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Abstract

Seismic risk management is a problem of many dimensions, involving multiple
inputs, interactions within risk factors, criteria, alternatives and stakeholders.
The deployment of this process is inherently fraught with the issues of
complexity, ambiguity and uncertainty, posing extra challenges in the
assessment, modelling and management stages. The complexity of earthquake
impacts and the uncertain nature of information necessitate the establishment
of a systematic approach to address the risk of many effects of seismic events in

areliable and realistic way.

To fulfill this need, the study applies a systematic approach to the assessment
and management of seismic risk and uses an integrated risk structure. The
fuzzy set theory was used as a formal mathematical basis to handle
uncertainties involved within risk parameters. Throughout the process, the
potential impacts of an earthquake as the basic criteria for risk assessment
were identified and relations between them were accommodated through a
hierarchical structure. The various impacts of an earthquake are then
aggregated through a composite fuzzy seismic risk index (FSRi) to screen and

prioritize the retrofitting of a group of school buildings in Iran.

Given the imprecise data which is the prime challenge for development of any
risk model, the proposed model demonstrates a more reliable and robust
methodology to handle vague and imprecise information. The significant
feature of the model is its transparency and flexibility in aggregating, tracing
and monitoring the risk impacts. The novelty of this study is that it serves as
the first attempt of the process of a knowledge base risk-informed system for
ranking and screening the retrofitting group of school buildings. The model is
capable of integrating various forms of knowledge (quantitative and qualitative
information) extracted from different sources (facts, algorithms, standards and
experience). The outcomes of the research collectively demonstrate that the
proposed system supports seismic risk management processes effectively and

efficiently.
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Abstract

Seismic risk management is a problem of many dimensions, involving multiple
inputs, interactions within risk factors, criteria, alternatives and stakeholders.
The deployment of this process is inherently fraught with the issues of
complexity, ambiguity and uncertainty, posing extra challenges in the
assessment, modelling and management stages. The complexity of earthquake
impacts and the uncertain nature of information necessitate the establishment
of a systematic approach to address the risk of many effects of seismic events in

areliable and realistic way.

To fulfill this need, the study applies a systematic approach to the assessment
and management of seismic risk and uses an integrated risk structure. The
fuzzy set theory was used as a formal mathematical basis to handle
uncertainties involved within risk parameters. Throughout the process, the
potential impacts of an earthquake as the basic criteria for risk assessment
were identified and relations between them were accommodated through a
hierarchical structure. The various impacts of an earthquake are then
aggregated through a composite fuzzy seismic risk index (FSRi) to screen and

prioritize the retrofitting of a group of school buildings in Iran.

Given the imprecise data which is the prime challenge for development of any
risk model, the proposed model demonstrates a more reliable and robust
methodology to handle vague and imprecise information. The significant
feature of the model is its transparency and flexibility in aggregating, tracing
and monitoring the risk impacts. The novelty of this study is that it serves as
the first attempt of the process of a knowledge base risk-informed system for
ranking and screening the retrofitting group of school buildings. The model is
capable of integrating various forms of knowledge (quantitative and qualitative
information) extracted from different sources (facts, algorithms, standards and
experience). The outcomes of the research collectively demonstrate that the
proposed system supports seismic risk management processes effectively and

efficiently.
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Chapter 1: Introduction

1.1 Research Background

Seismic risk management can be viewed as a process of complex dynamics
involving the interactions of many factors. These factors typically include the
physical environment, the social and demographic characteristics of the
communities that experience seismic risk, as well as the buildings, infrastructure
and other facilities that are known to be vulnerable in the environment (Simonovic
2011). The purpose of seismic risk management is to mitigate the consequences of
seismic events in prone areas. Thus, the system is not to predict seismic events;
rather, we are looking at how to manage the adverse impacts when seismic events
occur. To accomplish this, a broad range of operations, planning and decision-

making needs to be performed.

Seismic risk management is characterized as having multiple dimensions, such as
social, economic, political and environmental dimensions, some of which may be in
conflict with each other. Several alternatives may need to be considered and
evaluated in terms of the many different criteria which results in a vast body of
data that are often imprecise or uncertain. Many individuals may be involved in the
risk assessment process, including decision makers, planners, experts and other
interest groups, from organizations and the community, all of whom may have

conflicting preferences (Lahdelma et 2000).

Moreover, seismic risk assessment is a complex process due to the interactions
within risk drivers. Seismic hazard is inherently uncertain, partly because it is a
forecast of future situations based on previous knowledge, which may be scarce
and variable in quality or not fully understood (Dowrick 2003). The scope of
seismic risk management is defined in relation to balancing what these uncertain
information. The multiple views and interests of individuals and organizations

within the seismic risk management process cause an inherent complexity that



Chapter 1: Introduction 2

requires a systematic reconciliation of these disparate, often conflicting factors

through a structured knowledge framework (Avouris 1995).

Broadly speaking, aggregating a large number of inputs within a complex system
requires a heuristic methodology that is capable of interacting with a range of
information, facts, algorithms and experiences. The challenges to the existing
approaches to this problem are three-fold. Firstly, there are many factors involved
in seismic risk management, each with varying importance depending on the
scenario; thus, the factors should adequately represent the situation and the scope
of the application. Secondly, expert opinions and experiences play a major role in
the assessment yet may add significant uncertainty into the process - this needs to
be accounted for. Thirdly, the adopted methodology should be consistent with

needs, allowing the tracking of results so that decisions can be updated.

Seismic risk management is an iterative process of decision-making described
within a multifaceted process, including preparedness, prevention, response and
recovery, with the eventual aim of mitigating the social and physical impacts of
earthquakes. The application of decision models to risk assessment and
management of critical infrastructure facilities exposed to low-probability, high-
consequence seismic hazard requires a thorough understanding of the risk impacts
and effective disaster management strategies. Seismic mitigation measures are an
ongoing strategy to reduce the consequence of earthquakes, either structurally
through retrofitting/reconstruction, or through non-structural strategies such as
land use zoning and relocating development, as well as implementing and

enforcing building codes.

According to Simonovic (2011), mitigation activities should address the
measurement and assessment of the evolving risk environment while
incorporating a comprehensive, proactive measure that enable the prioritization of
mitigation investments. The mitigation process heavily relies on predictive models
of risk to address disaster impacts and effectively communicate and respond prior
to an event. More systematic approaches to evaluation would likely yield to the
adoption of broader and efficient mitigating decisions over the long term (Ramesh
et al. 2007). Thus, it is important to adopt an appropriate method to systemically
project the disaster impacts and support decisions in the face of significant

uncertainty. Furthermore, most strategies employed to manage seismic risk have
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been developed out of the structure (NRC 2011) that increases the complexity of
risk management. Rational risk management should focus on comparing and
prioritizing the aspects of disaster systems. The ability to compare risk across
regions becomes more critical, particularly in a mitigation programme that
requires rendering the state of the system less vulnerable. This also directs the
resources and mitigation measures in both private and public sectors who have
competing priorities for risk management investment. In some cases, those
investments might compromise the mitigation measures by retarding the
retrofitting process, misleading the resource development away from structural to
non-structural measures, and consequently leading to costly, unreasonable and

long-lasting decisions.

1.2 Research Motivation

The motivation for conducting the research was to facilitate mitigating decisions
by focusing on estimating and ranking seismic risk within the portfolio of
retrofitting school buildings in Iran. The national hazard map of the country
indicates that a large populated portion of the country, almost 37% carrying 22%
the population, are exposed to range of medium to high intensity earthquake
threat (Ghafory-Ashtiany and Hosseini 2007; NSI 2010). Furthermore, much of the
economic and social infrastructure in Iran is prone to medium to high degrees of

seismic risk.

Reported damages and losses in recent earthquakes have highlighted the
importance of school protection, occupant security and proactive safety measures
prior to an earthquake. More than 90% of local educational establishments with
10,000 students were lost or destroyed in the catastrophic Bam earthquake in
2003(Ghafory-Ashtiany and Hosseini 2007). Seismic mitigation measures were
initialized after the 1997 Manjil earthquake and were accelerated following the
2003 Bam event. Iran’s government enacted a seismic mitigation policy entitled
“The National Strategy for Earthquake Risk Reduction” to reduce the impacts of the
earthquake in infrastructure and public buildings. Particular attention was
devoted to the educational sector because of the vulnerability of both the buildings
and students across the country, leading to launching a $4 billion Seismic Risk

Mitigation Programme in 2006 for improving 126,010 vulnerable classrooms
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(39% of the total) by 2011. The aim of the programme was to reduce seismic risk
within public schools through several mitigation measures, including retrofitting
and reconstruction. The initial task was to identify and screen the schools with
potential risk to life safety during an earthquake. A survey conducted by the school
rehabilitation office (Table 1.1), revealed that almost 65% of total schools
(~70,000) had low to medium structural capacity to withstand a likely earthquake.
A further screening phase revealed that there were almost 15,000 structurally
vulnerable schools that required attention. Authorities decided that retrofitting
and strengthening works to be carried out within a tight schedule (five year

mitigation programme).

Table 1.1 - Status of school buildings in Iran (NSI 2010)

Schools No. Percentage
needs reconstruction 39353 35.86
needs retrofitting 31180 28.41
adequate strength 39201 35.72
Total 109,734 100

Practically speaking, the screening, identifying, evaluating processes are not
straightforward, not to mention the difficulty of managing this large number of
projects in a tight time frame. Two mitigating measures were officially adopted,
namely ‘retrofitting’ and ‘reconstructing’ (demolish and rebuild). The process of
evaluating vulnerable schools was usually undertaken by a group of experts
(retrofit engineering consultants) through a complex structural performance
analysis leading to a feasible structural reinforcing system. The conceptual study
needs to be peer reviewed and approved for construction by an expert panel
chosen from universities prior to tender. The process of decision making for each
school building typically takes at least 6 to 12 months. Considering the large
number of participating schools in the retrofitting scheme, only a small percentage
of these schools will pass through the process every year. Thus, developing a
system of risk assessment in schools is of paramount importance, and can facilitate
the mitigation decision, particularly for those in urgent need, as well as providing a

roadmap for disaster planning and management.
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1.3 Research Purpose

The ever-evolving and complex nature of seismic risk is a decisive contributor to
disasters, intensifying the urgency to pursue a systemic risk assessment as a
prerequisite to intervene in seismic risk management planning and risk mitigation,
in particular. Existing models fail to effectively address the methodological
perspective to undertake seismic risk management within a large group of school
buildings. The non-existence of such an appropriate seismic risk assessment model
has initiated this research, thereby highlighting the critical need for development
of a holistic risk assessment model as a decision aid to guide school mitigation
programme. A structured and systematic approach could significantly enhance
seismic risk management, leveraging the capability of mitigation decisions while
maintaining the quality of the process and validity of its outcomes. The systemic
perspective of risk assessment and management, helps quantify the complex,
multifaceted composition of the seismic risk and ultimately secures the credibility

and effectiveness of decision-making.

A systems approach allows the integration of comprehensive and cross-
disciplinary views of the many apparently separate facets of a complex process
such as seismic risk management (Johnson et al. 2006). The system analysis
framework requires subjective inputs to make a decision (Bender and Simonovic
1996). Brill (1979) asserts that system analysis tools should facilitate and provide
creative decisions, avoiding the recommendation of a single, ‘best’ solution. This
study proposes a risk management system, applying trade-off among risk
parameters to improve the understanding of alternative behaviour, managing the
technical complexity of the seismic risk system and facilitating the implication of

choices.

In response to the emergent complexity and uncertainty involved in estimating
earthquake impacts, the study builds upon the notion of combining both a
theoretically well-grounded systems approach with a risk analysis to support risk
management. The methodology suggests a necessary insight to the process of
structuring an appropriate tactic that promotes seismic risk management. In this
process a system approach to the task of identifying, analysing, aggregating,

ranking and monitoring risk are applied.
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This thesis includes an exploratory review, identifying the critical contributing
factors for each region and examining the interactions within them. A thorough
analysis of seismic risk assessment provides a comprehensive picture of school
buildings by tracing and examining the above factors and linking towards effective
risk mitigation measures. Furthermore, the critical literature review provides a
theoretical framework for seismic risk management, which forms the basis for the
model’s development. Hence the study serves as a valuable tool for the public to
enhance disaster planning, protection and promotion of school safety by

practically reducing seismic risk.

The novelty of the research is the systemic characterization of seismic risk through
a hierarchical risk structure. The proposed multi-level structure for seismic risk
improves the practice of seismic risk management by integrating a broad range of
information collected from multiple disciplines, in a manner that is objective (fact,
algorithms) and subjective (experience, opinions). The outcomes of such a model
are a greater understanding and conceptualizing the knowledge of seismic risk
assessment that yield better-informed participation of the relevant stakeholders

and an active mitigation process.

An added value of the research is that, apart from contributing to the general
academic discussion on seismic risk management and seismic mitigation
programmes, the structure of the model contextualizes the application of a
systematic approach to different levels of government. The early outcome of this
co-operation is assisting and encouraging the community and public officials to
better understand the scope of the seismic risk management in school buildings by
portraying a comprehensive picture of seismic risk, raising awareness about
school safety, strengthening the related infrastructures and emergency
management facilities. The effective implementation of the developed model
warrants the school safety protection by prioritizing and allocating the resources

for urgent retrofitting intervention.
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1.4 Aims and Objectives

The aim of the research is to assess potential impacts of earthquakes and
investigate the feasibility, applicability and usefulness of a system to model
multidimensional aspects of seismic risk management. In pursuit of this aim, six

objectives were outlined:

1. To review the background and characteristics of seismic risk management,

and systematic challenges involved.

2. To investigate the feasibility of mathematical techniques for modelling

seismic risk.

3. To introduce the fuzzy modelling approach in practice and review the
terminology, scope, limitations and potential barriers associated with

modelling the complex domain.

4. To investigate the potential impacts of earthquakes, to collect the necessary

information and to establish the structure of seismic risk assessment.

5. To apply and implement the model for evaluating and ranking seismic risk

within retrofitting school buildings of Iran and to review the results.

6. To investigate the effectiveness of the proposed model and to verify and

validate the results.

1.5 Limitation and Scope

The thesis provides a holistic seismic risk assessment model for prioritizing large
group of school buildings subjected to varying levels of earthquake hazard. It is
concerned with systematic evaluation and documenting the status quo within
school buildings in seismic prone areas, thereby improving recognition of those
areas which are seismically vulnerable. The procedure described in this thesis has
been designed for screening existing buildings, particularly low-rise projects in

Iran, however it can be applied to other seismic prone regions with readjus

accepting that even though some of the principles may be suitable, it would require
further work to apply to other situations and countries. This procedure is intended
to serve as a national decision aid for public officials, urban planners, insurance

companies, disaster managers or other international interest groups (e.g. UNDP,
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The Red Cross) who are implicitly involved with disaster management planning,
financing or budgeting the mitigation programme or undertaking seismic

rehabilitation.

Several risk assessment tools are currently in use. However, most are not effective
enough to be used for a particular group of infrastructure at such a large-scale
mitigation programme. The model proposed in this research is novel in that it is
designed to be simple, affordable and consistent with existing screening standards.
The outcome of the research focuses not only on systemic ranking of the school
buildings that are potentially vulnerable, but it also highlighting the critical factors
that require more attention and investigation. It is expected that most buildings
recognized as vulnerable in accordance with this process conform to desired levels
defined within screening standards. However, it may not guarantee compliance
with the seismic performance of buildings noted in design codes since the scope of
screening and design standards are different. Screening procedures aim to
evaluate a large number of projects at a preliminary stage and ultimately guide
decision-makers to find potentially vulnerable buildings; while design codes,
particularly those verifying the performance of individual buildings and observe

design rules by the means of analytical or empirical methods.

The purpose of this research is to project seismic risk impacts on buildings,
offering a state-of-the-art knowledge-based system as a decision aid to address
current needs for seismic risk mitigation planning. The model focuses specifically
on producing a generalized estimates of expected loss and damage as a
preliminary risk screening tool to identify the significance, criticality and urgency
for retrofitting school buildings. However, it is beyond the scope of this thesis to
estimate the loss (death and injury), structural damage or deficiencies in school
inventory, the destruction of school contents and equipment, or the disruption of
the school delivery services due to an earthquake. In addition, the procedure does
not determine whether or not a retrofitting intervention should be undertaken for
a particular school building; neither does it specify the types of retrofitting suitable

for school buildings.
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1.6 Thesis Outline
The content of the thesis is organized into the following chapters:

Chapter 2 - Seismic Risk Management : This chapter critically reviews the current
practices of seismic risk management and analyses the general characteristics of
the seismic risk system. It clarifies the 'risk' definition and its components in
relation to seismic risk management. Moreover, the main methods that are
currently in use in risk assessment are critically discussed. Finally, the major issues

and challenges involved with the seismic risk management are highlighted.

Chapter 3 - System Modelling Techniques: This chapter introduces system
perspective as an alternative concept for modelling seismic risk, and draws a
picture of the prospective risk management system while focusing on the key
requirements of the prospective model. In this light, the chapter provides a
comparative review of potential mathematical tools that support decision-making
under uncertainty. The multiple risk-based theories for classifying, evaluating and
ranking alternatives with multiple criteria have been critically reviewed with their
advantages and limitations. The application of fuzzy multicriteria decision making

(MCDM) as a potential candidate is explored through a pilot study.

Chapter 4 - Research Methodology : This chapter establishes the theoretical
framework and methodological design procedure required to achieve the aim and
objectives of the research. The chapter first explains the choice of research
strategy and overall design of the research. It further outlines research
configurations and critically reviews the methods concerning data collection and
data analysis. Several data collection methods have been examined and compared
in terms of strengths and weaknesses. Finally, the chapter summarizes the strategy

adopted to conduct the research.

Chapter 5 - Fuzzy Modelling : The chapter focuses on knowledge-based systems
and systemic requirements for knowledge acquisition, knowledge extraction and
knowledge elicitation. Under particular scrutiny are terminologies and common
types of knowledge involved in risk modelling, as well as how knowledge systems

can support risk-based decision-making. Moreover, the background methodology
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of the current study is briefly discussed through introducing fuzzy expert system

and hypothetical issues for applying knowledge-based system in complex domains.

Chapter 6 - Data Collection : This chapter investigates the input factors, and
collects necessary information required to undertake the case study in two parts.
First the general characteristics of alternative school buildings of Iran are
reviewed in terms of size, type and material. Second, the potential impacts of
earthquakes are reviewed and classified in major categories consistent with the
geography, seismology and typology of buildings in Iran. The major impacts of
earthquakes were then decomposed through a hierarchical risk structure required
for estimating the seismic risk. The information about alternatives, criteria and

structure collectively forms a road map for the synthesis of various risk factors.

Chapter 7 - Case Study : This chapter develops the knowledge based expert
system (KBES) based on the information collected in the previous phase. The risk
structure and information are interpreted using fuzzy expert system. The entire
process of risk assessment was modelled through 21 fuzzy inference engines and
synchronized using MATLAB® programming language. The results of the proposed

system are reviewed and discussed.

Chapter 8 - Verification and Validation : This chapter is concerned with testing
and evaluation the proposed system, and discusses the obtained results in relation
to research objectives. To perform this task, the chapter is organized in two parts,
including verification and validation. The verification part assesses the sensitivity
and uncertainty of risk parameters, using the statistical toolbox in MATLAB®.
Throughout the validation process, various analytical and empirical approaches
are devised to evaluate the performance of the system under three conditions,

including 'best case’, ‘normal case’ and ‘worst case’ scenarios.

Chapter 9 - Conclusions : This chapter provides the summary and conclusions of
the research by highlighting the significant conclusions and findings. It also

outlines the contributions and recommends areas for further research.
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The structure of the thesis is presented in Figure 1.1 and consists of three parts.
The first part (Chapters 2 and 3) is concerned with a literature review, including
seismic risk management, challenges and techniques proposed to address the
research problem. The second part (Chapter 4) introduces the conceptual
methodology used in the research. The subsequent five chapters are the main part

of the thesis that focuses on model development and implementation.

Chapter 1: Introduction

3 v v
§>:) Chapter 2: Chapter 3:
ot Seismic Risk System Modelling
‘E Management Techniques
| |
v

Chapter 4: Research Methodology

A 4

Chapter 5: Fuzzy Modelling

A 4

Chapter 6: Data collection

y

Chapter 7: Case study

A 4

Chapter 8: Verification and Validation

A 4

Model Development and implementation

Chapter 9: Conclusions

Figure 1.1 - Thesis structure
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Chapter 2: Seismic Risk Management

2.1 Introduction

This chapter reviews the basic notions of seismic risk management, focusing on the
general characteristics along the scope of the seismic risk from a system
perspective. Major risk assessment frameworks are classified according to their
application in seismic risk management. Finally, the chapter summarizes the

challenges and issues involved with seismic risk management.

2.2 Basic Notions

The term ‘risk’ is defined in the Merriam Webster Dictionary (2003) as “possibility
of loss or injury due to hazard”. Rackwitz (2005) defined the risk as “the chance of
an adverse outcome for human health, the quality of life, or the quality of the
environment”. Kofi (1998) addressed the risk as the probability or likelihood of an
adverse impact or assessed threat to people and property due to some hazardous
situation. Rowe (1988) defined the risk as “the potential occurrence of undesired,
negative consequences of an event”. Following the definitions of UN-ISDR (2004),
risk was addressed as the “average expected losses” from a “given hazard” over a
specified period of time, whether expressed in terms of life loss, economic loss,
physical damage to facilities, properties, structures, business and activities

(Mezzina et al 2007; Carreno et al 2006).

More precise definitions have been proposed in ISO-99 as “combination of the
probability of an event and its consequences” or a “combination of the probability
of damage and its severity”. Though, the challenge of formalizing the definition of
risk is to understand the risk as the effect of uncertainty; since risk is rather

abstract in nature and definitions vary according to context.

From these definitions, it can be noticed that risk is closely linked to potentially
uncertain consequences and severity of these consequences. For example, in

insurance context, the notion of risk is highlighted with maximum consequences
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without taking the probability of occurrence, which is not suitable for optimal risk
management. Current studies use the broader viewpoint of the ‘Seismic Risk’ as a
complex interaction of ‘Seismic Hazard’, ‘Vulnerability’ and ‘Exposure’ which are

defined as follows:

e Seismic Hazard (H): Probability of occurrence of any physical phenomenon
(e.g. ground shaking, ground failure, etc.) associated with an earthquake which

has adverse effects on people, communities and built environment.

e Vulnerability (V): Potential loss or degree of damage induced by a given

hazard.
e Exposure (E): Population, properties, assets and economic activities at risk.

e Seismic Risk (R): Probability of any social or economic consequences of
earthquakes (e.g. expected loss, damage, disruption to lifelines, infrastructures

and business activities) caused by a particular hazard.

The elements at risk are commonly addressed as populations, communities, and
built environment (i.e. buildings, infrastructure, economic activities), which are
subject to disaster threat in a given area (Alexander 2000). Specifically, the
elements at risk within the built environment can be classified into four main
categories: buildings inventory, utility, infrastructures and critical facilities. Any
element of an urban environment is considered as “at risk” when it is potentially
exposed to the occurrence of sort of loss for a given hazard. Thus, risk can be
quantitatively expressed as a combination of its influence factors (UN-ISDR 2004;

FEMA 395 2002) which is adopted here.

Risk = Exposure x Hazard x Vulnerability (2.1)

The expression implies several facts regarding the seismic risk. Both seismic risk
and hazard are intrinsically uncertain since they essentially forecast future
situations as a product of extrapolating the past historical records (Dowrick 2003).
Seismic risk can be managed by reducing the potential damage and elements
exposed; while seismic hazard is constant for every region and cannot be
minimised. Based on the importance and value exposed to seismic hazard, seismic
risk may be amplified or reduced. Thus, historical damage records cannot solely be

representative of risk without the importance of buildings, asset or elements. In
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addition, the risk ‘expression’ implicitly denotes that the risk of a particular hazard
which can be exhibited in a given area if and only if all the contributing factors are
present. For example, in a low-seismicity region that is potentially vulnerable in
terms of structure, economy and population, the total risk would be very low or
negligible. Conversely, the risk could be at an extreme level if the contributing
factors are at their highest level. Accordingly, various levels of hazard and
vulnerability can be developed for particular scale categories to measure the levels

of seismic risk over a region (Figure 2.1).

17 21 22 Zone Risk Impact
High T 14 15 16 1-3 Tolerable
<
N Moderate | = 7 8 12 13 19 4-8 Moderate
T
Low - 3 5 6 11 18 9-17 Strong
Very Low | > 1 2 4 9 10 18-22 Severe
23-25 Disaster
v [ v [ m [ n [ ]
Vulnerability

Figure 2.1 - Risk matrix for qualitative description of risk impacts

However, the quantitative mean of seismic risk must be used carefully. This form
of translation could distort the overall result since low-probability, high-
consequence earthquakes are commensurate with high-probability, low-
consequence events. The former clearly has more criticality in managing such
extreme and catastrophic events. Hence, it is important to come to a precise
understanding of risk, the scope of events and context. Moreover, true
understanding of risk dimensions is critical for resource allocation, particularly in
mitigation programmes where multiple competing regions are involved. One of the
difficulties involved in aggregating risk factors is to represent adequately the
relations between risk factors while maintaining a certain degree of precision. This
could be even more challenging because several dimensions of hazard,
vulnerability and exposure have to be aligned, scaled and aggregated in the
presence of uncertainty. In this light, an effective integration of risk factors was set

up as an ultimate aim of the research.
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2.3 Seismic Risk Management

Risk management is the systematic application of policies, procedures and
practices to the tasks of identifying, analysing, assessing, controlling and
monitoring risk (Standards Australia/Standards New Zealand, 1995). The United
Nation Strategy stipulated a generic version of this process in the disaster context

for Disaster Risk Reduction (UN-ISDR, 2004):

“The systematic process of using administrative decisions, organization,
operational skills and capacities to implement policies, strategies and coping
capacities of the society and communities to lessen the impacts of natural
hazards and related environmental and technological disasters. This comprises
all forms of activities, including structural and non-structural measures to avoid
(prevention) or to limit (mitigation and preparedness) adverse effects of

hazards.”

The universally accepted tasks of seismic risk management were defined within
the Hyogo framework (UN-ISDR 2006) in four distinct risk categories:
preparedness, mitigation, response and recovery, which are performed in pre-,
during and post-disaster (Table 2.1). Neal (1997) states that disaster phases are
“mutually inclusive and multidimensional” as they are strongly interconnected;
while each measure maintains the individual aspects of disaster to enhance the

tasks of risk management.

Table 2.1 - Generic seismic risk management process (Altay and Green 2006)

Measure Phase Activities
Emergency response plan, shelter, public information and education
Pre-
Preparedness Evacuation plan, Earthquake training, manoeuvring, Warning
Disaster
system
Retrofitting, rehabilitation, augmentation, reinforcing Legislation,
e Pre-
Mitigation Code enforcement, zoning/land use management, Insurance,
Disaster
reserve fund, site improvement
Response strategy, critical management centre, mobilizing and
During
Response medical aid service, search and rescue team, locating (GPS) and
Disaster
recording intensity, communication
Post - Medical service, rehabilitation, reconstruction, financial assistance,
Recovery
Disaster Restore public infrastructure, essential service and business
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According to UN-ISDR (2004), preparedness refers to promoting the inherent
knowledge and capacities by governments, critical emergency organizations,
disaster professionals, communities and individuals in preparing a response and
recovery plan for any likely event. Mitigation refers to set of strategies to reduce
and limit the exposure or potential damage due to an earthquake. Mitigation
strategies pay attention to preventive measures as the key intervention for seismic
risk management. Response measures include sets of emergency provisions to
assist the public immediately after a disaster, in order to save lives, reduce health
impacts and to ensure public safety. Recovery is an unavoidable reaction
performed by governments. Obviously, additional investment in preventive
measures and preparedness can be more effective and economically justified
compared to post-disaster actions and reduces the cost of response and recovery
(Simonovic 2011). This is the reason mitigation is highlighted as a critical measure

within seismic risk management.

Essentially, identifying future mitigation is the main concern of risk management,
which closely links to vulnerability, thereby requiring a reliable estimation of loss
and potential capacity of damage within the built environment. Risk management
aims to reduce the potential loss and damage within communities by identifying
and assessing the potential factors that contribute to those effects and proposing
appropriate response actions. Since the seismicity and severity of earthquakes
cannot be reduced or modified, the management of the risk logically focuses on
reducing vulnerability as an effective measure for damage mitigation. It is
impossible to predict the severity of an earthquake in a given area due to its
stochastic (random) nature; however the adverse effects of an earthquake can be
effectively reduced or avoided using appropriate risk assessment and management
(Bostrom et al. 2006). Thus, risk assessment and management are complementary
processes, while the former uses a systematic method to determine the probability
of adverse effects, the latter tries to systematically decide and choose the
appropriate option to manage the risk (e.g. mitigate, transfer, response, recovery).

The study focuses on the active mitigation measures that directly reduce the
seismic risk within buildings through systematic retrofitting. Other mitigation
strategies such as insurance that indirectly transfer the risk fall out of the scope of

research.
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2.3.1 Retrofitting

A broad range of mitigation activities can be conducted to limit the ‘vulnerability’
or ‘potential damage’ through active structural measures such as retrofitting and
rehabilitation. The aim of retrofitting is to improve the lateral resistance of
buildings against likely earthquake to desired safety performance objectives as
addressed in FEMA-273. Existing buildings that suffered degradation over time
might need ‘rehabilitation’ to regain and maintain the original strength they were
initially designed for; however, if the original level of performance does not meet
the safety level it may require seismic upgrading or seismic retrofitting. For this, a
set of structural interventions and technical modifications are mobilized to raise
the structural indices such as strength, stiffness, ductility, stability and integrity.
Recent earthquake experiences indicate that inadequate lateral stiffness along the
lack of integrity in load-carrying system has been the major cause of damages to

masonry school buildings. Some of those have been illustrated in Figure 2.2.

Figure 2.2 - Lack of integrity in school buildings in Iran (SRO 2011)

For URM buildings, there are common retrofitting strategies such as surface
reinforcement, external reinforcement, cross ties, pre-stressed-core and post-
tensioning (FEMA 273 1997). Some of those including pre-stressed tendon-core
masonry require particular tools (for continuous vertical drilling) and expertise,
which makes it justifiable only for high importance monuments and historical
buildings; while post-tensioning imposes less of a burden in operation. Surface
reinforcement is the most popular technique for retrofitting masonry and concrete
buildings through reinforced cement plaster (or concrete jacketing). A similar
version of retro-reinforcement has been implemented for improving the tensile

strength and ductility of masonry bridges in the UK (Garrity 1995). The principal
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objective in surface retro-reinforcement is minimizing the disturbance and
intrusion in appearance, function, thereby reducing the cost of operation (Garrity
1994). The common practice of surface treatment consists of surface preparation
(e.g. providing adequate roughness), installing steel connectors and surface mesh
to the walls and diaphragms and applying the overlay shotcrete. Additional bracing

chords might be carried out to improve the stiffness, integrity and rigidity of

diaphragms as indicated in Figure 2.3.

Figure 2.3 - Shotcrete overlay (Jacketing) to enhance stiffness and integrity
(SRO 2011)

For URM buildings where enhanced ductility and strength is sought, an external
reinforcement can be alternatively devised by attaching steel straps and clips,
making crossties to the walls around as shown in Figure 2.4. If the reinforcing
straps are properly anchored to the walls, lateral in-plane and out-of-plane flexural
strength and ductility of the walls will be considerably increased under truss-
action behaviour. Crossties are useful to collect out-of-plane forces and distribute

them to diaphragms.

Figure 2.4 - Steel strapping the masonry walls in schools (SRO 2011)
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The scope of retrofitting has been extensively addressed in the literature
(Elgawady et al 2004; FEMA 273); while the efficiency of a choice of system
requires a detailed, case-by-case structural analysis. However, the reliability of
retrofitting can be only measured where they are subjected to real earthquake
loads. In general, it is indicated that retrofitting not only mitigates the seismic risk
in buildings itself, but it can also improve the response, recovery service and

ultimately raise safety protection in the community after a disaster.

Accessibility of school buildings as the convenient locations for public assembly
makes the school buildings the first choice to serve as immediate shelters spots
and a centre for the first aid service. The retrofitted schools that survived after the
recent earthquake in Iran (Varzeghan, 11 Aug 2012) has shown the importance of
retrofitting and the role of schools to serve a community in post disaster recovery

(Figure 2.5).

Figure 2.5 - The new retrofitted schools survived and served after an earthquake
(SRO 2011)

2.4 Risk Mitigation Challenge

The aim of a risk mitigation programme is to reduce levels of seismic risk for a
particular group of interests which consider the scope of programme, conditions
and resources. Existing groups of infrastructure, hospitals, schools, bridges and
other lifeline networks are the forefront of this sort of programmes. Common
characteristics of critical facilities are their strategic functions to serve in both
emergency and normal conditions. Thus, there is an urgent need to identify and
screen the group that may be exposed to higher risk and to take justifiable

decisions to control them.

The challenge of mitigation is to effectively manage the seismic risk by directing

the resources and investment to urgent public buildings and infrastructure. A great
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majority of infrastructures such as hospitals, highways and schools in Iran have
been designed using out-dated codes of practice that do not meet modern seismic
standards. Identifying the critical group and prioritizing them in order of urgency
is crucial before any retrofitting measures are implemented due to cost and time
restriction. Generally, several variables involved in such decisions include
technical, social, economical, environmental, historical and cultural factors. Risk
mitigation programmes require a structured algorithm to initially recognize which
class of buildings, under what conditions and the definition of safety levels, and

performance criteria that are to be included within the programme (Holmes 1996).

The scope of mitigation is important to distinguish at the very outset. For
individual buildings, retrofitting is a financial decision, which is normally based on
a trade-off between benefit (desired level of performance) and the cost of the
strengthening operation. However, the objective of national mitigation
programmes turns to a wider scope of screening and selecting those buildings and
infrastructure that require urgent retrofitting. At this scale, mitigating decisions
could be a highly subjective process, and therefore varies from place to place. This
is because several social, economical, environmental and political constraints, as
well as the level of hazard and technological development can potentially influence
decision-making process. Thus, understanding the scope of application, context

and constraints is crucial for risk mitigation.

According to Tesfamariam and Goda (2013): “the risk management must be
capable of weighting alternatives (options) and selecting the most appropriate
action”. This can be achieved by integrating the results of risk assessment with
engineering data as well as social/economic/political factors to reach an
acceptable decision. Prioritization the mitigation strategies is also mandated by
most international bodies such as UNDP, FEMA, etc. Viewed in this perspective, the
study attempts to establish an informed risk-based system to sort, prioritize and

screen a large group of school buildings.

2.5 Current Trends in Seismic Risk Assessment

Seismic risk assessment refers the “methodology to determine the nature and
extent of risk by analysing potential hazards and evaluating existing conditions of

vulnerability that could pose a potential threat or harm to people, properties,
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livelihoods and the environment on which they depend” (UN-ISDR 2004). This
process provides a roadmap for estimating the adverse consequences of
earthquakes and reducing fatalities, injuries and damage. The current practice of
seismic risk assessment relies on the use of a probabilistic approach as an
underlying concept, assuming the risk as “a measure of probability of adverse
effects”. According to this notion, the likelihood of losses is calculated based on the
probability of occurrence of an earthquake hazard (Klugel 2008). There are
various implications of this theory reported in literature. In probabilistic seismic
risk assessment (PSRA), all possible seismic source locations and geometries are
determined, the maximum magnitude (Mmax) expected from each source is
estimated and the recurrence model or frequency of earthquake events for each
source is obtained (Euguchi et al 2006). In fact, this process extends the probable
set of events in the past that could occur in the future, defined as the site-specific
spectrum. Deterministic seismic risk assessment (DSRA) applies the largest ground
motions expected at their respective sites as a worst-case scenario. This process
was defined primarily by the magnitude of earthquake hazard and epicentre
location (distance to fault) along previous historical events (e.g. response
spectrum quantified by peak ground acceleration). DSRA accounts for the random
nature of earthquake hazards based on observed data, which accommodate more

realistic results (Kijko et al 2004).

A common feature of the existing models is an implication of loss estimation as an
effective means for quantifying the mitigation measures. For example, PSRA
establishes the annual loss distribution in various geographical regions, thereby
supports insurance and disaster officials, providing a rough estimation of future
losses. Using the average annual loss (AAL) translates the losses into the annual

benefit that could actively support a mitigation programme (Grossi 2008).

The loss estimation approaches offer a strong, realistic view of earthquakes, but
have several limitations owing mostly to data inadequacy. Although, the accuracy
and quality of the estimation in these approaches directly rely on the quality and
availability of the inventory databases. Furthermore, these processes require a
precise investigation using professional expertise to locate geological/
seismological observations that complicate the process by increasing the degree of

sophistication along the time and cost of the assessment. In addition, certain
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assumptions usually made for developing the loss exceedance probability
distributions may not precisely address the real probability of impacts and thus
are limited in some applications such as insurance schemes (Boomer et al. 2002).
In this case, the probability of adverse effects should normally represent the
probability for each consequence of the disaster; however, due to the diversity in
the likely impacts of an earthquake, not all these consequences could clearly have
the same probability distribution (Haimes 2012b). Further, the limitations of
current modelling practices might potentially distort the mitigation strategies

which can be deemed as a static view of the earthquake magnitude.

The scope of these models accounts for likely losses that directly affect the areas at
the time of the event and ignores the secondary losses (e.g. lifeline disruption/dam
breakage causing unforeseen loss). This means that existing practice supports
mitigation measures by addressing the direct losses while it fails to actively link
the disaster consequences to response and recovery measures. According to
French (2008) the problem of current modelling effort can be referred to “poor
quality/expensive inventory data; the inability to model casualties accurately; the
inability to estimate length of disruptions in lifeline functions; the overestimation

of losses for small events and underestimation for large events”.

The alternative trend takes the impact of individual earthquakes by the mean of
damage and subsequently produces the various likely damage states for different
scenarios of earthquake as reflected in the literature (Meroni and Zonno, 2000;
Pais 1996; Klugel 2006). This direct though computationally demanding process
requires a large statistical analysis based on the inventory databases to generate
separate earthquake scenarios for regional study. Hence, most of these studies
have employed a GIS based platform to manage the loads of data involved with the
process. HAZUS is an example of this trend that establishes its direct and indirect
(physical, economical and social) loss estimation upon GIS. However, HAZUS built-
in loss functions defined within a damage estimation module could be a reliable
predictor of seismic impacts for the cases in the US since the inventory databases
have only been validated for earthquakes in California. There are many other GIS-
based models with special capabilities and scopes that target particular geographic
regions such as Risk Link-DLM (Detailed Loss Module - http://www.rms.com),
RADIUS - US (Risk Assessment tools for Diagnosis of Urban Areas against
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disastershttp://www.geohaz.org/contents/projects/radius.html), CEDIM-
Germany (http://www.cedim.de/english/riskexplorer.php), PEER-USA
(http://peer.berkely.edu/products/strong_ground_motion_db.html), NATECH-
Europe (http://enatech.jrc.ec.europa.eu/) EPEDAT - Australia
(http://www.eqe.com) and SELENA - Norway (http://www.norsar.no).

Yet the library of earthquake scenarios and building losses usually employed in
such models are developed for particular types of buildings for specific
geographical regions and hence are unable to effectively address the real
vulnerability and hazard parameters in other countries. GIS-based systems are
practically limited to be widely implemented in developing countries due to
technical constraints. Lack of consistency and errors in earthquake loss databases
have been identified as major shortcomings that should be considered (Kleindorfer
and Serter 2001). “GIS allows for easy display of input and output providing a
critical function for communication of outcomes that could be useful to emergency
planners and decision-makers” (Bendimorad 2001), though such a sophisticated
system requires a large amount of computational and data resource which may be
unavailable or unreliable in many countries (Rodriguez et al 2012). Coppock
(1995) argues about the issues of existing GIS models including the weakness of
commercial GIS software in modelling socioeconomic data that represent the
infrastructure of any vulnerability assessment procedure; the inability to meet the
needs of intended users adequately; the lack of large volumes of appropriate data
typically required in vulnerability analysis; and finally, the lack of appropriate
methods that are based on a sound understanding of the phenomena under

consideration.

The more recent probabilistic loss estimation trend focuses on a narrow group of
facilities including RC buildings (Askan and Yucemen 2010; Tesfamariam et al
2008; Tesfamariam and Liu 2010; Modirzadeh et al 2012), infrastructure: lifelines
(Pitilakis et al 2006), bridges (Padget et al 2010), and hospitals and schools (Smyth
et al 2004). Such studies address certain earthquake scenarios through
vulnerability assessments and microzonation maps but fail to acknowledge other
determinant aspects of risk management (Anagnostopoulos et al 2008). Thus, it
should be noted that a comprehensive approach that could incorporate

multidimensional aspects of seismic risk management is still lacking.
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2.6 Classification of Seismic Risk Models

Seismic risk management occurs from a nationwide to a regional scale. This
universality disables its applicability for any given specific practice. As a
consequence, customization is required according to local conditions. Klugel
(2008) asserts that seismic risk assessment must be conducted in a way to
minimize the effort needed to obtain the results based on the client’s needs. Risk
assessment should consistently address the importance of application. The form
and richness of the results should also correspond with application needs and
objectives. Because of the difficulties involved with evaluation of hazard and
vulnerability, risk assessment models could vary considerably from well-
structured analytical models to empirical heuristic approaches. In this light,
several seismic risk models can be distinguished in the literature which have been
designed for a particular application. Reviewing the literature, the most common
variants of seismic risk assessment can be identified in four categories as indicated
in Table 2.2.

Table 2.2 - Summary of seismic risk assessment classes (Vahdat et al 2015)

gl @ Scope of Parameter A e —
| 3 Hazard Vulnerability Reference
= - application used analysis analysis
% Critical infrastructure Detailed geological Deterministic Analytical Kluge! (2006)
I g High importance facility Seismo-tectonic data Konakdi &Xiureghia(2011)
§ Specific studies Detailed Structural Stochastic Berrah & Kausel (1992)
Noncritical infrastructure Probabiisitc Empirical/ Yakut et &l (2006)
Important building/facility Magnitude Frequency Statistical Yucemen et al (2004)
§ Infrastr. Network analysis Relation Kiremnidjian et al (2007)
" B |Local and regional studies Damage Index Analytical Park and Ang (1985)
E Detailed Structural Gulkan and Sozen|(1999)
Hazard distribution Bozorgnia & Bertero{2003)
functions HAZAUS (2001)
Building in large area General technical Heuristic Heurisitc Carreno et al (2006)
Mitigation program Inventory data Tedamariam & Wang(2011)
Global/regional nsk analyis Economic Index Karbassi & Nollet (2008)
"I g Urban /Mega cities studies Social Index Microzonation Sucuoghu & Yazgan |2003)
Portfolio of buildings Maps Davison and Shah (1997)
Resource allocation Miyasato et al. (1986)
Financing/insurance Fruta et o (1991)
Regional studies General technical Code-based Judgmental / ATC-13 (1985)
Mitigation program inventory data Screening Expert opinion  Rojhan (1986)
W Planning , management Microzonation Checklist ATC-21 (2002)
Disaster risk management Maps ATC-40 (1996)
| Financing/insurance NRCC {1992)




Chapter 2: Seismic Risk Management 25

2.6.1 Deterministic Models

For high importance applications and critical infrastructure (e.g. dams, nuclear
plants) a deterministic model (DSRA) is the most appropriate option as there is no
compromise between the simplification of structural models and the efficiency of
analysis (Klugel 2008). DSRA is a deterministic approach since it is based on
objective data and physical models. DSRA in a broader sense can be regarded as a
stochastic process (Wen 2003). Using response spectrum and time-history analysis
methods, Konakli and Kiureghian (2011) applied a stochastic dynamic analysis to
investigate bridges considering the spatial variability of ground motions. A
deterministic approach allows detailed investigation of structural response using
advanced analytical models which help give a more precise interpretation of
seismic risk with respective scenarios. However, developing such complex models
requires sophisticated tools and expertise that can be used for single studies of

high importance infrastructure at a detailed design stage.

2.6.2 Probabilistic Models

Probabilistic seismic risk assessment (PSRA) in a broader sense focuses on the
most probable earthquake by defining the frequency of events or the frequency of
exceedance of ground motions (or exceedance probability). A PSRA can be
implemented for less important applications such as regular infrastructure,
facilities and buildings in both regional and local studies. Unlike DSRA, in PSRA all
possible earthquakes that may affect the system could be considered and imported
into the model. Quantification of the most probable mode of damage is challenging
because different states of damage have to be distinguished objectively in terms of
material, age, quality and functionality. Generally, potential losses for different

classes of structures are based on prior historical damage.

Potential damage is often presented in two forms of fragility curves (or
vulnerability functions) and a damage probability matrix (DPM). Intersecting the
most probable earthquake with fragility curves, the most likely vulnerability level
of a building can be estimated for any given earthquake magnitude. Essentially, the
vulnerability function is a subjective metric for assessing and predicting the
potential damage of buildings, and is developed by clustering the statistical

damage records for different classes of buildings. Historical records of damages are
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evaluated following an earthquake by groups of experts. Hence the accuracy of the
functions relies on the quality of records as well as the expert’s experience. Coburn
and Spence (2003) developed typical vulnerability functions for masonry buildings
for different states of damage as a metric of intensity measure as shown in Figure
2.6. More complete databases for vulnerability functions were documented in ATC-
13 (1985) and HAZAUS (2001) which covers the most typical classes of structure
in the USA.

Vulnerability Functions for Loadbearing, fired-clay unit masonry construction,
Brick Masonw Bul'dlngs unreinforced, cement or lime mortar, low rise.
L[ I i i i ik i il i i i bd b e e ‘_ v -
= y o i e ! Key to Ha
3 A L84 ¥ 3 RS n Damage |~
3 : © o [ i Histograms | =
e Undamaged ' s T | ¢ D 3
E 3 mag . o of : e 6 Shight —;
 Bost-§t Gausslan 9% % oo . : . - é m" =
g' = Vulnerability Functions A o8/, D2 0. ° Moderate | o
3 = ™ _....5-......_..._...._..‘,; AR A RR— - ,.1 SR — - ._":
S E o * L4 : Damage =
@ E 6] : ; + D23 E
3 ° I | oy |3
*E D oe I . g ) . ‘l y i %:'I"lm =
E * ‘e P D5 ? O 3
3 Ao IR K %% Collapsed oten| =
= ° Oy S o r w D=5 =
0 o alostiaduatil bt | Collapse |,

0
0 { ameterless 7
Correspondence of PSI to I"ntensit)r Definitions Per Scale of intensity (PSI ¥/)

I N e e et s

Vi Vil Vil X X “"Many (20-50%) collapsed (D = 5)°

"Single (<10%) “Many (20-50%) “Many (20-50%)  “Many (20—50%) Intensity Scale
slight damage (D=1)" moderate damage (0=2)" heavy damage (D=3); partially destroyed (D=4); .a y .
Single (<10%) Single (<10%) collapsed (D=5)* Definition for Building Type B
partial colapse (D=4)" ("Ordinary Brick Houses")

Figure 2.6 - Vulnerability functions for range of earthquake intensities
(Coburn and Spence 2003)

In probabilistic approaches, macro seismic intensity scales and fragility curves
establish the underlying concepts of probabilistic risk models. However, analysing
the seismic risk on the basis of vulnerability functions and intensity scales raises

some issues (Coburn and Spence 2003):

e Significant uncertainty due to variations in observed data can potentially be
imported to the fragility curves. Normally, various states of damage are
differentiated through statistical records by experts. Distinguishing the
threshold among the different states of damage relies on the perception of the
experts and can significantly vary among groups of surveys deriving from
different places.

e Estimation of intensity is an inherently descriptive, and not a continuous,

scale, which makes it difficult to use for predictive purposes.
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e Intensity scales assume a relationship between the performance of typical
building types with certain configuration which may not precisely match in

practice.

There have been several attempts to improve the quality of vulnerability analysis
using analytical and empirical methods. Yucemen et al (2004) proposed a
simplified damage index to estimate the seismic vulnerability of low-rise to mid-
rise reinforced concrete buildings. Yakut et al (2006) developed a scoring system
for estimating the damage within low-rise buildings using different structural and
seismic modifiers. Park and Ang (1985) developed an analytical damage index for
estimating the vulnerability of RC buildings. The potential levels of damage were
characterized as a function of seismic intensity based on two probable
earthquakes, the 1971 San Fernando and 1978 Miyagiken-Oki events. Basoz and
Kiremidjian (1996) used the PSRA to prioritize the risk within bridge networks
that were intended for retrofitting. In this process the basic hazard and
vulnerability factors (ground motion, expected structural damage) were combined
to estimate the expected utility of the bridge. Temporal variations in the seismic
hazard were implicitly included in the analysis by taking the maximum credible
earthquake (500-year-return period intensity measure). Using a damage index as
the sole criterion for estimating the risk is a reliable measure, although the
threshold of structural damage can also be correlated with other indirect
consequences and socioeconomic losses (e.g. human losses and casualties, costs of
rehabilitation) to achieve greater performance (Coburn and Spence 2003).
Nevertheless, importing such indirect effects into the existing frameworks is

problematic.

2.6.3 Heuristic Models

Probabilistic models have been used extensively in regional risk assessments due
to their inherent simplicity. These methods require extensive damage records from
previous events which may not always available. Heuristic models are an
alternative mid-range option that can be used flexibly in conjunction with
analytical and empirical models to overcome existing limitations. The common
feature of heuristic models is the use of a systems approach as an underlying

concept.
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Broadly speaking, seismic risk management requires not only the estimation of
seismic risk, but also the detailed values of risk factors, in order to effectively
support mitigation decisions. This involves a comprehensive systemic view that
can be achieved through heuristic frameworks. A system perspective allows
customizing of the structure of risk, thereby decision makers can better focus on
different pieces of knowledge and clearly identify critical attributes within the risk
system. A heuristic model in a broader sense can be regarded as “a transparent
simulation box” while is applicable as an information system and a useful tool for
higher classes of mitigation programmes, such as financial, insurance, planning and
management of the disaster risk. However the scope of these models is limited to
approximate risk assessment for disaster planning and management and they are
not precise enough to be used in the detailed design stage, compared to

deterministic and probabilistic models.

The application of major system modelling techniques such as Artificial
Intelligence (AI) and Multi Criteria Decision Analysis (MCDA) to seismic risk
management has not been fully appreciated yet. Miyasto et al (1986) have
developed a hierarchical risk system for the preliminary evaluation of seismic risk
for different types of buildings. Fruta et al (1986) proposed a knowledge-based
expert system for assessing the damage status of bridge structures based on the
fuzzy reasoning method. Gulkan and Yakut (1996) developed a rule-based expert
system for integrating various seismic and structural attributes for estimating the
damage levels of buildings. Davison and Shah (1997) introduced a linear additive
model for evaluating and comparing earthquake risk between major metropolitan
cities worldwide. Cardona et al (2004) developed a holistic risk system, taking to
the account socioeconomic aspects of seismic risk, including physical exposure,
social fragility and resilience. Using the structural damageability index as the major
factor, Tesfamariam and Wang (2012) established a fuzzy-based risk assessment
system for prioritizing civic infrastructure in the US. Using a weighted arithmetic
mean (WAM), Sucuoglu and Yazgan (2003) have developed a two-level seismic risk
assessment tool for Istanbul. The model integrates the most critical structural
performance modifier using a multivariable stepwise linear regression analysis
procedure. Karbassi and Nollet (2008) developed a fuzzy inference system to

evaluate the risk of failure in water main pipelines in Quebec.
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The common advantage of existing heuristic models is a systematic aggregation of
likely impacts to evaluate the utility of interest options for certain areas that could
effectively support disaster risk management. However the main challenge of
existing practices is in providing a solid means to assess the accuracy and
reliability of the simulation. In an attempt to address this issue, the present study
will apply multiple tests to clearly investigate the effectiveness and reliability of

study through verification and validation.

2.6.4 Screening Models

Screening models provide a simple method for highlighting vulnerable buildings
among large groups. The process is often conducted through a rapid visual survey
to identify inventory and thus classifies buildings that are potentially hazardous
for safety (ATC-21 2002) by the mean of structural performance index (SPI).
Hazardous buildings are identified by examining the building characteristics such
as seismicity, soil condition, structure type and irregularities, as well as usage and
occupancy to determine the overall SPI. Different versions of screening procedures
have been suggested by ATC for evaluating potentially hazardous buildings (ATC-
10 1982; ATC-13 1985; ATC-14 1987; FEMA-154 2002). ATC-13 and ATC-14
provide data and methodology that serve as the basis for Rapid Visual Screening
(RVS), which was updated in FEMA-154 and developed with hazardous regions of
US such as California in mind. A similar process was developed in Canada (NRCC
1992) and New Zealand (NZSEE 2009). A sample checklist for screening the

buildings in high-seismic zones is shown in Figure 2.7.

OCCUPANCY SOIL TYPE FALLING HAZARDS
Assamily Gowt Office Wumoar of Fersors A B C D E F ] () |
Conmercal Hstonc Fesicems 0- 10 11=-100 Had Avwg Oense SWT  Sof Poor Uneromed  Paasets  Claadhg  Ofwr
Erer Services  Inchsina  School 101-1000 1000+ Fock Fock Sol  Sol Sol Sdl Crimneys
BASIC SCORE, MODIFIERS, AND FINAL SCORE, §
BUILDING TYPE L w2 51 52 53 5 85 1 =] c3 PCt PCZ AN RMZ  URM
MEF) (B ™ BCOW  URNNE]  RF e A (T B R
Basic Score 4 a8 8 bE] 12 8 0 3 ¥ ] 18 FE 24 14 8 ¥ ]
Mid Rise [4 107 siones) NB NA 02 04 NA 04 4 W4 04 .2 NA 02 +04 +04 00
Hon Rse |> 7 stones) N NA +06 +08 NiA 0.8 +08 HE +08 +#.3 NIA +04 NiA +16 NiA
Vertical ireguiarty 23 20 -0 A5 MIA -10 A0 A3 40 -1.0 W& A0 10 -10 -10
Plan imeguisity 45 45 45 45 4.5 05 45 45 45 45 A5 45 435 45 45
Pre-Coce 00 A0 -0 438 26 08 42 12 40 42 48 08 10 L8 02
Poat-Banchrrark 24 +24 #U 14 NiA 16 NiA 4 *24 NA 24 NiA, 28 *16 NiA
S0l Type C 03 04 9.4 04 2.4 04 04 04 04 04 04 04 04 04 04
Sol Type D 08 08 4.6 06 4.6 06 04 06 05 04 0.6 06 0.5 06 06
Sol Type £ 08 48 -2 12 -1.0 -12 08 -12 05 {8 A4 A2 04 06 08
FINAL SCORE, S
COMMENTS
Detailed
Evaluation
Required
YES NO

Figure 2.7 - Checklist for evaluating performance of buildings (FEMA-154 2002)
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Screening models follow a simple procedure to rapidly evaluate those buildings
that require urgent mitigation action. The process supports the mitigation process
by addressing the public safety concerns within the community. However the
scope focuses on structural damage as a direct mean of vulnerability assessment;
other indirect damage induced by earthquake hazards such as ground failure (e.g.

liquefaction, landslide) is not addressed in these models.

In addition, the form, quality and accuracy of scoring tactics are major concerns in
screening models. The information collected from a field survey is always prone to
high subjective error. As a result, great amounts of uncertainty can be imported

into the model due to variability between the observed and actual data.

Other shortcomings of screening models are addressed in the literature (Rojhan
1986; Karbassi and Nollet 2008). The scoring model and its weight are pre-set and
provided for facilities in California. The procedure uses general buildings with
average conditions as representative of the whole structural group. The largest
margin of uncertainty exists within the visual survey, which is still not addressed
by this procedure. Further, large amounts of information are required for
verification and validation of the model. In a broader sense, screening models can
be regarded as a specific case of heuristic models as they use the simple additive
model to score the alternative buildings according to their structural type, age,
material and configurations. The scope of screening models and rigidity in using

built-in criteria limits their applicability to preliminary risk assessment.

2.7 Characterising Problems

Risk assessment entails the process of quantifying the risk and essence of any
disaster management process. It offers a reliable tool for making rational decisions
that is often used prior to rehabilitation and developing emergency response and
recovery plans. Decisions about mitigating seismic risk rely on the quality of the
risk assessment and the spectrum of uncertainties in the risk parameters and
processes. Some of these uncertainties can be addressed and reduced
stochastically through standard procedures (i.e. ATC-14 1987). Eguchi and
Seligson (2008) note the evaluation pitfalls that commonly occur in standard
procedures and lead to under-prediction within large scale and over-prediction of

losses in small earthquake events. They maintain that the damage functions
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developed for such earthquakes are mostly based on specific scenarios derived
from severe earthquakes in California (1971 San Fernando and 1994 Northridge)
thereby covering a narrow range of magnitude (strong to severe), and essentially
ignoring the potential losses within areas experiencing lower or greater intensities
(outrange earthquakes) (Eguchi et al 2008). The mitigation decisions based on
these models could be valid only for a specific geographical area and may not
reliable for other regions. For example, the ATC-14 method of “evaluating the
seismic resistance of existing buildings” deals with regions experiencing few, but
low intensity earthquakes, and this is applicable to certain regions of the US. Thus,
the selection of appropriate analysis should be based on understanding the
underlying concept, scope of analysis and considering its strengths and limitations

to different applications.

From a systems viewpoint, various classes of application can be distinguished
according to their accuracy and complexity of modelling as indicated in Table 2.3.
The complexity and uncertainty of each procedure might significantly vary
depending on the scope and type of problems for which they designed. For
example, some deterministic models are suitable for detailed individual studies,
whereas screening procedures can be useful for large group evaluation and
prioritizing. Thus, to handle the problem of seismic risk management, prospective
models should have adequate functionality and structure to address the
multifaceted nature of risk. Risk analysis must be appropriate to the scope of
application, not be overly complex (making it too expensive) yet not too simplistic,
where simplicity is substituted for effectiveness. The model should also have
adequate precision to handle both objective and subjective uncertainties
commonly involved with different types of qualitative and quantitative

information.
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Table 2.3 - Complexity and uncertainty within different classes
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Existing models are largely focused on structural system performance, building
capacity, layout and certain response parameters. Detailed risk analysis relying on
comprehensive data collection are generally employed for the assessment of
individual buildings, as they require sophisticated modelling, thereby aiming to

determine whether any given building needs rehabilitation (Yakut et al 2006).

Although detailed analysis provides high-precision results, it is restricted to
individual case studies and thus cannot be used for regional studies in which a
large number of buildings are involved. Furthermore, these methods are based on
underlying theory that could only handle the inherent variability of the hazard
data (randomness) and are unable to address the uncertainties commonly
involved in decision process due to modelling, parameters and modellers
perception of risk. Klugel (2008) reviewed different versions of seismic risk
assessment approaches and identified that the traditional probabilistic concept has
insufficient understanding of modern risk analysis. This could result in the
inability to present a correct definition of the true relationship, hence proposing
inappropriate treatment of uncertainty. For such situations, heuristic models
utilizing limited data and simple simulation are preferred because they require
less expertise and allow taking into consideration more practical factors. These
models have the flexibility to deal with a broad range of data and precision in
practice. Hence, the research study seeks to establish a heuristic model which is

able to efficiently handle a portfolio of buildings on a regional level.
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Viewed from this perspective, the heuristic method was identified as the best
category that fits the scope of study and thus adopted for the problem of seismic
risk management for several reasons. First, the risk management process is an
interdisciplinary concept that several risk parameters (expressed in various forms,
accuracy and quality) from multiple sources have to be combined as an input data;
while processing such a complex information system is beyond the ability of
conventional methods. Second, the subjectivity involved within seismic risk
management requires a flexible, well-structured methodology that could simply
handle the predominant form of knowledge consistent with uncertainty theories.
For example, risk analysis is concerned with estimating the potential impacts and
disastrous consequences. The diagnosis of damage is a subjective process that is
largely based on intuition and experience. A knowledge based system provides a
consistent means of system approach that is capable of handling vague, imprecise
knowledge and addressing the inherent subjectivity involved within the process.
Third, decision-making in mitigation is a multidisciplinary process and requires
detailed information within each category (e.g. hazard and vulnerability) along
total risk. The heuristic (system) view of risk suggests a comprehensive picture of
seismic risk by means of detailed knowledge, thereby supporting seismic risk
management. Overall, the heuristic model can explain and clearly address the
systemic interaction involved with the process of seismic risk assessment and

management.

2.8 Challenges in Seismic Risk Management

Risk management strategies are concerned with an objective risk assessment that
is based on evaluating the Hazard and Vulnerability. Ultimate efficacy of risk
management is to provide an effective and efficient risk assessment to support
decisions and policy options (Smith et al. 2006). Underestimation of risk may
result in ineffective mitigation and inadequate preparedness and response
measures; while over-estimation of risk could lead to costly mitigation efforts.
Decisions about risk management are made upon risk assessment results, which
are rarely free of the multidimensional aspects of the earthquake, including social,
political, economical and strategic considerations. Thus, seismic risk management
can be particularly challenging because multiple participants with different sorts

of influence and behaviour are involved in the risk process (Bristow et al 2012).
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The difficulties in processing risk can be referred to two major concerns and
limitations. Firstly, the complexity of the disaster system is under scrutiny, due to
the interactions among multiple quantitative/qualitative, linear/non-linear risk
variables. Establishing the proper relationships among risk input parameters and
output consequences is problematic. Secondly, the uncertainty involved within
seismic risk assessment is related both to describing the level of hazard
(identification of initiating events, measurements of severity of ground shaking
and frequency of occurrence which is random in nature) and to the vulnerability of
facilities, as estimated loss to facilities for various levels of intensity is subject to

ambiguity in knowledge and lack of experience.

This implies that the characterization of uncertainties is critical in both hazard and
vulnerability assessments. According to McGuire (2008), unbiased quantification
of uncertainties is crucial to making rational decisions for risk mitigation. Seismic
risk cannot be accurately estimated without quantifying the epistemic
uncertainties in ground shaking or in building response and damage. The need to
quantify uncertainty has been extensively addressed in risk applications such as
NERHP, PEER and FEMA. However the reliability of these models in describing and
incorporating the uncertainties within the process has not properly examined. For
example HAZUS provides a standard loss estimation model through probability
estimation of credible earthquakes for high seismic regions in the US. However, the
inability to explicitly address the uncertainty reduces the cost-effectiveness of
retrofitting options proposed by the model (Davison 2008; Durham et al 2008).
The standard procedure enhanced within FEMA-154 (2002) or similar versions in
Canada (NRCC 1992) serve as a rapid diagnostic tool for prescribing the decision
to retrofit or not. Essentially, these approaches target a broad range of buildings
through a simple field survey; while they fail to clearly provide the detailed
reasoning for the proposed diagnosis and following decisions. Analytical
approaches provide an in-depth investigation of earthquake hazards, although
they are limited to merely providing a random picture of seismic risk.
Furthermore, existing risk assessment approaches provide a prescriptive
procedure that covers general types of problems. Predefined (built-in) risk
parameters in such approaches can be adapted to cover a broad spectrum of

facilities in terms of, for example: size, function, and occupancy load. In addition,
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current approaches integrate some information with pre-set weights based on the
common statistical cases. The main issues in these prescriptive approaches are
inability, inflexibility to add or remove new variables and options due to
prescriptive concept; the inability to change the importance (or weight) of the
variables for certain problems; the inability to track the operation and parameters
in the model; the inability to apply for particular seismic application (i.e. critical
portfolio of buildings); the inability for tuning due to the low sensitivity of model

to small changes in risk input parameters (i.e. screening models).

Rational risk management should be capable of effectively comparing and
prioritizing multiple alternatives. The ability to compare risk across regions
becomes more critical to both private and public stakeholders who have
competing priorities for urgent retrofitting action. Inadequate decisions could
compromise mitigation measures by slowing the retrofitting, renovation and even
reconstruction process. Moreover, there is a need for a simple but well-grounded
risk management system to interplay within different levels of risk knowledge and
decision makers. Therefore, a rational risk management system to address
multidimensional impacts of earthquakes and support mitigation decisions is

paramount.

2.8.1 Uncertainty Paradigm

Uncertainty is a critical dimension in seismic risk management as it directly
influences the accuracy of the risk modelling, assessment and management. The
entire process of risk assessment involved with the sort of uncertainty that can be
classified in the two categories: aleatory and epistemic (Ayub and Klir 2006).
Aleatory uncertainty refers to variability or randomness as an inherent feature of a
disaster system. This deals with data variability in time and space which affects the
overall risk management process. Epistemic uncertainty originates from the lack
or deficiency in knowledge, and thus can be reduced by improving the quality of
the underlying knowledge and expanding the sources of information. This kind of
uncertainty is caused due to the subjectivity of the risk analysis and emerges

during the survey process, thereby relying on the skills and experience of experts.

Seismic risk assessment is a product of both types of uncertainties, and thereby

depends on the scope of application. Some types of uncertainties might be
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highlighted and considered as a major determinant. Traditionally, probabilistic
expressions are used to represent the variability and randomness within seismic
hazard analysis. Randomness prevails in determining the likely severity and
hazard analysis of critical facilities exhibiting the temporal and spatial aspects of
earthquake hazard, and therefore requires high-quality historical information to
establish the probability distribution of severity and occurrence. In this case,
historical records in terms of size, location and magnitude are the major sources of

data to address the temporal and spatial variability of an earthquake event.

However, uncertainty captured by the classical statistical approaches (e.g.
probabilistic, stochastic) is restricted to variability of risk data and thus can be
applied only to estimate probabilistic model input parameters (Nilson and Aven
2003); while a great portion of risk assessment and management is fraught with
imprecise vague information which cannot be fully addressed through classical
probabilistic approaches. Describing the intensity of seismic hazard can be highly
subjective as it relies on the subjective scale of damage (MMI scale for intensity).
Most of the hazard attributes are site-specific and dependant on the quality of the
field survey as well as the perception of subsurface (geology) characteristics.
Exploring more precise geological surveys can improve the knowledge of
underlying soil, hence reducing uncertainties in site-specific data. Different levels

of uncertainty exhibited in various risk applications can be schematically shown in

Figure 2.8.
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Figure 2.8 - Uncertainty in seismic risk models

Analytical and empirical models that use precise objective information are prone
to subjective errors, and therefore more appropriate for detailed-design studies. In

this case, the randomness in estimating seismicity is predominant in the risk
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assessment process, while epistemic uncertainty prevails in heuristic and
screening models since the knowledge extracted from survey and expert opinion.
The more human engagement in the knowledge acquisition process (i.e.
perception, judgment and qualification), the more subjectivity and vagueness will

be imported to the model.

Any field survey (inspection) is prone to subjective/qualitative judgments
(Hadipiriono and Ross 1991) which are prone to ambiguity and imprecision. The
modeller’s perception can significantly influence risk modelling and assessment
and management (Haimes 2012a). For example, the vulnerability of a facility is an
inherent subjective factor that is commonly evaluated through observation and
expert survey. The inventories of the existing buildings are imprecise in nature as
it is a product of a (visual) survey of the structure, materials and engineering
quality; all of which relies on the surveyor’s skills and experience. In addition, the
estimation of likely damage is a subjective process which might significantly vary

from individuals and places involved.

Several vague and imprecise terms such as ‘high performance’, ’strong’ and ‘severe
damage’ are frequently used in describing both hazard intensity and likely
consequences of an earthquake. For example, to determine the performance levels
in buildings, some basic states such as 'life safety’, 'collapse prevention’, ‘extent of
damage' and ' severity of earthquake hazard' are commonly used. It is evident that
these types of statements describe epistemic (or knowledge-based) uncertainty
because it can be reduced by expanding new resources and knowledge. According
to Bristow et al. (2012) the uncertainty of extreme events might be attributed to
ambiguity in identifying the initiating events, perceptions of risk-causing factors
and distinguishing them; lack of knowledge in developing the complete set of
consequences; and impreciseness in measuring the intensity and magnitude of the
consequences. Part of this uncertainty stems from a qualitative scale of perception
which is full of vague overlapping terms. This type of uncertainty is also regarded
as fuzziness because it stems from ambiguity or vagueness in describing
knowledge, thereby reflecting the human ability to address the real world

problems using statistical models (Ahmad and Simonovic 2011).
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2.8.2 Complexity Paradigm

Pich et al. (2002) defines complexity as “the inability to evaluate the effects of
actions because too many variables interact”. Earthquake risk is the product of
complex interactions between multiple disaster causing factors, disaster-prone
environments and the hazard bearing bodies as an input terminal for the whole
disaster system. One reason for this complexity is the interaction within and
between the natural environment, human population (actions, reactions and
perceptions), and surrounding built environments, all of which can create a
complex challenge particularly in seismic risk context (Simonovic 2011). In
addition, the complexity of a disaster risk system is the result of interaction within

sub-system components including hazard and vulnerability.

The causes for seismic hazards are many and diverse, therefore the risk might
exhibit a broad range of impacts on communities and infrastructure. Earthquakes
are the product of highly nonlinear and very complex physical phenomena that
could potentially cause varying degrees of damage to socioeconomic systems,
social life and regional economy (Jiu-Ping and Yi 2009). The integration of various
physical, socioeconomic impacts of such complex system requires a cross-
disciplinary thinking which cannot be modelled through a simple additive model.
Furthermore, nonlinear variation in natural environments (hazard attributes) and
human-extracted knowledge hamper the implementation of the existing model due

to large interactions. NRC (2011) asserts that:

“... No theory adequately describes the basic features of dynamic
rupture and seismic energy generation, nor is one available that
fully explains the dynamical interactions within networks of faults.
Large earthquakes cannot be reliably and skill fully predicted in
terms of their location, time, and magnitude. Even in regions where
we know a big earthquake will eventually strike, its impacts are

difficult to anticipate.”

In addition, decision-making in a disaster context is an inherently complex process
as it is involved with several interrelated risk parameters that are processed

through the diverse methods, with varying degree of reliability (Haimes 2009).
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Seismic risk assessment consists of complex processes, such as describing the
diverse characteristics of buildings on a limited scale, estimating likely damages,
aggregating and ranking wide range of risk factors (Mezzina et al 2008).
Furthermore, the vast majority of existing models take certain aspects of
earthquakes into consideration, thereby failing to accommodate a comprehensive
picture of risk impacts. For example, utility measures have been widely used as a
sole determinant for evaluating mitigation options through cost-benefit analysis
(Smyth et al 2004), life-cycle costing (Arikan et al 2005) or direct monetary
valuing (Vanzi 2002). Moreover, an integrated perspective of seismic risk that
could be applicable to the technical level of the system is still lacking. A systematic
analysis of earthquake impacts is the premise for recognition, simulation, and
evaluation of the system (Jiu-ping and Liu 2009). Therefore, a systematic
perspective should be enhanced within the underlying concept any seismic risk

management problem.

2.9 Summary

The deployment of seismic risk management is fraught with issues of complexity,
ambiguity and uncertainty which pose critical challenges in assessing, modelling
and management. The complexity of earthquake impacts and the uncertain nature
of information necessitate the establishment of a systematic framework as a
critical requirement for processing seismic risk management. A variety of
applications can be used for modelling seismic risk, while most of those share a
common probabilistic concept that could capture only the physical aspects of
earthquakes and may be unable to effectively address the multidimensional
composition of the seismic risk. The scope of existing models is restricted to
particular applications in a rigid format which may not be customized or be
expanded to large-scale mitigation programmes. Implementing existing
methodology for managing large mitigation programmes could mislead the overall
retrofitting measures because they have been essentially designed for detailed
investigation within high-seismic regions; thus they are unable to process large
number of buildings subjected to varying degrees of seismic hazard. Consequently,
prioritizing the retrofitting of school buildings requires a holistic risk-informed

system to effectively address, not only the physical impacts of an earthquake, but
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also to be capable of incorporating the socioeconomic effects of a disaster to

support multiple stages of the seismic risk management.

Moreover, the conceptual theory of probabilistic models is unable to capture the
epistemic uncertainty (e.g. vagueness, imprecision and subjective judgment) that is
often involved with seismic application. The existing models share a common issue
which is the pre-defined and built-in concept (i.e. criteria, scale) that does not
allow any modification or customization for a new situation. As a result, this thesis
adopts a heuristic model to systemically address the existing challenges within

seismic risk management problems.
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Chapter 3: System Modelling Techniques

3.1 Introduction

The primary aim of this research is to investigate the feasibility of a system in
order to model multidimensional aspects of seismic risk. In pursuit of this aim,
Chapter 3 explores the potential techniques (MCDM and Al) that might be used in

system modelling.

3.2 System View of Seismic Risk Management

Risk analysis is inherently involved with a complex, multidimensional process that
requires the integration of myriad sources of information to characterise seismic
risk. According to Haimes (2012a): “the entire process of risk assessment,
management, and communication is essentially a synthesis and an amalgamation
of the empirical and the normative, the quantitative and the qualitative, and of
objective and subjective evidence”. Different modes of thinking are required to
address the challenges associated with defining, modelling and quantifying the risk
which is often influenced by the modeller’s skills and experience. Several
quantitative and qualitative tools and techniques contribute to risk analysis in
order to improve understanding of risk in specific disciplines. However, the
intricacy and complexity involved in risk assessment cannot be modelled,
understood and addressed through ad-hoc approaches. Given the diversity in size,
scope, functionality and configuration of current infrastructure, as well as the
immense uncertainty associated with the risk management process, modelling
should be grounded on a systemic and repeatable basis, presenting the
multidimensional characteristics of seismic risk through the integration of multiple

metrics.
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A systems approach is appropriate to managing complex problems by dividing
them into simpler sub-systems or components (Deng et al. 2011). This approach
usually focuses on interactions among the myriad elements involved in risk
assessments, as well as on the effects of their interactions in future decisions.
System-based risk modelling can effectively address the multifaceted composition
of seismic risk by incorporating levels of uncertainty and complexity due to the
nonlinear nature of the states of all human and built environments (Haimes 2009).
Aven (2011) argues that risk and vulnerability are the manifestation of the
inherent state of the system and its environment; hence they should be dealt with
and quantified through a system-based hypothetical and methodological approach.
Haimes (2012b) advocates that the process of risk modelling, assessment, and
management must be holistic, comprehensive and repeatable and must be handled
systemically to perceive the state of the system and model the system blocks.
Accordingly, the systems approach is required for complex situations to improve
the understanding of the system’s characteristics, including function, behaviour

and interactions.

Hence, a system-based approach to risk assessment and management is of utmost
importance for the credibility and effectiveness of decision-making and the

ultimate quantification of the complex multidimensional aspects of seismic risk.

3.3 System Characteristics of Seismic Risk Management

Seismic risk management is characterized by carrying multiple dimensions, with
typical aspects of social, economic, political, environmental which might be in
conflict with each other. Several alternatives need to be considered and evaluated
in terms of the many different criteria which result in a vast body of data that are
often imprecise or uncertain. A large number of individuals are usually involved in
the risk assessment process, including decision-makers, planners, experts and
other interest groups from organizations and the community, some or all of which
may have conflicting preferences (Lahdelma et al. 2000). The scope of seismic risk

management involves balancing these variables, as shown in Figure 3.1.
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Figure 3.1 - Multifaceted aspects of seismic risk management
(Vahdat et al. 2014a)
Multiple views and interactions within risk factors, alternatives, individuals and
organizations cause complexities that require a systematic and structured
reconciliation of these disparate factors (Avouris 1995). Clearly, there is no single
or best solution for this kind of problem, and thus seismic risk mitigation decisions
require a compromise to address a wide range of criteria at different levels of

organization and operation among experts and local users.

Risk management is concerned with modelling and assessing risk which can refer
to the inherent characteristics of the disaster risk system. According to Avouris
(1995) a disaster system is multidisciplinary by nature, as it requires a continuous
compromise between various demand knowledge base and problem solutions that
could only achieve through an expert-based cooperative approach. Within the
process various conflicts may arise due to multiplicity of views, thus requiring
consensus within the decision-making process. In addition, the complexity and
dynamic nature of an earthquake hampers the modelling process. Due to the
subjectivity and variability of risk data, information used in the risk assessment
process has been often imprecise, uncertain or even erroneous. Furthermore,
spatial variation is an inherent feature of natural systems, since disasters impose a

range of impacts for a given scope of the study (i.e. international, regional or local).

Therefore, aggregating a large number of inputs within a complex system requires
an approach that is capable of interacting with a range of information, facts,

algorithms and experiences. The questions and challenges in a seismic risk
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management process cannot be addressed effectively and reliably, without
adhering to a systemic approach to risk modelling, assessment and management. A
system-based risk analysis can effectively address the potential challenges caused
by complex multidimensional aspects of seismic risk, and can handle uncertainties
(due to spectrum of objective and subjective information) present in decision
process. The systems approach can be viewed as a common denominator, unifier
and unique integrator that acts as a bridge between the various disciplines
involved in the seismic risk management, taking advantages of both system

engineering and risk analysis.

3.4 System Requirements

Planning for disaster management involves not only physical and structural
consequences of a natural hazard, but also considerations of different socio-
economical, environmental and historical factors which might influence a
population or future generation. Thus, a risk management framework should
capable of integrating various perspectives of seismic risk; conducting seismic risk
assessment; evaluating the mitigation strategies; and performing a risk-based
trade-off among mitigation strategies (retrofitting decision). Improvement in the
seismic risk prevention and mitigation process directly depends on the perception
of earthquake impacts which in its most general sense relies on the surveyor’s
experience and quality of the assessment. This could directly affect the investment
in seismic risk mitigation and preventive measures, as well as the development of
legislation, standardization, and governmental regulations and control (Ahmad
and Simonovic 2011). The framework developed in this research must support a
broad range of decisions in disaster management context. A new holistic approach
is required specifically to address the existing limits. The prospective model should

be capable of handling the following characteristics (Vahdat et al. 2014a):

e Multidisciplinary processes

e Multiple sources, criteria and uncertain data
e Conflict among variables

e Multiple stakeholders

e Multiple causes and effects

e Multiple alternative comparisons and rankings
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Viewed in this light, the prospective method should be able to address the

following requirements:

(1) Complexity: It must be systematic, following a logical process in multiphase
mitigation processes within a complex system;

(2) Nonlinearity: It should allow trade-offs between non-commensurate, often
conflicting variables by capturing nonlinear interactions;

(3) Consistency: It should be consistent with rational decision-making;

(4) Flexibility and Customizability: It should flexible enough to handle multiple
sources of data,(including quantitative and qualitative types) and to be
customized to interact with multiple disciplines;

(5) MCDM-based: It should allow comparison and prioritizing alternatives;

(6) Uncertainty: It should explicitly address the subjectivities while it is
implicitly capable of handling randomness;

(7) Transparency: It should be clearly written in order to be easily understood
and to be tractable through the verification process;

(8) Communicative: It should be informative to communicate effectively
between experts and stakeholders;

(9) Efficiency: It should be able to rapidly handle a great amount of
information and broad range of variables, in order to produce relevant outputs
at the reasonable time and cost;

(10) Trade-off: It should be full compensatory in concept, allowing for trade-

offs among disparate, often conflicting risk parameters.

In addition to above requirements, Dallenbach and McNickle (2005) suggest that
the decision model should be able to produce information that is appropriate in a
useful form which can be used directly for decision-making without further
manipulation or extensive translation. The model must also be robust enough in
that reasonable changes in uncontrollable input parameters should not completely
distort the results and invalidate the model. In other words, it should adequately

reflect the small changes in input variables while maintaining its robustness.

The above criteria collectively define the boundary of an ideal system and can be
used as a guideline to review and select the appropriate mathematical technique.
The techniques that better satisfy the above requirements would be potential

candidates for further investigation.
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3.5 Uncertainty in Disaster Context

In seismic risk modelling, the nature of uncertainty is crucial and should be
carefully considered prior to the selection of an appropriate method (Ross 2004).
The challenge of selecting a method is “to formulate suitable numerical models in a
quantitative manner without ignoring significant information or unwarranted
assumptions; inappropriate modelling of uncertainty can undermine the purpose
of an analysis. If this balance is violated or not achieved, computational results may
deviate significantly from reality and associated decisions may lead to serious
consequences” (Beer et al. 2013). Broadly speaking, a mathematical model can be
formulated by analysing the nature of the available information. In reality,
available information may appear in various forms, either objective or subjective,
or due to imprecision, incompleteness or ambiguity. The appropriate model should

support the type and quality of information to consistently address this problem.

Table 3.1 gives a summary of information commonly used in various seismic risk
applications. Referring to various classes of risk analysis already discussed in
Chapter 2 (Section 2.6); the role of vulnerability or hazard analysis might vary
considerably. For example, the stochastic nature of an earthquake (or
randomness) in terms of time (temporal) and location (spatial) is a core concept
within DSRA and PSRA; while in heuristics and screening approaches the
vulnerability assessment is highlighted. Decisions regarding risk mitigation have
been highly focused on estimating the capacity of damage within existing

buildings, rather than spatial or temporal considerations of an event.

The inherent ambiguity and vagueness associated with a vulnerability assessment
make a compelling reason that seismic risk assessment is prevailed by
subjectivities as a result of vague or imprecise terms frequently used in risk
assessment, damage assessment and expert judgments. Vague, imprecise and
incomplete nature of inputs of the risk parameters can be suitably handled using

the fuzzy set theory.
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Table 3.1 - Generic information within seismic risk application
Application User Purpose Information Category
Urban planning | Planners Identify high risk locations | Risk mapping Risk
for urban design and
infrastructure development
Building Retrofit | Owners The best retrofitting option Structural capacity Vulnerability
Cost-benefit Economy
Mitigation Disaster Identify high-risk portfolio Potential buildings Vulnerability
program manager screening capacity
Insurers and Insurer Set insurance premium Annualized loss Hazard
reinsurers company exceedance
probability
Emergency Civil Plan size and location of | Estimate potential Hazard
planning protection | emergency facilities fatalities, injuries, Vulnerability
agencies damages Exposure
Building code Building Determine optimum Structural algorithm | Vulnerability,
development regulators | resistance levels Experiments Hazard
cost-benefit data Economy

Sources: Ozcan et al. (2011), Birkmann (2006), UN-ISDR (2004), NRC (2011)

Furthermore, “the level of uncertainty within a system is proportional to its
complexity, which arises as a result of vaguely known relationship among various
entities, and randomness in the mechanism governing the domain” (Deng et al.
2011). Zadeh (1973) asserted, “as the complexity of a system increases, our ability
to make precise and yet significant statements about its behaviour diminishes until
a threshold is reached beyond which precision and significance become almost

mutually exclusive characteristics”.

According to Blockley (2013) and Zadeh (1996) “complex systems cannot be dealt
with effectively by the use of conventional approaches, largely because the
description languages based on classical mathematics are not sufficiently
expressive to serve as a means of characterization on input-output relations in an
environment of imprecision, uncertainty, and incompleteness of information”. In

addition, it is difficult to precisely establish the temporal and spatial relations for
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earthquake events, due to the complexity and random nature of earthquakes.
Application of probability theory in the large complex disaster system is
compromised. As a result, an alternative heuristic model is required to address
multifaceted nature of earthquakes while supporting multiple stage of seismic risk

management.

3.6 Classification of Uncertainty Theories

Decision-making in the disaster risk context is a complex process due to the
presence of a broad range of variables in assessment and a great deal of
uncertainty involved with both parameters and modelling process. The nature of
uncertainty is crucial and should be pondered prior to the selection of an
appropriate method. Risk modelling should be capable of handling different types
of uncertainty; while implicitly accounting for the factors that affect the input in
the form of a probability distribution (Shaheen et al. 2009). Types of uncertainties
in various situations can be captured through different uncertainty theories.
However, classifying individual uncertainties and quantifying them into a single
perceived uncertainty is extremely difficult as it still in their infancy (Philips et al.
1999). Thus, understanding and identifying each type of uncertainty within a
system greatly contributes to the total uncertainty. A detailed summary of
uncertainty can be found in literature (Klir 2006; Ross 2004). The former presents
nine theories of uncertainty by means of their generality. The five most common
theories used in the context of disaster risk assessment are potential candidates

for present model.

Probability theory is the most popular way of quantifying aleatoric or natural
variability by the mean of statistics of frequencies (Blockley 2013). Due to the
random nature of seismic hazard, the probability theory has been effectively used
to quantify uncertainties in the size, location and the rate of recurrence of
earthquakes. “Because of the uncertainty of the knowledge available about
earthquakes and their recurrence patterns, all loss estimates are necessarily
extrapolations into the future of the observed statistical distribution of
earthquakes and their effects in the past” (Coburn and Spence 2002). In reality,
lack of physical data (i.e. historical records of earthquake intensity and losses), or

of poor quality data to establish loss distributions, restrict the effectiveness of the
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probability method in objective risk modelling. Monte Carlo simulation is an
alternative way to overcome the limitation of data through random sampling and
stochastic modelling. Expert knowledge is another way to compensate the

inadequacy or poor quality data through Bayesian and evidence theory.

Bayesian theory is another variant of probability theory that uses a probability
measure, either as a frequency, or as a subjective judgment about a degree of belief
which can be conditional on unknown variables. However, such an approach does
not allow the decision-maker to acknowledge incompleteness explicitly (Blockley
2013). In other word, the Bayesian method allows, “updating subjective knowledge
with experimental results of observations” (Singal and Kiremidjian 1998)
combining the domain knowledge within multidisciplinary platform (e.g. historic
data, expert opinion). The theory has the ability to analyse the observations that
occur sequentially at different times and thus is useful for calculating the

probability of multiple related events through conditional probability.

Singal and Kiremidjian (1996) proposed a systematic approach for estimating
fragility curves and damage probability matrices in different structural systems. To
obtain a more robust fragility curve they used Bayesian theory to enhance the
prediction's robustness. Thus the Bayesian method takes advantage of aggregating
multiple techniques for improving the robustness of the model (Li et al. 2010).
Bayraktarli (2009) examined the ability of the Bayesian method for various seismic
risk mitigation, including retrofitting decisions, seismic risk assessments and the

updating of fragility curves with new information in consideration.

The Bayesian-based model, although accommodating a decent control in complex
modelling of interdependencies within risk variables, still carries the limitations of
probability theory, requiring a great amount of data to establish the distribution of
events. In addition, users have to precisely define the interrelations between risk
variables in advance. Nevertheless, Bayesian theory provides a sound platform for

treatment of uncertainty in both forms of aleatory and epistemic (Beer et al. 2013).

Dempster-Shafer theory (DST) of evidence offers an alternative to probability
theory for describing the uncertainty within intervals or due to significant
ignorance. This concept is potentially valuable as it allows the combination of

subjectivities with probabilities and thus can be used in situations where precise



Chapter 3: System Modelling Techniques 50

measurement is not possible. Furthermore, the rule of combination in the
framework of the DST provides a compromised-platform for combining multiple
pieces of evidence given by independent sources of information, regardless of what
form that takes, e.g. observation, experiment or judgement (Yamada 2008). This
ability is a significant privilege among alternatives as it enhances the scope of
information within individual environments and from the viewpoint of consensus

generation.

In other words, the DST can effectively work as a combinational rule of evidence in
either probability or fuzzy sets environments. For example, Dong et al. (1987)
developed a model based on the DST to incorporate fuzzy information with the
current probabilistic approach for seismic hazard analysis. However, the proposed
DST-based method requires extensive consensus among experts to establish belief
functions. Moreover, the controversies regarding the validity of the DST and the
problematic justification of polling evidence still remain since “existing
formulations of the requirements for the use of Dempster's rule are not completely
clear” (Voorbraak 1991). In addition, the adequacy of knowledge in representing
interdependencies of evidences and defining the belief functions is questionable

(Yamada 2008).

Beer et al. (2013) argue that the intervals may not reliably describe the impression
of boundaries because the specification of intervals implies that “although a
number's value is not known exactly, exact bounds on the number can be
provided”. Alternatively, the fuzzy set theory provides a more flexible basis for
describing imprecision by relaxing the bounds to a smooth transition that truly
support the imprecision concept. This feature makes fuzzy sets the first choice for
representing the subjectivities by the means of vagueness, imprecision and
ambiguity. For example, the common statement in damage assessment such as
'heavy’, 'considerable’, 'significant’ express the fuzziness in terms of vagueness or
imprecision. Many other terms used in seismic codes such as 'life safety’,
immediate occupancy', 'collapse prevention', 'required level of seismic
performance’, 'extent of damage', the 'severity of seismic hazard exposure' can be

referred to epistemic uncertainty because these terms are intrinsically vague.

This is epistemic as the uncertainty is reducible by expending resources to obtain

more precise information. Buckley (1983) examined the preference between
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Bayesian and fuzzy set theory in risk-based decision-making. He suggested that
suitably of each method should be seen, according to the problem features. The
fuzzy set theory is appropriate for the case where state of system is vague, too
complex or ill defined, and where statistical (Bayesian) methods have limited
ability to address it effectively. If uncertainty stems from randomness, the

Bayesian theory might be appropriate.

As a result, the fuzzy set theory was adopted to maintain a consistent framework
for representing epistemic uncertainty along high levels of complexity, within
seismic risk management. The fuzzy algorithm is beneficial for improving the high

level of system (i.e. KBS) that allows interaction with other approach.

3.7 Mathematical Modelling Techniques

Mathematical models express the relationship between the various components in
the form of quantitative (Dallenbach and McNickle 2005). While the relationship
within simple problems might be formulated using mathematical expressions,
complex systems require performance measures to evaluate how well the decision
variables or alternative course of action could meet the objective under problem
constraints. Thus, the modelling technique should be simple in that the relation

and interactions are easily tractable and perceivable by decision-makers.

Selecting an appropriate mathematical modelling technique is of utmost
importance. Several methods have been developed to support a sound decision-
making process by balancing the pros and cons of alternative courses of action.
However, most bear one or more shortcoming that hampers an effective
aggregation and trade-off among criteria (Ohlson et al. 2006). Some methods only
focus on generating detailed or precise information about a narrow set of impacts.
For example, conventional risk assessments are limited to temporal or spatial
impacts of earthquake; while real-world mitigation decisions always involve trade-
offs among multiple risk factors under certain scales of concern (i.e. short or long

term disaster planning).

A balanced representation of impacts is crucial to achieve the objectives,
regardless of how precise it is, as it is “far better an approximate answer to the
right question . . . than an exact answer to the wrong question” (Tukey 1962).

Many methods produce a single 'best' alternative, rather than an open exploration
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of a range of 'feasible' alternatives. A sound modelling technique should assist
decision-makers in evaluating and exploring wide range of alternatives and also
support a transparent unbiased documentation on the logic and be rationale for
ultimate decisions (Keeney 1992). Zanakis (1998) argues that different techniques
could produce different results for a same problem, possibly with the assumptions
used by the same user. This inconsistency in results is not unexpected, first
because each method applies a different algorithm for selecting the best solution;
and second because techniques of weighting are different depending on
aggregating operators. Finally, some methods use different scaling techniques that
may not necessarily be linear and thus could change the weight and in turn the

final results.

In the present problem of seismic risk management, the modelling techniques
should be able to aggregate several dimensions of earthquake impacts while being
capable of incorporating the DM’s preference and behaviour in the presence of
uncertainty within transparent and mathematically based risk management. For
this purpose, 10 mathematical modelling techniques were chosen. Al and MCDM
disciplines are briefly reviewed in terms of their advantages and drawbacks in the

following sections.
3.7.1 Al Techniques

3.7.1.1 Genetic Algorithms

Genetic algorithms (GAs) is a heuristic search technique proposed by John Holland
(1975) for optimizing relevant objective or fitness function. This evolutionary
computation algorithm is inspired by biological evolution and concepts regarding
chromosome, genes and inheritance, cross over. Like other optimization algorithm,
GAs starts with defining objective functions and ends by testing for convergence.
However, rather more complicated process follows to translate and narrow down
the set of possible solutions (array of decision variable values) so called as

chromosome (Rani et al. 2012).

According to Everett (2001) GAs can be useful in three distinct domains. First, in
optimizing or improving the performance of real operating systems where the
interactions between the parameters are not generally amenable to analytical

treatment and thus the researcher has to resort to appropriate search techniques.
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Second, it can be used for testing and fitting quantitative models that require
searching for parameters to optimize a fitness function. Third, it maximizes the
operating system’s performance and minimizes the misfit between a model and

observed data, which is known as system tuning.

The advantage of GAs in solving large-scale, nonlinear optimization problems
involved with either discrete or continuous parameters when no compromise for
simplifying the assumptions is required (Haupt and Haupt 2004) such as a water
distribution systems (Nicklow 2010), traffic and scheduling (Cevallos & Zhao
2006), and allocation of funds to projects, and Space Truss Optimization

(Krishnamoorthy et al. 2001).

3.7.1.2 Artificial Neural Networks

Artificial neural networks (ANNs) is self-learning optimization algorithms inspired
by the basic framework of the brain, the neuron. Unlike the symbolic Al approach
(expert system) where people have the problem of a "knowledge acquisition
bottleneck"”, ANNs employ a data-driven acquisition process (machine learning)
and their nonparametric ability to generalize (Bae and Kim 2011). The
advantageous feature of ANNs for classical statistics is the forecasting ability
where no deep reasoning is required. In other words, there is no need to know the
concrete functional relationship between input and output (Wang ad Elhag 2007).
This feature makes it suitable for finance applications such as business
classification (Pendharkar 2005), resource allocation (Ko & Lin 2008), pattern

recognition and regression.

Like GAs, ANNs are a powerful tool for solving complex nonlinear problems
associated with high computation rate where no rigid assumption is required for
simplifying the problem. However, ANNs have significant shortcomings; perhaps
the most daunting issue is the unclear process of training that makes it seems as a
"black box" and unsuitable for addressing real-world problems. Secondly, ANNs
require a long time for training in order to deal with huge amounts of data of large
databases. Thirdly, neural networks lack explanatory facilities for their knowledge.
The knowledge of neural networks is hidden in their weights and structures.
Besides, it is sometimes hard to extract rules from a trained neural network

(Craven & Shavlik 1997; Bae and Kim 2011; Ko & Lin 2008).
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Nevertheless, ANNs has been successfully used in engineering applications. Kim et
al. (2002) applied ANNs to concrete quality assurance and concrete mix designer
tools that support the decision process. Dias et al. (1996) explored ANNs for
construction bidding decisions. Aiken (1997) employed ANNs to study group DSS
and compared them with regression and GAs. ANNs results found to be more

reliable than regression analysis.

3.7.1.3 Expert System

The expert system, more broadly known as the 'knowledge base expert system'
(KBES) is a branch of Al that employs fuzzy logic as a mean of approximate
reasoning. “Fuzzy reasoning approach possesses the ability to mimic the human
mind to effectively employ modes of reasoning that are approximate rather than
exact” (An et al. 2013). Within a KBES, the fuzzy set theory is applied or extended
to handle both numeric and linguistic input/output variables in a uniform way. The
knowledge base can be developed by encoding expert knowledge into linguistics
(IF-THEN) rules, giving a transparent system which can be maintained, expanded

and verified by experts (Roubos and Setnes 2001).

Since the knowledge base is commonly fraught with uncertain and vague
information, an expert system requires high-performance domain-specific experts.
In general, fuzzy logic has the ability to cover a broad range of complex problems

involved with uncertain nonlinear relationships within variables.

However, fuzzy logic comes with some general limitations. Hong & Lee (1996)
argued that it is a shallow concept that is unable to offer a common framework to
deal with different kinds of problems; while this feature may be attributed to the
flexibility in heuristic approaches that offer case-by-case answers with no formal
procedure to apply to all problems. Knowledge base acquisition is another
challenge in an expert system - a difficult task particularly in large multilayer
systems. Experts may not always be available in specific domains, and their
knowledge may hardly reach a consensus on first survey that could lead to episodic
and time-varying. In addition, the validation process and refining of knowledge is

episodic and time-varying, and is hardly a trivial task.

Despite these shortcomings, expert system experienced in multiple contexts

including construction engineering and risk management. Kangari (1988) applied
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an integrated knowledge-based system for construction risk management using an
expert system to calculate overall risk of a project by combining values for
different on-site risks. Alim and Smith (1989) applied expert system to facilitate
interpretation of seismic design codes. They have used fuzzy sets to formulate such
imprecise linguistic variables and to infer conclusions about seismic design
parameters. Sen (2011) applied the expert system for developing an earthquake

loss estimation framework.

The model uses basic hazard and vulnerability indices to classify the buildings into
different life-safety categories (building failure classes). The model provides a
rapid framework that is suitable for preliminary screening, although it requires a
detailed structural property (stiffness values) to establish reasoning procedures
which failed to capture a picture of risk due to lack of exposure data. Tesfamariam
and Modirzadeh (2009) used a hierarchical expert system to identify critical
bridges which pose a significant threat to life safety, and prioritized them
accordingly. Despite the sound implication of fuzzy logic for aggregating the
different performance parameters in the presence of vagueness and uncertainty,

the model requires a deep calibration and validation through real stakeholders.

3.7.1.4 Neuro-Fuzzy Inference Systems (ANFIS)

The neuro-fuzzy inference system (ANFIS) combines the strengths of fuzzy logic
and ANNs and thus is capable of handling complexity, uncertainty, unspecificity
and nonlinearity (Jang 1993). There are a number of areas in which both methods
have a synergy for integration. Both expert systems and ANNs have a common
origin for simulating human intelligence. They each have the ability of aggregating
quantitative and qualitative information. They share a multidisciplinary scope of
applications in science and engineering, though the ANNs technique is still in its
infancy. Limitations of expert systems in knowledge acquisition and
representation can be compensated by ANNs that can learn from typical example
data. Conversely, weaknesses in user-interface and explanation capabilities of
ANNs can be strengthened by using an expert system (Osyk and Vijayaraman

1995).

Sanchez-Silva and Garcia (2001) developed a seismic damage assessment model

based on fuzzy logic and ANNs in order to define mitigation procedures and risk
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management strategies. Using ANNs and fuzzy logic, Mosely (2007) developed an
integrated screening model to estimate the seismic vulnerability of buildings. The
hybrid model, although exhibiting a significant potential for optimizing the rapid
screening procedure, requires a great amount of damage recording for training.
Zamani (2013) employed a hybrid ANNs-ANFIS to examine the spatial-temporal
variations in seismicity parameters for an earthquake in Iran (Qeshm, 10th
September 2008). The model presents efficient results in classification and
prediction of spatial and temporal seismic pattern. However, such models fail to

sufficiently provide a proof of validity in the real world context.

3.7.2 MCDM Techniques

The multicriteria decision making method (MCDM) is defined as the process of
making preference decisions (e.g. evaluation, prioritization, selection) - known as
best choice - among a finite set of alternatives that are characterized by multiple,
often conflicting attributes (Hwang & Yoon, 1981). Best choice in single criterion
problems can be simply defined as 'optimum solution', implying alternatives with
maximum or minimum performance criterion among feasible alternatives. In
MCDM problems where multiple criteria are involved, conflict arises within
criteria. In this case, the concept of ‘optimum solution' turns into
'‘compromise/satisfying solution' that meets or exceeds the decision-makers'

minimum expected level of achievement (Ravindran 2008).

There is a broad range of MCDM techniques reported in literature that have both
common origin and goals; yet some of these might differ in principle methodology,
core structure and model development process. Thus, different MCDM approaches

may yield varying results for exactly the same problem (Triantaphyllou, 2000).

The most popular classes of MCDM can be summarized on the basis of their
methodological concept of scoring methods (Multi attribute utility theory, or
MAUT), outranking methods (PROMETHEE and ELECTRE), compromising method
(TOPSIS) and eigenvalue method (AHP). The main characteristics of common
variants of MCDM are shown in Table 3.2. The methods are organised according to
their modelling effort which defines the richness of the output. MAUT and AHP
generate the most complete form of ranking for each alternative associated with its

global score; while TOPSIS and PROMETHEE provide a preliminary form of
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ranking, including a short list of feasible solutions which may not necessarily be
supported by a comparable score. High-effort modelling approaches can effectively
include a hierarchical structure and interaction of the criteria in each layer to
create relative a ranking score; while in low-effort approaches the performance

score of each alternative are measured individually.

Table 3.2 - Comparative analysis of MCDM ranking methods

Feature TOPSIS PROMETHEE ELECTRE AHP MAUT
Methodology | Order Determining Determining Hierarchical Utility
Preference concordance concordance structure & performance
Similarity  to | indices & pairwise on specific
the Ideal discordance comparison criterion
Solution indices
Information Compensatory | Non- Compensatory | Compensatory | Compensatory
processing compensatory
Determining | Not-any Not specific | Not specific Yes Not specific
weights linear method based | method Pairwise method
normalization | on decision based on comparison based on DM
makers decision
makers
Number  of
Pairwise 1 N(N-1) N(N-1) N(N-1)/2 1
comparison
Consistency No No No Yes No
check
Input Ideal and anti- | Indifference & | Indifference, Pairwise Utility
ideal option preference preference on | comparison function
thresholds a ratio scale on ratio scale
Output Complete Partial and Partial and Complete Complete
ranking complete complete ranking with ranking with
with ranking ranking scores scores
closeness (pairwise (pairwise
score reference outranking
degrees & degrees)
scores)
Very low Low Medium High Very high
Ranking

Sources: Hwang and Yoon (1981), Ozcan et al. (2011), Ishizaka and Nemery
(2013), Saaty (1981)

Nevertheless, all MCDM approaches have intrinsic strengths and weaknesses. The
significant benefit of MCDA is the ability to handle problems bearing complex
structures. Using MCDM, a complex problem can be decomposed into multiple

manageable portions. MCDM also allows implicit and explicit evaluation of both
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quantitative and qualitative criteria on a common scale. Among most widely used
methods proposed for risk assessment, MCDM provides a realistic way for DMs to
actively participate and understand the critical features and peculiarities of real
world problems (Zopoundis and Doumpos 2002). This increases the productivity
of MCDM in handling multidisciplinary (public-related) problems by saving time
and energy, although its formalized style of working impose an extra burden for
group decision-making. For example, logical rules based on certain fundamental
axioms such as transitivity of preference limit the scope of MCDM to normative

problems (Lootsma 1999).

In addition, MCDM has potential synergy to connect flexibly with Al approaches in
areas such as knowledge based systems, fuzzy logic and data mining. However, the
greatest weakness in most MCDM approaches (except AHP) is the lack of
systematic control on the consistency of judgments (Belton 1986). All MCDM
approaches share a common weakness in aggregating concept which is the
inability to capture uncertainty within a process, restricting the application to
process crisp information; while in many situations, crisp data is inadequate to
model real-life problems since human judgments are often vague and may not be

precisely expressed through numerical values (Vahdani and Zandieh 2010).

3.7.5.1 TOPSIS

TOPSIS was originally developed by Hwang and Yoon (1981) to rank a feasible
number of alternatives based on the concept of compromise solution. The
comprise solution in TOPSIS is referred to a solution that has the shortest
Euclidian distance from the ideal solution and the farthest Euclidean distance from
the negative ideal solution. Due to its simplicity in perception and use, TOPSIS has
been adopted in different fields (i.e. location selections Ozcan et al. (2011);
contractor selection (Lin et al. 2008). The advantage of TOPSIS is in being able to
handling a large number of criteria as well as alternatives. However, the best
performance of TOPSIS can be achieved in problems with data expressed in
quantitative and objective forms. Another limitation is the lack of consistency
check. Since TOPSIS measures the distance from two points, the effects of each
attribute automatically doubles these results to an exaggerated domination of

attribute weight in the alternative preference.
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3.7.5.2 Outranking Methods

The PROMETHEE outranking method is a class of MCDM family proposed by Brans
et al. (1984) based on concordance analysis. With concordance concept, a set of
alternatives is compared in pairs (pairwise comparison) with respect to each
criteria in order to establish the degree of dominance, using a concordance score.
The main feature of outranking family is "non-compensatory”, which means "no
trade-off” occurs to one criterion against the other for each individual option
(unlike AHP). However the scope of application is limited to generating a “short list
of preferred options” for a relatively large number of alternatives, rather than a
“single best option” (Rogers 2011). PROMETHEE also fails to include

inconsistencies within the process and to obtain average ranking.

ELECTRE is another family of MCDM originally developed by Roy (1968) for
outranking the alternatives. This method employs concordance and discordance
index to establish outranking relations and generate the set of preference by
forming a kernel (Hwang and Yoon 1981). The advantage of ELECTRE is a
compensatory trade-off between attributes that allow all information within a
decision matrix to be utilized effectively. It can also process a large number of
alternatives; although as the number of alternatives increases, the amount of

computation rises exponentially.

Despite the complexity, outranking methods possess multiple advantages (Rogers
2011). First, concordance techniques allow criteria on different scales to be
measured on a same framework. Second, unlike AHP or MAUT, no transformation
to a common scale is required before evaluating the relative performance. Third, it
does not rely on direct pairwise comparisons in the case of conflict or missing
information. Given the ability of processing a large number of alternatives,
outranking methods might be used as a rough estimate prior to the screening

stage.

3.7.5.3 MAUT

Multi-attribute utility theory (MAUT) is considered as a leading MCDM approach
developed by Keeney and Raiffa (1976), providing an enhanced form of ranking
within decision problems. The MAUT concept is based upon expected utility which

is a synthesis of possible performance of alternatives with respect to each
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criterion; “The expected utility of an event is calculated as the sum of the utilities of
the payoffs weighted by their probabilities” (Ananda and Herath 2005). This
concept outranks MAUT to other MCDM methods by extending the scope of
application to risk-based decision-making, such as the risk ranking of gas pipelines
(Brito and de Almeida 2009), public risk assessment (Ananda and Herath 2005)
and evaluating mitigating decision for disaster risk (Tamura et al. 2000). While
MAUT incorporate imprecise information into decision preference, it can hardly
deal with missing knowledge situations where the consequence or performance of

alternatives is not sufficiently defined (Jimenez et al. 2009).

Unlike conventional MCDM techniques, MAUT attempts to explicitly represent
multiple dimensions of a problem to a single utility function. The function can be
additive, multiplicative or any other type that best fits the problem scope. Yet the
main issue is to find a rational operator to establish the utility function and to
aggregate all criteria in a way to adequately express the decision makers’
preferences (Tzeng and Huang 2011). MAUT has the benefits of full compensatory
processing that could be useful for situations where there is no means to quantify

the possible interrelations between the criteria.

Without any knowledge of the decision makers' preference structure, the rank
order can be established. Unlike other MCDM methods, MAUT makes the simplest
assumptions for modelling, which allows decision makers to fully understand the
mathematical basis of ranking. The issue of incomparability often occurs in
outranking method, but could not arise in MAUT as two utility functions are always
comparable due to the transitivity principle (Ishizaka and Nemery 2013).
However, developing the utility function could be too complicated where many
alternatives are involved. The practical use of MAUT might be limited to problems
with no interdependency within criteria as utility functions are based upon the

preferential interdependence axiom.

3.7.5.4 AHP

The Analytic Hierarchy Process (AHP) was proposed by Saaty (1980) and is based
on subjective judgment for handling multi-attribute problems in real situations.
This method employs expert opinions to establish priorities for alternatives and

the criteria used to generate the alternatives ranking within a system.
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The AHP methodology is based on four steps, including decomposition, pairwise
comparison and priority vector generation and synthesis. First, the problem
should be decomposed and set up in the form. Second, comparing the attributes in
pair (pairwise comparison) and forming a reciprocal matrix. Third, combine the
subjective judgments and generate the relative priority weight vector. Fourth, the

relative weight vector is synthesised to reach the best alternatives.

The AHP gained a popularity in multidiscipline applications because of its ability to
support complex and unstructured decision problems such as resource allocation
(Tzeng and Huang 2011), group decision-making (Dyer and Forman 1992) and
recycling selection (Saaty 1980). Consistency verification is regarded as one of the
greatest advantages of the AHP, which is not available in other MCDM methods and
guarantee that judgments are consistent. However, despite its popularity and
simplicity, AHP is criticized for the strong assumption of its unbalanced ratio scale
and its inability to address uncertainty associated with subjective judgment. The
ambiguous scale of preference makes it difficult for decision-makers to judge the

exact numerical numbers and provide a sound pairwise comparison.

3.7.5.5 Fuzzy MCDM

Fuzzy AHP or broadly known 'Fuzzy MCDM' term is an important extension of the
MCDM method, and was first introduced by Laarhoven and Pedrycz (1983).
Buckley (1985) extended Saaty's AHP method in which decision-makers could
express their preference on the fuzzy ratio scale instead of crisp values. Fuzzy
MCDM attempts to overcome previous criticisms by improving the ratio scale,
allowing for a more flexible way of aggregating inherent uncertainty and
imprecision associated with expert's judgment. This extension gained popularity in
literature and hence been extensively used in several applications, such as: project
risk assessments (Zeng, An and Smith 2007; Tuysuz and Kahraman 2006), site
selections (Vahidnia et al. 2009), country risk assessments (Murtaza 2003) and

post-disaster management (Opricovic and Tzeng 2003).

Despite its advantages, the Fuzzy MCDM is argued for its complex process of
computation that may lead to a counterintuitive prioritization (Deng 1999). It is
also criticized on several disparate methodologies developed for acquiring the

fuzzy utilities and prioritizing the alternative ranking. There are multiple versions
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of fuzzy MCDM, each following a different way of aggregation, potentially leading
to inconsistent ranking results. Chen and Hwang (1992) listed over 15 aggregation
operators for handling fuzzy MCDM within which more than 25 ranking methods
has been devised. Some of the examples of major ranking methods are the a-cut
method (Zeng, An and Smith 2007), fuzzy extent analysis (Chang et al. 1988), the
geometric mean method (Buckley 1985), and the fuzzy lambda method (Csutora
and Buckley 2001).

3.7.5.5.1 Pilot Study

Given the capability of fuzzy MCDM for handling imprecise information in risk
contexts, a pilot study was performed to examine its performance through an
example. This example was designed to examine the capability of the fuzzy MCDM
for evaluating and prioritizing seismic risk within a small group (five alternative
regions of Iran). Throughout the process, the subjective weights of risk attributes
were aggregated using the geometric mean method proposed by Buckley (1985).
Sample weight aggregating processes for a vulnerability block is briefly reviewed

here (see Vahdat et al., 2014a for more details).

According to Buckley’s method, the weight of various risk factors and risk
attributes were assessed using a subjective process. Experts were asked to
describe the relative importance of risk variables in pairwise comparisons using
linguistic terms such as ‘equal’, ‘low’, ‘medium’, ‘high’, and ‘extreme’, representing
fuzzy numbers within the ratio scale including . 3. 5.7.9 respectively as defined

through a triangular function (Table 3.3).

Table 3.3 - Linguistic terms and ratio scale

Fuzzy number Linguistic term Fuzzy scale
i Equally important (1,1,3)
3 Low important (1,3,5)
5 Medium important (3,5,7)
5 Highly important (5,7,9)
g Extremely important (7,9,9)

The fuzzy judgment matrix for each expert can be then constructed as follows:

I =

g

: . 1
: :| where & = I.Li 57,8, P2 (3.1)

Bpy  Bpgp 1
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Then, a fuzzy judgment matrix can be developed to convert the linguistic terms
used in the pairwise comparisons. Using a geometric mean technique, the fuzzy
geometric mean and the fuzzy weight of each criterion proposed could be

determined as follows:
7 = (8@ §;® ... @diy I, (3.2)
W=FEFH O .. (3.3)

Where &, is the fuzzy comparison value of criteria i, with respect to criteria n.
Thus, 1, is the geometric mean of the fuzzy comparison value for criteria i to each
criteria, w, is the fuzzy weight of the ith criteria and can be denoted by a triangular

fuzzy number (TFN) , W, = (Lwi ,Mwi, Uwi) where Lwi, Mwi and Uw; indicate the
lower, middle and upper values of the fuzzy weight of the ith criteria. The major
advantage of using the geometric mean over the arithmetic mean is a reduction in

the influence of the highest and lowest values (Max, Min).

Numerically, the geometric mean and weights can be obtained from expert
judgments. For example, the summary of pairwise comparison of hazard criterion

is shown in Figure 3.3 (due to matrix symmetry, only half is shown).

C11 C12 C13 Cl4 C15 Ci16 C11 C12 C13 Cl14 C15 C16
c11f1 5+ it §7 5% 7 c11ft 5% 1 5 5 i
€12 i 5t 5t §5 It 12 1 3 § 5t 5§
€13 1 5t 3+ 5+ €13 1 it 3§ 3t
£14 1 &t -t 14 1 E-t -t
€15 1 eE-t €15 1 7
Cl6 1 €16 1
Expert #1 Expert#2
C11 C12 C13 Cl4 C15 Ci16 C11 C12 C13 C14 C15 C16
c11f1 1 3t 37 37 1 111 5 & i-t &t §°t
12 i 5 F i § C12 1 3 7 }-1 7
13 i § it 3 13 1 37t 5t §
14 1 it 3 £14 1 it g
€15 1 Z €1s 1 5
C16 1 16 1
Expert#3 Expert#4

Figure 3.2 - Summary of expert judgments matrix for hazard category

Where six criteria within the hazard category are represented by Ci1 (closeness to
fault), Ci2 (ground shaking index), Ci3 (population) and Cis (liquefaction
susceptibility), Cis (sliding susceptibility) and Ci6 (soil class). Using the geometric

mean method, a combined judgment array was computed as follows:
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. o1y 111y g B8

o -1 o E—1 o v G — - - — s |- — —  f— 1

= 510518 135—((?1513]3(?JSJE]E(EJLl]:E{a,E,?JJ
= (0.378,0.669,0.030)

According to Buckley’s equation (2.2), the average fuzzy weight of the judgment

matrix can be obtained as follows:

f =009 6 5% . 8-0?15]% = (0.686,1.004,1.603)
#, =(1.151,1.834,2.475)
7 = (0.541,0.890,1.408)
7 = (0.410,0.613,0.925)
= = (1.054,1.469,1.919)
Fy = (0.474,0.678,0,930)

Then, using equation (3.3), the fuzzy weight of each criterion was obtained as
follows:
W, =F, @(F B .. 8 7) " =(0.074,0.135,0.371)

Likewise, other arrays can be developed using the similar aggregation process as

shown in Table 3.4.

Table 3.4 - Reciprocal judgment matrix for hazard attributes
(C.I=0.09,C.R=0.07)

Cu Ci Cis Cia Cis Ci6 w
Cunl| 1 1 1 0378 0669 0939 0.827 1316 2.280 1.000 1.848 2.817 0.333 0.508 0.939 1.000 1.236 3.000 | 0.074 0.155 0.371
Cyp | 1065 1495 2646 1 1 1 0809 1732 2764 1375 2329 3.409 1.000 1.732 2.141 1.968 3.637 4.304 | 0.124 0.283 0.573
Cy3 (0439 0760 1210 0362 0577 1236 1 1 1 0669 1.495 2432 0293 0.615 1.000 0.809 1.236 2.141|0.058 0.137 0.326
Cyq | 0355 0541 1.000 0.293 0.429 0727 0411 0.669 1.495 1 1 1 0218 0447 0577 0.508 0.760 1.000 | 0.044 0.094 0.237
Cys | 1065 1.968 1.000 0.467 0577 1.000 1.000 1627 3.409 1732 2.236 4583 1 1 1 1592 2432 3.201|0.113 0211 0.445
Cie | 0333 0809 1.000 0.232 0275 0508 0.467 0809 1.236 1.000 1.316 1.968 0312 0411 0628 1 1 1 [0059 0.117 0.276

A consistency test was

performed to check if there is any unreasonable judgment.

The calculated values of the consistency index (CI) and the consistency ratio (CR)
for each judgment matrix can be found in the two last columns. Note that since all
the CI and CR values were kept fairly low, the fuzzy judgment matrix should be

consistent with expert views.

This example demonstrates that a systematic fuzzy MCDM can provide a
meaningful way to aggregate multiple expert opinions and effectively generate
weights. The major advantage of this example is that both qualitative and
quantitative risk information could be aligned, scaled and aggregated with the

presence of uncertainty. The model not only considers the trade-offs between both



Chapter 3: System Modelling Techniques 65

qualitative and quantitative factors involved in developing risk, but it also enables

decision-makers to deal with inconsistent judgments systematically.

However, fuzzy MCDM requires a great amount of computation for evaluating
fuzzy performance of alternatives. The performance values of each alternative with
respect to each criterion need to be mapped to fuzzy numbers. Due to the inability
of tuning the mid stages, complexity grows exponentially for medium- to large-
scale problems in which large numbers of alternatives are involved. For the
present study that contains more than 18 criteria (in four categories) and 50
alternatives, over 40 pairwise comparisons and more than 900 mapping
calculations are required. More comparison and mapping means more likely errors
can be potentially imported during the process. However, like AHP, fuzzy MCDM

could be more appropriate for a simpler problem containing 4 to 8 alternatives.

3.8 Comparison of Methods

Several mathematical modelling techniques were critically reviewed and
compared according to their potential for addressing the problem. There are many
mathematical techniques with different perspectives that might be considered for
modelling the seismic risk problem. These decision techniques range from classical
methods to more complex Al methods such as GAs, ANNs and ANFIS. Mitigation
decisions are often involved with risk-based decision preferences to select an
appropriate solution addressing the defined levels of safety while maintaining the

other socioeconomic dimensions.

The complex nature of the seismic risk with multidisciplinary aspects, in which
range of imprecise information is involved, requires a heuristic framework to
tackle the challenges systemically. The prospective method should also be
consistent with the scope of the research to meet the problem’s requirements.
According to Kangari (1987), despite the popularity of the classical MCDM
techniques in risk context, they are limited in their applicability to disaster
management where nearly all mitigation decision problems are imprecise ill-
defined and vague in nature. This imprecision tends to characterize uncertain risk
knowledge which is predominantly subjective and linguistic in nature. In addition,
there are many situations in seismic risk management where quantitative and

detailed information to evaluate uncertainty is not available.
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Considering the characteristics of the methods and scope of the problems, none of
the classical MCDM methods are not appropriate for modelling risks. Conventional
scoring techniques like TOPSIS and MAUT have no potential for modelling
imprecise risk parameters systematically. Outranking techniques, however, have
the ability to handle a large number of alternatives, but could not effectively
provide an effective compromise. These methods also fail to provide a complete
figure for preference and indifference relations which are basically intransitive.
Although the outranking concept introduces an incomparability relation to
compensate the issue that often occurs for alternatives with a major difference, its
primitive form of ranking restricts it for many applications (Doumpos and

Zopoundis 2002).

The optimization techniques (GAs, ANNs and ANFIS) may not be useful for seismic
risk assessment because such these approaches are seeking to limit the
stochastically selected domain to a finite solution space. According to McCall
(2005), GAs is appropriate for the problems in which “solution sets are finite but
so large that brute-force evaluation of all possible solutions is not computationally
feasible”. Unlike MCDM that provides a single compromised solution satisfying the
constraints (criteria), optimization techniques offer an infinite set of feasible
domains that adequately fit the objective function. In addition, such complex
techniques could make decision-making more complicated because their process
of aggregation is not clearly traceable. Some of those techniques (like ANFIS)

require a great amount of information for training and testing.

Reviewing the variants of MCDM, it can be concluded that only a high-effort
modelling technique might be the best candidate for such situation bearing
uncertainty. AHP and MAUT can handle relatively complex situations using a
quality scoring process. AHP has an extensive ability for the simple ranking of
choices in real situations; however, it is criticized due to the rigidity of its ratio

scale and inability to handle uncertain information.

The fuzzy MCDM, although overcoming the previous issue mentioned, still carries
the systematic limitations of the AHP. The numerical example shows that the
reliability of the fuzzy MCDM method directly depends on the consistency of expert

judgment, which can be hardly achieved at first run. Moreover, a complex problem
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with large number of alternatives and criteria requires a myriad pairwise

comparison, which is exhausting.

An experiment conducted by Triantaphyllou (2011) to compare common MCDM
methods demonstrates that the number of alternatives in a decision problem is
very critical. As the number of alternatives rises, so does the failure rate of classic
MCDM techniques to fully capture the aspects of the problem. Thus, the potential
MCDM approaches which may be incapable of handling a large number of

alternatives would be obviously inappropriate for the present problem.

Other methods such as ELECTRE and MAUT have addressed this issue in their
concept; yet both suffer from other shortcomings that limit their applications.
ELECTRE generates a low-quality ranking scheme that might be appropriate only
for the first round of preliminary screening of the large group of alternatives.
MAUT is another popular variant of MCDM that could be useful for practical tasks
that bear no uncertainty; although knowledge elicitation is a major challenge
(Keeney and Raiffa 1976). Using a numerical scale for ranking can potentially limit
the scope of application in processing subjective judgments, particularly for risk

situations involved with in-situ surveys.

The need to prioritize a large number of retrofitting projects with multiple
interactions within tangible or intangible risk criteria requires a systematic
approach. Consequently, any systematic methodology for aggregating, selecting
and ranking seismic risk must cater for these multiple criteria and must also give
decision-makers the opportunity to simply express their own viewpoints in a
transparent way. Keeping this in perspective, KBES stands far higher than classic

MCDM approach and could be the best fit for this problem.

This process has potential to tackle the challenges existing within risk frameworks
for a number of reasons. First, KBES can effectively address the inherent
imprecision associated with seismic risk parameters using fuzzy set theory. This
process allows the input parameters to be expressed qualitatively through fuzzy
variables. The ability to represent seismic parameters using approximate
reasoning is considered a significant feature in the light of Al development. Second,
KBES is created for the broad purpose of handling complex systems. It supports

rational decision-making in general and MCDM in particular, allowing complex,



Chapter 3: System Modelling Techniques 68

multidimensional aspects of seismic risk to be modelled intuitively. Third, KBES
also provides a heuristic platform to integrate multiple context information

concepts effectively.

Previous applications reported in the literature demonstrate the efficacy of KBES
for handling uncertainty and vagueness in risk and damage assessment
(Murlidharan et al. 1999; Ross 1990; Dong et al. 1990). Given the ability of expert
systems for handling complexity, and enhanced capacity of fuzzy sets for
addressing uncertain risk parameters, KBES was adopted as a first choice to
conduct the study. The form and methodology to implement KBES will be

discussed in later chapters.

3.9 Summary

Given the diversity in size, scope, functionality and configuration of existing
buildings and keeping in mind the immense uncertainty associated with the risk
management process, modelling should be grounded on the systemic and
multcriteria basis presenting the multidimensionality characteristics of seismic
risk through the integration of multiple metrics. System-based risk analysis can
effectively address the potential challenges caused by complex multidimensional
aspects of seismic risk, handling uncertainties present in the decision-making

process due to spectrum of objective and subjective information.

The mathematical techniques that could potentially be used in modelling the
seismic risk impacts were reviewed, compared and ranked according to systemic
capabilities and modelling effort. Considering the ability to handle uncertainty and
complexity as two determinant requirements, the KBES was adopted. KBES
provides a high-effort modelling framework that allows a systemic method for
handling both complexity and uncertainty. The complex process of seismic risk can
be modelled using a multicriteria framework that allows various criteria to be
aligned, scaled and aggregated; while the imprecision associated with risk
attributes can be captured using the fuzzy set theory. In general, KBES
theoretically addresses the basic concerns of complexity, uncertainty, flexibility,
and MCDM consistency, among others. Nevertheless, thorough evaluation of KBES

requires a structured case study to implement and test it in practice.
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Chapter 4: Research Methodology

4.1 Introduction

This chapter outlines the methodology and procedures used to accomplish the
research, and is presented in two main parts. It begins with an introduction to the
research design concept, then reviews the potential methods of data collection.

The second part identifies and justifies the research strategy adopted.

4.1.1 Definition

The term Research consists of two parts: re, meaning ‘again’, and search, which of
course means to look for something. Jointly, research connotes academic activity to
systemically investigate into a subject in order to discover facts. According to
Webster’s Dictionary (2003) research is a careful inquiry or examination in
seeking facts or principles; a diligent investigation to ascertain something. This
definition makes clear the fact that research is not merely a search for truth, but a

prolonged, intensive, purposeful exploration.

The purpose of research is to discover answers to questions through the
application of scientific procedures. Its main aim is to develop a procedure for the
discovery of truth which is a method of critical thinking. It comprises defining a
problem; formulating a hypothesis or suggested solutions; collecting facts or data,
organizing and analysing the facts; evaluating data; reaching certain conclusions
towards the concerned problem; and finally, verifying the conclusions to examine

whether they fit the formulating hypotheses (Singh 2006).

Similar definitions of research have been reported in literature. According to
Mouly (1970) research is “the systematic and scholarly application of the scientific
method interpreted in its broader sense, to the solution of social study problems;

conversely, any systematic study designed to promote the development of social



Chapter 4: Research Methodology 70

studies as a science can be considered research”. Kerlinger (1986) points out that
“research is a systematic, controlled empirical and critical investigation of

propositions about the presumed relationship about various phenomena”.

Furthermore, Kumar (2006) highlights major characteristics of the research to
ensure its quality. This comprises research that is controllable, rigorous,
systematic, valid, verifiable, empirical and critical. From these definitions, it can be
concluded that a sound research is concerned with key characteristics, including
'systematic’, 'logical’, 'structure’, integrity’, ‘critical thinking‘ and ’verifiable‘. These
aspects ensure the quality of research. For example, a piece of research must be
‘systematic’ and structured in accordance with the defined set of rules and
procedure. It should be logical because a rational process of reasoning is necessary
to carry out the research. Creswell (2003) suggests three critical questions for

designing a research:
e What knowledge claims are addressed by the researcher?
e What strategies of inquiry and reasoning are required to conduct the research?

e What methods should be used for data collection (qualitative, quantitative or

mixed)?

In response to the above questions, research approaches should be accommodated
to discover answers to questions by addressing the key elements of research
(knowledge claims, strategies and methods required in research procedure) as

indicated in Figure 4.1.

Research Strategy> Research Approacr> Research Design >

e Knowledge claims e Qualitative e Research questions e Data analysis
e Strategy e Quantitative e Theoretical lens o Write-up
e Mixed e Data collection e Validation

Figure 4.1 - Knowledge claims, inquiry and approaches toward research design
(Creswell 2003)
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4.2 Research Strategy

Research strategy refers to the general plan, structure and desired objectives of
research on how research questions can be addressed (Saunders et al. 2009; Sing
2006). The research strategy is commonly based on the objective of the research,
while research approach is based on the nature of the research problem. To adopt
an appropriate strategy, several considerations regarding to knowledge claims and
inquiry of research need to be taken. In this regard, the researcher should decide
the best way to conduct knowledge claims, to develop the logic of inquiry and to

adopt the appropriate methods for capturing data.

Knowledge claim refers to certain assumptions, paradigms or conceived
methodologies to approach the research. A logical methodology needs to be
adapted to link the data collection and methods of research to answer the main
research questions being investigated. According to Fellow & Liu (2003), research
strategy is related to several crucial factors, including the purpose of study and the
type and availability of information involved. Creswell (2003) suggested four
factors to select a particular research strategy, including implementation, priority,
integration and theoretical perspective. The main priority in this thesis is to adopt
the most appropriate strategy and methods to fulfil the research objectives. The
strategy highlights the plan and way adapted to investigate the research and solve

the research problem.

4.2.1 Reasoning

Reasoning is a scientific mode of thinking (Sing 2006). Research is guided by the
rules of logical reasoning to draw conclusions from scratch. There are three logical
process of reasoning: deductive, inductive and a combination of both. Deductive
research is a theory-testing process that commences with an established theory or
generalization, seeking to discover whether the theory applies to specific examples
(Hyde, 2000). This type of argument starts with general theory and then narrows
down to the more specific hypothesis that one can test through the observation.
Observations provide specific data for testing and validating the hypothesis or the
original theory (Figure 4.2). Common sense reasoning and syllogism are the
simplest form of deduction employing fact and general premise to reach specific

conclusions.
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Figure 4.2 - Deductive vs. inductive reasoning process

Unlike the deductive process, inductive research is a theory-building process that
moves from specific to general. It begins with specific observations of specific
example seeking to discover likely pattern (correlation, variation) to formulate the
tentative hypothesis. Systematic observation and exploration of the events in the
real world can explain the governing rules, thereof developing the hypothesis. The
process of exploring may continue until the argument leads to some general

conclusions or theories.

Clearly, the concept of reasoning is different in both procedures. Deductive
reasoning is more narrow and limited in nature as it can handle specific kinds of
statements for testing and validating the hypothesis, while inductive reasoning is
naturally an open-ended and exploratory procedure. Unlike deduction, which can
be tested by observation and syllogism, induction more relies on personal
experience, inference, self-evident proposition and scientific inquiry as
underpinning sources of evidence (Singh 2006). These characteristics can make
the induction uncontrollable, haphazard and restricted to be applied in practice
(Walliman 2005). Nevertheless, induction is still a priori choice in social science,
psychology and medical context of its nature, requiring empirical research to fit

the data and infer a theory.

It can be untenable to rely on experience as the only source of knowledge, in
contrast with a basic feature of research, which is systematic and controlled. In this
regard, inductive and deductive reasoning can be combined, taking advantage of
both to fit with new situations and data restrictions. This research employs an

inductive reasoning as the underlying concept of research to develop the theory by
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exploring the literature and previous records, establishing the causal relationship
between risk drivers and conceptualizing the hypothesis. The data was collected
from observation and statistics (inference) and integrated with previous

experiences in literature to manage the research methodology.

4.3 Research Approach

The research approach is referred to the way in which knowledge examined,
collected and presented. Several classifications reported in literature (Singh 2006;
Walliman 2005; Kumar 2006) address multiple perspectives of research based on
various  philosophical assumptions, including: scope of application
(fundamental/pure research, applied research), methodology (conceptual,
empirical), the purpose of research (descriptive, exploratory, interpretative) and
mode of knowledge inquiry (quantitative, qualitative and mixed). The main

characteristics of the approaches are further outlined below.

4.3.1 Mode of Inquiry: Quantitative or Qualitative?

A mode of inquiry defines the forms of the research process, which can take the
structured or unstructured approaches. Quantitative research is structured in that
everything has been already predetermined, including the objective, design,
sample, for example. Qualitative inquiry is an unstructured piece of research that
allows more flexibility to explore the nature of the phenomena examined (Kumar

2006).

Quantitative research focuses on measurement, the extent of variation,
observation and testing. This process deals with tangible, countable characteristic
focusing on standard statistical procedure presented in graphs, cross-tabulations
and other statistical procedures. Creswell (2003) described quantitative research
as an objective procedure for knowledge inquiry that particularly used in social
science to deal with the problem based on testing a hypothesis or a theory
composed of variables, measured with numbers, and analysed with statistical
procedures, in order to determine whether the hypothesis or theory holds true.
This method tries to understand a rational theory by examining the related

literature. Qualitative research, though, is a subjective process aims to identify the
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characteristics and structures of phenomena and causal relations between

contributing factors examined in a natural context (Jonker & Pennink 2009).

According to Creswell (2003) qualitative research is concerned with experts’
perceptions, experiences and knowledge. It is a mixture of the rational, explorative
and intuitive, which make it more flexible but rather an unstructured approach. In
this process, data are not collected by statistical methods or other process of
quantification. This kind of research is mostly suitable for doing inductive research
that focuses on events, behaviours, organizational functioning, interaction and
relationships (Ghauri et al. 2010). The main characteristics of those approaches

are compared in Table 4.1.

Unlike qualitative research that may have no rigidity in structure and knowledge
inquiry, quantitative research tends to follow a logical process to develop the
hypothesis and to test it in practice. In order to improve the strength of each
strategy, it is recommended that two approaches be used together (Jankowicz
1994; Esterby-Smith et al. 2001). As a result, the study applies a combination of

quantitative and qualitative method of inquiry to collect information.

Table 4.1 - Comparison between qualitative and quantitative methods
(Ghauri et al. 2010; Kumar 2006)

Qualitative Research Quantitative Research
o Unstructured/flexible/open methodology e Structured/rigid/predefined
methodology

e To describe the variation nature

. L _ To quantify the extent of variation
e Emphasize on description of the variables *teq y

: . e Emphasize on classification of
¢ Inquiry focus on understanding from

o , . . variables
respondent’s / informant’s point of view _ .
¢ Logical and critical approach
e Interpretation and rational approach ¢ Controlled measurement

e Observations and measurements in natural * Objective ‘outsider view’ distant from

settings data ) )
« Subjective ‘insider view’ and closeness to data | * fOCP_S 0'_1 hypothesis testing and
verification

e Explorative orientation
¢ Holistic perspective
e Fewer cases and sample size

¢ Result oriented
¢ Particularistic and analytical
e Emphasize on greater sample size
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4.3.2 Other Categories

Research might be conducted using many other strategies. There are types of
research approaches in the literature that address different underlying concepts
for various themes of research. Fellows & Liu (2008) classified the most common
themes which have been used in different research applications in four major
categories (Table 4.2). Marshall & Rossman (1999) explained the general research
questions corresponding to each category. For example, exploratory research aims
to provide an overwhelming amount of information through a cause-effect
relationship in the areas containing little information (Glicken 2003). Explanatory
research uses a considerable amount of information available from prior research
studies and aims to provide meaningful conclusions as well as major issues raised.
Understanding the scope and implication of either approach is important in

designing the research.

Table 4.2 - Different type of research approach

(Fellows & Liu, 2008; Marshall & Rossman, 1999)

Type of
Research

Purpose of the Study

General Research Questions

Exploratory

e To investigate little-understood phenomena

e To identify or discover important categories of meaning

e To generate hypotheses for further research

e To test, or explore, aspects of theory

e To provide a clear and precise statement of the
recognized problem

e To diagnose a situation, screen alternatives and to
discover new ideas

e What are the most important
themes, patterns, or
categories of meaning for the
participants?

eHow are these patterns linked
with one another?

Explanatory

e To explain the patterns related to the phenomenon in
question

e To identify plausible relationships forming the
phenomenon

e To develop the hypotheses which the research will test

eTo answer a particular question

e What events, beliefs,
attitudes, or policies shape
this phenomenon?

eHow do these forces interact
to result in the phenomenon?

e To document and describe the phenomenon of interest
e To systematically identify and record (all the elements
of) a phenomenon, process or system

e What are the salient actions,
events, beliefs, attitudes, and
social structures and

Descriptive
e May be undertaken as a survey (possibly of the processes occurring in this
population identified) or as case study work to enable phenomenon?
the subject matter to be categorized
e To predict outcomes and to forecast events and e The models used may be
behaviours fit findings/experience to a theoretical heuristic, in which variables
Predictive framework or model are grouped according to

e To use when empirical testing cannot be done

relationships to replicate/
simulate the ‘reality’ as
closely as possible.
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4.4 Research Methodology

The research methodology of the study is designed in eight steps, as shown in
Figure 4.3. The process follows a structured quantitative inquiry. It aims to
heuristically explore the potential impacts of earthquakes, structure their
relationships, and predict the extent of risk by aggregating the respective disaster
patterns. Thus the methodology should be exploratory, while maintaining an

inductive concept to establish the empirical interrelation within risk drivers.

| Formulating research Problem 1 Aim, Objectives
Research Methodology

A 4

Literature Review .
Il 1 Fundamentals of seismic

risk, concepts, methods,

v challenges
»  Development of conceptual Model I
[
v i
VI . . . . . S
Literature Review Questionnaire Publication 1=
Detailed review of Investigate the Collecting data using 8
system modeling, importance of Analytical, Empirical S
% KBES seismic risk drivers procedure, standards &)
2 or observations ©
|5
D I
ves Refining Vv
\ Apply Case Study
A
Vi Verification and Validation
A
VIl Conclusion

Figure 4.3 - Research stages
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Step I: Formulating a research problem

The formulation of the general topic into a specific research problem is the
primary step in research. This requires an extensive review of relevant disciplines
contemplated in the knowledge claim. Literature review has been undertaken to
improve the understanding around the field and to identify the likely challenges

that have either been ignored or insufficiently addressed within the context.

The literature review was carried out in two styles: firstly conceptual literature
presenting the various concepts and theories; secondly the empirical literature
consisting of different case studies performed earlier. This guides the data and
other materials which enabled the researcher to develop a new research problem
in a similar context. In this regard, several reading materials, such as academic
journals, conference proceedings, government reports, books and online database

were systemically utilized.

Having defined the scope, objectives and methodology to approach the research, a
detailed plan of research problem can be formulated. A transfer report is a good
example of a research proposal that introduces research problems, describing the
available methodologies to conduct the research, addressing potential challenges
and limitations, and outlining the proposed conceptual framework to develop the

model.

Step II: Literature Review

The methodological aspects of the seismic risk system have not been fully
addressed in the literature. Hence, a literature review was performed in two major
categories, including ‘risk analysis’ and ‘system theory’. A risk analysis was further
broken down into several subcategories relevant to the context, including risk
assessment, risk management, planning and disaster management. Several studies
and reports conducted by earthquake institutes and other well-known
international bodies (The World Bank, UNDP) have been employed as

complementary sources.

System theory, on the other hand, covers methodologies and the knowledge
management part of the study consists of theoretical and methodological methods
for decision-making under uncertainty. This includes conventional methods

(MCDM) as well as heuristic approaches (AI). Special attention was made to
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numerical tools and programming software for operational research. As a result,
exploring the literature, software and previous research drew potential capacities

for further development and contribution to knowledge.
Step III: Development of a conceptual model

Once the research problem has been formulated in clear-cut terms, it is required to

prepare a research design. According to Kerlinger (1986):

“A research design is a plan, structure and strategy of investigation so conceived as to
obtain research questions or problems. The plan is the complete scheme or program
of the research; It includes an outline of what the investigator will do from writing the

hypotheses and their operational implication of the final analysis of data”.

The above definition implies two main aspects of research design. The first is the
development of the logistical arrangement required in order to conduct the
research. The second is the quality in these procedures to ensure validity,
objectivity and accuracy (Kumar 1996). Accordingly, the purpose and concept of
research may be addressed through exploration, description, experimentation and

diagnosis.

Considering various knowledge-based systems and new Al developments in risk
assessment contexts, an intelligent knowledge base expert system (KBES), which
supports both human reasoning and statistical inference, was chosen as the basic
modelling paradigm. A conceptual risk assessment process was established as a
roadmap to bring a comprehensive insight of research and to address the problem,
the kind of information involved as well as methodological and software
requirements for programming, processing and integrating the knowledge. In this
regard, several packages were examined when developing the system, including

Expert Choice® MATLAB®, Visual Basic and Excel® (spreadsheet).

Step IV: Data Collection

Data collection is a crucial stage toward research design. Having developed the
research proposal, different aspects of data are considered. A plan and strategy for
collecting and analysis of data are usually defined at the onset of the process. In
this regard, researcher should decide what kind of data is required to conduct the
research and how to approach it, whether it is qualitative or quantitative, how to

sample it, and what sources are available.
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According to Guddard and Melville (2006), reliability and validity are two
fundamental criteria that must be fulfilled in any data collection. Strauss and
Corbin (1990) highlight the importance of flexibility in collecting and analysing
data. They point out that data collection is a crucial as it helps the researcher to
improve the understanding of phenomena through a complete and comprehensive
picture of the object of study. Therefore adapting the appropriate data collection
methods is of utmost importance in this research. The extent and diversity of
information have been the major challenges of this stage due to the
multidisciplinary nature of risk. In this regard, a critical review was conducted in
previous research, publications and industry data to identify the contributing risk
factors, and to establish their relations, and classify them in a structured manner.

This is followed by a questionnaire survey to collect the preliminary information.

Step V: Refining the conceptual model

To identify the possible flaws within the conceptual model and explore the likely
challenges, real data are applied to the model. According to Gill & Johnson (2010),
when refining the conceptual model, the researcher should be aware of the
analytical aspects of the project when inductively generated hypotheses may need
to be rigorously tested and refined through a more structured methodology. The
latter works as systematic problem-solving in which researcher is urged to

develop, refine, modify and maximize the potential of the theory being generated.

Step VI: Applying the case study

Once the conceptual model was refined, the prototype decision support system can
be subsequently evaluated through a real (ongoing) case study. In this research,
the case study of retrofitting school buildings was adopted to examine the

application of KBES in seismic risk management.

Step VII: Verification and validation

Once the system has been successfully refined, verification and validation were
performed through a systematic process. Gupta (1991) classified verification as
white-box testing, designed to determine if the system works and accurately
implements user specifications, while validation was classified as black box testing

designed to determine if the system meets user requirements.
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System verification involves a logical process in which consistency, robustness and
completeness of the system are examined and evaluated. According to Morell
(1988), a system is considered as inconsistent if it presents something that does
not reflect within the modelled domain. Robustness is a characteristic that secures
the system performance in worst condition where some of the input data or
reasoning rules are missing, unreliable or inexact, and when data and knowledge

inherently involves uncertainty (Jung and Bums, 1993).

To verify how robust the system is, a sensitivity analysis was carried out. This
indicates how much a system performance can be affected due to the changes of
input parameters. Samson (1988) notes that sensitivity analysis is a useful tool
that should be integrated into every step of the decision process. Incompleteness
refers to a system that cannot respond to all situations that may arise within the
domain (Cragun and Steudel 1987).

Verification and validation are complementary process that examines the internal
consistency and external credibility of the system using real-world data. This
process contains checking the accuracy, consistency, usability and reliability of the
model in different condition. Accuracy reflects how precise the system output is in
real situation and if it is within the expected range. Consistency ensures the model
is continuously consistent over its domain interval. Usability implies the degree of
human involvement and user-friendliness of the system. Reliability covers
essential characteristics of a system and reflects to what extent the overall system
is robust, accurate, efficient and usable for the prospective application. To
demonstrate validity within the study, a set of experiments was designed using

benchmarking, cross-validation and Monte Carlo analysis in Chapter 8.

Step VIII: Conclusion Report

Once the model was successfully tested, verified and validated, the write-up
process was launched. The report comprises the evaluation of the initial concept
and the process of refinement, leading to an approved system as well as the

research results.
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4.5 Research Design

The research design is a procedural plan, strategy and structure that is adopted by
researchers in order to address the research questions effectively, accurately and
reliably. It contains the blueprint for fulfilling objectives and answering questions
(Cooper and Schindler 2006). A research design is "the plan that guides the
investigator in the process of collecting, analysing, and interpreting observations.
It is a logical model of proof that allows the researcher to draw inferences
concerning causal relations among the variables under investigation" (Nachmias
and Nachmias, 1992; Yin, 2009). Fellows and Liu (2003) suggest that a casual
relation between the main elements of research (data collection, research
questions and methods) should be established through a logical process in order to
fulfil the research objectives. In this regard, the current study aims to address four
areas: identifying the research problem, proposing action; finding a methodology,
acquiring data; and why this tool and methodology are selected. Constructing a
design may be complicated by the availability of a large variety of methods,
techniques, procedures as well as data required for applying to the research.
Hence, it is necessary to follow a logical plan for the research to connect the
different stages of the thesis and to meet the research objectives. This procedure is

established by integrating three basic components of research, as shown in Figure

4.4.
Step I: A

Problem

Step II:

Data

Research

Proposal Management

Step III:
Research
Methods

Figure 4.4 - Integrated research methodology
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The research methodology begins with ‘problem proposal’, identifying the problem
and then developing the research proposal. It is subsequently followed by ‘data
management’ which includes collecting and analysing the data from different
sources. Among various tools and techniques examined in the literature review, an
appropriate research method was selected with regards to the research problem,

data type and availability.

The nature of the research method employed should reflect these aims by
examining the following elements of research theory: research strategy, sampling
the population, data collection methods and data analysis techniques. These areas
are further discussed in the following sections in order to devise an appropriate

research methodology.

4.5.1 Research Proposal

The identification and analysing a research problem is the first and most crucial
step of research. This stage starts with reviewing the literature and selecting a
topic of research or the statement of the problem. The topic is the definition of the
problem that delimits the scope of research and pinpoints the possible strategy to
take. According to Singh (2006), a problem proposal involves several tasks, such as
determining the field of research, reviewing recent trends and studies in the area,
prioritizing the field of study, drawing an analogy and insight in identifying and
locating a problem, as well as pinpointing the aspect of the problem. The process is

adapted and modelled in multiple stages as shown in Figure 4.5 below.

The current research proposal starts with a literature review and examines the
context related to seismic risk management. The seismic risk management
approach is multidisciplinary by nature, involving multiple participants. This kind
of problem requires a ‘continuous compromise’ between interdisciplinary breadth
and depth of disciplinary knowledge demanded for understanding the problem
and establishing a solution which cannot be achieved without cooperation of
multiple expert (Avouris 1995). Furthermore, seismic risk management problems
require a balanced feedback between stakeholder, different contexts and domains.
According to Bender (1996), providing the balancing feedback and facilitating the

understanding of the various relationships among participants is essentially a
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knowledge base problem and thus must be handled through a knowledge-based

approach.
Review Risk Assessment Risk Management
\ 4
e Multidisciplinary process e Multiple sources and scope of data involved
Common e Multiple participants e Qualitative,quantitative,physical,socioeconomical
Feature e Conflict among variables e Poor knowledge sharing & transfer
e Multiple cause & effects e Unstructured and unorganized
[
v v
> | Knowledge deficiency > Lack of Systematic
-% vagueness, '5 process, structure,
) i —_—
System 5 | incompleteness, g- hierarchy & indefinite
8 . ..
Aspects 5 fmprecision S system interactions
| [
v 2 v
Knowledge/Expert Heuristic System-based
Strategy based view view view
v
| Knowledge-based P
Method | Expertsystem (KBES) |

Figure 4.5 - Process of developing the research problem

In addition, earthquakes cause various sorts of impacts on society, comprising not
only of primary physical damages and losses, but also social and economic impacts
which remains for a considerable amount of time. While there is no single cause of
earthquakes, an interaction of multiple causes directly and indirectly contribute to
earthquake disasters. Unlike man-made systems that can be described through a
finite number of states, predicting the consequence in a natural system is difficult

due to the dynamic nature of earthquakes.

The estimation of the parameters involved in earthquake hazards process usually
involves imprecise or vague data, incomplete information or lack of historical data,
thus requiring an appropriate mechanism to capture, share, and process the
information. Various uncertainties are present in identifying the hazard, modelling
and assessing the risk, mainly stemming from knowledge deficiency. This can be

even more problematic when the focus turns to regional risk management in
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which a large number of cases are involved. For such a situation, a heuristic
structural approach is required to systematically and efficiently manage the

information in different layers of systems.

However, systematic perspectives of seismic risk are either ignored or not
properly addressed in the literature as already discussed in the review. Therefore,
artificial intelligence (AI) is adopted as the overarching strategy to deal with such

knowledge-centred problem.

The complex problem of risk assessment and management can be handled through
a simple and manageable set of sub-systems. The underlying idea is to cope with
the complexity of a problem by applying some kind of decomposition that makes a
hierarchy of lower complexity systems (Magdanela 2002). More specifically, the
subjective and uncertain nature of problem requires an approach that capable of
handling multiple expert opinions. The problem can be framed in the form of
computer software decision support, knowledge bases which can take the shape of
expert system or some other type of Al technique. Knowledge based expert system
(KBES) is a potential approach which can deal with data insufficiency and
inaccuracy involved within seismic risk management. The KBES is an Al method
that perfectly matches this need. It is a problem-solving approach that works as a
learning machine developing the solution for new problems by searching previous
knowledge and experiences. As a result, KBES is an appropriate approach for
improving seismic risk modelling, assessment and management. A risk assessment
model based on KBES is then defined as an objective of the research which is

framed in the research proposal.

4.5.2 Data Management

Data management refers to the overall plan and procedure in order to collect,
analyse and process the data within piece of research. During data management it
should be decided what type of data is required, what sources are available and
what method should be used for data analysis. To manage data properly, such

questions should be addressed.

According to Walliman (2005), other considerations may also affect decisions

about data collection and analysis, which includes: the research strategy,
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characteristics of the problem, and specific sources of information. Furthermore
considerations include the research type (explorative, descriptive); strategy
(qualitative, quantitative, mixed); available data sources included the format,
scope and range of data and alternative sources; a survey of existing software and
data processing methods. Two phases of data management are further explained

in the following sections.

4.5.2.1 Data Collection

Data collection is essential in any piece of research, and provides its solid
foundation. Type and sources of data are critical in any collecting process.
Normally two kinds of data involved in the data collection process: primary and
secondary. Primary data are all of the material gathered by researchers, including
systematic observations, information from archives and results of case studies and
surveys (i.e. questionnaire, interview, etc.). Secondary data consists of everything
else derived from other research results, such as electronic records, books,

journals, and reports.

Broadly speaking, primary data may not sufficiently usable and reliable enough to
be applied directly in research. Jankowicz (1994) supports this viewpoint, stating
that primary data are ‘raw, specific, undigested and largely meaningless’;
‘Information’, in contrast, must be used when data have been processed in such a
way that uncertainty is lessened, queries resolved and questions answered. For
example, data may be ‘missing’, ‘partially complete’, or ‘repetitive or presented in
an incomprehensible survey’. Accordingly, it is the researcher’s responsibility to
verify the primary data and subsequently decide what data should be processed,
filtered or omitted from the data collection process. Therefore, everything
provided in a piece of research should be directed to the collection and
presentation of data, from which information can be easily extracted (Jankowicz

1994).

Several data collection methods were reported in the literature, each carrying
advantages and limitations as shown in Table 4.3. An overview of the data

collection methods is given in the following sections.
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Table 4.3 - Various research methods, including strength and weakness

(McNamara, 1999)

Method Overall Purpose Strength Weakness
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Questionnaire

A questionnaire is an objective means of survey that collects two types of
information, facts and opinion. The questionnaire can be approached via mail,
internet or simple gate survey. According to Denscombe (2007) there are three
types of questionnaire in terms of the questions asked, including closed-ended
questionnaires, open-ended ones, or a combination of both. Close-ended questions

are those that have structured answers via certain choices while open-ended
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questionnaires leave the respondent to decide the answer’s wording as well as the

subject to be raised in the answers.

A questionnaire benefits from other survey approaches as it provides a
‘standardized measurement’ which is consistent across all respondents, enabling
the researcher to have an unbiased response to meet research need (Fowler 2009).
There are several advantages of questionnaires; they are cheap; easy to arrange;
obtain a wide coverage; supply standardized answers; have pre-coded answers;
and the data is accurate. However, the disadvantages of questionnaires are: poor

response rate and incomplete or poorly completed answers.

Interview

Generally, interviews provide insight by probing deeply to uncover new clues,
exploring new dimensions of a problem and securing vivid, accurate, inclusive
accounts that are based on personal experience (Burgess, 1982). In this process,
information is “extracted” from the material by using the strands of similarities of
opinions, called themes or clusters. Hence, respondents may repeat similar words,

opinions or clusters of information which can subsequently be processed.

Interviews are appropriate when questions are open ended, allowing for more
probing for information on a particular subject to generate insights and concepts.
The face-to-face interview provides an opportunity to better explain the purpose
of study rather than a closed information sheet which is usually attached to a
questionnaire. However the interview process takes much longer than
questionnaires and thus the former is expensive if performed over a wider

geographical region.

The main issue in an interview stem from biases that could distort results.
Potential biased results are common pitfalls that might happen due to personal
attitudes, expectations, age and other inconsistencies in setting the attributes,
sequence of questions or even the places arranged (Bell 1994). Due to cost and
time constraints, interviews have not been considered as a survey priority in this
research. In addition, the form of close-ended surveys can be effectively

undertaken using simple methods such as questionnaires.
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Observation

Observation refers to a systematic field, noting and recording of events, behaviours
and concrete descriptions of what has been observed (Marshal and Rossman
1999). It is highly important as it explores the complex interactions between
multiple events in a natural setting. This process is often employed jointly with
other survey methods for examining, probing and exploring the causal relationship

of variables (Graham 2000).

Observation is generally performed in two ways. First, direct observation in which
a specific subject is recorded via common audio-video recording tools. Second,
participants (third-party) observation that is good for studying multiple regions,
language, ethnicity and geography. Observation were used within the study to
collect primary information of schools inventory. The vast majority of information
collected from school buildings was already surveyed by local experts, audited by
supervisors and then processed through the existing database. Use of available
surveys could save a significant amount of time and effort to collect numerous
school inventories across the country. This process has been routinely performed
by professionally trained experts using a standard inspection procedure since the
start of the mitigation program. This database was used as a source of information

in this thesis.

Document review (content analysis)

Document review or content analysis deals with the systematic examination of
current written (or verbal) records or documents as a source of data. A review of
research in any area naturally involves the analysis of the contents of research
articles that have been published (Kothary 2006). Content analysis was conducted
to analyse the contents of documentary materials such as books, magazines,
journals and newspapers. It has six steps: select a suitable sample of the images or
text; break the text down into smaller units; develop relevant categories for data
analysis; code the unit in line with the categories; count the frequency with which
these units occur; and analyse the text in terms of the frequency of the units and
their relationship with other units that occur in the text. According to Denscombe
(2007), document analysis benefits from using documents, and include access to

data, cost-effectiveness, and permanence of data, while a major issue in document
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analysis is the credibility of sources as the documents may not necessarily
trustworthy. Consequently, documents must be reviewed critically and
crosschecked with other sources for validation. This type of data collection is

common in most of research as well as the present study.

Case study

“A case study is an empirical inquiry that investigates a contemporary set of events
within its real life context, particularly when the boundaries between
phenomenona and context are not distinguishable”(Yin 2009). Case study explores
the situation qualitatively by answering “how” and “why” questions. Case studies
may be used for organizing a wide range of information about a case and then
analysing the contents by seeking patterns and themes in the data and by further
analysis through cross-comparison with other cases. A case can be individuals,
programs, or any unit, depending on what the program evaluators want to

examine through in-depth analysis and comparison.

Jankowicz (1994) pointed out that the case study approach can be used when the
researcher’s thesis focuses on a set of issues in a single organization, individual or
project and they want to identify the factors involved through an in-depth study of
the organization or a single department within it. According to Yin (2009) the case
study is the most comprehensive form of research that benefits from prior
development of theoretical propositions to guide data collection. However, it relies
on multiple sources of evidence for validating through a triangulating fashion,
which takes much longer. Nevertheless, case studies are appropriate for exploring
new situations (Eisehardt 1989) with low historical records in which many

variables and data points are involved, such as the current study.

4.5.2.2 Data Sampling

Basically, processing a large number of the population is not practical; rather a
sample of the population is selected and used instead of survey (Downing and
Clark 1996). In most descriptive surveys, the researcher takes out samples to
process as a basis for sample analysis. The sample design should be carefully
performed to be a reliable representation of the full population. An inappropriate

sampling frame could be a major source of problems since any systematic
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discrepancy between the research population and the sampling frame can be a
source of error (Gill and Johnson 2002). Thus the sample size should be large
enough to cover and represent various attributes across the population. Gill and
Johnson (2002) advocate that “the larger the sample the lesser the likelihood that
findings will be biased does hold, diminishing returns can quickly set in when
samples get over a specific size which need to be balanced against the researcher’s
resources”. Common sense suggests that degree of accuracy in a survey is directly
proportional to the sample size. However Denscombe (2010) argued that the
crucial factor in selecting the sample size is not the proportion of the population

included within the survey, but the absolute size of the sample.

Sampling strategies may vary according to: the population and the purpose of the
inquiry; importance and layers of data; and survey method chosen. There are two
main types of sampling: probability (or random) sampling and non-probability (or
purposive/judgmental). Probability sampling refers to the methods that
statistically pick the sample on a random basis, such as simple random sampling,
systematic sampling, and stratified random sampling. This type of sampling is
useful in large populations where anonymity is a critical factor. Theoretically, there
are several statistical tools and formulas for determining sample size. However,
there are situations that the sampling population may not be defined precisely, or
where a list of the sampling population is unavailable. In this case, non-probability
or purposive sampling can be approached according to specific characteristics,

criteria, behaviour or experience rather than overall population size.

4.6 Adopted Research Strategy

Broadly speaking, there is no single strategy that suites different research. At any
stage of the inquiry, the researcher has to make a decision about the kind of
investigation required and the certain types of problem that may arise. Some basic
characteristics of a research project such as the size (e.g. large scale), time (long or
short term) and cost restrictions can guide the choice of strategy (Densecomb

2007).

When choosing an appropriate strategy, certain elementary factors should be
considered in terms of suitability, feasibility and ethics. Firstly, the strategy should

be clear enough to answer the research questions. This was supported by Yin
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(2009) stating that understanding and drawing a portrait of research questions
(i.e. what, who, where, why questions) is the most critical task of selecting the
suitable strategy. Suitability is required to ensure that the research produces an
appropriate kind of data fit within the procedure. Secondly, the strategy must be
feasible and practical to meet the project’s cost, time and resource availability
(Densecomb 2010). Finally, the strategy should be of such a form as to allow the
researcher to work within an appropriate code of practice and to meet basic
concerns such as confidentiality, not being harmful to participants and there being

no conflict of interest.

This study identifies variables, seeks causal relations and builds up a theory. The
data collected in this process originally comes from a combination of quantitative
and qualitative process. For this, a mixed strategy was considered as a potential
approach for integrating qualitative and quantitative methods of data collection
and the analysis (Crooks 2011). Therefore the mixed method was adopted as an
overarching research strategy to gain a full, true and clear understanding in terms
of both processes within which model development takes place, and the wealth of
material used within the process. Mixed methods have multiple use which has the
advantage of both quantitative and qualitative approaches and presents greater
consistency between the results. It provides new information and understanding of
validity beyond those supplied when independently investigating the findings

stemming from either qualitative or quantitative methods.

Quantitative models were used to quantify the properties of data by the use of
statistical analysis. Several mathematical models have been employed in order to
verify the feasibility of the model in real practice. In this research, a large sample
project was taken to test and verify the model quantitatively. In contrast, the
qualitative approach focuses on both process and outcomes by explaining the
‘how’ and ‘why’ of events occurring (Creswell 2003). Empirical investigations
provide a real-world understanding of the phenomenon under study. Qualitative
approach was adopted to describe the relationships between variables (risk
drivers) and to measure their magnitude through a systematic human reasoning
process. Furthermore, the qualitative process enriches the theory by grounding it
with relevance and meaning, while the quantitative phase verifies and tests the

model on the basis of the developed theoretical framework.
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To accomplish the adopted strategy, several methods have been integrated and
applied to meet the research objectives. These methods are further outlined in the

following sections.

4.7 Adopted Research Method

There are a number of methods available to conduct the research, including
experiment, survey and case study. Yin (2009) suggests the requirements to
choose a research method include the type of research question, and the extent of
control over actual behavioural events. He emphasized on classifying the research

questions as a critical determinant of research method.

Essentially, ‘how’, 'what’ and 'why’ are common questions often defined at the
onset of research. ‘How’ and ‘why’ are more explanatory nature and thus
appropriate to the use of case studies and experiments as a preferred research
method. ‘What’ might reflect the two forms of the question; 'what’ as an
exploration implies the type of method that can be applied, or ‘what’ in term of

‘how many’ or ‘how much’ that favours a survey method.

Although the survey method is better answering the ‘how many’ type of question,
this research also requires in-depth analysis of the seismic risk impacts within the
interest group of school buildings. According to Yin (2009) the ability of the survey
as a sole strategy to investigate the context is limited. Depending on the survey as a

sole strategy can restrict the research on subjective sources.

Hence, the case study method was adopted as the overarching strategy to explore
the research and address the research questions jointly with questionnaire survey.
First, because case studies enable researchers to investigate ‘how’ and ‘why’
questions for developing specific situations. Second, they have the potential to deal
with subtleties and intricacies of complex phenomena (Denscome 2007). This
potential comes from a strategic decision that restricts the range of studies in

focusing on specific situations.

The nature of this research is to explore and discover new activities and events
and this can be only achieved through a case study approach (Creswell 2003).
Furthermore, this approach is appropriate for developing a new perspective of the

contemporary set of events, which have been little investigated and addressed in
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the literature (Yin 2009). In the present research, since the multidisciplinary
impacts of earthquake have been explored for the first time, the case study
approach could be the best choice to conduct the research. According to the case
study method, it should be exploratory and descriptive, not explanatory or casual.
This is mainly because this research aims to explore and describe a real life event
in the way of managing risk and uncertainty, in order to build and expand the
theory and not to test it. Figure 4.6 displays the general research process adopted

in this thesis, addressing both qualitative and quantitative aspects of the study.

Mixed Research Method
g Statistical analysis
©
" £ | Alprogramming |\ e, .
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Figure 4.6 - Adopted research method procedure

4.8 Statistical Analysis

Statistics is a scientific language to describe information and communicate the
research outcome in the quantifiable form of numerical information (Beins and
McCarthy 2012). Statistical analysis involves a set of mathematical techniques or
processes for gathering, describing, organizing and interpreting numerical data.
Since research often yields such quantitative data, statistics is a basic tool of
measurement of research. In this regard, various scales of measurement can be
used to describe the data. Some data may be relatively raw, requiring information
about categories in which observations fall. Other data are more mathematically
complex, allowing for more complicated algebraic manipulation. According to
Beins and McCarthy (2012), the selection of a descriptive statistics tool should be
made in accordance with the underlying mathematical properties of the
information that is being reported. In this case, various scales of measurement can
be applied, such as nominal, ordinal, interval and ratio. However, depending on

how data are described, categorized and formatted, the perceptual theory can be
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changed. In other words, the scale of measurement can influence the way in which
statistics are used. The more meaningful reporting statistics are, the more effective
research the outcome will be. Therefore, utmost care must be given to descriptive

statistics as it portrays the picture of outcomes derived from research.

4.8.1 Computer Programming

One of the objectives of this research is to examine the application of Al in order to
improve the process of seismic risk assessment. Computer-based analysis is a
quantitative means of research that allows the researcher to process, combine,
summarize and convert data into usable information. In this regard, several
programming software packages were examined for the use of research. The main

packages utilized in this research can be categorized as follows:

e Origin Pro®, SPSS®, Excel® were used for statistical data processing, analysis

and visualizing (scientific charting).

e MATLAB® as high performance programming language was used for the

automated reasoning process (inference engine) and simulating purpose.

4.9 Adopted Data Collection Method

The choice of the data collection method is primarily affected by the resources
available for the research. However, other constraints such as strategy and type of
data determine the selection process (Fellow & Liu 2003; Dawson 2007). A quick
look at the research indicates that seismic risk management contains a mixed of
qualitative and quantitative information, while the majority of this information can
be processed and presented in numerical format. Hence, the research aims to
develop a seismic risk evaluation system by the means of quantitative approach.
Furthermore, the proposed system is essentially set up to work with the sort of
information scaled, presented and stored in numerical format. Therefore, the data
collection method must be quantitative in nature to fit within the overall research

methodology.

In this regard, an extensive literature review of potential approaches was
performed before the survey in order to obtain the required background

information in the context of earthquakes. A large amount of disaster reports and
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case studies were examined with two aims. The first was to identify the risk factors
possibly involved in the earthquake loss process in term of physical and
socioeconomic effects, and to determine the range of impacts (reduce or increase)
on the urban area. The second aim was to establish the causal relationship within
risk factors and to classify them in different categories. In this regard, there is a
relatively comprehensive stock of studies conducted in various disciplines of the
earthquake context. For example, the World Bank, UNDP along with FEMA have
addressed standard reports and procedures about previous and recent

earthquakes which was implemented within the research.

In this light, the questionnaire format is preferred as it provides an unbiased
standard measure and is consistent for all respondents. A questionnaire survey
was conducted in summer 2013 from the experts involved in seismic risk
management. The questionnaire form is available in Appendix A. In total, 80
experts was asked to participate from which 51 completed survey questionnaires

were obtained (3 incomplete).

According to the proposed structure of seismic risk, a survey questionnaire was
designed and formulated in six sections. In order to extract the knowledge from
experts, a five-grades scale was used for each attribute within the questionnaire.
The purpose of this questionnaire is to frame the importance of the risk factors

using expert opinions as an input source for rule-base design.

4.9.1 Survey Data Processing

Elicitation of expert knowledge is critical for the judgment process, since it is
associated with varying degree of belief or levels of confidence. Generally, basic
statistical approaches such as mean and geometric mean have been the primary
tools for aggregating expert opinions. However, theses methods have limited

ability to handle the uncertainties involved within experts’ aggregation process.

Bardossy et al. (1993) suggested that expert opinions should be represented
through fuzzy numbers. The fuzzy aggregation method has been widely
implemented in multicriteria problems that require consistency and consensus
among experts. Several methods were used to aggregate various opinions based on

the similarity aggregation method (Lee 1999; Hsu and Chen 1996; Deng et al.
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2011); while the notion of them all based on similarity between expert opinions
which can be represented by fuzzy sets. The individual opinion with the most
similarity with the others is considered as a more credible judgment and thus

receives higher impact factors than other inconsistent opinions in a group.

Sharing this idea, both confidence levels and similarities were taken into account
for processing the survey data. The confidence levels of expert can be evaluated
through skills and experience levels. More experienced experts mean more skills
and receive a higher expert index. Respondents were classified in three groups
based on their experience, including 14 people 5 - 10 years of experience, 26
people with 10 - 15 years of experience, and 8 individuals with over 15 years of
experience. Accordingly, a confidence index was assigned to each group of experts

as shown within Table 4.4.

Table 4.4 - Summary of expert confidence index based on experience

Expert Group Expert No. Percentile Experience Expert Index
EG-1 14 29 5<E <10 0.166
EG-2 26 54 10<E< 15 0.333
EG-3 8 17 15<E 0.5

Expert opinions about the seismic risk factors and the summary of the opinions

aggregation process is available in Appendix B.

4.10 Adopted Research Sampling

Different sampling techniques have been discussed earlier in this chapter. A
combination of random and purposive sampling was framed because the different
form of data as well as mixed strategy (qualitative and quantitative) involved in
this research. Statistical analysis requires a broad range of attributes to establish a
ratio scale. The ratio scale provides the widest range of flexibility in terms of
reporting descriptive statistics (Beins & McCarthy 2012). In this regard various
attributes were selected according to criticality, intensity, geography, typology and
extreme cases to develop a comprehensive representation of whole populations.
Alternatively, random sampling was used to cover the domain intervals and fulfil

the normality requirements of the system.
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Purposive sampling is a prime choice for qualitative research, entailing a small
number of samples to characterize attributes within the context. According to
Graham (2000) and Denscomb (2007), choice of events or people for inclusion in
the sample tends to be on the basis of small-sized purposive sampling. Thus
purposive sampling was applied through a questionnaire survey. Throughout the
sampling, a group of experts was chosen according to their skills, experience and

knowledge around research problem.

4.11 Summary

This chapter has presented the research methodology adopted for this study. It
first discussed the methodological concept of research, including the knowledge
inquiry and the strategy followed by potential methods for collecting data. Seismic
risk management requires consequence-based research, so inductive knowledge
inquiry can better describe the overall effect of the potential impacts. The mixed
method research strategy was adopted because the problem is combination of
quantitative and qualitative information, and therefore required an appropriate
method to consistently follow a logical process to develop the theory. The case
study approach was chosen as an overarching strategy to explore the likely
impacts of earthquakes and to heuristically conceptualize the causal relationship
within risk drivers. The data collected from the questionnaire survey as well as
observations, statistics, documents and reports from previous experiences in

literature collectively build the basis for the research development.
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Chapter 5: Fuzzy Modelling

5.1 Introduction

This chapter provides the necessary background, definitions and terminology of
fuzzy sets, fuzzy logic and fuzzy expert systems in order to model seismic risk
impacts. Fuzzy modelling techniques, such as fuzzy set theory, fuzzy logic and fuzzy
expert systems are formal mathematical grounds to deal with vague and imprecise
information. The fuzzy set theory is based on many valued logic that enables the

handling of vague concepts.

Fuzzy logic works as a mathematical vehicle for the inference and reasoning of
ambiguous statements by processing first-order linguistic uncertainties. The fuzzy
expert system is an extension of fuzzy set theory, which uses experts to map sets of
inputs to a set of outputs. The fuzzy expert system is a common use of fuzzy logic in
a larger complex system. This chapter investigates its application in the complex

domain of seismic risk management.

5.2 Complex System Modelling

Decision-making in real world problems is a complex human activity (Xiang et al
1992). Models are mathematical abstractions of the real world, and thereby a
simulation of a problem should portray as accurate as depiction of the true
situation as possible. An effective simulation requires understanding the purpose
and restrictions of the prospective system. This is necessary in order to fit the

appropriate tool to the problem (Shannon 1975).

Complexity and uncertainty are two important dimensions in modelling processes,
as shown in Figure 5.1. A complex system is composed of multiple subsystems that
are integrated through functional hierarchy. The integration of models, methods,

and stakeholders’ concerns decides the complexity of the system. However,
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modelling a complex system requires the simplification of assumptions that could

potentially import uncertainty into the simulation.

According to Shannon (1975) simulation is an “imprecise” process requiring a high
calibre of perception that may not be available. Fuzzy modelling is an effective way
to handle complex systems by mimicking mind reasoning. In this process, human
reason approximates its behaviour, thereby maintaining only a generic
understanding of the problem, as suggested in Zadeh’s principle (1965) of
incompatibility; complexity and ambiguity are correlated (Klir and Yuan 1995;

Ross 2004).

. A
Uncertainty

Information
(organized data)

Wisdom
(algorithms)

B

Complexity

Figure 5.1 - Uncertainty and complexity dimensions in system modelling
(Ross 2004)

In developing a fuzzy system, the methodology should correspond with the way
uncertainty and complexity are exhibited in the problem. Klir and Yuan (1995)
suggest the three characteristics of uncertainty, credibility and complexity with the
aim of maximising the fuzzy model’s usefulness. While uncertainty plays a crucial
role in maximising a system’s effectiveness, the interaction with the other two

factors is also significant in constructing a fuzzy system.

Allowing more uncertainty in modelling may reduce complexity and increase the
credibility of outcomes (Ross 2004). In situations with little complexity or
uncertainty (where systems can be described algorithmically with a precise
database), fuzzy systems are less efficient than conventional statistical approaches.
However, the fuzzy systems provide a shallow understanding of a problem in the

systems with a little more complexity and uncertainty; ones exhibiting imprecision
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and ambiguity in their process, such as nonlinear systems. For very complex
systems, few imprecise numerical data are available. Fuzzy reasoning provides the
most appropriate way to describe system behaviour by defining the approximate
relations between observed input and output situations which are mainly based on
deduction. Finally, for the most complex systems that require forms of learning due
to induction, or combinations of induction and deduction, more complex

approaches such as Bayesian theory and game theory may be applied (Ross 2004).

5.3 Fuzzy Set Theory

Fuzzy set theory was proposed by Zadeh (1965) and provides a concept to
accommodate uncertainty and vagueness (fuzziness) as a means to model through
natural language. The term “fuzzy” refers to the situation where no defined
boundaries of a set exist (Chen and Hwang 1992). Fuzzy sets has the capability to
express gradual transitions from membership to non-membership, as opposed to
classical sets where each element can only take either 1 (completely inside) or 0

(completely outside) as indicated in Figure 5.2.

r 3 A =
Classical set A Fuzzy set A
pp=14--- a(m)=1

ua=0

na=10 >
Crisp Fuzzy
boundary boundary

Figure 5.2 - Classical set vs. fuzzy set

Most concepts in the real world are somewhat vague and imprecise. According to
Zimmerman (1991), two major issues may arise in factual modelling. First, real
situations are not crisp and deterministic enough to be described precisely.
Second, a thorough description of a real system is either too complex or far more
detailed data than a human could ever recognize, understand and process

simultaneously. A fuzzy set not only “provides a meaningful and powerful
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representation of measurement uncertainties, but also a meaningful
representation of vague concepts expressed in natural language” (Klir and Yuan
1995). Many concepts in daily life are of this kind, such as 'class of experienced
engineers', 'class of tall men’, 'class of high-speed racing cars’, and 'cold/warm/hot
water’. Similarly, hot, warm and cold are vague concepts that cannot be described

precisely since there is no clear boundary between each state.

More complex concepts can be found in civil engineering and disaster
management. For example, the state of damage within buildings has been
commonly described by two discrete values: survival or failure. Looking closer at
the problem, however, more states can be distinguished. It can be also noticed that
state of damage is a continuous parameter, as opposed to being discrete. This kind
of problem lacks crispness (or inherent fuzziness), causing uncertainties in
determining the clear levels of damage that hampers identifying the acceptable
level of damage (Savage 1988; Adeli 1988). The uncertainty or vagueness in
describing the states of damage can be effectively captured through fuzzy numbers.
The more overlap between adjacent grades (e.g. slight, moderate), the more

uncertainties in distinguishing each grade.

Table 5.1 - Linguistic descriptions of damage levels (After Savage 1988)

Damage Sate Fuzzy Set Classical
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Mathematically, classical set theory (or crisp set) is based on two-valued logic. If A
is a subset of the universe of discourse U (A — U) that consists of elements x (x € U)

then each element x is either a member of A (x € A) or not (x ¢ A).

In contrast, the fuzzy set theory is based on multi-valued logic that allows mapping
of any values from the universe of discourse to a universal range of 0 to 1
according to which grade of membership they belong to. Let A be a subset of
universe (A < U) and membership function pa defines the partial membership
function in a set. Unlike classical set that pu takes two values, in fuzzy set theory the
degree of membership of an element can be any value within the interval [0, 1]. For
instance, if p = 1 then the item is definitely a member of the set. Conversely, for

u=0, the element is definitely not a member of the set.

For other membership values between 0 to 1 the values indicate partial
membership (or belief) that the element is a member of the set. For example, let
set A as the universe of various concrete (sample) strengths (MPa):
A= [18, 20, 22, 24, 26, 28, 30, 32]

In this case the x; represents the values of concrete strength. Fuzzy set A can be
represented in terms of its membership functions (Zadeh 1965); Dubios and

Parade 1985) :

A [l g il L s g i) D) ()

i=1
Tn Ty

Where '__' is a delimiter that indicates the association of the membership value

1a(¥) and the symbols '+','S", '[' denote the union of all elements of the fuzzy
subset in the form of discrete and continuous respectively. Accordingly, a
moderate concrete strength concrete may be expressed by the means of fuzzy

terms as (Figure 5.3):

' ) 0.0 0.0 0.2 0.2 1.0 0.5 0.0 0.0
Moderate Concrete’ = [— - T T T —]
1B+2I} +22 + 24+26+ 28+3I} +32
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Classical >

Fuzzy
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18 20 22 24 26 28 30 32
Strength (MPa)

Figure 5.3 - Classical and fuzzy representation of a ‘moderate strength’ state

Fuzzy sets make it easier to develop solutions to problems in practice. The concept
of a linguistic variable transforms linguistic terms into numeric quantities which
can be used for mathematical operations within a fuzzy system. This feature allows
a practitioner to model vague concepts by means of linguistic variables. Using
fuzzy sets not only facilitates capturing vague concepts, but it also allows a gradual
transition between states of linguistic variables, whereas in the classical set this
transition occurs abruptly and discretely. This gradual transition is a result of
using linear (first-order) or non-linear membership functions. Thus, fuzzy sets can

effectively represent events in both continuous and discrete forms.

5.4 Fuzzy Aggregating Operators

The aggregation process in fuzzy sets is performed by a set of connectives or
operators. Various aggregation operators have been reported in the literature,
covering a broad range of applications, from general to specific situations. Some of
the most common operators are listed following (Chen and Hwang 1995;

Zimmermann 1992).

5.4.1 Intersection (t-conorms)

The intersection of two fuzzy sets A (Ma) and B ([a) can be computed through
different mathematical operations such as minimum and bounded difference, as
well as algebraic product. Each operator measures the different degree of ‘AND’ in
the decision space. Common operators belonging to the class of t-conorms (Upper
bound is min) are categorised under intersection operators as indicated in the

following.
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Minimum:  psi = min (Ua, He) = Ha~s = HaM Us (5.2)

Ms2 = min (Ua, Ma) ifmax (Ua ,Ha) =1 , else psz =0 (5.3)

Bounded difference:  ps; = max (0, pa+ Mg - Ha . UB) (5.4)
— a-Up

Hss = 2—(pg+pg—pa-ng) (5'5)

Algebraic Product: Ms4= HUa . B (5.6)

Hss = _ HAME (5.7)

(patup—mgup)
The above operators measure different degrees of ‘AND’ in the decision space. In

this case, parametrized ‘Min’ operators such as Yager's and Dubios-Parad's can be

used instead, as reported in Zimmermann (1992).

5.4.2 Union (t-norm)

The compensatory max operator such as the bounded sum and algebraic sum are
three basic forms of union operator that allow some degree of compensation when
using in the decision space. Common operators belonging to the class of t-norms

(lower bound is max) are categorised under union operators as indicated

following.
Maximum: Hvi = max (Ma,Hs) = Haue=HaU Us (5.8)
Hv2 = max (Ka , Ma) if min (Ua,pa) =1 ,else p2=0 (5.9)
Bounded sum: Myvz = min(0 , ha + Ug) (5.10)
Hva = #:‘zﬂ (5.11)
Algebraic sum: Mvs= Ha + Mg - Ha . MB (5.12)
S 613

Likewise, the above operators measure different degrees of ‘OR’, and for special
cases, parameterized max operators such Yager's and Dubios-Parad's may be fit

better. More detail is available in Zimmermann (1992).

5.4.3 Averaging Operators

Intersection and union operators measure lower and upper bounds through
‘logical AND’ and ‘logical OR’ in the decision space. However, when some course of
action requires a compromised solution between two bounds those operators are

not applicable. These operators are known as ‘averaging’ or ‘compensatory’, and
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return the results between two bounds (greater than min and less that max). Some

of the averaging operators are listed below:

_ Hatup— waug
e = S hatun—2. narp (5.14)
_ Ha-HE
e = eatup+2. wans (5.15)
Hc3 = minlegks) (5.16)
1-{pa—pg)
— max(ps.ug) 517
Hea 1+i{pa—pg) (®-17)
Hes = EaZEE (5.18)

2

The family of averaging operators provides a more flexible way to combine fuzzy

sets within extreme limits, within which ‘Min’ and ‘Max’ as shown in Figure 5.4.

Operator AND OR
Type t-norms Averaging operators t-conorms
| |
| ] |
0 Prod < Min < Mean < Max < Sum 1

Less restrictive operators

Figure 5.4 - Common aggregation operators (Larsen 2002; Zimmerman 1992)

The advantage of averaging operators is in its flexibility to encompass a range of
operators bounded between ‘Min’ and ‘Max’. Ordered weighted averaging (OWA)
operators are well-known examples for averaging operators that have

compensatory behaviour.

5.4.4 Selection of Aggregation Operator

The aggregation operation determines the way to approach fuzzy modelling. Since
the use of operator is context sensitive, the aggregation operation reflects an
attitude toward objectives. Thus, a meaningful assessment of operators requires
careful adoption of an aggregation operation (Dubios and Parade 1985; Munda

1995).

Aggregation operations in fuzzy decision-making are broad, including a number of
aggregation operators and connectives for the following situations: general and
specific, compensatory and non-compensatory, single-level and hierarchical (Chen
and Hwang 1992), and cover a wide range from totally pessimistic through totally

optimistic scales. The variety of aggregation operators stems from differences in
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problem aims, strategies, hypotheses, opinions and relevance (Kuncheva and

Krishnapuram 1996).

Selection of the aggregating operation is context-dependant. A straightforward
approach for aggregating fuzzy sets is by applying the aggregating procedures
frequently used in multicriteria decision theory and utility theory. According to
Zimmerman (1992), the operators must primarily have the sufficient axiomatic
strength to mathematically satisfy axioms and empirically represent system
behaviour. In addition, compensation and rigidity are important features that
account for the contribution of all criteria into the model. Since a MCDM problem
seeks for general consensus among experts, the aggregation operators must be

compensatory to reflect a variety of attitudes in the overall result.

The use of compensatory operators could lead to a compromised satisfactory
solution. For example, 'Min' and 'Max' are non-compensatory operators biased
towards extreme limits (lowest, highest), and despite having numerical efficiency;
they cannot be adapted for many situations. However, the combination of Min and
Max allows for better compensation within the interval [0,1]. Rigidity also restricts
the range of aggregation by reducing the strength of results in higher levels,
irrespective of the magnitude of input sets (Sadiq et al 2010). For example, the
‘Prod’ (Product operator) cannot be applied to a multilevel problem since each

aggregation step reduces the strength of results and distorts the overall decision.

Nevertheless, there are a few number of operators that are able to model many
situations. Aggregation operators are context-specific; appropriate operators
should be adapted to efficiently fit particular context. In this case, some
parameterised Yager’s operators can be useful, though it requires more

computational and effort compared to min/max operators.

Taking the above into the consideration, this study employs a combination of
compensatory 'Min' (logical AND) and 'Max' (Logical OR) that allows a trade-off
between two states. The aggregation procedure is known as 'generalization' and
uses the 'Implication’ operator, which is based upon 'the extension principle’. This
procedure offers more freedom in practice and covers more real-world

applications.
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5.5 Fuzzy Expert System

The fuzzy expert system is a heuristic approach with concepts and operations

associated with the fuzzy set theory and fuzzy logic that mimic human reasoning

(Shaheen et al. 2009; Ross 2004). Because knowledge plays a key role in various

components of expert systems, including acquisition, representation, processing

and verification, the expert system is also known as the knowledge-based expert

system (KBES).

There are specific characteristics that distinguish the expert system from

conventional approaches as indicated in Table 5.2. High quality performance is a

significant feature of expert systems due to using narrow domain-specific

knowledge. The speed of decision-making is an important factor particularly in

critical situations such as emergency response and management (Negnevitsky

2005).

Table 5.2 - Comparison of expert system with conventional systems and human
experts (Negnevitsky 2005)

Human experts

Expert systems

Conventional programs

e Use knowledge in the
form of rules of thumb
or heuristics to solve
problems in a narrow
domain.

eIn a human brain,
knowledge exists in a
compiled form.

e Capable of explaining a
line of reasoning and
providing the details.

e Use inexact reasoning
and can deal with
incomplete, uncertain
and fuzzy information.

e Can make mistakes
when information is
incomplete or fuzzy.

e Enhance the quality of
problem solving via
years of learning and
practical training. This

process is slow,
inefficient and
expensive.

e Process knowledge
expressed in the form of
rules and use symbolic

reasoning to solve problems
in a narrow domain.

e Provide a clear separation
of knowledge from its
processing.

e Trace the rules fired during
a problem-solving session
and explain how a
particular conclusion was
reached and why specific
data was needed.

e Permit inexact reasoning
and can deal with
incomplete, uncertain and
fuzzy data.

e Can make mistakes when
data is incomplete or fuzzy

e Enhance the quality of
problem solving by adding
new rules or adjusting old

e Ones in the knowledge base.
When new knowledge is
acquired, changes are easy
to accomplish.

e Process data and use
algorithms, a series of
well-defined operations,
to solve general
numerical problems.

e Do not separate
knowledge from the
control  structure to
process this knowledge

e Do not explain how a
particular  result was
obtained and why input
data was needed.

e Work only on problems
where data is complete
and exact.

e Provide no solution at all,
or a wrong one, when
data is incomplete or
fuzzy.

e Enhance the quality of
problem solving by
changing the program
code, which affects both
the knowledge and its
processing, making
changes difficult.
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The transparency feature enhances the explanatory line of reasoning that allows
experts to scan and review its reasoning and explain the corresponding decision.
This ability enables users to effectively trace the rules fired during the inference
process. Another important feature is that the knowledge base is separated from
its inference-processing unit. Mixing this knowledge could cause difficulties in
reviewing and tracking the process if any change happens for either of them. This
flexibility in expert system allows new knowledge to be incrementally added into
the existing knowledge base (Buchanan and Duda 1982). The heuristic feature of
expert systems with regards to transparency and flexibility explains and track the
aggregation process, collectively making it the best choice for processing the

complex problem of seismic risk management.

5.5.1 Knowledge Acquisition

The most significant task of developing a fuzzy expert system is in knowledge-
base. Knowledge representation is critical in analysing and reviewing the problem
and to find best possible solutions. Since the knowledge base may be obtained
from a variety of domains, inconsistencies may arise among different sources, gaps
in domain knowledge, none-monolithic and fragmented knowledge. Usually,
various types of knowledge are involved in developing an expert system. They are:
Facts - Factual knowledge is the most primitive of all kinds of knowledge. It can
commonly be found within standards, handbooks, compilations, as with any other

engineering based properties established upon factual or experimental knowledge.

Heuristic (judgment) - The mind tends to use previous experience to understand,
judge new situations, or find shortcuts for them. This process is often known as
“rule of thumb” or “heuristic knowledge”. Expert systems simulate the same
procedure to guide reasoning as well as to reduce the search area for a solution
(Negnevitsky 2005). Thus the quality of heuristic knowledge depends on the
experience, insight, understanding, relevance and homogeneity of participants.
The engineering knowledge typically used in risk management (e.g. quality

inspections) is of this kind, exhibiting a wide range of variability.

Algorithmic (procedural) - Based on calculus and algebra, algorithmic or
procedural knowledge uses numeric and non-numeric procedures for solving

problems. Algorithms transform factual knowledge from one state to another. For
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example, the fundamental period is a key factor in obtaining the seismic design
force and potential response of a building which is subjected to an earthquake. The
algorithm commonly used in codes of practice (FEMA 273; BHRC 2006) to

calculate the fundamental period (T) of a building is:
T = Ce. H3/4 (5.19)

Where ‘H’ refers the height of the building and C: is a coefficient that varies
according to the type of structure (e.g. 0.08 steel, 0.07 RC, 0.05 masonry; BHRC

2006). In this research, this procedure is used for developing the site response.

Control - Otherwise known as meta-knowledge, control manages the processing of
previous types of knowledge in the KBES and is most commonly utilized in
complex multi-layer systems. Directing the appropriate source for domain-specific
problems and coordinating the priority and form of the knowledge gives KBES as a

means of explanation and reasoning.

Traditionally, expert opinion has been the underlying source to construct the rule-
base. However, procedure and control knowledge can be also used in certain
domains of engineering such as structural optimization (Adeli 1988). Nevertheless,
the use and choice of knowledge depends on many considerations, such as extent
of knowledge (narrow, closed), availability of experts, problem complexity, as well
as whether or not the knowledge can be specified through a conventional

algorithm (Ortolano and Perman 1987).

5.5.2 Fuzzy Expert System Structure

The fuzzy modelling approach can be formulated in three separate steps (Zadeh
1973) as shown in Figure 5.5. They are: defining the fuzzy variables along
numerical variables (fuzzification); characterizing the relations between variables
within the inference engine using IF-THEN rules; and translating the fuzzy results

back into the crisp output (defuzzification).
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Facts Input (Crisp)
Statistical Data j
Site survey
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Fuzzification e Expert Survey |!
Input i i
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Function Inference Engine |4 Rule Base i
v i Knowledge
Output (Crisp) < Defuzzification i Base g

Figure 5.5 - Typical fuzzy expert system structure

The following sections briefly review the fundamentals of fuzzy logic and

approximate reasoning.

5.6 Fuzzy Logic

According to Zadeh (1975), the term 'fuzzy logic' is an imprecise logical system in
which truth-values are fuzzy subsets within unit intervals. Unlike the classical set
which assumes that every statement is true or false, fuzzy logic propositions can be
partially true or false. The knowledge base in the fuzzy expert system is developed
from factual information, algorithms, rules or heuristics collected from experts.
Because much human knowledge is vague and imprecise in nature, it is important
to find a way to describe facts, rules and heuristics with some degree of certainty
(Chang et al 1988). Fuzzy logic can be used as a mean to deal with vagueness and
imprecision associated with the development of the knowledge-based expert

system (KBES).

In fuzzy logic, the compositional rule is the most common way to represent human
knowledge as a natural language (Ross 2004). Fuzzy logic formulates as a
compositional rule of inference which is also referred to as fuzzy modes pones. The
simplest form of modus pones is 'IF a THEN b’, whereby ‘b’ is only true when ‘a’ is
true. Fuzzy modes pones can be presented in the following syllogism (Zadeh 1965;
Chang et al 1988):

Rule: IF XisA THEN YisB

Fact: Xis A*

Reasoning conclusion: Y is B*
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Where X, Y are linguistic variables and A, B, A* is known, but B* is deducted from
composition rule of inference. The truth-value of the statement depends on the
value of fuzzy set A which is presented in linguistic terms such as ‘False’, ‘Partially
False’, ‘Partially True’ or ‘True’. This truth-value of a fuzzy set A (x) is defined by
the interval [0, 1] to represent uncertainty or degree of belief in predicting A. If a
rule's antecedent is determined as true, and the rule is activated, the rule is fired.

Thus, every rule to some degree takes part in the reasoning process.

In real world problems, most fuzzy systems contain more than one rule. Complex
fuzzy rule-bases can be made up from several simple propositions. The process of
aggregating rules is performed using aggregation operators or connectives,
including the conjunctive ‘AND’ and disconjunctive ‘OR’ which corresponds
respectively with min and max operators. In the context of risk assessment, for
instance, expert and heuristic knowledge can be adjoined making rule-base such

as:

IF soil-quality is LOW AND quality is LOW THEN vulnerability is HIGH

[F soil-quality is LOW AND quality is MEDIUM THEN vulnerability is MEDIUM
IF ground shaking is HIGH AND quality is MEDIUM THEN vulnerability is HIGH
[F ground shaking is V-HIGH AND quality is MEDIUM THEN vulnerability is V-HIGH

5.6.1 Fuzzification

The term “fuzzification” has two meanings: to find the fuzzy version of a crisp
input, and to find grades of membership of linguistic values of a variable
corresponding to a scalar or fuzzy input (Selir and Buckley 2005). This study
focuses on the first sense that implies on generating membership functions (MFs).
Various forms of MFs which represent linguistic concepts can be used in fuzzy set
theory. Triangular, trapezoidal and Gaussian are the most common forms of linear

/non-linear membership functions shown in Figure 5.6.

l_ Trapezoid

Triangular

Gaussian

B
>

Figure 5.6 - Various membership functions
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The literature presents several methods to generate MFs on the basis of numerical
data. Amongst those are fuzzy clustering (Klir and Yuan 1995), parametric
optimization (Pedrycz and Gomide 1998), statistical distribution (Civanlar and
Trussell 1986), vertical and horizontal methods (Pedrycz and Gomide 1998), and
interpolation and measurement theory (Chen and Otto 1995). The choice of MFs is

context-specific and depends on the characteristics of the data.

Karkowski and Mital (1986) recommend the number of MFs should be limited
between five and nine. Clearly, such low numbers of MFs may not adequately
present the knowledge required for modelling. As such, too many MFs may pose
extra complexity in understanding and processing the model in practice. The
number and type of MFs are a context-dependant issue. To enhance modelling
capability, MFs must adequately justify the physical meaning of the original data
set. This can be achieved by transferring the milestone points into a scale that has
significant impacts on the output variable. For example, to transfer pre-code and
post-code school buildings within the range of 1965-2002, the milestone points are
the dates that code was issued and enforced by the government in 1988 and 1993

as indicated within Figure 5.7.

PreCode PostCode

[
1970 1975 1980 1985 1990 995 2000

Figure 5.7 - Membership function for 'Code indicator' variable

The most powerful feature of MFs is allowing the conversion of crisp information
into linguistic terms. This can be achieved by assigning the linguistic terms of the
grades of membership functions. To quantify various linguistic terms for
describing the risk attributes, basic input parameters need to be grouped (or
clustered) into the linguistic quantifiers such as very low (VL), low (L), medium
(M), high (H) and extremely high (EH) and by assigning corresponding

membership functions (MFs) to the clustered data.
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The same linguistic scale can have different implicit meanings in varying contexts
(Fayek and Sun 2001). To deal with this issue, membership functions can be
developed using different scales of measurement, such as ordinal, ratio and
interval scales. Depending on the context, characteristics and relationships within
the universe of discourse, the measurement scale can be arranged for risk

attributes.

According to Lootsma (1997), humans can only process seven categories at most.
Hence, it is often recommended that the number of linguistic terms should be in
the range of five to seven (Karwowski and Mital 1986). While too few terms may
not be adequate to represent the whole domain of the variable, too many terms
could also cause difficulties in following steps (i.e. rule-base design). Therefore,
five grades of membership were adopted in this study to express different risk
attributes, unless the universe of discourse can be defined with fewer variables.
For example, MFs for liquefaction susceptibility index was defined in three grades

of Low, Medium and High as shown in Figure 5.8.

L M H

=) -
1 1 1 1 T 1 I 1 1

Figure 5.8 - Membership function for 'Liquefaction susceptibility' variable

Another concern in a fuzzy representation of risk data is the shape of MFs. There
are several forms of MFs reported in literature (Ross 2004; Karwowski and Mital
1986). However, it is believed that the shape of MFs is not a controlling factor in
engineering applications (Klir and Yuan 1995). According to the pilot study
conducted by Vahdat and Smith (2014b), it was demonstrated that the form of MFs
could not significantly influence the inference process and distort the results as
much as the number and location of the functions. No matter what type of risk
data, three of the most popular shapes (Triangular, Trapezoidal and Gaussian)

functions were used for developing the MFs in the case study. Triangular and
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Trapezoidal functions have been broadly used in risk assessment (Min An et al.
2006, 2007; Zeng et al. 2007) due to computational simplicity and descriptive
power. Gaussian functions were also used due to flexibility in presenting the real

world variation.

5.6.2 Fuzzy Inference

Inference is the process of deducting from existing data. The inference process is
performed through aggregating several consequents to draw the overall
conclusion. Klir and Yuan (1995) introduced various fuzzy inference methods
based on linguistic rules, including the Mamdani and Sugeno systems. The former
is the most common method of inference that is addressed in the literature

(Mamdani and Assilian 1975; Takagi and Sugeno 1985).

A fuzzy system of multiple inputs and single output can be extended and modelled
through an inference system. The Mamdani fuzzy system can be shown in the form

of IF-THEN propositions:
IF x, is Ay and x,is A, THEN y, is B, fori=12,..,n (5.20)

The Mamdani inference method of implication can be used for a set of disjunctive

rules to aggregate output of ‘n’ rules, such as:

us(y) = Max [Min [pai(x),. . . pan(X), ]] (5.21)

Equation 5.21, also called the implication operator, can be interpreted through a
graphical example. A fuzzy inference process for the damage assessment of a
concrete beam is illustrated in Figure 5.9 using two rules, where the symbols Aj;,
Ai> and Az, Ay, refer to the first and second rule antecedent respectively.
Similarly, symbols B1 and B2 represent the fuzzy consequents of the first and
second rule. The minimum function in Eq. 5.21 fires the lowest value
corresponding to Aji, Ajy as it is connected by a logical ‘AND’ operator. The
minimum inference truncates the membership function for the consequence of
each rule. The truncated membership function for each rule is aggregated using
‘OR’ operator as denoted within ‘Max’ function in Eq. 5.21. Thus the result is an
envelope of the truncated membership forms from each rule. If one wishes to find
the equivalent crisp value for aggregated fuzzy number, defuzzification can be

performed.
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Figure 5.9 - Graphical illustration of fuzzy inference system

5.6.3 Defuzzifiation

Defuzzification is a numerical assessment of a fuzzy set. The fuzzy output extracted

from the inference engine can be presented in the form of scalar or crisp number.

Different methods have been reported in the literature that most of these have a

common principle in terms of concept (Klir and Yuan 1995; Siler and Buckley

2005; Filev and Yager 1991). The most frequently used techniques are:

Centre of Area (COA) or centroid. This technique calculates the centre of the
area under a combined fuzzy set using the first - order moment of the area
b
J xu(x)
J2 n(x)

Mean-of-Maxima (MOM). This technique computes the arithmetic mean of all

COA = (5.22)

values with maximum membership.

Centre-of-Maxima (COM). This technique finds the arithmetic mean between
the highest and lowest values for which there is support.
_Xpfly T Xy LT,

C mtmteeta,

coM (523
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Y
COA MOM cCoM

Figure 5.10 - Common defuzzification method

Applying COA algorithm in the previous graphical example (Figure 5.10) to find the
centroid of the aggregated blue area, as shown in the conclusion graph by a red

line (y* =0.762).

5.7 Rule construction

Rule construction or knowledge based development is a process where knowledge
and data are translated or codified into rules. Since the expert system processes
the reasoning based on its rules, the choice of ways to develop the rule-base is of
utmost importance. There are different situations where the combination of
experts and data are used to construct the rule-base (Bardossy and Duckstein

1995):

e The rule can be defined directly by the experts (known algorithm/structure)

e The rules can be evaluated by the experts, but updated using available data.

e The rules are not known explicitly, but the variables required to describe the
system can be identified by the experts

e Only objective data (observation) are available, and rule-base should define

the interrelations between I/0 of the data set through the procedure

Theses situations define the way to simulate the data and expert knowledge into

the explicit rule-base as indicated in Table 5.3.
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Table 5.3 - Knowledge representation in fuzzy modelling

Model Case 1: Explicit Case 2: Partially explicit Case 3: Unknown
structure/Algorithmic | knowledge/empirical data | structure or knowledge
5 ~ C
o 3 . .
£ 3 .
2w .
s & . .
o
|. [] []
g ‘ ‘ ‘ \ L — = =
wv /‘ J
o 5 5
T} . .
o ]
x = L L
(NN}

oy - Weighted counting Regression — curve fitting Experts knowledge
= 0O . .

. . e.g. least square Machine learning,
S < algorithm, clustering, (e q ) . o g
S clustering, artificial
a = neural net

There is a situation that the structure of data can be explicitly defined through an
algorithm (Case 1). In this case, the algorithm describes the relationship between
the knowledge and information, leaving no data point outside of the domain.
However, in many physical problems, the process cannot be described easily
through mathematical expressions. In the other words, there is a small amount of
information which exists to develop an algorithmic relation, usually relying on
observable data and input-output features of the system which can be measured.
For example, in estimating the 28-day strength of a concrete cube, observable data
are often used to develop strength-time algorithm. Alternatively, for the situations
where data cannot be measured through conventional approaches, there are two
possibilities. First, the situations (Case 2) where knowledge is partially explicit by
the means of empirical data and observation (e.g. damage survey, clinical test).
This case might be handled through a regression and standard curve-fitting

technique to establish the (empirical) algorithm which describes it best.

Second, there is no algorithm, structure or explicit knowledge available to guide

the description of the system objectively (Case 3). In this case, a heuristic
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knowledge can be used which is based on expert opinions and subjective
judgments. Since the data are scattered irregularly around the domain, this

situation can be effectively described with the use of fuzzy modelling.

In Cases 2 and 3, a set of observed data in the universe of discourse indicated by
patches (domain specific) describing the relationship between 1/0 variables within
the models. These patches convey fuzziness and also express the /0 relation

which can be modelled using the fuzzy system.

The extent of the patches represent the ambiguity and imprecision in observation
or expert judgments. Expert knowledge can be used where no information and
structure is available; while empirical knowledge or algorithms can only capture a
pre-defined behaviour of the system. For complex situations such as seismic risk
management (where kinds of information, algorithms and structures exists), a
combination of data- and expert-driven knowledge types can significantly improve
the quality of the system. Moreover, this combination can explicitly address
specific responses to certain areas, leaving freedom for data fitting in others
(Bardossy and Duckstein 1995). Clearly, fuzzy modelling can be used for all
situations mentioned. Nevertheless, the best performance can be achieved in
situations where no explicit knowledge, algorithms or observations are available
because the more ambiguity in knowledge, the more appropriate it is to be
modelled through fuzzy system. For this reason, in this study a combination of

expert-driven and data-driven knowledge has been used to develop the rule-base.

5.8 Fuzzy Expert System as Rule Patches

Generally, a simple fuzzy expert system is described by the set of rules that map
multiple inputs to a single output. The rules denote the fuzzy relation or patch in X
x Y space as shown in Figure 5.11. Rules patches can be adjusted to cover decision
space (f). Each rule relates the input-output capturing specific domain of the

decision.



Chapter 5: Fuzzy Modelling 119
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Figure 5.11 - Fuzzy rule patches cover the decision function

The underlying concept of a fuzzy expert system is based on approximate
reasoning and thus it can be used as universal approximator (Kosko 1994). In
other words, a fuzzy system R: X—Y can be employed to map a function f: X—>Y by

taking appropriate rule patches.

It is obvious that the more rule patches, the more specific and accurate the domain
will be. Reducing the rule patches size (selecting smaller intervals on X, Y) would
lead to a more accurate approximation of ‘f ‘, though the number of rules would
rise accordingly. Thus, when approximating a function, it is important to select an
appropriate number of rules (or knowledge base), first to cover the whole domain,
and second to easily define and handle the entire domain without losing any
information. One way to manage this issue is to organize the rules hierarchically

through the system (Pearl 1984) which is employed in this research.

5.9 Fuzzy Modelling in Complex Domains

Real world problems such as seismic risk assessment require many of variables for
modelling. More variability in a system means more complexity in processing,
requiring larger domain to address it. When an application moves from a simple
domain to complex one, the usual procedure having flat rules becomes infeasible
(Torra 2002). As the number of variables increases in expert systems, the number
of rules to cover the decision space increases exponentially. For example, 10
variables with 5 terms imply a set of almost 10 million rules. The problem of
dealing with such a large number of rules which grows exponentially with the

number of variables is known as “rule explosion” or “curse of dimensionality”.
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The literature reports several ways to deal with this issue (Jamshidi 1997; Torra
2002; Magdanela 2002). Some of the most relevant techniques are emphasized in

following:

e Rule hierarchy: Rules are grouped into modules according to their roles in the
system. Each module computes a partial solution, and these partial solutions
are thereafter used in subsequent modules to compute the final output of the
system.

e Identification of functional relationship: For situations in which functional
dependencies can be identified between variables (i.e. algorithm data), they
can be used directly in the system instead of using rules to express them. This
reduces the size of the rule base as there is a drop in the number of variables.

e Sensory fusion: This includes combining two or more variables to build a new
input variable to replace the original ones. A reduction in number of variables
yields a reduction of the number of rules.

e Interpolation: This method is useful for the situations where no rules available.
In this case, the output of the system is interpolated from the outputs of the

nearest points (Rules).

A hierarchical fuzzy system is defined as a technique to solve problems with high
levels of complexity. This approach reduces the complexity of the system by
structuring the knowledge (Magdalena 2002). According to Magdalena: (2002)
"the underlying idea is to cope with the complexity of a problem by applying some
kind of decomposition that generates a hierarchy of lower complexity systems".
Three different architectures for hierarchal fuzzy systems are shown in Figure

5.12.

Combining different levels in a hierarchy is a difficult task. Usually the levels of a
fuzzy system are selected based on their preference. It is a fact that the different
levels of a hierarchy incorporate information which managed at different levels of
intelligence, abstraction, and time scale (Saridis 1983). Machine learning,
optimisation and clustering are three ways of grouping rules and information in
large systems which can be referred to literature (see Sayyarrodsari et al 1997;

Klir and Yuan 1995) for more details.
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Figure 5.12 - Typical architecture for four variables (Torra 2002)

This study uses a combination of methods to build a fuzzy expert system in order
to estimate seismic risk. Due to the complexity of the system and a number of
factors involved in modelling, hierarchical structure of variables is initially
adopted. The most influential variables are then chosen as input variables at first
level, the next most important variables are chosen as input variables at second
level, and so on. The output variable of each level is introduced as an input variable
at the following level. For variables with an algorithm or function, the rule base
will be reduced accordingly. Furthermore, an influence diagram was used to group
the variables within a family into a new module. In the case of missing or
unavailable information in a survey or in the factual data, an interpolation will be
applied using nearest available points around unknown rules. The detail of

structuring a hierarchy will be outlined in Chapter 6.

5.10 The Utility and Limitation of Fuzzy Modelling

Several benefits derive from the application of the fuzzy modelling in knowledge
based context as noted below (Cox, 1999; Turban and Aronson, 2000; Ross 2004).

First, this applies to situations involved with complex systems requiring human or
large computational power. Universal approximation has been addressed as a
major strength of the fuzzy system for modelling a system's behaviour. Improved
computational power of expert systems in performing and encoding of knowledge
allow experts to understand and manage complex problem very quickly, where no
analytical function or numerical relation exists. Complex systems usually involve

human-related situations such as social, economical or political systems in which
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several input and output information may not be systematically captured and
managed through conventional analytical approaches. Moreover, the relationship
between multiple inputs and outputs of such systems could be difficult to

understand, though it is often perceived through analysis of cause and effect.

Second, it applies for situations where an approximate but quick solution is
expected. Fuzzy systems are appropriate for modelling more conventional systems

where precise solutions are not warranted. According to Ross (2004):

“An approximate, but fast solution can be useful in making preliminary
design decisions or as an initial estimate in a more accurate numerical
technique to save computational costs or in the myriad of situations
where the inputs to a problem are vague, ambiguous, or not known at

all.”

Examples of approximate evaluations occur in real life where exact solutions are
not necessary or are compromised by imprecise knowledge. Hence, fuzzy systems
are ideal for the real-life situations where human perception plays a major role in

decision-making.

Third, it is relevant for situations where a significant amount of uncertainties is
involved. Having acknowledged the distinction between ‘modelling the system’ and
‘modelling the uncertainty’, a fuzzy system has great potential for undertaking
both. According to Ross (2004): “the primary benefit of fuzzy systems theory is to
approximate system behaviour where analytic functions or numerical relations do
not exist”. The systems whose outputs are not sensitive to changes in the inputs
are recognized as a robust system because the uncertainties involved in both
inputs and outputs are essentially employed in developing the system structure
itself; while in conventional systems, models need to be developed based on the set
of statistical assumptions and then uncertainties of the mathematical abstraction
have to be captured accordingly. Theoretically, the mathematical modelling of such
an abstract system and the subsequent uncertainty modelling may not be
unreasonable, but it might carry unpredictable results and hence it could mislead

the decision-making process.

Nevertheless, the fuzzy system has been criticized as a shallow concept since it

follows an inductive approach for reasoning and infers theoretically from general



Chapter 5: Fuzzy Modelling 123

to particular (top-down approach). Inductive reasoning might imply a shallow
concept due to the use of underlying knowledge for predicting the behaviour in the
models. The fuzzy approach was also criticized due to its reliance on human
knowledge, linguistic expression and experience as a sources of uncertainty,
whereas deductive reasoning models are developed based on the data which can
be observed or generated by nature (Arciszewski et al. 2003). Moreover, fuzzy
systems might be constrained to ‘domain-specific knowledge’ rather than ‘general
problem-solving’ approaches. The greater knowledge base the problem has, the
more possibility there is for it to be effectively modelled through a fuzzy system.
Therefore, a combination of expert-driven knowledge and data-driven knowledge
can significantly address and improve the intrinsic shortcomings of expert

systems.

5.11 Summary

Fuzzy modelling provides an effective strategy for capturing and processing
uncertain data often involved with seismic risk assessment. The use of expert
system assists decision makers to overcome difficulties in risk modelling, such as
the quantification of uncertainty, nonlinearity within variables and the lack of
historical data. Moreover, fuzzy modelling offers a meaningful characterizing the
uncertainty of input/output and draw conclusions using uncertain information.
Various forms of knowledge (i.e. facts, heuristic knowledge and algorithms) can be
expressed through compositional IF-THEN rules. Thus, both linguistic and
numerical forms of data can be processed and reviewed on a common framework.

The advantage of fuzzy modelling is in reducing the dependency on historical data.
Unlike conventional systems that rely on high quality information, a fuzzy expert
system can be alternatively developed where no precise statistics are available.
There are some situations in which algorithms, structures or explicit knowledge
(empirical, observation) are available and thus it can be effectively simulated
through classical sets. However, in complex systems where knowledge is partially
explicit or not clearly definable through empirical methods, the fuzzy expert
system can be more effective than conventional methods. In this case the
combination of data-driven and expert-driven knowledge can be devised to

achieve the best performance.
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Chapter 6: Data Collection

6.1 Introduction

This chapter explores the necessary information required to develop the KBES,
including risk criteria and alternative projects, which are outlined in two parts.
First, the general characteristics of retrofitting school buildings in Iran were
reviewed in terms of size, type and material. Second, the potential impacts of an
earthquake were assessed and classified in different categories using a hierarchical
risk structure (risk tree) consistent with geography, seismology and typology of
buildings in Iran. The information about alternatives and criteria collectively form
the prerequisite structure for developing the KBES and has been already published
in detail by Vahdat and Smith (2014) and Vahdat et al. (2014a).

6.2 Characteristics of School Buildings in Iran

Developing a risk-based management model should be conducted with respect to
regional characteristics since school buildings might vary greatly in size,
population, resources and technical specification. A model designed for certain
regions may not sufficiently valid for others. For example, a risk management
model within mid-rise schools in highly populated cities like New York cannot be
prescribed for seismic-prone California. Thus, developing a model requires
addressing the multidimensional aspects of a school to identify the proxy of
buildings carrying the most critical factors, and to design the case study

accordingly.

Given the diversity of material, types and forms of school buildings in Iran, major
characteristics can be selected. Understanding the general characteristics of the
school of interest is crucial as it helps to figure out the dominant issues and

facilitates risk identification. Building vulnerability is one of the most critical
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factors that vary among existing buildings in Iran. Scanning the schools database
reveals those Iranian school buildings have certain features in term of seismicity,
material, structure types, forms (plan), population and stories. These elements are

briefly outlined in the following sections.

6.2.1 Seismic Hazard Levels in School

School buildings may be exposed to different levels of seismic hazard; though the
historical records (SRO 2010) show that more than 80% of school buildings are
subject to high to very high intensity earthquakes (M7 - M9) and more than 95%
of the schools are exposed to earthquake with magnitude over 6 (> M6). The
distribution of school buildings exposed to different degree of seismic hazard is

shown within Table 6.1.

Table 6.1 - Distribution of the schools exposed to various levels of seismic hazard

(NS12010)
Hazard Level | Intensity (PGA) No# Percentage
Low 0.20g 221 0.91
Moderate 0.25g 4134 16.93
High 0.30g 16483 67.52
Very high 0.35g 3573 14.64
Total 24,411 100.0

6.2.2 Building Classes

Building size and typology play significant role in evaluating the seismic
performance of a building. As indicated in Figure 6.1, the overall population of the
schools indicates predominantly low rise buildings with 86% with one storey and
10% with two storeys. Nevertheless, the structures and material employed in
buildings varied between five categories, comprising of steel, concrete, masonry,
adobe and other as shown in Figure 6.2. Masonry and steel structures are the most
common type of the buildings over the country, consisting of 89% and 8%
respectively. The potential susceptibility and frequency of out-dated masonry

schools necessitate the urgent need for managing such a large group.
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Figure 6.1 - The number of storey number among masonry schools of country
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Figure 6.2 - Review of the common material (structure type) within school country
(SRO 2011)
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6.2.3 Construction Time

Most of public school buildings in Iran were built according to a previous seismic
code, which is now out-dated. Hence, understanding the construction date is
important in order to effectively estimate the seismic performance of buildings.
Generally the school buildings that have been constructed before regulation and

enforcement of new modern codes have a higher risk of damage.

With regard to Iran, the first seismic code was released and issued for construction
in 1991 following the previous year’s Gilan-Manjil destructive earthquake in the

north of Iran. The newer versions of the seismic code were released in 2000 and
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2006 respectively. Hence, there are still some newly-built schools that fail to
conform to new versions or to which the standards were not enforced during
construction. The overall distribution of key construction dates reveal that more
than 95% of public schools have been constructed before 1991 and probably need

appropriate actions to confront earthquake risk (Figure 6.3).

after 2000
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Figure 6.3 - Distribution of school buildings according to construction time
(SRO 2011)

6.2.4 Building Forms and Irregularities

Irregularities in the building’s plan and height can significantly affect the seismic
vulnerability of a building. Setbacks in the plan or the height are common
irregularities that affect the performance of existing buildings. Buildings with
decent lateral-load resistance in only one direction, as well as buildings with major
stiffness eccentricities in the lateral force-resisting system, for instance, can be
severely damaged as a consequence of torsion around the vertical axis (FEMA154

2002).

Reviewing the typical plans of school buildings indicates the fact that most of the
schools had been built based on two or three template plans. One possible sort of
damage that occurs in such buildings can be caused due to vertical discontinuities,
pounding effects and irregular configurations. While the major issue in school
building has been identified as the lack of integrity in load carrying system (URM,
RM), no major irregularities were observed in the schools in rural areas.

Furthermore, most of the schools have been located independently, thus there
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being no need to compare the potential for pounding effects. The vast majority of
schools were constructed in the form of low-rise style from one to three floors.

Typical sample forms of school buildings are illustrated in Figure 6.4.

[ WY

A N

3 Storey school (18 - 24 Classrooms)

Figure 6.4 - Typical forms of school buildings in Iran

6.3 Selection of Alternatives

Having identified the major characteristics of the schools, alternative projects can
be now selected. These retrofitting projects are as part of live ‘School
Rehabilitation Programme’ ongoing in 24 provinces of Iran by Ministry of
Education. Primary information regarding the schools (material, forms, structure,
age) was collected through surveys, which have been conducted in the local group

of experts in each province and documented through the online repository
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database. The initial data were then verified and processed in rehabilitation office.
Potential vulnerable schools are then identified and approved for further detailed
investigation by nominating consultants who are qualified and accredited for
retrofitting studies. A total of 66 retrofitting school projects was selected out of the
185 available projects. This group of projects covers 15 provinces of the country
and technically covers more than 90% of the variation in building forms, material,
seismicity, structure and population. Sample distribution of the selected projects
has been illustrated in Figure 6.5. Detailed characteristics of schools inventory are

available within Appendix C.
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Figure 6.5 - Characteristics status of the selected schools

6.4 RiskIdentification

Identifying, quantifying and analysing the impacts of earthquakes are all crucial in
developing a case study. Earthquakes can potentially cause various impacts on
population, communities, the built environment (infrastructure, utilities, and

lifeline), as well as economic activities and services. Based on these effects, the
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elements at risk can be classified in different categories as shown in Figure 6.6.
Regardless of the direct effects that might occur following an earthquake, there are
many other indirect impacts that are the product of interaction between the

disaster system, the socioeconomic system and the built environment.

This thesis focuses on the major quantifiable impacts that might affect the public
network of schools. Other intangible impacts such as cultural, historical and
political impacts were disregarded. The framework of impacts considered a way to
reflect the major concerns that are prevalent in the geography, topography and
typology of schools in Iran. For example, a hazard may cause specific impacts on
prone coastal cities (i.e. as tsunami, seiches) and mountainous cities (i.e. rock fall,
avalanches) but these may not be applicable to the geography of Iran. The
following sections will address the most relevant impacts of earthquakes that

could possibly interact with the schools of Iran.

Ground shaking
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Figure 6.6 - Classification of earthquake general Impacts
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6.5 Seismic Hazard

A seismic hazard can be exhibited by the various
impacts on an urban area that may vary based on
geological and geographical conditions as shown in
Figure 6.7. Earthquake hazard might be exhibited in
different forms including ground shaking, fault rupture,
ground failure due to liquefaction and landslide,
collateral or secondary hazards such as fire, avalanche,
flood due to dam failure, unequal settlements, pipeline
explosions and environmental pollution.

Alternatively, seismic hazards on coastal cities,
seashores and islands can result in tsunamis and
seiches. Primary damage to structural and non-
structural elements can be the result of fault rupture
and ground shaking. Loss of life, injury, cost of
rehabilitation and reconstruction are the primary losses
that might occur immediately after an earthquake.
Long-term socioeconomic loss of earthquake can be
experienced in cities through business interruption,

unemployment, loss of market, etc.

Every region may potentially be exposed to specific

Earthquake occurs
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Primary Hazard
Shaking, landslide
Fault, liqguefaction
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Primary Damage
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Secondary Hazard
Fire, Flood, Hazmat
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Life/Injury, Repair
Cost, Function,
Communication,...

v
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kinds of hazard according to its site characteristics and topographical situation,

among other factors. The most common seismic-induced hazards are briefly

addressed in the following sections.

6.5.1 Ground Shaking Hazard

Generally, for a given site and distance from an earthquake source, ground shaking

severity is directly proportional to the magnitude of the earthquake (Rojhan

1994). Thus the greater magnitude of an earthquake, the more severe ground

shaking will be.

Technically, seismologists address an earthquake with its ground motion

characteristics, including amplitude, frequency content and duration. Ground

shaking amplitude is normally expressed in terms of peak ground acceleration
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(PGA), velocity (PGV) and, in some cases, displacement using seismic
accelerograms. Miyakoshi et al. (1997) calculated the distribution of PGV of strong
motions during the Kobe earthquake (1995) and developed a damage ratio of low-

rise buildings as functions of PGV.

Seismic hazard is often expressed in terms of PGA through hazard map
representing the annual exceedance probabilities for the full range of damaging
ground motions (Kiremidjan et al. 1997). PGA refers to the maximum horizontal
acceleration while in some cases it can also denote the vertical accelerations. For
example, a PGA 0.3g means that maximum horizontal acceleration is 30% of the
earth’s gravity. Records of past PGA are a major source for developing seismic

hazard maps.

6.5.2 Seismic Intensity Scale

Apart from instrumental methods to measure the PGA, there are many intensity
scales in which earthquake damage can be measured subjectively. For example, the
European Macro-seismic-Scale (EMS) (formerly known as MSK scale), as well as
the Mercalli Modified Intensity (MMI) scale, is the most widely used measurements
in many countries. While descriptive scales are a useful metric for earthquake
effects, the conversion between scales has been a great concern. In general,
intensity scales based on observed damage or perceptions could potentially
associate with great uncertainty that could not be effectively addressed through a
common probabilistic approach. The main issue is that there is no distinction
between grades, and instead of a clear number, a range of damage often refers to
each grade. Empirically, there is a correlation between intensity scales and PGA,
which has been often described on a logarithmic scale. An update in observed
damage could change the correlation, and subsequently the conversion scale might
vary temporally and spatially. A sample conversion scale between PGA and MMI

scale is shown in Table 6.2. (see Appendix E for more details)

Table 6.2 - Conversion between intensity scales (Fahmi and Malkawi 1998)

PGA MMI Magnitude(M) Damage state
0.005-0.01 V-V 34-4 Negligible
0.011-0.05 V-VI 4.0-4.6 Minor
0.051-0.15 VI-VII 46-53 Moderate
0.151-0.30 VII-VII 5.3-5.8 Strong
0.301-0.50 VII-IX 58-7.0 Major

>0.5 > X >7 Extreme
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6.5.3 Earthquake Magnitude

Magnitude is an objective attribute that indicates the relative size of earthquakes.
Magnitude is defined based on the maximum ground shaking and can be recorded
by seismographs. Unlike intensity scales, which vary spatially from the earthquake
source, magnitude is an inherent characteristic of an earthquake. Ground shaking
can be very strong if it is close to the fault while it attenuates or decreases with
distance from the fault.

Attenuation of the earthquakes depends on the magnitude and geology of the
region (SSC 1999). The most commonly-used measure of local magnitude (ML) is
commonly referred as the “Richter scale”. In this study, all earthquake magnitudes
are reported as an “M” followed by a value (e.g. M7, M5.5). Since earthquake
magnitude is measured using a logarithmic scale, the intervals between each
number can vary exponentially. For example, the difference between earthquake
magnitude of seven to eight is much more severe than the earthquake magnitude
between two and three. Statistically, the average occurrence of earthquakes per
year follows a logarithmic scale of magnitude (Table 6.3). It follows that
earthquakes with higher magnitudes rarely occur compared to medium and low

magnitude earthquakes.

Table 6.3 - Annual number of earthquakes worldwide (After Broth and Key 1998)

Magnitude | Average Occurrence ot

(Ms) N per year >Ms

M8 2 0.3
M7 20 13
M6 200 2.3
M5 3000 3.5
M4 15000 4.2
M3 >100000 5.0

Considering the above graph, there is a correlation between PGA and earthquake
probability, which can be developed, based on historical data analysis (Ghosh
2000). The empirical relation for earthquake recurrence was proposed by
Gutenburg and Richter (1954), which has been used as the underlying algorithm

for estimating earthquake occurrence in probabilistic risk assessment:
LogN=a-hb.M (6.1)
Where a, b are constant and N is number of earthquakes of a given magnitude M or

larger per unit time.
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6.5.4 Closeness to Active Fault

According to EuroCode-8 (2012), "peak values of the ground motion parameters
(PGA) are not good descriptors of the severity of an earthquake and of its possible
consequences on construction”. Hence, a more realistic strategy is to describe
seismic hazards based on the extent of proximity with fault ruptures. Fault
ruptures can cause damage to the buildings and infrastructure located
immediately over simple fault breaks, and also to structures situated in alluvial
surficial deposits (ATC-13 1985). The severity of ground shaking generally reduces
with distance from the ruptured fault; however, other factors contribute to local
variations in ground shaking, such as soil condition, which can amplitude the
ground shaking even more strongly than the epicentre. Sample attenuation curves

suggested by EuroCode-8 (2012) are illustrated in Figure 6.8.
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Figure 6.8 - Attenuation curves suggested by EuroCode-8

Empirically, since attenuation patterns vary from place to place, the geological
characteristics along historical records should be accommodated to develop a
relation for a region of interest. Chandra et al. (1979) analysed twelve earthquakes
in different parts of Iran and accordingly proposed an empirical relation which

have been used in the case study to estimate the intensity:

I(R) = lo + 6.453 - 0.00121 R - 4.96 log (R+ 20)  (R<120 Km) (6.2)

Where I(R) is the intensity at the distance R from the epicentre. This relation
shows that attenuation is quite sensitive to the selection of epicentral intensities,

lo. The graphical form of relation is shown in Figure 6.9.
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Figure 6.9 - Attenuation curve for Iran based on 12 earthquakes (Chandra 1979)

Depends on how far a building is from a fault (as a source of energy), different
ranges of intensity may be felt and measured, implying the subjectivity inherent in
this concept. Therefore, a factor that accounts for the close proximity of a structure

to a fault should be accommodated within a risk assessment framework.

6.5.5 Soil Condition (Site response)

Soil condition includes poor ground such as loose sands, sensitive clays, and some
lightly cemented sands, all of which can be a major source of damage during an
earthquake and can significantly amplify its magnitude. Following the 1989 Loma
Prieta earthquake, damage patterns occurred in the San Francisco region where
the PGA amplified 2-4 times over adjacent rock sites. Similar site amplification
occurred in Mexico City earthquake (Michoacan, 1985), which exhibited an
extreme damage pattern due to the local soil condition. Input PGA, which is less
than 0.4g in the rock, was amplified almost five times on the soft clay, causing

disastrous effects on structures close to the site (Finn et al. 1988).

Site amplification has been commonly addressed in most seismic codes as a
function of shear wave velocity. Codes in the US (UBC 2003) and Iran (BHRC 2007)
use four site categories based on soil profile and shear wave velocity. According to
Tucker et al. (1998), the response of soil sites subject to ground motion is
essentially elastic, and therefore controlled by site period. When the fundamental
period of a site coincides with the dominant period of buildings, the motion in

buildings can be amplified by two or more times (Rojhan 1993). Microzonation
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maps for different soil categories can build a distinct pattern of site response.
Typical (normalized) spectral responses to different soil classes have been
addressed in several codes such as US (UBC 2007), EuroCode-8 (2012) and Iran
(BHRC 2006). It can be noticed that the response factor between in weakest soil
(grade IV: soft moisture deposit) could propagate the earthquake more than twice
the extent of stiff soil (grade I) in any seismicity conditions. This confirms the

importance of soil layers in calculating the seismic hazard of a building.

6.5.6 Potential Soil Instabilities (geological hazards)

Earthquakes can induce potential instabilities due to geotechnical and
topographical conditions. Previous experience shows that seismic induced
liquefaction and landslides could occur in the zones with unfavourable soil
conditions or areas exhibiting slope instabilities. Hence, unstable areas are often
mapped according to their susceptibilities. While sandy soil areas with high
ground water table along rivers and lakes are a primary target for liquefaction,
mountainous and hilltop areas could be exposed to potential sliding and overall
instability or collapse. Sample soil instabilities that experienced in Turkey (Kacoli

1999) and Mexico (Loma Prieta 1989) are shown in Figure 6.10.

Figure 6.10 - Liquefaction and sliding hazard in Kocaeli, (Turkey 1999) and Loma
Prieta, (Mexico 1989)
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6.5.7 Liquefaction

Since liquefaction-induced ground failure is a major cause of damage during
earthquakes, recognition of this hazard is critical in seismic risk management
(Youd 1988). Several damages reported as a result of liquefaction during the 1999
Kocaeli earthquake (Turkey) and 1964 Alaska (Saatcioglu et al. 2001). Since
liquefaction occurs for a specific range of grain size, the potential ground failure
due to liquefaction can be assessed accordingly. Theoretically, soil is recognized
with a potential hazard to liquefaction if the soil curve lies inside the critical range
as indicated in Figure 6.11. According to the grain size, weight, texture and zone

depth, an appropriate stabilization scheme is usually prescribed in geotechnical

reports.
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Figure 6.11 - Critical zone within the grain size susceptible to liquefaction
(Finn 1972)

For rapid assessment of liquefaction hazard, susceptibility maps can be
alternatively used for assessing seismic prone areas. Liquefaction susceptibility
map of Iran was provided by the IIEES (2006) and was used for this case study.
The information clearly exhibits the zones with greatest liquefaction potential to
range of earthquake occurrences (Tucker et al. 1994). The maps were compiled
using both geological, seismological and water table criteria. Although these maps
seem to be conservative in detailed procedure, they are precise enough for such

screening and rapid risk assessment application.
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6.5.8 Landslide

Landslides can potentially trigger catastrophic damage, particularly for structures
located on a hillside slope where down slope movements occur. The slope of
surface on which a landslide occurs might vary significantly from somewhat steep
to almost horizontal. In addition, rainy seasons are a potential time for landslides
because the increase in moisture content of soils could reduce the stability in weak
soils. DRM (2004) defined a practical indicator to measure landslides and
topographical effects within a site. The sliding susceptibility of a building is
measured based on its safety factor. Normally, for the site with slope of more than
15%, the overall stability and safety factor (SF) needs to be checked. ATC-13
(1985) suggests the correlation between slope and PGA for the range of soil
characteristics (e.g. ¢, ¢ , v ) that could potentially fail when subjected to critical

acceleration, as indicated in Figure 6.12.
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Figure 6.12 - Correlation between slope angle and PGA (ATC-13 1985)

This kind of ground failure can be exacerbated if the building foundation was laid
on different levels. In the zone with complex geotechnical situations, particularly
with loose cohesiveness layers and high ground water table, a detailed

geotechnical investigation might be necessary.
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6.6 Vulnerability

Vulnerability assessments are crucial to manage and to minimize seismic risk.

Planning for disaster management and retrofitting programmes require

quantifying the potential impacts on built environments, such as information about

the extent of damage in past earthquakes. Decisions regarding the seismic

retrofitting of existing schools require consideration of both physical and

socioeconomic damage that buildings may suffer due to an earthquake. Estimating

the physical damage of buildings can be performed by evaluating the seismic

performance of building components, hence they could vary based on structural

characteristics of buildings such as types, material, class and typology. A selection

of major vulnerability factors that been addressed in the code are listed in Table

6.4.

Table 6.4 - Major vulnerability factors used in different codes of practice

© Screening Codes Detailed design Codes
5 Factor description Proposed |FEMA FEMA
>
l_
154 NRC NZS HAZUS |EuroCode8 310/SSC
Structural type Y Y Y Y
Building Height N N Y
Diaphragm Integrity - - - Y - N N
__ | Weak /Soft Storey * - - - - Y Y
©
5 | Redundancy/Stability - - - - - Y Y
sy
S | Irregularities/Torsion * - - - - Y Y
f,b, Short Column/Spandrel * - - - - Y Y
Occupancy
Load/Population Y Y Y Y Y Y Y
Building use/Importance Y Y Y Y Y Y
Visible crack/Settlement - Y - N -
Occupancy
Load/Population Y Y Y Y Y Y Y
T | Deterioration/Mat.
3 ) N - - - - Y -
I= Quality
8 Pogn'dlng/AdJacent " N N v Y Y N
S Building
@ | Inventory /Asset loss Y - - Y - Y
o)
g Area of building Y - Y Y Y Y
Year of Construction Y Y Y Y Y Y Y
Financial cost - - - - Y - -

Y: Considered,

NRC: National Research Canada,

California

N: not clearly considered,

- : Not considered,

* - Not applicable in present portfolio

NZS: New Zealand Standard, SSC: Seismic Safety Commission
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The choice of factors depends on the application, precision and purpose of risk
analysis. Common factors addressed within screening codes (i.e. FEMA 154, NRC,
NZS) emphasises on the overall safety of buildings, and this can be useful for

prioritizing vulnerable buildings.

Detailed structural factors focus deeply on building demand and performance that
is appropriate for detailed design phase. For example, FEMA 310 captures a
greater extent of characteristics required within a detailed vulnerability
assessment, though their application is limited to the availability and applicability

of the information to the group of alternatives to be studied.

With the aim to enhancing the safety protection of schools, this study uses critical
social indices (i.e. population load and density) along structural factors that are
commonly utilized within seismic codes. Most of these schools were either
masonry or steel structures with infilled walls and no major quantifiable
irregularities in a plan and height that could potentially distort the results.
Generally, the factors described within the codes include median typologies of
buildings for a generic condition and functionality. For specific buildings with
likely socioeconomic impacts, such as schools, particular attention should be
regarded in the choice of factors. For example, schools with high occupancy loads
and larger areas are obviously more vulnerable to a disaster than a simple

residential building.

6.6.1 Vulnerability Scale

Vulnerability analysis is based on observation and statistics of past earthquake
damage. The effectiveness of application and reliability of observational damage
data relies on the scale implemented. The vulnerability scale reflects how different
types of buildings respond to likely earthquakes and present the extent of damage
they would probably suffer. Several scales of damage have been addressed by the
codes of practice covering ‘general’ and ‘standard' typologies of buildings for a

given area. A summary of major scales of damage is compared in Table 6.5.

There is a noticeable difference between scales in screening codes and detailed
codes of practice. While FEMA 310, ATC-13 and SEAOC-95 suggest a greater five-
grade scale of damage, screening codes like FEAM 154, NRC and HAZUS provide a
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simplified two or three points scale to measure the extent of damage. Obviously,
the more grades in damage scale, the lower uncertainty that will be imported into

the process.

Table 6.5 - Comparison between damage scales of different codes

Damage
@ & DO | D1 [ D2 | D3 D4
© | State
o
% Description | None | Slight | Light| Moderate Strong Severe Collapse
(]
Damage
8 8 0 0-1 |1-10 10-30 30-60 60-100 100
o | Range%
o Central
o 0 0.5 5 20 45 80 100
Damage%
EMS 98 Grade 1 Grade 2 Grade 3 Grade 4
MSK 69 D1 D2 D3 D4
HAZUS
) v Y Slight damage Moderate Extensive
< | 1999 2 © )
© -
8 2 g damage i imi Collapse Z
- | FEMA 310 €08 Immediate Occupancy ¢ gl Life | Limited pt ;
5 = g contro safe | Safety | Prevention £
© | FEMA154 | 2§ . IR S
m =) Safe require detailed investigation v
! (ATC-21) © o Q
()] a9 o
© 2 L dium to high priorit ©
3 o § ow medium ghp Y S
O NRC zz safe priority (require detailed investigation)
ATC-13 Slight Light Moderate Heavy Major
SEOAC 95 FuII.y Operational Life Near Collapse
operational safe | Collapse

Among these scales EMS-98 describes the vulnerability of buildings through a
simple and straightforward process. The important difference between EMS-98
and other scales of intensity lies in detailed commentaries which clearly address
types of buildings, degree of damage and quantitative characteristics of the
expression for various impacts of the earthquake (Sidorin 2010). This feature
provides a significant source of information that facilitates the process of
reasoning and increases the precision of the obtained results. The advantage of
EMS-98 to its predecessor MSK-67 is that it was developed based on a grade that
varies continuously between typologies of buildings. Secondly, it suggests two
bounds of possibility for each grade of vulnerability instead of presenting results
deterministically. A similar damage scale was used in this study for measuring the

vulnerability as indicated in Appendix E.
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Other damage scales were specifically made for certain structural typologies or
specific procedures. For example, a seismic damage index was developed by Park
and Ange (1985) through an analytical procedure that was repeatedly used in the
literature to estimate the seismic demand of structures. Rosseto and Elnashai
(2003) also proposed an empirical scale (HRC scale) that was homogenized for the
RC structure using a rich database of 340000 RC structure and 99 post-earthquake
damage distributions observed in 19 earthquakes. Specific scales of damage were
avoided in this study as they either cover limited ranges or require detailed
performance analysis of structures. As a result, a five-grade scale of damage within
the study was selected in such a way as to be consistent with existing codes of
practice while it captures whole typologies and variations in extents of damage

that might occur for the environment of school buildings in Iran (Appendix D).

6.6.2 Vulnerability Classification System

The classification system is a major concern in estimating the vulnerability of
existing buildings. Practically, a large-scale (macroseismic) analysis of a region
with a great number of buildings is a difficult task. Buildings behave differently
when they subject to a likely earthquake. This is due to the diversity in building

characteristics (i.e. typologies and material) that could cause different responses.

A range of damage could possibly occur in a certain type of structure with the same
material. For example, two identical types of buildings with the same material
could possibly suffer disparate ranges of damage that vary based on location,
usage, construction and engineering quality. Thus, in order to assign a unique
range of damage for each type of structure, it is necessary to identify and
distinguish certain classes and categories of buildings that suffer similar damage

patterns.

Various buildings can be classified according to their size and height (i.e. low-rise,
mid-rise, high-rise), material (i.e. masonry, steel, concrete), age, engineering design
(i.e. non-engineered, engineered) and construction quality. Record of damages in

past earthquakes is a major source for creating the damage pattern.

Different buildings with the same observed vulnerability have been classified in

terms of likely damage and grouped into certain categories. For example, ATC-13
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(1985), developed 78 facility classes in terms of earthquake characteristics and
social functions. For each class, a damage probability matrix (DPM) was addressed
that relates damage state to ground motion intensity (MMI). An updated
classification version with reduced classes was used in HAZUS for estimating the
loss within built environment and facilities in the US. While this method developed
based on ’standard’ construction with 'simplified rules‘ (or modifier) for adjoining
different DPM with engineering design and construction quality (Anagnos et al.
1995), both reflecting US construction environments and may not be a truly

representative of built environment in other countries.

Table 6.6 - Building classes proposed by the code of practice

Category Proposed EMS-98 HAZUS 99 FEMA 154 NRCC 93
Adobe
Simple stone Unreinforced Unreinforced Unreinforced
> URM massive stone Masonry Masonry Masonry
URM + stone (URM) (URM) (URM)
©
= URM + concrete
RM Reinforced RM+ S Deck RM+ S Deck RM + S Deck
Masonry (RM) RM + PC Deck RM+ C Deck RM + C Deck
o FRM (NO ERD) | MRF MRF MRE
5 FRM* | taM + mod ERD | sw SW
= mod ERD SW
O FRM + high ERD FRM+ INF W FRM+ INF W FRM+ INF W
©
S W (NoERD) Precast FRM
f‘E N/A W +mod ERD Precast Wall
& W+ high ERD
MRF MRF MRF MREF
SBF SBF SBF SBF
Steel N/A Steel structures | L8Nt FRM Light Metal Light FRM
FRM + SW FRM+SW FRM+SW
FRM + INF
W FRM+ INF W FRM+ INF W FRM+ INF W
Timber .
Other N/A Structures Wood/Precast Tilt-up / Wood Wood

ERD : Earthquake Resistance Design
with Infilled wall

SBF: Steel Braced Frame SW: Shear wall

W + mod ERD : Wall + moderate
ERD MRF: Moment Resistance Frame

FRM + INF W : Frame

PC Deck: Precast Concrete Deck

On the other hand, the European Macroseismic Scale Ed-98 (Griinthal 1998)
characterises vulnerability of 17 classes of buildings in 4 categories, focusing
mainly on masonry classes. EMS-98 promoted its predecessor MSK-64 in terms of
expert experiences and consistency with other intensity scales like MMI. EMS-98

provides more diversity in building types and less complete in material, simplicity,
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consistency and robustness of approach which makes it suitable for general
application. Since the majority of buildings within the current research contains
masonry classes, this approach was adopted. Furthermore, the linguistic damage
scale used within EMS-98 is completely consistent with build environment of case
study (Iran) which predominated by masonry classes and can be effectively
modelled through a fuzzy framework. EMS-98 classifies 14 typology of buildings in
four categories in terms of material, type and construction quality. Screening
approaches also employ certain typology of building in their procedures. FEMA
154 and NRCC classify 15 typologies of the building in 5 and 4 categories

respectively. A summary of different building classes is indicated within Table 6.6.

Each class of building represents a certain range of damage and hence corresponds
with the specific damage function or fragility curve. In order to compare the
vulnerability of each class of building, it is required to have unique damage index

representing the range of damage in past earthquakes.

6.6.3 Date of Construction & Quality

The year of construction is important for assessing the vulnerability of existing
buildings in two aspects. First, structural conditions changes over time due to
material degradation, weather changes and long term settlement effects. Second,
the quality of construction and engineering design has been improved over time.
Hence, it is important to have an approximate year of construction to estimate the
quality of engineering design and the technology of construction. Even some
buildings that were constructed in the early stages of the seismic code may not
adequately conform to more recent codes. According to the survey conducted on a
group of buildings in New Zealand (by Dowrick and Rhoades 1997), the damage
ratio of more recent buildings (1970-1987) were found to be significantly better
than those built in the pre-code era (pre 1970) as shown in Figure 6.13. The
similar results were obtained from a survey conducted in Armenia by Markaryan

and Davidian (2000).
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Figure 6.13 - Variation of damage ratio in different construction era
(Dowrick & Rhoades 1997)

Therefore, the year of construction was also considered as a contributing indicator
of vulnerability as already addressed in both screening and detailed codes of

practice (FEMA-154, FEMa 273 and CNRC).

6.6.4 Engineering Performance

Engineering performance is a significant factor that contributes to the vulnerability
assessment. Buildings with similar types, plans and materials could suffer a
different range of damage based on the quality of construction and engineering
design. Engineering performance is a site-specific characteristic that requires
subjective field-based survey conducted by experts. The engineering performance
could also reflect the overall quality, integrity, stability and other on-site issues

that may not be explicitly modelled along the other factors.

In this study, engineering performance was determined by integrating both
construction and design quality. Design quality is can be addressed by the year of
construction and degree of conformity with the corresponding code. Even the
newly-built schools with low conformity to design codes may not reliably resist an
earthquake. Conversely, the old schools that conform to its construction time

design-code may behave better than the newly-built low-quality ones.
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6.6.5 Social Vulnerability

Social vulnerability refers to groups of people exposed to earthquake risk. This
factor might be alternatively addressed through exposure. Due to vulnerability of
users (students) and potential exposure (high occupancy load) in school buildings,
social characteristics of schools have been highlighted separately through both
vulnerability and exposure factors. To address social vulnerability within schools,
it is necessary to understand the distribution of users (e.g. age ranges) and how
these quantities vary within a day. This can also help to identify which groups of
schools are potentially more vulnerable. The operational hour is also a concern
that could increase social vulnerability since various educational institutions might
be used in multiple purposes. Many institutions in Iran have an extra programme
in their after-school hours, presenting additional courses and skills courses. Some
of these might have been designated as earthquake shelters or could be used as
summer accommodation for tourists. The generic operational hours of country

schools of Iran have been listed in Table 6.7.

Table 6.7 - Comparison of educational institutions in Iran (NSI 2010)

Normal Extra Boarding .
. T . . Private(chartered)
Educational institution | User age service service School
School Hours

Hours Hours Hours
Primary School 6-11 6-8 0-2 24 8-10
Middle school 11-14 6-8 0-2 24 8-10
High school 14-19 8-10 2-6 24 10-12
Pre-college school 17-19 8-10 2-6 - 10-12
Vocational School 16 - 20 8-12 - - -
Instructional college | 18 -22 8-12 2-4 - -

6.7 Exposure

Exposure describes the socioeconomic capacity and extent of damage that a
building, region or city potentially suffers following an earthquake. Social exposure
is crucial as it represents the life safety concern in schools. No matter how severe
an earthquake, without a social exposure, there would be nothing to be damaged
and thus there would be no risk. Socioeconomic exposure is important in selecting
seismic mitigation measures. Schools with higher population or higher occupancy

load obviously require more attention as they have a higher expected loss. This
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also true for the size of buildings as examined through a number of cases (Dowrick

and Rhoades, 1997, 2002) as shown in Figure 6.14.
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Figure 6.14 - Correlation between damage state and building area/storey for
MMI-8 intensity in Wairarapa (NZ) earthquake (Dowrick & Rhoades 1997)

Another feature that could influence exposure is asset and inventory value. It has
been found that the damage ratio is sometimes related to property value (Rhoades
and Dowrick, 1999). The potential economical exposure is a concern for an
insurance company to estimate the insurance premium and also important for
disaster planners when evaluating the cost of mitigation measures. Higher
exposures mean higher asset values at risk, leading to higher insurance premiums
that could considerably exceed expected loss or decisions to not offer coverage

(Kovacs and Kunreuther 2001).

This study considers the exposure of school buildings from a socioeconomic
perspective. The size and distribution of people within buildings are major factors
and highlight the importance of schools. The time, budget and workforce required
for retrofitting measures depend on the size, area and location of the schools.
Clearly, the greater area of the school, the more costly mitigation measures will be.
For example, considering two schools with the same population, should the one
with the greater area be prioritised as more important for mitigation measures? To

resolve this issue, a new index called "occupancy load” (or population density) is
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proposed, indicating that social exposure has to be considered along with
population index. In the present work, potential economic loss was addressed
through "asset value at risk (VaR)" and "area exposed". Four groups of economic
loss were considered in estimating the VaR including: displacement costs, rental
cost, supply cost and new construction costs. Displacement costs defined as the
extra costs of moving, rental and other operations costs to find a temporary place

during retrofitting operations.

4003 L] T I 1 |
& Steel-Framed schools
E 3000} -1
a
'g
SQaonnnl L e e
- 2000 Area . =
Ec: x ﬁt ....... unit cost
1= X b =T . ¢ . n *
£ 1000 XX R XX YRR " wwx MK x x Wwx ]
o g vy . xx w3 ) x"x" »” ’ =
X x XXXX = x KX o X AxX = X x
0 ] ] | 1 1 X
0 10 20 30 40 50 80
Projpct®
4000 I I I I I I I I
o Masonry schools
E 3000} =1
@ 5
'g Area A
(& - s = a0 -
=4 2000 b" e
[ .
'»é P unit cost
B 1000Fxx, , a° "o M . L x .
[ . ® Lt x e » R 1 ® ® oK
X x * * x x % x LA IS & & e e
4] 1 1 il 1 1 ] il
0 5 10 15 20 25 30 35 40 45
Projpcs=

Figure 6.15 - Avergae retrofitting cost (US$) of school buildings of Iran

In order to analyse the average retrofitting cost of school buildings in Iran, a
survey was conducted, using final approved bills of 105 contracts, including 60
steel and 45 masonry retrofitting projects undertaken between 2009-2010. The
variety of cost was indicated in Figure 6.15 for different school areas. These graphs
reveal that the total cost of retrofitting reduces when the area of buildings
increase. There is a slight variation of retrofitting cost in both masonry and steel-
structured buildings that might affect projects with unforeseen design situations. It
can be also noticed that the unit cost of masonry buildings is much less than steel

structure buildings. This means that using a fixed-budget, the greater number of
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masonry schools (greater area/more classrooms) can be retrofitted. This result
demonstrates how useful the economical aspects could be in planning and

prioritizing the mitigation measures.

6.8 Response Management (RM)

In a general sense, response capability and disaster management relate to the
resilience of a community and region. ‘Resilience’ refers to the capacity of a system,
community or region that is potentially exposed to earthquake hazard, to adapt
and maintain an acceptable level of functioning and structure (UN-ISDR, 2004). In
this study, RM factors describe how effectively a region can systematically respond
and recover earthquake impacts, representing the resilience of a city against

earthquakes.

‘Response capability’ refers to fundamental hardware and resources mobilised
through a community in order recover during after an earthquake. Critical
infrastructure plays an integral role in public health and safety during an event.
Identifying and evaluating the performance of those critical facilities could
improve the ability of regions to respond prior to an event. The major attributes
that were used for the RM module are addressed within Table 6.8. These attributes
can be organized into three major categories: pre-earthquake measures
(preparedness and planning), resources for post-earthquake response (emergency
shelters, first aid response facilities and rescue bodies, hospitals and physicians),
and infrastructure for post-earthquake response and recovery (access road,
airport, railway, lifeline). Some schools can be used for multifunctional purposes,
such as shelters for post-event refugees. Fire stations, along other rescue bodies,
provide the sources for emergency response. Lifelines and utility networks are also
required for the post-disaster response, maintaining basic needs and securing

public health.

However, RM was considered as background factor which can indirectly influence
the total risk index. Compiling a baseline inventory of infrastructure, lifelines,
shelters, emergency facilities, planning and resource capacity of alternative
regions can draw a picture of response capability in a city. Clearly, schools located
in areas containing poorly-constructed (emergency) facilities are more susceptible

to great loss in the event of an earthquake than similar schools in major resilient
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cities. Thus, schools located within low resilient cities require more attention and

have to be prioritized in mitigation programmes.

Table 6.8 - Response capability and disaster management indicators

RM Phase Attribute Sub-attribute Description
bre-cvent Disaster Financial resource | pedicated emergency budget (yearly)
Preparedness Management | Human resource Trained manpower and experts within region
& resource . . .
Critical plans Active integrated plan (real-time response plan)
Roads Road network & transpiration quality
" Mobility ] ] )
$ § Access Railway Railway network & terminals
;?__J S Airport Airway network & terminals
= Qa
& O Communication Landlines & wireless (Mobile) communications
o S Telecom
E c Broadcasting TV & radio & emergency alarming system
o >
> f,_,J Water Water treatment plant & Potable water lines
s
" uv
g0 - Sewage Sewage treatment plant & transfer systems
= & Lifelines 8 & P Y
- Gas Earthquake resilient Gas line for householders
Electricity Power plant & substations & power line
Hospitals Number of hospitals per 100,000
Post-event First-aid Physicians Number of physicians per 1000
Recovery Facilities Shelters Designated places in cities for a disaster event
Firefighting Firefighting stations & manpower

6.9 Hierarchical Risk Breakdown Structure (HRBS)

The risk information described in the previous sections hampers the analysis and
measurement of the total risk, because of the interactions within risk factors. By
analogy to the WBS concept, a hierarchical structure can be an effective way to
handle multidimensional characteristics within such a complex system. According
to Hillson (2002), WBS provides the multiple aspects of a project in a hierarchy
that makes it more accountable and manageable for planning, reporting and
communication. Likewise, risk breakdown structure (RBS) describes the risk data,
and organizes them on the sources from which risk arises. An example of RBS can
be found in project risk assessments (Zeng et al. 2007; Chapman 2001), railway
risk assessments (An 2006, 2007), food and supply risk assessments (Chan and
Wang 2013), and environmental risk assessments in offshore constructions (Yang
et al. 2010; Mirilavasani 2011). Categorising risk using the HRBS provides a

greater insight into the seismic risk management phases in several ways:
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e Risk identification: Using HRBS ensures that all common sources of seismic
risk have been explored. The upper levels within HRBS can be used to identify
and to highlight sources of risk.

e Risk assessment: building seismic risk taxonomy improves the understanding
of risk exposure, focusing on the areas within the HRBS which have the most
significant concentrations of risk that requires the development of risk
response plans. Using the HRBS also helps to identify any dependency or
correlation between various sources of risk.

e Risk ranking and comparison: Using HRBS, multiple retrofitting projects can
be compared and ranked according to their risk severity. High risk projects can
be further allocated for detailed analysis, budgeting or future risk mitigation
measures.

e Risk monitoring and reporting: The HRBS can be used to gather risk
information within single or multiple retrofitting projects for different levels of

clients and decision-makers.

In the present research, the risk information was summarized classified using a
hierarchical risk breakdown structure (HRBS) as shown in Figure 6.16. Similar
HRBS was developed by Vahdat and Smith (2014a) and Vahdat et al. (2014b) for
seismic risk assessment. The risk taxonomy contains four major risk categories
that are organized in a multilevel structure to describe the sources of seismic risk.
Each category of risk was further expanded into more detailed sub-factors so as to
be precisely measured. The process of risk break-down can be continued until all
risk attributes are defined explicitly. The risk factors selected in this study were
identified from the most relevant factors that have significant measurable impacts,
specifically on school buildings. The main idea behind the choice of risk factors is
that their physical significance in terms of objective interpretation is based on

physical consequences and potential human loss.
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Having outlined the structure of the seismic risk, the KBEs can now be developed
accordingly. The risk factors, criteria and alternatives discussed here plot the road

map for determining the composite seismic risk index.

6.10 Summary

This chapter explores the important characteristics of risk input factors and
potential impacts, as well as their necessary configuration prior to simulating. The
information required for developing the KBES has been collected, reviewed and
classified in a multilayer hierarchical structure (HRBS) containing four major

categories: hazard, vulnerability, exposure and response management.

Potential impacts of risk attributes were reviewed in each category using analytical
and empirical procedures described in previous research and standards.
Accommodating the relations within risk factors explains the structure of the risk
system in these respective categories, establishing a foundation for developing the
knowledge base and the criteria to measure risk. In addition, the impact analysis
determines the extent to which an attribute can potentially influence seismic risk.
For example, according to international codes (UBC-97) the impact of soil
conditions can rapidly increase the risk more than two-fold in soft deposits. The
factors, structure, and measurement scales described in this chapter collectively

comprise an underlying body required for developing the KBES.
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Chapter 7: Case Study (Review & Results)

7.1 Introduction

This chapter outlines the descriptions of the developed KBES and analyses the
results in two parts. First, the characteristics and types of knowledges utilised
within the model is elaborated. The second part tracks the case study results and
demonstrates the contributions of the seismic risk factors within the system

through multiple statistical analyses.

7.2 Inference Engine Description

The important step in fuzzy modelling is to address the relationship of variables
within inference engines. This research study applies Mamdani algorithm for fuzzy
modelling as it works with IF-THEN rules that are based on fuzzy numbers and
expressed though linguistic variables. The Mamdani model is more convenient to
TSK because both antecedent and consequent part of the rules are described
through fuzzy sets, instead of linear functions. Fuzzy sets are preferred for the
current problem because they can express a linguistic form of variables and are
easier to interpret and track. Fuzzy sets provide a transparent process that allows
visualizing, interpreting and tracking variables and makes it easier to understand.
The Mamdani inference system was adopted, because it provides more effective
strategies to define the relationship between classified input and output variables

using Min, Max and operators as shown in Table 7.1.
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Table 7.1 - Characteristics of Mamdani Model

Operation Operator Description

Union (OR) MAX Mc(x)= max(pa(x), Ha(x))= Ua(x) v Ua(x)
Intersection (AND) MIN Me(x)= min(pa(x), Ma(x))= Ha(x) A Ha(x)
Implication MIN min(Ka(x), Ha(x))

Aggregation MAX max(min (Ka(x), 1e(x)))
Defuzzification COA COA=[x pc(x)dx / | pa(x) dx

Where p is a membership function for each variable and A and v are Max and Min
operators, respectively. The linguistic variables combined within Mamdani model
are not modified by weights since all the linguistic variables have been implicitly

assumed to be of the same importance.

The proposed inference process was developed according to the definition of the
logical operators AND (conjunction) and OR (disconjunction) that is technically
based on Min and Max operation. The Min operator represents the fuzzy
intersection and returns the lowest degree of membership involved in the
intersection that controls the result of the operation. The general idea behind this
operation is similar to the expression that a chain is as strong as its weakest point.
On the other hand, the Max operator that represents the fuzzy union returns the
highest degree of membership among values. The implication operator was used in
the inference engine based on Mamdani model for aggregating risk factors. The
centre of the area (COA) was chosen for defuzzification process. As an example, the
Mamdani model to FIS-S1 can be applied using the implication operator for

aggregating the risk factors, and can be written as follows:
Msri(X)= max (min (pu(X), Hv(x))) = max (Hu(X) A (X)) (7.1)

When the MFs, fuzzy engines and operators are defined, then the last step is to

establish the rule-base.

7.2.1 Rule Base Design

The rule base is a fundamental part in a fuzzy expert system that describes the

behaviour of the system. It maps the combination of fuzzy input sets to the specific
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range of outputs through IF-THEN rules. Thus the rule base should be complete
enough to correspond and cover both the variations in input and output factors.
According to An et al. (2006, 2007) in developing the rule base, some important
factors should be accounted to meet completeness and consistency within the rule
base. Completeness ensures the matches between inputs and outputs, as well as
the thorough coverage of the whole system domain. To maintain consistency of the
rule base, the same antecedent cannot correspond with different conclusions.
Inconsistency can be avoided by eliminating contradictory rules from the rule-

base.

Several approaches can be used to derive the fuzzy rules where by most are based
on either numerical data analysis (or prior knowledge) or linguistic knowledge
from domain experts (Ding 2001). Expert judgment is a direct way of generating
the rules; yet it is a subjective process and hence the rules strength relies on the
perception of experts over the context. Experts usually find fuzzy rules to be a
convenient way to express their knowledge because the rules often presented in
the form of natural language (linguistic scale). Data analysis methods seek any

interactive or synergetic relationship among data (An et al. 2000).

Various pattern classification methods can be used to classify and establish the
relation among data sets. Correlation analysis is a straightforward process in
which users may be used to determine both directions and logical relationships of
rule antecedents and consequences (Fayek and Sun 2001). There are other
classification methods for automatically deriving fuzzy rules, such as machine
learning and clustering (Hong and Lee 1996; Hong and Chen 1999) that are only
viable when dealing with a limited number of variables. The complexity of

clustering method and limited data makes it unsuitable for the present research.

In order to obtain the most effective way of developing the rule base in the case of
seismic risk assessment, a combination of expert knowledge and numerical data
analysis were used. In situations where there has been a pattern or correlation to
establish the logical relation between input and output, data analysis is preferred.
For the other cases where there exists no clear relation or supporting facts, expert
judgment was chosen. Each method has been explained in detail through following

sections.
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7.2.1.1 Expert-driven Knowledge

Expert knowledge is primary source of information in risk assessment. Fuzzy rule
based systems were traditionally designed from the linguistic knowledge of human
experts. Generating fuzzy rules based on expert judgment can be conducted in
many ways. The consideration of two risk factors has to be combined within a rule,
then experts can be asked to score the strength of consequence impacts. This
direct weighting method can be effective way only for limited variables and impact
states. The higher number of variables, the more fuzzy rules and questions will
entail. For example, when three variables with 5 impact grades, there will be 125

fuzzy rules (5 x 5 x 5) to be judged, which is practically impossible.

Indirect expert knowledge elicitation combines the impacts of risk factors through
the weighted average method (WAM). Ramakrishnan (1992) suggested the WAM
method to aggregate the criteria impacts of multiple alternatives with weights
being obtained by using experts' opinion. Shaheen et al. (2005) used this method
to enhance the input modelling process in discrete event simulation and to
integrate them through fuzzy expert system. Fares (2010) also applied WAM to
aggregate the impacts of deterioration factors in order to evaluate the risk of water
pipeline failure. The WAM can be used in many applications, providing that the

factors are independent. Applying WAM to the seismic risk factors
E'W-ﬁpfl:

, — 'Wf._.Pf._ +wfz.sz +"'+“-f.‘1 ‘Pf.‘l —
Combined Impact(f,, f5 . [,,) e ——— T

(7.2)

Where fn represents the risk factors, wr and Pr indicating the weight and

performance of risk factors respectively.
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Figure 7.1- Generic scale of measurement for risk factors’ performance and
consequence Impact
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To interpret the performance of risk factors and consequence impacts into
quantifiable numerical values, a generic scale of measurement was proposed, as
shown in Figure 7.1. A scale was set up for maximum seven states of impacts,
including Very Low (VL), Low (L), Moderate (M), Substantial (S), High (H) , Very
High (VH), and Ultimate (UL). While the metric for measurement is arbitrary and
any ordinal scale may be chosen; the scale of 0 - 10 was adopted for simplicity and
easier tracking. Using the weights extracted from the survey, the combined
performance impacts of hazard and vulnerability can be obtained. For example,

consider a rule describing two states of hazard and vulnerability:

[F Hazard is Low AND Vulnerability is High THEN SPI is?

Hazard —» W, = 50.94
Impact, = Wy, . Py )
Low - Py=6.75 Combined Impacts, = Wy, . Py+ W, . Py
Vulnerability — W, = 50.23 Wh. Wy
Impact, = Wy . Py . .
High - Py=6.75 .. Combined Impacts =3.905

From generic Impact scale .. Equivalent Linguistic term = 'Substantial ‘

Having determined the consequent impact, the rule can be rewritten in complete
form as follows:

[F Hazard is ‘Low’ AND Vulnerability is ‘High’ THEN SPI is ‘Substantial’

Likewise, other rules within other risk blocks can be generated in the same
manner as summarized in Table 7.2. The fuzzy rules should sweep all the possible
combinations of the risk factors’ performance. For example, for two risk factors,
each of those described by six performance state (or linguistic variables), the rule
base consists of 36 fuzzy rules. A sample block of fuzzy rule matrix is shown in
Figure 7.2. The top left corner array within FIS-S1 (Blue cell) matrix represents a

rule that expresses the following logical statement:

IF Hazard is 'Very Low' and Vulnerability is 'Very High' THEN SPI is 'Substantial'
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Table 7.2 - Sample rules base generating for various states of risk factors using
expert-derived weights

Rule Vulnerability (V) Hazard (H) Seismic Performance Index (SPI)
# Linguistic Equivalent  Factor Linguistic Equivalent  Factor Equivalent Linguistic
Term Impact weight Term Impact weight Impact Term
1 VERY LOW —0.33 50.94 VERY LOW —0.33 50.23 0.330 —» VERY LOW
2 VERY LOW —0.33 50.94 LOwW —>11 50.23 0.712— Low
3 VERY LOW —0.33 50.94 MEDIUM — 241 50.23 1.363— Low
4 VERY LOW —0.33 50.94 SUBSTANTIAL — 4.66 50.23 2.480 —> MEDIUM
5 VERY LOW —0.33 50.94 HIGH —6.75 50.23 3.517 —» SUBSTANTIAL
6 VERY LOW — 0.33 50.94 VERY HIGH — 8.4 50.23 4.337—> SUBSTANTIAL
7 LOW —11 50.94 VERY LOW — 0.33 50.23 0.718— Low
8 LOW —>1.1 50.94 LOwW —>11 50.23 1.100— Low
9 LOW —11 50.94 MEDIUM — 241 50.23 1.750— MEDIUM
10 LOW —>1.1 50.94 SUBSTANTIAL — 4.66 50.23 2.868— MEDIUM
11 LOW —11 50.94 HIGH —6.75 50.23 3.905—> SUBSTANTIAL
12 LOW —>1.1 50.94 VERY HIGH — 8.4 50.23 4.724— SUBSTANTIAL
13 MEDIUM —2.41 50.94 VERY LOW —0.33 50.23 1.377—> Low
14 MEDIUM — 241 50.94 LOwW —>11 50.23 1.760— MEDIUM
15 MEDIUM —2.41 50.94 MEDIUM — 241 50.23 2.410—> MEDIUM
16 MEDIUM —2.41 50.94 SUBSTANTIAL — 4.66 50.23 3.527—> MEDIUM
17 MEDIUM —2.41 50.94 HIGH —6.75 50.23 4.565—> SUBSTANTIAL
18 MEDIUM — 241 50.94 VERY HIGH — 84 50.23 5.384— SUBSTANTIAL
19 SUBSTANTIAL — 4.66 50.94 VERY LOW —0.33 50.23 2.510—> MEDIUM
20 SUBSTANTIAL — 4.66 50.94 LOwW —>11 50.23 2.892— MEDIUM
21 SUBSTANTIAL — 4.66 50.94 MEDIUM — 241 50.23 3.543—> SUBSTANTIAL
22 SUBSTANTIAL — 4.66 50.94 SUBSTANTIAL — 4.66 50.23 4.660— SUBSTANTIAL
23 SUBSTANTIAL — 4.66 50.94 HIGH —6.75 50.23 5.698— SUBSTANTIAL
24 SUBSTANTIAL — 4.66 50.94 VERY HIGH — 8.4 50.23 6.517—> HIGH
25 HIGH —6.75 50.94 VERY LOW —0.33 50.23 3.563—> SUBSTANTIAL
26 HIGH — 6.75 50.94 LOwW —>11 50.23 3.945— SUBSTANTIAL
27 HIGH —6.75 50.94 MEDIUM — 241 50.23 4.595—> SUBSTANTIAL
28 HIGH — 6.75 50.94 SUBSTANTIAL — 4.66 50.23 5.712— SUBSTANTIAL
29 HIGH —6.75 50.94 HIGH —6.75 50.23 6.750— HIGH
30 HIGH — 6.75 50.94 VERY HIGH — 8.4 50.23 7.569— VERY HIGH
31 VERY HIGH — 84 50.94 VERY LOW —0.33 50.23 4.393—> SUBSTANTIAL
32 VERY HIGH — 84 50.94 LOwW —>11 50.23 4.776— SUBSTANTIAL
33 VERY HIGH — 84 50.94 MEDIUM — 241 50.23 5.426— SUBSTANTIAL
34 VERY HIGH — 84 50.94 SUBSTANTIAL — 4.66 50.23 6.543—> HIGH
35 VERY HIGH — 84 50.94 HIGH —6.75 50.23 7.581—> VERY HIGH
36 VERY HIGH — 8.4 50.94 VERY HIGH — 8.4 50.23 8.400— VERY HIGH
Seismic Hazard (H)
FIS S1
VL L M S H - Seismic Exposure (E)
FIS S2
- S S S H VH VH VL L M H VH
o+
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Figure 7.2 - Rule-base matrixes for risk module
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The rule base matrix may be alternatively presented through 2D or 3D surface
views in MATLAB as shown in Figure 7.3 and Figure 7.4 respectively. The grade of
risk factors and consequent impacts are presented on a colour-coded scale
according to their severity. The graphs implicitly represent the relation between
risk factors, and hence can be a fast method of verifying variation in the rule base.
The low resolution 2D view mimics the rule base matrix graphically; while the 3D
views graphically present the state of relationship between I/0 risk factors. The
higher the number of performance grades, the higher resolution (precision)
picture of risk variation and the more effective it is in capturing nonlinear relations

between risk players.

At the limit state, the transition between grades of risk impacts would be very
smooth and gradual representing the fuzzy concept that happens in the real world.
Another noticeable aspect of the 3D view is that vulnerability and hazard varies on
the same pattern. This was expected as the rule base was symmetric. It can thereby

be concluded that:

e The variation in output risk factors depends on the strength of the input data,
which is represented by aggregated nonfuzzy weights.

e In the case where aggregated weights are identical, the variation of both
factors would be expected as the same, hence risk factors follow the same
trend.

e Higher weights mean greater strength in variation of output risk factors.

e The number of graded risk impacts represents the flexibility of the rule base to

capture the nonlinear relationship among the players.

Vulnerability
ulneraility

- MW = o @

Hazard Hazard

Figure 7.3 - 2D surface view of risk rule-base for two resolutions: low (5grades)
and high (15 grades)
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Figure 7.4 - 3D surface view of risk rule-base for two resolutions: low (5 grades)
and high (15 grades)

7.2.1.2 Data-driven Rule-base

Data-driven rule-bases are an alternative way to extract rules from prior
knowledge and experience. This method looks for a pattern, algorithm and
correlation predominating within the data. In this case, for instance, the
earthquake response action was empirically formulated in the codes through a

certain procedure.

The algorithm addressed in the local seismic code of practice can be used for
developing the relationship between hazard factors. According to BHRC (2010),
the seismic response of a building is represented by an elastic ground acceleration
response spectrum (or elastic response spectrum that was developed for two
ranges of seismicity (low - medium and high - very high). The response factor is a
function of ground type and building period. The building period can be obtained
through a simple algorithm (Eq 5.19), suggested by codes of practice. To avoid
detailed structural calculation, the period values for generic types of low-rise
school buildings were calculated upon a standard algorithm as summarized in
Table 7.3.

Table 7.3 - Period values for generic types of school buildings

H Building Type
Store
(m) | Steel Concrete Masonry
1 3.5 ' 0.205 0.179 0.128
2 7.0 i 0.344 0.301 0.215
3 10.5 0.467 0.408 0.292
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Using the period values and reference, PGA is defined within seismic zoning maps.

The site response factor can be derived as shown in Table 7.4.

Table 7.4 - Response factor for different soil classes

Response Soil class
factor
(FIS H4)

L {25 25 275 3.25
M {25 25 275 3.5
H 125 25 275 275
VH {25 25 275 275

Il I v

Seismicity
Reference PGA

Since the table presents the numerical relation between seismicity (H41) and soil
class (H42) it can implicitly represent a crisp form of rule base. Converting the crisp
values in linguistic terms, the fuzzy rule base can be derived. Likewise, the other
hazard rule base can be calculated based on either a code-based algorithm or
empirical correlation as defined in the literature. For example, the rule base for
FIS-H1 can be placed using the empirical relation (Eq. 6.2) between fault distance
and seismic intensity (see Section 6.6.4 for more detail). Sample hazard rule-base

matrixes are presented in Table 7.5.

Table 7.5 - Generic hazard rule base matrixes

. Liquefaction
FIS H1 Fault Rupture Distance (H1>) FIS H2 (Hay)
VL L M H VH UL L M H
— | L L L L L L L 2T |L L ™M H
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7.3 Software

The risk causative factors and information regarding alternative school buildings
was scaled and interpreted by means of fuzzy sets. Due to the size and extent of
information, the whole structure, MFs and rule base was modelled through 21
fuzzy inference engines and was synchronized using MATLAB programming
language. The fuzzy logic toolbox (enhanced within MATLAB), was used to model
the whole operation based on the Mamdani algorithm. The key feature of MATLAB
is an advanced programming concept that supports a systematic approach. This
feature allows the use of the MATLAB language through script files which are
supported by the extensive library of standard-built-in (or user-defined) fuzzy
functions. The graphical user interface provides an effective tool that allows

visualising, tracking and demonstrating the process of fuzzy modelling.

The potential capability of MATLAB has been improved by integrating with Excel
spreadsheets. While the proposed model components (FIS engine, MFs, integrator
scripts) were written in MATLAB, the 1/0 files were set to be called from and to
Excel spreadsheets for convenience. The combination of these two software types
provides the strong ability in pre-/post- processing of I/0 data that is required for

such a complex system.

7.4 Analysis and Interpretation of Results

Analysis and interpretation of the results are crucial to ensuring that the
knowledge extracted from risk information is clear and simply understandable by
related decision makers. The potential use of results disseminates the present
state of knowledge by raising awareness and preparedness. In the present case,
this task has been undertaken using set statistical indicators to measure the
frequency, severity and tendency of samples. Different forms of charts, figures and
tables were used to display and to compare the impacts of risk attributes
graphically among school buildings. This form of presentation has potential to

capture required attention and facilitate interpreting the results for any audience.
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7.4.1 Results and Discussion

The analysis of results might be performed in several ways. The primary results of
the model can be extracted through priority assessment of risk attributes.
Prioritising the schools based on their critical risk factors highlights the issues that
might be involved within separately in various dimensions. The ranking results can
be expressed in different forms depending on the resolution required for decision.
For example, high resolution results can be sorted numerically or categorically to
distinguish the school buildings in term of a specific attribute. Expressing the risk
values in the high precision decimal format appears effective for post-processing
calculations such as distinguishing buildings and allocating resources, yet it may
appear too complicated for users to interpret and to understand. Thus it is
required to be normalized or rescaled in a new metric. Lower resolution
(qualitative) form of results could be more appropriate for general interpretation.
This form of presentation addresses the overall risk ranking through linguistic
terms such as 'Extreme’, 'Strong’, 'Moderate' and 'Low'. Following the examples,
analyse and comparison of the overall seismic risk index (FSRi) in different

categories of age, origin (region) and seismicity source is required.

7.4.1.1 Seismic Risk vs. Seismicity

Figure 7.5 illustrates the seismicity (in blue V) along seismic risk (red O) of school
buildings in 15 regions of Iran. For simplicity, the seismicity of regions is also
shown on the same axis; although these concepts have fundamentally various
impacts and may take different scales according to risk perceptions, risk

dimensions and presumptions.

At first glance, the chart simply indicates that risk and seismicity have different
values and does not follow the same trend. For example, in regions with low
seismicity such as 'ILM' and 'AZW', the schools have taken high values of seismic
risk. Conversely, schools in some high seismicity regions like 'BHK', 'LOR" and
'HAM' demonstrated low to moderate degrees of seismic risk. It is also noticeable
that many other regions with moderate levels of seismicity could take various
levels of risk, regardless. This perception explains why seismicity and risk do not

follow the same trend while both are closely interrelated.
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Figure 7.5 - Regional classification of school buildings using risk-hazard map

Therefore, the risk - hazard map should be jointly taken into consideration and be
used in disaster planning; however, in some applications either of those might be
exaggerated or disregarded depending on the context and purpose of the
programme. Most mitigation programmes such as global risk management, seismic
performance and multidisciplinary seismic risk reduction of lifelines require

concepts to be evaluated and to be considered alongside each other.

7.4.1.2 Seismic Risk vs. Year of Construction

The overall seismic risk index (FSRi) can be compared to the group of buildings
with similar characteristics. The insight gained from this comparison initially
suggests a useful feedback that could support mitigation decisions as well as
highlight the controlling factors at school buildings. For example, the seismic risk
of school buildings can be reviewed according to their year of construction, as
shown in Figure 7.6. The risk of damage usually increases as buildings get older
due to material deterioration, construction quality, lack of maintenance and
specifically new updates in seismic code. Nevertheless, even newly-built structures
require upgrading; Conversely some old building may not require urgent

consideration as is seen in the Risk - Year map.

Another noticeable scenario emerges from the graph; buildings with varying years
of construction could exhibit different degrees of risk. Hence, for mitigation
practice, year of construction should be taken into consideration jointly with the

field survey and comprehensive quality inspections (i.e. in-situ tests).
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Figure 7.6 - Seismic risk within schools according to their year of construction

7.4.2 Post Processing Result

In order to review the relative contribution of risk factors, the knowledge

extracted from different layers were further processed, compared and presented

using advanced statistical tools. Relative contributions and trends in main risk

factors are shown in Figure 7.7.
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Figure 7.7 - Relative contribution and trends of risk factors within regions
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Initially, some observations can be made from the graphs. First, all four main
factors contribute effectively within seismic risk content, though hazard in last
three regions (KOH, SIS, BKH) exhibits the lowest influence of 5% compared to the
other factors. Second, the relative contribution is uneven in most regions. Even in
the first six regions where hazard contribution almost identical, the overall risk
index (FSRi) varies considerably due to variation in other risk factors such as V, E
and RM. Third, the trends in risk factors are not identical, though some of those

might follow each others' trends.

The bottom graph reveals that both seismic risk (FSRi) and vulnerability share a
descending trend; while response management (RM) demonstrates a relatively
steady trend. Reviewing the hazard index conveys the fact that seismic risk does
not necessarily follow the hazard trend. Despite having a partially flat variation in

hazard, the seismic risk follows a relatively low descending slope.
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Figure 7.8 - Comparing the variation of major seismic risk factors

The other risk factor results can be also investigated in several forms. Some major
pairs of risk factors that are sorted with respect to FSRi can be found in Figure 7.8.
There is one figure for each pair of factors (S31—SPI, S32—IF), (S11—H, S12—V) and
(S21—>E, S22—>RM). The risk results (solid line) in top figure show a gradual, steady

slope in school buildings comparing to the other factors. Importance factor closely
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follows the risk trend for the length of the seismic performance Index. This point
reveals that indirect background factors (E, RM) could have a considerable effect
on overall risk ranking along direct risk drivers, since public buildings such as
schools have greater demands in population, density and area compared to regular
residential ones. More details can be extracted from the mid and bottom figures.
Reviewing the dispersion in S11(H) and Si2(V) reveals that seismic hazard and
vulnerability cannot solely influence the risk content, and a combination of factors

could potentially increase or reduce the overall seismic risk.

Furthermore, other risk factors might be compared inside their categories, as
shown in Figure 7.9. It can be noticed that the soil response factor value (H42) has a
very smooth perturbation; while interim seismicity (H41) exhibits a considerable
fluctuation within its group. A similar scenario can be found in other categories
including vulnerability and exposure. Unlike Vs> (building quality) that scatter all
over the risk values, Ve1 (structural damageability) demonstrates a relatively flat
rate. Social and economical exposure (Ezi, E32) reflect a low fluctuation in values,
though they both follow a descending trend along seismic risk (FSRi). In contrast,
response management (RM) follows a higher fluctuation in RM31 and RM32 and

both factor follow independent variation in values.
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Figure 7.9 - Comparing the variation of seismic risk sub-factors
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7.4.2.1 Correlation Analysis

In order to highlight the similarities and differences between experimental/
judgmental data, a correlation analysis was performed. In the present case,
correlation analysis in the present case is important as it implicitly reflects the
robustness of the risk structure and provides useful feedback from the proposed

model. In correlation analysis, a correlation coefficient is defined as:

Covixy Covix.y
= il ¥ = ¥ (76)
ETD(x)w STD(y) 5 .=

y
Where Cov (x,y) represents the covariance between two variable and Sx, Sy are
standard deviation of two vectors. The coefficient ‘¥ normally represents how
close the two vectors are in terms of 'strength' and 'direction’. The ‘r’ value range
normally varies from 0 (no correlation) to 1 for complete similarities in trends and

0 to -1 for opposite trend direction.

The correlational analysis in this thesis aims to verify inter-categorical correlations
and to reveal how strong the risk attributes are (within the same category) and
finally to what extent each factor contributes within overall risk index. Hence
cross-categorical correlation is not intended since the risk attributes have
presumably been considered as a mutually exclusive system. A summary of
correlation analysis of seismic risk attributes is illustrated through a risk tree in

Figure 7.10.

Laver 5 [Laver 4] [ Layer 3| [tayer 2] [layer1]
H11 0.5307
H12 0.1562
H21 0.2121 H41 0.1696
H22 0.4287 A L
H42 0.3838 H42 0.3838)] 0.4978
V31 0.3516 SFI |
V32 0.1655 0.683
V11l 0.6905 V71 09163
V12 0.4938 [V
V22 0.6905 0.4817
V51 0.0356 V72 0.1364
V41 0.5589 FSRi I
V42 0.0107
E11 0.8537 E31 0.9954
E12 0.7430 [ E
E21 0.7693 E32 0.7457 0.498 IF
E22 0.3966 0.604
RM11 0.4117 RM31 0.2833
RM12 0.1874 i RM
RM21 0.3559 RM32 0.8873] | 0.0868
RM22 0.3998

Figure 7.10 - Correlation coefficient in seismic risk factors
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Evaluating the coefficients within the risk tree leads to some observations. The
chart initially highlights the relation between seismic risk attributes, simply by
reflecting the contribution of individual variables within composite risk. For
example 'Construction Year' (Vz2), 'Code Conformance'(V11), 'Population’ (E11) and
'Occupancy Load' (Eiz) demonstrate a good correlation with overall risk as
previously expected. Furthermore, the chart also locates the branch or category of
risk tree that has the most (or the least) influence on overall risk content. For
example, social exposure (E31 with 0.9954) and structural vulnerability (V71 with
0.9163) demonstrate two strongest categories with the most conformity with the
composite risk vector (FSRi); while social vulnerability (V72 with 0.1364) exhibits
the least correlation with FSRi, confirming that social aspects are vital in disaster
planning. Economical considerations should be the last factors to be accounted for

within school mitigation decisions.

The idea that mid-layer factors presumably weaken the influence of risk results (in
higher layers) does not seem to be valid according to the result. Having looked at
the chart, it reveals that all layers (including 44 variables) within risk trees
contribute effectively within overall risk content; though few of those (10 out of 44
variables) represent the low correlation (less than 0.2) that are scattered in
different layers. Thus, the correlational analysis of risk vectors can improve the
understanding of risk structures, and emphasises categorical explanatory risk

variables that could better describe seismic risk in reality.

7.4.2.2 Multivariate Analysis

Multivariate analysis refers to set of advanced statistical techniques for examining
the relationship among multiple variables at the same time. Investigating cross-
variations in multiple risk factors is important since seismic risk management is a
multicriteria problem. The multivariate analysis is an enhanced tool that provides
deeper insight into the model by visualizing the high-dimensional data analysis;
while a simple scatter plot cannot. Bivariate (2D) and trivariate (3D) analysis, for
instance, allows users to analyse system behaviour and draw out the relationship
between two variables regardless of others; yet there may be important patterns
in higher dimensions which may not easily recognisable from this plot as well. The

analysis can also be used to illustrate the distribution of the data set (I/0).
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The current model involves more than 40 variables that contribute both directly
and indirectly within the total risk content. A bivariate analysis was conducted
between selected pairs of variables which are expected to be a major influence on
overall risk. Of course, the multivariate analysis gives a better presentation and
communication with users rather than correlation analysis. Sample multivariate
distribution patterns (MDP) of risk factors are presented through scatter plot
charts between major risk variables in Figures 7.11 and 7.12. The points in each
scatter plot are colour-coded by means of the overall seismic risk (FSRi) and
construction age for a given pair of variables. The pattern legend is defined in
Table 7.6 representing strong colours for high disastrous risk content as well as

older buildings.

Table 7.6 - Pattern scale defined for multivariate visualizing

Risk Risk Scale of pattern

Index Descriptor Low Moderate Strong !

FSRi Overall risk 0-2 2-5 5-7 7-10
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Figure 7.11 - MDP in vulnerability module with respect to construction year
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The 'construction year' pattern within school buildings is illustrated in Figure 7.11
through bivariate analysis for a set of vulnerability factors. The graph reveals the
following points:

e The univariate histograms (shown diagonally) demonstrate the distribution
of I/0 variables. This is an effective measure of testing the domains’ coverage
and identifying the gap. The above histograms exhibit relatively rich
sampling sets that cover a wide range of domain in both input (Vi1 to Va1)
and output (FSRi) variables.

e The first column of graphs reflects the variation of the Vi1 (code
conformance) within respect to other vulnerability variables. The pattern can
be clearly distinguished in three colours confirming this observation that
older school buildings (>25) have less code conformance index (Vi1) and
exhibits a lower quality index (Vi2) for a certain group of buildings with
specific damage patterns (V3z). Some variables such as V42 (occupancy load)
demonstrate a scattered (vague) pattern, while the other variables confirm

the independency axiom assumed at early stages of the model’s design.
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Figure 7.12 - MDP in exposure with respect to FSRi
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The pattern of the fuzzy seismic risk index (FSRi) was also investigated through
bivariate analysis for a set of vulnerability factors as shown in Figure 7.12. The
graph indicates the following points:

e Univariate histograms show a relatively rich domain of I/0. In histogram 'E’
(exposure) for example, the data range covers over 80% of domain which
addresses a sound base integration and good strength in the dispersion of
output data.

e Bivariate graphs exhibit a diagonal pattern arising in both variables. The E31-E
and Ei1-E graphs, for example, indicate that an increase in either of the
variables can raise the overall risk (FSRi). Moreover, the social index (E31)
demonstrates a diagonal convergence that addresses the direct impact; while
the flat pattern in the economic index (E32) represents a relatively steady
effect on the overall risk.

e No matter the variables, and even though the parameters and sample sizes are
different, the approximate linear pattern (relationship) suggests that the two

samples may derive from the same category and bear certain interrelations.

7.4.2.3 Bivariate Analysis of Risk

In order to verify the reliability of the risk results, a bivariate analysis of risk

function was conducted. Considering the risk as a function of Hazard and

Vulnerability R = f(H, V), a bivariate analysis using cumulative Gaussian mixture
distribution function, generates the nearest estimate for risk values. A continuous
approximation of vector H and V was undertaken using normal sampling

distributions, as shown in Figure 7.13.
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Figure 7.13 - Cumulative Probability distribution of Hazard and Vulnerability
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Gaussian mixture model of risk can be formed by combining multivariate normal

densities of each component as shown in Figure 7.14.

Risk

Gl e

O 1
e d wﬂ““u
sl il
il \1\“‘

T ﬁ
Y IR,
vat o Ay TR
A A A
T i !é:t}g!?!%%{ﬁ‘*‘i‘?‘*“*=- 4

Hazard
Figure 7.14 - Bivariate cumulative distribution of hazard and vulnerability samples

The graph provides a useful metric that can be used for verifying the system’s
performance. The rule base development (Figure 7.4) displays a close resemblance
can be found with 3D surface view of risk module (H, V) in the rule-base matrix.
This resemblance can be interpreted mathematically since probability and fuzzy
set theories are, broadly speaking, two alternative ways of approximation with

different degree of precision.

In problems with adequate samples when the frequency of observation (sample
size) increases, the probability distributions gives more precise results, whereas
fuzzy set theory is capable of dealing with any situation no matter the sampling is
rich or weak which is an advantages. Therefore, fuzzy logic as an approximate
reasoning method can be alternatively used in many risk assessment problems

with data restriction.

7.4.2.4 Uncertainty Analysis

Quantification of the uncertainty is a concern of any knowledge base system
because much of the information is collected from different sources. Uncertainties

can be imposed in different forms, such as statistical variation, linguistic
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imprecision, approximation and conflict in expert judgment. The variability in risk
results has been investigated in two dimensions, including performance and
weight, as illustrated in Figure 7.15. Reviewing the risk factors indicates that
vulnerability is the highest variation with almost 35%; while the other risk factors,
including hazard, exposure and response management display far lower variations
of around 25%. This was expected because the source of information utilized in
developing the vulnerability module was collected from expert surveys, compared

to other risk factors of more objective sources, such as hazard.
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Figure 7.15 - Variation of performance and weight in major risk factors

The variation of risk factor weight conveys different story. Vulnerability and
hazard exhibit the greatest variation with 30% and 35% respectively; while the
other risk factors remain as low as 25% and less. The variation in vulnerability
results was expected since the majority of the data regarding the buildings’ quality
is derived from expert surveys and relies on expert knowledge. This point can be
also seen in mid-layer risk factors as shown in Figure 7.16. For instance, Vs>

(engineering performance) dominated the variation among risk factors.

Hazard and exposure indicates the lowest variation. Despite some outlying points,
H31 (propagated seismicity), H3, (potential ground failure) and E3» (economical
exposure) hold the least variation with less than 10%. The response management
values have a mid range variation starting from 22% in RM, 25% in RM3; (response
& preparedness) and the highest value occurs in RMs3; (critical planning and
management). The Vg1 (structural damageability) scenario displays almost 5%
variation confirming that the vast majority of schools were selected from

vulnerable classes of buildings. Surprisingly, the integration of minimum variation



Chapter 7: Case Study 176

of potential damageability (Ve1—%5) and maximum variation in engineering
performance (Vs2—%55) balanced the results in structural vulnerability (V71) with
33%. This confirms the principle that every building class, no matter when they
were built, has a basic range of damageability which might be propagated

according to their engineering performance and construction quality.
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Figure 7.16 - Variation of categorical risk factors

7.5 Discussion

Analysing the case study results reveals some important points about contribution
and the interactions of seismic risk impacts. The findings suggest that the
composite risk index (FSRi) does not necessarily follow its factors’ trends (Vahdat
and Smith 2014). This implies the importance of using a comprehensive risk index
for retrofitting decisions rather than relying on single impacts (i.e. hazard and
vulnerability factors) because it could mislead the whole mitigation decisions.
Furthermore, it was demonstrated that the risk index in medium seismicity could
be as high as high seismic areas and vice-versa. Classifying the buildings based on a
single factor such as vulnerability or hazard could be either too conservative or
disastrous, particularly when a paramount response measure (retrofitting) is
necessary. Therefore seismic mitigation decisions should be made in compliance
with the multi-dimensional aspects of seismic risk instead of mere reliance on

individual hazard and the vulnerability index.
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Further investigation reveals some significant facts regarding the determinant
criteria within the mitigation programme. The finding indicates a strong
relationship between the composite risk index (FSRi) and exposure in both normal
and extreme states of analysis. It also shows a strong correlation (67%) with the
‘yvear of construction’ as expected. One interpretation of this result is that both
population and year of construction should actively engage within retrofitting
decisions. Currently the structural vulnerability index is the major controlling
factor in retrofitting decisions; while this has been scarcely incorporated within
existing models as risk criteria. This test demonstrates the importance and

influence of general factors to the task of risk mitigation.

The case study results were also tracked and analysed using different statistical
tools. Correlation analysis of risk factors in different layers confirmed that the
selected risk factors are mutually exclusive, while maintaining a strong
interrelationship inside the categories. Seismic exposure was exhibited as a strong
contribution to structural vulnerability and seismic hazard, and conformed with
the aggregated weight results that were extracted from expert opinions. Bivariate
analysis of major risk factors (e.g. hazard and vulnerability) was also tested to
evaluate the consistency in the proposed model with the conventional probabilistic
method. The test, although demonstrating relatively conservative results, shows a

sound agreement with probabilistic approach.

Surprisingly, response management factors exhibited the lowest contributions
among all criteria. This can be explained by this fact that in countries with both
technically sound seismic codes and active regulation and enforcement, their
building stocks would likely be above a certain safety threshold and thus the

variation of RM index is not strong enough to change the ranking results.

The outcomes of the research collectively confirm the applicability, suitability and
capability of the proposed model to meet research aim and objectives. The main
purpose of the research was to examine the feasibility of the KBES to support
different stages of seismic risk management. The objective was met by exploring
the case study of school buildings in Iran. Reviewing the results, it was
demonstrated that the proposed model can operate and navigate the seismic risk
management process by addressing specifically the mitigation concerns and

modelling requirements.
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The applicability of the model was examined in the case of retrofitting schools in
Iran. This methodology provided a greater insight to the seismic risk by using the
latest scientific understanding, engineering knowledge, modelling experience and
expert judgment. The results indicate a clear resolution for previous concerns and
issues raised in traditional probabilistic methods, taking advantage of both
probabilistic-fuzzy concepts, while meeting the initial requirements of the model,

client needs and data constraints.

Having met the objectives of the research, the findings collectively provide
contributions both in theory and practice in several ways. Theoretically, the
research merged the literature from two main areas. First, the mitigating decisions
as defined in seismic risk management context (Chapter 2), and second, the risk-
based ranking approach (Chapters 3 and 7). By merging the concepts and theories
of the subject areas, the current research offers a deeper insight of system
approach to effectively manage the school buildings exposed to varying degree of
seismic risk. The major areas of theoretical contributions are the system
perspective as a core concept of seismic risk management to process mitigating
decisions and classification of seismic risk assessment approaches. The research
also establishes a rational strategy for identifying the risk impacts and
implementing the appropriate methodology to aggregate the impacts efficiently
using KBES. From a practical perspective, the proposed model provides effective
tools that allow decision-makers to use it in real-world mitigating decisions,
finance and budgeting, insurance and disaster planning and preparation. Major
areas of contribution have been implemented practically in the mitigation of city

exposure to seismic risk and ranking of the school building retrofitting.

7.6 Characteristics of the Developed Model

The model proposed in the thesis has demonstrated the benefits of an integrated
framework, combining conventional algorithmic methods with heuristic

capabilities of expert systems in multiple aspects:

Handling complexity - The use of an expert system for modelling the complex
nature of seismic risk management has been shown to be feasible. The research
proposes a new method for handling the complexity of multidisciplinary contexts

within seismic risk management, using a 'synchronized hierarchical framework'.
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This concept provides a comprehensive view of risk in the system, allowing for the
integration of multiple sources of risk data to be easily used by different users. In
addition, a hierarchical structure can explicitly represent the cause-effect

relationship within risk factors.

Customizability - The proposed model is developed by integrating blocks of risk
impacts, according to experience and client need. The customized view of risk
allows users to better control model assumptions; a complete view of seismic risk
can be gained by tailoring specifically for mitigation measures while being
consistent with certain organizational levels. Novice users can easily customize the
structure and model components, or replace them with external data and
experience. The framework used in this thesis can be simply reused in a different
situation as it offers a new form of modelling and organizing risk information. The
open modelling concept allows users to customize the model by adjusting or
overriding model components. New data, experience and methods in the other
environment can be simply interpreted and be used within a customized model.
The open modelling capability makes the model more defensible and auditable in

practice.

Criticality analysis - Planning for disasters and mitigation decisions requires a
comprehensive picture of seismic risk within a region or group of alternatives. This
picture can be only achieved through critical analysis of the contributing factors,
examining the variation, dispersion or concentration of critical factors over a
region. Such analysis offers the advantage of ranking different risk causes and
supports mitigating measures by directing experts to the most contributing factors

during an earthquake event.

Nonlinearity - Fuzzy logic is an alternative way to capture the concept of seismic
risk management through nonlinear approximating functions. Because risk factors
follow a nonlinear variation in reality, it is apparent that nonlinear functions can
better represent the interactions among risk variables, weights and performance
factors. This point has been demonstrated through bivariate analysis of risk
(Chapter 7). Comparing to conventional probability approach, the present results
prove that fuzzy MFs are sufficiently precise to capture the nonlinearity of seismic
risk. Due to strength of fuzzy logic in systemic modelling, the benefit of simplicity

of application in mitigation programmes outweighs its cost.
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Transparent tracking - The proposed fuzzy system accommodates a transparent
approach to track and to review risk factors in different layers of hierarchy. This
feature is important, particularly for complex systems where a large number of
variables involved. Using Al helps to track the myriad details involved in different
stages of seismic risk management. Decision-making for mitigation programmes is
a complex process that numerous factors have to be accounted for. In addition,
most socioeconomic factors and school characteristics normally vary over time;
hence the seismic risk should be updated from on occasion. The tracking capability
of the proposed model allows a clear tracking and updating the seismic risk values

automatically whenever needed.

Flexibility in communication - Seismic risk management as a complex system deals
with numerous input/output that has to be managed, updated and processed
effectively. The utilization of fuzzy logic allows experts and end users to
communicate information about seismic risk and possible impacts of risk factors
within a school building in a particular or wider group of schools within a region.
Because all risk factors and school characteristics were set up as vectors and
processed through matrix operations, the inputs can be simply updated, no matter
how many alternatives are involved. The results can be further processed or be
described in any form of presentation, while in the conventional approach, there is

no such flexibility in communication to be found.

Handling Uncertainty - Seismic risk management is characterised by deep
uncertainty, and dominated mostly by imperfection, imprecision and vagueness in
knowledge. The fuzzy-based approach used in this research can effectively address
the uncertainties as opposed to probabilistic-based methods. Using linguistic
variables for representing the risk data can incorporate as much uncertainty as
possible to the model. The implication of the fuzzy set theory provides a more
comprehensive view of risk by addressing a wider range of uncertainties and
facilitating the contribution of multiple experts within the process of decision-

making.

Robustness - The proposed model is able to determine the state of risk and its
components in a large-scale portfolio of school buildings. Verification results
indicate that the model is much more robust than conventional approaches. The

performance of the composite risk Index (FSRi) appears to be low in sensitivity
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with respect to risk criteria. The model also indicates that it is unaffected by
missing values or outliers; consequently the model works with various levels of
imperfection, imprecision and incompleteness in the state of knowledge. The
implication of fuzzy logic improves the ability to deal with vagueness systemically
in the early stages of the modelling. The simplicity of fuzzy logic in modelling
expert knowledge makes it a robust system, one that is capable of handling

complex multicriteria problems.

7.7 Summary

The systematic procedure implemented within the case study demonstrates the
application of the KBES to critically analyse risk factors and their influence on the
overall composite risk index (FSRi). Critical assessment of seismic risk impacts is a
significant feature of the developed system. In this case, the KBES has indicated an
effective way to address these challenges by integrating expert knowledge with
mathematical models in a systematic way. Using expert systems, it offers a simple
way of human reasoning whilst reducing the field of expertise, minimizing the
variations and cost of decision-making by providing a faster response. The
combination of data- and export-driven knowledge provides complementary
sources of information for this case study. The knowledge base utilised within the
risk system has potential to be increased incrementally while it can be updated
dynamically over time. This allows the mitigating measures to be modified,

changed from time to time or applied in new forms to other regions.
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Chapter 8: Verification and Validation

8.1 Introduction

This chapter reports the process of verification and validation (V&V) of the study
and outlines the methods to assure a sufficient level of confidence. The first part of
the chapter discusses the importance of V&V as key part of the model development
cycle and describes the potential techniques to verify and validate the model. In
the second part, the model was debugged statically and verified dynamically using
sensitivity analysis to explore the behaviour of the model. In the last part, once the
system had been verified, a set of validation tests was applied to externally

evaluate the effectiveness and usability of the model in practice.

8.2 Model Verification and Validation

V&V plays an important role in the development and implementation of a KBES.
Model verification is defined as “ensuring that the computer program of the
computerized model and its implementation are correct. Model validation means
“substantiation that a computerized model within its domain of applicability
possesses a satisfactory range of accuracy consistent with the intended application
of the model” (Schlesinger et al. 1970). Both definitions are adopted in this thesis.
Suen et al. (1990) addressed the verification as glass-box testing to determine if
each component of the system completely and accurately meets the user
specifications; while validation was classified as black-box testing to observe the
response, and if the overall system implements the user need as planned. "In
essence, verification determines if the system was built right and validation
determines if the right system was built" (Ng and Smith 1998). In other word,

verification determines whether the system is built correctly according to its
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specifications; while validation determines the system actually fulfils the purpose
of what it was designed for. Sargent (2013) suggested a straightforward paradigm
for V&V in relation to the model development cycle as shown in Figure 8.1 and

used here.
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Figure 8.1 - V&V as part of model development cycle (Sargent 2013)

Accordingly, the process of V&V adopted in this thesis was based on four concepts;
computerized model verification, data validity, conceptual model validation and
operational validation. The computerized model verification ensures the computer
programming and implementation of the conceptual model is correct, complete
and consistent. Data validity determines that the required data for model
development, implementation and testing are correct and sufficient. Conceptual
model validation implies the theories, structure and assumptions underlying the
conceptual model truly and reasonably represent the problem, event or
phenomena in reality. Operational validation addresses the adequacy of the
model’s output to accurately meet the client’s intended purpose over a specific

domain of application.
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The data used in this thesis were obtained from a live seismic mitigation program
in Iran, which was undergone an audit process both locally and through the central
rehabilitation office. The underlying structure, theories and assumptions used
within the model were conceptually based on the globally accepted perspective of
risk, hazard, vulnerability and resilience which are currently in use by the UN-ISDR
(2004). Therefore, data validity and conceptual validity have been already
achieved and the rest of the chapter will focus on computerized model verification

and operational validity.

8.3 Computerized Model Verification

Simulation model verification is concerned with the correct and accurate
transformation of information into a simulated model. This process aims to show
that the computer program performs as expected. Whitner and Balci (1989)
classify the verification process into six distinct perspectives, including informal,

static, dynamic, symbolic, constraint and formal analysis as indicated in Table 8.1.

The taxonomy contains a broad range that varies from very informal (left) to very
formal (right). As the formality increases, so does effectiveness and complexity.
The informal analysis relates to human reasoning and subjective assessment (e.g.
Delphi) which is more appropriate for conceptual qualitative studies (interview,
focus group). Formal analysis is based on a formal mathematical perspective and is
thus considered the most effective way to provide the proof of correctness.
However, it is restricted to particular applications that predicates calculus or

follows a logical deduction in its concept.

Constraint analysis verifies the model conformance to the model’s assumption,
ensuring that model is functioning within the desired domain. Symbolic analysis
verifies the input-output transformation by symbolic tracing. Both methods are
effective to be used as an auxiliary verification process; however, due to the high
human resource cost and difficulties in the generalisation of input data
(interpretation), symbolic and constraint analysis should not be used in its
standalone form. Static analysis verifies the basic characteristics of the model in
terms of deficiency and redundancy, ensuring the model is complete and

consistent with presumed assumptions. Dynamic analysis evaluates the model
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during system execution by tracing and monitoring the input-output, and treating
with the model as a black-box or white-box. This method not only provides
conclusive evidence of a model’s functioning, it also paves a systematic way for
debugging and error detection. However, the performance of dynamic analysis
relies directly on the modellers’ skill and experience, as well as requiring a
relatively long time to process for complex systems. Furthermore, it cannot be

used as a system correctness indicator.

Table 8.1 - Model verification techniques (Whitner and Balci 1989)

Informal Static Dynamic Symbalic Constraint Formal
Analysis Analysis Analysis Analysis Analysis Anulysis
) Azalyxing through | Analyzing charac- | Analyzing resulis | Analyriag the s Comparisan af Formal mathe-
Category I‘:“&;"mdp'ﬁﬁn;ml::';;a teraties of the | garhered during ﬁ-'m'-l"‘:""'ﬂ;“]'é"bldﬂ :u"ﬂl midel un | metical proof of
ass 1 wpwats 1 Ou anm, Ll 00 S Wil
Definition develapmest activines | S22 sourse code | medel execurion | TRELS SIS I-i"hg Fominir COHTECANESS
Level of Very Informal o Informal o Formal Formal 1o Yery
Formalily Informnl Farmal Fanmal Wery Fosmal Formal
Complexity Low Mouderae oderate o Hizgh High to Very High
plexity High Very High
Human Very High Low o Moderate High High Wery High
Resource Mosderate High
Computer Very Low Moderate Yery High Moderae High Very Low
Respuree Cosd w High
Effectivencas Limited Moderate Maderate Highwos |  Very High Highes,
ter High to Eligh Very High if Adrainable
Instrumentation Mo Mo Yes Mo Yes Mo
Hased

Considering the complexity, scope and effectiveness of the methods mentioned,
and due to the fact that the model is operational nature, a combination of static and
dynamic analysis was jointly devised for the study’s verification. Combining the
static and dynamic analyses improves the issues associated with the individual

approach.

8.4 Verification of the Developed Model

The developed model has undergone a verification process to detect anomalies
within the system both statically and dynamically. In static analysis, the inference
engine and knowledge bases were examined without running the expert system;

while the dynamic analysis was performed to verify the system in terms of
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functioning and behaviour. For this, a set of sensitivity analysis was conducted in
two forms of black-box and white-box to reflect the external and the internal

functioning of the system.

The sensitivity analysis is considered an important task since it can detect a larger
class of errors. This analysis helps users to investigate the effects of changes of
input data on output results of the model. Interpreting the sensitivity highlights
extreme values, as well as determining the possible risk factors that have adverse
effects on overall risk. The analysis therefore suggests potential measures to
prevent or remove the worst action (Jovanovic 1999). However, sensitivity
analysis requires complex calculating procedures, making the performance of
calculations without a computer time-consuming. The situation is made worse for
such a complex system with over 20 inference engines. To handle this issue in this
study, a set of virtual tests was used to systematically trace and monitor the input-
output variations. Since a complete dynamic testing is theoretically impossible due
to input size constraint, a virtually randomized set of numbers was programmed in

MATLARB to test the various aspects of the model.

8.4.1 Static Verification

Static verification is the process to ensure that the knowledge base of an expert
system is free from internal errors such as redundant, conflicting or missing
knowledge (An 2006 & 2007). This process can be carried out by some form of
automatic knowledge base checking tool (Landauer, 1990). For this study, static
test was conducted in order to verify completeness, consistency and correctness as

outlined in following:

Completeness

Completeness refers the situations in which the rule base covers all possible
combinations of variables that can arise within the domain. Deficiency in the
knowledge base can be caused by missing rules or incomplete set of inputs
inferring no conclusion. A system is complete if there is no valid conclusion which

it cannot reach (Suen et al. 1992).
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Consistency

A system is consistent if it cannot reach an invalid conclusion. There are many
techniques for verifying the consistency of a rule base (Nguyen 1985). Various
tests can be applied during the verification process, including the following (Preece

etal. 1992):

Redundancy (or duplication in the knowledge base) - A situation where there are

unnecessary expressions inferring any conclusions by an expert system.

IF XAND Y THEN A;
IFY AND X THEN A;

Inconsistency (or contradiction knowledge) - Inconsistency could be raised if
there is any contradiction within rule base. For example, if the same antecedent

links to opposite conclusions as shown in following:

IF X THEN A;
IF X THEN not A,

Circularity (or cyclic dependencies) - This error occurs when there is a cyclic
inference chain in the knowledge base that causes an endless loop. This can be

simply shown as:

IF XTHENY;
IF Y THEN Z;
IF Z THEN X;

Static verification can be performed in early stages of a model’s development
phase, or incrementally throughout model implementation. To avoid possible
inconsistency in developing a large number of input rules in the present work, it
was endeavoured to keep the model as simple as possible. Nevertheless, the expert
system underwent an audit process to verify any sort of anomaly within the

knowledge base.

In terms of incompleteness and inconsistency, there is no such error found within
the rule base. This was expected because both antecedents and conclusions were
designed independently for each FIS. Each category of the proposed system was

developed by integrating a set of simpler 2D rules within an open branch, rather
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than closed loop. Hence there is no possibility for cyclic dependencies and

contradictory rules within the knowledge base.

8.4.2 Dynamic Verification

Dynamic verification includes a series of parametric tests that explore the
behaviour of the model by the means of variation. To analyse the range of
sensitivity within which a model has reasonable variations in parameter values, a
sensitivity analysis is recommended. This process provides useful information

where the conditions of uncertainty exist within one or multiple parameters.

Thus the results of sensitivity analysis can be used for managing uncertainty in
several ways. First, it helps to identify the parameters with high sensitivity that
requires additional study and measurement. Second, it increases the robustness of
modelling by determining the weak branches within each category. As a result, the
sensitivity analysis increases the confidence in the results and ultimately improves
the robustness of the model. However, sensitivity analysis could be time-
consuming, thus requiring a computerised model to conduct processes as well as
to monitor the results effectively. In addition, because an infinite number of test
cases can be applied, the complete testing could be theoretically difficult. Another
issue is the adequate test coverage, as the scope of coverage grows exponentially

as the model size increase (Whitner and Balci 1989).

For this thesis, a set of parametric sensitivity tests was approached for three
reasons. First, to verify the most significant risk factors in developing priorities for
risk mitigation. Second, to explore the response of the model to the specific inputs,
and to study their impacts on overall mitigation decisions. Third, for debugging the

system, identifying the likely failure points and suggesting its possible refinement.

8.4.3 Parametric Sensitivity Tests

Due to uncertainty exists within seismic risk parameters, a sensitivity analysis was
performed to identify potentially uncertain variables and to measure the extent of
uncertainty affecting the risk factors. The behaviour of a KBES is notoriously
difficult to predict (Wood and Frankowski 1990). Due to nonlinearity and

complexity, the behaviour of the model may not be consistent in different states of
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risk inputs. Thus, the uncertainty within risk factors must be presented by the
mean of a range in which all possible variations have been accounted for. As a
result, sensitivity analysis was performed for three scenarios named as extreme
limits (lower, upper) and mid-range scenarios. Simulating the most common
conditions that a model might encounter, three scenarios together ensure that the
possible variations in the whole range of risk data are truly captured. The result of
sensitivity analysis was set up in three parts: first the sensitivity of the overall
composite risk index (FSRi) is reviewed, and secondly sensitivity of major risk
factors is recorded, and finally the sensitivity of risk ranking results. Each part is

outlined in the following sections.

8.4.3.1 Sensitivity of FSRi

A respective procedure was systemically performed to examine the effectiveness
of input parameters. To investigate the effects of uncertainties on the overall
seismic risk Index (FSRi), a set of stochastically generated input was generated
using random sampling distributions. The response of the system was then
measured in terms of minimum, maximum and mean values. This procedure was
performed three times (for three scenarios) for all 21 risk input parameters. The

results of sensitivity analysis are illustrated within Figure 8.2.
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Figure 8.2 - Sensitivity results of FSRi

In general, the graph indicates a consistent variation in three states (max, min and
mean) that was limited to 35% in most of the risk criteria; although some
deviations can be found especially when representing the extreme limits. As it can

be seen, ground shaking (E11) and soil class (H42) are by far the most uncertain
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variables with 45% variation in three scenarios. The uncertainty in structural
vulnerability indices (i.e. V11, V22, V32) as well as hazard (i.e. Hi1, H12) come second,

with 40%.

The response management inputs along social vulnerability (Vii, V42 and Vs1).
Ground failure attributes (Hz1 and Hzz) exhibit the least contribution with 35% as

expected. The variation in mid-range values also represents a consistency between

average sensitivities as indicated by Xpar (X4 =

EminTE
bar 9

M ) and mid-range

sensitivity results indicated with Xmean. This reveals that the sensitivity in the mid-
range scenario consistently follows all of the trends in general; while it has less
perturbation than those results corresponding in extreme limits. From a modelling
perspective, the variation in extreme limits (upper and lower bounds) is often
expected to be more uncertain than those in normal states. The sensitivity results
confirm that FSRi are prone to higher uncertainty in more subjective factors such
as structural vulnerability and soil conditions. Therefore, any efforts should be

arranged to reduce the subjectivity of the input variables.

8.4.3.2 Sensitivity of Main Risk Factors

To investigate the variation of the main risk factors (H, V, E and RM), a similar
procedure was set up using random sampling. The response of risk factors was
measured for three scenarios as depicted in Figure 8.3. In general, the graph
indicates that the main risk factors are prone to a wide range of variation in
different categories. Unlike FSRi which was consistently limited to a range of 35%

to 45%, the main risk factors exhibit significant ranges, varying from 20% to 80%.

[t is noticeable that the ‘hazard’ and ‘response management’ categories have a
great influence of 70% and 80%, while both demonstrate a steady impact of 35%
on the FSRi. The ‘hazard’ criterion show more variation in the different states of
testing with almost 80%, which is normal due to the stochastic nature of
seismicity. The ‘vulnerability’ criterion exhibits a medium variation in its factors
and is limited to 35% in general; while the ‘damage’ probability (V32) stands at the
peak in its category with 55%. The ‘exposure’ factor also indicates the varying

degree of sensitivity in which population index (E11) plays the greatest
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contribution with 70%. All RM criteria show a relatively constant contribution of

around 70%, implying the same strength in their category.
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Figure 8.3 - Sensitivity results of main risk criteria

The sensitivity analysis of the FSRi and risk factors together highlights some
important points. The empirical results indicate that some risk criteria (Va1 , Va2,
E12, E21 and E22) have the least influence on both FSRi or risk factors. In addition,
the ‘hazard’ criterion appears critical and can be thought of as the most significant

source of uncertainty within the model.

Sensitivity of Ranking

Another area of sensitivity analysis is to determine how critical each criterion is. In
other words, this regards how sensitive the actual ranking of the alternatives is to
changes in the risk inputs. The purpose of this analysis is to explore two closely-
related issues that often influence the ranking results. The first issue is to measure
how critical each criterion is due to small changes. Using sensitivity analysis, it can
be determined to what extent the risk criterion are sensitive and could
significantly disturb the ranking results. The second issue is to determine how
critical the various performance measures of a risk criterion are in the overall
ranking. This test is intended to pinpoint the critical criterion and to measure the

extent they could possibly influence the FSRi results.



Chapter8: V&V 192

To investigate the criticality of ranking, an incremental sensitivity analysis was
applied. During this procedure, the priorities and performance of FSRi were
measured by incremental changes in input data. A procedure was formulated in
four steps using 10%, 20%, 30% and 40% increase of respective risk criterion. The
performance of alternative ranking was then calculated and compared using

statistical tools.

Because each criterion has various influences on the overall FSRi index, it was
expected that each should exhibit different performances on alternative ranking.
Even a slight change in FSRi could change the priorities of alternatives and
consequently change the mitigation decision. As the sensitivity shows the change
in priorities of alternatives numerically or pictorially, a quantitative measurement
is required to compare different alternatives and to determine how sensitive each
criterion is. A ranking index is proposed to measure the sensitivity of the

alternatives group by using the weighted average method.

Considering a decision problem with M alternatives and N criteria: If alternatives
ranking denoted as R; (for i= 1,2,3, ..., M) and criterion performance denoted as Pj

(J=1,2,3,..., N), the sumproduct index is defined as:

Ip = 20—y T (R, ) (8.1)
Comparing I, with original product index, the ranking sensitivity index can be

determined as the following:

L. N =M ir.p)
= —EF — — —Jﬁﬁ_' =i
IRE 1 II:I 1 EJ[:‘_':R['P[:' (82)

The sensitivity index could take maximum value when the new ranking of
alternatives are reversed. Conversely, when there is no change in FSRi results, both
numerator and denominator will be the same and thus the Izs = 1. Using this
concept, the value and direction of sensitivity for each criterion can be determined
in terms of group ranking values. The performance sensitivity of alternatives has
been analysed for 21 risk criterion for each increment. The results are then
classified in four categories as displayed in Figures 8.4 and Figure 8.5. The graphs
illustrate the change to each increment by a set of colours, dark green for the 10%

increment and yellow for 40% increment.
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The graphs reveals that final priorities of alternatives are sensitive in limited ways
to the performance of risk criteria. Small changes in the releative performance of a
few criteria can cause a varying degree of changes in the final ranking. Depending
on the extent of changes, the criteria can be classified in three groups. The first
group includes the most critical criterion E11 as it has the greatest influence, with
over 20% on final ranking. The second group consists of criteria that are less

sensitive (5% to 10%) to small changes such as Hs2 and V31 and E12. The third
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group includes very low sensitivity criteria contributing less than 5% in overall
performance, comprising vulnerability and response management criteria along
with E21, E22, H11 and Hiz. However, there are some criteria that show either no
sensitivity or partial sensitive to significant changes. For example the incremental
increase in Hz1 and Hzz could not change the final ranking. Other criteria such as
V32, Va2 and Hi1 are only sensitive to larger increments (30% to 40% at least). In

other words, the threshold of changes in some criteria is much higher than normal

criteria.
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Other statistical tests were also employed to verify the initial sensitivity results.
Considering the performance of overall risk (FSRi) at each increment, four vectors
can be derived from each criterion. To measure the relations and discrepancies
between new vectors and original performance vectors, a comparative analysis
was carried out using correlation test (Ccoef) and Chi-square test (x2). Figure 8.6
displays comparatively the variation of statistical indices along the proposed
sensitivity rank index (Irs) that has been set up for different cases (increment 1:

10% to increment 4: 40%).

In general, the comparison confirms that the IRS follows the same trend as %2 and
Ccoef in most criteria with over 70% confidence. The discrepancy can be addressed
by the number of inconsistent criteria that start from 4 (80% match) and increases
in the third case to 5 (76%) and 6 in the last increment (71%). Having low
discrepancy in sensitivity results and statistical index implies that initial sensitivity
results are reliable. However, it should be noted that the results derived from the
sensitivity analysis are only valid for the present model, particularly with the
geography of Iran in mind. Expanding the results to other regions with different
criteria might generate inconsistent results and mislead the mitigation decisions.
Therefore, efforts should be made to define the appropriate settings consistently

with new environments.

8.5 Operational Validation

Validation is referred to the correctness of knowledge structure, the credibility of a
description, generality of conclusion, explanation, interpretation, or any other sort
of account (Maxwell 1996). Since the absolute validation of a model over its
application domain can be costly or time-consuming, the credibility of a model can
be claimed for an intended use and prescribed condition (DMSO 1996).
Consequently, validation relates to the degree of confidence of a domain under
which the model has been tested with sufficient accuracy. The greater accuracy
and confidence in a hypothesis test, the more credibility and validity is expected to

achieve.
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Table 8.2 - Operational validity classification (Sargent 2013)

Approach Observable system Non-observable system
Subjective Comparison using graphical display e Explore model behaviour
e Explore model behaviour e Comparison to other models
Objective . : - .
J Comparison using statistical tests e Comparison to other models
and procedures e Using statistical test

According to Sargent (2013), the framework of validation can be classified in two
distinct categories: subjective and objective (Table 8.2). Depending on whether a
system is observable or non-observable, various objective tests can be applied
such as benchmarking (comparison to other models), Event validity (a simulated
model compared to real event), internal validity (stochastic consistency of a

model), hypothesis test (tests of significance) and graphical comparison.

Having the historical records of previous cases, the correctness of the results can
be tested against benchmarking results. For example, in disaster management
models, comparisons are often made using historical event losses (or damage
survey), industry average annual loss (AAL), and the exceedance probability
curves (RMS 2012). Alternatively, in the absence of objective test cases, a
validation can be performed subjectively through a multiple-round expert panel
(i.e. Delphi) to judge about the correctness of the results and compare them against

their predictions.

However, Linstone (1978) argues that the expert panel should be invoked as a
method of “last resort”, because it is particularly suitable for highly subjective
situations that require a group consensus, and cannot be objectively handled
through either analytical or empirical paradigms. Finally, they cannot be managed
due to cost or time constraints, or other concerns such as bias, prejudice and
parochialism. In addition, subjective validation may not be practical due to time
and lack of professional experts in the area of interest. For these reasons, it is quite
difficult to validate the results subjectively since the model is composed of both
objective and subjective information. Rather, empirical techniques would
apparently generate faster and more reliable results in disaster modelling as it
relies on objective facts. Therefore, the validation of this thesis is focused on well-

known objective-based techniques which are outlined in following.
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8.5.1 Investigate Model Behaviour

In validation, one attempts to demonstrate if the model fully reflects the behaviour
of the real system. In an expert system for instance, a set of test cases can be used
to compare performance with the reference or standard (O'Keefe, Balci & Smith,
1987). The performance of the model has to be reliable, accurate and expandable
to the similar situations while it sufficiently meets client needs. A model is accurate
if the predictions it makes fit closely to the observed (measured) data.
Furthermore, the model can be considered reliable if the parameters of the model
vary minimally with the predicted samples used to fit the model changes. The
model accuracy and reliability can be estimated through cross validation,

benchmarking and parametric sensitivity tests.

8.5.2 Comparison (Benchmarking) Techniques

Comparison is an apparent method of validation that compares the output of an
existing system to the real system’s output. In a narrower context, benchmarking
can be used to compare numerical and analytical solutions, reference or accepted
standards (Oreskes et al. 1994). A model is considered valid if one can demonstrate
the agreement between prediction and observation. Using statistical tests, it can be
ascertained whether two samples are taken from the same or from different
populations. To evaluate the “goodness of fit” within two samples, mathematical
techniques such correlation and regression analysis might be used. While
regression proposes a statistical relationship between two samples (e.g.
linear/nonlinear functions), correlation addresses the goodness of fit, ultimately
implying the contiguity of two samples. However, unlike correlation, regression
analysis is restricted due to the assumption that there is cause-and-effect relation
within dependant and independent parameters (Shannon 1975). There are many
other statistical tests to evaluate the goodness of relationship. Most of those can be
jointly used to compare the model’s behaviour graphically, hypothetically or

theoretically; some of these are briefly outlined in following.
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8.5.2.1 Graphical Display

Alternatively, the behaviour of a model can be monitored graphically for various
sets of conditions to monitor the accuracy of the model’s output over an intended
domain. Usually, types of histograms, boxplots, scatter plots and
bivariate/multivariate plots can be devised to measure major behaviour indices
such as mean, variances, extreme values, for example. A sample graphical analysis
of the study was undertaken within Chapter 7. However, to obtain the best
performance, a graphical test can be employed as a complementary method of
validation jointly with other methods such as face of validity (expert survey),
Turing test and independent V&V. Unlike statistical distributions, the graphs do
not require satisfying either with regards to independency or the normality of the

data (Sargent 2013).

8.5.2.2 Hypothesis Test

A hypothesis test statistically determines if two or more samples derive from the
same population within an acceptable range of accuracy (Sargent 2013). There are
relatively large numbers of parametric tests (e.g. F, t, Z test) and each aim to
explore and compare the behaviour of a model in relation with another (e.g. a
reference system) by means of probability distribution parameters such as means

and variance.

The hypothesis test is based on the predication of a null hypothesis (Ho), assuming
it is correct, and is compared to an alternative hypothesis (H1). The result can be
either “failed to reject Ho” or “reject Ho in favor of Hi”. For example, a null
hypothesis can be ”a positive influence of building age on overall seismic risk”. The
null hypothesis can be a result of sampling, observations (e.g. historical damage
record) or previous research. If the results of an experiment are statistically
consistent with the prediction (i.e. fails to reject Ho), the hypothesis is retained;
otherwise it is considered that the hypothesis is likely to be wrong and will be

rejected.

However, it should be noted that “not to reject Ho” does not necessarily mean that
the null hypothesis is true, as rejecting Ho might suggest, but it does not prove that
Hi1 is true (Sornett et al. 2007). According to Mckillup (2012), no hypothesis or
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theory can be experimentally proven since it might be new evidence to reject and
suggest a new hypothesis. Thus, further experiments are required to strongly

uphold the widespread generality of the initial hypothesis or theory.

Furthermore, Barlas (1994) points out the potential issues associated with the
hypothesis tests. Statistical tests of significance are based on normality and
independency of variables; thus the test might not be valid for correlated systems.
To satisfy this condition, all significance tests require a vast model simplification
and data transformation which might be difficult to achieve in complex systems.
Therefore, the effectiveness of hypothesis testing is provided for reasonable

sample sizes, normalities and independent aspects of the system.

8.5.2.3 Confidence Interval

Unlike significance tests which provide “either-or” outcomes, confidence intervals
provide a range that addresses how close the estimated values are to the actual
population (Hinton 2008). It is presumed that 95% confidence is a generally
accepted limit within which 95% of sample indices (e.g. 1, o) lie around the larger
population. However, 90% represents a narrower range of samples, and is
consistent with an actual population. Conversely, 99% requires a wider range of
samples to cover extra range. As the number of samples increases, the standard
error (SE) reduces (SE= 6/vn) and the breadth of confidence becomes smaller, as
shown in Figure 8.7. Therefore, the larger the sample size, the narrower the

distribution and the greater the reliability of an estimate for a population.

Population
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Figure 8.7 - Typical breadth of confidence interval in three sample sizes (Hinton
2008)

8.6 Validation of the Developed Model

Validation of this thesis was conceptually developed in two ways to prove both

external (e.g. credibility, reliability) and internal dimensions (e.g. consistency,



Chapter8: V&V 200

continuity, robustness). Externally, the model must be generalisable beyond the
study environment and must also demonstrate a broader extent in the results.
Internal validity, on the other hand, signifies that a model contains no detectable
flaws and is consistent over its domain (Oreskes et al. 1994). Theoretically, if a
computerised simulation model maintains both external and internal aspects, it is

expected to be valid under the specific domain.

This process can be straightforward for precise deterministic systems. However,
since the absolute validation of a natural system is impossible, the validation of an
imprecise numerical model can be often accommodated through a 'range of
validity' or 'validity interval' (Shannon 1975; Oreskes et al. 1994). Defining the
bounds of validity (or range of the confidence interval) can effectively address to
what extent the model might be valid. In other words, one may not be able to
precisely (or absolutely) addresses whether a model is reliable or not, but one is

able to evaluate the model over a 'range of validation' or ‘conditional validation’.

Following this concept, a boundary of validation must be defined upon which the
model can be tested. Three hypotheses were proposed to conceptually address the
external and internal aspects of validity, upon which three sets of scenarios were
designed to test the model at "best case”, "normal case" and "worst case"
conditions in practice. The scenarios were developed upon three underlying
hypotheses that collectively address all aspects of validation within the study. The

conceptual order of validation is shown within Table 8.3

Hypothesis I: “If the fundamental components of the model are statistically valid
within the defined confidence interval, the overall model can be

practically valid within the same interval."

Hypothesis II: “The model is internally valid if it is consistent, continual and
robust under any combination of the dataset within domain

interval."

Hypothesis III: “The heuristic model results must be competitively comparable

with formal screening results."
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Table 8.3 - Operational validity concept, scenario and hypotheses

Hypothesis | Validity Aim Experiment | Scenario
Concept
I External | Comparison to Correlation/ BCS: Best case
Chi-squared
observed samples
test
II Internal | Explore model Monte Carlo NCS: Normal case
behaviour Simulation
III External | Cross validation Hypothesis WCS: Worst case
with other standard test

Since the model's validity is accommodated upon these hypotheses, three
scenarios represent multiple faces of validation at different conditions, implying
generality and breadth of validation. The best-case scenario (BCS) examines the
estimated results against an actual test case extracted from the Bingol earthquake
survey. The normal case scenario (NCS) examines the overall validity of the model
through Monte Carlo simulations. Finally, the worst-case scenario (WCS) ensures
that the results are externally consistent with formal screening standards (i.e.

NRCC or FEMA 154).

These three scenarios jointly address the model validity at various states. The
extent of satisfaction with each scenario addresses the degree of validity within the
corresponding hypothesis. Thus, the more satisfactory scenario outcomes, the

greater validity is expected over the interval domain.

Given the extent to which above hypotheses are met, the model validity can be
measured accordingly. The model can be improved by examination under different
situations, adding to its results credibility and clearly drawing the boundaries of
model validity. The component or algorithm which requires more attention can be
highlighted by possible flaws, both in consistencies and any significant gaps
between estimated and actual results. The testing scenarios are outlined in the

following sections.
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8.6.1 BCS: Bingol Earthquake Test Case

The first scenario examines the validity of main components using an observed
damage survey. It aims to ensure that model components generate reasonable
results for a given specific risk data by comparing the output with comparable
benchmarks, taking care to compare "apples-to-apples” (RMS 2012). Suen et al.
(1990) suggest five criteria for selecting test cases, which must be: "based on an
actual situation; cover a range of difficulty; be generated by unbiased experts; test

as many aspects of the system as possible; be carried in the field".

Theoretically, decision models behave variably in real situations as they use
different scales of measurement. Thus, every model generates unique results
which may have no similarity to be compared against. Broadly speaking, there is a
limited number of databases that contain a detailed, specific damage survey along
a site-specific hazard. In the present case, for example, the database does not
include sufficient information to compute building importance/exposure, thus the
evaluation is focused on the level of seismic damage index (SDI) instead of seismic

risk.

Reviewing the literature, a test case (§) is chosen from Bingol city earthquake
because it covers a wide range of detailed damage surveys that specifically is
focused on school buildings, along with similar conditions in the present study
(plan, size, tear, seismicity, for example.); yet the database is restricted to RC

buildings.

The Bingol earthquake occurred on May 1, 2003 with a magnitude of M = 6.4,
resulting 168 casualties, 520 injuries and extensive range of damages. The major
damage observed in school buildings was caused due to poor construction and
engineering performance (i.e. soft storey, shear failure in columns, short columns
and weaknesses in detailing) as illustrated within Figure 8.8. The level of damage
was classified in five categories and described through qualitative descriptors,

including: none (N), light (L), moderate (M), severe (S) and collapse (C).

§ SERU, Middle East Technical University, Ankara, Turkey; Archival Material from Bingol Database

located at website http://www.seru.metu.edu.tr.
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The earthquake engineering reports (Ozbec et al. 2003) indicate two potential
faults near the city, with distances from 5 to 15 km. The reports also confirm some
earthquake-triggered landslides in the region that caused a range of damage types
within buildings. Geological investigation shows that the area struck by the

earthquake was mainly covered by sedimentary weathered alluvial deposits.

(a) Collapse due to soft storey (b) Shear wall failure (c) Brittle column failure

Figure 8.8 - School buildings'damage in Bingol Earthquake (Ozbez et al. 2003)

The summary of Bingol damage survey contains 28 state buildings (e.g. schools,
libraries) that are available in Table 8.4. The Bingol database was imported into
the model to measure the levels of damage within buildings. The estimated results
indicate varying degrees of seismic damage index (SDI) from low (L) to medium
(M). About 70% of buildings (19 out of 28 cases) show a high level of alliance (over
80%) with the observation, which is satisfactory. 14% of cases shows a medium
degree of matching (60%-80%). The rest of the cases exhibit the lowest match

between estimated and observed damage values.

There is a case of collapse that could not be truly estimated by the model. Despite
having desirable characteristics (material, type and year of construction) the
damage index of this case is lower than expected. With regards to the two
buildings (BNG-6-3-4 and BNG-6-4-3) which were built in the same year, the
former underwent a light degree of damage and the latter collapsed during the
Bingol earthquake, The estimated results indicate the low and medium range of
damage respectively. This implies that even a reasonable result may not
necessarily match with the observation. A thorough prediction of the earthquake’s

impacts are very difficult due to the random nature of earthquakes.
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Table 8.4 - Summary of Bingol earthquake test case

T o Do
— S [T} +— oo c c
ID Region PGA TYPE CY o8 fi cQ 5 g sp g g  Satisfaction
o 2 s ® (match)
o ° b o

BNG-10-3-10 Inonu 0.4 RCF - 3 16.5 L M 3.32 M High
BNG-10-3-3 Inonu 0.4 RCF 1975 3 18.5 L M 3.32 M High
BNG-10-4-4 Inonu 0.4 RCF 1998 4 19.0 M M 2.59 L Medium
BNG-10-4-6 Inonu 0.4 RCF 1976 4 36.0 H L 3.32 M Medium
BNG-10-4-7 Inonu 0.4 RCF 1988 4 223 M L 2.59 L High
BNG-10-4-9 Inonu 0.4 RCF+SW 2002 4 215 M N 2.59 L High
BNG-10-5-1 Inonu 0.4 RCF+SW 1990 5 252 M M 2.54 L Medium
BNG-10-5-11 Inonu 0.4 RCF 1988 5 33.0 H L 2.59 L High
BNG-10-5-2 Inonu 04 RCF+SW 1990 5 15.0 L L 2.54 L High
BNG-11-2-3  Yesilyurt 0.4 RCF 1970 2 - L M 3.32 M High
BNG-11-4-1 Yesilyurt 0.4 RCF+SW 1998 4 203 M S 4.12 M Low
BNG-11-4-2  Yesilyurt 0.4 RCF 1989 4 228 M S 4.12 M Low
BNG-11-4-4 Yesilyurt 0.4 RCF 2000 4 180 M M 4.12 M High
BNG-11-4-5 Yesilyurt 0.4 RCF 1997 4 - L L 4.12 M High
BNG-3-4-1  Karsiyaka 0.4 RCF 1998 4 180 M L 2.59 L High
BNG-3-4-2  Karsiyaka 0.4 RCF+SW 1996 4 - L N 2.54 L High
BNG-3-4-4  Karsiyaka 0.4 RCF+SW 1970 4 260 M N 2.99 L High
BNG-5-5-1  Yenisehir 0.4 RCF 1990 5 216 M L 2.59 L High
BNG-6-2-8  Yeni Mahal 0.4 RCF 1992 2 121 L S 4.12 M Low
BNG-6-3-1  Yeni Mahal 0.4 RCF 1991 3 208 M M 4.12 M High
BNG-6-3-10 Yeni Mahal 0.4 RCF 1995 3 L N 2.59 L High
BNG-6-3-11 Yeni Mahal 0.4 RCF - 3 139 L N 2.62 L High
BNG-6-3-12 Yeni Mahal 0.4 RCF - 3 L L 2.62 L High
BNG-6-3-4  Yeni Mahal 0.4 RCF 2003 3 191 M L 2.59 L High
BNG-6-4-2  Yeni Mahal 0.4 RCF 2001 4 198 M S 4.12 M Low
BNG-6-4-3  Yeni Mahal 0.4 RCF 2003 4 300 H C 4.12 M Unsatisfactory
BNG-6-4-5  Yeni Mahal 0.4 RCF 1996 4 L N 2.59 L High
BNG-6-4-7 YeniMahal 0.4 RCF+SW 1996 4 203 M S 4.12 M Low

CY: Construction Year CQ: Concrete Quality RCF:Reinforced Concrete SW: Shear Wall

8.6.2 NCS: Monte Carlo Simulation

Monte Carlo (MC) generates a sample distribution of input values to evaluate the

performance of output values by virtually simulating a real condition. In this case,

MC analysis was performed: to examine the robustness of the proposed model, to

obtain an estimate for an expected value of the overall risk index (FSRi), as finally,

to obtain an estimate of stochastic uncertainty. The aim of this analysis is to ensure

that the model is expandable for any risk data within a specified domain interval.

The overall seismic risk index (FSRi) is influenced by a sort of uncertainty that is

mainly rooted in the subjectivity of weights and membership functions. The

application of the MC simulation allows analysis of uncertainty propagation,
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examining the pattern of variation within risk factors by means of randomness as
well as determining the levels that might affect the performance and reliability of

the model (Barbat et al. 2010).

The value of FSRi was calculated 100,000 times, using a random vector of risk
input. The stochastic results of the MC simulation were then collected and
displayed through probability density function (PDF) and cumulative density
function (CDF) graphs. The statistical analysis of PDF and CDF reveals a crucial
result in terms of distribution shape, peak, spread and any gap or concentration

within domain intervals.

0.8r
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Figure 8.9 - PDF and CDF for expected seismic risk values

Figure 8.9 illustrates the histogram of PDF and CDF of the FSRi performance. The
histogram has three peaks, implying that three probable ranges of values that FSRi
could take. In other word, three dominant groups of school buildings can be
discerned that carry ranges of risk from moderate to extreme. The expected values
are consistent with the generic scale of risk that is initially presumed for

knowledge elicitation.

Table 8.5 - Statistical parameters for Monte Carlo simulation

Domain Interval Distribution Ilzistribution Confidence Confidence
S e arameters Interval

Min Max Coverage shape 0 c p—2c pn+20 Level
Hazard 0.846 9.571 87% Normal 3.395 2.012 -0.629 7.419 95%
Vulnerability 1.076 8.326 72% Normal 5.994 1708 2.578 9.410 95%
Exposure 1.832 9.107 73% Normal 5.482 1963 1.555 9.408 95%
Response Mng. | 2.016 9.346 73% Normal 6.537 1.568 3.400 9.674 95%
FSRi 2.747 9.034 63% Normal 6.853 1.248 4.356  9.349 95%
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Statistical parameters of the Monte Carlo simulation are summarized in Table 8.5
including mean (p) and standard deviation (o). Extreme values (Min, Max) of risk
factors indicate a considerable coverage in domain interval. While FSRi maintains
the lowest coverage by 63% , it is still satisfactory as it comes with 95% confidence
interval. Due to low deviation in the results, 95% of the values fall between p -2
and p+ 20, no matter the domain interval. However, it should be noted that the
proposed model could only cover the range of risk from moderate to very high
(extreme), while missing the FSRi values beyond this limit (values <2.74 and

values > 9.03) representing the lowest and the ultimate states of seismic risk.

8.6.3 WCS: Screening Test

The last validation test is to compare the estimated risk results with the scores
obtained from the standard screening method. The Canadian screening manual
(NRCC 1992) and American version (FEMA-154 2002) are two common screening
procedures which have been widely used in industry to identify and classify
vulnerable buildings. Although both approaches follow an identical scoring
procedure, the method as defined by NRCC uses more detailed factors (as
discussed Chapter 6) for evaluating performances and that is why it was adopted

here.

The seismic performance Index (SPI) as derived from NRCC procedure generates a
set of benchmarks which can be used for cross-validation under the third scenario.
Theoretically, if an identical set of data is imported to either of screening methods,
the results may not necessarily be the same (since the scale of measurement is
different); while the distribution of each one can be expected to have a similar

trend, tendency and overall distribution shape as noted within the hypothesis (III).

To verify the similarities between estimated risk results (called as observed FSRi
results) and observed SPI, a parametric analysis was performed correlation test
(Chi-Squared). It should be noted that the experiment does not intend to show how
close those results are individually. Rather, parametric tests are sought after the
display of sufficient evidence, first to prove the validity of the model as a whole

entity, and second if the observed sample is derived from the same population.
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At the first step, one may wish to test the assumption if the FSRi vector is a random
sample from a normal distribution. The statistical test is based on a normal
probability plot gives a quick idea, as shown in Figure 8.10. The graph simply
illustrates the goodness of the observed FSRi to fit the expected SPI values based

on normal distribution. If the samples do derive from the same distribution, the

plot will be linear (at ideal situations).
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Figure 8.10 - Accuracy plot of observed FSRi against expected SPI

The other statistical test can be performed to validate the initial (null) hypothesis,
which states that the observed FSRi is derived from from the SPI population. Table
8.6 provides a summary of the statistic tests carried out. These tests assess the
evidence against the null hypothesis in term of probability. The P-value is a

probability indicator used to reject or to accept the null hypothesis, explaining the

distance the samples are relative to the individual observations.

Table 8.6 - Statistical tests of hypothesis (III): worst case scenario

Descriptive index

Inference Parameter

Statistic - Confidence
test " - ol Confidence Level Remark
Interval
t 5.9457 0.98425 0.180 -0.518  0.0991 95% Satisfactory
z 5.9457 0.98425 0.0839 5.4988 5.9738 95% Satisfactory
F 5.9457 0.98425 0.4492 0.7394 1.9721 95% Satisfactory
Chi-square 5.9457 0.98425 0.2839 0.8527 1.7048 95% Satisfactory
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A P-value less than 0.05 means that there is enough evidence to conclude that the
observed and the expected (target) population are significantly different and do
not come from the same distribution. Since all the P-values are by far more than
0.05, it fails to reject the null hypothesis at 95% confidence interval. Consequently,

the tests reveal that the observed FSRi and expected SPI are strongly related.

Overall, the parametric tests demonstrate the statistical agreement between
observed and predicted risk results, confirming that results can be fit to a subset of
total standard measured data accurately and reliably. In other words, it can be
concluded that the proposed model could generate a range of valid risk results
(FSRi) that very closely follow the standard screening distribution. Therefore, the
generated results have satisfactory passed the minimum controlling requirements
noted within the worst-case scenario, implying that the presumed hypothesis (III)

is valid.

8.7 Summary

This chapter described the development of a systematic V&V process for
application of seismic risk management. Initially, the system underwent the
verification process. At this stage, the knowledge base was statically debugged and
subsequently verified using a set of parametric sensitivity tests. The sensitivity
results indicated that social exposure, for instance, is the most significant variation
with over 20%. The verification process was successfully accomplished through

different tests, implying the model’s robustness.

Next, the validation process was devised using three tests that conceptually linked
three underlying hypotheses. These address multiple faces of validation both
internally and externally. A higher level of achievement on each test results in
more reliable results. The consistency of the model was evaluated through the
Monte Carlo simulation. The internal test indicated a high degree of coverage in the
output domain interval with 95% confidence. In addition, the credibility of the
model was also examined using two experiments. The test statistically revealed a
close agreement between estimated and predicted risk performances that

occurred within 95% confidence interval.
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Given that the model was successfully verified and validated at different
conditions, it can be assumed that the model is reliable. Therefore the proposed
risk-informed system can be implemented in prioritising the retrofitting of school

buildings.
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Chapter 9: Conclusions

9.1 Introduction

This chapter provides the main findings of the research. The context of the thesis is
summarized and major contribution to knowledge is discussed. It also outlines

some recommendations for future research.

9.2 Context Summary

Seismic risk management is a knowledge-intensive process which deals with a
great amount of information from different sources. The risk databases are very
large and are associated with uncertain information containing a mixture of
heterogeneous incommensurate information that need to be scaled, aligned and
measured on a common platform. The uncertainties in the seismic risk context are
significant and may not be effectively captured through conventional probabilistic
methods. In addition, the complex nature of earthquakes poses an extra challenge
suggests the need for a systematic process to handle the intricate characteristics of

seismic risk management involved with:

e Multiple sources, criteria and alternatives

e Multidisciplinary processes

e Conflict/interaction among risk variables

e Multiple stakeholders, clients and interest group

e Multiple causes and effects

Keeping this in perspective, multidimensional aspects of risk are at the core
concept of seismic risk management and lie beyond the practical reach of

conventional models.
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Deterministic models are too complex and require sophisticated tools and
expertise to achieve the intended levels of accuracy for critical infrastructure. The
probabilistic method requires a great amount of information to establish the
correlation between seismicity and damage records to extrapolate the results for
future damage prediction. In addition, conventional models are application specific
and fail to support problems in heterogeneous environments (e.g. various forms of

data). They are thus restricted to regions with richness of data.

The existing frameworks suffer from a lack of power in structuring the knowledge
in a way that is simply interpreted and reused by experts. Therefore, the research
focuses on the development of a heuristic system to effectively integrate kinds of
knowledge about risk with existing constraints. The significance of this concept
stems from the fact that risk can be viewed as common denominator that allows
considering non-commensurate characteristics in single measures. However,
implementation of pure holistic systems relies strongly on expert intuition and
experience, without the straightforward way of incorporating knowledge
contained in numerical data (i.e. data driven rules). Therefore, the formulation of
the scope of seismic risk management must be arranged according to the

application and potential decisions to be made.

9.3 Objectives

9.3.1 Objective 1

The first objective was to review the background and characteristics of seismic risk
management and systematic challenges involved. The literature review identified
four distinct categories of risk analysis (deterministic, probabilistic, heuristic and
screening) in terms of accuracy, complexity and uncertainty. The review revealed
that the scope of each procedure can vary significantly according to the application
and may not fit for large mitigation programmes where numerous retrofitting
projects are involved. The review concluded that prioritizing the retrofitting of
schools requires a holistic risk-informed system to effectively address not only
physical impacts of the earthquake, but also to incorporate the socioeconomic
characteristics of the disaster to support multiple stages of seismic risk

management.
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Achieving the first objective improves the understanding of seismic risk
management by providing an insight into how important background
characteristics are, what the potential challenges involved from the system
perspective are, and has given the basis which going to built a model later on the
thesis. It also helps users to compare systems and choose the appropriate risk
assessment approaches according to the scope, size, accuracy and complexity of

the application, which would be desirable for any system.

9.3.2 Objective 2

The second objective was to investigate the feasibility of mathematical techniques
for modelling seismic risk. This objective was pursued through a review of existing
mathematical modelling techniques. Given the diversity in the criteria, alternatives
and participants, the problem describes multicriteria characteristics. A Multi
Criteria Decision Making (MCDM) approach was then defined as a target to be

explored.

The review revealed that MCDM could be used as a unique integrator that acts as a
bridge between the various disciplines involved in seismic risk management.
However, exploring the MCDM methods indicated that there is no single technique
that could uniquely address the multiple requirements simultaneously. The utility
of MCDM varies depending on the problem size, data type and technique used for
handling criteria trade-off. Classic MCDM is not considered to be capable of
handling uncertainty. For example, Analytic Hierarchy Process (AHP) as a crisp
version of MCDM could not essentially address the subjectivity and vagueness.
Moreover, this technique is highly dependent for its validity on the comparative
judgment of every pair of criteria, which is not practically possible for current

problems involving a large number of criteria and alternatives.

Several methods from MCDM and Artificial Intelligence (Al) were reviewed and
compared in respect of two parameters that significantly affect the selecting
process. The first of these is the systemic ability of processing large numbers of
alternatives. There are few candidates from MCDM and Al-based methods, which
can systemically handle large amounts of information, criteria and alternatives.

Secondly, the modelling effort is also a critical parameter that determines the level
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of richness in the ranking scores. Al methods carry the most desirable

characteristics required for handling such complex problems.

However, some of the above, such as Genetic Algorithms (Gas) and Artificial Neural
Networks (ANNSs), are either too complex or require a great amount of information
for training the model. Among Al methods, Knowledge Based Expert System
(KBES) was adopted due to its potential to effectively address the challenges
caused by complex multidimensional aspects of seismic risk while also being
capable of handling the subjectivities exist in the decision processes due to the
broad spectrum of objective and subjective information. A comparative study
undertaken in Chapter 3 reveals the appropriateness of the proposed ranking
knowledge base system for seismic risk application, demonstrating that the

heuristic fuzzy modelling outranks the other methods in all perspectives.

This objective was achieved by categorising the mathematical techniques by
means of system perspectives, taking into consideration complexity, trade-offs,
input-output requirements and modelling efforts. This classification allows the
modeller to provide evidence from a broad range of perspectives that ultimately
improves the understanding of the model’s restriction and capabilities. As a result
of the critical analysis of these mathematical techniques, it has been possible to
develop a taxonomy that improves the credibility and functionality of the model by

accommodating an organized, effective format for assessing the simulation results.

9.3.3 Objective 3

The third objective was to introduce the fuzzy modelling approach in practice and
review the terminology, scope, limitations and potential barriers associated with
modelling the complex domain. This objective was achieved by exploring the
significant characteristics and necessary operations required for fuzzy modelling.
Knowledge acquisition was identified as a critical stage in establishing the KBES.
The process of knowledge acquisition and representation requires extracting the
useful knowledge from different sources (fact, algorithm, experience, and control
knowledge) and formalizing it into a set of rules that constitute the knowledge
base. The knowledge base sources include building codes, earthquake
reconnaissance reports and expert opinions (questionnaire feedback) on the

various impacts of seismic risk.
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This research is practical and unique in that it integrates a large number of fuzzy
inference systems (FIS) in a comprehensive framework allowing multidimensional
analysis of seismic risk in regional scale which has not been attempted before. The
proposed system provides a powerful modelling tool to aggregate a large amount
of information over multiple regions both effectively and efficiently. The major
advantage of this study is that both qualitative and quantitative risk information
could be aligned, scaled and aggregated with the presence of uncertainty. The
model not only considers the trade-offs between both qualitative and quantitative
factors involved in developing risk, but it also enables decision-makers to deal with
inconsistent judgments systematically. However, the proposed KBES relies on the
expert knowledge to develop the knowledge base. The identification and co-
operation of relevant experts could be a great challenge if they have not been

chosen wisely or they could not reach a consensus.

The proposed KBES improves the existing framework, allowing as many factors as
possible to be integrated, and yet is capable of being specifically tailored for certain
interests. The KBES offers a new, systematic and structured reconciliation of
numerous risk factors through a multi-layered hierarchy, which is capable of

interacting with a range of information, facts, algorithms and experiences.

9.3.4 Objective 4

The fourth objective was to investigate the potential impacts of earthquakes to
collect necessary information and to establish the structure of seismic risk
assessment. This objective was pursued by investigating the multidimensional
effects of earthquakes in four major categories, including the hazard (ground-
related effects), vulnerability (physical and structural effects), exposure (social and
economic effects) and response management capability (regional background
effects) and classifying them hierarchically into a structured system. The critical
challenge of this phase was to adopt a right 'scale of damage' that could adequately
represent the size and typologies of buildings in Iran while being measurable and

consistent with existing standards.

The available scale of damages as defined within seismic codes is either too
conservative to truly represent the spectrum of buildings or not clearly expressed

in a way to be simply transformed into fuzzy language. Moreover, the types of
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structures defined in some US codes may not fully cover the typologies of buildings
in Iran. To address this issue the thesis proposes a new damage index based on the
probabilistic concept of damage and consistent with EMS-98. EMS-98 presents a
subjective way for defining the state of damage in buildings that makes it coherent
to be modelled through fuzzy modelling. However a damage survey used in this
study for developing the fragility functions is limited to a specific range of damage
covering the most common classes of school buildings in Iran. Further works can
be focused on upgrading the framework by extending the database to cover a
wider range of earthquake damage, building types and importance. The factors,
structure, and measurement scale described in this chapter collectively make an

underlying body required for developing the KBES.

The outcome of this task contributes to knowledge three fold. First, it identifies the
potential impacts of earthquake on school buildings in multiple aspects. Second,
the new model offers a systematic method of aggregating risk factors and to study
the characters of seismic risk assessment of school safety. While conventional
screening models can handle a limited number of retrofitting projects manually
(which is costly, time-consuming and may require a great amount of information
and experience), the new models offer a systematic method which is capable of
handling a large number of cases. Third, it demonstrates the importance of a multi-
level hierarchy for structuring seismic risk. The advantage of this structured
knowledge is providing a deeper insight into the seismic risk and its relevant
impacts in different categories in a systematic manner. Unlike previous
frameworks which focus only on physical aspects of seismic risk, the proposed
model improves existing models and provides a comprehensive picture of seismic
risk that incorporates multidimensional aspects such as socioeconomic criteria in
the decision process. As a result, this objective has demonstrated that earlier
models have underestimated the significance of social damage and thus allows the
new model to extend risk assessment, taking into consideration more features of

seismic risk management.

9.3.5 Objective 5

The fifth objective was to apply and implement the model for evaluating and

ranking seismic risk within retrofitted school buildings in Iran and to review the
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results. This objective aimed to complete the case study by processing the

feedback from practising engineers by the means of fuzzy aggregation.

A comprehensive seismic risk management methodology was implemented using a
KBES. The complexity issue was addressed through a synchronized hierarchy and
operated using an integrated programming in MATLAB®. The nonlinearity and
ambiguity within the risk data were handled by examining different grades of risk
impact. It is apparent that the higher number of grades in risk factors, the greater

precision and effectiveness in capturing nonlinearity and uncertainty.

The application of the proposed model demonstrates the benefits of the KBES in
handling complex problems in the seismic risk context. A significant outcome of
the study has been the development of a versatile system that is capable of
processing sorts of information at various levels of accuracy, form (qualitative and
quantitative), measurement scales (ratio, interval) and algorithms (code based
functions). Throughout the task, a simple, impartial algorithm for aggregating the
expert opinion was established. The process employed a fuzzy-based algorithm for
aggregating a large number of expert’s opinions by identifying consensus amongst
the individual experts, sorting and aggregating a based on common agreement in a

hierarchy.

Implementing the KBES brings several benefits to the decision class, such as
increased speed and access to knowledge, reduced cost, errors, and increased
retention of expertise. A significant feature of the new system is the flexibility in
reporting and communicating with decision-makers. The model facilitates the
process of decision-making by allowing a transparent analysis of the risk
contributing factors at any stage of risk management. Unlike similar models that
process the risk inputs in a “black-box”, the new approach provides a rich form of
risk output in subsequent levels of hierarchy to support the final risk ranking
results. The model not only produces a composite risk index (FSRi) that
collectively represents the general position of an alternative within the whole
group, it also offers a comprehensive reasoning tool that supports each index
explaining why a building is at higher risk than the others and which categories
and dimensions could be critical for mitigation. For example, some densely
populated post-code school buildings could be quite more vulnerable to those pre-

code buildings with a lower population. The form of reasoning is unprecedented in
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the disaster risk context which cannot be achieved through other rival approaches

(FEAM 154 and NRCC).

The proposed methodology is the first systematic management of retrofitting
school buildings subjected to seismic risk on a large scale. It contributes primarily
to a new heuristic method that is capable of integrating seismic risk factors in the

presence of uncertainty.

This research has produced a unique procedure for capturing a multifaceted
picture of earthquake risk for school buildings. The process specifically offers a
new rapid screening tool that adapts to geological, structural and social demands
in Iran. The methodology is based on aggregating the key determinant factors that
impose a dominant threat to school safety. Therefore, the method improves the
previous frameworks by interactively addressing the seismic risk impacts to

decision-makers.

9.3.6 Objective 6

The sixth objective was to investigate the effectiveness of the proposed model and
to verify and validate its results. The objective was pursued by performing a set of
analytical and empirical tests to ensure the success of the model’s implementation

in real situations.

This task was carried out in two stages of computerised verification and
operational validation. In the model verification the knowledge base was statically
verified in terms of correctness and consistency, and then passed a black-box test
using a sensitivity analysis. The model was operationally validated in three ways to
test the simulation model externally by comparing it to other models
(benchmarking) using a statistical test of significance (hypothesis test), and
internally by exploring the model behaviour using a stochastically generated
inputs (Monte Carlo simulation). Finally, the model was cross-validated with a
standard screening result. The tests together confirm the reliability and credibility
of the results within the specific domain of school buildings in Iran. This process
served to demonstrate the validity of the method and suitability of the field of

seismic risk management as a domain for expert system development. However,
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further subjective-oriented tests might be performed to establish the model’s

validity in the industry.

The significant contribution of the research serves as an investigation into the
applicability and usefulness of the KBES to the domain of risk mitigation planning.
The versatility and power of the expert system in processing complex systems
outweighs its conceptual limitations in the context of disaster management.
Essentially, seismic risk management is tightly linked to the mitigation
programme. The key challenge was to effectively project the potential impacts of

earthquakes on school buildings.

The main objective of this research has been to investigate whether the knowledge
base system for such a problem is feasible, possible, justified and appropriate. The
potential application of such system was examined through the case study of
school buildings in Iran. Throughout the process, it was demonstrated that
meaningful results could be obtained regarding the feasibility and applicability of

the KBES in seismic risk management.

The application of the KBES for prioritizing a large number of retrofitting projects
in Iran makes it possible to improve the ongoing mitigation programme in several
ways. Firstly, it increases the quality of mitigation decisions, bringing a more
controllable tool that enables users to easily add or remove risk attributes and
track and monitor the output at any stage. Secondly, it includes multiple groups'
concerns (weight and preference) in the decision process in various dimensions
(physical, social and economical). Thirdly, the model offers a high performance
decision support system that facilitates the planning and management of
vulnerable school buildings in less time, cost and expertise, increasing school
safety by expediting mitigation measures. For the first time, it is possible to
identify the hazardous school buildings and to prioritize them in terms of
retrofitting urgency. In this instance, the application of the developed screening
method not only fulfils the direct needs of mitigation programme, but it will also
have a significant impact on the whole of the disaster management cycle, including

preparedness, mitigation, response and recovery.
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The outcomes of the research collectively confirm that the proposed model fulfils
the objectives of the study for the intended application of seismic risk management

necessary to protect school safety.

9.4 Recommendations for Future Research

Following the study, the model can be further extended and enhanced by
recommendations to direct future research. The possible research areas for such

extensions and enhancements can be outlined in three major areas.

First, the methodology can be expanded and adapted to other sectors such
transportation, healthcare and emergency facilities by adjusting the model’s

configuration and structure.

Second, the proposed model estimates the seismic risk of school buildings on a
standalone platform. Future research could focus on integrating this model with
local knowledge and maps systemically through a Geographic Information System
(GIS). Currently, there are no detailed hazard and vulnerability maps available in
cities because of the lack of an integrated knowledge base platform. The GIS based
platform is a powerful resource to improve the quality of the database within the
process of seismic risk management. This platform could effectively help
individuals to strengthen the capacity of local communities in identifying the

detailed zoning maps and developing the appropriate response plan.

Finally, the system developed in this research is the first attempt to assess the
likely impacts of seismic risk on retrofitting buildings. Due to enrichment of
database of retrofitted buildings over the time, an extensive corroboration process
should be performed to calibrate the values and weights consistent with actual
experience. This is important to determine what level of accuracy is required for a
risk parameter to make the model adequately valid and useful in future mitigation

programme.
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Appendix

Appendix A. Questionnaire Survey

n

UNIVERSITY OF LEEDS

Dear Expert

Data sheet: General Information and definition

Seismic risk is defined as the combination of several factors and commonly
expressed in terms on lives loss and damages to properties , facilities , business
and activities. Any element of urban environment such as population at risk (PaR),
asset or value at risk (VaR) is considered 'at risk' when they exposed to likely
occurrence of the sort of losses for a given hazard (here is seismic hazard) and thus
can potentially propagate the seismic risk. Accordingly, three basic components
can be distinguished from the above definition to characterize the seismic risk

including:

» Seismic Hazard (H): the probability of occurrence of earthquake hazard for a
given area or level of ground shaking within a specified period of time

» Vulnerability (V): potential susceptibility or degree of loss to a given
element(s) at risk resulting from the occurrence of a seismic hazard with a
given magnitude

» Exposure (E): Population, properties, asset and economic activities at risk in
a given area

» Seismic risk (R): is referred as the expected number of lives lost, or degree
of damage and disruption to properties, infrastructures and economic

activities caused by a seismic hazard



Appendix 244

These factors are abstract and thus needs to be classified into more detailed sub-
factors and attributes to precisely address each category. The identification of the
weights and the effects of these factors is crucial to aggregate and combine risk
factors, identify the most riskiest set of facilities/buildings and finally to take the

suitable measures to mitigate their risk.

The expert opinion collected through the questionnaire will be used in building a
knowledge based expert system (KBES) to predict the seismic risk of the building
of interest. As the expert system mainly relies on the expert's judgment and
experience, a questionnaire is prepared for integrating your valuable judgment

using the proposed KBES.

This questionnaire consists of two parts. In the first part, the expert is required to
give weights to the main factors that seismic risk defined upon. In the second part,
the expert is asked to evaluate the contribution (performance) of sub-factors with

respect to each risk factor.

Your cooperation with us will increase public safety by improving the seismic risk
mitigation measures. Thus, your contribution is valuable for us and highly

appreciated.
Lead researcher

K.Vahdat



Appendix

245

Questionnaire Form

Part 1 : Seismic risk factors

1. Rate the overall weight (importance) of risk factors on a scale of 1 - 10 in which

1 represents lowest and 10 represents highest contributing factor (most

important) in seismic risk. (The sum of the weights is unimportant.)

and emergency
facilities: hospital)

i | Seismic risk Factor W‘:,ght 1(2(3|4a|5|6|7 -
i
1 | Hazard
2 | Vulnerability
3 | Exposure
Response management
4 (preparation, planning

Part 2: Risk sub-factors

2. Hazard category : Rate the importance of hazard sub-factors on scale 1 - 10 :

i Hazard sub-Factor Willght 1(2[(3|4|5|6]|7 -
ih
1 Ground Shaking (seismic
amplitude/intensity)
2 | Closeness to fault
3 Potential soil instability
(Liquefaction / Sliding )
4 Site factor
(soil condition)

3. Exposure category : Rate the importance of exposure sub-factors on scale 1 -

10 . For simplicity you may think how much an building/school/hospital can be

potentially exposed to an earthquake threat with respect to following sub-factors.

Exposure sub-Factor

weight
Wie

|«

Population exposed

Population per area

Asset/ Value exposed

AT W|IN|F

Area exposed
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4. Vulnerability category : Rate the importance of vulnerability sub-factors on
scale1-10:

As an example , consider a risk comparison between group of school buildings
(similar function) limited to 3 storey (height) , no major irregularities and
architecturally comply with basic safety measures (entrance design , stair case ,

opening and equipped with primary fire distinguisher).

weight

Wiv

i Vulnerability sub-Factor

Structure type (simple/rigid
1 | steel/concrete frame,
reinforced/simple masonry
Engineering performance
(Construction quality and

2 code conformity : Pre-
code/post-code buildings )

3 Building age (material quality
, corrosion , defects)

4 Hours of operation

(8 hr, 12 hr, 24hr)

5 | Users age (kid, adult ,senior)

6 | Population load (density)

5. Response capability and disaster management category : Rate the
importance of response management sub-factors on scale 1 - 10 . For simplicity
you may consider the pre or post-disaster measures which can reduce the disaster

loss and impacts and thus influence the risk.

weight

Wid

i Exposure sub-Factor

1 | Hospital , physicians
Emergency facilities of city:
shelter, first aid , blanket,...
Regional Planning,

3 | resource and management
index

Infrastructure index

(access roads /airport)

6. You may add any other factor you think important in determining seismic risk

but has not been addressed in this survey .
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Appendix B. Survey Data Processing

B.1 - Fuzzy Aggregation Of Expert Opinions

Experts were asked to provide a value on a scale of 1 to 100 corresponding the
linguistic terms of VL (1-20), L (21-40), M (41-6), H (61-80), VH (81-100) for each
risk factor. To aggregate different state of impacts, a set of triangular membership

functions was assigned to each that is shown in Figure B.1.

Figure B.1 - Triangular membership functions for different impacts

In order to measure the prevalence impacts within survey data, a frequency
distribution algorithm was used. Opinions with higher frequency considered as a
higher impact on overall results and consequently received a higher rating factor.

The algorithm combines both expert Index (EI) and Impact rating (IR)

- of each individual expert (i =1, 2,...,48) fora

corresponding with each opinion 7,

range of risk factors (j =1, 2,....18) formulated as:

R,= EE EI;.IR .7, (B.1)

The mean non fuzzy values of opinions can be calculated as follows (Chou 2003):
Ri=Z(Rj+ 4.R" + R} (B.2)

Where [, m and u represents the lower , middle and upper bounds of fuzzy
numbers. The sample aggregation process of expert opinions is explained through

an example. Considering the opinions collected for hazard factor (H), and

frequency, number of impacts (N), the aggregated fuzzy result (R,) can be obtained

as follows:
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o — VH VH VH = =
K= tpy .|RVH..(NE,5_1 Elec1 + Ngs_s.Eleg2 + NgA_s Elggs) + Tirr, ARv) + T
H H H = M
ARH.. ('NEG—:L .Elgg.1 + NEG—E'EIEG-Z + NEG—EI -EIEG—3) + Ty |R|\/|( NEG—l .Elgg.1 +
N¥ __.El + NM Elggs) + 7,.IR.. (N El + Nt .Elggo + NE
EG—2-E1EG-2 EG-3 -=IEG-3 T IR EG-1 -=EG-1 EG—2-=1EG-2 Ez—3

Elgg3) + %, IRvL. (Elgg1 + Npi_,.Elec2 + NEi_, .Elgcs) = (0.75,1,1)0(1x0.166
+ 12x0.333 + 5x0.5) + (0.5,0.75,1)O(5x0.166 + 12x0.333 + 3x0.5) +(0.25,0.5,0.75) O (3x0.166 +
1x0.333 + 0x0.5) + (0,0.25,0.5)0(3x0.166 + 1x0.333 + 0x0.5) + (0,0,0.25) O (2x0.166 + 0x0.333
+ 0x0.5) = (36.42,52.03,61.06)

The equivalent aggregated Nonfuzzy opinion can be calculated using Eq. (B.2):

R. = (36.42 + 4 x 42.03 + 61.06) /6 = 50.94

Alternatively, the process of aggregation is briefly summarized in Table B.1.

Table B.1 - Summary of expert opinion aggregation for hazard block (H)

= . L a0 Frequency H Mean
g L'”glu'St'C £ | EG1 | EG2 | EG3 Combined Nonfuzzy
£ Values € [0.166 | 0.333 | 0.50 Fuzzy Impact Value
VH 0.75 1.00 1.00 | 4.00 1 12 5 19.99 | 26.65 | 26.65 25.54
H 0.50 0.75 1.00 | 5.00 5 12 3 15.82 | 23.72 | 31.63 23.72
M 0.25 0.50 0.75 | 3.00 3 1 0 0.623 | 1.247 1.87 1.25
L 0.00 0.25 0.50 | 2.00 3 1 0 0| 0.416 | 0.831 0.42
VL 0.00 0.00 0.25 | 1.00 2 0 0 0 0 | 0.083 0.01
Aggregated Fuzzy Opinions (H z): 36.42 | 52.03 | 61.06 50.94
Total Mean NonFuzzy Opinion values: 50.94

The result derived from the above algorithm represents the individual local
weights of risk factors in each block. The global weights of risk factors can be
obtained by integrating the global share of each block with local opinions. For
example the global weight of the ground shaking factor can be calculated as

follows:

Wy = Ry © Ry =(36.42,52.03, 61.06) O (39.05, 54.53, 60.69) = (1422,2837,3706)
Accordingly the aggregated Nonfuzzy weight (ANW) can be obtained using fuzzy
arithmetic (Hsieh et al 2004):

Rj=2(R*— R! + R™) (B:3)
Using Eq. (B.3), the ANW for Hi1 willbe:  wy, = m_lzﬂ = 1701
Likewise, the other global weights of risk factors can be calculated as shown within

Table B.2.
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Table B.2 - Summary of aggregated weights of seismic risk data

ID Criteria Local weights Global weights ANW SAc;Ier
H Hazard 36.42 52.03 61.06

Hqq Ground shaking 39.05 5453 60.69 1422 2837 3706 1707 82
Hiy Closeness to fault 3733 53.61 63.72 1360 2789 3891 1773 85
Hs, Potential Instability 3542 5211 65.14 1290 2711 3977 1800 86
Hay Soil class 2473 3946 5336 900.6 2053 3258 1470 71
\Y Vulnerability 35.01 51.03 62.27

V3 Building type 42.16 57.85 62.39 1476 2952 3885 1787 86
Vy1 Engineering Performance 3559 522 65.6 1246 2664 4085 1834 88
Vy, Building Age 29.51 45.16 58.82 1033 2305 3662 1645 79
Vs, Operation hour 24.6 39.42 53.74 8613 2012 3346 1499 72
Vi, User Age 20.95 3439 47.46 733.2 1755 2955 1326 64
Va1 Occupancy Load 20.1 33.55 47.12 703.8 1712 2934 1314 63
E Exposure 35.88 52.44 64.68

En Population 41 56.52 61.6 1471 2964 3984 1826 88
Eiy Population density 36.67 5331 65.3 1316 2796 4223 1901 91
Ey Asset/Value exposed 37 5435 6855 1327 2850 4433 1985 95
E,, Area Exposed 25.73 41.13 5553 923.1 2157 3592 1609 77
RM Response Management 335 49.53  61.56

RM1 Hospital, Physician Index 36.84 5232 60.36 1234 2591 3715 1691 81
RM, Emergency facilities 3563 52.11 64.26 1194 2581 3956 1781 85
RM,q Planning & resource Index 34.05 5036 63.02 1141 2494 3879 1744 84
RM22 | \frastructure Index 29.76 4512 57.86 997.2 2235 3561 1600 77

The scaled ANW draw a global picture of criteria’s weight. According to ANW
values, most hazard factors, building type and performance as well as response
management factors exhibit a relatively high strength in general. It can be also
noticed that, the population load and density have the most influence on overall
risk; while the other socioeconomic factors such as user age, operation hours

indicate less importance.
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Appendix C.

School Inventory Data

[ Vo -
Scnool Seh. Class Used | O Area Cong O = |5 = £ = - =
o ] E Chy Type | Room fyge | Hoar Im2] Time Age 2 Load __';3 -E - - | E E = .—f Floor
1 BEAZL Lrmieh H 20 15 i 2635 1876 34 1600 Da4 M vH L M m 3
2 B3-AZZ Urmieh  Ex. 11 10 B 2200 1els  1d 300 D136 M vH L M il 2
3 BS-AZ3 % Urmieh P 15 T B 1880 1883 17 200 0268 M YvH L M H 3
4 | Bs.Aza Urmieh P 11 T B a4 1870 40 340 O3 M wVH L M 1] 2
5 | Bs.azrs Urmieh M 1d 13 L 217 197 33 600 OZ&E| M WH L M i 3
& | Bs.EL1 Gonbad Hw g 18 18 1661 1886 24 150 0D87| H VL. L H 1] 3
T | BS-EL2 | Gonbad  Hw 17 18 18 3110 fedd 18 400 O01z2| H VL L H I8l 3
E | BSE3 | & | Aliabad Hw 10 18 18 ED0 12883 24 20 0438 H M L H il 2
o | B5.GLA Minudash M 10 13 1 iBz 18EBE 22 350 O17E| H H L H il 2
10 | Bs.ELS Kordkoy M 10 13 1 280 121 19 350 0357 H Wi L H A} 2
11 | es-am1 QOM H 20 LE:] 1 1830 1802 18 475 0268 H WL L L 15l 3
12 | Bs-Qmz z QoM W 1d 18 1 1680 1825 15 430 0254 H VL L L 1l 3
13 | esaQm3| @ QOM w 24 LE-] 1 2051 1E@5 15 &0 o203 H VL L L 18l 3
14 |Es.apas Q0M H 1d 18 12 3080 1881 20 400 013 H VE L L U] 2
15 | 8s-kHI Gaen Hw 11 18 id aen 1882 23 40 O6X| WVH WL L L 1] 1
16 | BS-KH2 Birjand M 10 13 E a10 1gE3 27 350 0432 H VL L M 1] 1
17 | BS-KH3 E. Birjand H 11 18 i 1120 1883 27 400 0357 H VL L M 1] 2
18 | 85-KH4 Sarayan H B 18 1 720 1221 29 200 0457 VH WL L L 1] 1
19 | Bs-EHs Sarayan H 5 1 i G256 165 45 0 D18 | VYH VL L L 1] 1
20 | ES-HMI Mahavan H 12 18 12 1124 1881 29 80 0132 |WH VH L L ] 2
21 | BS-HM2 Tuserka Hw 10 1 1d @10 18B5 5 250 0385 H WVH L L n 2
22 |BEHME| x| Malayer M 10 13 B 1080 1885 25 350 0324 H VH L L 15 2
23 |esHme| 2 Matayer M 12 1 E ar2 1DB5 5 B0 ODODOEX| H WH L L [l 2
24 | BS-HME Asadabhd  H o] 148 12 760 18BY 23 X0 033| H WH L M 1 2
25 | EmHmME Hamdan M 11 1 E 020 1881 29 230 0.353) H VH L M 1 2
26 | B5-sma1 Semnan H 10 18 12 1020 2000 10 200 O02B4]| H [X] L L 1] 2
27 | Bs-sm2 Sermman H 1d 1 i2 255 8RB 12 200 oDz H It L L 1 2
28 | B5-5M3 E Semman H 1d 1 1 g5 @ps 15 3™O0 0183 | H M L L U] 2
19 | B5-5M4 Garmsar H ta i 12 g0 fEE2 13 33 D327 H M L L Il 2
30 | Bs-zmas Shahmud H 18 1 i 1860 1822 11 450 0.242] H M L L 1] 3
31 | @5-ZML Zangam Cl 11 pre] 16 1875 1823 17 1300 OG83| H WML L M 1] e}
32 | B5-ZM2 Zajaan o G 18 s 200 2001 a en 0.15 H WL L M 1ul 1
33 | @5-ZM3 E Zaniamn L G 13 B 145 1281 29 200 0287 H WL L M 10l 2
34 | B5-TMa Fangan Tech 11 18 18 i3@s 1aE1 29 0 oc215|] H WL L M (1] 2
35 | B5-ZNS Zamujaan P 11 T B T45 1880 30 200 o04D3| H WL L Ll 10l 2
35 | Bs-LE1 Caspian H 14 18 1z 1850 1@E3 27 500 D27 | vH L L L 11 2
37 | BSLS2 | o | Caspian H 1d 1a i2 2100 1885 15 500 0238 VH L L L B 3
38 | escs3 | D | Takstan D 10 18 P 1052 19895 15 280 022B|VvH WL L 10 16l 3
39 | BS-Csa Caspian H 12 18 12 1507 1887 13 20 o01g2 | WH L L M L} 2
40 | Bs-mzy [ [ G 25 1 are 100G 14 120 o1ez| H WL M H [T} 1
41 |eseazz| Aemol P 10 T B fig2 1881 20 200 0168| H L H H n 2
43 | a5-mzr3 ; Moshar M 10 1 B 1084 1Bz 12 100 Oo0o4 H YL H H m 2
43 | BS-mAZa Sari L G 12 B 350 12B1 20 =] o_z2p H YL H H n 1
44 | BS-PAES Aol H 12 18 12 15650 2001 B 250 0228 H L H H n 3
45 | EzLR1 Brojerd B 10 13 B 1030 1525 15 300 0275)| VH L L E i) 2
45 | E5LRE Fhorma P =] T B a50 Tgaz 13 200 0308 H WL L L n 2
A7 | Ez-LR3 -E Fhoma H ia 18 12 i7ed 1 12 480 0.27 H WLOL L il 2
48 | ESLRs Koodash M 11 1 B 1i2B8 1971 ag 200 0221 H WL L L 10 2
49 | ESRS Alashtar H =] 13 12 0o A B 240 0267 H WLOOL L 1] 2
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Appendix D. Developing Damage Index Based on EMS-98

D.1 Developing Damage Index

Once the scale of vulnerability has been defined and building typology classes
analysed, it is necessary to derive the fragility curve (functions) for each class of
building. Fragility functions are smoothed push-over of the damage record in a
certain typology for a specific range of seismicity. Alternatively, fragility curve can
be presented in a form of damage probability matrix (DPM) to describe the state of
damage in each class of building for a given range of earthquake intensity. The
DPM matrix can be developed either empirically by correlating the past damage
records with corresponding intensity (Yucemen et al 2004; Rossetto and Elnashai
2003) or analytically using a nonlinear (push-over analysis) structural damage
thresholds (Park and Ang 1985; Singhal and Kiremidjian 1996). Empirical methods
rely on the wealth of observed damage data available from past earthquakes, and
the correlation of those with construction materials and types in different
geographical and seismic regions (Tesfamariam and Goda, 2013). Analytical
approaches require a complex nonlinear structural performance analysis. This
kind of approach can be a useful tool for detailed investigation; it, however may
not appropriate for analysing large number of school buildings due to expertise,
time and cost restriction. In the absence of observational damage database and the
lack of standardized fragility curves that specifically defined for building typologies
in Iran, standard fragility curves defined in the code of practice was used as a
major source for developing the equivalent fuzzy fragility functions. The study
applies this concept within the proposed model by simulating the existing DPM
data points into equivalent membership functions to infer the damage state within
school buildings. Alternatively, damage probability matrixes can be also presented

using fragility curves in the graphical form.

In order to develop damage index for different classes of school buildings, EMS-98
damage scale has been adopted. EMS-98 suggests a subjective way for defining the
damage state of buildings (Table D.1) which make it coherent to be modelled
through fuzzy modelling.
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Table D.1 - Classification of vulnerability classes based on EMS 98

Type of Structurs Wlnetability Class
s B <O D E F
rubble stone, Beldgone ]
adobe [carth bncky 0-—'
% arnple sbone luqo
g mess1ve stonc I—-D---l
unrewntorced, wath
manufactired stone units I.. D .-I
uraeinforced, with RC floors I—-D---l
reinforced or confined I---D-—I
= frame withont
E eathrmake-resistant design (ERL) I O
E frame with moderate lewel of ERD I >
% frarme wnth hugh leve ot ERD | O
@ wrallz witheut ERD I— D-—I
T gwalls vath moderas level of ERD F+OH
i
% walls wath high lewsl of ERD b
I
% stecl structures i D_I
e 1
é tirnher stmciires I ]

Dmnst likely swulnerability class, = probable range;
=erahg e nf less prob shle, exceptional cases

EMS-98 defines the vulnerability class of buildings in terms of linguistic terms
"Most" (most likely), "Many" (likely/possible) and "few" (unlikely) as shown in
Table D.2. Analogous to probability concept, damage state can be obtained by
integrating the most probable states of damage for a given intensity. The
probability of damage has been commonly estimated through lognormal
distributions requiring the mean (A) and standard deviation (B) of damage data set

as below:

Ptotal = XP[damage> ds|MMI] = Ppjmmi [d|MMI] =

_ J.-M'MI 1 exp [_i (lnuiMMf}—A)‘] AMMI (D.1)

0 wByEm z ;]

Hence, the state of damage can be alternatively expressed by using A and B. This
clearly shows the fact that richer data set generates more precise fragility curve.
While the data set is itself generated empirically from expert opinion, the precision
relies on the wealth of sampling characteristics including size, shape and

dispersion.



Appendix

253

Table D.2 - Vulnerability Class of common buildings based on EMS-98 scale

Building Vulnerability Class Damage level N
# Class A ‘ B ‘ C ‘ D ‘ E | F Fuzzy Interpretation Ml
M1 URM 0.2(Wa) + g+ 0.2(1c) 7.37
M2 RM 0.2(1 &) + L o+ 0.6(LL ¢) 4.02
Cl | FRM +ERD 0.2(M g)+ 0.6(|L )+ p + 0.6(LL ¢) 4.65
S1 FRM - ERD 0.2(L a)+ 0.6(L )+ ¢ 6.79
S2 SBF 0.2(1L )+ 0.6(1L )+l g + 0.6(LL ¢) 3.15
Most likely : 50% <P < 100% __ i M
Possible(many): 10% < P < 60% R e
Few(Unlikely) : 0 <P< 20% 0 10 20 30 40 5 60 70 8 90 100%

* MDI: Mean Damage Index Probability scale

Similarly, the damage state can be interpreted in the form of fuzzy set by
combining sets of damage membership functions for different building classes. For
example mean damage index (MDI) in a common reinforced masonry can be
computed by adding the probability of corresponding classes (noted within EMS-
98) as following:

MDlru = T4 f (RM) = fEo0> + i + fivm, =020 + o+ 0.6(1e)

Where MDIRM is a fuzzy number representing mean damage Index and (¢, Up,

W e are membership functions for vulnerability classes C, D and E respectively.

Alternatively, the fuzzy processing of damage state may be demonstrated

graphically by adding the individual fuzzy numbers corresponding the
vulnerability classes C to D. Presumably, the vulnerability classes of EMS-98 can be
presented on a scale of 1 to 10 through six trapezoidal membership functions

shown in Figure D.1.

o o =
i

Damage probablity
membership function
oo oo oo o000

o = N W Bk oo~
T
=
gl
i

et ;\ _____ Sty

L 4 | |
éeb 7 75 8 B85 9 95 10

0 05 1 15 2 25 3 35 4 45 5 55 6

Wulnerability
Figure D.1 - Developing Mean Damage Index (MDI) for building type M2 (RM)
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Equation (D.1) can be interpreted by using a union aggregating operator:

MDlrm = famn + foian T famoy = Ukt = 27 U pp U g3

Which is a new aggregated fuzzy number shown in red line. Defuzzifying the fuzzy
number using COA (centre of the area), an equivalent crisp value of MDI can be
obtained. For precision, the computing process was modelled in MATLAB® as

shown in Figure D.2.

INP1 =685 INP2=44 NP3 =22
MDI =4.02

¢
t
A

0

Figure D.2 - MDI aggregation process modelled in MATLAB©

Hence, Mean Damage Index (MDI) for class M2 (RM) would be 4.02. Similarly MDI

for other classes of buildings can be obtained.
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Appendix E: Scale of measurement in
Hazard & Vulnerability

Appendix E.

E.1 Seismic Hazard Levels

Seismic hazard levels are closely linked with the earthquake magnitude trends and
thus it has a correlation with earthquake occurrence. The extent in which these
hazards might influence a facility performance relies on many factors such as
earthquake magnitude, distance and direction of fault rupture propagation and site
geology (Fajfar and kraw 1997). Considering the full spectrum of potential seismic
induced events may occur ranging from small to large magnitude, there is high
probability that a site experience low hazards events within life cycle of building
and conversely, low probability to occur high hazard events in a long time. In
practice, this point allows discretion of potential earthquake events and clustering
to certain level of hazards. Thus the seismic hazard levels may represent the range
of seismic severity for which a building performance is desired. Consequently, the
levels of hazard adopted for this study is shown in Table E.1 which is based on the

earthquake magnitude and seismicity defined in local code of practice.

Table E.2 - Seismic hazard levels adopted for the study

Hazard Level PGA 50 years Probability MMI Earth(!uake
of Exceedance Magnitude
Very Low _ 50% vV-v 34-4
Low 0.011-0.05 25% V-VI 4.0-4.6
Medium 0.051 - 0.15 20% VI-VII 46-53
Substantial 0.151-0.30 10% VII-VIlI 5.3-5.8
High 0.301-0.50 2% VII-IX 5.8-7.0
Very high >0.5 1% > X >7

seismic hazards.

The PGA and MMI scale jointly address the objective and subjective aspects of
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E.2 Seismic Vulnerability Levels

The concept of vulnerability is multidimensional and often contains tangible and
intangible characteristics. The scope of vulnerability directly linked to the research
objective and target mitigation programme. The evaluation of the effects of
earthquake damage on structures requires the selection of a measurement
parameter. Procedures adopted in current study use the anticipated performance
of the building during future earthquakes as the measurement parameter. The
likely impacts of earthquake damage on basic structural properties control the
seismic performance of a building. Thus, the vulnerability scale adopted for this
study is based on the potential damages that a building could suffer following an
earthquake (Table E.2). This scale is consistent with international standards

(FEMA 273; EMS 98; ATC 13) as discussed in Chapter 6.

Table E.2 - Seismic vulnerability levels adopted for the study

Vulnerability Damage Damage Remark
linguistic term State Scale%
Very Low DO- None 0-1 Not any damage

Negligible damage in non-structural elements —

Low D1- light 1-10 No damage in structural elements

Medium D2- Moderate | 10-30 Slight structural damage, moderate non-
structural damage

. Considerable damage in structural and heav

Substantial D3 - Strong 30-60 & Y
non-structural elements
Severe damage  and partial collapse of

High D4 - Severe 60 - 80 structural elements — (failure in load carrying

systems)

Very High D5 - Collapse 80 - 100 Destruction




