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Abstract 

The aim of this study was to determine if there is a relationship between the morphology 

of C-S-H (calcium silicate hydrates) with its chemical composition and structure or the 

morphological change is kinetically driven. The morphology of C-S-H, the binding phase of 

cement, has been an open subject of debate for decades. C-S-H morphology affects the shape of the 

capillary pores, as the capillary porosity is defined by the outer product C-S-H. Thus, the 

morphology of C-S-H partially determines transport properties and the durability of cementitious 

materials. This underlines the importance of understanding it to model the degradation and predict 

the service life of such materials. The Op C-S-H (outer product) exhibits different morphologies 

from fibrillar to sheet-like foils in different cementitious systems. It is not clear whether the change 

in morphology is determined by the structure and chemical composition or it is kinetically driven 

[1]. Finding suitable synthetic analogues of materials formed under normal conditions remains a 

challenge. However, synthetic analogues are ideal systems for the aim of this project. Their 

fabrication is controlled under synthesis parameters which can affect the morphology and can be 

tailored. Therefore synthetic C-S-H, with Ca/Si ratios between 0.75 to ~1.7 (covering part of the 

range that commercial cements exhibit) were proposed as model systems to be compared with real 

cementitious systems in this study.  TEM and NMR were the main techniques to analyze the 

morphology, chemical composition and structure of the samples. Other techniques such as STA, 

XRD, XRF, TG-FTIR-DSC and SEM were used to get complementary information.  

The results obtained indicate that C-S-H morphology of samples fabricated via silica-lime 

reactions with bulk Ca/Si ratios from 0.75 to 1.5, and C-A-S-H samples with Ca/Si=1 and Al/Si=0-

0.05 is foil-like. The morphology of C-S-H in samples hydrated via the controlled hydration of C3S 

at fixed lime concentrations was found to be dependent on the lime concentration in solution; being 

foil-like for lime concentrations from 12 to 20mmol/l (Ca/Si ratios from ~1.25 to ~1.4), a mixture of 

foils and fibrils for 22mmol/l (Ca/Si ratio of ~1.58) and fibrillar for concentrations ≥ 25mmol/l 

(Ca/Si ratios of ~1.60-1.65). For each lime concentration, the morphology was found to be 

independent of the growth rate, being the same for the acceleration period (fast growth) and the 

deceleration period (slow growth). This implies the morphology is composition dependent and not 

kinetically driven. However, a link between the silicate structure of C-S-H and its morphology was 

also found.  Samples fabricated via the controlled hydration of C3S, with an ultrasound gun, at lime 

concentrations of 27-29mmol/l, were found to have higher percentages of Q
2
 silicate species and 

more flattened surfaces, than samples fabricated at the same lime concentrations but with the use of  

C-S-H seeds (Xseed). This agrees with the fact that flattened surfaces could accommodate longer 

silicate chains while surfaces with more features would accommodate more Q
1
 end-chains. 



 vii 

Table of contents 

1 Introduction .............................................................................................................................. 1 

1.1 Project framework ................................................................................................................... 1 

1.2 Project objectives .................................................................................................................... 3 

1.2.1 Objectives ....................................................................................................................... 3 

2 Literature review ...................................................................................................................... 4 

2.1 Portland cement ...................................................................................................................... 4 

2.1.1 Tricalcium silicate .......................................................................................................... 4 

2.1.2 Dicalcium silicate ........................................................................................................... 5 

2.1.3 Tricalcium aluminate ...................................................................................................... 5 

2.1.4 Calcium aluminoferrite ................................................................................................... 5 

2.1.5 Hydration reactions and hydration products ................................................................... 6 

2.1.6 Microstructure development during the hydration of Portland cement .......................... 8 

2.2 Most common supplementary cementitious materials .......................................................... 10 

2.3 Minerals and synthetic phases related to C-S-H ................................................................... 10 

2.3.1 Tobermorite 14Å .......................................................................................................... 11 

2.3.2 Jennite ........................................................................................................................... 12 

2.3.3 C-S-H (I)....................................................................................................................... 13 

2.3.4 C-S-H (II) ..................................................................................................................... 13 

2.3.5 Wollastonite .................................................................................................................. 14 

2.4 Atomic and molecular models for C-S-H ............................................................................. 15 

2.4.1 Taylor model ................................................................................................................ 16 

2.4.2 Richardson and Groves’ model .................................................................................... 16 

2.4.3 Richardson’s model structures for C-(A)-S-H(I) .......................................................... 19 

2.4.4 Pellenq’s molecular model ........................................................................................... 23 

2.5 Mesostructure models for C-S-H .......................................................................................... 24 

2.5.1 Powers (layer model) .................................................................................................... 24 

2.5.2 Feldman and Sereda (layer model) ............................................................................... 24 

2.5.3 Jennings (colloid model) .............................................................................................. 25 

2.5.4 Growth model of sheets in 3D confinements ............................................................... 27 

2.6 Morphology, chemical composition and structure of C-S-H ................................................ 28 

2.7 The use of SANS to study C-S-H ......................................................................................... 31 

2.8 Synthesis routes to produce C-S-H ....................................................................................... 34 

2.8.1 A solution method ........................................................................................................ 34 

2.8.2 Hydrothermal treatment................................................................................................ 34 



 viii 

2.8.3 Mechanochemical method ........................................................................................... 35 

2.8.4 Double decomposition ................................................................................................. 36 

2.8.5 Leaching of C3S paste and recalcification ................................................................... 36 

2.8.6 Hydration of C3S at constant lime concentration ......................................................... 37 

2.9 Synthesis methods to produce C-A-S-H ............................................................................... 40 

3 Characterization techniques ................................................................................................. 41 

3.1 STA....................................................................................................................................... 41 

3.2 XRD ...................................................................................................................................... 43 

3.3 XRF ...................................................................................................................................... 44 

3.4 TEM and EDX ...................................................................................................................... 44 

3.5 SEM ...................................................................................................................................... 46 

3.6 NMR ..................................................................................................................................... 47 

4 Experimental details ................................................................................................................ 51 

4.1 Sample description ............................................................................................................... 51 

4.2 Fresh mechanochemically synthesized C-S-H: Synthesis details......................................... 52 

4.2.1 Test samples ................................................................................................................. 52 

4.2.2 Optimized synthesis route for the mechanochemical samples ..................................... 56 

4.3 Synthesis details for the CaO-SiO2 C-S-H series ................................................................. 57 

4.4 Hydration of C3S at constant lime concentration: Method and device ................................. 57 

4.4.1 Hydration of C3S at constant lime concentration: Kinetics C-S-H series .................... 60 

4.4.2 Hydration of C3S at constant lime concentration: Ultrasound C-S-H series ................ 61 

4.4.3 Hydration of C3S at constant lime concentration: Xseed C-S-H series ....................... 62 

4.5 Synthesis details for the C-A-S-H series .............................................................................. 62 

4.6 STA....................................................................................................................................... 63 

4.7 TA-FTIR ............................................................................................................................... 63 

4.8 XRD ...................................................................................................................................... 64 

4.9 TEM ...................................................................................................................................... 64 

4.9.1 Wollastonite reference sample details for TEM-EDX ................................................. 65 

4.10 XRF ...................................................................................................................................... 67 

4.11 SEM ...................................................................................................................................... 67 

4.12 29
Si DP MAS NMR .............................................................................................................. 68 

5 Results and discussion ........................................................................................................... 70 

5.1 C3S paste ............................................................................................................................... 70 

5.2 7-year old mechanochemically synthesized C-S-H .............................................................. 76 

5.3 Fresh mechanochemically synthesized C-S-H ..................................................................... 80 



 ix 

5.4 CaO-SiO2 C-S-H series ......................................................................................................... 95 

5.5 Hydration of C3S at constant lime concentration: Kinetics C-S-H series ........................... 107 

5.6 Hydration of C3S at constant lime concentration: Ultrasound C-S-H series ....................... 126 

5.7 Hydration of C3S at constant lime concentration: Xseed C-S-H series .............................. 135 

5.8 Comparison of morphology and chemical structure of C-S-H samples of the ultrasound and 

Xseed series .................................................................................................................................... 144 

5.9 Comparison of MCL vs. Ca/Si and Ca/Si vs. [CaO] with reported data ............................. 145 

5.10 C-A-S-H series .................................................................................................................... 148 

6 Conclusions and further work ............................................................................................ 154 

References ...................................................................................................................................... 158 

 



 x 

List of tables 

Table 3.1. NMR shifts for silicon in cement pastes [3]. ................................................................... 48 

Table 4.1. Composition and properties of the nanosilica (Elkem) used for the mechanochemical 

synthesis of C-S-H. ............................................................................................................................ 53 

Table 4.2. Experimental details of the test C-S-H samples prepared by the mechanochemical 

method. .............................................................................................................................................. 53 

Table 4.3. Synthesis details for the C-S-H samples fabricated by C3S hydration at fixed [CaO] for 

the kinetics series. The hydration times and added volumes of water are indicated for both the short 

series (hydration stopped at the acceleration period) and the long series (hydration stopped at the 

deceleration period). All the samples were synthesized at 25ºC and at w/s=50. 4g of C3S were used 

for lime concentrations up to 20mmol/l and 3g of C3S for higher lime concentrations. ................... 61 

Table 4.4. Synthesis details of the C-S-H samples fabricated adding the ultrasound gun to the 

reactor in which the lime concentration was fixed. The w/s was 50 and the temperature was 25ºC. 

4g of C3S were used for each sample. ............................................................................................... 61 

Table 4.5. Synthesis details of the C-S-H samples fabricated at constant lime concentration adding 

Xseed to the solution. The intital w/s was 100 and the temperature was 20ºC. ................................ 62 

Table 5.1. Comparison between mean Ca/Si ratios of synthetic C-S-H samples obtained by three 

different methods: EDX from TEM (with the standard deviations), XPS [132] and TG [122]. ....... 77 

Table 5.2. Percentages of the silicate especies and MCL for the mechanochemical series. The 

results have been calculated from the deconvolution of the NMR spectra shown in Figure 5.11. .... 81 

Table 5.3. Temperature transformation of C-S-H into β-wollastonite and β-wollastonite into α-

wollastonite of the mechanochemical series of C-S-H samples. ....................................................... 85 

Table 5.4. Quantification of the CO2 and H2O content and total loss mass percentage of the 

mechanochemical C-S-H series obtained from FTIR, total loss percentage obtained from TG, and 

real Ca/Si recalculated taking into account the traces of carbonates and portlandite. ....................... 87 

Table 5.5. Ca/Si of the mechanochemical samples obtained by TEM-EDX (with standard 

deviations), XRF and TG. ................................................................................................................. 89 

Table 5.6. Calculated values for the parameters of the T/J view point of Richardson and Groves’ 

model for the mechanochemical C-S-H samples............................................................................... 93 

Table 5.7. Basal spacing in Å for the C-S-H mechanochemical samples and the CaO-SiO2 C-S-H 

samples. ............................................................................................................................................. 96 

Table 5.8. Percentages of the silicate species and MCL for the C-S-H samples fabricated in Dijon 

by the silica-lime reaction. The results have been calculated from the deconvolution of the NMR 

spectra shown in Figure 5.25. (The error is not given for the first sample because it results bigger 

than the measurement, given the atypical low percentage of Q
1
). ..................................................... 99 



 xi 

Table 5.9. Mean Ca/Si values (with the standard deviations) obtained by TEM-EDX for the C-S-H 

samples in the CaO-SiO2 series. ........................................................................................................99 

Table 5.10. Calculated values for the parameters of the T/J view point of Richardson and Groves’ 

model for the mechanochemical C-S-H samples. ............................................................................105 

Table 5.11. Percentages of the silicate species, MCL and DR (degree of reaction) for the C-S-H 

samples fabricated via the controlled hydration of C3S in the short series (Hydration time I). The 

results have been calculated from the deconvolution of the NMR spectra shown in Figure 5.36. ..111 

Table 5.12. Percentages of the silicate species, MCL and DR, for the C-S-H samples fabricated via 

the controlled hydration of C3S in the long series (Hydration time II). The results have been 

calculated from the deconvolution of the NMR spectra shown in Figure 5.37. ..............................111 

Table 5.13. Summary of the calculated Ca/Si (with the standard deviations) from TEM-EDX for the 

C-S-H present in the C3S samples hydrated at fixed lime concentrations (left column) in the long 

series (Hydration time II). The number of EDX point analyses used to calculate the average Ca/Si is 

indicated in the right column. ..........................................................................................................117 

Table 5.14. Degree of reaction of the C-S-H samples synthesized by the controlled hydration of C3S 

at fixed lime concentrations indicated in the left column given by the results in the left graph of 

Figure 5.43, marked with * and the right graph in Figure 5.43, marked with **. The degree of 

reaction given by 
29

Si NMR is also listed in the last column for comparison. ................................118 

Table 5.15. Calculated values for the parameters of the T/J view point of Richardson and Groves’ 

model for the C-S-H samples fabricated via the controlled hydration of C3S at Hydration times II.

 .........................................................................................................................................................124 

Table 5.16. Percentages of the silicate species, mean silicate chain length and degree of reaction of 

the C-S-H samples prepared by controlled hydration of C3S with the use of an ultrasound gun. The 

results are obtained from the deconvolutions of the 
29

Si NMR spectra shown in Figure 5.53. .......127 

Table 5.17. Mean Ca/Si values (with the standard deviations) of C-S-H fabricated via the controlled 

hydration of C3S with the use of an ultrasound gun. ........................................................................130 

Table 5.18. Calculated values for the parameters of the T/J view point of Richardson and Groves’ 

model for the C-S-H samples fabricated via the controlled hydration of C3S with the use of an 

ultrasound gun. .................................................................................................................................133 

Table 5.19. Percentage of the silicate connectivities calculated from the deconvolutions in Figure 

5.60, mean silicate chain length and the degree of reaction of the C-S-H samples synthesized via the 

controlled hydration of C3S with the use of Xseed. .........................................................................137 

Table 5.20. Mean Ca/Si values (with standard deviations) of C-S-H fabricated via the controlled 

hydration of C3S with the use of Xseed. ..........................................................................................139 

Table 5.21. Calculated values for the parameters of the T/J view point of Richardson and Groves’ 

model for the C-S-H samples fabricated via the controlled hydration of C3S with the use of Xseed.

 .........................................................................................................................................................142 



 xii 

Table 5.22. Fraction of vacant bridging tetrahedra fvBT, fraction of vacant tetrahedral sites v, and 

the corresponding MCL and Ca/Si ratios for minimum (i=0), intermediate (i=1) and maximum (i=2) 

degrees of protonation in a tobermorite-like chain. ......................................................................... 146 

Table 5.23. Al/Si, Ca/Si and Ca/(Si+Al) ratios from TEM-EDX of the series of C-A-S-H samples

 ......................................................................................................................................................... 148 

Table 5.24. Calculated values for the parameters of the T/J view point of Richardson and Groves’ 

model for the C-A-S-H samples. ..................................................................................................... 152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xiii 

List of figures 

Figure 1.1. Schematic of the relations between the projects in TRANSCEND collaboration 

indicating the topic, category, and type of host. The corresponding project to this PhD thesis is 

marked with a star (LB and MD stand for Lattice Boltzmann and Molecular Dynamics). .................2 

Figure 2.1. Rate of heat evolution for the hydration of Portland cement at 20˚C [3]. ........................8 

Figure 2.2. Microstructural development for a cement grain [22]. .....................................................9 

Figure 2.3. Tobermorite structure along [010] with silicate tetrahedra in dark grey, Ca polyhedra in 

light grey and W4 sites as dark dots (left). Atomic structure in the interlayer space along [001] with 

sites Ca2 octahedra in dark grey, bridging silicate tetrahedra from the chains above and below the 

interlayer space in light grey and water sites (W4) as dark dots (right) [25]. ....................................12 

Figure 2.4. Crystal structure of jennite along [010] (left) and [100] (right) showing some of the Ca 

and Si sites [26]. .................................................................................................................................13 

Figure 2.5. Structure of wollastonite 1T a), and parawollastonite 2M b) along the c-axis. Different 

wollastonite polytypes depending on the staking sequence of (100) slabs [30]. The unit cell is 

marked with thicker lines c). Stacking sequences of a two layer pseudowollastonite d) and a four 

layer pseudowollastonite e). (Figures taken from ref. [29]) ...............................................................15 

Figure 2.6. Al/Ca atom ratio vs. Si/Ca atom ratio of TEM points in Op C-S-H in a hardened white 

PC/20% metakaolin blend (●) described by the T/CH view point, and a hydrated synthetic slag 

glass (×) described by the T/J view point, both activated in 5M KOH solution. Taken from ref. [1].

 ...........................................................................................................................................................18 

Figure 2.7. Ca/Si ratio frequency histogram of TEM analyses of C-S-H in a hardened PC paste 

hydrated for 2 years vs. the reciprocal mean chain length. Modified from ref.[1]. The relations of 

Ca/Si ratio and reciprocal mean chain length for tobermorite (T) and jennite (J), with different 

levels of protonation in Richardson and Groves’ model, are indicated on the right. The C-S-H in this 

case is based on jennite dimers and pentamers. .................................................................................18 

Figure 2.8. Compilation of literature data of layer spacing vs. Ca/Si ratio of C-S-H taken from ref. 

[36], with the middle trend line representing the model structures for C-(A)-S-H. ...........................20 

Figure 2.9. MCL (mean chain length) vs. Ca/Si (left plot); data are from ref. [38, 39, 46-49], 

(Ca/Si)max vs. experimental Ca/Si (middle plot); data are from ref. [38, 39, 46-49] and SOFBT (site 

occupancy factor for bridging tetrahedra) vs. Ca/Si (right plot); data are from ref. [38, 39, 46-51]. 

The dotted lines are defined by Eq. 2.14 and Eq. 2.15 (left and middle) and Eq. 2.16 (right).The 

bold symbols (right) represent the model structures for C-(A)-S-H. The dashed lines are equivalent 

to the tobermorite lines in Figure 2.7 with w/n=0, 1 and 2 from left to right in the middle and right 

plots. The dashed line in the left plot is the one for i=0. The three graphs are taken from ref. [36]. .22 

Figure 2.10. Molecular model of C-S-H. The blue and white spheres represent water molecules. 

The green and grey spheres represent interlayer and intra-layer calcium ions and the yellow and red 

bars represent silicon and oxygen in silicate tetrahedra. Taken from ref. [52]. .................................23 

Figure 2.11. Powers model of C-S-H with interconnected fibrous particles. C: Capillary pore [55].

 ...........................................................................................................................................................24 



 xiv 

Figure 2.12. Representation of Feldman and Sereda model for C-S-H. A: Intercrystallite bond, B: 

Tobermorite sheet, C: Entrance to a gel pore, X: Interlayer water, O: Physically adsorbed water [3].

 ........................................................................................................................................................... 25 

Figure 2.13. Schematic of Jennings colloidal model with LD C-S-H as circles and HD C-S-H as 

rectangles with the variation of the surface area measured by N2 for different configurations [57]. 26 

Figure 2.14. Schematic of the assembly of the globules in CM-II model showing small and large 

gel pores (SGP and LGP) (left). Enlargement of one globule in a saturated state with a monolayer of 

water on the surface and water filling the interlayer and interglobule pores at 11% RH (right) [58].

 ........................................................................................................................................................... 26 

Figure 2.15. Different cross-sections of the structures generated using a sheet growth algorithm. 

The first row represents the starting growth at different configurations and the second row 

represents the final structures for the same configurations. The different configurations correspond 

to pp/pl=10
4
 (a and b), pp/pl=1 c) and d), pp/pl=10

-4
 e) and f) and pp/pl=10

3
 with a tilting angle of 11º 

and a probability for tilting of 0.2...................................................................................................... 27 

Figure 2.16. a) TEM micrograph showing fibrillar Op C-S-H in a 70% white PC-30% class F fly 

ash activated in water [65]. b) TEM micrograph showing foil-like Op C-S-H in a 10% OPC-90% 

GGBS blend [66]. c) TEM micrograph showing foil-like and fibrillar Op C-S-H in the same blend 

as a) [65]. ........................................................................................................................................... 29 

Figure 2.17. Surface area and heat evolved with hydration time for an OPC paste hydrated at 30ºC 

and w/s=0.4. Taken from ref.[71]. ..................................................................................................... 32 

Figure 2.18. Diagram of the calcium silicate hydrate phases stable at hydrothermal conditions. The 

x axis represents Ca/Si and the y axis temperature. C-S-H (G) and C-S-H (F) stand for Gyrolite an 

Faujasite gel respectively. Pt, Rh, Af, 11T, H and X stand for Portlandite, Reinhardbraunsite, 

Afwillite, 11Å tobermorite, Hillebrandite and Xonotlite. Taken from ref. [89]. ............................... 35 

Figure 2.19. Relationship between Ca/Si and weight loss after leaching of a C3S paste in NH4NO3 

[18]. ................................................................................................................................................... 36 

Figure 2.20. Ca/Si ratio of C-S-H prepared by the full hydration of C3S at constant lime 

concentration [49]. ............................................................................................................................. 38 

Figure 2.21. Typical metastable equilibrium curve for Ca/Si ratios of C-S-H vs. the lime 

concentration in solution. Taken from ref. [4]. .................................................................................. 38 

Figure 2.22. Structural units used by Haas to build solubility equilibria of C-S-H. Taken from ref. 

[93]. ................................................................................................................................................... 39 

Figure 2.23. Simulation of the stoichiometric evolution of C-S-H with the lime concentration in 

solution at equilibrium built with the three structural units in Figure 2.22. Taken from ref. [94]. ... 39 

Figure 3.1. Typical TG curve for a cementitious material (Derivative shown in blue) [98]. ........... 42 

Figure 3.2. Schematic representation of Bragg’s law in real space. ................................................. 43 



 xv 

Figure 3.3. Schematic representation of the emission of characteristic X-rays due to e-beam 

excitation of an atom [103]. ...............................................................................................................46 

Figure 4.1. STA results of the test C-S-H samples fabricated mechanochemically listed in Table 

4.2. .....................................................................................................................................................55 

Figure 4.2. 
29

Si MAS NMR results of test samples 3 and 4 (left), showing Q
1
 and Q

2
 intensity 

coming from C-S-H and Q
4
 intensity coming from unreacted silica. TEM micrograph of sample 4 

(right) showing a C-S-H particle (top) and an unreacted silica particle surrounded by C-S-H 

(bottom). ............................................................................................................................................56 

Figure 4.3. Drying set up used for the mechanochemical C-S-H samples showing the entries and 

exits for N2 and cooling water for the condenser. ..............................................................................57 

Figure 4.4. Device used to synthesize C-S-H via the controlled hydration of C3S implemented by 

A. Nonat. ............................................................................................................................................58 

Figure 4.5. Graph showing the controlled hydration of 3g of C3S at ~ [CaO]=22mmol/l (9.9 mS/cm 

at 25°C). The controlled conductivity is shown in black. It can be noticed that from a mean 

conductivity value, the variations were not higher than ± 0.1 mS/cm. The hydration curve expressed 

as the addition of water vs. time is shown in blue. ............................................................................59 

Figure 4.6. XRD pattern of the wollastonite sample used as TEM-EDX reference together with a 

reference pattern of pseudowollastonite taken from ref.[129]. ..........................................................66 

Figure 4.7. TEM micrographs of the wollastonite reference sample dispersed in ethanol (left) and 

acetone (right). ...................................................................................................................................66 

Figure 5.1. TG, DTG and DTA data of a 5-year old C3S paste with w/s=0.5. ..................................70 

Figure 5.2. XRD pattern of a 5-year old C3S paste with w/s=0.5. Peaks are labeled as P for 

portlandite and C for C-S-H. ..............................................................................................................71 

Figure 5.3. Upper image: Backscattered electron image from the 5-year old C3S paste with w/s=0.5. 

Three different phases are identified: C3S (white), CH (light grey) and C-S-H (dark grey). Porosity 

is displayed as black, Central image: Central area of upper image at higher magnification, Lower 

image: Backscattered electron image from the C3S paste with the white features in the center 

corresponding to belite traces. (All images taken by M. S. Chen). ....................................................72 

Figure 5.4. Upper image: TEM micrograph showing globular dense Ip C-S-H and fibrillar Op C-S-

H of a 5-year old C3S paste with w/s=0.5. Central image and lower images: TEM micrographs 

showing fibrillar Op C-S-H in the same paste (marked with white arrows). .....................................73 

Figure 5.5. Deconvolution of the 
29

Si MAS NMR spectrum of a 5-year old C3S paste with w/s=0.5. 

From top to bottom: Residue, experimental spectrum and fitted spectrum showing the individual 

peaks. .................................................................................................................................................74 

Figure 5.6. TG, DTG and DTA of C-S-H sample with target Ca/Si=0.66 (Upper graphs), and target 

Ca/Si=0.75 (Lower graphs). ...............................................................................................................77 



 xvi 

Figure 5.7. TG, DTG and DTA of C-S-H sample with target Ca/Si=1 (Upper graphs), and target 

Ca/Si=1.5 (Lower graphs). ................................................................................................................ 78 

Figure 5.8. TEM micrographs showing the fine crumpled foil-like morphology of 

mechanochemically synthesized C-S-H with target Ca/Si=0.66 (Upper image), Ca/Si=0.75 (Central 

image) and Ca/Si=1 (Lower image). ................................................................................................. 79 

Figure 5.9. XRD patterns of the series of mechanochemical samples fabricated with CaO and 

Aerosil. The Ca/Si ratios are indicated above the patterns. ............................................................... 80 

Figure 5.10. 
29

Si MAS NMR spectra of the mechanochemical C-S-H samples. .............................. 81 

Figure 5.11. Deconvolutions of the 
29

Si MAS NMR spectra of the mechanochemical samples 

showing the individual frequencies (green), the simulated spectra as a sum of the individual 

frequencies (blue) and the experimental spectra (black). .................................................................. 82 

Figure 5.12. Percentage of the silicate species Q
1
, Q

2
 and Q

3
 obtained from NMR vs. the 

experimental Ca/Si (TEM-EDX) in the mechanochemical C-S-H. ................................................... 83 

Figure 5.13. Mean silicate chain length vs. Ca/Si (TEM-EDX) in the mechanochemical series. .... 84 

Figure 5.14. TG results from the mechanochemical series of C-S-H samples. ................................ 84 

Figure 5.15. DSC data from the mechanochemical C-S-H samples. The curves have been vertically 

shifted for clarity. .............................................................................................................................. 85 

Figure 5.16. Transformation temperature of C-S-H into wollastonite from Mitsuda [87] , Bornefeld 

[134], Suzuki [125] and the mechanochemical samples from this study. ......................................... 86 

Figure 5.17. Graphs showing TG (black), DSC (green) and the FTIR traces of H2O (blue) and CO2 

(red) for the mechanochemical series of C-S-H. The FTIR traces have been normalized by sample 

weight. The vertical scales for the FTIR traces have been chosen arbitrary for clarity, and are not 

shown in the graphs. For comparison of intensities of the FTIR traces between samples, see Figure 

5.18. ................................................................................................................................................... 88 

Figure 5.18. Water and CO2 FTIR traces of the mechanochemical samples recorded while 

performing TG and DSC. .................................................................................................................. 89 

Figure 5.19. TEM micrographs of the mechanochemically synthesized C-S-H. The Ca/Si of the 

sample is indicated in each micrograph. ............................................................................................ 90 

Figure 5.20. Histograms of the Ca/Si obtained with TEM-EDX of the C-S-H mechanochemical 

samples. ............................................................................................................................................. 91 

Figure 5.21. Ca/Si vs. reciprocal mean chain length of the mechanochemical C-S-H samples. The 

length of the bars is limited by the minimum and maximum Ca/Si obtained by TEM-EDX and the 

mean value is marked with a cross. The structural units for tobermorite and jennite with minimum 

(w=0), intermediate (w=1) and maximum (w=2) degree of protonation are also marked. The vertical 

dashed lines represent the (3n-1) structural units: dimer (2), pentamer (5), octamer (8)… .............. 92 



 xvii 

Figure 5.22. XRD patterns of the CaO-SiO2 C-S-H series with a reference pattern for calcite, 

portlandite, aragonite and vaterite. .....................................................................................................95 

Figure 5.23. Basal spacing against Ca/Si ratio (TEM-EDX) for the C-S-H mechanochemical and 

the CaO-SiO2 C-S-H series. Data from Matsuyama and Young [42] was fitted to configure the 

lower trend line. Data from Richardson’s model structures for C-(A)-S-H(I) [36] configure the 

middle trend line. Data from Grudemo [42] and Cong and Kirkpatrick [39] configure the upper 

trend line. Symbols marked with points or crosses belong to the same data groups as the identical 

unfilled symbols. They are both not used to fit the upper trend line and the crosses indicate the 

presence of CH. ..................................................................................................................................96 

Figure 5.24. 
29

Si MAS NMR spectra of the CaO-SiO2 C-S-H samples (Dijon). ..............................98 

Figure 5.25. Deconvolutions of the 
29

Si MAS NMR spectra of the CaO-SiO2 C-S-H samples 

showing the individual frequencies (green), the simulated spectra as a sum of the individual 

frequencies (blue) and the experimental spectra (black). .................................................................100 

Figure 5.26. Percentage of the silicate species Q
1
, Q

2
 and Q

3
 obtained from NMR vs. the Ca/Si 

(TEM-EDX) in the CaO-SiO2 C-S-H series. ...................................................................................101 

Figure 5.27. Mean silicate chain length vs. Ca/Si (TEM-EDX) in the CaO-SiO2 C-S-H series. ....101 

Figure 5.28. TEM micrographs of the CaO-SiO2 C-S-H series. The Ca/Si of the sample is indicated 

in each micrograph. ..........................................................................................................................102 

Figure 5.29. Histograms of the Ca/Si obtained with TEM-EDX of the C-S-H CaO-SiO2 samples.

 .........................................................................................................................................................103 

Figure 5.30. Ca/Si vs. reciprocal mean chain length of the CaO-SiO2 C-S-H samples. The length of 

the bars is limited by the minimum and maximum Ca/Si obtained by TEM-EDX and the mean value 

is marked with a cross. The structural units for tobermorite and jennite with minimum (w=0), 

intermediate (w=1) and maximum (w=2) degree of protonation are also marked. The vertical dashed 

lines represent the (3n-1) structural units: dimer (2), pentamer (5), octamer (8)… .........................104 

Figure 5.31. Hydration curves (Added water vs. hydration time) of C3S at fixed lime concentration, 

from [CaO]=12mmol/l (burgundy curve) to [CaO]=27mmol/l (pink curve), corresponding to 

hydration times II in Table 4.3. ........................................................................................................107 

Figure 5.32. XRD patterns of the C3S hydrated samples at fixed lime concentrations of 12, 15, 17 

and 20mmol/l with the hydration stopped at the acceleration period (hydration time I in Table 4.3). 

The pattern of the anhydrous C3S is shown for comparison, as well as a reference for CH. ...........108 

Figure 5.33. XRD patterns of the C3S hydrated samples at fixed lime concentrations of 12, 15, 17 

and 20mmol/l with the hydration stopped at the deceleration period (hydration time II in Table 4.3). 

The pattern of the anhydrous C3S is shown for comparison, as well as a reference for CH. ...........108 

Figure 5.34. XRD patterns of the C3S hydrated samples at fixed lime concentrations of 22, 25 and 

27 mmol/l with the hydration stopped at the acceleration period (hydration time I in Table 4.3). The 

pattern of the anhydrous C3S is shown for comparison, as well as a reference for CH. ..................109 



 xviii 

Figure 5.35. XRD patterns of the C3S hydrated samples at fixed lime concentrations of 22, 25 and 

27mmol/l with the hydration stopped at the deceleration period (hydration time II in Table 4.3). The 

pattern of the anhydrous C3S is shown for comparison, as well as a reference for CH. The enlarged 

area in the figure shows the increase in intensity at ~2θ=32º due to the formation of C-S-H in the 

pattern for [CaO]=27mmol/l compared to the pattern of anhydrous C3S. ....................................... 109 

Figure 5.36. 
29

Si NMR spectra of the C3S hydrated samples that belong to the short series 

(Hydration time I). The fixed lime concentration in solution is indicated over each spectrum. ..... 110 

Figure 5.37. 
29

Si NMR spectra of the C3S hydrated samples that belong to the long series 

(Hydration time II). The fixed lime concentration in solution is indicated over each spectrum. .... 110 

Figure 5.38. 
29

Si NMR experimental spectra (black), simulated spectra (blue), and individual 

frequencies (green), of the C3S samples hydrated for hydration times I and II at fixed lime 

concentrations of 12, 15, 17 and 20mmol/l. .................................................................................... 112 

Figure 5.39.
 29

Si NMR experimental spectra (black), simulated spectra (blue), and individual 

frequencies (green), of the C3S samples hydrated for hydration times I and II at fixed lime 

concentrations of  22, 25 and 27mmol/l. ......................................................................................... 113 

Figure 5.40. TEM micrographs of C3S samples hydrated at [CaO]=12mmol/l for 170 min (left) and 

240 min (right), showing foil-like C-S-H. ....................................................................................... 114 

Figure 5.41. TEM micrographs of C3S samples hydrated at [CaO]=15mmol/l for 260 min and 1161 

min (upper left and right respectively), at [CaO]=17mmol/l hydrated for 255 min and 1011 min 

(middle left and right respectively), and [CaO]=20mmol/l hydrated for 375 min and 1398 min 

(lower left and right respectively) showing foil-like C-S-H. ........................................................... 115 

Figure 5.42. TEM micrographs of C3S samples hydrated at [CaO]=22mmol/l for 401 min and 1048 

min (upper left and right respectively), showing a mixture of foil-like and fibrillar C-S-H, at [CaO]= 

25mmol/l for 492 min and 835 min (middle left and right respectively) and [CaO]=27mmol/l for 

600 min and 840 min (lower left and right respectively), showing fibrillar C-S-H. ....................... 116 

Figure 5.43. Degree of hydration (%) vs. hydration time for the C-S-H samples fabricated via the 

controlled hydration of C3S at fixed lime concentration up to the deceleration period (Hydration 

times II in Table 4.3). The degree of hydration was calculated using Eq. 4.5 taking the experimental 

Ca/Si ratios from TEM-EDX in Table 5.13 (Left) and expected Ca/Si ratios at equilibrium in Table 

5.14 (Right)...................................................................................................................................... 118 

Figure 5.44. SEM micrographs of the sample hydrated at [CaO]=12mmol/l for 240 min (Hydration 

time II). The surface of the samples appears to be crumpled foil-like presenting hollow features 

(Images taken by Emmanuel Boehm-Courjault at EPFL). .............................................................. 119 

Figure 5.45. SEM micrographs of the samples hydrated at [CaO]=27mmol/l for 600 min (Upper 

micrographs) and 840 min (lower micrographs), showing fibrillar C-S-H. The development of the 

fibrils with hydration time is appreciated, since the lower micrographs show longer fibrils (Images 

taken by Emmanuelle Boehm-Courjault at EPFL). ......................................................................... 119 

Figure 5.46. SEM and TEM micrographs of the C3S samples hydrated at [CaO]=12mmol/l for 240 

min (Hydration time II) showing foil-like C-S-H (upper images) and at [CaO]=27mmol/l for 600 

min (Hydration time II) showing fibrillar C-S-H (lower images). .................................................. 120 



 xix 

Figure 5.47. Histograms of the Ca/Si obtained by TEM-EDX for the samples hydrated at [CaO]=12 

and 15mmol/l at Hydration times II. ................................................................................................120 

Figure 5.48. Histograms of the Ca/Si obtained with TEM-EDX of the samples hydrated at [CaO]= 

17, 20, 22, 25 and 27 mmol/l for Hydration times II. ......................................................................121 

Figure 5.49. Ca/Si (obtained by TEM-EDX) vs. reciprocal mean chain length (obtained by NMR) 

of the C-S-H series fabricated via the controlled hydration of C3S at Hydration times II. The length 

of the bars is limited by the minimum and maximum Ca/Si and the mean value is marked with a 

cross. The values indicated with squares are those given by Haas model [93] (Ca/Si ** in Table 

5.14). The structural units for tobermorite and jennite with minimum (w=0), intermediate (w=1) and 

maximum (w=2) degree of protonation are also marked. The pentamer is marked over the top axis. 

The dimer is out of the scale of the plot and would be situated at reciprocal mean chain length 0.5.

 .........................................................................................................................................................122 

Figure 5.50. Selected area electron diffraction patterns of the C-S-H samples hydrated at: a) 

[CaO]=15mmol/l, c) and d) [CaO]=25mmol/l. The halos in the patterns shown in a) and b) are 

consistent with C-S-H, while the reflections seen in pattern c) are characteristic of microcrystalline 

CH. ...................................................................................................................................................123 

Figure 5.51. XRD patterns of C-S-H samples fabricated by the controlled hydration of C3S at lime 

concentrations of 27, 28 and 29mmol/l with the use of an ultrasound gun. The pattern of anhydrous 

C3S and a reference for portlandite are also included. .....................................................................126 

Figure 5.52. 
29

Si MAS NMR spectra of the C-S-H samples synthesized via the controlled hydration 

of C3S with the use of an ultrasound gun at fixed lime concentrations of 27, 28 and 29mmol/l. ....127 

Figure 5.53. Deconvolutions of the 
29

Si MAS NMR spectra of the C-S-H samples fabricated via the 

controlled hydration of C3S with an ultrasound gun at fixed lime concentrations of 27mmol/l (upper 

left), 28mmol/l (upper right) and 29mmol/l (low). The individual frequencies are shown in green, 

the simulated spectra in blue and the experimental spectra in black. ..............................................128 

Figure 5.54. TEM micrographs of the C-S-H samples synthesized via the controlled hydration of 

C3S with the use of an ultrasound gun at fixed lime concentrations of 27mmol/l (Upper images with 

a SAED pattern), 28mmol/l (middle images) and 29mmol/l (lower images). The enlargement in the 

upper right corner shows a fibrillar area of the sample hydrated at 27mmol/l. ...............................129 

Figure 5.55. SEM micrographs of the C-S-H sample fabricated via the controlled hydration of C3S 

with an ultrasound gun at lime concentration of 27mmol/l. The left image shows a considerably 

flattened surface, however, an area with sticky features is shown on the right image (Micrographs 

taken by Emmanuelle Boehm-Courjault at EPFL). .........................................................................130 

Figure 5.56. Histograms of the Ca/Si obtained with TEM-EDX of the samples hydrated at [CaO]= 

27, 28 and 29mmol/l with the use of an ultrasound gun. .................................................................131 

Figure 5.57. Ca/Si (obtained by TEM-EDX) vs. reciprocal mean chain length (obtained by NMR) 

of the C-S-H series fabricated via the controlled hydration of C3S with the use of an ultrasound gun. 

The length of the bars is limited by the minimum and maximum Ca/Si and the mean value is 

marked with a cross. The structural units for tobermorite and jennite with minimum (w=0), 

intermediate (w=1) and maximum (w=2) degree of protonation are also marked. The vertical dashed 

lines represent the (3n-1) structural units: dimer (2), pentamer (5), octamer (8)… .........................132 



 xx 

Figure 5.58. XRD patterns of C-S-H samples fabricated by the controlled hydration of C3S at lime 

concentrations of 27, 28 and 29mmol/l with the use of C-S-H platelets (X-seed). The pattern of 

anhydrous C3S and a reference for portlandite are also included. ................................................... 135 

Figure 5.59. 
29

Si MAS NMR spectra of the C-S-H samples synthesized via the controlled hydration 

of C3S with the use of C-S-H platelets (Xseed) at fixed lime concentrations of 27, 28 and 29mmol/l.

 ......................................................................................................................................................... 136 

Figure 5.60. Deconvolutions of the 
29

Si MAS NMR spectra of the C-S-H samples fabricated via the 

controlled hydration of C3S with C-S-H platelets (Xseed) at fixed lime concentrations of 27mmol/l 

(upper left), 28mmol/l (upper right) and 29mmol/l (low). The individual frequencies are shown in 

green, the simulated spectra in blue and the experimental spectra in black. ................................... 136 

Figure 5.61. TEM micrographs of the C-S-H samples synthesized via the controlled hydration of 

C3S with C-S-H platelets (Xseed) at fixed lime concentrations of 27mmol/l (Upper images with a 

SAED pattern), 28mmol/l (middle images) and 29mmol/l (lower images). The enlargements in the 

upper/lower right corners show a mixed foil-fibrillar area of the sample hydrated at 

[CaO]=27mmol/l and a fibrillar area of the sample hydrated at [CaO]=29mmol/l. ........................ 138 

Figure 5.62. SEM micrographs of the C-S-H sample fabricated via the controlled hydration of C3S 

with Xseed at [CaO]=27mmol/l. The left image shows a flowery surface. Some sticky fibrillar 

elements are seen on the right image (Micrographs taken by Emmanuelle Boehm-Courjault at 

EPFL). ............................................................................................................................................. 139 

Figure 5.63. Histograms of the Ca/Si obtained with TEM-EDX of the samples hydrated at [CaO]= 

27, 28 and 29mmol/l with the use of an ultrasound gun. ................................................................. 140 

Figure 5.64. Ca/Si (obtained by TEM-EDX) vs. reciprocal mean chain length (obtained by NMR) 

of the C-S-H series fabricated via the controlled hydration of C3S with the use of Xseed. The length 

of the bars is limited by the minimum and maximum Ca/Si and the mean value is marked with a 

cross. The structural units for tobermorite and jennite with minimum (w=0), intermediate (w=1) and 

maximum (w=2) degree of protonation are also marked. The vertical dashed lines represent the (3n-

1) structural units: dimer (2), pentamer (5), octamer (8)… ............................................................. 141 

Figure 5.65. Graph showing the ratio of silicate connectivities  Q
2
/Q

1 
vs. the degree of reaction for 

the C-S-H samples synthesized via the controlled hydration of C3S with the use of an ultrasound 

gun (circles) and Xseed (squares). ................................................................................................... 144 

Figure 5.66. MCL vs. Ca/Si for all the C-S-H series of samples. Reported data is marked with black 

filled symbols and it is taken from ref. [39, 46, 93]. The dotted line represents the constraint for 

Richardson’s C-(A)-S-H(I) model structures [36] and the dashed lines are equivalent to the 

tobermorite lines with minimum, intermediate and maximum degree of protonation from  

Richardson and Groves’ model [1]. The inset shows the same plot with the y axis expanded to 

MCL=150. ....................................................................................................................................... 145 

Figure 5.67. Ca/Si ratio vs. lime concentration in solution for the kinetics, ultrasound and Xseed C-

S-H series (predicted Ca/Si ratios calculated with the thermodynamic model by Haas [93] for the 

kinetics series, and Ca/Si ratios obtained with TEM-EDX for the ultrasound and Xseed series). 

Other reported data by Haas [93], Nonat and Lecoq [49] and Taylor [4] are also plotted. ............. 147 

Figure 5.68. TEM micrographs of the C-A-S-H series. The Al/Si of the sample is indicated in each 

micrograph. ...................................................................................................................................... 149 



 xxi 

Figure 5.69. Histograms of the Ca/(Si+Al) obtained with TEM-EDX of the C-A-S-H samples....150 

Figure 5.70. Ca/(Si+Al) (obtained by TEM-EDX) vs. reciprocal mean chain length (taken from 

ref.[140] ) of the C-A-S-H series. The length of the bars is limited by the minimum and maximum 

Ca/(Si+Al) and the mean value is marked with a cross. The structural units for tobermorite and 

jennite with minimum (w=0), intermediate (w=1) and maximum (w=2) degree of protonation are 

also marked. The vertical dashed lines represent the (3n-1) structural units: dimer (2), pentamer (5), 

octamer (8)… ...................................................................................................................................151 

  



 xxii 

List of abbreviations 

AFm: Monosulfoaluminate 

AFt: Trisulfoaluminate 

BO: Bridging oxygen 

C-A-S-H: Aluminum substituted calcium silicate hydrate 

CH: Calcium hydroxide or porlandite 

CP NMR: Cross polarization nuclear magnetic resonance 

C-S-H: Calcium silicate hydrate 

DP MAS NMR: Direct pulse magic angle spinning nuclear magnetic resonance 

DSC: Differential scanning calorimetry 

DTA: Differential thermal analysis 

EDX: Energy dispersive X-ray analysis 

EXAFS: Extended X-ray absorption fine structure 

FTIR: Fourier transform infrared spectroscopy 

GGBFS: Ground granulated blast furnace slag 

HRTEM: High resolution transmission electron microscopy 

Ip C-S-H: Inner product C-S-H 

MCL: Mean silicate chainlength 

NBO: Non-bridging oxygen 

Op C-S-H: Outer product C-S-H 

PE-HD: High density polyethylene 



 xxiii 

PTFE: Polytetrafluoroethylene 

RH: Relative humidity 

SAED: Selected area electron diffraction  

SANS: Small angle neutron scattering 

SEM: Scanning electron microscopy 

STA: Simultaneous thermal analysis 

TEM: Transmission electron microscopy 

TGA: Thermogravimetry analysis 

TMS: Tetramethylsilane 

w/s: water to solid ratio 

XRD: X-ray diffraction 

XRF: X-ray fluorescence 

Cement chemistry terminology 

A: Al2O3 

C: CaO 

F: Fe2O3 

H: H2O 

S: SiO2 





 1 

1 Introduction 

1.1 Project framework 

Cement and concrete are materials widely used specially in the building sector today. The 

main reason behind the massive use of these materials is their low cost with respect to others such 

as steel or wood. Intrinsically, they are low energy and low CO2 materials, however, the large 

volumes used, make cement production to account for ~5% of the global CO2 emissions. A possible 

solution to decrease the CO2 emissions is recycling, but this measure will be more costly than the 

production itself. Therefore, other measures need to be implemented [2].  

CO2 is released by two different means in the cement production process. Approximately 

40% of the emissions come from the fuel and 60% come from the dissociation of limestone. The 

production process is highly optimized, so few improvements are to be made in terms of fuel. This 

leads to the conclusion that if CO2 emissions have to be reduced, the amount of limestone has to be 

reduced too. The cement industry has been replacing part of the limestone with by-products of other 

industries (supplementary cementitious materials), changing thus the chemistry of cement. This 

change affects the hydration reactions, microstructure, performance and service life of the final 

product [2] . The use of supplementary materials needs to be supported by the understanding of its 

consequences, especially in terms of durability. It is essential to know how long the new materials 

will last to ensure that infrastructure remains operable for its design life. As most of the degradation 

processes of cement and concrete are related to water, water transport has to be understood if new 

materials are to last.  

Describing the water transport in cement is the context in which this PhD project is 

conceived. It is part of a European research collaboration called TRANSCEND (Understanding 

transport for concrete which is eco-friendly, innovative and durable). It is carried out within 

Nanocem, a consortium of academic and industrial partners that share an interest in cementitious 

materials. The collaboration is based on a bottom-up approach, from understanding the water 

dynamics at an atomic level to a structural level. It consists of fifteen PhDs divided into 3 

categories: experimental, modelling and validation. A brief introduction to the topics of all the 

projects, relations between them, categories and hosts, is illustrated in Figure 1.1. These 3 

categories are intimately related, since the data that experiments provide will be used to build 

models that have to be further validated. In particular, this project deals with the morphology of C-

S-H, which is of interest to simulate the water dynamics within its layer structure in a nm scale. C-

S-H also defines the capillary porosity; an interconnected pore network that affects properties such 

as strength, permeability to water and the rate at which ions and gases diffuse in it. Besides, C-S-H 
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represents a high volume percentage of a final cement paste (~50-65%), thus the understanding of 

its structure, morphology and properties is crucial to gain some insight into the overall behavior of 

cement. 

 

 

 

Figure 1.1. Schematic of the relations between the projects in TRANSCEND collaboration 

indicating the topic, category, and type of host. The corresponding project to this PhD thesis is 

marked with a star (LB and MD stand for Lattice Boltzmann and Molecular Dynamics).  
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1.2 Project objectives  

1.2.1 Objectives 

• Synthesize C-S-H with a wide range of chemical compositions to cover most of the Ca/Si 

range of C-S-H in commercial cements (0.66<Ca/Si<2). 

• Determine the morphology of C-S-H with a wide range of chemical compositions and 

forming at different rates for a fixed composition. 

• Establish a link between the chemical composition, structure and morphology in C-S-H or 

state whether the change in morphology is only kinetically driven. 

• Determine the synthesis route that approximates better the synthesized material to real 

cementitious systems.  



 4 

2 Literature review 

2.1 Portland cement 

Cement is a material that becomes rigid and develops compressive strength, properties 

known as setting and hardening, when hydration reactions with water take place [3]. It is produced 

by heating a mixture of limestone (85% CaCO3) and SiO2 with traces of Al2O3 and Fe2O3 up to 

1400ºC [2]. In the heating process CaCO3 decarbonates to form CaO, and then, at higher 

temperatures undergoes clinkering reactions to form principally 4 hydraulic phases. The typical 

elemental composition of the final powder, which is called clinker, is of ~ 67% CaO (C), 22% SiO2 

(S), 5% Al2O3 (A), 3% Fe2O3 (F) and 3% of other components. A small percentage of calcium 

sulfate (usually gypsum) is added to the clinker and the mixture is ground to form cement. Cement 

contains 4  main hydraulic phases: C3S or alite (Ca3SiO5), C2S or belite (Ca2SiO4), C3A (Ca3Al2O6) 

and C4AF (Ca2(Al, Fe)O5) [4]. 

2.1.1 Tricalcium silicate 

C3S presents the following phase transitions at the stated temperatures: 

RMMMTTT        Cº1070

3

Cº1060

2

Cº990

1

Cº980

3

Cº920

2

Cº620

1  

where T, M and R are triclinic, monoclinic and rhombohedral phases respectively. The existence of 

all the phases except M3, was evidenced by DTA and XRD [5]. M3 was discovered by heating 

crystals while changes in twinning were observed by microscopy [6]. The different phases are 

equally hydraulic, which means that they develop similar strength when stored under water after 

setting.  

Tricalcium silicate is stable within the temperature range of 1250-1800 ºC. The high 

temperature forms can be stabilized at room temperature by adding impurities (foreign ions) from 

the raw materials used in cement manufacture, and it is this impure C3S which is known as alite. 

Alite is normally monoclinic, being M1 or M3. The most common foreign ions that alite contains in 

commercial clinkers are Mg
2+,

 Al
3+,

 Fe
3+,

 K
+
, Na

+
 and SO3 [3]. 
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2.1.2 Dicalcium silicate 

C2S undergoes the following phase transitions: 
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The different phases are not equally hydraulic, and γ in particular is much less hydraulic 

than β [7]. The phase found in clinkers is normally βC2S, which is stabilized at room temperature 

with substituent ions and is then called belite. The ions found in solid solution are mainly Al
3+

, Fe
3+

, 

Mg
2+

, K
+
, SO4

2-
 and PO4

3-
. The presence of alkalis, such as K

+
, stabilizes βC2S with respect to γC2S 

after the clinkering process during cooling. If the phase transition from β to γ occurs, the clinker 

disintegrates due to the volume changes and the result of the transition will also affect the quality of 

the product, since γC2S is almost non-hydraulic [3]. It is also important that phosphate ions are 

present in low quantities, below 0.3%, since their presence inhibits the formation of C3S during 

clinkering because they form a solid solution with C2S [8]. 

2.1.3 Tricalcium aluminate 

C3A does not undergo phase transitions and is cubic when pure. It reacts strongly with 

water but the strength of the product is low. It can also contain substituent ions such as Fe
3+,

 Mg
2+

, 

Na
+
, K

+
 and Si

4+
. The solid solution of alkalis changes the structure, and among them, the solution 

with Na
+
 ions is the most common. This solution reacts less strongly with water. Ca

2+
 is substituted 

by Na
+
 and a second Na

+
 is placed in the center of a kinked ring defined by six-membered AlO4 

tetrahedra [3]. The change in symmetry with the solution of different quantities of Na2O was 

studied and the results showed that the structure changes from cubic to orthorhombic and 

monoclinic while increasing the percentage of Na2O [9]. 

2.1.4 Calcium aluminoferrite 

C4AF is only one of the particular compositions of ferrite that is found in clinkers. In fact, 

the ferrite phase in clinkers can be any in the solid solution series Ca2(AlxFe1-x)2O5 where x<0.7, 

since this is the limit for normal pressures [3, 4]. The end member C2F (x=0) is stable at ambient 

conditions while the end member C2A (x=1) only at high pressures [10]. C2F is orthorhombic with 

Ca
2+ 

ions packed between layers of FeO6 octahedra and FeO4 tetrahedra. For values of x<0.33 Fe
3+

 

is substituted by Al
3+

 in tetrahedral sites. For higher values of x the substitution starts taking place 

in octahedral sites too. Some foreign ions can also be found in this phase, the most common being 
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Mg
2+

, Si
4+ 

and Ti
4+

. Increasing A/F ratio enhances the reactivity of calcium aluminoferrite with 

water, which is moderate in general. Its hydraulicity is low. Both reactivity and hydraulicity can be 

enhanced by sintering the compound at lower temperatures than those used for clinkering [3]. 

2.1.5 Hydration reactions and hydration products 

The reaction of tricalcium silicate with water yields two hydration products: 

 2𝐶3𝑆 + 7𝐻 → 𝐶3𝑆2𝐻4 + 3𝐶𝐻 Eq. 2.1 

   
 

The products are an almost amorphous calcium silicate hydrate phase and calcium 

hydroxide, also known as portlandite [3]. This phase has the form of hexagonal crystals if growing 

under ideal conditions and has been found to be present as finely dispersed microcrystals in 

Portland cement pastes of low water to solid ratio [11], or large imperfect crystals in C3S pastes 

[12].  

The calcium silicate hydrate phase is named C-S-H, where the hyphens imply that its 

chemical composition can vary. The examination of thinned sections of C3S pastes with TEM has 

shown the Ca/Si ratio of C-S-H in these particular pastes has a mean value of ~1.7-1.8 but varies 

over the nanometer scale from 1.2 to 2.1 [13].   

Upon hydration, the quantity of silicate species changes in C-S-H. The isolated silicate 

tetrahedra in C3S are transformed to disilicate ions and a higher degree of polymerization appears 

with time. Polymerization occurs in chains rather than sheets or 3D networks. After six months the 

dimer content reaches a maximum of ~60% and then decreases to ~50% after one year, reaching 

40% after two or three decades of hydration. Meanwhile the content of polymeric species rises from 

30% to 50% from the first year to 30 years of hydration [14]. The mean silicate chain length (MCL) 

of C-S-H in C3S pastes increases from 2 to 4 during the 5 first years of hydration [15, 16], and 

reaches a value of 5 after 2-3 decades of hydration [17]. Aged concrete specimens also show an 

MCL of 5 after 4-9 decades of hydration [18]. 

The reaction of dicalcium silicate with water yields also C-S-H and CH: 

 2𝐶2𝑆 + 5𝐻 → 𝐶3𝑆2𝐻4 + 𝐶𝐻 Eq. 2.2 

 
    

The proportion of produced CH is about a fifth of the amount produced in the hydration of 

tricalcium silicate. The rate of hydration of β-C2S is much lower than for tricalcium silicate. 
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Comparing rates of hydration of different dicalcium silicate polymorphs has shown that the rate of 

hydration of γ-C2S is much lower than that for the rest of the polymorphs. This is attributed to the 

fact that the oxygen atoms are arranged in a regular octahedral manner around Ca
2+

 ions in this 

phase, while for the rest of the polymorphs the arrangement of oxygen atoms is irregular [3]. The 

rate of hydration does not affect the C-S-H composition, which is the same composition that results 

from hydrating C3S. 

During the hydration of tricalcium aluminate, several crystalline hydration products are 

formed with different Ca/Al ratios. They are metastable with respect to C3AH6 and transformed to it 

at temperatures over 30˚C [3]. However, if lime is present, the transformation from C4AH13 to 

C3AH6 is inhibited and the hydration is slower. The reaction is anyway sufficient so that flash set is 

induced if gypsum is not added to regulate setting. When the hydration of tricalcium aluminate 

occurs in the presence of calcium sulfate or gypsum, the hydration product that is formed is the 

mineral called ettringite which is a calcium sulfoaluminate hydrate: 

 
32323 3263 HSCACHHSCAC   Eq. 2.3 

 
   

Fe
3+

 can substitute Al
3+

 in ettringite giving rise to phases that are known as AFt, where A 

and F indicate that Al
3+

 and Fe
3+

 are interchangeable and t indicates a trisulfoaluminate phase. 

When sulfate ions are not enough to complete the hydration of C3A, then ettringite reacts with the 

remaining C3A and water to form an AFm phase, where m indicates a monosulfoaluminate phase: 

 )(3423 1233323 HSCACHACHSCAC   Eq. 2.4 

 
   

The hydration of calcium aluminate in presence of calcium sulphate to form ettringite is 

evidenced to be a two-stage process. The examination of such a paste has shown that after 10 min 

of hydration a film of amorphous material is found to be at the surface of C3A and rods of ettringite 

are seen 1μm separated from the surface [19]. The formation of ettringite and amorphous material 

was also evidenced by following the hydration with synchrotron radiation energy-dispersive 

diffraction [20]. 

The hydration of the calcium aluminoferrite phase Ca2(AlxFe1-x)2O5 gives similar products 

as the hydration of tricalcium aluminate, however Fe
3+ 

substitutes part of the Al
3+

. The reactivity is 

higher when the index x increases. Cubic hydrogarnets and C4(A,F)H13 are formed in the presence 

of lime.  
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The hydration reactions for this phase with and without gypsum are: 

 𝐶4𝐴𝐹 + 𝐶𝑆̅𝐻2 + 12𝐻 → 𝐶4(𝐴, 𝐹)𝐶𝑆̅𝐻12 Eq. 2.5 

 𝐶4𝐴𝐹 + 13𝐻 → 𝐶4(𝐴, 𝐹)𝐻13 Eq. 2.6 

    
   

2.1.6 Microstructure development during the hydration of Portland cement 

As the hydration reactions are exothermic, heat is evolved during cement hydration. 

Monitoring the rate of heat evolution has shown that there are mainly three stages in Portland 

cement hydration that correspond to three peaks (I, II and III in Figure 2.1), that are associated with 

the microstructure development [21]: 

 From 0 to 3 hours: Cement is fluid and workable. A large amount of heat is evolved when 

mixing and decreases dramatically after ~3 hours. This is known as the induction or 

dormant period. The hydration of free calcium oxide takes place up to 2 hours. 

 From 3 to 24 hours: The main peak in the rate of heat evolution appears during this period 

in which cement starts setting. Approximately 30% of the hydration occurs at this stage. 

The period before the top of peak II is reached is known as the acceleration period, and 

coincides with the fast hydration of tricalcium silicate. The remaining part of the curve 

corresponds to the deceleration period. 

 From 24 hours onward: During this period there is another peak in the rate of heat 

evolution, but not as intense as in the previous stage, due to the formation of AFm. 

 

 

Figure 2.1. Rate of heat evolution for the hydration of Portland cement at 20˚C [3]. 

The first symptom of the development of microstructure during cement hydration is the 

formation of a gelatinous product on the surface of cement grains after mixing. This product 

contains alumina and silica, and calcium and sulfate to a lesser extent. After 10 min of hydration 
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rods of AFt are formed outside the gelatinous layer. At 3 hours C-S-H can be seen on fracture 

surfaces [21]. 

During the second period of hydration C-S-H and CH grow fast. This C-S-H is known as 

Op C-S-H (Outer product) and grows on the AFt network, separated from the cement grains, in 

spaces originally filled with water. This growth of C-S-H is responsible for setting, bonding the 

paste together after 3 or 4 hours of hydration. After 12 hours of hydration, CH grows in hexagonal 

crystals in space that was occupied by water. After 16 hours, AFt grows again in long rods on the 

C-S-H layer. At the end of the second peak in the rate of heat evolution, after one day of hydration, 

grains smaller than 5 μm have reacted completely [21]. 

During the third hydration period, the shell of hydration products gets thicker and its 

permeability decreases. This causes C-S-H to start growing on the surface of the grains as Ip C-S-H 

(Inner product). This growth decreases the distance between the hydration shell and the grains. This 

distance can actually disappear completely after 7 days of hydration. From 1 to 3 days of hydration, 

hexagonal AFm plates form on the shells by the reaction of C3A and AFt. With prolonged hydration 

during several days and years, Ip C-S-H continues growing filling the space the cement grain 

occupied. Even after years of hydration, the ferrite phase remains unreacted [21].  

A schematic picture representing the development of the microstructure while a cement 

grain hydrates is shown in Figure 2.2. Belite is not taken into account since its reaction is slower 

than the one for alite and even after 14 months the hydration is only local. 

 

Figure 2.2. Microstructural development for a cement grain [22]. 
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2.2 Most common supplementary cementitious materials 

Supplementary cementitious materials are used in cement manufacture nowadays to 

reduce the CO2 emissions and also for technical reasons, to improve certain properties of cement 

and concrete. Their use changes the kinetics of the hydration reaction and also the microstructure 

and nanostructure of the final product [2]. They also have an impact on the Ca/Si ratio of C-S-H, 

that is reduced with respect to OPC. Four of the most used supplementary materials are GGBFS 

(ground granulated blast furnace slag), fly ash, silica fume and metakaolin.  

GGBFS is an industrial and glassy by-product that is generated from molten slag during 

the production of iron which is used to make steel. Its major components are CaO and SiO2 and also 

smaller percentages of Al2O3, Fe2O3 and MgO [2].  

Fly ash is also an industrial by-product formed during the combustion of ground or 

powdered coal in coal-fired electric power generating plants. The fly ashes are spherical glassy 

particles that can be hollow or contain other small spheres. They are silicate glasses that contain 

silica, alumina, iron and calcium, and other minor components such as sulfur, magnesium, sodium, 

potassium and carbon. Crystalline compounds are found in small amounts, but only the amorphous 

compounds are reactive. Their composition can vary depending on their origin. For instance Class F 

is typically a low calcium fly ash that contains ~52% silica, ~23% alumina, 11% ferrite, %5 CaO 

and the rest in minor components, while Class C is a typically high calcium fly ash that contains 

~35% silica, 18% alumina, 6% ferrite, ~21% CaO and the rest in minor components [2].  

Silica fume is a by-product of the production of silicon metals and ferrosilicon alloys 

which forms as ultra fine non-crystalline silica in electric-arc furnaces. Its composition is of at least 

85% SiO2. It is used in applications where a high degree of impermeability is required as well as 

high-strength concrete [2, 23]. 

Metakaolin is a special type of calcined clay. It is produced by low-temperature 

calcination of kaolin clay and it is used when low permeability or high strength are required. It is 

used as an additive (in low quantities such as 10% in mass), rather than as a replacement of cement 

[23]. 

2.3 Minerals and synthetic phases related to C-S-H 

In the system of calcium silicate hydrates, there are several minerals such as gyrolite, 

xonotlite, tobermorite 9Å, clinotobermorite, tobermorite 11Å, tobermorite 14 Å and jennite. The 

comparison of XRD patterns of C-S-H formed in cement pastes with those of the natural minerals 
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tobermorite and jennite has shown that C-S-H has some structural features related to them. C-S-H in 

pastes gives XRD peaks at ~0.3 nm and ~0.18 nm, which coincide with important distances in the 

Ca-O layer of tobermorite, jennite and also CH.  Synthetic imperfect forms of tobermorite and 

jennite formed in aqueous suspensions, called respectively C-S-H (I) and C-S-H (II) are also related 

to C-S-H [4]. Thomas et al. [24] have shown recently that C-S-H has a much higher atomic packing 

density than both tobermorite and jennite. This may be due to its defective atomic structure and to 

nanosolid effects linked to its nanoparticulate morphology. Upon dehydration C-S-H transforms 

into the calcium silicate called wollastonite. 

2.3.1 Tobermorite 14Å 

The crystal chemical formula of tobermorite is Ca5Si6O16(OH)2·7H2O from which its 

Ca/Si ratio is 0.83. It consists of a central Ca-O layer with attached silicate dreierketten chains on 

both sides. The space in between the layers contains water molecules and Ca. In tobermorite there 

are three different sites for Ca, three sites for Si, eight sites for O, five sites for water and a site for 

OH; for occupancy and atomic coordinates of the sites see ref. [25]. The main layers are formed by 

two types of calcium polyhedra. The first one is bonded to four oxygen atoms and an OH group and 

the second one is bonded to four oxygen atoms and a water molecule. The silicate chains are formed 

by a repeated pattern of two silicate paired tetrahedra in which Si is bonded to four oxygens of 

which two are shared with the central CaO2 layer, and a bridging silicate tetrahedra in which Si is 

bonded to three oxygen atoms and an OH group (paired and bridging tetrahedra indicated in Figure 

2.3). In the interlayer there is one site for Ca which is bonded to oxygen atoms and water molecules 

that form an octahedron around it. This is illustrated in Figure 2.3, which shows two oxygens (sites 

O5 in ref. [25]) that are shared with bridging tetrahedra. There is a water site (W4 in ref. [25]) very 

close to this site of Ca, which means that these two sites cannot be occupied at the same time, thus 

the atomic arrangement in the interlayer has to be of alternate Ca octahedron and water molecules 

occupying W4 sites [25]. Apart from the mentioned bonds, there is also a hydrogen bonding system 

involving all water sites and several oxygen sites. 
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Figure 2.3. Tobermorite structure along [010] with silicate tetrahedra in dark grey, Ca polyhedra in 

light grey and W4 sites as dark dots (left). Atomic structure in the interlayer space along [001] with 

sites Ca2 octahedra in dark grey, bridging silicate tetrahedra from the chains above and below the 

interlayer space in light grey and water sites (W4) as dark dots (right) [25]. 

2.3.2 Jennite 

The crystal chemical formula of jennite is Ca9Si6O18(OH)6·8H2O from which its Ca/Si is 

1.5. The structure consists of ribbons of two calcium octahedra which share edges and are linked by 

vertices to other ribbons forming a zigzag chain. On both sides of the zigzag chain there are 

dreierketten silicate chains. The main layers formed by calcium octahedra and silicate tetrahedra are 

linked by additional calcium octahedra on inversion centers (Figure 2.4) [26]. 

In jennite there are five different sites for Ca, three sites for Si, 14 sites for O and two for 

water. The interpretation of the bond valences and a proposed net of hydrogen bonds have revealed 

that three of the oxygen sites are in fact OH groups and two of the oxygen sites correspond to water 

molecules. The Ca atoms are bonded to different number of oxygen atoms, hydroxyl groups and 

water molecules and are part of two different kinds of ribbons. Two of the Ca sites that are bonded 

to four oxygens and two hydroxyl groups are part of ribbons where all the vertices are shared with 

other octahedra (Ca) or tetrahedra (Si). Another Ca site that is bonded to three oxygens, two OH 

groups, and a water molecule is part of the other kind of ribbons, as well as a Ca site which is 

bonded to two oxygen atoms and four water molecules. This last type of ribbon has free apical 

positions on both sides of the zigzag which correspond to water molecules. All the silicate 

tetrahedra have oxygen sites in their vertices. There is also a hydrogen bonding system that involves 

all the water sites, all the OH groups and some of the oxygen sites [26]. 

Paired tetrahedra

Bridging tetrahedra
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Figure 2.4. Crystal structure of jennite along [010] (left) and [100] (right) showing some of the Ca 

and Si sites [26]. 

The main structural differences between jennite and tobermorite is that the main CaO2 

layer in jennite is more corrugated and there are no Si-OH bonds in jennite. 

2.3.3 C-S-H (I) 

According to Taylor, C-S-H (I) can be obtained by the reaction of tricalcium silicate with 

water, by mixing silica gel and CH in water solution or by the double decomposition of calcium 

nitrate and sodium silicate when the Ca/Si ratios range from 0.66 to 1.5 [4]. However, the product is 

more crystalline using the first method, due to a probably slower formation of the hydrate or a 

different reaction mechanism. XRD patterns of samples with Ca/Si below 1.65, prepared by these 

three methods, give similar results, only differing in the longest observed spacing, which is 10 Å for 

the first method and 11.5 Å for the other two [27]. They all show hk0 reflections of 1.4 nm 

tobermorite and sometimes a basal reflection, which suggests they are ordered in two dimensions 

and slightly ordered in a third one. The basal reflection corresponds to the longest observed spacing, 

which varies upon changes on Ca/Si, decreasing with increasing Ca/Si. The structure is then 

explained in terms of well ordered layers with an irregular distance between them. The morphology 

of C-S-H (I) is crumpled foil-like [4]. 

2.3.4 C-S-H (II) 

Taylor studied different C-S-H samples prepared by the three methods mentioned in 

section 2.3.3 and found that products resulting from the hydration of tricalcium silicate with Ca/Si 

ratios ~1.9 showed different structural features than C-S-H (I), as per XRD results. He first named 
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those products as C-S-H (II) [27]. This phase can also be formed by the hydration of β-C2S. The 

XRD patterns of C-S-H (II) show similarities with jennite and the morphology is fibrillar [28].  

2.3.5 Wollastonite 

Wollastonite is a calcium silicate natural mineral, but can be obtained by the dehydration 

of C-S-H above 800°C. Its chemical formula is CaSiO3 and it presents two polymorphs at low 

pressure: wollastonite and pseudowollastonite. They have drastically different silicate structures, 

since wollastonite has a single-silicate chain, while pseudowollastonite has a structure with rings of 

three Si3O9 groups. Seryotkin et al. [29] presented some polytypes of these polymorphs that can be 

seen in Figure 2.5. The simplest one is Wollastonite 1T, which has a single silicate chain. Other 

wollastonite polytypes (2M, 3T, 4T and 4M) exist as the result of different stacking sequences of 

the unit cell, as can be appreciated in Figure 2.5 c). Hemni et al. [30] discovered the 3T, 4T, 4M and 

5T polytypes. Pseudowollastonite can also exhibit different polytypes with stacks of two or four 

layers, see Figure 2.5 d) and e). Mazzucato and Gualtieri studied the formation of 1T and 2M 

wollastonite by heating a mixture of lime and silica in the temperature range of 700-1000°C [31]. 

They observed that wollastonite 1T does not transform directly into wollastonite 2M, but transforms 

into an intermediate disordered phase called 1Td. They did not account for the formation of 

pseudowollastonite at higher temperatures.  
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Figure 2.5. Structure of wollastonite 1T a), and parawollastonite 2M b) along the c-axis. Different 

wollastonite polytypes depending on the staking sequence of (100) slabs [30]. The unit cell is 

marked with thicker lines c). Stacking sequences of a two layer pseudowollastonite d) and a four 

layer pseudowollastonite e). (Figures taken from ref. [29]) 

2.4 Atomic and molecular models for C-S-H 

A number of models aim at providing structural chemical formulae for C-S-H phases, 

based predominantly on Ca/Si ratio. Some of them will be discussed in this section. Models based 

on the combinations of tobermorite and jennite and the combination of tobermorite and CH can 

explain the variation of Ca/Si and other structural features that C-S-H exhibits. Tobermorite and 

jennite have Ca/Si ratios of 0.83 and 1.5 respectively, while in commercial cement pastes the Ca/Si 

ratio of C-S-H varies from 0.77 to 2.3 [32]. Therefore combinations of structural units of both 

minerals and other phases are needed to cover all the compositional range for C-S-H. A molecular 

model based on Ca/Si ratio and density of C-S-H in Portland cement will also be introduced. 

a)

b) c)

d) e)
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2.4.1 Taylor model 

Taylor proposed a model to explain C-S-H that is based on the combination of imperfect 

layers of jennite and a smaller proportion of imperfect layers of tobermorite. The minimum and 

maximum values for Ca/Si in this model are 0.83 and 2.25 respectively. The imperfections of the 

layers lie on the elimination of some of the silicate tetrahedra, especially in the tobermorite ones. 

Eliminating all the bridging tetrahedra in both minerals leaves pure dimeric structures which would 

have a Ca/Si ratio of 1.25 in the case of tobermorite and 2.25 in the case of jennite. Taylor proposed 

the material formed at an early stage of hydration to be a mixture of tobermorite and jennite dimers 

to explain the dimeric silicate structure found in early age products. As pentameric jennite has a 

Ca/Si ratio of 1.8, he then proposed that aged material would then be formed of a majority of jennite 

layers with longer silicate chains. His model is also consistent with electron diffraction patterns of 

C-S-H which reveal that this material can be compatible with tobermorite or jennite-like structures 

or a combination of both [33]. 

2.4.2 Richardson and Groves’ model 

Richardson and Groves proposed a model to describe C-S-H in terms of two different 

combinations: T/J (tobermorite/jennite) and T/CH (tobermorite/calcium hydroxide) [34]. This 

model is more flexible than Taylor’s model since the minimum and maximum values for Ca/Si 

ratios are 0.67 and 2.5 respectively. The main difference between the two viewpoints lies on the 

position of Ca
2+

 ions that are not part of the main layers neither charge balancing. These Ca
2+

 ions 

are within CH layers, between the silicate layers of tobermorite-like structure on the T/CH 

viewpoint, while they are part of the main jennite-like layers, as Si-O-Ca-OH, on the T/J viewpoint 

[1]. The structural chemical formula for the T/J viewpoint is: 

 OmHCaOHOSiHCa ynynwnnwn 2

2

)2()29()13(2 )(][  ---
 Eq. 2.7 

   

Where w is the number of silanol groups, w/n is the degree of the protonation of the 

silicate chain and n is an integer (1,2,3…), so that the silicate tetrahedra are arranged in dimers, 

pentamers, octamers, etc. The T/CH viewpoint is expressed as the following formula rearranging 

the terms in the T/J formula and changing the indexes as indicated below: 

 OmHOHzCaOSiHCa nnXnX 22)29()13()26( )( ---
 Eq. 2.8 

        2/))2((2/)6( -- ynwzwnX
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This model is very flexible and the values of the indexes can be obtained experimentally. 

The silicate mean chain length (3n-1) can be obtained by 
29

Si NMR and thus the value of n; the 

Ca/Si ratio, which is related to n and y, can be measured directly with EDX on a TEM, so that 

knowing the value of n, y can be determined. The degree of protonation, w, can have a range of 

values which is limited by restrictions to maintain the layer structure and neutrality: 

 )6(064

2042

2)2(20

ynwy
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-



-

 

As in most cements C-S-H has substitution ions, the model was extended to include the 

incorporation of trace elements (trivalent cations such as Al
3+

) [35]. The T/J and T/CH viewpoints 

with incorporation of other elements are:  
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Eq. 2.9 
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----     Eq. 2.10 

 

   Where Ra
[4]

 is a trivalent cation in tetrahedral coordination and I
c+

 is a monovalent alkali 

cation or Ca
2+

 needed for charge balance. The parameters in the formula can also be obtained 

experimentally in a similar way than for the case without trace elements. Knowing the mean chain 

length from 
29

Si NMR gives the value of n. The index a can be obtained with the R/Si ratio (a/(1-a)) 

measured directly with EDX in TEM. Measuring the Ca/Si ratio gives the value of y, but two cases 

are to be considered taking into account if the charge is balanced entirely by monovalent alkali 

cations or by Ca
2+

. The restrictions for the degree of protonation are the same that for the case 

without trace elements [1]. 

An example of the applicability of the model to two different pastes is illustrated in Figure 

2.6. Plotting the Al/Ca ratio vs. the Si/Ca ratio can help to identify which of the view points (T/CH 

or T/J) is more suitable to describe a paste, if in the same plot the different structural units: CH, 

tobermorite and jennite dimers, pentamers and octamers with different protonation and ionic 

substitution levels are marked. Another plot that is useful to decide the combination of structural 

units that is suitable is the Ca/(Si+Al) or Ca/Si distribution against the reciprocal mean chain length 

(Figure 2.7). The lines for the different structural units must also be represented in the plot, so that 

placing the ratio distribution over the experimental reciprocal mean chain length gives a straight 
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line that lies in between different structural units that may be combined within the C-S-H structure 

in the paste. 

 

Figure 2.6. Al/Ca atom ratio vs. Si/Ca atom ratio of TEM points in Op C-S-H in a hardened white 

PC/20% metakaolin blend (●) described by the T/CH view point, and a hydrated synthetic slag 

glass (×) described by the T/J view point, both activated in 5M KOH solution. Taken from ref. [1]. 

 

Figure 2.7. Ca/Si ratio frequency histogram of TEM analyses of C-S-H in a hardened PC paste 

hydrated for 2 years vs. the reciprocal mean chain length. Modified from ref.[1]. The relations of 

Ca/Si ratio and reciprocal mean chain length for tobermorite (T) and jennite (J), with different 

levels of protonation in Richardson and Groves’ model, are indicated on the right. The C-S-H in this 

case is based on jennite dimers and pentamers. 

This model, being the most flexible to provide chemical structural formulae in a broad 

range of Ca/Si ratios, is the one chosen in this study to obtain structural representations of synthetic 

C-S-H phases. 

J w/n=0
J w/n=1
J w/n=2

T w/n=0
T w/n=1
T w/n=2

Dimer OctamerPentamer
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2.4.3 Richardson’s model structures for C-(A)-S-H(I) 

Richardson has recently derived model structures for C-(A)-S-H(I) based on 

clinotobermorite [36]. Orthotobermorite presents an orthorhombic subcell while clinotobermorite 

presents a monoclinic subcell. Orthotobermorite was always used as a model for C-S-H, but 

Richardson has found the construction of a plausible silicate dimer in terms of crystal-chemical 

reasoning was only possible starting from a clinotobermorite structure.  The structures are derived 

from single-chain tobermorite and present no interlayer calcium ions when the chains are infinite 

and one interlayer calcium ion for each silicate tetrahedra that is missing. For Ca/Si>1.4 the 

structures include an inter-mixed Ca-rich phase. The structure chosen to represent the hypothetical 

dimer presents ribbons of Ca-O octahedra which are very similar to those present in CH. This 

similarity could explain the intergrowth of CH layers with the dimeric structures and justify the 

T/CH view point in Richardson and Groves’ model. 

 The model structures were built so that they present Ca-O distances and coordination 

numbers that are within the limits of known data for crystalline calcium silicate hydrates and other 

related phases. They are in agreement with the trends of experimental data such as the linear 

decrease of the basal spacing with increasing Ca/Si ratio, the change of the basal spacing with water 

content, the increase of H2O/Si with Ca/Si ratio, the existence of dimeric silicate anions at low 

Ca/Si ratios, the substitution of Al
3+

 for Si
4+

, the decrease in the site occupancy factor for bridging 

tetrahedra with increasing Ca/Si ratio and the significant features of XRD patterns.  

The agreement of the model with experimental data of the basal spacing vs. Ca/Si is 

illustrated in Figure 2.8. The bold symbols with the center trend line represent the model structures 

for an undecamer, a pentamer, a trimer and a dimer and the other two trend lines are taken from 

various authors [37-45]. The interpretation of these data combined with H2O/Si vs. Ca/Si (See 

Figure 2 in ref. [36])  suggests that the difference in basal spacing from the lower trend line and the 

upper trend line is due to the loss of one water molecule per silicon atom. Data for Ca/Si<0.66 that 

are placed outside the lower trend line are due to intermixture of C-S-H and silica, while data for 

Ca/Si>1.25 with a basal spacing of about 11.75, that are placed outside the upper trend line are due 

to intermixture of C-S-H and CH. Therefore, data for C-S-H that lies within both trend lines can be 

due to a different level of drying or due to intermixture of C-S-H with CH. 
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Figure 2.8. Compilation of literature data of layer spacing vs. Ca/Si ratio of C-S-H taken from ref. 

[36], with the middle trend line representing the model structures for C-(A)-S-H. 

  

The model was derived from a general expression of a single-chain tobermorite: 

𝐶𝑎4[𝑆𝑖1−𝑓−𝑣𝐴𝑙𝑓□𝑣𝑂3−2𝑣]
6

𝐻2𝑖𝐶𝑎2−𝑖(𝐶𝑎, 𝑁𝑎2, 𝐾2)3𝑓 ∙ 𝑚𝐻2𝑂 Eq. 2.11 

 

Where f is the fraction of tetrahedral sites occupied by Al, v is the fraction of vacant 

tetrahedral sites (represented by a square), and i can take values from 0 to 2 depending on the 

negative charge balanced entirely by protons Ca (i=2), equally by Ca and protons (i=1) or entirely 

by protons (i=2). There are 4 main layer Ca atoms for every 6 tetrahedral sites. The aluminosilicate 

part of the structure is in square brackets, and the interlayer extra ions in rounded brackets. 

According to this equation, the Ca/Si ratio is: 

𝐶𝑎

𝑆𝑖
=

6 − 𝑖

6(1 − 𝑣)
 

Eq. 2.12 
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The maximum Ca/Si ratio is obtained when the negative charge is entirely balanced by Ca 

(i=0): 

(
𝐶𝑎

𝑆𝑖
)

𝑚𝑎𝑥
=

1

(1 − 𝑣)
 

Eq. 2.13 

 

And the MCL can be expressed as: 

𝑀𝐶𝐿 =
1 − 𝑣

𝑣
 

Eq. 2.14 

 

Thanks to a compilation of MCL vs. Ca/Si data and plotting the (Ca/Si)max vs. the 

experimental Ca/Si ratio (Figure 2.9), Richardson obtained a constraint for the Ca/Si ratio expressed 

in terms of the vacant tetrahedral sites in order to develop his model structures: 

𝐶𝑎

𝑆𝑖
=

2
3

+ 𝑣

1 − 𝑣
 

Eq. 2.15 

 

This last equation can be equally expressed in terms of the percentages of Q
1
 and Q

2
 

species and the site occupancy factor for bridging tetrahedra (SOFBT): 

 
𝐶𝑎

𝑆𝑖
=

(3 − 𝑆𝑂𝐹𝐵𝑇)

(2 + 𝑆𝑂𝐹𝐵𝑇)
=

3
2

𝑄1 +
2
3

𝑄2

𝑄1 + 𝑄2
 Eq. 2.16 

 

The compilation of MCL vs. Ca/Si is shown in Figure 2.9 (left).The dashed line represents 

the tobermorite line for minimum degree of protonation (i=0 or w/n=0 in Richardsond and Groves’ 

model) in Figure 2.7. This represents the maximum Ca/Si ratio that is possible without Ca-OH 

groups in the structure (Eq. 2.13), thus Ca-OH must exist to the right of the line. Most of the data 

are placed along the dotted line, which represents the model structures by Eq. 2.15. An equivalent 

plot is shown in Figure 2.9 (right), where the model structures are marked with bold symbols over 

the dotted line, which represents Eq. 2.16. The dashed lines are the equivalent to the tobermorite 

lines in Figure 2.7 with maximum to minimum degree of protonation from left to right. Maximum 

degree of protonation implies the negative charge entirely balanced by protons in Si-OH groups, 

intermediate protonation implies the negative charge balanced equally by protons in Si-OH groups 
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and Ca, and minimum degree of protonation implies the negative charge balanced entirely by Ca. 

The data marked with squares belong to samples with CH.  The middle plot shows (Ca/Si)max vs. 

experimental Ca/Si. The dotted diagonal follows Eq. 2.15. 

 

Figure 2.9. MCL (mean chain length) vs. Ca/Si (left plot); data are from ref. [38, 39, 46-49], 

(Ca/Si)max vs. experimental Ca/Si (middle plot); data are from ref. [38, 39, 46-49] and SOFBT (site 

occupancy factor for bridging tetrahedra) vs. Ca/Si (right plot); data are from ref. [38, 39, 46-51]. 

The dotted lines are defined by Eq. 2.14 and Eq. 2.15 (left and middle) and Eq. 2.16 (right).The 

bold symbols (right) represent the model structures for C-(A)-S-H. The dashed lines are equivalent 

to the tobermorite lines in Figure 2.7 with w/n=0, 1 and 2 from left to right in the middle and right 

plots. The dashed line in the left plot is the one for i=0. The three graphs are taken from ref. [36]. 
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2.4.4 Pellenq’s molecular model 

Pellenq et al. [52] molecular model is claimed to be a bottom up approach to describe the 

structure of C-S-H from its Ca/Si ratio and its density. It is based on the deformation of a 

monoclinic periodic computational cell of tobermorite with initial Ca/Si ratio of 1. Several SiO2 

groups are removed from the cell to obtain a distribution of silicate species according to NMR 

results and reach a Ca/Si of 1.65. The cell is then allowed to relax, what causes the interlayer 

distance to increase from 11Å to 11.3Å. Monte Carlo simulations of water adsorption are then 

performed. This step increases the density to 2.56g/cm
3
; a value that is close to the experimental 

value of 2.6g/cm
3 

given by neutron scattering [53]. The composition of C-S-H given by the final 

model is (CaO)1.65(SiO2)(H2O)1.75. The final model is illustrated in Figure 2.10. 

 

Figure 2.10. Molecular model of C-S-H. The blue and white spheres represent water molecules. 

The green and grey spheres represent interlayer and intra-layer calcium ions and the yellow and red 

bars represent silicon and oxygen in silicate tetrahedra. Taken from ref. [52]. 

 

 The final cell was used to generate simulated EXAFS, XRD, infrared and 

nanoindentation data. Despite their simulated data being in agreement with experimental data of C-

S-H, their model has been criticized due to the unrealistic structure that it creates in terms of crystal 

chemical and geometrical reasons. Richardson has stated that some of the Ca-O distances they 

derive are shorter or longer than the minimum and maximum known distances for crystalline 

calcium silicate hydrates and criticized the unrealistic generation of calcium atoms in five, four and 

threefold coordination; when the natural coordination of calcium atoms in many calcium silicates is 

six or sevenfold [54]. 
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2.5 Mesostructure models for C-S-H 

Other models for C-S-H aim at describing the phase in an intermediate scale (~50-100 

nm). They describe what is known as the mesostructure; i.e. arrangement of building blocks of C-S-

H to define pores of different sizes. Although a bit aside from this group, a model that simulates the 

growth of C-S-H in spherical confinements is also discussed in this section. The outcomes of this 

model are directly linked to the ways in which C-S-H can grow to give result to a known fibrous 

morphology, and they are comparable with morphological studies that are central to this thesis. 

2.5.1 Powers (layer model) 

Powers conceived C-S-H as a gel formed by fibrous particles with straight edges and with 

gel pores inside. The particles were arranged forming a cross-linked network defining capillary 

pores, which were placed on the originally water-filled space. The capillary pores could be 

connected by channels, or gel pores if the structure was denser [55]. 

 

Figure 2.11. Powers model of C-S-H with interconnected fibrous particles. C: Capillary pore [55]. 

2.5.2 Feldman and Sereda (layer model) 

Feldman and Sereda presented a model for C-S-H that could explain the hysteresis 

behavior of the deformation, weight and Young modulus of cement paste with RH during water 

sorption and desorption. They found that up to 50% RH the Young modulus remained almost 

constant upon sorption, increasing significantly until 100% RH. Upon desorption the Young 

modulus remained constant until very low RH, when it decreased drastically. The changes in weight 

also followed a similar trend, while the deformation upon sorption increased almost at a constant 

rate from 0% to 100% RH. These results lead to propose a layered structure of tobermorite thin 

layers with interlayer water allocated between them. During sorption, the water molecules enter 

from the edges of a layer expanding it, with no increase of the Young modulus until the middle part 

is filled. During desorption, the water starts being lost from the edges, but the Young modulus does 
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not decrease until the water is lost from the middle part. This happens when the RH is very low 

explaining thus the hysteresis behaviour of this property [56].  

 

Figure 2.12. Representation of Feldman and Sereda model for C-S-H. A: Intercrystallite bond, B: 

Tobermorite sheet, C: Entrance to a gel pore, X: Interlayer water, O: Physically adsorbed water [3]. 

The assemblage of the units which they proposed was a conclusion of their measurements 

of Young modulus versus porosity of cement pastes prepared by different methods. These results 

showed no difference upon preparation method, which was not reported to be so for materials that 

develop strength due to the intergrowth of crystals. Thus the assemblage of the units of C-S-H was 

thought to be due to Van der Waals bonds between sheets [56]. 

2.5.3 Jennings (colloid model) 

Jennings model was developed taking into account the colloid nature of C-S-H in a scale 

of 1 to 100 nm in order to give a quantitative mechanistic explanation of deformation. Two 

densities of C-S-H are considered in this model to understand the values of surface area and pore 

volume given by N2 sorption. Jennings considered that water sorption gave the value of the total 

porosity of the samples, since it was roughly a constant regardless of the preparation method or 

water to solid ratio. However, N2 sorption yielded different pore volumes depending on preparation, 

drying method and other variables. Thus the difference between the pore volumes measured by 

water and N2 gives the volume of pores which are not accessible to N2, which should be related to 

the surface area of the sample. It should be expectable that the surface area decreases with higher 

inaccessible volume to N2, i.e. when the pores between the layers and the capillary pores are not too 

open. However, available data in the literature show the complete opposite trend. To explain this, 

Jennings postulated the existence of two different densities of C-S-H; low density (LD) and high 

density (HD). LD particles have an accessible surface to N2 but their interior is mainly inaccessible 

to N2, while HD particles have a surface which is not accessible to N2, but an interior which is.  
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Figure 2.13. Schematic of Jennings colloidal model with LD C-S-H as circles and HD C-S-H as 

rectangles with the variation of the surface area measured by N2 for different configurations [57]. 

Thus increasing the amount of LD particles in a paste leads to an increase in both surface 

area and inaccessible pore volume for N2. The model postulates a bimodal density in which only LD 

C-S-H contributes to the surface area measured by N2. C-S-H particles must have a size of at least a 

unit cell and form spherical globules which aggregate into LD structures [57]. 

This model was refined in the so-called CM-II model [58] in which all the pore and 

interlayer spaces are defined to explain the hysteresis of water sorption and desorption isotherms. 

C-S-H is assumed to be an assembly of non-spherical globules with a 5 nm cross section. This 

assembly leaves pores between the globules that are small gel pores (SGP) of dimensions from 1 to 

3 nm and large gel pores (LGP) from 3 to 12 nm (Figure 2.14). The globules also have interlayer 

spaces and intraglobule spaces (IGP) (Figure 2.14). The hysteresis at low pressures on the isotherms 

is due to interlayer water that leaves the globules below 11% RH and does not enter the structure 

again until high RH. 

 

Figure 2.14. Schematic of the assembly of the globules in CM-II model showing small and large 

gel pores (SGP and LGP) (left). Enlargement of one globule in a saturated state with a monolayer of 

water on the surface and water filling the interlayer and interglobule pores at 11% RH (right) [58]. 
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2.5.4 Growth model of sheets in 3D confinements 

Etzold et al. [59] have recently reported a growing algorithm to simulate the growth of 

outer product C-S-H during cement hydration. The model treats C-S-H as a quasi-continuous sheet 

structure and simulates its growth in spherical space confinements of 100 nm radius between 

cement grains. Growth starts from a number of seeds or nucleation sites represented by triangles 

with side length of 1.5 nm and height of 0.65 nm so that they  represent a single tobermorite 14Å 

layer with a calcium oxide central layer and pairing silicate tetrahedra on top and bottom.  Growth 

can occur in two different modes: plane growth and layering growth. During plane growth another 

triangle is added at the edge of the existing structure and during layering growth a triangle is added 

in a different layer over the existing one at 1.4 nm of distance. Layering can also be affected by 

certain tilting angle when the next layer does not grow parallel to the previous one. Different cross 

sections of the spherical confinement were generated exploring different relationships between the 

probabilities of plane growth (pp) and layer growth (pl). These configurations are shown in Figure 

2.15. When the probability of layering growth is dominating (a), b) cases in Figure 2.15), the space 

starts being filled by loose sheet structures that densify. When both probabilities for plane growth 

and layering growth are equal (cases c) and d)), the space fills radially. When layering dominates 

over plane growth (e) and f) cases), the space is filled with needle-like features. When tilting is 

incorporated in a case with dominating plane growth (cases g) and h)), the resulting structure is less 

dense and more disordered. C-S-H has been proven to densify with hydration time by NMR [60], 

hence a dominating planar growth is in agreement with the densification of C-S-H. Moreover, the 

structures generated in cases b) and h) present similarities with TEM micrographs of outer product 

C-S-H in real cementitious systems (See Figure 2.16). The tilting chosen in cases g) and h) was 

needed to fit volume fractions derived from NMR [60].  

 

Figure 2.15. Different cross-sections of the structures generated using a sheet growth algorithm. 

The first row represents the starting growth at different configurations and the second row 

represents the final structures for the same configurations. The different configurations correspond 

to pp/pl=10
4
 (a and b), pp/pl=1 c) and d), pp/pl=10

-4
 e) and f) and pp/pl=10

3
 with a tilting angle of 11º 

and a probability for tilting of 0.2.  
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2.6 Morphology, chemical composition and structure of C-S-H 

The morphology of C-S-H has been a subject of debate for decades and has been studied 

in many different systems; varying from synthetic samples, C3S pastes with and without 

admixtures, and cementitious systems with supplementary cementitious materials hydrated in 

different solutions.  The application of Richardson and Groves’ model to different pastes has meant 

the first more general attempt to establish a link between the morphology, the chemical composition 

and the chemical structure of C-S-H. 

 In the 1950’s Grudemo [42] was the first to study C-S-H morphology by TEM and 

reported a change from foils to fibrils while increasing the Ca/Si. Kalousek and Prebus [61] 

reported the existence of three different products according to their Ca/Si ratios. Samples with 0.8 < 

Ca/Si < 1 consisted of flat platy crystals. Crinkled foils were found when 0.8 < Ca/Si < 1.33 in 

samples synthesized via silica-lime reactions, while fibrils appeared in systems with 1.5 < Ca/Si < 2 

formed by the reaction of CH and silica. Nonetheless, some of their high Ca/Si products were not 

homogeneous, and were possibly a mixture of a fibrous lime rich phase and a lower Ca/Si phase. 

Changes in C-S-H morphology on hydrating C3S pastes at different hydration times were also 

studied with TEM by Collepardi and Marchese [62]. They found that the initial growing product 

was foil-like (at 4 hours of hydration) and was transforming into fibrils while increasing the 

hydration time (1 day and 100 days of hydration). When calcium chloride was added to the solution, 

this morphological change did not occur. This suggested that Cl
-
 ions could have been introduced in 

the structure to maintain the foil-like morphology. Following their publication, Berger et al. [63] 

extended their studies analysing C-S-H morphology in hydrated C3S pastes including various 

different admixtures. They classified the resulting morphologies in two types: fibrillar and foil-like. 

Jennings et al. [64] elaborated a classification on C-S-H morphologies based on following the 

hydration of C3S during the distinct stages upon heat evolution. They named Type E the product 

that appears during the induction period, which consists in flakes or thin sheets. The gelatinous 

product that grows during the acceleration period was named Type O. This product could develop 

into fibrils (Type 1), when the space availability was greater than 1µm or interlocked crumpled foils 

(Type 3) in confined space. They designated the dense inner product as ‘late’ product Type 4 and 

one last category as Type 1’, which consists in tapered fibrils that develop from Type O if adjacent 

particles are pulled apart. The distinction between Type 1 (Fibrils) and Type 3 (interlocked 

crumpled foils) was questioned by Groves et al. [12], who preferred to call these two types as outer 

fibrillar product, since Type 3 shows some internal lamellar structure and it seems unlikely to have 

been formed by rolling foils, and seems to be fairly similar to Type 1. They suggested the different 

fibrillar products were a consequence of different growing aspect ratios due to space constraints. 
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In fully reacted Portland cement, C-S-H is accepted to have a Ca/Si ratio of ~1.7 and a 

fibrillar morphology. With the use of supplementary cementitious materials, the systems in which 

C-S-H forms vary widely, therefore its composition can also be very different ranging from Ca/Si of 

~0.7 to ~2.3 [32]. The C-S-H morphologies found in these systems are fibrillar, foil-like or a 

mixture of both (See Figure 2.16). 

   

Figure 2.16. a) TEM micrograph showing fibrillar Op C-S-H in a 70% white PC-30% class F fly 

ash activated in water [65]. b) TEM micrograph showing foil-like Op C-S-H in a 10% OPC-90% 

GGBS blend [66]. c) TEM micrograph showing foil-like and fibrillar Op C-S-H in the same blend 

as a) [65]. 

 To establish a relationship between the morphology, chemical composition and structure 

of C-S-H, a chemical structural model is needed. The most complete model up to date is Richardson 

and Groves [34]. Its flexibility implies it can be used for a wide variety of systems. Using the model 

with parallel morphological and 
29

Si MAS NMR studies can serve to couple changes in morphology 

with changes in chemical composition and structure. Richardson reported the applicability of his 

model to different systems: hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland 

cement and blends of Portland cement with ground granulated blast furnace slag, metakaolin and 

silica fume [1]. The results for water activated OPC-slag blends showed there was a change in C-S-

H morphology from foils to fibrils as the Ca/Si increases, or the content of slag decreases. The 

application of Richardson and Groves’ model to these blends indicated that a paste with 90% slag 

[67] (foil-like with Ca/Si=1.26±0.05) was described only by using tobermorite like units, while a 

paste with 50% slag (fibrillar with Ca/Si=1.56±0.17) was described by the T/J point of view. 

Different alkali hydroxide activated blended systems contained foil like Op C-S-H that could be 

accounted for the T/CH point of view or even explained by only tobermorite units. Data from Op C-

S-H from a 5M KOH activated synthetic slag paste was well described by tobermorite pentameric 

units, a 5M KOH activated PC (Portland cement) -20% metakaolin blend was accounted for the 

T/CH point of view, a 5M KOH neat PC-50% slag was also accounted for the T/CH point of view 

a) b) c)a) b) c)a) b) c)
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and the same blend changing the content of slag to 90% could be explained with tobermorite dimers 

and pentamers. By comparing the results on these pastes Richardson concluded that foil-like 

morphology can be associated to tobermorite units, while fibrillar to jennite ones. However, an open 

question about how growth kinetics may affect the C-S-H morphology was also raised: Is the 

morphology of C-S-H dependent on its chemical composition and structure or on the growth 

kinetics of each specific system? Richardson stated that it is possible that the rate at which chemical 

complexes are transferred from solution to the growing C-S-H particles depends on the chemistry of 

the systems, i.e., their activators (water or KOH), and can therefore determine the way C-S-H grows 

in one or two dimensions and in a more ordered or disordered manner [1]. 

Further work applying Richardson and Groves’ model to pastes has shown contradictory 

results. Taylor et al. [66] reported that a neat PC paste that had fibrillar Op C-S-H could be 

explained by both T/CH and T/J points of view, but the data were more consistent with the T/CH 

model. This then questions the relationship of jennite units with fibrillar morphology. Moreover, a 

blended system with C-S-H that exhibited mainly foil-like morphology, but contained also areas 

with fibrils, was entirely explained by tobermorite units. If the chemical analysis was done only in 

regions with foils, the results agree with Richardson’s conclusions, but if data was taken from 

points including both morphologies, the analysis would then contradict previous hypothesis, since 

the presence of fibrils was supposed to be associated with jennite units. Girão et al. [65] examined 

water activated and alkali hydroxide activated blends of white Portland cement with 30% fly ash. 

They found that the alkali activated blend had foil-like C-S-H and was well described by only 

tobermorite units, which seems to follow the trend found by Richardson for alkali activated pastes. 

The water activated blend showed a mixture of foil and fibrillar Op C-S-H and foil-like Ip C-S-H, 

and data from both Op and Ip C-S-H needed the presence of jennite or CH in the model, which is in 

agreement with Richardson’s conclusions. The results of this last blend would have been more 

meaningful to prove that jennite may be responsible for fibrillar morphology, if regions with only 

fibrils and only foils had been analyzed separately, and data had been used as two separate inputs 

for the model. 

With respect to the silicate anion structure, there are three types of silicate species which 

are normally found in C-S-H: chain-end groups or Q
1
 (two silicate tetrahedra that share an oxygen 

atom), middle-chain groups or Q
2
 (three silicate tetrahedra; the central one sharing an oxygen atom 

with each of the other two) and chain branching sites or Q
3
 (four silicate tetrahedra; the central one 

sharing an oxygen atom with the other three). The examination of synthetic C-S-H has shown that 

samples with low Ca/Si ratios are dominated by Q
2
 sites (longer silicate chains), while samples with 

higher Ca/Si are dominated by Q
1
 sites (mainly dimeric silicate chains). The value of the Ca/Si ratio 
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at which Q
1
 starts dominating the structures seems to depend on the nature of the samples (synthesis 

routes) and is in a range from 1 to 1.3 [39, 46, 48, 68].  

2.7 The use of SANS to study C-S-H  

SANS has been used in cement science from the 1980’s, since it is very useful to probe 

the structure of colloids, and C-S-H can be considered of colloid nature. Allen et al. [69] used 

SANS to follow the specific surface area increase in OPC with hydration time. They concluded that 

the scattering signal was related to the hydration periods (induction and acceleration). The signal 

they found during the induction period was not varying and only originated from the scattering with 

the surfaces of the cement grains. After the induction period, they found increasing scattering 

associated with structures of ~5nm that were identified as C-S-H globules. To obtain the surface 

area values of C-S-H from a scattering curve of cement, it is necessary to employ an accurate value 

of the scattering contrast between C-S-H and water. Thomas et al. [70] obtained a defined value of 

this scattering contrast making use of SANS results from OPC at different saturation conditions 

with an exchange of H2O by D2O (heavy water), and obtained a value of 6.78·10
28

 m
-4

. This value 

was consistent with a C-S-H composition of C1.7SH2.1 and a density of 2.18 g/cm
3
, values that 

included the interlayer water in the solid structure of C-S-H, but not the gel water. The composition 

of C-S-H was refined to C1.7SH1.8 with a density of 2.6 g/cm
3
 by Allen et al. [53] combining SANS 

and SAXS (Small angle x-ray scattering). Thomas et al. [71] also showed that two different C-S-H 

morphologies with different surface areas grow during the hydration process. They monitored the 

surface area evolution of OPC by SANS and found out that the surface area was increasing rapidly 

in the first 24h of hydration and leveling off afterwards for the next 2 days (See Figure 2.17). Doing 

the same experiments with heavy water, that reduces the degree of hydration around 3 times [72], 

they found an increase in the surface area during 3 days of hydration. Their results are consistent 

with the growth of outer product C-S-H with high surface area and low density, which grows in the 

spaces originally filled with water, followed by the growth of inner product C-S-H with low surface 

area and high density due to the limitations in space availability. They also showed that the surface 

area increases with w/s ratio and that this increase was proportional to the volume fraction of water. 

These observations are also supported by other reported results of surface area coming from 

different techniques such as gas sorption, NMR and SAXS that Thomas et al. reviewed [73]. 
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Figure 2.17. Surface area and heat evolved with hydration time for an OPC paste hydrated at 30ºC 

and w/s=0.4. Taken from ref.[71]. 

SANS has also been used to study how degradation means and reaction 

accelerators/decelerators affect C-S-H structure. Allen [74] used SANS to prove that sulfate attack 

breaks down outer product C-S-H, while irradiation damage seems to affect inner product C-S-H. 

Thomas et al. [75] found that the surface area increases upon decalcification of cement and C3S 

pastes with ammonium nitrate. Their results supported the idea of a growth of low density C-S-H 

with high surface area and a high density C-S-H with lower surface area that is measured by SANS 

before leaching. Allen and Thomas [76] studied the influence of CaCl2 and sucrose in OPC 

hydration. They found that CaCl2, which is an accelerator, increases the amount of outer product C-

S-H; while sucrose, which is a decelerator, had no major influences on growing C-S-H. SANS can 

also serve to study changes in the development of C-S-H with the addition of supplementary 

cementitious materials. Allen and Livingston [77] studied blends of silica fume and OPC with 

SANS and concluded that the increase in the overall surface area that they found in blended systems 

with respect to OPC systems was due to the reaction of silica fume with OPC to form more outer 

product C-S-H.  

The theory of fractal structures can be applied to scattering curves. The scattering 

intensity is fitted as a power law of Q (scattering vector) in which the exponent is linked to a fractal 

dimension that can be identified with a mass or volume fractal or a surface fractal. The fractal 

dimensions can indicate a density of the systems they represent, and can therefore be linked to the 

morphology. The fractal nature of pores in rocks was shown by Sen et al. [78] fitting SANS data. 

Häussler et al. [79] fitted scattering curves of C3S that was stored at 100% RH for 24h at w/s=0.4, 

0.52 and 0.6.  They found a surface fractal (from C3S) at w/s=0.4 and volume fractals (from C-S-H) 
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at the other two w/s. The fractal dimension of the volume fractal associated to C-S-H was 

decreasing with increasing w/s, indicating a structure that was more loosely packed. The results 

were compared with SEM studies of the same samples. The comparison showed that the sample 

was almost non-hydrated at the lower w/s. The hydration products were of different morphologies 

for the other two w/s, exhibiting a more open hydration shell at higher w/s. The same authors 

followed with similar studies of carbonation on C3S samples [80]. They applied a model in which 

the scattering curve was fitted to a combination of a mass and a surface fractal obtaining 

information about the packing density of the carbonation products and the roughness of their 

surfaces. The same authors and Häussler and Tritthart also showed by SANS how carbonation 

increases with w/s [79, 81], finding an increase of the scattering in the Q range attributed to 

carbonation products. Thomas et al. [82] used SANS to study the changes on C-S-H structure upon 

drying and resaturation in young and mature cement pastes using a fractal model. Their results 

pointed out that the structural changes in C-S-H that occur upon drying are less significant in 

mature pastes, therefore they are more likely to retain structural features in C-S-H than young 

pastes. 

Fratini et al. [83] combined Ultra-SANS with SANS to study the influence of 

superplasticizers (additives mainly used to improve the flow in concrete technology) in the 

hydration process of C3S. Fitting the scattering curves with a model that takes into account the 

radius of the unreacted particles, they found that the use of superplasticizers reduces the size of the 

unreacted C3S grains after one day, when compared with hydrated C3S without superplasticizers. 

Thus the superplasticizer acted as an accelerator during the first day. 

Chiang et al. [84] have recently developed a model to fit SANS data according to Jennings 

CM-II model. The parameters that describe the C-S-H globule geometry were estimated for 

synthetic C-S-H with different water contents. In the model, the globule is considered a 

multilamellar object with thickness t and radius R. Depending on the relation between R and t, the 

globule can adopt different geometries and become a disk-like, spheroidal or rod-like object. It 

exhibits an internal layered structure with alternated water layers of thickness L1, and calcium 

silicate layers of thickness L2, which are repeated n times. The interlayer spacing L is thus the sum 

of L1 and L2. This model has been applied to C-S-H with Ca/Si 1.65 and water contents of 10%, 

17% and 30% resulting in disk-like globules. Considering that L2 is constant (as the Ca/Si is the 

same for all the samples) and has a value of 3.5 Å, the estimated water layer thickness increases 

upon water content from 5.51 Å to 7.86 Å. The average number of layers is 4.53, 4.73 and 10.86 as 

the water content increases. However, while the drier samples are dominated by globules with the 

average number of layers, the sample with 30% water content is dominated by globules with 2 
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layers. This leaves the description of the microstructure of this sample as a distribution of globules 

of different sizes, which may be a result of a high water to solid ratio used for the synthesis. These 

results suggest that upon drying, the globules decompose or collapse into a more uniform globule 

size. The same model was generalized by Chiang et al. [85] to be applied both to SANS and SAXS 

data to study the influence of superplasticizers on the structural parameters of C-S-H. They found 

that superplasticizers increase the average number of layers in C-S-H globules and that the volume 

fractal dimension was decreasing with respect to pure C-S-H, indicating more loosely packed 

structures. This was in agreement with SEM studies of the samples, which showed that the growth 

of C-S-H fibrils was suppressed by the use of the superplasticizers, since foil-like C-S-H was 

observed. 

2.8 Synthesis routes to produce C-S-H  

There are several routes to synthesize calcium silicate hydrates. They involve the reaction 

of either CH or CaO with silica in solution, the reaction of an alkali silicate with a Ca-salt (double 

decomposition), or the hydration of C3S under certain conditions, sometimes combined with 

decalcification and recalcification processes. 

2.8.1 A solution method  

Cong and Kirkpatrick synthesized C-S-H with Ca/Si from 0.75 to 1.5 by dissolution and 

mixing [86]. Silica gel was dissolved in 5ml of 1M KOH solution and mixed with 10 ml of 1M 

CaCl2 solution. The Ca/Si was controlled by varying the amount of dissolved silica. The reaction 

time was 15 min at room temperature. After reaction the samples were filtered and vacuum dried at 

room temperature. All the process was done under an N2 flow to prevent the samples from getting 

carbonated. Some of the samples contained also CH. 

2.8.2 Hydrothermal treatment 

The hydrothermal synthesis consists in crystallizing C-S-H by a reaction performed in a 

high temperature solution at high vapour pressure. Mitsuda et al. [87] synthesized C-S-H by the 

reaction of CaO and silicic acid at saturated steam pressures. They stirred suspensions of initial 

Ca/Si ratios of 3, 2.5 and 2 at temperatures of 120, 150, 180 and 210°C obtaining C-S-H products of 

final Ca/Si ratios from 1.59 to 1.75.  Depending on the temperature and Ca/Si ratios, several 

calcium silicate hydrate phases can exist under hydrothermal conditions. Shaw et al. [88] presented 

a driagram of the existence of these different phases from which Z-phase is a metastable crystalline 

phase. A more complete diagram by K. Garbev is shown in Figure 2.18 [89].  
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Figure 2.18. Diagram of the calcium silicate hydrate phases stable at hydrothermal conditions. The 

x axis represents Ca/Si and the y axis temperature. C-S-H (G) and C-S-H (F) stand for Gyrolite an 

Faujasite gel respectively. Pt, Rh, Af, 11T, H and X stand for Portlandite, Reinhardbraunsite, 

Afwillite, 11Å tobermorite, Hillebrandite and Xonotlite. Taken from ref. [89]. 

2.8.3 Mechanochemical method 

Saito et al. used the mechanochemical route to produce afwillite Ca3(SiO3(OH))2·2H2O 

and tobermorite Ca5Si6O16(OH)2·7H2O [90]. A mixture of calcium hydroxide and silica gel with 

different contents of distilled water was ground at room temperature in a planetary ball mill in a pot 

of 45 cm
3
 with seven steel balls of 15 mm diameter. After 15 min of grinding, the mill was stopped 

to prevent overheating. Afwillite was obtained when water/(water + mixture) was ~0.23-0.30 and 

Ca(OH)2/SiO2 molar ratio was 1.5 and the grinding process was performed for 90 min or 120 min. 

Tobermorite was obtained when water weight rate was 0.8, Ca/Si=1 and the grinding time was 3 

hours. Garbev et al. followed the same route. Changing the raw materials to CaO and Aerosil, they 

synthesized C-S-H (I) with different Ca/Si ratios [40]. The stoichiometric mixtures were milled for 

36 hours with on-off cycles of 20 min and 10 min. All the preparation was done in an N2 

atmosphere to avoid carbonation. The slurries were then dried under N2 during 120 h at 60˚C. It was 

found that samples with 0.5 ≤ Ca/Si ≤ 1.2 contained only C-S-H, while samples with Ca/Si ≤ 0.4 

contained also unreacted amorphous silica gel and samples with Ca/Si > 1.2 contained also CH. 

Thus, this method is suitable to fabricate single-phase C-S-H with 0.5 ≤ Ca/Si ≤ 1.2. 
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2.8.4 Double decomposition 

Another synthesis route to produce C-S-H is the so-called double decomposition. Chen et 

al. prepared synthetic C-S-H using this method mixing solutions of sodium silicate Na2SiO3·5H2O 

and calcium nitrate Ca(NO3)·4H2O. The mixture was stirred for 1 hour in a sealed container filled 

with N2. The precipitated material was washed with 2 l of a 20 mM CH solution. The equilibration 

of the samples was done in three different ways. The first one was simply in water or a CH solution 

obtaining Ca/Si from 0.92 to 1.48. Other samples were leached in ammonium nitrate and 

equilibrated in CH solution to final Ca/Si from 1.35 to 1.45 or leached in water and equilibrated in a 

CH solution to final Ca/Si from 1.26 to 1.28 [46]. 

2.8.5 Leaching of C3S paste and recalcification 

Chen et al. also synthesized a series of C-S-H with Ca/Si ratios from 0.62 to 1.4 by 

leaching a C3S hydrated paste in an ammonium nitrate solution and equilibrating the solids in water 

[46].  The conditions of the preparation were as follows: C3S was hydrated with deionized water 

with w/s=0.5, casted and demolded after 3 days. Then it was stored in a saturated CH solution in 

sealed containers for 8 months. Discs of 0.8 mm thickness of the samples were stirred in a solution 

of 6M NH4NO3 until the sample reached a desired weight loss that was predetermined to give 

certain Ca/Si ratio. The relationship between the weight loss and the Ca/Si ratio is illustrated in 

Figure 2.19. It is linear with two different slopes. Up to Ca/Si ratio 1.4, the weight loss is due to the 

replacement of CH with water, which is completely removed up to this point. For higher Ca/Si the 

decalcification of C-S-H starts taking place [18]. After removing the samples from the solution, 

they were immersed in deionized water to remove NH4NO3 and equilibrated in water. 

 

Figure 2.19. Relationship between Ca/Si and weight loss after leaching of a C3S paste in NH4NO3 

[18]. 
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Chen et al. synthesized C-S-H with higher Ca/Si by a similar method to that explained 

previously, but equilibrating samples that were decalcified in ammonium nitrate until they reached 

Ca/Si=1.09 and recalcifying them in a CH solution. The Ca/Si of this series ranged from 1.08 to 

1.87 [46]. 

2.8.6 Hydration of C3S at constant lime concentration 

Another synthesis route that offers flexibility in the final Ca/Si ratio is the hydration of 

C3S at constant lime concentration, which was implemented by Nonat and Lecoq [49].  

The dissolution of tricalcium silicate in water gives the following species [91]: 

 𝐶𝑎3𝑆𝑖𝑂5 + 3𝐻2𝑂 → 3𝐶𝑎2+ + 4𝑂𝐻− + 𝐻2𝑆𝑖𝑂4
−2 Eq. 2.17 

  
 

As the solution starts becoming supersaturated with respect to C-S-H, its nucleation 

proceeds [91]: 

 𝐶

𝑆
𝐶𝑎2+ + 2 (

𝐶

𝑆
− 1) 𝑂𝐻− + 𝐻2𝑆𝑖𝑂4

−2 → 𝐶 − 𝑆 − 𝐻 Eq. 2.18 

 

Since all the calcium in the dissolution is not consumed by the precipitation of C-S-H, the 

solution starts getting saturated with respect to portlandite that also precipitates [91]: 

 𝐶𝑎2+ + 2𝑂𝐻− → 𝐶𝑎(𝑂𝐻)2 Eq. 2.19 

 

To maintain the lime concentration constant in the solution, the (3-Ca/Si) mol of Ca(OH)2 

have to be removed. This is done by sucking up a volume (3- Ca/Si)/C0 (C0 is the lime 

concentration to be kept constant) from the solution by an air pump through a filter and replacing it 

by the same volume of pure water. [91]. Measuring the electrical conductivity, which is 

proportional to the CH concentration, the lime concentration is monitored. To enhance the complete 

hydration of C3S grains, the solution can be under strong ultrasonication. This prevents C-S-H from 

growing and nucleating on the surface of the grains, but does not remove it from the surface 

completely. After complete hydration (less than 48 hours), the samples were filtered, washed with 

acetone and ether and dried under vacuum. Maintaining the lime concentration from 6mmol/l to 30 

mmol/l, C-S-H can be synthesized by this method with Ca/Si ratios from 1.2 to 2.  
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The Ca/Si versus the lime concentration is illustrated in Figure 2.20. There is an abrupt 

change in Ca/Si ratio at ~22mmol/l of lime concentration, which coincides with the lime saturation 

value for the precipitation of portlandite. This was already noted by Steinour [92]. 

 

Figure 2.20. Ca/Si ratio of C-S-H prepared by the full hydration of C3S at constant lime 

concentration [49]. 

Taylor chose the curve in Figure 2.21 [4] as the typical to represent the variation in Ca/Si 

of C-S-H with lime concentration in solution at equilibrium. This curve presents a step at Ca/Si 1.1. 

Grutzeck et al. [48] obtained a similar curve for the Ca/Si versus Ph and concluded the step was due 

to a change from a tobermorite based structure to a jennite type one. 

 

Figure 2.21. Typical metastable equilibrium curve for Ca/Si ratios of C-S-H vs. the lime 

concentration in solution. Taken from ref. [4].  
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 A recent thermodynamic model developed by Haas and Nonat [93] defends the existence 

of three curves for Ca/Si vs. [CaO], that correspond to the solid-solution equilibrium of C-S-H 

defined by three different structural units. The structural units are shown in Figure 2.22 and 

correspond to α, β and γ-C-S-H with increasing Ca/Si ratios, according to Nonat’s structural model 

of C-S-H [49]. For Ca/Si ratios between 0.75 and 1, the chosen structural unit is a pentamer with 

Ca/Si=0.8, for Ca/Si ratios between 1 and 1.5 the structural unit is a dimer of Ca/Si=1, and for 

Ca/Si>1.5 the structural unit is a hypothetical double dimer with Ca/Si=1.5 with two protons 

substituted by Ca-OH
+
 groups. The curves that the model generated for solubility equilibrium are 

shown in Figure 2.23 together with experimental data. 

 

Figure 2.22. Structural units used by Haas to build solubility equilibria of C-S-H. Taken from ref. 

[93].  

 

Figure 2.23. Simulation of the stoichiometric evolution of C-S-H with the lime concentration in 

solution at equilibrium built with the three structural units in Figure 2.22. Taken from ref. [94].  
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2.9 Synthesis methods to produce C-A-S-H 

Aluminium substituted C-S-H, called C-A-S-H, can be fabricated mechanochemically 

adding Al(OH)3 to the mixture of CaO and SiO2. Black et al. synthesized aluminium substituted 

tobermorite by this method. They obtained nanocrystalline material after milling the mixture for 32 

hours and heat it in an autoclave to make it crystallize into tobermorite [95]. 

Another method of fabricating C-A-S-H is adding already synthesized C-S-H into a 

calcium aluminate solution. Pardal et al. used this route to produce C-A-S-H starting with C-S-H 

with Ca/Si ratios of 0.66, 0.95 and 1.42. C-S-H was added to a calcium aluminate solution obtained 

by hydrating Ca3Al2O6 in a diluted suspension. They obtained single-phase samples for the lower 

two Ca/Si ratios. The Ca/(Si+Al) ratio of the final products was very close to the initial Ca/Si ratio. 

The Al/Si ratios of the samples depended on the aluminate concentration in the equilibrium solution 

and ranged from 0.1 to ~0.3, being almost constant at a value of 0.18 for the C-A-S-H samples 

synthesized from the 0.66 C-S-H samples [96].  
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3 Characterization techniques 

A general description of all the experimental techniques used in this study is presented in 

this chapter. All the sections include a short explanation on the working principles of the 

techniques, a short review of their use in cement science and the motivation to use them in this 

study of C-S-H. 

3.1 STA  

The changes that a substance undergoes under thermal treatment are monitored as a 

function of temperature in thermal analysis. STA combines two types of analysis: TG 

(Thermogravimetry) and DTA (Differential thermal analysis). TG analysis consists in recording the  

weight loss as a function of the temperature while a sample is being heated at a constant rate in a 

crucible. DTA monitors the difference in temperatures of the sample of interest (s) and a reference 

sample (r) ΔT= Ts-Tr, while both of them are heated at the same rate. Thus in DTA, exothermic and 

endothermic processes are shown as peaks and valleys with respect to the base line respectively 

[97]. STA can serve to identify the phases present in a sample and to quantify them. 

TG applied to cement pastes in which hydration has not been stopped can serve to 

estimate the w/s ratio by knowing the percentage of residue left in the crucible rs: 

 𝑤

𝑠
=

100 − 𝑟𝑠

𝑟𝑠
 

Eq. 3.1 

 

     

DTA peaks are characteristic of the phases that are present in the sample and in the 

particular case of pastes of calcium silicates, the peaks that are found are the following: 

 Below 200ºC : Endothermal peak that represents the dehydration of C-S-H 

 450ºC-550ºC: Endothermal peak that is associated to the dehydration of CH 

 600ºC-780ºC: Decarbonation of calcium carbonates 

Other peaks corresponding to crystal transformations, such as the formation of 

wollastonite may appear at higher temperatures. In the case of cement samples, peaks related to 

gypsum and ettringite are also detected in DTA curves as endothermal effects at 150ºC-200ºC and 

110ºC-125ºC respectively [97]. 

The amount of calcium hydroxide in a sample can easily be calculated from a TG curve 

taking into account the reactions in which CH is involved and considering all the carbonates are due 
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to the carbonation of CH. The reactions for a general case in which calcium carbonate is present in 

the sample are the following: 

 𝐶𝑎(𝑂𝐻)2 → 𝐶𝑎𝑂 + 𝐻2𝑂  (𝐷𝑒ℎ𝑦𝑑𝑟𝑎𝑡𝑖𝑜𝑛) Eq. 3.2 

 𝐶𝑎(𝑂𝐻)2 + 𝐶𝑂2 → 𝐶𝑎𝐶𝑂3 + 𝐻2𝑂   (𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑖𝑜𝑛) Eq. 3.3 

 𝐶𝑎𝐶𝑂3 → 𝐶𝑎𝑂 + 𝐶𝑂2   (𝐷𝑒𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑖𝑜𝑛) Eq. 3.4 

  
 

To obtain the amount of CH, the weight losses for the dehydration (wdeh) and 

decarbonation (wdec) have to be calculated.  

 

Figure 3.1. Typical TG curve for a cementitious material (Derivative shown in blue) [98]. 

The onset and the end of these weight losses can be estimated thanks to the inflexion 

points of the derivative of the TG curve. Once these points are identified, two tangent lines are 

drawn in the TG curve. The inflexion points are then joined by a line in which a middle point is 

considered. A vertical line passing through the middle point is drawn until touching the tangents. 

The vertical length of this line is then measured as a percentage in weight loss, see Figure 3.1.  

Taking into account that from the dehydration of CH, 74 g of CH yield 18 g of water and 

from the carbonation and decarbonation reactions, 74 g of CH yield 100 g CaCO3, that upon heating 

release 44 g of CO2, the amount of CH in the sample is: 

 
𝐶𝐻 =

74

18
𝑤𝑑𝑒ℎ +

74

44
𝑤𝑑𝑒𝑐 

Eq. 3.5 
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The standard way of expressing the amount of CH is as ignited weight, dividing the 

amount of calculated CH by the percentage of residue left in the crucible. 

3.2 XRD  

X-rays are used to study long range order in crystalline materials. They are a suitable tool 

to get information of materials such as lattice constants, structure and orientation, because their 

wavelength is in the order of several ångstroms which is the range order of lattice constants. They 

can also be used for identification and quantitative determination of phases in a compound material. 

In cement science XRD is used to identify the crystalline phases present in a sample, since their 

individual diffraction patterns are unique, and to quantify them separating their contributions by 

Rietveld refinement. This method was introduced by Hugo Rietveld for neutron scattering and was 

later adapted to XRD [99]. An x-ray photon can interact with an atom in different ways being 

scattered, diffracted, reflected or absorbed. For diffraction to occur, the x-rays that are reflected 

from different atoms in different planes have to be in phase. This is expressed as the diffraction 

condition which is known as Bragg’s law: 

 𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃 Eq. 3.6 

      

Where n is an integer called the order of diffraction, λ is the x-ray wavelength, d is the 

interplanar spacing and θ is the incident angle measured from the reflecting plane, see Figure 3.2. 

 

Figure 3.2. Schematic representation of Bragg’s law in real space. 

In the specific case of a cubic cell, the interplanar distance for a set of (hkl) planes is 

related to the lattice constant a by the following expression: 

 𝑑 =
𝑎

√ℎ2 + 𝑘2 + 𝑙2
 

Eq. 3.7 
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By varying the incident angle, the Bragg’s law is satisfied by different interplanar 

spacings in polycrystalline materials. Plotting the intensities of the diffracted beam versus 2θ gives 

characteristic patterns of a sample. The comparison of these patterns with a data base can then serve 

to identify the phases present in a sample and their degree of crystallinity. This is possible because 

peaks are sharper when they belong to well defined crystals and broad when the strain and/or the 

crystallite size are not uniform, which implies the existence of more amorphous phases [100]. 

Comparing the XRD patterns of C-S-H phases in real systems, synthetic preparations and natural 

occurring C-S-H phases such as tobermorite or jennite, has shown that C-S-H in real systems is 

more amorphous than synthetic preparations, which also present less long range order than natural 

minerals.  

3.3 XRF 

X-ray fluorescence is used in cement science to estimate the oxide bulk content of 

samples. In the particular case of C-S-H, it can serve to give a rough estimation of the Ca/Si ratio by 

knowing the CaO and SiO2 contents. The technique consists in irradiating a sample with high 

energy X-rays. The sample absorbs the incident X-rays and this causes the ejection of electrons 

from the low energy levels creating holes. These holes are then filled due to electronic transitions 

from higher levels. During the transitions, characteristic X-rays of the elements are emitted and 

detected to identify the elements present in the sample [101, 102]. 

3.4 TEM and EDX  

TEM is a very useful technique to analyze the morphology of C-S-H in the scale of 

hundreds of nanometers. The chemical analysis performed by EDX in a TEM can serve to 

characterize and quantify the chemical species present in C-S-H, since it is possible to focus the 

beam on areas free of ad-mixture with other phases. C-S-H can be intermixed with other phases in a 

very fine scale. The analysis of single phase areas can be difficult with other techniques such as 

SEM, because the x-ray generation volume in this technique is much bigger than the intermixture 

volumes of hydration products. It is important that for EDX in TEM the analysis is done in very 

thin areas, because if the analysis is done in a thick area, some of the X-rays that are emitted from 

the material can also be adsorbed modifying the results [103]. 

TEM is based on the transmission of an electron beam through a sample. The electron 

beam is generated by a thermionic gun or a field emission gun and interacts with optical elements 

and the sample to form an image. The optical elements are two condenser lenses that are placed 

under the gun, an objective lens, an intermediate lens, a projector lens, and several apertures. The 
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electron beam is first focused by the two condenser lenses on the sample, which is located at the 

objective plane of the objective lens. The transmitted and diffracted beams form an image on the 

image plane of the objective lens. This image is magnified and projected into a fluorescent screen or 

a CCD-camera by the intermediate and projector lenses. The kind of information that can be 

extracted using a TEM depends on the focal point of the system. If the focal point is no longer the 

image plane of the objective lens but the back focal plane, diffraction patterns are obtained instead 

of images. They are representations of the reciprocal space of a specific area of the sample. The 

geometry of the diffraction patterns is related to the microstructure and can serve to identify 

crystalline or amorphous phases [104]. Spot-like patterns are characteristic of partly crystalline 

materials and can be indexed, while amorphous materials yield patterns with halos [105]. The 

identification of the patterns is done following the expression d·r=λ·L, where d is a planar distance 

in the sample, r is the radius of the diffraction ring and λ·L is a constant formed by the product of 

the wavelength of the electrons λ and the distance from the diffraction object to the screen L. 

Three types of images can be taken in TEM, so-called bright field, dark field and high 

resolution images. In the bright field mode an aperture is inserted in the back focal plane of the 

objective lens to block the diffracted beams. This results in a contrast image where the areas of the 

sample that diffract more appear dark while the areas of the sample where the electron beam is 

more transmitted straight through appear bright. In the dark field mode the aperture is placed so that 

the transmitted beam is blocked. Thus the contrast is reversed with respect to bright field mode. In 

HRTEM (High Resolution transmission electron microscopy) the aperture is removed and the 

image is formed by a contribution of both transmitted and diffracted beams. The images then may 

have atomic resolution and thus enable to study the crystallographic structure at atomic scale [104]. 

TEM bright field images have been widely used to characterize the morphology of C-S-H and 

examine its ad-mixture with other phases in cement pastes. For taking images of C-S-H, it is 

particularly important not to exceed the magnification up x20000, because serious beam damage 

can be induced in the sample, which can affect the interpretation of images and the chemical data. 

Hydrated cements have low melting temperatures and low thermal conductivity which can lead to 

thermal damage. They can also suffer from irradiation damage due to electron bombardment 

causing mass loss [103]. Thus HRTEM images have low applicability to cementitious systems. 

The chemical analysis in TEM is done with EDX. When a specimen is irradiated by a 

beam of electrons, the interaction of these electrons with the atoms in the specimen can yield two 

types of X-ray radiation. When the electron is inelastically scattered, the loss of its kinetic energy is 

translated into the emission of continuum or background radiation. If the electron knocks out an 

electron from the inner shells of an atom in the specimen, another electron from an outer shell can 
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fill the vacancy. The energy difference between the shells is emitted as a characteristic X-ray, which 

is unique for every element, and thus serves to identify chemical species in a sample. Depending on 

the shells where the vacancy is and the electron that fills the vacancy comes from, different types of 

characteristic X-rays are emitted, being Kα, Kβ, Lα, Lβ...(see Figure 3.3).  

 

Figure 3.3. Schematic representation of the emission of characteristic X-rays due to e-beam 

excitation of an atom [103]. 

 

3.5 SEM  

An SEM is based on the interaction of an e-beam with a sample. The beam emitted by a 

gun is focused on the sample by a lens system with typical probe sizes from 30 to 60 Å. SEM can 

provide information about topography, morphology, elemental composition and electronic 

properties of the material. The excitation in a sample goes from 0,5 to 3μm from its surface and 

results in ejection of electrons and photons, which can be collected, detected and evaluated. The 

different signals come from: 

 Backscattered electrons: They are electrons that belong to the excitation electron beam and 

are ejected after suffering several collisions in all the excitation volume of the sample. 

Their energy ranges from 50eV to the energy of the excitation beam and they are originated 

in an area of the sample located at 1-2μm from the surface. They give information about 

composition (average atomic number), crystallography and topography. 

 Secondary electrons: They are ejected after inelastic collisions with electrons of the 

excitation beam or backscattered electrons. Their energy is < 50eV. They come from the 

surface of the sample (50-100Å), thus providing topographic information. 
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 Auger electrons: The excitation beam can create vacancies in the core shells of the 

specimen atoms. If electrons from outer shells occupy these vacancies, but part of the 

energy is transmitted in a radiationless process to another electron, this electron can leave 

the atom and is called auger electron. These kind of emitted electrons have constant kinetic 

energy between 10 and 2000 eV. They can be created in all the excitation volume, but as 

their mean free path is on the order of only a few atomic layers, only the auger electrons 

created in the topmost layers (10 Å) contribute to auger peaks, while the rest to the 

secondary electron background. They are then suitable for surface elemental analysis. 

 Characteristic X-rays: The emission of X-rays is due to the kind of interactions already 

described in section 3.4 for TEM. They are originated at 2-5 μm from the surface of the 

sample. They can provide quantitative and qualitative information about sample 

composition and elemental distribution. 

 Visible light (cathodoluminescence): It provides information about the optical and 

electronic properties, as for example the band gap in semiconductor materials. 

From all these signals, backscattered electrons and secondary electrons are used for 

imaging and have been widely employed for cementitious materials. Backscattered images from flat 

polished surfaces have mostly been used to quantify the phases and the porosity present in a sample 

by assigning a grey level to each phase and pores and quantifying the areas that correspond to each 

of them. The contrast and brightness have to be set up so that all the required information is present 

in a grey-scale histogram. Analysis of a number of images is required to obtain significant data, 

since each image may correspond to a small area of the sample which may not be so representative.  

Secondary electron images are mainly used to characterize the morphology on fracture surfaces 

[103]. These images can be very useful to detect crystals of portlandite and calcite, which can be 

difficult to appreciate in a TEM. 

The elemental analysis with EDX in SEM is of limited application in the case of the study 

of C-S-H in cementitious systems. This is due to the fact that the interaction volume in the sample 

for SEM is bigger than the volumes where C-S-H is present free of admixture with other phases. 

Thus normally the Ca/Si ratios obtained by this technique are not representative of the phase, but of 

a mixture of phases. This can be checked by plotting Al/Ca ratios versus Si/Ca and observing if the 

data follow the typical trends of other phases. 

3.6 NMR 

NMR is based in the splitting, under the influence of an external strong magnetic field, of 

the degenerate energy levels of nuclei that have non-zero nuclear spin such as 
29

Si, 
27

Al, 
17

O or 
1
H. 
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If the sample is simultaneously exposed to a radiofrequency pulse, transitions between the energy 

levels can be observed as resonant absorption of photons. The frequencies at which absorption 

occurs are called chemical shifts and depend on the chemical environment of the nuclei, thus NMR 

serves to characterize the local chemical environment of certain atomic species in a sample. To 

make results from different spectrometers comparable and eliminate effects of the strength of the 

magnetic field, the chemical shifts (differences in resonance frequency of the sample and a 

reference) are recorded in ppm as the ratio of a shift in Hz to a resonant frequency in MHz. The 

anisotropic environment of atoms in solids results in a considerable peak broadening in an NMR 

spectrum [3]. This fact limited its application only to liquids until it was discovered that spinning 

the sample at an angle 54º 74’ to the magnetic field, the so called magic angle, served to resolve the 

spectrum [106]. Long range order is not required to obtain NMR data, which makes this technique 

particularly useful to study C-S-H, since it is nanocrystalline. 

29
Si DP MAS NMR (Direct pulse magic angle spinning nuclear magnetic resonance) is 

used to gain information about the silicate anion structure in C-S-H. The silicate species can be 

quantified by the deconvolution of the spectrum, since the intensity of the spectrum is directly 

proportional to their concentration due to the fact that the NMR spectrum is a sum of all the signals 

of each Si nuclei. The chemical shifts of the silicate species depend on the condensation of the 

silicon-oxygen tetrahedra. In the particular case of cementitious materials, the different silicate 

species give typical chemical shifts in the ranges specified in Table 3.1. 

Table 3.1. NMR shifts for silicon in cement pastes [3]. 

Type of silicate Designation Chemical shift (ppm) 

Monomers Q
0
 -66 to -74 

Dimers Q
1
 -75 to -82 

Middle chain groups Q
2
 -85 to -89 

Chain branching sites Q
3
 -95 to -100 

Three dimensional network Q
4
 -103 to -115 

 

Monomers (single silicate tetrahedra) are present in alite and belite, although several 

authors have observed hydrated monomers, denoted Q
0
(H), in the early stage hydration of 

tricalcium silicate pastes [47, 107, 108]. C-S-H generally presents Q
1
 and Q

2
 groups indicating that 

it has single linear chains. Q
1
 can be isolated dimers or end-chain groups and Q

2
 can be bridging 

sites (at ~-82 ppm) or middle-chain groups (at ~85ppm). When Al substitutes Si in a bridging site, 

the Q
2
 for the adjacent Si tetrahedra is denominated Q

2
(1Al) and it is located at ~-82ppm [109, 
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110]. The polymerization of C-S-H gel to yield Q
3 

and Q
4
 sites (five silicate tetrahedra; the central 

one sharing an oxygen atom with each of the other four) can happen in old pastes and partly 

carbonated ones [111]. The quantitative analysis of the DP spectrum can give additional 

information apart from the percentage of the silicate species, such as the mean alumino-silicate 

chain length, the degree of hydration and the Al/Si ratio. 

A different technique, 
29

Si-
1
H CP NMR (Cross polarization), can be used to study the 

hydrated phases. In the cross polarization mode the resonance condition for 
29

Si occurs due to the 

transfer of energy from 
1
H, thus the technique detects Si atoms in proximity to H atoms, i.e. 

hydrated phases. Tong et al. [112] compared DP and CP spectrums of hydrated βC2S and showed 

that the CP spectrum lacked the anhydrous peak typical of Q
0
 sites at -71.3 ppm, which is attributed 

to βC2S. Bellmann et al. [108] used 
29

Si-
1
H CP NMR to show the existence of an intermediate 

hydration phase with hydrated silicate monomers during the induction period of the hydration of 

C3S. Other more complicated experiments in two dimensions, such as 
29

Si-
29

Si homonuclear double 

quantum correlation or 
1
H-

29
Si heteronuclear experiments, have been applied to C-S-H to establish 

the connectivity between the different silicate Q species [50]. The conclusions of these studies by 

Brunet et al. pointed out a constant increase in the mean silicate chain-length with decreasing Ca/Si 

ratio. They claimed the increase in the formation of Q
1
 isolated dimers while increasing the Ca/Si. 

This contradicts Cong and Kirkpatrick’s observations [113] that agreed with a bimodal distribution 

of chain length. For samples with Ca/Si>1, they suggested the coexistence of dimers and relatively 

long silicate chains and attributed the increase in Ca/Si ratio to the formation of dimers maintaining 

the mean chain length constant. 

NMR offers other possibilities to investigate the chemical environments of other elements. 

27
Al MAS NMR can be used to identify whether Al is substituting Si in tetrahedral or octahedral 

coordination [114]. 
17

O MAS NMR results have shown the existence of at least six environments 

for oxygen in C-S-H: Two NBO (non-bridging oxygens bonded to a Si atom), BO (bridging 

oxygens bonded to two Si atoms), Ca-OH, Si-OH and H2O. The results also point a dependence of 

the chemical shifts of NBO and BO with the Ca/Si ratio, becoming more positive (more deshielded) 

with increasing Ca/Si ratio [115]. 
1
H NMR can be used not only to investigate the chemical 

environment of H, but also to follow the cement hydration and identify different water states [116] 

(solid or mobile water) and to describe the pore-size distribution in hydrating cements [117]. This 

has been possible using the fast diffusion model of relaxation [118], that was first applied to 

cements by Halperin et al. [119].  This model relates the surface/volume fraction of a water filled 

pore with characteristic NMR relaxation times. This technique, combined with XRD, has recently 

been applied to white cement pastes in order to follow the density of C-S-H as a function of w/s 
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ratio and degree of hydration [60]. The results show five distinct populations of water: bound water 

in CH and ettringite, interlayer C-S-H water, C-S-H gel pore water, water in nanoscale interhydrate 

spaces and free water or water in large capillary pores. Quantifying these populations at different 

w/s ratios and degrees of hydration, has shown that until 1 day of hydration, C-S-H interlayers and 

gel pores are formed while water in capillary pores is being consumed. From that point onwards, the 

amount of C-S-H gel pores seem to be constant, while interlayers keep growing in expense of the 

consumption of free water. The same experimental procedure has enabled the measurement of the 

first pore-type resolved desorption isotherm of cement paste, showing the location of water in 

different pores as a function of the relative humidity [120]. 
13

C MAS NMR has recently been 

applied to cement pastes and synthetic C-S-H phases to study the degree of carbonation and how it 

affects the silicate anion structure. The results reveal that carbonation induces decalcification, which 

is slower in the case of high Ca/Si ratios. The process converts Q
1
 silicate species into Q

2
, that 

finally transform into Q
3
 and Q

4
 when all the silicate chain structure has decomposed [121].  
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4 Experimental details 

4.1 Sample description 

The following types of samples have been analyzed:  

 A 5 year-old C3S paste with w/s=0.5, which was stored in a sealed mould in a water bath at 

25ºC (Kindly provided by Q. Li). 

 7 year-old mechanochemically synthesized C-S-H with Ca/Si ratios of 0.66, 0.75, 1 and 1.5, 

fabricated by Garbev et al. following the route described in section 2.8.3 [40]. 

 Fresh mechanochemically synthesized C-S-H with Ca/Si=0.75, 0.83, 1, 1.25, 1.33 and 1.5. 

The raw materials and optimization of the fabrication method are specified in section 4.2.2. 

 A C-S-H series with Ca/Si= 0.75, 0.8, 1, 1.27, 1.35 and 1.42 synthesized via CaO-SiO2 

reactions under continuous stirring (Kindly provided by A. Nonat). The synthesis method is 

described in section 4.3. 

 A C-S-H batch fabricated hydrating C3S at constant lime concentrations from 12 to 

27mmol/l and w/s=50, in which the hydration was stopped at the acceleration period and 

deceleration period for each lime concentration to address how the reaction kinetics affect 

C-S-H morphology. The synthesis details are described in section 4.4.1. 

 A C-S-H series fabricated via the controlled hydration of C3S at lime concentrations of 27, 

28 and 29mmol/l with w/s=50 using an ultrasound gun to promote faster hydration and 

obtain purer C-S-H. The synthesis details are described in section 4.4.2. 

 A C-S-H series fabricated via the controlled hydration of C3S at lime concentrations of 27, 

28 and 29mmol/l (without the control of w/s) using 1ml of Xseed solution to aid the 

reaction and obtain purer C-S-H. The synthesis details are described in section 4.4.3. 

 A C-A-S-H series with Ca/Si=1 and Al/Si=0, 0.001, 0.002, 0.003, 0.004 and 0.005. The 

synthesis details are described in section 4.5. 

Since C-S-H in real cementitious systems grows primarily from the hydration of C3S, the 

C3S paste has been chosen as a standard cementitious system comparable with OPC. The fact that it 

was a 5 years old paste, implies it was expected to be fully reacted, so that most of its volume was 

C-S-H, being thus an ideal system to study this phase. The 7 year old mechanochemical C-S-H 

series was chosen because studies including synchrotron X-ray diffraction [40], XRD and TG [122], 

XPS [123] and Raman spectroscopy [68, 124] had been published on these samples, but their 

morphology was never studied by TEM. TG revealed some of the samples in this group were 

carbonated, probably due to improper storage. That is why a new series of fresh C-S-H samples was 

fabricated by a similar method. Another series fabricated with the same reactants (CaO-SiO2) via a 
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softer route, was studied to be compared with the mechanochemical series. This comparison was 

done with the aim to assess how changes in the synthesis route can affect the morphology of the 

final product. The limiting Ca/Si ratio of samples fabricated via silica-lime reactions is accepted to 

be 1.5. To obtain C-S-H with higher Ca/Si ratios C3S is normally involved. The hydration of C3S at 

constant lime concentration is a very versatile method to produce C-S-H with a wide range of Ca/Si 

from 1.2 to 2. This is the main reason why the batch fabricated via this method was chosen. 

Moreover this synthesis route allows the study of both fast and slow growth regimes of C-S-H, and 

therefore, it is useful to study the role of kinetics in the formation of C-S-H. Another two other 

batches of samples fabricated via the controlled hydration of C3S with accelerators (ultrasound gun 

and Xseed) were chosen due to their higher degree of reaction compared to the previous series; 

hence higher content of C-S-H and less content of C3S. The synthesis of these samples was 

performed at high lime concentrations in order to obtain purer C-S-H with Ca/Si>1.5. Finally a C-

A-S-H series was chosen because it is common that Al
3+

 substitutes Si
4+

 in the silicate chain of C-S-

H that forms in OPC pastes and in OPC blends with supplementary cementitious materials. The 

chosen Al/Si ratios represent either C-A-S-H in OPC pastes or very early hydration stages in blends 

with no alkali content. The Al/Si ratios of C-A-S-H depend on the hydration time, activators and 

blends. For metakaolin blends the Al/Si can vary from 0.06 to 0.28 from 1 to 28 days of hydration 

in water, and from 0.27 to 0.34 from 1 to 28 days of hydration in a KOH solution (alkalis are also 

incorporated in C-S-H in this case) [110]. OPC old pastes (20 years old) present an Al/Si ratio of 

0.09 and a 20 years old blend with 90% GGBFS has an Al/Si of 0.18 [66].  

4.2 Fresh mechanochemically synthesized C-S-H: Synthesis details 

The synthesis details for the mechanochemical route were optimized in terms of the raw 

materials used, milling time and the drying process, to ensure single phase samples were formed 

when possible and all the materials had reacted.  

4.2.1 Test samples 

Several tests were run using CaO freshly obtained from roasting CaCO3 at 900ºC for 3 

hours in an oven and nanosilica (Elkem), that was also roasted at the same conditions than the 

CaCO3. The details of the nanosilica as specified by the supplier are given in Table 4.1. They show 

the nanosilica contained several impurities that correspond to ~3.7% in mass. 

After being roasted, the materials were transported to a glovebox in a desiccator with a 

little container full of  liquid N2 to avoid carbonation. An N2 cylinder was connected to the 

glovebox, which was then pumped and filled with N2 for three consecutive times to provide an N2 
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atmosphere to avoid carbonation. The materials were mixed with deionized water or freshly boiled 

CO2-free deionized water with w/s=8. The mixture was placed in a miller pot of 14 cm diameter and 

13 cm height with 10 balls of 2 cm diameter. The lid of the pot was tightened and sealed with 

parafilm to  make it air and CO2 tight. 

Table 4.1. Composition and properties of the nanosilica (Elkem) used for the mechanochemical 

synthesis of C-S-H. 

Property Units Value 

SiO2 % 96.29 

Free Silicon % 0.04 

CaO % 0.2 

Free CaO % <1 

SO3 % 0.17 

Na2O % 0.28 

K2O % 0.93 

Na2O-equiv % 0.89 

Cl % 0.04 

Loss on Ignition @ 950ºC % 0.75 

Specific Surface area (BET) m
2
/g 20.48 

Pozzolanic index % 120.32 

 

The mixtures were milled in a Glen Creston laboratory ball mill for several hours with 

cycles of 25 min on and 5 min off to prevent overheating. After milling, the samples were dried by 

different routes to identify the best one to avoid carbonation. The fabrication details of the samples 

are given in Table 4.2. 

Table 4.2. Experimental details of the test C-S-H samples prepared by the mechanochemical 

method. 

Sample Ca/Si Mill time (h) Filtered  Drying time (h) Drying T (°C) 

  1* 0.66 29 No 120 70 

2 0.66 59 No 5 40 

3 1.00 58 Yes 24 60 

4 1.25 66 Yes 72 60 

The sample marked with * was made with unboiled deionized water, the rest of the samples were 

made with freshly boiled deionized water that was at ~50 ºC before mixing. 
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The different drying procedures for the samples listed in Table 4.2 were as follows: 

 Sample 1: The drying process consisted in placing the sample inside a beaker on a sand 

bath placed on a hot plate in a glovebox under an N2 atmosphere (Flushing N2 once an hour 

during the first 8 hours). 

 Sample 2: The sample was dried directly in a Petri dish on the hot plate in a glovebox under 

an N2 atmosphere (Flushing N2 once an hour). 

 Samples 3 and 4: The drying process consisted in filtering the sample in a Büchner funnel 

to remove the excess water. Then the sample was placed in a beaker inside a reaction vessel 

under a constant flow of N2 of 20cm
3
/min. The vessel was placed over a temperature 

control hot plate. A water condenser was also attached to the vessel to condense the water 

vapour that comes from the sample. Water being cooled down by a chiller was continuously 

running along the condenser. The condenser was kept open to release the N2 from the 

vessel. The whole set up was placed inside a glovebox. The atmosphere was controlled in 

the glovebox while introducing and taking the sample out by pumping the air out and filling 

it with N2 for 3 consecutive times. 

The samples were analyzed with STA to verify the level of reaction of the raw materials 

and the carbonation of the final products. The results are shown in Figure 4.1. For simplicity, the 

axis of the DTG has been removed. The results from sample 1 show that there are three phases in 

the sample: C-S-H (weight loss until 200ºC), CH (weight loss at ~400ºC) and calcium carbonates 

(weight loss at ~600ºC). The presence of CH in the sample suggests that the milling time (23h 

20min, counted as when the roller is on) is not enough to enable a complete reaction. 

Approximately the same total milling time (24 h) was used by Garbev et al. [40], but they used 

Aerosil, which is potentially more reactive than Nanosilica. This points out that a longer milling 

time is required to fabricate single phase C-S-H with Nanosilica. The presence of CH can have also 

been caused by the evaporation of the water during drying, since this increases the concentration of 

CaO in solution and CH may precipitate if the saturation concentration is reached. The presence of 

carbonates in the sample is due to the contact with CO2, which can happen either in the pot of the 

roller mill, during the drying process or as a consequence of the used of non-boiled water. Since the 

pot was tightly sealed, it is very unlikely that carbonation occurs during milling. 
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Figure 4.1. STA results of the test C-S-H samples fabricated mechanochemically listed in Table 

4.2. 

The lack of flushing N2 overnight probably raised the concentration of CO2 in the 

glovebox.  The DTA curve shows an exothermal peak at ~900ºC that is attributed to the formation 

of the compound wollastonite (CaSiO3) [125]. The results for sample 2, which was milled longer 

than sample 1, show that the longer milling time helps not to form CH. There are still some 

carbonates present in the sample, but the level of carbonation is much less than for the previous 

sample, which indicates the introduction of N2 in the glovebox more often prevents the carbonation.  

A drying set up with a continuous flow of N2 directed to the sample (described below Table 4.2) 

was implemented and tested with samples 3 and 4. The STA results show that carbonation is 

minimized with this set up. CH is still present in the sample with Ca/Si=1.25, but this is in 

agreement with previous results reported for similar samples by Garbev et al. [122]. Samples 3 and 

4 were also examined with TEM and 
29

Si NMR. The results are shown in Figure 4.2 . The presence 

of Q
4
 silicate groups in the samples is an indication of remaining unreacted silica, which implies 

that the desired Ca/Si is not reached. TEM results also support NMR results, since it is possible to 

see darker silica particles surrounded by C-S-H foils. The measure to improve the synthesis method 

was to replace nanosilica for Aerosil 200. The optimized final synthesis details for this route are 

specified in the next section. 
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Figure 4.2. 
29

Si MAS NMR results of test samples 3 and 4 (left), showing Q
1
 and Q

2
 intensity 

coming from C-S-H and Q
4
 intensity coming from unreacted silica. TEM micrograph of sample 4 

(right) showing a C-S-H particle (top) and an unreacted silica particle surrounded by C-S-H 

(bottom). 

 

4.2.2 Optimized synthesis route for the mechanochemical samples 

The mechanochemical C-S-H samples were prepared following similar steps to Garbev et 

al. [40] mixing 5g of Aerosil 200 (SiO2) with CaO (obtained from roasting CaCO3 for 3 hours at 

900°C) with Ca/Si=0.75, 0.83, 1, 1.25, 1.33 and 1.5. The powders were mixed inside a glovebox. 

CaO was transported from the oven to the glovebox in a desiccator with a small container of liquid 

N2 to prevent carbonation. The powders were poured in a pot inside a glovebox under an N2 

atmosphere, with freshly boiled deionized water at w/s=8. The pot had 14 cm of diameter and 13 

cm height and it was provided with 10 balls of 2 cm diameter. The pot lid was tightened and sealed 

with parafilm. The mixtures were milled in a roller mill using 20 min intervals, pausing for 10 min 

between milling to prevent overheating. The total residence time was 36 hours (24 hours of 

milling). After milling, the pot was opened inside the glovebox under an N2 atmosphere and the 

slurries were rinsed with ethanol and filtered in a Büchner funnel. When most of the extra water 

was removed, the remaining paste was introduced in a beaker. The beaker was introduced in a 

closed reaction vessel with an N2 entry and exit. A water condenser, being cooled down by flowing 

water coming from a water chiller, was connected to the vessel. The vessel was placed over a 

temperature control hot plate. The samples were then dried for 3 days at 60°C with a constant N2 

flux of 20 cm
3
/min. A lamp was placed next to the lid of the vessel to heat it and prevent the 

condensed water drops to fall down back to the sample. After drying, the samples were stored in 

sealed containers before analysis. A picture of the set up is shown in Figure 4.3. 
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Figure 4.3. Drying set up used for the mechanochemical C-S-H samples showing the entries and 

exits for N2 and cooling water for the condenser. 

4.3 Synthesis details for the CaO-SiO2 C-S-H series 

The C-S-H samples of the CaO-SiO2 series (kindly provided by A. Nonat and synthesized 

by J. Haas at the University of Bourgogne in Dijon) were synthesized mixing Aerosil 200 with CaO 

with Ca/Si=0.75, 0.8, 1, 1.27, 1.35 and 1.42. The powders were mixed with deionized water at 

w/s=50. The mixtures were sealed in plastic containers and continuously stirred for 4 weeks at 

25°C. The slurries were then filtered and rinsed with a mix of 50%-50% ethanol and water and with 

pure ethanol afterwards in a Büchner funnel. The remaining powders were dried under vacuum for a 

day. The dried samples were stored in sealed containers before analysis. 

4.4 Hydration of C3S at constant lime concentration: Method and device 

All the experiments concerning the hydration of C3S under controlled conditions were 

performed at the ICB (Laboratoire Interdisciplinaire Carnot de Bourgogne) at the University of 

Bourgogne in Dijon. A way of varying the Ca/Si ratio of C-S-H formed by the hydration of C3S 

consists in fixing the lime concentration in the solution. This was proved by A. Nonat and X. Lecoq 

[49], who synthesized C-S-H with Ca/Si from 1.2 to 2.2 by varying the lime concentration in 

solution from 6mmol/l to 30mmol/l (See section 2.8.6). By fixing the lime concentration in solution, 

the amount of Ca that is available to react and form C-S-H is also fixed, resulting thus in increasing 

Ca/Si while the lime concentration increases. C3S from Lafarge Centre of Recherche with a mean 

particle size of 3µm was used. The hydration was started with a solution at the desired lime 

concentration for each experiment. All the solutions were prepared with deionized water.  The 

solution was prepared either by filtering an undersaturated lime solution, for concentrations up to 20 

mmol/l, or by filtering a supersaturated lime solution resulting from C3S hydration for 

concentrations > 20mmol/l. The hydration was done in a temperature controlled reactor under 
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continuous stirring. The lime concentration was monitored via the conductivity of the solution with 

an electrode. The concentration of silicate ions was assumed to be negligible in solution (See Fig.3 

in section I-2-2 in ref. [126]). Thus the conductivity in solution is proportional to the dissolved lime 

and the concentration of calcium ions. The relationship between the conductivity and [Ca
2+

] in 

solution was taken from J. Haas calibration [94], which follows this expression at 25ºC: 

 𝑦 = 0.45𝑥 Eq. 4.1 

      

Where y is the conductivity in mS/cm and x is [Ca
2+

] in mmol/l. The slope for different 

working temperatures was calculated assuming a linear dependence, knowing the calibration done 

by S. Garrault [127] gave a slope of 0.38 for T=21ºC. 

 When the conductivity rises due to the release of ions because of C3S dissolution, 

deionized water is added to the reactor from a reservoir. Simultaneously, a pump sucks the same 

volume of the solution, through a filter placed in the reactor, to maintain the w/s ratio constant. 

When the addition and removal of water are not operating, N2 is being flushed into the solution 

through the filter, to minimize carbonation and prevent the blockage of the filter by the formation of 

a solid layer on its surface. The schematic of the device is shown in Figure 4.4. 

 

Figure 4.4. Device used to synthesize C-S-H via the controlled hydration of C3S implemented by 

A. Nonat. 

Both the conductivity and the volume of added water are recorded as a function of time 

(Figure 4.5). The hydration curve, expressed as added water vs. time, shows there are three regions 
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in the process. When hydration starts there is a period in which the addition of water to maintain the 

lime concentration constant is very slow, followed by an acceleration period in which water needs 

to be added into the system at a faster rate. After the acceleration period, there is a final stage in 

which the water addition is rather slow until the hydration curve reaches a plateau. Therefore the 

growth kinetics of C-S-H changes during hydration. This hydration curve can be transformed into a 

different hydration curve expressing the degree of reaction as a function of time. 

 

Figure 4.5. Graph showing the controlled hydration of 3g of C3S at ~ [CaO]=22mmol/l (9.9 mS/cm 

at 25°C). The controlled conductivity is shown in black. It can be noticed that from a mean 

conductivity value, the variations were not higher than ± 0.1 mS/cm. The hydration curve expressed 

as the addition of water vs. time is shown in blue.  

Under constant volume of the solution and fixed lime concentration, the degree of 

hydration can be calculated in terms of the C/S ratio of the C-S-H, the volume of added water and 

the fixed lime concentration [127]. When a mole of C3S dissolves it gives the chemical species 

specified in Eq. 2.17. The precipitation of one mole of C-S-H consumes C/S moles of calcium 

according to Eq. 2.18. To maintain the calcium concentration constant in the solution, the moles of 

calcium that have not been consumed in the precipitation of C-S-H have to be removed.  

The removed calcium moles are 3-C/S for every mol of C3S that has been dissolved. Then 

for a number n of removed moles of calcium ions, the dissolved moles of C3S (a) are: 

 𝑎 =
𝑛

3 −
𝐶
𝑆

 
Eq. 4.2 
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The degree of hydration α can be calculated as the ratio between a and the initial moles of 

C3S, n0: 

 𝛼 =
𝑎

𝑛0
=

𝑛

𝑛0 (3 −
𝐶
𝑆

)
 

Eq. 4.3 

 

    

Since the volume of the solution that is removed is equal to the added volume of water, 

then the removed moles of calcium ions can be calculated as the product of the volume of added 

water and the fixed calcium concentration: 

 𝑛 = 𝑉𝐻2𝑂 [𝐶𝑎2+] Eq. 4.4 

  

The degree of hydration can thus be expressed as: 

 
𝛼 =

𝑉𝐻2𝑂[𝐶𝑎2+]

𝑛0 (3 −
𝐶
𝑆)

 
Eq. 4.5 

   

4.4.1 Hydration of C3S at constant lime concentration: Kinetics C-S-H series 

To investigate if the hydration kinetics and the [CaO] in solution has an effect on the 

morphology of the formed C-S-H, a series of samples was fabricated at different lime 

concentrations, stopping the hydration before the inflexion point in the hydration curve (at the 

acceleration period); samples named as short series, and after the inflexion point when the addition 

of water is much slower; samples named as long series. The synthesis details of these samples can 

be found in Table 4.3. The hydration was stopped by filtering the solution in a Büchner  funnel and 

rinsing with a mix of 50%-50% ethanol-water and pure ethanol afterwards. The samples were 

subsequently dried in vacuum for a day and stored in sealed containers before analysis. 
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Table 4.3. Synthesis details for the C-S-H samples fabricated by C3S hydration at fixed [CaO] for 

the kinetics series. The hydration times and added volumes of water are indicated for both the short 

series (hydration stopped at the acceleration period) and the long series (hydration stopped at the 

deceleration period). All the samples were synthesized at 25ºC and at w/s=50. 4g of C3S were used 

for lime concentrations up to 20mmol/l and 3g of C3S for higher lime concentrations. 

[CaO] Hydration time I 

(min) 

Added water (l) Hydration time  II 

(min) 

Added water (l) 

12 170 0.31 240 0.41 

15 260 0.22 1161 0.59 

17 255 0.13 1011 0.48 

20 375 0.23 1398 0.49 

22 401 0.06 1048 0.28 

25 492 0.09 835 0.28 

27 600 0.14 840 0.29 

 

4.4.2 Hydration of C3S at constant lime concentration: Ultrasound C-S-H series 

A series of three samples was synthesized at high lime concentrations. Apart from 

controlling the [CaO], an ultrasound gun was inserted in the solution and used at 250W and regular 

pulses, being on for 1s and off for the subsequent 3s. The gun was used with the aim of promoting 

higher degree of hydration and obtaining purer C-S-H samples. The pulses break the layer of C-S-H 

that forms in the surface of C3S grains and disperse C-S-H particles in the solution that act as 

nucleation sites. This prevents the formation of a layer of C-S-H on the C3S grain that would slow 

down the dissolution process but does not remove the layer completely. The parameters of the 

synthesis can be found in Table 4.4. The samples were filtered and dried the same way as the batch 

from the previous section. 

Table 4.4. Synthesis details of the C-S-H samples fabricated adding the ultrasound gun to the 

reactor in which the lime concentration was fixed. The w/s was 50 and the temperature was 25ºC. 

4g of C3S were used for each sample. 

[CaO] Hydration time (min) Added water (l) 

27 1010 - 

28 1417 - 

29 1458 1.24 
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4.4.3 Hydration of C3S at constant lime concentration: Xseed C-S-H series 

The addition of an external agent (C-S-H seeds) was also tested to promote higher degree 

of hydration and fabricate purer C-S-H samples at high lime concentration. A commercial solution 

of C-S-H seeds produced by the Xseed technology by BASF was added to the solution. In this case 

the sucking function of the device was switched off and the addition of water was only used to 

control the conductivity. 1ml of the Xseed solution was added to the reactor. The Xseed solution 

contains nanoplatelets of C-S-H, synthesized from sodium metasilicate. The seeds act as nucleation 

sites and their presence prevents the formation of a C-S-H layer on the C3S grain, which would slow 

down the dissolution of C3S. A non-negligible amount of Na is present in the product; therefore a 

filtration process was used to remove it. The product, already filtered, was kindly supplied by J. 

Haas. The filtration process consists on placing it in a sealed dialysis membrane inside a lime 

saturated bath. The bath is placed in an orbital table for 3 days. The concentration of sodium in the 

solution is monitored and the solution is changed several times until this concentration is negligible 

[94]. The synthesis details for these samples are shown in Table 4.5. The samples were filtered and 

dried the same way as the batches in the two previous sections. 

Table 4.5. Synthesis details of the C-S-H samples fabricated at constant lime concentration adding 

Xseed to the solution. The intital w/s was 100 and the temperature was 20ºC. 

[CaO] Hydration time (min) Added water (l) 

27 1587 0.64 

28 2182 0.61 

29 1430 0.57 

 

4.5 Synthesis details for the C-A-S-H series 

The samples were synthesized and kindly provided by E. L'Hôpital at Empa, (Dübendorf, 

Switzerland). Proportions of CaO, SiO2 (Aerosil 200) and CaAl2O4 (CA) were mixed to obtain C-A-

S-H with Ca/Si=1 and Al/Si=0.01, 0.02, 0.03, 0.04 and 0.05. CaO was obtained by roasting calcium 

carbonate at 1000ºC for 12 hours. CA was obtained reacting CaCO3 and Al2O3. The homogenized 

powder mixture was heated for 1 hour at 800ºC, 4 hours at 1000ºC and 8 hours at 1400ºC and 

cooled down at 600ºC/h. The solid was ground to a Blaine surface area of 3790 cm
2
/g. The 

reactions were made at a w/s ratio of 45 to obtain homogeneous samples. The reactants were added 

simultaneously to the water. The synthesis was done for 182 days in 100 ml PE-HD sealed 

containers placed on a horizontal shaker at 100 rpm at 20ºC. The solids were filtered and then 

rinsed with 50%-50% ethanol-water and pure ethanol afterwards. The samples were freeze-dried for 
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7 days. They were stored in desiccators under an N2 atmosphere and with a CaCl2 solution (~30% 

RH) and NaOH as a CO2 trap. The handling and synthesis of the samples were performed in a 

glovebox under an N2 atmosphere to avoid carbonation. 

4.6 STA 

For the C3S paste, disks of approximately 2 mm thickness freshly cut in an Isomet low 

speed saw were crushed in a mortar. In the case of the synthetic C-S-H, the samples were crushed in 

an N2 atmosphere inside a glovebox and carried in sealed containers to the STA equipment to 

minimize carbonation. The fine powders were analysed with a Stanton Redcroft STA 1000 (U.K.), 

which monitored the weight loss of 15-18 mg of sample while the temperature was increased from 

20
o
C to 1000

o
C with a rate of 20

o
C/min. An N2 flow of 58ml/min was used during the analysis. The 

derivative of the thermogravimetry curve with respect to the temperature is also included in the 

results and has been calculated using the software OriginPro 8.1 and smoothed iteratively with the 

Savitzky-Golay method with 300 points of window and polynomial order 5. The units of this curve 

are weight % / ºC and the axis has been removed for simplicity in all plots. 

4.7 TA-FTIR 

For coupled TA-FTIR experiments, a thermo balance Jupiter 449-F3 (Netzsch, Selb), 

equipped with a DSC sample carrier, was coupled by a heated transfer line to a Bruker Tensor 27 

FTIR Spectrometer with a TA-FTIR unity for simultaneous online gas measurements. The transfer 

line had a length of 100 cm and a PTFE inlet. The TA-FTIR unit with an FTIR cell had an optical 

path length of 123 mm, and KBr and ZnSe-windows. Both the transfer line and the FTIR cell were 

heated to 200°C. 10-30 mg of each sample were placed in a Pt/Rh crucible. The experiments were 

performed with a heating rate of 10 K/min. Nitrogen was used as a purge gas with a flow of 70 

ml/min, including 20 ml of balance protective gas. The FTIR resolution was 4cm
-1

 with a scan rate 

of 32. The spectra were recorded every 15s. In order to avoid the weight loss of the sample while 

measuring the FTIR baseline, the baseline was taken before the samples were introduced in the 

system. Therefore, residual atmospheric water and CO2 were detected in the first few minutes of the 

experiments. This signal of residual atmospheric gases was removed for the quantification of the 

spectra. The evaluation of the spectra was done by Daniela Merz at KIT, with Bruker OPUS 

software and Netzsch Proteus software. The quantification method was based on the simultaneous 

control of the purge gas flow after an external calibration [128]. The calibration for CO2 was done 

with a certified test gas of CO2 in N2 (certified by Basi, Rastatt), measured in the FTIR cell under 

identical conditions to the experimental setting. The calibration of H2O was done by thermal 

degradation of 20 samples of calcium oxalate monohydrate. All absorption response curves in the 
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used concentration ranges can be described by linear fitting. Lambert-Beer’s Law is valid in these 

concentration ranges.  

4.8 XRD 

Two disks of 2mm thickness of the C3S paste were finely ground in a mortar. The powder 

was back-packed in a sample holder to ensure a uniform surface, in level with the holder, to be 

exposed to the X-rays. The pattern was taken under continuous spinning of the sample in a 

Panalytical X’Pert Pro diffractometer with a Cu Kα source operated at 40 kV and 40 mA. A 10 mm 

mask and a 10 mm antiscatter slit were used. The minimum and maximum values for 2θ were set at 

4º and 80º respectively. The step size was 0.0083556˚ and the time per step 125.095 s, yielding a 

total time of nearly 3h for the scan. The synthetic C-S-H samples were scanned using a step size of 

0.033˚ and a time per step of 95 s, yielding a total time of ~30 min for the scan. The patterns were 

compared with reference patterns downloaded from the Chemical Database Service to identify the 

phases present in the sample when required. 

4.9 TEM 

For the C3S paste, disks of 1-2mm of thickness were cut with an Isomet low speed saw 

and dried in a desiccator being continuously pumped overnight. The sample preparation was done 

following the steps described in ref. [103]. The slices were polished on one side with 1200 grit 

silicon carbon paper and glued to a glass slide. The polishing was then continued until black ink 

could be read through the sample (~30 μm thickness). Silicon carbon paper of 800 grit was used to 

get a finer and smooth surface of the sample. The glass slide was immersed in acetone until the 

sample was removed from its surface when all the glue had dissolved. Then the sample was placed 

between two copper grids using epoxy resin. The centre of the sample was checked under the 

optical microscope to make sure that holes, other damages or resin were not present, since the rest 

of the preparation and the data can be affected by their presence. The sample was then ion milled in 

a Fischione Model 1010 Low angle ion milling and polishing system equipped with a cryo-cooling 

stage to avoid thermal damage. The process was continued until a small hole was found in the 

center of the sample, which was taken out of the chamber after warming up to room temperature to 

prevent it from thermal cracking. The last step of the sample preparation involved coating it with a 

carbon layer of ~ 20 nm in an Agar turbo carbon coater to prevent charging effects under the 

microscope. The sample was then stored in a vacuum desiccator until examination to avoid 

carbonation. 
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For the synthetic C-S-H, the samples were crushed in a mortar under an N2 atmosphere in 

a glovebox. Then a small amount of the fine powder was introduced into a glass container with a 

spatula. Methanol or ethanol was poured into the glass container and the solution was placed in an 

ultrasonic bath for ~1 min. A drop of the middle of the solution was deposited with a pipette over a 

200 mesh copper grid with a carbon film, which was then taken to the microscope immediately. 

A Philips CM200 FEGTEM microscope operated at 200kV was used to analyze the C3S 

sample and the old mechanochemical samples. Bright field images were taken at magnifications 

between 26-19.5kx. For each sample, between 20 and 40 EDX points were taken thanks to an 

Oxford UTW EDX detector (U.K.) and Oxford ISIS software. The analysis was done preferably in 

amorphous areas which corresponded to C-S-H, checked to be free of intermixing with other phases 

inserting a SAED aperture to confirm that the diffraction pattern consisted only of halos or rings but 

was free of diffraction spots. The EDX points were taken at 19.5kx magnification and spot size 6, 

with a real time of 50s and a beam diameter of ~ 200 nm. 

 A FEI Tecnai TF20 FEGTEM was used to examine the rest of the synthetic C-S-H 

samples. Bright field images were taken at magnifications of 10-19kx operating at 200kV and 

spotsize 3. Typically 20 EDX points were taken per sample with an Oxford Instruments HAADF 

detector and Inca 350 EDX software. The magnification was 17kx, the spotsize 8, the beam 

diameter  ~200 nm and a live time of 50s. A thickness of 200 nm and a density of 2.8 g/cm
3
 were 

used for the quantification of the spectra. When the results were deviated from the expected Ca/Si 

ratios, the data were corrected with a multiplying factor provided by the EDX analysis of a 

wollastonite reference sample. The details of the analysis of this reference sample are provided in 

the following section. Selected area electron diffraction patterns were taken with a SAED aperture 

of 200 nm diameter at spotsize 3.  

4.9.1 Wollastonite reference sample details for TEM-EDX 

A synthetic wollastonite (CaSiO3) sample was kindly provided by K. Garbev to be used as 

a reference for TEM-EDX. The sample was studied with XRD and TEM. The XRD pattern is 

shown in Figure 4.6 together with a reference pattern from pseudowollastonite taken from ref. 

[129]. The sample pattern is very similar to the reference one, thus confirming the purity of the 

sample. For TEM the sample was dispersed in ethanol, isopropanol and acetone and deposited over 

a 200 mesh copper grid with a carbon film. Bright field images show that the sample appears as 

flatty needle-like crystals of few hundreds of nanometers in width. EDX points for the three 

samples prepared with different solvents were taken at magnification of 17kx and spotsize 8. A 

thickness of 200 nm and a density of 2.8 g/cm
3
 were used for the quantification. A mean Ca/Si= 
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0.79 ± 0.02 was obtained. Since the Ca/Si of wollastonite must be 1, a correction factor of 1.27 is 

needed. This factor was used to correct all Ca/Si data that were acquired with the FEI Tecnai 

FEGTEM for the synthetic C-S-H samples. 

 

Figure 4.6. XRD pattern of the wollastonite sample used as TEM-EDX reference together with a 

reference pattern of pseudowollastonite taken from ref.[129]. 

 

  
Figure 4.7. TEM micrographs of the wollastonite reference sample dispersed in ethanol (left) and 

acetone (right). 
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4.10 XRF 

1 g of the ground fresh mechanochemically synthesized C-S-H samples was used to 

prepare fused beads using 10g of lithium tetraborate (Li2B4O7) as the flux. The XRF measurements 

were done on the wide range oxide program on a Panalytical wavelength dispersive spectrometer, 

model PW2440. 

4.11 SEM 

Disks of 2mm thickness of the C3S paste were placed in moulds and resin-impregnated 

under vacuum with Struers Epofix resin. After setting, the samples were demoulded and cut on the 

opposite side of the disks to get a flat surface parallel to the side of the disks. The samples were 

then polished on the disks sides on a Struers RotoPol-35 with a PdM-force-20 unit. SiC papers of 

600, 1200 and 2400 microns were used until the surface was smooth, then 6, 3, 1 and ¼ micron 

diamond paste cloths were used with DP-stick lubricant. When the sample surface was smooth and 

free of scratches, the polishing process was considered to be finished. The sample was coated, to 

avoid charging effects under the microscope, with 15nm of C in an EMSCOPE TB500 vacuum 

coater. Before observation, the sample was placed over a sample holder with a C sticker and painted 

with C paint on the sides to provide a contact with the holder.  

The studies of the C3S sample were done on an EVO MA15 operated at an acceleration 

voltage of 20kV. Backscattered images were taken at magnifications between 1000 and 2000, spot 

size 500 and working distance of 8 or 10mm. EDX was performed with a working distance of 8mm 

on different areas with different grey levels to identify their chemical composition and thus the 

phases present in the sample. The counting time was set to 40s.  

The surface of some of the synthetic C-S-H samples fabricated via the controlled 

hydration of C3S was studied with a high resolution SEM. The samples were dispersed on carbon 

sticks and then coated with a carbon layer of about 15 nm with a 208 Carbon Cressington carbon 

coater. An XL-30 SFEG FEI HR-SEM, equipped with an Oxford Si(Li)  EDX detector, was used 

for imaging. UHR mode (ultra high resolution mode), with an accelerating voltage of 2.5kV, spot 

size 3, working distance of ~2.5 mm and magnification of 15kx were used. 
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4.12 29
Si DP MAS NMR 

Freshly crushed and finely ground disks of the C3S paste were packed in a 6 mm diameter 

zirconia rotor with a Teflon cap. The NMR spectrum was recorded in a Varian Infinity Plus 300 

spectrometer equipped with Chemagnetics style MAS probes referenced with respect to belite (-

71.3 ppm). The equipment was operated at 59.56 MHz for 
29

Si and at a magnetic field of 7.0 T. The 

spinning speed at the magic angle was set to 6 KHz. The pulse delay was 30s, the pulse width was 

5μs and the acquisition time was set at 6.83ms. The total number of scans was 7000. The resulting 

spectrum was then iteratively fitted using the software Igor Pro 5.0 with special macros written by 

Brough (1993) and further developed by Love and Brough. After the peaks are fitted, the program 

integrates the area below them to obtain the percentage of the silicate species in the sample: Q
0
, Q

1
, 

Q
2
, Q

2
(1Al) (Q

2
 with one Si substituted by Al), etc. With this data, the percentage of reaction is 

given by the program as the percentage of the hydrated species. The mean chain length (MCL) is 

also calculated as [130]:  

 

𝑀𝐶𝐿 =
2 [%𝑄1 + %𝑄2 +

3
2 𝑄2(1𝐴𝑙)+%𝑄3]

%𝑄1
   

Eq. 4.6 

                 

   

 

The Ca/Si ratio of the paste was also estimated using the hydration reaction [3]: 

 𝐶3𝑆 + (3 − 𝑥 + 𝑦)𝐻 → 𝐶𝑥𝑆𝐻𝑦 + (3 − 𝑥)𝐶𝐻 Eq. 4.7 

    

Applying mass balance to the equation and knowing the w/s ratio, the % of hydration DR 

from NMR, the % of CH as ignited weight from STA, and the molar masses of C3S (a) and CH (b), 

the Ca/Si, x, is: 

 

𝑥 = 3 −
(𝑎 +

𝑤
𝑠 𝑎) ∙ 𝐷𝑅% ∙ 𝐶𝐻𝑖𝑤 ∙ 10−4

𝑏
 

Eq. 4.8 

    

All the synthetic C-S-H samples were analyzed in a Varian Direct-Drive VNMRS-600 

spectrometer (14.09 T), equipped with a homebuilt CP/MAS probe for 7 mm o.d. zirconia rotors. 

The spectra were acquired at 119.137 MHz, employing a spinning speed of 6.0 kHz, a 90s 

relaxation, and were referenced to TMS using belite as an external reference. The spectra were 

deconvoluted and iteratively fitted using the Vnmrj software. Each frequency chosen to deconvolute 

the spectra was defined by position in ppm, height (intensity), line width and shape. The shape was 
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a mixture of a Gaussian and a Lorentzian distribution, being 1 if only Gaussian and 0 if only 

Lorentzian. The aim of the deconvolutions was to obtain the total integrals for Q
0
, Q

1
 and Q

2
, rather 

than evaluating individual sites of each connectivity, such as Q
2b

 and Q
2p

. Therefore the frequencies 

chosen to deconvolve the spectra do not have a direct structural meaning, but were chosen to give 

the best fit for the total contribution of each connectivity. If structural information needs to be 

derived from the spectra, the deconvolution process is much more complex, since the chosen 

frequencies should maintain their line widths and shapes in all the samples. These parameters were 

relaxed in the deconvolutions, resulting in variations between samples. Since the total integral for 

the connectivities was the essential information taken from the deconvolutions, if there was a 

significant overlap between the tails of frequencies of different connectivities, the shape of the 

frequencies was relaxed to minimize this overlap. The percentages of the silicate species that 

resulted from the deconvolutions were used to calculate the mean silicate chain lengths (MCL) in 

all cases (Eq. 4.6) and the degree of reaction (DR) for the samples fabricated via the controlled 

hydration of C3S. The estimated error in the quantification was ±2 for the silicate connectivities and 

the quadratic propagation of errors was used to calculate the error in the MCL and the degree of 

reaction (DR). The DR was calculated according to: 

 
𝐷𝑅 = 100 ∙

%𝑄1 + %𝑄2

%𝑄0 + %𝑄1 + %𝑄2
= %𝑄1 + %𝑄2 

Eq. 4.9 
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5 Results and discussion 

5.1 C3S paste 

The thermal analysis data of the C3S paste is shown in Figure 5.1. The solid residue rs, 

after heating the sample to 1000ºC, was 73.26 %. The w/s ratio was calculated using the following 

expression, which is a modification of Eq. 3.1: 

 
1

100
-

srs

w
 Eq. 5.1 

The w/s ratio is 0.365 and expressed with its error is (3650 ± 2)·10
-4

. (Taking Δrs= 10
-2 

weight %, which is the precision that is given by the software that calculates rs and assuming 

quadratic propagation of errors).As the original w/s ratio was 0.5, this result suggests some of the 

water has been lost during the hydration process. This may be due to evaporation if the mould was 

not well sealed while curing. 

 

 

Figure 5.1. TG, DTG and DTA data of a 5-year old C3S paste with w/s=0.5. 

 

The % CH is calculated taking the weight loss from 404ºC to 513ºC using the following 

expression in which y·s is wdeh in Eq. 3.5: 

 
%𝐶𝐻 =

74

18
∙ 𝑦 ∙ 𝑠 =

74

18
∙ 𝑤𝑑𝑒ℎ 

Eq. 5.2 
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Decarbonation has not been taken into account because the DTG is roughly constant in the 

region from 600ºC to 780ºC.  The variable y is the length (in cm) of the arrow that marks the weight 

loss as in Figure 3.1, that in this case was 3.1cm, and s is a scale factor that indicates how much 

weight % corresponds to each length unit, which in this particular case was 30/16 weight %/cm. 

Considering the scale factor has no error, and Δy= 10
-1

cm, the amount of CH is then 23.89 ± 0.77 

weight %. This expressed as ignited weight is 32.6 ± 1.1 weight %, calculated as follows: 

 
100

%
% 

s

iw
r

CH
CH  Eq. 5.3 

 

 

The XRD pattern of the sample is shown in Figure 5.2. The peaks belong to portlandite 

and C-S-H, suggesting that the hydration of the sample is complete with no alite remaining. 

However, alite can be present as very small crystals that may not be detected by X-rays. This is in 

fact confirmed by the examination of the sample on the SEM, which shows that it contains bright 

regions in backscattered images (Figure 5.3) that are identified as alite and belite as per EDX 

results. The presence of belite in the sample agrees with previous results of the same pastes when 

they were younger. Both XRD and 
29

Si DP MAS NMR results showed the presence of belite when 

the samples were hydrated for 8 hours [131].  

TEM micrographs of the sample are shown in Figure 5.4. The morphology of the Op C-S-

H is fibrillar. The mean Ca/Si ratio and its standard deviation calculated from 30 EDX data points 

taken from the Ip C-S-H region in Figure 5.4 are 1.79 ± 0.06, which is consistent with the nature of 

the paste. 

 

Figure 5.2. XRD pattern of a 5-year old C3S paste with w/s=0.5. Peaks are labeled as P for 

portlandite and C for C-S-H. 
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Figure 5.3. Upper image: Backscattered electron image from the 5-year old C3S paste with w/s=0.5. 

Three different phases are identified: C3S (white), CH (light grey) and C-S-H (dark grey). Porosity 

is displayed as black, Central image: Central area of upper image at higher magnification, Lower 

image: Backscattered electron image from the C3S paste with the white features in the center 

corresponding to belite traces. (All images taken by M. S. Chen). 



 73 

 

 

 

Figure 5.4. Upper image: TEM micrograph showing globular dense Ip C-S-H and fibrillar Op C-S-

H of a 5-year old C3S paste with w/s=0.5. Central image and lower images: TEM micrographs 

showing fibrillar Op C-S-H in the same paste (marked with white arrows). 
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The 
29

Si DP MAS NMR spectrum of the C3S paste is shown in Figure 5.5.  The spectrum 

was fitted taking into account the main two peaks at ~79 ppm and ~85 ppm, that belong to Q
1
 and 

Q
2
 silicate species, a contribution from Q

2b
 at ~82 ppm and the humps at ~ -71 ppm and ~ -73 ppm 

that belong to Q
0
 (from traces of belite and C3S). The deconvolution of the spectrum provides a 

quantification of the species yielding 4.1% for Q
0
, 48.3% for Q

1
, 8.5% for Q

2b
 and 39.0% for Q

2
 

(The precision of the program ± 0.1 is taken as an error for all the individual %). The calculated 

MCL is 3.967 ± 0.007 and the percentage of reaction is 95.8% ± 0.2, leaving 4.1% of anhydrous 

material. This agrees with the fact that small amounts of alite and belite were detected in the SEM 

images. The mean chain length is reasonable for the age of the paste, since C-S-H in C3S pastes get 

a MCL between 2 and 4 up to ~ 5 years of hydration [15, 16]. The amount of dimers and middle 

chain groups also agrees with the age of the sample; the values are consistent with the ones 

commented in section 2.1.5 taken from ref. [14]. 

 

Figure 5.5. Deconvolution of the 
29

Si MAS NMR spectrum of a 5-year old C3S paste with w/s=0.5. 

From top to bottom: Residue, experimental spectrum and fitted spectrum showing the individual 

peaks. 
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Applying mass balance to the equation and knowing the w/s ratio, the % of hydration, the 

% of CH as ignited weight and the molar masses of C3S (a) and CH (b), the Ca/Si, x, was calculated 

with Eq. 4.8. Taking 1Mol of C3S reacting with water at a w/s ratio of 0.36 and a final content of 

CH of 32.6% (as indicated by STA results), the Ca/Si ratio of C-S-H is estimated to be 1.69 ± 0.04 

(The error was calculated considering quadratic propagation of errors). This experimental value of 

the Ca/Si is lower than the one given by EDX with TEM which was 1.79 ± 0.06. With the error, the 

maximum value given for the Ca/Si by STA and NMR will be 1.73 and the minimum value given 

by EDX taking into account the error is 1.73, therefore there is not a remarkable difference between 

the results. 
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5.2 7-year old mechanochemically synthesized C-S-H 

 Samples with Ca/Si ratios of 0.66, 0.75, 1 and 1.5 were analyzed by STA and TEM. The 

STA results with the DTG are shown with histograms of the calculated Ca/Si ratios from the EDX 

data in Figure 5.6 and Figure 5.7. STA results show that all samples contain C-S-H (dehydration as 

weight loss under 200
o
C). All samples except the one with Ca/Si=1 show carbonation 

(decarbonation as weight loss between 600
o
C and 780

o
C), with the sample with target Ca/Si=0.75 

being the most carbonated. The sample with Ca/Si=1.5 also shows the presence of CH (dehydration 

as weight loss between 420
o
C and 550

o
C). For more detailed TG analysis of the same samples when 

they were fresh see ref. [122]. The EDX histograms show that samples with Ca/Si ratios of 0.66 and 

1 are very homogeneous since the data are not very dispersed. However samples with Ca/Si of 0.75 

and 1.5 are heterogeneous in composition. This is due to the presence of carbonates in sample with 

target Ca/Si=0.75. The presence of Ca/Si > 1.2 in the histogram for this sample in Figure 5.6, 

indicates that intermixing occurred, since the published Raman spectra of this samples showed no 

dimeric silicate content for this sample [68], and dimeric species are associated with Ca/Si > 1.2. 

The presence of CH in sample with target Ca/Si=1.5 may have also caused a dispersion in the data, 

since it was difficult to find areas free of diffraction spots. For the latter sample, the high data 

dispersion may also be due to the difficulties in finding very thin areas on which to perform EDX. 

The mean Ca/Si ratios calculated from EDX are shown in Table 5.1 and compared with reported 

values obtained by different techniques.  The mean Ca/Si ratios calculated from EDX are all similar 

to the target ones and those reported by XPS, except for the sample with target Ca/Si=0.75, due to 

its high heterogeneity and degree of carbonation. However, for the sample with target Ca/Si=1.5, 

the reported value of 1.29 [122] is more realistic since the presence of CH must reduce the Ca/Si 

with respect to the target value. Again the mean Ca/Si of 1.48 calculated from EDX data for this 

sample, can be overestimated due to problems in finding thin areas for analysis and due to 

admixture with other phases in a possible very fine scale, since some of the EDX was performed in 

areas that were giving spot-like diffraction patterns. From the micrographs shown in Figure 5.8, it 

can be concluded that the morphology of the samples is foil-like regardless of the Ca/Si ratio. These 

samples are reported to resemble C-S-H (I), which is similar to tobermorite. Tobermorite is 

associated with foil-like morphology; thus the results are consistent with Richardson’s assumption 

that associated tobermorite to foils. 
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From the results, it is evident that the carbonation of these samples affects the Ca/Si ratio 

since C-S-H decalcifies upon carbonation. Raman studies of the samples when they were fresh 

revealed Raman bands associated with carbonated species after minutes of exposure to air [68]. 

When the samples were stored for a longer period (up to 6 months) in a covered, but not closed, 

desiccator, samples with Ca/Si > 1 were especially sensitive to carbonation and silicate 

polymerization increased [124]. This indicates the importance of storing these samples properly, to 

preserve the C-S-H structure. 

Table 5.1. Comparison between mean Ca/Si ratios of synthetic C-S-H samples obtained by three 

different methods: EDX from TEM (with the standard deviations), XPS [132] and TG [122]. 

Target Ca/Si # EDX points Ca/Si (EDX) Ca/Si (XPS)  Ca/Si (TG) 

0.66 28 0.65 ± 0.02 0.68 - 

0.75 32 0.83 ± 0.29 0.74 - 

1 40 1.05 ± 0.03 1.04 - 

1.5 20 1.48 ± 0.14 1.48 1.29 

 

  

  

Figure 5.6. TG, DTG and DTA of C-S-H sample with target Ca/Si=0.66 (Upper graphs), and target 

Ca/Si=0.75 (Lower graphs). 
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Figure 5.7. TG, DTG and DTA of C-S-H sample with target Ca/Si=1 (Upper graphs), and target 

Ca/Si=1.5 (Lower graphs). 
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Figure 5.8. TEM micrographs showing the fine crumpled foil-like morphology of 

mechanochemically synthesized C-S-H with target Ca/Si=0.66 (Upper image), Ca/Si=0.75 (Central 

image) and Ca/Si=1 (Lower image). 
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5.3 Fresh mechanochemically synthesized C-S-H 

The XRD patterns of the mechanochemical samples along with a reference pattern from 

portlandite [133] are shown in Figure 5.9. They are consistent with C-S-H(I) [4]. The basal 

reflection (2θ ~7°) is present in all samples. It shifts towards higher 2θ (lower distance in real space) 

and increases in intensity with increasing Ca/Si. The basal reflection is a sign of 3D ordering in the 

samples. Thus the structural order in 3D improves with increasing the Ca/Si ratio. Another sign of 

increasing structural order is the appearance of a shoulder at 2θ ~30° with increasing Ca/Si ratio. 

This was already observed by Garbev et al. [40] in XRD patterns of C-S-H samples fabricated via 

the same route, opposing Cong and Kirkpatrick [39] who supported the decrease in structural order 

with increasing Ca/Si due to the decrease in intensity of the reflection at 2θ ~16°. In the results 

presented here, this decrease is also present. However, another indication of increasing ordering 

with higher Ca/Si, that has not been pointed out in literature, is the flattening of the hump that 

appears in all the patterns at the interval 40° < 2θ <48°; since humps are an indication of amorphous 

structures. Hence this results support Garbev et al. conclusion about the improvement in structural 

order while increasing Ca/Si ratio. The patterns show that the samples are single-phase, with respect 

to crystalline content, when the bulk Ca/Si ≤ 1.33. The extra reflections in the sample with 

Ca/Si=1.5 are due to the presence of portlandite. The only remarkable difference between these 

samples and the series of Garbev is that for Ca/Si=1.33 their sample contained traces of portlandite. 

 

Figure 5.9. XRD patterns of the series of mechanochemical samples fabricated with CaO and 

Aerosil. The Ca/Si ratios are indicated above the patterns. 
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The 
29

Si MAS NMR results of the series of samples are shown in Figure 5.10. The silicate 

structure of the samples is dominated by middle chain groups (Q
2
 at ~ -85ppm) for Ca/Si≤1, while it 

is dominated by dimers (Q
1
 at ~ -79ppm) for Ca/Si ≥ 1.25. The contribution from bridging sites (Q

2b
 

at ~ -82ppm) is noticeable in the spectra for Ca/Si ≤ 1. The results were deconvoluted to estimate 

the percentages of the silicate connectivities and the MCL. The experimental spectra, the simulated 

spectra and the individual frequencies are shown in Figure 5.11. The percentages of the silicate 

species and the MCL are shown in Table 5.2. The results are plotted versus TEM-EDX 

experimental Ca/Si in Figure 5.12 and Figure 5.13. There is an obvious abrupt change of the 

percentages of Q
1
 and Q

2
 species at Ca/Si=1 in Figure 5.12, that can be interpreted as a 

discontinuity in the solid solution. 

 

Figure 5.10. 
29

Si MAS NMR spectra of the mechanochemical C-S-H samples. 

 

Table 5.2. Percentages of the silicate especies and MCL for the mechanochemical series. The 

results have been calculated from the deconvolution of the NMR spectra shown in Figure 5.11. 
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2 
± 2.0 Q

3 
± 2.0 MCL 
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0.83 19.1 % 77.1 % 3.8 % 10.5 ± 0.9 

1.00 35.7 % 62.0 % 2.3 % 5.6 ± 0.2 
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Figure 5.11. Deconvolutions of the 
29

Si MAS NMR spectra of the mechanochemical samples 

showing the individual frequencies (green), the simulated spectra as a sum of the individual 

frequencies (blue) and the experimental spectra (black). 
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used for the deconvolutions lie in these ppm, they are not a direct representation of these species 

either. If a direct representation was required, the line widths and shapes of the chosen frequencies 

should be constant between samples, and this was not the case in these deconvolutions. These 

parameters were relaxed during the fitting process and that resulted in variations between samples. 

For Ca/Si < 1 three frequencies were used for Q
2
, and two for Q

1
, in order to improve the fitting and 

adjust the simulated spectra as much as possible to the experimental one. The extra frequency 

chosen for Q
2
 is situated at ~84ppm. Intensity in this region could have been originated from Q

2
 

groups in the vicinity of Q
3
 groups, or from Q

2p
 situated in the centre of octamers or longer 

segments. These Q
2p

 will then be connected to identical Q
2p

, while the Q
2p

 in pentamers are always 

connected to a bridging site and an end-chain site. From the deconvolution results in Table 5.2, it is 

clear that the percentage of Q
1
 increases with increasing Ca/Si, while the percentage of Q

2
 

decreases. The presence of less silica in the samples is associated with a tendency to form dimeric 

silicate units instead of longer silicate chains. This is supported by the decrease of the MCL towards 

a value of 2 with increasing Ca/Si. For samples with low Ca/Si, thus high silicate content, a 

percentage of cross linking groups Q
3
 is also found. For the sample with Ca/Si=1 the percentage of 

Q
3
 is very low. If Q

3
 was not fitted and this intensity was considered to be part of the tail of Q

2
 

groups, that would change the MCL from 5.5 to 5.6. Thus the MCL is not very sensitive to slight 

changes in the fitting. The MCL varies from 18.8 to 2.3 while increasing the Ca/Si. In Figure 5.13 it 

is clear that the decrease in MCL does not depend linearly on the Ca/Si, but exponentially.  

 

Figure 5.12. Percentage of the silicate species Q
1
, Q

2
 and Q

3
 obtained from NMR vs. the 

experimental Ca/Si (TEM-EDX) in the mechanochemical C-S-H. 
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Figure 5.13. Mean silicate chain length vs. Ca/Si (TEM-EDX) in the mechanochemical series. 
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Figure 5.14. TG results from the mechanochemical series of C-S-H samples. 

0.6 0.8 1.0 1.2 1.4 1.6

0

5

10

15

20

25

M
C

L

Ca/Si

0 200 400 600 800 1000 1200 1400

70

75

80

85

90

95

100

 Ca/Si 0.75

 Ca/Si 0.83

 Ca/Si 1

 Ca/Si 1.25

 Ca/Si 1.33

 Ca/Si 1.5

W
e

ig
h

t 
%

T(°C)



 85 

DSC curves were also recorded. The interval between 700°C and 1400°C is shown in 

Figure 5.15. The curves have been vertically shifted for clarity. They show the transformation from 

C-S-H into β-wollastonite when C-S-H has completely dehydrated in the approximated interval 

between 850°C - 950°C, followed by the transformation from β-wollastonite into α-wollastonite at 

~1300°C. The temperature for both these transformations depends on the Ca/Si ratio. The 

temperature at the onset of the transformations is stated in Table 5.3. The transformation into β-

wollastonite is accompanied by the presence of SiO2 for samples with Ca/Si up to 1, and by the 

formation of C2S for samples with Ca/Si>1. 

Table 5.3. Temperature transformation of C-S-H into β-wollastonite and β-wollastonite into α-

wollastonite of the mechanochemical series of C-S-H samples.  

Bulk 

Ca/Si 

T (°C) 

C-S-H  β-wollastonite 

T (°C) 

β-wollastonite α-wollastonite 

0.75 817.5 1275.8 

0.83 826.0 1277.5 

1.00 828.1 1247.2 

1.25 874.1 1242.7 

1.33 891.7 1242.2 

1.50 891.3 1225.3 

 

 

Figure 5.15. DSC data from the mechanochemical C-S-H samples. The curves have been vertically 

shifted for clarity. 
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Ca/Si. The dependence on temperature formation of wollastonite upon Ca/Si has been reported by 

different authors such as Mitsuda [87], Suzuki [125] and Bornefeld [134]. A comparison of all the 

data is shown in Figure 5.16. For Ca/Si > 0.6 all the results are in good agreement. Bornefeld 

showed that the transformation temperature actually depends on the occupancy of the interlayer 

with Ca or other atoms. Some samples containing potassium with the ratio K/C=0.25 showed a 

similar temperature transformation than pure C-S-H with Ca/Si=1.25, even when their Ca/Si were 

lower, proving thus that potassium was bonded in the interlayer [134]. The dependence of the 

temperature transformation of β-wollastonite into α-wollastonite on the Ca/Si ratio of the C-S-H 

precursors has never been reported before. The temperature for this transformation decreases with 

increasing Ca/Si. That implies that an excess of SiO2 stabilizes the β-polymorph and the excess of 

CaO stabilizes the α-polymorph. That can be related to the silicate structure of the samples and the 

silicate structure of both polymorphs. β-wollastonite silicate structure comprises long chains while 

the silicate structure of α-wollastonite consists of rings of 3 silicate tetrahedra. The silicate structure 

of the C-S-H with high Ca/Si is mainly dimeric and these samples stabilize the α-polymorph which 

has the 3 silicate rings, while the silicate structure of the C-S-H with low Ca/Si has longer silicate 

chains and these samples stabilize the β-polymorph, which has a silicate structure of long chains. 

This may be the indication of slight differences in the silicate structure of the β-polymorph that 

forms after heating C-S-H of different Ca/Si ratios, so that it is prone to transform into the α-

polymorph at different temperatures. This would need further investigations with a technique such 

as in-situ Raman spectroscopy. 

 

Figure 5.16. Transformation temperature of C-S-H into wollastonite from Mitsuda [87] , Bornefeld 

[134], Suzuki [125] and the mechanochemical samples from this study. 
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While performing TG and DSC, FTIR was also used to monitor the gases that were 

expelled from the samples. The water and CO2 traces are shown together with TG and DSC in 

Figure 5.17 in order to couple the ejection of the gases from the samples with the TG and DSC 

events. FTIR makes it possible to quantify the weight loss from each gas and compare the total loss 

with the one obtained from TG. The results are summarised in Table 5.4 and show that both 

techniques agree. The real Ca/Si of the samples was calculated by oxide mass balance taking into 

account the traces of carbonates and portlandite. 

Table 5.4. Quantification of the CO2 and H2O content and total loss mass percentage of the 

mechanochemical C-S-H series obtained from FTIR, total loss percentage obtained from TG, and 

real Ca/Si recalculated taking into account the traces of carbonates and portlandite. 

Bulk 

Ca/Si 

CO2 % 

content 

(FTIR) 

H2O% 

content 

(FTIR) 

Loss % 

(FTIR) 

Loss % 

(TG) 

Real 

Ca/Si 

0.75 1.15 23.33 24.48 24.28 0.72 

0.83 1.11 25.32 26.43 26.45 0.80 

1.00 1.15 26.36 27.51 27.26 0.96 

1.25 0.65 23.61 24.26 24.25 1.23 

1.33 1.14 22.03 23.18 23.25 1.29 

1.50 1.19 21.30 22.49 22.51 1.34 

 

Figure 5.17 shows that the FTIR water trace is very similar for all samples, showing most 

of the water being expelled from the samples up to 200°C. This matches a feature in the DSC curve 

that indicates an endothermal transformation. The sharp feature that appears in the water trace up to 

40°C is related to an atmospheric residue due to the opening of the chamber to introduce the 

sample. This feature is also observed in the CO2 trace. Wollastonite is a non-hydrated calcium 

silicate, therefore C-S-H has to lose all its crystal water to transform into wollastonite. The most 

significant water loss occurs up to 200ºC and for samples with Ca/Si=0.75 and 0.83 a small peak in 

the water trace is appreciated at the onset of the transformation. For the sample with Ca/Si=1.5 the 

water trace also shows a peak ~ 400°C, which corresponds to the dehydration of portlandite. The 

CO2 traces show that most of the gas is expelled at the onset of the transformation to wollastonite. 

The loss of CO2 at 400°C - 500°C is associated to the decarbonation of amorphous calcite. For the 

sample with Ca/Si=1.5 there is a significant CO2 loss at ~ 600°C that originates from the 

decomposition of cryptocrystalline calcite. All the water and CO2 traces are shown together in 

Figure 5.18. The temperature scales have been chosen so that the significant features of the traces 

are highlighted. From the water traces it can be appreciated that the maximum release of water 

shifts towards higher temperatures with increasing Ca/Si. This is an indication of more chemically 

bound water with increasing Ca/Si. 
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Figure 5.17. Graphs showing TG (black), DSC (green) and the FTIR traces of H2O (blue) and CO2 

(red) for the mechanochemical series of C-S-H. The FTIR traces have been normalized by sample 

weight. The vertical scales for the FTIR traces have been chosen arbitrary for clarity, and are not 

shown in the graphs. For comparison of intensities of the FTIR traces between samples, see Figure 

5.18. 

 

0 200 400 600 800 1000 1200 1400

70

80

90

100

W
e

ig
h

t 
%

T(°C)

0 200 400 600 800 1000 1200 1400

-5

0

5

10

 m
W

/m
g

0.0

4.0x10
-4

8.0x10
-4

0.0

1.0x10
-3

2.0x10
-3

3.0x10
-3

DSC

CO2 trace

TG

H2O trace

Ca/Si=0.75

0 200 400 600 800 1000 1200 1400

70

75

80

85

90

95

100

W
e

ig
h

t 
%

T(°C)

Ca/Si=0.83

0 200 400 600 800 1000 1200 1400

-5

0

5

 m
W

/m
g

0.0000

0.0002

0.0004

0.0006

0.000

0.001

0.002

0 200 400 600 800 1000 1200 1400

70

75

80

85

90

95

100

W
e

ig
h

t 
%

T(°C)

Ca/Si=1

0 200 400 600 800 1000 1200 1400

-10

-5

0

5

10

 m
W

/m
g

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

-0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0 200 400 600 800 1000 1200 1400

70

80

90

100

W
e

ig
h

t 
%

T(°C)

0 200 400 600 800 1000 1200 1400

-5

0

5

m
W

/m
g

-0.00010

-0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.0000

0.0005

0.0010

0.0015

0.0020

Ca/Si=1.25

0 200 400 600 800 1000 1200 1400

70

80

90

100

W
e

ig
h

t 
%

T(°C)

0 200 400 600 800 1000 1200 1400

-5

0

5

m
W

/m
g

Ca/Si=1.33

-0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0 200 400 600 800 1000 1200 1400

70

80

90

100

W
e

ig
h

t 
%

T(°C)

0 200 400 600 800 1000 1200 1400

-2

0

2

4

m
W

/m
g

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Ca/Si=1.5

0.0000

0.0002

0.0004

0.0006

0.0008



 89 

  
Figure 5.18. Water and CO2 FTIR traces of the mechanochemical samples recorded while 

performing TG and DSC. 

To complement the thermal stability investigations of the C-S-H samples, morphological 

analyses were carried out with TEM. Micrographs of all the samples are shown in Figure 5.19. The 

morphology is crumpled foil-like for all samples regardless of the Ca/Si. The Ca/Si from EDX, 

XRF and TG are summarised in Table 5.5. The Ca/Si ratios obtained by XRF are not corrected for 

portlandite nor carbonates, but a direct calculation from oxide masses content. They are however 

very close to Ca/Si given by TG, in which portlandite and carbonates were taken into account. The 

Ca/Si given by TEM-EDX are also close to those given by other techniques and the standard 

deviations are low, which indicates the samples are very homogeneous in composition. The 

histograms for the Ca/Si obtained by TEM-EDX are shown in Figure 5.20. The histogram that 

shows more data dispersion is the one that corresponds to the sample with target Ca/Si=1.5. This 

can be associated to the presence of portlandite in the sample. 

Table 5.5. Ca/Si of the mechanochemical samples obtained by TEM-EDX (with standard 

deviations), XRF and TG. 

Ca/Si Bulk 0.75 0.83 1 1.25 1.33 1.5 

Ca/Si XRF 0.75 0.81 0.98 1.23 1.29 1.36 

Ca/Si TG 0.72 0.80 0.96 1.23 1.29 1.34 

Ca/Si EDX 0.76±0.02 0.79±0.03 0.97±0.05 1.16±0.06 1.24±0.04 1.33±0.07 

# EDX points 20 30 25 21 20 30 
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Figure 5.19. TEM micrographs of the mechanochemically synthesized C-S-H. The Ca/Si of the 

sample is indicated in each micrograph.  

Ca/Si=0.75 Ca/Si=0.83 

Ca/Si=1 Ca/Si=1.25 

Ca/Si=1.33 Ca/Si=1.5 
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Figure 5.20. Histograms of the Ca/Si obtained with TEM-EDX of the C-S-H mechanochemical 

samples. 
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Richardson and Groves’ model was applied for charge balance calculations. The height of 

the histograms for Ca/Si (A bar limited by the minimum and maximum values for the obtained 

experimental Ca/Si) was plotted against the reciprocal mean chain length for each sample in Figure 

5.21. The trends for the tobermorite and jennite structural units with maximum, intermediate and 

minimum degree of protonation (w/n=2, 1, 0) were also plotted. The mean value of Ca/Si obtained 

by TEM-EDX is indicated with a cross. This is the value used to get the chemical structural 

formulae. It is evident from the plot that the composition of the samples lays within the tobermorite-

like region and no Ca-OH groups are needed in the structures.  

 

Figure 5.21. Ca/Si vs. reciprocal mean chain length of the mechanochemical C-S-H samples. The 

length of the bars is limited by the minimum and maximum Ca/Si obtained by TEM-EDX and the 

mean value is marked with a cross. The structural units for tobermorite and jennite with minimum 

(w=0), intermediate (w=1) and maximum (w=2) degree of protonation are also marked. The vertical 

dashed lines represent the (3n-1) structural units: dimer (2), pentamer (5), octamer (8)… 
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 In the T/J view of the model (3n-1)=MCL and Ca/Si=(4n+ny)/(6n-2), so that 

n=(MCL+1)/3 and y=[(Ca/Si)(6n-2)-4n]/n. The number of silanol groups w depends on the value of 

y according to: 

)6(064

2042

2)2(20

ynwy

nwy

nwyny

-



-

 

The calculated values for n, y, wmax (maximum number of silanol groups), wmin (minimum 

number of silanol groups) and w/nmax (maximum degree of protonation) and w/nmin (minimum 

degree of protonation) are shown in Table 5.6. 

Table 5.6. Calculated values for the parameters of the T/J view point of Richardson and Groves’ 

model for the mechanochemical C-S-H samples. 

Target Ca/Si n y wmin wmax w/nmin w/nmax 

0.75 7.36 0.36 12.07 14.71 1.64 2 

0.83 3.83 0.31 6.46 7.67 1.69 2 

1.00 2.20 0.98 2.23 4.40 1.02 2 

1.25 1.23 1.08 1.13 2.47 0.92 2 

1.33 1.17 1.34 0.78 2.34 0.66 2 

1.50 1.09 1.55 0.49 2.19 0.45 2 

 

The minimum degree of protonation was chosen to derive the composition of the samples, 

since it was the most sensible value according to the position of the mean Ca/Si with respect to the 

tobermorite trends in Figure 5.21. The resulting structural chemical formulae consist in a 

tobermorite-like core (within brackets) with no extra Ca either in jennite or solid solution CH: 

Target Ca/Si=0.75   [Ca 14.71 H 12.07 Si 21.07 O 64.20] · Ca 1.32· mH2O  

Target Ca/Si=0.83   [Ca 7.67 H 6.46 Si 10.50 O 32.49] · Ca 0.60· mH2O 

Target Ca/Si=1.00   [Ca 4.40 H 2.23 Si 5.60 O 17.79] · Ca 1.08· mH2O 

Target Ca/Si=1.25   [Ca 2.47 H 1.13 Si 2.70 O 9.11] · Ca 0.67· mH2O 

Target Ca/Si=1.33   [Ca 2.34 H 0.78 Si 2.50 O 8.51] · Ca 0.78· mH2O 

Target Ca/Si=1.50   [Ca 2.19 H 0.49 Si 2.28 O 7.84] · Ca 0.85· mH2O 

 



 94 

Since the amount of water is unknown, it is left as m in the structures. Samples with target 

Ca/Si >1.00 can be accounted for by a mixture of dimeric and pentameric tobermorite units, T2 and 

T5 in ref. [1]. The sample with target Ca/Si=1 can be explained with a mixture of T8, T5 and T2 

units, the sample with target Ca/Si=0.83 with a mixture of T11, T8, T5 and T2, and the sample with 

target Ca/Si=0.75 with a mixture of T23 and all the rest of tobermorite units with shorter silicate 

chains.  
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5.4 CaO-SiO2 C-S-H series 

The XRD patterns (kindly provided by A. Nonat) of the series of samples fabricated via 

silica-lime reactions under continuous stirring are shown in Figure 5.22 together with a reference 

pattern of calcite [135], CH [133], aragonite [136] and vaterite [137]. The basal reflection (2θ~7°) is 

present in all samples except in sample with target Ca/Si=0.75. It also presents higher intensity with 

increasing Ca/Si ratio, as in the case of the mechanochemical series, although this is not very clear 

for the sample with target Ca/Si=1.35. The comparison of the patterns with the reference patterns of 

calcite and portlandite confirm that the samples do not contain traces of these two phases. Small 

residual peaks corresponding to aragonite and vaterite are found at 2θ between 25º and 28º for 

samples with target Ca/Si=0.8, 1.27 and 1.35. The basal spacing of these samples and the 

mechanochemical samples was calculated with the Bragg condition in Eq. 3.6 taking the position of 

the maximum in the basal reflection. The results are indicated in Table 5.7. The basal spacing of 

sample with target Ca/Si=0.75 could not be calculated since the basal reflection is not resolved for 

this sample. 

 

Figure 5.22. XRD patterns of the CaO-SiO2 C-S-H series with a reference pattern for calcite, 

portlandite, aragonite and vaterite. 

The basal spacing decreases with increasing Ca/Si for both series. This is in agreement with data 

presented in the literature review in Figure 2.8 taken from ref. [36]. A similar plot including the 

experimental data measured in this work is shown in Figure 5.23. The basal spacing was plotted 
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against the mean Ca/Si ratio obtained by TEM-EDX for both series of samples (Ca/Si values for the 

mechanochemical series indicated in Table 5.5 and in Table 5.9 for the CaO-SiO2 series).  

Table 5.7. Basal spacing in Å for the C-S-H mechanochemical samples and the CaO-SiO2 C-S-H 

samples. 

Mechanochemical Mechanochemical CaO-SiO2 CaO-SiO2 

Target Ca/Si Basal spacing (Å) Target Ca/Si Basal spacing (Å) 

0.75      13.58 0.75 - 

0.83 14.31 0.80 13.94 

1.00 13.37 1.00 11.75 

1.25 12.49 1.27 10.59 

1.33 12.55 1.35 9.65 

1.50 12.15 1.42 - 

 

 

Figure 5.23. Basal spacing against Ca/Si ratio (TEM-EDX) for the C-S-H mechanochemical and 

the CaO-SiO2 C-S-H series. Data from Matsuyama and Young [42] was fitted to configure the 

lower trend line. Data from Richardson’s model structures for C-(A)-S-H(I) [36] configure the 

middle trend line. Data from Grudemo [42] and Cong and Kirkpatrick [39] configure the upper 

trend line. Symbols marked with points or crosses belong to the same data groups as the identical 
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unfilled symbols. They are both not used to fit the upper trend line and the crosses indicate the 

presence of CH.  

Most of the data points that belong to the mechanochemical samples are placed close to 

the upper trend line, while most of the data points that belong to the CaO-SiO2 series are placed 

closer to the lower trend line. As it was discussed in the literature review, the samples that follow 

the upper trend line present a water molecule more per silicon atom than the samples that follow the 

lower trend line. This implies the CaO-SiO2 series is dried to a higher extent than the 

mechanochemical samples. This agrees with the used drying methods, since the samples fabricated 

via the mechanochemical method were dried by heating at 60ºC and the samples from the CaO-SiO2 

series were dried under vacuum. This last drying method is harsher than heating, so that those 

samples were expected to present a higher level of drying. Oven drying up to 105ºC is considered 

equivalent to D-drying in terms of the removal of evaporable water [138]. In D-drying, the crushed 

sample is placed in a sealed container pumped by a rotary pump. The pumping line is connected to 

a glass container with water ice, which is packed in solid CO2 (known as dry ice). The drying 

conditions are then in vacuum at the equilibrium vapour pressure above ice at -79ºC (~6.7·10-2 Pa) 

[138].  Since D-drying is a more gentle method than vacuum drying and this last method is 

equivalent to drying at 105ºC (only in terms of measuring evaporable water), drying at 60ºC must 

be a less severe method than vacuum dry. 

The point for the sample with target Ca/Si=0.8 from the CaO-SiO2 series is placed closer to the 

upper trend line than to the lower trend line. This could be due to a shift of the maximum of the 

basal reflection, associated to the background that appears at low 2θ angles in the XRD patterns in 

Figure 5.22. The background is present in all samples but it is possible that it affects the position of 

the basal reflection to a greater extent for the sample with target Ca/Si=0.8, since the basal 

reflection is less intense and defined than for the rest of the series. 

As Richardson discussed [36], data points to the right of the upper trend line are due to 

intermixture of C-S-H with CH. The sample with higher Ca/Si in the mechanochemical series that 

contains CH (marked with a white cross in Figure 5.23) is placed slightly to the right of the upper 

trend line, which agrees with the interpretation by Richardson. The data for the sample with target 

Ca/Si=1.33 from the same series is also placed slightly to the right of the upper trend line, although 

this sample is portlandite free.   
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The 
29

Si MAS NMR results of the series of samples fabricated via the silica-lime reaction 

are shown in Figure 5.24. The silicate structure of the samples was dominated by Q
2
 groups for 

Ca/Si ≤ 1, while it was dominated by Q
1
 groups for Ca/Si ≥ 1.27. The contribution from bridging 

sites (Q
2b

 at ~ -82ppm) is shown as a very distinct peak in samples with Ca/Si ≥ 1, as opposing to 

the mechanochemical series in which the bridging sites contribution was noticed as a hump. The 

width of the Q
2
 frequencies in the high Ca/Si samples is narrower in this series than in the previous 

one, which implies a much better defined chemical environment for this connectivity. The results 

were deconvoluted to estimate the percentages of the silicate connectivities and the MCL. Two 

frequencies were used for both Q
1
 and Q

2
 for the spectra of the samples with Ca/Si>1. For low 

Ca/Si three frequencies were used for Q
2
, and one for Q

1
. As in the previous series, no structural 

information was derived from the individual frequencies.  For samples with Ca/Si<1.27, the Q
2
 

intensity at ~ -84ppm could have the origin commented in the previous section, either from Q
2
 

groups in the vicinity of Q
3
 groups, or Q

2p
 attached to identical Q

2p
 in octamers or longer segments. 

Since no intensity was found for Q
3
 groups in the sample with Ca/Si=1, it is likely that the intensity 

at ~ -84ppm is originated from Q
2p

 groups attached to identical Q
2p

 groups. The percentages of the 

silicate species and the MCL are shown in Table 5.8. 

 

Figure 5.24. 
29

Si MAS NMR spectra of the CaO-SiO2 C-S-H samples (Dijon). 
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Table 5.8. Percentages of the silicate species and MCL for the C-S-H samples fabricated in Dijon 

by the silica-lime reaction. The results have been calculated from the deconvolution of the NMR 

spectra shown in Figure 5.25. (The error is not given for the first sample because it results bigger 

than the measurement, given the atypical low percentage of Q
1
). 

Bulk Ca/Si Q
1 
± 2.0 Q

2 
± 2.0 Q

3 
± 2.0 MCL 

0.75 1.5 % 83.5 % 15.0 % 137.4 ± - 

0.80 4.0 % 90.8 % 5.17 % 49.7 ± 23.7 

1.00 34.3 % 65.7 % 0 % 5.8 ± 0.3 

1.27 90.6 % 9.4 % 0% 2.2 ± 0.4 

1.35 92.5 % 7.5 % 0% 2.2 ± 0.5 

1.42 88.0 % 12.0 % 0% 2.3 ± 0.3 
 

The deconvoluted spectra, the simulated spectra and the individual frequencies are shown 

in Figure 5.25. The results are plotted versus Ca/Si in Figure 5.26 and Figure 5.27, which show that 

the percentages of the silicate connectivities of these samples are rather constant for samples with 

Ca/Si>1 and Ca/Si<1. The change in percentage of silicate connectivities with Ca/Si is less gradual 

than for the mechanochemical series. Given the very low percentage of Q
1
 connectivities at low 

Ca/Si, the MCL is higher in this series than for the mechanochemical samples for Ca/Si<1. For the 

rest of the samples the MCL is very similar in both series. 

The morphology of the samples is crumpled foil-like regardless of the Ca/Si (Figure 5.28), 

but the foils in this case are finer and appear to be more defined than in the case of the 

mechanochemical samples. The mechanochemical route is much harsher since the synthesis relies 

in accelerating the reaction adding mechanical energy by the milling process; therefore it is sensible 

that the morphology of the samples appears coarser in that case. The Ca/Si ratios given by TEM-

EDX are shown in Table 5.9. The values are very close to the bulk composition except in the case 

of bulk Ca/Si=1.35. The inhomogeneity in this sample could be due to admixture with traces of 

carbonates, present as indicated by XRD results. 

Table 5.9. Mean Ca/Si values (with the standard deviations) obtained by TEM-EDX for the C-S-H 

samples in the CaO-SiO2 series. 

Ca/Si Bulk 0.75 0.80 1.00 1.27 1.35 1.42 

Ca/Si EDX 0.73±0.02 0.82±0.02 0.98±0.03 1.24±0.05 1.25±0.12 1.40±0.04 

# EDX points 25 20 31 19 27 20 
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Figure 5.25. Deconvolutions of the 

29
Si MAS NMR spectra of the CaO-SiO2 C-S-H samples 

showing the individual frequencies (green), the simulated spectra as a sum of the individual 

frequencies (blue) and the experimental spectra (black). 
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Figure 5.26. Percentage of the silicate species Q
1
, Q

2
 and Q

3
 obtained from NMR vs. the Ca/Si 

(TEM-EDX) in the CaO-SiO2 C-S-H series. 

 

Figure 5.27. Mean silicate chain length vs. Ca/Si (TEM-EDX) in the CaO-SiO2 C-S-H series. 
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Figure 5.28. TEM micrographs of the CaO-SiO2 C-S-H series. The Ca/Si of the sample is indicated 

in each micrograph.  
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Figure 5.29. Histograms of the Ca/Si obtained with TEM-EDX of the C-S-H CaO-SiO2 samples. 
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Richardson and Groves’ model was applied for charge balance calculations. The height of 

the histograms for Ca/Si (A bar limited by the minimum and maximum values for the obtained 

experimental Ca/Si) was plotted versus the reciprocal mean chain length for each sample in Figure 

5.30. The trends for the tobermorite and jennite structural units with maximum, intermediate and 

minimum degree of protonation (w/n=2, 1, 0) were also plotted. The mean value of Ca/Si, obtained 

by TEM-EDX, was used to get the chemical structural formulae, and it is marked with a cross. As 

in the case of the mechanochemical samples, the composition of the samples in this series lies 

within the tobermorite-like region and no Ca-OH groups are needed in the structures either from 

solid solution CH or jennite units. 

 

Figure 5.30. Ca/Si vs. reciprocal mean chain length of the CaO-SiO2 C-S-H samples. The length of 

the bars is limited by the minimum and maximum Ca/Si obtained by TEM-EDX and the mean value 

is marked with a cross. The structural units for tobermorite and jennite with minimum (w=0), 

intermediate (w=1) and maximum (w=2) degree of protonation are also marked. The vertical dashed 

lines represent the (3n-1) structural units: dimer (2), pentamer (5), octamer (8)… 
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 In the T/J view of the model (3n-1)=MCL and Ca/Si=(4n+ny)/(6n-2), so that 

n=(MCL+1)/3 and y= [(Ca/Si)(6n-2)-4n]/n. The number of silanol groups w depends on the value 

of y according to: 

)6(064

2042

2)2(20

ynwy

nwy

nwyny

-



-

 

The calculated values for n, y, wmax (maximum number of silanol groups), wmin (minimum 

number of silanol groups) and w/nmax (maximum degree of protonation) and w/nmin (minimum 

degree of protonation) are shown in Table 5.10. 

Table 5.10. Calculated values for the parameters of the T/J view point of Richardson and Groves’ 

model for the mechanochemical C-S-H samples. 

Target Ca/Si n y wmin wmax w/nmin w/nmax 

0.75 46.14 0.37 75.22 92.28 1.63 2 

0.80 16.90 0.82 19.82 33.81 1.17 2 

1.00 2.28 1.04 2.19 4.55 0.96 2 

1.27 1.07 1.11 0.95 2.14 0.89 2 

1.35 1.05 1.12 0.93 2.11 0.88 2 

1.42 1.09 1.84 0.18 2.18 0.16 2 

 

The minimum degree of protonation was chosen, since it was the most sensible value 

according to the position of the mean Ca/Si with respect to the tobermorite trends in Figure 5.30. 

The resulting structural chemical formulae consist in a tobermorite-like core (within brackets) with 

no extra Ca either in jennite or solid solution CH: 

Target Ca/Si=0.75   [Ca 92.28 H 75.22 Si 137.42 O 413.26] · Ca 8.53· mH2O  

Target Ca/Si=0.83   [Ca 33.81 H 19.82 Si 49.71 O 150.14] · Ca 6.99· mH2O 

Target Ca/Si=1.00   [Ca 4.55 H 2.19 Si 5.83 O 18.48] · Ca 1.18· mH2O 

Target Ca/Si=1.25   [Ca 2.14 H 0.95 Si 2.21 O 7.62] · Ca 0.59· mH2O 

Target Ca/Si=1.33   [Ca 2.11 H 0.93 Si 2.16 O 7.49] · Ca 0.59· mH2O 

Target Ca/Si=1.50   [Ca 2.18 H 0.18 Si 2.27 O 7.82] · Ca 1.00· mH2O 
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Samples with target Ca/Si >1.00 can be accounted for by a mixture of dimeric and 

pentameric tobermorite units, T2 and T5 in ref. [1]. The sample with target Ca/Si=1 can be 

explained with a mixture of T8, T5 and T2 units. The sample with target Ca/Si=0.8 can be 

explained with a mixture of T50, T47 and all the rest of tobermorite units with shorter silicate 

chains, and the sample with target Ca/Si=0.75 can be explained with a mixture of T119 and all the 

rest of tobermorite units with shorter silicate chains. 
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5.5 Hydration of C3S at constant lime concentration: Kinetics C-S-H series 

The hydration curves of the series of samples of C3S hydrated until the deceleration period 

are shown in Figure 5.31. The hydration of the sample at [CaO]=12mmol/l was stopped before the 

deceleration period due to an error reading the experimental screen. The hydration of samples at 

[CaO]=25 and 27mmol/l was stopped towards the end of the acceleration period instead of during 

the deceleration period to avoid the precipitation of portlandite. Experimental tests showed that it 

was complex to maintain the lime concentration constant at those supersaturated levels since the 

system is in a metastable state. Towards 800 minutes of hydration the lime concentration decreased 

indicating the consumption of Ca
2+

 in the solution to precipitate portlandite. Therefore stopping the 

hydration at the chosen point was a compromise to avoid the precipitation of portlandite and to 

ensure that the chemical environment in which C-S-H was growing was not perturbed.  

 

Figure 5.31. Hydration curves (Added water vs. hydration time) of C3S at fixed lime concentration, 

from [CaO]=12mmol/l (burgundy curve) to [CaO]=27mmol/l (pink curve), corresponding to 

hydration times II in Table 4.3. 

The XRD patterns of the samples fabricated by the controlled hydration of C3S are shown 

in Figure 5.32 , Figure 5.33, Figure 5.34 and Figure 5.35 together with the patterns of the anhydrous 

C3S and a reference for CH [133]. They show a low degree of hydration, since they are very similar 

to the anhydrous material pattern. With hydration, a slight decrease in intensity in the reflections at 

2θ~32° and 34° was noticed, due to the consumption of C3S. The presence of C-S-H is seen as a 

small hump at ~30°<2θ<32°, that is more obvious in samples hydrated at lime concentrations of 22 

and 27mmol/l (See enlarged area in Figure 5.35). Portlandite is generally not detected in the 

samples, except for a small trace associated to the incipient reflection at 2θ~18° for samples 

hydrated at [CaO]=20mmol/l in Figure 5.32 and Figure 5.33. 
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Figure 5.32. XRD patterns of the C3S hydrated samples at fixed lime concentrations of 12, 15, 17 

and 20mmol/l with the hydration stopped at the acceleration period (hydration time I in Table 4.3). 

The pattern of the anhydrous C3S is shown for comparison, as well as a reference for CH. 

 

Figure 5.33. XRD patterns of the C3S hydrated samples at fixed lime concentrations of 12, 15, 17 

and 20mmol/l with the hydration stopped at the deceleration period (hydration time II in Table 4.3). 

The pattern of the anhydrous C3S is shown for comparison, as well as a reference for CH. 
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Figure 5.34. XRD patterns of the C3S hydrated samples at fixed lime concentrations of 22, 25 and 

27 mmol/l with the hydration stopped at the acceleration period (hydration time I in Table 4.3). The 

pattern of the anhydrous C3S is shown for comparison, as well as a reference for CH. 

 

Figure 5.35. XRD patterns of the C3S hydrated samples at fixed lime concentrations of 22, 25 and 

27mmol/l with the hydration stopped at the deceleration period (hydration time II in Table 4.3). The 

pattern of the anhydrous C3S is shown for comparison, as well as a reference for CH. The enlarged 

area in the figure shows the increase in intensity at ~2θ=32º due to the formation of C-S-H in the 

pattern for [CaO]=27mmol/l compared to the pattern of anhydrous C3S. 
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The 
29

Si NMR spectra of the C3S hydrated samples are shown in Figure 5.36 and Figure 

5.37. The spectra show that most of the intensity originated from unreacted C3S (Q
0
 from -67 to -76 

ppm), but intensity coming from C-S-H Q
1
 (~ -79 ppm) and Q

2
 (~ -85 ppm) connectivities is also 

visible. The intensity of these latter peaks is stronger with hydration time, since more C-S-H is 

formed for longer hydration periods. For longer hydration times, Q
1
 groups dominate the structure 

of C-S-H.  The deconvolution of the spectra was used to quantify the species and calculate the 

MCL. The results of the quantification are shown in Table 5.11 and Table 5.12. 

 

Figure 5.36. 
29

Si NMR spectra of the C3S hydrated samples that belong to the short series 

(Hydration time I). The fixed lime concentration in solution is indicated over each spectrum. 

 

Figure 5.37. 
29

Si NMR spectra of the C3S hydrated samples that belong to the long series 

(Hydration time II). The fixed lime concentration in solution is indicated over each spectrum. 
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Table 5.11. Percentages of the silicate species, MCL and DR (degree of reaction) for the C-S-H 

samples fabricated via the controlled hydration of C3S in the short series (Hydration time I). The 

results have been calculated from the deconvolution of the NMR spectra shown in Figure 5.36. 

[CaO] mmol/l Q
0  

± 2.0  Q
1  

± 2.0 Q
2  

± 2.0 MCL DR±2.8  

12 93.2 % 2.6 % 4.2 % 5.2 ± 3.1 6.8 % 

15 90.6 % 4.8 % 4.6 % 3.9 ± 1.4 9.4 % 

17 90.5 % 3.2 % 2.3 % 3.5 ± 2.3 5.5 % 

20 89.5 % 7.2 % 3.3 % 2.9 ± 1.4 10.5 % 

22 94.7 % 1.8 % 3.5 % 6.0 ± 5.3 5.3 % 

25 93.8 % 2.4 % 3.8 % 5.2 ± 3.3 6.2 % 

27 83.1 % 12.3 % 4.5 % 2.7 ± 0.9 16.9 % 

 

Table 5.12. Percentages of the silicate species, MCL and DR, for the C-S-H samples fabricated via 

the controlled hydration of C3S in the long series (Hydration time II). The results have been 

calculated from the deconvolution of the NMR spectra shown in Figure 5.37. 

[CaO] mmol/l Q
0  

± 2.0 Q
1  

± 2.0 Q
2  

± 2.0 MCL DR±2.8 

12 87.0 % 5.8 % 7.2 % 4.5 ± 1.2 13.0 % 

15 74.3 % 18.2 % 7.5 % 2.8 ± 0.6 25.7 % 

17 71.7 % 20.1 % 8.2 % 2.8 ± 0.5 28.3 % 

20 67.6 % 27.2 % 5.2 % 2.4 ± 0.8 32.4 % 

22 67.8 % 24.7 % 7.5 % 2.6 ± 0.6 32.2 % 

25 68.2 % 22.5 % 9.3 % 2.8 ± 0.5 31.8 % 

27 63.0 % 30.8 % 6.2 % 2.4 ± 0.7 37.0 % 

 

The MCL calculated in Table 5.11 does not follow any trend. Although dimeric chains are 

expected at the first stages of C3S hydration, most of the samples at short hydration times show 

higher MCL. This can be associated to errors in the quantification of the spectra, since the signal of 

C-S-H is very low. The samples hydrated for longer periods of time show dimeric silicate chains, 

according to the results shown in Table 5.12, except the sample hydrated at [CaO]=12mmol/l, that 

shows a higher MCL. This agrees with the expected silicate structure at low degrees of reaction and 

hydration times below 24h [15-17]. The fact that the sample hydrated at [CaO]=12mmol/l shows a 

much lower degree of reaction may have affected the quantification of the spectra. Since the 

kinetics of the reaction depends on the lime concentration in solution, the degree of reaction varies 

from sample to sample, given also the different hydration times for all of them. As the aim of these 

experiments was not comparing similar hydration times, nor degrees of reaction, but to compare the 

morphology of hydrated samples at two different stages of the hydration curve, the fact that the 

degrees of reaction and hydration times differ is not relevant. All the 
29

Si NMR spectra and the 

deconvolutions, showing the simulated spectra and individual lines are shown in Figure 5.38 and 

Figure 5.39. Seven frequencies were used to deconvolute the signal of C3S and two frequencies 
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were used for each of the C-S-H connectivities. Structural information is derived from the total 

integral of Q
0
, Q

1
 and Q

2
, but not from the individual frequencies used in the deconvolutions. 

  

  

  

  
Figure 5.38. 

29
Si NMR experimental spectra (black), simulated spectra (blue), and individual 

frequencies (green), of the C3S samples hydrated for hydration times I and II at fixed lime 

concentrations of 12, 15, 17 and 20mmol/l.  
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Figure 5.39.

 29
Si NMR experimental spectra (black), simulated spectra (blue), and individual 

frequencies (green), of the C3S samples hydrated for hydration times I and II at fixed lime 

concentrations of  22, 25 and 27mmol/l. 

 

The TEM micrographs of the samples are shown in Figure 5.40, Figure 5.41 and Figure 

5.42. C-S-H can be seen on the surface of the C3S particles. The darker areas correspond to a 

superposition of the C-S-H layer on the C3S grain. At lime concentration of 12 and 15mmol/l 

(Figure 5.40 and Figure 5.41) C-S-H presents a foil-like morphology that resembles the morphology 

found in blends of Portland cement and glass ground granulated blast furnace slag or neat slag 

pastes (See Fig. 16-17 in ref. [1]).  
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At [CaO]=17mmol/l and 20mmol/l (Figure 5.41) the morphology of C-S-H is also foil-

like; however, the product appears denser. At [CaO]=22mmol/l (Figure 5.42), the growth of C-S-H 

is more directional and the morphology is a mixture of fibrils and foils. At [CaO]=25mmol/l (Figure 

5.42) C-S-H is completely fibrillar and denser than for lower [CaO]. At 27mmol/l (Figure 5.42) 

some fibrils of C-S-H can be clearly seen sticking out on the surface of the C3S grain. The 

micrographs clearly show that the hydration time does not affect the morphology for a given [CaO]. 

The morphology of the product that develops at an early stage of the hydration curve, in the 

acceleration period, is the same than the morphology that develops at a later stage of the hydration 

curve for a fixed [CaO]. This suggests the morphology of C-S-H is determined by the [CaO] in 

solution and does not depend on growth kinetics. Local variations of the lime concentration while 

pastes hydrate can explain the development of different morphologies in blends with supplementary 

cementitious materials. Often C-S-H presents different morphologies when growing outside the 

supplementary particles or from them [65]. Foil-like C-S-H can grow from fully reacted PFA 

particles (See Fig.13 in ref. [65]), which are SiO2 rich, and in turn contain a small percentage of 

CaO, while fibrillar C-S-H develops in other regions of OPC-PFA pastes that may have been 

subjected to chemical environments richer in Ca
2+

 (See Fig. 11-12 in ref. [65]). Interestingly this 

can be reversed in presence of alkalis, finding fibrillar product inside the reacted particles and foil-

like product outside (See Fig.15 in ref.[65]). 

 

 
 

 

Figure 5.40. TEM micrographs of C3S samples hydrated at [CaO]=12mmol/l for 170 min (left) and 

240 min (right), showing foil-like C-S-H. 
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Figure 5.41. TEM micrographs of C3S samples hydrated at [CaO]=15mmol/l for 260 min and 1161 

min (upper left and right respectively), at [CaO]=17mmol/l hydrated for 255 min and 1011 min 

(middle left and right respectively), and [CaO]=20mmol/l hydrated for 375 min and 1398 min 

(lower left and right respectively) showing foil-like C-S-H.  
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Figure 5.42. TEM micrographs of C3S samples hydrated at [CaO]=22mmol/l for 401 min and 1048 

min (upper left and right respectively), showing a mixture of foil-like and fibrillar C-S-H, at [CaO]= 

25mmol/l for 492 min and 835 min (middle left and right respectively) and [CaO]=27mmol/l for 

600 min and 840 min (lower left and right respectively), showing fibrillar C-S-H. 

[CaO]=22mmol/l (Hydration time I) 

 

 

 

 

[CaO]=22mmol/l (Hydration time II) 

 

 

 

 

[CaO]=25mmol/l (Hydration time I) 

 

 

 

 

[CaO]=25mmol/l (Hydration time II) 

 

 

 

 

[CaO]=27mmol/l (Hydration time I) 

 

 

 

 

[CaO]=27mmol/l (Hydration time II) 

 

 

 

 



 117 

The Ca/Si of the samples hydrated until the deceleration period (Hydration time II) was 

obtained by TEM-EDX analyses. The results are summarised in Table 5.13 and the histograms of 

the data are shown in Figure 5.47 and Figure 5.48. The histograms show that the samples are not as 

homogeneous in composition as the samples in the previous sections. As expected, the Ca/Si  

increased with the lime concentration in solution, since more Ca
2+

 was available to react when the 

lime concentration was higher. However; the Ca/Si values were unusually high. Even though the 

EDX points were carefully chosen in areas where the diffraction patterns were free from diffraction 

spots, the obtained high values suggest certain degree of admixture with C3S. Moreover the values 

are higher than the reported ones for similar lime concentrations in ref. [49, 94]. The experimental 

values of the Ca/Si given by TEM-EDX were used as an input in Eq. 4.5 to calculate the degree of 

reaction for samples hydrated at Hydration times II. The obtained degrees of reaction are much 

higher than those obtained by NMR (See Figure 5.43 and Table 5.14). Using Ca/Si expected in 

equilibrium (Ca/Si ** in Table 5.14) according to Haas thermodynamic model [93] in Figure 2.23, 

the obtained degrees of reaction are closer to the ones calculated from the NMR data. This indicates 

the real Ca/Si of C-S-H in these samples is lower than the experimental mean value given by TEM-

EDX, and confirms the admixture.  

Table 5.13. Summary of the calculated Ca/Si (with the standard deviations) from TEM-EDX for the 

C-S-H present in the C3S samples hydrated at fixed lime concentrations (left column) in the long 

series (Hydration time II). The number of EDX point analyses used to calculate the average Ca/Si is 

indicated in the right column.  

[CaO] (mmol/l) Ca/Si  # EDX analyses 

12 1.69 ± 0.16 20 

15 1.99 ± 0.08 33 

17 2.09 ± 0.18 25 

20 2.21 ± 0.10 21 

22 2.25 ± 0.05 20 

25 2.28 ± 0.13 24 

27 2.35 ± 0.08 22 
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Figure 5.43. Degree of hydration (%) vs. hydration time for the C-S-H samples fabricated via the 

controlled hydration of C3S at fixed lime concentration up to the deceleration period (Hydration 

times II in Table 4.3). The degree of hydration was calculated using Eq. 4.5 taking the experimental 

Ca/Si ratios from TEM-EDX in Table 5.13 (Left) and expected Ca/Si ratios at equilibrium in Table 

5.14 (Right). 

Table 5.14. Degree of reaction of the C-S-H samples synthesized by the controlled hydration of C3S 

at fixed lime concentrations indicated in the left column given by the results in the left graph of 

Figure 5.43, marked with * and the right graph in Figure 5.43, marked with **. The degree of 

reaction given by 
29

Si NMR is also listed in the last column for comparison. 

[CaO] mmol/l Ca/Si * DR * Ca/Si ** DR ** DR NMR 

12 169 21.5 1.31 16.6 13.0 

15 1.99 50.1 1.37 31.1 25.7 

17 2.09 51.4 1.41 29.4 28.3 

20 2.21 71.0 1.45 36.2 32.4 

22 2.25 61.4 1.58 32.5 32.2 

25 2.28 73.7 1.61 38.3 31.8 

27 2.35 90.0 1.63 42.8 37.0 

 

The surface of some of the samples was also studied with SEM. The hollow features 

created by crumpled foil-like C-S-H in the sample hydrated at [CaO]=12mmol/l for 240 min 

(Hydration time II) are visible in Figure 5.44. The surface of the C3S grain appears partly covered 

by C-S-H, which grows in a very disordered manner creating a sponge-like open surface. The 

surface of the samples hydrated at [CaO]=27mmol/l for 600 min and 840 min is shown in Figure 

5.45. C-S-H appears very different in this case, showing a more directional growth, forming sticky 

fibrillar elements pointing out of the C3S grain. The length of these segments increases with 

hydration time. Several thin platelets of portlandite are also seen. Although the control hydration of 

C3S should dissolve portlandite, it is possible that some crystals were formed, since the system was 

in a metastable state. A comparison of both types of structures (foils and fibrils) seen with TEM and 

SEM, is shown in Figure 5.46, which illustrates the change in C-S-H morphology from foils to 

fibrils while increasing the lime concentration in solution (increasing Ca/Si) during C3S hydration. 
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Figure 5.44. SEM micrographs of the sample hydrated at [CaO]=12mmol/l for 240 min (Hydration 

time II). The surface of the samples appears to be crumpled foil-like presenting hollow features 

(Images taken by Emmanuel Boehm-Courjault at EPFL). 

 

  

  
Figure 5.45. SEM micrographs of the samples hydrated at [CaO]=27mmol/l for 600 min (Upper 

micrographs) and 840 min (lower micrographs), showing fibrillar C-S-H. The development of the 

fibrils with hydration time is appreciated, since the lower micrographs show longer fibrils (Images 

taken by Emmanuelle Boehm-Courjault at EPFL). 
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Figure 5.46. SEM and TEM micrographs of the C3S samples hydrated at [CaO]=12mmol/l for 240 

min (Hydration time II) showing foil-like C-S-H (upper images) and at [CaO]=27mmol/l for 600 

min (Hydration time II) showing fibrillar C-S-H (lower images). 

 

  

Figure 5.47. Histograms of the Ca/Si obtained by TEM-EDX for the samples hydrated at [CaO]=12 

and 15mmol/l at Hydration times II. 
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Figure 5.48. Histograms of the Ca/Si obtained with TEM-EDX of the samples hydrated at [CaO]= 

17, 20, 22, 25 and 27 mmol/l for Hydration times II. 
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Richardson and Groves’ model was applied for charge balance calculations. The height of 

the histograms for Ca/Si (A bar limited by the minimum and maximum values for the obtained 

experimental Ca/Si) is plotted versus the reciprocal mean chain length for each sample in Figure 

5.49. The trends for the tobermorite and jennite structural units with maximum, intermediate and 

minimum degree of protonation (w/n=2, 1, 0) were also plotted. The values of Ca/Si given by Haas 

model [93] were used to get the chemical structural formulae. As discussed before, these values are 

closer to the real Ca/Si of the samples than those given by TEM-EDX. The data predicted 

thermodynamically for the samples hydrated at [CaO] < 22mmol/l are very close to the tobermorite 

trend line with minimum degree of protonation, so that these samples are mainly tobermorite-like. 

The data for the samples hydrated at [CaO] > 20mmol/l are placed between the tobermorite and 

jennite trend lines. This implies that a certain amount of Ca-OH groups is needed in the structure. 

 

Figure 5.49. Ca/Si (obtained by TEM-EDX) vs. reciprocal mean chain length (obtained by NMR) 

of the C-S-H series fabricated via the controlled hydration of C3S at Hydration times II. The length 

of the bars is limited by the minimum and maximum Ca/Si and the mean value is marked with a 

cross. The values indicated with squares are those given by Haas model [93] (Ca/Si ** in Table 

5.14). The structural units for tobermorite and jennite with minimum (w=0), intermediate (w=1) and 

maximum (w=2) degree of protonation are also marked. The pentamer is marked over the top axis. 

The dimer is out of the scale of the plot and would be situated at reciprocal mean chain length 0.5. 
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Both T/J and T/CH view points are used to get the structural chemical formulae in this case. When 

Si is partly substituted by Al in C-S-H, an Al/Ca vs. Si/Ca plot (See Figure 2.6) can serve to identify 

which view point is more suitable. In this case Al is not present, so that both views could explain 

the data. Since the hydration of C3S at controlled lime concentration should generate portlandite 

free samples and XRD showed no crystalline CH or an insignificant amount, the T/J view point 

seems more suitable in this case. However, microcrystalline CH was found in an area of the sample 

hydrated at [CaO]=25mmol/l ( Figure 5.50 c)). The presence of microcrystalline CH throughout 

extensive areas in the samples is not evident judging by the TEM micrographs. Microcrystalline CH 

creates a characteristic contrast in TEM images (See ref. [11] and Fig. 13 in ref.[1]) that is not 

evident in these samples.  Although due to the different reasons discussed, the T/J view point seems 

more adequate, the T/CH is also used as an equally valid explanation for the structures. 

   

Figure 5.50. Selected area electron diffraction patterns of the C-S-H samples hydrated at: a) 

[CaO]=15mmol/l, c) and d) [CaO]=25mmol/l. The halos in the patterns shown in a) and b) are 

consistent with C-S-H, while the reflections seen in pattern c) are characteristic of microcrystalline 

CH. 
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The calculated values for n, y, wmax (maximum number of silanol groups), wmin (minimum 

number of silanol groups) and w/nmax (maximum degree of protonation) and w/nmin (minimum 

degree of protonation) are shown in Table 5.15. 

Table 5.15. Calculated values for the parameters of the T/J view point of Richardson and Groves’ 

model for the C-S-H samples fabricated via the controlled hydration of C3S at Hydration times II.  

[CaO] (mmol/l) n y wmin wmax w/nmin w/nmax 

12 1.83 2.42 0 3.66 0 2 

15 1.27 2.09 0 2.54 0 2 

17 1.27 2.24 0 2.54 0 2 

20 1.13 2.13 0 2.26 0 2 

22 1.20 2.87 0 2.40 0 2 

25 1.28 3.15 0 2.55 0 2 

27 1.13 2.91 0 2.26 0 2 

 

The minimum degree of protonation was chosen, since it was the most sensible value 

according to the position of the predicted Ca/Si with respect to the tobermorite trends in Figure 

5.49. The resulting structural chemical formulae are: 

[CaO]=12mmol/l  [Ca 3.66 Si 4.49 O 14.48] · (OH) 0.78 · Ca 2.22· mH2O  

[CaO]=15mmol/l  [Ca 2.54 Si 2.82 O 9.45] · (OH) 0.11 · Ca 1.33· mH2O  

[CaO]=17mmol/l  [Ca 2.54 Si 2.81 O 9.43] · (OH) 0.30 · Ca 1.42· mH2O  

[CaO]=20mmol/l  [Ca 2.26 Si 2.38 O 8.15] · (OH) 0.14 · Ca 1.20· mH2O  

[CaO]=22mmol/l  [Ca 2.40 Si 2.61 O 8.82] · (OH) 1.05 · Ca 1.73· mH2O  

[CaO]=25mmol/l  [Ca 2.55 Si 2.83 O 9.48] · (OH) 1.47 · Ca 2.01· mH2O  

[CaO]=27mmol/l  [Ca 2.27 Si 2.40 O 8.20] · (OH) 1.03 · Ca 1.65· mH2O  

 

All the samples can be explained as a combination of T2, T5, J2 and J5 structural units. 

The structural chemical formulae for samples hydrated at [CaO]=15, 17 and 20mmol/l contain a 

small amount of OH groups and are mainly tobermorite-like. The amount of OH groups increases in 

the case of the sample hydrated at [CaO]=12mmol/l since the data point for this sample is situated 

further from the tobermorite trend line with minimum degree of protonation. The MCL of this 
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sample was higher than those of the rest of the samples (See Table 5.12). As discussed previously, 

the lower degree of reaction of this sample with respect to the rest, may have affected the 

quantification of the spectra, since the signal coming from connectivities in C-S-H was lower in this 

case. If the real MCL was lower, the data point would be situated closer to the tobermorite trend 

line since it would be shifted towards the left in Figure 5.49. 

The structural chemical formulae of samples hydrated at [CaO]>20mmol/l present a 

higher content of OH groups. The inclusion of more OH groups coincides with the fact that the 

morphology of the samples changes from foil-like to fibrillar. 

Alternatively, the T/CH formulation is: 

 OmHOHzCaOSiHCa nnXnX 22)29()13()26( )( ---
  

        Where 2/))2((2/)6( -- ynwzwnX
 
  

X and Z were calculated using the values of n, y and wmin in Table 5.15. The structural 

chemical formulae of the samples according to the T/CH view point are: 

[CaO]=12mmol/l  [Ca 5.49 Si 4.49 O 14.48] · 0.39 Ca(OH)2 · mH2O  

[CaO]=15mmol/l  [Ca 3.82 Si 2.82 O 9.45] · 0.06 Ca(OH)2  · mH2O  

[CaO]=17mmol/l  [Ca 3.81 Si 2.81 O 9.43] · 0.15 Ca(OH)2  · mH2O  

[CaO]=20mmol/l  [Ca 3.38 Si 2.38 O 8.15] · 0.07 Ca(OH)2 · mH2O  

[CaO]=22mmol/l  [Ca 3.61 Si 2.61 O 8.82] · 0.52 Ca(OH)2 · mH2O  

[CaO]=25mmol/l  [Ca 3.83 Si 2.83 O 9.48] · 0.74 Ca(OH)2 · mH2O  

[CaO]=27mmol/l  [Ca 3.40 Si 2.40 O 8.20] · 0.52 Ca(OH)2 · mH2O   
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5.6 Hydration of C3S at constant lime concentration: Ultrasound C-S-H series 

The XRD patterns of the samples fabricated via C3S hydration at high lime concentrations 

with the aid of an ultrasound gun are shown in Figure 5.51 together with a reference pattern of CH 

[133]. The patterns show that the degree of reaction is higher for these samples than for all the 

series from the previous section, since the intensity of the peaks that correspond to anhydrous C3S is 

much less in this case than in Figure 5.32, Figure 5.33, Figure 5.34 and Figure 5.35. The features 

associated with C-S-H are also more evident in this case. The two peaks at 2θ~30° present more 

similarities with the patterns of synthetic C-S-H samples in Figure 5.9 than with the patterns in the 

previous section. There is an incipient hump in the patterns at 2θ~45° that resembles the hump in 

the synthetic phases at 2θ~44°. In the samples hydrated at [CaO]=27 and 28mmol/l a trace of 

portlandite is found, which corresponds to the incipient reflection at 2θ~18°. 

The 
29

Si NMR spectra of the samples are shown in Figure 5.52. The intensity from the Q
1
 

(~ -79ppm) and Q
2 

(~ -85ppm) silicate groups that are part of the C-S-H structure is much higher in 

these spectra than for the samples of the previous series, indicating a higher degree of reaction. The 

sample hydrated at [CaO]=27mmol/l shows less intensity for the C-S-H connectivities compared to 

the intensity coming from C3S, than the other two samples, which indicates a lower degree of 

reaction. This couples very well with the XRD patterns in Figure 5.51, since for the samples 

hydrated at lime concentrations of 28 and 29mmol/l the main reflections originating from C3S at 

2θ~32° and 34° have less intensity that the main reflections associated with C-S-H at 2θ~30°, but it 

is the opposite for the sample hydrated at [CaO]=27mmol/l.  

 

Figure 5.51. XRD patterns of C-S-H samples fabricated by the controlled hydration of C3S at lime 

concentrations of 27, 28 and 29mmol/l with the use of an ultrasound gun. The pattern of anhydrous 

C3S and a reference for portlandite are also included. 
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Figure 5.52. 
29

Si MAS NMR spectra of the C-S-H samples synthesized via the controlled hydration 

of C3S with the use of an ultrasound gun at fixed lime concentrations of 27, 28 and 29mmol/l. 

The degree of reaction, together with the MCL and the percentages of the silicate 

connectivities, calculated from the deconvolutions shown in Figure 5.53 are summarised in Table 

5.16. Seven frequencies were used to deconvolute the signal from C3S and two frequencies for each 

of the silicate connectivities in C-S-H. Structural information was derived from the total integral of 

Q
0
, Q

1
 and Q

2
, rather than from individual frequencies used for deconvolutions. The degrees of 

reaction are higher for the samples hydrated at lime concentrations of 28 and 29mmol/l. The 

percentage of unreacted C3S (Q
0
) is lower in these two samples than for the sample hydrated at 

[CaO]=27mmol/l. The MCL is increasing with the degree of reaction. 

Table 5.16. Percentages of the silicate species, mean silicate chain length and degree of reaction of 

the C-S-H samples prepared by controlled hydration of C3S with the use of an ultrasound gun. The 

results are obtained from the deconvolutions of the 
29

Si NMR spectra shown in Figure 5.53.  

[CaO] mmol/l Q
0  

± 2.0 Q
1  

± 2.0 Q
2  

± 2.0 MCL DR ± 2.8 

27 34.7 % 49.9 % 15.4 % 2.6 ± 0.3 65.3 % 

28 23.8 % 46.9 % 29.3 % 3.3 ± 0.2 76.2 % 

29 17.3 % 44.7 % 38.0 % 3.7 ± 0.2 82.7 % 

 

The morphology of the samples is shown in Figure 5.54 and appears to be mainly foil-like 

and similar to the morphology of samples synthesized via lime-silica reactions (mechanochemical 

and CaO-SiO2 series), although it appears denser. Some fibrils can also be appreciated in some 

areas of the samples. These are clearly seen in the enlarged area of the sample hydrated at lime 

concentration of 27mmol/l at the upper right corner in Figure 5.54. Some fibrils can also be 

appreciated at the surface in the particle at the bottom right corner of the image, which corresponds 
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to the sample hydrated at [CaO]=29mmol/l. The surface of the samples was investigated with SEM 

and some micrographs of the sample hydrated at [CaO]=27mmol/l are shown in Figure 5.55. The 

surface is much more flattened compared to the samples in the previous section in Figure 5.44 and 

Figure 5.45. A hexagonal crystal of portlandite can be seen at the lower left corner on the left image 

in Figure 5.55. The use of the ultrasound gun is clearly the cause of the surface flattening. Some 

spiky features can be seen on the right image, which shows a similar morphology to the sample 

shown in the upper part of Figure 5.45, which was hydrated at the same lime concentration. 

However, the spiky features appear more rounded as a consequence of the ultrasound gun. Two of 

these samples showed a range of compositions, counting on average Ca/Si and standard deviations 

(Table 5.17), that falls in the region of Ca/Si in which both fibrils and foils are expected, according 

to the range found for the kinetics series (mixture of foils and fibrils found at Ca/Si~1.58). The use 

of the ultrasound gun may have disrupted the growth of the fibrils that were expected at these high 

lime concentrations, given the fact that fibrils are not clearly seen in all the samples. 

  

 
 

Figure 5.53. Deconvolutions of the 
29

Si MAS NMR spectra of the C-S-H samples fabricated via the 

controlled hydration of C3S with an ultrasound gun at fixed lime concentrations of 27mmol/l (upper 

left), 28mmol/l (upper right) and 29mmol/l (low). The individual frequencies are shown in green, 

the simulated spectra in blue and the experimental spectra in black. 
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Figure 5.54. TEM micrographs of the C-S-H samples synthesized via the controlled hydration of 

C3S with the use of an ultrasound gun at fixed lime concentrations of 27mmol/l (Upper images with 

a SAED pattern), 28mmol/l (middle images) and 29mmol/l (lower images). The enlargement in the 

upper right corner shows a fibrillar area of the sample hydrated at 27mmol/l.  
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Figure 5.55. SEM micrographs of the C-S-H sample fabricated via the controlled hydration of C3S 

with an ultrasound gun at lime concentration of 27mmol/l. The left image shows a considerably 

flattened surface, however, an area with sticky features is shown on the right image (Micrographs 

taken by Emmanuelle Boehm-Courjault at EPFL). 

The mean Ca/Si values obtained by TEM-EDX are shown in Table 5.17. The Ca/Si ratio 

is ~1.5-1.6, as expected for high lime in solution. It increases with the lime concentration in solution 

as expected. The histograms for the TEM-EDX data are shown in Figure 5.56. The dispersion of the 

Ca/Si data in these samples is high, presenting intervals with no data points. In the case of 

[CaO]=28mmol/l the distribution of Ca/Si seems to be bimodal, but this is not as clear in the case of 

the other two samples. 

Table 5.17. Mean Ca/Si values (with the standard deviations) of C-S-H fabricated via the controlled 

hydration of C3S with the use of an ultrasound gun. 

[CaO] (mmol/l) Ca/Si (TEM-EDX ) # EDX analyses 

27 1.45 ± 0.17  37  

28 1.55 ± 0.32 26 

29 1.59 ± 0.31 28 
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Figure 5.56. Histograms of the Ca/Si obtained with TEM-EDX of the samples hydrated at [CaO]= 

27, 28 and 29mmol/l with the use of an ultrasound gun. 

 

Richardson and Groves’ model was applied for charge balance calculations. The height of 

the histograms for Ca/Si (A bar limited by the minimum and maximum values for the obtained 

experimental Ca/Si) is plotted versus the reciprocal mean chain length for each sample in Figure 

5.57. The trends for the tobermorite and jennite structural units with maximum, intermediate and 

minimum degree of protonation (w/n=2, 1, 0) are also plotted. The mean Ca/Si value is indicated 

with a cross and it is the value used to derive the structural chemical formulae. These mean values 

are situated between the tobermorite-like and jennite-like region of the plot. This implies Ca-OH 

groups are needed in the structures. 
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Figure 5.57. Ca/Si (obtained by TEM-EDX) vs. reciprocal mean chain length (obtained by NMR) 

of the C-S-H series fabricated via the controlled hydration of C3S with the use of an ultrasound gun. 

The length of the bars is limited by the minimum and maximum Ca/Si and the mean value is 

marked with a cross. The structural units for tobermorite and jennite with minimum (w=0), 

intermediate (w=1) and maximum (w=2) degree of protonation are also marked. The vertical dashed 

lines represent the (3n-1) structural units: dimer (2), pentamer (5), octamer (8)… 

 

Both the T/J and T/CH view points can be used to get the structural chemical formulae, 

since without Al substitution, they can equally explain the data.  As in the case of the kinetics 

series, the T/J view point should be more suitable since the controlled hydration of C3S should 

avoid the precipitation of portlandite. An electron diffraction pattern of a selected area of the sample 

hydrated at [CaO]=27mmol/l shows the typical halo associated to C-S-H (Figure 5.54). Although 

microcrystalline CH was not found by inspection of other areas of the sample, this does not exclude 

its presence. Both view points of the model are thus used as equally valid explanations for the 

structure of the samples. 
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In the T/J view of the model (3n-1)=MCL and Ca/Si=(4n+ny)/(6n-2), so that 

n=(MCL+1)/3 and y= [(Ca/Si)(6n-2)-4n]/n. The number of silanol groups w depends on the value 

of y according to: 

)6(064

2042

2)2(20

ynwy

nwy

nwyny

-



-

 

The calculated values for n, y, wmax (maximum number of silanol groups), wmin (minimum 

number of silanol groups) and w/nmax (maximum degree of protonation) and w/nmin (minimum 

degree of protonation) are shown in Table 5.18. 

Table 5.18. Calculated values for the parameters of the T/J view point of Richardson and Groves’ 

model for the C-S-H samples fabricated via the controlled hydration of C3S with the use of an 

ultrasound gun.  

[CaO] (mmol/l) n y wmin wmax w/nmin w/nmax 

27 1.21 2.31 0 2.41 0 2 

28 1.42 3.13 0 2.83 0 2 

29 1.57 3.49 0 3.13 0 2 

 

The minimum degree of protonation was chosen, since it was the most sensible value 

according to the position of the mean Ca/Si with respect to the tobermorite trends in Figure 5.57. 

The resulting structural chemical formulae are: 

[CaO]=27mmol/l  [Ca 2.41 Si 2.62 O 8.86] · (OH) 0.37 · Ca 1.39· mH2O  

[CaO]=28mmol/l  [Ca 2.83 Si 3.25 O 10.75] · (OH) 1.59 · Ca 2.21· mH2O  

[CaO]=29mmol/l  [Ca 3.13 Si 3.70 O 12.11] · (OH) 2.34 · Ca 2.74· mH2O  

 

The samples can be explained by a combination of T2, T5, J2 and J5 structural units. The 

amount of necessary OH groups in the structures increases with lime concentration in solution. 
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Alternatively, the T/CH formulation is: 

 OmHOHzCaOSiHCa nnXnX 22)29()13()26( )( ---
  

        Where 2/))2((2/)6( -- ynwzwnX
 
  

X and Z were calculated using the values of n, y and wmin in Table 5.18. The structural 

chemical formulae of the samples according to the T/CH view point are: 

[CaO]=27mmol/l  [Ca 3.62 Si 2.62 O 8.86] · 0.19 Ca(OH)2 · mH2O  

[CaO]=28mmol/l  [Ca 4.25 Si 3.25 O 10.75] · 0.80 Ca(OH)2  · mH2O  

[CaO]=29mmol/l  [Ca 4.70 Si 3.70 O 12.11] · 1.17 Ca(OH)2  · mH2O  
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5.7 Hydration of C3S at constant lime concentration: Xseed C-S-H series 

The XRD patterns of the samples fabricated via C3S hydration at high lime concentrations 

with the addition of Xseed are shown in Figure 5.58 together with a reference pattern of CH [133]. 

These patterns are very similar to the ones in Figure 5.51, showing also a higher degree of reaction 

than samples hydrated via the controlled hydration of C3S without the addition of any accelerators. 

No traces of portlandite are detected in these samples.  

 

Figure 5.58. XRD patterns of C-S-H samples fabricated by the controlled hydration of C3S at lime 

concentrations of 27, 28 and 29mmol/l with the use of C-S-H platelets (X-seed). The pattern of 

anhydrous C3S and a reference for portlandite are also included. 

The 
29

Si NMR spectra of the samples are shown in Figure 5.59. These spectra show that 

the degree of reaction of the samples is also much higher than for the samples in section 5.5, since 

the intensity originating from unreacted C3S is much less than the intensity coming from the C-S-H 

connectivities. The samples present a typical spectrum of C-S-H with high Ca/Si, with much more 

intensity originating from Q
1
 groups than from Q

2
 groups. The quantification of the different silicate 

connectivities, obtained through the deconvolutions of the spectra shown in Figure 5.60, the mean 

silicate chain length and the degree of reaction are shown in Table 5.19. Seven frequencies were 

used to deconvolute the signal of C3S and two frequencies to deconvolute each of the Q
1
 and Q

2
 

contributions from C-S-H. In the case of [CaO]=27mmol/l, the frequency used at -85ppm was split 

into two frequencies to adjust the rounded appearance of the Q
2
 peak. Structural information was 

derived from the total integral of Q
0
, Q

1
 and Q

2
, rather than from individual frequencies used for 

deconvolutions.  The MCL increases with the degree of reaction, as it was the case for the samples 

fabricated with the ultrasound gun. 
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Figure 5.59. 
29

Si MAS NMR spectra of the C-S-H samples synthesized via the controlled hydration 

of C3S with the use of C-S-H platelets (Xseed) at fixed lime concentrations of 27, 28 and 29mmol/l. 

  

 
Figure 5.60. Deconvolutions of the 

29
Si MAS NMR spectra of the C-S-H samples fabricated via the 

controlled hydration of C3S with C-S-H platelets (Xseed) at fixed lime concentrations of 27mmol/l 

(upper left), 28mmol/l (upper right) and 29mmol/l (low). The individual frequencies are shown in 

green, the simulated spectra in blue and the experimental spectra in black. 
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Table 5.19. Percentage of the silicate connectivities calculated from the deconvolutions in Figure 

5.60, mean silicate chain length and the degree of reaction of the C-S-H samples synthesized via the 

controlled hydration of C3S with the use of Xseed. 

[CaO] mmol/l Q
0  

± 2.0 Q
1  

± 2.0 Q
2  

± 2.0 MCL DR ± 2.8 

27 29.0 % 58.8 % 12.2 % 2.4 ± 0.3 71.0 % 

28 19.4 % 58.8 % 21.8 % 2.7 ± 0.2 80.6 % 

29 22.6 % 61.6 % 15.8 % 2.5 ± 0.3 77.4 % 

 

The morphology of these samples is shown in the TEM and SEM micrographs in Figure 

5.61 and Figure 5.62. In the TEM images the samples appear as a mixture of foils and fibrils. As for 

the ultrasound samples, the composition of these samples (Table 5.20) also falls in the range of 

Ca/Si in which a mixture of foils and fibrils was present in the kinetics series. The image in the 

upper left corner ([CaO]=27mmol/l) in Figure 5.61 shows certain similarities with the fully 

hydrated C3S sample shown in the upper and lower images in Figure 5.4. The rest of the images in 

Figure 5.61 show a very fine fibrillar product mixed with foils, similar to the morphology found for 

the samples hydrated at [CaO]=22mmol/l in the kinetics series (Figure 5.42). Interestingly, the 

surface of the sample hydrated at [CaO]=27mmol/l, shown in the left image in Figure 5.62, has 

some similarities with the foil-like samples in Figure 5.44, but the structure is less opened and the 

growth is more directional. It should be noted that not only spiky features growing out from the 

surface give a fibrillar appearance on TEM images, but also surfaces like the one seen in the left 

image of Figure 5.62, which is defined by very packed foil-like features. However, at higher 

magnification the foil-like features seem to be not continuous presenting some holes. Some thin and 

round platelets are also observed. They could be portlandite crystals or platelets of the Xseed 

product. Since they are round (portlandite in normal conditions should be hexagonal [139]) they 

must be platelets of the Xseed product. Some areas, such as the one shown in the right image in 

Figure 5.62, are found to have some spiky features, such as the ones seen on the right image in 

Figure 5.55 from the sample hydrated also at [CaO]=27mmol/l with the use of the ultrasound gun. 

Since these samples with Xseed were fabricated without controlling the w/s ratio, this could have 

affected the morphology. As Richardson stated, it is possible that fibrils grow in systems where the 

availability of space is lower than when foils grow [1]. However, the results from the C-S-H 

samples of the kinetics series in section 5.5 point towards the fact that the space may not be 

relevant. Both morphologies were found in those systems synthesized in very diluted solutions 

(w/s=50). Fibrils grew in systems with a high availability of space compared to real systems with 

typical w/s=0.4.  
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Figure 5.61. TEM micrographs of the C-S-H samples synthesized via the controlled hydration of 

C3S with C-S-H platelets (Xseed) at fixed lime concentrations of 27mmol/l (Upper images with a 

SAED pattern), 28mmol/l (middle images) and 29mmol/l (lower images). The enlargements in the 

upper/lower right corners show a mixed foil-fibrillar area of the sample hydrated at 

[CaO]=27mmol/l and a fibrillar area of the sample hydrated at [CaO]=29mmol/l. 
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Figure 5.62. SEM micrographs of the C-S-H sample fabricated via the controlled hydration of C3S 

with Xseed at [CaO]=27mmol/l. The left image shows a flowery surface. Some sticky fibrillar 

elements are seen on the right image (Micrographs taken by Emmanuelle Boehm-Courjault at 

EPFL). 

The mean Ca/Si values of the samples are shown in Table 5.20. The Ca/Si increases with 

the lime concentration in solution. The mean Ca/Si values are higher than in the case of the use of 

the ultrasound gun. This agrees with the silicate structure of the samples shown by 
29

Si NMR, since 

the samples fabricated with the ultrasound gun showed more intensity coming from Q
2
 groups, and 

higher percentage of Q
2
 groups is associated with lower Ca/Si ratios. The histograms of the Ca/Si 

EDX data are shown in Figure 5.63. They show less dispersion than those from the samples 

fabricated with the ultrasound gun, although they also present occasional gaps. 

Table 5.20. Mean Ca/Si values (with standard deviations) of C-S-H fabricated via the controlled 

hydration of C3S with the use of Xseed.  

[CaO] (mmol/l) Ca/Si # EDX analyses 

27 1.53 ± 0.12 20 

28 1.62 ± 0.12 14 

29 1.62 ± 0.16 29 
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Figure 5.63. Histograms of the Ca/Si obtained with TEM-EDX of the samples hydrated at [CaO]= 

27, 28 and 29mmol/l with the use of an ultrasound gun. 

 

Richardson and Groves’ model was used for charge balance calculations. The height of 

the histograms for Ca/Si (A bar limited by the minimum and maximum values for the obtained 

experimental Ca/Si) is plotted versus the reciprocal mean chain length in Figure 5.64. The trends for 

the tobermorite and jennite structural units with maximum, intermediate and minimum degree of 

protonation (w/n=2, 1, 0) are also plotted. The mean Ca/Si value is indicated with a cross and it is 

used to derive the structural chemical formulae. These mean values are situated between the 

tobermorite-like and jennite-like region of the plot, as it was the case for the previous batch of 

samples. Thus Ca-OH groups are needed in the structures. 
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Figure 5.64. Ca/Si (obtained by TEM-EDX) vs. reciprocal mean chain length (obtained by NMR) 

of the C-S-H series fabricated via the controlled hydration of C3S with the use of Xseed. The length 

of the bars is limited by the minimum and maximum Ca/Si and the mean value is marked with a 

cross. The structural units for tobermorite and jennite with minimum (w=0), intermediate (w=1) and 

maximum (w=2) degree of protonation are also marked. The vertical dashed lines represent the (3n-

1) structural units: dimer (2), pentamer (5), octamer (8)… 

 

Both the T/J and T/CH view points can be used to get the structural chemical formulae, 

since for pure C-S-H without Al, they can equally explain the data.  As in the case of the ultrasound 

series, the T/J view point should be more suitable since the controlled hydration of C3S should 

avoid the precipitation of portlandite. An electron diffraction pattern of a selected area of the sample 

hydrated at [CaO]=27mmol/l shows the typical halo originated by C-S-H (Figure 5.61). Although 

microcrystalline CH was not found by inspection of other areas of the sample, this does not exclude 

its presence. Both view points of the model are thus used as equally valid explanations for the 

structure of the samples. 
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 In the T/J view of the model (3n-1)=MCL and Ca/Si=(4n+ny)/(6n-2), so that 

n=(MCL+1)/3 and y= [(Ca/Si)(6n-2)-4n]/n. The number of silanol groups w depends on the value 

of y according to: 

)6(064
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-



-

 

The calculated values for n, y, wmax (maximum number of silanol groups), wmin (minimum 

number of silanol groups) and w/nmax (maximum degree of protonation) and w/nmin (minimum 

degree of protonation) are shown in Table 5.21. 

Table 5.21. Calculated values for the parameters of the T/J view point of Richardson and Groves’ 

model for the C-S-H samples fabricated via the controlled hydration of C3S with the use of Xseed.  

[CaO] (mmol/l) n y wmin wmax w/nmin w/nmax 

27 1.14 2.48 0 2.28 0 2 

28 1.27 3.11 0 2.49 0 2 

29 1.17 2.97 0 2.34 0 2 

 

The minimum degree of protonation was chosen, since it was the most sensible value 

according to the position of the mean Ca/Si with respect to the tobermorite trends in Figure 5.64. 

The resulting structural chemical formulae are: 

[CaO]=27mmol/l  [Ca 2.28 Si 2.41 O 8.24] · (OH) 0.54 · Ca 1.41· mH2O  

[CaO]=28mmol/l  [Ca 2.49 Si 2.74 O 9.22] · (OH) 1.38 · Ca 1.94· mH2O  

[CaO]=29mmol/l  [Ca 2.34 Si 2.51 O 8.54] · (OH) 1.13 · Ca 1.74· mH2O  

 

The samples can be explained by a combination of T2, T5, J2 and J5 structural units.  
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Alternatively, the T/CH formulation is: 

 OmHOHzCaOSiHCa nnXnX 22)29()13()26( )( ---
  

        Where 2/))2((2/)6( -- ynwzwnX
 
  

X and Z were calculated using the values of n, y and wmin in Table 5.21. The structural 

chemical formulae of the samples according to the T/CH view point are: 

[CaO]=27mmol/l  [Ca 3.41 Si 2.41 O 8.24] · 0.27 Ca(OH)2 · mH2O  

[CaO]=28mmol/l  [Ca 3.74 Si 2.74 O 9.22] · 0.69 Ca(OH)2  · mH2O  

[CaO]=29mmol/l  [Ca 3.51 Si 2.51 O 8.54] · 0.57 Ca(OH)2  · mH2O  
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5.8 Comparison of morphology and chemical structure of C-S-H samples of the ultrasound 

and Xseed series  

The ratio Q
2
/Q

1
 vs. the degree of reaction for the samples fabricated via the controlled 

hydration of C3S with the use of an ultrasound gun and the Xseed is shown in Figure 5.65. As these 

samples have no Q
3
, their MCL is proportional to the ratio Q

2
/Q

1
, so this ratio gives an indication of 

the extent of the reaction in terms of the MCL of the C-S-H. For similar degrees of reaction 

calculated through NMR, the samples synthesized with the ultrasound gun have higher Q
2
/Q

1
 ratios. 

This indicates they show a higher apparent degree of reaction than the ones fabricated with the 

Xseed, since they are more polymerized. The higher percentage of Q
2
 silicate groups in the samples 

synthesized with the ultrasound gun can be due to a temperature effect. Even though the 

temperature was controlled with a water flow through the reaction vessel, the ultrasound pulses may 

have increased the temperature locally in the solution. The studies of the surface of the samples 

fabricated at [CaO]=27mmol/l by both synthesis routes showed that the sample fabricated with the 

ultrasound gun had a flattened surface, while the sample fabricated with the Xseed had a very 

flower-like surface with more edgy features. The silicate chains must be accommodated in space; 

therefore it is reasonable that more end-chain silicate groups are found in a structure with edgy 

features than in a flattened surface, where longer chains would be accommodated. This responds to 

the higher MCL and Q
2
 percentages found in the ultrasound samples. This could explain the 

differences in chemical structures that samples with similar Ca/Si can show and would mean there 

is a link between the chemical structure and the morphology of C-S-H. 

 

Figure 5.65. Graph showing the ratio of silicate connectivities  Q
2
/Q

1 
vs. the degree of reaction for 

the C-S-H samples synthesized via the controlled hydration of C3S with the use of an ultrasound 

gun (circles) and Xseed (squares). 
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5.9 Comparison of MCL vs. Ca/Si and Ca/Si vs. [CaO] with reported data 

The MCL of all the samples discussed previously is plotted against the experimental Ca/Si 

ratio obtained by TEM-EDX in Figure 5.66. For the kinetics series, only the predicted values 

(shown in Table 5.14) are plotted. The dotted line (Also shown as a dotted line in Figure 2.9) 

corresponds to Eq. 2.15, which was used as a constraint to develop Richardson’s C-(A)-S-H(I) 

model structures. The dashed lines are the tobermorite lines with minimum (right), intermediate 

(middle) and maximum (left) degree of protonation in Richardson and Groves’ model. The inset 

shows the same figure at a different scale to include data from samples with higher MCL. 

 

Figure 5.66. MCL vs. Ca/Si for all the C-S-H series of samples. Reported data is marked with black 

filled symbols and it is taken from ref. [39, 46, 93]. The dotted line represents the constraint for 

Richardson’s C-(A)-S-H(I) model structures [36] and the dashed lines are equivalent to the 

tobermorite lines with minimum, intermediate and maximum degree of protonation from  

Richardson and Groves’ model [1]. The inset shows the same plot with the y axis expanded to 

MCL=150. 
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The experimental data of MCL vs. Ca/Si ratio presented in this work are comparable to 

other reported data. The data for the mechanochemical samples are placed considerably close to the 

dotted line, suggesting the C-(A)-S-H(I) model structures by Richardson are a good representation 

for these samples. The data from all the samples fabricated by the controlled hydration of C3S 

(kinetics, ultrasound and Xseed series) are placed to the right of the dashed line, what indicates the 

presence of Ca-OH groups is needed in their structures. For the kinetics series, the predicted values 

place the data points close to the right dashed line in the case of the samples fabricated at 

[CaO]<22mmol/l (4 data points at lower Ca/Si). The point for the sample at lower Ca/Si, hydrated 

at [CaO]=12mmol/l, may be subjected to more errors in the quantification of the MCL, as discussed 

previously, and the real MCL could be lower. Considering the experimental errors in the MCL, 

marked with vertical bars, the real data points could be placed on or below the dashed line. This 

would mean there is no need for Ca-OH groups in the structure of these samples that are foil-like, 

so that the inclusion of Ca-OH groups would coincide with the change to fibrillar morphology. 

 Examining both the reported and the experimental data, it can be noticed that there is a 

dramatic decrease of the MCL up to Ca/Si~1, followed by a slow decrease up to Ca/Si~1.3, where 

the MCL remains constant to a value of ~3 upon increasing Ca/Si. The reason why no further 

change in MCL is possible from Ca/Si~1.3 is because a dimeric silicate structure has almost been 

reached at this point. Variations in the structure, when the Ca/Si increases, come from the removal 

of bridging tetrahedra and the addition of positive ions to balance the charge (Ca and protons or 

either one of them). Starting from infinite silicate chains, a removal of up to half of the bridging 

sites will have a slight effect on the Ca/Si ratio, but change the MCL considerably. If the fraction of 

bridging sites removed is between half and the unity, the change in the MCL will not be significant, 

while the Ca/Si ratio will vary more than with the loss of up to half the bridging sites. This is clear 

from the values in Table 5.22 where the Ca/Si and MCL have been calculated with Eq. 2.12 and Eq. 

2.14 for the case of minimum degree of protonation (i=0), intermediate degree of protonation (i=1) 

and maximum degree of protonation (i=2). 

Table 5.22. Fraction of vacant bridging tetrahedra fvBT, fraction of vacant tetrahedral sites v, and 

the corresponding MCL and Ca/Si ratios for minimum (i=0), intermediate (i=1) and maximum (i=2) 

degrees of protonation in a tobermorite-like chain. 

fvBT v MCL (Ca/Si)max (i=0) Ca/Si (i=1) (Ca/Si)min (i=2) 

1/5 1/15 14 1.07 0.89 0.71 

1/4 1/12 11 1.09 0.91 0.73 

1/3 1/9 8 1.13 0.94 0.75 

1/2 1/6 5 1.20 1.00 0.80 

1 1/3 2 1.50 1.25 1.00 
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The Ca/Si ratios of the samples fabricated via the controlled hydration of C3S are plotted 

against the lime concentration in solution in Figure 5.67. The points for the ultrasound and Xseed 

series are close to the trend marked by the experimental data reported by Haas [93].  The predicted 

Ca/Si values for the kinetics series, given by Haas’ thermodynamic model [93], must be a good 

approximation to the real values, since they are close to other experimental reported values by 

Nonat and Lecoq [49], Haas [93] and Taylor [4], up to lime concentrations of 22mmol/l. The 

sudden increase of the Ca/Si at lime concentration of 22mmol/l reported by Taylor is only evident 

in the data from Lecoq. The rest of the data in the plot, including the experimental data from the 

Xseed and ultrasound series and the calculated data from Haas’ thermodynamic model, do not 

present this sudden change of Ca/Si at high lime concentration. The discrepancy of the data in this 

region suggests further investigations are needed to elucidate whether there are several equilibrium 

curves for Ca/Si of C-S-H at high lime concentrations. 

 

Figure 5.67. Ca/Si ratio vs. lime concentration in solution for the kinetics, ultrasound and Xseed C-

S-H series (predicted Ca/Si ratios calculated with the thermodynamic model by Haas [93] for the 

kinetics series, and Ca/Si ratios obtained with TEM-EDX for the ultrasound and Xseed series). 

Other reported data by Haas [93], Nonat and Lecoq [49] and Taylor [4] are also plotted. 
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5.10 C-A-S-H series 

The series of C-A-S-H samples with Ca/Si=1 and Al/Si from 0.01 to 0.05 was analysed by 

TEM. XRD and TG results of these samples were reported elsewhere and showed the samples were 

single-phased, and the concentration of Ca in solution in equilibrium was in between 2 and 4 

mmol/l [140, 141]. The mean Ca/Si, Al/Si and Ca/(Si+Al)  values obtained by TEM-EDX for these 

samples are shown in Table 5.23. The results match very well the bulk composition of the samples, 

confirming the composition of the samples is as expected. The histograms of the Ca/(Si+Al) data 

are shown in Figure 5.69. The histograms show that samples with target Al/Si=0.03 and 0.05 

present more dispersion in the Ca/(Si+Al) ratio, as it is also indicated by the standard deviations in 

Table 5.23.  

The morphology of the samples, shown in Figure 5.68, is crumpled foil-like for all Al/Si 

ratios. The fact that the samples are foil-like and the concentration of calcium in solution at 

equilibrium is very low, agrees with the results presented in section 5.5, where samples synthesized 

at lime concentrations below 22mmol/l were foil like. Hence, this level of Al substitution does not 

seem to markedly affect properties relative to Al-free C-S-H, although only morphology was 

examined here. 

Table 5.23. Al/Si, Ca/Si and Ca/(Si+Al) ratios from TEM-EDX of the series of C-A-S-H samples 

Bulk Al/Si TEM-EDX Al/Si TEM-EDX Ca/Si  TEM-EDX Ca/(Si+Al) # EDX analyses 

0 - 0.95 ± 0.05 0.95 ± 0.05 29 

0.01 0.011 ± 0.002 0.96 ± 0.05 0.95 ± 0.05 30 

0.02 0.021 ± 0.002 0.96 ± 0.05 0.94 ± 0.05 35 

0.03 0.030 ± 0.003 1.03 ± 0.18 1.00 ± 0.05 29 

0.04 0.042 ± 0.004 1.00 ± 0.06 0.96 ± 0.05 30 

0.05 0.050 ± 0.005 0.95 ± 0.14 0.91 ± 0.05 28 
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Figure 5.68. TEM micrographs of the C-A-S-H series. The Al/Si of the sample is indicated in each 

micrograph.  

Al/Si=0 Al/Si=0.01 

Al/Si=0.02 Al/Si=0.03 

Al/Si=0.04 Al/Si=0.05 
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 Figure 5.69. Histograms of the Ca/(Si+Al) obtained with TEM-EDX of the C-A-S-H samples. 
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Richardson and Groves’ model was used for charge balance calculations. The height of 

the histograms for Ca/(Si+Al) (A bar limited by the minimum and maximum values for the obtained 

experimental Ca/(Si+Al) is plotted versus the reciprocal mean chain length (MCL taken from ref. 

[140]) in Figure 5.70. The trends for the tobermorite and jennite structural units with maximum, 

intermediate and minimum degree of protonation (w/n=2, 1, 0) are also plotted. The mean 

Ca/(Si+Al) value is indicated with a cross and it is used to derive the structural chemical formulae. 

These mean values are situated in the tobermorite-like region of the plot, so that the samples can be 

explained by a complete tobermorite-like structure without the need of Ca-OH groups coming from 

either jennite or CH. 

 

Figure 5.70. Ca/(Si+Al) (obtained by TEM-EDX) vs. reciprocal mean chain length (taken from 

ref.[140] ) of the C-A-S-H series. The length of the bars is limited by the minimum and maximum 

Ca/(Si+Al) and the mean value is marked with a cross. The structural units for tobermorite and 

jennite with minimum (w=0), intermediate (w=1) and maximum (w=2) degree of protonation are 

also marked. The vertical dashed lines represent the (3n-1) structural units: dimer (2), pentamer (5), 

octamer (8)… 
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rest of the samples in the particular case of no Ca-OH presence. The formulation for the T/J with 

the incorporation of Al assuming Ca charge balancing the incorporation of Al is: 

OmHCaOHCaOAlSiHCa nyynw
n

annaawn 2

2

)2(

2

)13(
2

)29()13(

]4[

12 )(])([  -



-
---  

In the T/J view of the model with incorporation of trace elements (3n-1)=MCL,  

Al/Si=a/(1-a) and Ca/Si=[4n+ny+a(3n-1)]/[2(1-a)(3n-1)] so that n=(MCL+1)/3, 

a=(Al/Si)/[1+(Al/Si)] and y=[2Ca/Si(1-a)-4n-a(3n-1)]/n. The number of silanol groups w depends 

on the value of y according to: 

)6(064

2042

2)2(20

ynwy

nwy

nwyny

-



-

 

The calculated values for n, a, y, wmax (maximum number of silanol groups), wmin 

(minimum number of silanol groups) and w/nmax (maximum degree of protonation) and w/nmin 

(minimum degree of protonation) are shown in Table 5.24. 

Table 5.24. Calculated values for the parameters of the T/J view point of Richardson and Groves’ 

model for the C-A-S-H samples.  

Bulk Al/Si n a y wmin wmax w/nmin w/nmax 

0 2.11 0 0.79 2.54 4.21 1.21 2 

0.01 2.45 0.01 0.90 2.68 4.90 1.10 2 

0.02 3.45 0.02 1.01 3.40 6.90 0.99 2 

0.03 2.97 0.03 1.24 2.27 5.95 0.76 2 

0.04 5.33 0.04 1.28 3.86 10.67 0.72 2 

0.05 3.25 0.05 0.76 4.03 6.50 1.24 2 

 

The minimum degree of protonation was chosen, since it was the most sensible value 

according to the position of the mean Ca/Si with respect to the tobermorite trends in Figure 5.70. 

The resulting structural chemical formulae are completely tobermorite-like with the tobermorite 

core between brackets: 

Al/Si=0      [Ca 4.21 H 2.54 Si 5.32 O 16.95] · Ca 0.84· mH2O  

Al/Si=0.01  [Ca 4.90 H 2.68 (Si 0.99 Al 0.01) 6.34  O 20.03] · Ca 0.33 · Ca 1.11· mH2O  

Al/Si=0.02  [Ca 6.90 H 3.40 (Si 0.98 Al 0.02) 9.35  O 29.04] · Ca 0.10 · Ca 1.75· mH2O  
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Al/Si=0.03  [Ca 5.95 H 2.27 (Si 0.97 Al 0.03) 7.92  O 24.77] · Ca 0.11 · Ca 1.84· mH2O  

Al/Si=0.04  [Ca 10.67 H 3.86 (Si 0.96 Al 0.04) 15  O 46] · Ca 0.31 · Ca 3.40· mH2O  

Al/Si=0.05  [Ca 6.50 H 4.03 (Si 0.95 Al 0.05) 8.75  O 27.25] · Ca 0.21 · Ca 1.24· mH2O  

 

The samples with Al/Si=0. 0.01 and 0.03 can be explained as a combination of T8, T5 and 

T2 units. The samples with Al/Si=0.02 and 0.05 can be explained with a mixture of T11, T8, T5 and 

T2 units and the sample with Al/Si=0.04 can be accounted for by a combination of T17, T14, T11, 

T8, T5 and T2 structural units.  
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6 Conclusions and further work 

The results presented in this thesis suggest that C-S-H morphology depends on its 

chemical composition and chemical silicate structure, rather than on growth kinetics.  

The Ca/Si ratio of C-S-H fabricated via silica-lime reactions is limited by the precipitation 

of portlandite. At room temperature, the lime concentration in solution at the final equilibrium for 

the synthesis of these samples would not exceed the saturation value for portlandite precipitation 

(~22mmol/l). All samples fabricated via these reactions with bulk Ca/Si ratios from 0.75 to 1.5 were 

shown to be foil-like. C-A-S-H samples with Ca/Si=1 and Al/Si=0-0.05 that show concentrations of 

Ca in solution in equilibrium between 2 and 4mmol/l were found to be foil-like. 

The morphology of C-S-H which forms during the controlled hydration of C3S at fixed 

lime concentration was found to be dependent on the lime concentration in solution. Samples 

fabricated at lime concentrations between 12 and 20mmol/l (Ca/Si from ~1.25 to ~1.4) were foil-

like, samples at lime concentrations of 22mmol/l (Ca/Si ~1.58) showed more directional growth and 

a mixture of foil and fibrillar morphology, and samples at lime concentrations of 25 and 27mmol/l 

(Ca/Si ~1.6-1.65) were found to be fibrillar, with fibrils sticking out of the C3S grain. The 

morphology of the samples was found to be the same for a fixed value of lime concentration at two 

different stages of the hydration curve; at the acceleration period of C3S hydration, when the C-S-H 

growth is fast, and at the deceleration period of C3S hydration when the growth is slow. This 

suggests kinetics do not alter the C-S-H morphology, but the morphology is determined by the 

chemical environment in which C-S-H grows. Further work could be done in this direction 

introducing samples grown at low and high lime concentrations in solutions with controlled high 

and low lime concentrations respectively, allowing them to react further to observe if the 

morphology reverses. If the morphology reversed, this would be a final proof of C-S-H morphology 

being uniquely composition dependent. The role of kinetics could also be studied further, if 

accelerators and decelerators for the hydration of C3S were used for each fixed lime concentration. 

 The silicate structure of the synthetic samples in this study was shown to be dependent on 

the Ca/Si ratio as expected. This dependence is very clear in the mechanochemical and the CaO-

SiO2 series, both fabricated via lime-silica reactions. The samples of these two series with 

Ca/Si<1.2 had a silicate structure with a high percentage of Q
2
 species while the samples with 

Ca/Si>1.2 had a silicate structure with a high percentage of Q
1
 species. When the NMR signal 

corresponding to C-S-H in samples fabricated via the controlled hydration of C3S, was intense 

enough to be properly quantified, all samples fabricated with and without accelerators, showed 
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silicate structures with a high percentage of Q
1
 species. Since the samples had Ca/Si>1.2, the 

silicate structures were as expected.  

Differences in the morphology of fracture surfaces and the silicate structure of C-S-H 

samples fabricated via the controlled hydration of C3S at high lime concentrations of 27, 28 and 29 

mmol/l with the use of different reaction accelerators were found. Samples synthesized with the use 

of an ultrasound gun were found to contain a higher percentage of Q
2
 species, and more flattened 

surfaces, than samples fabricated with Xseed (a solution containing C-S-H seeds). A relationship 

between the silicate structure and the morphology at the surfaces of the samples was found. 

Samples with flattened surfaces could accommodate longer silicate chains than samples with 

rougher surfaces, with more features and edges, which could accommodate shorter silicate chains 

and show a higher percentage of Q
1
 end-chain groups. Although the percentages of silicate species 

in C-S-H depend on the Ca/Si ratio (low Ca/Si ratio implies high percentage of Q
2
 and high Ca/Si 

ratio implies high percentage of Q
1
), inferring Ca/Si ratios from NMR spectra is a challenging work 

that would need a model which combined crystal-chemical structural information and morphology, 

since a relationship between the morphology and silicate structure was found in this study. 

Although lime concentration in solution is an important parameter that determines the 

morphology of C-S-H, the output of this study clearly shows that every synthesis route gives a 

unique C-S-H product. This is due to the fact that other factors such as drying methods, the use of 

accelerators for the hydration of C3S, and the addition of mechanical energy by milling, also play a 

role in determining the final properties of the product. Silica-lime reactions yield foil-like C-S-H 

with a maximum Ca/Si ratio of 1.5. The foils were coarser when the samples were fabricated via the 

mechanochemical method than when fabricated via continuous stirring, due to the addition of 

mechanical energy. The basal spacing of samples synthesized by silica-lime reactions was also 

proved to be dependent on the drying method, since samples that were dried by heating at 60ºC 

showed longer basal spacings than samples that were dried under vacuum. The controlled hydration 

of C3S is a better synthesis method to reproduce C-S-H in real cementitious systems than the silica-

lime reaction, both in terms of C-S-H composition and morphology. Tailoring the lime 

concentration in solution it is possible to obtain a wider range of Ca/Si ratios that approximate 

better the range found in real cementitious systems. Moreover, systems grown under the controlled 

reaction of C3S presented a change in morphology from foils to fibrils when the lime concentration 

in solution increases, and thus the Ca/Si ratio increases too. This represents very well the previously 

found morphological change of C-S-H in OPC-slag systems, since for higher replacement of cement 

with slag, the morphology changes from fibrillar to foil-like. Since slag has a higher content of SiO2 

than cement, its use must lower the calcium concentration in solution when cement hydrates, thus 
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promoting the formation of foils. A similar morphology can be found in fly ash blends, in which 

foil-like C-S-H grows from fully reacted fly ash particles that are also SiO2 rich. Including reaction 

accelerators, such as an ultrasound gun and Xseed (a solution containing C-S-H seeds), during the 

controlled hydration C3S at high lime concentrations of 27-29mmol/l, also produced distinct C-S-H 

morphologies. A mixture of foils and fibrils was found in both kinds of samples under TEM 

examination, with average Ca/Si ratios from ~1.45 to ~1.62. The Ca/Si ratio at which samples 

synthesized without accelerators showed a mixture of both kinds of morphology (Ca/Si~1.58) was 

included in the range of compositions of most of these samples, taking into account the standard 

deviations of the Ca/Si. Although both kinds of samples showed a mixture of foils and fibrils, the 

surfaces of the samples were much more flattened with the use of the ultrasound. This was 

attributed to the power of the gun that may have distorted the fibrils that should have grown at such 

lime concentrations. The surface of the samples fabricated with the Xseed showed a dense packing 

of foil-like features, which under closer examination, seemed to be not continuous. The edges of 

these foil-like features created the fibrillar manner in the TEM images. Thus fibrillar features in 

TEM do not necessarily correspond to fibrils sticking out of a grain or particle. 

The application of Richardson and Groves’ model to derive structural chemical formulae 

showed that C-S-H samples fabricated via silica-lime reactions with bulk Ca/Si from 0.7 to 1.5 and 

C-A-S-H samples with Ca/Si=1 and Al/Si from 0 to 0.05 can be explained entirely by tobermorite 

units. Since these samples are foil-like, it is reasonable to associate foil-like morphology with 

tobermorite-like structures. This agrees with the applicability of the model to pastes reported by 

Richardson [1]. The results for the samples hydrated via the controlled hydration of C3S, with and 

without the use of accelerators, have shown the structures require Ca-OH groups for all the samples, 

regardless of their morphology. However, the samples hydrated at [CaO]<22mmol/l present data of 

Ca/Si against mean silicate chain length considerably close to the limit of maximum Ca/Si without 

the addition of Ca-OH groups. Considering the experimental errors in the mean silicate chain 

length, it is plausible that the real structure of these samples do not require Ca-OH groups. This 

would be in agreement with the fact that the samples are foil-like and would fall in the group of 

those that can be explained entirely by tobermorite units. The inclusion of Ca-OH groups coming 

from either jennite or CH units would therefore coincide with the change to fibrillar morphology. 

In addition to the morphological and structural studies, the thermal analysis of C-S-H 

phases synthesized via silica-lime reactions, by the mechanochemical route, showed that the 

temperature for the transformation from β-wollastonite into α-wollastonite depended on the Ca/Si 

ratio of the samples. The transformation temperature was decreasing with increasing Ca/Si. 

Therefore an excess of SiO2 stabilized the β-polymorph and an excess of CaO stabilized the α-
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polymorph. β-wollastonite silicate structure comprises long chains while the silicate structure of α-

wollastonite consists of rings of 3 silicate tetrahedra. The silicate structure of the C-S-H with high 

Ca/Si is mainly dimeric and these samples stabilize the α-polymorph, which has 3 silicate rings, 

while the silicate structure of the C-S-H with low Ca/Si has longer silicate chains and these samples 

stabilize the β-polymorph, which has a silicate structure of long chains. A hypothesis was made 

suggesting slight differences in the silicate structure of the β-polymorph that formed after heating 

C-S-H of different Ca/Si ratios, so that it was prone to transform into the α-polymorph at different 

temperatures. This would need to be further validated with a technique such as in-situ Raman 

spectroscopy. 

The overall findings of the project are linked to the purpose of its joint collaboration 

TRANSCEND; which is to describe the water transport in cement and concrete. Since C-S-H 

defines the capillary porosity in a cementitious matrix, predicting the morphology of C-S-H should 

be important to model the transport of water in cementitious materials. However, up to date, there is 

no established link between C-S-H morphology and capillary porosity. This knowledge gap should 

be filled in order to further understand and model how the morphology of C-S-H may affect 

mechanical properties, such as strength.  A combination of microscopy and relaxation 
1
H NMR may 

be the tool to achieve such goal, since the last technique can distinguish interlayer, gel pore and 

capillary water populations in cement. Relaxation 
1
H NMR was applied successfully to white 

cements with and without silica fume in the joint collaboration, and the standardization of this 

technique is being developed as a follow up project by one of the Fellows.  

In terms of aiding simulations of water dynamics in cementitious materials, the findings of 

this project can serve to modify the tendency to use the well-known tobermorite 11Å and 14Å 

structures to simulate water dynamics in C-S-H. The project has shown feasible crystal chemical 

formulae for C-S-H of various compositions. For simplicity reasons, the structures of tobermorite 

minerals are those employed as a starting point in most simulations that deal with C-S-H, but the 

cement community has other structures available, such as the structures given by the model of 

Richardson and Groves, that should be further explored. The morphological studies performed in 

this project served also as a reference for simulations of the growth of C-S-H in spherical 

confinements that was commented in the literature review, and were central for a project within the 

joint collaboration.   
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