave in a counterintuitive way, being slightly better 

able to pick out small shifts. 

 

It is also worthwhile to mention another point here, since it is not stated 

clearly in Das and Prakash (2008), MUR and HAW did not show equal performances 

across different shifts in mean when the correlation is moderate positive and negative. 

MUR and HAW are nearly unresponsive when the shift is large and when the 

correlation is moderate negative. Their performances increase but are still below 

average when the shift goes from intermediate to small.  HAW is able to perform 

nearly as well as MTY and DFT when the correlation is moderate positive. MUR also 

performed much better with moderate positive correlation but only between fair to 

poor level of performance. It is obviously not as we expected as we discussed in 

Section 3.2. MTY and DFT did not show the same performance as MUR and HAW 

for the moderate correlations. Both of the methods show similar performance for both 

moderate positive and moderate negative correlation unlike MUR and HAW.  
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 If we are interested to see the power across the correlation structures, Figure 

3.1 below can give a direct comparison. The first two graphs on the top of Figure 3.1 

represent a large shift in mean, followed by another two graphs in the middle for 

intermediate shifts and, at the bottom of Figure 3.1, performance for the small shift in 

mean. Generally we can see that the performances of MTY and DFT are higher when 

the shifts in mean are bigger and dropped when the shifts get smaller.   MUR and 

HAW also follow the same pattern except for moderate and strong positive 

correlation. The performance of MTY and DFT varied ±20% or less across different 

correlation structures. On the other hand, MUR and HAW show appreciable drops 

from their best performances at low negative correlation, few upward as well as 

downward changes in correlation.  

 

 

Figure 3.1: The performance of diagnostic methods when one variable deviates from 

the target mean through different equi-correlation structures with respect to various 

shifts in mean. 
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Generally, all the diagnostic methods performed lesser when the shift getting 

smaller for the small correlation regardless of the direction. The rule applies to MTY 

and DFT for moderate to high correlation but unfortunately not for MUR and HAW. 

MUR performed poorly when the correlation is moderate and high and same goes for 

HAW, except when the correlation is moderate positive.  Overall, only two methods, 

which are MTY and DFT, give a consistent performance throughout all correlation 

structures and the changes in performance of these two methods with respect to the 

changes in the mean shift or contaminant is considered relatively predictable. 

Whereas, MUR and HAW can only detect the shifts in mean, reliably, when the 

correlation is small. 

 

 

3.4 Two Aberrant Variables  

 

There are a couple of issues arise when studying the summaries and conclusions given 

by Das and Prakash (2008) for cases with two aberrant variables. For instance, Das 

and Prakash (   8  summarized that MTY and DFT perform a “satisfactory le el” for 

large and intermediate shifts across different correlation structure. Unfortunately, Das 

and Prakash (2008) did not explain in detail about the range of the percentage values 

of the performance for a “satisfactory le el”. Nor did they elaborate more on “large” 

and “intermediate” shifts. One might ha e problem to decide whether the combination 

of shifts of mean (-3,-1) is considered as “large” shift or whether (-1,-2) can be 

considered as “intermediate” shift. We presume that the large and intermediate shifts 

are meant for combinations of two large shifts or two intermediate shifts respectively.  

In that case, the power of satisfactory level will be as low as 13% (as shown in their 

Table 6 for shifts in mean (1.5, 1.5)) and that obviously does not seem right.  

 

Due to the complexity in understanding the effect of the size of the shifts in 

mean, the correlation structure, and probably the sign of the correlation, upon the 

estimated power of the studied diagnostic methods, this study splits the discussion 

into two subsections. The first subsection will discuss the power of the diagnostic 

methods when the shifts of mean are in accordance to the correlation structure. 

Meanwhile, the second subsection will discuss the power when the shifts of mean are 
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not in accordance with the correlation structure or in other words, is counter to the 

correlation structure. By this we mean, for example, that if the correlation is positive, 

then a ‘with correlation case’ will ha e both shifts of the same sign, but shifts of 

different signs will be described as ‘counter-correlational’. The shifts in mean vector 

such as (-1,-2, 0, 0   and (1.5, 0.5, 0, 0   with ρ =  .  between the  ariables are a couple 

of examples for shifts in mean in accordance with the correlation structure. Shifts in 

mean vector with mixed signs such as (-3, 0.5, 0, 0   and (3,-1, 0, 0   with correlation 

between variables is -0.2 are also said in accordance with the correlation structure. On 

the other hand, if ρ =  .  for the same shifts with mixed signs, then the shifts in mean 

is said counter-correlational.  

 

3.4.1 Shifts in Accordance to Correlation Structure 

 

Das and Prakash (2008) stated a few comments on the performance of MTY and DFT 

when the shifts of means are in accordance with the correlation structure. In general, 

MTY and DFT performance are claimed to be at satisfactory level for large and 

intermediate shifts. The performance is said to be significantly increased whenever 

the shift is in accordance with the correlation structure. Specifically, Das and Prakash 

(2008) lay out additional comments with respect to positive correlations for both of 

the methods which are: 

i) ρ =   .8 

The power is high for large shifts and the performance is poor when one of 

the shifts is small. 

ii) ρ =   .  

Performance increases for large shifts and decreases one of the shifts 

reduces in magnitude. 

iii) ρ =   .  

Both methods performed well. 

Das and Prakash (   8  didn’t discuss much the MUR and HAW performance for the 

cases with positive correlations except for ρ = 0.5. MUR performance is said to be 

much better than others when one of the shifts is small and HAW remains ineffective 

throughout different shifts. 
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Generally, this study agrees with the observations made by Das and Prakash 

(2008) except for a few important things that need some elaboration. This study 

noticed some inconsistencies in their comments. For example, it was said that for       

ρ =  .8, the performance of MTY and DFT is poor when both or one of the shifts is 

small. By referring to their Table 10, the highest power for the said poor performances 

is 30% (shifts in mean (-1, -2)). But, Das and Prakash (2008) also said in general that 

for the large and intermediate shifts, MTY and DFT performed at a “satisfactory 

level” which gives 16% (Table 9) as the lowest power and 65% (Table 8) as the 

highest power for satisfactory level. It seems, there are overlapping levels of 

performance here and the limit between poor and satisfactory performances are not 

clear. However, this study will used the performance categories defined in Table 3.2 

whenever necessary to avoid any confusion in later discussions. 

 

 Even though Das and Prakash (2008) only mentioned the increase in power for 

large shifts for ρ =  .5, we would like to add that the same situation is also true for     

ρ =  .2 and ρ =  .8, i.e. the power decreases due to the reduced shifts is true for all the 

positive correlations. With regards to MUR, it is not entirely true that MUR is better 

than others when both or one of the shifts is small for ρ =  .5. In fact, from Table 9, 

MTY and DFT performed better than MUR for shifts (-1,-2), (1, 0.5) and (1.5, 0.5). 

For the HAW method, even though it is ineffective throughout different shifts (we 

might add throughout positive correlations too), for ρ = 0.2 the power is 36% for 

shifts (-3,-3) which is much higher than MUR. MUR and HAW share a similar poor 

performance pattern for positive correlations when the shifts are in accordance with 

the correlation structure. 

 

 For negative correlations, Das and Prakash (2008) also give specific 

comments on the performance of all the diagnostic methods, as follows 

 

MTY and DFT: 

i) ρ = -0.2 

A satisfactory performance is shown for large shifts. 
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ii) ρ = -0.45 

Performance was at a satisfactory level for large shifts. The power dropped 

to an average level for a combination of large and intermediate shifts. For 

(both) intermediate shifts the performance dropped far below average as 

well as when one of the shifts is small. 

MUR and HAW: 

i) ρ = -0.2 

Gain power for large shifts. 

ii) ρ = -0.45 

Remain ineffective throughout different shifts. 

This study would like to add a few more observations on the performance 

which are not given by Das and Prakash (2008). Generally, Table 6 and Table 7 

showed that MTY and DFT performance is more or less similar for ρ = - 0.45 and      

ρ = - 0.2 throughout different combination of shifts. Interestingly, the power for small 

shifts is higher compared to the combination of large and small shifts for ρ = - 0.45. 

Even so, it is difficult to conclude anything from these results especially when the n 

differs and very low for the small shifts compared to the n from the combination of 

large and small shifts.  

 

Das and Prakash (2008) also failed to mention the difference in power for the 

shifts with the same small magnitude but on different variables (i.e. (-1, 0.5) and     

(0.5, -1)) for ρ = - 0.2 and ρ = - 0.45 (Table 6 and Table 7). This peculiar feature 

showed by MTY and DFT but not by MUR and HAW.  Figure 3.2 and 3.3 show the 

pattern of the performance across different shifts and correlations. Another general 

observation that can be added from Figure 3.2 that is for the intermediate shifts, the 

power for MTY and DFT methods is higher compared to the combination of large and 

small shifts. The power for both methods for the intermediate shifts and the difference 

of power between the type of shifts increases when the correlation increases in a 

positive direction.  
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(a)           (b) 

Figure 3.2:  The performance of four diagnostic methods when (a) two variables 

deviate in the same negative direction and (b) two variables deviate in the same 

positive direction. 

 

 In Figure 3.3, one can see in general that the bars representing MUR 

and HAW methods for moderate negative correlation are mostly very low and almost 

“hidden” whereas for low negati e correlation, most of the bars are taller especially 

for the MUR method. A close observation between Figure 3.2 and 3.3 showed that a 

similar correlation value but different sign does not give similar estimated power 

value. 
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Figure 3.3: The performance of four diagnostic methods when the shifts in mean are 

in accordance with the correlation structure. 

 

 

3.4.2 Shifts Not in Accordance with the Correlation Structure 
 

 

The results for this case are shown in Tables 6, 7, 8, 9 and 10 in Das and Prakash 

(2008). In general, Das and Prakash (2008) concluded that the MTY and DFT 

performance is satisfactory for large and intermediate shifts irrespective of correlation 

structure. On the other hand, HAW and MUR are efficient when the correlation is low 

negative or positive. More detail is given below.  

 

MTY and DFT 

i) ρ =  .2 

Performance dropped to some degree for large shifts. 

ii) ρ =  .  

Lose power when the large shifts were in opposite directions                      

and when one of the shifts reduced in magnitude. The performance was 

good whenever the shift is a combination of intermediate and large 

magnitude.  
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iii) ρ =  .8 

Perform well for large shifts but performed poorly when at least one of the 

shifts is small (in magnitude). 

 

MUR and HAW 

i) ρ =  .2 

Performance was above average for large shifts. 

ii) ρ =  .5 

Power was extremely higher than the cases with shifts in accordance with 

the correlation structure.  

iii) ρ =  .8 

Perform well for large shifts but performed at average level when at least 

one of the shifts is small.  

 

Das and Prakash (2008) stated that “for intermediate shifts in at least one of 

the variable and large shift in another, HAW works excellently followed by MUR 

whenever the shifts are in opposite directions”. It is true that HAW performed 

extremely well for these combinations but it is not entirely true for MUR. The same 

excellent performance showed by MUR only for shifts (-3, 1.5). For the other 

combinations of intermediates or large and intermediate shifts, MTY and DFT are 

better or more or less similar to MUR.  

 

This study does not agree with Das and Prakash (   8  regarding the methods’ 

performance for the combination of intermediate and large shift when ρ =  . .  MTY 

and DFT is said showed a good performance with power 29% and 37% (Table 9) 

respectively for shifts (-3, 1.5).  Based on earlier discussion in subsection 3.4.1, the 

highest limit for poor performance believed implied in one of Das and Prakash 

(   8 ’s statements is   %.  Ob iously, there is another contradiction in the 

assessment of the methods’ performance.  
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Figure 3.4: The performance of the diagnostic methods with mixed shifts in two 

deviated variables with low, medium and high correlation between them. 

 

 Figure 3.4 shows that in general, MUR and HAW performed much better than 

MTY and DFT for positive correlations. HAW especially consistently shows a good 

or a very good performance as long as no small shift in the shifts combination. The 

performance is very good when the shifts are both large or both intermediate (for 

strong positive correlation) or a combination of large and intermediate shifts (except 

for low positive correlation). MUR also follows the same pattern as HAW but with 

slightly lower power. MUR performed better than HAW in most of the cases when at 

least one of the shifts is small.   

 

MTY and DFT performed lower or sometimes similar to MUR and HAW in 

most of the cases throughout the combinations of shifts in mean. Their performances 



62 

 

are very poor when the shifts are small. A good performance is shown when both of 

the shifts in mean are large. The power is higher for the strong positive correlation 

between variables and drop lower for moderate correlation than low correlation 

 

Some of the results in Tables 6 and 7 in Das and Prakash (2008) showed the 

performance for cases with shifts in mean in the same directions with low negative 

and moderate negative correlations between the variables. The observations on the 

performance for negative correlations are given by Das and Prakash (2008) as follows 

 

MTY and DFT 

i) ρ = -0.45  

  A satisfactory performance when the shifts in mean are large. The 

estimated power is far below average when at least one of the shifts is 

small. 

ii) ρ = -0.2 

 Perform at satisfactory level when both shifts in mean are large. The 

estimated powers are at an average level and lower than MUR and 

HAW. 

 

MUR and HAW 

 i) ρ = -0.45 

  MUR and HAW are not effective. 

 

ii) ρ = -0.2 

Both methods gained power when shifts in mean are large. 

Performance was better than MTY and DFT for an intermediate shift 

in at least one of the variables. 

 

 

This study would like to add that for ρ = -0.45 and the shifts are large, the 

performance of MTY and DFT methods are relatively lower than the cases with the 

shifts in mean in accordance with the correlation structure. The estimated power is 

more or less similar to the one with ρ = -0.2 for the shifts combination with at least 

one large shift. The estimated power is slightly or sometimes notably higher for          

ρ = -0.2 when no large shift in the shifts combination. 
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Methods MUR and HAW showed an extremely higher estimated power for    

ρ = - . , on the other for ρ = -0.45, both methods are not responsive. Figure 3.5 shows 

that MTY and DFT performed much better than MUR and HAW for negative low 

correlation for shifts combination (-3,-3) and approximately equal to HAW for 

combination (3, 2.5). For the rest of the shifts combinations, the power for MTY and 

DFT methods is lower than the other two methods. MUR is more superior than the 

other methods when there is at least one small shifts in one of the two aberrant 

variables. For moderate negative correlation, MTY and DFT show a good 

performance with MUR and HAW perform very poorly and in some cases, both 

methods are unresponsive when at least one of the shifts is large. 

 

 

 

Figure 3.5: The performance of the diagnostic methods with shifts in mean in the 

same directions with negative correlation between them. 
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3.4.3 The Effect of Correlation Structure, Sign and Strength 

 

Das and Prakash (2008) give a detail observation on the performance of the diagnostic 

methods with respect to the magnitude and the direction of the shifts. However, the 

authors didn’t directly relate the changes in power to the changes in the correlation’s 

strength and signs. This study took a step further to optimise the information available 

from the Das and Prakash (2008) simulation results. A few selected cases will be used 

to show the effect of correlation structure, sign and magnitude upon the power of the 

studied diagnostic methods. The discussion will focus on low correlation alone. There 

are six combinations of shifts in mean vector considered in this discussion. The shifts 

are (-3, 2.5), (3, 2.5), (-3, 1.5), (3, 1.5), (3, -1) and (-3, -1). The first two shifts 

intended for the investigation on the performance when the shifts are large and in 

accordance as well as not in accordance to the correlation structure. The third and the 

fourth shifts are for large and intermediate contaminants under the same two 

conditions and the last two shifts are when the shifts are large and small.  

 

 

The effect of the sign of the correlation value 

 

Based on close observation on each of the shifts (Table 7 and Table 8 in Das and 

Prakash (2008)), this study finds that MTY and DFT have similar power regardless of 

the sign of the correlation values except for combination of large and intermediate 

shifts. The power is appreciably higher for ρ =  . . This performance is similar for 

both cases, shifts in accordance and not in accordance with the correlation structure. 

On the other hand, MUR does not show any similar pattern of performance between 

the correlation signs. For H W, the power is higher for ρ =  .  e cept for the case 

with combination of large and small shifts. 

 

 We may conclude here, for all the studied shifts, MTY and DFT are not 

affected by the sign of correlation value except for the combination large and 

intermediate shifts. MUR seems affected by the correlation values but even so, the 

correlation structure is also suspected to play a role in the inconsistency of the power 

shown by MUR.  HAW also showed different power for different correlation signs 
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and the power is higher when the correlation is low positive except for the 

combination of large and small shifts. 

 

The effect of the correlation structures 

 

MTY and DFT showed a consistent pattern of performances where the power is 

higher throughout all the studied shifts when the shifts are in accordance with the 

correlation structure. The powers are also consistent and similar between negative and 

positive correlations except for a combination of large and intermediate which has 

been noted in the previous discussion. On the other hand, MUR and HAW showed 

appreciably higher power when the shifts are not in accordance with the correlation 

structure.  

 

 We may also conclude here, for all the studied shifts, there is a difference in 

term of performance pattern between MTY and DFT with the other two studied 

methods, MUR and HAW. MTY and DFT showed slightly better performance when 

the shifts are in accordance with the correlation structure whereas MUR and HAW 

performed much better when the shifts are not accordance with the correlation 

structure. Generally, another pattern that is noticeable for all the studied diagnostic 

methods is that the power decreased when one of the shifts reduced in magnitude.  

 

 

3.5 Discussions and Conclusion 
 

 

Studying the findings of Das & Prakash (2008), it is not difficult to realise that the 

performance of the tested diagnostic methods differs with respect to the level of the 

shift in mean from the target value.  Generally, the performance of the studied 

diagnostic method increases with the magnitude of the shift in mean. The comparison 

of performances between the diagnostic methods becomes more complicated when 

more than one variable deviated from its mean.  
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 It is quite difficult to single out one diagnostic method as the best for all 

combinations of shifts in mean across different types of correlation among variables. 

Even so, based on the comparative studies discussed previously, an appropriate 

diagnostic method can be selected with respect to the consistency of a particular 

diagnostic method’s performance across various shifts in mean combinations and 

correlation among variables. Even though HAW showed the best result when the 

shifts are not in accordance to the correlation structure (when the correlation between 

the variables are positive), its performance is inconsistent and often exceedingly poor. 

MUR and HAW especially seem very sensitive to the correlation between variables 

specifically to the sign of the correlation coefficient or the direction of the association 

between the process variables in which, in a real situations maybe unknown. This 

study suspects that the performance is not strictly depending on the direction itself, 

but on whether the shifts in mean vector agrees with the correlation structure between 

the variables.  

 

Generally, MTY and DFT have shown a consistent and better performance in 

most of the cases. Even though both methods showed higher power when the shifts in 

mean are in accordance with correlation structure, the power of the two methods 

between the two cases didn’t differ a lot unlike the powers shown by MUR and H W. 

DFT has been chosen to be included in the extended study in later chapters simply 

because of the simplicity and the practicality of the method against the complexity of 

the MTY procedures.  

 

The shifts in Das and Prakash (2008) study will be used for the new 

comparison study with a few precautions on several matters which arise when 

studying the authors’ simulation results. Firstly, we must provide a clear definition of 

m and n on equation [2.8] especially for the cases with two aberrant variables. 

Secondly, we must provide a clear definition of performance for the diagnostic 

methods and making sure no ambiguities arise in describing the power intervals in 

determining the level of performance of the studied diagnostic methods. Thirdly, we 

aim to maintain the focus of the results observation with respect to the effect of the 

shifts in mean and the correlation structures. 
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CHAPTER 4 

Extended Comparative Study 

 

 

 

4.1 Introduction 

 

This chapter provides an extended comparative study of some diagnosis methods for 

the multivariate control problem. Some of the ambiguities of the previous Das and 

Prakash (2008) are clarified and an additional method is included. Specifically, we 

include a new approach that utilising the ratio computation proposed by Maravelakis 

et al. (2002), hereafter referred to as the Ratio method. It is important to stress that, 

this study did not follow the approach proposed by Maravelakis et al. (2002) entirely. 

The focus is solely on the computation of the ratio. Since, the diagnostic method DFT 

has shown a consistent and good result in Das & Prakash (2008), it will be compared 

to the Ratio method with respect to their performance in identifying the correct 

aberrant variable(s). Beforehand, each diagnostic method will be discussed 

thoroughly in sections 4.2 and 4.3 to ensure a very good understanding of their 

procedures in implementing their approaches. Later sections will describe various 

stages of the comparative study, starting from the generation of the datasets, the 

identification of the out-of-control signal, and then performing both selected 

diagnostic methods to identify the aberrant variable(s) and finally comparing their 

performance. Section 4.5 presents the results of the comparison between the two 

methods. A further investigation of the Ratio method is carried out in section 4.6 to 

study the potential and the drawbacks of the method. Some discussion and 

conclusions are given in the final section of this chapter. 
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4.2 Doganaksoy, Faltin and Tucker Method 

 

The diagnostic method introduced by Doganaksoy, Faltin & Tucker (1991) is a 

univariate approach to interpreting the OOC signals produced by multivariate control 

charts. The approach is based on the calculation of univariate t-statistics. Figure 4.1 

illustrates the step by step procedure in implementing the method. Once the OOC 

signal is received, a primary diagnosis is carried out to see how likely each process 

variable is to have contributed to the OOC signal, then a secondary assessment 

decides whether contributions are significant.    

 

 

Figure 4.1: The flow chart of the process for the implementation of the DFT method. 

A univariate t-statistic in [2.5], 
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is produced for each variable and a relative measure, Kind =                 in 

[2.6] is computed and plotted as suggested by Doganaksoy, Faltin and Tucker (1991). 

The higher the Kind measure, the more probable the variable will be as being the 

source of the change in the mean vector, and so responsible for the OOC signal. 

 

In order to determine whether there is sufficient evidence to pinpoint specific 

variable(s) as aberrant, Doganaksoy, Faltin and Tucker (1991) recommended the use 

of Bonferroni type simultaneous confidence intervals as a supplement to the Kind 

measure. Another measure to represent the Bonferroni type confidence interval,     

KBonf = 
          

 
  in [2.7], is computed and compared to Kind..  Any component (one 

or more process variables) with its measure of Kind > KBonf is classified as being one 

whose mean is likely to have deviated from the in-control value. 

 

Doganaksoy, Faltin and Tucker (1991) clearly defined two measures of 

Performance in their findings. The performance measures are the percentage of 

ranking correct (Ranking Correct) and the percentage of Bonferroni correct        

(100K% Bonf. Correct). The computation of both performance measures are given 

below. 

 

  Ranking Correct = 
  

 OOCn

Tn max
x 100%             [4.1] 

 

  100K%  Bonf. Correct = 
 

 .VBonfn

VIn
x 100%                        [4.2] 

where,  

 

  Tn max = the number of the truly changed variable(s) having the largest absolute    

  univariate t statistic value 
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 OOCn    = the number of out-of-control signals triggered by a multivariate control 

  chart  

 VIn        =  the number of the truly changed variable(s) with violated intervals 

 .VBonfn  =  the number of violation of Bonferroni type simultaneous interval 

 

The performance is called a “selective power” in Doganaksoy, Faltin and Tucker 

(1991).  

 

 

4.3 Ratio Method 

 

The diagnostic approach proposed by Maravelakis et al. (2002) has a slightly different 

approach from the Ranking method. It is still a complementary method to the 

multivariate control charts in that is to be applied once OOC signal(s) are received. 

The similarity of this method with the Ranking method is that another measure is also 

to be computed for each of the process variable, which in this case a ratio [2.5].  

Instead of using a univariate approach, a principal component analysis, which is one 

of the multivariate analysis methods, is performed on the in-control dataset. The 

coefficients of the first PC or the first eigenvector of the in-control dataset provides a 

specific weighting to each of the process variables and is utilised in the ratio 

calculation. The coefficients are regarded by Maravelakis et al. (2002) as the expected 

contribution of each process variable in a normal process, or statistically stable 

process, condition.  

 

 Figure 4.2 below illustrates the implementation of the Ratio method once the 

OOC signal is triggered by a multivariate control chart. As explained in section 2.4.3, 

Maravelakis et al. (2002) proposed a ratio calculation on equation [2.4] for covariance 

matrices with positive covariance matrix.  The denominator of [2.4] is calculated by 

using the in-control mean vector and not by the observation vector, Xi for covariance 

matrix with mixed sign values. So it is not surprising when Maravelakis et al. (2002) 

does not recommend this method to be implemented on standardized values.  It is 

very clear to users that for the cases with positive and negative correlation in 

covariance matrix, the denominator will be zero in value and the ratio will end up 
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undefined. However, no further explanation or reasons given by                   

Maravelakis et al. (2002) regarding the necessity to have two different ratio 

calculations for two types of covariance matrices.   

 

This study would like to highlight that having two different methods for 

different type of covariance matrices shows the impracticality of the diagnostic 

method itself. The suggestion for not using the method for standardized data makes it 

difficult for the practitioners to use it since in many process control monitoring there 

are several process variables with different units involved. It is also indicates that the 

diagnostic method is not location invariant. Since this study used standardized values 

and there is no warning against the usage of [2.4] for simulated data from mixed sign 

variance covariance matrix, hence, this study used [2.4] for ratio calculation for both 

type of covariance matrices.  

 

 Generally, Maravelakis et al. (2002) proposed two steps of control charting. 

The first chart is a Hotelling’s multivariate control chart which has been referred to by 

Maravelakis et al. (2002) as a Chi-Square multivariate control chart.  This step as we 

already know is to identify any discrepancy in the process. Once the out of control 

condition detected then the ratio charting will follow. Unlike the Ranking method, the 

Ratio method is heavily depending on the control limits of the ratio charting. Since 

there are two Ratio computations to serve different type of covariance matrices, then 

it gives us two sets of control limits. The control limits for a Ratio chart of a 

multivariate process with positive correlations come from a Bivariate Normal 

probability distribution whereas the control limits for a Ratio chart of a multivariate 

process with positive and negative correlations come from a Normal probability 

distribution.  
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Figure 4.2: The flow chart on the process of the implementation of the Ratio method. 

 

Maravelakis et al. (2002) rely on the Average Root method (Jackson, 1990) in 

determining the number of principal component in which the first principal 

component alone is considered in the ratio calculation based on the fact that the first 

principal component contains the most information about the data. Hence, the ratio for 

variable k in observation i will be 

        
        

   
                                                          [4.3] 
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where,  

                   = the i-th value of variable-k 

         = the coefficient of the eigen vector for variable-k 

                     = the score for vector    in the first principal component    

 

In this study, the ratios will not be plotted with the control limits to identify the 

aberrant variables but merely assessed against them numerically. As stated by 

Maravelakis et al. (2002), the ratio represents the contribution of variable k in 

observation i, therefore this study tried to adopt Doganaksoy, Faltin and Tucker 

(1991) approach by ranking the contributions of each variable in an observation. The 

ratios are treated as the weight of a variable in an observation (Maravelakis et al., 

2002). The higher the weight of the variable, the more likely it is aberrant. Instead of 

studying whether the ratios are within the control limits, we are now ranking the ratio 

of each variable based on its contribution in an observation.  

 

 

4.4 Simulation Study 

 

Datasets 

Diagnostic methods are studied by simulating data from multivariate normal 

distribution. The in-control mean vector, µ and variance covariance matrix, Σ are 

assumed known. There are two covariance matrices considered in this simulation 

study. The covariance matrices,    and   , are two of the four covariance matrices 

introduced in Doganaksoy, Faltin and Tucker (1991). Doganaksoy, Faltin and Tucker 

(1991) stated that “the covariance matrices were carefully chosen so as to cover a 

wide range of possible situations”.  
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Each observation generated is treated as an individual potentially aberrant observation 

presented to a multivariate control chart (we do not examine treatment of sequences 

of observations or attempt any control actions or chart modification). Figure 4.3 

below represent the flow of this comparative study.  

 

 

Figure 4.3:  Flowchart of the programming work 
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Out-of-control observations are generated from multivariate normal 

distribution with a contaminated mean vector. A contaminant is introduced in the 

mean vector to enable contaminated observations to be generated and so trigger OOC 

signals. A contaminant refers to a mean shift in one or more variables in the mean 

vector. We consider three types of mean deviation or shift(s) in mean; Type I refers to 

shift of mean of one variable; Type II to shifts in mean vector of two process variables 

in the same direction, and Type III to shifts in mean on two process variables in 

opposite directions (this is of interest since we suspect a dependence of performance 

on whether shifts ‘agree with’ or ‘contradict’ the correlation structure. The 

contaminated process variables are process variable 1 and, in Type II and III, process 

variable 3. The diagnostic methods are performed on 5000 out-of-control individual 

multivariate observations from each combination of correlation matrix and type of 

shift(s) in mean vector. We subject each generated observation to a standard 

Hotelling’s T
2
 test to establish whether it can be deemed OOC or not. The simulation 

proceeds until 5000 OOC observations have been detected. In some cases we needed 

to generate substantial more than 5000 observation to achieve to achieve this as such 

random shifts in mean will not be detected. However, it makes performance 

comparison much easier if the number of times the diagnostic method is employed is 

holds constant. The simulation is done in R-programming. 

 

In this preliminary comparison study, most of the simulation format of 

Doganaksoy, Faltin and Tucker (1991) is followed, as well as the size of the shift 

used, which is fixed at 2 or -2. One thing that differs is the value for n in equation 

[2.8]. In this preliminary comparison study, the number of OOC observations is fixed 

at 5000 whereas in Doganaksoy, Faltin and Tucker (1991), the value is varies with 

respect to the shift(s) in the mean vector and correlation matrices. This study believes 

that by making the number of OOC observations similar throughout different shifts in 

mean vector, the comparison between the correlation matrices can be made easily and 

clearly. 

 

Performance of the diagnostic method explained previously is assessed by 

calculating the percentage of the correct identification as proposed by Das and 

Prakash (2008) and shown in [2.8]. In this study, we would like to give a clearer 
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definition for the performance of the diagnostic methods in which hereafter called as 

Power (P) and define as  

             
         

      
100              [4.4]                     

where   

n(OOC)   = the number of times T
2
 detects the shift or out-of-control   

observations 

n(detect)   = the number of times the aberrant variable(s) is detected as 

aberrant by a diagnostic method 

A diagnostic method is considered to be successful in detecting the right aberrant 

variable(s) when the aberrant variable(s) has the highest “value” among all the 

variables. The “value” here is referring to the ratio [2.4] or K_ind [2.5]. For shift in 

mean Type I, a diagnostic method is considered successful in detecting the correct 

aberrant variable when variable 1 has the highest ratio or K_ind among all variables. 

Whereas for shifts in mean Type II and Type III, a diagnostic method is considered 

successful in detecting the correct aberrant variable when variable 1 or variable 2 has 

the highest ratio or K_ind value among all variables. The percentage results are 

studied to identify any pattern of sensitivity towards the type of shift and correlation 

among variables. 

  

4.5 Results 

 

The results of the preliminary investigation are divided into separate sections to 

maintain a clear and easy understanding of the results. Basically, all the results are 

compared between two types of correlation matrices, and three types of mean shifts. 

The results from both diagnostic methods are compared with respect to these two 

factors. The following results will show that something unsatisfactory for one of the 

methods with one particular correlation matrix. Figure 4.4 illustrates the percentage of 

correct identification for both methods with three types of shift, single deviated 

variable (Type I) and two deviated variables (Type II and Type III) with respect to 

correlation matrices.    
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Figure 4.4: The distribution of Power (%) for method DFT and Ratio with respect to 

three different Types (I, II, III) and 2 correlation matrices (  ,   ). 

 

 In general, Figure 4.4 showed that the power is increasing throughout the type 

of the shifts in mean. The power for each method for different correlation matrix is 

lower for Type I and increasing a bit in Type II and so forth. The DFT and Ratio 

methods have quite similar power and increasing from Type I to Type III when the 

correlation matrix is   . However, the power of the Ratio method is appeared to be 

considerably lower than the DFT method when the correlation matrix is    for each 

type of shifts in mean. The power distribution of both methods across different types 

of shifts in mean and correlation matrices is studied closely. The difference in power 

with its corresponding 2 estimated standard error with respect to the diagnostic 

methods, correlation matrices and the types of shifts in mean is given in Tables 4.1 

and 4.2. 

 

Power Comparison between the Diagnostic Methods 

Table 4.1 shows the difference in Power (%) between the DFT and the Ratio methods 

with respect to the correlation matrices and the types of shifts in mean. For correlation 

matrix   , there is small and not significant difference in power (%) between the two 

diagnostic methods for shifts in mean Type I and Type II. For Type III shifts in mean, 

there is also a small difference in power (%) between the two methods but the 

difference is found to be significant. 

 

 

c1 c2 c1 c2 c1 c2 

Type I Type II Type III 

DFT 80.10 75.68 87.84 94.78 98.84 95.52 

Ratio 79.82 58.34 86.50 76.24 97.92 75.42 
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Table 4.1: The distribution of the Power Difference (%) between the diagnostic 

methods 

 

      

 

(pDFT –pRatio)% 2(S.E.)% (pDFT –pRatio)% 2(S.E.)% 

Type I 0.28 1.60 17.34 1.85 

Type II 1.34 1.34 18.54 1.36 

Type III 0.92 0.50 20.10 1.35 

 

 

 However for the correlation matrix   , Table 4.1 shows that the difference in 

power between the two diagnostic methods is considerable. The DFT method 

consistently shows a significantly higher power than the Ratio method throughout the 

different types of shifts in mean. The largest difference is for shifts in mean Type III 

where the mean of the aberrant variables shifted in opposite directions. 

 

Power Comparison between the Correlation Matrices 

Table 4.2 shows the power difference of the diagnostic methods with respect to the 

different correlation matrices and the types of shifts in mean. Table 4.2 (a) provides 

the difference of power (%) for DFT method with correlation matrix    and the same 

diagnostic method with correlation matrix,   .  

 

Table 4.2: The distribution of the Power Difference (%) between correlation matrices 

DFT (pc1-pc2)% 2(S.E)% 

Type I 4.42 1.66 

Type II -6.94 1.12 

Type III 3.32 0.66 

 

(a) 

Ratio (pc1-pc2)% 2(S.E)% 

Type I 21.48 1.80 

Type II 10.26 1.54 

Type III 22.5 1.28 

 

(b) 

 

 

 Table 4.2 (b) shows the power difference for the Ratio method between the 

two correlation matrices for each type of shifts in mean. The differences in power (%) 
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for DFT method between the two correlation matrices are considered small. The 

differences in power for each type of shifts in mean are within ± 7%. Even so, the 

difference in power (%) is found to be significant with respect to 2 standard errors in 

power (%) difference. Table 4.2 (a) showed that the power of the DFT method with 

correlation matrix    is found to be significantly higher compared to the power of 

DFT method with correlation matrix    for shifts in mean Type I and Type III. On the 

other hand, the power of the DFT method with correlation matrix    is significantly 

lower than the power of the diagnostic method with the correlation matrix    for shifts 

in mean Type II. 

 

 The power difference (%) for each type of shifts in mean shown in Table 4.2 

(b) is much larger than the one shown in Table 4.2 (a). It indicates that the power of 

the Ratio method is very much affected by a correlation matrix. The power of the 

Ratio method with correlation matrix    is significantly higher than the power of the 

diagnostic method with correlation matrix   . Unlike the DFT method, the power of 

the Ratio method with correlation matrix c1 is consistently higher than the power of 

the diagnostic method with correlation matrix    throughout all the types of shifts in 

mean.  The highest power difference (%) is shown by the shifts in mean Type III and 

closely followed by the shifts in mean Type I.  

  

 

4.6  Further Investigation of the Ratio Method                                                                                                                                                                                                                                                  

 

The results shown in Figure 4.4 have illustrated that in certain situations the Ratio 

method fails and hence poor power results are produced.  The peculiar results only 

happen when correlation matrix    is used. Table 4.2 (b) has shown a large difference 

in power (%) for the Ratio method when different correlation matrices is used. A 

further study of the effect of the correlation matrices is given below. 
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4.6.1 The Effect of Correlation Matrix Structure 

 

The theoretical eigenvalues and eigenvectors were obtained for both correlation 

matrices and are shown below in Table 4.3. First of all, focus on the theoretical 

eigenvalues between correlation matrix    and   . It is clear from Table 4.3 that the 

first and the second eigenvalues of correlation matrix    are far apart whereas for 

correlation matrix   , the first and the second eigenvalues are very close together. We 

suspect that the cause of the peculiar results is due to this closeness between the first 

two eigenvalues. 

 

Table 4.3: Theoretical eigenvalues and eigenvectors for    and   . 

 

Correlation Matrix 

  
c1 c2 

Eigenvector 

 

1 2 3 4 1 2 3 4 

Eigenvalue 

 

2.855 0.555 0.432 0.158 1.554 1.452 0.946 0.048 

Loadings var. 1 -0.521 0.407 0.403 0.633 0.540 0.482 -0.457 0.518 

 

var. 2 -0.522 0.510 -0.136 0.671 -0.457 0.518 -0.540 -0.482 

 

var. 3 -0.488 -0.323 -0.758 0.288 -0.457 -0.518 -0.540 0.482 

 

var. 4 -0.467 -0.686 0.495 -0.258 0.540 -0.482 -0.457 -0.518 

 

 Since the sample eigenvalues have appreciable standard errors then there is a 

possibility that if the population values are close together the sample values could be 

in the wrong order. Unfortunately, the standard error of eigenvalues from correlation 

matrices seems to be unavailable (Anderson, 1993) but for eigenvalues from 

covariance matrices Anderson gives the standard error as    
 

 
  where      is the ith 

sample eigenvalue based on a sample of size n. The standard error of correlation 

matrix eigenvalues will be of a similar order of magnitude and it is clear that if two 

eigenvalues are close together then for moderate sample sizes there is a possibility 

that the sample values are not in the same order as the population ones. This would 

lead to the ‘wrong’ eigenvector being selected. 
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4.6.2 The Inner Product of the First Theoretical and Sample 

Eigenvectors 

 

This study tries to find the risk or the probability that a random sample from a 

multivariate normal distribution with a specified theoretical covariance matrix has a 

sample covariance whose eigenvalues have swapped around. The computation of the 

inner products is done to investigate whether the two eigenvectors have the same 

direction. The inner products values are always between -1 to +1. If the two vectors 

are in the same direction, the inner product will be close to +1 or -1. Inner product -1 

means the eigenvectors going in the same line, but one in the reverse direction (out by 

180
0
).  

 

More interestingly, if the inner product is 0, this means the two eigenvectors 

are orthogonal. Thus, values for the inner product between the first sample principal 

component (PC_S) and the first theoretical principal component (PC_T) which are 

close to 0 suggest that it is a sample value of the ‘wrong’ principal component 

because all principal components are, by construction, orthogonal. The issue is 

investigated by simulation. A random sample size is fixed at 50 and the two 

theoretical scaled covariance matrices,    and   , are tested. The simulation is done 

for 5000 times, the inner products of the first eigenvector of the sample covariance 

matrix with the actual first eigenvector of the theoretical covariance matrix are 

recorded.  

 

Figure 4.5 (a) shows the frequency distribution of the inner products between 

the first eigenvectors of the sample covariance matrix with the actual first eigenvector 

of the theoretical covariance matrix   .Whereas Figure 4.5 (b) shows the frequency 

distribution of the inner products between the first eigenvectors of the sample 

covariance matrix with the actual first eigenvector of the theoretical covariance matrix 

  .   
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(a) 

 

(b) 

Figure 4.5:  The frequency distribution of inner products between the first theoretical 

eigenvector from correlation matrices    and    with the first sample eigenvector.  

  

Figure 4.5 indeed shows an interesting and useful result. First let us assumed 

that for inner products within the interval (-0.75. 0.75) indicate swapping and values 

in the range (-1, -0.75) and (0.75, 1) indicate no swapping. Figure 4.5 (a) showed 

clearly that all the inner products are close to ± 1. Based on the assumption, shows no 

swapping. On the other hand, Figure 4.5 (b) showed the inner products are distributed 

throughout all the intervals. Even though nearly half (41.6%) of the inner products 

within the (0.75, 1) interval and some (11.6%) are within the (-1, -0.75) interval, there 

is also a considerable percentage (46.8%) outside the two intervals. This indicates a 

high risk or possibility of swapping between the eigenvectors.   
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4.7  Discussions and Conclusions 

 

Many multivariate methods rely on identifying the eigenvalues of a covariance matrix 

and then the associated eigenvalues. Some rely on picking out particular, ordered 

vectors. The Ratio method is such a method. For some covariance matrices, two or 

three eigenvalues can be similar. Thus, in sample versions of them, we may see 

‘swapping’. A result is that the associated eigenvectors are not in orientations close to 

those of the corresponding eigenvectors of the true (theoretical) covariance matrix. 

Since eigenvectors are, by construction, orthogonal, this can lead to quite different 

directions for what is labelled ‘the k-th eigenvector’. Matrix    is a matrix with this 

property.  

 

The effect on the power of the Ratio method will also depend on the particular 

aberrant value. If the potential aberrant value was in a direction lying almost equally 

in between the two eigenvectors of    which are liable to swap over, then the power 

would not be so badly affected as when the aberrant value was in a direction that was 

parallel to one eigenvector but orthogonal to the other that it is swapping with.  

 

The inconsistent performance of Ratio method, depending upon the factors 

discussed previously, indicates the instability of the method itself. The inconsistent 

results which have been illustrates by two different structures of correlation matrix, 

shows that the Ratio method has defects and sometimes during the identification of 

the aberrant variable, the “wrong one” is selected. When the two largest population 

eigenvalues are very close together, it makes the identification of aberrant variables 

almost impossible. 

 

 This particular situation with regards to eigenvalue and eigenvector in 

principal component analysis has been discussed by a few researchers. Zhang et al. 

(1997) has mentioned that when two eigenvalues are too close together, the 

corresponding eigenvector will be hardly distinguishable.  Quadrelli et al. (2005) also 

stated that “the magnitude of the sampling error with a single eigenvector is depends 

on how much it tends to mix with each of the other eigenvectors of the sample”.  
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One might test the eigenvectors first as to whether they are informative 

enough before performing the ratio calculation by looking at their 95% confidence 

limits (Jackson, 1993 & Mehlman et al., 1995). On the other hand, one might first 

determine the typical mixing between pairs of eigenvectors by looking at the ratio 

between corresponding eigenvalues (Quadrelli et al., 2005). In practice, the user needs 

to check that the eigenvalues are sufficiently distinct for them to be estimated in the 

correct order with possibly very small sample sizes (i.e less than 10). However, it is 

impractical to limit applicability of the Ratio method further in this way and we must 

conclude that the usage of ratio calculation as suggested by Maravelakis et al. (2002) 

to diagnose aberrant variable from multivariate Hotelling’s T
2
 control chart signal is 

not advisable and should not be taken. 
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CHAPTER 5 

New Approach with Union Intersection Test 

 

 

 

5.1  Introduction  

 

In this chapter, we discuss a technique in Union Intersection testing and how it relates 

to a new approach to our key diagnosis problem. The diagnostic task starts when a 

multivariate Hotelling’s Control chart triggers an out-of-control (OOC) signal. An 

OOC signal indicates a process is no longer statistically stable and it happens when an 

observation plotted on a multivariate control chart falls beyond the upper control limit 

(UCL).  It indicates that the observation has deviated sufficiently far from the in-

control mean value to trigger the chart alarm. Since the multivariate observation is a 

composite measure based on all p variables, a multivariate Hotelling’s control chart 

can only give an indication that a process is no longer statistically stable and is unable 

to pinpoint which variable(s) caused the alarm.  

 

 In this chapter we shall discuss to applying a new method which embraces the 

Union Intersection principle to diagnosing the OOC observation, i.e. identifying the 

variables(s) responsible for the OOC signal. Throughout the discussion in this 

chapter, the in-control mean vector and covariance matrix of the process is assumed 

known or very well estimated. Section 5.2 gives a brief introduction to the Union 

Intersection Test itself following the arguments of Mardia, Kent & Bibby (1994). 

Section 5.3 briefly discusses the application of the Union Intersection Test in a 

diagnostic problem. A preliminary simulation study is outlined in 5.4 with the results 

presented and discussed in 5.5.  Section 5.6 investigates further on the results obtained 

in section 5.5 by looking at the identification by variables. The chapter concludes with 

the discussion of the strengths and the weaknesses of the proposed approach. 
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5.2  Union Intersection Test 

 

The Union Intersection principle was first introduced by Roy (1953, 1957). A test 

involving the breaking down of a complicated hypothesis into the intersection of 

simpler hypotheses is identified by Casella and Berger (1990) as union intersection 

testing.  Union intersection testing projects data into a particular single direction and 

tests the hypothesis in that particular direction. The direction chosen is that which 

shows the greatest deviation from the null hypothesis. The validity of this procedure 

relies on the Cramer-Wold Theorem. Consider a random vector, x, which has the 

        distribution and a non-random p-vectorβ . 

 

Theorem 5.1 (Cramer-Wold) 

 The distribution of a random p-vector x is completely determined by the set of all 

one-dimensional distributions of linear combinations β x, where 
pβ  ranges 

through all fixed p-vectors (see, for example, Mardia, Kent & Bibby, 1994). 

 

 The theorem establishes the connection between the set of all one-dimensional 

projections and the multivariate distribution. In other words, it implies that a 

multivariate probability distribution can be defined completely by specifying the 

distribution of all its linear combinations, though not just the marginal distributions.  

 

5.2.1 Composite and Component Hypotheses 

Consider again a random vector, x, which has the  0Σμ,pN  distribution and a non-

random p-vector β. The mean vector, 0μ , is called the target value or the in-control 

mean vector and the variance covariance matrix, Σ0 , is assumed known. The p-vector 

x can be written as  

                                       x  =  
pxxx ...,, 21                                                    [5.1] 

 

Then with β for any non-random p-vector: 

        yβ  = β x 

                                                        =   ppxxx  ...2211 ; a scalar                 [5.2] 
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Suppose that we wish to test the mean of a process, the hypothesis statements for the 

test are given as 

           versus         .                                     [5.3] 

 

Under this composite null hypothesis 0H , by the Cramer-Wald theorem, 

                                     
                                                       [5.4]  

 

Expression [5.4] is true for all p-vectors β. The null hypothesis for every β is a 

univariate null hypothesis. It is called a component of    or a component 

hypothesis,   . Thus, in union intersection tests, the multivariate null hypothesis    

can be written as the intersection of the set of all univariate hypotheses,    , as shown 

below. The    represents the intersection of all null hypotheses over β 

 

                                                                                                                   [5.5] 

 

5.2.2 Acceptance and Rejection Regions 

 

The intersection sign in [5.5] indicates that all of the component hypotheses must be 

true in order for the composite null hypothesis    to be true. Let a test on any 

component hypothesis     be carried out.  Suppose that we wish to test the 

hypothesis         so, the component null hypothesis is             . The 

common test statistic for this problem, for observation given in [5.2] and with mean 

vector and covariance matrix given in [5.4], is  

 

        
         

        
                                   [5.6] 

 

This test statistic has the standard normal distribution. The test statistic z  needs to be 

sufficiently extreme to enable the hypothesis test to reject the component null 

hypothesis,    . The rejection region for     based on z would be of the form 
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where    is some suitably chosen critical value. To simplify by removing the 

modulus, the rejection region for every component hypothesis can also be written as 

          
    

  
. 

 

Since the composite null hypothesis    would be true if and only if all the component 

hypotheses     are true, it is appropriate to say that   would be rejected if any of the 

component hypotheses is rejected. So, the rejection region for the composite null 

hypothesis, R  can be written as 

                             [5.7] 

 

The relationship between the acceptance regions and the rejection regions which are 

presented by the intersection of the component hypotheses given by [5.5] and the 

union of the rejection regions given by [5.7] respectively, provide the basis of the 

union intersection strategy (Mardia, Kent & Bibby, 1994) which has been introduced 

earlier by Roy (1957) and will now be applied in our new approach to the diagnosis 

problem of the out-of-control signal triggered from a multivariate control chart. 

  

5.2.3 Union Intersection Test Statistic 

 

We note that [5.6] can also be expressed as, 

 

      
  

                

     
                       [5.8] 

 

Expression [5.8] has an exact   
  distribution under     and so   

  is the chi-squared 

statistic for the union intersection test (UIT).  
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5.2.4 Hypothesis Testing 

 

The null hypothesis   is not rejected if and only if    
   ≤ 2

0c  for all    or equivalently,

  

             
   =  

                

     
     

                        [5.9] 

 

Thus, the component hypothesis     is rejected if and only if the statistic given by 

[5.9] is sufficiently large and exceeds 2

0c .  

          
    >  2

0c  

 

In fact, in most cases we have pre-standardized our variance so that    , in which 

case considering a case of individual observations in a multivariate process 

monitoring and by assuming that 0βμ 0, the test statistic in [5.9] becomes; 

 

                                  
    =  

βΣβ

βxxβ

0



                           [5.10] 

 

The Union Intersection strategy based on [5.5] and [5.7] leads to a rejection of the 

composite hypothesis,   .  Therefore, this case is clearly a maximization problem and 

we are able to solve it directly. 

 

5.2.5 Maximization Problem 

 

A Lagrange function,  x  with a Lagrange multiplier,   is introduced for this 

maximization problem subject to a constraint, 1 βΣβ 0 . The maximization problem 

therefore can be set up with one Lagrange multiplier as follows 

 

 maximize   x  =   1 βΣββxxβ 0

'''     with respect toβ .                [5.11]     

 

By differentiating  x  with respect toβ  
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β

x




 =    1




βΣββxxβ

β
0           [5.12] 

        =  βΣβxx 022   

By setting  
  
β

x




= 0, the maximising value of β is β

*
 where 

                    ** 2.2 βΣβxx 0  = 0 

                     **
βΣβxx 0  = 0 

 

or 

            
**1

0 ββxxΣ 
 = 0          [5.13] 

 

Expression [5.13] shows that β
* 

is the right eigenvector of the positive 

definite matrix 1

0Σ
 xx'.  The maximum of βxx׳β given βΣβ 0

 = 1 is attained when β
*
 

is the eigenvector of 1

0Σ
 xx' corresponding to the largest eigenvalue of 1

0Σ
 xx'. Thus, 

if   is the largest eigenvalue of 1

0Σ
 xx' then subject to the constraint βΣβ 0

 = 1,    


max βxxβ  =   (Mardia, Kent & Bibby, 1994). In other words, the maximum of 

objective function [5.11] is the largest eigenvalue of matrix 1

0Σ
 xx' and is achieved at 

the corresponding eigenvector β
*
. 

 

 5.2.6 UIT Direction 

 

Differentiating  x  with respect toβ  in [5.11] shows that β satisfies [5.13] when  

β = xΣ
1

0

              [5.14] 

 

By substituting [5.14] into [5.13], it can be shown that  

     xΣλxΣ.xxΣ
1

0

1

0

1

0

  = 0 

hence that  

 =    0

1

00 μxΣμx 


             [5.15] 

or in the case with 0βμ 0 then   =    xΣx
1

0


.  
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  The UIT has an advantage where it can provide details about the 

reasons for rejection of    
(Mardia, Kent & Bibby, 1994). So, if    is rejected, when 

the statistic in [5.10] is sufficiently large, then one can tell the direction of deviation is 

along the vector xΣ
1

0

 . We can interpret this direction by looking at the magnitude of 

the loadings on the individual components of the vector xΣ
1

0

 . In other words, we are 

not just looking in the direction of x (or  0μx   for 0μ0  ), but we are also taking 

into account the differing variances of the components of 1

0Σ
 .  

 

5.3  Application to the Diagnosis Problem 

 

In the diagnosis problem in statistical process monitoring for individual observations, 

we study the multivariate observation that triggered the signal in a multivariate 

control chart. The multivariate observation has to be sufficiently large to trigger the 

signal and this has been explained in sections 5.2.3, 5.2.4 and 5.2.5. Based on the 

sections 5.2.1 and 5.2.2, we can ask and find out which variables actually caused the 

signal.  Instead of going back from a multivariate test to a univariate approach in 

order to identify the responsible component(s) or variable(s) that caused the out of 

control signal, we can go further with the multivariate test statistic itself in [5.10]. 

What we need to do is look at the eigenvector of the maximization problem in [5.13].  

 

The identification of the largest deviated component(s) is proposed by looking 

at the loadings of the vector. This new method is known hereafter as the “largest 

deviation”, method or in short LD, method. The identification of the aberrant variable 

in the LD method is based on the loadings of the components in vector u which is 

defined as 

  u = xΣ
1

0

                   [5.16] 

 

5.4      Simulation Background 

 

A few data sets of n individual p-dimensional observations, 
1px , were generated from 

the multivariate normal distribution using R (programming language) routine 

mvrnorm( ) preceded by set.seed ( ) with seed 2014.  The datasets are distinguished 
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from each other by their mean vector, later defined as contaminated mean vector, used 

in the mvrnorm( ) procedure. 

 

 The mean vector, 0μ , and the variance covariance matrix, 0Σ , of the 

multivariate process are assumed known. A contaminant, c is introduced to selected 

process variable(s), which represented in a contaminated mean vector, cμ . Typically 

most of the elements of c are zero with only a few elements non-zero, indicating that 

the out-of-control state is attributable to just those few variables. 
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 The n individual p-dimensional observations, 
1px , were generated with a 

specific contaminated mean vector until 5000 out-of-control observations obtained. 

The proposed method, LD method, along with the other two diagnostic methods, DFT 

and Ratio, is carried out on the 5000 out-of-control observations. 

 

 

5.5  Preliminary Study  

 

The main purpose of this investigation is to study the performance of the proposed 

method given in Section 5.3 compared to the other two selected methods, DFT’s 

method and the Ratio method, as given in [2.7] and [4.3] respectively. The 

performance of the diagnostic methods in this section is solely based on one criterion 

which is the percentage of correct identification given by [2.8]. The correct 

identification is defined as the identification of the contaminated process variables as 

the responsible variable for the out-of-control (OOC) signals.  
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 This preliminary investigation can be divided into two parts. The first part 

employed correlation matrices used by Doganaksoy, Faltin and Tucker (1991) and the 

second part utilised four correlation matrices used by Das and Prakash (2008).  Each 

part has four separate cases as listed below: 

 

i) Case I - is the case when only one process variable is contaminated which 

is process variable 1.  

ii) Case II – variable 1 and variable 2 are both contaminated with negative 

contaminants in different sizes.  

iii) Case III – the same variables, variable 1 and variable 2 are contaminated 

and this time with positive contaminants in different sizes.  

iv) Case IV - the same variables, variable 1 and variable 2 are contaminated 

but this time in opposite directions. One of the variables has a positive 

contaminant and vice versa. 

 

 In Case I, the performance is determined by calculating the number of times 

of variable 1 been identified as the most likely been the aberrant variable. The highest 

value of the univariate t-statistic in the method proposed by Doganaksoy, Faltin and 

Tucker (1991) will indicating that a particular process variable is most probably the 

responsible variable causing the out-of-control signal in the multivariate Hotelling’s 

control chart. Whereas, in the Ratio’s method and the proposed method, the highest 

ratio and the highest coefficient of the largest deviation vector will indicates the 

aberrant variable respectively. The performance of the other three cases is calculated 

by the total number of variable 1 or variable 2 having the highest value of ratio or 

coefficient of the largest deviation vector. 

 

 The first part is conducted to see whether all the tested diagnostic methods 

show a similar and consistent performance under equi-correlation matrices (Part 1) 

and the second part is conducted to see the performance of the diagnostic methods 

under two types of correlation matrix (Part 2) which are considered as the more 

realistic correlation matrices.  
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Part 1 - Datasets with Equi-Correlation Matrices 

Four equi-correlation matrices are used in this first part of the investigation, with a 

unit variance and correlation values of -0.2, 0.2, 0.5 and 0.8.  The combinations of the 

mean shifts of the variables are also taken from the study done by Das and 

Prakash(2008). This is to maintain the structure and the consistency of the simulation 

work. 

 

Part 2- Datasets with Non-Equi Correlation Matrices 

Datasets were generated with contaminants introduced into mean vector, 0μ . A 

similar combination of the shifts in mean as in Das and Prakash (2008) and the 

covariance matrices used in Doganaksoy, Faltin and Tucker (1991) and shown in 

Section 4.4 were used. Doganaksoy, Faltin and Tucker (1991) stated that “the 

covariance matrices were carefully chosen so as to cover a wide range of possible 

situations” but no further explanation provided on the covariance matrices selection. 

This study only chose one of the three proposed covariance matrices with positive 

correlations between variables. The other two covariance matrices are not chosen 

because a pair of the variables has correlation value equal to 0.                    

 

5.5.1 Power with Equi-Correlation Matrix 

 

As stated before, this study used the correlation matrices used by Das and Prakash 

(2008) in this second part of the simulation study. The difference is Das and Prakash 

(2008) used 5 difference correlation matrices with ρ = -0.45, -0.2, 0.2, 0.5 and 0.8. 

This study only used four out of five correlation matrices used by Das and Prakash  

with the ρ = -0.2, 0.2, 0.5 and 0.8. It is not possible to use correlation matrix with       

ρ = -0.45 in this study since it gives a non positive definite matrix for p = 4.               

It is easy to show that the determinant of the     equi-correlation matrix is                          

                     so we must have    
  

     
  otherwise the matrix is not 

positive definite. 

 

Case I 

There are four correlation matrices considered under this case and Figure 5.1 depicts 

the distribution of power of the three diagnostic methods for low correlation matrices. 
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The general pattern that can be seen from Figure 5.1(a) and Figure 5.1(b) is that the 

power for all the diagnostic methods is reduced when the shift in mean vector for 

variable 1 decreases in magnitude regardless of the direction of the shift. The 

proposed method LD has showed a good and similar result to the DFT method. Both 

methods have power much higher than the Ratio method. The Ratio method 

performed lowest throughout all the shifts in mean for both types of correlation 

matrix. 

 

(a) 

 

(b) 

Figure 5.1: The distribution of the estimated power between the diagnostic methods 

when the correlation is low with respect to various contaminant values in variable 1. 

 

 The power for the LD and DFT methods in Figure 5.1(a) is similar to the 

power shown in Figure 5.1(b). This indicates that both methods are not affected by the 

sign of the low correlation. On the other hand, the Ratio method showed an 
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appreciable difference in power between these two correlation matrices. The power of 

the Ratio method shown in Figure 5.1(b) is much higher than the power shown in 

Figure 5.1(a). This indicates that the Ratio method did not performed equally under 

the two correlation matrices. The power is higher when the values of the low 

correlation matrix are positive. Figure 5.2 shows the distribution of power between 

the three diagnostic methods throughout various shifts in mean vector for variable 1.  

 

For higher correlations, Figure 5.2(a) depicts the power when the correlations 

between the variables are moderate positive with ρ = 0.5 and Figure 5.2(b) when the 

correlations between the variables are strong positive with ρ = 0.8. The general 

pattern that can be seen from Figure 5.2(a) and Figure 5.2(b) is the same as shown in 

Figure 5.1. The power of all the diagnostic methods decreased when the shift in mean 

vector for variable 1 is reduced in magnitude.  

 

The proposed method LD has showed the highest power compared to the other 

two diagnostic methods in both Figure 5.2(a) and Figure 5.2(b) for every shift in mean 

vector for variable 1. The LD power is consistently higher in Figure 5.2(b) than in 

Figure 5.2(a) for every shift in mean.  This indicates that the performance of the LD 

method improves when the correlation between the variables is stronger.  

 

For the other two methods, both of them performed quite similarly especially 

when the correlation between the variables is equal to 0.8.  n Figure 5.2(a), the DFT 

method showed slightly higher power than the  atio method for a few shifts in mean 

vector such as (1.5,0,0,0)  and (2.5,0,0,0) . However, in Figure 5.2(b) the power of the 

two diagnostic methods are very close. The DFT and the Ratio methods do not share 

the same consistent improvement in performance with higher correlation as shown by 

the proposed LD method. For smaller shifts, their power is higher when the 

correlation between variables is strong positive, but for the intermediate and large 

shifts in mean, the DFT method showed a higher power when the correlation is 

moderate positive. However, the Ratio method does not showed any specific pattern 

in its performance for the intermediate and large shifts in mean. 
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(a) 

 

(b) 

Figure 5.2: The distribution of the estimated power between the diagnostic methods 

when the correlation is medium and high with respect to various contaminant values 

in variable 1.  

 

Case II 

Figure 5.3 shows the distribution of power between the three diagnostic methods with 

respect to various combinations of shifts in mean vector with negative contaminants 

introduced in variables 1 and 2. Figure 5.3(a) showed the distribution of power 

throughout 5 combinations of shifts in mean when the correlation between variables is 

low negative (ρ = -0.2) and Figure 5.3(b) when it is low positive (ρ = 0.2).  

 

 In general, both figures, Figure 5.3(a) and Figure 5.3(b) show as expected, a 

lower power for the combination of small shifts in mean for variables 1 and 2. The 

power increases when at least one of the shifts increases in magnitude. Figure 5.3(a) 
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showed that the power of the Ratio method is considerably lower than the other two 

methods. Figure 5.3(b) also showed the same performance pattern for the Ratio 

method but with smaller difference in power between it and the other two methods.  

 

 The proposed LD method has the highest power when the correlation is low 

negative (Figure 5.3(a)) except for the combination of shifts in mean (-3,-3). The 

power is the same with the power shown by the DFT method for that combination of 

shifts in mean. The power of the DFT is very close to the LD method for the other 

combinations of shifts in mean.  

 

 Figure 5.3(b) showed that the DFT performed best among the three methods 

when the correlation between the variables is low positive. However, the power of the 

LD method is quite close behind the DFT method especially for the combination of 

big and small shifts in mean. The power shown by both methods are higher in Figure 

5.3(a) but the difference is considered small except for the combination of small shifts 

for the LD method. On the other hand, the Ratio method showed a higher power in 

Figure 5.3(b) and the power difference between the two figures for the Ratio method 

is appreciably large except for the combination of small shifts in mean.  
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(a) 

 
(b) 

 

Figure 5.3:  The distribution of the estimated power between the diagnostic methods 

for low correlation matrices with respect to various shifts in mean with negative 

contaminant values in variable 1 and variable 2. 

 

 

 Figure 5.4(a) and (b) shows a power distribution between the three diagnostic 

methods when the correlation between the variables is moderate or strongly positive. 

The proposed method LD has shown the highest power for the combination of shifts 

in mean (-3,-1) but weaker performance than both other methods for other shifts 

combinations.  
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(a) 

 
(b) 

 

Figure 5.4:  The distribution of the estimated power between the diagnostic methods 

for medium and high correlation matrix with respect to various combinations of shifts 

in mean with negative contaminant values in variable 1 and variable 2. 

 

 

This indicates that the LD method performed better when the correlation 

between the variables is low and the power is more or less similar regardless whether 

the shifts are in accordance or not in accordance with the correlation structure. When 

the correlation between variables increased positively, the LD method showed a very 

good performance when the shifts are combination of large and small values. The 

power dropped considerably from moderate to strong positive correlation when the 

shifts are very close to each other in magnitude.  
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Case III 

Figure 5.5 shows the distribution of power between the three diagnostic methods with 

respect to various combinations of shifts in mean vector with negative contaminants 

introduced in variable 1 and variable 2. Figure 5.5(a) showed the distribution of 

power throughout 5 combinations of shifts in mean when the correlation between 

variables is low negative (ρ = -0.2), Figure 5.5(b) when the correlation between 

variables is low positive (ρ = 0.2).  

 

 
(a) 

 
(b) 

Figure 5.5:  The distribution of the estimated power between the diagnostic methods 

for low correlation matrix with respect to various shifts in mean with positive 

contaminant values in variable 1 and variable 2. 

 

 In general, Figure 5.5 again shows that the power of all diagnostic methods is 

lower when the shifts are smaller. The Ratio method showed the lowest power 

throughout all combinations of shifts in mean. The power of the Ratio method is 

much lower than the other two methods when the correlation between the variables is 
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low negative as shown in Figure 5.5(a). In Figure 5.5(a), the proposed LD method has 

a very good performance throughout almost all combinations of shifts in mean. The 

power is slightly better or at least almost equal to the power showed by the DFT 

method. Whereas in Figure 5.5(b), the power of the LD method is slightly lower than 

the power showed by the DFT method except for combination of shifts ((1.5, 1.5). 

The power of the LD method is considered appreciably lower than the power showed 

by the DFT method for that combination of shifts in mean. 

 

Figure 5.6(a) shows that the LD method has the highest power for 

combination of shifts in mean (2.5, 0.5) and the power is increased and much higher 

for the same shifts when the correlation between the variables is strong positive. For 

the combination of shifts (1.5, 0.5) in Figure 5.6(a), the power of the LD method is 

quite close to the highest power given by the DFT method. However, the power of the 

LD method increased higher and surpassed the power showed by the DFT method 

when the correlation between the variables is strong positive as shown in Figure 

5.6(b). It looks as though the LD method performs well when the shifts are 

combinations of big and small shifts or intermediate and small shifts in mean.  

 

However, when the shifts are very close together in magnitude such as 

combinations of shifts (1.5, 1.5) and (3, 2.5), the power of the LD method dropped as 

shown in Figure 5.6(a) and it dropped more when the correlation between the 

variables is strong positive which is shown by Figure 5.6(b). 
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(a) 

 
(b) 

Figure 5.6: The distribution of the estimated power between the diagnostic methods 

for medium and high correlation matrix with respect to various shifts in mean with 

positive contaminant values in variable 1 and variable 2. 

 

Case IV 

Figure 5.7 showed the power distribution for the three diagnostic methods when the 

shifts are in opposite directions. In general, Figure 5.7 showed that all the diagnostic 

methods have a lower power when the shifts are small or when the shifts are 

combination of intermediate and small shifts. The Ratio method performed worst 

among the three diagnostic methods for both low correlation matrices. 
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 The proposed method LD and the DFT method showed a consistently very 

high power for the rest of the combinations of shifts in mean in Figure 5.7. The DFT 

method showed slightly higher power than the LD method in Figure 5.7(a) except for 

combination (-3, 0.5). On the other hand, the LD method showed slightly higher 

power for all the combinations of shifts in mean in Figure 5.7(b). However, the power 

difference between the two methods is considered small (< 5%) in Figure 5.7(a) and 

very small (< 2%) in Figure 5.7(b). So it can be said that both diagnostic methods 

showed a similar good performance with respect to the correlation matrices. In terms 

of the power difference between the low correlation matrices, the DFT method 

showed a very similar power for both correlation matrices. But for the LD method, the 

power is appreciably higher with low positive correlation matrix when the shifts 

small.  

 

 

(a)

 

(b) 

Figure 5.7: The distribution of the estimated power between the diagnostic methods 

for low correlation matrix with respect to various shifts in mean with positive and 

negative contaminant values in variable 1 and variable 2. 
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(a) 

 

(b) 

Figure 5.8:  The distribution of the estimated power between the diagnostic methods 

for medium and high correlation matrix with respect to various shifts in mean with 

positive and negative contaminant values in variable 1 and variable 2. 

 

 Figure 5.8 shows that all the diagnostic methods improved considerably high 

in power compared to the power showed in Figure 5.7 for the combination of small 

shifts and the combination of small and intermediate shifts. The Ratio method is also 

improved and shows a very high power for the rest of the combinations of shifts in 

mean and is quite close to the power shown by the DFT method.  

 

 The proposed method LD has the highest power among the three methods 

throughout all the combinations of shifts in mean. The power is much better when the 

correlation between the variables is strong positive. This indicates that the proposed 

method LD is very good in detecting the correct aberrant variable(s) when the shifts 
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are not in accordance to the correlation structure of the variables. However, the LD 

method is also able to detect the correct aberrant variable(s) when the shifts are in 

accordance to the correlation structure which is low negative, with a high percentage 

in power as shown in Figure 5.7(a).  

 

5.5.2 Power with Non-equi Correlation Matrix 

 

Performance as defined previously is the total percentage of the correct identification 

of the aberrant variable(s). Figures 5.9 to 5.12 represent the power of the three 

diagnostic methods when the correlations between the variables are either all positive 

or when the correlations are mixed in sign.    

 

Case I 

The proposed method, LD, showed the highest power among the three diagnostic 

methods throughout all the contaminant values in variable 1 regardless of whether the 

correlation matrix is all positive in values (Figure 5.9(a)) or when the correlation 

matrix consist of mixed sign values (Figure 5.9(b)).   

 

A general pattern shown in Figure 5.9(a) and Figure 5.9(b) is that the power is 

lower when the shift in mean is small. The power is increasing when the shift in mean 

becomes larger regardless of the direction of the shift in mean. This is true for all the 

diagnostic methods. 

 

The power in Figure 5.9(a) is noticeably higher than the power in Figure 

5.9(b) throughout all the contaminant values in variable 1 for all the diagnostic 

methods. It indicates that the diagnostic methods can detect variable 1 as the aberrant 

variable better when the correlation matrix is all positive in values.  
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(a) 

 

(b) 

Figure 5.9:  The distribution of the estimated power between diagnostic methods 

DFT, Ratio and LD with respect to the contaminant values in variable 1. 

 

 In Figure 5.9(a), the DFT and the Ratio method show similar power, but rather 

lower than the power shown by the LD method. In Figure 5.9(b), an appreciable drop 

in power for the Ratio method is shown. This is not surprising for correlation matrix 

c2 as the drawback of the Ratio method has already been discussed in the previous 

chapter. 
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Case II 

Figure 5.10(a) shows that the proposed method LD has the highest power for three 

combination of shifts in mean which are (-0.5, -1), (-1,-2) and (-3,-1). There is an 

obvious dropped in power when the shifts in mean for variable 1 and variable 2 are 

equal. The reduction in power is not large, and results are comparable to the other two 

methods when the shifts are approximately equal as shown in combination of shifts in 

mean (-1.5, -2).  

 

(a) 

 

(b) 

Figure 5.10:   The distribution of the estimated power between diagnostic 

methods DFT, Ratio and LD with respect to various shifts in means with 

negative contaminant values. 
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In Figure 5.10(b), LD has the highest power for the shifts in mean (-3,-1) only. 

The proposed method LD, performed better when one of the shifts in mean is much 

larger in value than the other shift. Although the LD method does not perform best for 

the combination (-3,-3), the power is much higher compared to the power obtained 

under correlation matrix c1. The proposed method LD performed well with 

correlation matrix c1 as long as the shifts in mean are not equal or large and 

approximately shifts. It also performed best for a combination of large and small 

shifts in mean vector for both correlation matrices. 

 

Case III 

Figure 5.11(a) shows that the proposed method LD has the highest power in all of the 

combinations of shifts in mean vector except for the combinations (1.5, 1.5) and       

(3, 2.5). The power of the LD method is very high (> 90%) when the larger shift is at 

least double in magnitude to the smaller shift except for the combination of small 

shifts. There is an obvious drop in power compared to the other two methods when 

the shifts in mean for variable 1 and variable 2 are equal or approximately equal 

except for the combination of small shifts in mean vector. However, even the lower 

power is still at an acceptable level. The LD method in Figure 5.11(b) showed similar 

patterns to Figure 5.11(a) but with higher power for the combinations of shifts in 

mean (1.5, 1.5) and (3, 2.5). 

 

 The DFT and Ratio method showed very similar power in Figure 5.11(a). 

However, Figure 5.11(b) showed the Ratio method as having the lowest power among 

the three diagnostic methods. This is also not surprising for the reason discussed in 

the previous chapter. 
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(a) 

 
(b) 

Figure 5.11:   The distribution of the estimated power between diagnostic 

methods DFT, Ratio and LD with respect to various shifts in means with 

positive contaminant values. 

 

 

Case IV 

 

The proposed method LD has consistently showed the highest power among the three 

diagnostic methods throughout all the combinations of the shifts in mean vector for 

variable 1 and variable 2 in Figure 5.12(a). The obvious difference in power is shown 
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two methods.  
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(a) 

 
(b) 

Figure 5.12:   The distribution of the estimated power between diagnostic 

methods DFT, Ratio and LD with respect to various shifts in means with 

positive and negative contaminant values. 

 

 

 The LD method does not show similar high power in Figure 5.12(b) but again 

shows the highest power for combinations of large shift with small shift.  The Ratio 

method consistently shows the lowest power among the three methods except for the 

shifts (-1.5, 2.5), and again much lower power compared to that in Figure 5.12(a).  
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5.5.3 Discussions 

Tables 5.1 to 5.4 show the estimated power difference (%) between the LD method 

and the other two diagnostic methods. The standard error (%) of each estimated power 

difference is also given to determine the significance of the power difference between 

the diagnostic methods. The tabulated result of the power comparison is presented 

with respect to the correlation between the variables. The first two sub-tables in each 

table present the estimated power difference (%) between the diagnostic methods for 

the non equi-correlation matrices, c1 and c2. The two sub-tables in the middle present 

the estimated power difference for low equi-correlation matrices with ρ = -0.2 and     

iρ = 0.2. Whereas, the two sub-tables at the bottom present the comparison between 

the diagnostic methods for equi-correlation matrices too, but with moderate and 

strong positive correlation between the variables (ρ = 0.5 and ρ = 0.8).  

 

 Table 5.1 shows the estimated power difference (%) for Case I when only one 

variable mean is shifted in the mean vector. By looking at the estimated power 

difference (%), in general the power of the LD method is significantly higher than the 

power shown by the DFT method except for the low correlation matrices and for one 

combination with small shifts in moderate positive correlation. The proposed LD 

method has similar power with the DFT method for the low correlation matrices 

regardless of the sign of the correlation coefficient. Even here there is usually a 

difference in power in favour of LD though the magnitude is small and not 

significant. As we move down Table 5.1, consider increasing positive correlation, we 

see that method LD begins to outperform the method DFT with increasing difference 

in their estimated power.  

 

The LD method also showed a significantly higher power than the Ratio 

method and in fact the LD power is higher than the Ratio method for all the 

correlation matrices used. Their power difference (%) is much higher in magnitude 

compared to the power difference (%) between the LD and the DFT methods in Table 

5.1 (b), Table 5.1 (c) and Table 5.1 (d).  
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Table 5.1:  The estimated power difference (%) and the corresponding estimated two 

standard errors (%) between the proposed method LD with the other two methods for 

various shifts in mean of variable 1. 

 

Shift 

in  

mean 

             
 

(2S.E.)% 

               
 

(2S.E.)%  
 

Shift  

in  

mean 

             
 

(2S.E.)% 

               
 

(2S.E.)%  
 -3 6.4 (0.9)

(+) 
6.3 (0.9)

 (+)
 

 

-3 4.5 (0.9)
 (+)

 24.1 (1.4)
 (+)

 

-2 11.9 (1.4)
(+) 

12.5 (1.4)
 (+)

 

 

-2 10.5 (1.6)
 (+)

 27.5 (1.7)
 (+)

 

-1 15.9 (1.9)
(+) 

15.4 (1.9)
 (+)

 

 

-1 14.0 (2.0)
 (+)

 23.0 (1.9)
 (+)

 

0.5 11.4 (2.0)
(+) 

10.1 (2.0)
 (+)

 

 

0.5 10.5 (2.0)
 (+)

 15.5 (1.9)
 (+)

 

1.5 14.8 (1.6)
(+) 

14.5 (1.6)
 (+)

 

 

1.5 12.9 (1.8)
 (+)

 27.5 (1.9)
 (+)

 

2.5 8.3 (1.1)
(+) 

9.1 (1.1)
 (+)

 

 

2.5 7.7 (1.2)
 (+)

 26.7 (1.5)
 (+)

 

(a) c1 

 

                   (b) c2 

           Shift 

in  

mean 

             
 

(2S.E.)% 

               
 

(2S.E.)%  
 

Shift 

 in  

mean 

             
 

(2S.E.)% 

               
 

(2S.E.)%  
 -3 0.4 (0.9) 26.6 (1.5)

 (+)
 

 

-3 0.0 (0.8) 14.4 (1.3)
 (+)

 

-2 0.3 (1.5) 27.5 (1.7)
 (+)

 

 

-2 0.3 (1.4) 15.5 (1.6)
 (+)

 

-1 0.6 (2.0) 16.5 (2.0)
 (+)

 

 

-1 -0.2 (2.0) 10.7 (2.0)
 (+)

 

0.5 0.2 (1.9) 6.4 (1.9)
 (+)

 

 

0.5 -0.1 (1.9) 4.9 (1.9)
 (+)

 

1.5 -0.2 (1.7) 23.6 (1.9)
 (+)

 

 

1.5 -0.9 (1.7) 14.7 (1.9)
 (+)

 

2.5 0.7 (1.2) 26.4 (1.6)
 (+)

 

 

2.5 0.8 (1.1) 16.2 (1.4)
 (+)

 

                  (c)  ρ = -0.2 

  

                (d) ρ = 0.2 

           

Shift 

in  

mean 

             
 

(2S.E.)% 

               
 

(2S.E.)%  

 

 
Shift  

in  

mean 

             
 

(2S.E.)% 

               
 

(2S.E.)%  

 -3 4.6 (0.8)
 (+)

 6.6 (0.9)
 (+)

 

 

-3 8.1 (0.8)
 (+)

 8.3 (0.8)
 (+)

 

-2 6.2 (1.3)
 (+)

 9.8 (1.4)
 (+)

 

 

-2 15.9 (1.2)
 (+)

 16.5 (1.2)
 (+)

 

-1 3.2 (1.9)
 (+)

 7.6 (1.9)
 (+)

 

 

-1 14.0 (1.8)
 (+)

 15.5 (1.8)
 (+)

 

0.5 1.2 (2.0) 2.8 (2.0)
 (+)

 

 

0.5 5.5 (2.0)
 (+)

 6.5 (2.0)
 (+)

 

1.5 5.0 (1.7)
 (+)

 10.2 (1.7)
 (+)

 

 

1.5 17.5 (1.5)
 (+)

 18.4 (1.5)
 (+)

 

2.5 5.4 (1.1)
 (+)

 8.1 (1.1)
 (+)

 

 

2.5 12.3 (1.0)
 (+)

 12.9 (1.0)
 (+)

 

                        (e)  ρ = 0.5          (f) ρ = 0.8 

(+) the estimated power of the LD method is significantly different than the other method, the LD 

power is higher 
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Table 5.2:  The estimated power difference (%) and the corresponding estimated two 

standard errors (%) between the proposed method LD with the other two methods for 

various shifts in mean in variable 1 and variable 2 with positive contaminants. 

 

Shift in  

mean 

             
 

(2S.E.)% 

               
 

(2S.E.)% 

 
Shift in  

mean 

             
 

(2S.E.)% 

               
 

(2S.E.)%  

 (1,0.5) 9.4 (1.7)
 (+)

 8.5 (1.7)
 (+)

 
 

(1,0.5) 1.3 (1.8) 8.1 (1.8)
 (+)

 

(1.5,0.5) 14.2 (1.3)
 (+)

 12.9 (1.3)
 (+)

 
 

(1.5,0.5) 3.7 (1.6)
 (+)

 12.6 (1.7)
 (+)

 

(1.5,1.5) -8.9 (1.6)
(-) 

-8.8 (1.6)
 (-)

 
 

(1.5,1.5) -8.1 (1.3)
 (-)

 3.0 (1.5)
 (+)

 

(2.5,0.5) 8.5 (0.8)
 (+)

 8.4 (0.8)
 (+)

 
 

(2.5,0.5) 3.9 (1.1)
 (+)

 14.4 (1.3)
 (+)

 

(3,1.5) 3.4 (0.8)
 (+)

 3.5 (0.8)
 (+)

 
 

(3,1.5) 1.3 (0.7)
 (+)

 9.2 (1.0)
 (+)

 

(3,2.5) -9.0 (1.2)
 (-)

 -8.8 (1.2)
 (-)

 
 

(3,2.5) -2.3 (0.6)
 (-)

 4.0 (0.9)
 (+)

 

                                     (a) c1 

 

                                   (b) c2 

  
           

Shift in  

mean 

             
 

(2S.E.)% 

               
 

(2S.E.)% 

 
Shift in  

mean 

             
 

(2S.E.)% 

               
 

(2S.E.)%  

 (1,0.5) 2.6 (1.7)
 (+)

 13.2 (1.8)
 (+)

 
 

(1,0.5) -3.1 (1.8)
 (-)

 5.5 (1.9)
 (+)

 

(1.5,0.5) 1.7 (1.4)
 (+)

 16.8 (1.6)
 (+)

 
 

(1.5,0.5) -2.8 (1.5)
 (-)

 7.7 (1.7)
 (+)

 

(1.5,1.5) 1.4 (1.2)
 (+)

 16.2 (1.5)
 (+)

 
 

(1.5,1.5) -5.1 (1.3)
 (-)

 5.4 (1.5)
 (+)

 

(2.5,0.5) 0.5 (1.0) 17.3 (1.4)
 (+)

 
 

(2.5,0.5) -0.6 (1.0) 10.1 (1.3)
 (+)

 

(3,1.5) -0.1 (0.7) 13.7 (1.1)
 (+)

 
 

(3,1.5) -1.6 (0.8)
 (-)

 6.2 (1.1)
 (+)

 

(3,2.5) -0.1 (0.5) 10.6 (1.0)
 (+)

 
 

(3,2.5) -2.3 (0.7)
 (-)

 4.2 (1.0)
 (+)

 

                                     (c)  ρ = -0.2                                           (d) ρ = 0.2 

  
           

Shift in  

mean 

             
 

(2S.E.)% 

               
 

(2S.E.)% 

 
Shift in  

mean 

             
 

(2S.E.)% 

               
 

(2S.E.)%  

 (1,0.5) -4.6 (1.8)
 (-)

 -1.6 (1.8) 
 

(1,0.5) -2.5 (1.8)
 (-)

 -1.6 (1.8) 

(1.5,0.5) -2.2 (1.6)
 (-)

 1.0 (1.6) 
 

(1.5,0.5) 6.2 (1.5)
 (+)

 6.3 (1.5)
 (+)

 

(1.5,1.5) -12.0 (1.6)
 (-)

 -8.7 (1.6)
 (-)

 
 

(1.5,1.5) -17.9 (1.8)
 (-)

 -17.7 (1.8)
 (-)

 

(2.5,0.5) 2.0 (1.0)
 (+)

 3.8 (1.1)
 (+)

 
 

(2.5,0.5) 9.2 (1.0)
 (+)

 9.7 (1.0)
 (+)

 

(3,1.5) -3.3 (1.0)
 (-)

 -1.5 (1.1)
 (-)

 
 

(3,1.5) 1.9 (1.0)
 (+)

 2.2 (1.0)
 (+)

 

(3,2.5) -9.0 (1.1)
 (-)

 -7.4 (1.2)
 (-)

 
 

(3,2.5) -16.0 (1.4)
 (-)

 -15.7 (1.4)
 (-)

 

                              (e)   ρ = 0.5                                            (f)  ρ = 0.8 

(+) the estimated power of the LD method is significantly different than the other method, the LD 

power is higher 

(-) the estimated power of the LD method is significantly different than the other method, the LD 

power is lower 

 

 Table 5.2 show that the power of the LD method is significantly higher than 

the DFT methods when the shifts are a combination of large and small shifts such as 

the combination (2.5, 0.5), for c1, c2, and moderate and strong positive correlation 

matrices. The power of the LD method also significantly higher than the DFT method 

for some cases with respect to the correlation matrix such as small shifts for c1 and 
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combination of small shifts and intermediate and small shift for negative low         

equi-correlation matrix.  The power is similar between the LD and DFT method when 

the correlations are low for that particular combination of shifts in mean. The power 

of the LD method is significantly higher than the Ratio method throughout all 

combinations of shifts in mean in Table 5.2(b), Table 5.2(c) and Table 5.2(d). For the 

other correlation matrices, the power is significantly lower than the Ratio method for 

combination of large shifts and intermediate shifts.   

 

Table 5.3:  The estimated power difference (%) and the corresponding estimated two 

standard errors (%) between the proposed method LD with the other two methods for 

various shifts in mean in variable 1 and variable 2 with negative contaminants. 

Shifts in 

mean 

 

             
 

(2S.E.)% 

               
 

(2S.E.)% 
 

Shifts in 

mean 

 

             
 

(2S.E.)% 

               
 

(2S.E.)% 

 (-0.5,-1) 10.2 (1.7)
 (+)

 8.9 (1.7)
 (+)

 

 
(-0.5,-1) -5.3 (1.8)

 (-)
 2.4 (1.9)

 (+)
 

(-1,-2) 7.7 (1.2)
 (+)

 7.0 (1.2)
 (+)

 

 
(-1,-2) -6.6 (1.4)

 (-)
 3.2 (1.6)

 (+)
 

(-1.5,-2) -3.1 (1.4)
 (-)

 -3.2 (1.4)
 (-)

 

 
(-1.5,-2) -7.1 (1.2)

 (-)
 2.8 (1.4)

 (+)
 

(-3,-1) 6.1 (0.7)
 (+)

 5.2 (0.7)
 (+)

 

 
(-3,-1) 2.1 (0.8)

 (+)
 11.4 (1.1)

 (+)
 

(-3,-3) -12.5 (1.2)
 (-)

 -12.5 (1.2)
 (-)

 

 
(-3,-3) -2.7 (0.5)

 (-)
 2.6 (0.8)

 (+)
 

(a) c1 

 
(b) c2 

           Shifts in 

mean 

 

             
 

(2S.E.)% 

               
 

(2S.E.)% 
 

Shifts in 

mean 

 

             
 

(2S.E.)% 

               
 

(2S.E.)% 

 (-0.5,-1) 2.1 (1.7)
 (+)

 13.0 (1.8)
 (+)

 

 
(-0.5,-1) -2.9 (1.8)

 (-)
 5.1 (1.9)

 (+)
 

(-1,-2) 0.8 (1.2) 16.3 (1.5)
 (+)

 

 
(-1,-2) -3.0 (1.2)

 (-)
 7.6 (1.5)

 (+)
 

(-1.5,-2) 0.3 (1.0) 15.1 (1.4)
 (+)

 

 
(-1.5,-2) -3.7 (1.2)

 (-)
 6.0 (1.4)

 (+)
 

(-3,-1) 0.4 (0.7) 16.4 (1.2)
 (+)

 

 
(-3,-1) -1.4 (0.8)

 (-)
 7.9 (1.1)

 (+)
 

(-3,-3) 0.0 (0.4) 10.3 (0.9)
 (+)

 

 
(-3,-3) -2.2 (0.6)

 (-)
 3.5 (0.9)

 (+)
 

(c)   ρ = -0.2 

 
(d)   ρ = 0.2 

           Shifts in 

mean 

 

             
 

(2S.E.)% 

               
 

(2S.E.)% 
 

Shifts in 

mean 

 

             
 

(2S.E.)% 

               
 

(2S.E.)% 

 (-0.5,-1) -5.2 (1.8)
 (-)

 -2.1 (1.9)
 (-)

 

 
(-0.5,-1) -3.4 (1.8)

 (-)
 -2.5 (1.8)

 (-)
 

(-1,-2) -4.8 (1.4)
 (-)

 -1.4 (1.5) 

 
(-1,-2) 0.5 (1.5) 0.6 (1.5) 

(-1.5,-2) -9.2 (1.4)
 (-)

 -6.1 (1.5)
 (-)

 

 
(-1.5,-2) -12.7 (1.6)

 (-)
 -12.4 (1.6)

 (-)
 

(-3,-1) 0.1 (0.9) 1.6 (0.9)
 (+)

 

 
(-3,-1) 5.7 (0.8)

 (+)
 5.7 (0.8)

 (+)
 

(-3,-3) -8.9 (1.1)
 (-)

 -7.9 (1.1)
 (-)

 

 
(-3,-3) -21.3 (1.4)

 (-)
 -21.2 (1.4)

 (-)
 

(e)  ρ = 0.5 

 
(f)  ρ = 0.8 

(+) the estimated power of the LD method is significantly different than the other method, the LD 

power is higher 

(-) the estimated power of the LD method is significantly different than the other method, the LD 

power is lower 
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 Table 5.3 shows similar results to Table 5.2. Both shows shifts in the same 

directions for variable 1 and variable 2. The power of the LD method is still 

significantly higher than the Ratio method throughout all the combinations of shifts in 

mean for the same correlation matrices (Table 5.3(b), Table 5.3(c) and Table 5.3(d)). 

For the combination of large shifts and intermediate shifts in the mean vector, the LD 

power is significantly lower than the Ratio method for the same correlation matrices 

too (Table 5.3(a), Table 5.3(e) and Table 5.3(f)).  

 

 The LD method has a significantly higher power (%) than the DFT method for 

the combination of large and small shifts (Table 5.3 (a), Table 5.3(b) and Table 5.3(f)) 

and combination of small shifts and intermediate and small shifts for correlation 

matrix c1. For the other combinations of shifts in mean, the LD method has a similar 

or significantly lower power than the DFT method.  

 

Table 5.4 showed the power of the diagnostic methods for the shifts in the 

opposite directions. The LD method consistently has showed a significantly higher 

power than the Ratio method throughout almost all combinations of shifts in mean for 

all the correlation matrices used. There is only one combination of shifts in           

Table 5.4 (b) that showed the power of the LD method is significantly lower than the 

Ratio method. In a few cases of large shifts, the power of the two methods is similar. 

 

The LD method has significantly higher power than the DFT method in almost 

all combinations of shifts in mean in Table 5.4(a), Table 5.4(e) and Table 5.4(f). For 

the large shifts in mean vector, the two methods performed equally. For the negative 

low correlation (Table 5.4(c)), the LD method is significantly lower than the DFT 

method in all combinations of shifts in mean except for combination (-3, 0.5) in which 

the power of the two methods did not differ significantly. The LD method always has 

a significantly higher power than the other two methods for the combination of large 

and small shifts regardless of the correlation between the variables. 
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Table 5.4:  The estimated power difference (%) and the corresponding estimated two 

standard errors (%) between the proposed method LD with the other two methods for 

various shifts in mean in variable 1 and variable 2 with negative and positive 

contaminants. 

Shifts in 

mean 
             

(2S.E.)% 
               

(2S.E.)%  
Shifts in 

mean 
             

(2S.E.)% 
               

(2S.E.)% 

 (-1.0.5) 19.1 (1.2)
 (+)

 18.4 (1.2)
 (+)

 

 

(-1.0.5) 3.3 (1.8)
 (+)

 10.2 (1.9)
 (+)

 

(0.5,-1) 18.5 (1.2)
 (+)

 17.2 (1.2)
 (+)

 

 

(0.5,-1) -1.5 (1.9) 5.0 (1.9)
 (+)

 

(-0.5,1.5) 13.6 (1.0)
 (+)

 12.5 (1.0)
 (+)

 

 

(-0.5,1.5) -6.2 (1.8)
 (-)

 1.9 (1.8)
 (+)

 

(-2,1.5) 2.9 (0.5)
 (+)

 3.2 (0.5)
 (+)

 

 

(-2,1.5) -3.0 (1.3)
 (-)

 5.2 (1.4)
 (+)

 

(-1.5,2.5) 1.8 (0.4)
 (+)

 2.4 (0.4)
 (+)

 

 

(-1.5,2.5) -12.4 (1.3)
 (-)

 -4.8 (1.5)
 (-)        

 

(-3,0.5) 3.5 (0.5)
 (+)

 3.2 (0.5)
 (+)

 

 

(-3,0.5) 1.6 (0.8)
 (+)

 12.1 (1.2)
 (+)

 

(3,-1) 1.7 (0.4)
 (+)

 2.2 (0.4)
 (+)

 

 

(3,-1) 1.3 (0.8)
 (+)

 10.2 (1.1)
 (+)

 

(-3,1.5) 0.8 (0.2)
 (+)

 1.0 (0.3)
 (+)

 

 

(-3,1.5) -0.5 (0.8) 6.8 (1.1)
 (+)

 

(-3,2.5) 0.1 (0.1) 0.4 (0.2)
 (+)

 

 

(-3,2.5) -3.7 (0.8)
 (-)

 1.3(1.0)
 (+)

 

(a) c1 

 

(b) c2 

           Shifts in 

mean 
             

(2S.E.)% 
               

(2S.E.)%  
Shifts in 

mean 
             

(2S.E.)% 
               

(2S.E.)% 

 (-1.0.5) -3.2 (1.8)
 (-)

 9.2 (1.9)
 (+)

 

 

(-1.0.5) 1.5 (1.7) 9.8 (1.8)
 (+)

 

(0.5,-1) -3.7 (1.8)
 (-)

 8.2 (1.9)
 (+)

 

 

(0.5,-1) 1.4 (1.7) 9.5 (1.8)
 (+)

 

(-0.5,1.5) -2.9 (1.5)
 (-)

 13.6 (1.7)
 (+)

 

 

(-0.5,1.5) 0.5 (1.4) 11.2 (1.6)
 (+)

 

(-2,1.5) -3.9 (1.1)
 (-)

 11.2 (1.4)
 (+)

 

 

(-2,1.5) 1.2 (0.9)
 (+)

 9.9 (1.2)
 (+)

 

(-1.5,2.5) -2.2 (0.9)
 (-)

 12.3 (1.3)
 (+)

 

 

(-1.5,2.5) 1.2 (0.7)
 (+)

 9.8 (1.0)
 (+)

 

(-3,0.5) 0.1 (0.7) 17.8 (1.3)
 (+)

 

 

(-3,0.5) 0.5 (0.7)
 
 9.9 (1.0)

 (+)
 

(3,-1) -0.9 (0.7)
 (-)

 14.7 (1.2)
 (+)

 

 

(3,-1) 0.7 (0.6)
 (+)

 9.6 (1.0)
 (+)

 

(-3,1.5) -1.0 (0.7)
 (-)

 13.5 (1.2)
 (+)

 

 

(-3,1.5) 0.5 (0.5) 8.4 (0.9)
 (+)

 

(-3,2.5) -2.0 (0.6)
 (-)

 9.1 (1.1)
 (+)

 

 

(-3,2.5) 0.3 (0.3) 6.8 (0.8)
 (+)

 

(c) ρ = -0.2 

 

(d)  ρ = 0.2 

           Shifts in 

mean 
             

(2S.E.)% 
               

(2S.E.)%  
Shifts in 

mean 
             

(2S.E.)% 
               

(2S.E.)% 

 (-1.0.5) 5.4 (1.5)
 (+)

 9.4 (1.5)
 (+)

 

 

(-1.0.5) 7.5 (1.1)
 (+)

 10.2 (1.2)
 (+)

 

(0.5,-1) 5.7 (1.5)
 (+)

 8.6 (1.5)
 (+)

 

 

(0.5,-1) 7.8 (1.1)
 (+)

 10.0 (1.2)
 (+)

 

(-0.5,1.5) 4.4 (1.2)
 (+)

 8.2 (1.3)
 (+)

 

 

(-0.5,1.5) 8.2 (0.9)
 (+)

 9.1 (0.9)
 (+)

 

(-2,1.5) 1.9 (0.6)
 (+)

 5.3 (0.8)
 (+)

 

 

(-2,1.5) 0.6 (0.2)
 (+)

 1.2 (0.3)
 (+)

 

(-1.5,2.5) 1.6 (0.5)
 (+)

 4.1 (0.6)
 (+)

 

 

(-1.5,2.5) 0.3 (0.2)
 (+)

 0.7 (0.2)
 (+)

 

(-3,0.5) 2.4 (0.6)
 (+)

 4.2 (0.7)
 (+)

 

 

(-3,0.5) 2.8 (0.5)
 (+)

 3.5 (0.5)
 (+)

 

(3,-1) 1.8 (0.5)
 (+)

 3.5 (0.6)
 (+)

 

 

(3,-1) 0.9 (0.3)
 (+)

 1.6 (0.4)
 (+)

 

(-3,1.5) 1.0 (0.3)
 (+)

 2.7 (0.5)
 (+)

 

 

(-3,1.5) 0.2 (0.1)
 (+)

 0.7 (0.2)
 (+)

 

(-3,2.5) 0.2 (0.2) 1.5 (0.4)
 (+)

 

 

(-3,2.5) 0.0 (0.0) 0.0 (0.0) 

(e) ρ = 0.5 

 

(f) ρ = 0.8 
 

(+) the estimated power of the LD method is significantly different than the other method, the LD 

power is higher 

(-) the estimated power of the LD method is significantly different than the other method, the LD 

power is lower 
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5.6 Identification by Variables  

 

The results shown in section 5.5 provide the overall performance of the diagnostic 

methods. As given before, the definition of Power is the percentage of identifying 

variable 1 (in Case I) or contaminated variables which are variable 1 and variable 2 

(in Cases II, III and IV) as the aberrant variable(s). For Case I, the identification of the 

aberrant variable is very straight forward since there is only one contaminated process 

variable. But for the other cases, when there are two process variables deviated from 

the in-control mean vector, it is presumed that the percentage of identification of each 

variables would be depending on how far the process variable mean deviates from it. 

In other words, if the contaminants introduced to both process variables are equal in 

value, the percentage of identifying each variable as the aberrant variable should be 

more or less similar. If one of the contaminated process variables has higher 

contaminant value, it is presumed that the process variable will be identified more in 

frequency compared to the other process variable. In later sections 5.6.1 and 5.6.2, the 

identification of the aberrant variables will be presented separately across all types of 

correlations. A diagnostic method that can identify the highest contaminated process 

variable more than a lower contaminated process variable would be considered as a 

consistent diagnostic method and therefore will be regarded as the best diagnostic 

method among the three methods. The definition of power in this section is slightly 

different than the one defined in 5.5. The power is defined as the percentage of the 

number of times a diagnostic method identified variable k, k = 1, 2 as the correct 

aberrant variable.  

 

5.6.1 Equi-correlation Matrix 

 

Identification by variables is necessary when there is more than one aberrant variables 

is suspected to caused the OOC signal in a multivariate control chart. Hence, only 

three cases presented here which are cases II, III and IV.  A general pattern that can 

be seen from Figures 5.13 to 5.20 is that the power is higher for variable k when the 

shift in mean for variable k is larger. 

 

 



 119 

Case II 

Figure 5.13 shows the power of identifying the aberrant variables separately between 

variable 1 and variable 2. Figure 5.13 shows that the proposed method can identify a 

bigger shift more frequent and share similar performance with the DFT method. The 

Ratio method shows a considerably lower percentage in identifying the variable with 

a bigger shift in mean when the correlation between the variables is -0.2.  

 

 
Figure 5.13: The power distribution with respect to contaminated variables and 

diagnostic methods for low negative correlation, ρ = - 0.2, between variables. 

 

 The power of identifying the smaller shift in mean is quite similar for all the 

diagnostic methods except for combination (-3,-1) in Figure 5.13(b). The Ratio 

method has higher power than the other two methods. 

 

 Figure 5.14 shows the distribution of the percentage of correct identification 

with respect to variables 1 and 2 for positive correlation between variables. The 

proposed method LD shows a high percentage of correct identification for a bigger 

shift in mean. Figure 5.14(a) shows that the LD method has the highest power for 

combination of shifts (-3,-1) with strong positive correlation between the variables. 

The LD method maintains high power for moderate and low positive correlation but 

slightly lower than the DFT method for the low correlation. For combination (-3,-3), 
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the LD method has the lowest power for ρ = 0.8 but the power increases when the 

correlation decreases. 

 

 The same pattern is also shown by the LD method in Figure 5.14 for the same 

combination of shifts in mean. Figure 5.14(b) shows that the LD method can identify 

the larger shift quite good and slightly lower than the DFT method but higher that the 

Ratio method. Interestingly, for combination of shifts in mean (-3,-1) in               

Figure 5.14(b), the identification of the aberrant variable with a smaller shift is nearly 

null for ρ = 0.8 and only detected very poorly for the moderate and low positive 

correlation. 

 

 

                                  (a)          (b) 

   

Figure 5.14: The power distribution with respect to contaminated variables and 

diagnostic methods for positive correlation. 
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Case III 

Figure 5.15 shows the distribution of the correct identification with respect to the 

contaminated variables when the correlation is between the variables is low negative. 

Figure 5.15(a) shows that the proposed method maintains a high power in identifying 

the contaminated variable with a bigger shift in mean.  The power is similar or 

slightly higher than the DFT method. Figure 5.15(b) shows that the LD method is also 

quite good compared to the other methods in picking up the aberrant variable with 

smaller shift for combinations (1, 0.5), (1.5, 1.5) and (3, 2.5).  

 

 
Figure 5.15: The power distribution with respect to contaminated variables and 

diagnostic methods for low negative correlation, ρ = -0.2, between variables. 

 

 Figure 5.16 shows the distribution of the power for positive correlations 

between the variables.  The LD method consistently shows a high power in detecting 

the aberrant variable with a bigger shift in Figure 5.16(a) except for combinations     

(3, 2.5) and (1.5, 1.5). The power shown by the LD method is the highest for the 

strong positive correlation, similar or slightly lower than the DFT method for some 

combinations when the correlation is moderate or low positive.   

 

 Figure 5.16(b) shows a higher percentage in identifying the second aberrant 

variable if the shifts in mean are approximately equal in magnitude.  For this type of 
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combination, the power of the LD method for a variable with a smaller shift increases 

when the correlation is decreases. The power is higher for variable with a smaller shift 

when the correlation between the variables is low positive. 

 

 
            (a)         (b) 

Figure 5.16: Performances across three diagnostic methods when two process 

variables contaminated by positive contaminants and correlations between variables 

are moderate and high. 

 

Case IV 

Figure 5.17 shows the distribution of power for shifts in mean in opposite direction 

when the correlation between the variables is low negative. The LD method 

consistently shows the highest power in identifying the aberrant variable with a bigger 

magnitude of shift whenever a large shift is one of the shifts in mean. The power is 

similar or slightly lower than the DFT method whenever the large shift is absent in the 

combination of shifts in mean.  The LD method is able to identify the aberrant 
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variable with a smaller shift (slightly lower than the other methods) except for 

combinations (-3, 0.5), (3, -1) and (-3, 1.5). 

 

 

Figure 5.17: The power distribution with respect to contaminated variables and 

diagnostic methods for moderate positive correlation, ρ = -0.2, between variables. 

 

 For low positive correlation between the variables, the pattern of the power 

distribution is quite similar. The LD method is more responsive for the aberrant 

variable with smaller shift in mean as shown in Figure 5.18. Figure 5.19 shows the 

power distribution when the correlation between the variables is moderate positive. In 

most of the combinations, the LD method is able to identify the aberrant variable with 

a larger shift better than the other two methods but slightly higher than the power 

shown by the DFT method. The LD method is also able to identify the aberrant 

variable with a smaller shift with approximately equal power or slightly lower 

compared to the other methods.  
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Figure 5.18: The power distribution with respect to contaminated variables and 

diagnostic methods for moderate positive correlation, ρ = 0.2, between variables. 

 

 

 

 

Figure 5.19: The power distribution with respect to contaminated variables and 

diagnostic methods for moderate positive correlation, ρ = 0.5, between variables. 
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 Figure 5.20 shows the same pattern of power distribution throughout the 

combinations of shifts in mean but with better and higher power. The LD method 

consistently shows the highest power for the aberrant variable with a larger shift when 

the correlation between the variables is strong positive. The identification of the 

aberrant variable with a smaller shift is approximately equal with the other methods in 

power when both shifts are small. The power of the LD method is lower than the 

other methods whenever the bigger shift in the combination is a large shift. 

 

 

 

Figure 5.20: The power distribution with respect to contaminated variables and 

diagnostic methods for moderate positive correlation, ρ = 0.8, between variables. 

 

 

5.6.2 Non Equi-Correlation Matrix 

 

The combinations of the shifts in mean in these results are also similar with the 

previous sub-section 5.6.1. The difference is that the correlations between the 

variables are considered more realistic, instead of assuming that the process variables 

are all equi-correlated. The same general pattern for the power distribution shown in 

all the figures in section 5.6.1 is also seen in this section. Figures 5.21 to 5.24 show 

that the power is higher for the aberrant variable with a bigger shift. 
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Case II 

Figure 5.21 shows the distribution of power in identifying the aberrant variables 

separately. The two graphs on the top show the power distribution for correlation 

matrix with all positive values. The LD method shows the highest power for the 

aberrant variable with a larger shift except for the combination (-3,-3).   

 

The two graphs at the bottom show the power distribution for correlation 

matrix with mixed signs values. The LD method still maintains having the highest 

power for the aberrant variable with a larger shift. The shifts in mean with 

combination (-3, -3) shows an interesting power pattern between variable 1 and 

variable 2. The power is higher for variable 2 for correlation matrix c1 whereas the 

power is higher for variable1 when the correlation matrix is c2. 

 

Figure 5.21: Performances across three diagnostic methods when two variables 

contaminated by negative contaminants. 

 

Case III 

Figure 5.22 shows that the LD method performed better than the other two methods in 

identifying the aberrant variable with a larger shift in mean for correlation matrix c1 

except for combination (1.5, 1.5) and (3, 2.5) where the power is slightly lower. 
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Figure 5.22: Performances across three diagnostic methods when two variables 

contaminated by positive contaminants. 

 

Case IV 

Figure 5.23 shows that the LD method consistently shows the highest power in 

identifying the aberrant variable with a larger shift except for combination (-2, 1.5) 

where the power is approximately similar or slightly lower than the other methods. 

For aberrant variable with a smaller shift, the power is highest for combinations     

(0.5, -1), (-2, 1.5) and (-3, 2.5). The rest of the combinations show the power of the 

LD method is slightly lower than the other methods.  

 

For correlation matrix with mixed sign values, the LD method shows better 

and higher power in identifying the aberrant variable with a larger shift except for 

combinations   (0.5, -1),  (-0.5, 1.5) and (-1.5, 2.5).  For these combinations, the LD 

method surprisingly gives a higher power for a smaller shift in mean. 
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Figure 5.23: Performances across three diagnostic methods when two process 

variables deviated from the in-control mean in the opposite directions. 

 

  

 

Figure 5.24: Performances across three diagnostic methods when two process 

variables deviated from the in-control mean in the opposite directions. 
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5.6.3 Summary and Conclusion 

 

The proposed method, LD, shows a very good performance in identifying an aberrant 

variable with a bigger shift when one of the shifts is large and the other is small. The 

power is higher compared to the other methods regardless whether the shifts are in 

counter-correlational or in accordance with the correlation structure. The proposed 

method LD showed a very good performance, better than the other two methods, 

when only one variable has deviated from the in-control mean vector. The result 

shown by the LD method in Case I was consistently the best among the three methods 

regardless of the structure of the correlations between the variables in four 

dimensional data sets. The power of the LD method is significantly higher than the 

Ratio method throughout all shifts in mean for every correlation matrices. The LD 

method also has power significantly higher than the DFT method for both                

non equi-correlation matrices and for the strong positive equi-correlation matrix. For 

the moderate positive equi-correlation matrix, the LD method has a significantly 

higher power than the DFT method except for the smallest shift. For the low equi-

correlation matrices, both methods are on a par. The proposed method is thus very 

much recommended when there is a priori knowledge that one of the tested variables 

has a high tendency to deviate easily from the in-control mean vector compared to the 

other variables. It may also prove valuable in other situation. 

 

 For the combinations of shifts in mean in the same direction, the LD method 

showed a good performance when one of the shifts is large and the other is small 

specifically when the deviated variables are strongly correlated. So, the proposed 

method is very much recommended under this condition. However, the estimated 

power of the LD method dropped considerably when the shifts are equal and large or 

intermediate, specifically when the variables are strongly correlated too. Hence, it is 

not recommended for this condition. 

 

For the combinations of shifts in mean in the opposite directions, the LD 

method has shown a very good performance. The power is significantly higher than 

the other two methods when the shifts are not in accordance with the correlation 

structure especially when the correlation between the variables is moderate and strong 
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positive. Even though the estimated power of the LD method is not substantially 

higher than the other two methods for any combination of at least one large shift, it is 

for the combination of small shifts and combination of small and intermediate shifts. 

This feature makes the proposed method recommended over the DFT method for 

strong positive correlations between the variables. 

 

The results given above showed that the proposed method is a promising 

method in indentifying aberrant variable in multivariate processes. Furthermore, the 

performance of this new approach can be improved in a way in which cannot be done 

to the other two methods. The performance of this approach can be increased by 

selecting formal threshold values which allow it to identify multiple variables as 

aberrant simultaneously and hence can give a higher correct identification. A 

discussion of the extension of the proposed method is given in Chapter 7. 

 

5.7 Random Correlation Matrices 

 

The correlation matrices used in the previous sections are taken from two studies by 

Doganaksoy, Faltin and Tucker (1991) and Das and Prakash (2008). There are four 

types of correlation structure proposed by the first study and two of them were used in 

this chapter.  The study claimed that the correlation matrices “were carefully chosen 

to typify a mathematically broad range of situations, are believed to provide an 

adequate basis for judgement as to the usefulness in practice...”. No further 

explanation of the method of selection was given. The second study, unlike the first, 

took a different approach by considering equi-correlation matrices. The selection of 

the correlation values was again unexplained.  

 

In this section, we tested the performance of the diagnostic methods under 

randomly selected correlation matrices. A total of 20 random positive definite 

correlation matrices are simulated using R-programming.  Five combinations of shifts 

in mean vector are. The selected combinations are shown in Table 5.5. 
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Table 5.5: Selected mean vectors with three types of shifts 

Type of shifts in mean vector Shifted mean vector 

 

One aberrant variable 
          

 

Two aberrant variables 

(same directions) 

            

            

 

Two aberrant variables 

(opposite direction) 

             

             

 

 

Samples of 1000 OOC observations are then simulated using the mvrnorm 

procedure for each random positive definite correlation matrix and shifted mean 

vector. The three diagnostic methods are performed on the sample and the power of 

each diagnostic method is estimated. The estimated Power is defined as the 

percentage of the number of times the aberrant variable(s) has the highest coefficient 

value, out of 1000 OOC observations. The list of the estimated powers for DFT, Ratio 

and LD diagnostic methods are given in Tables 5.6, 5.7, 5.8, 5.9 and 5.10. The 

corresponding random correlation matrices are given in Appendix.  

 

 The estimated power for LD method is excellent in many cases and even 

reached 100% correct identification of the aberrant variable(s) in some simulations 

and sometimes from the same correlation matrices for all types of shifts such as 

matrix 4 and matrix 15. Unfortunately, for several other random correlation matrices, 

the estimated power is only good or fair and sometimes very low or even complete 

failure to detect any aberrant variable. DFT method produced more consistent 

estimated power compared to the Ratio and LD methods even though in quite a 

number of cases, LD method outperformed it. Ratio method also showed 

inconsistencies in performance, like the LD method. The estimated power dropped 

approximately equal in magnitude or sometimes lower than the LD method. For a 

particular matrix such as matrix 12, LD method is totally unresponsive and the Ratio 

method performs only slightly better. 
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Table 5.6: Estimated Power (%) for every random correlation matrix with respect to 

diagnostic methods for shifted mean vector =          . 

 

Random 

correlation  
Estimated Power (S.E.)% 

matrix DFT Ratio LD 

1 89.4 (1.0) 89.7 (1.0) 93.7 (0.8) 

2 85.8 (1.1) 88.2 (1.0) 96.8 (0.6) 

3 84.9 (1.1) 88.8 (1.0) 78.6 (1.3) 

4 84.0 (1.2) 91.9 (0.9) 100 (0) 

5 84.9 (1.1) 40.1 (1.5) 67.0 (1.5) 

6 84.3 (1.2) 84.3 (1.2) 85.8 (1.1) 

7 86.1 (1.1) 34.0 (1.5) 35.3 (1.5) 

8 85.6 (1.1) 87.8 (1.0) 0.2 (0.1) 

9 85.0 (1.1) 92.0 (0.9) 97.3 (0.5) 

10 84.0 (1.2) 92.1 (0.9) 99.5 (0.2) 

11 89.6 (1.0) 90.8 (0.8) 88.0 (1.0) 

12 84.1 (1.2) 0 (0) 0.3 (0.2) 

13 88.7 (1.0) 59.9 (1.5) 83.5 (1.2) 

14 91.5 (0.9) 88.5 (1.0) 70.1 (1.4) 

15 88.1 (1.0) 80.0 (1.3) 2.6 (0.5) 

16 93.3 (0.8) 2.2 (0.5) 55.7 (1.6) 

17 85.0 (1.1) 9.1 (0.9) 79.5 (1.3) 

18 85.9 (1.1) 90.6 (0.9) 90.4 (0.9) 

19 85.1 (1.1) 87.8 (1.0) 83.8 (1.2) 

20 89.9 (1.0) 64.0 (1.5) 74.1 (1.4) 
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Table 5.7: Estimated Power (%) for every random correlation matrix with respect to 

diagnostic methods for shifted mean vector =            . 

 

Random 

correlation  
Estimated Power (S.E.)% 

matrix DFT Ratio LD 

1 97.8 (0.5) 95.0 (0.7) 96.6 (0.6) 

2 96.9 (0.5) 98.5 (0.4) 99.9 (0.1) 

3 95.4 (0.7) 93.2 (0.8) 83.8 (1.2) 

4 94.4 (0.7) 95.6 (0.6) 100 (0) 

5 95.0 (0.7) 74 (1.4) 66.0 (1.5) 

6 95.7 (0.6) 91.3 (0.9) 86.1 (1.1) 

7 97.4 (0.5) 83.3 (1.2) 72.8 (1.4) 

8 92.8 (0.8) 94.6 (0.7) 0 (0) 

9 94.5 (0.7) 96.7 (0.6) 97.5 (0.5) 

10 93.7 (0.8) 96.3 (0.6) 98.6 (0.4) 

11 97.0 (0.5) 98.8 (0.3) 93.8 (0.8) 

12 95.8 (0.6) 47.3 (1.6) 0.3 (0.2) 

13 96.6 (0.6) 90.0 (0.9) 92.9 (0.8) 

14 94.7 (0.7) 94.6 (0.7) 16.3 (1.2) 

15 97.4 (0.5) 97.9 (0.5) 86.6 (1.1) 

16 96.7 (0.6) 56.3 (1.6) 8.6 (0.9) 

17 97.8 (0.5) 72.2 (1.4) 100 (0) 

18 95.2 (0.7) 93.5 (0.8) 92.7 (0.8) 

19 98.0 (0.4) 99.5 (0.2) 100 (0) 

20 97.4 (0.5) 93.6 (0.8) 96.5 (0.6) 
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Table 5.8: Estimated Power (%) for every random correlation matrix with respect to 

diagnostic methods for shifted mean vector =            . 

 

Random 

correlation  
Estimated Power (S.E.)% 

matrix DFT Ratio LD 

1 84.9 (1.1) 79.4 (1.3) 81.5 (1.2) 

2 82.4 (1.2) 88.5 (1.0) 92.4 (0.8) 

3 78.2 (1.3) 75.1 (1.4) 68.8 (1.5) 

4 74.8 (1.4) 78.0 (1.3) 99.0 (0.3) 

5 81.6 (1.2) 45.6 (1.6) 56.1 (1.6) 

6 78.0 (1.3) 71.4 (1.4) 72.1 (1.4) 

7 81.1 (1.2) 54.4 (1.6) 63.4 (1.5) 

8 72.2 (1.4) 80.4 (1.3) 0 (0) 

9 77.9 (1.3) 83.3 (1.2) 85.2 (1.1) 

10 75.0 (1.4) 83.9 (1.2) 93.7 (0.8) 

11 83.1 (1.2) 89.7 (1.0) 83.9 (1.2) 

12 75.1 (1.4) 19.9 (1.3) 6.1 (0.8) 

13 83.9 (1.2) 74.9 (1.4) 82.2 (1.2) 

14 80.1 (1.3) 83.7 (1.2) 39.3 (1.5) 

15 80.9 (1.2) 87.4 (1.0) 87.6 (1.0) 

16 83.0 (1.2) 26.9 (1.4) 28.3 (1.4) 

17 80.5 (1.3) 41.0 (1.6) 97.7 (0.5) 

18 82.3 (1.2) 82.7 (1.2) 84.1 (1.2) 

19 82.8 (1.2) 93.4 (0.8) 98.5 (0.4) 

20 84.2 (1.2) 79.0 (1.3) 86.5 (1.1) 

 

 

 

 

 

 

 

 

 



 135 

 

 

Table 5.9: Estimated Power (%) for every random correlation matrix with respect to 

diagnostic methods for shifted mean vector =             . 

 

Random 

correlation  
Estimated Power (S.E.)% 

matrix DFT Ratio LD 

1 96.4 (0.6) 94.2 (0.7) 92.9 (0.8) 

2 96.1 (0.6) 96.6 (0.6) 65.4 (1.5) 

3 98.6 (0.4) 95.2 (0.7) 80.6 (1.3) 

4 96.9 (0.5) 94.9 (0.7) 99.9 (0.1) 

5 99.2 (0.3) 91.0 (0.9) 78.3 (1.3) 

6 97.6 (0.5) 92.9 (0.8) 93.4 (0.8) 

7 98.0 (0.4) 91.2 (0.9) 88.4 (1.0) 

8 99.8 (0.1) 99.9 (0.1) 100 (0) 

9 99.0 (0.3) 98.9 (0.3) 99.8 (0.1) 

10 98.5 (0.4) 98.4 (0.4) 100 (0) 

11 96.9 (0.5) 98.6 (0.4) 81.1 (1.2) 

12 97.3 (0.5) 73.3 (1.4) 0 (0) 

13 98.3 (0.4) 95.3 (0.7) 96.5 (0.6) 

14 99.7 (0.2) 99.6 (0.2) 99.7 (0.2) 

15 99.0 (0.3) 99.6 (0.2) 100 (0) 

16 98.7 (0.4) 78.9 (1.3) 42.3 (1.6) 

17 98.5 (0.4) 91.1 (0.9) 92.9 (0.8) 

18 97.3 (0.5) 95.1 (0.7) 95.3 (0.7) 

19 96.1 (0.6) 98.4 (0.4) 86.7 (1.1) 

20 97.8 (0.5) 94.7 (0.7) 87.5 (1.0) 
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Table 5.10: Estimated Power (%) for every random correlation matrix with respect to 

diagnostic methods for shifted mean vector =             . 

 

Random 

correlation  
Estimated Power (S.E.)% 

matrix DFT Ratio LD 

1 95.0 (0.7) 93.6 (0.8) 95.2 (0.7) 

2 94.2 (0.7) 96.0 (0.6) 94.6 (0.7) 

3 95.5 (0.7) 93.2 (0.8) 80.9 (1.2) 

4 93.1 (0.8) 95.6 (0.6) 100 (0) 

5 97.1 (0.5) 73.6 (1.4) 75.0 (1.4) 

6 93.1 (0.8) 89.4 (1.0) 90.2 (0.9) 

7 94.5 (0.7) 74.4 (1.4) 79.7 (1.3) 

8 98.1 (0.4) 99.0 (0.3) 20.8 (1.3) 

9 95.7 (0.6) 97.4 (0.5) 99.2 (0.3) 

10 94.9 (0.7) 96.5 (0.6) 100 (0) 

11 96.1 (0.6) 97.1 (0.5) 87.7 (1.0) 

12 93.1 (0.8) 33.5 (1.5) 0 (0) 

13 96.6 (0.6) 89.7 (1.0) 91.9 (0.9) 

14 98.4 (0.4) 99.2 (0.3) 98.0 (0.4) 

15 97.2 (0.5) 98.6 (0.4) 100 (0) 

16 97.9 (0.5) 41.2 (1.6) 71.9 (1.4) 

17 95.5 (0.7) 54.4 (1.6) 99.2 (0.3) 

18 93.6 (0.8) 93.7 (0.8) 93.9 (0.8) 

19 96.3 (0.6) 98.5 (0.4) 98.9 (0.3) 

20 97.1 (0.5) 92.6 (0.8) 92.2 (0.8) 
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This scenario can be investigated by studying the estimated power in relation 

to the correlation structures. For instance, in correlation matrix 8, there are mixed 

signed correlations between variables. Variables 1 and 2 are positively strong 

correlated but there is another variable, variable 4, which is more strongly correlated 

to variable 1 in the same direction. Table 5.11 showed that the LD method most of the 

time has incorrectly diagnosed variable 4 as aberrant whenever the shift(s) is not 

counter to the correlation structure and totally failed to identified variable 2.  

 

This result is totally different from the result shown in Figures 5.8 and 5.11 

where the estimated powers for the same shifts are excellent. There are a couple of 

differences in the correlation structure compared to    and equi-correlation matrix 

with ρ = 0.8. Unlike matrix 8, both matrices have only positive correlation values and 

there is no other correlation value higher than the one between the aberrant variables. 

So, it is suspected that these two conditions caused the dramatic drop in performance. 

 

Table 5.11:  Identification by variables with correlation matrix 8 for LD method 

Shifted mean Random correlation matrix 8 

vector var. 1 var. 2 var. 3 var. 4 

(2.5, 0, 0, 0)' 2 0 0 998 

(3.0, 1.5, 0, 0)' 0 0 0 1000 

(1.5, 0.5, 0, 0)' 0 0 0 1000 

(-3.0, 2.5, 0, 0)' 1000 0 0 0 

(3, -1, 0, 0)' 208 0 0 792 

 

 

The method works tremendously well when the shifts are in counter 

correlation given that the magnitudes of the shift are sufficiently large. This particular 

result is comparable to the result showed by Figure 5.8 for combination                       

(-3.0, 2.5, 0, 0)'. The LD method did shows 100% correct identification for this 

combination in Figure 5.8. The same performance was not repeated for combination 

(3, -1, 0, 0)'. Variable 4 is seems very dominant and been incorrectly identified in 

most of the time.  

 

 The estimated power of the LD method is much worse for correlation matrix 

12.  Regardless of whether the shifts are counter correlational or not, the LD method 



 138 

showed either very poor performance or was totally unresponsive. Matrix 12 gives 

negative low correlation value for the aberrant variables, 1 and 2. Correlation values 

with other variables are either moderate or low with mixed signs. Table 5.12 shows 

that most of the time, for all the shifts, variable 3 was incorrectly identified as the 

aberrant variable followed by variable 4 (less frequently than variable 3). 

Unfortunately, this result is not similar to any of the correlation structures from the 

previous sections. Even though we tested the method on an equi-correlation matrix 

with ρ = -0.2, but correlation between other variables (non-aberrant) in the matrix are 

all low negative in value. Unlike correlation matrix 12, there are two variables with 

moderate and moderate to strongly correlate with opposite signs. This condition might 

have different kind of impact on the estimated power of the LD method. 

 

Table 5.12: Identification by variables with correlation matrix 12 for LD method 

Shifted mean Random correlation matrix 12 

vector var. 1 var. 2 var. 3 var. 4 

(2.5, 0, 0, 0)' 3 0 947 50 

(3.0, 1.5, 0, 0)' 3 0 987 10 

(1.5, 0.5, 0, 0)' 61 0 824 115 

(-3.0, 2.5, 0, 0)' 0 0 939 61 

(3, -1, 0, 0)' 0 0 966 34 

 

 

5.7.1  Summary and Conclusion 

 

The investigation of the performance of the diagnostic methods under several random 

correlation matrices has revealed a few findings. Generally, the DFT method has 

shown a consistent performance across different combinations of shift in mean vector. 

The Ratio method as well as the LD method has shown less consistency than the DFT 

method. In many cases, the LD method outperformed the other two methods with 

estimated power 100% or nearly 100%. Unfortunately, under a few random 

correlation matrices, LD method failed to perform. A future study on this problem is 

necessary to investigate how much the correlation structure affects the estimated 

power of LD method. 
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CHAPTER 6 

Simplifying UIT Assessment by Application of Spectral 

Decomposition 

 

 

 

6.1 Introduction 

 

Most studies of the interpretation of multivariate control charts use simulated data sets to 

assess performance of proposed methods. Data sets are usually presumed to follow a 

multivariate normal distribution with known variance covariance matrix.  Many studies 

considered different types of covariance or correlation matrices. Doganaksoy, Faltin & 

Tucker (1991) considered four types of correlation matrices. Das & Prakash (2008) used 

equi-correlation matrices, whereas, Maravelakis et al. (2002) considered two types of 

covariance matrices: all positive values and mixed positive and negative values in the 

covariance matrix. 

 

 In this chapter, we will show that it is not necessary to consider multiple types of 

covariance matrices in looking for the UIT direction. We demonstrate that no generality is 

lost when dealing with data from a distribution with known covariance matrix, if we only 

consider the identity covariance matrix. This is because any covariance matrix may be 

transformed into a diagonal, and hence identity, covariance matrix by use of spectral 

decomposition. 

 

Further discussion of this matter is covered in Section 6.2 where we will show how a 

transformation of a random vector, or a potential aberrant observation, x, from a general 

variance data space to a data space with identity covariance matrix can save us the trouble of 

studying multiple types of covariance matrices. A brief discussion of singular value 
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decomposition and its special case spectral decomposition is given in Section 6.3. The link 

between spectral decomposition procedures and the proposed UIT approach is given in 

Section 6.4.  Section 6.5 explains critical features of the UIT direction and distance in both 

general data space and transformed variable data space. A numerical example is given in 

Section 6.6 to demonstrate the use of the UIT method in a data space with identity covariance 

matrix followed by some discussions in the final section of this chapter. 

 

 

6.2 Assessing Aberrance in General and Standardized Data Space 

 

The main aim of this study is to assess how aberrant x is in a general data space i.e. against 

data from a distribution with general variance covariance matrix,   . Given that the    is 

known, our proposed UIT test means we need to look in the direction    
   x to find the 

potential aberrant variable(s). This assessment needs to be performed in the original, general 

covariance data space, defined hereafter as x-space. 

 

We find later on that this is not very helpful in proposing a general diagnosis method, 

based on threshold values (as discussed further in Chapter 7) since it seems that we need to 

find different threshold values for being aberrant for every possible covariance matrix. This is 

clearly impractical in real situations.  Instead, we want to transform the whole problem to a 

new, standardized data space in which the transformed data has identity covariance matrix. 

This can always be achieved for data with a multivariate normal probability distribution with 

known parameters. Let x be defined as a random vector with a p-variate normal distribution 

with mean vector µ0 and covariance matrix  , i.e            . Hence x has probability 

distribution function as shown below, 

               
       

 

 
      

   
                     [6.1] 

 

Now consider 

         
                                              [6.2] 
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where    
    

 is the symmetric positive-definite square root of   
   then the transformed 

variables y = (y1, y2,…yp)’ are independent and identically distributed (IID), specifically 

           where i = 1,2,...,p (Mardia, Kent & Bibbly ,1994). 

 

  When we transform   to   as shown in [6.2], we are no longer working in  -space but 

in  -space instead, i.e. in a data space with an identity covariance matrix. So, the assessment 

of the potentially aberrant variable now needs to be performed in a new data space. Once in 

this standardized  -space we can assess aberrance of each component individually and 

against a known (         distribution. This realization forms the basis of the formalization 

of our UIT procedure beyond ‘examine the largest’ in Chapter 7.  Let us define     as the 

UIT vector in  -space and     as the UIT vector in  -space. Based on the relationship of 

vectors    and   given in [6.2] with    = 0 we have the inverse transformation 

 

  =   
   

y               [6.3] 

 

By referring to equation [5.15], the UIT direction in   -space is  

              ux =   
                  [6.4] 

 

So, by substituting   in [6.3] into [6.4], the UIT direction in   -space would be  

                       uy =   
     

   
   

        =    
    

                       [6.5] 

 

With the variance covariance matrix assumed known, or well estimated, then we can always 

deal with observations from independent identically distributed N(0,1) variables because we 

can standardize all variables by pre-multiplying by the inverse of the square root of that 

matrix. Therefore, we need an easy way to find   
    

. This can be done using spectral 

decomposition procedure in which the square root of a known positive definite matrix    can 

be defined via the spectral decomposition UDU
T
 as UD

1/2
U where U is a matrix of 

eigenvectors of    and D is a diagonal matrix with diagonal elements the eigenvalues of    

(which necessarily are strictly positive). Further discussion of spectral decomposition is 

preceded by a brief explanation of singular value decomposition, which is the more general 

factorisation of this kind, is given below.  
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6.3 Singular Value Decomposition and Spectral Decomposition 

 
Spectral decomposition is a special case of singular value decomposition. Singular value 

decomposition is a factorization of a matrix into its canonical or normal form and can be 

applied to any     matrix. Let M be any      matrix whose entries can be either real or 

complex numbers. In our case, we only focus on real numbers. The singular value 

decomposition of a matrix M is the factorization of M into the product of three matrices as 

shown in equation [6.6], where the columns of matrices      and       are the singular 

vectors of matrix M and the matrix D is a diagonal matrix with positive real entries. 

 

M = UDV
T
                                                          [6.6] 

 

The diagonal entries of D are known as the singular values of M. The columns of U 

are known as the left singular vectors and the columns of V are the right singular vectors. If 

M is a symmetric positive definite matrix, where M = M
T 

and           for any nonzero 

vector   , then its eigenvectors are orthogonal and we can write 

 

M = PDP
T
                                                          [6.7] 

 

Matrix P is an orthogonal matrix, i.e. is such that  

 

     P
-1

MP = P
T
MP = D  

                            

where D is a diagonal matrix and the eigenvalues of M lie on the main diagonal of D 

(Kolman, 1991). The columns of P correspond to the eigenvectors of M and the diagonal 

entries of D correspond to the eigenvalues of the matrix M.  

 

This kind of factorization is a special case of singular value decomposition where      

U = V = P.  Equation [6.7] represents a special case of a singular value decomposition for a 

square and symmetric positive definite matrix and which is commonly known as spectral 

decomposition. Of course our covariance matrix  0 is of this form. 
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6.4  Spectral Decomposition and the Union Intersection Technique 

 

Given that the known, square     and positive definite covariance matrix M has real 

entries, matrix M can be factorized under spectral decomposition as shown below,  

 

M = PDP
T
                                                          [6.8]  

 

where  matrix P consist of p orthogonal vectors which makes  P an orthogonal matrix and 

also invertible. Thus,  

 

          P
T
=  P

-1
                                                                 [6.9] 

and 

PP
T
  = P

T
P = I                         [6.10] 

 

 As stated in section 6.1, D is a diagonal matrix and the relation between M and D can 

be expressed as [6.11] due to the special properties of matrix M which is symmetric and 

positive definite. 

                                           M =  PDP
T
              [6.11] 

 

 We now demonstrate that the spectral decomposition procedures provide an easy way 

for us to obtain    
    

 for the transformation of variables in  -space to  -space that we wish 

to use in our UIT approach. Spectral decomposition procedures factorized the positive 

definite covariance matrix M into its eigenvectors and eigenvalues in the form shown in 

[6.11]. This makes the task of finding the inverse square root of covariance matrix M easier 

since which can be done by finding the square root of the diagonal matrix D first as shown in 

[6.12] below (as shown and proven by Harville (1997)). 

 

M
1/2

  = (PDP
T
)
1/2

  

      = P(D)
1/2

 P
T
                                          [6.12]                              

Hence, 

M 
- 1/2

  = P(D)
-1/2

 P
T
                                            [6.13]                           
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The inverse square root of M can be obtained in R-programming by following [6.13] and 

thus the transformation of the variables from  -space to  -space can be carried out easily.  

 

6.5 Examples 

 

Here we consider two examples, Example 1 is for dimension p=2, while Example 2 covers 

p=4. In Example 1, the correlations are equal whereas in Example 2 we use the correlation 

matrices previously used for illustration in Sections 4.4 and 5.5, taken from Doganaksoy, 

Faltin & Tucker (1991). Their matrices c1 and c2 look at cases of all correlations positive and 

correlations of mixed sign respectively. 

 

We denoted all the correlation matrices as M and the matrix of the eigenvectors and 

eigenvalues as P and D respectively, to make it similar to the preceding section and hoping 

that it would make the explanation easier. One difference is that matrix M is a correlation 

matrix instead of a covariance but given that it is still has the special properties of symmetric 

and positive definiteness, this make no difference. Given that d is the vector of the 

eigenvalues of M then D = diag(d). The potentially aberrant observation (reflecting deviation 

from zero men) for Example 1 and Example 2 is fixed as x =       or          

respectively. The calculation is done using the package R. 

 

Example 1: Equi-correlation 

 

Case a: M =  
    
    

  ;  

 

Spectral decomposition of M gives; P =  
           
          

  ;  d =  
   
   

  , 

Using R, the square root and the inverse square root of matrix M based on [6.14] and [6.15] 

are  

  M
1/2

 =  
          
          

 ; M
-1/2

 =  
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The UIT direction on  -space based on [6.4] is  

         =               

 

The transformed variable, y, on  -space based on [6.3] is; 

      y =               

So the potential aberrant variable x =       with correlation matrix, M, is equivalent to an 

observation         =               with covariance or correlation matrix, I2.  

 

Case b:  

M =  
     

     
  ; 

Spectral decomposition of M gives; P =  
            
           

  ;  d =  
   
   

 . 

Using R, the square root and the inverse square root of matrix M are 

  M
1/2

 =  
           
           

 ;  M
-1/2

 =  
          
          

  

 

The UIT direction on  -space based on [6.4] is 

         =       

 

The transformed variable, y, on  -space based on [6.2] is 

      y =             

 

So the potential aberrant variable x =       with correlation matrix, M, is equivalent to an 

observation            =             in a space with covariance matrix, I2.   

 

This clarifies a point which has been noted several times previously. The direction of 

the deviations in both cases is the same but it seems that it is easier to pick out aberrant 



146 

 

observations if the shift goes against that suggested by the correlation structure instead of 

being in accordance with it ( y in case b is ‘greater’ than in case a). 

Example 2: Non equi-correlation 

Case a: 

M =  

           
           
            
          

  

 

Spectral decomposition of M gives  

P =  

                     
                       
                       
                       

  ;  d =  

     
     
     
     

 . 

 

Using R, the square root and the inverse square root of matrix M are 

M
1/2

   

                    
                     
                    
                    

 ; 

M
-1/2

 =  

                             
                             
                             
                            

  

 

The UIT direction in  -space based on [6.4] is 

         =                         

 

The transformed variable, y, in  -space based on [6.3] is 

      y =                         
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The potentially aberrant variable x =          with correlation matrix M is 

equivalent to an observation             =                           

with an identity covariance matrix, I4.  

 

Case b: 

M =  

           
           
           
           

  

 

Spectral decomposition of M gives  

P =  

                     
                         
                        
                        

  ;  d =  

     
     
     
     

 . 

 

Using R, the square root and the inverse square root of matrix M are  

M
1/2

   

                      
                      
                     
                     

 ; 

 

M
-1/2

 =  

                       
                      
                        

                         

  

 

The UIT direction in  -space is 

   =                     

The transformed variable, in  -space is 

  =                     
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Thus potentially aberrant variable x =          with variance covariance matrix, M, 

is equivalent to an observation        =                     with an identity 

covariance matrix I4.  

Example 2 also shows that it is easier to pick out aberrant observations if the shift 

goes against that suggested by the correlation structure instead of being in accordance with 

that suggested by the covariance structure. 

 

6.6 Conclusion and Discussion 

 

In this chapter we have shown that to find the aberrant variable(s) causing a multivariate 

OOC signal, it is sufficient to consider only it suitably transformed independent and 

identically distributed variables usually against a unit variance a unit variance threshold. This 

standardization means we do not have to proceed differently for each original variance 

structure in testing the performance of the proposed method. This opens up the possibility of 

formalizing our LD procedure, a topic investigated in Chapter 7. In reality,  0 is not usually 

known, though perhaps it can be well-estimated from substantial in-control data. The 

standardization procedure is, of course, just as sensitive to the quality of estimation as any 

other and the effect of the estimation is discussed and illustrated further in Chapter 7. 
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CHAPTER 7 

UIT Assessment with Threshold Value 

 

 

 

7.1  Introduction 

This chapter discusses another method to diagnose an out of control (OOC) signal 

triggered by a multivariate control chart. This method still applyies the same concept 

as the Largest Deviation method. Instead of looking at the highest coefficient value of 

the largest deviation (LD) vector u, a threshold value is used to separate the correct 

aberrant variables from the rest. The rationale behind this extended application of the 

proposed method becomes clear when we try to answer a couple of questions below. 

1) How to determine all the aberrant variables at one time when there may be 

more than one variable shifted from its’ in control mean value? 

2) If there is more than one variable shifted from its mean value, for instance 

two, how could we know that the second largest coefficient from the largest 

deviation’s vector is genuinely indicating the second aberrant variable? 

 Diagnostic methods based on the highest value of some statistic values such as 

univariate t-statistic, ratio, or coefficient value of a particular vector can only identify 

one aberrant variable at a time.   The common practice adopted by other researchers is 

to remove the aberrant variable identified by a diagnostic method and then re-test the 

corresponding multivariate observation as to whether it still triggers an out of control 

signal. If it does then it will be diagnosed again in order to look for a second aberrant 

variable. The diagnostic process will stop when the corresponding multivariate 

observation no longer produces an out of control signal. This study aims to propose a 

simpler and faster way to identify all the genuinely aberrant variables simultaneously.  



 150 

Simplifying components 

 

We have been able to take advantage of spectral decomposition to move our diagnosis 

problem to a standardized space in which we can assess significance formally (subject 

to suitable handling of multiple testing, testing strategy etc.). However, when we 

examine these significant features back in the original data space, in general all p 

components could contribute to their size. Thus we still need a strategy for identifying 

the important components back now in a space for which we do not have a natural 

measure of scale. 

 

 There are numerous methods which have been suggested in a variety of 

multivariate settings for handling similar problems and attempting to find 

combinations of original variable. All the approaches here are aimed to seek 

simplicity in interpreting principal components, hence, a clear definition of 

“simplicity” is absolutely necessary (Rousson and Gasser, 2004). Hausman (1982) 

modify principal components loadings to -1, 0 and 1 to simplify the interpretation of 

principal components. Vines (2000) proposed the usage of approximate components 

with integer value to assist the interpretation whereas Jolliffe and Uddin (2000) shrink 

the loadings of principal components towards 0.  Chipman and Gu (2005) introduced 

two types of constraint for the coefficients of principal components, homogeneity and 

sparsity constraints. These two constraints will either make the new components 

closer or more orthogonal to the original directions. Trendafilov and Vines (2009) 

adapted the approach proposed by Chipman and Gu (2005) where the loadings are 

classified into homogeneous, contrast and sparse. Vines (2000) proposed the use of 

drastic rounding (Jackson, 1991) in which can be applied with the approach proposed 

by Jeffers (1967) where the loadings of principal components which are less than 70% 

are set to zero.  

 

In our case, we will also rely on a drastic rounding (Jackson, 1991) as 

described in Vines (2000) that is by setting the loadings to zero when a certain 

condition is violated. We will assess whether we can determine a suitable threshold 

for the application of rounding based on an examination of the root mean square error 

(RMSE) of discrepancy of generating aberrant mean and the back-transformed 

components in y-space in example according to a simple test of significance in the 
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space with identity covariance matrix. The improved application of the proposed 

method is presented below. The choice of initial threshold values for the method 

based on the percentage points of N(0,1) probability distribution for vectors in          

 -space and the procedure to determine the threshold values in  -space are explained 

in Section 7.2.  A few examples are given in Section 7.3 which illustrate the 

application of the threshold values obtained in Section 7.2.  The results are discussed 

in Section 7.4.  

 

7.2  Threshold Value in y-space 

Firstly we determine the threshold values for the loadings of vector y of the proposed 

diagnostic approach. Vector y is the transformed vector [6.2] in a new data space 

which denoted in the previous chapter  -space. As a result of the transformation in 

[6.2], the transformed variables follow Normal distribution with zero mean and unit 

variance,              where i = 1, 2,…,p (Mardia, Kent & Bibly,1994). 

 

7.2.1 The Quantiles of the Loadings Distribution 

The threshold values are determine by the α/2 and (1-α/2) of the ordered loadings of 

vector y. For the illustration, α = 0.05 is used. This is a theoretical result and no 

simulation is needed. The theoretical cut point values for the vector in  -space is 

based on the 2.5% and 97.5% quantile of the standard normal distribution which are -

1.96 and 1.96. These two values are the lower and the upper limit of the loadings. Any 

loading value falls beyond the interval of ± 1.96 is suspected of being the responsible 

variables(s) for the OOC signal triggered by a multivariate control chart. A 

‘simplified vector’,   , is introduced where any values in vector   as defined in [6.2], 

    
    

  

within the range of the interval of ± 1.96 is set to 0.  

 

7.2.2 The Threshold Values 

The threshold values in the  -space are obtained by considering the distribution of the 

back-transformed significance indicator vector,    , as follows 

          
   

                   [7.1] 
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where 

    
   

 = the square root of known covariance matrix 

              = the simplified vector   in  -space  

 

This can only be achieved if we have knowledge, or good estimation, of the 

covariance matrix, so cannot be given in general terms for all situations. 

 

The  values are determined by following a procedure given below. Say, the threshold 

values are for the investigation on multivariate data with p =   

 

Step 1:  Generate 4000 observations using rnorm(0,1). 

Step 2:  Form 1000 4-dimensional vectors from values obtained in Step 1. 

Step 3: Simplify the vectors and then back-transform them according to 

covariance matrix   . 

Step 4:  Sort the loadings of the vectors in an ascending order separately with 

respect to variables. So, in this case we have 4 variables and we should get 4 

sets of threshold values for the  -space. 

Step 5: Get the sample  α/2 = 0.025 and (1-α/2)=0.975 quantiles from the 

distributions of the loadings obtained in Step 4. 

 

In this study, we consider two covariance matrices,    and   , for illustration. The 

threshold values obtained for each variable with respect to the covariance matrix in 

two decimal places are given below. 

 

Table 7.1:  The threshold values for  -space with respect to the covariance matrix 

 

      

 

lower limit upper limit lower limit upper limit 

var. 1 -1.78 0.87 -1.89 0.72 

var. 2 -1.75 0.98 -1.90 0.79 

var. 3 -0.80 1.78 -0.81 1.84 

var. 4 -1.91 0.76 -1.85 1.27 

 

The assessment of the extended LD method and the examples illustrated in later 

sections used the threshold values given in Section 7.2.1 (for  -space) and in        

Table 7.1 (for  -space).  
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7.2.3 Power Assessment 

A dataset of 5000 out-of-control (OOC) multivariate observations is generated from 

the mvrnorm() procedure with contaminated mean vector and known covariance 

matrix. A selective combinations of shift(s) in mean (for the contaminated mean 

vector) is used in the assessment of the performance for the extended LD method. The 

procedures outlined in Sections 7.2.1 and 7.2.2 are followed and the result obtained is 

given below. 

 

Table 7.2: The power (%) of the LD method with threshold values 

  

LD with Threshold Values 

 

Shift(s) in 

mean var.1 var.2 var.3 var.4 

         (2.5, 0, 0, 0)' 99.86 56.66 5.06 16.8 

 

(-3, -3, 0, 0)' 78.46 79 59 13.98 

 

(3, 2.5, 0, 0)' 91.96 80.72 20.3 57.02 

 

(-3, 2.5 ,0, 0)' 90.34 94.82 15.04 15.96 

         (2.5, 0, 0, 0)' 96.32 45.6 38.9 39.74 

 

(-3, -3, 0, 0)' 83.7 73.42 8.64 13.92 

 

(3, 2.5, 0, 0)' 92.44 51.58 53.64 35.08 

 

(-3, 2.5, 0, 0)' 89.1 93.9 25.06 24.28 

       

The performance of the LD method is assessed based on the power definition 

given in Section 5.6. The power (in section 5.6) is defined as the percentage of times a 

diagnostic method identified variable k, k = 1, 2 as the correct aberrant variable. The 

power of the LD method without the threshold values presented in Section 5.6 for the 

selected shift(s) in mean is given below. 
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Table 7.3: The power assessment of the LD method without threshold values 

  

LD 

 

Shift(s) in 

mean var.1 var.2 var.3 var.4 

         (2.5, 0, 0, 0)' 95.54 4.38 0 0.08 

 

(-3, -3, 0, 0)' 37.3 45.92 12.44 4.34 

 

(3, 2.5, 0, 0)' 69.42 16.38 9.28 4.92 

 

(-3, 2.5 ,0, 0)' 53.7 46.3 0 0 

         (2.5, 0, 0, 0)' 92.86 0.74 1.3 5.1 

 

(-3, -3, 0, 0)' 64.6 32.18 2 1.22 

 

(3, 2.5, 0, 0)' 91.92 4.62 2.42 1.04 

 

(-3, 2.5, 0, 0)' 90.98 3.26 0.04 5.72 

 

We do not intend specifically to compare the performance of the LD method 

(as shown in Tables 7.2 and 7.3) with or without the threshold values since they are 

directed towards slightly different tasks. What we aim to do is to highlight the 

strengths as well the weakneses of the proposed extended LD method. For the case 

with one aberrant variable, the LD method with threshold values has shown a very 

high power in identifying variable 1 as the aberrant one. It is, of course, also better 

than the LD method in the sense that LD just chose the largest without any idea of 

whether it was significantly large. For the cases with two aberrant variables, the LD 

method with threshold values shows a high power in detecting both aberrant 

variables, variables 1 and 2. Thus it also has a fair chance of finding the second 

aberrant variable. The power in identifiying the second aberrant variable is much 

higher when the shifts in mean are counter-correlational.  

 

However, the proposed extended method has one problem. The chance of 

finding a mistaken variable is very high for the LD method with threshold values. As 

shown in Table 7.2, a lot of cases for variables 3 and 4, the percentage of 

identification is 20% or more. Apparently, this problem needs further investigation in 

the future. 
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7.3 Examples  

 

The application of threshold value in determining the responsible variable(s) for an 

OOC signal is examined in three separate sub-sections. The first section, 7.3.1, 

considers an observation with one aberrant variable whereas Sections 7.3.2 and 7.3.3 

look at an observation with two aberrant variables in the same and opposite directions, 

respectively. The examples will illustrate how to single out variable    (Section 7.3.1) 

or variables    and    (Sections 7.3.2 and 7.3.3) as the responsible variable(s) that 

caused the OOC signal in a multivariate control chart using the approach discussed in 

Section 7.2.1.  

 

7.3.1 One Aberrant Variable 

 

Say                
 
  is an out of control (OOC) observation or the multivariate 

observation of dimension p that falls beyond the upper control limit of a multivariate 

control chart with    is the responsible variable. Basically, we have a contaminated 

mean vector µ = (3,0,0,0)', in which variable 1 has been contaminated                      

(by contaminant = 3) and the OOC observation vector     is transformed to vector   

under two non equi-correlation matrices used in Chapter 5 and given again below, 

 

   =   

           
           
            
          

 ;    =   

           
           
           
           

  

 

where from equation [6.2] 

     
    

 ; and   ~ N(0, I) 

 

Say we have two OOC observations,    and   , from situation with correlation 

matrices    and    respectively 

      = (1.84, -0.59, -0.30, -1.19)'  

and 

     = (2.80, -0.22, -0.33, -0.73)' 
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then, we obtain the transformed vectors in  -space as given in equation [7.1], 

    = (3.84, -2.18, 0.16, -2.08)' 

and       

    = (5.78, -3.28, 2.99, -3.98)'. 

 

Based on the “proposed threshold values” for the loadings of vector   (±1.96), 

the ‘simplified vector’ are 

   
   = (6.05, -2.67, 0, -2.08)'  and         

 
  = (5.78, -3.28, 2.99, -3.98)'. 

 

These vectors both ‘correctly pick out’ variable    as aberrant. The result of the back 

transformations of    give us vectors    with elements shown below, 

  
   = (1.81, -0.63, -0.44, -1.23)'    and    

   = (2.80, -0.22, -0.34, -0.73)' 

 

The back-transformed vectors are more or less similar to the original vectors. 

Variable   still has the largest value. Variable    has a value considerably larger than 

the other variables in both vectors,   
   and   

  . What we just need now is a ‘cut off 

rule’ in  -space in order to determine that variable    is the one and only and the most 

probable aberrant variable that caused the OOC signal. Using the threshold values 

given in Table 7.1, variable 1 has been successfully identified as the only variable 

with a loading outside the critical values, i.e. it is correctly identified as the sole 

aberrant variable. 

 

7.3.2 Two Aberrant Variables (Same Direction) 

 

Let say the same tests in Section 7.3.1 are repeated and the contaminated mean vector 

is µ = ( , 0,  , 0)  . This time the OOC observations are 

   = (1.84, -0.59, 2.70, -1.19)'   

and  

  = (4.01, -0.13, 1.86, -0.71)'   

then, we obtain the transformed vectors, 

   = (3.75, -3.38, 4.25, -3.06)' 

and       

    = (10.09, -5.94, 7.93, -6.94)' 
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After simplifying  these vectors according to Normal quantiles and back 

transformation, we obtain 

 

    
    = (1.84, -0.59, 2.70, -1.19)'   

and 

  
    = (4.01, -0.13, 1.86, -0.71)'   

 

Variables    and    are still the two largest values. But again, what we need 

now is a ‘cut off rule’ in  -space. This time the aim is to separate both variables,    

and   , from the others and to determine that both of the variables are significantly 

aberrant and thus the probablecause of the OOC signal. Using the threshold values 

given in Table 7.1, both variables are successfully identified as the aberrant variables.  

 

7.3.3 Two Aberrant Variables (Opposite Direction) 

 

Say the OOC observations from contaminated mean vector, µ = (-3, 0, 3, 0)' are 

    = (3.43, -0.64, -3.83, -1.05)'   

and  

   = (4.01, -0.13, -4.14, -0.71)'   

 

then, we obtained the transformed vectors, 

    = (6.55, -1.99, -4.73, -1.28)' 

and       

   = (4.19, -1.06, -2.55, -1.70)' 

 

The vectors have a different simplified vectors which are 

   
 = (6.55, -1.99, -4.73, 0)'  and     

 = (4.19, 0, -2.55, 0)' 

 

These are ‘good’’ too since both variables,    and    , are ‘correctly picked out’ as 

aberrant variable. After back transformation on both vectors, we obtained 

  
   = (3.78, -0.41, -3.45, 0.12)'   

and 

  
   = (4.59, 0.31, -3.65, 0.50)'  
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Variables    and    are still the two largest absolute values and the sign of the 

value of the aberrant variables are still the same, indicating the direction of the shifts 

is retained. Based on the threshold values given in Table 7.1, both variables, 1 and 2, 

are successfully identified as the aberrant variables. 

 

7.4 Application to Real Data 

 

The procedures shown in Section 7.2 and the examples given in Section 7.3 are under 

the assumption that the covariance matrix, Σ is known. In real applications, it is not 

always known and in most cases, the Σ needs to be estimated from the in-control 

dataset obtained from the Phase I process control monitoring. In this phase, the causes 

of out-of-signals on a multivariate control chart have been identified and dealt with. 

Thus, the out-of-control process is assumed to have been brought into in-control 

condition before the end of the Phase I process control monitoring. The remaining in-

control observations from this phase are used to estimate the covariance matrix, Σ, for 

later use in Phase II process control monitoring. It is also assumed that we can readily 

identify when we are back ‘in-control’ and so the estimation of Σ is based only on 

reliable observations. The procedure for the application of the LD method with new 

threshold values using the estimated covariance matrix is explained in the following 

sub-section. 

 

7.4.1 Procedure 

 

A dataset with 50 in-control multivariate observations are simulated using 

mvrnorm procedure with seed number 2015. The same correlation matrices,    and 

  , are used in the mvrnorm() procedure with mean vector,   . The covariance 

matrix, Σ is then estimated based on these in-control datasets. The estimated 

covariance matrices based on the in-control observations simulated using    and    

are      and    , respectively. Example of estimated covariance matrices are given 

below.  
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     =  

                
                
                
                

   

 

     =  

                 
                  
                  
                 

   

 

 It should be noted that these estimates will not generally be correlation 

matrices (as are    and   ) but this does not affect the procedure which requires a 

covariance matrix is the fact that    and    are correlation matrices is a specified case 

and we revert here to the more general formulation given in the original theory 

(Section 5.3).  

 

 For computational simplicity, we will apply the LD method still using the 

same theoretical threshold values showed in Table 7.1.  Further, distribution of the 

variables is still assumed to be Normal and not to follow the Student-t distribution, 

even though the covariance matrix is estimated. 

 

 

Procedures in applying the LD method using an estimated covariance matrix 

 

Suppose   =              
  is a multivariate observation that triggers an out-of-

control signal on a multivariate control chart. In order to diagnose the signal using the 

LD method with threshold values,   needs to undergo the steps explained below. 

Step 1:  Vector   is transformed to  -space and becomes  -vector as given in [6.2]     

where Σ is unknown and estimated from the in-control dataset in Phase I 

process control monitoring. In this section, the estimated covariance matrices 

used are     and    . The inverse square root of the estimated covariance 

matrix is used in the transformation. 

Step 2:  The   -vector is then simplified according to the limits given in Section 7.2.1. 

Step 3:  The simplified vector    is back-transformed to vector     in the  -space 

using the square root of the estimated covariance matrices. Aberrant variables 
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are identified by comparing the relevant terms with the limits shown in      

Table 7.1.  

 

7.4.2 Examples 

 

The same observations in the illustration of the application of the LD method with the 

threshold values in Sections 7.3.1, 7.3.2 and 7.3.3 are used for the following 

examples. The observations are simulated from two covariance matrices,    and    

but this time, the application of the LD method is based on the estimated covariance 

matrices,     and    . Covariance matrix     is estimated based on the 50 in-control 

multivariate observations simulated using mvrnorm() procedure with covariance 

matrix,   . Whereas, covariance matrix     is estimated based on the 50 in-control 

multivariate observations simulated using mvrnorm() procedure with covariance 

matrix,   . 

 

One Aberrant Variable 

 

The shifted mean vector is (3, 0, 0, 0)' for this situation and the observation vectors 

simulated from covariance matrices    and     respectively are 

    = (1.84, -0.59, -0.30, -1.19)'  

and 

      = (2.80, -0.22, -0.33, -0.73)' 

 

Then, we obtain the transformed vectors in  -space as given in equation [7.1], 

     = (4.03, -2.91, 0.77, -2.55)' 

and 

     = (7.21, -3.95, 4.11, -4.59)'. 

 

The vectors are simplified by comparing the coefficients of the variables against the 

limits    ± 1.96 as given in Section 7.2. The simplified vectors are 
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 = (4.03, -2.91, 0, -2.55)' 

and 

     
 = (7.21, -3.95, 4.11, -4.59)'. 

 

The simplified vectors are then back-transformed to  -space and the final vectors are  

     
 = (1.71, -0.76, -1.02, -1.50)' 

and 

     
 = (2.80, -0.22, -0.33, -0.73)'. 

 

By applying the threshold values given in Table 7.1, variable 1 is identified as the 

only aberrant variable for both cases with    and   . For interest, we can compare    
  

and    
  with their equivalent from Section 7.3.1 which used    and                            

as known covariance matrices for    = (1.84, -0.59, -0.30, -1.19)'  and                                          

   = (2.80, -0.22, -0.33, -0.73)' respectively. As we can see, there is very little 

difference  and, unsurprisingly, we reach the same conclusion regarding aberrance. 

 

Two Aberrant Variables (Same Direction) 

 

The shifted mean vector is (3, 0, 3, 0)' for this situation and the observation vectors 

simulated from covariance matrices    and     respectively are 

     = (1.84, -0.59, 2.70, -1.19)' 

and 

     = (4.01, - 0.13, 1.86, - 0.71)'. 

 

Then, we obtain the transformed vectors in  -space as given in equation [7.1], 

 

     = (4.38, -3.97, 5.01, -4.50)' 

and 

     = (12.85, - 6.89, 9.62, - 8.24)' 

 

The vectors are simplified by comparing the coefficients of the variables against the 

limits    ± 1.96 as given in Section 7.2. The simplified vectors are 
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 = (4.38, -3.97, 5.01, -4.50)' 

and 

     
 = (12.85, - 6.89, 9.62, - 8.24)'. 

 

The simplified vectors are then back-transformed to  -space and the final vectors are  

     
 = (1.84, -0.59, 2.70, -1.19)' 

and 

     
 = (4.01, - 0.13, 1.86, - 0.71)'. 

 

By applying the threshold values given in Table 7.1, variable 1 and variable 3 are 

correctly identified as aberrant variables for both cases. Again, we have reached 

similar conclusion to those in Section 7.3.2 where    and    are assumed known. 

 

Two Aberrant Variables (Opposite Direction) 

 

The shifted mean vector is (3, 0, -3, 0)' for this situation and the observation vectors 

simulated from covariance matrices    and     respectively are 

 

     = (3.43, -0.64, -3.83, -1.05)' 

and 

     = (4.01, - 0.13, -4.14, - 0.71)'. 

 

 

Then, we obtain the transformed vectors in  -space as given in equation [7.1], 

     = (6.22, -3.22, -4.11, -0.72)' 

and 

     = (4.84, - 1.79, -1.30, -1.76)' 

 

 

The simplified vectors are 

     
 = (6.22, -3.22, -4.11, 0)' 

and 

     
 = (4.84, 0, 0, 0)'. 

 

 

and the final vectors are  
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 = (3.61, -0.56, -3.54, -0.43)' 

and 

     
 = (4.03,  0.76, -2.10,  0.84)'. 

 

Again, variable 1 and variable 3 are correctly identified as aberrant variables in both 

cases as was the cases in Section 7.3.3. 

 

 

7.4.3 The Effect of Estimation 

 

In the examples above we saw little effect from the estimation of    and   . However, 

that was based on single examples. We investigate the effect of the estimated 

covariance matrices more fully by studying the change in the estimated power with 

respect to the corresponding Frobenius distance between the theoretical and the 

estimated covariance matrices over a larger simulation. Figures 7.1, 7.2 and 7.3 

exhibit the relationship between the estimated powers and the corresponding 

Frobenius distance for the same combinations of shift in mean vector as used in the 

examples in Section 7.4.2.  

 

 We repeat here the procedure in Section 7.4.1 for 100 separate estimates of   . 

The Frobenius distance is defined as the distance between    and it estimates,     or 

in other words, it measures how much the estimates of    differ from    itself. Note 

that although    is a correlation matrix,     is a more general, covariance matrix, 

being based on actual observations.  
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Figure 7.1:  Identification with respect to Frobenius distance for case with one 

aberrant variable, (3, 0, 0, 0)'. 

 

 

The plots in Figure 7.1 shows the estimated power for each variable with 

respect to the corresponding Frobenius distance.  From the patterns shown by the 

plots, the true aberrant variable, in this case is variable 1, has consistent values of 

estimated power compared to the other variables. The plots of variables 2, 3 and 4   

fluctuated more with much lower values for the percentage of identification though 

still disappointingly high being false alarm. There is no clear dependence of power on 

Frobenius distance. It is perhaps because all estimates are reasonably good. 
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Figure 7.2:  Identification with respect to Frobenius distance for cases with two 

aberrant variables in same direction, (3, 0, 0, 0)'. 

 

 

Plots in Figures 7.2 and 7.3 show similar patterns to Figure 7.1. The plots of 

the aberrant variables, 1 and 3, are smoother with estimated power considerably 

higher than the other two variables. The estimated power for variable 3 in Figure 7.3 

is slightly higher than the one shown by the same variable 3 in Figure 7.2. Again, 

little dependence on Frobenius distance is seen. 
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Figure 7.3: Identification with respect to Frobenius distance for cases with two 

aberrant variables in opposite direction, (3, 0, -3, 0)'. 

 

 

7.5 Discussion 

 

The LD method with threshold values has shown a good performance in identifying 

aberrant variables. The aberrant variables are identified correctly in many cases. The 

direction of the shifts are retained, in which is useful for follow-up action to get a 

process back to an in-control state. The LD method with threshold values also makes 
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the task of identifying more than one aberrant variables at a time possible. This is 

truly a valuable advantage and better than the common practice where aberrant 

variables are identified one by one, the second being identified after the first has been 

removed.  

 

The application of of the LD method on real data with estimated covariance 

matrix has shown promising results. The estimated power for the true aberrant 

variables consistently is very high throughout all Frobenius distances, whereas the 

non-aberrant variables have considerably lower estimated power (though further work 

is needed to address the level of these false alarm). 
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CHAPTER 8 

SUMMARY AND FUTURE WORK 

 

 

 

8.1 Introduction 

 

This final chapter is divided into two parts; the first part summarizes the findings featured in 

Chapters 3, 4, 5, 6 and 7 and the second part outlines directions for future work. We will 

revisit these chapters, with outlining the aims and the objectives of the investigation in the 

beginning of the summary. The findings, conclusions and suggestions wherever available will 

be presented at the end to conclude the summary of each chapter. 

 

 

8.2 Summary and Conclusion 

 

The comparative study reported by Das and Prakash (2008) is the main topic discussed in 

Chapter 3. The aim is to fully utilise the findings reported by Das and Prakash to assist this 

study in conducting a new comparative study in Chapter 4 and an assessment of a new 

proposal in Chapter 5. Das and Prakash (2008) succeeded in conducting a detailed 

investigation of the performance of several diagnostic methods by performing the methods on 

various combinations of shifts in mean vector. A wider range of shifts in mean outlined in 

this simulation work is found to be the main strength of the study, exceeding the previous 

comparative studies by other researchers (Doganaksoy, Faltin and Tucker, 1991; Maravelakis 

et al., 2002) where the options presented are very few and limited. Because of this, the same 

range of shifts in mean vector has been adapted in the comparative study in Chapter 4. The 

simulation results revealed, with additional observations from this study, certain patterns of 

performances by the diagnostic methods which are believed related to not only to the size of 

the shift(s) in the mean vector but also to the combination of shifts in mean vector as well as 
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the correlation between variables. The methods proposed by Hawkins (1991) and Murphy 

(1987) have shown some inconsistencies in their performance and are on many occasions 

unable to respond to the shifts in mean especially when the shifts are not in accordance with 

the correlation structure. The methods proposed by Mason, Tracy and Young (1995) and 

Doganaksoy, Faltin and Tucker (1991) have shown reliable performance and the pattern of 

their performance is more predictable. The method proposed by Doganaksoy, Faltin and 

Tucker (1991) (DFT) is chosen to be included in the comparison studies in Chapters 4 and 5 

for this reason. It is chosen over the method proposed by Mason, Tracy and Young (1995) for 

its greater simplicity and practicality. 

 

Apart from the strength, the investigation of Das and Prakash (2008) also carries 

several weaknesses such as some terms used in the investigation not being clearly defined. 

The most crucial is the definition of ‘n(detect)’  in equation [4.4] for the computation of 

power for a diagnostic method for cases with more than one mean shifted. As a result, the 

meaning of “Power” for assessing the performance of a diagnostic method is left for the 

reader to assume. The performance criterion, which related to the power measurement, also 

lacks clarity in terms of its limits or ranges. As a result, ambiguities arise in describing the 

level of performance of the diagnostic methods studied. This study has taken necessary 

precautions to avoid doing the same. The “Power” of a diagnostic method has been clearly 

defined in the following chapters and suggestions for improving the assessment of diagnostic 

methods in comparative studies are given in Section 8.3 as one element of the future work.  

 

Chapter 4 is conducted as a preliminary comparison study for an extended comparison 

in Chapter 5. As a preliminary study, this chapter includes a selected diagnostic method from 

the study by Das and Prakash and compares its performance with another method called 

Ratio method. The method on the computation of ratio was taken from Maravelakis et al. 

(2002) but this study did not follow the exact approach proposed by them. A performance 

comparison between these two methods is based on a modified definition of “Power” in [4.4], 

and the assessment of successful diagnostics based on the largest value. The ranking of the 

K_ind [2.6] is used for the DFT method instead of the K_Bonf [2.7] in order to compute the 

power based on the number of out-of-control (OOC) signals produced by a multivariate 

control chart. For the Ratio method, the ratios are ranked and not plotted as proposed in the 

original procedure. This study has revealed a useful finding that is worthy of further 

investigation. Based on the simulation results in this chapter, a peculiar performance is shown 
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by the Ratio method under a certain type of correlation matrix. Since the ratio’s computation 

method proposed by Maravelakis et al. (2002) used the loadings in eigenvectors, it is 

suspected that the peculiar performance is due to a particular property of the correlation 

matrix itself. The problem arises in using the loading of eigenvectors from principal 

component analysis and has been highlighted before by several researchers (Jackson, 1993; 

Mehlman et al., 1995; Zhang et al., 1997 and Quadrelli et al., 2005). The problem is related to 

the situation where two eigenvalues are close together (Quadrelli et al., 2005 and Zhang et 

al., 1997). The computation of a ratio of the corresponding eigenvectors or the 95% 

confidence limits of the eigenvectors has been suggested (Jackson, 1993; Mehlman et al., 

1995 and Quadrelli et al., 2005) as a “checking” step. This study investigated the risk of 

“swapped” or “mixed eigenvectors by studying the inner product of the first theoretical and 

sample eigenvectors and presented a graphical analysis of the frequency distribution of the 

inner products with fixed class intervals. Two correlation matrices used in this study,    and 

  , were tested, and the frequency distribution of the inner products with respect to a number 

of fixed class intervals depicted in Figure 4.5 has uncovered two things. The first correlation 

matrix,   , has most of its inner products close to +1 or -1 (Figure 4.5(a)). The Ratio method 

has shown a good performance on this correlation matrix. On the other hand, for correlation 

matrix   , the inner products of the first theoretical and sample eigenvector are distributed 

throughout all the range [-1, 1] (Figure 4.5(b)). The Ratio method has shown a peculiar 

performance on this correlation matrix. The eigenvalues for the first two eigenvectors as 

shown in Table 4.3, for     these are far apart whereas for   , they are very close together. 

The result of this investigation has reconfirmed the existence of the problem regarding the 

possibility of “mixed eigenvectors” when the eigenvalues between a pair of eigenvectors are 

close together and this study has successfully presented another way to identify the problem.  

 

Chapter 5 has two objectives. The first objective is to propose a new method to assist 

in the interpretation of the multivariate control chart signals and the second objective is to 

carry out a new comparison study which includes the proposed method and the two methods 

from Chapter 4. The proposed method applies a union intersection technique (UIT), which 

procedure is validated by the Cramer-Wold theorem where the connection between the set of 

all one-dimensional projections and the multivariate distribution is established. The union of 

the rejection regions given in [5.7] provides the basis of the union intersection strategy which 

is being applied to the diagnosing of the OOC signal from a multivariate control chart. A test 
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statistic is used to determine whether a multivariate observation is sufficiently extreme before 

a process is declared as ‘out-of-control’. In order to determine which raw variable (or which 

combination of them) is responsible for the signal, this chapter performs a union intersection 

test to obtain a UIT test-statistic and a UIT direction.  Basically, a test statistic is referred to a 

set of critical values and a decision is made whether it is ‘significantly’ extreme or not. 

Generally these critical values will not depend upon that covariance of the observations      

(i.e it will be    if the covariance is known or Hotelling’s T
2 

if the covariance is unknown 

because of the underlying assumption of normality) but in this chapter, the covariance is 

assumed known and the test statistic is referred to the    critical value. Then we look at the 

coefficients of the variables in the UIT direction and pick out the variable (or variables) 

whose coefficients are “sufficiently large”. The problem is we don’t know what “sufficiently 

large” is and typically this will depend upon the covariance. Because of this reason, the 

comparison study in this chapter has considers six different correlation matrices in which four 

of them are equi-correlation matrices with ρ = -0.2, 0.2, 0.5 and 0.8 (adapted from the 

correlation matrices used in Das and Prakash (2008)) and the other two are non equi-

correlation matrices with the first one,   , consisting of all positive values and the second   , 

having mixed sign values (correlation matrices used by Doganaksoy, Faltin and Tucker 

(1991)). The comparison study in this chapter fully used the combinations of shifts in mean 

by Das and Prakash (2008). This study has taken one step ahead in re-defining the 

performance assessment proposed by Das and Prakash (2008) specifically for the cases with 

more than one aberrant variable for example, in the cases with two variable means are shifted 

in a mean vector, the “Power” is defined as the number of times a certain diagnostic method 

can correctly identify at least one of the aberrant variables.  

 

This study also proposed other options in defining the “Power” for a comparison 

study of diagnostic methods which will be discussed further in Section 8.3. The results of the 

simulation study has been presented in such way that the effect of the combination of shifts in 

mean can be seen clearly with respect to whether the shifts are in accordance with the 

correlation structure or in counter-correlational. The newly proposed method has shown a 

very good performance and in many cases better than the other two methods especially for 

the cases with one aberrant variable or when one of the shifts in mean is much larger than the 

other, regardless of the structure of the correlations between the variables in four dimensional 

data sets. This new method is very much recommended when there is a priori knowledge that 
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one of the variables has a much higher tendency than the other variables to deviate easily 

from the in-control mean. The proposed method also shows a very good performance in the 

situation where the shifts are not in accordance with the correlation structure. It has shown a 

considerably higher performance than the Ratio method in all of the combinations of shifts 

whenever the shifts are not in accordance with the correlation structure. For the shifts in mean 

with small magnitudes, or for combinations of small and intermediate shifts, the proposed 

method always showed a significantly higher power than the other two methods when the 

correlation between variables is moderate positive or strong positive.  A good performance is 

also shown for the cases when the shifts are in accordance with the correlation structure but 

the power is not as high as the other methods when the shifts are counter-correlational. 

However, the power of the proposed method drops noticeably when the shifts in mean are 

close together in magnitude in the situation when the shifts are in accordance with the 

correlation structure. The drop in power is not that much when the correlation between the 

variables is low. The investigation in Section 5.6 has revealed that the proposed method has a 

higher tendency to detect a larger shift more frequent than a smaller shift compared to the 

other two methods. For the cases with non equi-correlation matrices, the proposed method 

shows a very good performance when the shifts are not in accordance with the correlation 

structure when all the correlation between variables are positive regardless of the 

combinations of shifts in mean.  

 

The selection of the covariance matrices proposed by the other researchers is 

considered somewhat limited. In investigating the performance of the diagnostic methods, 

this study used additional randomly generated correlation matrices. The estimated power of 

the diagnostic methods is compared across this broader class.  The proposed method has 

shown a very good performance in many cases, but sometimes the performance is only fair or 

even very poor under a few of the randomly generated correlation matrices. This underlines 

the fact that it is the relationship of a shift with the correlation structure which determines 

how easy it is to detect. 

 

Chapter 6 aims to show how the the UIT assessment in Chapter 5 can be simplified by 

application of spectral decomposition. In this chapter, we again assume that we know the 

covariance matrix. In many situations in quality control, we deal with large datasets and we 

have a very good sample estimate of the covariance even if we don’t know it exactly. This 

means that we can transform all our observations (with a linear function) so that we have 
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observations from iid N(0,1) variables. So, in this chapter, instead of working on the raw 

data, we will immediately transform the observations to iid N(0,1)s and perform the UIT  on 

them. In this way, we will get a UIT test statistic (which will be identical to that from the raw 

data) and a UIT direction (which will be different). This time, we look at the coefficients of 

the (transformed) variables in the UIT direction obtained and pick those that are 'sufficiently 

large'.  A few examples in 2 and 4 dimensional observations are presented in this chapter and 

the potentially aberrant variable is fixed as       ,  )  (for 2 dimensional observation) or               

      ,  ,  ,  )  (for 4 dimensional observation). The examples demonstrate that the pattern of 

the shifts are retained and similar to the shifts fixed in vector  .  This investigation makes 

formalizing the proposed method possible as is explained further in Chapter 7.  

 

In Chapter 7, this study aims to present a formal procedure to determine threshold 

values for the coefficients of the transformed vectors discussed in Chapter 6. The transformed 

vectors are called   vectors in  -space. The threshold values are obtained from iid N(0,1)s 

distributions. In general, this will yield a linear combination of (some of) the iid N(0,1)s as 

being the 'cause' of the aberrance. The simplified vector of this linear combination is called 

‘significance indicator vector’. A reverse transform is applied to this linear combination to 

identify what linear combination of the original raw variables is the cause. Thresholds values 

dependent on the covariance matrix are required to decide which raw variables make 

significant contribution to this effect. These are determined by simulation of the quantities in 

the null (no OOC signals) case.  

 

The practicality of this method is extended by demonstrates its use on real data where 

we must estimate the covariance matrix from in-control sample data. The estimated 

covariance matrix is used in the implementation of the proposed diagnostic method on out-of-

control observations. The effect of the estimation upon the estimated power of the LD 

method is also studied by computing the Frobenius distance between the theoretical and the 

estimated correlation matrices. The findings showed that the estimated power of LD method 

is not much affected by the Frobenius distance.  
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8.3 Future Work 

 

The performance of the proposed method, LD, is good and in many cases shows a better 

performance than the other two methods, DFT and the Ratio. The improved version of the 

LD method has a few advantages over the original version. An identified variable can be 

proven to be significantly aberrant with the application of the threshold values. Furthermore, 

more than one aberrant variable can be identified as aberrant at a time.  

 

 However, it is noticeable from the results shown in Chapter 7 (Table 7.2), that the LD 

method with threshold values has a considerable percentage of identification of the non-

aberrant variables. This situation indicates a high possibility of making Type II error. A 

further investigation is obviously needed in order to improve the Type II error without 

worsening the Type I error.  

 

 A further investigation on the performance of the LD method with threshold values 

with respect to various combinations of shifts in mean is necessary to measure its potential as 

a good diagnostic method in interpreting a multivariate control chart signal. The same 

combinations of shifts in mean applied in Chapter 5, is proposed for the further investigation.  

 

 Some improvements in measuring the performance of diagnostic methods should be 

initiated and tested. The power measurement should be the same and applicable to all 

diagnostic methods. A clear definition is needed for it especially for the cases with more than 

one aberrant variable. The power of a diagnostic method can be measured in a few ways, i.e., 

the ability of a method to identify one of the aberrant variables or the ability of a method to 

identify both or all the deviated variables. A failure in defining the power of a method 

definitely affects the assessment of the power of diagnostic methods in any comparison study. 
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APPENDIX 

 

 

Table 1: A list of 20 random correlation matrices with values rounded to two decimal places. 
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