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Abstract 

Burkitt lymphoma and diffuse large B-cell lymphoma are two closely related 

types of lymphoma that are managed differently in clinical practice and the 

accurate diagnosis is a key point in treatment decisions. However based on 

current criteria combined with morphological, immunophenotypic and genetic 

characteristics, a significant number of cases exhibit overlapping features 

where diagnosis and treatment decisions are difficult to make. Especially, 

the prognosis have been reported significantly unfavourable in a subset of 

cases that are initially diagnosed as diffuse large B-cell lymphoma but bear 

MYC gene translocation, which is a defining feature of Burkitt lymphoma 

however can also be found in other lymphomas. Despite the adverse effect 

of MYC in aggressive lymphomas other than Burkitt lymphoma, the 

underlying mechanism and effective treatment is still unclear. 

Recent technological advances have made it possible to simultaneously 

investigate an enormous number of bio-molecules, and the scientific fields 

associated with measuring molecular data in such a high-throughput way are 

usually called “omics”. For example, genomics assesses thousands of DNA 

sequences and transcriptomics assays large numbers of transcripts in a 

single experiment. These techniques together with the rapidly emerging 

analytical methods in bioinformatics have introduced cancer research into a 

new era. The growing amount of omics data have significantly influenced the 

understanding of lymphomas and hold great promise in classifying subtypes, 

predicting treatment responses that will eventually lead to personalized 

therapy. 

Here in this study, we investigate the discrimination of Burkitt lymphoma and 

diffuse large B-cell lymphoma based on DNA microarray gene expression 

data, which has contributed most in molecular classification of lymphoma 

subtypes in the last decade. On the basis of two previous research level 

gene expression profiling classifiers, we developed a robust classifier that 

works effectively on different platforms and formalin fixed paraffin-embedded 

samples commonly used in routine clinic. The validation of the classifier on 
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the samples from clinical patients achieves a high agreement with diagnosis 

made in a central haematopathology laboratory, and leads to a potential 

outcome indication in the patients presenting intermediate features. In 

addition, we explore the role of MYC in the above lymphomas. Our 

investigation emphasizes the inferior impact of high level MYC mRNA 

expression on patients‟ outcome, and the functional analysis of MYC high 

expression associated genes show significantly enriched molecular 

mechanisms of proliferation and metabolic process. Moreover, the gene 

PRMT5 is found to be highly correlated with MYC expression which opens a 

possible therapeutic target for the treatment.  
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Chapter 1 

Introduction 

The discrimination between Burkitt lymphoma (BL) and diffuse large B-cell 

lymphoma (DLBCL) has long been a diagnostic difficulty. A group of 

lymphomas characterized with intermediate features that are hard to assign 

to one or the other category. In fact these cases have been put into a 

borderline category “B-cell lymphoma, unclassifiable, with features 

intermediate between DLBCL and BL” (BCLU) by the World Health 

Organization Classification (WHO) of Tumours of Hematopoietic and 

Lymphoid Tissues published in 2008 [1]. While the category probably should 

not be seen as a new type of lymphoma, rather an approach taken to keep 

BL and DLBCL as well-defined as possible and to wait for further evidence 

that allows better classifications in the future. In addition to this highly 

heterogeneous category, a subgroup of cases that express abnormal MYC 

activities (genetic and/or expression level), especially when combined with 

BCL2 and/or BCL6 translocations have raised a great attention in recent 

studies owing to a particularly aggressive clinical course. Even through 

enormous studies have been reported regarding to the association between 

MYC and the inferior survival in non-Burkitt lymphomas, the most useful 

prognostic factor among various MYC activities and the relative significance 

in the context of other prognostic factors remain controversial, the involved 

MYC biological function and more proper treatment still require further 

investigation.  

With recent technological advancements, it is now possible to examine 

genetic abnormalities, mutations and expression on a whole genome scale. 

This has vastly increased our knowledge of cancer biology, as well as 

improved the diagnosis and prognosis in the clinics. In the last decade, gene 

expression profiling (GEP) technology has proven to be effective in the 

classification of lymphoma subtypes, with several research groups have 

developed laboratorial level molecular classifiers. Also, whole genome 

sequencing method has identified genes that are recurrently mutated as well 

as revealed some oncogenic mechanisms in particular lymphomas. As 
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promising as it sounds, however it is still a big challenge to make the 

research findings of clinical use. 

Here in this chapter, we first described the lymphomas of interest: Burkitt 

lymphoma and diffuse large B-cell lymphoma in detail, as well as the role of 

MYC in those lymphomas, and then we introduced several current popular 

high-throughput technologies in addition with the criteria of translating 

research level methods to clinical use. And last we give a general overview 

of the work carried out in this project.  

1.1 Burkitt lymphoma and diffuse large B-cell lymphoma  

1.1.1. Burkitt lymphoma 

Burkitt‟s lymphoma is a relatively rare but highly aggressive B-cell non-

Hodgkin lymphoma, which contains three clinical variants[2]: endemic 

Burkitt‟s lymphoma that is most often observed in African children and 

associated with Epstein–Barr virus (EBV) infection; sporadic Burkitt‟s 

lymphoma that accounts for 1-2% in adults and 30-50% in children of NHL in 

the United States and Europe [3, 4]; and immunodeficiency-associated 

Burkitt‟s lymphoma which refers to cases associated with human 

immunodeficiency virus (HIV),  those occurring in individuals with congenital 

immunodeficiency, and  in allograft recipients. BL is the first human tumour 

associated with a virus, one of the first tumours that are driven by a 

chromosomal translocation, and the first lymphoma reported to be 

associated with HIV infection [5], hence plays an important role in 

understanding tumour genesis.  

All of BL subtypes are similar in morphology, immunophenotype and genetic 

features [5]. The typical morphology is monotonously uniform and medium-

sized neoplastic cells with round nuclei and a “starry sky” pattern resulting 

from numerous intermixed tangible body macrophages phagocytising 

apoptotic debris [4, 6]. The immunophenotype involves B-cell-specific and 

germinal centre associated markers (for example, expression of CD10, 

CD20 and BCL6), together with the Ki-67 (a protein used as the proliferative 

index) at nearly 100% (at least >= 95%). The defining molecular feature of 

Burkitt‟s lymphoma is the presence of a chromosomal translocation involving 
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MYC gene and the immunoglobulin heavy chain (IgH) t(8;14)(account for 

70~80%) or less commonly IG light chain gene t(2;8), t(8;22) (account for 

10-~15%) [7], all of which can cause deregulation of MYC oncogene. 

Burkitt lymphoma was once a narrowly defined NHL but the criteria used to 

establish a diagnosis of BL has varied somewhat since its original 

description based on morphologic grounds in its endemic form.  Although 

generally BL is a rather homogeneous group, there are some cases that 

mimic the morphology or phenotype of DLBCL where diagnosis may be 

difficult. Currently there is no single character morphology, phenotype or 

genetic is the gold standard for diagnosis, however it is generally accepted 

that Burkitt lymphoma usually carries a simple karyotype and encompasses 

a highly proliferative neoplasm of germinal center phenotype B-cells with 

deregulation of the MYC oncogene in the absence of chromosomal 

translocations involving oncogenes associated with DLBCL in particular 

BCL2 and BCL6, although some of the cases have similar characters with 

DLBCL. Recently the molecular BL (mBL) defined by GEP has received a 

wide recognition, plus new findings of recurrent mutations including ID3, 

GNA13, RET, and TCF3 (E2A) [8] are also potentially valuable for BL 

diagnosis in the future.  

Burkitt lymphoma is a highly proliferative malignancy and requires intensive 

therapy that usually assists with supportive care for toxic effects. Accurate 

diagnosis is urgent because treatment should be started as soon as possible 

especially in adults. Now the generally used regimen in UK and USA is 

CODOX-M/IVAC (cyclophosphamide, oncovin, doxorubicin, and high-dose 

methotrexate with ifosfamide, vepesid, and high-dose cytarabine) [9, 10]. 

The outcome for children BL in high-income countries is excellent with an 

overall cure rate of nearly 90%, while in low-income countries, the outcome 

are less optimistic which can be caused by incomplete treatment or 

treatment-related mortality [4]. Outcome in adult patients has been poor, but 

has improved recently, with a 2-year survival rate about 90% in the young 

group and about 70% in patients over 65 [3, 5].  
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1.1.2. Diffuse large B-cell lymphoma 

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid 

malignancy in adults accounting for 31% of all non-Hodgkin lymphoma 

(NHL) in the United States and Europe, with an annual incidence of 7-8 

cases per 100,000 people per year [11]. DLBCLs are defined as a group of 

malignancies composed of large cells with nuclei at least twice the size of a 

small lymphocyte and usually larger than those of tissue macrophages. 

Although defined as one group, DLBCL represents a highly heterogeneous 

type of lymphoma and the fourth edition of WHO classification of Tumours of 

Hematopoietic and Lymphoid Tissues [1] has further subdivided into 

morphological variants: centroblastic, immunoblastic, anaplastic, and rare 

cytologies; molecular subgroups that based on GEP studies : germinal 

centre B-cell (GCB) like and activated B-cell (ABC) like; 

immunohistochemistry subgroups: CD5 positive, germinal centre B-cell like 

and non-germinal centre B-cell like; and other subtypes based on criteria 

such as the presence of EBV. However, a large number of cases still remain 

biologically heterogeneous with no clear accepted criteria which subtype 

should belong to. And these were put into three borderline categories that 

DLBCL shares intermediate features with other B cell lymphomas that 

include Burkitt lymphoma.  

GEP method has discovered new finding in DLBCL subclassification, the 

tumours were grouped into two categories that represented different stages 

of B cell differentiation according to the genes predominately expressed, 

those associated with germinal B cells that largely expresses genes of 

normal germinal centre B cells, such as BCL6 and LMO2, and those 

associated with activated peripheral B cells express genes that are up-

regulated in B cells with activated B cell receptor (BCR) signalling, including 

NF-κB and IRF4. Molecular classifiers based on this cell of origin (COO) 

discoveries have been used as a gold standard on DLBCL subtypes, and 

some groups developed an immunohistochemical criteria based on this 

COO classification for the clinic practical purpose. 

Overall DLBCL is aggressive but potentially curable; the standard treatment 

is R-CHOP – the combination of the Rituximab and CHOP chemotherapy 
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(drugs used are Cyclophosphamide, Hydroxydaunomycin, Oncovin, and 

Prednisolone) [12]. The cure rate is variable in different risk groups, ranging 

from over 80% 5-year progress free survival (PFS) in young patients (< 60) 

or patients who have a lower international prognosis index (IPI) score, to 

about 50% in elderly patients or the higher IPI score group. The molecular 

ABC subtype show generally poor prognosis compared to GCB subtype in 

patients treated with the previous CHOP regimen as well as the improved R-

CHOP treatment [13-15]. This molecular subtype identification has been 

adopted in a few clinical trials [14, 16], and the difference in the patient 

outcomes suggests distinct pathways of tumour subtypes that may serve as 

targets for novel therapeutic strategies. 

1.1.3. Cases with features intermediate between BL and DLBCL 

There are some aggressive B-cell lymphomas that have the features 

intermediate between BL and DLBCL, typically between adult sporadic BL 

and the DLBCL GCB subtype [1, 17, 18]. These cases may have the 

morphologic features of BL but have greater nuclear and cytoplasmic 

variability, which is an overlap with the morphologic spectrum of DLBCL [19]. 

Certain aggressive B-cell lymphomas show Burkitt-like morphology but lack 

some of the characteristic immunophenotypic findings, or other cases 

appear to have a classic BL immunophenotype but without MYC 

translocation[20-22]. Besides, the “starry sky” pattern can also be present in 

a subset of highly proliferative DLBCLs and about 5-10% of DLBCL also 

carry a MYC translocation [10, 23-25], which makes it very difficult to 

distinguish these two lymphomas by conventional histopathology. The 

agreement among expert haematopathologists is rather low (~55%)[24].  

Table 1-1: Typical features of BL, DLBCL and BCLU categories 

Features BL BCLU DLBCL 

Cell size Medium Medium/Large Large 

Starry sky Almost always Very often Sometimes 

Complex karyotype No Yes Yes 

Proliferation (Ki67) >95% Variable 50~95% Variable 30~95% 
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CD10 protein 

expression 
Almost always Frequent Variable ~30% 

BCL2 protein 

expression 
Negative/Weak Often strong Variable 

MYC Translocation 

partner frequency 
> 90%, (IGH) 

35~50%, (IGL and 

non-IG) 

5~14%,(IG and, non-

IG) 

BCL2/BCL6 

translocation 
No 

~45%BCL2, 

~10%BCL6 
20~30%BCL2,BCL6 

As stated before the WHO classification has proposed a category named 

BCLU to summaries the intermediate cases, which usually includes cases 

have BL morphology but atypical immunophenotypic (eg: BCL2 expression) 

and genetic (e.g. lack of MYC translocation) feature, and cases resemble BL 

immunophenotypes but show variable morphology (cell and/or nuclear size), 

and cases present non-IG MYC translocation partners with a complex 

karyotype, or additional translocations of BCL2 and/or BCL6 (Table 1-1). 

The high heterogeneity of this group has confirmed by a continues 

expression pattern on molecular level, recent analysis of mutation spectra 

have identified both distinct targets of mutation occurring preferentially in BL 

including MYC, ID3, TPST2 and RET, genes PIM1, CECR1 and MYD88 that 

are predominantly mutated in DLBCL, and genes mutated in both DLBCL 

and BL with similar frequencies such as MLL3, TP53 and LAMA3 [8, 26]. All 

of which may point to underlying pathogenic mechanisms. However these 

new finding has not integrated into the diagnostic criteria for routine practice 

yet.  

The diagnose criteria for this intermediate category is proposed mostly due 

to the feeling that more information need to gather for these biologically 

heterogeneous cases. However from a clinical point of view it is very 

important to classify these cases into more appropriate categories, as there 

is no specific therapy for the intermediate category up till now and we have 

to choose a more suitable regimen from the existing treatments. In practice 

BL patients are given intensive chemotherapy, and usually respond rather 

well if treated in time, however it is not appropriate to give this treatment to 
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DLBCL patients for the reason it usually very expensive plus toxic (several 

weeks/months as an in-patient in hospital, expensive drug, can kill the 

patient or cause morbidity). The majority of DLBCL patients respond fairly 

well to the standard R-CHOP treatment, which can be given as out-patient 

appointments, is generally well tolerated, and much less expensive. In 

clinical reality this biologic diversity has yet not been taken into account 

sufficiently, current most BCLU cases are given the same treatment as 

DLBCL, however, several studies found that not all patients are cured by R-

CHOP and it is possible that some of the patients currently labelled as 

DLBCL using standard diagnostic techniques may in fact benefit from the 

CODOX-M/IVAC treatment [21, 27]. They have indicted that patients with 

Burkitt-like morphology show a poorer outcome if treated with regimens 

designed for DLBCL instead of regimens typical for BL. Overall it is still 

crucial to have a reproducible way to discern the highly heterogeneous 

intermediate cases as BL or DLBCL correctly and reliably, to reach 

consensus for optimal management for patients. 

Our work on chapter three focuses on developing a robust BL/DLBCL 

classifier that works effectively across multiple datasets and platforms, and 

in chapter four we present how the classifier was validated on clinical 

datasets provided by our collaborators as well as the treatment implication 

for the intermediate cases.  

1.2 MYC in BCLU 

MYC gene codes for a transcription factor that binds to promoter regions of 

target genes and modulates their expression by the recruitment of specific 

activators and repressors [28] [29]. The gene was first discovered in BL 

patient with the classic chromosomal translocation, however a mutated 

version of MYC is found in many cancers [30]. It is believed that MYC 

protein regulates approximately 10% to 15% of all human genes [31], and 

the main functions under its control include, but are not limited to cell 

proliferation, protein biosynthesis, regulation of metabolism, and the 

induction of apoptosis [32, 33]. Recent studies suggest that instead of up or 

down regulating specific groups of genes [34], MYC may target all active 
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promoters and enhancers in the genome, and acts as a general amplifier of 

transcription [35, 36]. 

1.2.1. MYC translocation  

MYC translocation was initially identified and described as a hallmark in 

Burkitt lymphoma [37, 38], however it has been recognized in many other 

non-Hodgkin lymphomas as well , including DLBCL, follicular lymphoma 

(FL), mantle cell lymphoma (MCL), T-cell lymphoma (T-NHL), plasmablastic 

lymphoma, and chronic lymphocytic leukaemia (CLL). The true frequency of 

MYC translocation in non-Burkitt B-cell (non-BL) lymphomas is unknown, 

however it is proved to be higher then previously thought. In contrast to BL, 

MYC translocation in DLBCL is usually found in complex karyotypes and 

often involves translocation partners other than IG genes, also it usually 

associated with multiple cytogenetic abnormalities, typically concurrent 

BCL2 and/or BCL6 translocations [39-41]. Patients with these combinations 

of multiple aberrations are reported to have a significantly worse outcome in 

numerous studies [42-44]. Only approximately 30% of the DLBCL patients 

who bear MYC translocations achieve long-term survival despite modern 

therapies.  

According to the 2008 WHO classification of blood tumours lymphomas  with  

a combination of MYC aberration and BCL2 and/or BCL6 aberrations are 

called “double-hit lymphomas” (DHL), while lymphomas with a MYC 

rearrangement but no BCL2 or BCL6 rearrangement, irrespective of the 

presence of other aberrations, are called “single hit lymphomas” (SHL) [1]. 

As complex as MYC-associated non-Burkitt lymphomas can be, a recent 

study has suggested that there is no obvious difference between double-hit 

and single-hit aggressive B-cell lymphomas after excluding Burkitt 

lymphoma [45]. They both have similar frequencies of non-IG MYC partner, 

relatively more complex karyotype compared to BL, and moreover no 

obvious differentially expressed genes or significant difference in MYC 

expression is observed, suggesting that cases bearing MYC translocation in 

non-BL show some kind of homogeneity.  

Therefore it is a reasonable intention to identify an expression pattern 

specific to MYC translocation and see if MYC-translocated cases could be 
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separated from MYC-negative cases based on gene expression profiling, 

and this work is carried out in Section 5.1.  

1.2.2. MYC prognostic implication 

MYC-translocated non-BL accompanied with BCL2/BCL6 translocations 

(DHL) is notably reported to have significantly worse outcome [42, 46, 47]. 

An interesting phenomenon of DHL in DLBCLs is that it is almost exclusively 

found in the germinal centre B-cell like (GCB) subtype, which generally has 

a more favourable outcome; it seems the adverse effect of DHL overcomes 

the better prognosis of GCB subtype. MYC translocation is also reported to 

cause unfavourable outcome, and it is often examined in clinical practice as 

it is one of the diagnostic marker. However it is not clear that the inferior 

outcome is due to MYC translocation alone or because 58~83% cases also 

have BCL2/BLC6 translocations. As MYC drawing more attention in the 

prognosis of non-Burkitt lymphoma, more other form of MYC activities are 

also investigated, with most studies report that MYC amplifications are also 

associated with poor prognosis [43, 47-50], but studies are inconsistent on 

the association of MYC gains with outcome [8, 51]. Moreover, high MYC 

mRNA expression [14, 52] and protein expression also have poor prognostic 

effect even if there is no gene alteration detected [53]. Thus the shorter 

survival might be caused by various MYC activities including genetic, post-

transcriptional and post-translational regulation.   

It is unclear what the prognostic role of MYC is considering numerous 

prognostic factors such as age, disease stage, and international prognostic 

index (IPI) score and other prognostic markers (BCL2, BCL6). So far the 

hypotheses found by different groups are difficult to reconcile and 

sometimes even contradictory. Some studies report that MYC translocation 

acts as an independent prognostic factor among other well-known factors 

[44, 54, 55], and factors like BCL2 translocation do not show significant 

impact on outcome [44, 55]. While other evidence suggests that MYC 

translocation alone does not cause worse outcome, only when in conjunction 

with BCL2, BCL6 or as part of a complex karyotype, does it confer a worse 

outcome [46, 56]. Or studies showed that MYC genetic alterations 

(translocation, amplification and copy number gains), increased mRNA 
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levels as well as protein levels are all associated with poor prognosis, but 

only in the context of concurrent BCL2 protein expression (not BCL2 

translocation) [57]. Recent studies also suggested that B-cell lymphomas 

with MYC and BCL2 genetic alterations other than translocation behave 

similarly to DHLs [45], or that it is the co-expression of MYC and BCL2 

protein (double expression lymphoma) which contributes to the overall 

inferior prognosis in both GCB and ABC types [57, 58]. However a problem 

regarding to the MYC and BCL2 protein expression detected by 

immunohistochemistry (IHC) stains is that it can be very subjective in 

choosing the cut-off of expression among different labs (e.g. MYC protein 

expression positive maybe a cut-off on MYC-positive cells with the 

percentage ranging from 30% to 50%, likewise for BCL2 50%~70%).  

In summary, owing to the various forms of MYC activities, the rather 

complex features of most MYC-associated non-BLs, other limitations such 

as technique considerations of detection methods and difficulties in 

conducting large sample size clinical trials, the prognostic impact of MYC still 

needs further investigation. In this study, we evaluated the survival effect 

from and mRNA expression angle based on several publicly available large 

datasets, and the results are illustrated in section 5.2. 

1.2.3. MYC potential mechanism in B-cell lymphoma 

Although various studies have revealed important molecular functions 

controlled by MYC, including cell growth, protein biosynthesis, introduction of 

apoptosis, regulation of metabolism and a large number of microRNAs [29, 

31, 59], the oncogenic role in aggressive B-cell lymphomas remains largely 

unknown, especially why it is diagnostic in BL but prognostic in other non-

BLs. Part of reason may due to the fact that MYC translocation may also 

present as a secondary change in some lymphomas, complicating a pre-

existing abnormality [30, 45].  

MYC translocation usually leads to elevated expression on the mRNA and 

protein levels. An interesting phenomenon is that most of these lymphomas 

originate in cells that do not normally expression MYC protein. BL and GCB 

type DLBCL derive from germinal centre (GC) cells, and ABC type DLBCL 

shows the B cell receptor (BCR) activated features on the plasma cell 
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differentiation path (see Figure 1-1), in both of which MYC protein is not 

expressed in normal conditions. Despite the fact that MYC is absent in most 

GC cells, it is essential for GC formation [37, 45, 60]. The structure of GC 

contains two parts: a dark zone consisting densely packed proliferating B 

cells known as centroblasts, where the antigen-driven somatic 

hypermutation occurs to generate high-affinity antibodies during human 

immune responses; and a light zone comprised of smaller, non-dividing 

centrocytes, some of which eventually differentiate into memory B cells or 

plasma cells [61]. MYC is initially expressed in B cells after interaction with 

antigens and T cells; however the subsequent up-regulation of BCL6 

represses MYC and initiates the formation of the GC dark zone. MYC can be 

re-expressed in a small subset light zone cells that will re-enter into dark 

zone after IRF4 up-regulation, and the MYC-absent cells in the light zone will 

exit the GC as memory cells or early plasmablasts. BLIMP1 induction in 

these later cells will promote plasma cell differentiation and at the same time 

repress MYC expression. The expression of MYC and some related proteins 

in different normal cells are presented in Figure 1-1 with blue colour.  

However MYC expression introduced by translocation in the dark zone or 

maybe by activated BCR signalling in the light zone can contribute to 

lymphomas, by increasing the proliferation and other metabolic functions. 

Generally most lymphomas with over expression of MYC show higher 

proliferation rate, however MYC also introduces cell apoptosis, but it seems 

that various additional pathogenic mechanisms exist to counteract its pro-

apoptotic role and manage to escape cell death [45]. The actual mechanism 

behind this is still unclear, however recent whole genome sequencing 

studies have identified several other recurrent somatic mutations, and it 

seems different types of lymphomas would require various additional 

aberrations to cooperate with MYC up-regulation. In BL, MYC cooperates 

with TCF3 and ID3 mutations to enhance the proliferation and extend cell 

survival [8, 50]. The activation of TCF3 and inactivation of ID3 cause a 

constitutive activation of the PI3K pathway, and promotes the survival of BL 

cells as well as the proliferation by up-regulating CCND3 [62]. In DLBCLs (or 

BCLU), it is possible that MYC cooperates with BCL6 and/or BCL2 

rearrangements and causes a particularly aggressive type of lymphoma. 
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Translocation or amplification of BCL2 can lead to high level expression of 

BCL2 protein, which has an important function of inhibiting apoptosis. The 

deregulation of BCL6 also contributes to malignant transformation by 

increasing the cell growth and lengthening survival time. (Figure 1-1, 

alterations in red colour). There are many more mechanisms that are 

pathogenic in these aggressive lymphomas, for example the constitutive 

activation of NF-   pathway can also extend cell survival and maybe the 

reason of poor response to chemotherapy in ABC type.  

Moreover cancers arising from the germinal centre usually harbour various 

mutations/genetic aberrations, and it is extremely difficult to interpret how 

these alterations work and interact with each other. Nevertheless the 

question of how MYC regulatory networks interact with other functions 

remains unanswered. However it is now generally considered that MYC 

protein itself is “undruggable”, as the pleiotropic role of MYC in 

developmental biology would prompt the concern of provoking severe, 

untoward toxicity [29, 63], so potential treatment approaches have been 

directed at reducing its expression, interfering with MAX dimerization or DNA 

binding, or acting on the downstream regulatory pathways [64, 65]. The 

recent discovery that MYC transcription depends on the regulatory function 

of BRD4 has offered new promising therapeutic opportunities[66], and the 

development of using small molecules targeting the G-quadruplexes formed 

in MYC promoter and MYC/MAX dimerization also provide a promising anti-

cancer therapy [67]. In this study we gathered the data and findings have 

been published previously to explore the potential molecular 

functions/pathways in non-Burkitt lymphomas, which will be elaborated in 

Section 5.3. 
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1.3 High-throughput data in cancer research 

Traditional methods for cancer investigation usually focus on one to a few 

gene alterations or chromosome abnormalities, but with recent technological 

advances high-throughput measurements have become available in the 

major „omics‟ areas: including array CGH (array comparative genomic 

hybridization) and SNPs (single nucleotide polymorphisms), array methods 

to detect genomic variations, DNA microarrays and RNA-Seq (RNA 

sequencing) that measure gene expression of all transcripts within the whole 

transcriptome, DNA methylation profiling and ChIP-Seq (chromatin 

immunoprecipitation-Sequencing) techniques for epignomics analysis, as 

Figure 1-1. MYC expression in normal germinal centre cells as well 
as aberrations leading to different types of lymphoma. 
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well as mass spectroscopy and NMR (nuclear magnetic resonance) 

spectroscopy technologies used in proteomics and metabolomics studies. 

Each of the above high-throughput assays offers a distinct perspective of 

cancer mechanism and potentially provides critical utility in clinic. In next 

section we give a brief introduction of these techniques.   

1.3.1. New methods and techniques  

Array CGH is a method that allows the assessment of genetic gains/losses 

and DNA copy number variations on the whole genome level [68]. It can be 

used to compare the patient‟s (cancer) genome against a reference genome 

and identify differences between the two genomes, hence locating the 

genetically abnormal regions. It has proven to be specific, sensitive, fast and 

relatively cheap, and is employed to uncover genetic abnormalities in cancer 

[69]. A large number of array CGH studies have expanded the knowledge of 

important copy number aberrations that have crucial clinical use in a variety 

of tumour types [70-73].   

SNP measurements for hundreds of thousands of single nucleotide 

polymorphism loci spread throughout the genome are promising to explore 

the common gene variants associated with specific types of cancer [74]. 

SNPs are quite common and not necessarily causal of disease, also in many 

cases, SNPs act in unison with other SNPs and with environmental 

variables, which makes identifying important SNPs difficult. However they 

have been widely used in genome-wide association studies in discovering 

new disease loci, SNP associations with drug response and many more 

aspects [75, 76]. 

Gene expression levels have influence more directly than gene level 

mutations, and so significant associations are easier to detect. The 

revolution in gene microarray has made it possible to simultaneously 

evaluate the expression level (mRNA) of thousands of genes. And these 

gene expression profiles are very well suited for classifying patients into 

cancer subgroups (either better or worse outcomes or with higher or lower 

values of some phenotypic features) by identifying gene expression levels a 

subtype is associated with [77, 78]. More recently the advent of next-

generation sequencing has made sequence based expression analysis 
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(RNA-Seq) increasingly popular. Compared to microarrays that only target 

the genes on the array, RNA-Seq does not require background information 

and can also look at the expression of transcripts have not been annotated 

[79, 80]. With fast-evolving experimental protocols, established and 

computational tools developed, it is likely that this is going to be the favoured 

method to conduct gene expression pattern analysis in future [81, 82]. 

Except gene mutations, epigenetic alterations (mainly DNA methylation and 

histone modification) can also significantly contribute to mis-regulation of 

gene expression and cause tumour behaviour [83, 84]. Microarray-based or 

more recent sequencing-based approaches have provided a powerful way to 

analyse DNA methylation patterns across the genome [85, 86], while ChIP-

Seq is a technique for genome-wide profiling of DNA-binding proteins or 

histone modifications [87]. Both the technologies are indispensable tools for 

studying epigenetic mechanisms and present a wider picture of epigenetic 

changes in a cancer genome [88]. The epigenetic findings are entering the 

clinical field and becoming essential factors in diagnosis, risk assessment, 

prognosis estimation, therapy management and more aspects [89]. 

Quantitative proteomics measures are also excellent for the identification of 

cancer biomarkers that could be used for early detection or classifying 

people into subgroups, or monitor response to treatment [90]. Mass 

spectrometry is powerful in identifying the presence or absence of a large 

number of proteins simultaneously [91, 92]. Advanced techniques in 

measuring small molecules by mass spectroscopy or NMR [93] have also 

established the use of metabolomics analysis in cancer research, by 

detecting metabolic changes in cancer tissues and identifying metabolic 

biomarkers [94, 95].  

Such high-resolution large-scale data types in multiple omics areas definitely 

improve our understanding of biological mechanisms, oncogenesis and drug 

effects in different types of cancer, and provide powerful tools for analysis of 

various purposes. More importantly it is also promising to integrate multiple 

omics data and conduct system analysis in molecular networks or pathways, 

ultimately leading to more robust clinical use.  
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1.3.2. Omics-based tests translation from research to clinic 

Although high-throughput technologies have been extensively used to 

elucidate the biological mechanisms and reveal molecular subtypes or 

predict prognosis in cancer preclinical studies, only a few of them have been 

successfully adopted into routine clinical care of patients with cancer [96-98]. 

Part of the reason is due to the inevitable time delay of translating an initial 

research test to a well defined and validated test ready for clinical use. 

However there are many significant challenges lying in conducting an 

appropriate, robust research design, given the complexity of the generated 

data, limitations of the techniques or computational approaches, deficiency 

of plausible biological knowledge, and more importantly criteria and 

standards in evaluating the reliability in clinic use are strongly needed [99, 

100]. 

The Institute of Medicine of United States has conducted a comprehensive 

review study by a committee of experts and recommended an evaluation 

process for determining if omics tests are fit for use in clinical trials [99]. The 

committee laid out a three-phase process for the development and 

evaluation of omics-based investigations that aim at clinical use, which are: 

the discovery phase, the test validation phase, and the evaluation of clinical 

utility phase.  

In the discovery phase omics data of relevant biological/clinical interest are 

collected then go through quality check and a predictive model development 

step. In the second stage, built models are validated by a separate dataset, 

which is usually called a training set and test set validation, where the test 

dataset is not available an alternative validation called “cross-validation” is 

performed. However the error rate of the predictive model either by the test 

set or by cross-validation could be overoptimistic, because there can be 

similarities in the way the samples were processed. Thus the third phase – 

an independent clinical dataset is needed to evaluate the clinical utility, 

which will be for the purpose of the candidate test. It is also important to 

provide the full descriptions of the independent dataset, as the performance 

of the model would largely rely on the quality of the dataset. Two “levels of 

evidence” are reported in the review analysis for the independent dataset 
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[99]: lower level – clinical data collected at a single institution using carefully 

controlled protocols, samples from the same patient population, and higher 

level – data collected at multiple institutions. In which higher level of 

evidence best assure the test model is less likely over-fitted and robust 

enough under various situations. 

In addition to the suggestions proposed by Institute of Medicine committee, 

the United States National Cancer Institute working group developed a 

checklist of criteria for researchers to follow when considering generating an 

omics-based predictors in clinical trials [100]. A total 30 criteria covering five 

aspects are listed: specimen issues; assay issues; model development, 

specification, preliminary performance evaluation; clinical trial design; and 

finally ethical, legal, and regulatory issues. This paper sets guide lines in 

assessing the credibility of a predictor as well as pointing out crucial practical 

issues that must be considered during the test, for instance, specimen 

quality, amount, collection, processing and storage conditions, technical 

protocols, reagents and scoring methods used in assay procedures, removal 

of system effects and normalization in model the development stage.  

Therefore our work is carefully carried out under the instructions of above 

guidelines, considering necessary criteria under each step and full details 

are presented in following chapters.  

1.4 Microarray gene expression profiling 

Gene expression profiling (GEP) represents the steady-state level of mRNA 

under a specific biological condition, which is of great value in understanding 

cancer biology as well as a mighty tool for cancer classification and 

prognosis prediction [77, 101-104]. For gene expression represents the 

functional state of the cancer cell that results from the perturbation of cellular 

processes whose underlying cause may be mutations or other changes in 

the genome. DNA microarrays have made gene expression measurements 

available at whole genome scale, and this especially led to the development 

of gene expression signatures that may inform prognosis or treatment [105-

108]. In addition, tumour behaviour is likely to be dictated in a combinatorial 
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pattern by abnormal expression of hundreds of genes, which can potentially 

benefit from global gene expression measurements [109].  

1.4.1. DNA microarray technology 

The initial description of using complementary DNA microarrays to 

simultaneously assess the expression levels of thousands genes was 

introduced by Pat Brown‟s group in 1995 [110]. Since then the microarrays 

have been extensively studied for various purposes in cancer research and 

used as the standard expression analysis platform. The general microarray 

production process involves taking mRNAs (or total RNA) from tissue 

samples, reverse-transcribing the mRNA into complementary DNA (cDNA), 

labelling with fluorescence dye (or radioactive element or other methods) on 

targets, and hybridization onto probes on a microarray slide (Figure 1.2 give 

a simple overview of the processing steps). The fluorescent signal is then 

detected by a scanner, and intensity correlates directly with the relative 

abundance (usually the intensity of the target probe compare to the intensity 

of background intensity that is random hybridization) of mRNA present in the 

sample [110, 111].  

The microarray probes can be prepared in different ways; the two main 

approaches are deposition of DNA fragments and in situ synthesis. In 

deposition-based fabrication, probes are pre-synthesized and then attached 

to the array by a surface engineering technique. And if it is in situ synthesis 

array, probes are synthesized directly on the arrays using photolithography, 

ink-jet printing or electrochemical products. Modern microarrays were 

commercially produced not long after the technology emerged, and several 

manufactures such as Affymetrix and Illumina are leading the market. 

As mentioned above, DNA microarray gene expression profiling has been 

enthusiastically embraced by cancer research communities. There is no 

doubt that enormous contributions have made to almost all aspects of 

cancer research. However there were also several challenges addressed 

and discussed in the past decade. 
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First is the concern regarding to the hybridization reliability and experiment 

reproducibility. By the nature of the technique, microarray data tend to be 

noisy, as the preparation and purification of the targets, along with the 

hybridization and scanning processes can all lead to differences in the 

measurements [112]. Thus it is crucial to perform background correction, 

and a normalization process to remove systematic differences and batch 

effects. Secondly, as researchers often deposit their data in public 

databases, this can be then included in other studies as validation or control 

dataset. However the datasets are usually generated by various 

manufactures or on different platforms, which have great differences in 

manufacturing techniques, labelling methods, hybridization protocols, probe 

length, probe sequence and many other specific features. This raises the 

worry of whether these data can be combined/compared with similar studies 

Figure 1-2 A simple illustration of microarray technique.  
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[113]. Thirdly, apart from the technical obstacles, statistical and 

computational approaches on DNA microarray are also challenging, 

because a typical purpose is to find differentially expressed genes among 

thousands of genes between groups of small sample size, which may cause 

a number of statistical problems for estimating parameters properly.  

These issues are systematically discussed by the microarray quality control 

(MAQC) project in a series of reports [114, 115]. The conclusions include 

that it is possible to achieve high intra-platform consistency as well as high 

level inter-platform concordance as long as the data is processed cautiously 

and normalized appropriately, and also that model performance depends 

more largely on the clinical endpoint rather than different approaches in 

generating the model.  

Another problem in validating research findings for clinical application is that, 

most of the samples investigated in literature are fresh frozen tissue, 

whereas the generally available samples in routine clinical centres are 

formalin-fixed paraffin-embedded (FFPE) tissue, from which it is more 

difficult to extract useful information on DNA microarrays. Recently several 

research groups demonstrated the improvement of detecting biological 

signals in FFPE tissues with new platforms and techniques [14, 116]. In 

summary, molecular classification of cancer subtypes has the potential to 

become a readily implemented clinical test that may guide future treatment 

decisions, particularly in identifying those patients most likely to benefit from 

one of several treatment options just like the situation faced in our study.  

1.4.2. General analysis of DNA microarray data 

General analysis on DNA microarray GEP is usually divided into two parts: 

low level analysis and high-level analysis. Low-level analysis focuses on 

how to get reliable numerical expression data from raw physical data for 

downstream analysis, and that high level analysis refers to statistical 

analysis and functional analysis that is related to a specific research 

question [117, 118].  Below is a brief overview of steps involved in 

microarray GEP studies, for which the methods applied to each step are 

explained in more detail in Chapter 2. 
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Low level analysis mainly includes quality check (QC) and pre-processing. 

Once the raw intensities have been obtained from the scanning and image 

processing steps, the quality of each array must be rigorously assessed 

before undergoing any further analysis. Because even a small number of 

abnormal arrays can completely compromise the interpretation of microarray 

data and confound the downstream analysis, thus the outliers should be 

discarded [119]. On each platform there are certain numbers of control 

probes used to examine the quality of an array. Preprocessing is a step to 

eliminate systematic noise and extract meaningful data. It usually consists of 

three main steps: background correction to subtract background 

fluorescence signal, normalization to remove systematic bias, and 

summarization to extract the probe level expression data. [120] There are 

many preprocessing methods have been suggested as well as various 

articles been published to compare the performance. 

High level analysis usually requires advanced statistic data mining tools to 

investigate problem of interest such as: identifying the differences between 

several groups, classifying tumour subtypes, predicting prognosis results or 

drug response, discovering gene networks and others. Typical analysis 

involves feature selection, class prediction and mechanism exploration [118, 

121]. Feature selection is to find the most differentially expressed genes 

between groups (normal tissue vs. tumour tissue, various cancer subtypes 

or samples with different response to treatment, or samples from a series of 

time points), these genes should be informative to distinguish distinct groups 

or predict patient prognosis.  Class prediction is to apply a mathematical rule 

on a set of signature genes which is able to predict a new sample into a 

proper category; there are a wide range of algorithms that have been 

developed and discussed for this purpose. Mechanism exploration is a 

further step of GEP analysis involves interpreting the function of interesting 

signature genes (for example: gene ontology analysis), finding potential 

pathways or regulation networks or therapeutic targets. This often combines 

other information like gene ontology terms, pathway databases and useful 

bioinformatics tools [118, 122]. 
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1.4.3. Reality in DNA microarray GEP analysis 

Except understanding the general procedure and crucial aspects that need 

careful attention in DNA microarray GEP analysis, it is also important to 

realise the reality: what can and can not a DNA microarray do. Several 

limitations of this technology exist like: (1) microarray uses relative signal 

ratio to decide the expression level, and that probes differ in their 

hybridization properties , thus it‟s unknown what the true relationship 

between the hybridization signal measured and the actual RNA 

concentration is. (2) The use of fluorescently labelled nucleotides to detect 

the intensity is constrained by the chemistry of the dye especially its 

sensitivity to oxidation and light [123]. (3) Moreover, microarray requires pre-

knowledge of probes and is limited to probes that already have annotation.   

Recent advances in next-generation sequencing technologies have 

introduced a new way, RNA-Seq, to measure RNA expression levels. This 

quantifies gene expression by sequencing short strands of cDNA, aligning 

sequences obtained back to the genome or transcriptome, and counting the 

aligned reads for each gene [124]. RNA-Seq has the ability to identify 

transcripts that have not been discovered previously and can quantify both 

very low transcripts (difficult to measure due to background hybridization in 

microarray) and very high transcripts (may lose because limited amount of 

probes on the microarray) [125]. Several studies have demonstrated higher 

sensitivity and reproducibility of RNA-Seq in detecting expression levels [79, 

80, 125]. However RNA-Seq is a relatively new technology; it remains 

necessary to establish appropriate experimental protocols, and problems 

such as read mapping uncertainty and coverage variation still need to be 

overcome [82]. 

In addition, GEP provides only a snapshot of the state of a tumour at the 

time it is investigated. And the molecular characteristics of a tumour depend 

on various environmental factors [123]. Therefore, for a better understanding 

of the cancer biology, combination with other technologies is crucial to 

improve our ability to achieve the investigation purpose and/or assess the 

performance of the analysis. However, no doubt that GEP is proven to be a 

power tool in classifying cancer subtypes.  
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1.5 Research overview 

In section 1.1 to 1.4 we explained the problem we are facing in this project 

which is classifying BL from diffuse DLBCL as well as the role of MYC in 

those lymphomas, and introduced the background of high-throughout cancer 

research, especially provided details of DNA microarray expression data that 

we mainly dealt with. Next in this section we will give a brief overview of the 

work carried out including: the overall study design and analysis procedures, 

the investigation environment and developing tools, as well as descriptions 

regarding data collection and collaborations.  

1.5.1. Study design 

The first objective of the project is to develop a reliable BL and DLBCL 

classifier that is ready to use in clinical practice, assisting doctors in the 

diagnosis and treatment decisions for those intricate cases. The main 

challenges underlying this study include: (1) lack of optimal classifier, there 

are competitive classifiers in the literature based on different methodology 

and gene sets with no clear best choice. Various classifiers have been 

proposed including methods using flow cytometry cell markers to 

differentiate BL and CD10+ DLBCL [126], image analysis method that 

classifying images of lymph sections [127], classifiers that developed based 

on digital gene expression analysis [48, 49], particularly two GEP classifiers 

have been widely recognized [128, 129] (2) cross-platform consistency 

issue, classifiers usually are developed and validated on single dataset that 

generated from various platforms, and it is not clear whether the classifiers 

developed or trained on one expression measurement platform can 

successfully transfer to another, and (3) specimen issue, classifiers 

developed using fresh frozen samples may not work effectively with the 

commonly used and more convenient formalin fixed paraffin-embedded 

(FFPE) samples used in routine diagnosis (usually more noisy).  

To conquer those difficulties, we first explore the optimal classification 

algorithm and gene list applied to a classifier based on the work conducted 

in two previous GEP studies, and then we test the classifier‟s reliability and 

performance cross various platforms with several public datasets by 

comparing different normalization methods and training set options, then 
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subsequently we validate the classifier on FFPE samples generated by our 

collaborators, and evaluate its capability and clinical importance (Figure1-3).  

Another objective of this study is to investigate the role of MYC in non-Burkitt 

lymphomas particularly in DLBCL and BCLU subtype. MYC-associated non-

Burkitt lymphoma has been intensively investigated in recent years, with 

most studies [27, 42-44, 47, 52, 53, 57, 75, 130-132] reporting that MYC 

abnormalities contribute to adverse clinical course, especially when 

concurring with BCL2 and/or BCL6 translocation. It is no doubt of clinical 

importance to effectively identify the MYC-associated cases and develop 

trials specifically for this group. However, the design of this type of study is 

not actually as straightforward as it sounds. Firstly “MYC-associated” is a 

blurry definition that may refer to aberrations at the genetic (e.g. 

translocation, amplification) level, changes in the level of MYC gene 

expression as mRNA or protein, or acquisition of a „MYC associated‟ global 

gene expression pattern, and it is unclear which of these is the most relevant 

[41]. Secondly the MYC gene codes for a transcription factor that is believed 

to regulate expression of 10~15% [133] of all human genes, and plays a 

significant role in various physiological functions. Moreover recent studies 

suggest that MYC targets different genes in different cancer types [34], 

which inevitably add complexity to this subject. Thirdly, although the 

frequency of MYC-associated cases might be higher than initially estimated, 

it still accounts for a rather small percentage of non-Burkitt lymphoma and 

only till recently the assessment of MYC translocation is advised as routine 

in the clinic [41]. A MYC-associated dataset published by a single research 

group usually contains fewer than 50 aberrant samples, which limits the 

statistical confidence of conclusions drawn from this type of analysis. 

Besides, most studies to date focussed on only one single aspect of MYC 

activity, and datasets that contain both genetic (translocation) information 

and gene expression measurements are extremely scarce. 
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Figure 1-3: Work flow of developing and validating GEP Burkitt 

lymphoma and diffuse large B-cell lymphoma classifier.  
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Hence in our study, we collect as many public MYC-associated datasets as 

possible, as well as combining the in-house data generated by our 

collaborators to investigate the keen problems related with MYC-associated 

non-Burkitt lymphoma from an mRNA expression level. First we try to 

identify an MYC translocation expression pattern, and separated them from 

the MYC-negative non-Burkitt lymphomas by generating a GEP classifier. 

Second, we assess the survival impact of MYC mRNA expression as a 

single factor also in the context of other factors. In addition, we located gene 

lists that are potentially MYC-correlated by different means, and then 

explored the biological functions/pathways might be involved. The results 

are summarized in chapter 5. 

1.5.2. Developing environment and tools 

Most analysis of this study is conducted using R [134]and Bioconductor 

[135]. R is a language and environment for data manipulation, calculation 

and graphical display. It can be regarded as a differential implementation of 

S language developed at Bell Laboratories by John Chambers and 

Figure 1-4: Figure 1-4: Investigations on MYC-associated non-Burkitt 

lymphoma.  
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colleagues, and is available as free software under the terms of Free 

Software Foundation and GNU General Public License, that compiles and 

runs on a wide range of operating systems. R provides a variety of statistical 

(linear and nonlinear modelling, classical statistical tests, time-series 

analysis, classification, clustering) and graphical techniques, moreover it is 

highly extensible via the package distribution mechanism. There are many 

packages supplied by R distribution and other useful repositories. The 

analysis in our study is also implemented into an R package and is shared 

for public use.  

Bioconductor is one of the most useful repositories that provides tools for the 

analysis and comprehension of high-throughput genomic data, of which 

most components are distributed as R packages. The Bioconductor project 

started in 2001 and was an initiative for the collaborative creation of 

extensible software for computational biology and bioinformatics [135]. It is 

an open source and open development software with board goals including: 

provide widespread access to powerful statistical and graphical methods for 

genomic data analysis; reduce the barriers of interdisciplinary scientific 

research, and enable the rapid development and deployment of robust, 

extensible software.  

Many of the methods applied in our analysis are implemented in R packages 

and provided by Bioconductor, there are also some other analysis tool such 

as Weka machine learning tool, which is open source software in Java that 

contains a whole range of machine learning algorithms and is well-suited for 

comparing different algorithms, and Gene Set Enrichment Analysis software 

developed by the Broad Institute for microarray data analysis, in addition 

DAVID bioinformatics resources for functional analysis, both of which will be 

discussed in chapter 2.  

1.5.3. Data collection and collaboration  

The public available datasets used in this project are downloaded from GEO 

(gene expression omnibus) database. GEO [136, 137] is a public functional 

genomics data repository that archives and freely distributes microarray, 

next-generation sequencing, and other forms of high-throughput functional 

genomics data submitted by the research community. It provides tools to 
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help researcher query, locate and download studies and gene expression 

profiles of interest. It also offers simple submission procedures and formats 

that support complete and well-annotated data deposits from the research 

community. GEO stores data in a robust and efficient structure that allows 

user to locate the platform, research series, and sample record of the 

expression profiles very easily.  

The clinical test datasets are provided by collaborators including 

Haematological Malignancy Diagnostic Service (HMDS) group in St. James 

teaching hospital of Leeds, National Institute for Health Research (NIHR) 

biomedical research centre, and University College London cancer centre. 

The samples are collected locally from clinical practice as well as from 

previous/on-going clinical trials. The study has the consent of the participant 

and is approved by local institutional review board. 

 



- 29 - 

Chapter 2 

Methods 

In last chapter we gave a short introduction to the analysis related with DNA 

microarray gene expression profiles, and in this chapter we will discuss this 

topic in more detail, especially concerning the methods applied in the studies 

reported in this thesis. Section 2.1 explained why low level analysis like 

quality check and processing are necessary, what can be done to extract 

meaningful biological information from the experiments, and also how to 

effectively combine experiments from different studies and/or different 

platforms by performing cross-platform normalization. Sections 2.2 to section 

2.5 give a general overview of several related high level statistical analysis 

topics (feature selection, classification, survival analysis and functional 

analysis respectively), as well as the mathematical techniques for a few 

widely used methods.   

2.1 Low level analysis  

2.1.1. Quality check  

Quality check of the data obtained in a given experiment is absolutely 

essential, because no valid result can achieved from a compromised array;  

on the contrary such array usually makes the analysis of other arrays more 

difficult. In most cases, problems with the quality of an array come from the 

sample itself. The RNA quality may affect the dye incorporation for spotted 

arrays and the insufficient RNA concentration may introduce a great deal of 

spot-to-spot variation. In addition, the mRNA is susceptible to rapid 

degradation if the sample is not processed properly immediately after 

collection, and degraded RNA will produce high background noise and low 

signal intensities on a microarray. Laboratory methods exist and should be 

used to assess the quality of an mRNA sample, also other laboratory 

methods are avaible for many of the processing steps involved in the 

microarray process.  
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Apart from wet lab quality checks, there are some additional quality control 

steps can be taken at the low-level data analysis stage. The most 

straightforward way is to check the detected probes and their intensity 

distribution. Samples with degraded RNA may lead to overall low intensities. 

Moreover, each array contains various control probes used to detected 

different quality problems. These usually include: 1) housekeeping genes 

that should be expressed in a high level in all samples and could used to 

detect RNA degraded samples; 2) control probes for hybridization, these are 

low-stringency, high-stringency, and Cy3 hybridization probes which expect 

the probes with high-stringency having higher expression then that with low-

stringency; 3) negative control probes, which are hundreds of probes of 

random sequences without targets, these probes should have generally low 

expression and reflect the background signal from non-specific binding or 

cross-hybridization. Other types of control probes may also exist depending 

on the particular array platform. The quality check of arrays is seldom done 

automatically, because this may be closely related with specific experiments. 

However there are tools that help to assess control probes and detect 

outliers. 

2.1.2. Preprocessing 

Preprocessing is a step that extracts or enhances meaningful expression 

data, which contains three main parts: background correction, normalization 

and summarization. The idea behind background correction is that the 

fluorescence of a spot is the effect of a summation between the fluorescence 

of the background and the fluorescence due to the labelled targets. We need 

to subtract the value corresponding to the background:  this can be done by 

estimating the background intensities or by assessing background control 

probes.  

Normalization is a step to remove systematic variation between different 

arrays, because arrays may have different overall intensities owing to many 

causes. The goal is to make sure that different arrays can be compared 

directly and the differences detected between arrays are not introduced by 

artificial steps. There are several methods to conduct normalization, such as 

Lowess normalization method [138], piece-wise linear normalization and the 
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robust multi-array analysis (RMA) method [139] that is popular on Affymetrix 

data. For Illumina arrays, a variance-stabilizing transformation (VST) [140] is 

usually applied to take advantage of the larger number of technical 

replicates. Summarization is the step to generate a single expression for 

each gene from the probe level data, because a gene can be represented by 

a set of probes. There are several methods in common use, ranging from 

simple median or mean value of the probes, or more robust methods 

considering the hybridization strength variety among probes.  

A list of studies has shown that proper preprocessing steps can effectively 

minimize the artificial interferences, and help to obtain reliable biological 

conclusions [141, 142]. Usually preprocessing steps are implemented in 

some R packages and performed together, such as affy [143] package that 

deals with Affymetrix data and lumi [144] package used for Illumina 

experiments. 

2.1.3. Cross-platform normalization 

As researchers often put their data in public database, it would be a great 

advantage if the data can then be re-used by other researchers investigating 

similar subjects. And it is also possible to build universal gene expression 

databases that would compile many different data sets from a variety of 

experimental conditions. However since modern microarrays are 

commercially produced, a considerable amount of differences among 

platforms and manufactures exist: including manufacturing techniques, 

labelling and detecting methods, hybridization protocols, probe length, probe 

sequence and numbers used to present certain gene and so on. A simple 

example of two platforms by Affymetrix and Illumina is showed in Table 2-1.  

Heterogeneity of measurement platforms leads to challenges for the re-use 

of these large data sets, creating limitations for researchers wishing to 

combine them.  More recent studies generally show better cross-platform 

reproducibility than earlier ones. It is therefore worth asking how data from 

different platforms might be combined in an analysis. Several cross-platform 

normalization methods have been developed for the combination of data 

sets collected using different microarray platforms. These methods are Z-

scores, rank scores, quantile normalization (QN) or QN-based methods, and 
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more sophisticated methods such as the cross-platform normalization (XPN) 

method [145], and distance weighted discrimination (DWD) [146] by working 

out the inter-relation among a huge number of genes. Simple methods have 

the advantage of being easy and fast, while more complicated methods can 

be effective in complex experiment situations.[147] In our study we 

compared the performance of Z-score, rank score, XPN and DWD four 

methods, the results are presented in section 3.4. 

Table 2-1: Character variations between two platforms 

 Affymetrix Illumina 

Platform HG-U133 plus 2.0 Human HT-12 v4 BeadChip 

Labelling  Biotin Biotin 

Probe detection 
phycoerythrin-streptavidin-

antibody fluorescence 
strepatavidin-Cy3 fluorescence 

Probe 

fabrication 
In situ photolithography 

Pre-synthesized, immobilized on 

beads, deposited in wells 

Probe type DNA oligonucleotide 
DNA oligonucleotide with 29 base 

address sequence as linker 

Probe length 25 50 

Probe number 54675 29285 

2.2 Feature selection 

The low-level analysis output would give the expression profiles of tens of 

thousands genes (or probes) for a single array, and in common DNA 

microarray studies there are tens to hundreds of arrays analysed together. 

To achieve meaningful information from such high-dimensional data requires 

powerful statistical tools, and that is referred to as high-level analysis. 

Feature selection is usually the first step of the process. It is essential for 

biomarker discovery, clustering and classification problems (e.g. cancer 

subtypes, prognosis categories). Clustering is a type of unsupervised data 

analysis, in a sense that no pre-assigned class is known but to explore the 
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expression pattern to see if samples fall into obvious groups (clusters). Two 

widely used methods are hierarchical clustering [148] and k-means 

clustering [118, 149]. On the other hand classification solves the problem 

related with building a model that can discriminate pre-existing classes 

(predict a new sample to a known class). As the classes are known in 

advance, it is a type of supervised machine learning technique. In this thesis 

we only discuss the classification problem as it is the major object of our 

study. 

2.2.1. Introduction 

Feature selection is a process of deciding a subset of relevant features (in 

this context probes or genes) that is optimal to discriminate different groups. 

The main technique is to remove irrelevant (not informative in any context) 

and redundant (add no more information than current subset) features. The 

challenge in performing feature selection with DNA microarray data is  that 

the number of features are substantially larger than the number of samples, 

and it is difficult to identify statistically informative and reliable features as 

well as to decide the final subset that is best for classification.  

Currently there are three main categories of algorithms to address this 

problem: wrappers, filters and embedded methods [150, 151]. Wrapper 

methods wrap a particular algorithm and train a predictive model of feature 

subsets, each subset is then scored by the number of mistakes made on a 

hold-out set. Wrapper methods usually provide the best performing feature 

set for that particular algorithm [152]. However, they are very 

computationally intensive as a new model is trained and tested for each 

subset, besides the feature subset chosen by wrapper methods can be 

tuned to the particular algorithm. Filter methods do not involve any 

classification algorithm, and often produce a ranked list by calculating the 

correlation, inter/intra class distance or scores of significance tests for each 

class and feature combinations [113]. Filter methods are more 

computationally efficient and do not contain the assumptions of a prediction 

model, so they are more of general use and suitable for exposing the 

relationships between the features. The weakness of filter methods is that 

features are considered in isolation, which may lead to a subset that 
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contains many highly correlated features (redundancy). Embedded methods 

combine the above, that is to perform feature selection as part of the model 

construction process, instead of evaluating the performance of each feature 

subset by counting the mistakes of a predictive model. Other techniques 

(e.g. shrinking part of coefficients or removing low weight features) can be 

used to reduce the computational complexity [150].  

In our study, we are interested in the differentially expressed genes as well 

as constructing a classifier to discriminate cancer subtypes, so we 

conducted feature selection and subtype classification separately. Although 

different methods may give different results, it is always sensible to find the 

genes consistently selected by various methods. In the next section we 

introduced two popular techniques (SAM and moderated t-test respectively) 

in selecting differentially expressed genes of DNA microarray data, while 

readers who are interested in other features selection methods can find 

more details from reference articles.  

2.2.2. SAM 

SAM (significance analysis of microarrays) is a statistical technique that 

developed by a Stanford statistic group [153], which is to find significant 

genes between different groups (normal vs. cancer, different tumour 

subtypes...). For each gene j it assigns a statistic score    taking into 

consideration the relative change of each gene expression level (difference 

between means) with respect to the standard deviation of repeated 

measurement (samples in a specific group). In the context of two classes 

comparison,    is calculated as: 

    
 ̅    ̅  
     

 

Where  ̅   is the mean of gene j for class one, and  ̅   is the mean of gene j 

for class two, and    is the standard deviation according to ordinary t-test: 

    √
(    )    

    (    )    
 

        
(
 

  
  
 

  
) 

In which    is the number of samples in class one, and    is the standard 

deviation of gene j in class1, so are the denotation for    and   .    in the 
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first equation is an estimated variance calculated based on specific problem, 

the purpose of which is to prevent    from being too large when    is close to 

zero (an offset when the standard deviation is biased under smaller sample 

size).  

The significance of the gene is assessed by permutations of the class labels 

(if null hypothesis is true, there is no difference between groups then the 

labels should be random). For each permutation   a corresponding statistic 

score is calculated and ordered  (  )    (  )  ...  (  ) (  is the total 

number of genes), and all permutation orders are used to estimate a 

expected order  ̅( ). At this point order the original statistic score as well  ( ),  

the differentially expressed gene are identified by setting different threshold 

  that  ( )   ̅( )     (or     for significantly down). Importantly for each   a 

FDR (false discovery rate) can be calculated from the percentage of 

significant genes appearing in the permutations statistic scores (if also found  

 (  )   ̅( )     or    , means the significance is random). Thus SAM 

provides a way to select differentially expressed gene as well as to assess 

how reliable the genes are. 

This method has more ability than just two groups comparison, and the 

details can be found in the users guide and technical document [154], also it 

is implemented in a samr R package for public use. 

2.2.3. Smyth moderated t-statistic 

Another commonly used method is a moderated t-statistic approach 

proposed by Smyth et.al [135], which replaces the usual standard deviation 

of ordinary t-statistic with a posterior residual standard deviation. The model 

is set up in the context of general linear models for each gene   and 

comparing groups. Assume in an experiment of   arrays, the expression 

vector of  th gene is   
  (             ), the linear model is  (  )      

with    (  )      
 , where   is a design matrix,    is a coefficient factor, 

and   is a known weight matrix. The differences between groups are 

defined by      
   , where    is the contrast matrix to represent 

compared group, and if the null hypothesis is true, for each comparison  , 

    equals to zero (one comparison for two groups).  
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Fitting the linear model to the expression values for each gene will obtain 

estimators  ̂  of   ,   
  of   

 , the estimators of contrast  ̂  and its variance 

   ( ̂ )can also be derived by the    definition. There are two assumption 

on the underlying distribution: (1) the contrast estimators  ̂  are normally 

distributed; (2)    ( ̂ ) and the residual variance   
  follow a scaled chi-

square distribution. At this point a ordinary t-statistic can be applied with the 

 ̂   and    ( ̂ ). 

As the same model is fitted to a large number of genes, a hierarchical 

Bayes‟ model is set up to take advantage of such information in assessment 

of differential expressions, and it is assumed the genes are independent of 

each other. The key to improve statistic tests is to describe how the 

unknown coefficients    and unknown variances   
  vary across genes. This 

is done by assuming prior distributions for a set of parameters (normal 

distribution and chi-square distribution). Then the posterior residual variance 

 ̂ 
  is adjusted under the hierarchical model. 

 ̂ 
   

    
      

 

     
 

Of which   
  and    are the prior estimated variance and degree of freedom, 

  is the degree of freedom for gene  . This way the adjusted  ̂ 
  helps to 

balance the   
  when it is estimated from relatively few samples. 

This method is available in R limma package, which outputs a p-value 

toptable for differentially expressed genes.  

2.3 Classification methods 

Having selected a set of genes that are useful for distinguishing two or more 

classes of samples, we can then predict the category for new samples 

based on their expression profiles. The approach of developing a 

mathematical rule that can effectively decide which category a new sample 

belongs to based on the existing samples‟ expression profiles is called 

classification (or supervised learning in machine learning terminology). 

Generally classification involves training and testing in two stages. In the 
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training stage, mathematical rules (classification algorithms) are trained 

based on the expression profiles of (or part of) existing samples  (also called 

training data), and in testing stage the performance of the algorithm is 

assessed by samples not used for training (an independent dataset or by 

hold-out validation or by cross-validation method).  

2.3.1. Introduction 

There are a wide range of classification algorithms that have been used in 

GEP analysis,[113, 155] including (1) classical linear methods: Fisher‟s 

linear discriminant analysis (LDA), compound covariate predictor [156], 

logistic regression, Naïve-Bayes classifier, weighted voting; (2) methods 

based on the class distance or centroid: nearest centroid, shrunken centroid 

[157], k-nearest neighbours (KNN); (3)decision tree methods and random 

forests; (4) artificial neural networks: multilayer perceptrons, radial basis 

function networks, probabilistic neural networks; and (5) support vector 

machines (SVM).  

Here we give a brief description of above classification algorithms. In typical 

linear classification algorithms, the class label of a sample (or an instance) is 

viewed as a function of a linear combination of the features (feature vector): 

 ( ⃗⃗    )    ⃗⃗⃗     ⃗⃗  , where there are   classes, and  ⃗⃗   is the feature vector of 

  instance,  ⃗⃗⃗   is the weight vector for each feature corresponding to class  , 

the class of a new sample ⃗⃗  is decided by the value of  ( ⃗⃗   ). Different 

algorithms differ in determining the weight vector. For example LDA method 

assumes the instances in different classes are normally distributed with 

equal group covariance, hence the weight vector are yield by maximizing 

means between classes and minimizing variance within each class. KNN 

method is a nonparametric classification by estimating the class distributions 

of its k nearest neighbours: this is under the assumption that the 

characteristics of members of the same class should be similar, and 

instances located close should be members of the same class.   

Decision trees consist of internal nodes and leaves with each leaf 

representing a class and each node acting as a simple splitter that divides 

the instances. At each node a cost function is applied to best separate the 

data (usually measure the “impurity” of the subsamples implicitly defined by 
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the split), the procedure is performed recursively until some stopping criteria 

is met.  

Artificial neural networks are machine learning methods usually consist of a 

number of interconnected processing elements (neurons) arranged in layers. 

The input to the network is the features of an instance and output is the 

class labels, and there are a few hidden layers in the middle. The output 

from the input of each layer is implemented in an activation function, and the 

size and weight of the network are adjusted by the back-propagation 

algorithm [158] (where forward and backward passes are performed until a 

stopping criteria is met).   

The Support vector machine has raised a great popularity in classification 

problems, more importantly it is reported to be robust and reliable and 

usually gives the best performance comparing to other algorithms [113]. 

SVM is also proved to be the optimal algorithm in our study, and the more 

detailed introduction is given in following section.   

2.3.2. Support vector machines 

Support vector machines are learning systems that construct a hyperplane in 

a high dimensional feature space, which has the largest distance (so-called 

margin) to the nearest training data point of any class, since in general the 

larger the margin is the lower the generalization error would be. If the feature 

space is two dimensional then we are finding a line to best separate the 

classes, if it is three dimensional then we are finding a plane and the same 

goes finding a hyperplane in a high dimension feature space. A simple two-

dimension two-class example is illustrated in Figure 2.1. Both the green line 

and the red line can separate the two classes, but the red line has the 

largest distance (margin) to the nearest points in each class (black circle and 

triangles in the figures on the margin, also called the support vectors). 



- 39 - 

For a set of data points          ,  ⃗⃗     
  is the feature vector and 

    *    + is the class label for each instance. A hyperplane is denoted as 

 ⃗⃗⃗    ⃗⃗     , where  ⃗⃗  is a set of points in feature space,  ⃗⃗⃗  and   are the 

weight vector and offset of the hyperplane. The problem of finding the 

hyperplane is an optimization problem of finding the maximum margin (more 

commonly finding soft margin when considering mislabelled instances). This 

is solved by working out the following function: 

   

 ⃗⃗⃗     
 * 
 

 
 ‖ ⃗⃗⃗  ‖    ∑  

 

 

+ 

subject to    ( ⃗⃗⃗    ⃗⃗   )      ,      

where   is a constant and    are a set of non-negative variables called “slack 

variables”, which measure the degree of misclassifications of the separation. 

Figure 2-1: An example of constructing SVM two-category 
classification model in a two dimensional space.  
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From an easy understanding, the function can be viewed as a trade off 

between the first part which maximizing the distance of the margin and the 

second which minimizing the classification errors.  

A great advantage of SVMs is that it applies a dual form representation in 

solving the optimization problem, which makes it only relevant with the 

support vectors on the margin, and only the scalar products of the instances 

needed to be calculated. In addition, the original linear classifier can be 

easily transformed to a non-linear classifier by replacing the scalar product 

with so called “kernel trick”. The underlying theory is that the kernel function 

transforms the feature space to a higher dimensional space, where a 

hyperplane can be found even if the classes in the original space are not 

linearly separable. For a kernel function to behave like the scalar product 

and to ensure the transformed feature space is of geometrical meaning, 

there are several properties to fulfil (such as the kernel function must be 

symmetric and follow the Cauchy-Schwarz inequality, also the function 

needs to follow Mercer‟s Theorem, details can be found in reference book 

[159]). Some common used kernel functions include:  

Gaussian radial basis function:  (       )     (  ‖       ‖
 
)       

Polynomial function:  (       )  (    
 
      )

      

Sigmoid kernel function:  (       )       (    
 
      ) 

The mathematical details are beyond what we discussed in this thesis, and 

readers who have interests can found references [159-161] useful. SVM 

algorithms are integrated in a library LibSVM, which can be easily used from 

other programs. 

2.3.3. Evaluation of classifier 

Once the features are selected and a mathematical algorithm is taken, a 

classifier is built for classifying samples into different groups. However 

inadequate performance caused by insufficient information or overfitting may 

occur due to a lot of reasons. Whether the classifier serves as a general 

classification model it can be assessed by a blind validation (an independent 

data set). However if independent data set is not available, a cross-
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validation method (e.g. leave-one-out approach) or hold-out method can be 

used to estimate the performance of a classifier.  

General concepts in evaluating the prediction results are: true positive (  ) 

and true negative (  ) where outcome classes are the same with pre-

labelled classes, while false positive (  ) and false negative (  ) denote the 

situation where pre-labelled negative but incorrectly classified as positive 

and vice versa. The detailed number of             are summarized in 

confusion matrix. Various performance criteria used including: 
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,  
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Sometime we also use           also used to describe             and 

            together.  

            
                         

                        
 

2.4 Survival analysis 

Another intuitive way to evaluate the performance of a classifier is to 

compare the treatment response (for instance: remission or relapse) or alive 

time since diagnosis between predicted classes. If it is known that patients 

from different cancer subtypes show distinct outcomes and that is also 

observed in the classified categories, then this could be a persuasive proof 

that the classifier is able to recognize relevant biological / clinical variants. 

This type of study is called survival analysis, which examines the probability 

of event (patient death, relapse) to occur after a fixed period of time. [162] 

Survival analysis has a widely use in clinical research to evaluate the 

prognostic impact of a biomarker (which could be a classifier), or to assess 

the response to a new treatment, or to build a survival model for certain type 

of patients. It is also introduced into other areas such as engineering (named 
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reliability analysis), economics (named duration analysis), and sociology 

(named event history analysis).  

2.4.1 Introduction 

Survival analysis is a time to an event problem, which attempts to answer 

questions like: what is the probability that a patient is still alive after a certain 

time? Is there a survival probability difference between two groups of 

patients? What are the factors that affect the survival probability and further 

to what extent the factors increase or decrease the probability? This is 

usually measured by monitoring the survival time of a large patient 

population under different conditions.  However, there are several difficulties 

in performing this type of analysis. First it is usual that up some patients may 

not have the event of interest at the end of the monitoring time (follow-up), 

and thus their true time to event is unknown. Further, not like in other 

statistic analysis, the survival time is complex and seldom normally 

distributed, while the survival data of patients are usually skewed to many 

early events and relatively few late ones. [163]  

Before introducing several analysis methods, we first explain some basic 

concepts. Survival data are generally described in terms of two probabilities, 

survival and hazard. Survival probability (also called survival function)  ( ) is 

the probability that an individual survives from the start point of the study 

(diagnose time) to a specified time t. The hazard is usually denoted by  ( ) 

and is the probability density that an individual who is under observation has 

the event at time t. [163] Thus the survival is the cumulative probability of 

non-occurrence until certain time, while hazard reflects the event occurring 

rate; it is important because this provides insight into the conditional incident 

rate and a approach to form a survival model.  

Another important concept is called censoring, which deals with the difficulty 

that the actual event time of an individual might not be known. This may 

caused by: (1) an observed individual hasn‟t experienced death by the time 

of the study closed; (2) individual is lost to follow-up during the study period; 

(3) individual suffers another event which makes further follow-up 

impossible. This situation is often called right censoring, and is the most 

common type. There are also left censored and interval censored type of 
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data, which is less common and not illustrated here. The import assumption 

is that censoring is not related to the probability of an event occurring (does 

not affect the occurrence rate). Although none of these subjects suffer the 

event of interest, the fact that they contribute time without suffering an event 

is vitally important [162]. 

2.4.2 Kaplan-Meier survival estimate 

Kaplan-Meier method is a simple nonparametric estimator of survival data 

that doesn‟t make any survival distribution assumption, and is one of the 

most widely used techniques [164]. This method is used to estimate the 

proportion of people who survive after a specific time point. The survival 

function is calculated based on the number of surviving patients at each 

point and the cumulative number of events have occurred up to that point. 

For a sample of size k, let the observed times be          (   )      

The probability of being alive at time    is a conditional probability on     ,    

is the number of individuals alive just before   , and    is the number of event 

at time   , then the survival function is described below: 

 ( )        ( )    

 (  )    (    ) (  
  
  
) 

This is very easy to understand that the probability of an individual will 

survive till a given time is the cumulative probability of survival since the 

beginning and the probability of survival drops only when an event occurs. 

The calculation and presentation of the Kaplan–Meier estimates are usually 

displayed in a life table; more often a survival curve (survival plot) is used to 

present the data. Especially the survival curve can be used to compare 

survival differences between different groups. Also the significance of the 

survival difference can be checked by statistic methods, among which log-

rank test [165] is most commonly applied [163].  

Whilst this technique is easy to use and interpret, it has its limitations. 

Although differences between groups can be seen and their statistical 

significance also can be tested, no estimate of the actual effect size is 

quantified as it makes no assumptions about the underlying distribution and 
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no attempt to describe the effect numerically. Also more often we are 

interested in the survival effects of multiple factors (multivariate / covariate), 

where this approach is limit by single factor. In addition where there are 

imbalances between groups, the findings will be prone to confounding and 

bias. Moreover the log-rank test is only applicable to categorical effect 

factors, which makes it rather limit on continuous factors. 

2.4.3 The cox proportional hazard model 

There are several parametric models that make assumptions about the 

distribution (shape) of the hazard function and the impact of variables on 

survival data, such as exponential model assumes the hazard is constant 

over time, while Weibull and Gompertz models assume the hazard is always 

increasing or decreasing as time forwards, and Log-Logistic assume the 

hazard either rises to a peak point then decrease or always decreases.[163] 

The estimated shape of the hazard is modelled by responding parameters.  

However it is rather difficult to choose a model that is suitable for a certain 

scenario, and the most widely used technique at present is a semi-

parametric model developed by Sir David Cox [166] called the Cox 

proportional hazard model, which makes a statistical assumption on the 

effect factors (covariates) but no assumption on the underlying shape of the 

hazard. The model is written as  

 ( )   (  )      {                } 

where the hazard function  ( ) depends on the baseline hazard function 

 (  ) and a set of covariates (          ). The impact of the covariates is 

measured by coefficients(          ), and it is assumed to be proportional 

that is the hazard of the event in any group is a constant multiple of the 

hazard in any other. The quantities    (  ) are called hazard ratios, and give 

a way to quantify the covariates impact, which a hazard ratio is greater than 

1 indicates a covariate is positively associated with hazard function (event 

occurrence probability). 

The validity of the proportional hazard assumption could be test by “log-

minus-log” plot or log(−log(survival)) plot, which is the logarithm of the 

cumulative hazard function in each group against the logarithm of time, and 
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it should give lines that are parallel [163]. Also the covariates and 

interactions could be tested by adding interaction terms. 

2.5 Mechanism analysis 

The ultimate goal of gene expression analysis (or any type of bioinformatics 

analysis) is to understand and describe the basic biology questions, such as 

what are the molecular processes and pathways related to a certain cancer 

(disease), and this is usually explored by explaining the meaning of the 

genes that are chosen with specific standard (e.g. differentially expressed 

between two phenotypes). The Gene Ontology (GO) Consortium [167, 168] 

developed three structured, precisely defined, controlled vocabularies 

(ontologies) to describe gene and gene products in terms of their associated 

biological processes, cellular components and molecular functions in a 

species-independent manner. Each node in the GO ontologies are linked to 

other kinds of information, including the many gene and protein keyword 

databases such as SwissPROT [169, 170], GeneBank [171], PIR [172] to 

keep up with the rapid changing of these biological knowledge.  

Therefore a standard strategy for interpreting the biological meaning of a list 

of genes derived from high throughout experiments usually conducted by 

first mapping the genes to associated Gene Ontology (GO) terms, and 

then statistically highlighting the most over-represented (enriched) GO terms 

in the list. Enrichment is a promising analysis that increases the likelihood for 

investigators to identify biological processes most pertinent to the biological 

phenomena under study. There are a number of similar public available tools 

for this type of analysis, including but not limited to GOMiner [173], GOstat 

[174], GFINDer [175], GSEA [176] and DAVID [177]. Here in our study, we 

applied two currently commonly used tool GSEA and DAVID, and a brief 

introduction is given in the following section. 

2.5.1. Gene set enrichment analysis tool 

Early methods for gene expression analysis focus on finding a set of genes 

that are differentially expressed between distinct phenotypes. However there 

are several limitations such as being difficult to interpret the biological 

meanings, and where to draw the cut-off for the number of genes that are 
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significant, also it is believed that some disease related genes may have 

modest changes. Hence methods based on gene sets are proposed to take 

more use of the gene expression data. The gene sets are those have similar 

molecular function, or involved in the same pathway or known to be 

coexpression from previous experiments. A particular method named Gene 

Set Enrichments Analysis (GSEA) [176] was developed by Subramanian et 

al in 2005.  

The basis strategy is first rank all genes by the magnitudes of their 

differential expression into a list  , and then determine whether gene 

members from a gene set   tend to occur toward the top (or bottom) of the 

list    (so called enriched). For each gene set  , an enrichment score (  ) is 

calculated according to a weighted Kolmogorov–Smirnov-like statistic (not 

explained here), and then the significance level of the     (nominal p-value) 

is estimated using an empirical phenotype-based permutation test. Finally 

the    is adjusted by multiple hypothesis test to yield a normalized    (   ), 

and the false discovery rate (   ) corresponding to each     is computed 

to evaluate the significance of that specific gene set.  

GSEA tool takes two main files as input: a file containing expression values 

of all the genes and another file indicating the phenotype of the cases to be 

compared. The enrichment score is evaluated using a collection of gene sets 

repository MSigDB Molecular Signatures Database[178], which is one of the 

most widely used knowledgebase containing annotated sets of genes 

involved in biochemical pathways, signalling cascades, expression profiles 

from research publications, and other biological concepts. Users can choose 

the gene sets from 7 available collections as well as provide their own gene 

sets to run the enrichment analysis. 

GSEA presents a number of benefits in gene expression data analysis, for it 

focus on gene sets rather than significant genes, where the gene sets may 

have a biological lead to potentially involved molecular functions, pathways 

or regulatory networks and others. This is an effective way of linking prior 

knowledge and uncovering interesting new findings.        
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2.5.2. DAVID functional annotation tool 

DAVID (Database for Annotation, Visualization, and Integrated Discovery) 

[177] provides a set of data mining tools that systematically combine 

functionally descriptive data with graphical displays to promote discovery 

through functional classification, biochemical pathway maps, and conserved 

protein domain architectures. The DAVID bioinformatics resources consists 

of an integrated biological knowledgebase built around the DAVID Gene 

Concept, which is a single-linkage method enabling a variety of publicly 

available functional annotation sources to be comprehensively integrated 

and centralized by the DAVID gene clusters [179]. Three main functional 

analytical tools [180] are: 

Functional annotation chart that provides typical gene term enrichment 

analysis, to identify the most relevant (overrepresented) biological terms 

associated with a given gene list. DAVID owns extended annotation 

coverage over 40 annotation categories, including GO terms, protein–protein 

interactions, protein functional domains, disease associations, bio-pathways, 

sequence features, homology, gene functional summaries, gene tissue 

expression and literature [179]. The annotation categories can be flexibly 

included or excluded from the analysis on the basis of a user's choices. In 

addition, users can define their own gene population backgrounds and tailor 

the enrichment analysis to meet specific analytic situation. 

Functional annotation clustering that provides the ability to explore and view 

functionally related genes together as a unit, so that to concentrate on the 

larger biological network rather than at the level of an individual gene. 

Currently the majority of co-functioning genes may have diversified names 

and that genes cannot be simply classified into functional groups according 

to their names. Hence a set of novel fuzzy clustering techniques is adopted 

to cluster the genes that are somewhat heterogeneous, yet highly similar 

annotation into functional annotation groups. This type of grouping of 

functional annotation is able to give a more insightful view of the 

relationships between annotation categories and terms compared with the 

traditional linear list of enriched terms.  
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Another analysis tool is functional annotation table, which is a query engine 

for the DAVID knowledgebase, without statistical calculations. For a given 

gene list, the tool provides the corresponding annotation for each gene and 

present them in a table format. This is useful especially when investigators 

want to closely look at the annotation of certain highly interesting genes. 

It is a popular function analysis tool and has been widely used by other 

researchers, here we use DAVID to investigate the biological mechanisms of 

MYC in lymphomas.   
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Chapter 3  

Development of a Burkitt lymphoma classifier 

Many efforts have been made to distinguish Burkitt lymphoma and diffuse 

large B-cell lymphoma due to its clinical importance, especially on the cases 

where conventional diagnosis is difficult. And the successful use of gene 

expression profiling in classifying patients into different cancer subtypes has 

stimulated researchers to solve this problem from molecular level. Typical 

approaches of developing a GEP classifier includes first finding a set of most 

differentially expressed genes between pre-assigned BL and DLBCL groups, 

which were usually diagnosed by clinicians according to certain criteria (e.g. 

morphology, phenotype), and then adapting an appropriate classification rule 

on the gene set so that it can predict which category a new case belongs to.  

Two studies performed by Dave et al. [128] and Hummel et al. [129] 

respectively have done excellent work related to this aspect: each identified 

a set of signature genes and applied a classification method that can 

accurately recognize BL from DLBCL. Although both studies have 

established a molecular definition of Burkitt lymphoma and successfully 

distinguished it from DLBCL, there are vast differences in the developing 

stages including gene sets and methodologies applied in the classifier, and it 

is not clear which is a better option and to what extent the classifiers agree 

with each other. In addition, both classifiers were cross-validated on their 

own developing datasets only, thus it is not known how they would work on 

independent datasets generated by other groups and/or on different 

platforms.  

In order to develop a robust classifier that is able to assign samples into 

correct lymphoma categories, despite of the platforms where the samples 

are generated from, we performed a comprehensive comparative analysis in 

this study. First a variety of classification algorithms and gene sets were 

thoroughly investigated so as to build a classifier that best recapitulates the 

classification results from the previous studies. Then the transferability of the 

new classifier among datasets on different platforms was assessed with a 
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series of cross-platform normalization methods. Finally we compared the 

stringency of BL definition adopted in the two published classifiers and 

carefully adjusted the training set for the new classifier.  

3.1 Datasets summary 

Burkitt lymphoma is a relatively rare type of non-Hodgkin lymphoma and the 

gene expression data available is rather scarce. A total of six datasets were 

used in this chapter, all of which were downloaded from the Gene 

Expression Omnibus (GEO). Two of them were generated by the groups that 

developed the previous classifiers, and here were used as the development 

datasets to examine the algorithm and gene set options for the new 

classifier. The other four datasets were used to test the classifier‟s 

transferability on various platforms. The data sets used in this chapter are 

summarized in Table 3-1. 

GSE4732_P1 is the data set produced by the Dave group [128] on a custom 

oligonucleotide Affymetrix microarray, with 2524 unique genes that are 

expressed most differently among various types of non-Hodgkin lymphomas. 

There are 303 samples in the dataset, which were classified into 54 BL and 

249 DLBCL subtypes: 91 ABC, 95 GCB, 30 UCL also 33 PMBL (primary 

mediastinal B cell lymphoma). The Hummel dataset [129] GSE4475 was 

performed on the Affymetrix U133A Gene Chip and a total of 221 samples 

(containing one replicate sample) were classified into 44 mBL (molecular 

Burkitt lymphoma) and 177 non-mBL plus 48 intermediate cases.  

The additional four validation datasets are: a subset of the samples from the 

Dave dataset performed on another platform containing 33 BLs and 66 

DLBCLs, here referred as GSE4732_P2; GSE17189 [181] which is an HIV-

related dataset that consists of 14 HIV-related DLBCLs and 3 HIV-related 

BLs; and 15 samples from GSE26673 [182] that include 13 endemic BLs 

(EBL) and 2 HIV-related DLBCLs. All the above three datasets were 

generated from experiments on the Affymetrix HG-U133 plus2.0 Gene Chip. 

The last dataset, GSE10172 [183], from the Affymetrix HG-U133A Gene 

Chip contains 36 BL and paediatric DLBCL samples.   
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Table 3-1: Datasets summary 

GEO No. Group Sample Probe Platform 

GSE4732_P1 Dave 54 BL, 249 DLBCL 2745 
Custom Affymetrix 

Lympho-Chip 

GSE4732_P2 Dave 
33 BL and 66 DLBCL 

subset of GSE4732_P1 
54675 

Affymetrix HG-U133 

plus2.0 

GSE4475 Hummel 
44 mBL, 48 intermediate, 

129 non-mBL 
22283 Affymetrix HG-U133A 

GSE10172 Klapper  
13 mBL, 9 intermediate, 14 

non-mBL 
22283 Affymetrix HG-U133A 

GSE26673 Piccaluga 13 EBL, 1 sBL, 2 HIV-BL 54675 
Affymetrix HG-U133 

plus2.0 

GSE17189 Deffenbacher 
4 HIV-BL, 13 HIV-

DLBCL 
54675 

Affymetrix HG-U133 

plus2.0 

3.2 Choose optimal classification algorithm 

Classification on microarray expression data is a challenging task due to the 

typical high number of genes and small number of samples. A well 

performing method should learn a classification model from the training set 

and further predict new samples into certain class under a low error rate. 

Popular methods used in gene expression data include Bayes classifiers, 

classification trees, neural networks, support vector machines and some 

other discriminate analysis schemes (this is also discussed in chapter 2). 

Although many methods have been proposed and new methods are 

continuingly being developed, most of them were only applied in one single 

dataset, and thus the advantage against other methods is somewhat less 

convincing. In addition, it is difficult to find an algorithm that works best in all 

cancer type classification problems, and the choice of gene selection criteria 

also has effect on performance. In our work we considered a list of well-

acknowledged algorithms in the context of classifying BL from DLBCL using 
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two separate datasets based on the gene signatures developed by previous 

studies. 

3.2.1. Algorithms used in previous studies 

Both of the previous studies designed their own method to classify BL and 

DLBCL. Dave group built a two-stage three pair-wise Bayesian compound 

covariate predictor, which the samples are classified to a category by 

different gene sets used in the two stages, and three pair-wise predictions 

are BL against three DLBCL subtypes: ABC, GCB and PMBL respectively. 

The genes used in each stage are: (1) MYC-target genes identified by RNA 

interference, (2) 100 genes that have the most significant t-statistic between 

the pathologists agreed BL and each DLBCL subtype. For each sample, first 

a linear predictor score was calculated, then Bayes rule was applied to 

estimate the probability of belonging to one of the two categories, and a 

sample is classified as BL only when it is predicted as BL in both stages of 

the predictor and in each of the three pair-wise comparisons.  

On the other hand Hummel and colleagues defined a molecular BL class by 

implementing a core group extension method. They used 8 classic BLs that 

met all World Health Organization (WHO) criteria as core group to generate 

a molecular Burkitt lymphoma signature index, and calculated the posterior 

probability of the other samples belonging to the core group. If the probability 

of BL was over 0.95, the sample was assigned to molecular BL named mBL, 

and if it is less than 0.05 the sample was assigned to non-mBL; the samples 

with probability in between were summarized in an intermediate class.  

While these two methods represent useful developments, it is not clear that 

they are the best possible algorithmic choices. Here we compared 10 widely 

known algorithms: Naïve Bayes, Bayes Net, LibSVM, SMO (sequential 

minimal optimization), Neural Network, RF (random forest), FT (function 

tree), LMT (logistic model tree), REP (reduced-error pruning) Tree and J48 

pruned tree, for their performance on predicting above two datasets. 

Generally classification algorithms are evaluated by the agreement 

percentage with the high confidence samples diagnosed by experienced 

experts. However, in this study the algorithms were evaluated according to 
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the original assigned class by previous classifiers, with the simple aim of 

generating methods able to recapitulate previous results. 

3.2.2. Preparation of the data sets  

The Hummel dataset was processed the with affy package [143] from raw 

data and expression summarization done with the rma algorithm [139] with 

quantile normalization. Then the 58 classifier genes consisting of 74 probes 

picked in the original classifier were extracted and put into Weka machine 

learning tool.  The Dave dataset did not use a standard Affymetrix array and 

the raw data cannot be processed with the affy package; hence the text 

format data which contain the expression values that have been 

preprocessed and normalized by the author already was used in the 

analysis. Of the 217 genes used in Dave‟s classifier, there were 9 genes for 

which we were unable to locate the correspondent probes according to the 

author‟s annotation file; further mapping on the HGNC website identified 

another 6 genes from the dataset, so finally 214 genes corresponding to 234 

probes were extracted and put into Weka for algorithm comparison.   

3.2.3. Comparison of different algorithms of multi-classification 

The classifiers built by various algorithms were examined both on multi-

classification (5 classes in the Dave group and 3 classes in the Hummel 

group) and binary-classification (BL compare to DLBCL). We used the 

algorithm implemented in Weka version 3.6, with all parameters set to 

default except giving the number of initial trees for RF as 100. All classifiers 

were evaluated by 10-fold cross-validation within each dataset, and the 

samples predicted differently from the original class were regarded as mis-

classified cases.  

The general overview of the classification results by each method on dataset 

GSE4732_P1 and GSE4475 is shown in Figure 3-1 A and B respectively. In 

both datasets most of the algorithms can separate BL from others with minor 

differences.  
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Figure 3-1: Prediction results overview of the classifiers built with a 
list of algorithms and tested on GSE4732_P1 and GSE4475 multi-
classification. 
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However there are clear differences in the ability of the algorithms on 

categories besides BL. The last two methods J48 and REP Tree have 

difficulty distinguishing DLBCL subtypes in the GSE4732_P1 dataset or the 

intermediate cases in dataset GSE4475. The two Bayes methods tend to 

assign more cases as unclassified in GSE4732_P1 or intermediate in 

GSE4475, while the three tree methods, especially RF, seem to classify the 

unclassified cases into ABC and GCB type in GSE4732_P1 and some 

intermediate case as non-mBL. LibSVM, SMO and Multilayer-Perceptron 

gave the classification more close to the actual class (classes defined by 

previous studies). 

The detailed performances of all classifiers are compared in Figure 3-2. In 

multi-classification, the overall accuracy does not give much information on 

how the classifier performs on each class; hence the F-measure of each 

class is used to assess the capability of the algorithms. F-measure considers 

both the sensitivity and the specificity of a particular class, and it equals to 1 

when the classifier recognizes all the cases belong to this class meanwhile 

all the cases classified into this class are actually originate from the class. 

The result of dataset GSE4732_P1 shows that most algorithms can 

accurately distinguish BL from all DLBCL categories. While the algorithms 

perform less effectively within DLBCL subtypes, and the F-measures of 

different algorithms vary widely. However LibSVM and Multilayer-Perceptron 

methods still work rather well with an F-measure over 0.85 in all classes. 

When we tested the algorithms on dataset GSE4475, similarly almost all 

algorithms except J48 and REPtree can classify mBL and non-mBL cases 

with F-measures close to 0.95, but again the performance drops significantly 

on the intermediate cases. This could mainly be because the intermediate 

category is rather heterogeneous, as it contains the cases where the authors 

could not confidently assign as BL or DLBCL. Nevertheless we can see that 

LibSVM, SMO showed better results than other algorithms with F-measure 

over 0.8.   

To summarize the results from both datasets, under default parameters the 

performance of the above algorithms differ significantly by 10-fold cross-

validation. J48 and REPtree gave the least satisfactory results, while 
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LibSVM clearly built the most trust worthy classifier that reproduces the 

original classes.  

 

Figure 3-2: F-measure for each class of the classifiers built with a list of 
algorithms and tested on GSE4732_P1, GSE4475 multi-
classification. 
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3.2.4. Comparison of algorithms in binary-classification  

Next we assessed the efficiency of the algorithms in the binary classification 

situation, where all cases were assigned into BL or DLBCL, and this is also 

for the purpose of combining previous work and comparing between the two 

studies in the follow up analysis. In the Dave data all DLBCL subtypes were 

put into DLBCL class, so there are 54 BL samples and 249 DLBCLs. Two 

standards were employed in reassigning the 48 intermediate cases in the 

Hummel data: the „strict‟ standard of BL definition, which put all intermediate 

cases together with the non-mBL cases that leads to 44 BL and 177 DLBCL; 

and the „wide‟ standard assigns the cases by the BL probability generated by 

the Hummel classifier (probability greater than 0.5 BL, less than 0.5 DLBCL), 

which gives 59 BL and 162 DLBCL. The classifiers performance is shown in 

Figure 2-3. 

In dataset GSE4732_P1, it is possible to achieve a very high DLBCL F-

measure around 0.98 by all algorithms and an also high BL F-measure 

around 0.94, except J48 and REPtree algorithms. In dataset GSE4475 we 

investigated two definitions of BL: using the strict definition again very high 

DLBCL F-measure and BL F-measure are possible, while with the wider 

definition, the F-measure of DLBCL and BL drop down a little, indicating that 

the classes are less well defined in terms of gene expression when this 

standard is adopted. And the LibSVM algorithm showed clearly better 

performance in most situations. 

The overall accuracy of the classifiers built under different conditions is listed 

in Table 3-2. And the average accuracy of the five conditions is compared 

among the algorithms. Given the level of the uncertainty in the actual 

classification of intermediate cases, we consider that these results 

reproduced the previous work at a level sufficient to support further 

investigations. Based on relative performance, LibSVM showed the best 

overall accuracy, and this is also consistent with the reports by many other 

groups that SVM usually gives the best performance. In addition LibSVM is a 

well-implemented library that can be easily used most working 

environments. Thus we chose support vector machines (SVMs) that 

implemented in LibSVM as our classifier method.  
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Figure 3-3: F-measure for each class of the classifiers built with a 
list of algorithms and tested on GSE4732_P1, GSE4475 binary-
classification.. 
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Table 3-2: Accuracy of 10-fold cross-validation for 10 algorithms in two data sets  

Algorithm GSE4732_P1: Multi-Class GSE4475: Multi-Class GSE4732_P1:Binary-Class GSE4475: Strict GSE4475: Wide Average 

LibSVM 0.8845 0.9186 0.9901 0.9819 0.9639 0.9478 

SMO 0.8845 0.9277 0.9868 0.9774 0.9503 0.9453 

MultilayerPerceptron 0.8911 0.896 0.9868 0.9729 0.9639 0.9421 

RandomForest100 0.8383 0.9322 0.9835 0.9819 0.9639 0.9399 

FT 0.8647 0.8824 0.9835 0.9774 0.9367 0.9289 

LMT 0.8251 0.8688 0.9901 0.9729 0.9457 0.9205 

BayesNet 0.7723 0.896 0.977 0.9774 0.9593 0.9164 

NaiveBayes 0.7756 0.8824 0.9835 0.9774 0.9548 0.9147 

J48 0.7327 0.8191 0.9703 0.9277 0.905 0.871 

REP tree 0.723 0.8191 0.9472 0.9548 0.9096 0.8707 
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3.3 Choosing the optimal gene set 

Gene (feature) selection is another important issue to consider in microarray 

data classification. How to choose differentially expressed genes and what is 

the final gene set that goes to the classifier can all make a difference in 

distinguishing classes. There are a wide variety of statistical techniques 

brought to this problem, ranging from simple t-tests, analysis of variance 

(ANOVA) to information gain, rank-based statistics, SAM and moderated t-

statistics all give an excellent approach (details are introduced in feature 

selection section in chapter 2). However, different methods, particularly 

when applied in different datasets, may return differentially expressed genes 

that share limited overlap, and a reasonable way to find the genes that are 

biologically informative and best separate different phenotypes is to combine 

several methods and choose the genes selected by the majority. To address 

this concern, we compared the classifier genes selected by each group and 

derived a few gene sets that are potentially predictive. In addition a new list 

of gene signatures was identified as a complementary to previous work.  

3.3.1. Find common genes 

In the study performed by Dave group, the 217 genes used to build the 

classifier came from two parts. The first part consists of 21 MYC target 

genes identified by an OCI-Ly10 DLBCL cell line RNA interference 

experiment, and the second part consists of 100 genes that most 

significantly differentiate the 45 classic BL, which were originally diagnosed 

as BL and confirmed as such by the pathological review, from each DLBCL 

subtype by t-statistic. The Hummel group employed a core group extension 

algorithm by determining a shrinkage parameter of the nearest shrunken 

centroid feature selection method, and yield a gene set containing 58 genes 

(74 probes).  

To investigate the genes used in each classifier and dataset, probes from 

Hummel dataset were annotated by the “hgu133a.db” [184] database in R. 

Gene symbols of the Dave dataset were annotated with an additional file 

(data4732.txt) provided by the author. Then all gene symbols were checked 
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with HGNChelper [185] R package and updated to the latest approved 

symbol if available. 

Figure 3-4 and Table 3-3 both show the lists of the genes applied in 

classifiers as well as the genes being present and identifiable in the 

datasets. There were only 21 genes found to be in common between the two 

classifiers. Further, only 28 from 58 genes used by Hummel‟s classifier exist 

in Dave‟s data (GSE4732_P1), while 173 from 217 genes used in Dave‟s 

classifier appear in Hummel‟s data (GSE4475), and there were 1901 genes 

shared by both data sets. 

 

Figure 3-4: Venn diagram of genes derived from previous datasets 
and classifiers. 
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Table 3-3: Numbers of genes in data sets and used in classifiers 

Genes from different places GSE4732_P1 GSE4475 Overlap 

HGNC matched genes on platform 2405 12495 1901 

Genes used in authors’ classifier 217 58 21 

Classifier genes located in data1 214 58 21 

Classifier genes available in other data set2 173 28 - 

1. We were unable to locate all reported classifier genes in GSE4732_P1 

2. Dave classifier genes available in GSE4475 and Hummel classifier genes in GSE4732_P1 

3.3.2. Identify differentially expressed genes 

We chose the 21-gene set, 28-gene set and 173-gene set derived from 

previous datasets to assess the performance of different gene sets used to 

build the classifier. In addition, we also tested a 10-gene set [48] used in a 

recent classifier that employs on FFPE data from the  NanoString platform. 

The 10 genes were picked from the 58 genes applied in the Hummel 

classifier by the follow-up study in the same lab. However there were only 6 

genes of the 10 genes found in GSE4732_P1 dataset, thus only 6 genes 

were adopted in the 10-gene classifier on this dataset. 

To further exploit the gene set that best discriminate the two lymphomas, we 

identified a set of genes as a control set by performing a gene expression 

comparison between the high confidence BL and DLBCL in the two previous 

datasets, which are the consistent 44 BL with 235 DLBCL agreed by both 

pathological and molecular diagnosis in GSE4732_P1, and 44 mBLs plus 

129 non-mBLs in GSE4475. In each dataset 200 most significantly 

differentially expressed probes were selected using limma package filtered 

with log2 fold change over 1. There are 56 genes that were picked in both 

datasets, but 4 genes that were used in both of the previous classifiers were 

not included. So a total 60 genes gene set was used as a comparison to 



- 63 - 
 
 

previously reported gene sets. The overlap situation of all five gene sets is 

illustrated in Figure 3-5 below. 

 

3.3.3. Comparison of different gene sets  

Next different classifiers using the various gene sets were compared by 10-

fold cross-validation of the two datasets GSE4732_P1 and GSE4475, using 

LibSVM algorithm with both default parameters and optimized parameters. 

There are three common kernels implemented in LibSVM: linear, sigmoid 

polynomial and RBF (radial basis function), and we chose RBF which is the 

default also most recommended kernel for below reasons: (1) it has fewer 

hyper parameters that influence the complexity of model selection, (2) it has 

fewer numerical difficulties and (3) other kernels behave like RBF at certain 

parameters. In the RBF kernel model, parameter optimization involves the 

Figure 3-5: Venn diagram of five gene sets used to compare the 
performance of classifiers. 
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kernel parameter γ and the trade-off parameter C. We used the automatic 

script easy.py for a parameter grid search provided in the libSVM to select 

the optimized model parameters: the search range of C value was 2-5
 to 215 

with a step of 22, the range of γ value is 23 to 2-15 with a step of 2-2 and 5-fold 

cross-validation as assessment.  

The performance of the classifiers built by each gene set with default and 

optimized parameters are showed in Figure 3-6. And it is evaluated with the 

F-measure of BL and DLBCL categories respectively. The figure shows that 

there is limited difference in the classifiers built by different gene sets, almost 

all of which can classify DLBCL and BL very well. And similarly to the test 

result among the algorithms, there is a better accuracy in dataset GSE4732 

(DLBCL F-measure around 0.985 and BL F-measure around 0.94) and 

GSE4475 strict definition (DLBCL F-measure over 0.98 and BL F-measure 

over 0.92), with a relatively lower accuracy in GSE4732 wide definition 

(DLBCL F-measure around 0.96 and BL F-measure around 0.9). Comparing 

to the classifiers built with original gene sets (214 genes in the Dave 

classifier and 58 genes in the Hummel classifier), the other tested four gene 

sets classified the cases with a slightly decrease of accuracy depending on 

specific gene set.  

Optimization of LibSVM parameters results in a modest increase of accuracy 

over the use of default parameters. In most cases the 28 gene sets match 

the performance of the full list in both data sets with only insignificant 

reductions in accuracy. The overall accuracy of the classifiers built by each 

gene set is listed in Table 3-4, and the correlation of the classification 

probability of all conditions are illustrated in Figure 3-7. 
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Table 3-4: Overall accuracy of tested gene sets in building the classifier 

 GSE4732_P1 GSE4475strict GSE4475wide Average 

10-gene 0.973 0.968 0.954 0.965 

21-gene 0.976 0.968 0.95 0.965 

Figure 3-6: F-measure for each class of the classifiers built with a 
list of gene sets and tested on GSE4732_P1, GSE4475 binary-
classification. 
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28-gene 0.983 0.977 0.954 0.971 

60-gene 0.98 0.977 0.936 0.964 

173-gene 0.983 0.973 0.945 0.967 

 

There is hardly any difference of the overall accuracy among the gene sets, 

and the classification probability based on all gene set either with default or 

optimized parameter are highly correlated, the least correlated is the 10-

gene set however still have a correlation over 0.88.  This shows that the 

gene set does not affect the classifier very much as long as it contains the 

basic informative genes and it is in a reasonable number.  More importantly 

Figure 3-7: Classification probability correlation of the classifiers built 
with five gene sets and tested on GSE4732_P1 and GSE4475. 
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they show conclusively that classifiers based on small gene sets perform at 

least as well as their larger counterparts. In particular there is no advantage 

to large gene sets, suggesting that shorter lists that are less prone to over 

fitting should be used. It seems the 28-gene set has the best average 

accuracy and a more stable performance according to Figure 3-6, and it was 

chosen for following analysis. 

3.4 Cross-platform normalization and training set effect 

Microarray platforms have developed and improved quickly over the years, 

although classifiers have been developed and validated in one single 

research. The variability of measurement among platforms leads to 

challenges for the combination and comparison between datasets. An 

effective solution is to perform cross-platform normalization so that data 

collected from various platforms can achieve a higher comparability. Several 

studies have provided methods related to this problem. Here we compared 

four cross-platform normalization methods: Z-score, rank-score and two 

more sophisticated methods XPN, DWD [145, 146].  

3.4.1. Cross-platform normalization methods 

Z-score normalization operates for each gene independently producing a 

normalised expression value for each sample as   (   )  , where   is 

the un-normalised expression value of the gene and   and   are the mean 

and standard deviation of   over all samples. For rank-score normalization, 

          is the normalised value, where   is the rank of the sample 

with respect to the   other samples on the basis of the expression of the 

gene concerned. Z-score and rank-score normalisation have potential 

deficiencies, but also have the advantage of being applicable to data from 

methods such as RT-PCR and NanoString [186] which are designed to 

measure expression of only relatively small gene sets. XPN and DWD are 

two more complex methods implemented in the R CONOR package [147]; 

both are capable to give high consistency and low loss in gene detection 

according to the author, however require a relative large number of genes to 

perform a robust normalization.  
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Figure 3-8 shows the expression range of an example sample from each 

platform under four cross-platform normalization methods. Before cross-

platform normalization, expression value from each platform has a distinct 

distribution and detection range, for example the main detection signal of 

Affymetrix U133a chip is higher than the Affymetrix U133+2.0 chip (Figure 3-

8 None Normalized.) Although these four methods normalize the data in 

quite different ways, after normalization each pair of compared data sets 

gets a similar mean and distribution 
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3.4.2. Cross-platform normalization effect 

The normalization methods were examined with the 28-gene set LibSVM 

classifiers. We trained the classifiers on either one of the previous two 

datasets GSE4732_P1 or GSE4475 with strict and wide BL definition both, 

and tested the classifiers on the other dataset as well as on additional four 

data sets: GSE4732_P2, GSE17102, plus two EBL and HIV-related 

lymphoma datasets GSE26673 and GSE17189. All of the four datasets were 

read and processed with the R “affy” package. The above 28 signature 

genes were extracted with expression values and merged with limma 

package. Table 3-5 shows the accuracy of testing the classifier using 

different data normalization methods.   

The results of training and testing between GSE4732_P1 and GSE4475 

showed that there is little difference among the above normalization 

methods, a classifier trained on GSE4732_P1 performs reasonably when 

tested on GSE4475 with the strict BL definition, giving error rates (specificity) 

around 9% for BL and <2% for DLBCL. Conversely, training on GSE4475 

_strict and testing on GSE4732_P1 again gave good performance (errors 

around 4% for BL and 1% for DLBCL), indicating the classifier adopted on 

GSE4732_P1 corresponds to a BL criterion similar to the GSE4475 strict 

stratification. And as would be expected, training with the wide definition of 

BL in GSE4475 reduced the BL error rate observed when testing on 

GSE4732_p1 to 2% with a corresponding increase of the DLBCL error rate 

to around 5%.   

GSE4732_P2 is formed from a subset of the samples in GSE4732_P1 but 

from a different platform. It is surprising therefore that the classifier trained 

on GSE4732_P1 performed relatively poorly on this data set (BL error rates 

Figure 3-8:  Violin plot of the gene expression for an example case from 

each platform when normalized by different methods.  
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15-21% depending on normalization method), and the classifier trained on 

GSE4475 performed worse (BL error rates of 27-33%). However a better 

classification result can be obtained by using a wider BL definition in the 

training set (error rate 3~6%), which suggest this could due to the reason 

that the two previous classifiers developed above adopt a narrower definition 

of BL, thus assigning cases with a weaker BL signal to the DLBCL category.  
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Table 3-5: Error rates for classifiers trained on one data set and tested on other public data sets  

 BL error rate
1
 DLBCL error rate

1
 

Normalization Z-score Rank XPN DWD Z-score Rank XPN DWD 

Train GSE4732_P1: Test on other data sets below 

GSE4475_strict2 0.09 0.09 0.09 0.09 0.017 0.017 0.006 0 

GSE4732_p2 0.182 0.212 0.152 0.152 0 0 0 0 

GSE10172_strict2 0.231 0.308 0.385 0.308 0 0 0 0 

GSE26673 EBL 0.615 0.692 0.846 0.384     

GSE26673&GSE17189 HIV-related  0.833 1 1 0.667 0 0 0 0 

Train GSE4475_strict BL definition: Test on other data sets below 

GSE4732_p1 0.04 0.04 0.04 0.04 0.012 0.008 0.012 0.012 

GSE4732_p2 0.303 0.333 0.273 0.273 0 0 0 0 

GSE10172_strict2 0.154 0.154 0.308 0.154 0 0 0 0 



 
- 7

2
 - 

 

GSE26673 EBL 0.615 0.538 0.769 0.538     

GSE26673&GSE17189 HIV-related  0.833 0.833 1 0.833 0 0 0 0 

Train GSE4475_wide BL definition: Test on other data sets below 

GSE4732_p1 0.02 0.02 0.02 0.02 0.04 0.05 0.06 0.07 

GSE4732_p2 0.06 0.03 0.03 0.03 0.015 0.015 0.015 0.015 

GSE10172_strict2 0.078 0.078 0 0.078 0.043 0.043 0 0.043 

GSE26673 EBL 0.154 0.154 0.308 0.154     

GSE26673&GSE17189 HIV-related  0.5 0.333 0.833 0.5 0 0 0 0 

1. Error rate is the specificity value for the indicated class  

2
. The sample in this dataset are assigned to mBL, intermediate, non-mBL three categories, here we set the strict BL definition as the standard which put 

intermediate and non-mBL together as DLBCL class 
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As to GSE10172, this is a smaller dataset generated by the same group who 

produced GSE4475, which were also classified into three categories, and 

here we used the similar strict definition as GSE4475 for the binary classes. 

Classifiers trained on either GSE4475 _strict or GSE4732_P1 produce zero 

error rate for DLBCL cases but higher errors for BL. Nevertheless, it is again 

that the classifier trained on the GSE4475 _wide produced a more accurate 

classification in GSE10172.  

Figure 3-9 shows the prediction probability of GSE4732_P2 and GSE10172 

when the classifiers were trained on GSE4732_P1, GSE4475_strict, 

GSE4475_wide definition respectively under four normalization methods. 

The left column is the actual class (assigned by authors) of each sample, 

with red color referring to BL, blue as DLBCL and green as intermediate 

class (for GSE10172 the column was separated into two, and the right half 

column indicates the probability from the original dataset). The other 

columns are the prediction results by different training set and normalization 

methods options, with red color representing high BL probability and blue 

color the opposite. This is again showed that that if the classifiers were 

trained by the same training set, the classification difference among the 

normalization methods is subtle. And that although the probabilities of the 

classifiers trained on GSE4732_P1 and GSE4475_strict are similar, they 

both predicted some of the BL cases as DLBCLs. However, the classification 

results trained on GSE4475_wide definition are more close to the original 

class.  
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Figure 3-9: Prediction results overview of the classifiers when that 
datasets are normalized by a list of cross-platform normalization 
methods. 
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GSE17189 and 26673 contain EBL and HIV related BL cases in contrast to 

the sporadic cases from the other datasets. And once more the classifiers 

trained with strict definitions of BL perform poorly with this data (BL error rate 

> 50%). As GSE4475 strict definition only classified a case as BL when the 

BL probability is greater than 0.95 in the original classifier, and similarly the 

BL in Dave classifier are samples classified as BL by all predictors, it is not 

hard to understand the classifiers trained by the two definitions predicted 

some BL as DLBCL. However the classifier trained by GSE4475 wide gave 

results more close to the original classes in other datasets, which suggest 

the BL definition has a considerable effect on the classifiers.  

3.4.3. Training set effects 

The effect of BL definition in the training set on the classifier‟s performance 

is more thoroughly investigated in this section. We knew that classifiers 

trained on GSE4732_P1 and GSE4475_strict definition datasets perform 

badly in recognizing BL from other datasets. This could because that both 

datasets applied a rather strict definition of BL, and that a proportion of 

samples with less confidence of BL were assigned to DLBCL category. The 

original purpose is to keep BL class as clean as possible; however this may 

cause a bias when they are included in a training set.  

In order to explore how much training set affect the classification result, we 

trained a list of classifiers with dataset GSE4475 by applying different 

thresholds according to the BL probability for each sample in the original 

Hummel‟s classifier. We set a range of thresholds to only include a subset of 

GSE4475 in the training set: a threshold of 0.9 means using only the 

BL/DLBCLs cases that have a BL/DLBCL probability greater than 0.9 are 

used to train the classifier. The thresholds were set at 0.95, 0.9 and 0.8 

respectively, and the classifiers of each threshold were tested on the rest of 

five datasets, comparing with the classification result of GSE4475_strict and 

GSE4475_wide definition.  

The classification probability of the classifiers trained with each threshold 

one dataset GSE4732_P1 is illustrated in Figure 3-10, and the Z-score 

normalized expression heatmap of the 28 classifier genes for the 

corresponding samples are showed below the probabilities. The Figure 
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shows that the strict definition trained classifier classify the sample into 

classes very close to the actual class, while the other four training thresholds 

gave similar BL probabilities will all classifying a small group of samples as 

DLBCL.  In addition, from the gene expression heat map, we can see there 

is an area in the middle that the expression is neither confident BL nor 

clearly DLBCL, and the samples classified as BL by other thresholds exhibit 

a similar expression pattern as confident BLs, suggesting these are the 

intermediate cases have less confidence of DLBCLs.  

The classification probability results by different training set thresholds of the 

other four datasets: GSE4732_P2, GSE10172 plus EBL and HIV related 

BL/DLBCL datasets GSE17189 and GS26673, as well as their classifier 

gene expression heatmaps are illustrated in Figure 3-11. In GSE4732_P2 

Figure 3-10: Performance of the classifier trained with different BL 
definition test on GSE4732_P1 with the heatmap of Z-score 
normalized 28 classifier genes expression value.  
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and GSE10172, it is the same situation that the strict defined training set 

classifies less cases as BL than other four thresholds, and these thresholds 

shows similar BL probabilities on each sample. And it is even more obvious 

that the cases called DLBCL by strict training set but BL by other are more 

likely to be BLs according to the expression heatmap.   

Figure 3-11 for GSE17189 and GSE26673 also shows that EBL cases have 

a similar gene expression pattern to the sporadic cases but generally with a 

weaker signal, explaining the high error rates from the strictly trained 

classifiers and the improvement in this when a wider definition is applied. 

Many HIV related BL cases on the other hand appear to have gene 

expression patterns related at least as strongly to DLBCL cases as they are 

to sporadic BLs and do not classify as BL with any choice of training data. 

Although sharing many pathologic features with sporadic Burkitt lymphoma, 

the endemic and HIV associated Burkitt lymphoma cases do have a distinct 

pathogenesis and gene expression. Some classifiers can recognize EBL 

seemingly well, but we suggest that training these classifiers on data for 

sporadic BL and applying it to endemic or HIV related BL would not be 

advised. Given the distinct clinical settings of these disease variants this 

does not pose a significant issue in relation to development of an applied 

gene expression based classification tool.  
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Figure 3-11: Classification results of GSE4732_P2, GSE10172, 
GSE17189 and GSE26673 when the classifier was trained with 
different BL definition plus the heatmap of Z-score normalized 28 
classifier genes expression value. 



- 79 - 
 
 

Table 2-5 summarizes the classification accuracy of all five test datasets 

tested on above training set thresholds. The result shows that when tested 

on GSE4732_P1, other training set have a lower accuracy compared to strict 

definition. However on the rest of the datasets GSE4732_P2, GSE 10172, 

GSE26673 and GSE17189, the other training thresholds gave a better 

accuracy than the strict definition. There is no obvious difference on the 

training set thresholds apart from the strict definition; however the classifier 

achieved the best average accuracy when set the threshold at 0.95. And it 

also seems from Figure 3-11 that 0.95 threshold gave the classification BL 

probability most close to original dataset.  

Table 3-6: Accuracy of the classifiers trained by a range of training thresholds. 

Dataset Strict 0.95 threshold 0.9 threshold 0.8 threshold 0.5 threshold 

GSE4732_P1 0.987 0.967 0.96 0.96 0.954 

GSE4732_P2 0.899 0.96 0.96 0.97 0.97 

GSE10172 0.889 0.972 0.972 0.944 0.944 

GSE26673 0.4 0.933 0.867 0.867 0.867 

GSE17189 0.765 0.824 0.824 0.882 0.824 

Average 0.788 0.9312 0.9166 0.9246 0.9118 

3.5 Conclusion 

By comparing a list of classification algorithms, various gene sets, different 

normalization methods, and cross-validation on one dataset or training on 

one dataset then test on others, we have presented a comprehensive study 

in establishing a robust GEP classifier. To conclude, these studies show two 

substantially different classifiers in the research literature have a high degree 

of concordance and that their results can be recapitulated, at least within the 

level of uncertainty associated with intermediate cases. Also that a classifier 

that uses fewer genes can effectively recapitulate the results from previous 
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classifiers, which is a substantial advantage making the classifier less prone 

to over-fitting.  

The studies also show that the classifier can be successfully applied to other 

public datasets when cross-platform normalization methods are adopted, 

and the choice of the methods doesn‟t have much effect on the performance 

of the classifier. However the classification for cases with a less strong 

signal of BL is critically dependent on where the boundary between classes 

is placed in a spectrum of similar cases in the training set.  In this study we 

investigated of the effect of training set in detail, and the final decision was to 

train the classifier on the two-way definition of BL based on the original class 

of GSE4475 (which is to set the threshold at 0.95).  

This type of exploration on training set effect is noteworthy, since classifiers 

developed so far have largely been trained and tested within single data 

sets. And the dependence on training data highlights the underlying difficulty 

in this and many similar studies, which is the lack of a „gold standard‟ against 

which to evaluate new classifiers. 
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Chapter 4  

Validation of the classifier on in-house data from FFPE 

specimens 

Despite the advantages of GEP classifier in distinguishing Burkitt lymphoma 

and diffuse large B-cell lymphoma, it has not yet been commonly used in 

routine clinical practice. The current diagnosis usually combines features 

such as morphology, phenotype and genetic aberrations identified by the 

fluorescence in situ hybridization (FISH) method based on the World Health 

Organization (WHO) guidelines, and no single parameter is regarded as a 

gold standard. One key reason for this is that until now almost all studies 

used fresh-frozen samples in research laboratories while clinical archive 

samples are mostly formalin-fixed paraffin-embedded (FFPE) tissues. FFPE 

data is likely to remain the clinical reality in the future, particularly in 

diagnostic laboratories responsible for large geographical areas with many 

hospitals. However the RNA extracted from these samples is normally 

degraded which limits the amount of biological information that can be 

derived, and makes gene expression measurement more difficult and error 

prone.  

Recent advances in methods for extraction and assay of RNA from FFPE 

samples have achieved an encouraging reliability and reproducibility. 

Illumina technology developed a WG-DASL (Whole Genome DNA-mediated 

Annealing, Selection, extension, and Ligation) assay method, which 

combines the unique PCR and labelling steps of the original DASL assay 

with gene-based hybridization of Illumina‟s whole-genome probe set Direct 

Hybridization assay (see Figure 4-1). The DASL assay uses two short 

sequences labelling the target genes that can be separated by an arbitrary 

gap, which enables more flexibility in choosing the genes. In addition, DASL 

arrays use probes about only 50 bases instead of long sequences used in 

other cDNA arrays that require good quality of RNA [187]. This unique 

methodology greatly increases the DASL assay target set, while retaining 
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the ability to accurately profile low-abundance and partially-degraded human 

RNA samples, such as RNAs derived from FFPE tissues. 

Here we collected over a thousand FFPE samples from general clinical 

practice and other clinical trials in cooperation with the Haematological 

Malignancy Diagnostic Service (HMDS) department of St. James University 

Hospital. The gene expression profiles of the samples were measured by 

Illumina Whole-Genome DASL Assays. All samples were diagnosed as BL 

or DLBCL beforehand according to the currently applied diagnostic criteria. 

The datasets were used to validate the classifier developed in the last 

chapter, and to examine the concordance between the molecular prediction 

and current clinical diagnosis. Furthermore, where of the samples have 

detailed clinical information (genetic alteration, treatment management and 

survival time) available, we explored the survival indication of the molecular 

classifier as well as its potential clinical benefits.   

Figure 4-1: Illumina Whole-Genome DASL HT Assay combines original 
DASL Assay and Direct Hybridization Assay. 
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4.1  FFPE data and preprocessing 

4.1.1 . Data sets summary 

Two series of experiments were performed by the WG-DASL Assay (based 

on the Illumina Human Ref-8 Version_3 BeadChip) and the WG-DASL HT 

Assay (based on the Illumina Human HT-12 Version_4 BeadChip) 

respectively. The Version_3 BeadChip is an earlier version of whole genome 

array that offers parallel analysis for 8 samples at once, and Version_4 

BeadChip is the latest chip with throughput data up to 12 samples on each 

BeadChip. The Version_4 chip covers more well-characterized genes, gene 

candidates, and splice variants. The detailed probes contained in both chips 

are illustrated in Table 4-1. Also the Version_4 chip is uses improved 

reagents and protocols, and yields high self-reproducibility even with lower 

RNA input [188]. Although a high concordance between the performance of 

Version_4 chip and Version_3 chip was reported in the assessment of 16 

commercially obtained FFPE samples[187], evaluations from such small 

numbers may not reflect the actual situation in large datasets.  

Table 4-1: Detail probes comparison between Illumina BeadChips  

Probes Version3 Addition Version4 

Coding transcripts, well established annotations 23811 3442 27523 

Coding transcripts, provisional annotations 426  426 

Non-coding transcripts, well established annotations 283 1317 1580 

Non-coding transcripts,  provisional annotations 26  26 

Total 24526 4759 29285 

In our study, there are 456 samples performed by the WG-DASL Assay here 

is referred as Version_3 dataset, and 932 samples performed by the WG-
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DASL HT Assay here is referred as Version_4 dataset. Both datasets 

contain a certain number of samples from the same patient repeated on one 

platform that allow us to examine the reproducibility of the particular chip, 

and there are also samples repeated on both platforms so that we could 

compare the consistency between Version_3 and Version_4 chips. 

4.1.2 . Control probes 

As discussed in chapter 2, quality checks of the data obtained from a 

specific array before further analysis is absolutely crucial, because even a 

single or few abnormal arrays can completely compromise the results of the 

analysis of a large data set. Arrays that do not meet the necessary quality 

standards should be discarded from the following analysis. This is even 

more of the case for FFPE samples, as the RNAs of which are usually less 

qualified to extract meaningful biological information.  

Both of the Version_3 and Version_4 Illumina BeadChips contain a set of 

internal control probes to evaluate the quality of a single array. Poor 

performance measured by sample-dependent control probes could indicate 

a problem related to sample quality or labelling, and failure of the standard 

for sample-independent control probes may indicate a general problem with 

the hybridization, washing or staining. The control probes on each chip are 

listed in Table 4-2.  

Table 4-2: Number and types of control probes on  Version_3 and Version_4 s 

Type Description Version_3 Version_4 

Housekeeping Sample quality controls 16 16 

Negative Background noise controls 309 290 

Annealing Labelling controls 10 10 

Cy3-hyb Hybridization controls 6 6 

Low-stringency Stringency controls 8 8 

ERCC Spike-in mix controls 0 92 
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Figure 4-2: Examples of controls probes from Illumina WG-DASL chip. 
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The housekeeping probes should be expressed at a relatively high level in 

all samples, and negative controls are random sequences not used as target 

genes, which should be expected to have a low level signal. Cy3-hyb and 

low-stringency probes are controls for hybridization that present at different 

concentration levels, and the high level probes should have higher signal 

than low level probes. Annealing and spike-in probes are used to assess the 

sample labelling, which should be consistent in most samples. An example 

of the control probes in good and bad qualities is illustrated in Figure 4-2; the 

successful arrays show the corresponding characters for the controls 

mentioned above, while arrays with poor quality tend to have significant 

lower intensities for all conditions.  

4.1.3 . Quality check 

The quality of an array can be assessed by the relative comparisons with 

other arrays using the control probes. Here we use lumi package [144] in R 

to visualize the control probes and evaluate the arrays quality. The common 

types of control probes in both Illumina BeadChips were used as metrics to 

perform the quality check, and also we checked the detected number of 

probes on each array to exclude those don‟t have enough information. In 

addition, the arrays of poor quality were detected with the detectOutlier 

function in the lumi package. The outlier detection function is based on the 

distance from the sample to the centre (average of all samples after 

removing 10 percent samples farthest away from the centre).  

For metrics of detected probe numbers and different control probes, if an 

array falls out of 1.645   standard deviation from the mean (which will 

include 90 percent of all samples), it is considered to fail this specific metric. 

And the array is regarded as an outlier if it is picked out by detectOutlier 

function, or it fails probe detection or housekeeping detection or either of the 

other two types of the control probes. Figure 4-3 shows an example of 30 

samples from Version_3 chip on each quality check metric, and the samples 

with red colour are those failed the corresponding metric. 
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Figure 4-3: Quality check on each metric of 30 samples from Version_3 
chip. 
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The figure shows that most of the arrays that failed on each metric are 

usually the same ones, which indicates this is often the problem caused by 

the sample itself. A sample that has very low detected intensity or low 

housekeeping probe intensities tends to fail other metrics too. So the quality 

check step is able to catch out arrays that are not qualified for further 

analysis. As a result, 97 arrays and 119 arrays were removed from 

Version_3 and Version_4 dataset respectively. Table 3 lists the detailed 

number of arrays failed on each quality check. 

Table 4-3 : Summary of outliers of each metric 

Metric Version_3 Version_4 

Detected probe  number outliers 52 52 

DetectOutlier function outliers 83 84 

Housekeeping control probe outliers 19 36 

Negative control probe outliers 37 53 

Annealing control probe outliers 40 47 

Low-stringency control probe outliers 16 27 

Cy3_hyb control probe outliers 16 13 

Final outliers exclude from further analysis 97 119 

4.1.4 . Preprocessing 

After removing poor quality arrays, the raw intensities of the successful 

samples need to go through preprocessing steps before interpreting 

biological meanings, which normally includes background correction, 

normalization and summarization of expression values (detail discussed in 

chapter 2). The preprocessing of the Illumina DASL Version_3 and 

Version_4 data were carried out using lumi package in this study.  

The raw intensities were adjusted with background information by lumiB 

function bg.adjust method, which estimates the background based on the 
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negative control probe information. Data was then transformed with the VST 

method [140] by the lumiT function: this is a critical step for Illumina data for 

it takes advantages of larger number of technical replicates available on the 

array. Then the samples were normalized with quantile normalization 

methods by lumiN function, and the probe expression was extracted by the 

exprs function. In the situation where several probes represent a single 

gene, the expression of this gene was summarised by averep function in 

limma [189] package. 

4.2  Validation of the classifier on the Version_3 and 

Version_4 datasets 

The Version_3 and Version_4 datasets were used to test the classifier 

developed from fresh-frozen tissues of its performance on FFPE samples. In 

chapter 3 we examined the gene sets and classification algorithms to build 

the classifier, as well as the effect of cross-platform normalization method 

and the BL definition in the training set on the classification result. Here in 

this chapter we validated the 28-gene set and LibSVM the classifier which 

were chosen the as best options from previous studies. To further 

investigate the transferability of the classifier on FFPE samples, we 

compared the effects of different normalization methods and training set 

options on the Version_3 and Version_4 as well.   

4.2.1. Classification Result of Version_3 dataset 

The Version_3 dataset contains 359 samples of expression profiles for 

18301 unique genes. Classifiers were trained and compared on four 

datasets GSE4732_P1, GSE4475_strict, GSE4475_wide and 

GSE4475_0.95th (training threshold equals 0.95, which only the cases have 

the classification confidence over 0.95 from GSE4475 are included in the 

training set, which are the original mBL and non-mBL cases). For each 

training set option, the samples and Version_3 test dataset were normalized 

by four cross-platform normalization methods: Z-score, Rank-score, XPN 

and DWD. The correlation of the classification BL probability from total 16 

conditions is illustrated in Figure 4-4. 
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Figure 4-4 shows that DWD method normalized data somehow give low 

correlations with other methods, especially when the classifier is trained with 

GSE4475_strict and GSE4475_wide (correlation with other methods is 

around 0.4~0.6). This may suggest DWD normalization method works less 

effectively on Illumina DASL performed FFPE samples. It also shows that 

the classifiers trained with GSE4732_P1 and GSE4475_strict are with high 

correlation, and that GSE4475_wide and GSE4475_0.95th trained classifier 

are highly correlated.  

However similarly to the test result on public datasets, the classifiers trained 

by GSE4732_P1 or GSE4475_strict predict fewer cases as BL, comparing 

with the classifiers trained by GSE4475_wide or GSE4475_0.95th. We also 

test the training threshold (explained in section 3.4.3) of 0.9 and 0.8 on 

Figure 4-4: Correlation of Version_3 data classification BL probability   
by different normalization methods and training set options. 
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GSE4475 dataset, and the number of predicted BL and DLBCL is listed in 

Table 4-4. GSE4732_P1 and GSE4475_strict trained classifier only 

recognised less than 25 BLs, while other training sets recognised about 60, 

which indicates that as expected the more strict definition of BL in the 

training set leads to a narrower definition of BL of the classifier.  

4.2.2. Classification Result of Version_4 dataset 

There are 813 samples that have the expression 20818 unique genes in the 

Version_4 dataset, and the validation of the 28-gene set LibSVM classifier 

was done the same way on Version_3 dataset for the normalization methods 

and training set options. The correlation of the classification BL probability 

from different test conditions is illustrated in Figure 4-5.  

Figure 4-5: Correlation of Version_4 data classification BL probability   
by different normalization methods and training set options. 
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The Version_4 dataset test results again show that the classification BL 

probability of the data normalized by DWD method is less correlated with 

that by other methods. Nevertheless, the predicted class is strongly 

depending on the BL definition in the training set (see Table 4-4).  From the 

studies on the public datasets in chapter 3, we know that the stricter 

definition of BL in GSE4732_P1 and GSE4475_strict would classify the 

samples with weaker signal of BL as DLBCL. As to FFPE data, it is more 

likely the BL samples express weaker signal than fresh-frozen tissues, 

because by its nature BL is prone to rapid degradation, hence the classifiers 

trained with strict definition predict those as DLBCLs.  

Table 4-4: Number of predicted BL and DLBCL in classifiers trained with 

different training options 

 Version_3 Version_4 

 BL DLBCL BL DLBCL 

GSE4732_P1 25 334 62 751 

GSE4475_strict 23 336 48 765 

GSE4475_wide 62 297 129 685 

GSE4475Th=0.95 60 299 111 702 

GSE4475Th=0.9 63 296 128 686 

GSE4475Th=0.8 70 289 168 646 

Figure 4-6 presents the Z-score normalized Version_4 data expression of 

the 28 classifier genes, as well as the classification BL probability by 

different training set options. The expression is more noisy compared with 

that of the fresh-frozen samples, however it shows a similar gradient from BL 

to DLBCL with no clear separation between two classes, and the cases that 

classified as BL by GSE4475_0.95th but as DLBCL by GSE4732_P1 and 

GSE4475_strict training sets exhibit an expression pattern very close to the 

confident BLs agreed by all classifies. Although there is no comparison as 

yet with any different diagnosis method, we use the classification result by 
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the GSE4475_0.95th, for it looks like this is more sensitive to the BLs with 

weaker signal from the FFPE samples according to the expression heatmap 

showed in Figure 4-6.  

 

4.2.3. Reproducibility of Version_3 and Version_4 data 

Following above investigations, we examined the reproducibility of the 

samples from both Illumina DASL chips using the results of the 28-gene 

LibSVM classifier trained by GSE4475_0.95th data.  Of the 1172 samples in 

the Version_3 and Version_4 datasets together, 1083 (92.4%) have the 

same classification results (predicted classes) independent of normalization 

methods. For some cases the datasets contain replicates:  in Version_3 

there are 60 cases, in Version_4 69 cases, and in total 184 cases have 

replicates on either version (including some cases that are not replicated 

within a version, but have been done on both versions). Table 4-5 lists the 

Figure 4-6: Classification results of Version_4 data when the classifiers 
are trained with different BL definition plus the heatmap of Z-score 
normalized 28 classifier genes expression value. 
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average BL probability variance of the replicates on each version and two 

versions together, when the data are normalized in different methods. It 

shows that the Z-score normalization produces the smallest variance, and 

this was used subsequently.  

Table 4-5: BL probability variance of replicates of different normalization 

methods 

 Z-score Rank XPN DWD 

Version_3 replicates average variance1 0.009 0.012 0.016 0.017 

Version_4 replicates average variance 0.007 0.008 0.010 0.014 

Version_3 Version_4 together average 

variance 
0.008 0.010 0.014 0.012 

1Average variance equals to the sum of BL probability variance on the replicates for each 

patient divided by total patient number.   

There are 81 cases that were performed on both versions, and 3 (3.7%) 

have a different classification, 5 (6.2%) have a BL probability variance 

between the versions greater than 0.2 according to the Z-score normalized 

GSE4475_0.95th trained classifier. The detailed results for all 184 replicated 

cases are shown in Figure 4-7 (lower), with the variance of the BL probability 

for each normalization method in Figure 4-7 (upper).  

This shows that the cases where the BL probability is most variable between 

replicates tend to be intermediate cases with BL probabilities closer to 0.5. 

And that if replicates show large variability this is usually independent of 

normalization method, which suggests the differences are caused by the 

sample or the experiment and couldn‟t be removed by normalization. It is 

also clear that Version_4 data (with improved mRNA treatment) generally 

gives a stronger BL signal (BL probabilities closer to 1.0), probably reflecting 

better experimental treatment of BL samples that can be significantly 

degraded. Finally it is clear that some of the larger variability between 

replicates occurs when one replicate is a tissue micro-dissection (performed 

with the aim being to enrich for tumour content and/or the most adequately 
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fixed area of the tissue), which would be expected to give stronger tumour 

specific expressions, and that this often leads to a clearer classification as 

BL. 

In summary, the results from both versions show good reproducibility on the 

repeated samples, and the disagreement usually caused by the weaker 

signal of the arrays. Overall the classifier is able to effectively predict the 

samples according to their expressions, and better classification is achieved 

with improved array quality. 

Figure 4-7: Classification reproducibility of the replicates from 
Version_3 and Version_4 data. 
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4.3  Concordance with diagnosis and clinical indication 

The final gene expression classification was based on reducing the Illumina 

data set to a single replicate for each replicated case, and from above 

reproducibility analysis we came to the decision that choosing Version_4 

data in preference to Version_3, micro-dissected tissue in preference to 

usual sampling, and otherwise choosing the newest array data. This gave a 

classification for 873 unique cases trained by GSE4475_0.95th data: 109 

BLs and 764 DLBCLs, and we evaluated the concordance with the diagnosis 

made by the clinicians in HMDS.   

4.3.1. Conventional diagnosis criteria 

The current clinical diagnosis of these samples is based on a range of 

immunophenotypic and molecular FISH data, and FISH detected 

translocation are called rearrangement, so we also use this term when 

referring to the samples from the clinical patients. The detailed diagnostic 

pathway applied is described below. 

First, if a case has a phenotype (the protein expression of the tumour cells 

carried out by flow cytometry and/or immunohistochemistry) of classic 

Burkitt‟s lymphoma, which usually displays CD20+, CD10+, BCL6+, BCL2-, 

Ki67=100% and deregulated P53 expression (P53+P21-), then FISH 

detection for MYC, BCL2 and BCL6 rearrangement is performed: 1) If it has 

MYC rearrangement and in absence of BCL2 or BCL6 rearrangements then 

this is diagnosed as Burkitt‟s lymphoma; 2) If it has MYC rearrangement and 

BCL2 and/or BCL6 then this is diagnosed as DLBCL with MYC 

rearrangement with additional comment of dual/triple hit; 3) If this has no 

MYC rearrangement this is diagnosed as DLBCL with additional comment of 

DLBCL with Burkitt phenotype and MYC negative.  

Otherwise, if a case does not have a Burkitt phenotype then only FISH for 

MYC rearrangement detection is performed: 1) If it has MYC rearrangement, 

then it is diagnosed as DLBCL with MYC rearrangement, and FISH for BCL2 

and BCL6 rearrangements detection are requested, where it has BCL2 

and/or BCL6 at this point, it is commented with additional information as 

dual/triple hit, otherwise no BCL2 or BCL6 is commented as single hit; 2) If 
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MYC is normal it is just diagnosed as DLBCL with comments DLBCL MYC 

negative.  

However as the samples are collected from different sources or clinical trials, 

there are cases that the diagnosis is not made locally by HMDS, and where 

the phenotype strongly suggest DLBCL the FISH detection for MYC is not 

performed. So in total, there are 72 cases diagnosed Burkitt‟s lymphoma, 48 

DLBCL with MYC rearrangement, 753 DLBCL (285 are MYC normal 498 

with MYC status unknown). 

4.3.2. Concordance between GEP classifier and diagnosis 

The agreement of the clinical diagnosis with the gene expression based 

classification is shown in Figure 4-8. Generally there is a high level of 

agreement between the two diagnoses (85% of cases diagnosed clinically 

as BL, and 95% of DLBCL), and about 30% of the DLBCL with MYC -

rearrangement are classified as BL.  

Figure 4-8: GEP classification comparison with current clinical 
diagnosis. 
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There are 11 clinical diagnosed BL cases that were classified as DLBCL and 

34 DLBCL as BL by the GEP classifier. Of the 11 discrepant BL cases, 3 

had classic BL characteristics, but the remainder of the group included a 

high level of aberrant cases: 3 have non-classic MYC arrangement, 5 exhibit 

a discrepant immunophenotype with the classic BL; and also there is 1 

relapse case that might have developed different molecular features. The 

detailed characters of the clinical diagnosed BL while classified as DLBCL 

cases by the GEP classifiers are listed in Table 4-6. Figure 4-9 gives the 

occurrence of classic and non-classic MYC rearrangement in different BL 

probability intervals, and it shows that the proportion of non-classic MYC 

rearrangement is much higher in the low BL probability cases than that in 

high BL probability cases.    

Table 4-6 : Characters of the diagnosed BL but GEP classified DLBCL cases 

HMDS.ID BL-probability MYC-Rearranged Phenotype 

1092 0.115 non-classic BL Phenotype 

H4151/08 0.357 non-classic BL Phenotype 

H2863/11 0.039 non-classic BCL2+,  P21+ 

1102 0.286 classic expression of BCL2 

H11436/06 0.206 classic weak CD10 expression 

H11920/10 0.313 classic expression of BCL2 

H1855/05 0.056 classic relapse sample 

H22569/11 0.455 classic FOXP1+ 

H6237/13 0.407 classic BL Phenotype 

H811/06 0.343 classic BL Phenotype 

H8894/08 0.491 classic BL Phenotype 
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Of all 34 diagnosed DLBCL that classified as BL by the GEP classifier, 24 

are from an ongoing clinical trial, for which other types of diagnosis features 

are not open yet. The clinical and survival status of the remaining 10 cases 

is listed in Table 4-7. Although the numbers are small, the table still shows 

some interesting findings of these GEP classified BL cases, 3 of the 10 

cases show a BL phenotype even without MYC rearrangement, and the 

bottom 4 cases that have a relative low BL probability around 0.5 are all 

cured by R-CHOP treatment regardless of BCL2 or BCL6 rearrangement. 

However a similar case with a high BL probability 0.901 died when treated 

with R-CHOP, which suggests that R-CHOP maybe not an optimal treatment 

when the BL confidence is strong. It is hard to say if CODOX-M/IVAC is 

effective on high BL confidence cases by the limitation of number of cases.  

 

 

 

 

Figure 4-9: Number of classic MYC rearrangement in different BL 
probability intervals.  
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Table 4-7:  diagnosed DLBCL without MYC rearrangement classified as BL 

HMDS.ID 
BL-

probability 
Treatment 

Survival-

status 

BCL2, BCL6 

rearrangement 

1066 0.805 CODOX-M/IVAC Alive  

H3989/12 0.513 CODOX-M/IVAC Alive  

H5288/11 0.747 CODOX-M/IVAC Alive BL phenotype 

1039 0.951 CODOX-M/IVAC Died BL phenotype 

1128 0.675 CODOX-M/IVAC Died BCL2 rearranged 

H119/05 0.901 R-CHOP Died BCL2 rearranged 

H5757/06 0.624 R-CHOP Alive BL phenotype 

20317 0.538 R-CHOP Alive BCL2 rearranged 

H15775/10 0.545 R-CHOP Alive BCL2, BCL6 rearranged 

H19100/10 0.532 R-CHOP Alive BCL2 rearranged 

4.3.3. Classification of the MYC-rearranged DLBCL 

We also looked further at the small group that diagnosed as DLBCL but with 

MYC rearrangement detected. This is a group of particular interest, many of 

which are now referred as “lymphoma with features intermediate between 

BL and DLBCL”, though many studies have reported a poor prognosis 

currently there is no specific treatment for this group (more discussed in 

chapter 1 and chapter 5).  

Of the 48 cases which were diagnosed in the DLBCL with MYC 

rearrangement category, about one third (14) were classified by GEP as BL 

and two thirds (34) were classified as DLBCL. However none of 14 classified 

BL cases has a BL probability greater than 0.8. This is plausible, as BL is a 

comparatively homogenous group with MYC translocation driven expression 

patterns, whereas in this group 39 of 48 cases also bear a BCL2 or/and 

BCL6 rearrangement in addition to MYC translocation, especially all 14 
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classified BL cases are concurrently BCL2 or/and BCL6 rearranged, which 

makes it a particularly complex group. The clinical and survival data of the 

cases classified as BL and DLBCL are listed in Appendix B tables.  

We analysed the 35 cases treated with R-CHOP and have survival status 

available, of which 10 cases were classified as BL and 25 as DLBCL by the 

GEP classifier. And surprisingly, in the BL category 70% (7 out of 10) died or 

had a persistent response to the treatment, while in the DLBCL category the 

32% (8 out of 25) experienced death/persistent response, which have no 

significant difference with the MYC-negative DLBCLs (p=0.4, comparing 19 

MYC-rearranged and 106 MYC-normal samples treated with R-CHOP). 

Although these numbers are small, it implies that the intermediate cases 

classified as DLBCL by gene expression have no significant difference in 

response to R-CHOP treatment than other DLBCLs, while the cases 

classified as BL by gene expression have worse prognosis compared to 

normal DLBCL diagnosed by conventional criteria.  

In addition, the analysis between the single-hit (MYC-rearranged in the 

meantime both BCL2 and BCL6 normal) and double-hit (MYC-

rearrangement with BCL2/BCL6 rearrangement) cases reveals that single-hit 

cases do not have superior survival compared with double-hit cases (35 

RCHOP treated, survival rate of single-hit and double-hit are 37.5% and 

63% respectively), at least from this dataset.  

In conclusion, the result shows that the classifier can be successfully applied 

to our own clinical FFPE samples from routine practice with good 

concordance with more traditional diagnostic methods, and produced data 

that suggests possible prognostic value (on standard RCHOP treatment) for 

those intermediate cases classified as BL by the gene expression classifier 

but DLBCL by our more standard methods. 

4.4  R package implementation 

The GEP classifier investigated in the above studies is implemented in an R 

package BDC (Burkitt lymphoma and Diffuse large B-cell lymphoma 

classifier), using the R package mechanism [190], and is available for public 
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use from the GitHub website https://github.com/Sharlene/BDC. The package 

provides a list of options discussed in previous work, including classifier 

gene set, cross-platform normalization method and training dataset 

thresholds, with the default setting as 28-gene, Z-score normalization and 

trained by GSE4475 0.95 threshold. 

Users can download the BDC package and install it on their own R 

environment. This is an easy to use classifier with only one main function, 

classify. Users need to provide the gene expression of the test samples after 

self normalization within their own platform, and the gene symbols for each 

probe, however it doesn‟t have to be unique or update to the latest gene 

name, the classifier would merge the replicate genes and check the gene 

names automatically. Also the package provides a simple summary and plot 

functions for users to interoperate the classification results. An example of 

using the classifier is illustrated in Figure 4-10. 

  

https://github.com/Sharlene/BDC
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Figure 4-10: An example of the classifier implemented in an R package 
BDC. 
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4.5  Conclusion 

In this chapter, we examined the capability of the GEP classifier developed 

in the chapter 3 on the FFPE samples collected by collaborators. The 

comparison of different normalization methods and training set options 

indicate that DWD method may not be effective on FFPE DASL arrays, and 

that the classifier trained by GSE4475 threshold of 0.95can better recognize 

those BLs with weaker signals. In addition, the repeat samples on Version_3 

and/or Version_4 show high reproducibility within and between platforms, 

and the cases express large variance are usually explained by the quality of 

the specific sample. 

Moreover, the classification results of the 28-gene LibSVM classifier with Z-

score normalization and GSE4475 threshold of 0.95 on the FFPE samples 

are highly concordant with the diagnosis made by clinicians using 

conventional methods: 85% agreement on BL cases and 95% on DLBCL. 

The classification result indicates that most DLBCLs and BLs have different 

expression pattern but there are cases lying in-between with lower 

confidence of which class it belongs to. The classifier classifies about 30% of 

the clinical diagnosed DLBCL with MYC rearrangement cases as BL, and 

the survival status of the 35 RCHOP treated cases suggest a worse repose 

of the classified BL cases comparing to classified DLBCL cases. The work 

presented in this chapter and last chapter have been accepted for 

publication in Genome Medicine. 
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Chapter 5 

The role of MYC in non-Burkitt lymphoma 

The objective of the work carried out in this chapter is to gather as many 

resources as possible to investigate important topics related to MYC-

associated non-Burkitt lymphoma (mainly DLBCL and BCLU in our study): 

(1) whether we can identify a gene expression pattern that predicts MYC 

translocation, (2) to what extent MYC abnormality correlates with patients 

outcome in non-Burkitt lymphoma, and (3) to discover MYC-associated 

genes and potentially involved molecular functions/pathways corresponding 

to different subtypes. The results are presented in sections 5.1 to 5.3 

respectively.  

5.1  MYC translocation expression pattern  

MYC translocations are usually identified in clinical samples using 

fluorescence in situ hybridisation (FISH). There is also a group who 

successfully identifying MYC translocations by testing nuclear MYC protein 

with an immunostaining and screening method [191]. Here we investigate if 

the translocation is associated with a characteristic pattern of gene 

expression in non-BLs, and whether this pattern can accurately identify 

samples with MYC translocations, thus eliminating the need for these 

assays.  

This is done by fitting a classifier on the public available dataset that has 

FISH detected MYC status, and testing the validity on our in-house HMDS 

datasets. Considering the potential distinct mechanism behind MYC 

translocation in different lymphoma types, we also explore this topic with the 

consideration of each DLBCL subtype: ABC, GCB and UCL respectively. 

This is examined by comparing gene expression between the cases with 

and without MYC translocations, and selecting a set of significantly 

differentially expressed genes between the two MYC groups. Then we 

explore if the expression pattern of these differential genes can identify the 

MYC translocation by generating a MYC-translocation classifier. The 
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classifier is built and optimized on datasets downloaded from the NCBI 

database and the prediction performance is evaluated on HMDS DASL array 

datasets generated by collaborators (DASL array data used in chapter 4). 

5.1.1. Datasets summary 

At the stage of developing MYC translocation classifier, we gathered the 

gene expression profiles of only fresh-frozen non-BL samples that have 

detected MYC status from the Gene Expression Omnibus (GEO), because 

MYC translocation in non-BL usually occurs in a complex cytogenetic 

context, and paraffin embedded data may add extra noise that make it more 

difficult to compare between groups. There are 222 samples included in this 

step: a subset from GSE4475 which contains 172 non-mBL and intermediate 

cases; cases from GSE44164 consisting of 32 MYC-translocated DLBCL; 

and an additional 18 MYC-translocated cases from a 271 DLBCLs dataset 

GSE22470. The detail is given in Table 5-1. All together there are 85 MYC 

translocated cases and 137 MYC negative cases. Since all datasets were 

performed on Affymetrix U133a GeneChip, we combined three raw datasets 

as one and referred it as the MYC dataset in the following study, and then 

we processed the dataset with the affy package for background correction, 

normalization and probe intensity extraction as done in chapter 3. 

Table 5-1: Datasets used in developing MYC translocation signatures 

Data set Group MYC-translocated MYC-negative 

GSE4475 Hummel[129] 22 GCB, 10 ABC, 3 UCL 56 GCB, 46 ABC, 35 UCL 

GSE44164 Valera A[45] 28 GCB, 1 ABC, 3 UCL 

 

GSE22470 Salaverria[192] 10 GCB, 3 ABC, 5 UCL 

 

MYC data Combined 60 GCB, 14 ABC, 11 UCL 56 GCB, 46 ABC, 35 UCL 

Then several SVM classifiers based on selected MYC translocation 

signature gene sets were compared and tuned on the MYC dataset by a 

cross-validation method. The optimized classifier was next validated on our 

FFPE DASL data. There are 476 samples with FISH detected MYC status in 

version 3 and version 4 data sets together, and we excluded the samples 

with  BL probability over 0.8, which are very confident BLs (because we‟re 
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exploring the MYC expression pattern in non-BL cases). This left us 69 

rearranged and 280 negative cases. In addition, we also predicted the MYC-

translocation status of other three large public DLBCL datasets with the 

classifier. However there is no FISH detected MYC status available for those 

datasets, and we compared the survival difference between the predicted 

MYC-rearranged and MYC-negative groups. Details of the validation 

datasets are listed in Table 5-2. 

Table 5-2: Datasets used to validate MYC translocation signatures 

Data set Sample description
1 

Tissue
2 

Treatment and Survival
3 

GSE4732(1)[128] 54 BL and 249 DLBCL, MYC 

unknown 
FF 157 CHOP 

GSE10846[193] 420 DLBCL, MYC unknown FF 181 CHOP; 233 R-CHOP 

GSE31312[194] 498 DLBCL, MYC unknown FFPE 470 R-CHOP 

DASL data 69 rearranged; 280 negative FFPE 
152 R-CHOP; 71 CODOX-

M/I-VAC 

1MYC unknown means no detected MYC status available in original dataset. 

2FF denotes fresh frozen, and FFPE denotes formalin fixed paraffin embedded tissue 

3List the number of cases both have treatment and survival follow up information available. 

5.1.2. Differentially expressed genes 

We first tested whether there is an obvious distinct expression pattern in 

MYC-rearranged cases compared to MYC-negative cases without 

considering subtypes. This is done by fitting a simple two group comparison 

linear model with the limma package. Next supported by the hypothesis that 

MYC activities are different in different cancer types, and the fact that MYC 

translocation were predominately found in GCB subtype, we then added in 

the factor of three subtypes ABC, GCB, UCL, to see how MYC translocation 

differs inside each subtype. It could also avoid the potential drawback that 

genes are actually selected due to the differences between subtypes. This is 

also carried out with limma package, by fitting a more sophisticated two 

factors interaction linear model.  
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In each comparison model, differently expressed probes are selected by 

setting the threshold at the adjusted p value smaller than 0.001 and the 

absolute log fold change greater than 0.5. An example of some other 

detailed statistic values for the probe selection in the simple two group 

comparison is illustrated in Figure 5-2. 

There are 192 probes picked out as significantly differentially expressed (67 

up-regulated and 125 down-regulated) in the simple two groups comparison 

(all subtypes together). However there are fewer probes fulfil the selection 

criteria when considering subtype effects, especially in ABC and UCL (see 

the detail in Table 5-3). This may be because there are less MYC-

rearranged cases in those subtypes (14 and 11 respectively), or some other 

reasons that obscure the expression of MYC translocation. Even fewer 

probes come out as significantly differentially expressed when we compare 

Figure 5-1: Differentially expressed probed between MYC-rearranged 

and MYC-negative non-BLs.  



 - 109 -  

the two MYC groups with only ABC or UCL samples (not shown in the data). 

Figure 5-3 gives the relationship of the probes selected under each 

condition. It shows that probes selected within each subtype have a rather 

small overlap, and even a considerable number of probes picked by all types 

were not selected as differentially expressed in any subtype. There are a 

small number of 15 probes consisting of 1 commonly up-regulated gene 

MYC and 11 down-regulated JAK1, PTPN1, AHR, BCL3, CDK5R1, 

RASGRP1, BATF, STAT3, CFLAR, SOCS1 overlapping by all three 

subtypes. 

Table 5.3: Number of selected genes under each condition 

 All type ABC GCB UCL 

Down-regulated probes 125 21 83 44 

Up-regulated probes 67 25 56 28 

Down-regulated genes 84 18 60 33 

Up-regulated genes 50 22 40 20 

 

Figure 5-2: Venn diagram of differentially expressed probes between 
MYC translocated and MYC normal samples in each situation. 
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5.1.3.  Predict MYC translocation by gene expression 

To examine how the signature genes selected above can be predictive of 

MYC translocation, we first tested if they can successfully recognize MYC-

rearranged samples in the MYC data by constructing a SVM classifier for 

each gene set. The classifiers were evaluated by a 10-fold cross-validation 

method, and the predicted result is presented in Table 5-4. It shows that 

generally the MYC status can be accurately predicted with the gene set 

selected by all types with the sensitivity around 80~90% in rearranged cases 

and >95% in MYC-negative cases. It is no surprise that the best prediction 

within each subtype is given by the probes selected from the corresponding 

subtype, while the accuracy drops dramatically when predicting with probes 

selected within other subtypes (50~70%). And the probes selected from all 

types can predict the MYC translocation status of each subtype most close 

to the best result that achieved by the probes selected from this subtype. 

Table 5.4: Classification results of classifiers built with each gene set  

 FISH status Gene.All Gene.ABC Gene.GCB Gene.UCL 

MYC-R1 cases prediction in each subtype 

ABC subtype 14 11(79%)2 12(86%) 8(57%) 7(50%) 

GCB subtype 60 55(92%) 47(78%) 57(95%) 34(57%) 

UCL subtype 11 9(82%) 8(73%) 7(64%) 9(82%) 

MYC-N1 cases prediction in each subtype 

ABC subtype 46 46(100%) 46(100%) 43(93%) 45(98%) 

GCB subtype 56 53(95%) 43(77%) 54(96%) 53(95%) 

UCL subtype 35 35(100%) 32(91%) 33(94%) 35(100%) 

1 MYC-R denotes MYC-rearranged and MYC-N denotes MYC-negative cases. 

2 The percentages are the accurately recognized cases (sensitivity).  

We then assessed the four lists of genes on DASL version 3 and version 4 

datasets, an additional randomly selected 100 genes was also assessed as 

control set. Similarly, gene sets were used to build SVM classifiers, however 

the classifiers were trained on the MYC dataset and tested on DASL data. 



 - 111 -  

Figure 5-3 shows the correlation of the predicted BL probability of each SVM 

classifier for the DASL Version_3 and Version_4 data sets. We can see that 

the correlation of the BL probabilities is high (0.84 ~0.92) among the 

classifiers built with the four gene lists selected above and low (0.55~0.65) 

with the random selected genes, which suggests the selected genes predict 

the result based on biological meaning.  

 

We took the result of the classifier built with the 134 genes (192 probes) 

selected in all types as the final predicted MYC rearrangement status, and 

merged the replicate samples in DASL data as done in chapter 4 (Section 

4.2.3). The comparison of FISH detected MYC translocation with MYC 

status predicted by gene expression classifier is showed in Table 5-5. The 

result shows that after excluding the confident BL (BL classifier probability > 

0.8), 19 of the 280 samples that don‟t have FISH detected translocation are 

Figure 5-3: Correlation of clinical FFPE samples MYC prediction 
confidence classified by different lists of genes. 
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predicted as myc-r (MYC rearranged), while over 40% (31 from 69) of the 

detected rearranged cases are not correctly recognised. We also tested the 

classifier on the confident BL samples (which all bear MYC rearrangement), 

and 50 of 51 cases are correctly predicted as myc-r (see Figure 5-5).   

Table 5-5: Confusion matrix of the MYC rearrangement classifier on DASL 

data 

 Predict myc-r Predict myc-n Sensitivity1 

FISH detected MYC-R 38 31 0.55 

FISH detected MYC-N 19 261 0.93 

Specificity1 0.67 0.89  

1Sensitivity and Specificity for each category is calculated by taking the correctly classified 

cases as true positives, for example MYC-N category, the TP is predicted myc-n cases, and 

FP is predicted myc-r cases.  

 

Figure 5-4: Comparison of original diagnosis and MYC FISH detection 
versus GEP BL classification and MYC status prediction
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So the classifier can identify MYC rearrangement in the definite BL samples, 

but is less effective in BCLU and DLBCL cases (less confident BL). This was 

also shown in the public datasets that we used to develop the classifier, not 

all MYC rearranged samples were correctly classified (sensitivity is around 

80~90%). And this is even more obvious in the DASL data. However it is 

interesting to see that although the samples are detected to bear MYC 

rearrangement by FISH, the MYC mRNA expression is significantly higher in 

the predicted myc-r class than that in the myc-n class. This is shown in 

Figure 5-6. The potential reasons for this may be: (1) there are cases of 

MYC rearrangement that don‟t show the associated expression pattern, or 

the expression is compromised by other aberrations (BCL2, BCL6), (2) the 

translocation expression pattern can caused by other reasons like MYC 

mutations, gains, and (3) it could also be a problem of transferring the 

classifier to the new platform and the noisier FFPE data.  

Figure 5-5: MYC mRNA expression in FISH detected and predicted 
MYC rearrangement groups of DASL data. 



 - 114 -  

Although MYC rearrangement expression pattern doesn‟t seem to be in full 

concordance with FISH detected MYC status, it is possible that the 

expression pattern reflects the biological mechanism and is responsible for 

the inferior outcome of this MYC-associated lymphoma. So we next test the 

above classifier on other three GEO datasets: GSE4732_P1, GSE10846 

and GSE31312. In GSE4732_P1, again all BLs were predicted as myc-r 

group. However the detected MYC status is not available in the DLBCL 

cases or the other two datasets, and we explored the prognostic impact of 

MYC rearrangement expression pattern with the treatment and survival 

information on the non-BL patients. This is showed in section 5.3.  

5.2  MYC impact on survival  

The impact of MYC activity on patient outcome is elusive, though reported in 

many studies: translocation and other type of MYC mutations, high level of 

MYC gene expression, protein over-expression together with a BCL2 effect 

all may contribute to poor prognosis. Here in this chapter, we first assessed 

the survival difference between two groups of patients: MYC-rearranged and 

MYC-negative according to the prediction of above MYC translocation 

classifier. Secondly, we evaluated the effect of MYC mRNA expression level 

on patients‟ survival. Additionally, we checked the BCL2 mRNA expression 

level impact on survival by itself as well as in combination with MYC mRNA 

expression and other prognostic factors. The data used consists of the 

DASL data which has clinical information (treatment, survival and follow-up 

time) available, and also we performed a retrospective analysis on two large 

datasets GSE10846 and GSE31312 as well as the DLBCL samples in 

GSE4732_P1.  

5.2.1. Survival impact of GEP predicted MYC translocation  

In DASL dataset, there are 152 R-CHOP treated and 71 CODOX-M/IVAC 

treated samples. However the Kaplan-Meier survival estimator didn‟t show 

significant difference between the predicted myc-r and myc-n patients, 

neither in R-CHOP treated cases (p = 0.383) nor CODOX-M/IVAC treated 

cases (p = 0.737). Moreover there is no significant difference between FISH 

detected MYC rearrangement and MYC negative cases either, with RCHOP 
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treated p value 0.102 and CODOX-M/IVAC treated p value 0.307. The fact 

that neither FISH detected MYC rearrangement nor predicted myc-r 

expression pattern show a significant worse outcome may suggest there are 

some other factors (e.g. age, disease stage) adding the complexity of the 

prognosis.  

A similar situation appears in the other GEO datasets: no significant survival 

difference is observed between predicted myc-r and myc-n cases. However 

it shows a significant separation in RCHOP treated GCB subtypes (see 

Table 5-6 and Figure 5-7). This may due to the fact that MYC translocation 

predominately occurs in GCB subtype, and that the MYC translocation 

expression pattern pulls out the cases respond sub-optimally to the 

treatment.  

Table 5-6: Survival difference between predicted myc-r and myc-n groups: p-

values assessed  by Kaplan-Meier model in different treatments and subtypes  

 All ABC GCB UCL 

GSE4732-CHOP 0.828 01   0.411 01   

GSE10846-CHOP 0.683 0.117 0.314 0.011 

GSE10846-RCHOP 0.638 0.307 0.022 0.628 

GSE31312-RCHOP 0.375 0.356 0.003 0.82 

1Survival difference equals to 0 because there is no predicted myc-r case 
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5.2.2. Survival impact of MYC mRNA expression  

Next we checked the MYC expression effect on patients‟ survival in three 

above published datasets. As MYC expression is a continuous value, we 

first checked the correlation of the expression and the estimated survival 

time by Kaplan-Meier model. This is calculated by counting the number of 

pair-wise agreements/disagreements between two ranking lists. In the 

context, agreement is defined as two random selected objects where the 

observation with the shorter survival time of the two also has the higher MYC 

Figure 5-6: Kaplan-Meier survival curve in GES 10186 and GSE31312 
RCHOP treated cases
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expression, and disagreement is the other way around. It computes all 

 (   )   pairs of data points, and the concordance equals to (       

      ) (                   ). The concordance of MYC expression 

and survival time in the three public datasets is illustrated in Figure 5-8. The 

values are around 0.6 under each subtype and treatment, while GCB 

subtype especially with R-CHOP treatment has the largest concordance. 

This is also consistent with what we found between treatment response and 

the predicted MYC translocation cases.  

Figure 5-7: Concordance between MYC expression and follow up time 
in each subtype. 
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Next we divided the samples in each dataset into four categories: very high, 

high, low and very low by setting the boundaries at the 20th, 50th and 80th 

centiles of the MYC expression ranked list, and evaluated the survival 

differences by Kaplan-Meier model. Figure 5-9 shows the estimated survival 

curve for every category in each dataset. A significant separation is 

observed in all datasets. The very high expression of MYC is strongly 

correlated with poor survival. The CHOP treated data set GSE4732 shows 

the clearest survival separation on the basis of MYC expression. The 

RCHOP treated GSE31312 shows the expected improved overall survival 

attributed to the better treatment, and also an obvious survival separation 

between the very high MYC expression and the rest groups, however this is 

less pronounced among other groups. Dataset GSE10846 which contains 

both CHOP and RCHOP treated cases shows similar survival separation by 

MYC expression in both treatment groups.  

Figure 5-8: Kaplan-Meier survival curves of four MYC expression 
categories in each dataset. 
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5.2.3. Survival impact of MYC mRNA combined with other factors 

As discussed above, the prognostic impact of MYC expression in 

cooperation with other potential factors, especially its correlation with BCL2 

is not clear. Here we first investigated the BCL2 mRNA expression as a 

single effect on the patients‟ survival. Similarly it was divided into four 

categories (very high, high, low, very low), and the survival curves of each 

category for each dataset is illustrated in Figure 5-10.  

The figure shows that high BCL2 expression is significantly correlated with 

short survival (p-value ~ 0.001) on CHOP treated cases, but no obvious 

effect (p-value > 0.4) was observed when patients are treated with RCHOP 

Figure 5-9: Kaplan-Meier survival curves of four BCL2 expression 
categories in each dataset. 
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regimen. Therefore it is possible that the significant difference on CHOP 

treated cases is caused by the overall poor response to the regimen, and 

when the treatment developed the BCL2 expression effect disappears. So 

BCL2 mRNA expression itself is not associated with worse outcome in 

RCHOP treated patients. 

To further investigate the co-impact of MYC and BCL2, we divided both 

MYC and BCL2 expression into two groups: high and low, samples with 

expression values higher than 50% all samples are referred as high 

otherwise as low. The MYC and bcl2 co-effect is shown in Figure 5-11.  

Figure 5-10: Kaplan-Meier survival curves of MYC and BCL2 co-
expression categories in each dataset. 
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In all datasets except GSE31312 exhibit a separation of different groups and 

that high expression of both MYC and bcl2 has the worst survival, while low 

expression of both has the relatively longest survival. As the dataset 

GSE31312 is generated from FFPE samples, it is possible that the simple 

half cut-off on the MYC and BCL2 expression is not sufficient for the 

analysis. Also in the CHOP treated datasets, we can see BCL2 and MYC 

expression level play similar impact on the survival, with no obvious different 

between the groups that has one expression high while the other low. 

However, the impact of BCL2 drops vastly in RCHOP treated dataset 

GSE10846, with a clear strong inferior effect of MYC high expression, 

although high level of BCL2 still suffer worse survival compared with that of 

low level. 

A recent study suggested that the co-expression of MYC and BCL2 protein 

is the basis of poor outcome in all subtypes of DLBCL, and is a better 

survival indicator than the GEP subtypes [195].  When we check this from 

mRNA expression, it does seem that high expression of MYC and BCL2 is 

predominantly seen in ABC subtype (see Figure 5-12), which is known to 

have worse outcome. To further explore this, we investigated the co-

expression level of MYC and BCL2 in ABC and GCB subtypes respectively, 

and the differences of survival influence among the four co-expression level 

categories on are listed in Table 5-7. 
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The table shows that there is no difference among the four expression level 

groups in ABC cases in any dataset, and that there is significant difference 

in CHOP treated GCB cases but not RCHOP treated cases. The fact that the 

significant survival difference among different expression level exist when 

considering all subtypes while no significance different difference showing 

out within a particular subtype indicates the overall poor prognosis in not 

fully explained by high level of MYC and BCL2 mRNA expression.  We also 

investigate the co-impact of MYC and BCL2 by examining the MYC 

expression effect (high and low group with a cut-off of 50%) within two BCL2 

expression categories (high and low with 50% cut-off). The result shows that 

there is still a significant difference in the RCHOP treated GSE10846 

Figure 5-11: MYC and BCL2 mRNA expression in different DLBCL 
subtypes. 
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dataset, which is the most informative one (better sample quality and 

modern treatment). This suggests the survival impact of MYC mRNA 

expression is still strong even without the effect of BCL2, that MYC mRNA is 

an independent impact factor (Figure 5-10 bottom right and Table 5-7).  

Table 5-7: Survival difference between various groups: showed in p-values  

 CHOP RCHOP 

 GSE4732 GSE10846 GSE10846 GSE31312 

MYC and BCL2 co-expression: both-high, myc-high-bcl2-low,myc-low-bcl2-high,both-low 

All subtypes 0.004 <0.001 0.014 0.45 

GCB  0.03 0.01 0.159 0.813 

ABC 0.509 0.491 0.692 0.088 

MYC expression 2 categories: high and low  

in BCL2 low 0.13 0.231 0.066 0.458 

in BCL2 high 0.001 0.006 0.034 0.161 

Multivariate cox proportional hazard model 

Age 0.002 <0.001 0.01 No age info 

Subtype 0.371 0.003 <0.001 <0.001 

Predict myc-r 0.658 0.129 0.03 0.09 

MYC expression  0.02 0.06 0.01 0.08 

BCL2 expression 0.15 0.111 0.95 0.74 

In addition, we performed a more sophisticated multiple covariate analysis 

by the Cox proportional hazard model, and the results are presented in 

Table 5-7. It shows that age and subtypes are relatively consistent impact 

factors (significant in over three datasets), and that MYC expression level 

also correlates to survival although at the edge of significance in two 

datasets. BCL2 expression doesn‟t seem to correlate with survival obviously 

in any dataset.   
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5.3  MYC potential mechanism exploration  

MYC mechanism in non-Burkitt lymphomas remains elusive despite 

extensive investigations. In this section we explore this topic first by 

performing gene set enrichment analysis on biologically distinct groups. We 

conducted GSEA on the MYC dataset (combination of three public datasets) 

used in section 5.2.2, as well as the samples that have very high expression 

against very low expression of MYC mRNA, because the two groups present 

a different clinical course according to the results in section 5.3.  

Then we investigated the potential MYC activity by identifying genes that are 

associated with MYC, and explore the biological meanings of the genes with 

DAVID function analysing tool. The MYC-associated gene lists were 

selected in three different ways: (1) differentially expressed genes between 

FISH detected MYC-rearranged and MYC-negative GCB subtypes, since 

above analysis (section 5.3.1) shows that MYC rearrangement has a 

significant impact in GCB cases; (2) differentially expressed between very-

high against very-low MYC mRNA expression level groups, and (3) genes 

have strong positive/negative correlation with MYC mRNA expression.  

In addition to GSE10846 and GSE31312 datasets applied in the survival 

analysis, another four public datasets GSE12195 [196], GSE22470 [192], 

GSE34171 [197] and Monti data [198] were used to select MYC-associated 

genes and perform functional discovery. The detail is listed in Table 5-8. 

Table 5-8: Additional datasets used in mechanism exploration 

Dataset Description Tissue
1 

Platform 

GSE10846 414 DLBCL FF Affymetrix U133plus2 

GSE31312 498 DLBCL FFPE Affymetrix U133plus2 

GSE12195 73 DLBCL FF Affymetrix U133plus2 

GSE22470 271DLBCL FF Affymetrix U133a 

GSE34171 91DLBCL FF Affymetrix U133plus2 

Monti 176DLBCL FF Custom array 

1FF denotes fresh frozen, and FFPE denotes formalin fixed paraffin embedded tissue 
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5.3.1. Gene set enrichment analysis 

We use the GSEA software that developed by the Broad Institute and  the 

annotated dataset collection molecular signature database (MisgDB)[178] to 

assess what datasets are enriched in our expression data. There are 7 

collections (c1 to c7) of datasets in the MisgDB 4.0, and here we included c2 

(curated gene sets from online pathway databases, publications in PubMed, 

and knowledge of domain experts.), c5 (GO gene sets consist of genes 

annotated by the same GO terms), c6 (oncogenic signatures defined directly 

from microarray gene expression data from cancer gene perturbations), and 

c7 (immunologic signatures defined directly from microarray gene 

expression data from immunologic studies). And we exclude the datasets 

which have a number of genes less than 15 or over 200.   

In the MYC dataset (a combination of three public datasets, see section 

5.2.2), an analysis between MYC-rearranged and MYC-negative samples, 

there are 11 gene sets are significantly (p-value <0.01) enriched in 

rearranged phenotype (see Figure 5-13 and details for Appendix B table 1), 

including the genes (up-regulated in BL) applied in the molecular BL 

classifier generated by Hummel group:  

HUMMEL_BURKITTS_LYMPHOMA_UP 

And of genes strongly up-regulated in B493-6 cells (B lymphocytes) by a 

combination of MYC and serum but not by each of them alone: 

SCHLOSSER_MYC_AND_SERUM_RESPONSE_SYNERGY 
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Figure 5-12: Enriched gene sets in MYC-rearranged groups.  



 - 127 -  

The gene sets came out suggests there is an association between MYC 

translocation and other MYC activities. However a problem is none of the 

enriched gene sets has a false discover rate (FDR) less than 0.05, which 

indicates the significance drop down when comparing with other gene sets in 

the empirical null distribution. This could be because we do not have enough 

samples. Next we performed the same analysis on the expression profiles of 

samples that have the top 20 percent and bottom 20 percent of MYC 

expression level in each of the six data sets listed in Table 5-8.  

The number of enriched gene sets picked out in each dataset differ vastly, 

there are 195 gene set in Monti dataset, 49 gene set in GSE10846 and one 

gene set in GSE34171 that have normalized enrichment score (   ) over 

2.0 and FDR less than 0.05, while no gene set was chosen as enriched in 

the remaining three datasets (full results see Appendix B table 2-3). Again 

this could because of the small number of the samples in the analysis (15 in 

each group of GSE12195, 53 in GSE22470), and this could also be because 

there is less biological information in FFPE samples (GSE31312). However 

some of the enriched gene sets selected by the analysis were interesting, a 

few examples are listed below: 

MYC_UP.V1_UP, 

which are genes up-regulated in primary epithelial breast cancer cell culture 

over-expressing MYC gene, and genes up-regulated by MYC according to 

the MYC Target Gene Database (see Figure 5-14, for example): 

DANG_REGULATED_BY_MYC_UP  

Also there are some reactome gene sets related to various activities such 

as:  

REACTOME_TRANSLATION 

REACTOME_INFLUENZA_LIFE_CYCLE 

REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCED_BY_THE_EXO

N_JUNCTION_COMPLEX 
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5.3.2. Select MYC-associated gene lists 

The differentially expressed genes between the MYC-rearranged GCB 

cases were selected in limma package with the same criteria as in section 

5.2.2, and there are 40 significantly up-regulated plus 60 down-regulated 

genes respectively. Next we explain how the other two lists of genes are 

selected.  

First are the genes that are different between MYC very high (top 20%) and 

very low (bottom 20%) groups. We selected the genes in each of above six 

datasets using the limma package by setting the criteria at p-value less than 

0.01 and log fold change over 0.5, and the genes that are picked out by at 

least 4 dataset are called significantly differentially expressed. There are 137 

genes came out as significantly up-regulated in MYC very high cases, and 

only 3 genes as significantly down-regulated.  

Figure 5-13: Enriched gene sets in top 20 percent MYC high expressed 
phenotype. 
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Second gene lists are selected according to the MYC expression correlation: 

all samples in each of the six datasets are re-classified into ABC, GCB, and 

UCL subgroups by a DLBCL subtype GEP classifier developed by 

collaborator [199]. For each subtype, all genes are ranked by an adjusted 

spearman correlation with MYC expression, which is the average correlation 

across all datasets multiplied by the number of datasets that the gene 

appears in. The average and the standard deviation of the ranked genes 

among all subtypes are showed in Figure 5-12. The genes that have large 

rank are positive-correlated with MYC expression, and down in the rank list 

are negative-correlated with MYC expression.  

The median of the standard deviation for gene ranks in different subtypes is 

2221, which is about 10% of all genes. And it seems that the genes have 

high positive correlation or negative correlation (spearman correlation) with 

MYC expression is quite consistent, both top and bottom of the average rank 

list have relatively small deviation. Here we chose the top 200 plus bottom 

200 genes in the rank list which also have standard deviation smaller than 

Figure 5-14: Mean and standard deviation of the MYC expression 
correlation gene rank lists for all subtypes. 
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100 to perform further analysis. And there are 90 positive correlated and 12 

negative correlated genes selected respectively.  

5.3.3. DAVID functional analysis 

We use DAVID bioinformatics resources to explore the potential biological 

meanings of MYC-associated gene lists. Gene function was annotated on 

GOTERM_BP_ALL (gene ontology terms of biological process), SP_PIR_ 

KEYWORDS (Swiss-Prot and Protein Information Resource), and 

KEGG_PATHWAY for gene ontology, function network and canonical 

pathway analysis respectively.  

For the MYC rearrangement signature gene list in GCB subtypes, no 

significant (Benjamini p-value < 0.01 and FDR < 0.05) annotations were 

selected as enriched in the up-regulated gene set, while for the down-

regulated genes, the GO term annotations related to regulation of apoptosis 

or cell death stand out significantly (see Table 5-9).  

Table 5-9: GO term annotation of down-regulated genes in MYC-rearranged 

GCB 

Category % p-value Benjamini FDR 

regulation of apoptosis 24.07 1.07-E05 9.75-E03 0.02 

regulation of programmed cell death 24.07 1.18-E05 5.40-E03 0.02 

regulation of cell death 24.07 1.22-E05 3.74-E03 0.02 

For the genes selected between MYC very high against very low mRNA 

expression groups, there are few genes selected as down-regulated in the 

MYC very high expressed group, and we analysed the up-regulated gene 

list. The annotation for GO term, functions and pathways are listed in 5-11. It 

shows that the main functions of the genes are proliferating and metabolic 

related such as ribosome biogenesis, RNA processing, DNA replication, and 

metabolic process of rRNA or nuclearRNAs. 
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Table 5-10: DAVID annotation for up-regulated genes in MYC highly expressed 

cases 

Category % p-value Benjamini FDR 

GOTERM_BP_ALL 

ribonucleoprotein complex biogenesis 18.80 1.29E-21 1.13E-18 2.00E-18 

ribosome biogenesis 15.79 5.69E-20 2.51E-17 8.85E-17 

rRNA processing 9.77 3.64E-11 1.07E-08 5.65E-08 

rRNA metabolic process 9.77 6.07E-11 1.34E-08 9.44E-08 

ncRNA metabolic process 12.78 2.73E-10 4.82E-08 4.25E-07 

RNA processing 18.05 6.55E-10 9.62E-08 1.02E-06 

ncRNA processing 11.28 1.48E-09 1.86E-07 2.30E-06 

DNA metabolic process 17.00 1.28E+01 0.00 0.02 

SP_PIR_ KEYWORDS 

acetylation 61.654 3.36E-37 7.02E-35 4.24E-34 

ribosome biogenesis 9.774 3.64E-16 3.47E-14 4.22E-13 

nucleus 50.376 2.28E-12 1.59E-10 2.87E-09 

phosphoprotein 67.669 4.19E-12 2.19E-10 5.29E-09 

rrna processing 6.015 1.96E-07 8.18E-06 0.000 

mitochondrion 16.541 2.33E-07 8.13E-06 0.000 

atp-binding 21.053 2.77E-07 8.26E-06 0.000 

nucleotide-binding 22.556 2.96E-06 7.72E-05 0.004 

Chaperone 6.767 1.35E-05 0.000 0.017 

transit peptide 10.526 2.46E-05 0.001 0.031 

dna replication 5.263 3.19E-05 0.001 0.040 

KEGG_PATHWAY 

Purine metabolism 8.271 2.42E-06 0.000 0.002 

Cysteine and methionine metabolism 4.511 2.04E-05 0.001 0.021 



 - 132 -  

For the genes correlated with MYC expression, again nothing was significant 

for the negative-correlated genes, and the results for positive-correlated 

genes are shown in Table 5-12. Similar to the genes up-regulated in MYC 

very highly expressed cases; the positive-correlated genes have 

predominant functions involving ribosome biogenesis and protein 

biosynthesis. 

Table 5-11: DAVID annotation for MYC positive-correlated genes 

Category % p-value Benjamini FDR 

Gene ontology 

ribonucleoprotein complex biogenesis 1.050 3.69E-10 3.19E-07 5.73E-07 

ribosome biogenesis 0.808 2.82E-08 1.22E-05 4.38E-05 

Function 

acetylation 5.250 2.05E-37 3.51E-35 2.51E-34 

phosphoprotein 4.927 1.65E-09 1.41E-07 2.01E-06 

ribosome biogenesis 0.565 7.07E-08 4.03E-06 8.63E-05 

cytoplasm 2.989 7.89E-08 3.37E-06 9.64E-05 

nucleotide-binding 2.019 2.13E-07 0.000 0.000 

atp-binding 1.777 2.62E-07 7.46E-06 0.000 

Chaperone 0.727 5.35E-07 1.31E-05 6.53E-04 

host-virus interaction 0.889 5.72E-07 1.22E-05 6.99E-04 

mitochondrion 1.373 7.35E-07 1.40E-05 8.98E-04 

ribonucleoprotein 0.808 4.33E-06 7.40E-05 5.29E-03 

nucleus 3.150 4.93E-06 7.66E-05 0.006 

protein biosynthesis 0.646 2.13E-05 3.04E-04 0.026 

5.3.4. Potential PRMT5 involvement 

An interesting finding of the gene lists that are positive-correlated with MYC 

expression is that PRMT5 appears at a very high rank in all subtypes. The 

PRMT5 protein (protein arginine N-methyltransferase 5) is the major enzyme 
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that is responsible for mono- and symmetric dimethylation of arginine, 

whereas few literatures have reported the connection between MYC and 

PRMT5, only a study published in 2003 showed that PRMT5 and mSin3A 

interact with the same hSWI/SNF (nucleosome remodelling complex, which 

is a group of proteins that associate to remodel the way DNA is packaged) 

subunits as those targeted by MYC [200], and that PRMT5 is directly 

recruited to MYC target gene CAD promoter.  

However, an expanding literature have demonstrated its critical biological 

function in a wide range of cellular processes including histone methylation, 

genome organization, chromatin regulation, RNA processing, proliferation 

and more [201-204]. More recently the role of PRMT5 in lymphoma has 

becoming highly appreciated, it is strongly suggested that PRMT5 is 

required for lymphoma genesis and the overexpression is found to be 

involved in the proliferation and survival of mantle cell (MCL) and DLBCL 

cells [205-207], moreover a few studies have shown that a small molecule 

inhibitor of PRMT5 could kill lymphoma cells [34, 205], and a validation of 

PRMT5 as a candidate therapeutic target in glioblastoma in a mouse model 

has successfully enhanced the cell survival [208], which are all promising in 

offering a therapeutic strategy for lymphoma patients.  

5.4  Conclusion 

In this chapter we investigated a few rather keen topics related to MYC-

associated non-Burkitt lymphomas. First we tried to differentiate the FISH 

detected MYC-rearranged cases by finding a characteristic expression 

pattern. Although the expression pattern was able to correctly identify most 

of the rearranged samples, it doesn‟t seem to have full concordance with the 

FISH detected status in non-BL comparing to BL samples. This may 

because MYC-rearranged non-BL is often accompanied with various types 

of aberrations and complex karyotypes, and it is difficult to find an 

expression pattern that effectively represents this heterogeneous group. 

However the significant lower MYC single gene expression of the predicted 

myc-n group compared to myc-r group in FISH detected MYC-rearranged 
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cases may suggest that MYC-rearrangement do not necessarily lead to 

high-level expression of MYC mRNA. 

The survival analysis of the MYC rearrangement expression pattern showed 

that it had significant worse impact on GCB subtype but not in other 

subtypes. More closely analysis on MYC and BCL2 mRNA expression 

revealed that high MYC expression is strongly correlated with short survival, 

while the inferior effect of BCL2 expression decreases when the treatment 

improved to R-CHOP. It‟s no doubt that certain obstacles exist in this type of 

survival analysis, especially dataset GSE31312 was generated from FFPE 

samples, and that it doesn‟t seem to give any good correlation between 

survival and single gene expression. Still high level of MYC mRNA 

expression showed rather confident evidence of affecting patient‟s outcome, 

even in consideration with age and molecular subtypes prognostic factors.  

The data presented here suggest two potentially important conclusions. 

First, the analysis of our DASL data suggests that a MYC translocation 

identified by FISH does not always lead to a high level of MYC expression 

and the expression of the overall gene expression signature identified in 

many re-arranged cases. Second, that MYC expression levels are the best 

prognostic indicator compared with MYC translocations for many DLBCLs. 

Putting these two together you can make the suggestion that MYC 

expression levels are the best prognostic marker to apply in these cases. 

At last we explored the potential involved mechanism of MYC in non-BLs. 

The MYC rearrangement expression pattern genes seem to have a relation 

with down-regulating cell apoptosis. And the MYC expression correlated 

genes have enriched functions like RNA/ribosome activity and DNA 

replication. In addition, a potential treatment target PRMT5 is found to be 

highly correlated with MYC expression.  
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Chapter 6 

Discussion and future work 

6.1 Discussion 

The work carried out in this project presents a systematic investigation of 

problems proposed in the introduction chapter, regarding to developing a 

gene expression profiling based Burkitt lymphoma and diffuse large B-cell 

lymphoma classifier that is able to work effectively on formalin-fixed paraffin-

embedded samples commonly used in routine clinics.  Another aim of the 

study is to explore the role of MYC in the non-Burkitt B-cell lymphomas that 

raised great attention recently due to its particularly aggressive clinical 

course and lack of sufficient treatment paradigms. A summary of the results 

from each chapter is listed below: 

In chapter three, we have shown that two previous different classifiers in the 

research literature can be well recapitulated with the LibSVM classifier 

constructed by a much smaller gene set than those used in original 

classifiers. And that the classifier trained on the previous two corresponding 

datasets can be successfully transferred to other public datasets with similar 

BL definition as long as the cross-normalization is performed. However the 

classification results reflect that a less strict BL definition than which applied 

in previous classifiers is needed, in order to recognize the BLs from other 

datasets including some of which may have a weaker signal.  

Dependence on training data highlights the underlying difficulty in this and 

many similar studies, which is the lack of a „gold standard‟ against which to 

evaluate new classifiers. Even though disease categories like BL and 

DLBCL have developed over many years with a variety of phenotypic and 

molecular diagnostic criteria, there are still a significant number of cases that 

are complex and neither expert pathological assessors nor recent molecular 

classifiers can effectively distinguish them. And this becomes even more 

obvious when trying to combine studies by different research groups. 
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Therefore an alternative evaluation that can be performed is to combine the 

analysis of survival separation and treatment response. 

In chapter four, we validated the classifier on the FFPE datasets produced 

by our collaborators. The classification results of samples performed on two 

platforms show a generally good reproducibility as well as high consistency 

among cross-platform normalization methods. Nevertheless, the classifiers 

trained with the BL definition applied in previous literatures are less sensitive 

in recognizing BLs with weaker signals, which is more likely to happen in 

FFPE samples. And the classifier trained with an adjusted training set 

assigns samples into BL and DLBCL categories highly concordant with the 

diagnosis by the clinicians.  

More importantly, the examination of the outcome on the RCHOP treated 

MYC rearranged DLBCL cases shows that, the cases classified as BL have 

worse response than those classified as DLBCL, indicating the classifier is of 

potential clinical importance. Whereas the number of cases analyzed in 

treatment response is rather limited to draw statistically powerful conclusions 

yet, hence a next step of the work is to test if this treatment separation by 

our classifier still stands as we gather more data. However, it is important to 

note that this is one of the typical issues because even with a large data set 

such as this, when the cases are stratified by many clinical features or that 

the level of agreement between diagnosis is high there will only be small 

number cases of interest left to examine, particularly, the treatment options 

in the setting of B-cell malignancies usually improves at a high rate, thus the 

use of clinical outcome with a specific therapy could become an unstable 

parameter and add more stratification of the evaluation. 

Overall, our study of the discrimination of BL and DLBCL thoroughly 

performed the comparison of previous GEP classifiers, different platforms, 

normalization tools and datasets from various sample cohorts. The results 

show an excellent transferability and reproducibility among different research 

groups as well as FFPE samples from the clinical archive, which is a 

valuable practical step towards the refinement of pathological diagnosis and 

therapeutic approaches. The new classifier proposed here has the obvious 

stronger robustness comparing to previous research GEP classifiers that 
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developed and validated based on a single dataset/platform. And it is more 

reliable and objective than the classification based on immunohistochemistry 

method, which highly rely on the opinion of the technicians. Further, with 

new technologies on the way, such as wider mutation profiling, the technique 

is not yet outcompeted and the classifier can also provide as an external 

validation from the GEP angle. In addition, the study might also be adapted 

to some novel techniques such as NanoString and QuantiGene that are 

likely to be use in a routine diagnostic approach. 

In chapter five, we explored the MYC rearrangement expression pattern, the 

clinical impact of MYC on non-Burkitt B-cell lymphoma as well as the 

potential mechanism underlying MYC deregulation. The results show that 

most MYC rearranged cases express a particular pattern, yet the expression 

pattern do not always present in the FISH detected rearranged cases. It also 

shows that MYC mRNA high expression level is significantly correlated with 

poor outcome both in CHOP and RCHOP treated cases, and is a stronger 

survival indicator in non-Burkitt lymphomas comparing to MYC translocation 

or MYC translocation expression pattern, and BCL2 mRNA expression. As 

far as the suggests that the protein co-expression of high level MYC and 

BCL2 cause the basis for the inferior outcome of non-Burkitt lymphomas, the 

high-level co-expression of the mRNA expression also show obvious worse 

survival, however, the impact of MYC mRNA high expression alone is not 

fully justified in the R-CHOP treated dataset. This indicates high level of 

MYC mRNA expression serves as an independent prognostic impact factor, 

and a future step is to validate a reproducible way that can separate these 

cases. 

The gene set enrichment analysis between the samples expressing high 

level and low level of MYC mRNA identified enriched gene sets that consist 

of genes involved in other cancer cells showing MYC overexpression, and 

gene sets from MYC target gene database. The functional analysis of MYC 

high mRNA expression related genes and MYC mRNA expression 

correlated genes show a predominant functions relating to proliferation and 

metabolic activities. A positive finding is that PRMT5 is strongly co-

expressed with MYC irrespective of DLBCL subtypes, which suggest 

PRMT5 is potentially involved in the biological mechanism in MYC-
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associated non-Burkitt lymphomas. In fact, PRMT5 overexpression is found 

to be related with the proliferation and survival of DLBCL cells, and recently 

a few studies have shown that a small molecule inhibitor of PRMT5 could kill 

lymphoma cells, which provides a possible treatment direction.  

The analysis of MYC-associated non-Burkitt lymphoma is largely restricted 

by the fact that not enough data is available currently; in addition, it is 

complicated by the massive heterogeneity introduced by the complex 

phenotype and molecular features, the various MYC aberrancy detection 

methods with none widely accepted as standard, even in survival analysis 

the treatment schemes are sometimes various patient by patient and when 

combining data from multiple centers, other inconsistencies such as the 

diagnostic criteria could also be introduced. Therefore, typical difficulty of the 

related studies is that they usually lead to rather small sample set and weak 

conclusions. Given the current situation, there is a clear need to uniformly 

define the MYC-associated non-Burkitt lymphoma, and design specific 

clinical trials for these cases to gather more samples over time.  

6.2 Future work 

This study confirms that earlier work on gene expression based definitions of 

BL and DLBCL can be adapted for routine use to produce an automatic 

classifier with a high degree of concordance with more traditional methods, 

however the lack of clarity of the intermediate cases still exists on the 

molecular level with the treatment decisions remaining difficult. Moreover, 

new findings such as BL are associated with distinct mutation spectra from 

those observed in DLBCL, including ID3 and MYC, and that there are also 

genes mutated in both DLBCL and BL with similar frequencies such as 

GNA13 all suggests that evaluating these molecular features is more than 

gene expression but to combine a wider mutation profiling. It is likely that a 

combination of both information sources as the basis of future classifiers 

could lead to increased robustness in the context of heterogeneous diseases 

and the inevitable noise associated with all measurements on clinical 

samples.  
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Another approach related to BL and DLBCL diagnosis and treatment 

decision worth trying out in the future is that, instead of classifying samples 

into different categories or the stratifying them based on various features, 

which commonly lead to smaller sample set, we could perform a similarity 

query of a specific patient according to its gene expression profiles, maybe 

in addition with phenotype, clinical features as well as other genetic 

information. The method would then return a list of patients that have the 

overall high similarity with the query patient, which can be used to assist the 

diagnosis and predict the prognosis on a particular treatment. The 

advantage underlying this is that, not like classifiers which sometimes assign 

an intermediate case to a class with less confidence, it finds the patients 

most close to the case to make sure the query is most informative.  

This study also suggests that high level of MYC mRNA expression acts as a 

stable prognostic factor and is potentially able to represent MYC aberrations. 

Moreover, there is strong evidence that PRMT5 is correlated with MYC high 

expression which opens a potential therapeutic target for MYC-associated 

non-Burkitt lymphomas. PRMT5 over expression is known to be involved in 

the proliferation and survival of DLBCLs, and recent studies have suggested 

that the inhibition of PRMT5 could offer a promising therapeutic strategy for 

lymphoma patients [205, 209]. Therefore, the next step following this finding 

would be to test whether interfering the PRMT5 activity in the MYC high 

expressed B-cell lymphoma cells could lead to the cell death.  
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Appendix A 

The genes in each tested gene lists 

Gene10: 

SMARCA4, TCF3, CTSH, STAT3, BCL2A1, CD44, NASP, RNASEH2B, 

PRKAR2B, PRDM10 

Gene 21: 

SMARCA4, SLC35E3, SSBP2, MME, RGCC, BMP7, BACH2, RFC3, 

DLEU1, TERT, TCF3, ID3, MDFIC, BCL2A1, NFKBIA, FNBP1, CTSH, 

CD40, STAT3, CD44, CFLAR 

Gene 28: 

MARCA4, SLC35E3, SSBP2, MME, RGCC, BMP7, BACH2, RFC3, DLEU1, 

TERT, TCF3, ID3, TCL6, LEF1, C7orf10, SOX11, TUBA1A, MDFIC, 

S100A11, BCL2A1, NFKBIA, FNBP1, CTSH, CD40, STAT3, CD44, CFLAR, 

BCL3 

Gene 60: 

SMARCA4, SLC35E3, RFC3, DLEU1, TERT, NFKBIA, CD40, STAT3, 

BCL2A1, AHR, FNBP1, EBI3, TCF3, CFLAR, CTSH, CD44, MDFIC, 

SAMSN1, NREP, ID3, IL21R, BATF, TNFRSF1B, CCR7, BMP7, LY75, FAS, 

RBFOX2, LMO2, ENTPD1, RGCC, HCK, BCL3, SELL, RAB7L1, SSBP2, 

CXCL13, PBK, SOX11, BACH2, PTGDS, NCF2, TCL1A, VPREB3, BCL2, 

LEF1, CCND2, MME, CCL19, ALOX5, CXCL9, CD24, GZMB, CLU, 

CYB5R2, IGJ, AUTS2, MYBL1, TNFRSF17, BANK1 

Gene 173: 

SMARCA4, NDC1, ARHGEF18, GLRX5, SAC3D1, CDC25B, TAPT1, MAZ, 

RFC3, NREP, RGCC, BYSL, HNRNPAB, VRK1, DHFR, PNN, ID3, WHSC1, 

RBFOX2, TTLL12, HNRNPU, RANBP1, CDC7, GJC1, DEPDC1, ZWILCH, 

POLE3, TCL1A, CDKN2C, GTF3A, KIAA0226L, SLC35E3, SSBP2, 

NT5DC2, RFC4, GMNN, ARHGAP19, PRR11, AUTS2, PPP1R14B, HIP1R, 

GNA13, MYBL1, PTTG1, BMP7, DPY19L2P2, TMEM97, CKS1B, ITPR3, 

MSH6, NUDT21, NUP205, MPHOSPH9, CDK13, CBX2, DUT, RALBP1, 
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BACH2, OXCT1, TTK, MIF, CDC6, MME, LTBP1, CDK4, UBE2S, CCNB2, 

ALOX5, ANAPC15, EIF2AK3, VPREB3, MAP3K4, TOP1, MRPS2, TCF3, 

CD320, NUDT6, YTHDF1, SNRPA1, JAK2, CMTM6, ZSWIM8, IL2RG, 

NUP62, CCND1, CD83, SBNO2, CXCR3, SGK1, TLR1, HLA-F, CD58, 

TMBIM6, IL16, ST3GAL5, IL18, PIM1, LIMD1, TLR2, TP63, DTX4, ADTRP, 

CASP8, IL10RA, DENND3, ITGB2, CD40, HLA-E, CYB5R2, RIN2, 

DOCK10, AHNAK, CLIP2, TNFRSF1B, PTPN1, RASGRF1, PIM2, SNX11, 

SLA, TPP1, NECAP2, TRAF1, PTGIR, RAB7L1, ENTPD1, HCK, ATXN1, 

TNFSF10, HLA-G, IL6R, CTSH, LCP2, ATP6V0E1, ARPC1B, CCR7, KYNU, 

SLAMF1, MDFIC, FAS, JAK3, BATF, LMO2, ICAM1, LY75, NFKBIA, 

BATF3, TNFAIP3, FNBP1, CFLAR, MAP3K8, AHR, CD44, SAMSN1, EBI3, 

STAT3, BCL2A1, TERT, DLEU1, MYC, HDGF, TRIP13, BUB1B, GRSF1, 

LRPPRC, SFPQ, SRPK1, HDAC2, HMGB1, MAPKAPK5, CSTF3, GLO1, 

NOLC1. 
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Appendix B  

Details of 48 clinically diagnosed DLBCL cases with MYC translocation 

Table: Detailed clinical  information of 48 MYC-rearranged DLBCL cases 

Sample.ID 
1 

BL.prob
2 

Treatment
3 

Survival/ Response
4 

BCL2, BCL6 rearrangement
 

14 cases with MYC-rearrangement classified as BL by the GEP classifier 

H12726/06 0.52 R-CHOP Alive BCL2 rearranged 

H2123/11 0.617 R-CHOP Alive BCL2, BCL6 rearranged 

RCH_H14473/10 0.75 R-CHOP Complete remission BCL2, BCL6 rearranged 

RCH_21356 0.665 R-CHOP Persistent response BCL2 rearranged 

H10150/04 0.716 R-CHOP Died BCL2 rearranged 

H1032/07 0.662 R-CHOP Died BCL2, BCL6 rearranged 

H11330/06 0.745 R-CHOP Died BCL2 rearranged 
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H23841/11 0.738 R-CHOP Died BCL2 rearranged 

H2470/05 0.561 R-CHOP Died BCL2 rearranged 

H348/05 0.552 R-CHOP Died BCL2 rearranged 

LY10_1069 0.777 CODOX-M/IVAC Died BCL2 rearranged, BCL6 normal 

H11977/04 0.674 unknown unknown BCL2 rearranged 

H19874_13 0.734 unknown unknown BCL2 rearranged 

H3218/05 0.711 unknown unknown BCL2, BCL6 rearranged 

34 cases with MYC-rearrangement classified as DLBCL  by the GEP classifier 

H5694/12 0.029 R-CHOP Alive BCL6 rearranged 

H10453/04 0.017 R-CHOP Alive BCL6 rearranged 

H11800/04 0.07 R-CHOP Alive BCL6 rearranged  

H682/12 0.126 R-CHOP Alive BCL2 amplified 

H24187/11 0.168 R-CHOP Alive BCL2 rearranged 
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H2715/12 0.008 R-CHOP Alive BCL2 rearranged 

H6062/06 0.032 R-CHOP Alive BCL2 rearranged 

H7755/12 0.136 R-CHOP Alive BCL2 rearranged 

H9553/04 0.01 R-CHOP Alive  BCL2 rearranged 

H4658/04 0.023 R-CHOP Alive BCL2, BCL6 normal 

LY10_1130 0.016 R-CHOP Alive BCL2 normal, BCL6 rearranged 

LY10_1144 0.037 R-CHOP Alive BCL2 normal, BCL6 rearranged 

RCH_H19096/10 0.086 R-CHOP Complete remission BCL6 rearranged 

RCH_H19093/10 0.148 R-CHOP Complete remission BCL2 rearranged 

RCH_H14275/10 0.19 R-CHOP Complete remission BCL2 rearranged 

RCH_20462 0.162 R-CHOP Complete remission BCL2, BCL6 normal 

RCH_H13616/10 0.375 R-CHOP Complete remission BCL2, BCL6 normal 

RCH_H1144_11 0.008 R-CHOP Persistent disease (die) BCL6 rearranged 
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LY10_1135 0.071 R-CHOP Died BCL2 rearranged, BCL6 normal 

LY10_1065 0.15 R-CHOP Died BCL2, BCL6 normal 

H12035/07 0.245 R-CHOP Died BCL2 rearranged 

H1102/06 0.009 R-CHOP Died BCL2, BCL6 normal 

H12162/04 0.195 R-CHOP Died BCL2, BCL6 normal 

H3321/11 0.088 R-CHOP Died BCL2, BCL6 normal 

H3902/06 0.02 R-CHOP Died BCL2, BCL6 normal 

LY10_1077 0.5 CODOX-M/IVAC Died BCL2 rearranged, BCL6 normal 

H3251/06 0.034 No active Treatment Died BCL2 rearranged 

H1256/05 0.015 No active Treatment Died BCL2 rearranged 

H10073/04 0.082 No active Treatment Died BCL6 rearranged, BCL2 amplified 

H17622/10 0.015 No active Treatment Died BCL2, BCL6 normal 

H10602/06 0.313 Die before Treatment Died BCL2 rearranged 
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H16064/06 0.216 Die before Treatment Died BCL2 rearranged 

H9596/05 0.111 R-CHOP unknown BCL6 rearranged 

H14627/06 0.093 unknown unknown BCL2, BCL6 rearranged 

1Samples are collected from two clinical trails as well as local cases in HMDS (Haematological Malignancy Diagnostic Service, St. James Hospital, Leeds)  

Sample ID start with RCH are records from R-CHOP treated trials and start with LY10[10] are records from a dose-modified CODOX-M/IVAC trial. The rest 

samples are HMDS local patients. 

2BLprob is the Burkitt lymphoma probability generated by BDC (Burkitt lymphoma and Diffuse large B-cell lymphoma classifier developed in our work). 

3R-CHOP is usually used to treat DLBCL, named after drugs (Rituximab, Cyclophosphamide, doxorubicin (known as Hydroxydaunomycin) , vincristine (known 

as Oncovin), Prednisolone); CODOX-M/IVAC is a treatment usually for BL or BL like patients, names after drugs (Cyclophosphamide, vincristine (known as 

Oncovin), Doxorubicin, Methotrexate, Ifosfamide, Etoposide (known as Vepesid) and Cytarabine (known as Ara-C)) 

4In R-CHOP trails, all patients are evaluated with treatment response and this is used in the study.  
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Appendix C 

Detailed GSEA results 

Table 1: Enriched gene sets in MYC-rearranged GCB cases 

NAME SIZE NES NOM p-val 

WALLACE_PROSTATE_CANCER_UP 20 -1.7062083 0 

HUMMEL_BURKITTS_LYMPHOMA_UP 39 -1.6270509 0 

HOSHIDA_LIVER_CANCER_LATE_RECURRENCE_DN 66 -1.6134428 0.001890359 

GSE36476_YOUNG_VS_OLD_DONOR_MEMORY_CD4_TCELL_16H_TSST_ACT_UP 186 -1.5362979 0.009689922 

GSE25087_TREG_VS_TCONV_ADULT_DN 134 -1.5174266 0.011049724 

AMIT_SERUM_RESPONSE_480_MCF10A 35 -1.5550736 0.011472276 

CHEN_NEUROBLASTOMA_COPY_NUMBER_GAINS 42 -1.5980096 0.012072435 

LIU_TOPBP1_TARGETS 15 -1.6500998 0.013513514 

KYNG_ENVIRONMENTAL_STRESS_RESPONSE_DN 15 -1.6545824 0.013972056 

GSE3982_BCELL_VS_BASOPHIL_UP 187 -1.4730427 0.01814516 

XU_GH1_EXOGENOUS_TARGETS_UP 62 -1.521727 0.01968504 

SCHLOSSER_MYC_AND_SERUM_RESPONSE_SYNERGY 32 -1.5825396 0.022088353 

ACOSTA_PROLIFERATION_INDEPENDENT_MYC_TARGETS_UP 78 -1.5817859 0.022774328 

BROWN_MYELOID_CELL_DEVELOPMENT_DN 109 -1.48494 0.024193548 

REGULATION_OF_MAPKKK_CASCADE 18 -1.5556397 0.02504817 
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GSE360_L_MAJOR_VS_T_GONDII_MAC_DN 193 -1.5165459 0.026639344 

HASLINGER_B_CLL_WITH_13Q14_DELETION 23 -1.490647 0.028957529 

GSE15659_CD45RA_NEG_CD4_TCELL_VS_RESTING_TREG_DN 114 -1.4533107 0.030042918 

AZARE_NEOPLASTIC_TRANSFORMATION_BY_STAT3_UP 16 -1.4437289 0.031894933 

MYC_UP.V1_UP 123 -1.6026452 0.035051547 

GSE13306_RA_VS_UNTREATED_TCONV_UP 140 -1.399172 0.035433073 

BASSO_CD40_SIGNALING_DN 66 -1.445393 0.03731343 

BIOCARTA_CARDIACEGF_PATHWAY 18 -1.5105307 0.039252337 

MARIADASON_REGULATED_BY_HISTONE_ACETYLATION_DN 38 -1.4294868 0.04411765 

REGULATION_OF_G_PROTEIN_COUPLED_RECEPTOR_PROTEIN_SIGNALING_PATHWAY 23 -1.4829485 0.048076924 

REACTOME_3_UTR_MEDIATED_TRANSLATIONAL_REGULATION 89 -1.7070949 0.04918033 
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Table 2: Enriched gene sets in GSE10846 MYC mRNA highly expressed cases (FDR < 0.05) 

NAME SIZE NES 
NOM p-
val 

FDR q-val 

REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCED_BY_THE_EXON_JUNCTION_COMPLEX 92 2.237787 0 0.002958 

REACTOME_INFLUENZA_LIFE_CYCLE 120 2.160322 0 0.003334 

RIBONUCLEOPROTEIN_COMPLEX 136 2.145989 0 0.003738 

CHNG_MULTIPLE_MYELOMA_HYPERPLOID_UP 44 2.160974 0 0.00389 

MYC_UP.V1_UP 169 2.162476 0 0.004173 

ACOSTA_PROLIFERATION_INDEPENDENT_MYC_TARGETS_UP 77 2.079432 0 0.004571 

SCHLOSSER_MYC_TARGETS_AND_SERUM_RESPONSE_UP 43 2.062894 0 0.004675 

REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PROTEIN_TARGETING_TO_MEMBRANE 94 2.059008 0 0.004708 

ORGANELLE_ENVELOPE 163 2.065575 0.001953 0.004724 

RNA_SPLICING 88 2.079537 0 0.0048 

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 41 2.053966 0 0.004802 

GSE15930_NAIVE_VS_48H_IN_VITRO_STIM_IFNAB_CD8_TCELL_DN 188 2.059276 0 0.004813 

MITOCHONDRIAL_ENVELOPE 94 2.055216 0.00198 0.004823 

PENG_LEUCINE_DEPRIVATION_DN 178 2.063365 0 0.004836 

DANG_MYC_TARGETS_UP 129 2.067121 0 0.004869 

HELICASE_ACTIVITY 50 2.083328 0 0.004892 

ENVELOPE 163 2.065575 0.001953 0.004899 

BILANGES_RAPAMYCIN_SENSITIVE_VIA_TSC1_AND_TSC2 67 2.074603 0 0.004944 
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IRITANI_MAD1_TARGETS_DN 43 2.068284 0 0.004949 

NUCLEASE_ACTIVITY 54 2.046343 0 0.004952 

YAO_TEMPORAL_RESPONSE_TO_PROGESTERONE_CLUSTER_11 94 2.049338 0 0.005027 

RNA_PROCESSING 161 2.068467 0 0.005155 

NUCLEOLUS 118 2.085108 0 0.005163 

ZHANG_RESPONSE_TO_CANTHARIDIN_DN 65 2.07496 0 0.005169 

SCHUHMACHER_MYC_TARGETS_UP 74 2.163868 0 0.005216 

REACTOME_INFLUENZA_VIRAL_RNA_TRANSCRIPTION_AND_REPLICATION 87 2.123461 0.00198 0.005269 

DANG_REGULATED_BY_MYC_UP 67 2.086646 0 0.005387 

ZHAN_VARIABLE_EARLY_DIFFERENTIATION_GENES_DN 30 2.035718 0 0.005677 

REACTOME_3_UTR_MEDIATED_TRANSLATIONAL_REGULATION 90 2.086994 0.002058 0.005723 

REACTOME_TRNA_AMINOACYLATION 42 2.091108 0 0.005793 

KEGG_SELENOAMINO_ACID_METABOLISM 26 2.029383 0 0.006025 

SPLICEOSOME 51 2.030412 0 0.006034 

GROSS_HYPOXIA_VIA_HIF1A_UP 73 2.107907 0 0.006074 

MITOCHONDRIAL_MEMBRANE 83 2.091245 0.001931 0.006206 

REACTOME_METABOLISM_OF_MRNA 191 2.110272 0 0.006329 

YAO_TEMPORAL_RESPONSE_TO_PROGESTERONE_CLUSTER_14 138 2.09189 0 0.006684 

BILANGES_SERUM_AND_RAPAMYCIN_SENSITIVE_GENES 54 2.095068 0 0.006782 

KEGG_SPLICEOSOME 113 2.171054 0 0.006955 
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GSE24026_PD1_LIGATION_VS_CTRL_IN_ACT_TCELL_LINE_DN 189 2.007988 0.001898 0.00734 

SANSOM_APC_MYC_TARGETS 198 2.003705 0 0.007381 

REACTOME_MITOCHONDRIAL_TRNA_AMINOACYLATION 21 2.002501 0 0.007391 

MITOCHONDRIAL_TRANSPORT 21 2.00871 0 0.007404 

KARLSSON_TGFB1_TARGETS_UP 118 2.004638 0 0.007409 

KIM_MYC_AMPLIFICATION_TARGETS_UP 186 2.006415 0 0.007423 

SCHLOSSER_MYC_TARGETS_AND_SERUM_RESPONSE_DN 45 2.015008 0 0.00745 

STRUCTURE_SPECIFIC_DNA_BINDING 51 2.010603 0 0.007496 

DNA_HELICASE_ACTIVITY 24 2.010932 0 0.007599 

MITOCHONDRIAL_PART 137 2.012392 0.001984 0.007681 

JAIN_NFKB_SIGNALING 71 1.991842 0 0.008309 

MRNA_METABOLIC_PROCESS 78 1.987745 0 0.008509 

GSE15930_NAIVE_VS_48H_IN_VITRO_STIM_CD8_TCELL_DN 189 1.988084 0 0.008619 

REACTOME_TRANSLATION 128 2.174885 0 0.009114 

SANSOM_APC_TARGETS_REQUIRE_MYC 186 1.981014 0 0.009262 

PID_MYC_ACTIVPATHWAY 76 1.980089 0 0.009262 

WELCSH_BRCA1_TARGETS_DN 137 1.978041 0.003883 0.009306 

GSE22886_UNSTIM_VS_IL2_STIM_NKCELL_DN 189 1.975732 0 0.009475 

REACTOME_ACTIVATION_OF_THE_MRNA_UPON_BINDING_OF_THE_CAP_BINDING_COMPLEX_AND
_EIFS_AND_SUBSEQUENT_BINDING_TO_43S 51 1.976206 0.006073 0.009545 

RIBONUCLEOPROTEIN_COMPLEX_BIOGENESIS_AND_ASSEMBLY 80 1.971054 0 0.009957 
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MITOCHONDRIAL_INNER_MEMBRANE 64 1.97122 0 0.010089 

TIEN_INTESTINE_PROBIOTICS_6HR_UP 49 1.964846 0.005871 0.010937 

MRNA_PROCESSING_GO_0006397 68 1.962363 0 0.011071 

GSE31082_DN_VS_CD8_SP_THYMOCYTE_UP 184 1.955439 0 0.012269 

REACTOME_TRANSCRIPTION 157 1.95321 0.001894 0.012452 

REACTOME_PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA 128 1.952255 0.003759 0.012459 

REACTOME_MRNA_SPLICING_MINOR_PATHWAY 40 1.949148 0 0.012853 

SCHLOSSER_MYC_AND_SERUM_RESPONSE_SYNERGY 31 1.944831 0.001901 0.013061 

LI_DCP2_BOUND_MRNA 84 1.945249 0 0.013188 

ORGANELLE_INNER_MEMBRANE 72 1.946149 0 0.013242 

REACTOME_RNA_POL_III_TRANSCRIPTION 33 1.942189 0 0.013406 

HEDENFALK_BREAST_CANCER_HEREDITARY_VS_SPORADIC 45 1.938536 0 0.01396 

MENSSEN_MYC_TARGETS 46 1.937248 0 0.014037 

GSE31082_DN_VS_DP_THYMOCYTE_UP 185 1.93902 0 0.014083 

SCHLOSSER_MYC_TARGETS_REPRESSED_BY_SERUM 156 1.933287 0 0.01466 

TRANSCRIPTION_FROM_RNA_POLYMERASE_III_PROMOTER 19 1.932149 0 0.014819 

GRADE_METASTASIS_DN 42 1.928608 0.007828 0.015434 

REACTOME_CYTOSOLIC_TRNA_AMINOACYLATION 24 1.919238 0 0.01712 

REACTOME_RNA_POL_III_TRANSCRIPTION_INITIATION_FROM_TYPE_2_PROMOTER 23 1.919735 0 0.017178 

LEE_METASTASIS_AND_RNA_PROCESSING_UP 17 1.909566 0 0.017389 
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RNA_HELICASE_ACTIVITY 24 1.908508 0 0.017487 

MARCINIAK_ER_STRESS_RESPONSE_VIA_CHOP 24 1.910643 0.002092 0.017573 

PID_P53REGULATIONPATHWAY 57 1.911712 0.003968 0.017585 

IVANOVA_HEMATOPOIESIS_INTERMEDIATE_PROGENITOR 140 1.909616 0 0.017588 

GARCIA_TARGETS_OF_FLI1_AND_DAX1_DN 161 1.907069 0 0.017631 

ZAMORA_NOS2_TARGETS_UP 63 1.912042 0.003868 0.017744 

GSE24634_NAIVE_CD4_TCELL_VS_DAY5_IL4_CONV_TREG_DN 193 1.907248 0 0.017766 

GSE28237_FOLLICULAR_VS_EARLY_GC_BCELL_DN 189 1.915134 0 0.017874 

REACTOME_DEADENYLATION_DEPENDENT_MRNA_DECAY 42 1.91267 0 0.017908 

REACTOME_MRNA_PROCESSING 148 1.91381 0.007634 0.017966 

REACTOME_RNA_POL_III_TRANSCRIPTION_INITIATION_FROM_TYPE_3_PROMOTER 26 1.904379 0 0.018174 

REACTOME_PEPTIDE_CHAIN_ELONGATION 71 1.902682 0.01222 0.018604 

YAO_TEMPORAL_RESPONSE_TO_PROGESTERONE_CLUSTER_17 173 1.897515 0.005859 0.019176 

KEGG_PURINE_METABOLISM 147 1.897948 0 0.019311 

XU_RESPONSE_TO_TRETINOIN_AND_NSC682994_DN 15 1.895101 0 0.019331 

REACTOME_MRNA_SPLICING 99 1.898161 0.007678 0.019447 

REACTOME_PYRUVATE_METABOLISM_AND_CITRIC_ACID_TCA_CYCLE 40 1.895354 0 0.019455 

GSE31082_DN_VS_CD4_SP_THYMOCYTE_UP 180 1.892536 0 0.019534 

COLLER_MYC_TARGETS_UP 24 1.89273 0 0.019683 

MITOCHONDRION_ORGANIZATION_AND_BIOGENESIS 45 1.887347 0.001931 0.020502 
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GSE24634_TREG_VS_TCONV_POST_DAY3_IL4_CONVERSION_UP 193 1.888615 0.003817 0.02055 

STRUCTURAL_CONSTITUENT_OF_RIBOSOME 68 1.887546 0.001992 0.020655 

GSE15930_NAIVE_VS_48H_IN_VITRO_STIM_IL12_CD8_TCELL_DN 189 1.885251 0 0.020937 

JUBAN_TARGETS_OF_SPI1_AND_FLI1_DN 81 1.881741 0 0.021554 

GSE24634_TREG_VS_TCONV_POST_DAY5_IL4_CONVERSION_UP 191 1.882035 0.001883 0.021707 

DEN_INTERACT_WITH_LCA5 23 1.877354 0.003922 0.022614 

GSE22886_UNSTIM_VS_IL15_STIM_NKCELL_DN 192 1.875597 0 0.022857 

ENDONUCLEASE_ACTIVITY 24 1.873231 0 0.023298 

LUI_THYROID_CANCER_CLUSTER_3 24 1.871209 0.003945 0.023371 

PROTEIN_RNA_COMPLEX_ASSEMBLY 63 1.869007 0 0.023463 

GSE15930_NAIVE_VS_24H_IN_VITRO_STIM_CD8_TCELL_DN 191 1.871633 0 0.023501 

BIOCARTA_ARF_PATHWAY 17 1.869067 0 0.023631 

TRANSLATION 167 1.869787 0 0.023667 

GSE17721_POLYIC_VS_GARDIQUIMOD_8H_BMDM_DN 175 1.871718 0.002004 0.023683 

HOSHIDA_LIVER_CANCER_SUBCLASS_S2 111 1.861833 0.002045 0.024009 

RPS14_DN.V1_DN 179 1.862126 0.001984 0.024095 

POMEROY_MEDULLOBLASTOMA_PROGNOSIS_DN 42 1.86342 0.007797 0.024219 

KEGG_RNA_DEGRADATION 57 1.862283 0.001953 0.024265 

CAIRO_PML_TARGETS_BOUND_BY_MYC_UP 23 1.853844 0 0.024288 

REACTOME_RNA_POL_I_RNA_POL_III_AND_MITOCHONDRIAL_TRANSCRIPTION 80 1.854471 0 0.024294 
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DEOXYRIBONUCLEASE_ACTIVITY 22 1.854751 0.001988 0.024398 

REACTOME_DNA_REPAIR 105 1.863515 0.003861 0.0244 

GSE7764_IL15_TREATED_VS_CTRL_NK_CELL_24H_UP 186 1.865385 0 0.02442 

RESPONSE_TO_DNA_DAMAGE_STIMULUS 156 1.862514 0.00578 0.024421 

PID_MYC_PATHWAY 25 1.855168 0.001969 0.024474 

ATP_DEPENDENT_HELICASE_ACTIVITY 26 1.856201 0.013436 0.024494 

REACTOME_RNA_POL_I_TRANSCRIPTION_TERMINATION 21 1.855471 0 0.024548 

PRAMOONJAGO_SOX4_TARGETS_DN 48 1.86357 0.003831 0.024596 

WIERENGA_PML_INTERACTOME 39 1.86419 0.004082 0.024657 

GSE3982_NEUTROPHIL_VS_BCELL_DN 191 1.856888 0 0.024661 

BIOCARTA_EIF_PATHWAY 15 1.856208 0.001969 0.024687 

REACTOME_PURINE_METABOLISM 32 1.851566 0.009728 0.024761 

TRANSCRIPTION_INITIATION 35 1.859122 0.001949 0.024802 

REACTOME_ZINC_TRANSPORTERS 15 1.856996 0.003922 0.024848 

KEEN_RESPONSE_TO_ROSIGLITAZONE_UP 36 1.857252 0.001957 0.024944 

PROTEIN_FOLDING 58 1.857888 0.002 0.024956 

REACTOME_RNA_POL_III_TRANSCRIPTION_TERMINATION 19 1.845712 0 0.025197 

OUTER_MEMBRANE 25 1.845789 0.014113 0.025352 

RNA_SPLICINGVIA_TRANSESTERIFICATION_REACTIONS 34 1.843808 0.001961 0.025403 

GSE17974_CTRL_VS_ACT_IL4_AND_ANTI_IL12_12H_CD4_TCELL_DN 187 1.844213 0 0.025448 
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MITOCHONDRIAL_OUTER_MEMBRANE 18 1.848651 0.015968 0.025467 

GSE24634_TEFF_VS_TCONV_DAY5_IN_CULTURE_UP 194 1.845873 0.001883 0.025482 

VANTVEER_BREAST_CANCER_BRCA1_UP 33 1.847531 0 0.025502 

SINGLE_STRANDED_DNA_BINDING 32 1.846921 0.001976 0.025512 

REACTOME_LATE_PHASE_OF_HIV_LIFE_CYCLE 96 1.846056 0.003831 0.025599 

WALLACE_PROSTATE_CANCER_UP 20 1.847743 0 0.025633 

GSE17974_0H_VS_24H_IN_VITRO_ACT_CD4_TCELL_DN 182 1.840415 0 0.026351 

GSE22886_UNSTIM_VS_STIM_MEMORY_TCELL_DN 193 1.840811 0.005725 0.026421 

CHAUHAN_RESPONSE_TO_METHOXYESTRADIOL_UP 48 1.838625 0.001931 0.026841 

RIBOSOME_BIOGENESIS_AND_ASSEMBLY 16 1.836711 0 0.027355 

TRANSLATION_INITIATION_FACTOR_ACTIVITY 23 1.835631 0 0.027639 

DNA_DAMAGE_RESPONSESIGNAL_TRANSDUCTION 34 1.831681 0.004 0.028744 

REACTOME_RNA_POL_III_CHAIN_ELONGATION 17 1.828878 0 0.02886 

MALONEY_RESPONSE_TO_17AAG_DN 73 1.831707 0.003883 0.028931 

KEGG_HUNTINGTONS_DISEASE 166 1.829137 0.011696 0.028993 

REACTOME_FORMATION_OF_RNA_POL_II_ELONGATION_COMPLEX_ 39 1.828043 0 0.028997 

CHANDRAN_METASTASIS_TOP50_UP 35 1.830293 0.013861 0.029042 

NUCLEOLAR_PART 18 1.82951 0 0.029065 

REACTOME_CITRIC_ACID_CYCLE_TCA_CYCLE 19 1.82544 0.007937 0.029186 

DOUBLE_STRANDED_DNA_BINDING 28 1.825483 0 0.029341 
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GSE22886_NAIVE_CD4_TCELL_VS_12H_ACT_TH1_DN 193 1.826291 0.003831 0.029404 

REACTOME_BRANCHED_CHAIN_AMINO_ACID_CATABOLISM 17 1.825746 0.001869 0.029423 

REACTOME_RNA_POL_II_TRANSCRIPTION 93 1.820666 0.007813 0.030811 

REACTOME_DESTABILIZATION_OF_MRNA_BY_TRISTETRAPROLIN_TTP 17 1.818059 0.001821 0.031801 

REACTOME_FORMATION_OF_THE_TERNARY_COMPLEX_AND_SUBSEQUENTLY_THE_43S_COMPL
EX 44 1.816298 0.012146 0.031944 

RAHMAN_TP53_TARGETS_PHOSPHORYLATED 21 1.811845 0.009615 0.031969 

GSE19825_NAIVE_VS_IL2RAHIGH_DAY3_EFF_CD8_TCELL_DN 187 1.815869 0.003839 0.031999 

NUCLEAR_BODY 30 1.816852 0.005725 0.032073 

REACTOME_REGULATORY_RNA_PATHWAYS 20 1.816419 0 0.032098 

GSE17974_CTRL_VS_ACT_IL4_AND_ANTI_IL12_24H_CD4_TCELL_DN 185 1.811886 0 0.032143 

PORE_COMPLEX 34 1.814131 0.007421 0.032289 

BIOCARTA_TEL_PATHWAY 18 1.811966 0.008247 0.032312 

NUCLEOTIDYLTRANSFERASE_ACTIVITY 46 1.813293 0.003914 0.032348 

GSE15930_NAIVE_VS_24H_IN_VITRO_STIM_IL12_CD8_TCELL_DN 192 1.814205 0.001905 0.032453 

REACTOME_AMINO_ACID_SYNTHESIS_AND_INTERCONVERSION_TRANSAMINATION 16 1.812016 0 0.032494 

GSE27786_LIN_NEG_VS_NKCELL_UP 186 1.812082 0 0.03266 

GSE27786_LIN_NEG_VS_MONO_MAC_UP 187 1.809192 0 0.032784 

UDAYAKUMAR_MED1_TARGETS_UP 131 1.805964 0 0.033851 

DNA_DEPENDENT_ATPASE_ACTIVITY 21 1.806346 0 0.03389 

DNA_REPAIR 120 1.804955 0.013725 0.034067 
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DAIRKEE_CANCER_PRONE_RESPONSE_BPA 49 1.803839 0.005769 0.034337 

EXONUCLEASE_ACTIVITY 19 1.802537 0 0.034429 

BROWN_MYELOID_CELL_DEVELOPMENT_DN 119 1.800799 0.001923 0.034462 

RHODES_CANCER_META_SIGNATURE 64 1.800457 0.015009 0.034469 

GENERAL_RNA_POLYMERASE_II_TRANSCRIPTION_FACTOR_ACTIVITY 31 1.802761 0 0.034546 

RNA_EXPORT_FROM_NUCLEUS 20 1.801665 0 0.034581 

MITOCHONDRIAL_MEMBRANE_PART 50 1.800833 0.007692 0.034616 

TRNA_METABOLIC_PROCESS 19 1.800999 0.009381 0.034723 

BHATTACHARYA_EMBRYONIC_STEM_CELL 83 1.797841 0.001984 0.03484 

REACTOME_MITOCHONDRIAL_PROTEIN_IMPORT 47 1.799264 0 0.034843 

MEIOTIC_RECOMBINATION 16 1.798716 0.007648 0.034858 

GSE17721_LPS_VS_PAM3CSK4_4H_BMDM_DN 183 1.797941 0.001953 0.034997 

KEGG_LYSINE_DEGRADATION 44 1.79478 0.003831 0.035032 

GSE32423_MEMORY_VS_NAIVE_CD8_TCELL_IL7_DN 179 1.794899 0.001957 0.035144 

RESPONSE_TO_ENDOGENOUS_STIMULUS 192 1.795292 0.006 0.035155 

GSE17721_POLYIC_VS_PAM3CSK4_6H_BMDM_DN 186 1.794309 0.00188 0.035159 

GSE27786_NEUTROPHIL_VS_MONO_MAC_DN 184 1.793777 0 0.035183 

GSE18791_UNSTIM_VS_NEWCATSLE_VIRUS_DC_10H_UP 185 1.795507 0.001969 0.035256 

DNA_DIRECTED_RNA_POLYMERASEII_HOLOENZYME 64 1.795765 0.003968 0.035351 

GSE15930_NAIVE_VS_24H_IN_VITRO_STIM_INFAB_CD8_TCELL_DN 190 1.796217 0.003774 0.035375 
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BOYAULT_LIVER_CANCER_SUBCLASS_G3_UP 182 1.79228 0.003929 0.035628 

REACTOME_METABOLISM_OF_NON_CODING_RNA 46 1.791416 0 0.035694 

TRANSLATION_REGULATOR_ACTIVITY 38 1.791824 0.001938 0.035727 

ORGANELLE_OUTER_MEMBRANE 24 1.790667 0.02008 0.035852 

TRANSLATION_FACTOR_ACTIVITY_NUCLEIC_ACID_BINDING 36 1.789821 0.003914 0.036075 

NUCLEAR_MEMBRANE 48 1.788045 0.003861 0.036105 

ELVIDGE_HYPOXIA_DN 141 1.788825 0.023166 0.036112 

PROTEIN_N_TERMINUS_BINDING 38 1.789087 0.00396 0.036179 

MULLIGAN_NTF3_SIGNALING_VIA_INSR_AND_IGF1R_UP 20 1.788197 0.005758 0.036195 

GSE9006_HEALTHY_VS_TYPE_1_DIABETES_PBMC_1MONTH_POST_DX_UP 194 1.787545 0.007874 0.036201 

KEGG_RNA_POLYMERASE 27 1.78679 0.001916 0.036361 

COLLIS_PRKDC_SUBSTRATES 20 1.786065 0.001942 0.036391 

KEGG_RIBOSOME 73 1.786309 0.014523 0.036453 

REACTOME_TRANSPORT_OF_MATURE_TRANSCRIPT_TO_CYTOPLASM 49 1.783152 0.017375 0.037562 

GSE11924_TFH_VS_TH1_CD4_TCELL_DN 188 1.782776 0 0.037588 

GSE17721_PAM3CSK4_VS_GADIQUIMOD_6H_BMDM_UP 189 1.779248 0.001938 0.038717 

DNA_CATABOLIC_PROCESS 23 1.779351 0.001984 0.038813 

BURTON_ADIPOGENESIS_PEAK_AT_16HR 40 1.779919 0.01476 0.038847 

CHNG_MULTIPLE_MYELOMA_HYPERPLOID_DN 28 1.779506 0.012448 0.038881 

RIBOSOME 36 1.777931 0.001942 0.0389 
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HEDENFALK_BREAST_CANCER_BRACX_DN 20 1.778482 0.015414 0.038907 

REACTOME_RNA_POL_II_PRE_TRANSCRIPTION_EVENTS 54 1.776734 0.003929 0.039342 

GSE10239_KLRG1INT_VS_KLRG1HIGH_EFF_CD8_TCELL_UP 182 1.775342 0.005871 0.039685 

NUCLEAR_ENVELOPE 70 1.775626 0.001946 0.039697 

FLECHNER_BIOPSY_KIDNEY_TRANSPLANT_OK_VS_DONOR_DN 25 1.772921 0.013566 0.040594 

MRNA_BINDING 20 1.772002 0.015779 0.040662 

RIBONUCLEASE_ACTIVITY 24 1.771337 0 0.040677 

E2F1_UP.V1_UP 182 1.772216 0.007782 0.040787 

DNA_REPLICATION 98 1.771416 0.01165 0.040814 

REACTOME_ELONGATION_ARREST_AND_RECOVERY 27 1.769001 0.009488 0.041083 

TRANSLATIONAL_INITIATION 36 1.770249 0.00198 0.041099 

ATP_DEPENDENT_RNA_HELICASE_ACTIVITY 17 1.769108 0.007648 0.041199 

REACTOME_TRANSCRIPTION_COUPLED_NER_TC_NER 44 1.768321 0.013619 0.041207 

GSE27786_LSK_VS_NKTCELL_UP 182 1.769402 0 0.041254 

REACTOME_HIV_LIFE_CYCLE 109 1.766241 0.015066 0.04187 

REACTOME_NUCLEOTIDE_EXCISION_REPAIR 49 1.766385 0.015504 0.042002 

TRANSCRIPTION_INITIATION_FROM_RNA_POLYMERASE_II_PROMOTER 29 1.765355 0.001969 0.042146 

REACTOME_DESTABILIZATION_OF_MRNA_BY_KSRP 17 1.764539 0.013258 0.042353 

DNA_RECOMBINATION 46 1.763909 0.01006 0.042507 

BILD_MYC_ONCOGENIC_SIGNATURE 192 1.761332 0.00381 0.043532 
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KEGG_CITRATE_CYCLE_TCA_CYCLE 30 1.759984 0.013752 0.043927 

REACTOME_INTERACTIONS_OF_VPR_WITH_HOST_CELLULAR_PROTEINS 32 1.760191 0.005747 0.044009 

SMALL_NUCLEAR_RIBONUCLEOPROTEIN_COMPLEX 22 1.759397 0.011299 0.044074 

REACTOME_REGULATION_OF_GLUCOKINASE_BY_GLUCOKINASE_REGULATORY_PROTEIN 27 1.757871 0.003861 0.044543 

GSE17721_LPS_VS_CPG_1H_BMDM_UP 189 1.757084 0 0.044642 

NUNODA_RESPONSE_TO_DASATINIB_IMATINIB_UP 29 1.757406 0.007767 0.044682 

GSE27786_BCELL_VS_NEUTROPHIL_UP 188 1.757936 0.007707 0.044687 

KEGG_ALANINE_ASPARTATE_AND_GLUTAMATE_METABOLISM 32 1.753416 0.005906 0.044751 

LI_WILMS_TUMOR_VS_FETAL_KIDNEY_1_DN 156 1.752443 0.026769 0.04486 

STARK_HYPPOCAMPUS_22Q11_DELETION_DN 17 1.753514 0.018219 0.044888 

REACTOME_FANCONI_ANEMIA_PATHWAY 21 1.75397 0.001942 0.044912 

ACETYLTRANSFERASE_ACTIVITY 25 1.752624 0.005671 0.044961 

CHEMNITZ_RESPONSE_TO_PROSTAGLANDIN_E2_UP 134 1.75516 0.022514 0.044988 

GSE17974_CTRL_VS_ACT_IL4_AND_ANTI_IL12_4H_CD4_TCELL_DN 183 1.754135 0.003891 0.044991 

KEGG_PYRIMIDINE_METABOLISM 89 1.756109 0.01004 0.045017 

PROTEIN_UBIQUITINATION 39 1.755366 0.005929 0.04506 

REACTOME_TRANSPORT_OF_MATURE_MRNA_DERIVED_FROM_AN_INTRONLESS_TRANSCRIPT 31 1.751654 0.001931 0.045085 

KEGG_ARGININE_AND_PROLINE_METABOLISM 50 1.754138 0.013944 0.04517 

TAKAO_RESPONSE_TO_UVB_RADIATION_DN 96 1.755535 0.001969 0.045171 

HESS_TARGETS_OF_HOXA9_AND_MEIS1_UP 61 1.754418 0.00578 0.045234 
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REACTOME_RNA_POL_I_TRANSCRIPTION_INITIATION 24 1.751065 0 0.045254 

BASSO_B_LYMPHOCYTE_NETWORK 137 1.749485 0.001949 0.045871 

REACTOME_ACTIVATION_OF_BH3_ONLY_PROTEINS 15 1.749073 0.00759 0.045928 

MORI_EMU_MYC_LYMPHOMA_BY_ONSET_TIME_UP 97 1.747861 0.005929 0.046219 

REACTOME_FORMATION_OF_TRANSCRIPTION_COUPLED_NER_TC_NER_REPAIR_COMPLEX 29 1.748061 0.003861 0.04628 

GSE22886_NAIVE_CD4_TCELL_VS_48H_ACT_TH1_DN 191 1.745037 0.015686 0.046482 

REACTOME_MICRORNA_MIRNA_BIOGENESIS 17 1.74529 0.001931 0.046505 

GSE22886_NAIVE_TCELL_VS_NEUTROPHIL_UP 190 1.746549 0.032882 0.046542 

DNA_INTEGRITY_CHECKPOINT 24 1.746737 0.005894 0.046591 

PID_FANCONI_PATHWAY 46 1.746106 0.009709 0.046632 

RNA_DEPENDENT_ATPASE_ACTIVITY 18 1.745355 0.022989 0.046642 

PID_P73PATHWAY 76 1.74572 0.005736 0.046665 

REACTOME_DESTABILIZATION_OF_MRNA_BY_BRF1 17 1.744316 0.011029 0.04669 

REACTOME_NEP_NS2_INTERACTS_WITH_THE_CELLULAR_EXPORT_MACHINERY 27 1.743173 0.003831 0.046716 

DNA_DAMAGE_CHECKPOINT 20 1.743963 0.006073 0.046734 

GSE1460_INTRATHYMIC_T_PROGENITOR_VS_NAIVE_CD4_TCELL_CORD_BLOOD_UP 190 1.743274 0.013861 0.046847 

TRANSFERASE_ACTIVITY_TRANSFERRING_GROUPS_OTHER_THAN_AMINO_ACYL_GROUPS 47 1.741538 0.00578 0.04693 

VEGF_A_UP.V1_DN 190 1.741566 0.002053 0.047085 

NUCLEOBASENUCLEOSIDE_AND_NUCLEOTIDE_METABOLIC_PROCESS 49 1.742225 0.001927 0.047101 

GSE36392_TYPE_2_MYELOID_VS_MAC_IL25_TREATED_LUNG_DN 183 1.741662 0.00789 0.047182 
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MITOCHONDRIAL_LUMEN 44 1.738406 0.007968 0.047855 

MITOCHONDRIAL_MATRIX 44 1.738406 0.007968 0.048026 

REACTOME_FORMATION_OF_THE_HIV1_EARLY_ELONGATION_COMPLEX 29 1.738688 0.001919 0.04804 

KEGG_NUCLEOTIDE_EXCISION_REPAIR 44 1.736138 0.017442 0.048048 

LIGASE_ACTIVITY 95 1.736347 0.013672 0.048109 

LY_AGING_OLD_DN 55 1.737296 0.013514 0.048124 

PID_BARD1PATHWAY 29 1.737533 0.028681 0.048161 

GSE17721_POLYIC_VS_PAM3CSK4_8H_BMDM_DN 185 1.738735 0 0.048195 

WANG_TARGETS_OF_MLL_CBP_FUSION_DN 45 1.736882 0.005929 0.048205 

REACTOME_SYNTHESIS_OF_GLYCOSYLPHOSPHATIDYLINOSITOL_GPI 16 1.736434 0.006148 0.048253 

ABRAMSON_INTERACT_WITH_AIRE 43 1.735281 0.003899 0.048324 

GSE17721_PAM3CSK4_VS_GADIQUIMOD_8H_BMDM_UP 188 1.734982 0.001949 0.048327 

REACTOME_TCA_CYCLE_AND_RESPIRATORY_ELECTRON_TRANSPORT 117 1.733323 0.029183 0.048913 

GSE19825_CD24LOW_VS_IL2RA_HIGH_DAY3_EFF_CD8_TCELL_DN 191 1.733518 0.001969 0.048997 

REACTOME_PREFOLDIN_MEDIATED_TRANSFER_OF_SUBSTRATE_TO_CCT_TRIC 24 1.731846 0.013645 0.049238 

PUJANA_BRCA_CENTERED_NETWORK 117 1.731513 0.017308 0.049287 

GSE24634_NAIVE_CD4_TCELL_VS_DAY3_IL4_CONV_TREG_DN 189 1.731916 0.013384 0.049339 

REACTOME_RESOLUTION_OF_AP_SITES_VIA_THE_MULTIPLE_NUCLEOTIDE_PATCH_REPLACEME
NT_PATHWAY 17 1.732164 0.007859 0.049352 
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Table 3: Enriched gene sets in Monti dataset MYC mRNA highly expressed cases (FDR < 0.05 and NES > 2) 

NAME 

SIZE NES 
NOMp-
val FDR q-val 

TIEN_INTESTINE_PROBIOTICS_6HR_UP 55 2.302072 0 2.77E-04 

RIBONUCLEOPROTEIN_COMPLEX_BIOGENESIS_AND_ASSEMBLY 84 2.303925 0 3.69E-04 

DANG_MYC_TARGETS_UP 139 2.308868 0 5.54E-04 

RNA_PROCESSING 170 2.280573 0 8.87E-04 

HELICASE_ACTIVITY 51 2.28162 0 0.00106486 

JUBAN_TARGETS_OF_SPI1_AND_FLI1_DN 87 2.311738 0 0.0011072 

NUCLEOLUS 122 2.225878 0 0.00117365 

RNA_HELICASE_ACTIVITY 24 2.226765 0 0.00125749 

REACTOME_INFLUENZA_LIFE_CYCLE 134 2.251753 0 0.00126821 

GROSS_HYPOXIA_VIA_HIF1A_UP 75 2.215831 0 0.00127863 

RIBONUCLEOPROTEIN_COMPLEX 142 2.243005 0 0.00130454 

SCHUHMACHER_MYC_TARGETS_UP 77 2.22853 0 0.00135422 

ATP_DEPENDENT_HELICASE_ACTIVITY 27 2.25236 0 0.00142674 

REACTOME_DEADENYLATION_DEPENDENT_MRNA_DECAY 44 2.243377 0 0.00143499 

GSE17721_LPS_VS_POLYIC_12H_BMDM_UP 194 2.25802 0 0.00143668 

GSE24026_PD1_LIGATION_VS_CTRL_IN_ACT_TCELL_LINE_DN 198 2.229192 0 0.00146707 

TRANSLATION_FACTOR_ACTIVITY_NUCLEIC_ACID_BINDING 38 2.190151 0 0.00176779 



 
- 1

8
0
 - 

SCHLOSSER_MYC_TARGETS_AND_SERUM_RESPONSE_UP 46 2.191599 0 0.00186083 

PENG_LEUCINE_DEPRIVATION_DN 184 2.200531 0 0.00190364 

TRANSLATION_REGULATOR_ACTIVITY 40 2.185477 0 0.00192369 

YAO_TEMPORAL_RESPONSE_TO_PROGESTERONE_CLUSTER_14 141 2.192001 0 0.00196421 

PUIFFE_INVASION_INHIBITED_BY_ASCITES_UP 82 2.169003 0 0.00200452 

GSE22886_NAIVE_TCELL_VS_NEUTROPHIL_UP 196 2.179475 0 0.00202115 

RNA_SPLICING 90 2.182884 0 0.00202202 

KEGG_SPLICEOSOME 124 2.17045 0 0.00207876 

REACTOME_TRNA_AMINOACYLATION 42 2.174717 0 0.00213166 

GSE3982_NEUTROPHIL_VS_TH2_DN 196 2.160707 0 0.00213282 

BIOPOLYMER_CATABOLIC_PROCESS 115 2.162733 0 0.00213549 

ELVIDGE_HYPOXIA_DN 143 2.171065 0 0.00215872 

GSE9006_HEALTHY_VS_TYPE_1_DIABETES_PBMC_1MONTH_POST_DX_UP 197 2.174053 0 0.00216525 

PID_MYC_ACTIVPATHWAY 78 2.154827 0 0.00243964 

GSE27786_LIN_NEG_VS_MONO_MAC_UP 193 2.137849 0 0.00248582 

GSE3982_NEUTROPHIL_VS_TH1_DN 198 2.141705 0 0.00251881 

MORI_EMU_MYC_LYMPHOMA_BY_ONSET_TIME_UP 102 2.138363 0 0.002553 

FERRANDO_T_ALL_WITH_MLL_ENL_FUSION_DN 87 2.142505 0 0.00259078 

GSE19825_NAIVE_VS_IL2RAHIGH_DAY3_EFF_CD8_TCELL_DN 195 2.145963 0 0.00263316 

DAIRKEE_CANCER_PRONE_RESPONSE_BPA 51 2.145384 0 0.00263938 
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MRNA_METABOLIC_PROCESS 82 2.13498 0 0.0026413 

SCHLOSSER_MYC_TARGETS_REPRESSED_BY_SERUM 157 2.125419 0 0.00266262 

ZHANG_RESPONSE_TO_CANTHARIDIN_DN 67 2.126893 0 0.00266663 

GSE9006_TYPE_1_VS_TYPE_2_DIABETES_PBMC_AT_DX_UP 194 2.136203 0 0.00268497 

GSE9006_HEALTHY_VS_TYPE_2_DIABETES_PBMC_AT_DX_UP 192 2.127727 0 0.00269992 

KARLSSON_TGFB1_TARGETS_UP 123 2.146677 0 0.00271545 

GSE10239_MEMORY_VS_DAY4.5_EFF_CD8_TCELL_DN 191 2.128472 0 0.0027642 

MENSSEN_MYC_TARGETS 52 2.1291 0 0.00283162 

PROTEIN_RNA_COMPLEX_ASSEMBLY 65 2.118379 0 0.0029883 

ATP_DEPENDENT_RNA_HELICASE_ACTIVITY 17 2.121339 0 0.00300711 

BILD_MYC_ONCOGENIC_SIGNATURE 199 2.116307 0 0.00300725 

KAUFFMANN_DNA_REPLICATION_GENES 146 2.118818 0 0.00303113 

MRNA_PROCESSING_GO_0006397 72 2.113936 0 0.00310077 

REACTOME_MRNA_PROCESSING 156 2.109227 0 0.00313122 

GSE3982_MAST_CELL_VS_NEUTROPHIL_UP 197 2.10813 0 0.00315184 

WATANABE_RECTAL_CANCER_RADIOTHERAPY_RESPONSIVE_UP 108 2.109396 0 0.00317221 

DANG_REGULATED_BY_MYC_UP 70 2.10243 0 0.0031761 

RNA_DEPENDENT_ATPASE_ACTIVITY 18 2.106267 0 0.00318437 

WELCSH_BRCA1_TARGETS_DN 139 2.109618 0 0.00320598 

GSE27786_BCELL_VS_ERYTHROBLAST_UP 189 2.102556 0 0.00323086 
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DNA_HELICASE_ACTIVITY 25 2.099948 0 0.00324565 

CAMP_UP.V1_UP 191 2.103629 0 0.00325672 

GINESTIER_BREAST_CANCER_20Q13_AMPLIFICATION_DN 171 2.103633 0 0.00331488 

BILANGES_RAPAMYCIN_SENSITIVE_VIA_TSC1_AND_TSC2 72 2.092716 0 0.00346915 

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 41 2.091494 0.002016 0.00348747 

GSE9006_TYPE_1_DIABETES_AT_DX_VS_1MONTH_POST_DX_PBMC_UP 198 2.095311 0 0.00348825 

GSE17721_POLYIC_VS_GARDIQUIMOD_6H_BMDM_DN 194 2.095713 0 0.00349736 

PRAMOONJAGO_SOX4_TARGETS_DN 50 2.091705 0 0.00351159 

GSE17721_PAM3CSK4_VS_CPG_4H_BMDM_UP 192 2.092802 0 0.00352093 

GSE27786_NKTCELL_VS_MONO_MAC_UP 198 2.093667 0 0.00354427 

CHAUHAN_RESPONSE_TO_METHOXYESTRADIOL_DN 101 2.093209 0.003929 0.00354543 

RIZ_ERYTHROID_DIFFERENTIATION 77 2.092872 0 0.00357428 

GSE17721_CTRL_VS_POLYIC_12H_BMDM_UP 189 2.094071 0 0.00360053 

MITOCHONDRIAL_PART 140 2.084282 0 0.00375324 

JAIN_NFKB_SIGNALING 74 2.085336 0 0.00376023 

SCHLOSSER_MYC_TARGETS_AND_SERUM_RESPONSE_DN 46 2.085984 0 0.00378064 

ZAMORA_NOS2_TARGETS_UP 66 2.083162 0 0.00380614 

ORGANELLE_ENVELOPE 165 2.081863 0 0.00382854 

RAHMAN_TP53_TARGETS_PHOSPHORYLATED 21 2.080515 0 0.0038438 

IRITANI_MAD1_TARGETS_DN 44 2.07991 0 0.00386929 
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ENVELOPE 165 2.081863 0 0.00387959 

GSE17974_0H_VS_6H_IN_VITRO_ACT_CD4_TCELL_DN 196 2.077659 0 0.00394544 

GSE15930_NAIVE_VS_48H_IN_VITRO_STIM_IFNAB_CD8_TCELL_DN 195 2.078481 0 0.00394981 

BASSO_B_LYMPHOCYTE_NETWORK 140 2.074359 0 0.00410172 

REACTOME_PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA 136 2.073247 0 0.00411165 

GSE17974_CTRL_VS_ACT_IL4_AND_ANTI_IL12_4H_CD4_TCELL_DN 189 2.072162 0 0.00411224 

HEDENFALK_BREAST_CANCER_BRCA1_VS_BRCA2 160 2.074707 0 0.00413097 

RIBOSOME_BIOGENESIS_AND_ASSEMBLY 18 2.069586 0 0.0041316 

GSE3982_EOSINOPHIL_VS_TH2_DN 194 2.068422 0 0.0041528 

REACTOME_MRNA_SPLICING 107 2.06961 0 0.00417964 

RAMASWAMY_METASTASIS_UP 65 2.070026 0 0.00420678 

HEDENFALK_BREAST_CANCER_HEREDITARY_VS_SPORADIC 49 2.066296 0 0.00429253 

GSE24634_TREG_VS_TCONV_POST_DAY5_IL4_CONVERSION_UP 196 2.065486 0 0.00431584 

REACTOME_UNFOLDED_PROTEIN_RESPONSE 77 2.063667 0 0.00436145 

CHAUHAN_RESPONSE_TO_METHOXYESTRADIOL_UP 50 2.063804 0 0.00440938 

GSE22886_UNSTIM_VS_IL2_STIM_NKCELL_DN 196 2.057969 0 0.00451226 

REACTOME_LATE_PHASE_OF_HIV_LIFE_CYCLE 102 2.0596 0 0.00451575 

GCNP_SHH_UP_LATE.V1_UP 177 2.060253 0 0.00452608 

DNA_REPLICATION 100 2.058307 0 0.0045414 

GSE15215_CD2_POS_VS_NEG_PDC_DN 198 2.056371 0.001961 0.00455216 
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RESPONSE_TO_ENDOGENOUS_STIMULUS 195 2.046859 0 0.00456918 

GSE27786_BCELL_VS_MONO_MAC_UP 194 2.048071 0 0.00457211 

GSE22886_UNSTIM_VS_STIM_MEMORY_TCELL_DN 197 2.047344 0 0.0045758 

GSE3982_NEUTROPHIL_VS_BCELL_DN 196 2.058475 0 0.00457977 

PEART_HDAC_PROLIFERATION_CLUSTER_DN 76 2.048443 0 0.00459774 

APPIERTO_RESPONSE_TO_FENRETINIDE_DN 50 2.055294 0 0.0046019 

UDAYAKUMAR_MED1_TARGETS_UP 133 2.048881 0 0.0046127 

SHIPP_DLBCL_CURED_VS_FATAL_DN 43 2.045286 0 0.00465365 

MATTIOLI_MGUS_VS_PCL 109 2.049027 0 0.00465502 

GSE7460_CTRL_VS_TGFB_TREATED_ACT_FOXP3_HET_TCONV_UP 188 2.052417 0 0.00465942 

E2F1_UP.V1_UP 186 2.05129 0 0.00467773 

HOLLEMAN_VINCRISTINE_RESISTANCE_ALL_DN 19 2.053067 0.003937 0.00467924 

GSE17721_CPG_VS_GARDIQUIMOD_1H_BMDM_DN 197 2.049844 0 0.00468706 

GSE17721_LPS_VS_PAM3CSK4_4H_BMDM_DN 195 2.049036 0 0.00468794 

GSE17721_POLYIC_VS_GARDIQUIMOD_12H_BMDM_DN 188 2.053778 0 0.00468843 

GSE13484_UNSTIM_VS_YF17D_VACCINE_STIM_PBMC_UP 197 2.053575 0.001988 0.00469385 

SANSOM_APC_TARGETS_REQUIRE_MYC 199 2.041031 0 0.00470021 

GSE1460_INTRATHYMIC_T_PROGENITOR_VS_NAIVE_CD4_TCELL_CORD_BLOOD_UP 195 2.051536 0 0.00470966 

GSE15930_NAIVE_VS_48H_IN_VITRO_STIM_CD8_TCELL_DN 194 2.043831 0 0.00471713 

GSE3982_NEUTROPHIL_VS_BASOPHIL_DN 198 2.041228 0 0.00473075 
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GSE10325_LUPUS_BCELL_VS_LUPUS_MYELOID_UP 194 2.050191 0 0.00473128 

REACTOME_HIV_LIFE_CYCLE 115 2.042349 0 0.00473246 

CAFFAREL_RESPONSE_TO_THC_24HR_5_DN 57 2.040378 0 0.00474929 

REACTOME_HIV_INFECTION 194 2.042478 0 0.00475367 

RESPONSE_TO_DNA_DAMAGE_STIMULUS 159 2.039764 0 0.0047598 

GSE24634_TREG_VS_TCONV_POST_DAY3_IL4_CONVERSION_UP 198 2.041501 0 0.00476144 

GSE22886_NEUTROPHIL_VS_DC_DN 199 2.039272 0 0.00478361 

RRNA_METABOLIC_PROCESS 16 2.037801 0 0.00480522 

GSE17721_CTRL_VS_LPS_4H_BMDM_UP 193 2.038513 0 0.00481256 

GSE17721_0.5H_VS_8H_CPG_BMDM_UP 195 2.035938 0 0.00487455 

GSE32423_MEMORY_VS_NAIVE_CD8_TCELL_IL7_DN 188 2.035964 0 0.00491234 

LIGASE_ACTIVITY 95 2.036412 0 0.00491428 

RNA_CATABOLIC_PROCESS 22 2.03599 0 0.00493109 

GSE17721_PAM3CSK4_VS_GADIQUIMOD_6H_BMDM_UP 194 2.034405 0 0.00497094 

GSE22886_NAIVE_CD4_TCELL_VS_12H_ACT_TH1_DN 198 2.033518 0 0.00501311 

DNA_REPAIR 124 2.031624 0 0.0050236 

GSE1460_DP_THYMOCYTE_VS_NAIVE_CD4_TCELL_CORD_BLOOD_UP 195 2.027974 0 0.00503725 

HOLLEMAN_PREDNISOLONE_RESISTANCE_B_ALL_UP 22 2.031866 0 0.00506109 

GSE17721_LPS_VS_PAM3CSK4_6H_BMDM_DN 191 2.028148 0 0.00506629 

LI_WILMS_TUMOR_VS_FETAL_KIDNEY_1_DN 161 2.026351 0 0.00506839 
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MACROMOLECULE_CATABOLIC_PROCESS 135 2.030409 0 0.00508643 

REACTOME_SIGNALING_BY_TGF_BETA_RECEPTOR_COMPLEX 60 2.028357 0 0.00508935 

GSE36392_TYPE_2_MYELOID_VS_MAC_IL25_TREATED_LUNG_DN 191 2.031929 0 0.00509043 

TRANSCRIPTION_INITIATION_FROM_RNA_POLYMERASE_II_PROMOTER 29 2.026359 0.003839 0.00510384 

REACTOME_GLUCOSE_METABOLISM 63 2.028658 0.00202 0.00511202 

GSE17974_CTRL_VS_ACT_IL4_AND_ANTI_IL12_12H_CD4_TCELL_DN 192 2.028891 0 0.00513911 

NUCLEOTIDYLTRANSFERASE_ACTIVITY 47 2.029026 0 0.00517662 

PID_P53REGULATIONPATHWAY 59 2.024776 0.001942 0.00523472 

GSE17974_1H_VS_72H_UNTREATED_IN_VITRO_CD4_TCELL_DN 197 2.020952 0 0.00526651 

GSE18791_CTRL_VS_NEWCASTLE_VIRUS_DC_14H_UP 198 2.024447 0 0.0052754 

FUJII_YBX1_TARGETS_DN 198 2.02139 0 0.00527661 

GSE17721_CTRL_VS_LPS_8H_BMDM_UP 193 2.022046 0 0.00530482 

GROSS_HYPOXIA_VIA_ELK3_AND_HIF1A_DN 100 2.021547 0 0.00530553 

GSE3982_BASOPHIL_VS_TH2_DN 195 2.022263 0 0.00531226 

GSE27786_LIN_NEG_VS_CD8_TCELL_UP 191 2.019342 0 0.00533264 

XU_HGF_TARGETS_INDUCED_BY_AKT1_48HR_DN 27 2.018727 0 0.00533638 

TRANSLATION_INITIATION_FACTOR_ACTIVITY 24 2.022329 0 0.0053484 

FLECHNER_PBL_KIDNEY_TRANSPLANT_OK_VS_DONOR_UP 149 2.017314 0 0.0054701 

GSE15930_NAIVE_VS_24H_IN_VITRO_STIM_IL12_CD8_TCELL_DN 195 2.015525 0 0.00559023 

MITOTIC_CELL_CYCLE 151 2.015876 0 0.00559529 
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GSE31082_DN_VS_DP_THYMOCYTE_UP 188 2.015132 0.001965 0.00559739 

LEE_CALORIE_RESTRICTION_MUSCLE_DN 50 2.016024 0 0.00560477 

PID_TELOMERASEPATHWAY 68 2.012894 0 0.0057169 

GSE22886_IGM_MEMORY_BCELL_VS_BLOOD_PLASMA_CELL_DN 197 2.012698 0 0.00573127 

GSE7764_IL15_TREATED_VS_CTRL_NK_CELL_24H_UP 191 2.012277 0.001965 0.00573473 

GSE24634_NAIVE_CD4_TCELL_VS_DAY5_IL4_CONV_TREG_DN 199 2.013017 0 0.00573523 

MICROTUBULE_ORGANIZING_CENTER_PART 19 2.011674 0 0.00574731 

GSE12845_IGD_NEG_BLOOD_VS_DARKZONE_GC_TONSIL_BCELL_DN 199 2.008161 0.003922 0.00584568 

GSE24634_TEFF_VS_TCONV_DAY3_IN_CULTURE_UP 195 2.008922 0 0.00587067 

GSE28237_FOLLICULAR_VS_EARLY_GC_BCELL_DN 191 2.008175 0 0.00587986 

REACTOME_RNA_POL_II_TRANSCRIPTION 102 2.008989 0 0.00588731 

GSE29618_PRE_VS_DAY7_POST_TIV_FLU_VACCINE_PDC_DN 197 2.008358 0 0.0059079 

MITOCHONDRIAL_ENVELOPE 95 2.009067 0.001961 0.00591388 

GSE27786_BCELL_VS_NEUTROPHIL_UP 192 2.006471 0 0.00592356 

SPLICEOSOME 50 2.009313 0 0.00593155 

SCHLOSSER_MYC_AND_SERUM_RESPONSE_SYNERGY 31 2.006896 0 0.00593224 

GSE5960_TH1_VS_ANERGIC_TH1_UP 194 2.009563 0 0.00594863 

REACTOME_DEADENYLATION_OF_MRNA 19 2.005338 0 0.00600736 

CHROMOSOME_ORGANIZATION_AND_BIOGENESIS 123 2.003089 0 0.00607011 

GSE3982_NEUTROPHIL_VS_CENT_MEMORY_CD4_TCELL_DN 196 2.003532 0 0.00607614 
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HESS_TARGETS_OF_HOXA9_AND_MEIS1_UP 64 2.003721 0 0.00608331 

GSE24634_TREG_VS_TCONV_POST_DAY10_IL4_CONVERSION_UP 197 2.004116 0 0.00609023 

DACOSTA_UV_RESPONSE_VIA_ERCC3_TTD_UP 64 2.002618 0 0.00609442 

REACTOME_RNA_POL_II_PRE_TRANSCRIPTION_EVENTS 60 2.000742 0 0.00618248 

NUCLEAR_BODY 31 2.001085 0 0.00619478 

BURTON_ADIPOGENESIS_5 121 2.00116 0.001957 0.006229 

 

 

 

 


